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1. Summary

During early embryogenesis, secreted proteins dictate the body plan of developing individuals.

The resulting patterns are thought to be imposed by a graded distribution of molecular sig-

nals. To this day, it is not fully understood how signaling gradients are formed, maintained

and adjusted to body sizes of di�erently sized individuals. This dissertation aims to provide

new insights into the biophysical underpinnings of signal molecule gradients of early embryonic

patterning and propose novel mechanisms that allow for scale-invariant patterning.

Two of the most important parameters controlling the range and shape of signaling gradients

are the rate at which signaling molecules decay and di�use. Despite their importance, such

biophysical parameters have not been measured or have only been assessed under simpli�ed

assumptions or contexts for most developmental systems. In this dissertation I present two

assays and specialized software packages that allow the assessment of these parameters in living

zebra�sh embryos.

I then demonstrate how these tools can be used to answer long-standing questions in early

embryogenesis, such as how the dorsal-ventral axis is formed. This thesis provides evidence

suggesting, in contrast to current hypotheses, that the dorsal-ventral axis is formed by a simple

source-sink mechanism.

Moreover, I show how to use mathematical modeling equipped with parameters estimated

from the biophysical measurements to describe scale-invariant patterning during germ layer

patterning in zebra�sh development. My model, together with a rigorous multidimensional

parameter screen �tted in normal and arti�cially size-reduced embryos, was able to identify

a new mechanism that allows for scaling of the germ layers in di�erently-sized embryos with

realistic parameter con�gurations.

In summary, this dissertation outlines how a systems biology approach can play a crucial

role to advance the understanding of classical open questions in developmental biology.
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2. Zusammenfassung

Der Bauplan von Organismen während der frühen embryonalen Entwicklung wird von sezenierten

Molekülen bestimmt. Es wird vermutet, dass die dafür nötigen Muster durch eine gradierte

Verteilung von molekularen Signalen festgelegt werden. Es ist jedoch noch unklar, wie sogenan-

nte Signalgradienten gebildet und reguliert werden und sich der Gröÿe des Organismus anpassen.

Diese Dissertation gewährt einen tieferen Einblick in die biophysikalischen Grundlagen von Sig-

nalmolekülgradienten und stellt neue Mechanismen für skaleninvariante Musterbildung vor.

Die Stabilität und Di�usionsrate der Signalmoleküle sind zwei Parameter, die das Pro�l

und die Reichweite von Signalgradienten stark beein�ussen. Trotz ihrer zentralen Rolle wurde

die Messung dieser beiden Parameter bisher vernachlässigt oder nur unter vereinfachenden An-

nahmen durchgeführt. In dieser Dissertation stelle ich zwei Verfahren inklusive spezialisierten

Softwarepaketen vor, die es erlauben, die Stabilität und Di�usionsrate der Signalmoleküle in

lebenden Zebra�schembryonen zu bestimmen.

Mit Hilfe dieser Verfahren können Fragen der Embryonalentwicklung, wie beispielsweise die

Bildung der dorsoventralen Achse, beantwortet werden, wie ich in meiner Arbeit zeigen werde.

Im Gegensatz zu gegenwärtigen Hypothesen sprechen meine Ergebnisse dafür, dass die dorsoven-

trale Achse mit einem einfachen �Quelle-Senke�-Mechanismus erklärt werden kann.

Aus diesen Methoden erhaltene Parameter können zusammen mit mathematischer Mod-

ellierung benutzt werden, um die Keimblattbildung während der embryonalen Entwicklung

von Zebra�schen zu beschreiben. Das von mir entwickelte Modell wurde mit einer rigorosen

mehrdimensionalen Parametersuche an verschiedene experimentelle Beobachtungen von künst-

lich verkleinerten Embryos angepasst. Die so identi�zierten Parameterkon�gurationen können

die Skalierung der Keimblätter biologisch plausibel erklären.

Kurz gefasst beschreibt diese Dissertation, wie klassische Fragen der Entwicklungsbiologie

mit Hilfe von systembiologischen Ansätzen beantwortet werden können.
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4. Introduction

Since the early days of developmental biology, biologists have admired the surprising consistency

of the body plan during development, both intraspeci�c and interspeci�c. Exactly 100 years

ago, D'Arcy Thompson published �On growth and form� (Thompson, 1917), describing how

geometric transformations and mathematical relationships can explain embryonic development

and interspeci�c di�erences. In this groundbreaking book, he was the �rst to advocate the

use of mathematics, physics and mechanics in the young �eld of developmental biology. He

believed that �in the study of things, number, order and position are the threefold clue to exact

knowledge; that these three, in the mathematicians hands furnish the '�rst outlines for a sketch

of the universe' �, making him the �rst systems biologist in developmental biology. Without the

knowledge of molecular biology, most of his �ndings and explanations in �On growth and form�

remain mainly descriptive. His ideas, however, have inspired systems biologists until today.

Recent advances in computer science, microscopy, biophysics and molecular biology together

with increasing collaborations across �elds, allow us today to address classical questions in

developmental biology in a comprehensive manner. How do cellular tissues and later organs

form? How does cellular movement, division and death together with intercellular forces control

tissue shapes? How are cell fates speci�ed? And how are proportions between tissues sustained

in di�erently sized embryos?

4.1 Morphogens and signaling gradients

During early embryogenesis, tissue patterning is mainly controlled by signaling molecules. In

the 1950s Alan Turing coined the term morphogens to describe substances that di�use between

cells and instruct di�erent cell fates depending on the substances' concentration or abundance

(Turing, 1952). Turing supported his hypothesis by deriving a mathematical model that al-

lows periodic patterns to emerge from a noise-perturbed uniform distribution of two interacting

di�using species, providing the �rst explanation for self-organization, that is, the spontaneous
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creation of patterns in an originally disorded system, during embryonic development.

The idea that morphogen concentrations direct development was later formalized into the

positional information framework by Lewis Wolpert (Wolpert, 1969). In this framework, often

also referred to as the �French-�ag model�, morphogens are produced in localized sources from

which they spread in the tissue and induce downstream target genes at varying morphogen

concentrations (Figure 4.1). Wolpert (1969) also noticed that cell fate determination takes

multiple hours and that most speci�ed tissues did not exceeded ∼ 100 cells. Following these

observations, Crick (1970) showed, using rough calculations, that di�usion of signaling molecules

that are absorbed by a distant sink could explain signal gradient formation. In general, di�usion

alone is not su�cient to generate stable morphogen gradients that provide equal read-outs at a

given distance over time, since continuous di�usion would lead to temporally changing gradients

that ultimately converge to a homogeneous morphogen distribution. However, when di�usion is

coupled with molecular decay or clearance stable morphogen gradients can be formed (Kicheva

et al., 2007, Lander, 2007, Wartlick et al., 2009, Rogers and Schier, 2011, Drocco et al., 2011).

Molecules can be cleared, that is, removed from the pool of signaling molecules, through various

mechanisms, such as endocytosis, immobilization, or degradation (Lander, 2007). The model

that signaling gradients are formed by di�using molecules that are constantly produced by a

source and cleared by a linear degradation term is referred to as the synthesis-di�usion-clearance

(SDC) model.

4.2 Understanding the biophysical underpinnings of signal-

ing gradients is key to model selection

Even though the idea of morphogen gradients formed by the SDC model is now a well-established

framework for embryonic patterning, the biophysical underpinnings of this model in various de-

velopmental systems are still unclear. In the past decades, several studies have provided infor-

mation about the biophysical parameters of di�erent signaling molecules. These measurements

however, provided di�erent parameter estimates for the same molecules, leading to the propo-
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Figure 4.1: Principle of the positional information model. A source cell (green) produces
morphogens that spread through the tissue. Cells along the morphogen's path then interpret the mor-
phogen's concentration and di�erentiate (blue, white, red) dependent on various morphogen concentra-
tion thresholds (adapted from (Rogers and Schier, 2011)).

sition of various alternative models and controversy in the �eld about the correct underlying

mechanism. Selecting between models that �t experimental observations based on biophysical

measurements has thus been of great interest in the �eld of developmental biology. Two in-

tensively discussed patterning systems are the formation of the anterior-posterior (AP) axis by

Bicoid (Bcd) and patterning of the wing imaginal disc by Decapentaplegic (Dpp) in the fruit �y

(Drosophila melanogaster) embryo.

4.2.1 Di�ering di�usion rate estimates complicate Bicoid gradient model
inference

Probably the most prominent and well-studied example of a morphogen gradient is the Bcd

gradient in Drosophila (Driever and Nüsslein-Volhard, 1988a,b, Struhl et al., 1989, Gregor et al.,

2007b). The bcd messenger RNA (mRNA) is maternally provided on the anterior side of the �y

embryo from which the transcription factor Bcd establishes a signaling gradient and ultimately

determines cell fates along the anterior-posterior axis. Bcd gradient formation occurs in a highly

dynamic environment. During the three hours of Bcd gradient formation in the Drosophila syn-

cytium, the nuclei sharing a common cytoplasm in the embryo undergo 13 rounds of division

until �nal cellularization, providing a continuously changing target �eld for Bcd. Despite ex-

tensive research, the exact mechanism by which the Bcd gradient is formed, maintained and
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read-out in this dynamic environment is still unknown (Grimm et al., 2010). Possible mech-

anisms include the SDC model at steady-state (Figure 4.2A) (Driever and Nüsslein-Volhard,

1988a,b, Houchmandzadeh et al., 2002), the SDC model with pre-steady state read-out (Figure

4.2A) (Bergmann et al., 2007), nuclear trapping (Figure 4.2B) (Coppey et al., 2008), a �xed

mRNA gradient (Figure 4.2C) (Spirov et al., 2009), and mRNA di�usion (Figure 4.2D) (Lip-

shitz, 2009). All four proposed models make di�erent predictions on the biophysical properties

of Bcd and the interpretation of the Bcd concentration.

mRNA distribution Protein distribution

Localized mRNA / protein source Constant homogeneous protein degradation

SDC model (Driever, 1988; Bergmann, 2007)

Localized mRNA / protein source Protein clearance by increasing nuclear uptake

Nuclear trapping model (Coppey, 2008)

Fixed mRNA gradient / graded protein production Constant homogeneous protein degradation

RNA gradient model (Spirov, 2009)

Localized mRNA source / mRNA degrades homogeneously No protein degradation

RNA diffusion model (Dilão, 2010)

A

Anterior Posterior

B

C

D

Posterior Anterior

Figure 4.2: Current models for the formation of the Bcd gradient. A The SDC model
predicts that Bcd is produced locally on the anterior side and forms a signaling gradient by di�using
through the embryo while being degraded homogeneously. B In the nuclear trapping model, Bcd is
produced locally on the anterior side from where it spreads by di�usion throughout the embryo. Bicoid
then agglomerates in the increasing number of nuclei, e�ectively stabilizing the gradient. C The �xed
mRNA gradient model postulates that a predetermined graded distribution of bcd mRNA produces a
graded distribution of Bcd protein, predicting almost identical pro�les between mRNA and protein.
D In the mRNA di�usion model, the Bcd signaling gradient is established by the initially anteriorly
localized mRNA di�using and degrading throughout the embryo, e�ectively forming a gradient. This
graded mRNA distribution then produces a Bcd protein gradient through graded Bcd production.
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With the emergence of �uorescence imaging techniques and �uorescent fusion proteins, bio-

physical measurements of the Bcd gradient determinants became available. For instance, the

Bcd di�usion coe�cient has been assessed multiple times: Gregor et al. (2007b) measured a Bcd

di�usion coe�cient of ∼ 0.3 µm2 s−1, Abu-Arish et al. (2010) obtained ∼ 7 µm2 s−1. Castle et al.

(2011) reassessed the data of Gregor et al. (2007b) with improved analysis methods and found

a Bcd di�usivity of ∼ 0.89 µm2 s−1. While the estimate by Gregor et al. (2007b) is incompatible

with the hypothesis that the Bcd gradient is formed by the SDC model or by nuclear trapping,

since the slow Bcd di�usivity would not allow the gradient to be established at the proper time

scale (Grimm et al., 2010), Castle et al. (2011) argue that their reassessed di�usvity and thus the

di�usivity estimated by Abu-Arish et al. (2010) are su�cient to explain Bcd gradient formation

by both models. Sigaut et al. (2014) reassessed both original studies by Gregor et al. (2007b)

and Abu-Arish et al. (2010), and found that both di�usion coe�cients are in agreement consid-

ering their di�erent measurement techniques and di�erent underlying �tting model assumptions.

Temporarily stable gradients and precise di�usion measurements become especially important

considering the immense precision at which the Bcd gradient is read-out within less than three

hours of syncytial speci�cation during �y development. Gregor et al. (2007a) argue that the

Bcd gradient is interpreted correctly by nuclei within 1%-2% of total embryo length, that is,

roughly within 8 µm. Such precision would require the nuclei's read-out accuracy to be ∼ 10%.

Considering the di�usion coe�cients measured by Gregor et al. (2007b) and Castle et al. (2011),

this would require the cells to perform temporal signal averaging over ∼ 7000 s, that is, almost

the whole time available for Bcd gradient formation. Gregor et al. (2007a) propose that the

necessary read-out time is inversely proportional to the morphogen's di�usivity. Thus, the much

higher di�usion coe�cient determined by Abu-Arish et al. (2010) reduces the time frame that

is necessary to achieve an accurate Bcd read-out within 8 µm down to ∼ 1000 s. More complex

spatiotemporal averaging read-out mechanisms might further decrease the necessary time of Bcd

interpretation and increase precision (Gregor et al., 2007a). The question about the driving fac-

tors of Bcd gradient formation, that is, if di�usion of Bcd protein (Driever and Nüsslein-Volhard,

1988a,b, Bergmann et al., 2007, Houchmandzadeh et al., 2002) or the distribution of Bcd mRNA
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(Spirov et al., 2009, Dilão and Muraro, 2010) as well as the role of nuclear uptake (Coppey et al.,

2008), are key to a proper formation of the Bcd gradient, has recently been resolved by a more

accurate spatiotemporal model including all known parameters and observations (Little et al.,

2011). The extended SDC model presented by Little et al. (2011) shows that through early

nuclear division cycles in the Drosophila embryo, Bcd is di�using quickly along the AP axis

and Bcd mRNA forms a short gradient. With increasing nuclear density, e�ective Bcd di�usion

decreases and Bcd maintains a stable gradient in nuclear division cycle 10�14.

In summary, precise knowledge of the biophysical properties of Bcd combined with accurate

modeling were key to selecting between proposed models for Bcd gradient formation and inter-

pretation. Further accurancy of biophysical measurements may foster our understanding of AP

axis formation.

4.2.2 Varying di�usion estimates make model selection for the De-
capentaplegic gradient in the wing imaginal disc di�cult

Another classical example of a morphogen gradient is the Transforming Growth Factor (TGF)

superfamily ligand Dpp. During Drosophila development, Dpp is produced on the anterior-

posterior boundary of the wing imaginal disc, a precursor of the �y wing. Dpp then moves

through the wing disc tissue both in the anterior and posterior compartment, forming a long-

range signaling gradient of the transcription factor phosphorylated Mothers Against Decapen-

taplegic (MAD) by binding to its receptor Thickveins (tkv) (Lecuit et al., 1996, Nellen et al.,

1996, Podos and Ferguson, 1999, Kicheva et al., 2007). It is currently controversial how the Dpp

gradient is formed. The planar transcytosis model by Kicheva et al. (2007) postulates that Dpp

is mainly located intracellularly and moves by repeated transcytosis through the cells (Figure

4.3A) . Kicheva et al. (2007) support this assumption with quanti�cations of Dpp gradients in

vivo combined with measurements of a low Dpp di�usion coe�cient. A second model for Dpp

gradient formation is free extracellular di�usion (Figure 4.3B) (Zhou et al., 2012). The authors

revisited di�usion measurements performed by Kicheva et al. (2007) and additionally performed

multiple other assays for di�usion measurements. Through the combination of these assays with
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an improved analysis, Zhou et al. (2012) consistently arrive at a two orders of magnitude higher

di�usion rate for Dpp compared to the value estimated by (Kicheva et al., 2007). The estimated

di�usion rate by Zhou et al. (2012) is more than 4-fold slower than free GFP di�usion (Kicheva

et al., 2007). This decrease in e�ective di�usion rate is unlikely to be solely due to the larger

molecule size of the �uoresecent fusion protein used for the measurement: the Einstein-Stokes

relationship predicts that the volume of the fusion protein would need to be 64 times larger

than the one of GFP, however, the fusion protein volume should maximally be around 16 times

larger. The di�usion of Dpp is likely to be hindered by additional factors, such as obstacles, and

molecules in the extracellular space. The restricted di�usion model postulates that reversible

binding with the receptor Tkv and interaction with Heparan Sulfate Proteoglycans (HSPGs)

such as Dally and Dally-like protein (Dlp) hinder Dpp di�usion, e�ectively creating a gradient

(Figure 4.3C) (Crickmore, 2006, Akiyama et al., 2008, Schwank et al., 2011, Müller et al., 2013).

Each of the three proposed models require e�ective di�usion rates, that is, the net rate of dif-

fusion, to be in di�erent orders of magnitude and thus assign di�erent roles and importance to

biophysical processes. Additionally, each model generates di�erent implications on the precision

of the Dpp gradient (Bollenbach et al., 2008). In conclusion, it is necessary to measure pa-

rameters dictating Dpp gradient formation and interpretation in the appropriate context using

realistic analysis assumptions, allowing for correct morphogen gradient model selection.

4.3 Measuring biophysical properties of morphogens

The examples of the Bcd and Dpp gradient illustrate that a precise quanti�cation of the biophys-

ical properties of a morphogen system is crucial for the correct selection of morphogen gradient

models. Despite their importance for the formation and maintenance of morphogen signaling gra-

dients, we still have only a vague knowledge of biophysical parameters of morphogens and other

molecules involved in pattern formation. Two biophysical parameters are the main instructors

of gradient formation: di�usion and clearance of molecules (Crick, 1970, Lander, 2007). Even

though both parameters have already been estimated for di�erent morphogen systems (Gregor
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Transcytosis (Kicheva, 2007)

Restricted extracellular diffusion (Schwank, 2011)
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Figure 4.3: Distribution models of Dpp in the wing imaginal disc. A Dpp (green) di�uses
freely between cells, binds to its receptor Tkv and gets internalized into the cell, where it is degraded.
B Dpp (green) mostly relocates by uptake and secretion from cell to cell. C Dpp (green) di�usion is
hindered by reversible binding to HSPGs (magenta) which might function as a co-receptor-like complex,
bringing Dpp into the vicinity of Tkv (adapted from (Zhou et al., 2012)).

et al., 2007b, Abu-Arish et al., 2010, Kicheva et al., 2007, Drocco et al., 2011, Castle et al., 2011,

Wartlick et al., 2009, Müller et al., 2012), there is still lack of exact quantitative measurements

that allow for precise parameterization of and selection of morphogen gradient models. One

limitation is that it proves di�cult to measure the relevant parameters in vivo.

4.3.1 Measuring protein stability and clearance

Protein stability, for instance, has mostly been assessed by radioactive pulse-labeling or cyclo-

heximide chase experiments in cell cultures (Zhou, 2004) or computed indirectly using theoretical

models (Kicheva et al., 2007). However, protein half-lives are strongly context-dependent and
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could thus di�er in vivo and in vitro. The recently developed assay Fluorescence Decay After

Photoconversion (FDAP) provides an alternative to traditional assays for measuring protein

stability and clearance (Zhang et al., 2007, Pantazis and Supatto, 2014). In FDAP experiments,

a fusion of the protein of interest with a photoconvertible protein is homogeneously distributed

inside the organism. A UV light pulse then converts the �uorescence of the fusion protein from

the original state (i.e. green) to the photoconverted state (i.e. red). Using a confocal microscope,

one then monitors the decay of the photoconverted �uorescent signal and uses model �tting to

numerically extract protein half-lives and clearance rates (Figure 4.4A). One advantage of FDAP

is that the use of photoconvertible proteins in FDAP allows us to ignore the production of new

proteins during the time-lapse experiment since newly produced proteins will be unconverted

and thus not contribute to the photoconverted signal. FDAP experiments have been successively

applied to assess protein half-lives in zebra�sh (Danio rerio) Müller et al. (2012).

4.3.2 Measuring protein di�usion

As previously discussed, di�erent di�usion rates of morphogens can lead to di�erent implica-

tions about the underlying mechanics of gradient formation and patterning. There are currently

two popular techniques that allow for in vivo assessment of molecular di�usion: Fluorescence

Correlation Spectroscopy (FCS) measures the changes in �uorescence in small (i.e. femtoliter)

volumes (Magde et al., 1972, 1974, Schwille and Haustein, 2009) and then �ts theoretical cor-

relation functions to compute free di�usion coe�cients. A second popular assay that measures

protein di�usion is Fluorescence Recovery After Photobleaching (FRAP) (Poo and Cone, 1973,

Liebman and Entine, 1974, Axelrod et al., 1976, Sprague and McNally, 2005). In FRAP, the

�uorescent signal of a molecule is bleached in a region of interest. After bleaching, �uorescent

molecules from outside of the bleached region di�use into the bleached region until the �uores-

cent signal reaches a steady state throughout the whole sample again. The curve describing the

�uorescence recovery in the bleached region can then be used to compute either e�ective molecu-

lar di�usion, or free molecular di�usion with binding kinetics depending on the theoretical model
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Figure 4.4: Assays for assessing biophysical parameters of molecules. A In Fluorescence
Decay After Photoconversion (FDAP) a homogeneously distributed fusion protein is photoconverted,
and subsequently the photoconverted signal decays over time. Fitting a decay model to the resulting
decay curve of photoconverted signal is then used to compute protein clearance rates. B Schematic of
Fluorescence Recovery After Photobleaching (FRAP). A small region is bleached into a homogeneous
�uorophore signal. The curve created from the mobility-driven recovery in the bleached area can then be
used to extract the molecule's di�usion rate. C Fluorescence Correlation Spectroscopy (FCS) monitors
the �uctuations of molecules inside a femtoliter volume in the tissue of interest over time. Fitting the
resulting autocorrelation curves can then provide local molecular di�usion rates (adapted from (Müller
et al., 2013)).

used (Axelrod et al., 1976, Soumpasis, 1983, Sprague and McNally, 2005). Both assays can be

used in vivo, however provide di�erent di�usion values. The results provided by FCS directly

corresponds to the local di�usion, binding and concentration of the molecule in a femtoliter

volume, while FRAP can measure the net di�usion rate on a tissue scale. Such net di�usion

rates incorporate hindrance of molecular movement by for instance tortuosity, that is, hindrance

by obstacles, or binding processes. Thus, depending on the assay or analysis method chosen,

di�erent di�usion measurements may lead to di�ering morphogen gradient models (Castle et al.,

2011, Sigaut et al., 2014).
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4.4 Scale-invariant patterning

At the beginning of the 20th century, Hans Spemann performed a classic experiment that demon-

strated an extreme example of the consistency of the body plan of organisms (Spemann, 1938,

Cooke, 1981). Using a hair, Spemann divided the �rst two cells of a salamander embryo into

two halves, and remarkably one of the two halves healed and formed a half-sized embryo with

proper proportions. Allometric scaling, that is, proportional scaling of tissues (Figure 4.5A),

is common across taxa and developmental stages, for example in insects (Gregor et al., 2005,

Shingleton et al., 2007), amphibians (Spemann, 1938, Ben-Zvi et al., 2008, Inomata et al., 2013),

birds (Uygur et al., 2016) or mammals (Lauschke et al., 2013). The experiments by Spemann

(1938) showed that in development allometric scaling of tissues is probably kept during the com-

plete developmental process, that is, tissues keep their relative size throughout development. For

instance, one could imagine that in di�erently sized zebra�sh embryos, the proportions between

dorsal and ventral tissue scale from early development on (Figure 4.5B). However, even today we

still do not completely understand the mechanisms underlying scale-invariant patterning, despite

extensive work both theoretically (Gierer and Meinhardt, 1972, Othmer and Pate, 1980, Umulis

and Othmer, 2013, Rasolonjanahary and Vasiev, 2016, Barkai and Ben-Zvi, 2009, Ben-Zvi and

Barkai, 2010, Ben-Zvi et al., 2011b) and experimentally (Ben-Zvi et al., 2008, Inomata et al.,

2013).

4.4.1 Mechanisms and models of scale-invariant patterning

Wolpert (1969) already argued that simple signaling gradients as established by the SDC model

are not able to scale with body size and that for successful scaling the read-out performed by

the cells needs to adjust if body size is altered. Later, Othmer and Pate (1980) found that

a relatively simple modi�cation of Turing's model, a simple reaction-di�usion system with a

negative feedback loop, can allow for scaling if the di�usion coe�cient is spatially dependent.

They proposed that this can be achieved by introducing a homogeneously produced auxiliary

molecule that modi�es the morphogen's di�usivity. In fact, the idea of either active (Gierer
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and Meinhardt, 1972, Eldar et al., 2002, Umulis and Othmer, 2013, Ben-Zvi et al., 2008, 2011b,

Haskel-Ittah et al., 2012, Averbukh et al., 2014, Rasolonjanahary and Vasiev, 2016) or passive

modulators (Umulis, 2009, Coppey et al., 2008) has been followed up by various experimental

and theoretical studies. We say a system is regulated by a passive modulator if the morphogen

has no in�uence on the modulator (Figure 4.6A), in contrast to active modulators that are under

the control of the morphogen itself (Figure 4.6B) (Umulis and Othmer, 2013).

Passive modulators have been proposed in di�erent systems. Umulis (2009) argued that when

a locally secreted morphogen undergoes reversible binding to some kind of static receptor-like

molecule (the modulator), its steady-state gradient can scale if the sum of these molecules is

constant independent of embryo size, and if the production of the morphogen is constant. Similar

to this theoretical model, Coppey et al. (2008) proposed that during terminal patterning of the

AP axis in Drosophila embryos, the gradient of pERK scales due to an increasing nucleus density

(the modulator), e�ectively counteracting the increasing number of produced morphogens by

keeping the ratio between the number of morphogens and nuclear morphogen uptake constant.

The most prominent example of a passive modulator is the shuttling model (Eldar et al., 2002,

Ben-Zvi et al., 2008, Haskel-Ittah et al., 2012). In this model, a morphogen gradient is opposed

by a second gradient of a modulator molecule. The modulator molecule reversibly binds to the

free morphogen, increasing its e�ective di�usivity and shuttling it towards the side of its original

expression, see Figure 4.6C.

While such passive models can explain scaling for experiments in di�erently sized embryos,

they would fail to explain experiments in which the modulator source is eradicated since they

lack the ability to self-regulate, that is, producing a new modulator source. A popular mecha-

nism that allows to self-regulate is the expander. The expander is a modulator under control

of the morphogen, that is either produced or repressed by the morphogen (Ben-Zvi et al., 2008,

Ben-Zvi and Barkai, 2010, Ben-Zvi et al., 2011b, Umulis and Othmer, 2013, Averbukh et al.,

2014). A possible expander mechanism is the expansion-repression model (Ben-Zvi and Barkai,

2010, Ben-Zvi et al., 2011b, Umulis and Othmer, 2013, Averbukh et al., 2014). In this model,

the locally produced morphogen represses the expression of the expander molecule while the
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Figure 4.5: Scale invariance during development. A Scaling of the French-�ag model. In
allometric scaling, the proportions between cell fates within a tissue stay constant in di�erently sized
embryos. B Maintainance of dorsal-ventral proportions during zebra�sh development. Smaller embryos
form initially smaller dorsal and ventral progenitors. Throughout development, the successor cells
of these progenitors develop into proportionally smaller tissues compared to a normal sized zebra�sh
embryo (zebra�sh illustrations taken from (Agathon et al., 2003)).

expander modulates di�usion or degradation, either increasing or decreasing the range of the

morphogen in regions of low morphogen concentrations (Figure 4.6D). Recently it has been pro-

posed that Pentagone (Pent) regulates Dpp signaling during Drosophila wing disc development

(Ben-Zvi et al., 2011a, Hamaratoglu et al., 2011, Norman et al., 2016). Pent is produced lat-
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erally and forms an opposed gradient to Dpp, regulating the range of Dpp signaling gradient

while actively being repressed by Dpp signaling, making it an ideal candidate as a modulator

in the expansion-repression model (Ben-Zvi et al., 2011a, Hamaratoglu et al., 2011). A more

complicated version of an expander model has been presented by Inomata et al. (2013). In

this �Long-range accumulation and feedback� model, the morphogen enhances production of its

long-range modulator. This modulator then stabilizes the inhibitor of the morphogen that is

expressed on the opposite side of the embryo, thus increasing the inhibitor's range and e�ectively

reducing the morphogens signaling range.

4.5 Early patterning in the zebra�sh embryo

Although multiple mechanisms for signaling gradients and scaling have been proposed, there is

a lack of experimental and numerical veri�cation.

In this thesis, I will focus on two problems in developmental axis formation in zebra�sh that

are similar to the formation of AP identities via Bcd and DV fates by the Dpp gradient in

Drosophila. In vertebrates, two of the earliest patterns that form during development are the

dorsal-ventral axis, which divides the embryo into dorsal and ventral territories, and the three

germ layers, ectoderm, mesoderm and endoderm. These two orthogonal developmental axes

divide the embryo into multiple regions that later give rise to di�erent tissues such as brain,

epidermis, heart, blood, somites or notochord (Figure (4.7A) (Schier and Talbot, 2005). It is

generally believed that in the zebra�sh embryo, these territories are speci�ed between high-stage

roughly 3.5 hours post fertilization (hpf) and 50% epiboly 5.3 hpf (Kimmel et al., 1995, Schier

and Talbot, 2005), however it is currently controversial when �nal cell fate decisions are made

and how these are a�ected by morphogenetic movements (Tuazon and Mullins, 2015). During

this time, the number of cells in the zebra�sh embryo increases from 1000 cells to 5000 cells

(Kimmel et al., 1995). Thus, assigned cell fate territories only span a small number of cells

in a given direction. For instance, the precursor of mesendoderm, that is, both endoderm and

mesoderm, only spans a range of roughly 12 cells (van Boxtel et al., 2015). One could imagine
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Figure 4.6: Mechanisms for scale-invariant patterning by modulators. A,B Schematics and
general reaction-di�usion models of a passive or active modulator-mediated scaling mechanism, respec-
tively. C Scale-invariant patterning through shuttling. The oppositely produced modulator binds to
the morphogen, increasing its e�ective di�usivity and ultimately shuttles the morphogen to the region
of its production, thus restricting its signaling range. D Schematic of the expansion-repression model.
The modulator facilitates the redistribution of the morphogen by e�ectively increasing its stability or
di�usion. The facilitated spread of the morphogen then leads to a wider signaling range.

that a single cell di�erence in the progenitors would alter the size of a tissue by 8%, and, if not

compensated, might lead to severe developmental defects. Hence, tissue speci�cation needs to

be tightly controlled.
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The formation of both germ layers and DV axis is controlled by signaling molecules: the germ

layers are de�ned by the read-out of the TGFβ-superfamily member Nodal (Schier, 2009) while

ventral regions are de�ned by high levels of Bone Morphogenic Protein (BMP), the vertebrate

homolog of Dpp and another TGFβ-superfamily member (Langdon and Mullins, 2011).

4.5.1 Germ layer speci�cation by the Nodal/Lefty patterning system

During the blastula stages in zebra�sh development, the germ layer specifying morphogen Nodal

is secreted at the marginal zone close to the yolk sack (Figure 4.8A) and is thought to di�use

extracellularly towards the animal pole (Schier, 2009, Müller et al., 2012). When one of the

two Nodal proteins Squint (Sqt) or Cyclops (Cyc) bind to the type I and II Activin receptors

Acvr1/Acvr2 as well as to the EGF-CFC co-receptor one-eyed pinhead (oep), the intracellularly

located transcription factors Smad2/3 become phosphorylated and move into the nucleus where

they activate the expression of multiple Nodal transcriptional targets, as well as the expression

of Nodal itself and the two Nodal inhibitors Lefty1 and Lefty2 (Figures 4.7B and 4.8C) (Schier,

2009, Müller et al., 2012). As a consequence of its localized expression and extracellular di�usion,

Nodal could form a classical morphogen gradient (Schier, 2009, Müller et al., 2012, Wang et al.,

2016). Indeed, Nodal has been hypothesized to be read-out at two di�erent concentration

thresholds activating di�erent transcription factors. For instance, high levels of Nodal lead to the

activation of sox32, instructing later endodermal tissue, while activation of ntl happens at lower

Nodal concentrations and leads to mesendodermal speci�cation (Schulte-Merker et al., 1994,

Schier, 2009). The hypothesis that Nodal alone induces all three germ layers however has recently

been challenged by the fact that Nodal-induced pSmad signaling does not have the necessary

range along the animal-vegetal axis (van Boxtel et al., 2015). van Boxtel et al. (2015) instead

propose that Nodal itself starts a signaling cascade through the activation of Fibroblast Growth

Factor (FGF), which extends Nodal signaling. Subsequently, Nodal and FGF are interpreted

by a complex gene regulatory network that instructs germ layers. Recently, Müller et al. (2012)

showed that Lefty di�uses approximately 5-6 times faster than Nodal while decaying at the
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Figure 4.7: The Nodal/Lefty and BMP/Chordin system de�ne the developmental coordi-
nate system during zebra�sh embryogenesis. A During the blastula stages, a cross-talk between
the Nodal/Lefty system along the animal-vegetal axis and the BMP/Chordin system along the dorsal-
ventral axis speci�es a blue print of precursors that dictate later cell types (adapted from (Schier and
Talbot, 2005)). B Basic outline of the signaling cascade of both patterning systems. The morphogen (M)
spreads extracellularly by di�usion and binds to a receptor complex of type I and II receptors. Upon
binding, intracellular Smad becomes phosphorylated and moves into the nucleus, where it activates
downstream targets of either Nodal or BMP.
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Figure 4.8: Schematics of the Nodal/Lefty and BMP/Chordin system during early ze-
bra�sh development. A The short-range activator Nodal is secreted at the marginal zone and forms
a signaling gradient towards the animal pole. Nodal's long-range inhibitor Lefty is a direct target of
Nodal and is thus predominantly expressed at the marginal zone. B BMP is expressed on the ventral
side of the embryo and antagonized oppositely by its long-range inhibitor Chordin on the dorsal side. C
Diagram of the Nodal-Lefty reaction-di�usion network. Nodal (N) activates its own inhibitor Lefty (L)
as well as expression of itself. Lefty has been shown to di�use 5-6 times faster than Nodal. D Diagram
of the BMP-Chordin reaction-di�usion network. BMP (B) is inhibited by Chordin (C). It is currently
unclear if BMP di�usion is relevant for DV patterning.

same rate. Together with the negative feedback of Nodal through Lefty activation, this makes

the Nodal-Lefty patterning system a candidate for an activator-inhibitor system as proposed by

Gierer and Meinhardt (1972) (Figure 4.8C).

4.5.2 Dorsal-ventral patterning is dictated by the BMP/Chordin sys-
tem

The dorsal-ventral axis is formed by another pair of antagonists similar to the Nodal-Lefty

system, namely BMP and Chordin. Three members of the BMP family BMP2, BMP4 and BMP7

are thought to be short-range activators expressed on the ventral side of the embryo antagonized
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by the dorsally secreted long-range inhibitor Chordin (Figure 4.8B) (Langdon and Mullins, 2011).

Similar to Nodal, BMP binds extracellularly to its type I and type II receptors Bmpr1/Bmpr2

which leads to phosphorylation of Smad1/5/8 and subsequent activation of downstream target

genes (Figure 4.7B). The inhibitor Chordin, in contrast to the Nodal/Lefty system, is not secreted

in the same region as BMP. Thus, it is currently controversial if BMP di�usion is required to

establish a BMP signaling gradient, since a gradual inhibition by Chordin could also explain

a ventral-to-dorsal gradient (Figure 4.8D) (Ramel and Hill, 2013). A second mechanism that

would not require BMP to di�use at a relevant rate is the �Shuttling model� proposed by Ben-

Zvi et al. (2008). In this model, BMP is �picked up� by the rapidly di�using Chordin along

the DV axis and shuttled towards the ventral side, e�ectively forming a sharp BMP gradient.

Moreover, BMP does not directly activate its inhibitor Chordin, but it is known to activate

Sizzled, which e�ectively stabilizes Chordin by binding to the metalloprotease Tolloid and thus

prevents Tolloid-mediated Chordin degradation (Lee et al., 2006, Mullins, 2006). However, the

dorsally produced BMP-like ligand Antidorsalizing Morphogenetic Protein (ADMP) has been

shown to repress chordin on the dorsal side (Reversade and De Robertis, 2005, Plouhinec et al.,

2013). Both Francois et al. (2009) and Inomata et al. (2013) formulated this auto-regulatory

network into reaction-di�usion models that are able to explain DV patterning, however make

di�erent assumptions about the biophysical properties of BMP and Chordin. While the model

proposed by Francois et al. (2009) requires low and approximately equal BMP and Chordin

di�usion, Inomata et al. (2013) attempt to explain DV pattern formation by a high BMP and

Chordin di�usivity and a strong di�erence in BMP and Chordin stability. In summary, there

are currently multiple hypotheses that try to explain the formation of a BMP gradient along

the DV axis, each making di�erent assumptions about the biophysical properties of BMP and

Chordin. However, these assumptions have been left untested so far.
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4.6 Aims of research

In this dissertation, I aim at providing a more mechanistic understanding of morphogen signal

gradient formation and scale-invariant adjustments of such. There is plenty known about the

molecular biology of both dorsal-ventral patterning and germ layer speci�cation during early

zebra�sh embryogenesis; however, the mechanisms underlying the gradient formation in both

systems are still controversial. Thus, both axes serve as ideal templates to test basic principles

of signal gradient establishment and maintenance. For a clear biophysical description of signal

gradient formation, it is imperative to measure key parameters such as protein di�usion and

stability in vivo. Thus, the �rst step of this research project was to develop assays and software

tools that provide and improve analysis for these parameters. Having established the necessary

tools to measure key biological parameters of morphogens, my collaborators and I were then

able to improve our understanding of dorsal-ventral patterning. By measuring di�usion rates

and half-lives of the key players in DV axis instruction, we were able to rule out di�erent

currently controversial mechanistic models and show that a simple source-sink mechanism is

most likely to explain BMP signal gradient formation during zebra�sh embryogenesis. I was

also interested how germ layer patterning scales with embryo size. For this, my colleagues

developed a way to manipulate embryo size and show that germ layers scaled to size if the

inhibitor Lefty was available in su�cient amounts, among other factors. Using this information,

I developed a mathematical model that uses the accumulation of the fast inhibitor Lefty as a

read-out of embryo size. Incorporating already known biophysical parameters of the Nodal/Lefty

system, together with a screening of the model over a comprehensive parameter space, returned

parameter con�gurations that not only provided the correct amount of scaling, but also were

able to reproduce all experimental observations and show the correct spatiotemporal dynamics

of germ layer speci�cation.
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5. Results

5.1 PyFDAP: Automated analysis of Fluorescence Decay
After Photoconversion (FDAP) experiments

Bläÿle, A., Müller, P. (2015). Bioinformatics, (6):972�974

5.1.1 Synopsis

The stability of proteins is crucial for the control of protein signaling range. Fluorescence

Decay After Photoconversion (FDAP) experiments assess protein stability both in vitro and in

vivo. Following an initial homogeneous photoconversion, the decay of the photoconverted signal

of a �uorescently-labeled protein is monitored. Assuming a proportional relationship between

�uorescent signal and the amount of present labeled protein, one can then �t decay models to

calculate the clearance rate and half-lives of the labeled protein.

In this publication, we present the open-source Python package PyFDAP. PyFDAP can

analyze microscopy data from FDAP experiments, �t both linear and non-linear decay models

to data and provide statistical analysis of obtained clearance rates and half-lives. Since protein

decay is thought to be context-dependent, we equipped PyFDAP with the ability to use a

second imaging channel that counter-labels di�erent territories in the sample to separate protein

decay by region, for instance extra- and intracellular regions. Additionally, PyFDAP can use

background data sets recorded without photoconverted signal to compute the lower bound of

protein decay and thus prevents the �tting procedure from underestimating basal �uorescence

levels in samples. To provide FDAP analysis to a wide range of users, we equipped PyFDAP

with an intuitive Graphical User Interface (GUI). PyFDAP projects and settings are saved

in serialized objects and can be opened and reanalyzed , enhancing collaborative work and

reproducibility.
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5.1.2 Author contribution

Patrick Müller and I conceived the study, designed the software and wrote the manuscript. I

implemented and tested the software.
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5.2 Measuring protein stability in living zebra�sh embryos
using Fluorescence Decay After Photoconversion (FDAP)

Rogers, K. W. Bläÿle, A., Schier, A. F., Müller, P. (2015). J. Vis. Exp., (95):e52266

5.2.1 Synopsis

Despite the crucial role that protein clearance plays in establishment and maintenance of signal-

ing gradients, little is known about protein half-lives and clearance rates inside living organisms.

The recent advancements in the development of photoconvertible proteins however, o�er new

possibilities to measure protein clearance in vivo using time-lapse imaging. Here we present a

variant of Fluorescence Decay After Photoconversion (FDAP), that assesses protein half-lives

and clearance rates in living zebra�sh embryos.

For FDAP, the protein of interest is tagged with a photoconvertible protein such as Dendra2.

A mix of mRNA encoding the fusion protein of interest together with an Alexa488-dextran is

injected at the 1-cell stage into the zebra�sh embryo. When the zebra�sh embryo reaches dome

stage it is mounted onto a glass-bottom dish in a drop of low-melting agarose animal pole down.

To keep the embryo from drying out, it is covered with Danieu's medium. The embryos are

then imaged at approximately 80 µm depth in both the photoconverted (i.e. red) and counter-

label (i.e. green) channel using an inverted confocal microscope; �rst, a pre-conversion image is

acquired. Subsequently, a UV lamp at maximum intensity is used to photoconvert the proteins

of interest. Directly after photoconversion, an image in both channels is taken every ten minutes

over �ve hours.

The open-source package PyFDAP can then be used to import the acquired time-lapse

datasets. PyFDAP directly imports the microscope data and �ts di�erent linear and non-linear

decay models to the data, using the strictly intracellular Alexa488-dextran as a counter-label to

provide half-lives and clearance rates for both intra- and extracellular regions.
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5.2.2 Author contribution

Katherine Rogers, Alexander Schier and Patrick Müller developed the assay. Katherine Rogers

and Patrick Müller wrote the manuscript. Katherine Rogers and I performed the data analysis.
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5.3 Quantitative di�usion measurements using the open-
source software PyFRAP

Bläÿle, A., Soh, G., Braun, T., Mörsdorf, D., Preiÿ, H., Jordan, B., Müller, P., in
review at Nature Communications

5.3.1 Synopsis

Tightly regulated movement of macromolecules such as proteins through biological tissue is

essential to prevent defects in development and homeostasis (Harmansa et al., 2015, Ornitz and

Itoh, 2015). A common assay that measures macromolecule movement is Fluorescence Recovery

After Photobleaching (FRAP). A FRAP experiment consists of two steps: First, the �uorescent

signal of the molecule of interest is bleached in a region in the biological sample by exposure

to a strong laser beam. When the region is su�ciently bleached, the movement-driven recovery

of the �uorescent signal in the bleached region is monitored. Inverse FRAP (iFRAP) is the

mirror image of a FRAP experiment. In an iFRAP experiment the dissipation of an initially

photoactivated or photoconverted molecule out of a region of interest is recorded. The dissipation

of the �uorophore leads to a decay curve inverse to the recovery curve of a FRAP experiment.

Such recovery or decay curves can then be used to compute molecular movement parameters

such as di�usion under the assumption of certain movement models. Currently, such movement

models and the involved analysis make simpli�ed assumptions about experimental geometry,

bleaching conditions and underlying reaction-kinetics, precluding correct estimation of di�usion

rates.

To overcome such current analysis shortcomings, we developed the Python package PyFRAP.

PyFRAP allows the user to de�ne exact three-dimensional geometries resembling the sample that

serve as a base for simulations of FRAP experiments, numerically matching its initial conditions

with the �rst acquired post-bleach image. These numerical simulations combined with various

reaction kinetics can then be �tted to the experimental data. PyFRAP integrates a complete

FRAP analysis work �ow from microscopy images to statistical analysis and publication-ready

�gures. The combination of an easy-to-use GUI with a fully documented Application Program-
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ming Interface (API) makes PyFRAP suitable for a wide range of researchers, independent of

their computational background.

Knowing the correct underlying reaction kinetics of a FRAP experiment is often di�cult.

PyFRAP's implementation of the Akaike Information Criterion (AIC) allows users to select the

most likely model between di�erent reaction-di�usion models based on statistical inference. In

a comprehensive in silico study we found that PyFRAP not only provides correct di�usion co-

e�cients based on simulated data, but also identi�es the correct underlying reaction kinetics

when possible using the AIC. Additionally, we performed a second series of in silico benchmark-

ing experiments testing PyFRAP's performance against four current FRAP analysis software

packages. Our results showed that PyFRAP overall outperforms all tested software solutions.

Moreover, we tested PyFRAP's analysis capabilities with a collection of in vitro experiments

undergoing purely di�usive processes using both FRAP and inverse FRAP (iFRAP). The FRAP

experiments indicate that PyFRAP can reproduce theoretical predictions and literature values

of di�usion rates of �uorophore-dextrans with sizes varying over two orders of magnitude as well

as recombinant Green Fluorescent Protein (GFP). Additionally, we performed the iFRAP exper-

iments in parallel with FRAP experiments of the photoconvertible protein Dendra2. Strikingly,

these tandem FRAP/iFRAP experiments provided nearly equal di�usion coe�cients, suggesting

that PyFRAP is able to analyze both types of experiments.

In biological samples, macromolecules often need to traverse complex environments such as

a �eld of cells to reach their targets. This leads to tortuous movement, e�ectively slowing down

molecules if they move extracellularly. Using PyFRAP, we show in silico that for cell packings

with di�erent densities and arrangements, this can lead to a reduction of e�ective di�usion

up to 66% in two-dimensional and 40% in three-dimensional geometries. Analysis of in vitro

experiments of recombinant GFP mixed with polyacrylamide beads suggested a reduction in the

di�usion rate by 18%, agreeing with simulations with an Extracellular Volume Fraction (EVF)

of ∼ 50%. Similar experiments with a 70 kDa �uorophore-dextran provided a stronger reduction

of 39%, indicating a possible interaction between beads and molecules given the experimental

setup.
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FRAP experiments with recombinant GFP in living zebra�sh embryos analyzed by PyFRAP

resulted in a 43% stronger reduction of e�ective di�usivity compared to a mix of GFP with beads

in vitro, indicating that the approximation of the extracellular matrix as a �eld of radial cells

is limited. Instead, we postulate that the extracellular environment in tissues might be more

complex, consisting of narrow spaces between cells, �lopodia and a dense extracellular matrix.

Equal di�usion coe�cients from FRAP experiments with recombinant GFP and secreted GFP

produced from injected mRNA in vivo showed that PyFRAP is able to account for uniform

protein production.

The e�ective di�usion of macromolecules such as morphogens in tissues is thought to be

further reduced by interaction with extracellular and membrane-bound molecules. We tested

this prediction by performing FRAP experiments in living zebra�sh embryos with the Nodal

protein Squint, and indeed, e�ective Squint di�usion was 95% slower than the theoretically

predicted value.

5.3.2 Author contribution

I conceived the study together with Ben Jordan and Patrick Müller. Together with Patrick

Müller, I designed the software. Implementation of the software was done by myself. Patrick

Müller provided benchmarking simulations to test PyFRAP's Partial Di�erential Equation

(PDE) solver. I performed all remaining data analyses and simulations. Gary Soh, Theresa

Braun, David Mörsdorf, and Hannes Preiÿ conducted the experiments with guidance from

Patrick Müller. Patrick Müller and I wrote the manuscript.
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5.4 Dynamics of BMP signaling and distribution during ze-
bra�sh dorsal-ventral patterning

Pomreinke, A. P., Soh, G. H., Rogers, K. W., Bergmann, J. K., Bläÿle, A., Müller, P.,
(2017). eLife, (6):e25861

5.4.1 Synopsis

The dorsal-ventral axis is dictated by a BMP signaling gradient peaking on the ventral side.

Currently it is controversial in which way this gradient is established and maintained. There

are several postulated models that could explain BMP gradient formation that have however,

remained untested directly.

In the source-sink model, BMP initially forms a shallow gradient from the ventral to dorsal

side, where it is antagonized by a localized source of its inhibitor Chordin. Chordin di�uses from

the dorsal side, e�ectively creating a �sink� for BMP on the dorsal side and thus sharpening the

BMP signaling gradient. It is controversial as to whether BMP di�usion is crucial for BMP

gradient formation. The �Long-range accumulation and feedback model� proposes that BMP

induces the fast di�using Chordin protease inhibitor Sizzled that e�ectively extends the range

of Chordin to the ventral side. Ongoing inhibition of BMP then leads to a decrease of Sizzled

levels and consequently an increase of Chordin degradation, e�ectively rendering Chordin less

stable than BMP. The �Self-regulating reaction-di�usion model� assumes BMP and Chordin

being equally di�usive and stable and adds additional control of both BMP and Chordin via

interactions with Sizzled and ADMP, respectively. In the �Shuttling model�, highly di�usive

Chordin acts as a passive modulator of BMP di�usivity, e�ectively shuttling BMPs from the

dorsal to the ventral side. Each of the �ve postulated models relies on assumptions about the

biophysical properties of the molecules involved in the patterning system and thus could be

successively excluded if these requirements are not met.

We rigorously tested these assumptions by assessing protein clearance and di�usion rates

using FDAP and FRAP. Our FRAP measurements suggested that BMP, Chordin and Sizzled

di�use with approximately 2.5 µm2 s−1, 6.5 µm2 s−1and 10 µm2 s−1, respectively. Thus, the bio-
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physical requirements for the �Source-sink model with immobile BMP�, the �Shuttling model�

and the �Self-regulating reaction-di�usion model� were not met. FDAP experiments suggested

that BMP and Chordin have approximately similar half-lives, excluding the �Long-range feed-

back and accumulation model�. Moreover, overexpression of Chordin had no e�ect on BMP

di�usion in FRAP experiments Also, the distribution of BMP was not altered if two Chordin

and BMP expressing clone were juxtaposed in the animal pole of an embryo. These results

reject the idea that Chordin shuttles BMP. This rigorous series of tests led us to the conclusion

that the BMP signaling gradient is generated by a simple source-sink mechanism; however in-

volving BMP di�usion. Strikingly, in contrast to the other four models, the �Source-sink model

with BMP di�usion�, equipped with the parameters acquired from FRAP and FDAP exper-

iments, also qualitatively �tted phosphorylated Smad (pSmad) gradient pro�les measured by

immunostainings before and during epiboly.

5.4.2 Author contribution

Patrick Müller conceived the study, performed the modeling, and wrote the manuscript with

input from all authors. I designed and cloned the Chordin-Dendra2 fusion construct necessary

for FDAP experiments with help from Katherine Rogers. Together with Katherine Rogers, I

performed the FDAP experiments and analyzed the experiments. Katherine Rogers conducted

all transplantation experiments. Gary Soh performed all FRAP and FCS experiments. Jennifer

Bergmann generated all remaining fusion constructs together with Gary Soh, Katherine Rogers,

Autumn Pomreinke and Patrick Müller. Autumn Pomreinke, Gary Soh and Jennifer Bergmann

tested the constructs. Autumn Pomreinke performed the immunostaining experiments with help

from Gary Soh.
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5.5 Scale-invariant patterning by size-dependent inhibition
of Nodal signaling

Almuedo-Castillo, M., Bläÿle, A. , Mörsdorf, D. , Marcon, L. , Rogers, K. W., Schier,
A. F., Müller, P., (2017), in review at Nature Cell Biology

5.5.1 Synopsis

While body size signi�cantly varies between individuals of a single species, the proportions of the

body plan are strikingly consistent. In early development, such body plans are mainly dictated

by signaling gradients established by secreted molecules; however, it is currently unclear how

such signaling gradients adjust with body size. In this study, we used germ layer patterning

as a template to investigate scale-invariance between di�erently sized zebra�sh embryos. We

obtained di�erently sized zebra�sh embryos by extirpating 30% of tissue from the animal pole

of embryos at blastula stages. Remarkably, smaller embryos developed properly, maintaining

correct proportions between germ layers. In particular, regions of gene expression of germ layer

markers adjusted to the new body size in extirpated embryos within two hours after extirpation.

These genes are targets of the morphogen Nodal. However, it is unlikely that Nodal itself provides

feedback information about embryo size since Nodal is expressed at the marginal zone and its

low di�usivity is not high enough to reach the animal pole in the relevant time frame. We thus

postulated that the highly di�usive Nodal inhibitor Lefty acts as a size sensor and formalized the

Nodal/Lefty system into a set of reaction-di�usion equations. Subsequent simulations of this

reaction-di�usion model describing the Nodal-Lefty system showed that Lefty adjusts Nodal

signaling range by accumulating in smaller embryos e�ectively reducing the range of Nodal

signaling gradients.

We tested the predictions of our simulations by performing extirpation experiments with dif-

fering numbers of functional copies of lefty1 and lefty2, measuring the range of the mesendoder-

mal marker fascin in both untreated and extirpated embryos. Experiments with lefty1-/-;lefty2-/-

double mutants showed that scaling fails in the absence of Lefty since the extent of fascin is

remarkably expanded in these untreated lefty mutants compared to Wild Type (WT) embryos.
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Extirpated embryos with one functional copy of each paralog (lefty1+/-;lefty2+/-) experienced

proper scaling and normal fascin regions, indicating that Lefty levels could be regulated through

dosage adjustments. Moreover, similar experiments in lefty1-/- and lefty2-/- mutants showed that

both paralogs are necessary for proper germ layer patterning and scaling.

It is known that lefty expression is under the control of Nodal; however, it is unclear whether

Nodal actively restricting its own range through an indirect negative feedback is crucial for germ

layer patterning or if simply the presence of Lefty is needed to control Nodal range passively.

We tested this hypothesis by injecting lefty1-GFP mRNA into the Yolk Syncytical Layer (YSL)

of lefty1-/-;lefty2-/- mutants, e�ectively creating a constant Lefty1 source that is independent of

Nodal activation at the marginal zone. Strikingly, these YSL injections of speci�c amounts of

lefty1-GFP mRNA were able to rescue double mutants and produce normally patterned �sh, and

extirpated embryos injected with lefty1 mRNA showed proper mesendoderm scaling. This shows

that Nodal-mediated activation of Lefty expression is not required for germ layer patterning and

scaling, although it might stabilize the system.

In our theoretical model, high Lefty di�usivity is crucial for Lefty reaching the animal pole

and thus providing information about embryo size. To test whether Lefty di�usion actually plays

a central role in mesendoderm scaling, we co-injected a so-called �morphotrap� together with

Lefty1-GFP encoding mRNA into the YSL of lefty1-/-;lefty2-/- double mutants. The morphotrap

is a mCherry-labeled nanobody localized on cell membranes that binds GFP. Using the mor-

photrap, we reduced e�ective Lefty1-GFP di�usion from 7.7± 3.2 µm2 s−1 to 0.2± 0.2 µm2 s−1.

As expected, extirpated embryos injected with the morphotrap did not scale, showing that high

Lefty di�usion is essential for mesendoderm scaling.

We performed a computational screen over 400000 parameter con�gurations and tested

whether our reaction-di�usion model can reproduce all experimental observations, that is, (1)

failure of scaling and expansion of the fascin domain if no Lefty is present, (2) failure of scaling

in the absence of Lefty1, (3) proper mesendoderm scaling if Lefty expression is not mediated by

Nodal, and (4) failure of scaling if Lefty di�usion is reduced. In contrast to previous studies,

we rede�ned scaling in a biologically more relevant manner for our study: Instead of requiring
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Nodal signaling gradients to overlap throughout the embryo, we only needed them to overlap at

the distance at which the fascin domain is de�ned within measurement error. We also restricted

this requirement to 2 hours post extirpation, taking into account possible temporal dynamics.

Remarkably, our screen found multiple parameter con�gurations that are able to reproduce all

experimental �ndings. Even more strikingly, our model not only �ts all experimental �ndings,

but also shows the correct temporal dynamics by shutting down Nodal signaling shortly after

mesendoderm range speci�cation.

In conclusion, we propose that size-dependent inhibition due to inhibitor accumulation can

explain scaling of germ layer speci�cation in zebra�sh and might be a universal mechanism also

found in other organisms or patterning systems.

5.5.2 Author contribution

The study was conceived by Maria Almuedo-Castillo, Alexander Schier and Patrick Müller.

David Mörsdorf performed all FRAP experiments and contributed to the generation and testing

of the morphotrap as well as to the phenotypic analysis of YSL injections. Maria Almuedo-

Castillo performed all other experiments. Maria Almuedo-Castillo, I, David Mörsdorf and

Patrick Müller analyzed the data. I developed and implemented the mathematical models,

screening criteria and pipeline, and carried out the parameter screen with assistance from Lu-

ciano Marcon and Patrick Müller. Katherine Rogers and Alexander Schier provided the lefty

mutants before publication. Katherine Rogers analyzed the activity of Lefty. Alexander Schier

and Patrick Müller conceptualized the scaling model. Patrick Müller developed the extirpation

assay and supervised the project. The manuscript was written by Maria Almuedo-Castillo and

Patrick Müller with input from all authors.
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6. Discussion

One of the most fascinating questions in modern biology is how a body of identical cells starts dif-

ferentiating during embryonic development, forms di�erent tissues and organs, and ultimately

becomes a properly developed organism. Groundbreaking research in the past 100 years has

shown that many early patterning events are controlled by extracellular signaling molecules that

specify tissues by graded signaling. Despite this extensive line of research both experimentally

and theoretically, it is still unclear how such signaling gradients are established, maintained and

scaled with body size. Di�erent theoretical models describing the spatiotemporal dynamics of

signaling gradients have been proposed; however, the lack of measured biophysical parameters

has precluded model selection so far. Two important determinants of the range at which mor-

phogens can signal is the speed at which morphogens move, i.e. their di�usion rate, and their

stability (Rogers and Schier, 2011, Lander, 2007, Drocco et al., 2011).

6.1 Improved assays and analysis for clearance and di�u-

sion can help unravel the biophysical underpinnings of

morphogen gradients

Fluorescence Decay After Photoconversion (FDAP) is a time-lapse imaging assay that monitors

the decay of a photoconvertible protein over time (Zhang et al., 2007). In this thesis, I present a

variant of FDAP in living zebra�sh embryos together with a software package that allows context-

dependent extraction of protein half-lives. Müller et al. (2012) used FDAP to assess the clearance

of the two photoconvertible Nodal fusions Squint-Dendra2 and Cyclops-Dendra2 in zebra�sh

embryos and found nearly equal protein half-lives of 116 min and 95 min, respectively. Their

�ndings stand in contrast with results by Jing et al. (2006) who used pulse-chase experiments

in vitro to determine the half-lives of 2 h for Cyclops and 8 h for Squint, leading them to the

conclusion that the di�erence in signaling range of Cyclops (short) and Squint (long) is attributed

to the di�erence in protein half-lives. The equal clearance rate coe�cients measured by Müller
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et al. (2012) in vivo however, indicate that the di�ering signaling ranges must be due to varying

di�usion rates.

Molecular di�usion measurements have a long tradition in systems biology and are mostly

executed by either Fluorescence Correlation Spectroscopy (FCS) or Fluorescence Recovery After

Photobleaching (FRAP). While FCS provides information about the local di�usion of molecules,

FRAP measures, depending on the mathematical model applied during analysis, either free or

e�ective di�usion across tissues. Since morphogens are subject to tortuous movement, hindered

by the extracellular environment, measuring e�ective di�usion of morphogens yields the rate

at which a morphogen e�ectively transports information through the embryo. FRAP has been

widely used to assess the di�usivity of morphogens (Gregor et al., 2007a, Kicheva et al., 2007,

Castle et al., 2011, Müller et al., 2012, Sigaut et al., 2014), however often returned varying

di�usion coe�cients for the same morphogen, which favored di�erent signaling gradient mod-

els. For instance, Bicoid (Bcd) di�usivity has been assessed by FRAP multiple times. Gregor

et al. (2007b) found a relatively low Bcd di�usion coe�cient of 0.27 µm2 s−1. This �nding,

in combination with control experiments in unfertilized embryos, led Gregor et al. (2007b) to

the conclusion that the Bcd gradient is mainly shaped by clearance through nuclear uptake,

ultimately excluding the long-standing synthesis-di�usion-clearance (SDC) model. However, re-

assessment by Abu-Arish et al. (2010), Castle et al. (2011) and Sigaut et al. (2014) showed

that accounting for di�using Bcd molecules during the bleaching process and correct di�usion

models can provide at least a three- to fourfold higher di�usion coe�cient, favoring the SDC

model and at the same time allowing the Bcd gradient to be precisely read-out in the proper

time-scale (Gregor et al., 2007a). Similarly, Kicheva et al. (2007) measured Dpp di�usion in

the wing disc of Drosophila melanogaster embryos of ∼ 0.1 µm2 s−1 leading the authors to favor

a model of Dpp gradient establishment by a process involving extracellular Dpp di�usion and

endocytosis. A di�erent series of FRAP, nested FRAP, iFRAP and FCS measurements with

improved data analysis by Zhou et al. (2012) however provided evidence that a fraction of extra-

cellular Dpp molecules move with a much larger di�usion rate of ∼ 20 µm2 s−1, indicating that

free extracellular di�usion might shape the Dpp gradient.
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The FRAP analysis tool PyFRAP that I developed as part of my research project overcomes

the shortcomings of previous analysis methods (Axelrod et al., 1976, Soumpasis, 1983, Sprague

and McNally, 2005, Scha� et al., 2009, Rapsomaniki et al., 2012, Blumenthal et al., 2015).

This is achieved by simulating FRAP experiments as a reaction-di�usion process in realistic

three-dimensional geometries, taking the initial post-bleach image as the initial condition. This

simulation-based approach makes it suitable not only for traditional FRAP experiments, but

also iFRAP and nested FRAP experiments as conducted by Zhou et al. (2012). PyFRAP's

combination of open-source code and a GUI makes it adjustable to researchers' needs while

providing an easy-to-use standardized front-end and could thus develop into a new standard in

FRAP analysis.

In biological tissues, molecules often have to circumvent obstacles such as cells to reach

their target. It has been previously argued that this tortuous movement e�ectively slows down

molecules up to two-fold (Müller et al., 2013, Wang et al., 2016). Using PyFRAP's simulation

toolbox, we tested this prediction by simulating FRAP experiments at di�erent cell densities and

arrived at a similar conclusion: In two-dimensional geometries, e�ective di�usion decreased by

66% if 75% of geometry area was covered with cells. This e�ect was much weaker in 3D: When

38% of geometry volume was extracellular space, we only saw a reduction of e�ective di�usion of

40%. Both of these estimates however resemble extreme cases in which the obstacles are almost

maximally jammed packed (Clusel et al., 2009, Baranau et al., 2016). Such packings are unlikely

to happen for radial objects in biological systems, however denser packings of obstacles may be

achieved if the obstacles are �exible, such as cells. We performed FRAP experiments similar

to our simulations both with and without radial polyacrylamide beads in vitro, comparing pure

di�usion with tortuosity-mediated e�ective di�usion for di�erent molecules, showing that beads

can reduce GFP di�usion by 18%. Not only were our theoretical simulations and experiments in

line with previous analytical and numerical studies (Hrabe et al., 2004, Tao and Nicholson, 2004,

Novak et al., 2009, Donovan et al., 2016), but also con�rm previously estimated experimental

values (Müller et al., 2013). It is worthwhile noting that tortuosity might still have stronger

e�ects if cells are not modelled as rigid radial spheres that only allow small surface areas of
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contact, but as geometries with more �exible shapes and consistency (Hrabe et al., 2004, Tao

and Nicholson, 2004, Novak et al., 2009, Donovan et al., 2016). This would also allow for the

generation of narrow dead-end pores, additionally increasing tortuosity (Hrabe et al., 2004).

Such e�ects might underlie our observation that GFP di�usivity is reduced by 60% in living

zebra�sh embryos.

When molecules traverse tissues, tortuosity is not the only e�ector of di�usion (Müller and

Schier, 2011). Membrane-bound receptors and Heparan Sulfate Proteoglycans (HSPGs) bind

molecules either permanently or reversibly, e�ectively slowing down the recovery in the bleached

region of FRAP experiments and the resulting e�ective di�usion. Our FRAP experiments with

Squint-GFP suggest that Squint-GFP di�uses approximately with 1.7 µm2 s−1. Given that

Squint-GFP is only 1.4 times larger than GFP itself, one would expect a much faster e�ective

di�usion coe�cient of Squint-GFP of 31 µm2 s−1. This strong reduction of e�ective di�usion

indicates that hindrance through the extracellular matrix and receptors might be the main

e�ector of Squint-GFP di�usion (Müller and Schier, 2011, Müller et al., 2013). Similarly, Dpp

has been suggested to undergo restricted extracellular di�usion mediated by HSPGs and its

receptor Tkv (Crickmore, 2006, Akiyama et al., 2008, Schwank et al., 2011, Müller et al., 2013),

but it is still controversial (Zhou et al., 2012, Müller et al., 2013). FRAP experiments in embryos

that lack di�usion regulators, such as receptors, might further reveal the role of hindrance in

di�usion measurements. My work shows that a combination between in vitro and in vivo FRAP,

and iFRAP experiments combined with PyFRAP's analysis and simulation capabilities can shed

light on the contributions of di�erent biophysical processes that lead to e�ective di�usion rates

of signaling molecules.

Both FDAP and FRAP experiments presented in this study currently rely on overexpression

of the fusion protein of interest in vivo. However, overexpression experiments can potentially

alter the protein's clearance or di�usivity in living organisms. For instance, if protein clearance

is non-linear (Eldar et al., 2002), di�erent injection amounts of mRNA might lead to di�erent

clearance rate estimates. Also, protein clearance from the extracellular space can include receptor

interactions. Thus, one could imagine that overexpression of signaling proteins might saturate
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receptor capacities and might thus lead to non-linear e�ects. A similar argument can be made

for FRAP experiments in vivo: in this dissertation I show that e�ective di�usion estimates of

the signaling molecule Sqt are much smaller than theoretically predicted di�usion rates, possibly

due to interactions with components in the extracellular matrix, such as HSPGs and receptors.

Overexpression of the protein of interest might saturate these binding sites and thus might

render the unbound molecules faster than they would be if binding sites would be available.

In this thesis, we performed a set of control experiments to minimize such side e�ects: we

made sure to inject the minimal amount of mRNA necessary to obtain a su�cient level of

�uorescence whilst avoiding mutant phenotypes. While this approach makes side e�ects induced

by overexpression unlikely, it can not complete them rule out. The ideal way to conduct in

vivo biophysical measurements would be if the fusion protein of interest would be expressed

endogenously. The transgenic organisms required for such experiments could be generated with

the recently introduced CRISPR-Cas9 system (Doudna and Charpentier, 2014).

In principle, both FRAP and FDAP are easily adaptable for di�erent model organisms.

However, a crucial drawback of the variants of FDAP and FRAP in zebra�sh embryos is their

dependence on �uorescence microscopy and thus their requirement for isolated transparent sam-

ples. Model organisms such as zebra�sh, Caenorhabditis elegans, Xenopus laevis and Drosophila

embryos provide the necessary levels of transparency and develop outside the mother, and are

thus suitable for time-lapse �uorescence microscopy.

6.2 The BMP signaling gradient is formed by a source-sink

mechanism through BMP di�usion

In this dissertation, we used both FDAP and FRAP to assess the biophysical underpinnings

of dorsal-ventral axis formation by the BMP/Chordin system during zebra�sh embryogenesis.

Extensive research in Xenopus laevis and zebra�sh has resulted in the postulation of �ve alter-

native models for BMP gradient formation. These models range from simple source-sink models

to complex reaction-di�usion systems including shuttling and self-organization. All suggested
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models mainly rely on di�erent assumptions about the biophysical properties of the molecules

included in the patterning system and thus assign di�erent roles to BMP and Chordin. We

found that BMP di�uses at a signi�cant rate with respect to the patterning time window, ex-

cluding models that predicted non-signi�cant BMP di�usion (Ben-Zvi et al., 2008, Ramel and

Hill, 2013). Moreover, the �Long-range accumulation and feedback model� developed by Inomata

et al. (2013) predicts BMP stability strongly exceeding Chordin stability. Our FDAP experi-

ments however showed that BMP and Chordin have similar stability, thus excluded this model.

The prominent �Shuttling model� proposes that Chordin reversibly binds to BMP and shuttles

BMP from the dorsal to the ventral side, e�ectively sharpening the BMP gradient (Ben-Zvi et al.,

2008). However, we were not able to observe a higher BMP mobility in FRAP experiments with

chordin overexpression or an altered BMP distribution of BMP gradients in transplantation

experiments with juxtaposed BMP and Chordin sources, leading us to exclude the �Shuttling

model�. Furthermore, FRAP measurements of Sizzled suggested that Sizzled di�uses in the same

timescale as BMP and Chordin, contradicting the assumptions of the �Self-regulated reaction-

di�usion model� (Francois et al., 2009). In contrast to the four previously mentioned models,

all biophysical assumptions underlying the source-sink model generated by mobile BMP could

be con�rmed. Strikingly, the source-sink model was also able to reproduce the experimentally

observed pSmad gradients build-up and maintenance in the correct time window both in wild

type and Chordin-de�cient embryos. Our �ndings are in line with results by Zinski et al. (2017).

The authors combined immunostainings of pSmad gradients, FRAP measurements of BMP dif-

fusivity and a comprehensive computational screen to single out a source-sink mechanism as the

most likely currently proposed model of dorsal-ventral patterning.

While the �Shuttling model�, the �Self-regulating reaction-di�usion model� and the �Long-

range accumulation and feedback model� could all explain scale-invariant dorsal-ventral pat-

terning (Ben-Zvi et al., 2008, Francois et al., 2009, Inomata et al., 2013, Umulis and Othmer,

2013), a simple source-sink mechanism generally cannot (Wolpert, 1969, Umulis, 2009, Umulis

and Othmer, 2013). However, Wolpert (1969) and later McHale et al. (2006) already proposed

that opposing gradients might be able to scale to embryo size, indicating that the opposite
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setup of BMP and Chordin distribution actually might be key for scaling. In addition, we only

tested the e�ect of Chordin on BMP2 di�usion, however other BMPs (BMP4/7, ADMP) might

be experiencing facilitated movement through Chordin. Especially ADMP has been shown to

play an important role in the self-regulation of the BMP/Chordin system and is colocalized with

Chordin on the dorsal side (Reversade and De Robertis, 2005, Plouhinec et al., 2013). Moreover,

we still have only little knowledge about the exact role and biophysical parameters of Sizzled,

the two additional BMP inhibitors Noggin and Follistatin or the metalloprotease Tolloid. In-

terestingly, zebra�sh chordin mutant embryos can be rescued by homogeneous production of

Chordin through mRNA injection and grow up to adulthood without defects (Schulte-Merker

et al., 1997), indicating that chordin mRNA does not have to be initially located on the dor-

sal side. While it has been shown that endogenous Chordin gradients are able to self-organize

(Plouhinec et al., 2013), it is unclear if in rescue experiments with homogeneous Chordin expres-

sion, Chordin becomes quickly localized on the dorsal side via self-organizing properties of the

system or if Chordin acting homogeneously as an inhibitor is su�cient for proper BMP gradient

formation. It is clear however, that a simple source-sink mechanism is a crude simpli�cation of

the genetic network instructing the DV axis and cannot completely describe the dorsal-ventral

patterning systems. Further biophysical characterization of all members of the BMP family as

well as inhibitors and modulators together with extensions of current models will be necessary

to gain a more comprehensive understanding of vertebrate DV patterning.

6.3 Size-dependent inhibition by Lefty can explain scaling

of the germ layers during zebra�sh embryogenesis

The �ndings presented in this thesis suggest that the Nodal/Lefty network that controls germ

layer formation is a scale-invariant patterning system. We created smaller zebra�sh embryos

by removing 30% of cells from the animal pole approximately 4 hpf that developed perfectly

into smaller and proportional larvae. Our �uorescent in situ experiments of the fascin domains

suggested that mesendodermal tissue adjusts to the embryo size within 2 hours post extirpation.
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Scaling however failed in the absence of the Nodal inhibitor Lefty. Moreover, similar experiments

with extirpated embryos lacking one of the two lefty genes also abrogated scaling. Together,

both experiments indicate that Lefty plays a crucial role in scaling and that a su�cient amount

of Lefty is needed to guarantee that the Nodal signaling properly scales. We thus postulated that

fast di�using Lefty might act as a size sensor quickly reaching the animal pole and subsequently

accumulating throughout the embryo. In smaller embryos, Lefty levels increase and Nodal

signaling levels thus become globally reduced, resulting in a shorter Nodal signaling range.

We �rst tested if Nodal-mediated Lefty induction is crucial for scaling by injecting Lefty-

GFP into embryos lacking both Lefty1 and Lefty2. Remarkably, untreated embryos patterned

normally and extirpated embryos scaled nearly perfectly, suggesting that Nodal actively control-

ling Lefty expression is not necessary. Similar experiments but with an additional co-injection

of a membrane-bound morphotrap against GFP, tethered Lefty-GFP to cell membranes and

thus blocked them from reaching the animal pole. As predicted by our model, the inhibition

of Lefty-GFP di�usion prevented scaling in extirpated embryos, clearly showing that fast Lefty

di�usion is essential for germ layer scaling. We modeled this Size-dependent Inhibition (SDI)

mechanism into a reaction-di�usion system consisting of two species. Restricting di�usion and

clearance rates to already assessed values (Müller et al., 2012), we performed a comprehensive

computational screen for parameter con�gurations that resemble all experimental observations

whilst returning biological plausible signaling gradients and levels. The screen returned multiple

parameter con�gurations that were in similar orders of magnitude as previously measured val-

ues for comparable patterning systems (Kicheva et al., 2007), producing Lefty distributions and

pSmad2/3 signaling gradients analogous to the ones observed in experiments with Lefty-GFP

injections and immunostainings, respectively.

This study provides novel insights into the concepts of scale-invariant patterning in multiple

ways: (1) In contrast to previous studies, we focused on scaling of di�erently-sized embryos at

the same developmental stage beyond natural variation, showing scaling for extreme di�erences

in size. Other studies have focused on interspeci�c di�erences (Gregor et al., 2005, 2008, Uygur

et al., 2016), scaling between di�erent developmental stages (Hamaratoglu et al., 2011, Ben-Zvi
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Figure 6.1: Di�erent de�nitions for scaling. Black lines display the original signaling gradient, red
dashed lines the scaled gradient. A In perfect scaling, the pro�le of the scaled and original gradient need
to coincide over the complete embryo length. If the gradients scale perfectly, any arbitrary threshold
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et al., 2011a), and natural variation (Coppey et al., 2008, Cheung et al., 2011). Our assay o�ers a

unique way to control external in�uences and the amount of scaling arti�cially. (2) Most previous

studies focus on perfect or nearly perfect scaling, that is, scaled gradients overlap at any relative

position, as illustrated in Figure 6.1A (Othmer and Pate, 1980, McHale et al., 2006, Ben-Zvi

et al., 2008, Umulis, 2009, Hamaratoglu et al., 2011, Ben-Zvi et al., 2011a, Averbukh et al.,

2014). However, assuming that genes are expressed based on a signaling threshold, to obtain

properly scaled tissues, it is su�cient if signaling gradients only intersect at the relative position

of the tissue boundary (Figure 6.1B). Such partial scaling is su�cient to allow the organism to

form properly scaled patterns (Umulis and Othmer, 2013, Rasolonjanahary and Vasiev, 2016).

We thus rede�ned scaling to be more experiment-driven. We considered that our model scaled

if the signaling threshold intervals associated with the 95% con�dence intervals of the measured

mesendodermal regions in untreated and extirpated embryos completely overlapped, e�ectively

quantifying partial scaling within measurement error and biological variance (Figure 6.1C). (3)

It has been shown that signaling gradients undergo a build-up phase and show dynamic range

and shape over time (Kicheva et al., 2007, Hamaratoglu et al., 2011, Müller et al., 2012) and are

not necessarily interpreted at steady-state (Bergmann et al., 2007, Lander, 2007, Nahmad and

Lander, 2011). We thus did not focus on the prominent paradigm of a morphogen at steady-state

and instead simulated the SDI model both in time and space, checking for scaling only in the time

window of mesendodermal patterning. Strikingly, the SDI model does not only provide scaling of

the Nodal signaling gradient at the right time, but also shuts down Nodal signaling afterwards,

reproducing the spatiotemporal dynamics of germ layer patterning observed in zebra�sh. (4)

Most models for scale-invariant patterning rely on complex feedback-loop dependent reaction-

di�usion networks where so-called modulators adjust the signaling range of a morphogen by

modulating di�usivity (Othmer and Pate, 1980, Ben-Zvi et al., 2008, Barkai and Ben-Zvi, 2009,

Ben-Zvi et al., 2011b,a, Haskel-Ittah et al., 2012, Umulis and Othmer, 2013, Norman et al.,

2016) or stability (Coppey et al., 2008, Umulis, 2009, Umulis and Othmer, 2013, Inomata et al.,

2013). We showed that scaling of embryonic tissue can be achieved by a much simpler passive

mechanism without requiring feedbacks. However, it has been shown that active control through
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positive feedback might increase gradient precision and robustness (Munteanu et al., 2015). An

important aspect of our model is that, in contrast to most modulator models, our model does

not impose that the modulator a�ects biophysical properties of the morphogen, such as the rate

of di�usion, ad-hoc.

6.4 Towards more exact morphogen gradient models

The wide-spread paradigm of morphogen gradients has motivated decades of research and still

proves as a good approximation for embryonic patterning (Wolpert, 1969, Wartlick et al., 2009,

Rogers and Schier, 2011). However, morphogen gradient research is based on a set of assump-

tions that recently have been questioned: (1) Most studies assume that morphogen gradients

are established quickly and then are maintained at steady state for the time window of read-out

(Wolpert, 1969, Wartlick et al., 2009, Rogers and Schier, 2011, Briscoe and Small, 2015). How-

ever, e�ective di�usion and reaction rates of morphogens are often not fast enough to quickly

form stable gradients (Bergmann et al., 2007, Lander, 2007, Nahmad and Lander, 2011). For

instance, using the measured values for BMP and Chordin as parameters for a source-sink model

of dorsal-ventral patterning, BMP signaling does not reach steady state in the required time win-

dow. Similarly, the Nodal signaling gradient is only shortly stabilized after two hours in the SDI

model and then actually shuts down. (2) It is unlikely that simple signaling gradient models are

robust with respect to morphological changes such as cell movement and cell division. It has been

suggested that signaling molecules are involved in orchestrating morphological changes (Kicheva

and Briscoe, 2015), potentially changing the size of their own target �eld. For instance, Dpp has

been found to control proliferation in the developing wing disc (Wartlick et al., 2009) and Nodal

signaling has been shown to instruct cell migration during germ layer patterning (Carmany-

Rampey and Schier, 2001, Keller et al., 2008). Thus, combined models of morphogenesis that

take into account cellular movements, intercellular forces and reaction-di�usion networks are

necessary to fully understand gradient formation (Delile et al., 2017). Such models can then be

tested by modulating biophysical parameters of morphogens (Alexandre et al., 2014, Harmansa
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et al., 2015). (3) Classical models assume a one-to-one relationship between morphogen concen-

tration and interpreted signal (Lander, 2007, Rogers and Schier, 2011, Briscoe and Small, 2015),

leading to an all-or-nothing threshold read-out mechanism (Figure 6.2B). While such read-out

mechanisms are simple to interpret, they lack robustness with respect to noisy morphogen levels

and have recently been challenged (Ochoa-Espinosa et al., 2009, Nahmad and Lander, 2011,

Chen et al., 2012, Briscoe and Small, 2015, Kicheva and Briscoe, 2015, Cohen et al., 2015, Sag-

ner and Briscoe, 2017). There are several other ways how morphogen levels could potentially be

interpreted: In the slope model, cells �remember� the morphogen's concentration over di�erent

times and compute the slope between them (Figure 6.2C) (Romanova-Michaelides et al., 2015).

For instance, Sorre et al. (2014) show using cell cultures that cells only respond to TGFβ sig-

naling if they are exposed to the signal su�ciently fast. Furthermore, if the morphogen levels

follow a build-up with a successive decay phase as illustrated in Figure 6.2A, one could also

imagine cells using the transition time, that is, the time at which the slope of the morphogen

signal is zero, as a toggle switch turning signaling on or o�. A second mechanism that has

recently been proposed as a new signal read-out paradigm is signal integration over time (Figure

6.2D). Similar to the slope model, cells accumulate information about the received signal over

a time frame, however this time base their decisions on the integral of the signal over time.

The duration of such time frame of integration could potentially be controlled by the half-life of

activated transcription factors. Experiments in the neural tube by Dessaud et al. (2010) suggest

that the duration of Sonic Hedgehog (Shh) signaling in neural progenitors is critical for the po-

sitional assignment. Similarly, Sako et al. (2016) showed that di�ering Nodal concentrations are

not su�cient to induce the prechordal plate and instead the duration of received Nodal signal

determines progenitor cell fates. This indicates that morphogen gradients may be interpreted by

integrating signals over time (Nahmad and Lander, 2011, Briscoe and Small, 2015, Sagner and

Briscoe, 2017). The slope model as well as the integration over time use cumulative information

gathered over a longer time frame and are thus robust with respect to temporal �uctuations

of morphogen signal. While any of these three read-out mechanisms could work on it's own, it

is possible that patterning systems integrate a combination of these mechanisms. Interestingly,
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our SDI model produces peak Nodal signaling levels at the time of read-out, followed by a quick

decay of signaling, similar to the dynamics illustrated in Figure 6.2A. This timing allows for mul-

tiple read-out mechanisms to work: the classical threshold interpretation (Figure 6.2B) as well

as the integration over time mechanism (Figure 6.2D). Moreover, the spatiotemporal behavior

of the SDI model also would favor the idea of a toggle switch (Figure 6.2C). (4) Experiments

�attening the Bcd gradient showed that positional information is not completely abolished and

that some downstream target genes of Bcd do not respond by a classical threshold mechanism

(Ochoa-Espinosa et al., 2009, Chen et al., 2012). Instead, the authors suggest a complicated

downstream gene-regulatory network that incorporates both signals by Bicoid and its repressor

Torso to de�ne positional information of gap-genes. Lohr et al. (2009) found that this net-

work includes repression of Bicoid in medial-to-posterior compartments by Capicua, which itself

is under the control of Torso, and that Capicua is required for proper head formation during

Drosophila development. Similarly, the Shh gradient de�ning dorsal-ventral fates in the verte-

brate neural tube has been suggested to activate a mutually repressive gene-regulatory network

that rede�nes and scales tissue sizes after initial speci�cation by morphogen gradients (Kicheva

et al., 2014, Kicheva and Briscoe, 2015, Zagorski et al., 2017). Such two phase patterning sys-

tems might be more robust to noisy morphogen gradients. Noisy long-range morphogens �rst

de�ne a rough initial sketch of the tissue and tissues are then re�ned by short-range signals and

cell-to-cell interactions and cell sorting (Xiong et al., 2013, Kicheva et al., 2014, Kicheva and

Briscoe, 2015, Zagorski et al., 2017). In the case of early zebra�sh embryogenesis, it has been

shown that two clones of cells injected with either BMP or Nodal transplanted into the animal

pole of a zebra�sh embryo are able to generate a secondary body axis (Xu et al., 2014). These

results suggest that Nodal and BMP are not only su�cient to induce early zebra�sh patterning

events but that there is an intense cross-talk between both morphogens. The source-sink model

for BMP gradient formation and the SDI model do not incorporate this cross-talk, however

could be extended in this direction. In general, these results show that patterning events are

highly entangled and can not be regarded as independent processes, suggesting that we need

more holistic approaches to fully understand embryogenesis.
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Figure 6.2: Possible spatiotemporal dynamics of a morphogen gradient and read-out mech-
anisms for morphogen signaling. A Illustration of possible spatiotemporal dynamics of a morphogen
gradient. The build up of the gradient (t1) leads to a period of maximum morphogen levels (t2) and is
followed by the gradient's decay (t3). The cell (green) receives varying levels of the morphogen signal in
the orange area over time. B A one-to-one read-out mechanism based on the spatiotemporal dynamics
shown in Panel A. The potential morphogen concentration m(t) that a single cell is receiving is directly
translated into signal. The cell then decides based on read-out threshold (blue) between di�erent cell
fates. The red line indicates the slope of the signal, the green area the integral of signal over time. The
vertical dashed line indicates the time of maximum signaling. C The slope model. Cells react to the
rate at which they are exposed to a morphogen signal. The vertical dashed line indicates the root of
the time derivative. D Signal transduction by integration over time. The cell accumulates morphogen
signal over time and bases fate decisions on the collected information. The vertical dashed line indicates
the in�ection point of the time integral.
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6.5 Systems biology and model complexity

An intrinsic aspect of mathematical modeling in systems biology is to describe biological systems

with a low degree of complexity, simplifying the underlying dynamics into more general terms

that require less parameters to describe a certain behavior. Such parameters are generally chosen

to be the most critical parameters, that is, the parameters that are key to produce the desired

outcome of a system. For instance, a graded distribution of a morphogen signal can simply be

explained by a single simple reaction-di�usion equation including uniform degradation and a

localized source, namely the SDC model. This simple model can describe signaling gradients

with only three intuitive parameters: the di�usion coe�cient, the degradation and production

rate. While these three parameters seem intuitive at the start, they are actually quite abstract:

The di�usion rate is not necessarily the di�usion rate of the morphogen, but more the di�usion

rate of the signal's information derived from a combination of the morphogen's di�usion rate

and the signal transduction rate. Similarly, the degradation rate is not simply the rate at which

the morphogen decays, but again a combination of morphogen and transcription factor half-life

together with transduction dynamics.

For instance, a simple way to explain Nodal gradient formation is by using the SDC model.

However, the biological meaning of the three parameters would not be completely clear and

thus the predictive power of the model would be limited. Moreover, a simple implementation

of the SDC model cannot explain the scaling of germ layers. By adding the inhibitor Lefty

as a second reactant and using experimentally veri�ed reaction kinetics such as Nodal auto-

activation, both Müller et al. (2012) and Rasolonjanahary and Vasiev (2016) provide more

detailed reaction-di�usion systems with seven parameters that also allow for signaling gradient

formation. These models however only scale for extreme parameter choices. Extending the

model with additional reaction dynamics as done in the present study in the SDI model, increases

the model's complexity to eleven parameters. This allows us to explain scale-invariant Nodal

signaling for germ layer patterning, however, still su�ers from a strong abstraction layer: While

Lefty in the SDI model represents actual Lefty protein, the reactant Nodal is a composite
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variable that incorporates Nodal signaling as well as Nodal protein dynamics. If we would be

solely interested in a simple model that could explain germ layer scaling, the SDI model would

ful�ll all requirements. However, if we are interested in the role of signaling dynamics in the

system, we would have to split Nodal into a stationary signaling and di�using protein variable,

extending the SDI model by another three parameters.

This example illustrates that reducing abstraction layers gives model parameters more biolog-

ical relevance and makes them more addressable. Consequently, excessively simplifying models

can lead to problems. For instance, one of the most common paradigms in embryonic pattern-

ing research, Local Activation and Lateral Inhibition (LALI), postulates that the inhibitor of

a Turing system needs to di�use much faster than the activator (Gierer and Meinhardt, 1972).

This has recently been challenged by Marcon et al. (2016). The authors show that adding a

third non-di�usive species, such as signaling, renders the requirement of di�erential di�usivity

unnecessary. Instead, there are multiple network topologies of three or four reactants that could

reproduce the same behavior as the LALI mechanism, none of them requiring a di�erence in

di�usion rates.

In summary, while it is easy to study the e�ects of parameters in simple models, their

biological role is often ambiguous and the model itself becomes less explanatory. Indeed, models

are strongly context-dependent, that is, the model is designed such that it simpli�es identifying

key parameters. Or in other words, models are developed such that they help answering a

speci�c question. Therefore, de�ning and interpreting models in biology bears great predictive

power if the limitations of each model are handled appropriately.
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7. Conclusion

In this dissertation, I presented how a systems biology approach can provide further insights

into two classical questions in developmental biology. Di�usion and clearance have been pro-

posed to be key parameters shaping morphogen gradients that dictate tissue patterning. Due

to the lack of suitable assays and analysis tools to measure these parameters in the right con-

text we developed FDAP in living zebra�sh embryos together with PyFDAP and PyFRAP.

By combining FRAP and FDAP measurements, we assessed the biophysical underpinnings of

dorsal-ventral axis formation and showed that, in contrast to most current hypothesis, the BMP

signaling gradient is most likely formed by a source-sink mechanism. Moreover, using both

size-manipulations experiments of zebra�sh embryos and computational modeling, we demon-

strate that scale-invariant patterning of the germ layers during zebra�sh embryogenesis can be

explained by a size-dependent inhibition mechanism.

The project presented in this thesis pictures the typical life-cycle of systems biology: (1)

Identifying key biophysical parameters of a biological process. (2) Development of assays and

analysis tools to quantify these biological parameters. (3) Quanti�cation of biophysical param-

eters. (4) Development or updating current models describing the biological process of interest

using the newly acquired parameters. (5) Using manipulations of the experimental system to-

gether with mathematical modeling to assess the question of interest and infer new questions

and key parameters of the biological process.

In summary, the �eld of developmental biology is currently experiencing a paradigm shift

from reductionism to holism under the umbrella of systems biology. Recent advances in computer

science, biophysics and molecular biology allow us today to measure, test and computationally

verify hypotheses with unprecedented detail: (1) The development of genomic editing tools

such as CRISPR (Doudna and Charpentier, 2014) facilitate the generation of mutations and

promise novel transgenic organisms, (2) two-photon excitation and light sheet microscopy allow

for visualization of in vivo protein and tissue dynamics (Höckendorf et al., 2012), and (3) the

ever-increasing computational capabilities of modern day computers together with advancements
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in arti�cial intelligence provide the basis of powerful analysis and simulation tools. I am con�dent

that a combination of these techniques and tools built upon the strong foundation of decades

of research in developmental biology will soon provide a more complete understanding of the

marvelous process that is embryogenesis.
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Abstract

Summary: We developed the graphical user interface PyFDAP for the fitting of linear and non-linear

decay functions to data from fluorescence decay after photoconversion (FDAP) experiments. PyFDAP

structures and analyses large FDAP datasets and features multiple fitting and plotting options.

Availability and implementation: PyFDAP was written in Python and runs on Ubuntu Linux, Mac

OS X and Microsoft Windows operating systems. The software, a user guide and a test FDAP data-

set are freely available for download from http://people.tuebingen.mpg.de/mueller-lab.

Contact: pmueller@tue.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Fluorescence microscopy techniques have been widely used to meas-

ure the properties of fluorescently labeled proteins in embryos, tis-

sues and cells (Pantazis and Supatto, 2014). Over the last decade, the

repertoire of fluorescent proteins has been extended with the discov-

ery and engineering of photoconvertible proteins that change their

emission properties upon light exposure and that can be used to

track sub-populations of pulse-labeled proteins (Adam et al., 2014).

Photoconvertible proteins have recently been adapted to deter-

mine protein stability via microscopy-based fluorescence decay after

photoconversion (FDAP) assays [reviewed in Rogers et al. (2015)].

In FDAP assays, a protein of interest is tagged with a photoconverti-

ble protein and expressed in vivo. After photoconversion, the decay

in fluorescence intensity of the protein is monitored. The data is

then fitted with a decay function that models protein clearance to

calculate protein half-lives.

Protein stability is context-dependent. For example, protein sta-

bility might be different inside cells and in the extracellular space

(Müller et al., 2013; Rogers et al., 2015; Zhou et al., 2012). Both

intra- and extracellular protein half-lives can be determined by

FDAP using a static intracellular signal to create masks for intra-

and extracellular intensities (Rogers et al., 2015).

We have previously described how to execute FDAP experiments

in living zebrafish embryos (Müller et al., 2012; Rogers et al.,

2015). Here, we provide a standardized computational framework

to analyse the resulting datasets. Our software PyFDAP features (i) a

comprehensive data format for handling, sorting and annotating

large FDAP datasets, (ii) the ability to separate FDAP datasets into

their intra- and extracellular components based on counter-labeling,

(iii) established fitting algorithms and (iv) a user-friendly environ-

ment that allows researchers from a non-computational background

to easily evaluate FDAP datasets.

2 Implementation

PyFDAP was developed as an open-source graphical user interface

(GUI) in Python with PyQT and SciPy to make it accessible across

the most frequently used operating systems: Ubuntu Linux, Mac OS

X and Microsoft Windows. Python is a widely used scientific pro-

gramming language and provides PyFDAP users with enormous re-

sources and easily incorporated software packages (Millman and

Aivazis, 2011). The PyFDAP GUI was designed to enable the user to

simultaneously view the current project tree, project properties and

various tabbed plots.
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Users import FDAP datasets as ‘.tif’ files. As intra- and extracel-

lular protein stabilities can be different, PyFDAP offers an option to

import a second dataset that counter-labels intra- or extracellular

space. The separation of fluorescence intensities into intra- or extra-

cellular masks is performed using the Otsu binarization algorithm

(Otsu, 1979). The masks and corresponding datasets can then be

investigated inside the PyFDAP GUI. The masks are applied to the

images of the photoconverted signal, and the average intensities in

the intra- and extracellular domains and in the entire image are cal-

culated. PyFDAP organizes all data into a logical hierarchical object

structure to facilitate data navigation (Fig. 1).

PyFDAP offers multiple fitting options to fit an exponential

decay function given by

cðtÞ ¼ c0e�kt þ y0

or an inverse power function given by

cðtÞ ¼ c1�n
0 � ktð1� nÞ

� � 1
1�n þ y0

to the dataset to model linear (Müller et al., 2012) or non-linear

decay (Eldar et al., 2003), respectively. Here, c(t) is the intensity of

the decaying fluorescent signal, y0 the baseline of the decay, c0 þ y0

the fluorescent intensity at t¼0 and k the decay rate constant of the

fluorescent signal. In the case of non-linear decay, n controls the

degree of non-linearity. PyFDAP calculates the protein half-lives s
from k as s ¼ lnð2Þ=k or s ¼ ð2n�1 � 1Þc1�n

0 =ðkðn� 1ÞÞ for linear

and non-linear decay, respectively.

PyFDAP offers several established bounded and unbounded opti-

mization algorithms to fit the decay models to the data. The lower

bound of fluorescence measurements is limited by the intrinsic back-

ground signal of the microscope and the autofluorescence of the

imaged sample, and it is therefore crucial to define biologically rea-

sonable bounds for the fit. PyFDAP offers an option to import back-

ground and noise measurements and allows the user to choose a

lower bound of the baseline y0 from four presets: (i) the level of

noise N estimated from the noise dataset, (ii) the mean level of the

pre-conversion background datasets Bpre, (iii) the mean background

level over all background datasets B or (iv) a special weighting func-

tion F (Müller et al., 2012) given by

Fi;r ¼
1

b

Xb

j¼1

min
t

Bj;rðtÞ �Ni

Bprej;r
�Ni

 !
;

where i is the current FDAP measurement, r 2 f
intracellular; extracellular; entire domaing is the investigated region

and j 2 f1;. . .;bg represents the indices of background datasets with

intensities B(t) at time t. Using the function F, users can compute the

lower bound of the baseline for measurement i and region r, y0i;r , by

y0i;r
�Fi;r � ðIprei;r

�NiÞ þNi;

where Iprei;r
denotes the pre-conversion intensity of the FDAP meas-

urement i in region r. Together, these four presets offer a wide range

of possibilities for the estimation of the baseline y0.

Multiple plotting options help the user to remove or improve

corrupt datasets or fits. The user can plot the optimized parameters

to find outliers and re-run the fits with different options. Moreover,

PyFDAP saves the fitting progress and lets the user ‘slide’ through it

to identify points at which optimization algorithms got arrested in a

local minimum and where parameters need to be changed.

PyFDAP allows data and results to be saved in various image

and video formats. Individual decay curves and fits can be exported

as ‘.csv’ files. Similarly, complete PyFDAP project trees (Fig. 1)

including all settings and properties can be exported as ‘.csv’ or

JavaScript Object Notation (JSON) object files. Object files can eas-

ily be reloaded into PyFDAP, which ensures full reproducibility of

data analysis and facilitates collaboration among researchers.

To offer customizability and debugging options, PyFDAP also

comes with a full Python terminal that allows users to modify FDAP

datasets or to improve FDAP data analysis without the need to edit

the main PyFDAP code.

A detailed user guide (Supplementary Material) describes the in-

stallation and usage of the PyFDAP software as well as the mathem-

atical background for data analysis.

3 Conclusion

PyFDAP is an open-source GUI for the analysis and handling of

FDAP data. Usage of PyFDAP does not require any programming

knowledge. The straightforward GUI provides a quick workflow,

and the integrated terminal and open-source nature of PyFDAP en-

able researchers to extend the software to suit their needs.
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1 INTRODUCTION
Fluorescence Decay After Photoconversion (FDAP) is a microscopy-based technique for mea-
suring protein half-lives (Rogers et al., 2014). In FDAP experiments, a protein of interest
is tagged with a photoconvertible fluorescent protein and expressed in vivo. The fluorescent
fusion protein is then photoconverted, and the decrease in fluorescence intensity over time is
monitored. The resulting intensity data is fitted with a decay function, and half-lives can be
calculated from the fits.

Both intracellular and extracellular protein half-lives can be determined using FDAP. A static
intracellular signal (e.g. Alexa488-dextran) can be used to create an intracellular mask, such
that only intracellular pixels are considered when calculating intracellular intensity. The mask
can be inverted to calculate extracellular intensities.

Here, we provide a standardized computational framework to analyze FDAP datasets. Our
software PyFDAP features (i) a comprehensive data format for handling, sorting, and anno-
tating large FDAP datasets, (ii) the capability to separate fluorescence intensities in FDAP
datasets into intra- and extracellular compartments based on counter-labeling, (iii) established
fitting algorithms, and (iv) a user-friendly environment that allows researchers from a non-
computational background to easily evaluate FDAP datasets.

2 INSTALLATION
PyFDAP was developed as an open source graphical user interface (GUI) in Python with
PyQT and SciPy in order to make it accessible and extendable across the most frequently
used operating systems Ubuntu Linux, Mac OS X, and Microsoft Windows. Over the past
two decades, Python has become a widely used scientific programming language and provides
PyFDAP users with enormous resources and easily addable software packages (Millman and
Aivazis, 2011).

All software packages needed to run PyFDAP are freely available. PyFDAP can be installed
using stand-alone executables (see Section 2.1). Alternatively, users can run the PyFDAP
packages from source (see Section 2.2), which offers the possibility to edit the PyFDAP code
and to import new modules.

2.1 Running PyFDAP using stand-alone executables
Download the executable that fits your system from http://people.tuebingen.mpg.de/mueller-
lab/. This is suitable for users who want to analyze FDAP experiments and do not need to
customize the PyFDAP code. A list of currently available binary files and systems on which the
binaries have been tested can be found in Table 1. If there is no executable available for your
system, we recommend using the Anaconda installation approach explained in Section 2.2.1.

OS Version 32-bit 64-bit Executable Test System

Linux 3.13.0-36-generic × pyfdap v1.0 Linux 64bit Thinkpad x230

Mac OS X 10.9.2 × pyfdap v1.0 OSX 64bit.app MacMini6,1

Mac OS X 10.9.2 × pyfdap v1.0 OSX 64bit.app MacBookPro10,2

Mac OS X 10.9.5 × pyfdap v1.0 OSX 64bit.app MacBookPro8,1

Mac OS X 10.9.5 × pyfdap v1.0 OSX 64bit.app MacBookPro8,2

Mac OS X 10.9.5 × pyfdap v1.0 OSX 64bit.app MacBookPro10,2

Windows 7 × pyfdap v1.0 Win 32bit.exe Samsung N150

Windows 8 × pyfdap v1.0 Win 64bit.exe Dell OPTIPLEX 9010

Table 1: List of systems on which the currently available PyFDAP executables have been
tested. The executables might also run on systems not listed here.
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2.2 Running PyFDAP from source
In order to be able to edit the PyFDAP code and to import new modules, it is necessary to
download and install all necessary Python packages and to run PyFDAP from source. There
are two ways to do this:

1. Download and install the Anaconda Python distribution (see Section 2.2.1).

2. Download and install all Python packages manually (see Section 2.2.2).

2.2.1 Running PyFDAP using the Anaconda distribution
Anaconda is a bundle of Python packages and includes all packages needed to run PyFDAP.
To install Anaconda, follow these steps:

• Go to http://continuum.io/downloads and download the current Python 2.7.x release of
Anaconda for your operating system

• Launch the installer by double-clicking (Mac OS X and Windows) or

– Open a Terminal

– Go to the directory containing the installer by typing

cd path/ to / i n s t a l l e r

and execute the installer with

. / i n s t a l l e r

• Follow the instructions of the installer

• Launch PyFDAP by double-clicking pyfdap_app.py in the PyFDAP source directory
(Windows) or

– Open a Terminal

– Go to the directory containing the PyFDAP source files

cd path/ to /PyFDAP

– Launch PyFDAP by typing

python pyfdap app . py

2.2.2 Running PyFDAP using a manual Python installation
In this section, we explain how to manually install all necessary Python packages on Linux, Mac
OS X, and Windows in order to run PyFDAP. The manual installation allows for customizability
as well as debugging options. The instructions provided here describe the installation process
for computers that currently do not have Python installed. For computers on which Python is
already installed, the installation of PyFDAP will differ from the instructions provided below.
We recommend running PyFDAP using a Debian-based Linux distribution such as Ubuntu
since installing Python packages is more straightforward using such operating systems.
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Manual installation under Linux

Here we explain how to manually install and run PyFDAP on Linux operating systems. The
following instructions are only suitable for Debian-based Linux distributions and have been
tested on Ubuntu Linux 12.04, 13.10, and 14.04 (64-bit). Installation steps may vary between
different versions and distributions of Linux (e.g. RedHat-based Linux distributions such as
Fedora or Suse).

• Open a Terminal

• In your Terminal, type (you will need sudo rights)

sudo apt−get i n s t a l l python−numpy
sudo apt−get i n s t a l l python−s c ipy
sudo apt−get i n s t a l l python−matp lo t l i b
sudo apt−get i n s t a l l python−qt4
sudo apt−get i n s t a l l python−skimage

Note: On Ubuntu versions older than 12.10, python-skimage needs to be installed from
http://neuro.debian.net/pkgs/python-skimage.html.

• Download and unpack the current version of PyFDAP from http://people.tuebingen.
mpg.de/mueller-lab

• Go to your PyFDAP folder by typing

cd path/ to /PyFDAP/

and launch PyFDAP by typing

python pyfdp app . py

If PyFDAP does not launch, open a Python Terminal and try to import all necessary
packages by typing

import numpy
import s c ipy
import matp lo t l i b
import matp lo t l i b . image
import PyQt4
import code

If you receive an error message while importing any of these modules, try to re-install
the packages or visit the development website of the problematic package.

Manual installation under Mac OS X

Here we explain how to manually install and run PyFDAP on Mac OS X. The following
instructions have only been tested on Mac OS X Snow Leopard 10.6.8 (64-bit) and Mac OS X
Maverick 10.9.2, 10.9.4, 10.9.5 (64-bit). Installation steps may vary between different versions
of OS X.

• Installing Python packages requires the C++ compiler gcc. gcc can be obtained by
downloading XCode from the Apple AppStore.
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• Launch a Terminal in Applications → Utilities → Terminal

• Type

gcc

You should see a pop-up window asking you to install Command Line Tools. Follow the
instructions in the pop-up window.

• Homebrew is a package manager for Mac OS X that facilitates installing packages under
OS X. Download Homebrew by typing

ruby −e ”$ ( c u r l −fsSL https : // raw . github . com/Homebrew/homebrew/
go/ i n s t a l l ) ”

• Check the Homebrew installation by typing

brew update
brew doctor

If the ouput returns any problems, visit the Homebrew website (http://brew.sh/) for
further instructions.

• Install Python by typing into the Terminal

brew i n s t a l l python

Note that Mac OS X comes with a native Python installation. If you want to use the
native Python installation, you can install all packages separately by using the Python
Package Index (pip), or you can use Homebrew to install all packages and then link them
using the site package from https://docs.python.org/2/library/site.html. However, we
recommend using the Python installation of Homebrew.

• Link the new Homebrew installation by typing into the Terminal

brew l i n k python
brew l inkapps

• Link the new Python installation into .bash profile by launching the text editor nano

nano ˜/ . b a s h p r o f i l e

and add the following lines

PATH=”/ usr / l o c a l / bin : ${PATH}”
export PATH
export PYTHONPATH=/usr / local / l i b /python2 .7/ s i t e−packages / :

Press Ctrl+O and Ctrl+X to save the new .bash profile and exit. Restart the Terminal
and type

which python

The output should be
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/ usr / local / bin /python

If not, ensure that you have set the Python path properly and use the appropriate Home-
brew installation prefix. If everything went correctly, you will now use the Homebrew
Python installation when you call python in the Terminal.

• Download and install PyQT4 and SIP by typing into the Terminal

brew i n s t a l l s i p
brew i n s t a l l pyqt
brew l inkapps

• Download and install Nose and NumPy by typing into the Terminal

pip i n s t a l l nose
brew i n s t a l l numpy
brew l i n k numpy

Sometimes NumPy can also be found by typing into the Terminal

brew i n s t a l l homebrew/python/numpy
brew l i n k numpy

• Download and install SciPy by typing into the Terminal

pip i n s t a l l s c ipy

or

brew i n s t a l l s c ipy

• Download and install scikit-image by typing into the Terminal

pip i n s t a l l cython
pip i n s t a l l s c i k i t−image

• Download and install Matplotlib by typing into the Terminal

pip i n s t a l l python−d a t e u t i l
pip i n s t a l l pypars ing
brew i n s t a l l matp lo t l i b

• Download and install PIL by typing into the Terminal

brew i n s t a l l Homebrew/python/ p i l l o w

• Download and unpack the current version of PyFDAP from http://people.tuebingen.
mpg.de/mueller-lab/

• Go to your PyFDAP folder by typing into the Terminal
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cd path/ to /PyFDAP/

and launch PyFDAP by typing into the Terminal

python pyfdp app . py

If PyFDAP does not launch, open a Python Terminal and try to import all necessary
packages by typing into the Terminal

import numpy
import s c ipy
import matp lo t l i b
import matp lo t l i b . image
import PyQt4
import code

If you receive an error message while importing any of these modules, try to re-install
the packages or visit the development website of the problematic package.

Manual installation under Microsoft Windows

Here we explain how to manually install and start PyFDAP on Microsoft Windows. The
following instructions have only been tested for Microsoft Windows 8 (64-bit) and may differ
for other versions.

• Download and install the current version of Python 2.7x from https://www.python.
org/download.

• Download and install the current version of PyQt4 from http://www.riverbankcomputing
.co.uk/. The Windows installer will also install the required package SIP and all necessary
QT libraries.

• Download and install the current version of SciPy Stack from http://www.lfd.uci.edu/∼go
hlke/pythonlibs. SciPy Stack includes important Python packages such as Nose, NumPy,
SciPy, and Matplotlib. We recommend using SciPy Stack, but if you need to install
the packages separately because there is no suitable installation binary of SciPy Stack
available, you can use the following links:

– NumPy: http://sourceforge.net/projects/numpy/files/NumPy/ if you are run-
ning a 32-bit system, on a 64-bit system go to http://www.kfd.uci.edu/~gohlke/
pythonlibs/

– SciPy: http://sourceforge.net/projects/scipy/files/scipy/

– Matplotlib: http://matplotlib.org/downloads.html

– Nose: https://nose.readthedocs.org/en/latest/

– IPython: https://github.com/ipython/ipython/releases

• Download and install the current version of scikit-image from http://www.lfd.uci.edu/∼go
hlke/pythonlibs/.

• Download and unpack the current version of PyFDAP from http://people.tuebingen.
mpg.de/mueller-lab.

• Go to your PyFDAP folder and launch pyfdp_app.py. If PyFDAP does not launch, open
a Python Terminal and try to import all necessary packages by typing
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import numpy
import s c ipy
import matp lo t l i b
import matp lo t l i b . image
import PyQt4
import code

If you receive an error message while importing any of these modules, try to re-install
the packages or visit the development website of the problematic package.

2.3 Enabling video output for PyFDAP
PyFDAP can convert image series into video files for presentation purposes (see also Sec-
tion 3.4.1). This requires the installation of MEncoder:

Under Linux, open a Terminal and type

sudo apt−get i n s t a l l mencoder

If you have followed the manual installation instructions for OS X (see Section 2.2.2), open a
Terminal and type

brew i n s t a l l mplayer

More information about data output in PyFDAP can be found in Section 3.4.

3 WORKING WITH PYFDAP
3.1 The PyFDAP main window
The PyFDAP main window consists of four major compartments: The object list on the left-
hand side (red), the property list on the right-hand side (blue), the plot tab in the center
(green), and the console at the bottom (magenta).
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After creating a new molecule, FDAP, background dataset, or fit, the newly created object is
shown in the object list according to its hierarchical structure (see Section 4). To inspect the
object properties, double-click on the object of choice. The object properties are then listed in
the property list on the right-hand side. Many functions in PyFDAP will require you to select
the right type of object and will return an error message if not done so.

PyFDAP provides the user with several plotting options. Each plot opens in a new tab with
a name according to the currently selected object and the plot type. You can easily switch
between plots by clicking on the open tabs.

PyFDAP also comes with an internal Python console. NumPy and the three main PyFDAP
modules img, fit, misc are automatically imported. You can use the console to manipulate all
PyFDAP objects such as molecules and embryos (FDAP datasets), call other Python functions
or simply let PyFDAP return molecule or embryo properties such as longer vectors that are
not shown in the property list. PyFDAP also uses the console for debugging outputs, so having
a look at the console is often useful.

All major PyFDAP functions can be found in the menu bar at the top of the PyFDAP window.
The menus are sorted according to the normal workflow of FDAP experiment analysis.

3.2 First steps with PyFDAP
We provide a fully analyzed FDAP dataset on our website. If you wish to try out PyFDAP using
this test dataset, go to http://people.tuebingen.mpg.de/mueller-lab, download the test
dataset TestDataset.zip, and unzip it to your PyFDAP folder. If you wish to put it somewhere
else, you need to adjust some paths in the molecule file in PyFDAP later. You can now analyze
the raw images of the test dataset or your own data (see Section 3.2.1), or you can load a
pre-analyzed dataset (see Section 3.2.2).

3.2.1 Analyzing an FDAP dataset
The following section guides you through the major steps of how to use PyFDAP to analyze
and fit FDAP datasets if you wish to perform your own FDAP analysis.

1. Create a new molecule project by clicking on File → New Molecule.

2. Change the name of the molecule project by clicking on Edit → Edit Molecule.

3. Add a new embryo object (FDAP measurement):

(a) Go to Data Analyses → Embryo → New Embryo

(b) Choose the photoconverted folder (images of photoconverted proteins) and counter-
labeled folder (images of cell-tracing molecules, e.g. Alexa488-Dextran). For the
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test dataset, these can be found in the folder TestDataset/squint-dendra2 20min-
interval/embryo6/post ; the photoconverted folder is called red, and the counter-
labeled folder is called green.

(c) Enter the dataset-specific properties such as intervals between images (20 min =
1200 s for the test dataset), post-delay (delay between first and second post-conversion
pictures resulting from re-adjustment), and center and radius for each image. You
can easily select the center and the radius for each image by clicking on the picture.
The first click will define the center, the second the radius, and the third click will
delete both selections. If you wish to copy the selected radius and center for all
following images, click on Copy geometry for following images. When you are done
defining the dataset, click on Done.

(d) The next pop-up window will allow you to set the “photoconverted” folder, counter-
labeled folder, and specific properties of the pre-conversion images similar to the
post-conversion dataset in steps (b) and (c). For the test dataset, these can be found
in TestDataset/squint-dendra2 20min-interval/embryo6/pre; the “photoconverted”
folder is called red, and the counter-labeled folder is called green.

(e) The third pop-up window will allow you to define the method of noise calculation.
You can choose between three methods:

• Outside will average intensities outside of the selected radius for each image
defined in (c) and then average over all of the calculated averages.
• Predefined gives you the possibility to enter a value for the noise level yourself.
• Separate Dataset lets you analyze a separate dataset taken to calculate noise

levels. These images are generally taken before or after the experiments without
a sample.

After clicking Done, all important settings for the embryo object are entered.

(f) You can add additional embryo objects (FDAP measurements) to the molecule by
repeating steps (a) - (e).

4. Add a new background object:

(a) Go to Data Analyses → Background Datasets → Add background dataset.

(b) Choose the “photoconverted” folder (images of “photoconverted” proteins) and
counter-labeled folder (images of cell-tracing molecules). For the test dataset, these
can be found in TestDataset/squint-background 20min-interval/embryo10/post ; the
“photoconverted” folder is called red, and the counter-labeled folder is called green.
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(c) Similar to the embryo object, select parameters specific to the dataset by using the
given text fields or by clicking on the image.

(d) The next pop-up window will allow you to set the folders and properties of the pre-
conversion images of the background dataset similar to the post-conversion dataset.
For the test dataset, these can be found in TestDataset/squint-background 20min-
interval/embryo10/pre; the “photoconverted” folder is called red, and the counter-
labeled folder is called green.

(e) After clicking Done, all important settings for the background object are entered.
You can add additional background objects to the molecule by repeating steps (a) -
(d).

5. Analyze the molecule project by going to Data Analyses→ Analysis→ Analyze Molecule.
This can take several minutes depending on the amount of datasets added to the molecule
project (see Section 5).

The image analysis progress will be printed into the PyFDAP console.

6. Double-click on the embryo object you want to analyze and add a new fit object:

(a) Go to Fitting → Fits → New fit.

(b) Enter the parameters of the fit. The most important are:

• opt meth is the optimization method (see Table 3 for details) used for finding
the minimum of the SSD (sum of squared differences).
• opt tol is the level of tolerance (i.e how good the fit needs to be) given to the

optimization algorithm.
• maxfun is the maximum number of iterations used by the optimizer.
• Model is the underlying decay model used for the fit. See Section 6.1 for more

information.
• x0 k, x0 c0, x0 y0 are the initial guesses for the three parameters k, c0, and y0.
• LB k, UB k, LB c0, UB c0, LB y0, UB y0 are the lower and upper bounds for

the three parameters k, c0, and y0 given to the optimizer. You can use the
checkboxes to set each variable bounded or unbounded from below and above.
For the lower bound of y0, PyFDAP offers several presets:
– Custom allows you to enter a value yourself.
– Noise takes the level of noise as the lower bound for y0.
– Bkgd pre takes the level of the background pre-conversion images as the

lower bound for y0.
– Bkgd takes the average background level as the lower bound for y0.
– F takes the weighting function given in Müller et al. (2012) as the lower

bound for y0.
More details on the estimation of initial guesses and variable bounds can be
found in Section 6.2. Note that not all optimization algorithms offer bounded
optimization (see Section 6.3 for more details).
• fit ext, fit int, fit slice define which regions of the images need to be fitted. You

can only select one of the three regions intracelluar, extracelluar, and slice (i.e.
total imaged domain) to be fitted during one particular fit.
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• fit c0, fit y0 are flags on which parameters are kept fixed and which are free. If
a parameter is unchecked, the optimization algorithm will keep this parameter
at its initial guess value.

• After clicking Done, all important settings for the fit object are entered. The fit
is performed instantly, and you will see the fitted data. To inspect the optimal
parameters resulting from the fit, double-click on the current fit and look in
the property list on the right-hand side for k opt (the decay rate constant) and
halflife min (the half-life in minutes).

(c) You can add additional fit objects to the molecule project by repeating steps (a)
and (b) described above.

7. If you changed any settings of a fit (by selecting Fitting → Fits → Edit fit) and want it
to be performed again, select the fit in the left column and go to Fitting → Perform Fits
→ Perform fit.

8. If you have added and fitted multiple embryo objects (FDAP measurements) and wish to
find the average fit over all embryo objects, go to Statistics → Plotting → Plot average
fit (see Section 3.3 for details).

3.2.2 Loading a pre-analyzed dataset
Launch PyFDAP, go to File → Open Molecule, and select the file TestDataset/results/Test-
Dataset 20min.pk. You have now successfully loaded a molecule project including one embryo
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object (FDAP dataset) and one background dataset. You can now try out all features of
PyFDAP including all plotting functions.

3.3 Making use of statistical functions in PyFDAP
PyFDAP comes with a few statistical tools for data averaging and analysis. To average the fits
from multiple embryo objects (FDAP measurements), go to Statistics → Average Molecule. A
pop-up window will ask you to select fits from different embryo objects:

You can add the fits that you want to be considered for averaging to the selection on the
right-hand side by double-clicking on the particular fit or by using the arrow buttons on the
screen. You can also remove fits from the selection by double-clicking or by using the arrow
buttons. Note that for averaging to work, you can only select fits of the same region, e.g. you
cannot average a fit for the extracellular region with one for the intracellular region. It is also
not possible to let two fits of the same embryo object contribute to the averaged fit.

After selecting the fits that you want to include for averaging, press Done. PyFDAP will
automatically compute averages of all important fitting parameters and display them in the
property list on the right-hand side. Details on how these averages are computed can be found
in Section 6.4. After averaging a selection of fits, you can use PyFDAP’s bar plot functions to
compare fitting results from different embryos. Go to Statistics → Plotting and choose between
Plot ks by fit, Plot y0s by fit, Plot c0s by fit to plot each of the parameters by fit in a bar plot,
or choose Plot all parameters by fit to plot all three optimal parameters by fit.
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This plot allows you to identify fits that produce parameters strongly deviating from the mean.
You can then go back to those fits and adjust the fitting parameters to optimize your final
result.

You can also plot the averaged time-dependent fluorescence decay data as error bar plots for
unnormalized data or for data normalized between values of 0 and 1. To generate these plots,
go to Statistics → Plotting → Plot average fit or Statistics → Plotting → Plot normed average
fit.

Mathematical details for error bar computation and data normalization can be found in Section
6.4.

Since Version 1.1 PyFDAP also includes statistical tests for comparison between different
samples and a normality test. To compare two samples, load two different molecule files, then
select the test you want to perform via Statistics → Tests. Select the two molecules you want
to compare and click Done. The test statistic will then be displayed in the terminal window.
Note: Both molecules need to be averaged before via Statistics → Average molecule. More
details about the implemented statistical tests can be found in Section 6.4.1

3.4 Saving results from PyFDAP
PyFDAP offers multiple ways to save and share FDAP project data and details such as plots,
videos, analysis settings, and whole molecule projects.

3.4.1 Saving figures and movies
In Data Analysis → Plotting, users can find plotting commands for

• Data and background images for the whole region (slice) as well as for extra- and intra-
cellular domains

• Masked images for the whole region (slice) as well as for extra- and intracellular domains

• Masks for the whole region (slice) as well as for extra- and intracellular domains

• Analysis results for all three regions including background values

Moreover, users can plot fitting results and the fitting progress under Fitting → Plotting. Single
plot frames can be saved as *.png, *.pdf, *.eps, *.jpg, *.pgf, *.ps, *.rgba, *.svg, or *.tif. In
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order to edit the plots using a vector graphics software, we recommend saving images as *.pdf
or *.eps files.

PyFDAP also allows users to export image series (such as the fitting progress) as *.mpg or
*.avi movies for presentation purposes. Note that PyFDAP does not automatically provide the
necessary package for the conversion of image files to movie files; more information about the
installation process to enable video output can be found in Section 2.3.

3.4.2 Saving molecule and embryo files
Users can save their molecule sessions to JavaScript Object Notation (JSON) object files. These
object files follow the logical hierarchical structure explained in Section 4 and contain all of the
data used for the FDAP analysis as well as the fitting results. The molecule and embryo files
can be re-loaded into PyFDAP to enable researchers to continue working on a session and to
facilitate collaboration among researchers in different locations.

3.4.3 Saving plots and results as .csv files
Plots as well as molecule and embryo objects can also be saved as comma-separated value files
that can then be read into other plotting or analysis software such as Excel or Matlab. The
molecule and embryo *.csv files follow the hierarchical system of the JSON files (see above).
Note that image data will not be exported to *.csv files.

4 DATA STRUCTURE
PyFDAP provides a hierarchical object structure to organize the datasets obtained from FDAP
experiments and to facilitate data navigation (Figure 1).

Molecule project

Noise measurement

FDAP measurements

Measurement 1

Measurement m

Pre-conversion
measurement

Fits

Fit 1

Fit f

Measurement 1

Measurement b

Pre-conversion
measurement

Background
measurements

Figure 1: Hierarchical PyFDAP data structure for FDAP experiments. Experiments are
grouped into a main molecule project and divided into FDAP (1 to m) and background (1
to b) pre- and post-conversion measurements. Each FDAP measurement can have multiple fits
(1 to f) with different fitting options.
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Molecule projects: Replicate experiments with the same protein are grouped into a main
molecule project. PyFDAP can handle multiple molecule projects in one session.

FDAP measurements: Replicate experiments are divided into FDAP and background pre- and
post-conversion measurements. Intra- and extracellular protein stability can be different, and
PyFDAP can import a second dataset that counter-labels intra- or extracellular space. The
separation of fluorescence intensities into intra- or extracellular masks is performed using the
Otsu binarization algorithm (Otsu, 1979). The masks and corresponding datasets can be in-
vestigated inside the PyFDAP GUI by clicking on Data Analysis → Plotting → Background
Dataset. The masks are applied to the images of the photoconverted signal, and the average
intensities in the intra- and extracellular domains and in the entire image are calculated. Each
PyFDAP embryo dataset (FDAP measurement) can have multiple fits for various regions, using
different fitting parameters and different data points to allow maximum flexibility. The fits are
automatically included in the PyFDAP data structure.

Noise measurements: Noise measurements can be imported for each embryo dataset and can
be used to calculate estimates for the baseline of the fit (see Section 6.2).

Pre-conversion measurements: Pre-conversion intensity measurements provide information
about the levels of autofluorescence and can be used to calculate estimates for the baseline
of the fit (see Section 6.2).

Background measurements: Background measurements provide information about the levels of
autofluorescence after mock-photoconversion in the presence of unlabeled variants of the protein
of interest and can be used to calculate estimates for the baseline of the fit (see Section 6.2).

5 PERFORMANCE
We tested PyFDAP on various system configurations and ran a test script measuring the total
operation time. The test script contained the following operations:

1. Open a test molecule file

2. Analyze a single FDAP dataset with all necessary additional data

3. Analyze a background dataset with all necessary additional data

4. Perform three fits for the intra- and extracellular and slice data

The dataset used for this performance test is freely available from http://people.tuebingen.
mpg.de/mueller-lab/, and the results of our performance tests are listed in Table 2.

System OS CPU Memory Operational Time

Thinkpad x230 Xubuntu 14.04 Intel(R) Core(TM)
i7-3520M, 2.90 GHz

8 GB 55 s

MacBookPro7.1 Mac OS X 10.9.4 Intel(R) Core(TM) 2
Duo-P8600, 2.40 GHz

4 GB 88 s

MacBookPro8.1 Mac OS X 10.9.5 Intel(R) Core(TM)
i5-2410M , 2.30 GHz

4 GB 55 s

Table 2: Performance test results of PyFDAP.
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6 MATHEMATICAL BACKGROUND
6.1 Decay models
PyFDAP supports two different decay models: Linear- and non-linear decay. Linear decay is
given by the ordinary differential equation (ODE)

dc

dt
= −kc

where c is the concentration of a molecule and k is the rate constant of the decay. Since we
assume that the level of fluorescence is proportional to the molecule concentration, we can
substitute the concentration with fluorescence intensity. Solving this ODE results in

c(t) = c0e
−kt + y0

where c(t) is the concentration of a molecule at time t, c(0) = c0 is the concentration at
time t = 0, and y0 is the baseline fluorescence intensity to which the population of decaying
molecules converges. In terms of fluorescence intensity, y0 resembles the baseline level of noise
and autofluorescence. From k we can then compute the molecule’s half-life τ by

τ =
ln(2)

k
.

Some molecules are proposed to decay non-linearly (Eldar et al., 2003), and we have

dc

dt
= −kcn

where n > 1 is the degree of non-linearity and k is the decay rate constant of the molecule. We
can solve this ODE and obtain the power-law solution

c(t) =
(
c1−n
0 − kt(1− n)

) 1

1−n + y0.

For the case of a non-linear decay model, we compute the molecule’s half-life by

τ =
(2n−1 − 1)c1−n

0

k(n− 1)
.

6.2 Estimation of initial guesses and bounds for variables
PyFDAP offers multiple options to calculate initial guesses and bounds for variables that are
used by the fitting algorithms to obtain biologically reasonable estimates based on noise, pre-
conversion, and background measurements (see Section 4).

Initial guess for the estimation of c0: A good estimate for c0 is the difference between the
pre-conversion and the first post-conversion image, i.e.

Ipost(tstart)− Ipre,
where Ipost and Ipre are the fluorescence intensities after and before photoconversion, respec-
tively, and tstart is the time at which the first image was taken.

Initial guess for the estimation of the baseline y0: PyFDAP offers the two presets Ipost(tstart)
and Ipost(tend), where tend is the time at which the last image was taken and where protein
decay should be almost complete. Our tests showed that the optimization algorithms worked
well if y0,opt is approached from above using Ipost(tstart) as the initial guess for y0.
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Estimation of the lower bound for the baseline y0: This estimate is a crucial part of the fitting
process. PyFDAP offers several algorithms to perform this estimation based on the amount
and quality of the data available.

• The simplest estimate of the lower bound of y0 is the average background noise of the
measurements N̄ . Due to autofluorescence of the samples, this estimate is generally too
low, but it serves as the lower bound of the lower bounds of y0.

• Alternatively, the lower bound of the baseline y0 can be estimated from the average level
of autofluorescence represented by

B̄prer =

b∑
j=1

Bprej,r

b
,

where r ∈ {intracellular, extracellular, entire domain} is the investigated region, and
j ∈ {1, ..., b} are the indices of background pre-conversion datasets with intensities Bprej,r .

• PyFDAP also offers the possibility to use the average background intensity as the lower
bound of the baseline y0:

B̄r =

b∑
j=1

B̄j,r

b
,

where B̄j,r is the mean intensity in region r of a background dataset over all data points
given by

B̄j,r =

T∑
l=1

B(tl)j,r +Bprej,r

T + 1
.

Here, tl with l ∈ {1, ..., T} is the time when the l-th image was taken and T is the number
of post-conversion images.

• PyFDAP includes a special weighting function F (Müller et al., 2012) given by

Fi,r =
1

b

b∑
j=1

min
t

(
Bj,r(t)−Ni

Bprej,r −Ni

)
,

where i is the current FDAP measurement, r is the investigated region, and j is the index
of background datasets with intensities B(t) at time t. Here, the noise measurement of
measurement i is given by Ni. Using the function F , users can compute the lower bound
of the baseline y0i,r

for measurement i and region r by

y0i,r
≥ Fi,r · (Iprei,r −Ni) +Ni,

where Iprei,r denotes the pre-conversion intensity of the FDAP measurement i in region
r.
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Method Name in PyFDAP Type Reference

Bounded methods

Limited-memory BFGS L-BFGS-B quasi-Newton Byrd et al. (1995)

Truncated Newton
Conjugate

TNC Newton conjugate Nash (1984)

Sequential Least Squares
Programming

SLSQP sequential quadratic Kraft (1988)

Brute force brute brute force SciPy Reference Guide

Unbounded methods

Nelder-Mead Nelder-Mead simplex Nelder and Mead (1965)

Broyden-Fletcher-Goldfarb-
Shanno

BFGS quasi-Newton Broyden (1970); Goldfarb
(1970); Fletcher (1970);
Shanno (1970)

Nonlinear Conjugate
Gradient

CG Newton conjugate Polak and Ribière (1969)

Table 3: List of optimization algorithms in PyFDAP.

6.3 Optimization algorithms
PyFDAP comes with a wide selection of optimization algorithms taken from the SciPy optimize
package (http://docs.scipy.org/doc/scipy/reference/optimize.html) (Nelder and Mead (1965);
Polak and Ribière (1969); Broyden (1970); Goldfarb (1970); Fletcher (1970); Shanno (1970);
Nash (1984); Kraft (1988); Byrd et al. (1995); Nocedal and Wright (2006)). A list of all
optimization algorithms available in PyFDAP can be found in Table 3.

6.4 Statistics
PyFDAP can average over multiple fits from different embryo objects (FDAP measurements).
Details of how to select fits for averaging are described in Section 3.3.

PyFDAP averages the optimal parameters for k, y0, c0, and protein half-lives τ through an
arithmetic mean. For example, the average decay rate constant k̄ is obtained by

k̄ =

m̃∑
i=1

ki

m̃
,

where m̃ is the number of fits to be averaged. The average half-life τ̄ can be computed in two
ways resulting in different average half-lives. PyFDAP computes the average half-life τ̄ through
the arithmetic mean given by

τ̄ =

m̃∑
i=1

τi

m̃
.

For the linear decay model, this yields

τ̄ =
1

m̃

m̃∑
i=1

ln(2)

ki
, (1)
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and in the case of the non-linear decay model we obtain

τ̄ =
1

m̃

m̃∑
i=1

(2n−1 − 1)c1−n
0,i

ki(n− 1)
. (2)

However, computing the average half-life τ̄ directly from the average decay rate k̄ yields

τ̄ =
ln(2)

1
m̃

m̃∑
i=1

ki

, (3)

for the linear decay model and

τ̄ =

(2n−1 − 1) 1
m̃

m̃∑
i=1

c1−n
0,i

1
m̃

m̃∑
i=1

ki(n− 1)

. (4)

in case of the non-linear decay model. It is obvious that equations 1 and 3 as well as equations
2 and 4 do not produce the same half-lives, and the user needs to decide which way of half-life
computation is appropriate for the application.

PyFDAP can produce different error bar plots for each averaged region. Clicking on Statistics
→ Plotting → Plot average fit will result in a plot in which each average data point c̄(tj) is
computed as the arithmetic mean

c̄(tj) =
1

m̃

m̃∑
i=1

ci(tj).

Error bars are computed as the standard deviation for each time tj . Clicking on Statistics
→ Plotting → Plot normed average fit returns a plot in which all data points are normalized
between values of 0 and 1. The normalization is performed by subtracting the baseline value
y0,i from each data point and dividing the result by c0,i, i.e.

c̃i(tj) =
ci(tj)− y0,i

c0,i
,

where c̃i(tj) is the normalized data point at time tj . This normalization facilitates the compar-
ison of decay curve shapes, but it substantially changes the meaning of the error bars. Since all
data series are pinned to a value of 1 at their first time point, the standard deviation vanishes
for this data point. The following data points will generally produce increasing error bars since
the decay curves generally diverge. The length of the normalized error bars can be interpreted
as the extent to which the decay curves diverge throughout the experiments.

6.4.1 Statistical tests
PyFDAP offers multiple statistical tests both to

• test the normality of the distribution of degradation constants,

• and compare two different molecule files and determine of the resulting degradation con-
stants are significantly different.
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Method Requires normality Reference

Standard t-test Yes Student (1908)

Welch’s t-test Yes Welch (1947)

Mann-Whitney U Test No Mann and Whitney (1947)

Wilcoxon No Wilcoxon (1945)

Table 4: List of statistical comparison methods in PyFDAP.

A multitude of statistical tests such as the Students t-test (Student, 1908) require normally
distributed samples. One way to test this is using the Shapiro-Wilk test (Shapiro and Wilk,
1965), which was recently found to have the best sensibility compared to other common nor-
mality tests (Razali and Wah, 2011).

PyFDAP offers four methods to compare the degradation of two molecules. All methods are
summarized in table 4.
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8 LIST OF FREQUENTLY USED ABBREVIATIONS AND VARIABLES

Name Description

Abbreviations
LB Lower bound
UB Upper bound
ODE Ordinary differential equation
SSD Sum of squared differences

Variables
b Number of background measurements
B Background intensity
c Molecule concentration
c0 Initial molecule concentration
c̃ Normalized molecule concentration
f Number of fits
F Weighting function for the estimation of the lower bound of y0
i Control variable
I Fluorescence intensity
j Control variable
k Molecule decay rate constant
l Control variable
m Number of measurements
m̃ Number of selected fits for averaging
n Degree of non-linearity of molecule decay
N Noise intensity
r Region of measurement
t Time
T Number of post-conversion frames
τ Molecule half-life
x0 Initial parameter guess
y0 Molecule decay baseline

Variable subscripts
ext Extracellular
int Intracellular
post After photoconversion
pre Before photoconversion
slice Entire optical slice
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Abstract

Protein stability influences many aspects of biology, and measuring the clearance kinetics of proteins can provide important insights into
biological systems. In FDAP experiments, the clearance of proteins within living organisms can be measured. A protein of interest is tagged
with a photoconvertible fluorescent protein, expressed in vivo and photoconverted, and the decrease in the photoconverted signal over time is
monitored. The data is then fitted with an appropriate clearance model to determine the protein half-life. Importantly, the clearance kinetics of
protein populations in different compartments of the organism can be examined separately by applying compartmental masks. This approach
has been used to determine the intra- and extracellular half-lives of secreted signaling proteins during zebrafish development. Here, we describe
a protocol for FDAP experiments in zebrafish embryos. It should be possible to use FDAP to determine the clearance kinetics of any taggable
protein in any optically accessible organism.

Video Link

The video component of this article can be found at http://www.jove.com/video/52266/

Introduction

The levels of proteins in cells and organisms are determined by their rates of production and clearance. Protein half-lives can range from
minutes to days1-4. In many biological systems, the stabilization or clearance of key proteins has important effects on cellular activity. Modulation
of intracellular protein stability is required for cell cycle progression5,6, developmental signaling7-9, apoptosis10, and normal function and
maintenance of neurons11,12. Extracellular protein stability affects the distribution and availability of secreted proteins, such as morphogens13,14,
within a tissue.

Over the last few decades, protein stability has mainly been assessed in cell culture using radioactive pulse-labeling or cycloheximide chase
experiments15. In such pulse-chase experiments, cells are either transiently exposed to a “pulse” of radioactive amino acid precursors that
are incorporated into newly synthesized proteins, or they are exposed to cycloheximide, which inhibits protein synthesis. Cultured cells are
then collected at different time points, and either immunoprecipitation followed by autoradiography (in radioactive pulse-chase experiments) or
western blotting (in cycloheximide experiments) is used to quantify the clearance of protein over time.

Conventional protein stability assays have several shortcomings. First, proteins in these assays are often not expressed in their endogenous
environments, but rather in tissue culture and sometimes in cells from different species. For proteins whose stability is context-dependent,
this approach is problematic. Second, it is not possible to follow protein clearance in individual cells or organisms over time, and the data from
these assays reflects an average of different populations of cells at different time points. Since individual cells may have started with different
amounts of protein, may have taken up the radioactive label or cycloheximide at different times, or may have different clearance kinetics, such
aggregate data could be misleading. Finally, in the case of cycloheximide chase experiments, addition of the protein synthesis inhibitor may
have unintended physiological effects that could artificially alter protein stability16-18. These shortcomings can be avoided by using Fluorescence
Decay After Photoconversion (FDAP), a technique that utilizes photoconvertible proteins to measure protein clearance dynamically in living
organisms19-25 (see Discussion for limitations of the FDAP technique).

Photoconvertible proteins are fluorescent proteins whose excitation and emission properties change after exposure to specific wavelengths of
light26. One commonly used variant is Dendra2, a “green-to-red” photoconvertible protein that initially has excitation and emission properties
similar to green fluorescent proteins, but after exposure to UV light—“photoconversion”—its excitation/emission properties become similar
to those of red fluorescent proteins23,27. Importantly, new protein produced after photoconversion will not have the same excitation/emission
properties as the photoconverted protein, allowing decoupling of production and clearance upon photoconversion and observation of only a pool

http://www.jove.com
http://www.jove.com
http://www.jove.com
mailto:patrick.mueller@tuebingen.mpg.de
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of photoconverted protein. Tagging proteins of interest with photoconvertible proteins thus provides a convenient way to pulse-label proteins in
intact, optically accessible living organisms.

In FDAP assays (Figure 1A), a protein of interest is tagged with a photoconvertible protein and expressed in a living organism (Figure 1B). The
fusion protein is photoconverted, and the decrease in photoconverted signal over time is monitored by fluorescence microscopy (Figure 1C).
The data is then fitted with an appropriate model to determine the half-life of the fusion protein (Figure 1D).

The FDAP assay described here was designed to determine the extracellular half-lives of secreted signaling proteins in zebrafish embryos
during early embryogenesis19. However, this approach can be adapted to any transparent model organism that tolerates live imaging, and could
be used to monitor the clearance of any taggable intracellular or extracellular protein. Variations of the technique described here have been
performed in cultured cells20,23 and Drosophila22 and mouse21 embryos.

Protocol

1. Generating a Photoconvertible Fusion Construct and Injecting Dechorionated Zebrafish
Embryos

1. Generate a functional construct containing the protein of interest fused to a green-to-red photoconvertible protein (see Discussion), then use
in vitro transcription to generate capped mRNA encoding the fusion protein as in Müller et al., 201219.

2. Use pronase to remove the chorions from about 30 zebrafish embryos at the one-cell stage. Alternatively, manually dechorionate embryos
using forceps28.
 

Note: Embryos must be dechorionated for subsequent imaging. If desired, embryos can be injected through the chorion and dechorionated
later, just prior to imaging.

1. Make a 5 mg/ml stock solution of pronase from Streptomyces griseus in standard zebrafish embryo medium19. Rock the solution gently
at RT for 10 min to allow the protease to dissolve. Aliquot 2 ml into microcentrifuge tubes and freeze at -20 °C.

2. Transfer one-cell stage embryos to a 5 cm diameter glass or agarose-coated plastic Petri dish containing ~8 ml embryo medium. Add 2
ml of thawed pronase stock solution to the dish and incubate at RT for 5 to 10 min.

3. Avoid exposing embryos to air or plastic, as contact with either will cause dechorionated embryos to rupture. Fill a 200 ml glass beaker
with embryo medium. Transfer the embryos to the beaker by tilting the Petri dish while submerging it in the medium.

4. After the embryos have settled to the bottom of the beaker, pour out most of the embryo medium, then pour fresh embryo medium into
the beaker. The mild swirling of the medium pouring into the beaker causes embryos to lose their weakened chorions.

5. Repeat step 1.2.4.

3. Transfer the dechorionated embryos to an agarose-coated injection dish29 using a glass Pasteur pipette with a flamed tip. Flaming the pipette
tip prevents jagged edges from injuring embryos.

4. Co-inject the mRNA and a 3 kDa Alexa488-dextran conjugate29,30 (Figure 1B; see Discussion for suggested mRNA and Alexa488-dextran
amounts). Inject directly into the center of the cell (not the yolk) to ensure even distribution of mRNA and fluorescent dye once cleavage
commences.
 

Note: The Alexa488 signal will be used during data analysis to generate compartmental masks in order to distinguish between intracellular
and extracellular fluorescence.

5. Transfer injected embryos to a 1–2% agarose-coated well of a six-well plastic dish filled with embryo medium. Incubate in the dark at
28 °C until embryos have reached late sphere stage31 (approximately 5 hr post fertilization). Check embryos every one to 2 hr under a
stereomicroscope and remove any debris generated by embryos that have died.

2. Mounting Zebrafish Embryos for Photoconversion and Imaging on an Inverted Confocal
Microscope

1. Use a stereomicroscope to identify one to five healthy embryos, and use a glass Pasteur pipette with a flamed tip to remove them from the
dish.

2. Gently eject the embryos into a microcentrifuge tube containing ~1 ml of melted 1% low melting point agarose in 1x Danieau’s embryo
medium (see Materials List) (Figure 2A).
 

Note: Agarose should have a temperature between 40 and 42 °C; higher temperatures could damage the embryos.
3. Draw the embryos back into the pipette along with some agarose. Gently eject the agarose and embryos onto the cover glass of a glass-

bottom dish (Figure 2B). Ensure that the thickness of the cover glass is compatible with the objective on the confocal microscope.
1. Re-use the glass pipette if desired. To clean the residual agarose out of the pipette and prevent clogging, quickly pipette embryo

medium up and down. Place a 15 ml tube filled with ~5 ml of embryo medium next to the stereomicroscope for this purpose.

4. Use a metal probe to position the embryos so that the animal pole (blastoderm) faces the cover glass. Work quickly since the agarose will
solidify in 20–30 sec. Use the stereomicroscope to monitor the embryos’ positions and readjust as necessary until the agarose hardens.

5. Repeat steps 2.1–2.4 until the desired number of embryos has been mounted.
 

Note: In a typical experiment, four agarose drops containing four or five embryos each will fit easily on the cover glass. About 16 embryos can
be imaged during a single ideal experiment (Figure 2C).

6. When the agarose has solidified, fill the glass-bottom dish with 1x Danieau’s embryo medium.
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3. Photoconverting and Measuring the Decrease of the Photoconverted Signal

A 25X or 40X water objective is appropriate for the size and refractive index of zebrafish embryos. It is best to use immersion oil with the same
refractive index as water rather than actual water, since water will evaporate during the course of the five-hour experiment. Ensure that the
immersion oil is designed to be used with a water (not oil) objective.

1. Place a large drop of immersion oil on the objective to ensure that the oil film between the objective and cover glass will not break as the
stage moves to different embryo positions during imaging. Securely place the glass-bottom dish onto the stage so that the dish will not shift
when the stage moves. If possible, use a heated stage at 28 °C, the optimal temperature for zebrafish development.

2. Define each embryo’s position in the confocal microscope’s software package. Adjust the z-depth for each embryo, and attempt to target
roughly the same plane in each embryo.
 

Note: About 30 μm from the animal pole is a good depth since at this depth the enveloping layer of the embryo can be avoided, imaging area
is maximized, and light scattering is minimal. A single optical slice with a thickness of ~3.3 μm provides sufficient data; there is no need to
acquire a z-stack (see Section 5).

3. Collect two signals during the experiment: the “green” signal from the Alexa488-dextran conjugate—which will be used during data analysis to
isolate extracellular and intracellular fluorescence—and the “red” signal from the fusion protein after it is photoconverted.

1. Excite Alexa488 using a 488 nm laser, and collect emitted fluorescence between ~500 and 540 nm. Note: After photoconversion, many
green-to-red photoconvertible proteins (e.g., Dendra2) can be excited with a 543 nm laser and emit fluorescence between ~550 and
650 nm. Adjust as necessary based on the photoconvertible protein used.

4. Acquire “pre-photoconversion” images, and configure the confocal microscope’s software to image each of the previously defined positions
(from step 3.2) with the appropriate imaging conditions every 10 or 20 min for a five-hour time course (see Section 5 and Discussion).

5. To photoconvert the fusion protein, switch to a 10X objective and expose groups of embryos to UV light from a mercury arc lamp with a
~300–400 nm excitation filter at 100% output for 2 min. Shift the focus along the z-axis to promote uniform photoconversion (see Section 5).
Ensure that the immersion oil does not drip onto the 10x objective during photoconversion.
 

Note: The shifting of focus during photoconversion could be automated in order to avoid variability among experimenters.
6. Switch back to the 25X or 40X objective immediately after photoconversion. Ensure that the previously defined positions from step 3.2 are still

accurate. If the dish shifted during photoconversion, re-define the positions of the embryos.
1. Start the program created in step 3.4 and allow imaging to continue for 5 hr. Note the time elapsed between photoconversion and the

start of imaging for each embryo.

7. Occasionally check on the experiment. Monitor the level of Danieau’s medium and add more if necessary. Restart the software if it has
stalled.

8. In order to determine the background fluorescence values that will be used during data analysis to estimate the asymptote of an exponentially
decreasing model, include some embryos that have been injected with Alexa488-dextran but not mRNA in the experiment. To determine the
instrument noise, which will also be used during subsequent data analysis, acquire an image in the absence of a sample.

4. Analyzing the Data Using PyFDAP

1. Visually inspect the time course data sets from each embryo. Discard data sets from embryos that died during imaging, that shifted
significantly, that have very low levels of photoconverted signal, or that contain regions of cells that look unusual and have stopped moving
and dividing (typical of injured or sick embryos).
 

Note: Occasionally, bubbles in the immersion oil or other artifacts will appear in one or two images in an otherwise usable data set. Note any
images that contain artifacts; they will be discarded later, and the remaining time points from such a data set can still be analyzed.

2. Use the Python-based software package PyFDAP to analyze the FDAP data. PyFDAP calculates half-lives by determining the average
intracellular and extracellular red fluorescence intensity in each image and fitting the data with an exponentially decreasing function56 (Figure
3).

1. Download PyFDAP (see Materials List).
2. Use PyFDAP to separate intracellular and extracellular photoconverted signal (Figure 3A,B). Use the Alexa488 signal, which is strictly

intracellular, to create an intracellular mask. Apply this mask to the corresponding red channel image to prevent intracellular pixels from
being considered when calculating average extracellular intensity. To measure average intracellular intensity, invert the mask.

3. In PyFDAP, display the masked images generated in step 4.2.2. Visually inspect these images and discard data sets in which masks
do not accurately distinguish intracellular from extracellular space (this should be rare; note that cell membranes are included in images
in which extracellular space has been masked, but they could be removed by altering the thresholding algorithm or by introducing a
membrane mask (e.g., using membrane-CFP)). Also discard any single images containing artifacts (e.g., bubbles in the immersion oil)
identified in step 4.1.

4. Use PyFDAP to calculate average extracellular and intracellular fluorescence intensities for each image. PyFDAP calculates these
averages by summing the intensities of pixels that fall outside of the mask and dividing by the total number of pixels summed.

5. Fit the fluorescence data (Figure 3C) with the following exponential function:
 

 

where t is time post-photoconversion, c(t) is intensity at a given value of t, c0 is the intensity at t = 0, k is the clearance rate constant,
and y0 is the asymptote that the function approaches as fluorescence decreases (Figure 1D). y0 can be constrained based on the
measurements in step 3.819.

6. Use PyFDAP to calculate the extracellular and intracellular protein half-lives (τ) from the clearance rate constants (k) using the
following relationship:
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5. Control Experiments to Assess Photobleaching, Inadvertent Photoconversion, and
Photoconversion Uniformity

1. Assessing photobleaching
 

Note: Photobleaching could cause an artifactual decrease in fluorescence intensity that reflects the bleaching properties of the fluorescent
protein in addition to the clearance of the protein of interest.

1. To assess possible photobleaching, perform one set of FDAP experiments with 10 min intervals between imaging and a second set
with 20 min intervals between imaging (Figure 4). Analyze the data from both sets of experiments using PyFDAP as described in
Section 4.

2. Compare the half-lives from the 10 and 20 min interval experiments. Longer half-lives from 20 min interval experiments indicate
significant photobleaching. If the half-lives from both experiments are identical, photobleaching is not a significant concern.

3. Alternatively, assess photobleaching by acquiring a series of ~30 images immediately after photoconversion. A significant decrease in
fluorescence intensity indicates significant photobleaching.

4. If photobleaching is detected, use lower laser power, decrease imaging time, or consider using a more photostable photoconvertible
protein32.

2. Assessing inadvertent photoconversion.
 

Note: Dendra2 can be photoconverted using 488 nm illumination27. When exciting Alexa488 with the 488 nm laser as described in step 3.3.1,
inadvertent photoconversion and therefore an artifactual increase in the apparent half-life of the protein of interest is possible. However, we
and others33 have found that 488 nm illumination is an inefficient method of photoconversion in zebrafish embryos.

1. Use the control experiment described in step 5.1.1 to detect inadvertent photoconversion. Compare the half-lives from the 10 and 20
min interval experiments. Shorter half-lives from 20 min interval experiments indicate significant inadvertent photoconversion. If the
half-lives from both experiments are identical, inadvertent photoconversion is not a significant concern.

2. If inadvertent photoconversion is detected, use a lower 488 nm laser power and shorter imaging times to avoid inadvertently
photoconverting Dendra2.

3. Assessing photoconversion uniformity.
 

Note: If photoconversion is biased toward the animal pole of the embryo, the decrease in fluorescence will be influenced by protein diffusion
or cell movement into deeper planes (Figure 5A).

1. To determine whether photoconversion is uniform, express a secreted photoconvertible protein (for experiments with extracellular
fusion proteins) or a cytoplasmic photoconvertible protein (for experiments with intracellular fusion proteins). Photoconvert as usual,
then acquire a z-stack encompassing most of the blastoderm every 20 min for 80 min.

2. If photoconversion is biased toward the animal pole, the fluorescence intensity in deeper planes will increase over time due to diffusion
or cell movement (Figure 5B). If non-uniform photoconversion is detected, focus deeper into the embryos during photoconversion.

Representative Results

FDAP has been used to determine the half-lives of extracellular signaling proteins in zebrafish embryos19. One of these proteins, Squint, induces
expression of mesendodermal genes during embryogenesis34. Squint-Dendra2 activates expression of mesendodermal genes at levels similar to
untagged Squint, as demonstrated by qRT-PCR and in situ hybridization assays19. Embryos were co-injected with Alexa488-dextran and mRNA
encoding Squint-Dendra2 and subjected to the FDAP assay. A decrease in the extracellular photoconverted signal intensity over time is evident
(Figure 4A). Extracellular intensity profiles from 23 embryos were generated using PyFDAP. The resulting data was fitted in PyFDAP with a first-
order clearance kinetics model, and an average clearance rate constant k of 1.00 x 10-4/sec, corresponding to an average half-life τ of 116 min,
was determined. Similar intensity profiles and clearance rate constants were obtained when the intervals between imaging were 10 or 20 min,
suggesting that photobleaching or inadvertent photoconversion did not contribute significantly to intensity changes (Figure 4B).
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Figure 1. Fluorescence Decay After Photoconversion (FDAP) overview. (A) Workflow of an FDAP experiment. (B) Injection of mRNA and
a fluorescent dye into a zebrafish embryo at the one-cell stage. Protein is produced from the mRNA as the embryo develops over about 5 hr
prior to imaging. The dye labels cells (green circles). (C) The fusion protein is photoconverted using a UV pulse, and the decrease in the intensity
of the photoconverted signal over time is monitored. (D) The data are fitted with an exponentially decreasing function to obtain clearance rate
constants (k) and half-lives (τ). Please click here to view a larger version of this figure.

 

Figure 2. Mounting zebrafish embryos for FDAP experiments. (A) Zebrafish embryos (blastoderm = white, yolk = black) are transferred from
embryo medium (blue) into melted agarose (yellow). (B) Embryos and agarose are placed onto the cover glass of a glass-bottom dish. Embryos
are then manually positioned so that the animal pole faces the cover glass. A cross-section of a glass-bottom dish is shown. (C) Schematic
overview of a glass-bottom dish with several agarose drops containing four embryos each (view looking down into the dish). Please click here to
view a larger version of this figure.
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Figure 3. Data analysis using PyFDAP. (A) PyFDAP uses the Otsu thresholding algorithm35 to generate intra- and extracellular masks from
the intracellular Alexa488 signal (green). (B) Photoconverted signal (red) from an embryo expressing a secreted Dendra2 fusion protein (Squint-
Dendra219). Average extra- and intracellular fluorescence intensities were calculated using the masks shown in (A). The space outside of the
embryo was excluded from these calculations by discarding pixels outside of the yellow circle. (C) PyFDAP screenshot displaying extracellular
intensity data from an FDAP experiment (black circles) fitted with an exponentially decreasing function (red dashed line). The extracellular half-
life is indicated by the red arrow. Please click here to view a larger version of this figure.
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Figure 4. Representative FDAP results. (A) A representative embryo expressing secreted Squint-Dendra2 just prior to photoconversion
(far left) and 27, 87, and 287 min post-photoconversion. (B) To control for photobleaching and inadvertent photoconversion (see Section
5), experiments with 10 or 20 min intervals were performed (data from Müller et al., 201219). In PyFDAP, extracellular intensity profiles were
generated, fitted with exponentially decreasing functions, and normalized by subtracting the fitted y0 value from each data point and dividing by
the fitted c0 value. Data from the 10 min (black, n = 11) and 20 min (blue, n = 12) interval experiments were then averaged, respectively. Error
bars indicate standard deviation. Please click here to view a larger version of this figure.
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Figure 5. Assessing photoconversion uniformity. (A) Non-uniform photoconversion of an extracellular protein can lead to an erroneously
short apparent half-life if photoconverted protein diffuses into deeper planes over time. (B) To determine whether photoconversion is uniform, a
z-stack covering most of the blastoderm is acquired at several time points post-photoconversion. Fluorescence intensity will increase in deeper
planes over time if photoconversion was non-uniform (note that light scattering causes deeper planes to appear dimmer than higher planes).
Please click here to view a larger version of this figure.

Discussion

The success of an FDAP experiment relies on the generation of a functional photoconvertible fusion protein. Tagging a protein can affect its
biological activity and/or biophysical properties, including its localization, solubility, and stability36-41. Be prepared to test the activity of several
different fusion constructs in order to find one that is active. We have found that changing the position of the photoconvertible protein relative
to the protein of interest or using longer linkers (e.g., using the amino acid sequence LGDPPVAT19) can enhance the activity of the fusion
protein. In the case of signaling proteins, the activity of the fusion protein can be determined by testing its ability to induce expression of target
genes19. qRT-PCR or in situ hybridization provide good readouts of target gene expression19. Note that the protocol described here is designed
to determine the stability of proteins in the early zebrafish embryo and would require modification to assess protein stability in other contexts.

The green-to-red photoconvertible protein Dendra227 has been used successfully in zebrafish FDAP experiments19 (Figure 4), but other
options are available26,42. To avoid potential artifacts due to aggregation of the fusion protein, choose a monomeric photoconvertible protein.
Photoactivatible proteins can also be used in FDAP assays20-22,26.

Before performing an FDAP experiment, several aspects of the protocol need to be optimized. Inject different amounts of mRNA to determine
the lowest amount that provides useable signal after photoconversion; ~50 pg mRNA is a good starting amount. In order to generate meaningful
compartmental masks (Figure 3), the Alexa488 signal must be bright enough to compete against the signal from the non-photoconverted fusion
protein that is constantly produced from the injected mRNA; inject between 0.2 and 4 ng of Alexa488-dextran to find the optimal amount of
fluorescent dye. Find the optimal post-conversion imaging conditions and use the same conditions for all experiments with a given construct.
Use good quantitative imaging practices43, and choose an appropriate dynamic range to avoid saturated pixels in the red channel. Determine
the appropriate imaging interval for each fusion protein. Proteins with very short half-lives may require more frequent imaging over a shorter total
time period. Establish the optimal photoconversion technique based on the organism and photoconvertible protein used. We describe one robust
photoconversion method using a mercury arc lamp in step 3.5, but Dendra2 can also be photoconverted with a 405 33 or 488 nm laser27.
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One limitation of this FDAP protocol is that overexpression of the protein of interest is required. Overexpression could affect protein stability,
for instance, through abnormal expression of other genes that modify the protein’s clearance kinetics14,44. If the protein of interest is a signaling
molecule, consider performing experiments in the presence of a signaling inhibitor to determine whether blocking expression of target genes
affects protein stability. In the future, it may be possible to generate transgenic embryos expressing photoconvertible fusions under the control of
endogenous expression elements45-50. If transgenic embryos produce sufficient signal, FDAP experiments in a non-overexpression context are
conceivable, perhaps using light-sheet microscopy to observe fluorescence decrease in the entire embryo51.

Possible further applications of FDAP include investigating the mechanisms that regulate protein stability by examining the effects of different
perturbations (e.g., expression of putative proteases) or protein modifications (e.g., phosphorylation) on stability. For example, the factors
controlling the extracellular stability of Squint are currently unknown. Many secreted developmental signals are internalized by cells52-55, which
could contribute to the clearance of Squint and other ligands from the extracellular space. FDAP experiments in which internalization is blocked
might provide information about mechanisms controlling extracellular protein clearance.

In contrast to conventional assays for measuring protein stability15, FDAP offers a microscopy-based alternative in which the clearance of
proteins can be monitored over time within living organisms. Similar methods have been used to monitor protein clearance in model systems
other than zebrafish embryos20-23. This FDAP protocol has the potential to be adapted to determine the half-life of any taggable protein in
biological systems where live imaging is feasible.
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Abstract

Nearly all biological processes require the diffusion of macromolecules. Fluorescence Recovery Af-
ter Photobleaching (FRAP) and inverse FRAP (iFRAP) assays have been extensively used to assess
the mobility of fluorescent molecules. These assays measure diffusion by monitoring the return of
fluorescence in bleached regions (FRAP), or the dissipation of fluorescence from photoconverted
regions (iFRAP). However, current analysis methods for FRAP and iFRAP data suffer from simpli-
fied assumptions about sample geometry, bleaching/photoconversion inhomogeneities, and the un-
derlying reaction-diffusion kinetics; furthermore, analysis software is often difficult to implement.
To address these shortcomings, we developed the software “PyFRAP” (available at https://mueller-
lab.github.io/PyFRAP), which fits numerical simulations on realistic three-dimensional models to
FRAP/iFRAP data and accounts for bleaching/photoactivation inhomogeneities. Using PyFRAP
we determined the diffusivities of fluorescent dextrans and proteins spanning two orders of mag-
nitude in molecular weight. We measured the tortuous effects that cell-like obstacles exert on
effective diffusivity and show that reaction kinetics can be accurately accounted for by model se-
lection. These applications demonstrate the utility of the open-source software PyFRAP, which can
be widely adapted as a new extensible standard for FRAP analysis.

Introduction

The diffusion of molecules is important for almost any process across all scales of biological organiza-
tion, from transcription factors finding their targets on DNA to signaling molecules spreading through
tissues during development and homeostasis1,2. The biological function of a molecule is affected by its
action range and therefore its mobility, but effective diffusion of molecules moving through complex
tissues is difficult to measure quantitatively. More than 40 years ago, Poo & Cone3 and Liebman &
Entine4 developed a method to assess the diffusivities of fluorescent molecules. In these Fluorescence
Recovery After Photobleaching (FRAP) experiments, the fluorescence of molecules in a small region of
the sample is bleached by exposure to a strong laser pulse. The dynamics of fluorescence recovery in the
bleached region can then be used to infer the mobility of the fluorescent molecules (Fig. 1a). Inverted
FRAP (iFRAP) assays have recently been developed as an extension of FRAP experiments5–8, which
eliminate the often harsh bleaching conditions used in FRAP experiments. iFRAP assays utilize photo-
convertible molecules that can be induced to alter their fluorescence excitation/emission properties after
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exposure to “photoconverting” light. In iFRAP experiments, the spread of signal from a small photocon-
verted domain into the neighboring regions of the sample is monitored over time and thus represents an
experimental mirror image of FRAP (Fig. 1b).

Diffusion coefficients are commonly extracted from FRAP experiments by fitting analytical solu-
tions computed from theoretical models to the measured recovery curves9–16, and a few simulation-
based analysis methods have been developed17–19. However, these current approaches rely on several
assumptions that are not necessarily accurate. First, most current methods reduce the FRAP analysis
to one-dimensional or two-dimensional simplifications9–19, often assuming that the fluorescent pool is
infinitely large9–12,14,15, or ignoring more complex geometries of biological samples that could play im-
portant roles in molecule movement (Fig. 1c). Indeed, recent studies have argued that geometry is crucial
for dynamic biological processes20,21, and must be taken into account for accurate analysis of FRAP data
(Fig. 1d).

Second, the bleaching process in FRAP experiments is often inaccurately modeled. Bleaching is
posited to be homogenous or to follow a Gaussian distribution throughout bleached circular or rectangu-
lar regions, while the molecules outside of the bleached region are assumed to remain unbleached9–11,13–16.
However, molecules diffusing during the bleaching process can create inhomogeneities both inside and
outside of the bleached region; moreover, a delay between bleaching and the start of the recovery mea-
surement can lead to further inhomogeneities (Fig. 1c). Incorrect assumptions about the bleaching
process can thus lead to a severe misestimation of diffusion coefficients12,22–25 (Fig. 1e).

Third, in vivo FRAP experiments can be strongly influenced by additional reaction kinetics such as
production or degradation of fluorescent molecules, which can contribute to the observed recovery curve
(Fig. 1c). However, this is mostly neglected in classical FRAP analysis models and can lead to erroneous
diffusion estimates (Fig. 1f)9–15.

To address these shortcomings, we developed the versatile Python-based FRAP analysis software
“PyFRAP”. To facilitate data analysis, PyFRAP is equipped with an intuitive graphical user interface
(GUI, Fig. 2a), which gives users without a computational background access to a sophisticated FRAP
data analysis work flow from image analysis to statistical model comparison methods (Fig. 2b). PyFRAP
applies the first post-bleach image as initial condition (Fig. 2c), and simulates the FRAP experiment us-
ing a finite volume scheme in realistic two- or three-dimensional experiment geometries (Fig. 2d,e); the
solution from this numerical simulation is then fitted to the experimental data. Furthermore, PyFRAP
can accurately account for both uniform production and degradation during FRAP experiments. PyFRAP
saves all analyzed data and settings in a logical data structure that can be shared with collaborators or re-
used for later analyses (Fig. 2f). The software is freely available at https://mueller-lab.github.io/PyFRAP,
and the open-source environment allows for rapid expansion through collaborative work26 to adjust anal-
ysis methods to the users’ needs.

To demonstrate the utility of PyFRAP, we conducted several typical in vitro and in vivo FRAP exper-
iments (Supplementary Fig. 1). We found that PyFRAP accurately determined the diffusion coefficients
of fluorescent molecules ranging from 3 to 500 kDa in both artifical and biological contexts. In con-
trast to currently available software, PyFRAP’s flexible initial conditions also allow analysis of iFRAP
experiments, producing results comparable to FRAP. We used PyFRAP to measure the influence that
obstacles such as cells exert on the movement of diffusing molecules, and found that such interactions
decrease diffusivity by about one third. Moreover, PyFRAP provides accurate modeling of reaction
kinetics, including production and degradation. Finally, to test the impact of extracellular binding on
protein diffusivity, we measured the diffusion of signaling molecules in living zebrafish embryos. We
found that the effective diffusivity was reduced to about a tenth of its predicted value, in agreement with
hindered diffusion models postulating interactions of embryonic signaling molecules with diffusion reg-
ulators20,27. Together, our analyses highlight how detailed examination of FRAP data can be used to
determine the contribution of individual factors to the movement of molecules in controlled artificial and
biological contexts28.
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Results

PyFRAP: A versatile FRAP/iFRAP analysis package

Current FRAP analysis methods often make simplified assumptions about FRAP experimental conditions
to aid in the derivation of analytical solutions9–14,16, and to facilitate numerical simulations18,19. Such
assumptions include reducing complex sample geometries to lower dimensions, idealizing the initial
bleaching profile, or ignoring additional reaction kinetics potentially underlying fluorescence recovery
(Fig. 1c), which can lead to erroneous diffusion estimates (Fig. 1d-f). To tackle these shortcomings, we
developed “PyFRAP”: PyFRAP numerically simulates FRAP experiments in realistic three-dimensional
geometries using an interpolation of the first post-bleach image as initial condition. This simulation
is then fitted to the experimental data, incorporating reaction kinetics such as uniform production and
degradation.

PyFRAP is an open-source Python-based FRAP analysis software that runs on the major operating
systems Microsoft Windows, Mac OSX, and Linux. Over the past 20 years, Python has become the
standard programming language for scientific research due to the availability of versatile add-on packages
and its intuitive and simple syntax29. Building on the resourcefulness of Python, PyFRAP is based on
commonly used packages such as PyQT, SciPy, and FiPy30. PyFRAP comes with an intuitive graphical
user interface (GUI, Fig. 2a) and a fully documented application programming interface (API) allowing
quick development of scripts or modifications of the PyFRAP code. PyFRAP’s functionalities include
sophisticated image processing functions useful for FRAP analysis, customizable geometry and analysis
region definitions, a finite element PDE solver that simulates FRAP/iFRAP experiments with adjustable
options, statistical tools for averaging and model comparison, and multiple plotting and input/output
functions (see Materials and Methods, and Supplementary Texts 1-3 for details). To make the software
easily accessible, dialog boxes (“software wizards”) guide the users step-by-step through data import,
image analysis, simulation, and fitting.

Integrated image analysis

We programmed PyFRAP to import image data from most common microscope formats (.tif, .lsm, and
.czi) through its built-in Fiji31 interface. Users can define arbitrary regions of interests (ROIs) that are
then used for image analysis, simulation, and fitting (Supplementary Fig. 2a). In some cases, the imaged
sample is larger than the field of view; the concentration of molecules in regions outside of the image
can be estimated from selected areas in the first image of the recovery image series (Supplementary Fig.
2b). PyFRAP corrects uneven illumination artifacts by normalization using pre-bleach images or using
a correction matrix computed from a secondary data set32–34 (Supplementary Fig. 2c, see Materials and
Methods for details). To avoid numerical instabilities, PyFRAP allows the user to smooth or denoise
the image data using a Gaussian or median filter (see Materials and Methods for details, Supplementary
Table 1, Supplementary Fig. 3).

Numerical simulations in realistic geometries using accurate initial conditions

FRAP and iFRAP experiments have been performed in a variety of contexts, from the cigar-shaped
Drosophila embryo and the relatively flat Drosophila wing disc to the dome-shaped pre-gastrula stage
zebrafish embryo8,27,35. These structures have distinct geometries that could impact fluorescence recov-
ery. In fact, we found that simplifying the 3D zebrafish embryo to a 2D disc can frequently lead up to a
more than 200% error in estimated diffusion coefficients (Fig. 1d).

In PyFRAP, users can define arbitrary two- and three-dimensional geometries using Gmsh36 or CAD
STereoLithography (.stl) files that are then spatially discretized into tetrahedral meshes by Gmsh in
combination with TetGen37. PyFRAP provides various meshing options, such as local mesh refinements,
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boundary layer meshes, and attractor meshes, allowing users to adapt the mesh to experimental details
(see Fig. 2 and Supplementary Fig. 4 for example geometries and meshes).

In current FRAP analysis methods, the initial condition of the FRAP experiment is often simpli-
fied to a simple rectangular function or a Gaussian profile9,10,12–16,38–40. However, light scattering,
imperfect bleaching and diffusion during the bleaching process can lead to more complex bleaching
profiles and thus need to be considered during FRAP analysis to avoid misestimation of diffusion coeffi-
cients22,23,28,41. To overcome this issue, PyFRAP’s initial conditions are given by a bilinear interpolation
between pixels of the first post-bleaching image, closely resembling initial experimental bleaching pro-
files and concentration distributions (Fig. 2c).

Finally, in contrast to most current FRAP analysis methods9–16,39,40, PyFRAP does not fit a mathe-
matical expression based on simplified assumptions to the data; instead, PyFRAP uses FiPy30 to simulate
the experiment numerically, resulting in a solution that incorporates the realistic three-dimensional ge-
ometry and initial conditions (Supplementary Fig. 4). The numerical simulation is then fitted to the
FRAP data by minimizing the sum of squared differences using classical optimization algorithms42–44

(see Materials and Methods for details).

Accounting for reaction kinetics

In typical FRAP and iFRAP experiments, a protein of interest is tagged with a fluorescent protein and
expressed within a tissue. In such an experiment, the fusion protein is often actively produced at the
same time that FRAP is carried out; additionally, fusion proteins undergo degradation over time. De-
pending on how the fusion protein is expressed (promoter-driven expression, mRNA injection, etc.), its
degradation kinetics, and the timescale of the FRAP/iFRAP experiment, production and degradation can
dramatically influence recovery curves. Ignoring reaction kinetics in FRAP experiments could therefore
lead to erroneous diffusion coefficient estimates. Indeed, recovery curves with pure diffusion fitted to a
simulated reaction-dominant data set often resulted in more than 200% error in the estimated diffusion
coefficients (Fig. 1f).

To ensure that the appropriate reaction kinetics are considered when analyzing FRAP data, PyFRAP
is equipped with four models: 1) Pure diffusion, 2) diffusion with production, 3) diffusion with degra-
dation, and 4) diffusion with production and degradation (see Materials and Methods for details). The
model can be constrained with previous reaction rate measurements from assays such as Fluorescence
Decay After Photoconversion45,46; alternatively, production and degradation rates can be directly ob-
tained from fitting the FRAP data. In the “Statistical tools and model comparison” section below, we
discuss tools to determine which approaches are most appropriate for a given data set.

Statistical tools and model comparison

An advantage of PyFRAP is its ability to assess FRAP data using multiple models of varying complexity.
However, determining which model is appropriate for a given data set can be challenging. Choosing the
incorrect model can lead to overfitting and potentially false diffusion coefficients47. The Akaike Infor-
mation Criterion (AIC) is a statistical tool that can aid in model selection48. PyFRAP’s implementation
of the AIC allows users to compare the models mentioned above (see Section “Accounting for reaction
kinetics”) and determines the most likely model based on a relative weighted measure that includes both
the model’s log-likelihood and its degrees of freedom (i.e. the number of model parameters).

Moreover, PyFRAP provides several statistical tests (Supplementary Table 2) to assess differences
between measurements and obtained fits, such as Student’s t-test49 for normally distributed data or the
Mann-Whitney-U-test50, which does not require normally distributed data. The Shapiro-Wilk-test can be
used to assess whether the measured diffusivities follow a normal distribution51 and whether application
of Student’s t-test or the Mann-Whitney-U-test is justified.
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Data export

PyFRAP’s object-oriented data structure (Fig. 2f) can be saved into serialized objects and easily loaded
for further analysis or shared with collaborators. Loading a PyFRAP object automatically gives users
access to all of PyFRAP’s functionalities. Additionally, PyFRAP lets users visualize every aspect of
PyFRAP’s analysis work flow and save plots and images into publication-ready figures.

Benchmarking PyFRAP

To validate PyFRAP, we first determined whether it can recover true diffusion coefficients and reaction
kinetics from simulated data. We used our previous in-house solution20,27,52 based on the commercial
programs MATLAB and Comsol Multiphysics to simulate 24 FRAP experiments with different reaction
kinetics and diffusion coefficients. Using PyFRAP, the simulated data sets were fitted with all four
possible reaction-diffusion models (see Section “Accounting for diffusion and reaction kinetics”). The
maximum error between simulated and estimated diffusion coefficients was 10% (average error: 2%,
Supplementary Table 3), demonstrating that PyFRAP recovers correct diffusion coefficients within the
error tolerance of the numerical simulations.

Next, we tested whether PyFRAP’s implementation of the AIC can correctly predict the model under-
lying the simulated data (Supplementary Table 3). When the data was simulated with models describing
either pure diffusion, diffusion and degradation, or diffusion and production, the AIC predicted the cor-
rect underlying model. However, the AIC failed to retrieve the correct model for data sets that included
diffusion combined with both production and degradation, and models with a lower degree of freedom
were favored. Simulations involving diffusion, production and degradation can generate data effectively
indistinguishable from data simulated with only diffusion and production or diffusion and degradation,
explaining why the AIC cannot predict the correct model in this case.

To assess PyFRAP’s performance in comparison with other available software packages based on an-
alytical15,39,40,53 or numerical18,19,54 approaches (Supplementary Table 4), we used easyFRAP40, Virtual
FRAP18, FrapCalc39, simFRAP19, and PyFRAP itself to analyze simulated FRAP experiments (Sup-
plementary Text 2, Fig. 3). We simulated 18 experiments in which geometry, relative bleach window
size, and diffusion coefficients differed. Simulations were conducted either in a simple circular two-
dimensional domain or a complex three-dimensional zebrafish embryo-like geometry (Fig. 2e). FrapCalc
and easyFRAP assume circular bleach windows10,39,40; to facilitate comparison, we therefore simulated
FRAP experiments with circular bleach windows. Bleach window sizes comprised 5%, 10%, or 50% of
the slice diameter, representing different proportions between fluorescent and bleached pools (Fig. 3b);
simulations were performed with three biologically relevant diffusion coefficients: 10 µm2/s, 50 µm2/s,
and 200 µm2/s.

Simulation-based programs (PyFRAP, virtualFRAP, and simFRAP) generally provided better results
than analytical solutions (easyFRAP and FrapCalc): FrapCalc and easyFRAP were either unable to
determine diffusion coefficients, or provided diffusivities that were off by at least 20% for most exper-
iments (Fig. 3c). Fast diffusion was challenging for all tested software. One reason for this is that
fewer data points were recorded during the actual recovery process of fast diffusing molecules due to
a fixed frame rate of 1 frame/s in the simulated test data sets, leading to larger errors; moreover, for
fast diffusing processes errors from interpolating simulations onto images are more severe. The analyt-
ical software packages provided better results for the two-dimensional compared to three-dimensional
geometries, while simulation-based approaches showed no clear trend regarding geometry. In terms of
bleach window radius, the analytical solutions performed worst if the window diameter was 50% of the
slice diameter. This effect might due to the assumption of an infinite pool of fluorescent molecules out-
side of the bleached region10 – when the bleach window is very large, the pool of unbleached fluorescent
molecules is small, which conflicts with the assumption of an infinite pool. In contrast, PyFRAP outper-
formed all current software packages and exhibited the smallest error between predicted and simulated
diffusion coefficients (Fig. 3c).
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Applications of PyFRAP to measure diffusion hindrance in vitro and in vivo

In vivo, it is thought that the overall movement of molecules is affected by binding interactions and by
the presence of obstacles such as cells, resulting in a reduced effective diffusion coefficient of secreted
proteins that move through tissues20. However, the effects of these interactions have not been rigorously
tested experimentally. We therefore employed PyFRAP to examine the effects of tortuosity and bind-
ing partners on the effective diffusivity of dextrans and proteins in experimentally controlled in vitro
geometries and in living zebrafish embryos.

Measuring pure diffusion

First, we measured diffusion coefficients of a wide range of differently sized molecules (Supplementary
Table 5) in a simple in vitro context in the absence of binding partners or obstacles. We performed FRAP
experiments with fluorophore-coupled dextrans ranging from 3 to 500 kDa (Fig. 4a-d, Supplementary
Fig. 5), and compared the results with theoretical predictions and literature values. Fluorescence recov-
ery in these in vitro experiments should be purely defined by diffusion, and the theoretical diffusivities
D of spherical molecules can be calculated from their radii r based on the relationship D ∼ 1/r as
postulated by the Einstein-Stokes equation (Supplementary Text 3). The diffusion coefficients deter-
mined by PyFRAP were in good agreement with literature values and theoretical predictions (Fig. 5a,
Supplementary Table 6, Supplementary Table 7).

A variant of FRAP that allows to exclude reaction kinetics and thus decrease the number of unknown
experimental parameters is iFRAP (Fig. 1b). To perform in vitro iFRAP experiments, we used the
green-to-red photoconvertible protein Dendra2. Since photoconverting Dendra2 from green to red can
also be interpreted as bleaching the original green fluorescence, measuring unconverted and converted
protein distributions produces both FRAP and iFRAP experiments at the same time. To test whether
PyFRAP correctly analyzes iFRAP data, we used the experimental FRAP and iFRAP sets independently
and assessed whether the obtained diffusion values are equal (Fig. 4e-h, Fig. 5e). Indeed, in all ten
experiments the difference between the two diffusivities per data set was on average 2.6 ± 1.5 µm2/s
(Fig. 5f). Using FRAP we measured a Dendra2 diffusivity of 52.9 ± 5.2 µm2/s, and using iFRAP we
obtained a similar value of 53.3 ± 3.1 µm2/s (Fig. 5e).

Measuring diffusion hindrance in vitro

Next, we examined the effect of tortuosity on diffusion. In biological samples, molecules must move
around obstacles such as cells and thus undergo tortuous movement. Here, we define tortuosity55 as
θ = D∗/D, where D and D∗ are the diffusion coefficients with and without obstacles, respectively. To
assess the expected magnitude of tortuosity on altering effective diffusivity, we first performed numer-
ical simulations of FRAP experiments with and without radial obstacles in two- and three-dimensional
geometries. Radial obstacles were either placed regularly, randomly, or following a nearly ideal pack-
ing scheme, resulting in an extracellular volume fraction (EVF, i.e. the space available for molecules to
diffuse) ranging from 72% down to 25% (Supplementary Fig. 6). These simulations demonstrated that
recovery rates are slowed down as the EVF decreases (Fig. 5b, Supplementary Table 8). If the geometry
is two-dimensional, an EVF of 25% results in an expected reduction in effective diffusivity of approxi-
mately 66%. In three-dimensional simulation experiments, we obtained a reduction of effective diffusion
coefficients by 40% when the EVF was decreased to 38% (Supplementary Text 3).

To determine whether the presence of obstacles decreases effective diffusivity as predicted by our
simulations, we performed FRAP assays in vitro with a fluorescein-coupled 70 kDa dextran (Fig. 4i,j) or
recombinant GFP (Supplementary Fig. 7c,d) in the presence of polyacrylamide beads. Consistent with
our predictions, recovery was slower in the presence of beads, and the effective diffusivity of fluorescein-
dextran dropped from 24.1 ± 0.4 µm2/s to 14.8 ± 0.5 µm2/s, suggesting an EVF of 39% (θ = 61%)
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(Fig. 5b,c, Supplementary Table 8, Supplementary Table 9). Similarly, for recombinant GFP effective
diffusivity dropped by 18% (Fig. 5d, Supplementary Table 10, Supplementary Fig. 7a-d).

Measuring diffusion hindrance in vivo

To assess diffusion hindrance in vivo, we injected recombinant GFP protein into the extracellular space
of living zebrafish embryos. We found that the effective diffusivity in vivo was 60% lower than for
freely diffusing GFP, and 53% lower than in in vitro experiments with beads (Fig. 5d, Supplementary
Table 10, Supplementary Fig. 7e,f). This suggests that tortuosity in zebrafish embryos is higher than
in the in vitro bead assay. Importantly, we found similar diffusion coefficients of 36 µm2/s in vivo for
extracellularly injected recombinant GFP and secreted GFP constantly produced from injected mRNA,
showing that PyFRAP can properly account for both diffusion and production (Fig. 5d, Supplementary
Table 10, Supplementary Fig. 7g,h).

Finally, we examined the effects of binding interactions on effective diffusivity. GFP presumably
does not experience significant binding interactions with extracellular molecules in zebrafish embryos,
although its movement is affected by obstructions like cells and cellular extensions. In contrast, secreted
signaling molecules are expected to interact with extracellular molecules such as receptors and extracel-
lular matrix components20. To assess the effect that interactions with extracellular molecules might have
on secreted signaling molecules, we injected mRNA encoding the TGFβ-superfamily member Squint
fused to GFP into zebrafish embryos27. Squint-GFP is ≈1.5 times larger than GFP and according to
the Einstein-Stokes equation (Supplementary Text 3) would be predicted to have a ≈1.14 times smaller
diffusion coefficient than GFP (effective diffusivity D(GFP) = 36 µm2/s, expected effective diffusivity
D(Squint-GFP) = 31 µm2/s). However, we measured an effective diffusion coefficient of ≈3 µm2/s for
Squint-GFP in living zebrafish embryos, approximately 90% lower than the predicted diffusion coeffi-
cient (Fig. 5d, Supplementary Table 10, Supplementary Fig. 7i,j). These findings are consistent with
previous measurements27 and with the idea that interactions with so far unidentified binding partners
slow down the effective diffusion of embryonic signaling molecules like Squint-GFP20,27.

Discussion

Although FRAP analyses have long been used to measure relative differences in mobilities between
macromolecules, analysis tools to accurately and quantitatively determine effective diffusion coefficients
from FRAP data are lacking. Current analysis tools impose several problematic simplifications includ-
ing one- or two-dimensional reductions of complex three-dimensional geometries, idealized bleaching
conditions, and the absence of important reaction kinetics, which can yield incorrect diffusion coeffi-
cients (Fig. 1). PyFRAP addresses these shortcomings by providing a simulation-based analysis that
incorporates realistic geometries, bleaching conditions, and reaction kinetics.

We found that PyFRAP’s data analysis pipeline is numerically reliable, recovered the correct dif-
fusion coefficients and reaction kinetics, and additionally predicted the correct underlying reaction-
diffusion models for simulated test data sets with known diffusion, production, and degradation param-
eters. PyFRAP consistently outperformed all other tested software packages, demonstrating its strength
as a novel FRAP analysis method. Furthermore, PyFRAP was able to determine diffusion coefficients
comparable to both theoretical and previously experimentally measured estimates for macromolecules
with molecular weights ranging over two orders of magnitude.

Since PyFRAP can analyze data independently of any assumptions about the initial conditions, it
is suitable to analyze both FRAP and iFRAP experiments. iFRAP has recently been developed as an
alternative to FRAP due the increasing availability of photoconvertible proteins and allows ignoring
reaction kinetics such as production. We performed tandem FRAP/iFRAP experiments to analyze the
diffusion of the photoconvertible protein Dendra2 and found equal diffusion coefficients in vitro with
both methods.
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FRAP experiments are typically performed in tissues in which macromolecules need to move around
cellular obstacles, resulting in slower fluorescence recovery. We were interested in how this tortuosity
might affect diffusion coefficients estimated from FRAP experiments. First, we simulated FRAP exper-
iments in two- and three-dimensional geometries introducing radial beads at different densities to vary
the extracellular volume fraction (EVF). Our simulations show a strong correlation between tortuosity
and effective diffusivity and agree with previous theoretical work including Monte-Carlo simulations and
homogenization theory55–58. We then tested the predictions from these simulations with in vitro experi-
ments using polyacrylamide beads to mimic cells. Compared to experiments without beads, the effective
diffusion coefficient decreased by 39% (tortuosity θ = 61%) for 70 kDa fluorescein-dextran and 18%
(tortuosity θ = 82%) for recombinant GFP. In living zebrafish embryos, effective diffusivity is much fur-
ther reduced (Fig. 5d). This is unlikely due to a different viscosity of the extracellular medium in vivo,
since free GFP diffusion is only marginally reduced in zebrafish embryos20. Instead, it is plausible that
the complex geometries of real extracelluar environments – which include filopodia, extracellular ma-
trix, and cavities that might act as dead end pores – could further increase tortuosity55. Moreover, most
in vivo FRAP experiments are affected by biochemical reactions such as production and degradation of
proteins, which must be taken into account for accurate diffusion coefficient estimates (Fig. 1). PyFRAP
includes various models for different reaction kinetics and can accurately estimate diffusion coefficients
from data that includes constant production and degradation.

PyFRAP measures effective diffusion, but due to its built-in PDE solver it could be extended in the
future to consider spatially inhomogeneous kinetics and advective fluxes. While PyFRAP can simulate
three-dimensional FRAP experiments, FRAP data is currently almost exclusively obtained from two-
dimensional confocal microscopy. In recent years, the development of light-sheet microscopy made fast
three-dimensional imaging with low phototoxicity feasible59. In the future, PyFRAP’s image analysis
tools could be extended to fit light-sheet microscopy data, which might provide deeper insights into the
three-dimensional dynamics of molecule movement including convective flows or anomalous diffusion.
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Materials and Methods

Data analysis implemented in PyFRAP

ROI selection

PyFRAP’s image analysis depends on defining specific regions of interest (ROIs) for the experimen-
tal data and simulations. Users can define multiple different geometrical shapes of ROIs in three-
dimensional space such as cylinders, prisms, and any kind of addition or subtraction between ROIs.
The specified ROIs are then used for image analysis, estimating concentrations outside the field of view,
evaluating the simulation, and fitting to the analyzed data. PyFRAP is equipped with an ROI manager
and wizards for several standard sets of ROIs.

Image analysis

Let Ωi, i ∈ 1, 2, ... be the list of ROIs specified for PyFPAP’s analysis. The mean intensity over the ROI
Ωi at time step tj is then calculated by

ĪΩi(tj) =
1

AΩi

∑
(xk,yk)∈Ωi

I(xk, yk, tj) (1)

where AΩi is the area covered by Ωi, and I(xk, yk, tj) is the intensity at pixel (xk, yk).
FRAP image data was analyzed within the ROIs Ωbleached and Ωslice. Ωslice was defined as a circular

domain with center Cslice and radius rslice. Since the imaging depth varied between experiments, both
Cslice and rslice were cropped for each data set. The bleached ROI Ωbleached was defined as a square with
sidelength sbleached = 174.1 pixels and left lower corner at Obleached = Cslice − 1

2(sbleached, sbleached).
The definition of both ROIs is shown in Supplementary Fig. 2a.

Accounting for uneven illumination

Uneven imaging due to inhomogeneous sample illumination is a common problem in microscopy32–34.
We implemented two solutions in PyFRAP to address this problem: 1) Normalization by an image
acquired before bleaching, and 2) applying a flattening mask derived from imaging a homogeneous
fluorescent sample. The pixel-wise mean image over nimages images can be defined as

M(xk, yk) =
1

nimages

nimages∑
m=1

I(xk, yk) (2)

To avoid noise-induced singularities when normalizing, PyFRAP computes a mean normalization mask
Mpre over multiple pre-bleach images, and then divides each image of the recovery time series pixel-wise
by the computed mask

Ĩ(xk, yk, tj) =
I(xk, yk, tj) +Onorm

Mpre(xk, yk) +Onorm
(3)

where Onorm is the optimal data offset computed via

Onorm = max{min
k,j

(I(xk, yk, tj)),min
k,j

(Mpre(xk, yk, tj))}+ 1 (4)

Similarly, the flattening mask Mflat is computed as a mean over multiple images of a fluorophore spread
homogeneously across a cover slip:

F (xk, yk) =
maxk(Mflat(xk, yk)) +Oflat

Mflat(xk, yk) +Oflat
(5)

9



Here, similar to the normalization in equation (4), the optimal data offset Oflat is obtained by taking the
maximum over all minimum intensities of images in both recovery and flattening data sets. The recovery
data set is then evened out by pixel-wise multiplication of the flattening mask obtained in equation (5)
with each recovery image:

Ĩ(xk, yk, tj) = F (xk, yk) · I(xk, yk, tj) (6)

An outline of both correction methods is shown in Supplementary Fig. 2c.
In the present study, two pre-bleach images were acquired per sample for the normalization mask, and

two images of fluorescein conjugated to a 40 kDa dextran or recombinant GFP homogeneously spread
on a cover slip were acquired for the flattening approach. The effects of flattening and normalization on
data analysis are described in Supplementary Text 1.

Accounting for background fluorescence

Background subtraction is a standard procedure to extract the true signal of microscope images33,34.
Similar to the flattening and normalization masks, PyFRAP takes the average over multiple pixels to
obtain a background mask and then subtracts it pixel-wise33,34:

Ĩ(xk, yk, tj) = I(xk, yk, tj)−Mbkgd(xk, yk) (7)

The mean of two images without a sample was determined to compute a background mask. The effect
of background subtraction is discussed in Supplementary Text 1.

Application of filters for noise reduction

Microscope data sets are often noisy, causing problems for normalization and simulation. PyFRAP
smooths noisy pixels by either applying a Gaussian blur with standard deviation σgauss, or a median filter
with filter window radius rmedian. We found that σgauss = 2 and rmedian = 5 provided good results for
the data in the present study (see Supplementary Text 1).

Accounting for fluorophore concentration outside of the imaging view

In some cases it is not possible to capture the whole sample in one field of view under the microscope,
and the concentration in the non-imaged regions needs to be estimated. PyFRAP solves this by letting
users define an ROI Ωrim to select an approximation of the average unbleached intensity from the first
image of the recovery image series:

crim =
1

Arim

∑
(xk,yk)∈Ωrim

I(xk, yk, t0) (8)

where Ωrim is defined by

Ωrim = {(xk, yk) ∈ Ωslice | ρrimrslice) < ||(xk, yk)− Cslice||2} (9)

i.e. all pixels (xk, yk) inside Ωslice that are at least ρrimrslice distant from the centerCslice (Supplementary
Fig. 2b). ρrim = 0.66 and ρrim = 0.4585 were found to provide good values for the in vitro and in vivo
experiments, respectively.

Simulations

PyFRAP simulates FRAP experiments numerically. Ignoring reaction kinetics, a FRAP experiment can
be described by the diffusion equation
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∂c(x, t)
∂t

= D∇2c(x, t) , x ∈ Ω (10)

where c(x, t) is the concentration of the measured molecule at position x = 〈x, y, z〉 and time t inside
the domain Ω, and D is its diffusion coefficient. The diffusion coefficient is assumed to be independent
of the position x, i.e.

D(x) = D , x ∈ Ω (11)

Since the sample is a closed system, no-flux Neumann boundary conditions were defined as

∂c(x, t)
∂n

= 0 , x ∈ ∂Ω (12)

where n is the normal vector of the boundary ∂Ω at position x.

Initial conditions

The initial conditions are given by the bilinear interpolation F between pixels of the initial post-bleaching
image:

F (x, y) =
1

(x1 − x2)(y2 − y1)
(x2 − x, x− x1)

·
(
I(x1, y1) I(x1, y2)
I(x2, y1) I(x2, y2)

)(
y2 − y
y − y1

) (13)

I(xi, yi) i ∈ 1, 2 represent the intensities in the initial image of the four pixels surrounding (x, y). If
(x, y) is outside of the visible ROI in the initial image (Ωimage), the rim concentration crim given in
equation (8) is applied to it, leading together with equation (13) to the initial condition

c(x, 0) =

{
F (x, y) if (x, y) ∈ Ωimage∀z
crim else

(14)

Simulation geometry

PyFRAP comes with its own geometry definition tool that is parsed to Gmsh36. PyFRAP can read Gmsh’s
geometry definition files, use Gmsh’s mesh files, or import STereoLithography (.stl) files, allowing users
to define arbitrary two- and three-dimensional geometries. This gives users the ability to describe a
realistic FRAP experiment geometry with the necessary precision.

The simulation geometry Ω for the in vitro experiments was a conical frustum with upper radius
rupper = 317.65 pixels, lower radius rlower = 224.25 pixels, and height h ≈ 90.33 pixels (Supplemen-
tary Fig. 4b). For the in vivo experiments, the simulation geometry resembled a zebrafish embryo at
dome stage, i.e. the intersection of two hemispheres intersecting each other at the equator of the outer
hemisphere. Since the geometry depends on the radius of the embryo in the initial image, rimaging was
calculated separately for each experiment27,60. Assuming that the radius of the inner hemisphere rinner

is 10% larger than the one of the outer hemisphere, router, the geometry can be computed by

router =
r2

imaging + h2
imaging

−2himaging

rinner = 1.1 · router

dcenter =
√
r2

inner − r2
outer

(15)

where dcenter is the distance between the two centers of the hemispheres. Supplementary Fig. 4a shows
a schematic of the zebrafish dome stage geometry.
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Meshing

PyFRAP discretizes simulation geometries using Gmsh36 in combination with TetGen37 into tetrahedral
meshes. PyFRAP utilizes almost all functionalities of Gmsh – such as boundary layer meshes, attractor
meshes, mesh merging and mesh refinement – allowing users to apply fine meshes where they are needed.

The overall default element size in the present study was v = 25 pixels3. To overcome numerical
instabilities, such as Gibbs phenomena at the boundary of Ωbleached, the mesh around the bleached area
boundary was refined using a boundary layer mesh of thicknesswBL = 30 pixels and element size vBL =
15 pixels3. Since only the simulation inside Ωslice and Ωbleached is used to fit the FRAP experiments, the
mesh inside Ωslice was also refined to an element size of vslice = 15 pixels3. Supplementary Fig. 4c,e
shows an example of a tetrahedral mesh with both slice refinement and boundary layer meshes for the
zebrafish dome geometry described in the previous section.

PDE solver

All reaction-diffusion systems were simulated using the FiPy toolbox30. The LU factorization algorithm
or the Preconditioned-Conjugated-Gradient algorithm implemented in PySparse were used to solve the
linear system at each time step.

Simulation parameters

All simulations were performed with a reference diffusion coefficient ofD = 50 pixels2/s. To ensure that
the simulations run long enough to capture the full recovery of the FRAP experiment, the end time point
of the simulation was set to tsim,end = 1680 s for experiments conducted with an acquisition interval
of ∆t = 1 s. Since the recovery is steepest at the beginning of the simulations, a logarithmic time-
stepping scheme was used, making early time steps shorter to achieve greater accuracy. A summary of
all simulation parameters used to analyze the FRAP data in the present study is given in Supplementary
Table 11.

Fitting

To avoid the need to re-simulate the FRAP experiment for each choice of diffusion coefficient D,
PyFRAP uses the self-similarity property of the solution to equation (10). For example, a simulated
FRAP experiment with the diffusion coefficient D = 50 pixels2/s results in the same recovery behavior
as an experiment with the diffusion coefficient D = 200 pixels2/s, just four times slower. This can be
described as

c(x, t,D) = c

(
x,
Dref

D
t,Dref

)
(16)

where Dref is the reference diffusion coefficient, i.e. the diffusion coefficient used for the simulation of
equation (10). Supplementary Fig. 3d shows simulated recovery curves for various diffusion coefficients
illustrating this self-similarity property.

PyFRAP allows users to fit four different models to FRAP data: 1) Pure diffusion, 2) diffusion and
production, 3) diffusion and degradation, 4) diffusion with degradation and production, and each of
these models with an additional set of equalization parameters (see below). In case of pure diffusion, the
solution for the diffusion coefficient D over a given ROI Ωi is simply given by the volume integral of the
solution in equation (16):

c̃(Ωi, t,D) ≡
∫

x∈Ωi

c(x, t,D)dV (17)
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Accounting for varying fluorophore fractions by equalization

FRAP experiments can vary in intensity during the experiment due to, for example, an increase or de-
crease in extracellular volume fraction, due to molecules moving in and out of the imaging plane, or due
to an immobile fraction of fluorescent molecules. These effects are accounted for by equalization, which
normalizes both simulation and data recovery curves to an equivalent scale between 0 and 1. During
the fitting process, the simulated recovery curves are slightly lifted or lowered to better resemble overall
fluorescence levels. This can be written as

c̃(Ωi, t,D) =
1

cmaxEi

 ∫
x∈Ωi

c(x, t,D)dV − cmin

 (18)

where Ei is the equalization factor for ROI Ωi. The background cmin was chosen to be the smallest
concentration of the bleached ROI inside the imaging region (Ωbleached), over the whole time series

cmin = min
t

∫
x∈Ωbleached

c(x, t)dV (19)

and the normalization value cmax to be the maximum concentration inside the whole imaging ROI
(Ωslice), over the whole time series

cmax = max
t

∫
x∈Ωslice

c(x, t)dV (20)

Extending the diffusion model with reaction kinetics

Spatially uniform production was added to the scaled FRAP model defined in equation (16) or in equation
(18) by

c̃(Ωi, t,D) = c(Ωi, t,D) + k2t (21)

where k2 is the production rate. To add spatially uniform degradation, the resulting solution is given by

c̃(Ωi, t,D) = c(Ωi, t,D)e−k1t (22)

The parameter k1 represents the degradation rate constant. Adding both degradation and production to
the system results in the following superposition of solutions:

c̃(Ωi, t,D) = c(Ωi, t,D)e−k1t +
(

1 + e−k1t
) k2

k1
(23)

Choosing one of the models defined in equations (16) - (23), the sum of squared differences, SSD, was
calculated by

SSD =
∑
i

∑
tj

(c̃(Ωi, tj , D)− IΩi(tj))
2 (24)

where tj ∈ 0, .., T are all time points of the FRAP data set, and Ωi ∈ Ωbleached,Ωslice are the two ROIs
of interest yielding a mean optimal fit between all fitted ROIs. The minimization of equation (24) was
carried out using a constrained Nelder-Mead algorithm42. Since especially for a larger number of degrees
of freedom the minimization algorithm tended to stop in local minima, initial guesses for the diffusion
coefficient D were tested over two orders of magnitude, and the fit yielding the minimum SSD was
considered optimal.
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Statistics

PyFRAP offers four statistical tools (Supplementary Table 2) allowing users to test whether the esti-
mated diffusion coefficient for one experimental group is significantly different from another one. The
statistical tools include the two most prominent parametric significance tests, the Student’s t-test49 and a
modification of this test, Welch’s t-test61, which both assume normally distributed test groups. PyFRAP
also provides the Shapiro-Wilk test, allowing PyFRAP users to quickly assess whether the estimated
diffusion coefficients follow a normal distribution. The Shapiro-Wilk test was recently found to have
the best sensitivity compared to other common normality tests62. If normality cannot be guaranteed,
PyFRAP offers two non-parametric ranked hypothesis tests: The Wilcoxon signed-rank test63 and the
Mann-Whitney U test50.

Often, the underlying reaction kinetics of FRAP experiments or the relevance of their contribution
might be unknown47. However, models with more parameters generally provide better fits than simpler
models. The Akaike Information Criterion (AIC)48 allows users to evaluate which model fits the data the
best while keeping model complexity low. For this, let

Θ := (k1, k2, D,E1, E2, ...) (25)

be the vector of unknown diffusion coefficient D, reaction rates k1 and k2, and E1, E2, ... a list of
equalization factors. Moreover, let m = m(Θ) be the model prediction using Θ. Assuming that the data
is distributed normally around the model

di −mi ∼ N (µ, σ) (26)

the log-likelihood function at data point i, Li becomes

Li(Θ|di −mi) = (di −mi)
2 (27)

and is thus identical with the sum of squared differences used for optimization in equation (24):

L(Θ) =
∑
i

Li(Θ) = SSD (28)

The AIC is then given by
AIC = 2k − 2L(Θ̂) (29)

where k is the number of parameters of model m and

Θ̂ = argmin(L(Θ|di −mi, i = 1..n)) (30)

is the parameter configuration Θ minimizing the log-likelihood function (equation (28)), i.e. the pa-
rameter configuration returned from fitting the model to data. The best model according to the AIC is
then m(argmin(AICi − AICmin)). If the number of sample points is small, the corrected AIC (AICc)
provides a more accurate model selection technique:

AICc = AIC +
2k(k + 1)

n− k − 1
, (31)

where n is the number of data points. A rule of thumb for when the AIC (equation (29)) or its corrected
version (equation (31)) should be used is

n

k
> 40 (32)

PyFRAP automatically selects which statistical model is more appropriate if not specified differently.
PyFRAP also provides R2-values for each fit: An R2-value for each fitted ROI and the product and

mean of these values. In general, PyFRAP computes an R2-value of an ROI Ωj by
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R2(Ωj) = 1−

∑
i
mi − di∑

i
di − d̄

, (33)

where mi and di are model and data at time i, and d̄ is the mean over all data points.

FRAP/iFRAP experiments in vitro

FRAP experiments to measure pure diffusion and tortuosity effects were conducted in a frustum-like
plexiglass hole. Holes around 700 µm in diameter and about 100 µm in depth were drilled into a plex-
iglass block using a dental drill. Due to the small depth, the resulting shape was frustum-like with an
upper base of 510 µm diameter.

Holes were filled with aqueous solutions of FITC-/fluorescein-labeled dextrans of different sizes,
recombinant GFP, or Dendra2 protein (Supplementary Table 5) using a micro-pipette. Dendra2 protein
was centrifuged at 16,000 g for 30 min at 4°C to remove protein aggregates. Excess liquid was removed
by pipetting under observation with a stereo microscope.

To model the effect of tortuosity in the in vitro FRAP experiments, polyacrylamide beads were added
to the sample solution. The microbeads (Bio-Gel P-2 Gel, < 45 µm wet bead size) were first soaked
in distilled water overnight for hydration. The beads were then centrifuged at 300 g, the supernatant
removed, and the required quantity of beads transferred to another tube for resuspension in fluorescein-
dextran or GFP + BSA solution. This was repeated and followed by removal of the supernatant, leaving
a concentrated slurry of beads and fluorescent solution for the experiments. The beads were transferred
into the plexiglass template and settled within 1-2 min.

To prevent evaporation, mineral oil (Sigma) was placed around the solution before sealing the hole
with a cover slip (No 1.5). Supplementary Fig. 1a outlines the sample preparation process for in vitro
experiments. The sample was upended carefully and mounted on an inverted confocal microscope.
Images were taken using an LSM 780 NLO microscope (ZEISS) with an LD LCI Plan-Apochromat
25x/0.8 Imm Korr DIC objective (ZEISS) and immersion oil (Immersol TM W, n = 1.334 at 23◦C,
Zeiss). First, a plane approximately in the middle of the hole was chosen and the z-position set to zero.
Then, the position of the highest and lowest point was determined. Cuboid volumes (141.42 µm× 141.42
µm× depthhole) were bleached by imaging a z-stack at highest laser power (488 nm) or photoconverted
at moderate laser power. Time series of 300 images (512 × 512 pixels with 566.79 µm× 566.79 µm)
were taken with a speed of 1 frame/s (pixel dwell time: 3.15 µs) over a duration of 5 min. The zoom was
set to 0.7, and the resulting images had a size of 566.79 µm× 566.79 µm.

After the FRAP experiment, the template was cleaned using distilled water, soap, and an interdental
toothbrush.

FRAP experiments in vivo

Zebrafish embryos (Danio rerio) were collected 10 min after mating and proteolytically dechorion-
ated20,27,52. For the experiments with recombinant GFP, 100 pg of recombinant GFP were injected into
the extracelluar space when zebrafish embryos reached high stage20,27,64 (Supplementary Table 10). For
experiments with secreted GFP, 100 pg of the mRNA encoding the fluorescent protein were injected at
the one-cell stage. For experiments with Squint-GFP, either 30 pg or 200 pg of mRNA were injected
at the one-cell stage. At dome stage, embryos were mounted in drops of 1% low-melting-point agarose
animal pole down onto a glass-bottom dish (MatTek Corp. P35G-1.5-20-C), and as soon as the drops
solidified covered with Danieau’s medium27,52 to prevent the embryos from drying out. Supplementary
Fig. 1b outlines the in vivo sample preparation process.

Confocal images were taken roughly at a 40 µm depth into the embryo. For data sets injected with
200 pg of Squint-GFP-encoding mRNA, images were acquired with the same settings as described for
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the in vitro experiments either with 1 frame/s for 300 s, or 1 frame/10 s for 3000 s. Images of embryos
injected with 30 pg of Squint-GFP-encoding mRNA were taken with a spatial resolution of 340.08 µm
× 340.08 µm and 1 frame/10 s for 3000 s. Data sets for recombinant GFP in vivo were acquired with the
same microscope settings as the experiments conducted in vitro.

Data exclusion

We performed a rigorous screen of all data sets, and excluded data sets that showed strong radial inho-
mogeneities in the first post-bleach image due to inhomogeneous distribution of fluorescent molecules.
Moreover, we excluded in vitro data sets that showed unstable distributions in the overall fluorescence
intensity levels, indicating incomplete bleaching through the depth of the sample.
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Figure 1 | Fluorescence perturbation techniques used for effective diffusion measurements, and drawbacks of current analysis methods. (a) In
Fluorecence Recovery After Photobleaching (FRAP) experiments, a small region in the sample is bleached. After bleaching, the diffusion-driven
recovery in the bleached region is monitored. (b) Inverse FRAP (iFRAP) is an experimental mirror image of FRAP: Molecules in a given region are
photoconverted and then spread throughout the sample, resulting in the loss of fluorescent signal in the region of photoconversion. (c) Drawbacks of
current analysis methods exemplified with zebrafish development at late blastula stages. Current analysis methods simplify sample geometry, idealize
bleaching profiles, or ignore underlying reaction kinetics. (d-f) Possible relative error in diffusion coefficient estimates that can occur if false
assumptions are made about sample geometry, bleaching conditions, or reaction kinetics, respectively. The maximum displayed error was capped to a
value of 200%, but can be up to 1000%. 
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Figure 2 | The PyFRAP software package. (a) Annotated snapshot of the PyFRAP main GUI with project navigation tree (red), plot tabs (green), 
object property display (orange), and integrated Python terminal (blue). (b) PyFRAP work flow. (c) PyFRAP's interpolation of the first post-bleach 
images as initial condition for FRAP simulations. (d,e) Spatial discretization of geometries resembling (d) a frustum, and (e) a zebrafish embryo at late 
blastula stages (dome stage). (f) PyFRAP's data structure. 
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Figure 3 | PyFRAP benchmarking simulation experiment. (a) Work flow of PyFRAP benchmarking. (b) Examples of simulated data sets for different 
bleach spot sizes and geometries. (c) Benchmarking results of PyFRAP against currently available software packages using simulated FRAP experiments. 
Simulation experiments varied in bleached region size, diffusion coefficient, and experiment geometry. All diffusion coefficients and estimates are given 
in units of μm2/s. n.a. indicates that the software was not able to fit the simulated data. Colors indicate relative estimation error in %. Diffusion 
coefficients determined by easyFRAP (asterisk) were computed in combination with an equation providing a relationship between recovery rate, bleached 
domain size, and diffusivity38.   
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Figure 4 | Examples of in vitro FRAP and iFRAP experiments and the resulting fits to measure free diffusion. (a,c,e,g,i) In vitro FRAP and iFRAP 
experiment images and (b,d,f,h,j) fits with PyFRAP. Black and gray dots represent data points of bleached and slice ROI, respectively. Red solid and 
dashed lines show the respective fits. (a,b,c,d) FRAP experiments with 3 kDa and 70 kDa fluorescent dextrans (see Supplementary Fig. 5 for the full data 
set with fluorescent dextrans between 3 kDa and 500 kDa). (e,f,g,h) iFRAP experiment with photoconverted Dendra2 protein showing data for the green 
(e,f) and the red (g,h) channel. (i,j) FRAP experiment with 70 kDa fluorescent dextran in the presence of polyacrylamide beads. Recovery curves were 
normalized between 0 (intensity in the bleached ROI at the first post-bleach time point) and 1 (intensity in the bleached ROI at the last post-bleach time 
point) to facilitate comparison across data sets.
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Supplementary Text 1: Analysis method selection

To assess how image correction by flattening, normalization, background subtraction, Gaussian blur,
and median filter affects effective diffusion estimates from FRAP experiments, we tested the 24 analysis
combinations listed in Supplementary Table 1. We assessed whether 1) the resulting diffusion estimate
D is affected, 2) the standard deviation σ of the estimated diffusion coefficients is affected (i.e. whether
correcting and smoothing the images makes the diffusion estimates more exact), and 3) the goodness of
the fits (i.e. R2-values) is affected. We quantified the effect of an analysis option by

H(v, α) =
v(α)

v(α0)
(1)

where α = {n, f, b, g,m} represents an analysis option defined by five binary entries indicating whether
normalization n, flattening f , background subtraction b, Gaussian blur g, or median filter m was used. If
we did not correct images, we denote this by α0. The variable v describes the quantified result, such as
the mean diffusion coefficient. Supplementary Fig. 3 shows a subset of this analysis for three different
variables v: The mean diffusion coefficient D, the variance of diffusion coefficients σ, and the fit quality
R2. FRAP experiments performed in the present study (see Materials and Methods) were grouped by
condition (in vitro experiments with free diffusion, in vitro with beads, and in vivo experiments) to
isolate condition-specific effects. We did not correct for potential illumination inhomogeneities in in
vivo experiments, since these only covered a small centered area of the total image, and illumination
is homogeneous in this region. Moreover, normalization cannot be used for the analysis of in vitro
experiments containing beads, since normalization would introduce artificially high intensity areas at the
locations of the beads.

If only normalization and flattening were applied, we observed an increase of the measured diffu-
sion coefficients and an improvement in fit quality for free diffusion (Supplementary Fig. 3a,c). Both
techniques only mildly affected the variance of diffusion coefficients (Supplementary Fig. 3b). Back-
ground subtraction had no effect on any measure (Supplementary Fig. 3a-c). Moreover, noise reduction
or smoothing via median filter or Gaussian blur tended to decrease variance in all conditions (Supple-
mentary Fig. 3b) and improve fits for free diffusion (Supplementary Fig. 3b).

We also tested whether a combination between an illumination correction technique (n or f ) and the
remaining three manipulation techniques (b, g and m) can further improve the analysis. Supplementary
Fig. 3d shows that this can lead to an increase in mean diffusion estimates similar to those observed
in Supplementary Fig. 3a. Moreover, applying a median filter or Gaussian blur in combination with
flattening improves fit quality and decreases diffusion estimate variance (Supplementary Fig. 3e,f).

To keep the extent of image manipulation as minimal as possible while obtaining comparable low-
variance estimates from high-quality fits, we only applied flattening to correct the images from in vitro
experiments. Since both Gaussian blur and median filter treatments appeared to stabilize diffusion coef-
ficient estimates (i.e. reducing their variance) to a similar extent, we restricted image smoothing to the
application of a median filter for all other analyses.
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Supplementary Text 2: Comparison of PyFRAP to other FRAP analysis
software

We selected four current FRAP analysis software packages for comparison with PyFRAP: The two an-
alytical programs easyFRAP1 and FrapCalc2, and the two numerical packages virtualFRAP3 and sim-
FRAP4 (Supplementary Table 4).

To assess the performance of PyFRAP in comparison with other FRAP analysis software solutions,
we created simulated FRAP data sets using PyFRAP’s simulation toolbox. We found that PyFRAP and
our in-house software based on MATLAB and COMSOL Multiphysics5–7 produced identical simulated
data, and chose to use PyFRAP to simulate the experiments due to the ease of PyFRAP’s scripting
abilities. We simulated two-dimensional or three-dimensional FRAP experiments with circular bleaching
spots of various sizes for a 300 s time-course. Two-dimensional simulated experiments were conducted
in a circle with radius 215 µm, and three-dimensional experiments resembled a zebrafish at dome stage
with rimaging = 215 µm and himaging = 80 µm (see Materials and Methods for details). Molecules were
allowed to move with diffusion coefficients of 10 µm2/s, 50 µm2/s, or 200 µm2/s, covering a range of
typical diffusivities in biological samples. Bleached spots were placed in the center of the simulation
geometry and comprised 5%, 10%, or 50% of the slice radius. We chose the boundary layer mesh
described in the Materials and Methods section to envelope the bleached spot, guaranteeing numerical
accuracy of the simulation experiments. PDEs were simulated over 4000 logarithmically-spaced time
steps. The simulations were saved in a csv sheet specifically formatted for the use of easyFRAP or
FrapCalc, or in 301 images by interpolation of the numerical solution onto a 512 µm× 512 µm grid. We
then either imported and analyzed the csv sheet using FrapCalc (https://github.com/miura/
FrapCalc using IgorPro7) or easyFRAP, or read in and analyzed the simulated images using simFRAP
or virtualFRAP. The benchmarking analysis was performed using Microsoft Windows 8.1.

In contrast to other programs that determine absolute diffusion coefficients, easyFRAP only provides
recovery half times (1/τ 1

2
). Thus, to compute diffusion coefficients from easyFRAP, we used

D =
−ω2 ln

(
1
2

)
τ 1
2

with various dimensions of the bleached spot ω as described previously8.
We used PyFRAP’s standard pipeline to analyze the saved simulated FRAP images files in an unbi-

ased manner, only knowing imaging depth and radius.
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Supplementary Text 3: Data analysis and control experiments

Computation of theoretical diffusion coefficients

We compared our in vitro FRAP results for differently sized fluorescein-labeled dextrans to predictions
derived from the Einstein-Stokes equation

D =
kBT

6πηr
(2)

where kB = 1.38064852 × 10−23m2/(s2K) is the Boltzmann constant. The FRAP experiments were
conducted in an aqueous solution with viscosity η = 0.9321×10−3kg/(sm) at T = 296 K. Stokes radii
r were obtained from the manufacturers’ websites, and are listed along with the calculated theoretical
diffusion coefficients in Supplementary Table 5.

Simulating tortuosity

The movement of molecules during FRAP experiments is affected by obstacles such as cells, nuclei,
or filopodia, and such tortuous molecule movements have been suggested to alter recovery rates and
diffusion estimates6.

To obtain a better understanding of how obstacles alter effective diffusion coefficients, we performed
a simulation study in two- and three-dimensional geometries. We placed objects with a radius of rBead ≈
20 µm (similar to the dimensions of cells and beads used in the present study) in each geometry in three
different ways: 1) Equally sized beads aligned as a regular grid (Supplementary Fig. 6a), 2) randomly
placed within the domain with radii drawn from a cut-off normal distribution (Supplementary Fig. 6b,d),
and 3) equally sized beads placed according to a hexagonal close-packing (Supplementary Fig. 6c).
Beads were placed with different minimal gaps between them, ranging from 0.05 µm up to 10 µm.
For 2D simulations, the overall geometry was a circle with radius 300 µm. We chose a cylinder with
equal radius and height 100 µm or a cuboid with dimensions 600 µm × 600 µm × 100 µm for all 3D
simulations experiments. The combination between various placement methods and gap sizes allowed
us to vary the extracellular volume fraction (EVF) – i.e. the space available for the diffusing molecules
– from 25% up to 78%.

Confirming previous analyses9–12, we found that the introduction of beads delayed molecule recovery
in the bleached ROI, and the effect of tortuosity increased as the EVF decreased (Fig. 5b, Supplementary
Fig. 6e,f, Supplementary Table 8). Moreover, the effect in two-dimensional experiments was more
severe. For example, FRAP simulations with EVF = 36% reduced diffusion by 51% compared to only
40% for EVF = 38% in a three-dimensional simulation. Both observations are in line with theoretical
predictions and previous results9–12.

BSA does not affect fluorophore diffusivity

We found a stronger effect of bead-mediated tortuosity on 70 kDa FITC-dextran molecules than on GFP
in vitro. BSA was added to the aqueous solution with GFP to avoid GFP from interacting with the
plexiglass surface of the drilled hole in the in vitro experiments. To test whether BSA might also interact
with the polyacrylamide beads and thus distort FRAP results, we repeated the experiments with 70 kDa
FITC-dextran both for pure diffusion with beads in addition to experiments with 70 kDa FITC-dextran +
BSA + beads. We found that BSA had no influence on the recovery rates, yielding equal results within
standard error, i.e. 14.9 ± 2.1 µm2/s for bead experiments and 15.1 ± 2.4 µm2/s for experiments with
additional BSA (Supplementary Fig. 8a).
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Varying the experimental settings for Squint-GFP FRAP experiments does not consis-
tently affect measured diffusion coefficients

For the FRAP experiments with Squint-GFP produced from injected mRNA, we acquired data sets vary-
ing the amount of injected mRNA, the frame rate and length of image acquisition, and the zoom factor
of the microscope. Results were partitioned into three experimental groups, i.e. images recorded with 1)
a frame rate of 1 frames/10 s for 3000 s with 30 pg of injected mRNA and a spatial resolution of 340.08
µm× 340.08 µm, 2) a frame rate of 1 frame/10 s for 3000 s with 200 pg of injected mRNA and a spatial
resolution of 566.79 µm× 566.79 µm, and 3) a frame rate of 1 frame/s for 300 s with 200 pg of injected
mRNA and a spatial resolution of 566.79 µm× 566.79 µm.

There were no clear trends between different acquisition methods (Supplementary Fig. 8b). How-
ever, acquiring images at a higher frame rate for a shorter period of time appeared to make experiments
and thus estimated diffusion coefficients more noisy, possibly resulting from the slow transport process
underlying Squint-GFP diffusion.
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Supplementary Table 1. Combinations of image correction and smoothing methods used to analyze
FRAP experiments (see Supplementary Fig. 3 for the results of this analysis). Note that flattening
and normalization were never applied at the same time since this would have distorted the image data.

Combination Normalization Flattening Background Gaussian Median
subtraction filter filter

1 Off Off Off Off Off
2 Off Off Off Off On
3 Off Off Off On Off
4 Off Off Off On On
5 Off Off On Off Off
6 Off Off On Off On
7 Off Off On On Off
8 Off Off On On On
9 Off On Off Off Off
10 Off On Off Off On
11 Off On Off On Off
12 Off On Off On On
13 Off On On Off Off
14 Off On On Off On
15 Off On On On Off
16 Off On On On On
17 On Off Off Off Off
18 On Off Off Off On
19 On Off Off On Off
20 On Off Off On On
21 On Off On Off Off
22 On Off On Off On
23 On Off On On Off
24 On Off On On On
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Supplementary Table 2. Statistical tools available in PyFRAP.

Method Purpose Type Publication
Student’s t-test Significance testing Parametric [13]
Welch’s t-test Significance testing Parametric [14]
Wilcoxon signed-rank test Significance testing Non-parametric [15]
Mann-Whitney U test Significance testing Non-parametric [16]
Shapiro-Wilk test Normality testing Parametric [17]
Akaike Information Criterion (AIC) Model comparison Parametric [18]
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Supplementary Table 3. Benchmarking PyFRAP against an in-house software combination of MATLAB and
Comsol Multiphysics. Data was simulated with MATLAB and Comsol Multiphysics5–7, and then fitted with PyFRAP
for each of the four available reaction-diffusion models.

MATLAB + Comsol Multiphysics PyFRAP R2-value AIC
D Degradation Production D Degradation Production Bleached Slice Correct model

(µm2/s) (10−4/s) (10−4 [c]/s) (µm2/s) (10−4/s) (10−4 [c]/s) window prediction
Pure diffusion

1 0 0 1.0 0 0 0.998 0.972 yes
5 0 0 4.8 0 0 1.000 0.910 yes
10 0 0 9.5 0 0 1.000 0.932 yes
40 0 0 39.1 0 0 0.999 0.870 yes

110 0 0 109.4 0 0 0.999 0.984 yes
200 0 0 199.1 0 0 0.999 0.990 yes

Diffusion + degradation
1 5.0 0 1.0 5.8 0 0.998 0.921 yes
5 5.0 0 4.9 5.5 0 1.000 0.959 yes
10 5.0 0 9.7 5.4 0 1.000 0.972 yes
40 5.0 0 39.0 5.0 0 0.999 0.950 yes

110 5.0 0 108.1 4.9 0 0.999 0.943 yes
200 5.0 0 198.0 5.0 0 0.999 0.982 yes

Diffusion + production
1 0 5.0 1.0 0 4.4 0.999 0.950 yes
5 0 5.0 5.0 0 4.6 1.000 0.972 yes
10 0 5.0 9.8 0 4.7 1.000 0.978 yes
40 0 5.0 38.9 0 5.0 1.000 0.991 yes

110 0 5.0 108.3 0 5.1 1.000 0.998 yes
200 0 5.0 198.4 0 5.0 1.000 0.999 yes

Diffusion + production + degradation
1 5.0 7.0 1.1 4.8 6.2 0.992 0.845 no
5 5.0 7.0 5.0 4.8 6.4 1.000 0.894 no
10 5.0 7.0 9.5 5.9 7.5 1.000 0.910 no
40 5.0 7.0 39.2 4.1 6.3 1.000 0.979 no

110 5.0 7.0 105.2 9.7 12.0 0.999 0.995 no
200 5.0 7.0 192.6 11.6 13.3 1.000 0.996 no



Supplementary Table 4. Selection of currently available FRAP analysis software packages.

Software Fit type Result Input data Publication Platform Tested Comments
type

easyFRAP Analytical Qualitive CSV [1] Windows, Mac
OSX

Yes Requires Matlab Run-
time, only produces
τ1/2

FrapCalc Analytical Qualitive CSV [2] Windows, Mac
OSX

Yes Requires IgorPro

virtualFRAP Simulation Quantitive Image files [3] Windows Yes
FRAPToolbox Simulation Quantitive Image files [19] Cross-platform No Unable to read non-

OME formats
FRAP Analytical Qualitive Image files [20] Cross-platform No Requires specialized

Matlab toolboxes
Tropical Simulation Quantitive Image files [21] Windows,

Linux
No Software unavailable

simFRAP Simulation Quantitive Image files [4] Cross-platform Yes Fiji Plugin



Supplementary Table 5. Fluorescent samples used for in vitro experiments, and their calculated theoretical diffu-
sion coefficients (see Materials and Methods for details). Theoretical values were only computed if an estimate of the
molecule’s Stokes radius could be found.

Fluorophore Molecular weight (kDa) Concentration (µM) Manufacturer Stokes radius (nm) Theoretical D (µm2/s)
Fluorescein-dextran 3 1 Thermo Fisher 1.36 171
FITC-dextran 4 1 Sigma-Aldrich 1.4 166
FITC-dextran 4 15 Sigma-Aldrich 1.4 166
FITC-dextran 4 100 Sigma-Aldrich 1.4 166
Fluorescein-dextran 40 1 Thermo Fisher 2.3 101
Fluorescein-dextran 70 1 Sigma-Aldrich 4.5 52
Fluorescein-dextran 70 1 Thermo Fisher 6.0 39
FITC-dextran 150 1 Sigma-Aldrich 8.5 27
Fluorescein-dextran 500 1 Thermo Fisher 15.8 15
GFP 25 4 Biovision n.a. n.a.
Dendra2 25 0.5 Hoelzel Diagnostics n.a n.a.



Supplementary Table 6. Diffusion coefficients determined by in vitro experiments and PyFRAP analysis. Theoreti-
cal values were only computed if an estimate of the molecule’s Stokes radius could be found. Mean D values determined
by PyFRAP as well as literature values are given with standard deviation.

PyFRAP Literature
Dextran Manufacturer D (µm2/s) D (µm2/s) n D (µm2/s) Technique Reference

size (kDa) theoretical experimental experimental
3 Thermo Fisher 171 170.3± 21.9 19 161± 22 FCS [22]
4 Sigma-Aldrich 166 181.1± 31.6 31 135± 10 FRAP [23]
10 Thermo Fisher 101 83.1± 8.0 12 122± 4 FCS [22]
40 Thermo Fisher 52 56.1± 15.1 14 47± 2 FCS [22]
70 Thermo Fisher 39 27.7± 4.8 21 37± 7 FCS [22]
70 Sigma-Aldrich 39 49.2± 5.6 31 30± 2 FRAP [24]
150 Sigma-Aldrich 27 46.4± 5.6 31 26± 2 FRAP [24]
500 Thermo Fisher 15 25.7± 1.8 11 23.2± 1.1 FRAP [25]



Supplementary Table 7. Literature values used for Figure 5.

Molecule MW Temperature Manufacturer D Stdev Technique Reference
(kDa) during (µm2/s) (µm2/s)

measurement
(°C)

Fluorescein 0.33 22 Sigma-Aldrich 300 n.a. FCS [24]
Fluorescein 0.33 23 n.a. 270 n.a. FRAP [26]
Fluorescein 0.33 23 n.a. 260 n.a. FRAP [26]
Na2-Fluorescein 0.376 25 Fluka 380 35 FRAP [27]
Oregon Green 488 carboxylic
acid

0.41230 23 Thermo Fisher 336 11 FCS [22]

Rhodamine B 0.47901 23 Fluka 420 20 FCS [22]
Rhodamine B 0.47901 22.5 Sigma-Aldrich 420 30 FCS [28]
Rhodamine 6 G 0.47901 22.5 Molecular

Probes
400 30 FCS [28]

Rhodamine 6 G 0.47901 23 Thermo Fisher 400 20 FCS [22]
TetramethylRhodamine methyl
ester

0.50093 23 Thermo Fisher 412 18 FCS [22]

Oregon Green 488 carboxylic
acid succinimidyl ester

0.50938 23 Thermo Fisher 308 10 FCS [22]

Rhodamine green succinimdyl
ester

0.621 20 Molecular
Probes

233 3 FCS [29]

Alexa488 alkyne 0.774 32 Life Technolo-
gies

288 8 FCS [30]

Fluorescent dextran 3 23 Thermo Fisher 161 22 FCS [22]
Alexa488-dextran 3 32 Life Technolo-

gies
160 5 FCS [30]

FITC-dextran 3 22 Pharmacia 98 6 FRAP [31]
FITC-dextran 3 n.a. Pharmacia 98 6 FRAP [32]
FITC-dextran 4 25 Sigma-Aldrich 149 n.a. FRAP [33]
FITC-dextran 4 25 Sigma-Aldrich 135 10 FRAP [23]
FITC-dextran 4 32 Sigma-Aldrich 135 6 FCS [30]
FITC-dextran 4 20 Sigma-Aldrich 96 2.4 FCS [34]
FITC-dextran 4 22 Sigma-Aldrich 89 n.a. FRAP [35]
FITC-dextran 4 19 Sigma-Aldrich 155 23 FRAP [36]
FITC-dextran 9.4 20 Sigma-Aldrich 75 3 FRAP [37]
Fluorescent dextran 10 23 Thermo Fisher 122 4 FCS [22]
Rhodamine green dextran 10 20 Molecular

Probes
115 4 FCS [29]

Alexa488-dextran 10 32 Life Technolo-
gies

82 1.4 FCS [30]

FITC-dextran 10 22 Sigma-Aldrich 76 n.a. FRAP [31]
FITC-dextran 10 20 Sigma-Aldrich 68 1 FCS [34]
FITC-dextran 11 n.a. Sigma-Aldrich 76 2.5 FRAP [32]
FITC-dextran 11 22 Sigma-Aldrich 76 3 FRAP [31]
FITC-dextran 12 25 Sigma-Aldrich 97 n.a. FRAP [33]
FITC-Insulin 12 25 Sigma-Aldrich 147 13 FRAP [33]
FITC-dextran 17 22 Sigma-Aldrich 65 n.a. FRAP [31]
FITC-dextran 17.2 20 Sigma-Aldrich 64 2 FRAP [37]
FITC-dextran 18 22 Sigma-Aldrich 65 7 FRAP [31]
FITC-dextran 18 n.a. Sigma-Aldrich 65 6.5 FRAP [32]
FITC-dextran 20 22 Sigma-Aldrich 78 n.a. FCS [24]
FITC-dextran 20 22 Sigma-Aldrich 64 2 FRAP [24]
FITC-dextran 20 29 Sigma-Aldrich 70 8 FRAP [36]
FITC-dextran 20 22 Sigma-Aldrich 63 4 FRAP [25]
FITC-dextran 21 25 Sigma-Aldrich 71 n.a. FRAP [33]
GFP 26.9 25 custom-made 87 n.a. FCS [38]
GFP 26.9 n.a. custom-made 87 n.a. FRAP [39]
GFP 26.9 22 Clontech 82 n.a. FCS [24]



FITC-dextran 35.6 20 Sigma-Aldrich 44 5 FRAP [37]
FITC-dextran 38 25 Sigma-Aldrich 62 n.a. FRAP [33]
Fluorescent dextran 40 23 Thermo Fisher 47 2 FCS [22]
FITC-dextran 40 22 Sigma-Aldrich 45 n.a. FCS [40]
FITC-dextran 40 22 Sigma-Aldrich 45 n.a. FCS [24]
FITC-dextran 40 32 Sigma-Aldrich 45 1.1 FCS [30]
FITC-dextran 40 22 Sigma-Aldrich 44 5 FRAP [24]
FITC-dextran 40 22 Sigma-Aldrich 52 2 FRAP [25]
FITC-dextran 41 22 Sigma-Aldrich 46 5 FRAP [31]
FITC-dextran 41 n.a. Sigma-Aldrich 46 4.6 FRAP [32]
FITC-dextran 42 20 Sigma-Aldrich 39 0.4 FCS [34]
FITC-dextran 51 25 Sigma-Aldrich 54 n.a. FRAP [33]
FITC-dextran 62 n.a. Sigma-Aldrich 39 2.6 FRAP [32]
FITC-dextran 62 22 Sigma-Aldrich 39 3 FRAP [31]
FITC-BSA 67 25 n.a. 58 5 FRAP [33]
FITC-dextran 70 22 Sigma-Aldrich 38 n.a. FCS [24]
FITC-dextran 70 22 Sigma-Aldrich 38 n.a. FCS [40]
Fluorescent dextran 70 23 Thermo Fisher 37 7 FCS [22]
FITC-dextran 70 n.a. Fluka 33 2.1 FCS [41]
FITC-dextran 70 22 Sigma-Aldrich 30 2 FRAP [24]
FITC-dextran 70 25 Thermo Fisher 30 3.1 FRAP [27]
FITC-dextran 70 23 n.a. 23 n.a. FRAP [26]
FITC-dextran 70 22 Sigma-Aldrich 44 1 FRAP [25]
FITC-dextran 71 25 Sigma-Aldrich 44 2 FRAP [23]
FITC-dextran 71.2 20 Sigma-Aldrich 30 2 FRAP [37]
FITC-dextran 77 20 Sigma-Aldrich 35 0.6 FCS [34]
FITC-dextran 148 20 Sigma-Aldrich 25 3.1 FCS [34]
FITC-dextran 148 20 Sigma-Aldrich 18 1 FRAP [37]
FITC-dextran 150 22 Sigma-Aldrich 26 2 FRAP [24]
FITC-dextran 150 22 Sigma-Aldrich 24 n.a. FCS [40]
FITC-dextran 150 22 Sigma-Aldrich 24 n.a. FCS [24]
FITC-dextran 150 20 Sigma-Aldrich 14 n.a. FRAP [42]
FITC-dextran 157 n.a. Sigma-Aldrich 24 1.3 FRAP [32]
FITC-dextran 157 22 Sigma-Aldrich 24 1 FRAP [31]
FITC-dextran 167 25 Sigma-Aldrich 38 n.a. FRAP [33]
FITC-dextran 167 n.a. Sigma-Aldrich 18.8 0.2 FRAP [43]
FITC-dextran 260 25 Sigma-Aldrich 30 n.a. FRAP [33]
FITC-dextran 282 20 Sigma-Aldrich 16.6 0.8 FCS [34]
FITC-dextran 464 20 Sigma-Aldrich 14 0.6 FCS [34]
FITC-dextran 464 n.a. Sigma-Aldrich 11 0.5 FRAP [43]
FITC-dextran 500 22 Sigma-Aldrich 23 1 FRAP [25]
FITC-dextran 580 25 Sigma-Aldrich 22 n.a. FRAP [33]
FITC-dextran 2000 25 Sigma-Aldrich 10 1 FRAP [23]
Fluorescent dextran 2000 23 Thermo Fisher 6 1 FCS [22]
FITC-dextran 2000 n.a. Sigma-Aldrich 6.4 0.09 FRAP [43]
FITC-dextran 2101 25 Sigma-Aldrich 14 n.a. FRAP [33]



Supplementary Table 8. Summary of tortuosity simulations.

Dimension Geometry Packing Extracelluar volume fraction (EVF) (%) Tortuosity θ
2D Circle Regular 74 0.74
2D Circle Regular 59 0.61
2D Circle Random 56 0.57
2D Circle Random 36 0.49
2D Circle Ideal 25 0.44
3D Cylinder Regular 71 0.86
3D Cylinder Random 78 0.92
3D Cylinder Random 58 0.88
3D Cylinder Ideal 78 0.92
3D Cylinder Ideal 71 0.874
3D Cylinder Ideal 61 0.871
3D Cylinder Ideal 60 0.870
3D Cylinder Ideal 42 0.75
3D Cuboid Ideal 38 0.60



Supplementary Table 9. Diffusion coefficients determined by in vitro experiments and PyFRAP analysis in the
presence of polyacrylamide beads. Mean diffusion values are given with standard error.

Dextran size (kDa) Manufacturer Condition D (µm2/s) n
70 Thermo Fisher Free 24.1± 0.4 13
70 Thermo Fisher Beads 14.9± 0.5 17



Supplementary Table 10. Diffusion coefficients determined by in vitro and in vivo experiments and PyFRAP
analysis with GFP and GFP fusion proteins. Mean diffusion values are given with standard error.

Molecule Manufacturer Source Condition Context D (µm2/s) n
PyFRAP

Recombinant GFP Biovision Protein Free In vitro 96.1± 2.2 23
Recombinant GFP Biovision Protein Beads In vitro 79.2± 4.1 18
Recombinant GFP Biovision Injected protein Extracelluar matrix In vivo 37.6± 3.7 15
Secreted GFP In-house Injected mRNA Extracelluar matrix In vivo 35.3± 4.8 17

+ production
Squint-GFP In-house Injected mRNA Extracelluar matrix In vivo 1.7± 0.25 27

+ production + binding



Supplementary Table 11. Parameters used for the simulation of FRAP experiments.

Variable Definition Default value
Simulation

D Diffusion coefficient D = 50 pixels2/s
Time stepping

tsim,start Simulation start time 0 s
tsim,end Simulation end time 1680 s
nsim Number of time steps 4000
tscale Time-stepping scheme Logarithmic

Geometry
rupper Upper radius of frustum 317.65 pixels
rlower Lower radius of frustum 224.25 pixels
h Height of frustum 90.33 pixels

Meshing
v Mesh element size 25 pixels3

vBL Boundary layer element size 15 pixels3

vslice Slice refinement element size 15 pixels3

wBL Boundary layer thickness 30 pixels
Solver

ε Solver tolerance 10−10

Niter Solver iterations 1000



Supplementary Table 12. Fitting and model parameters, initial guesses, and bounded ranges. Note that we tried
different initial guesses for the diffusion coefficient D, and then took the fit that yielded the minimum SSD to avoid that
the minimization algorithm stops in a local minimum.

Initial guesses
Parameter Initial guess Allowed range
D (pixels2/s) 1 - 200 0.01 - 400
k1 (1/s) 0 0 - 100
k2 ([c]/s) 0 0 - 100
Ebleached 1 0.1 - 3
Eslice 1 0.1 - 3

Fitting convergence
Parameter Definition Default value
Nmax Maximum number of function calls 1000
δ Tolerance of termination 10−10



Supplementary Figure 1 |  Sample preparation for in vitro and in vivo FRAP experiments. (a) In vitro experiments. Fluorophore solution was 
pipetted into a frustum-like plexiglass hole. The hole was then sealed with mineral oil and covered with a cover slip. The sample was flipped and placed 
under an inverted confocal microscope. (b) In vivo experiments in zebrafish embryos. mRNA encoding a fluorophore was injected into embryos at the 
one-cell stage, or recombinant GFP was injected into the extracellular space of embryos at the 1000-cell stage.
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Supplementary Figure 2 | Image analysis in PyFRAP. (a) Basic regions of interest (ROIs) of FRAP analysis: The cyan square indicates the bleached 
region of the FRAP experiment inside the complete circular geometry within the imaging slice. The dashed lines indicate the location of the acquired 
image data. (b) Rim concentration calculation: Hypothetical data (orange) outside the acquired image (dashed line) is extrapolated through the average 
concentration in a slim rim of the visible fraction in the imaging slice (red). (c) Image manipulation techniques used to correct uneven illumination: 
Correction was either performed by multiplying the data with a correction matrix (flattening), or by dividing the data through an average pre-bleach 
image (normalization). The original image shows a pre-bleach measurement of a uniformly distributed fluorophore. Deviations from the theoretical flat 
intensity profile are due to imaging artifacts.



Supplementary Figure 3 | Analysis subset of image correction and smoothing techniques. Data sets were grouped by condition (in vitro experiments 
with free diffusion (green), in vitro experiments with beads (blue), and in vivo experiments in zebrafish embryos (orange)). Bar plots show the effect of 
each manipulation (n: normalization, f: flattening, b: background subtraction, g: Gaussian blur, m: median filter) compared to analyses in which no 
manipulation was applied. Values above or below the dashed line indicate that the manipulation had an effect. (a,b,c) Effect on mean diffusion coefficient 
D, standard deviation σ, and R2-value if only one of the five image manipulation techniques was applied, respectively. (e,d,f) Effect if flattening and one 
of the three remaining manipulation techniques was applied. In vivo experiments with zebrafish embryos were excluded for this analysis (see Materials 
and Methods and Supplementary Text 1).
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Supplementary Figure 4 | Simulation details for PyFRAP analysis. (a) The zebrafish dome geometry used to analyze in vivo experiments is 
described by the distance between the centers (dcenter) and the radii (rinner, router) of two hemispheres. (b) The frustum geometry used to analyze in vitro 
experiments is described by the upper (rupper) and lower (rlower) radius and its height h. (c) Lateral and top views of tetrahedral meshes in the zebrafish 
dome geometry with a boundary layer mesh around the bleached area and a refined mesh in the imaging slice. (d) Scaling solution of a simulated FRAP 
recovery curve for different diffusion coefficients.
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Supplementary Figure 5 | Examples of in vitro experiments and the resulting fits to measure free diffusion. (a,c,e,g,i,k,m) In vitro FRAP 
experiments with FITC-dextrans ranging from 3 kDa to 500 kDa. Maximum image intensities are the average pre-conversion intensities to facilitate 
comparison across data sets. (b,d,f,h,j,l,n) Black and gray dots represent data points of bleached and slice ROI, respectively. Red solid and dashed lines 
show the respective fits. Recovery curves were normalized between 0 (intensity in the bleached ROI at the first post-bleach time point) and 1 (intensity 
in the bleached ROI at the last post-bleach time point) to facilitate comparison across data sets.
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Supplementary Figure 6 | Simulations of tortuous environments in bead experiments. (a,b,c) Regularly (EVF = 59%), randomly  (EVF = 56%), 
and ideally (EVF = 25%) placed beads in a two-dimensional circular domain. (d) Randomly (EVF = 78%) placed beads in a three-dimensional 
cylindrical domain. (e,f) Comparison between recovery curves in 2D and 3D bead simulations. Red lines indicate simulations without beads, blue lines 
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Supplementary Figure 7 | Examples of in vitro and in vivo experiments and the resulting fits. (a,b) In vitro FRAP experiment with recombinant 
GFP. (c,d) In vitro FRAP experiment with recombinant GFP mixed with polyacrylamide beads. (e,f,g,h,i,j) In vivo FRAP experiment in zebrafish 
embryos with recombinant GFP, secreted GFP, and Squint-GFP, respectively. (b,d,f,h,j) Black and gray dots represent data points of bleached and slice 
ROI, respectively. Red solid and dashed lines show the respective fits. Recovery curves were normalized between 0 (intensity in the bleached ROI at 
the first post-bleach time point) and 1 (intensity in the bleached ROI at the last post-bleach time point) to facilitate comparison across data sets.
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Supplementary Figure 8 | Results of control experiments for in vitro and in vivo FRAP experiments. (a) Results of control experiments with 
fluorescent dextran (70 kDa), and beads with or without BSA. BSA does not influence the diffusion of the fluorescent dextran. Box plot shows median 
(orange line), mean (black line), 25% quantiles (box), and all included data points (red markers). (b) Results of control experiments for different amounts 
(30 - 200 pg) of injected Squint-GFP mRNA, varying length of experiments (300 - 3000 s) and magnification (image size: 340.08 - 566.79 µm). 
Different imaging settings do not affect the measured diffusion coefficient of Squint-GFP. Box plot shows median (orange line), mean (black line), 25% 
quantiles (box), and all included data points (red markers).   
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Dynamics of BMP signaling and
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Abstract During vertebrate embryogenesis, dorsal-ventral patterning is controlled by the BMP/

Chordin activator/inhibitor system. BMP induces ventral fates, whereas Chordin inhibits BMP

signaling on the dorsal side. Several theories can explain how the distributions of BMP and Chordin

are regulated to achieve patterning, but the assumptions regarding activator/inhibitor diffusion and

stability differ between models. Notably, ‘shuttling’ models in which the BMP distribution is

modulated by a Chordin-mediated increase in BMP diffusivity have gained recent prominence.

Here, we directly test five major models by measuring the biophysical properties of fluorescently

tagged BMP2b and Chordin in zebrafish embryos. We found that BMP2b and Chordin diffuse and

rapidly form extracellular protein gradients, Chordin does not modulate the diffusivity or

distribution of BMP2b, and Chordin is not required to establish peak levels of BMP signaling. Our

findings challenge current self-regulating reaction-diffusion and shuttling models and provide

support for a graded source-sink mechanism underlying zebrafish dorsal-ventral patterning.

DOI: https://doi.org/10.7554/eLife.25861.001

Introduction
The dorsal-ventral axis is one of the earliest coordinate systems established during animal develop-

ment and divides the embryo into dorsal (back) and ventral (belly) territories. This axis forms under

the influence of the BMP/Chordin patterning system. The activator BMP induces the formation of

ventral tissues, and BMP signaling is antagonized on the dorsal side by the inhibitor Chordin. There

are currently several disparate models that can explain how BMP signaling is restricted to the ventral

side (Ben-Zvi et al., 2008; Barkai and Ben-Zvi, 2009; Francois et al., 2009; Ben-Zvi et al., 2011b;

Inomata et al., 2013; Ramel and Hill, 2013; Ben-Zvi et al., 2014), but the underlying biophysical

assumptions have not been fully tested.

In the ‘Graded source-sink + mobile BMP model’ (Model 1), BMP is produced in a graded, ven-

trally biased source, and signaling from diffusing BMP is antagonized by binding to its inhibitor

Chordin (Figure 1—figure supplement 1, Table 1). Chordin (Chd) diffuses from a localized source

on the opposing dorsal side and therefore provides a ‘sink’ that inactivates BMP molecules diffusing

through the embryo, helping to shape the signaling distribution into a gradient that peaks ventrally.

The distributions of bmp and chd mRNA in developing embryos are consistent with this idea – ini-

tially nearly uniform bmp expression refines to a ventrally biased gradient over time (Ramel and Hill,

2013; Zinski et al., 2017), and chd expression is restricted to the dorsal region (Miller-

Bertoglio et al., 1997).

Similar to Model 1, BMP signaling activity in the ‘Graded source-sink + immobile BMP model’

(Model 2, Figure 1—figure supplement 1, Table 1) is also restricted by the inhibitor Chordin diffus-

ing from the dorsal side. However, Model 2 assumes that BMP does not diffuse (Ramel and Hill,
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2013) and that it binds to Chordin with weaker affinity than in Model 1 (see Materials and methods).

Proponents have argued that the similarities between the graded bmp mRNA distribution, signaling

gradient, and target gene expression indicate negligible BMP diffusion during patterning

(Ramel and Hill, 2013). Consistent with this, BMP4 was unable to induce long-range signaling in

Xenopus experiments (Jones et al., 1996), although BMP target genes are induced outside of BMP-

expressing clones in zebrafish (Xu et al., 2014). However, measuring the diffusivity of BMP in vivo is

the most direct way to determine whether BMP is mobile (Kicheva et al., 2007; Zinski et al., 2017).

Although these two relatively simple models are generally supported by biological observations,

they do not take into account other regulators known to be crucial for dorsal-ventral patterning,

such as the BMP-like ligand ADMP, and Sizzled, an inhibitor of the Chordin protease Tolloid/Xlr.

Three models described below include these important dorsal-ventral regulators in addition to BMP

and Chordin and have also been shown to explain scale-invariant patterning, a phenomenon in which

embryos adjust their tissue proportions to differently sized patterning fields.

The recent ‘Long-range accumulation and feedback model’ (Model 3, Figure 1—figure supple-

ment 1, Table 1) postulates that BMP and Chordin have equally high mobility, but that dorsal-ventral

patterning is controlled by differences in BMP and Chordin protein stability (Inomata et al., 2013). In

this model, BMP and ADMP induce the secreted, highly diffusible and stable Chordin protease inhibi-

tor Sizzled. This protects Chordin from proteolysis and promotes its expansion towards the ventral

side. Over time the resulting inhibition of BMP signaling leads to decreased Sizzled production, desta-

bilizing Chordin and relieving inhibition of BMP. In this way, an appropriate balance between ventral

BMP and dorsal Chordin levels can be established even in differently sized embryos.

In the ‘Self-regulating reaction-diffusion model’ (Model 4, Figure 1—figure supplement 1,

Table 1), BMP and Chordin both have low diffusivities and equivalent protein stabilities. Interactions

with highly mobile ADMP and Sizzled in two coupled reaction-diffusion networks eventually result in

eLife digest Animals start life as clumps of cells that ultimately give rise to complex structures

and organs. Over a century of research has revealed a small number of proteins that are crucial for

complex structures to form from these clumps, including one protein called BMP. Different levels of

BMP instruct cells to give rise to different tissues. In zebrafish, BMP is more abundant on one side of

the embryo than the other. This gradient in BMP levels causes different tissues to form at distinct

positions and helps coordinate embryo development.

Several theories have been proposed to explain how the BMP gradient is established. They all

suggest that a second protein – Chordin – plays an important role in influencing how cells sense the

BMP gradient by blocking BMP’s activity. However, the exact role of Chordin in the formation of the

BMP gradient is disputed. To address this, Pomreinke, Soh, Rogers et al. directly tested five theories

of how BMP and Chordin molecules spread through embryos.

The experiments used microscopy to track the movements of fluorescent versions of both

molecules in zebrafish embryos. The measurements contradict one theory stating that BMP does not

move, and another in which Chordin increases the mobility of BMP. Pomreinke, Soh, Rogers et al.

also found that embryos that lack Chordin have increased BMP signaling levels only on the side

where Chordin is normally made but not on the opposite side where BMP is made, ruling out several

of the theories. The findings are most consistent with the idea that the BMP gradient forms mainly

as a result of higher production of BMP on one side of the embryo combined with movement of

BMP away from where it is made. Chordin produced at the opposite end of the embryo helps to

ensure that only the correct cells receive instructions from BMP.

In the future, two approaches could further clarify how the BMP gradient is formed. First, better

techniques to directly observe the BMP gradient in normally developing embryos would be useful.

Second, new theories that take into account additional players other than BMP and Chordin might

help explain some features of development that current theories cannot address. Uncovering the

mechanisms that control the formation of BMP gradients will improve our understanding of how

clumps of cells can develop into animals.

DOI: https://doi.org/10.7554/eLife.25861.002
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the restriction of BMP signaling activity on the ventral side, assuming an initial dorsal Chordin or ven-

tral BMP bias (Francois et al., 2009). Such a system self-regulates even with noisy initial conditions

and could provide robustness during embryogenesis – e.g., the ability of developing organisms to

withstand noise in gene expression or fluctuating environmental conditions – that can be difficult to

explain with other models.

Finally, the prominent ‘Shuttling model’ (Model 5, Figure 1—figure supplement 1, Table 1) pos-

tulates that Chordin not only acts as an inhibitor of BMP, but also modulates the mobility and distri-

bution of BMP protein (Ben-Zvi et al., 2008; Barkai and Ben-Zvi, 2009; Ben-Zvi et al., 2011b; Ben-

Zvi et al., 2014). In this model, BMP is poorly diffusive, Chordin is highly diffusive, and BMP mobility

increases when bound to Chordin. Cleavage of the BMP/Chordin complex by the uniformly distrib-

uted protease Tolloid/Xlr combined with a flux of Chordin from the dorsal side is thought to ‘shuttle’

BMP towards the ventral side by facilitated diffusion over time. In this way, Chordin is responsible

for the accumulation of BMP protein on the ventral side, and actively helps establish the subsequent

ventral BMP signaling peak.

These five conflicting models postulate different diffusion (no diffusion, equal diffusion, differen-

tial diffusion, facilitated diffusion) and stability properties of BMP and Chordin proteins (Table 1, Fig-

ure 1—figure supplement 1). However, these biophysical properties have not been fully measured

experimentally, in part due to the lack of reagents and techniques to detect active BMP and Chordin

in living vertebrate embryos. To test the biophysical tenets of these models, we developed active

BMP and Chordin fluorescent fusion proteins, and used a combination of mathematical modeling

and quantitative experiments to determine how BMP2b and Chordin gradients form. Additionally,

we tested the distinct predictions that the five models make about how BMP signaling changes in

the absence of Chordin. We found that (i) BMP2b and Chordin proteins have similar stabilities, (ii)

both BMP2b and Chordin diffuse and form gradients in the extracellular space, and (iii) Chordin

does not significantly facilitate BMP2b diffusion or play an active role in establishing peak ventral

BMP signaling levels. Together, our results are most consistent with dorsal-ventral patterning medi-

ated by Model 1, the ‘Graded source-sink + mobile BMP’ model.

Table 1. Summary of model assumptions, predictions, and experimental findings.

Model assumptions or predictions that are consistent with the experimental findings (gray) are highlighted in green. NA: no testable

model assumptions or predictions.

Model 1
Graded source-
sink (mobile BMP)

Model 2
Graded source-
sink (immobile
BMP)

Model 3
Long-range
accumulation and
feedback

Model 4
Self-regulating
reaction-diffusion
system

Model 5
Shuttling

Experimental
findings

Diffusivity of BMP and
Chordin

D(BMP) > 0
D(BMP) < D(Chd)

D(BMP) » 0
D(Chd) high

D(BMP) » D(Chd)
High

D(BMP) » D(Chd)
Low

D(BMP) << D(Chd) D(BMP) � D(Chd)
( » 2 and 6 mm2/s)

Effect of Chordin on BMP
diffusivity

No effect No effect No effect No effect Chd enhances BMP
diffusion

No effect

Half-life of BMP and
Chordin

t(BMP) » t(Chd) Unconstrained t(BMP) >> t(Chd) t(BMP) » t(Chd) t(BMP) > t(Chd)* t(BMP) » t(Chd)
(130 and 120 min)

pSmad gradient
formation kinetics

Progressive rise
ventrally, always
low dorsally

Progressive rise
ventrally, always
low dorsally

Initially high
dorsally and
ventrally

Progressive rise
ventrally, always
low dorsally

Progressive rise
ventrally, always
low dorsally

Progressive rise
ventrally, always
low dorsally

Ventral pSmad peak
decreased in the absence
of Chordin?

No No No No Yes No

Dorso-lateral pSmad
expansion in the absence
of Chordin?

Yes Yes Yes No Yes Yes

Diffusivity of Sizzled
relative to BMP/Chordin

NA NA D(ADMP) & D(Szl)
» D(BMP) & D
(Chd)

D(ADMP) & D
(Szl) >> D(BMP) & D
(Chd)

NA D(Szl) » D(BMP) &
D(Chd)
( » 10, 2, and 6 mm2/
s)

*The simplified shuttling model without ADMP presented here is based on the experimentally measured clearance rate constants of BMP and Chordin;

the full model for scale-invariant patterning including ADMP (Ben-Zvi et al., 2008) assumes a lower stability of Chordin due to Xlr-mediated degradation.
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Figure 1. BMP signaling (pSmad1/5/9) gradient formation and simulations of five major dorsal-ventral patterning models over relevant zebrafish

developmental stages (3 hr). (A) Two-dimensional Hammer-Aitoff projections (2D maps) of pSmad1/5/9-immunostained individual wild type zebrafish

embryos at different developmental stages. Embryos were imaged using light sheet microscopy (see Materials and methods for details). (B)

Quantification of ventral-to-dorsal average pSmad1/5/9 distributions in one-dimensional projections of 2D maps generated for embryos at different

Figure 1 continued on next page
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Results

Chordin does not actively establish peak ventral BMP signaling
BMP signaling induces phosphorylation and nuclear localization of the transcriptional effectors

Smad1/5/9 (Schier and Talbot, 2005). To quantitatively measure BMP signaling activity during early

dorsal-ventral patterning, we imaged pSmad1/5/9-immunostained zebrafish embryos fixed at differ-

ent developmental stages using in toto light sheet microscopy, converted pSmad1/5/9 signaling

activities into information-compressed two-dimensional maps (Schmid et al., 2013), and quantified

pSmad1/5/9 intensities along the ventral-dorsal axis (Figure 1A, Materials and methods). Over the

course of approximately 3 hr during early zebrafish development, BMP signaling rapidly shifts from a

low-level near-uniform distribution to a gradient with peak levels on the ventral side (Figure 1A+B,

Videos 1–5) (Tucker et al., 2008), similar to changes in the distribution of bmp2b mRNA over time

(Ramel and Hill, 2013; Zinski et al., 2017). We simulated pSmad1/5/9 gradient formation kinetics

predicted by each of the five models over a similar time period (Figure 1C–G). Our measurements

are consistent with the gradient kinetics predicted by Models 1, 2, 4, and 5, whereas the dynamics

predicted by Model 3 do not resemble the experimentally observed distributions.

All five major models of BMP/Chordin-mediated dorsal-ventral patterning qualitatively explain

the formation of a ventral signaling peak, but they assign different roles to the inhibitor Chordin

(Figure 2A–E, Table 1, and Figure 1—figure supplement 1). Models 1 and 2 assume that a flux of

the inhibitor Chordin from the dorsal side restricts the range of BMP signaling activity throughout

the embryo. They thus predict that in the absence of Chordin, BMP signaling should be expanded

throughout the embryo with a small increase in the peak levels on the ventral side (Figure 2A+B).

Model 3 adds an additional regulatory layer: Here, the abundance of Chordin is regulated by feed-

back interactions that modify its stability and affect ventral BMP signaling levels (Figure 1—figure

supplement 1). Similar to Models 1 and 2, Model

3 also predicts that in the absence of Chordin,

BMP signaling should be expanded throughout

the embryo (Figure 2C).

In Model 4, two reaction-diffusion systems

involving BMP/Sizzled and Chordin/ADMP are

coupled. In a completely homogenous field of

cells with no initial expression biases, this self-

organizing system would give rise to both ventral

and dorsal BMP peaks (Francois et al., 2009). To

achieve a single ventral BMP peak, an initial dor-

sal Chordin or ventral BMP bias is required (see

Materials and methods). Under these conditions,

the initial advantage in BMP signaling on the ven-

tral side is amplified by autoregulation of BMP

production. Since Chordin inhibits the autoregu-

lation of BMP production, the absence of Chor-

din leads to a more pronounced ventral BMP

peak but has no effect in the rest of the embryo

(Figure 2D). Model 4 thus predicts that in the

absence of Chordin, pSmad1/5/9 levels would be

increased on the ventral but not the dorsal side.

Figure 1 continued

developmental stages (n = 3 for each stage) as in (A). Error bars denote standard error. (C–G) Gradient formation kinetics simulated for Models 1–5 at

relevant zebrafish developmental stages.

DOI: https://doi.org/10.7554/eLife.25861.004

The following figure supplement is available for figure 1:

Figure supplement 1. Mathematical formulation of five major models of BMP/Chordin-mediated dorsal-ventral patterning.

DOI: https://doi.org/10.7554/eLife.25861.005

Video 1. 3D reconstruction of pSmad1/5/9 localization

in a wild type sphere stage zebrafish embryo imaged

by light sheet microscopy.

DOI: https://doi.org/10.7554/eLife.25861.006

Pomreinke et al. eLife 2017;6:e25861. DOI: https://doi.org/10.7554/eLife.25861 5 of 30

Research article Computational and Systems Biology Developmental Biology and Stem Cells

https://doi.org/10.7554/eLife.25861.004
https://doi.org/10.7554/eLife.25861.006
https://doi.org/10.7554/eLife.25861


In contrast to Models 1–4, Model 5 assigns a more active role to Chordin in promoting the ventral

BMP signaling peak. This model proposes that Chordin activity results in increased BMP signaling

ventrally: Chordin increases ventral BMP levels by binding to and physically moving BMP protein

towards the ventral side. This model therefore predicts that in embryos lacking Chordin, BMP signal-

ing should be lower on the ventral side compared to wild type embryos (Figure 2E).

To experimentally test these predictions, we quantitatively measured BMP signaling activity in

fixed chordin�/� zebrafish embryos (Video 6) and their wild type siblings using pSmad1/5/9 immu-

nostaining and in toto light sheet microscopy. Strikingly, BMP signaling was increased in dorso-lat-

eral domains in chordin�/� mutants compared to wild type embryos, but BMP signaling on the

Video 2. 3D reconstruction of pSmad1/5/9 localization

in a wild type 30% epiboly stage zebrafish embryo

imaged by light sheet microscopy.

DOI: https://doi.org/10.7554/eLife.25861.007

Video 3. 3D reconstruction of pSmad1/5/9 localization

in a wild type 50% epiboly stage zebrafish embryo

imaged by light sheet microscopy.

DOI: https://doi.org/10.7554/eLife.25861.008

Video 4. 3D reconstruction of pSmad1/5/9 localization

in a wild type shield stage zebrafish embryo imaged by

light sheet microscopy.

DOI: https://doi.org/10.7554/eLife.25861.009

Video 5. 3D reconstruction of pSmad1/5/9 localization

in a wild type 60% epiboly stage zebrafish embryo

imaged by light sheet microscopy.

DOI: https://doi.org/10.7554/eLife.25861.010

Pomreinke et al. eLife 2017;6:e25861. DOI: https://doi.org/10.7554/eLife.25861 6 of 30

Research article Computational and Systems Biology Developmental Biology and Stem Cells

https://doi.org/10.7554/eLife.25861.007
https://doi.org/10.7554/eLife.25861.008
https://doi.org/10.7554/eLife.25861.009
https://doi.org/10.7554/eLife.25861.010
https://doi.org/10.7554/eLife.25861


uniform BMP

production competence 

(BMP initially graded)

graded

BMP source

A B

E F

Wild type chordin-/- mutant

wild type

chordin-/- mutant

wild type

Model 5: Shuttling

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Embryo length (%)

N
o

rm
a

liz
e

d
 f

re
e

 B
M

P
 c

o
n

ce
n

tr
a

ti
o

n

localized 

Chordin source

without Chordin

G H

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Embryo length (%)

N
o

rm
a

liz
e

d
 f

re
e

 B
M

P
 c

o
n

ce
n

tr
a

ti
o

n Model 1: Graded source-sink (mobile BMP)

localized 

Chordin source

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Embryo length (%)

p
−

v
a

lu
e

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Embryo length (%)

N
o

rm
a

liz
e

d
 p

S
m

a
d

1
/5

/9
 in

te
n

si
ty

high

low

pSmad1/5/9

wild type

Model 2: Graded source-sink (immobile BMP)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Embryo length (%)

N
o

rm
a

liz
e

d
 f

re
e

 B
M

P
 c

o
n

ce
n

tr
a

ti
o

n

localized 

Chordin source

without Chordin

D

wild type

Model 4: Self-regulating reaction-diffusion system

Embryo length (%)

N
o

rm
a

liz
e

d
 f

re
e

 B
M

P
 c

o
n

ce
n

tr
a

ti
o

n
self-regulating

Chordin source with initial bias

without Chordin

C

wild type

Model 3: Long-range accumulation and feedback

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Embryo length (%)

N
o

rm
a

liz
e

d
 f

re
e

 B
M

P
 c

o
n

ce
n

tr
a

ti
o

n

localized 

Chordin source

without Chordin

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

graded

BMP source

graded

BMP source

uniform BMP 

production competence 

(BMP initially graded)

Figure 2. Theoretical predictions for the influence of the inhibitor Chordin on the BMP signaling gradient and experimental test. (A–E) Simulations of

BMP distributions in five major models of dorsal-ventral patterning in the presence (black) or absence (red) of Chordin. The BMP and Chordin sources

are indicated below each graph in green and blue, respectively. Note that the spatial production rates in Models 3 and 4 are modulated over time by

feedback. (F–G) Quantification of average pSmad1/5/9 distributions in wild type (black) and chordin�/� (red) embryos using one-dimensional

Figure 2 continued on next page
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ventral side was not significantly affected (Figure 2F–H), consistent with the predictions from Mod-

els 1–3 and observations in Xenopus and zebrafish embryos (Plouhinec et al., 2013; Zinski et al.,

2017), but not with the BMP signaling distributions predicted by Models 4 and 5 (Table 1).

BMP and Chordin fluorescent fusion proteins diffuse and rapidly form
gradients in vivo
In order to understand the underlying basis of BMP/Chordin distribution and directly test the bio-

physical assumptions of the five dorsal-ventral patterning models, we developed fluorescent fusion

proteins. We fused superfolder-GFP (sfGFP [Pédelacq et al., 2006]) and the photoconvertible pro-

tein Dendra2 (Gurskaya et al., 2006) to zebrafish Chordin and BMP2b, the major BMP ligand regu-

lating zebrafish dorsal-ventral patterning (Kishimoto et al., 1997; Xu et al., 2014). Basing our

design on previously established fusions with small peptide tags (Cui et al., 1998; Degnin et al.,

2004; Sopory et al., 2006), we inserted fluorescent proteins to label the mature signaling domains,

and obtained fusion proteins that are processed similarly and have similar biological activity as

untagged versions or constructs fused to small FLAG tags (Figure 3A–E, Figure 3—figure supple-

ment 1). Indeed, BMP2b mutants (swr�/�, which are normally severely dorsalized [Kishimoto et al.,

1997]) can be rescued by injection of mRNA encoding BMP2b-Dendra2 or BMP2b-sfGFP at levels

equivalent to untagged BMP2b (Figure 3C). In these experiments, the injected mRNA should be uni-

formly distributed, highlighting the important role of Chordin or other antagonists in shaping the

graded BMP signaling distribution.

To measure the kinetics of BMP and Chordin protein gradient formation, we expressed BMP2b-

sfGFP and Chordin-sfGFP from local sources in wild type zebrafish embryos (Müller et al., 2012)

and imaged the distribution profiles over time using light sheet microscopy (Figure 3F–I). Impor-

tantly, in previous experiments it has been demonstrated that BMP2b clones generated in a similar

manner can recapitulate BMP signaling comparable to that observed along the dorsal-ventral axis

(Xu et al., 2014). Strikingly, both BMP2b-sfGFP and Chordin-sfGFP are secreted and diffuse in the

extracellular space (Figure 3F+G, Videos 7+8),

in contrast to the proposal of Model 2 that only

Chordin – but not BMP – diffuses (Ramel and

Hill, 2013) (Table 1) and the absence of long-

range BMP4 signaling in Xenopus (Jones et al.,

1996). Both BMP2b-sfGFP and Chordin-sfGFP

rapidly establish concentration gradients over the

course of one hour (Figure 3H+I), consistent with

the rapid patterning of the dorsal-ventral axis

during zebrafish development.

BMP and Chordin
fluorescent fusion proteins have
similar stabilities in vivo
The gradient formed by Chordin-sfGFP has a

moderately longer range than the one formed by

BMP2b-sfGFP. For example, 60 min post-trans-

plantation the BMP2b-sfGFP signal drops to 50%

of the maximal concentration at a distance of 30–

40 mm, whereas the gradient formed by Chordin-

sfGFP reaches 50% of its maximal concentration

at a distance of 50–60 mm from the source

boundary at this time point (Figure 3H+I). This

Figure 2 continued

projections of 2D maps. Wild type n = 7, chordin�/� mutants n = 10. Error bars denote standard error. (H) p-values (unpaired two-tailed t-test assuming

equal variance) calculated as a function of space between pSmad1/5/9 distributions in wild type and chordin�/� embryos shown in (F) indicate no

significant difference of pSmad1/5/9 on the ventral side but a dramatic expansion into dorsal-lateral domains.

DOI: https://doi.org/10.7554/eLife.25861.011

Video 6. 3D reconstruction of pSmad1/5/9 localization

in a chordin�/� shield stage zebrafish embryo imaged

by light sheet microscopy.

DOI: https://doi.org/10.7554/eLife.25861.012
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Figure 3. Gradient formation kinetics of fluorescently tagged BMP and Chordin. (A) Schematic of BMP2b-sfGFP and -Dendra2 fusion constructs. (B)

Fluorescent BMP2b fusion constructs can induce ventralization, a BMP-overexpression phenotype (Kishimoto et al., 1997). mRNA amounts equimolar

to 2 pg of BMP2b mRNA were injected at the one-cell stage, and images were taken 30 hr post-fertilization (hpf). (C) Rescue of a BMP2b mutant (swr�/

�) with BMP2b-Dendra2. 2.74 pg of BMP2b-Dendra2-encoding mRNA were injected at the one-cell stage, and images were taken at 30 hpf. In a

separate experiment with 1 pg of BMP2b-sfGFP-encoding mRNA, 20% (9/44) of all injected swr�/� mutants were rescued, 16% (7/44) were ventralized,

and 64% (28/44) were dorsalized. (D) Schematic of Chordin-sfGFP and -Dendra2 fusion constructs. (E) Fluorescent Chordin constructs can induce

dorsalization, a Chordin-overexpression phenotype. mRNA amounts equimolar to 30 pg of Chordin mRNA were injected into wild type embryos at the

one-cell stage, and images were taken at 30 hpf. F + G) Light sheet microscopy images of BMP- and Chordin-sfGFP gradients forming from a local

source in live zebrafish embryos. Approximately 50–75 cells expressing BMP2b-sfGFP (F) or Chordin-sfGFP (G) were transplanted into host embryos at

sphere stage (see Materials and methods for details). The images show gradient formation in single optical slices approximately 20 min after

transplantation. H + I) Quantification of BMP2b-sfGFP (H) and Chordin-sfGFP (I) gradient formation kinetics from a local source (BMP2b-sfGFP: n = 8;

Chordin-sfGFP: n = 5). Dashed lines indicate the distance at which the protein distributions drop to 50% of their maximal concentration 60 min post-

transplantation.

Figure 3 continued on next page
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suggests that stability or diffusivity might differ between these proteins (Müller and Schier, 2011;

Müller et al., 2013). Importantly, Models 3 and 5 assume that BMP is more stable than Chordin,

whereas the other models assume either similar or unconstrained stabilities (Table 1).

To distinguish between these possibilities, we first determined protein stability in living zebrafish

embryos using a Fluorescence Decrease After Photoconversion (FDAP) assay (Müller et al., 2012;

Bläßle and Müller, 2015; Rogers et al., 2015). We expressed BMP2b and Chordin fused to the

green-to-red photoconvertible protein Dendra2 uniformly in zebrafish embryos, used brief UV expo-

sure to convert the signal from green to red to generate a pulsed protein pool, and monitored the

decrease in extracellular red fluorescence over time (Figure 4A+B). For BMP2b-Dendra2, we found

a clearance rate constant of k1 = (8.9 ± 0.1) � 10�5/s (half-life 130 min, Figure 4A). For Chordin-Den-

dra2, we measured a similar clearance rate constant of k1 = (9.6 ± 0.3) � 10�5/s (half-life 120 min,

Figure 4B). The similar clearance rate constants suggest that differential protein stabilities cannot

account for the different protein distributions of BMP2b and Chordin. Importantly, these results are

inconsistent with the differential protein stabilities predicted by Models 3 and 5 (Table 1).

Diffusivity of BMP and Chordin fluorescent fusion proteins in vivo
Our finding that BMP2b- and Chordin-Dendra2 fusions have similar stabilities (Figure 4A+B) sug-

gests that differences in diffusivity could account for the slight differences in gradient formation

kinetics. Indeed, when we fitted a gradient formation model based on local production, uniform dif-

fusion, and clearance constrained with our measured protein half-lives in a realistic three-dimensional

zebrafish embryo-like geometry (Müller et al., 2012) to the measured protein distributions, we

obtained the best agreement between model and data with lower diffusivity of BMP2b (4 mm2/s)

compared to Chordin (6 mm2/s) (Figure 3—figure supplement 2A+B).

Importantly, the five models assume distinct BMP and Chordin diffusion properties (Table 1, Fig-

ure 1—figure supplement 1), from no BMP diffusion (Model 2) to substantially higher Chordin

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.25861.013

The following figure supplements are available for figure 3:

Figure supplement 1. Detailed characterization of fluorescently tagged BMP2b and Chordin.

DOI: https://doi.org/10.7554/eLife.25861.014

Figure supplement 2. Modeling of BMP and Chordin gradient formation kinetics and comparison to measured gradients.

DOI: https://doi.org/10.7554/eLife.25861.015

Video 7. Gradient formation in a dome stage wild type

embryo with a BMP2b-sfGFP clone.

DOI: https://doi.org/10.7554/eLife.25861.016

Video 8. Gradient formation in a dome stage wild type

embryo with a Chordin-sfGFP clone.

DOI: https://doi.org/10.7554/eLife.25861.017
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Figure 4. Biophysical measurements of BMP and Chordin protein stability and diffusivity. A + B) FDAP protein stability measurements for BMP2b-

Dendra2 (A) and Chordin-Dendra2 (B). Error bars denote standard deviation. BMP2b-Dendra2: n = 22; Chordin-Dendra2: n = 6. C + D) FRAP effective

protein diffusivity measurements for BMP2b-Dendra2 (C) and Chordin-Dendra2 (D). Data and fits from single experiments are shown. (E) Bar chart of

the average effective diffusion coefficients from FRAP experiments. Error bars denote standard error. BMP2b-Dendra2: n = 6; BMP2b-sfGFP: n = 8;

Figure 4 continued on next page
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mobility compared to BMP (Model 5). To directly test these predictions, we determined the effective

diffusivities of fluorescently tagged BMP2b and Chordin moving through developing zebrafish

embryos. We used a Fluorescence Recovery After Photobleaching (FRAP) assay (Müller et al., 2012)

that measures the dynamics of re-appearance of fluorescence in a bleached region in embryos uni-

formly expressing fluorescent fusion proteins (Figure 4C–E). We found effective diffusion coefficients

of 2–3 mm2/s for BMPs (BMP2b-Dendra2: 2.0 ± 0.4 mm2/s; BMP2b-sfGFP: 2.6 ± 0.7 mm2/s (similar to

[Zinski et al., 2017]) and of 6–7 mm2/s for Chordin (Chordin-Dendra2: 6.0 ± 0.7 mm2/s; Chordin-

sfGFP: 7.3 ± 3.9 mm2/s), indicating that slight differences in diffusivities could underlie the differences

in protein distributions. This idea is further supported by the agreement between gradients simu-

lated with the measured diffusivities and clearance rate constants and our experimentally deter-

mined protein gradients (Figure 3—figure supplement 2E–H). The measured diffusion coefficients

are most consistent with Models 1 and 4, which assume either similarly low diffusivities (Model 4) or

that BMP has a moderately lower diffusion coefficient than Chordin (Model 1, Table 1). As observed

in the BMP2b-sfGFP gradient formation experiment (Figure 3F–I), our FRAP data demonstrate that

BMP2b-sfGFP is mobile in vivo, inconsistent with Model 2.

Strikingly, local diffusion measurements in very small extracellular volumes far away from cell sur-

faces using Fluorescence Correlation Spectroscopy (FCS) assays showed that BMP2b-sfGFP (free dif-

fusion coefficient: Df = 46 ± 1 mm2/s) and Chordin-sfGFP (free diffusion coefficient: Df = 59 ± 2 mm2/

Figure 4 continued

Chordin-Dendra2: n = 8; Chordin-sfGFP: n = 6; Sizzled-sfGFP: n = 12. (F) Free diffusion coefficients of BMP2b-sfGFP and Chordin-sfGFP measured by

Fluorescence Correlation Spectroscopy (FCS) in a diffraction-limited spot within the zebrafish embryonic extracellular space far away from cell

membranes (see Materials and methods for details). Error bars denote standard error. BMP2b-sfGFP: n = 17 measurements from 4 embryos; Chordin-

sfGFP: n = 19 measurements from 5 embryos. (G) Negligible influence of Chordin on BMP2b effective diffusion. Untagged Chordin was co-expressed

with BMP2b-Dendra2 (n = 8) or BMP2b-sfGFP (n = 9) in zebrafish embryos subjected to FRAP measurements at blastula stages. The data shown for

BMP2b-Dendra2 and BMP2b-sfGFP FRAP experiments without co-expressed Chordin is identical to the data shown in (E). p-values (unpaired two-tailed

t-test assuming equal variance) are shown for statistically significant (p<0.05) data sets.

DOI: https://doi.org/10.7554/eLife.25861.018

The following figure supplement is available for figure 4:

Figure supplement 1. Characterization of Sizzled diffusion and its role in gradient formation.

DOI: https://doi.org/10.7554/eLife.25861.019

Video 9. Gradient formation in three representative

dome stage wild type embryos with BMP2b-sfGFP

clones (green) next to clones labeled with Alexa 546-

coupled dextran (red).

DOI: https://doi.org/10.7554/eLife.25861.021

Video 10. Gradient formation in three representative

dome stage wild type embryos with BMP2b-sfGFP

clones (green) next to chordin-expressing clones

labeled with Alexa 546-coupled dextran (red).

DOI: https://doi.org/10.7554/eLife.25861.022
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Figure 5. Testing shuttling of BMP2b predicted by Model 5. (A) One-dimensional model of two clones expressing BMP (green) or Chordin (blue) with

DBMP = 2 mm2/s, DChd = 100 mm2/s, and DChdBMP = 100 mm2/s. BMP levels increase over time due to constant production. In the presence of Chordin,

the BMP gradient is deflected away from the Chordin source indicative of shuttling (compare black and red lines). Solid lines show total BMP levels (i.e.

BMP + ChdBMP in the presence of Chordin), and dashed line shows free BMP levels. (B) BMP gradients to the right of the BMP-expressing clone re-

normalized to the BMP concentration at the source boundary to demonstrate that the range of BMP is decreased between the two clones in the

presence of Chordin. The main panel shows total BMP levels (i.e., BMP + ChdBMP in the presence of Chordin), and the inset shows free BMP levels

(dashed lines). (C) Experimental test of the predictions in (A) and (B). Clones of cells expressing BMP2b-sfGFP (green) were generated by transplanting

approximately 50–75 cells from a donor embryo into wild type hosts at sphere stage (see Materials and methods for details). Another clone of cells (red)

was transplanted next to the BMP2b-sfGFP-expressing clone shortly after. The red clone is marked by the presence of fluorescent Alexa 546-coupled

dextran. Cells from red-labeled clones either contained only Alexa 546-coupled dextran (Video 9) or Alexa-546-coupled dextran and ectopic chordin

mRNA (Video 10). 15–20 min after transplantation of the clones, embryos were imaged using light sheet microscopy. The image shows gradient

formation in a single optical slice approximately 20 min after transplantation. (D) Quantification of average BMP2b-sfGFP gradients at ~15 min or ~75

min after transplantation in embryos generated as in (C) with (red/brown) or without (black/gray) ectopic Chordin sources. Error bars denote standard

error. n = 8 for each condition. (E) One-dimensional simulation of two clones expressing BMP (green) or Chordin (blue) with the experimentally

measured diffusion coefficients DBMP = 2 mm2/s, DChd = 6 mm2/s, and DChdBMP = 2.2 mm2/s. BMP levels increase over time due to constant production.

Figure 5 continued on next page
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s) are highly mobile over short spatial and temporal scales (Figure 4F), whereas their diffusivities

are reduced at the global scale when they move across a field of cells (Figure 4E). We hypothesize

that the difference between effective diffusivities (measured by FRAP) and local diffusivities (mea-

sured by FCS) is due to binding to immobile extracellular molecules, which could serve as diffusion

regulators that hinder the mobility of BMP2b and Chordin, similar to what has been proposed for

other developmental signals such as Nodal and FGF (Müller et al., 2012; Müller et al., 2013).

Sizzled, BMP, and Chordin diffusivities are within the same order of
magnitude
Models 3 and 4 assign important roles to the secreted proteins ADMP and Sizzled in regulating

BMP signaling and distribution. Model 3 postulates diffusivities of ADMP and Sizzled equivalent to

BMP and Chordin, whereas Model 4 requires approximately 25-fold higher diffusivities of ADMP and

Sizzled compared to BMP and Chordin (Table 1). To measure the diffusivities of ADMP and Sizzled

and test these assumptions, we developed fluorescent ADMP and Sizzled fusion proteins (see Mate-

rials and methods). Whereas Sizzled fusion proteins had activity comparable to untagged Sizzled

(Figure 4—figure supplement 1A–C), ADMP fusions with sfGFP or FLAG tags inserted 2, 5, or 11

amino acids after the Furin cleavage site were much less active than untagged ADMP (data not

shown), and could therefore not be used for diffusion measurements. Using FRAP, we measured an

effective diffusion coefficient of 9.7 ± 3.2 mm2/s for Sizzled-sfGFP (Figure 4E, Figure 4—figure sup-

plement 1D). This measurement is consistent with Model 3, but not Model 4, the latter of which

requires much higher Sizzled mobility (Table 1).

When parameterized with these measured diffusion coefficients and over a ~100-fold range of

ADMP diffusion coefficients, Model 3 can form ventral-dorsal gradients over relevant time scales

(Figure 4—figure supplement 1F–J), but the kinetics of gradient formation do not reflect the meas-

urements of pSmad1/5/9 distribution profiles in Figure 1A+B. Moreover, the relatively minor differ-

ence between BMP/Chordin and Sizzled diffusivity is not compatible with the 25-fold differential

required for Model 4 (Figure 4—figure supplement 1K–P).

Chordin does not regulate BMP protein diffusivity or distribution
Model 5 (Shuttling) postulates that highly diffusive Chordin enhances the mobility of poorly diffusive

BMPs (Ben-Zvi et al., 2008). In this model, Chordin is secreted dorsally, binds to relatively immobile

BMP, and creates a highly mobile BMP/Chordin complex. This complex then diffuses until Chordin is

cleaved by a protease (Xlr), rendering BMP immobile again (Figure 1—figure supplement 1). To

investigate whether Chordin is not only an inhibitor of BMP, but also enhances BMP diffusivity, we

increased Chordin levels and measured the effective diffusivity of fluorescent BMP2b. In embryos

overexpressing Chordin, we did not observe a significant change in the effective diffusivity of fluo-

rescently tagged BMP2b compared to embryos that did not overexpress Chordin (BMP2b-

Dendra2 + Chordin: 2.2 ± 0.2 mm2/s; BMP2b-sfGFP + Chordin: 2.8 ± 0.7 mm2/s; Figure 4G). The abil-

ity of Chordin to enhance the diffusivity of BMP, a major tenet of Model 5, is therefore not sup-

ported by FRAP data.

Model 5 also predicts that Chordin alters the distribution of BMP protein. Over time, the shuttling

of BMP by Chordin causes BMP to accumulate away from the Chordin source, resulting in an oppos-

ing peak of BMP. Our observation that Chordin does not affect the diffusivity of BMP challenges this

view (Figure 4G). However, to directly test whether a Chordin source can alter BMP distribution

(Figure 5A+B), we juxtaposed clones of BMP2b-sfGFP-producing cells with clones of cells secreting

untagged Chordin and imaged the formation of the BMP2b-sfGFP gradient over time using light

sheet fluorescence microscopy (Figure 5C+D, Videos 9–10). Model 5 predicts a steeper BMP2b-

Figure 5 continued

Solid lines show total BMP levels (i.e. BMP + ChdBMP in the presence of Chordin), and the dashed line shows free BMP levels. Only the distribution of

free BMP is affected as a consequence of Chordin binding, and the gradient of total BMP is not deflected away from the Chordin source (compare

solid black and red lines). (F) Gradients of total BMP levels to the right of the BMP expressing clone simulated with the experimentally measured

diffusion coefficients (DBMP = 2 mm2/s, DChd = 6 mm2/s, and DChdBMP = 2.2 mm2/s) and renormalized to the concentration at the boundary show that the

range of BMP is not decreased between the two clones in the presence of Chordin.

DOI: https://doi.org/10.7554/eLife.25861.020
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sfGFP gradient in the presence of an adjacent Chordin-producing clone compared to a wild type

clone (Figure 5A+B). Although BMP2b-sfGFP gradients tend to be slightly steeper in the presence

of a neighboring Chordin-expressing clone compared to a non-Chordin-expressing clone

(Figure 5D), this minor change is unlikely to account for the formation of a ventral peak in BMP sig-

naling during the short time (hours) required to complete dorsal-ventral patterning (Figure 1A+B).

We also failed to observe significant redistribution of BMP in simulations of adjacent BMP and Chor-

din clones using our measured diffusion coefficients and half-lives (Figure 5E+F). This suggests that

shuttling of BMP2b by Chordin is not relevant for the early aspects of dorsal-ventral patterning in

zebrafish embryos.

Discussion
The BMP signaling gradient patterns the dorsal-ventral axis during animal development. Five major

models can explain how a ventral peak of BMP signaling forms, but the biophysical assumptions

underlying these models differ widely (Table 1). After experimentally examining these assumptions,

our findings lead to four main conclusions. First, Chordin does not play an active role in generating

BMP signaling peaks, but only globally inhibits BMP (Figure 2). This is consistent with graded

source-sink-type models (e.g. Models 1 and 2) and Model 3, but inconsistent with Models 4 and 5

(Table 1). Interestingly, BMP signaling in the absence of Chordin is not raised on the extreme dorsal

side, indicating that other extracellular inhibitors such as Follistatin or Noggin (Umulis et al., 2009)

or inhibitors of bmp expression (Koos and Ho, 1999; Leung et al., 2003; Ramel and Hill, 2013)

that were not included in the tested models might further restrict BMP signaling in these regions.

Second, BMP2b and Chordin both diffuse in the extracellular space (Figure 3F–I), challenging mod-

els involving immobile BMP (Model 2). Third, fluorescently tagged BMP2b and Chordin have

similarly high local diffusivities (Figure 4F), but on a global scale they move much more slowly

through the embryo (Figure 4E). These findings rule out Models 2, 3, and 5, but are consistent with

Models 1 and 4. Fourth, Chordin does not significantly affect BMP2b diffusion or protein distribution

in zebrafish embryos (Figure 4G, Figure 5), undermining shuttling models in this developmental

context. Instead, our data are most consistent with Model 1, the graded source-sink model of BMP/

Chordin-mediated dorsal-ventral patterning during early zebrafish development. Our conclusions are

also consistent with a recent complementary study (Zinski et al., 2017).

Notably, shuttling models (e.g. Model 5) have gained prominence in many developmental con-

texts including scale-invariant patterning (Ben-Zvi et al., 2008; Barkai and Ben-Zvi, 2009;

Francois et al., 2009; Plouhinec and De Robertis, 2009; Ben-Zvi and Barkai, 2010; Ben-Zvi et al.,

2011a; Haskel-Ittah et al., 2012), but the fundamental tenet, that is, whether putative shuttles such

as Chordin change the diffusivity and distribution of signals such as BMP, has not been directly

examined. Alternative models that do not invoke Chordin-dependent facilitated BMP diffusion

(Model 4) (Francois et al., 2009) or that postulate differential protein stability (Model 3)

(Inomata et al., 2013) can also explain scale-invariant patterning. Our data do not provide strong

evidence for shuttling of BMP2b at time scales relevant for dorsal-ventral patterning during early

zebrafish embryogenesis: We failed to observe a significant modulation of BMP2b-sfGFP or BMP2b-

Dendra2 diffusivity or distribution by Chordin (Figure 4G, Figure 5). It is, however, possible that

other BMPs (e.g. BMP4, BMP7, ADMP) are shuttled by interactions with Chordin and its protease

Tolloid/Xlr. Indeed, tolloid mutants display a mild patterning defect of the ventral tail fin

(Connors et al., 1999) that might reflect a requirement for the ventral accumulation of a weakly

active, dorsally expressed BMP ligand such as ADMP (Dickmeis et al., 2001; Lele et al., 2001).

The graded source-sink model (Model 1) that is best supported by our data describes a system in

which the graded, ventrally biased distribution of bmp mRNA and the dorsally localized chd mRNA

distribution produce opposing sources of extracellular, diffusing BMP and Chordin protein, which

together generate the BMP signaling gradient required for proper dorsal-ventral patterning. Nota-

bly, this model fails to take other known dorsal-ventral regulators into account (e.g., ADMP, Sizzled,

Follistatin, Noggin). Furthermore, approximately one third of bmp2b and chordin mutant embryos

can be rescued by apparently uniform bmp and chordin expression, respectively (Kishimoto et al.,

1997; Fisher and Halpern, 1999) (Figure 3C), arguing against a strong requirement for concurrent

opposing BMP and Chordin sources as long as one component of the system is biased (i.e. ventrally

biased bmp2b expression with uniform Chordin, or dorsally biased chordin expression with uniform
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BMP). Thus, further adjustments to the basic Model 1 will be required to fully describe dorsal-ventral

patterning.

Although our results support a role for BMP diffusion in dorsal-ventral patterning, the necessity of

signal diffusion for developmental patterning has recently been challenged by several studies

(Brankatschk and Dickson, 2006; Roy and Kornberg, 2011; Alexandre et al., 2014;

Dominici et al., 2017; Varadarajan et al., 2017). It will be interesting to determine whether BMP

diffusion is indeed required for proper patterning using emerging nanobody-mediated diffusion per-

turbations (Harmansa et al., 2015) or optogenetics-based cell-autonomous modulation of signaling

range (Sako et al., 2016).

Materials and methods

Immunostainings
To visualize pSmad1/5/9, wild type TE embryos were dechorionated at the one-cell stage using 1

mg/ml of Pronase (Roche, Cat. No. 11 459 643 001). Dechorionated embryos were incubated at

28˚C and fixed at different developmental stages in 4% formaldehyde (Roth) in PBS overnight at 4˚C
on a shaker. Embryos were then stored in 100% methanol at �20˚C for at least 2 hr. All subsequent

steps were carried out at room temperature. Embryos were re-hydrated with 70%, 50%, and 30%

methanol in PBS for 10 min each. The embryos were then washed eight times with PBST (0.1%

Tween) for 15 min and blocked twice with blocking solution (10% fetal bovine serum and 1% DMSO

in PBST) for 1 hr, and incubated with 1:100 anti-pSmad1/5/9 antibody (Cell Signaling Technology,

Cat. No. 9511) for 4 hr. Embryos were washed with blocking solution for 15 min, washed seven times

with PBST, blocked with blocking solution for 1 hr, incubated with 1:500 Alexa 488-coupled goat

anti-rabbit secondary antibody (Life Technologies, Cat. No. A11008) for 4 hr, and washed similarly

to the procedure after primary antibody application. Embryos were then counterstained with DAPI

solution (0.2 mg/ml in PBST) for 1 hr and washed with PBST. Immunostainings were performed using

an In situ Pro hybridization robot (Abimed/Intavis).

To analyze pSmad1/5/9 distributions in the absence of Chordin, embryos from one pair of chor-

dintt250 (Hammerschmidt et al., 1996) heterozygous parents were collected, fixed, immunostained

with anti-pSmad1/5/9 antibody (Cell Signaling Technology, Cat. No. 13820S) as above, and imaged

simultaneously to minimize differences between samples. Embryos were treated as described above,

except that progeny from chordin+/- incrosses were first permeabilized with ice-cold acetone at

�20˚C for 7 min before the re-hydration step. After imaging and DNA extraction (Meeker et al.,

2007), progeny from the chordintt250 heterozygote incross were identified as wild type, heterozy-

gous, or homozygous mutant embryos by PCR amplification using the forward primer 5’-TTCG

TTTGGAGGACAACTCG-3’ and the reverse primer 5’-AACTCAGCAGCAGAAGTCAATTC-3’ with an

initial denaturation step of 94˚C for 3 min; 39 cycles of 94˚C for 30 s, 55˚C for 40 s, and 72˚C for 30

s; and a final extension at 72˚C for 5 min with subsequent digestion with MspI (New England Biolabs,

Cat. No. R0106) for 2 hr. The genotyping assay for the chordintt250 line was designed by the Zebra-

fish International Resource Center (ZIRC) staff and downloaded from the ZIRC website at http://

zebrafish.org.

Generation of fluorescent BMP2b fusions
All constructs were generated by PCR-based methods (Horton et al., 1990), contain the consensus

Kozak sequence gccacc 5’ of the start codon, and were inserted into the EcoRI and XhoI sites of the

pCS2(+) vector. To generate BMP2b-sfGFP and BMP2b-Dendra2, sequences encoding sfGFP or

Dendra2 flanked by LGDPPVAT linkers were inserted two amino acids downstream of the BMP2b

Furin cleavage site. Sequences encoding the FLAG tag DYKDDDDK were inserted between the first

linker and sfGFP or Dendra2 to generate BMP2b-sfGFP-FLAG and BMP2b-Dendra2-FLAG. To gen-

erate BMP2b-FLAG, the FLAG tag was inserted between two LGDPPVAT linkers two amino acids

downstream of the BMP2b Furin cleavage site.

Generation of fluorescent Chordin fusions
All constructs were generated by PCR-based methods (Horton et al., 1990) and contain the consen-

sus Kozak sequence gccacc 5’ of the start codon. Chordin was inserted into the ClaI site of pCS2(+).
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All other Chordin-containing constructs were inserted into the EcoRI and XbaI sites of the pCS2(+)

vector. To generate Chordin-sfGFP and BMP2b-Dendra2, sequences encoding sfGFP or Dendra2

flanked by LGDPPVAT linkers were inserted immediately 5’ of the Tolloid cleavage site 2. To gener-

ate Chordin-FLAG, sequences encoding the FLAG tag DYKDDDDK were inserted immediately 5’ of

the Tolloid cleavage site 2 without additional linkers. To generate Chordin-sfGFP-FLAG and Chor-

din-Dendra2-FLAG, sequences encoding the FLAG tag were inserted between the first linker and

sfGFP or Dendra2 of Chordin-sfGFP and Chordin-Dendra2 constructs.

Generation of fluorescent Sizzled fusions
All Sizzled constructs were generated by PCR-based methods (Horton et al., 1990), contain the

consensus Kozak sequence gccacc 5’ of the start codon, and were inserted into the EcoRI and XbaI

sites of the pCS2(+) vector. To generate Sizzled-sfGFP, sequences encoding sfGFP with an N-termi-

nal LGLG linker were fused to the C-terminus of Sizzled. Sequences encoding the FLAG tag

DYKDDDDK were inserted between the LGLG linker and sfGFP to generate Sizzled-sfGFP-FLAG. To

generate Sizzled-FLAG, the FLAG tag was fused to the C-terminus of Sizzled separated by an LGLG

linker.

mRNA in vitro synthesis
mRNA was generated using SP6 mMessage mMachine kits (Thermo Fisher) after vector linearization

with NotI-HF (New England Biolabs, Cat. No. R3189). mRNA was purified using LiCl precipitation or

Qiagen RNeasy kits following the manufacturers’ instructions.

Phenotypic analysis
Scoring of ventralization and dorsalization was executed as previously described (Mullins et al.,

1996; Kishimoto et al., 1997). Embryos were injected at the one- to two-cell stage with equimolar

amounts of BMP2b (1 pg), BMP2b-sfGFP (1.49 pg), and BMP2b-Dendra2 (1.47 pg) mRNA to assess

ventralizing activity. At 1 day post-fertilization, BMP2b-injected embryos were classified as weakly

ventralized (V1) to strongly ventralized (V4). V1 embryos have reduced eyes but a prominent head.

V2 embryos have no eyes, reduction of the head, and expansion of posterior structures such as

somites and tail. V3 embryos completely lack head structures and exhibit a further expanded tail

and enlarged blood islands. Finally, V4 embryos lack most structures except for a short, protruding,

and expanded tail.

To assess dorsalizing activity of the Chordin constructs, embryos were injected with equimolar

amounts of Chordin (30 pg), Chordin-sfGFP (37 pg), Chordin-Dendra2 (37 pg), and Chordin-FLAG

mRNA (30 pg). Embryos were scored at 1 day post-fertilization and classified as weakly dorsalized

(C1) to strongly dorsalized (C5) (Kishimoto et al., 1997). C1 embryos lack the ventral tail fin. C2

embryos have a further loss of ventral structures, such as the ventral tail vein, and a bent tail. C3

embryos exhibit a tail that is shortened and twisted. C4 embryos have observable head structures

and develop eyes with twisting of the posterior structures above the yolk. C5 embryos are fully dor-

salized and frequently lyse (Mullins et al., 1996; Kishimoto et al., 1997).

Rescue of BMP2b (swr�/�) mutants
Injection of BMP2b mRNA can rescue BMP2b mutants (Kishimoto et al., 1997). To investigate

whether tagged BMP2b constructs can rescue swrtc300�/� mutants (Mullins et al., 1996), the rescu-

ing amount of BMP2b mRNA was first determined (1.8 pg), and equimolar amounts of mRNA encod-

ing fluorescent fusion constructs were subsequently injected into the progeny of heterozygous

swr+/- mutant incrosses. Embryos with wild type morphology at 24 hpf were anesthetized and

mounted in 2% methylcellulose for imaging with an AxioZoom V16 (ZEISS) microscope at 30–33 hpf.

To genotype embryos following DNA extraction (Meeker et al., 2007), PCR was performed to

amplify a BMP2b fragment with the forward primer 5’-AAAAGCCGAGGAGAAAGCAC-3’ and the

reverse primer 5’-AGTCCTTCATTGGGGAGATTGTTC-3’, and the following thermocycling parame-

ters: An initial denaturation step of 94˚C for 3 min; 39 cycles of 94˚C for 30 s, 58˚C for 40 s, and

72˚C for 40 s; and a final extension at 72˚C for 5 min. PCR amplicons were subsequently digested

with HaeIII (New England Biolabs, Cat. No. R0108) at 37˚C for 2 hr. The genotyping assay for the
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swrtc300 line was designed by the Zebrafish International Resource Center (ZIRC) staff and down-

loaded from the ZIRC website at http://zebrafish.org.

Preparation of extracellularly enriched fractions for western blotting
Extracellularly enriched and cellular fractions from manually deyolked embryos between sphere and

dome stage were obtained as described previously (Müller et al., 2012). mRNAs encoding FLAG-

tagged constructs were injected at the one- or two-cell stage at equimolar amounts (BMP2b-FLAG:

444 pg, BMP2b-sfGFP-FLAG: 638 pg, BMP2b-Dendra2-FLAG: 630 pg; and Chordin-FLAG: 500 pg,

Chordin-sfGFP-FLAG: 620 pg, Chordin-Dendra2-FLAG: 615 pg). For protein samples with BMP2b

constructs, fractions from approximately 19 embryos were loaded and resolved by SDS-PAGE using

12% polyacrylamide gels. For protein samples with Chordin constructs, fractions from approximately

17–18 embryos were loaded and resolved in 8% polyacrylamide gels. Proteins were subsequently

transferred onto PVDF membranes using a Trans-Blot Turbo Transfer System (Bio-Rad, Cat. No.

170–4272). Membranes were blocked with 5% non-fat milk (Roth, Cat. No. T145.2) in PBST (0.1%

Tween) and incubated with anti-FLAG antibody (Sigma, Cat. No. F3165) at a concentration of 1:2000

in non-fat milk in PBST at 4˚C overnight. HRP-coupled donkey anti-mouse secondary antibody (Jack-

son ImmunoResearch, Cat. No. 715-035-150) was used at concentration of 1:25,000 for 3 hr at room

temperature. Chemiluminescence was detected using SuperSignal West Dura Extended Duration

Substrate (Thermo Fisher, Cat. No. 34075) and imaged with a chemiluminescence imaging system

(Fusion Solo, Vilber Lourmat).

Transplantations
To generate clonal sources secreting BMP2b-sfGFP, Chordin-sfGFP, and untagged Chordin (Fig-

ures 3 and 5), approximately 50–75 cells were transplanted from sphere stage wild type TE donor

embryos expressing these constructs into uninjected, sphere stage sibling hosts (similar to

[Müller et al., 2012]). Transplantations were carried out in 1 x Ringer’s buffer. Cells were explanted

from donors, extruded briefly into the buffer to wash away cellular debris and extracellular fluores-

cent protein, and then transplanted into host embryos.

Donor embryos were dechorionated with 1 mg/ml Pronase (Roche, Cat. No. 11 459 643 001) and

injected with 1–2 nl injection mix at the one-cell stage. Sibling host embryos were dechorionated

together with donors at the one-cell stage, and all embryos were incubated at 28˚C until transplanta-

tion. Unfertilized or injured embryos were discarded.

For single (Figure 3) and double (Figure 5) transplantation experiments, BMP2b-sfGFP and Chor-

din-sfGFP donors were injected with 500 pg mRNA (Figure 3—figure supplement 1F–H).

For double transplantation experiments (Figure 5), embryos received one transplantation from a

donor expressing BMP2b-sfGFP and a second transplantation from a donor injected at the one-cell

stage with either 50 pg Alexa 546-coupled dextran (10 kDa, Molecular Probes, Cat. No. D22911) or

1000 pg Chordin mRNA + 50 pg Alexa 546-coupled dextran. Alexa 546-coupled dextran was used

to mark the location of the second clone.

2–10 min post-transplantation, embryos were mounted in 1% low-melting NuSieve GTG agarose

(Lonza, Cat. No. 50080) dissolved in embryo medium (250 mg/l Instant Ocean salt dissolved in

reverse osmosis water). Embryos were immersed in 40˚C molten low melting point agarose, pulled

into 1.5 mm glass capillary tubes (ZEISS), and positioned with the animal pole perpendicular to the

capillary using a metal probe. Agarose tubes were then suspended in embryo medium, and imaged

at room temperature using a ZEISS Lightsheet Z.1 microscope (see Light sheet microscopy section

for further imaging details).

Light sheet microscopy
Fluorescence images in Figures 1, 2, 3 and 5, and Figure 3—figure supplement 1 were obtained

using a Lightsheet Z.1 microscope (ZEISS). For fixed, immunostained embryos, samples were

mounted into a glass capillary sample holder in 1% low-melting NuSieve GTG agarose (Lonza, Cat.

No. 50080) in embryo medium with 0.2 mm dark red fluorescent FluoSpheres (Life Technologies,

Cat. No. F8807) diluted 1:200,000 from a 2% solids stock. Embryos were imaged at 0˚, 45˚, 180˚ and
225˚ angles (Schmid et al., 2013) using identical imaging conditions. For 3D reconstruction, an inter-

active bead-based registration algorithm was used to determine the threshold that most accurately
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selects the beads (Preibisch et al., 2010). Reconstructed images were converted to 8-bit format

using ImageJ, and Imaris software (Bitplane) was used for 3D data visualization and video genera-

tion. The videos were cropped using Avidemux 2.6.

To visualize the entire embryo in a single image, reconstructed images were first converted to 16-

bit files using ImageJ, and equirectangular 2D map projections were then generated (Schmid et al.,

2013). The 2D maps were re-aligned into Hammer-Aitoff projections using Hugin panorama photo

stitcher software (http://hugin.sourceforge.net) to orient the peak of pSmad1/5/9 intensity to the

ventral pole (left in Figure 1 panels) and the trough of pSmad1/5/9 intensity to the dorsal pole (right

in Figure 1 panels). For gradient quantifications in Figure 1A+B and Figure 2F–H, the embryo

proper was masked using manual polygon selections in Fiji (Schindelin et al., 2012) in order to

exclude signal from the yolk syncytial layer and yolk. The ‘Plot Profile’ function in Fiji was then

applied to the entire masked image to determine ventral-to-dorsal gradients. The background signal

of immunostained embryos was determined by finding the lowest value in the profiles of sphere

stage embryos (Figure 1A+B) and the lowest value in the profiles of chordin�/� embryos (Figure 2F

+G), respectively. These background values were subtracted from the data sets, and the profiles

were normalized to the highest value in each data series. The mean and standard error of the nor-

malized data sets was then calculated piece-wise for every point along the ventral-to-dorsal profile.

For transplantation experiments in Figures 3 and 5, imaging began 5 to 20 min post-transplanta-

tion and continued for approximately 1 hr (see Transplantation section for further details). The fol-

lowing imaging conditions were used:

. W Plan-Apochromat 20 x objective, 0.5 x zoom

. dual side light sheets

. 488 nm laser (100 mW) at 6% power (for sfGFP-containing constructs)

. 561 nm laser (20 mW) at 5% power (for double transplantations only; to detect Alexa 546
signal)

. separate exposure to 488/561 nm lasers (in double transplantation experiments only) to avoid
cross-talk

. exposure time: 250 ms

. average light sheet thickness: 6.4 mm

. 3 mm intervals between z-slices; 60 slices per embryo ( »180 mm total)

. 5 min intervals between imaging

Gradients were quantified using maximum intensity projections of 15 z-slices similar to the

approach in (Müller et al., 2012). A rectangular region of interest abutting the clone with a fixed

height of 86.34 mm (corresponding to 189 pixels) and varying widths depending on embryo length

was drawn in Fiji (Schindelin et al., 2012), and the average intensity in 0.457 mm strips was calcu-

lated from the maximum intensity projections. Background intensity resulting from autofluorescence

was measured similarly in uninjected embryos (for single transplantation experiments, n = 4) or in

uninjected embryos transplanted with a clone of cells containing Alexa 546-coupled dextran (for

double transplantation experiments, n = 2). A single value for background subtraction was deter-

mined by calculating the average of the intensity profile values. After subtracting the background

value from the experimental intensity profiles, the data was normalized to the value closest to the

clonal source boundary. This approach allows for the comparison of the relative gradient range,

which is independent of constant production rates. We assume constant production rates over the

relatively short time scales of observation ( »80 min).

Embryos with low signal-to-noise ratios were excluded from analysis.

Fluorescence decrease after photoconversion (FDAP) experiments
FDAP experiments were carried out as described in (Müller et al., 2012; Rogers et al., 2015).

Embryos were injected at the one-cell stage with either 60 pg BMP2b-Dendra2 mRNA + 0.5 ng

Alexa 488-dextran (3 kDa, Molecular Probes) or 150 pg Chordin-Dendra2 mRNA + 0.5 ng Alexa

488-dextran. To assess background fluorescence, embryos were injected with 0.5 ng Alexa 488-dex-

tran only. Embryos were mounted in 1% low melting point agarose in glass-bottom Petri dishes

(MatTek Corporation) covered with embryo medium to hydrate the agarose during imaging.

FDAP experiments were performed using an LSM 780 (ZEISS) confocal microscope. Pre-conver-

sion and post-conversion images were acquired using an LD C-Apochromat 40x/1.1 NA water
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immersion objective. A single pre-photoconversion image was first acquired for each sample fol-

lowed by photoconversion and multiposition time-lapse imaging with 10 min intervals for approxi-

mately 300 min. For photoconversion, embryos were illuminated with a Sola SE II LED lamp at 100%

power for 30 s through a C-Apochromat 10x/0.45 NA objective and an AHF F36-500 UV filter cube.

For both pre- and post-conversion images, Alexa 488 was excited using a 488 nm Argon laser, and a

DPSS 561 nm laser was used to excite photoconverted Dendra2. The emission signal between 494–

576 nm (Alexa 488) and 578–696 nm (photoconverted Dendra2) was collected using a 32 channel

GaAsP QUASAR detector array. Embryos that produced only low levels of photoconverted Dendra2

signal or whose position shifted significantly over time as well as embryos with non-uniform signal

distribution or embryos that died were excluded from analysis. Sample numbers: n = 22 for BMP2b-

Dendra2 (with n = 17 background embryos); n = 6 for Chordin-Dendra2 (with n = 1 background

embryo).

All experiments were analyzed using PyFDAP (Bläßle and Müller, 2015; Rogers et al., 2015),

version 1.1.2. PyFDAP extracts the extracellular and intracellular photoconverted Dendra2 signal by

masking the Alexa 488 signal, and fits the resulting average intensities with a linear decay model.

The ordinary differential equation describing linear protein decay is given by

dc

dt
¼�k1c

where c is the concentration of the protein and k1 is its clearance rate constant. We assume that

Dendra2 signal is directly proportional to the protein concentration. The analytical solution of this

equation is given by

c tð Þ ¼ c0e
�k1 t þ y0

where c0 + y0 is the protein’s concentration at t = 0, and y0 is the protein’s concentration at t = ¥.

The half-life t of the protein can then be calculated as

t¼ ln 2ð Þ=k

PyFDAP estimates a lower bound for y0 by computing the maximum relative effect of photobleach-

ing Fi,r. For each background data set, the strongest influence of photobleaching was computed by

taking the minimum over all differences of background intensity Bj,r and background noise Ni, and

the difference between pre-conversion background intensity Bpre,i,r and noise level. Here, r denotes

the region under consideration, i.e. extracellular, intracellular, or the entire imaging slice; i indicates

the ith data set, and j counts the background data sets. The average over all b background data sets

was then taken to arrive at the mean effect of photobleaching. The factor

Fi;r ¼
1

b

X

b

j¼1
t

min
Bj;r tð Þ�Ni

Bprej;r �Ni

 !

was used to scale the pre-conversion intensity of the FDAP data set according to

y0i;r � Fi;r Iprei;r �Ni

� �

þNi

This lower bound was then used to constrain a Nelder-Mead simplex algorithm when minimizing

SSD¼
n

P

�I tnð Þ� c tnð Þð Þ
2

Fluorescence recovery after photobleaching (FRAP) experiments
FRAP experiments and data analysis were carried out as previously described (Müller et al., 2012;

Müller et al., 2013) using an LSM 780 NLO confocal microscope (ZEISS) and an LD LCI Plan-Apo-

chromat 25x water immersion objective. Embryos were injected at the one-cell stage with 30 pg of

mRNA encoding BMP2b-sfGFP, 60 pg of mRNA encoding BMP2b-Dendra2, 60 pg of mRNA encod-

ing Chordin-sfGFP, 120 pg of mRNA encoding Chordin-Dendra2, or 30 pg of mRNA encoding Siz-

zled-sfGFP. To analyze the effect of Chordin on BMP2b diffusion, embryos were injected at the one-

cell stage with 30 pg of mRNA encoding BMP2b-sfGFP plus 60 or 200 pg of mRNA encoding
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Chordin, or 60 pg of mRNA encoding BMP2b-Dendra2 plus 200 pg of mRNA encoding Chordin.

Embryos were mounted in 1% low-melting point agarose in glass-bottom Petri dishes (MatTek Cor-

poration) covered with embryo medium to hydrate the agarose during imaging. Embryos with low

or non-uniform fluorescence and embryos that died or whose position shifted significantly over time

were excluded from analysis.

For FRAP data analysis, the fits of a model with uniform production, diffusion, and clearance were

constrained with the clearance rate constants of BMP2b-Dendra2 and Chordin-Dendra2 fusions mea-

sured by FDAP in the present study (BMP2b-Dendra2: k1 = 8.9 � 10�5/s; Chordin-Dendra2:

k1 = 9.6 � 10�5/s). Sizzled-sfGFP fits were constrained with the clearance constant measured for

BMP2b-Dendra2 assuming similar protein stability. As shown previously, the estimation of diffusion

coefficients does not sensitively depend on the values of clearance rate constants if the time scales

of observation (here: 50 min) and protein stability (here: approximately 120 min) are similar

(Müller et al., 2012).

Fluorescence correlation spectroscopy (FCS) experiments
The FCS experiments were done using an LD C-Apochromat 40x/1.1 NA water immersion objective

on an LSM 780 NLO confocal microscope (ZEISS). Embryos were injected at the one-cell stage with

30 pg of mRNA encoding BMP2b-sfGFP or 60 pg of mRNA encoding Chordin-sfGFP. Embryos were

mounted in 1% low-melting point agarose in glass-bottom Petri dishes (MatTek Corporation) and

covered with embryo medium to hydrate the agarose during imaging. The fluorophores (sfGFP,

Alexa 488) were excited using an Argon 488 nm laser, and the emission light between 494 and 542

nm was collected using a 32-channel GaAsP QUASAR detector array. Before each FCS experiment,

the pinhole was aligned and set to 1 Airy unit, and the instrument was calibrated using a solution of

40 nM Alexa 488 dye (Thermo Fisher) in water. For each FCS sample, fluorescence fluctuations were

measured for 10 s with 10 repeats, and any irregularities in the 100 s count trace resulting from cellu-

lar movements were excluded from analysis.

Auto-correlation curves for Alexa 488 were freely fitted to determine the structural parameter as

well as the diffusion time, the triplet state fraction, and the triplet state relaxation time of Alexa 488

for every experiment. The auto-correlation curves for BMP2b-sfGFP and Chordin-sfGFP were fitted

with a fixed structural parameter, fixed triplet state fraction, and fixed triplet relaxation time deter-

mined from the Alexa 488 calibration measurements. The curves were fitted using ZEISS ZEN Pro

software with a one-component ‘free diffusion with triplet state correction’ model. The first 10�6 sec-

onds lag time for the correlation curve was excluded in the fitting (Yu et al., 2009; Müller et al.,

2013). The diffusion coefficient was then calculated by comparing the diffusion time of BMP2b-

sfGFP and Chordin-sfGFP with Alexa 488 (reference diffusion coefficient: 435 mm2/s [Petrásek and

Schwille, 2008]).

Since the values of the triplet state fraction and the triplet state relaxation time of sfGFP are

unknown and not necessarily identical to those of Alexa 488, we also freely fitted the autocorrelation

curves for BMP2b-sfGFP and Chordin-sfGFP with the experimentally measured structural parameter

as the only constraint, and determined free diffusion coefficients of D = 35 ± 2 mm2/s for BMP2b-

sfGFP (n = 17 measurements from 4 embryos) and D = 50 ± 3 mm2/s for Chordin-sfGFP (n = 19

measurements from 5 embryos), within a deviation of approximately 20–30% compared to the diffu-

sion coefficients determined by constraining the fits with a fixed structural parameter, fixed triplet

state fraction, and fixed triplet relaxation time (D = 46 ± 1 mm2/s for BMP2b-sfGFP, and D = 59 ± 2

mm2/s for Chordin-sfGFP; values reported in Figure 4). The similar diffusion coefficients determined

by differently constrained fits indicate that the diffusion time measured in our experiments does not

sensitively depend on the values of the triplet state fraction and triplet state relaxation time.

Mathematical modeling of BMP2b-sfGFP and Chordin-sfGFP gradient
formation
The geometry of the zebrafish blastoderm was approximated by the complement of two spheres

with a columnar subdomain placed off-center to represent the signal source region with the same

parameters as described in Müller et al. (2012). Gradient formation was simulated with the source-

diffusion-sink model
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qc

qt
¼Dr2c� k1cþ dsk2

with

ds ¼
1 in the source

0 otherwise

�

For Figure 3—figure supplement 2, the experimental data were fitted with solutions from a 50 �

50 parameter grid spanning all possible combinations of 50 diffusion coefficients (logarithmically

spaced from 0.1 mm2/s to 50 mm2/s) and 50 clearance rate constants (logarithmically spaced from 1

� 10�5/s to 5 � 10�4).

Simulations of previous models
The finite element method was used for all numerical simulations. All geometries are one-dimen-

sional representations of embryos. The solution at each time step in the discretized geometries was

determined using a sparse LU factorization algorithm (UMFPACK), and the time stepping was com-

puted using a backward Euler step method (Comsol Multiphysics). Simulations in Figure 1C–E,G

(Models 1, 2, 3, and 5) were executed for a total of 10080 s (i.e., for approximately 3 hr from sphere

to shield stage during zebrafish embryogenesis [Kimmel et al., 1995]) and read out every 2520 s (i.

e., approximately every 42 min at relevant zebrafish stages). The simulation in Figure 1F (Model 4)

was executed for a total of 20 time steps near steady state and read out at every fifth time step.

The following model descriptions comprise the complete wild type systems. For simulations of

chordin mutants, the Chordin flux was set to 0 (Models 1, 2, 3, and 5), or the Chordin-dependent

terms were removed from the equations and the initial concentration of Chordin was set to 0 (Model

4). To focus on the role of Chordin in regulating BMP signaling and distribution, we did not include

other negative regulators of BMP such as Noggin and Follistatin (Umulis et al., 2009). For the inter-

pretation of the simulations, we assume that the distribution of free BMPs is correlated with BMP

signaling and the distribution of pSmad1/5/9.

To facilitate comparison of the models, the distribution profiles of free BMP are shown as a func-

tion of relative embryo length, and the solutions were normalized to the ventral-most free BMP con-

centration at shield stage (i.e., at t = 7560 s for Models 1, 2, 3, and 5, and at t = 15 for Model 4) in

wild type simulations.

Model 1: Graded source-sink (mobile BMP)
In the graded source-sink model, the BMP source �BMP(x) was modeled after the known distribution

of bmp2b mRNA between sphere stage and 30% epiboly (Ramel and Hill, 2013). The model does

not include autoregulation of BMP production since positive feedback only appears to be important

for later stages of development (Ramel and Hill, 2013; Zinski et al., 2017). Chordin binds BMP irre-

versibly and acts as a sink. The model was simulated using the following equations:

q½BMP�

qt
¼DBMPr

2½BMP��k½Chd�½BMP��lBMP½BMP�þ �BMPðxÞ

q½Chd�

qt
¼DChdr

2½Chd� �k½Chd�½BMP��lChd½Chd�

q½ChdBMP�

qt
¼DChdBMPr

2½ChdBMP� þk½Chd�½BMP��lChd½ChdBMP�

Embryo geometry and boundary conditions
Embryo length: 300 � 10�6 m (300 mm, the typical length of the zebrafish blastoderm)

Constant Chordin flux from the dorsal boundary: 5 � 10�14 mol/(m2
. s)

No-flux boundary condition for all other species on both ventral and dorsal boundaries

Parameter values
DBMP = 2 mm2/s (measured in the present study)

DChd = 7 mm2/s (measured in the present study)

DChdBMP = 7 mm2/s
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lBMP = 8.9 � 10�5/s (measured in the present study)

lChd = 9.6 � 10�5/s (measured in the present study)

k = 400 � 103 m3/(mol. s)

�BMP(x) = 0.57 � 10�9 � e-5000x mol/m3 (accounting for the inhomogeneous ventrally peaking distri-

bution of bmp2b mRNA in zebrafish embryos)

Initial conditions
BMP initial concentration: 2.85 � 10�8 mol/m3 everywhere (one-twentieth of the concentration used

for Xenopus frogs in [Inomata et al., 2013])

Chordin initial concentration: 0 mol/m3 everywhere

Chordin-BMP complex initial concentration: 0 mol/m3 everywhere

Model 2: Graded source-sink (immobile BMP)
As for Model 1, the graded source-sink model (immobile BMP) was modeled without autoregulation

of BMP production since positive feedback only appears to be important for later stages of develop-

ment (Ramel and Hill, 2013; Zinski et al., 2017). Here k, which reflects the binding between Chor-

din and BMP, is smaller than in Model 1 to obtain a realistic-free BMP distribution; using the same

value for k as in Model 1 creates an unrealistically steep free BMP gradient. The model was simu-

lated using the following equations:

q BMP½ �

qt
¼�k Chd½ � BMP½ ��lBMP BMP½ �þ �BMPðxÞ

q Chd½ �

qt
¼DChdr

2 Chd½ � �k Chd½ � BMP½ ��lChd Chd½ �

q ChdBMP½ �

qt
¼DChdBMPr

2 ChdBMP½ � þk Chd½ � BMP½ ��lChd ChdBMP½ �

Embryo geometry and boundary conditions
Embryo length: 300 � 10�6 m (300 mm, the typical length of a zebrafish blastoderm)

Constant Chordin flux from the dorsal boundary: 5 � 10�14 mol/(m2
. s)

No-flux boundary condition for all other species on both ventral and dorsal boundaries

Parameter values
DChd = 7 mm2/s (measured in the present study)

DChdBMP = 7 mm2/s

lBMP = 8.9 � 10�5/s (measured in the present study)

lChd = 9.6 � 10�5/s (measured in the present study)

k = 4 � 103 m3/(mol. s)

�BMP(x) = 0.57 � 10�9 � e-5000x mol/m3 (accounting for the inhomogenous ventrally peaking distribu-

tion of bmp2b mRNA in zebrafish embryos)

Initial conditions
BMP initial concentration: 2.85 � 10�8 mol/m3 everywhere (one-twentieth of the concentration used

for Xenopus frogs in [Inomata et al., 2013]).

Chordin initial concentration: 0 mol/m3 everywhere

Chordin-BMP complex initial concentration: 0 mol/m3 everywhere

Model 3: Long-range accumulation and feedback
The model was developed for frog embryogenesis. For the simulations in the present study the

equations, geometry, initial conditions, and parameters used were exactly as described in

(Inomata et al., 2013):
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q½BMP�

qt
¼Dr2½BMP� þ

vBMPð½ADMP� þ ½BMP�Þ10

k10BMPþð½ADMP�þ ½BMP�Þ10
�lBMP½BMP�

þ
lChd½ChdBMP�

1þ
½Szl�

ki
þ
½Chd�þ ½ChdBMP� þ ½ChdADMP�

km

� k½Chd�½BMP�

q½Chd�

qt
¼Dr2½Chd� þ

vChdk
10

Chd

k10Chdþð½ADMP� þ ½BMP�Þ10
�

lChd½Chd�

1þ
½Szl�

ki
þ
½Chd� þ ½ChdBMP�þ ½ChdADMP�

km
�k½Chd�½BMP� � k½Chd�½ADMP�

q½ADMP�

qt
¼Dr2½ADMP� þ

vADMPk
10

ADMP

k10ADMPþð½ADMP�þ ½BMP�Þ10
�lBMP½ADMP�

þ
lChd½ChdADMP�

1þ
½Szl�

ki
þ
½Chd�þ ½ChdBMP� þ ½ChdADMP�

km

� k½Chd�½ADMP�

q½Szl�

qt
¼Dr2½Szl�þ

vSzlð½ADMP� þ ½BMP�Þ20

k20Szl þð½ADMP�þ ½BMP�Þ20
�lSzl½Szl�

q½ChdBMP�

qt
¼Dr2½ChdBMP��

lChd½ChdBMP�

1þ
½Szl�

ki
þ
½Chd�þ ½ChdBMP�þ ½ChdADMP�

km

þ k½Chd�½BMP�

q½ChdADMP�

qt
¼Dr2½ChdADMP��

lChd½ChdADMP�

1þ
½Szl�

ki
þ
½Chd�þ ½ChdBMP�þ ½ChdADMP�

km

þ k½Chd�½ADMP�

Embryo geometry and boundary conditions
Embryo length: 1000 � 10�6 m (1000 mm, the typical length of a frog embryo)

Constant Chordin flux from the dorsal boundary: 4.8 � 10�12 mol/(m2
. s)

No-flux boundary condition for all other species on both ventral and dorsal boundaries

Parameter values
km = 25 � 10�6 mol/m3

ki = 25 � 10�6 mol/m3

vChd = 5 � 10�10 mol/(m3
. s)

kChd = 7 � 10�8 mol/m3

vBMP = 1.4 � 10�10 mol/(m3
. s)

kBMP = 3.5 � 10�7 mol/m3

vSzl = 100 � 10�6 mol/(m3
. s)

kSzl = 1 � 10�6 mol/m3

vADMP = 3.2 � 10�9 mol/(m3
. s)

kADMP = 3 � 10�8 mol/m3

lChd = 1 � 10�3/s

lBMP = 2 � 10�4/s

lSzl = 3.8 � 10�5/s

D = 15 mm2/s

k = 280 m3/(mol. s)

Initial conditions
BMP initial concentration: 0.57 � 10�6 � e-1000x mol/m3 throughout the embryo (the amplitude of

this distribution is the same as in [Inomata et al., 2013], but the initial BMP profile was modeled as

a gradient instead of uniform)

Chordin initial concentration: 0 mol/m3 everywhere
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ADMP initial concentration: 0 mol/m3 everywhere

Sizzled initial concentration: 0 mol/m3 everywhere

Chordin-BMP complex initial concentration: 0 mol/m3 everywhere

Chordin-AMP complex initial concentration: 0 mol/m3 everywhere

For the simulations in Figure 4—figure supplement 1E–J, all parameters were identical to the

parameter values listed above except for D(BMP) = 3 mm2/s, D(Chd) = 6 mm2/s, D(ChdADMP) = 10

mm2/s, and D(ChdBMP) = 10 mm2/s. D(Sizzled) was set to 150 mm2/s in Figure 4—figure supplement

1E, and to 10 mm2/s in Figure 4—figure supplement 1F–J. D(ADMP) was varied from 0.1 mm2/s to

150 mm2/s as indicated in Figure 4—figure supplement 1E–J.

Model 4: Self-regulating reaction-diffusion system
The non-dimensional model, geometry, initial conditions, and parameters used for the simulations

were similar to the ones described in [Francois et al., 2009]:

q½BMP�

qt
¼DBMPr

2½BMP� þ
½BMP�2

ð1þ½Chd�Þ½Szl�
��BMP½BMP�þ �BMP

q½Chd�

qt
¼DChdr

2½Chd�þ
½Chd�2

½ADMP�
��Chd½Chd�þ �Chd

q½ADMP�

qt
¼DADMPr

2½ADMP� þ ½Chd�2 ��ADMP½ADMP�

q½Szl�

qt
¼DSzlr

2½Szl�þ ½BMP�2 ��Szl½Szl�

Embryo geometry and boundary conditions
Embryo length: 25

No-flux boundary conditions on the ventral and dorsal boundaries

Parameter values
DChd = DBMP = 6

mChd = mBMP = 1.2

�Chd = �BMP = 0.1

mADMP = mSzl = 1.5

DADMP = DSzl = 150

Initial conditions
BMP initial concentration: �BMP = e-0.1x

Chordin initial concentration of 1 from position 0 to 24 and Chordin initial concentration of 10 from

24 to 25 (i.e., the dorsal organizer) in the simulated embryo

ADMP initial concentration: 1 everywhere

Sizzled initial concentration: 1 everywhere

For the simulations in Figure 4—figure supplement 1K–P, all parameters were identical to the

parameter values listed above except for D(BMP) = 3 and D(Chd) = 6. D(Sizzled) was set to 150 in

Figure 4—figure supplement 1K, and to 10 in Figure 4—figure supplement 1L–P. D(ADMP) was

varied from 0.1 to 150 as indicated in Figure 4—figure supplement 1K–P.

Model 5: Shuttling
For Model 5, a minimal transport model that excludes the effects of downstream patterning circuits

was used to illustrate the biophysical aspects of shuttling (Ben-Zvi et al., 2008):
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q BMP½ �

qt
¼DBMPr

2 BMP½ � �k Chd½ � BMP½ � þl Xlr½ � ChdBMP½ � �lBMP BMP½ � þ �BMPðxÞ

q Chd½ �

qt
¼DChdr

2 Chd½ ��k Chd½ � BMP½ � �lChd Chd½ �

q ChdBMP½ �

qt
¼DChdBMPr

2 ChdBMP½ �þk Chd½ � BMP½ � �l Xlr½ � ChdBMP½ � �lChd ChdBMP½ �

Embryo geometry and boundary conditions
Embryo length: 300 � 10�6 m (300 mm)

Constant Chordin flux from the dorsal boundary: 3 � 10�14 mol/(m2
. s)

No-flux boundary condition for all other species on both ventral and dorsal boundaries

Parameter values
DBMP = 0.1 mm2/s

DChd = 10 mm2/s

DChdBMP = 10 mm2/s

lBMP = 8.9 � 10�5/s (measured in the present study)

lChd = 9.6 � 10�5/s (measured in the present study)

k = 100 � 103 m3/(mol. s)

l = k

[Xlr] = 2 � 10�8 mol/m3

�BMP(x) = 0.57 � 10�10 � e-5000x mol/m3 (accounting for the inhomogeneous ventrally peaking distri-

bution of bmp2b mRNA in zebrafish embryos)

Initial conditions
BMP initial concentration: 0.57 � 10�7 � e-5000x mol/m3 throughout the embryo

Chordin initial concentration: 0 mol/m3 everywhere

Chordin-BMP complex initial concentration: 0 mol/m3 everywhere

Shuttling simulations of adjacent BMP and Chordin clones shown in
Figure 5
The one-dimensional simulations in Figure 5 were executed similarly to the ones described above

and solved at 15 and 75 min for comparison to the zebrafish embryo double transplantation experi-

ments. The solutions in Figure 5A and Figure 5E were normalized to the highest free BMP concen-

tration in the simulation without the Chordin source, and the solutions in Figure 5B and Figure 5F

were normalized to the free BMP concentration at the BMP source boundary (at 100 mm) for each

condition to facilitate comparison between the gradient ranges.

The double transplantation experiments were modeled using the following equations:

q BMP½ �

qt
¼DBMPr

2 BMP½ � �lBMP BMP½ � �k Chd½ � BMP½ � þl Xlr½ � ChdBMP½ � þ dBMPhBMP

q Chd½ �

qt
¼DChdr

2 Chd½ ��k Chd½ � BMP½ � þ dChdhChd

q ChdBMP½ �

qt
¼DChdBMPr

2 ChdBMP½ �þk Chd½ � BMP½ � �l Xlr½ � ChdBMP½ �

with

dBMP ¼
1 in the BMP source

0 otherwise

�

and

dChd ¼
1 in the Chordin source

0 otherwise

�
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Embryo geometry and boundary conditions
Embryo length: 300 � 10�6 m (300 mm)

BMP source: between 50 and 100 mm from the left boundary

Chordin source: between 200 and 250 mm from the left boundary

No-flux boundary conditions on the left and right boundaries

Parameter values for simulations of shuttling predictions (Figure 5A+B)
DBMP = 2 mm2/s (measured in the present study)

lBMP = 0.0001/s (similar to measurements in the present study)

hBMP = 5 � 10�5 mol/(m3
. s)

hChd = 5 � 10�5 mol/(m3
. s)

DChd = 100 mm2/s

DChdBMP = DChd

k = 10 � 103 m3/(mol. s)

l = k

[Xlr] = 2 � 10�7 mol/m3

Parameter values for simulations with experimentally measured diffusivities
(Figure 5E+F)
DBMP = 2 mm2/s (measured in the present study)

lBMP = 0.0001/s (similar to measurements in the present study)

hBMP = 5 � 10�5 mol/(m3
. s)

hChd = 5 � 10�5 mol/(m3
. s)

DChd = 6 mm2/s (measured in the present study)

DChdBMP = 2.2 mm2/s (measured in the present study)

k = 10 � 103 m3/(mol s)

l = k

[Xlr] = 2 � 10�7 mol/m3

Initial conditions
BMP initial concentration: 0 mol/m3 everywhere

Chordin initial concentration: 0 mol/m3 everywhere

Chordin-BMP complex initial concentration: 0 mol/m3 everywhere
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bmp2b transcription and mediates the earliest dorsoventral asymmetry of bmp2b expression in zebrafish.
Development 130:3639–3649. DOI: https://doi.org/10.1242/dev.00558, PMID: 12835381

Meeker ND, Hutchinson SA, Ho L, Trede NS. 2007. Method for isolation of PCR-ready genomic DNA from
zebrafish tissues. BioTechniques 43:610–614. DOI: https://doi.org/10.2144/000112619, PMID: 18072590

Miller-Bertoglio VE, Fisher S, Sánchez A, Mullins MC, Halpern ME. 1997. Differential regulation of chordin
expression domains in mutant zebrafish. Developmental Biology 192:537–550. DOI: https://doi.org/10.1006/
dbio.1997.8788, PMID: 9441687

Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M,
Haffter P, Heisenberg CP, Jiang YJ, Kelsh RN, Nüsslein-Volhard C. 1996. Genes establishing dorsoventral
pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123:81–93. PMID:
9007231

Müller P, Schier AF. 2011. Extracellular movement of signaling molecules. Developmental Cell 21:145–158.
DOI: https://doi.org/10.1016/j.devcel.2011.06.001, PMID: 21763615

Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF. 2012. Differential diffusivity of
Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336:721–724. DOI: https://doi.org/
10.1126/science.1221920, PMID: 22499809

Müller P, Rogers KW, Yu SR, Brand M, Schier AF. 2013. Morphogen transport. Development 140:1621–1638.
DOI: https://doi.org/10.1242/dev.083519, PMID: 23533171
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Rogers KW, Blässle A, Schier AF, Müller P. 2015. Measuring protein stability in living zebrafish embryos using
fluorescence decay after photoconversion (FDAP). Journal of Visualized Experiments:52266. DOI: https://doi.
org/10.3791/52266, PMID: 25650549

Roy S, Kornberg TB. 2011. Direct delivery mechanisms of morphogen dispersion. Science Signaling 4:pt8.
DOI: https://doi.org/10.1126/scisignal.2002434, PMID: 22114143
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Individuals can vary significantly in size, but the proportions of their body plans are 

often maintained. We generated smaller zebrafish by removing 30% of their cells at 

blastula stages and found that these embryos developed into normally patterned 

individuals. Strikingly, the proportions of all germ layers adjusted to the new embryo 

size within two hours after cell removal. Since Nodal/Lefty signalling controls germ 

layer patterning, we performed a computational screen for scale-invariant models of this 

activator/inhibitor system. This analysis predicted that the concentration of the highly 

diffusive inhibitor Lefty increases in smaller embryos, leading to a decreased Nodal 

activity range and contracted germ layer dimensions. In vivo studies confirmed that 

Lefty levels increased in smaller embryos, and embryos with reduced Lefty 

concentration or with diffusion-hindered Lefty failed to scale their tissue proportions. 

These results reveal that size-dependent inhibition of Nodal signalling allows scale-

invariant patterning. 

 

Despite often significant variability in size, embryos faithfully generate the correct tissue 

proportions1, 2. During development, tissue patterning is achieved by gradients of signalling 

proteins that induce distinct differentiation programs in discrete spatial domains3, 4. To adjust 

tissue patterning and organ proportions to their body size, embryos need to appropriately scale 

the underlying signalling gradients5. Scaling mechanisms for individual tissue-specific 

signalling systems at different stages of development have been proposed, but how these 

mechanisms are integrated and coordinated during development to generate the correct 

proportions of all tissues is currently unclear5-15. Here, we analyzed how signalling gradients 

adjust tissue proportions in differently sized zebrafish embryos and identified a novel size-

dependent mechanism that mediates scale-invariant germ layer patterning to provide the 

correct amount of progenitor cells for all future tissues. 



We found that removal of 30% of cells by extirpation from the animal pole before 

gastrulation (Fig. 1a) generates zebrafish embryos that become normally patterned adults. 

Extirpated embryos developed into smaller individuals with the same number of 

proportionally thinner somites as untreated embryos (Fig. 1a). Consistently, the size of 

various organs including hatching gland (a mesodermal derivative, hgg1-positive) and eye (an 

ectodermal derivative, vsx2-positive) was reduced in individuals developing from extirpated 

embryos (Fig. 1b). Strikingly, scaling of tissue proportions to embryo size already occurred 

during gastrulation stages within 2 hours following extirpation. Using in situ hybridization, 

we quantified the extent of ectoderm (sox3-positive, Fig. 1c) and mesendoderm (fascin-

positive, Fig. 1d) and found that germ layer proportions adjusted progressively after 

extirpation: At 1 hour post extirpation (hpe), extirpated embryos had excess mesendoderm 

and insufficient ectodermal progenitors since cells were removed from the animal pole 

containing presumptive ectoderm (Fig. 1c,d). Interestingly, 1 hour later (2 hpe) ectoderm and 

mesendoderm proportions had adjusted in extirpated embryos (Fig. 1c,d). Even though cells 

were removed from the animal pole, the number of endodermal precursor cells (sox17- and 

sox32-positive) at the opposite side within the marginal zone of extirpated embryos was also 

proportionally reduced by gastrulation stages (Supplementary Fig. 1a).    

Cell density and proliferation rates did not change in extirpated embryos 

(Supplementary Fig. 1b-d), indicating that neither changes in cell density nor compensatory 

proliferation underlie germ layer scaling. Moreover, the spatial expression kinetics of 

goosecoid – a highly sensitive indicator of developmental progression – were similar in 

untreated and extirpated embryos at different developmental time points (Supplementary Fig. 

1e); thus, scaling can also not be explained by altered developmental speed in differently 

sized embryos.  

Since the Nodal/Lefty activator/inhibitor system patterns the germ layers during early 

development, we hypothesized that Nodal signalling adjusts in smaller embryos to allow 



proportionate patterning. The activator Nodal is secreted from the marginal zone of the 

embryo and induces endoderm and mesoderm, whereas the highly diffusive Nodal inhibitor 

Lefty, which is also expressed at the margin and induced by Nodal signaling, limits the 

mesendodermal domain16, 17. To test whether Nodal signalling adjusts in smaller embryos, we 

measured the extent of Nodal activity (phosphorylation of the Nodal signal transducer 

Smad2/3, pSmad2/3) and found that it scaled by 2 hpe (Fig. 1e). Using in toto light-sheet 

imaging, we confirmed that both the Nodal signalling target fascin17-19 as well as Nodal 

signalling itself scaled throughout the embryonic marginal zone (Fig. 1f).  

To identify the mechanism by which Nodal signalling might sense embryo size and 

adjust tissue proportions, we performed a computational screen including all known 

interactions in the Nodal/Lefty system while keeping model complexity to a minimum (Fig. 

2a,b, Supplementary Note). We constrained the screen with the measured biophysical 

properties, including Nodal/Lefty diffusivities and half-lives17. We screened more than 

400,000 parameter combinations representing the production of Lefty, the inhibition strength, 

and the Nodal-mediated feedback on Nodal and Lefty production. By assessing the overlap 

between Nodal signalling in simulations of normally sized and shortened embryos, we found 

that systems capable of scaling require precise levels of highly diffusive Lefty, whose 

concentration increases in extirpated embryos to adjust the Nodal signalling gradient (Fig. 2c-

e). In such systems, the boundary located more proximal to the marginal zone in shortened 

compared to normally sized embryos affects the long-range Lefty but not the short-range 

Nodal gradient (Fig. 2c). Since we shortened embryos prior to the onset of Lefty protein 

secretion without removing Lefty-expressing cells from the marginal zone (Supplementary 

Fig. 1f-k), the same amount of Lefty should be produced in early extirpated and untreated 

embryos. Therefore, the concentration of Lefty should increase in smaller embryos, 

contracting the Nodal activity range to re-establish the correct tissue dimensions relative to 

the new size of the embryo. 



In our simulations of the Nodal/Lefty system, scale-invariant patterning only became 

apparent around 2 hpe, as observed experimentally (Fig. 1c,d). The simulations further closely 

matched the time window of germ layer specification: Nodal signalling levels and 

mesendoderm specification expand as development proceeds, Nodal signalling levels peak 

around 2 hpe (6 hours post fertilization), and Nodal signalling rapidly decreases afterwards 

(Supplementary Movie 1). Together, the experimental observations and computational 

simulations suggest that germ layer scaling at 2 hpe results from adjustments in mesendoderm 

expansion dynamics over time rather than from shrinking an initially too broadly specified 

mesendodermal domain.  

Our model predicted that scaling crucially depends on the levels of Lefty (Fig. 2d, Fig. 

3a,b). To test this prediction, we assessed mesendoderm proportions in embryos with varying 

numbers of functional lefty alleles (lefty1 and lefty2)20. As expected, both untreated and 

extirpated double-homozygous lefty1-/-;lefty2-/- mutants showed dramatically expanded 

mesendoderm20 (Fig. 3c-f, Supplementary Fig. 2a-d). In contrast, untreated and shortened 

double-heterozygous lefty1+/-;lefty2+/- embryos exhibited nearly normal mesendoderm 

proportions, indicating that one functional allele of each lefty is sufficient for proper spatial 

Nodal signalling and scaling, possibly due to dosage adjustments that result in similar 

amounts of protein (Fig. 3c-f, Supplementary Fig. 2a-d). Normally sized and extirpated 

single-homozygous lefty2-/- mutants had excess mesendoderm. In striking contrast, single-

homozygous lefty1-/- embryos displayed expanded mesendoderm only after extirpation (Fig. 

3c-f, Supplementary Fig. 2a-d). Interestingly, Lefty1 is less inhibitory than its paralog Lefty2 

(Supplementary Fig. 2e,f); thus, while highly active Lefty2 is sufficient for germ layer 

patterning in normally sized embryos, the correct levels of poorly active Lefty1 are only 

required for scale-invariant patterning in significantly smaller embryos. These experimental 

findings support the simulations of our size-dependent inhibition model (Fig. 2d, Fig. 3a,b), 



showing that a small reduction in Lefty production, which does not significantly affect 

mesendoderm formation, abrogates scaling.  

The second prediction of our model is that scaling depends on the high diffusivity of 

Lefty, which must reach the end of the patterning field to act as a size sensor (Fig. 2e, Fig. 

4a,b). To test this prediction, we decreased Lefty diffusivity and determined the consequences 

on scaling. To obtain a patterning system in which the diffusion of Lefty1 can be 

experimentally manipulated, we first generated embryos in which the only source of Lefty 

was Lefty1-GFP. We rescued lefty1-/-;lefty2-/- double mutants by injecting highly precise and 

physiologically relevant amounts (see Online Methods for details) of lefty1-GFP mRNA into 

the yolk syncytial layer (YSL) to mimic the secretion of endogenous Lefty from the marginal 

zone (Fig. 4c). Consistent with the high diffusivity of Lefty17, Lefty1-GFP reached the end of 

the patterning field within 60 min after YSL injection (Fig. 4d,e, Supplementary Movie 2). A 

large proportion of lefty1-/-;lefty2-/- mutant embryos was rescued to adulthood with this method 

in normally sized (~70% fully or partially rescued) and extirpated (~60% fully or partially 

rescued) embryos (Fig. 4f-h, Supplementary Fig. 3a-d). Thus, Lefty1-GFP provided from the 

marginal zone is sufficient not only to pattern germ layers but also to allow scaling. Next, to 

hinder Lefty1-GFP diffusion we used a “morphotrap” – an mCherry-labeled membrane-bound 

GFP-binding nanobody21. Co-injection of mRNA encoding the morphotrap and lefty1-GFP 

mRNA into one-cell stage embryos changed the localization of Lefty1-GFP from uniform 

extracellular to strongly membrane-associated (Supplementary Fig. 3f). Crucially, the 

diffusion coefficient of Lefty1-GFP in embryos expressing the morphotrap was significantly 

lower (D = 7.7 ± 3.2 µm2/s for Lefty1-GFP, and 0.2 ± 0.2 μm2/s for Lefty1-GFP + 

morphotrap; Supplementary Fig. 3i,j), whereas the activity of Lefty was only modestly 

affected by morphotrap binding (Supplementary Fig. 3g,h). We then injected mRNA 

encoding the morphotrap into lefty1-/-;lefty2-/- mutant embryos at the one-cell stage and 

generated local sources of Lefty1-GFP at the marginal zone (Fig. 4d,e). The expression of the 



morphotrap dramatically changed the range of Lefty1-GFP from a nearly uniform distribution 

to a short-range gradient that did not reach the end of the embryo (Fig. 4d,e, Supplementary 

Movie 2, Supplementary Movie 3). This change in Lefty distribution correlated with a steep 

drop in the rescue of extirpated embryos (Fig. 4f,g), and rescue efficiency was inversely 

correlated with mesendoderm amount (Fig. 4g,h, Supplementary Fig. 3d,e). Simulations of the 

size-dependent inhibition model with hindered Lefty diffusion recapitulated the 

experimentally observed change in Lefty distribution (Fig. 4a,b,d,e). The decreased Lefty 

range precludes scaling of Nodal signalling since Lefty cannot reach the distal end of the 

patterning field to act as a size sensor. In normally sized experimental or simulated embryos, 

hindered Lefty diffusion did not significantly affect germ layer patterning (Fig. 4b,f-h). In 

simulated embryos, this finding can be explained by Nodal-mediated positive feedback, where 

sufficiently high Nodal levels at the marginal zone maintain signalling in spite of increased 

Lefty-mediated inhibition (Fig. 4b). Together, these observations show that hindering Lefty 

diffusion prevents scaling in extirpated embryos, supporting the prediction of the size-

dependent inhibition model. 

 The third prediction of our model is that inhibitor levels increase to reduce Nodal 

signalling in extirpated embryos (Fig. 2c). To test this prediction, we quantified GFP intensity 

after injection of physiologically relevant amounts of lefty1-GFP mRNA in the YSL and 

found that extirpated embryos exhibited higher GFP intensity than normally sized embryos 

(Fig. 5a). To assess whether this increase in inhibitor concentration is required for germ layer 

scaling, we analyzed mesendoderm patterning in untreated and extirpated  lefty1-/-;lefty2-/- 

mutants upon exposure to the small-molecule Nodal inhibitor SB-50512420. In contrast to the 

YSL-injection rescue approach, a reduction in embryo size should not affect the concentration 

of the tonic Nodal inhibitor in this experimental setup (Supplementary Fig. 4a-d). A large 

fraction of untreated lefty1-/-;lefty2-/- mutants (~90%, Fig. 5b) was rescued by 4.8 µM of Nodal 

inhibitor exposure. In contrast, exposure of extirpated lefty1-/-;lefty2-/- mutants to the same 



inhibitor concentration resulted in abnormal mesendoderm proportions, and only ~30% 

displayed some phenotypic rescue (Fig. 5b, Supplementary Fig. 4e,f). These results show that 

tonic size-independent inhibition levels effective in normally sized embryos do not allow 

scaling, since inhibitor concentration cannot increase in shortened embryos.  

 Our model implies that increasing tonic Nodal inhibitor levels should restore the 

appropriate Nodal signalling range in extirpated embryos. Consistent with this prediction, 

increasing the exposure of the small-molecule Nodal inhibitor from 4.8 µM to 6-7 µM 

significantly improved the rescue of extirpated lefty1-/-;lefty2-/- mutants from 26% to 64% 

(Fig. 5c, Supplementary Fig. 4g), demonstrating that increased inhibitor levels are required 

for scaling in extirpated embryos.  

Together, four lines of evidence suggest that scale-invariant germ layer patterning is 

achieved by size-dependent inhibition of Nodal signalling. First, reduction of Lefty levels 

(Fig. 3) precludes scaling. Second, decreasing Lefty diffusivity interferes with scale-invariant 

patterning (Fig. 4). Third, the concentration of the Nodal inhibitor Lefty increases in 

extirpated embryos (Fig. 5a). Fourth, augmented drug-mediated dampening of Nodal 

signalling rescues scaling of germ layer proportions in extirpated embryos (Fig. 5c, 

Supplementary Fig. 4g). In agreement with our mathematical model (Fig. 2, Supplementary 

Fig. 5), these results support the idea that the concentration and high diffusivity of Lefty are 

essential to adjust germ layer proportions. While tissue proportions might be further refined 

by interactions with other signalling pathways such as BMP18 and FGF22, the scaled 

distribution of the Nodal signal transducer pSmad2/3 – which is independent of BMP and 

FGF – and the scaled tissue proportions in lefty mutants rescued by feedback-uncoupled Lefty 

– in which Lefty production is not under any transcriptional regulation – demonstrate the 

central role of Lefty in germ layer scaling. Importantly, Nodal/Lefty-mediated scale-invariant 

patterning is not based on previously postulated feedback-dependent activator/inhibitor 



systems23 but purely on size-dependent Nodal inhibition mediated by Lefty, providing a 

foundation for the proportionate allocation of all future tissues. 

The scaling mechanism that we found crucially depends on the coupling of inhibitor 

concentration to embryo size, which is conferred by the high diffusivity of Lefty. Strikingly, a 

similar mechanism based on the coupling of cell volume to the concentration of a cell cycle 

inhibitor has recently been found to control cell size in yeast24. It is therefore possible that this 

simple mechanism might be widespread across various levels of biological organization to 

coordinate growth with cellular functions and patterning. 
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Figure 1 | Scaling in smaller embryos after extirpation. (a) Schematic of embryo extirpation; lateral views. The total 
length of extirpated embryos (grey bars; black: untreated) at 1 day post fertilization is smaller (***p<0.00001), whereas yolk 
size remains unchanged (n[untreated]=40, n[extirpated]=37; p>0.05). The length of the 24 posterior-most somites is 
proportionately smaller in extirpated embryos (n[untreated]=15, n[extirpated]=13; *p<0.05). Error bars: SEM (in “Somite 
length” graph). (b) Maximum intensity projections of confocal FISH stacks and quantification of hgg1- (n[untreated]=9, 
n[extirpated]=11; **p<0.01) and vsx2-positive cells (n[untreated]=13, n[extirpated]=11; **p<0.01). (c,d) Maximum intensity 
projections of lateral confocal FISH stacks, and quantification of the relative and absolute length of sox3 (ectoderm) and 
fascin (mesendoderm) domains. Ectoderm proportions are smaller at 1 h post extirpation (hpe) (n[untreated]=14, n[extir-
pated]=14; ***p<0.001) but scale by 2 hpe (n[untreated]=28, n[extirpated]=28; p>0.05). Similarly, mesendoderm propor-
tions are too large at 1 hpe (n[untreated]=22, n[extirpated]=32; **p<0.01) but scale by 2 hpe (n[untreated]=28, n[extirpat-
ed]=37; p>0.05). (e) Average intensity projections of lateral confocal pSmad2/3 immunostaining stacks and quantification 
of the absolute and relative length of pSmad2/3. Nodal signalling scales at 2 hpe (n[untreated]=7, n[extirpated]=8; p>0.05). 
(f) 2D maps of 3D-reconstruced embryos imaged by light-sheet microscopy, and quantification of normalized fascin and 
pSmad2/3 domains along the vegetal-animal axis show scaling (fascin: n[untreated]=9, n[extirpated]=9; pSmad2/3: n[un-
treated]=5, n[extirpated]=6). Box plots (a-e) show median (blue line), mean (untreated: black, extirpated: grey lines), 25% 
quantiles (box) and all included data points (red markers). Scale bars: 200 µm.
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Figure 2 | Computational screen for parameters conferring scale-invariance.  (a,b) Equations and network describing 
the known interactions in the Nodal/Lefty activator/inhibitor system. (c) Example of a scale-invariant system identified by 
the screen, showing an increase in Lefty and dampening of Nodal signalling after extirpation. Simulations were fitted to the 
experimentally measured total length and mesendoderm extent (Nodal signalling output). (d) Parameter screen showing 
the influence of Lefty levels (σL), Nodal inhibition strength (λ), and Lefty induction steepness (κL) on scaling; maximum 
projection through the six-dimensional parameter space with the following discrete values: for σL 0, 10-4, 10-3, 10-2, 11.12, 
22.23, 33.34, 44.45, 55.56, 66.67, 77.78, 88.89, and 102; for λ 10-5, 1.12 x 10-2, 2.23 x 10-2, 3.34 x 10-2, 4.45 x 10-2, 5.56 x 
10-2, 6.67 x 10-2, 7.78 x 10-2, 8.89 x 10-2, and 10-1; for κL 102, 1.12 x 105, 2.23 x 105, 3.34 x 105, 4.45 x 105, 5.56 x 105, 6.67 
x 105, 7.78 x 105, 8.89 x 105, and 106. Parameter configurations resulting in biologically unrealistic gradients were excluded. 
(e) Parameter screen showing the influence of Lefty diffusivity on scaling; maximum projection through the six-dimensional 
parameter space. The model predicts that scaling should fail if Lefty induction or diffusion are too low (i.e. DL less than ~7 
µm2/s).
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Figure 3 | Germ layer scaling depends on Lefty levels. (a,b) Simulations of the size-dependent inhibition model when 
Lefty production is abolished (a) or reduced (b). Simulations of the “No Lefty” scenario (a) demonstrate that in the complete 
absence of Lefty, mesendoderm is extended and does not scale. Simulations of the “Reduced Lefty production” scenario 
(b) predict that reduction in Lefty induction should prevent scaling in shortened embryos without a significant change in 
mesendoderm specification in normally sized embryos. These two simulated scenarios resemble the experimental obser-
vations in lft1-/-;lft2-/- (”No Lefty”) and lft1-/- (”Reduced Lefty production”) mutants. (c) Maximum intensity projections of later-
al confocal stacks of fascin FISH in untreated and extirpated embryos with different numbers of functional lefty alleles. (d) 
Quantification of mesendoderm (fascin-positive) proportions. WT (wild type) untreated embryos slightly differ from 
lft1+/-;lft2+/- untreated and extirpated embryos (*p<0.05) and strongly differ from lft1-/- extirpated, lft2-/- untreated, lft2-/- extirpat-
ed, lft1-/-;lft2-/- untreated, and lft1-/-;lft2-/- extirpated embryos (***p<0.0001). Box plot shows median (blue line), mean (untreat-
ed: black; extirpated: grey lines), 25% quantiles (box) and all included data points (red markers). (e,f) Quantification of 
fascin extent relative to embryo length. The encircled domains cluster two groups. Group 1 shows a similar ratio of mesen-
doderm to embryo length as observed in wild type individuals and includes lft1+/-;lft2+/- untreated and extirpated, and lft1-/- 
untreated embryos (e). Group 2 exhibits larger mesendodermal domains relative to total embryo length and includes lft1-/- 
extirpated, lft2-/- untreated and extirpated, and lft1-/-;lft2-/- untreated and extirpated embryos (f). Group 1 shows a linear 
increase of mesendoderm with embryo size, whereas Group 2 clusters in a wider circular domain showing absence of 
scaling. WT: n[untreated]=38, n[extirpated]=49; lft1+/-;lft2+/-: n[untreated]=26, n[extirpated]=55; lft1-/-: n[untreated]=50, 
n[extirpated]=58; lft2-/-: n[untreated]=50, n[extirpated]=63; lft1-/-;lft2-/-: n[untreated]=29; n[extirpated]=34). Scale bar: 70 µm.
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Figure 4 | High Lefty diffusivity is required for scaling. (a,b) Simulations of the model without feedback-inhibition and 
hindered Lefty diffusion predict that a reduction in Lefty diffusivity - preventing Lefty from reaching the animal pole - should 
preclude scaling. (c) Schematic of morphotrap-mediated Lefty1-GFP diffusion hindrance in extirpated embryos. (d) Maxi-
mum intensity projections of confocal stacks of lft1-/-;lft2-/- embryos injected with or without morphotrap (at the 
one-cell-stage) and lefty1-GFP mRNA in the YSL (at sphere stage). Lateral views. (e) Quantification of the spatial distribu-
tion of Lefty1-GFP secreted from the YSL. The morphotrap prevents spreading of Lefty1-GFP towards the animal pole of 
the embryo. n=6 for the group injected with lefty1-GFP mRNA only, and n=3 for the group injected with morphotrap and 
lefty1-GFP mRNA. The experimentally determined distributions of Lefty1-GFP with morphotrap-mediated diffusion 
hindrance strongly resemble the simulation of the “Reduced Lefty diffusivity” scenario (b). Error bars represent SEM. (f) 
Lateral views of representative 26 hpf lft1-/-;lft2-/- embryos with different treatments. (g) Phenotype distributions in lft1-/-;lft2-/- 
embryos after different treatments (n[lft1-/-;lft2-/-]=39; lft1-/-;lft2-/-+lft1GFP: n[untreated]=137, n[extirpated]=44; 
lft1-/-;lft2-/-+morphotrap+lft1GFP: n[untreated]=91, n[extirpated]=44). Embryos with partial rescue display imperfect tails and 
reduced cephalic structures (i.e. very mild Lefty-mutant phenotypes). (h) Fraction of treated lft1-/-;lft2-/- embryos with low 
(<22%), normal (22-33%) and high (>34%) mesendoderm proportions (n[lft1-/-;lft2-/-]=35; lft1-/-;lft2-/-+lft1GFP: n[untreat-
ed]=55, n[extirpated]=56; lft1-/-;lft2-/-+morphotrap+lft1GFP: n[untreated]=27, n[extirpated]=29). The fraction of rescued and 
non-rescued lft1-/-;lft2-/- embryos correlates with the fraction of normal and high mesendoderm proportions in (g) and (h). 
Unt: Untreated; Ext: Extirpated. Scale bars: 200 µm.
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Figure 5 | Lefty concentration increases in extirpated embryos to allow scaling. (a) Animal pole views of maximum 
intensity confocal stack projections of WT untreated and extirpated embryos injected with lefty1-GFP mRNA in the YSL, 
and quantification of GFP intensity; *p<0.05; n[untreated]=11, n[extirpated]=11. Box plot shows median (blue line), mean 
(untreated: black; extirpated: grey lines), 25% quantiles (box) and all included data points (red markers). (b) Phenotype and 
mesendoderm quantification  (n[untreated]=27, n[extirpated]=18) in lft1-/-;lft2-/- embryos exposed to 4-4.8 µM of the Nodal 
inhibitor SB-505124. (c) Phenotype quantification in lft1-/-;lft2-/- embryos exposed to different concentrations of the Nodal 
inhibitor SB-505124. Untreated: 4.8 µM n=138, 6 µM n=160, 6.5 µM n=80, 7 µM n=106, 9 µM n=85, 12 µM n=36; extirpated: 
4.8 µM n=112, 6 µM n=146, 6.5 µM n=64, 7 µM n=108, 9 µM n=56, 12 µM n=27. Exposure to higher concentrations of the 
Nodal inhibitor SB-505124 increases lft1-/-;lft2-/- mutant rescue after extirpation. The fraction of rescued and non-rescued 
lft1-/-;lft2-/- embryos correlates with the fraction of normal and high mesendoderm proportions in (b) and (c). Unt: Untreated; 
Ext: Extirpated. Scale bars: 200 µm.
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Online Methods

Generating smaller embryos by extirpation

Extirpation assays were performed using a glass capillary holder mounted on a Hamilton syringe and
fixed in a micromanipulator (Narishige). Extirpations were performed in 4 hour post-fertilization (hpf)
pronase-dechorionated sphere stage embryos in Ringer’s solution (116 mM NaCl, 2.8 mM KCl, 1 mM
CaCl2, 5 mM HEPES). To allow wound healing after extirpation, embryos were left undisturbed for 30
min at 28◦C. The wound typically healed within 15 min after extirpation, and the extirpated embryos
were then transferred to normal embryo medium. To assess the survival of extirpated embryos without
considering other mechanical disruptions of the extirpation assay (such as wound healing failure or me-
chanical constraints due to changes in the embryo/yolk ratio), embryos that did not survive extirpation
or that did not proceed to gastrulation were discarded.

For quantification of cell numbers, extirpated cells from pools of 10 embryos were transferred to
individual PCR tubes containing 0.05% Trypsin solution (Gibco), and incubated for 15 min at 37◦C.
Dissociated cells were then quantified using a Neubauer chamber on an Olympus CKX41 microscope.
Ten to 20 pools of extirpated cells from 10 embryos were quantified per extirpation experiment. The
average number of extirpated cells per embryo was 820 ± 130 cells, which corresponds to ∼30% of the
cells of an embryo at sphere stage (∼3000 cells).

Whole-mount in situ hybridization

fascin, hgg1, vsx2, sox3, sox17, and sox32 RNA probes for in situ hybridization assays were synthe-
sized using SP6 or T7 polymerase (Roche) and DIG- (Roche) or DNP- (Perkin Elmer) modified ri-
bonucleotides. RNA probes were purified by ethanol precipitation with 7.5 M lithium chloride. For
chromogenic in situs, embryos were fixed overnight at 4◦C in 4% formaldehyde and then processed us-
ing an In situ Pro hybridization robot (Abimed/Intavis) and as previously described25 with the following
modifications: no proteinase K treatment before 90% epiboly stage; no pre-absorption of the anti-DIG
antibody; 5% dextran sulfate (Sigma) added to the hybridization solution; riboprobes were denatured at
80◦C for 15 min and chilled on ice prior to hybridization using a final concentration of 1-2 ng/µl.

For fluorescent in situs (FISH), the following modifications were used: the blocking solution con-
tained 2% Blocking Reagent (Roche) in 1x MABTw; incubation with anti-DIG (Roche) or anti-DNP-
POD (Perkin-Elmer) antibodies at a dilution of 1:150 in blocking solution was carried out overnight with
shaking at 4◦C; after antibody incubation, embryos were washed six times for 20 to 30 min at room
temperature with PBS containing 0.1% Tween (PBST), and the signal was developed with 100 µl of TSA
Cy3 or Cy5 at a dilution of 1:75 in amplification buffer (Perkin Elmer) for 1 h at room temperature
without shaking.

For imaging, embryos were embedded in 1% low-melting point agarose, transferred to glass bottom
culture dishes (MatTek corporation), and oriented manually. Only embryos mounted with the animal-
vegetal axis completely parallel to the cover glass were used for analysis. For chromogenic in situ
samples, images were captured using an Axio Zoom.V16 (ZEISS). For fluorescent in situ samples, con-
focal laser scanning microscopy was performed using an LSM 780 NLO microscope (ZEISS). Images
were processed using Fiji26. The number of hgg1, sox17, and sox32+ cells was quantified using the
“multi-point selection” tool26. fascin and sox3 expression domains in the central-most embryo regions
were quantified using the “measure” tool in Fiji. fascin was quantified from the margin of the embryo to
the end of the domain with high expression values. sox3 was quantified from the animal pole to the end
of the domain with high expression values. The size of embryos (from the margin to the animal pole)
was measured similarly using bright-field images.

Immunostaining

For immunostainings, anti-phospho-Histone H3 (1:500, Cell Signaling Technologies) and anti-pSmad2/3
(1:5,000, Cell Signaling Technologies) antibodies were used. Immunostaining for phospho-Histone H3
was carried out as described previously27. For pSmad2/3, specimens were incubated in cold acetone



at -20◦C for 20 min before blocking22. To ensure staining specificity, samples were exposed to low
concentrations of anti-pSmad2/3 antibody (1:5,000), and the signal was amplified using HRP-conjugated
anti-rabbit antibodies and TSA Cy3 or Cy5 at a dilution of 1:75 in amplification buffer (Perkin Elmer)
for 45 min at room temperature without shaking. Embryos were mounted for imaging as described above
for FISH, but with the dorsal-ventral axis parallel to the cover glass in the case of phospho-Histone H3
staining. Confocal laser scanning microscopy was performed using an LSM 780 NLO (ZEISS) confocal
microscope, and images were processed using Fiji.

The number of phospho-Histone H3-positive cells was quantified over a depth of 140 µm using the
“find maxima” plug-in in Fiji, with a fixed noise tolerance of 10,000 and manual correction.

pSmad2/3 distributions were quantified from the margin of the embryo to the end of pSmad2/3 nu-
clear staining using the “measure” tool in Fiji. Non-nuclear staining was excluded. The size of embryos
from the margin to the animal pole was measured similarly using DAPI-stained images.

Light-sheet imaging and analysis

For 3D imaging, a Lightsheet Z.1 microscope (ZEISS) was used. Embryos were embedded in 1% low-
melting point agarose and mounted in glass capillaries. For merging of the different views, far-red or
green fluorescent beads (Thermo Fischer Scientific) were added to the agarose at a 1:200,000 dilution.
After 3D reconstruction, 2D maps were generated as described previously28.

To quantify the signal distribution in the resulting 2D maps, images were opened in Fiji and rotated
by 90◦. The region corresponding to the whole embryo was selected, and the average intensity of fascin
or pSmad2/3 from every point of the embryonic vegetal-animal axis was obtained using the “plot profile”
plug-in in Fiji. Distances in pixels were transformed into percentages of total embryo length with the
vegetal-most side defined as 0% and the animal-most side as 100%. Intensity was then normalized by
subtracting background values (i.e. the lowest intensity value closest to the animal pole of the embryo)
and setting the highest intensity value to 1. For the quantification of pSmad2/3 distributions, background
values were obtained by imaging lefty mRNA-injected embryos after pSmad2/3 immunostaining and
normalized using the highest intensity value from the uninjected experimental data sets. 2D maps of
DAPI were used as controls to rule out spatial inhomogeneities along the embryonic vegetal-animal axis
(not shown). The graphs in Fig. 1f represent average maps obtained from several embryos.

Cell density quantifications

Cell density measurements were performed in untreated and extirpated H2A::GFP transgenic embryos.
Embryos were mounted at 1 hpe and 2 hpe as described above for phospho-Histone H3 immunostaining.
The number of cells was quantified as described above for pH3+ cells but over a depth of 80 µm. Given
the high density of cells, segmentation errors of the Fiji plug-in were carefully corrected manually.

Mathematical modelling and statistical analysis

Details of the computational screen and the parameters used for modelling of the size-dependent inhibi-
tion system are described in the Supplementary Note.

Two tests were performed to assess whether experimental data was normally distributed: Kolmogorov-
Smirnov (α = 0.05) and Shapiro-Wilk tests (α = 0.05). To check whether experimental groups were
significantly different, two-sided Student’s t-tests (α = 0.05) were performed if the groups followed
a normal distribution according to at least one of the tests. Mann-Whitney U tests (α = 0.05) were
performed if the groups did not follow a normal distribution.

Injection of lefty1-GFP mRNA into the YSL

mRNA encoding Lefty1-GFP17 was generated by plasmid linearization with NotI-HF (NEB), purifica-
tion with a Qiagen PCR clean-up kit, and in vitro transcription using SP6 mMessage mMachine kits
(Ambion). To mimic endogenous Lefty secretion, a physiologically relevant amount of 100 pg of lefty1-
GFP mRNA was precisely injected into 4 hpf (sphere stage) pronase-dechorionated embryos at two



equidistant points (1 nl of 50 ng/µl lefty1-GFP mRNA per point) within the embryonic yolk syncytial
layer (YSL). To identify physiologically relevant amounts, 40, 60, 80, 100, 160, and 200 pg of lefty1-
GFP mRNA were tested in a careful titration series, and 100 pg of lefty1-GFP mRNA were found to
most efficiently rescue lefty1-/-;lefty2-/- mutants.

Extirpations were performed 20-30 min after YSL injections. Embryos were divided into three
groups: one group was fixed at shield stage and processed for FISH, the second was incubated in embryo
medium at 28◦C in 24-well plates covered with 2% agarose (1 embryo per well) for phenotypic analysis
at 24 hpf, and the third group was processed for imaging 45-60 min after YSL injections. Mounting for
imaging was done as described above for FISH samples. Movies were recorded with identical imaging
conditions. Embryos were imaged for a total of ∼100 min, and Fiji was used to generate movies. For
measurements of Lefty1-GFP intensity, injections of lefty1-GFP mRNA in the YSL and extirpations
were performed as described above, but imaging was carried out 1.5-2 h after injection. Samples were
captured with identical imaging conditions. 20 stacks were used for z-projections over a depth of 53 µm,
and the intensity of equivalent areas of the images was quantified using the “measure” plug-in in Fiji.

Hindering Lefty1-GFP diffusion

The morphotrap construct21 comprises a strong GFP binder (KD ∼ 0.3 nM)29. The morphotrap construct
was digested with XhoI and XbaI to insert the morphotrap into a pCS2+ expression plasmid. mRNA was
generated as described above for lefty1-GFP. 1 nl containing 100 - 150 pg mRNA encoding the morpho-
trap was injected into one-cell stage embryos for experiments shown in the top panel of Supplementary
Fig. 3f. Transplantation of cells expressing the morphotrap (bottom panel of Supplementary Fig. 3f) was
performed as described above for extirpation experiments. Briefly, 50 - 100 cells were transplanted from
a sphere stage donor previously injected with 200 pg morphotrap-encoding mRNA into sphere stage host
embryos previously injected with 50 pg lefty1-GFP mRNA.

Testing the effect of morphotrap binding on Lefty1-GFP activity

Wild type (TE) embryos were injected at the one-cell stage with 1 nl injection mix containing 5 or 30 pg
lefty1-GFP mRNA and 0.05% phenol red. To test the effect of the morphotrap on Lefty1-GFP activity,
150 pg of morphotrap mRNA was included in the injection mix. Lefty overexpression phenotypes were
evaluated at 24 hpf. Three groups of Nodal loss-of-function phenotypes were defined according to their
strength (Supplementary Fig. 3g): mild (S1), intermediate (S2), and severe (S3). For imaging, embryos
were mounted in 2% methylcellulose in embryo medium. Bright-field images were acquired with an
Axio Zoom.V16 (ZEISS).

Lefty1-GFP gradient measurements

The physiologically relevant amount of 100 pg mRNA encoding Lefty1-GFP was injected into the YSL
of lefty1-/-;lefty2-/- embryos. One group of embryos was additionally injected with 150 pg of morphotrap
mRNA at the one-cell stage. 90 min after YSL injections, embryos were mounted and imaged using a
Zeiss LSM 780 NLO (ZEISS) confocal laser scanning microscope. Embryos were imaged between 90-
140 min after YSL injections. To measure gradients of secreted Lefty1-GFP from the YSL, maximum
intensity projections were generated from 28 stacks over a depth of 194 µm, and the “plot profile” plug-in
in Fiji26 was used to obtain the intensity of Lefty1-GFP from every point of the vegetal-animal axis in a
central region of the embryo. Background values were obtained by imaging lefty1-/-;lefty2-/- uninjected
embryos (for the group injected with lefty1-GFP mRNA) or lefty1-/-;lefty2-/- injected with morphotrap
(for the group injected with morphotrap + lefty1-GFP mRNA).

Fluorescence Recovery After Photobleaching (FRAP)

Wild type (TE) embryos were injected at the one-cell stage with 1 nl injection mix containing 50 pg
lefty1-GFP mRNA and 0.05% phenol red. In experiments where the effect of the morphotrap on Lefty1-
GFP diffusivity was measured, 200 pg of mRNA encoding the morphotrap were included in the injection



mix. Pronase-dechorionated embryos were selected for homogenous expression of the morphotrap using
an Axio Zoom.V16 (ZEISS). Embryos were mounted around oblong to sphere stage in 1% low-melting
agarose using 35 mm Glass Bottom Microwell Dishes (MatTek). FRAP was performed and analyzed
as described previously17 using an LSM 780 NLO (ZEISS) confocal microscope at an imaging depth of
30-40 µm.

lefty1-/-;lefty2-/- mutant rescue with the small-molecule Nodal inhibitor SB-505124

Rescue experiments were performed as recently described20. Extirpations were performed in 4 hpf
pronase-dechorionated embryos at sphere stage as described above. 30-40 min after extirpation, em-
bryos were transferred to 24-well plates covered with 2% agarose (1 embryo per well) and treated with
4.8 µM SB-505124 in embryo medium starting 40 min after extirpation (30% epiboly stage). Embryos
were then separated into two groups: one group was fixed 2-2.5 h after extirpation (shield stage) and
processed for FISH, and the second group was further incubated with the inhibitor at 28◦C until 24 hpf
(20 h after extirpation) for phenotypic analysis. For the experiments with increasing Nodal inhibitor
exposure, different concentrations from 6 to 12 µM SB-505124 in embryo medium were tested.

Code availability

The source code for custom scripts used for data analysis in this study are available from the correspond-
ing author.

Data availability

The data that support the findings of this study are available from the corresponding author.



Supplementary Note. Screening for models of scale-invariant patterning

We found that embryos rapidly adjusted their tissue proportions after they were shortened by removal of
30% of their cells. This assay allowed us to shorten embryos at a defined developmental stage and directly
analyze both short- and long-term developmental consequences. Previous studies only analyzed the long-
term developmental consequences of size manipulations, making it difficult to directly link size-sensing
mechanisms to later changes in morphology. We did not find evidence for changes in proliferation
rates nor cell density in response to experimental shortening (Supplementary Fig. 1), thus ruling out
the possibility that cells change their size in smaller embryos. Instead smaller embryos must adjust the
dimensions of their tissues to the smaller embryo size for proportionate patterning (Fig. 1).

We hypothesized that the Nodal/Lefty germ layer patterning system might sense embryo size and
proportionally adjust tissue dimensions. We therefore performed a systematic computational screen and
identified a novel scale-invariant patterning model based on size-dependent changes in the concentration
of the highly diffusive long-range Nodal inhibitor Lefty. The screen comprised more than 400,000 param-
eter configurations constrained with all of our previous biophysical in vivo measurements17 as well as the
quantitative spatiotemporal aspects of germ layer patterning that we found in this study. This approach
represents one of the most exhaustive multi-objective data fitting pursuits based on quantitative biolog-
ical data, and yielded insights into the behaviour of the scale-invariant Nodal/Lefty patterning system
over a wide range of parameter configurations (Fig. 2). Importantly, our model can directly recapitulate
the kinetics of scale-invariant patterning over relevant time scales during zebrafish embryogenesis (Sup-
plementary Movie 1), whereas efforts based on steady-state assumptions often model patterning over
unrealistic time scales.

We experimentally confirmed four major predictions of this size-dependent inhibition model with
direct experimental manipulations and quantification of protein levels and diffusivity. We measurably
altered inhibitor concentration (Fig. 3, Supplementary Fig. 2) and diffusivity (Fig. 4, Supplementary
Fig. 3) and determined that these factors are crucial for the scaling mechanism to function.

Our model explains how early signalling adjustments in response to shortening of the patterning field
assure the correct proportions of all future tissues. Previously postulated scaling mechanisms rely on a
tight feedback-mediated coupling between signalling molecules and modulators that change the signals
diffusion or clearance to adjust patterning to tissue size. In contrast, we identified a novel scale-invariant
patterning mechanism – size-dependent inhibition – that is independent of a feedback-mediated coupling
between the signal Nodal and its modulator Lefty. Instead, the long-range distribution of Lefty acts as
a size sensor to scale the spatial extent of Nodal signalling, and it is sufficient to couple the changes in
Lefty concentration to embryo size in order to confer scaling.

Modelling spatio-temporal Nodal/Lefty dynamics in wild type embryos

To identify scale-invariant patterning models for the Nodal/Lefty activator/inhibitor system, we per-
formed a computational screen including the known positive and negative interactions of the signalling
network16, 17, 30. We constrained the screen with measured biophysical properties including the diffu-
sivities and protein stabilities of Nodal and Lefty17, and systematically varied the unknown parameters
to identify systems that recapitulate the scaling observed during germ layer patterning. To keep model
complexity minimal, we did not account for spatial biases influencing the Nodal/Lefty system31 and did
not explicitly model receptor interactions32.

The Nodal/Lefty system can be described by the following equations:

∂N

∂t
= DN∇2N − µNN − λN

L2

κNL + L2
+ ρNr(x,m) + σN

N2

κN +N2
x ∈ [0, l]

∂L

∂t
= DL∇2L− µLL+ σL

N2

κL +N2
x ∈ [0, l]

(1)

N(x, t) and L(x, t) denote Nodal and Lefty protein levels at time t and position x ∈ [0, l] across the
animal-vegetal axis. Nodal and Lefty diffuse at rates DN and DL and are removed with the clearance
rate constants µN and µL17.



Nodal is initially induced at the marginal zone independently of Nodal feedback16 (Supplementary
Fig. 1), which was modelled with the constant Nodal production term ρNr(x,m), where ρN is the
production rate constant, and r(x,m) is a rectangular pulse function given by

r(x,m) =

{
1 if x < m,
0 else

with m corresponding to the length of Nodal’s production domain.
Moreover, Nodal feeds back on its own transcription16 and thus undergoes auto-activation with the

rate constant σN . Since Nodal feedback is limited by the finite amount of cellular material, we account
for the saturation of Nodal auto-activation using a Hill-type function with the steepness parameter κN .

Nodal also induces its inhibitor Lefty. Similar to the term for Nodal auto-activation described above,
Nodal-mediated Lefty induction is limited by the finite amount of cellular material, which we account
for using a Hill-type function with steepness κL and a maximum induction rate σL.

Our experiments with lefty1-/- mutants indicate that Nodal inhibition might work cooperatively, and
the inhibition of Nodal might be non-linear. We therefore chose a Hill-type function with steepness κNL

and maximum inhibition rate λ to describe Lefty-mediated Nodal inhibition.
Since molecules cannot leave the embryo (modelled for a length of [0, l]) due to a tight enveloping

layer, we used the following Neumann boundary conditions:

∂N

∂x

∣∣∣∣
x=0

= 0,
∂L

∂x

∣∣∣∣
x=0

= 0,
∂N

∂x

∣∣∣∣
x=l

= 0,
∂L

∂x

∣∣∣∣
x=l

= 0 (2)

In the following, we will refer to the system given by equations (1) and (2) as the size-dependent inhibi-
tion model.

Modelling spatio-temporal Nodal/Lefty dynamics without feedback

A subset of our perturbation experiments was conducted in double-homozygous lefty1-/-;lefty2-/- mutants
rescued by generation of highly precise and physiologically relevant (see Online Methods for details)
Lefty1-GFP sources in the yolk syncytial layer (YSL). In these experiments, Lefty is no longer con-
trolled by Nodal, but constantly produced in a similar region as Nodal specified by r(x,m) with rate ρL,
resulting in the following equations:

∂N

∂t
= DN∇2N − µNN − λN

L2

κNL + L2
+ ρNr(x,m) + σN

N2

κN +N2
x ∈ [0, l]

∂L

∂t
= DL∇2L− µLL+ ρLr(x,m) x ∈ [0, l]

(3)

This system is subject to the same boundary conditions as the size-dependent inhibition model. In the
following, we will refer to the system given by equations (3) and (2) as the size-dependent inhibition
without feedback model.

Screening for scaling solutions

We performed a computational screen to identify parameter combinations that can recapitulate the timing
and spatial extent of Nodal signalling that we measured during germ layer patterning in differently sized
zebrafish embryos.

A signalling threshold as a readout of Nodal signalling can be described as

τi := N(t, x = Fi) (4)

where i ∈ U,E represent results from experiments in untreated and extirpated experiments, respectively,
and Fi is the extent of the mesendodermal domain determined using fascin FISH measurements.



To assess how well a given parameter combination scales in differently sized embryos, a “scaling score”
can be described as

η :=

 1 if RU ⊆ RE ∨RE ⊆ RU

|RU ∩RE|
|RU ∪RE| − |RU ∩RE|

else
(5)

Here Ri, i ∈ U,E represents the interval between the threshold τi,− required to produce a Nodal
signalling-dependent domain of size Fi,− = F̄i − 2σi and the threshold that generates a Nodal read-
out of size Fi,+ = F̄i + 2σi, where F̄i is the mean size of the Nodal readout domain and σi the respective
standard error. In other words, the scaling score η describes the overlap of the two threshold intervals
produced by two times the standard error of the fascin domain measurements for the untreated (U) and
extirpated (E) experiments. In the case that one interval completely overlaps with the other, η yields a
score of 1. Thus, η provides a measure of scaling within the experimental measurement error.

To investigate whether the size-dependent inhibition model described by equations (1) and (2) scales
according to our data of the spatial extent of fascin domains, we performed an extensive screen over a pa-
rameter space Θ for all unknown model parameters. The screened parameter space Θ was defined within
a similar range as previously used values for inhibition strength8, 33 and production rates34. We explored
the space Θ of unknown parameters by varying each parameter over multiple orders of magnitude in
three separate screens. Due to high computational costs, we kept either σL or κN fixed while varying all
other parameters in the screens. A list of all known or fixed parameters can be found in Supplementary
Table 1, and details about the screens are listed in Supplementary Table 2. For each set of unknown
parameters θ ∈ Θ, one simulation was run until time T , where T represents the time of Nodal signalling
readout. For the size-dependent inhibition model, θ was defined as

θ = {σL, σN , λ, κL, κN , κNL} (6)

The scaling score η was then determined for each simulation to assess whether the tested parameter
configuration leads to scaling. To provide a good degree of scaling, we required scenarios to have η(θ) ≥
0.9, i.e. at least a 90% overlap of the untreated and extirpated measurement error. All simulations used
the experimentally measured total embryo lengths li and mesendoderm domain sizes Fi (Supplementary
Table 3). Scenarios with the required degree of scaling are denoted as Θscaling ⊂ Θ.

Parameter Description Value Reference

DN Effective Nodal diffusivity 1.85 µm2/s 17
DL Effective Lefty diffusivity 15.0 µm2/s 17
µN Nodal clearance rate constant 1.11 · 10−4/s 17
µL Lefty clearance rate constant 0.61 · 10−4/s 17
ρN Nodal production rate constant 10 nmol/(µm· s) n.a.
m Size of marginal zone 0.298 µm n.a.
∆x Size of mesh 0.99 µm n.a.
T End time of simulation 7200 s n.a.
∆t Size of time step 7.2 s n.a.

Supplementary Table 1. Default values used for simulations of the Nodal/Lefty system if not specified
differently in Supplementary Table 2. Nodal and Lefty diffusion coefficients and clearance rate constants
represent the mean values of the two zebrafish Nodals Cyclops and Squint and the two Leftys Lefty1 and
Lefty2 measured previously17.

Filtering of screen results

To exclude parameter configurations that produce unrealistic Nodal gradients and Lefty levels, we im-
plemented three filters for the screening results.

There is currently no information about endogenous Nodal or Lefty protein levels or their produc-
tion rates, but we assume that the ratio between Nodal and Lefty levels does not exceed two orders of



magnitude. With this filter, parameter configurations were excluded for which

max(N(x, T ))

max(L(x, T ))
6∈ (

1

100
, 100)

The second filter excludes unrealistically flat Nodal gradients. We only selected Nodal gradients that
show a proper difference between the level at the margin N(0, T ) and the animal pole N(l, T ) by con-
sidering parameter configurations for which the Nodal gradient at readout time T decreases to 10 percent
of the levels at the marginal zone, i.e.

N(l, T )

N(0, T )
≤ 0.1

Similarly, all parameter configurations that result in signalling thresholds

τ > 0.5 max(N(x, T ))

were excluded. With a signalling threshold below 50% of the maximum Nodal level throughout the
embryo at readout time T , we only consider systems that can produce sufficiently steep gradients and
signalling thresholds.

Parameter Description Range Steps

Initial screen
σL Maximum Lefty production rate 0.01 – 100 nmol/(µm· s) 10
σN Maximum Nodal auto-activation rate 1 · 10−3 – 1 nmol/(µm· s) 10
λ Maximum Nodal inhibition rate 1 · 10−5 – 1 · 10−1/s 10
κN Steepness of Nodal auto-activation Hill function 0.3334 · 106 nmol2/µm2 *
κL Steepness of Lefty induction Hill function 100 – 1 · 106 nmol2/µm2 10
κNL Steepness of Nodal inhibition Hill function 100 – 1 · 106 nmol2/µm2 10

Second screen
σL Maximum Lefty production rate 0.01 nmol/(µm· s) *
σN Maximum Nodal auto-activation rate 1 · 10−3 – 1 nmol/(µm· s) 10
λ Maximum Nodal inhibition rate 1 · 10−5 – 1 · 10−1/s 10
κN Steepness of Nodal auto-activation Hill function 100 – 1 · 106 nmol2/µm2 10
κL Steepness of Lefty induction Hill function 100 – 1 · 106 nmol2/µm2 10
κNL Steepness of Nodal inhibition Hill function 100 – 1 · 106 nmol2/µm2 10

Third screen
σL Maximum Lefty production rate 0.0001 – 0.001 nmol/(µm· s) 2
σN Maximum Nodal auto-activation rate 1 · 10−3 – 1 nmol/(µm· s) 10
λ Maximum Nodal inhibition rate 1 · 10−5 – 1 · 10−1/s 10
κN Steepness of Nodal auto-activation Hill function 100 – 1 · 106 nmol2/µm2 10
κL Steepness of Lefty induction Hill function 100 – 1 · 106 nmol2/µm2 10
κNL Steepness of Nodal inhibition Hill function 100 – 1 · 106 nmol2/µm2 10

Supplementary Table 2. Parameter screens for scaling solutions of the size-dependent inhibition model.
Parameters marked with an asterisk were held constant during the indicated screen.

Untreated Extirpated
Model Perturbation lU (µm) FU (µm) σU (µm) lE(µm) FE(µm) σE(µm)

SDI None 298.0 83.7 2.0 241.0 69.5 2.5

SDI No Lefty 267.9 115.3 3.4 246.3 114.3 4.5

SDI Reduced
Lefty

production

277.1 80.7 2.0 242.4 97.5 2.5

SDIWF +Lefty-GFP 251.6 69.0 3.6 227.5 60.6 3.4

SDIWF +morphotrap
+Lefty-GFP

234.6 70.9 3.4 214.9 73.2 4.6

Supplementary Table 3. Domain sizes used for simulations of embryo length li and mesendodermal
region Fi, and the measured standard error of mesendodermal extent σi used for the computation of the
scaling score η. SDI: size-dependent inhibition model (equations (1) and (2)); SDIWF: size-dependent
inhibition model without feedback (equations (3) and (2)).



An intermediate level of Lefty-mediated Nodal inhibition is required for scaling

The central finding from our screen was that the shrunken mesendodermal domain results from an in-
crease in Lefty concentration throughout the embryo. To show the relationship between Lefty induction
and Nodal inhibition, we reduced the 6-dimensional parameter space Θ using a maximum projection of
scaling scores by

ηmax(θ, I) = max
i 6∈I

H(ki ∈ θ)

where H are all scaling scores over the complete parameter space Θ, and I = i1, i2, ... are the indices of
the parameters of interest.

Maximum projections of scaling scores are displayed in Fig. 2d,e and in Supplementary Fig. 5f,g.
From these plots it is clear that Lefty has an important role in scaling. Only large values for the maxi-
mum inhibition rate λ provide good scaling (Supplementary Fig. 5f). However, as the maximum Lefty
induction rate σL increases, large values of λ become less favorable, indicating that the abundance of
Lefty and its inhibition strength on Nodal need to be properly balanced (Supplementary Fig. 5f).

Similar conclusions can be drawn about the relationship between σL and the steepness parameter
of Lefty induction κL. For intermediate values of σL, both a quick or a slow rise in Lefty levels allow
scaling, whereas scaling is precluded with low values of σL (Supplementary Fig. 5g). However, with
larger maximum Lefty induction rates σL, Lefty induction needs to be slowed down by higher values of
the steepness parameter κL (Supplementary Fig. 5g), making sure that Lefty is produced at the right rate
to provide scaling at the proper time.

In double-homozygous lefty1-/-;lefty2-/- mutants mesendoderm does not scale, resulting in expanded
fascin domains of similar size in untreated (FU = 115 µm) and extirpated (FE = 114 µm) embryos.
To test whether the size-dependent inhibition model can reproduce these experimental observations,
we simulated all parameter configurations θ ∈ Θscaling of the full model (equations (1) and (2)) with
σL = 0, mimicking the absence of Lefty. If the simulations reproduced the measured fascin domains
(Supplementary Table 3) within 20 µm, we recorded the original parameter configuration θ of the full
model in ΘNoLft ⊂ Θscaling. A non-scaling Nodal profile can be seen in Supplementary Fig. 5b; since
the dashed and solid lines do not overlap at the intercept with the signalling threshold, this parameter
configuration does not scale.

Proper Lefty levels are therefore crucial for size-dependent inhibition and scaling. To further illus-
trate that even small changes in Lefty levels can influence scaling, we lowered σL by 20%, 30%, and
50% for all parameter configurations in ΘNoLft, which abrogate scaling (Supplementary Fig. 5c, Fig.
3a,b). All tested parameter configurations for lowered σL resulted in an expansion of the fascin domain
to varying degrees and decreased the system’s ability to scale. We recorded all parameter configurations
θ ∈ ΘnoLft for which at least one of the three Lefty induction permutations provided an expansion of
fascin domain less than 30 µm in ΘlowP and its corresponding permutation parameter set.

Mesendoderm scaling fails if Lefty diffusion is reduced

We propose that Lefty senses embryo size due to its high diffusivity allowing it to reach the animal pole
within the time scale of germ layer formation. To test this hypothesis, multiple scenarios with Lefty
diffusion coefficients ranging from DL = 0.35 µm2/s to DL = 20.0 µm2/s were analyzed. Simulations
with DL ≥ 7 µm2/s showed good scaling behavior, while lower rates of diffusion abrogated scaling
(Fig. 2e, Fig. 4b, Supplementary Fig. 5h).

We further tested whether the model can reproduce the rescue experiments with Lefty1-GFP. Since
these experiments were executed in lefty1-/-;lefty2-/- mutants, Nodal cannot induce Lefty. In the “size-
dependent inhibition without feedback” model, we therefore removed Nodal-mediated Lefty induction
and simulated equations (3) and (2) with the parameter configuration

θ̃ = {σL, σN , λ, κN , κNL}

We first tested whether the feedback-less model can reproduce the fascin domains in mutants rescued by
exogenous lefty-GFP mRNA injection. Simulations were performed using values for auto-activation σN



Model Perturbation σL σN λ κL κN κNL Suppl.
nmol/(µm· s) nmol/(µm· s) 1/s nmol2/µm2 nmol2/µm2 nmol2/µm2 Fig.

SDI None 1 · 10−2 1 0.07778 100 445000 445000 5a
SDI No Lefty 0 1 0 0 445000 0 5b
SDI Reduced

Lefty
production

6.5 · 10−7 1 0.07778 100 445000 445000 5c

SDI
WF

+Lefty-
GFP

7.5 1 0.02650 0 445000 445000 5d

SDI
WF

+morphotrap
+Lefty-

GFP

7.5 1 0.00321 0 445000 445000 5e

Supplementary Table 4. Optimal parameter configurations that satisfy all experimental observations.
SDI: size-dependent inhibition model (equations (1) and (2)); SDIWF: size-dependent inhibition model
without feedback (equations (3) and (2)).

and steepness parameters κN and κNL taken from scaling parameter configurations θ ∈ ΘlowP of the full
model with feedback. We screened the remaining two unknown parameters σL and λ, which represent
exogenous production of Lefty-GFP and its inhibition strength, respectively. The scaling configuration
θ̃ was selected that reproduced the measured fascin domains of FU = 68 µm and FE = 60 µm with the
threshold τ(θ) of the corresponding simulation of the full model with feedback.

We then simulated the feedback-less model for each scaling parameter configuration θ̃ with the
reduced Lefty1-GFP diffusion coefficients measured in the presence of the morphotrap (DL = 0.35
µm2/s). Since the morphotrap modestly lowers Lefty activity (Supplementary Fig. 3g,h), λ was allowed
to be smaller than the one in θ̃. Finally, we selected parameter configurations θ̃ ∈ Θ̃lowD(θ) that fit the
fascin domains measured in embryos with Lefty-GFP + morphotrap (FU = 69 µm and FE = 71 µm)
within a 20 µm range.

Nodal gradients for the feedback-less model with and without morphotrap are shown in Supple-
mentary Fig. 5d,e. While the feedback-less model with normal Lefty diffusion scales, reducing Lefty
diffusion to DL = 0.35 µm2/s precludes scaling.

Extensions of the size-dependent inhibition model

Separate modelling of Nodal protein distributions and Nodal signalling

To keep model complexity minimal, we executed our screens with a system that describes both signalling
and protein levels in the single variable N . This was based on the assumption that signal transduction
acts at faster time scales than other kinetics in the model, such as protein clearance and inhibition.

In a more realistic description of the biological system, the merged N(x, t) can be uncoupled into
separate variables S(x, t) – representing pSmad2/3 levels over space and time – and N(x, t) – represent-
ing Nodal protein levels over space and time – as follows:

∂N

∂t
= DN∇2N − µNN − λN

L2

κNL + L2
+ ρNr(x,m) + σN

S2

κN + S2
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∂L
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S2
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∂S
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= σS

N2

κS +N2
− µSS x ∈ [0, l]

(7)

Here, σS represents the maximum rate of signal transduction that is described by a Hill-type function
with steepness parameter κS . Moreover, Nodal signalling S(x, t) decays linearly with the rate constant
µS . Similar to our original model, we applied no-flux Neumann boundary conditions to all reactants:
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In contrast to the models used for screening (equations (1) and (3)), Nodal auto-activation and Lefty
induction are no longer directly dependent on the levels of N(x, t), but are now under the control of
S(x, t).

The extended model (equations (7) and (8)) also scales. We simulated this model with similar pa-
rameters as the two-component model (Supplementary Table 5) and chose a clearance rate constant
µS = 5.333 ·10−2/s and a maximum transduction rate constant σS = 1.6680 ·104 nmol/(µm· s) together
with a steepness parameter of κS = 7.9119914 ·107 nmol2/µm2 for S(x, t), which results in much faster
turnover kinetics compared to the rest of the system. The signal decays roughly 500 times faster than
both Nodal and Lefty proteins and reaches a high maximum transduction rate σS at relatively low Nodal
protein levels. Simulations of this extended model also resulted in a flat Lefty profile (Supplementary
Fig. 5i,j, Supplementary Movie 4). Nodal signalling levels read out at the threshold indicated by the
dashed red line in Supplementary Fig. 5i,j result in gradients with a similar extent as the experimentally
measured pSmad2/3 gradients (Fig. 1f) at roughly 25% of total embryo length.

σL σN λ κL κN κNL ρN σS µS κS

nmol/(µm· s) nmol/(µm· s) 1/s nmol2/µm2 nmol2/µm2 nmol2/µm2 nmol/(µm· s) nmol/(µm· s) 1/s nmol2/µm2

0.045445 1.8356 0.0656 77.505 424316 354120 5.599 16680 0.05333 79119914

Supplementary Table 5. Parameter configurations that result in scaling of the extended size-dependent
inhibition model (equations (7) and (8)).

Modelling of bound and free Nodal

Our models rely on the assumption that free, unbound Nodal protein activates signal transduction and
correlates with Nodal signalling. In the following, we extended the model to also take into account
inactive Nodal bound to Lefty (C(x, t)):

∂N
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= DN∇2N − µNN − λN
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(9)

The total Nodal concentration can be calculated as

Ntotal(x, t) = N(x, t) + C(x, t) (10)

We assume that Nodal bound to Lefty C(x, t) diffuses with a diffusion coefficient DC and is removed
with a clearance rate constant µC . No-flux Neumann boundary conditions for the system are given by

∂N

∂x

∣∣∣∣
x=0

= 0,
∂L

∂x

∣∣∣∣
x=0

= 0,
∂C

∂x

∣∣∣∣
x=0

= 0,
∂N

∂x

∣∣∣∣
x=l

= 0,
∂L

∂x

∣∣∣∣
x=l

= 0,
∂C

∂x

∣∣∣∣
x=l

= 0 (11)

For bound Nodal C(x, t) we chose the mean of Lefty and Nodal diffusion and clearance (DC = 8.5
µm2/s and µC = 0.86 · 10−4/s). Simulations of the model (equations (9) and (11)) with the parameters
defined for the two-component model (Supplementary Table 4) are shown in Supplementary Fig. 5k,l.
Despite a difference in absolute values, the shape of the total Nodal profile Ntotal(x, t) is similar to free
Nodal N(x, t).

Comparison of the size-dependent inhibition mechanism to other scaling models

Previously described scaling mechanisms rely on modulators, whose concentrations change depending
on tissue size to adjust signalling activity range by modulating the signal’s diffusion or clearance5, 35.
The Nodal/Lefty activator/inhibitor system is an excellent candidate for a modulator-based scaling mech-
anism: i) Lefty (modulator) inhibits Nodal activity by binding and preventing it from activating its re-
ceptors, ii) Nodal activity range is unaffected by the size reduction in extirpated embryos since the Nodal



distribution is restricted to the marginal zone due to its low diffusivity17, iii) Lefty diffuses significantly
faster than Nodal and exhibits a nearly uniform distribution17 (Fig. 2c, Fig. 4d, Supplementary Fig. 3i,
Supplementary Movie 2), and iv) the production of Lefty is independent of the changes in size since
Lefty-producing cells are located at the margin, which remains unaffected after extirpation (Supplemen-
tary Fig. 1f-k).

An example of modulator-based scaling mechanisms is the recently proposed “expansion-repression”
model, in which scaling of signalling gradients is achieved by an expander that increases the signal’s
range and that is itself repressed by the signal36. Superficially, our model can be interpreted as a mirror
image of the “expansion-repression” model – i.e. a “contraction-activation” system – since the “in-
hibitor” or “contractor” Lefty restricts the signal’s (Nodal) range and is activated by the signal. However,
we show that Nodal-mediated Lefty activation is dispensable for scaling (Fig. 4, Fig. 5, Supplementary
Fig. 3, Supplementary Fig. 4). Therefore, in contrast to previously postulated scaling networks, our sim-
ple model is a new scaling system that does not depend on the feedback between signal and modulator.
Since in our system the modulator Lefty inhibits the signal, it is sufficient to couple the changes in the
concentration of Lefty to size in order to confer proportionate patterning. Importantly, this also implies
that scale-invariant patterning driven by the Nodal/Lefty pathway is not based on previously postulated
feedback-based activator/inhibitor systems23 but purely on size-dependent Nodal inhibition mediated by
Lefty.



Movie Legends for Supplementary Movies 1-4

Supplementary Movie 1

Temporal dynamics of the scaling model. Nodal signalling levels (blue, solid line: normally sized
embryo, dashed line: extirpated embryo) peak at the time of Nodal readout (red). Nodal signalling levels
decrease rapidly afterwards, matching the time window of germ layer specification. Grey bars indicate
the extent of the mesendodermal domain, and green lines show Lefty levels (solid line: normally sized
embryo, dashed line: extirpated embryo).

Supplementary Movie 2

Lefty1-GFP diffusion from the marginal zone in lefty1-/-;lefty2-/- embryos. Time-lapse imaging over
70 min after yolk syncytial layer (YSL) injections reveals high mobility of Lefty1-GFP emerging from
the YSL. Lefty1-GFP levels increase in the YSL and over time localize to the extracellular space. Lefty1-
GFP moves over a long distance to the animal pole within ∼40 min. Maximum intensity projection of a
60 µm z-stack. The animal pole is at the top, and Lefty1-GFP signal is shown in green.

Supplementary Movie 3

Lefty1-GFP diffusion from the marginal zone in lefty1-/-;lefty2-/- embryos expressing the GFP bind-
ing morphotrap. Time-lapse imaging over 70 min after YSL injections reveals hindered movement of
Lefty1-GFP from the YSL in the presence of morphotrap. The morphotrap drastically changes the dis-
tribution of Lefty1-GFP from diffuse extracellular to membrane-bound. Maximum intensity projection
of a 60 µm z-stack. The animal pole is at the top, and an overlay of the Lefty1-GFP signal (green) with
the morphotrap signal (red) is shown.

Supplementary Movie 4

Temporal dynamics of the extended scaling model. Nodal signalling, i.e. pSmad2/3 levels (magenta,
solid line: normally sized embryo, dashed line: extirpated embryo), peaks at the time of Nodal readout
(red). Nodal signalling levels decrease rapidly afterwards, matching the time window of germ layer
specification. Dashed-dotted lines indicate the extent of the pSmad2/3 domain, blue lines show Nodal,
and green lines show Lefty levels (solid line: normally sized embryo, dashed line: extirpated embryo).



Supplementary Figure 1 | Germ layer proportions scale in extirpated embryos without changes in cell proliferation, cell 
density, or developmental speed. (a) Lateral views and quantification of the number of endodermal cells positive for sox17 
(untreated, n=30; extirpated, n=27; *p<0.05) and sox32 (untreated, n=26; extirpated, n=28; **p<0.01). (b) Cell density measured in 
untreated and extirpated H2A::GFP embryos at different time points after extirpation. n>=9 for all groups. (c,d) Number of proliferat-
ing cells (phospho-Histone H3 (pH3) positive) relative to embryo diameter (c), and density of proliferating cells (d) in untreated and 
extirpated embryos at different time points after extirpation. n≥11 for all groups. Individual data points are shown in (c); mean and 
SEM of the same data are shown in (d). (e) Animal pole view images of goosecoid expression. Changes in the goosecoid expres-
sion domain during development proceed with the same speed in untreated and extirpated embryos. (f,h) Lateral images of embry-
os analyzed for the expression of cyclops and squint Nodals, and lefty1 and lefty2 Leftys in untreated and extirpated embryos at 1 
hour (f) and 2 hours (h) post extirpation. (g,i) Quantification of total embryo length and length of gene expression domains at 1 hour 
(g) and 2 hours (i) post extirpation. Nodal and Lefty expression domains are unchanged in differently sized embryos at 1 hpe but 
scale by 2 hpe. (j) Maximum intensity projections of lateral confocal stacks of lefty1 and lefty2 FISH in untreated and extirpated 
embryos at 1 hpe. n>=10 for all groups. (k) Quantification of lefty expression domains. hpe: hours post extirpation. Box plots 
(a,b,g,i,k) show median (blue line), mean (untreated: black; extirpated: grey lines), 25% quantiles (box) and all included data 
points (red markers). Unt: Untreated; Ext: Extirpated. Scale bars: 200 µm (a,e) and 100 µm (f,h,j).
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Supplementary Figure 2 | Lack of Lefty1 precludes germ layer scaling. (a-d) Quantification of fascin extent relative to 
embryo length. The different lefty mutant groups are shown along with data from wild type embryos. lft1+/-;lft2+/- untreated and 
extirpated, and lft1-/- untreated embryos show a linear increase of mesendoderm with embryo size, similar to the linear 
increase observed in wild type individuals. In contrast,  lft1-/- extirpated, lft2-/- untreated and extirpated, and lft1-/-;lft2

-/-
 untreated 

and extirpated embryos cluster in a wider circular domain showing absence of scaling.  WT: n[untreated]=38, n[extirpated]=49; 
lft1+/-;lft2+/-: n[untreated]=26, n[extirpated]=55; lft1-/-: n[untreated]=50, n[extirpated]=58; lft2-/-: n[untreated]=50, n[extirpat-
ed]=61; lft1-/-;lft2-/-: n[untreated]=29; n[extirpated]=34). (e) Schematic of experiments to assess the activity of Lefty1 and 
Lefty2. Embryos were injected at the one-cell stage with different amounts of lefty1- or lefty2-gfp mRNA. Extracellular GFP 
intensity was quantified at 5 hpf, and sibling embryos were collected at 50% epiboly. qRT-PCR using primers for the Nodal 
target gene no tail (ntl) was used to assess inhibitory activity. (f) Average ntl expression is plotted against average extracellular 
intensity. At similar intensities, Lefty2-GFP consistently repressed ntl expression more effectively than Lefty1-GFP. Error bars: 
SEM.
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lft1GFP  and morphotrap mRNA injection in lft1-/-;lft2-/-

Supplementary Figure 3 | Experimentally hindering Lefty1-GFP diffusion in zebrafish embryos. (a,c) Maximum inten-
sity projections of lateral confocal stacks of fascin expression in lft1-/-;lft2-/- embryos subjected to different treatments. Repre-
sentative embryos for each treatment are shown. (b,d,e) Mesendoderm proportions in differently sized embryos. Note that 
the fraction of embryos with normal mesendoderm extent is equivalent to the fraction of rescued lft1-/-;lft2-/- embryos shown 
in Fig. 4. (f) Maximum intensity projections of confocal stacks of 30-50% epiboly stage embryos. Animal pole views. The 
upper image shows an embryo injected with lefty1-GFP mRNA at the one-cell stage. The middle panel shows an embryo 
co-injected with morphotrap-encoding mRNA and lefty1-GFP mRNA at the one-cell stage. The lower panel shows an embryo 
injected with lefty1-GFP mRNA at the one-cell stage and transplanted with a morphotrap-expressing clone at sphere stage. 
The morphotrap changes the distribution of Lefty1-GFP from uniform extracellular to strongly membrane-associated. (g,h) 
Morphotrap binding modestly affects Lefty activity. Lateral and ventral views of 24 hpf wild type embryos injected with 
morphotrap or different concentrations of lefty1-GFP mRNA. Representative embryos for each phenotypic category are 
shown (g). Distribution of phenotypes after different treatments (h). Three groups of Nodal loss-of-function phenotypes were 
defined according to their strength: mild (S1), intermediate (S2), and severe (S3). For 5 pg of lft1-GFP mRNA: uninjected 
n=32, +lft1-GFP n=34, +morphotrap+lft1-GFP n=24. For 30 pg of lft1-GFP mRNA: uninjected n=30, +lft1-GFP n=26, +mor-
photrap+lft1-GFP n=34). (i,j) FRAP experiments demonstrate that Lefty1-GFP diffusion is hindered by the morphotrap. 
Representative FRAP data for Lefty1-GFP (i), and Lefty1-GFP with morphotrap (j). Microscopy images are shown before 
photobleaching (pre), immediately after (0 s), as well as 2000 s and 3000 s after photobleaching. Diffusion coefficients and 
production rates were fitted to the recovery curves using previously published values for Lefty1-GFP protein stability. The 
mean diffusion coefficients were 7.7 ± 3.2 µm2/s for Lefty1-GFP (n=6) and 0.2 ± 0.2 µm2/s for Lefty1-GFP with morphotrap 
(n=4). Note that a diffusion coefficient of 0.1 µm2/s is the minimal value allowed in the model used for fitting and on the order 
of the speed of cell movements during early zebrafish development. Scale bars: 200 µm. 
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Supplementary Figure 4 | An increase in Lefty concentration is required for scale-invariant patterning. (a-d) 
Simplified qualitative models of Nodal (i.e. total Nodal, in contrast to the free Nodal shown in the simulations throughout 
the paper) and Lefty gradients in different scenarios to explain experimental observations. In contrast to our rescue 
approach using ectopic Lefty gradients, most of the extirpated lft1-/-;lft2-/- mutants exposed to the Nodal inhibitor 
SB-505124 are unable to restore normal mesendoderm proportions. In contrast to ectopic Lefty proteins (c), the Nodal 
inhibitor is provided tonically, and its concentration does not increase after a reduction in embryo size (d). (e) Maximum 
intensity projections of confocal stacks of fascin expression in lft1-/-;lft2-/- embryos exposed to the Nodal inhibitor 
SB-505124. Lateral views. Representative embryos for each treatment are shown. (f) Mesendoderm proportions in 
embryos treated with the Nodal inhibitor SB-505124. (g) Lateral views of 26 hpf lft1-/-;lft2-/- embryos exposed to different 
concentrations of the Nodal inhibitor SB-505124. Representative embryos for each treatment are shown. Scale bars: 200 
µm.
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Supplementary Figure 5 | Summary and extensions of the size-dependent inhibition model for scale-invariant patterning. 
(a-e) Normalized Nodal and Lefty protein profiles scaled to embryo size for simulations of the size-dependent inhibition model with 
normal Lefty production (a), no Lefty production (b), reduced Lefty production (c), and feedback-less Lefty inhibition in the absence 
(d) or presence of morphotrap (e). In contrast to the graphs shown in Fig. 2, Fig. 3, and Fig. 4, these graphs show normalized length 
for both untreated and extirpated embryos. Here, models scale when the dashed and solid lines overlap at the intercept with the 
signaling threshold. Normal Lefty induction in the model corresponds to 10-6, and the reduced Lefty induction was set to 6.5 x 10-7 
corresponding to a 30% decrease in induction. Normal Lefty diffusivity was set to DL = 15 µm2/s, and Lefty diffusivity in the presence 
of morphotrap was set to DL = 0.35 µm2/s. All simulation parameter values are listed in Supplementary Table 3 (Supplementary 
Note). (f,g) Relationship between the maximum rate of Lefty induction and the strength of Lefty-mediated Nodal inhibition (f) or 
between the maximum rate of Lefty induction and Lefty induction steepness (g). The plots show maximum projections through the 
six-dimensional parameter space of the size-dependent inhibition model. (h) Simulation of the full model with different values for 
Lefty diffusivities. A minimal diffusion coefficient of approximately 7-10 µm2/s is required for scale-invariant patterning. (i-l) Exten-
sions of the size-dependent inhibition model. (i,j) Simulations with separate variables for signalling and protein levels showing results 
for absolute (i) and normalized (j) embryo length. (k,l) Simulations of the size-dependent inhibition system explicitly modelling total, 
free, and Lefty-bound (inhibited) Nodal protein, showing results for absolute (k) and normalized (l) embryo length. 
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