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ABSTRACT 

The goal of my PhD project was to combine approaches from human psychophysics, Bayesian modeling and animal 
electrophysiology to study the mechanisms underlying motion perception. The specific goals of the current project are 

to: i) investigate the relationship between perceptual bias and stabilization with contextual regularity and density in 
human observers, and develop novel Bayesian models of motion perception that can account for the data; ii) explore 
motion duration dependence of offset neural activity and its layer specificity in primary visual cortex (V1) of alert 

monkeys. 
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1. INTRODUCTION 

“Our perceptions cannot be mapped directly onto physical reality, and visual perception 
cannot be said to be a veridical representation of the external world—nor does it try to 
achieve such a goal. Rather, the goal of the visual system is to support behaviour that is 
evolutionarily advantageous, and it achieves this through statistically informed 
perceptual responses to sensory inputs based on previous behavioural outcomes.”  

                    - (Soon et al., 2017) 

The world is ever changing, and perception is our primary contact with the outside world (Efron, 1969). The 

relationship between percepts and the objective environment has intrigued scientists and students for centuries. Sensory 
organs are thought to be closely related to the physical properties of the environment (Geisler, 2008); however, a long-

standing question is whether cognitive system can directly measure such 

properties (Soon et al., 2017). 

Sensory inputs are full of incompleteness, ambiguity and noise (Bach and 
Dolan, 2012; Carbon, 2014; Ernst and Bülthoff, 2004; Jacobs, 2002; 
Kersten and Yuille, 2003; Knill and Pouget, 2004; Kornmeier et al., 2014; 

Rust and Stocker, 2010; Wei and Stocker, 2015). For instance, a retinal 
image is ambiguously created by the inverted projection of different 
images or objects onto the retina (Fig.1a) (Palmer, 1999; Pizlo, 2001). 

Local measurements by small receptive fields suffer from what is known 
as the aperture problem (Marr and Ullman, 1981; Wallach, 1935; 
Wuerger et al., 1996). The aperture problem states that direction-selective 
neurons cannot accurately estimate motion direction, and thus, are 

expected to respond with ambiguous and noisy one-dimensional motion estimates (Fig.1b). In addition, the brain is 
inherently noisy (Neri, 2010; Rolls, 2016) as neural responses vary while a stimulus remains constant. Such noise 
inducing trial-to-trial variability was observed across all levels (Calvin and Stevens, 1968; Faisal et al., 2008; Mainen 

and Sejnowski, 1995; Rolls, 2016; Sadaghiani et al., 2015; Scaglione et al., 2011; Shadlen and Newsome, 1998). 
Perception itself also varies on different occasions even stimulus is the same and salient (Supèr et al., 2001) depending 
on internal brain states (Platt and Glimcher, 1999; Shadlen and Kim, 1999; Thompson and Schall, 1999). Last but not 
least, what we perceive may not actually physically exist (see Fig.2). 

 Although the link between perception and physical property seems loose (Carbon, 2014; Soon et al., 2017), it 
is still hard to believe that perception is not a copy of the environment because the personal feeling of what we perceive 
is always coherent, seamless and robust. This begs the question - how can we obtain an unambiguous interpretation of 

the world and reach stable perception? Our brain takes advantage of information beyond sensory inputs from very 
different sources (Ernst and Bülthoff, 2004). We do not ‘see’ the world with our eyes, but with our brains. According to 
Helmholtz, perception is the ‘best guess’ by our visual system, the product of unconscious inference based on the 
sensory input at hand and prior experience (Helmholtz, 1867). Constructivists proposed that perception is an active and 

constructive process (Gregory, 1980, 1997; Neisser, 2014); such ideas received quantitative support from Bayesian 
frameworks (Bach and Dolan, 2012; Kersten and Yuille, 2003; Knill and Pouget, 2004; Knill and Richards, 1996; 
Pouget et al., 2000; Rao et al., 2002; Weiss et al., 2002). Current conceptualizations of predictive coding state that 

                                                 �2

Figure 2. Illustrations of subjective 
perception. (a) Kanisza triangle (Kanizsa, 
1955) , adapted f rom (Zenta l l and 
Wasserman, 2012); (b) Subjective Necker 
cube, adapted from (Bradley and Petry, 
1977). Both examples demonstrate the 
subject perception of nonexistent contours.



sensory inputs are not passively absorbed, but rather our brain actively predicts inputs across a cortical hierarchy (Jehee 

et al., 2006; Kok and de Lange, 2015; Spratling, 2008; Summerfield et al., 2006).  

 The question about whether the properties of sensory inputs can be measured perceptually is essentially ill-
posed. The function of perception is not to measure, but to make sense of the environment (Malcolm et al., 2016), as 

guided by specific goals to ensure survival. Such goals may be developed through evolution (Goldstein, 2009), or from 
learning procedures (Chalupa and Werner, 2004). We should first ask why we perceive, instead of what or how we 

perceive. 

1.1.BIAS AND CONTEXT 

1.1.1.SUBJECTIVE PERCEPTION IS BIASED 

Perception is inherently a biased procedure influenced by information from various sources, which leads to perceptual 

errors and illusions (Brosch et al., 2010; Girshick et al., 2011; Graf et al., 2004; Haselton et al., 2015; Pessoa and 
Adolphs, 2010). An interesting historical phenomenon is that perception researchers have been more intrigued by 
biased perceptions than veridical or robust ones, whereby perceptual errors were described before basic perceptual 
processing was fully understood (Haselton et al., 2015). It was believed that perceptual bias provides a unique window 

to the underlying mechanisms of perception (Zoccolan et al., 2015).  

 Our perception can be biased by prior experiences, as perceptual abilities have a strong reliance on previous 
knowledge in front of  ambiguity (Carbon, 2014; Knill and Pouget, 2004; Körding and Wolpert, 2004; Seriès and Seitz, 

2013). Ample priors have been well described, for instance, the low-speed prior (see Fig.1b. Stocker and Simoncelli, 
2006; Weiss et al., 2002); the light-from-above prior (see Fig.1c. Sun and Perona, 1998), and cardinal-orientation prior, 
also known as the oblique effect (see Fig.1d. Appelle, 1972; Girshick et al., 2011; Tomassini et al., 2010). Such priors 
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Pattern motion

Component motion

or or

Figure 3.Cartoon version of tri-stable plaid, adapted from (Andrews and 
Schluppeck, 2000). The stimulus consists of three superimposed square-wave 
gratings, separated from one another by an angle of 120 degrees, which moved 
at constant speed. At any given time, two of the components appear to group 
together into a moving ‘plaid’ pattern, which moves in the direction of the 
intersection of velocity constraint lines imposed by each individual component. 
At the same time, the remaining component appears to drift in the opposite 
direction. However, which of the three components group together appears to 
spontaneously shift over time.     



are thought to be learned from the properties of the environment (Girshick et al., 2011; Lewis et al., 2012; 

Ramachandran, 1988; Styles, 2005). According to the Bayesian approach, bias is represented in the form of a prior 
distribution, which is affected by the uncertainty of the stimulus (de Gardelle et al., 2010; Girshick et al., 2011; 
Heekeren et al., 2004; Morales et al., 2015; Putzeys et al., 2012; Tomassini et al., 2010; Watson et al., 2016; Webb et al., 

2010; Wei and Stocker, 2015). The mediation of prior knowledge on perceptual bias is thought to be related to attention 

and expectations. In general, the priority of a stimulus representation may be selectively affected by attention, and the 

interpretation of sensory information may be constrained by expectations (Schwarz et al., 2016a; Summerfield and 
Egner, 2009; Sussman et al., 2016a). In electrophysiology studies, modulations of prior experience were found to 
reduce neural activity in sensory areas (Alink et al., 2010; Gong et al., 2017; Kok et al., 2012; Summerfield et al., 2008; 

Todorovic et al., 2011), suggesting that perceptual bias is mediated by the prior experiences of sensory representations. 
Interestingly, prior experiences are not constant or hard-wired (Kok et al., 2013; Seriès and Seitz, 2013), but 
interactively and dynamically adapted by the changing environment with high flexibility (Adams et al., 2004; Chalk et 
al., 2010; Roach et al., 2017; Sotiropoulos et al., 2011). For example, one recent study reported that the interaction of 

multiple priors affects perceptual stability with bi-stable stimuli. While compatible priors facilitate perceptual 
stabilization, conflict priors lead to enhanced rivalry (Zhang et al., 2017). 

 Cognition  has limited computational capacity (Duncan, 1980; Fisher and L., 1982; Lavie, 1995; Motter, 

1993; Palmer et al., 2011; Prinzmetal and Banks, 1983; Schneider and Shiffrin, 1977; Shiffrin and Gardner, 1972; 
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Figure 4. Illusions of contextual 
modulation. (a) Adelson squares, also 
known as the checker shadow illusion 
(Adelson E. H.,1995). Areas A and B 
have identical brightness, but B is 
perceived as darker than A under the 
shadow context; (b) Ebbinghaus 
illusion, also known as Titchener 
Circles (Ebbinghaus, 1905). The size 
of the two orange circles is the same, 
but the right one appears larger than 
the left; (c) Perceiving depth and slant 
from the density dots pattern, adapted 
from (Braunstein and Payne, 1969); 
(d) Perceiving surface from density 
dots pattern, adapted from (Singer et 
al., 2008); (e) Pop-out effect of 
regularity, adapted from (Ouhnana et 
al., 2013). (f) Navon's letters, adapted 
from (Navon, 1977). 



Spoehr and Lehmkuhle, 1982; Tsotsos, 1997, 1990; Yantis, 2001). Sensory inputs compete for neural representations 

within a mutually inhibitory network, and such competition is biased by attention towards the most relevant 
information, which is also known as the theory of biased competition (Desimone, 1998; Desimone and Duncan, 1995; 
Reynolds et al., 1999). Neurophysiological data confirmed that neural responses are biased in favor of attended objects, 

features or locations (Martinez-Trujillo and Treue, 2004; Rensink, 2000; Reynolds and Chelazzi, 2004; Reynolds et al., 
1999; Yantis, 2001). Attentional influences on biased competition are implemented not only by top-down modulation 
with specific goals (Serences and Yantis, 2006; Sussman et al., 2016a) but also by bottom-up signals concerning the 
physical properties. For instance, it has been shown that neural activity is biased toward salient stimuli, with increasing 

neural activity (Reynolds and Chelazzi, 2004; Reynolds and Desimone, 2003; Serences et al., 2004). Recent studies on 
affective neuroscience have proposed a theory called the arousal-biased competition theory. According to this theory, a 
stimulus containing emotional cues increases arousal with enhanced levels of glutamate and norepinephrine in the locus 

coeruleus (LC), which consequently biases perception toward emotionally relevant stimuli (Cisler and Koster, 2010; 
Mather and Harley, 2016; Mather and Sutherland, 2011a; Mather et al., 2016; Sussman et al., 2016a, 2016b, 2017).  

 Prior knowledge and experience set specific expectations infer biased perceptual decisions (Schwarz et al., 
2016b; Seriès and Seitz, 2013; Stocker and Simoncelli, 2006; Zelano et al., 2011). Accumulating evidence reveals that 

the processing of sensory inputs begins even before physical contact with the stimulus, suggesting a preparatory bias 
based on predictive sensory representations (McMains et al., 2007; Mesulam, 2008; Neisser, 2014; Sylvester et al., 
2009). Researchers have shown that an expected stimulus is associated with higher perceptual sensitivity and shorter 

response latency (Polat and Sagi, 1994; Summerfield and Egner, 2009). The underlying mechanisms are recently 
thought to be associated with the state of pre-stimulus brain connectivity (Leske et al., 2015; Sadaghiani et al., 2015). 
Predictive coding theories state that sensory inputs are not passively processed (Jehee et al., 2006; Kok and de Lange, 
2015; Spratling, 2008). A pre-stimulus predictive template is actively formed against the observed sensory information 

(Freeman, 1981; Friston, 2003; Kok et al., 2017; Mumford, 1992; Peelen et al., 2009; Summerfield et al., 2006; Zelano 
et al., 2011). Although the assumptions of predictive coding and biased competition are distinct, it is interesting to note 
the computational principles are equivalent (Spratling, 2008). Our perception can be biased not only by prior 

experiences but also by contextual modulation (Soon et al., 2017). Substantial evidence has revealed that perceptual 
bias is related to contextual information (Carandini and Heeger, 2011; Kapadia et al., 1995; Kohn, 2007; Levitt and 
Lund, 1997; Li, 1999; Louie et al., 2013; Ohshiro et al., 2011; Schwartz et al., 2007). Details about contextual 
modulation concerning subjective perception are discussed in the next section. 

 Bias is well-known as the default procedure in perception (Tomassini et al., 2010), which affects the 
direction and content of what we perceive (Bocanegra et al., 2012). An important question here is whether perceptual 
bias is a flaw of the visual system? Intuitively, bias presents a challenge because accuracy and precision are expected 

via evolution. A recent line of research revealed that we are not arbitrarily biased, and that bias is essentially a design 
feature of our cognitive system with evolutionary advantages (Haselton et al., 2015; Soon et al., 2017). For instance, it 
has been found that human perception is highly dependent on specific statistical properties of the natural environment 
(Geisler, 2008), the quantitative estimation of the cardinal-orientation prior the human observer matches to the statistic 

distribution of cardinal contours in natural environment (Girshick et al., 2011), indicating that perceptual bias is 
naturally adapted by taking advantage of stable properties of the environment (Ramachandran, 1988). 

 Perceptual advantages of bias have already been reported. For instance, Bias facilitates orientation 

discrimination. In orientation discrimination tasks, the discriminability of human subjects is best at biased cardinal 
directions (Appelle, 1972; Girshick et al., 2011; Tomassini et al., 2010), and with less variance (Girshick et al., 2011). 
Bias also resolves motion ambiguity; for example, Andrews and colleagues (Andrews and Schluppeck, 2000) designed 
a complex stimulus containing three superimposed moving gratings (see Fig.3). The gratings moved in different 
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directions with 120° difference, and one of them was always either vertical or horizontal. The perception of such 

stimulus by brief presentation was always a coherent pattern of two gratings moving in one direction, and the third 
grating moving in the opposite direction independently. Such stimulus represented an ambiguous situation since the 
combination of each two gratings were equally plausible. However, human subjects preferentially integrated two 

oblique gratings moving along cardinal axes, suggesting that motion ambiguity can be resolved by the cardinal 
directions to which they were predominantly biased. Bias guides learning procedure. Hutchinson and colleagues 
revealed that human memory systems are biased toward new information with enhanced encoding activity, suggesting 
that the learning procedure is guided by prior experience towards new aspects of the environment (Hutchinson et al., 

2016). Bias prioritizes threatening information. In affective neuroscience, bias is often described as perceptual 
prioritization (Sussman et al., 2016a). It has been found that threatening stimuli have a higher processing priority with 
shorter reaction times and greater accuracy than non-threatening stimuli (Abdel Rahman, 2011; Anderson, 2005; Correll 

et al., 2011; Fox et al., 2002; Jusyte and Schönenberg, 2014; Trawalter et al., 2008; Zeelenberg et al., 2006). These have 
been thought to be related with enhanced neural activity in fear-related brain areas (Bernier et al., 2017; Bishop, 2009; 
Etkin et al., 2004; Larson et al., 2005). This biased processing facilitates immediate reaction in the face of danger, 
which is important for survival and reproduction (Brosch et al., 2010; Haselton et al., 2015; New et al., 2007; Soon et 

al., 2017; Sussman et al., 2016a).  

 There is no doubt that our visual system is shaped by evolution (Goldstein, 2009). Inspired by some other 
cognitive phenomenon, such as central tendency (perceptual judgement tends toward the mean of the stimulus set; 

Vierordt, 1868 ), perceptual narrowing (perceptual discrimination narrows with experience during development,  
Hollingworth, 1910), and the pre-constancy period (infants younger than 5 months are sensitive to variant information, 
such sensitivity is gradually lost during development;  Yang et al., 2015), we assume that bias itself may act as a 
functional filter, which actively coordinates the visual system with the environment promoting survival. Less important 

or unnecessary sensory inputs are filtered out from perception, leading cognitive systems to focus on the most relevant 
information. 

1.1.2.CONTEXT AND INDIVIDUAL DIFFERENCES 

Visual information is rarely found in isolation (Bar, 2004; Krause and Pack, 2014). Our perception depends not only on 
the stimulus itself but also other stimuli which are presented simultaneously. Identical stimuli can be perceived 
differently in distinct contexts (Coen-Cagli et al., 2015). In general, the approach of contextual modulation deals with 
the interactions between the target stimulus and environment to explain how the target can be attributed from its 

context. The effects of contextual modulation have been described by studies on visual illusions and other phenomena 
(Carandini and Heeger, 2011; Kapadia et al., 1995; Kohn, 2007; Levitt and Lund, 1997; Li, 1999; Louie et al., 2013; 
Ohshiro et al., 2011; Schwartz et al., 2007). See some famous illustrations in Fig.4. 

 In recent years, the population-receptive-field (pRF) model provided a powerful method for detailing the 
precise population properties of cortical areas (Amano et al., 2009a; DeSimone et al., 2015; Dumoulin and Wandell, 
2008; Victor et al., 1994). Using the pRF retinotopic mapping technique, recent studies have revealed that subjective 
perception is associated with various cortical properties, such as pRF size (Alvarez et al., 2015; Harvey and Dumoulin, 

2011; Moutsiana et al., 2016; Schwarzkopf et al., 2014; Song et al., 2013a); cortical thickness and cortical surface area 
(Bergmann et al., 2016a, 2016b; Genç et al., 2015; Harvey et al., 2013; Schwarzkopf et al., 2011; Song et al., 2015); 
cortical magnification factor (Harvey and Dumoulin, 2011) and intra-cortical connectivity (Song et al., 2013b). Inter-

subject variances of perceptual bias and the magnitude of contextual modulation are related to such functional 
architectures. For instance, it is already known that individual differences of the retinotopic surface of early visual areas 
are larger than that of cortical size (Dekaban and Sadowsky, 1978; Dougherty et al., 2003). Using an orientation 
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discrimination paradigm with center-surround contextual illusion, Song and colleagues found that subjects with larger 

surface area of primary visual cortex (V1) were less affected by contextual modulation, but more sensitive to tiny 
orientation differences (Song et al., 2013a). Similar results were found in object size jugement tasks (Delboeuf illusion), 
where identical stimuli were perceived as small with larger pRFs in V1 (Moutsiana et al., 2016).   

1.1.2.1.Modulation of contextual regularity and density 

Evidence shows that humans exploit the statistical properties of the natural environment (Biederman, 1972; Biederman 
et al., 1973; Davenport and Potter, 2004; Geisler, 2008; Girshick et al., 2011; Joubert et al., 2007; Palmer, 1975; 
Ramachandran, 1988; Stansbury et al., 2013). Different from other statistical features, it is easy to notice objects or 

elements that are repeatedly or periodically distributed across the visual environment, a phenomenon known as 
regularity (Cecchetto and Lawson, 2017; Lin et al., 2006; Ouhnana et al., 2013), see Fig.4e. Our perception of regular 
patterns is invariant to different viewing-angles or luminance conditions (Chetverikov, 2000). The human visual system 

possesses internal templates for regular patterns, indicating that regularity is a coded feature in human vision (Morgan 
et al., 2012; Ouhnana et al., 2013). Attention is spontaneously biased toward regularities (Yu and Zhao, 2015; Zhao et 
al., 2013). Perceptually, regularly spaced elements tends to be grouped together as a coherent texture (Saarela et al., 
2010), which has been claimed as a novel Gestalt grouping principle (van den Berg et al., 2011).  

 Additionally, percepts may be modulated by the surrounding density (see Fig4.c and d). It has been found 
that contextual density is associated with perceptual depth and slant (Cutting and Millard, 1984; Todd and Thaler, 
2010), and that it affects surface integration and segmentation (Durgin, 2001; Durgin and Hammer, 2001). Researchers 

suggested that density is involved in early visual processing (MacKay, 1973) via an independent channel (Sun et al., 
2016). However, the relationship between regularity and density is still unknown. 

1.1.2.2.Beyond Global Precedence   

“‘Gestalt.’ It is famously hard to translate the term into English—but also the German native 

speakers among the authors of this overview paper are not quite sure what exactly the term means 
in German. Probably the best—but incomplete—translation is still “configuration.” This 
translation misses the holistic aspect that was essential for the Gestalt psychologists’ early 

writings and that survives in the famous dictum: ‘the whole is something else than the sum of its 
parts’ [Koffka, 1935].” 

                    - (Jäkel et al., 2016) 

Gestalt approaches elegantly describe the basic principles of perceptual organization (see Fig.5 for examples of Gestalt 

laws). Different from the assumption of associationism, which affirms that perception is a result of associating 
component sensations, Gestalt theories emphasize that global processing is different from the sum of the local analysis 
(Koffka, 1935; Wertheimer, 1912, 1923). 

 The principle of global precedence assumes that global configuration is prioritized over local feature analysis 
(Boff et al., 1986; Herzog and Clarke, 2014; Navon, 1977; Rider et al., 2016; Seriès and Seitz, 2013). In line with this 
hypothesis, researchers revealed that global stimulus structure, not local contextual manipulation, predicts perception 
and behavioural performance (Livne and Sagi, 2007; Manassi et al., 2012; Sayim et al., 2010). Global precedence 

theory does not state that local processing starts after the termination of global analysis, but that global features are 
aligned more closely to perception (see Fig.4f, Navon, 1981). Similarly, the reverse hierarchy theory assumes that local 
features are unconsciously processed by lower brain areas, and can only be consciously retrieved on demand after 
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global information has been perceived by higher brain areas 

(Hochstein and Ahissar, 2002). Recent studies have confirmed 
that conscious perception is dominated by global information 
(Campana et al., 2016; Haberman and Whitney, 2011; Parkes et 

al., 2001). Indeed, Gestalt theories not only assume that global 
processing has higher priority but also that local processing is 
constrained by global configuration. Wertheimer claimed that 
“the whole determines the appearance of its parts”.  These ideas 

have been confirmed by prevalent predictive coding approaches: 

“The mapping from low- to high-level representation 
(e.g. from acoustic to word-level) is computed using 

the reverse mapping, from high- to low-level 
representation.” 

 -  (Chater and Manning, 2006) 

Global perception is not formed by accumulating information 

from lower levels (Stokes et al., 2014). Instead, our brain actively 
predicts the lower level information with potential assumptions 

(Bar, 2007; Chater and Manning, 2006; Friston, 2009; Friston et al., 2011). 

1.2.MOTION PERCEPTION AND MULTI-STABILITY 

1.2.1.MOTION INTEGRATION AND SEGREGATION 

The visual cortex of primates contains a number of hierarchically and recurrently connected areas with retinotopic 
organization achieved by spatially distributed receptive fields (RFs) (Van Essen and Maunsell, 1983; Felleman and Van 

Essen, 1991; Van Essen et al., 1992). These RFs have variable sizes both within an area (increasing from the center of 
the visual field to the periphery) as well as across the visual hierarchy starting from very small RFs in primary visual 
cortex (V1) and gradually shifting to larger ones in higher areas (Freeman and Simoncelli, 2011). It has been speculated 

that this structure decomposes the visual field into high-resolution feature selective maps that are later integrated into 
global entities leading to our uniform perception of the world (Braddick, 1993; Maunsell and Newsome, 1987).  

 Plaid patterns - stimuli composed of two superimposed drifting gratings - have been very popular for the 
study of motion integration because of their ability to be integrated into a single coherent moving pattern or be 

segmented into the two underlying grating components, moving transparently over each other (Adelson and Movshon, 
1982). Local measurements with small receptive fields induce an ambiguous and noisy one-dimensional motion 
estimation. These problems can be solved by the selective integration and pooling over time and space to reconstruct a 

global two-dimensional pattern (Adelson and Movshon, 1982; Braddick, 1993; Smith et al., 2005). Typically, the model 
for motion analysis consists of two stages. The first stage is the local motion detection of single gratings (Adelson and 
Bergen, 1985; Gizzi et al., 1990; Limb and Murphy, 1975; Movshon et al., 1985) in V1, with the second one integrating 
local motion signals from the previous stage to establish the direction of the entire pattern believed to exist in MT 

(middle temporal area, Movshon et al., 1985) and MST (medial superior temporal area, Khawaja et al., 2009).  

 Researchers found that a variety of attributes of the component gratings, such as, speed (Derrington and 
Suero, 1991; Kooi et al., 1992), direction (Burke and Wenderoth, 1993) and contrast (Stone et al., 1990), affect pattern 
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Figure 5. Gestalt principles of perceptual 
organization, adapted from (Wagemans et al., 
2012). (a) Proximity: objects close to each other 
appear to be in the same group; (b) Continuity: 
perceptual tendency to create a continuous object; 
(c) Common fate: objects with a common 
orientation will be perceptually grouped together.



motion perception. Moreover, pattern motion response is delayed relative to component motion selectivity by 

approximately 100 ms (Born et al., 2010; Pack et al., 2001; Smith et al., 2005, 2010). These results suggest that pattern 
motion estimation is performed in higher brain areas, but not in V1, which supports the two-stage model of motion 
perception. However, an alternative view claims that pattern motion is highly dependent upon the local plaid features, 

instead of the combination of its motion components (Delicato and Derrington, 2005). Indeed, electrophysiological 
studies have already found neurons with pattern motion selectivity in early brain areas, such as, the V1 of macaques 
(Guo et al., 2004), marmosets (Tinsley et al., 2003) and mice (Juavinett and Callaway, 2015). Additionally, it has been 
proposed that simple bottom-up mechanisms, which do not consider stimulus structures, are insufficient for motion 

integration, rather this integration is reliant upon complex perceptual organization (Bruno and Bertamini, 2014).  

 Plaid patterns can also be perceived transparently as two component gratings sliding across each other. 
Motion transparency with plaid stimuli is simply taken as the failure of integration (Nishida, 2011). Alternatively, the 

mechanism of directional repulsion, which overestimates the directional difference between two motion signals, may 
play an important role in the processing of motion transparency (Marshak and Sekuler, 1979). However, mechanisms of 
surface segmentation were claimed to be involved in the determination of whether motion information is integrated or 
segmented (Stoner and Albright, 1996; Trueswell and Hayhoe, 1993). Generally, pattern direction can be directly 

derived from the locations where the two superimposed gratings intersect (‘blob’ or ‘corner’), and the human visual 
system is more sensitive to the intersections of visual inputs among other features (Bergen and Julesz, 1983; Julesz, 
1981). The luminance of intersection affects figure-ground segmentation of plaid patterns, which helps the dissociation 

of plaid into separate bars (Stoner et al., 1990). It is well-accepted that motion transparency depends crucially on 
spatiotemporal manipulations using random-dots (Braddick, 1997; Vidnyánszky et al., 2002). Two sets of randomly 
located dots moving in different directions would induce a robust transparent motion perception depending on the 
directional difference, and locally-paired dots could interrupt such transparent perception into a directionless flicker 

when the paired dots are moving towards their partners (Qian et al., 1994) Nevertheless, if the paired dots are not 
targeted to each other and move in different directions, for example, moving orthogonally to each other, then the 
resulting perception is coherent (Curran and Braddick, 2000; Matthews et al., 2000). 

 Previous studies have revealed that the visual system may have a preference for pattern motions (Hedges et 
al., 2011). Human subjects always perceive coherent motion after transparent motion adaptation (integrated motion 
aftereffect), unless two component motion patterns are distinctively different from each other (Alais et al., 2005; Curran 
et al., 2007; Verstraten et al., 1994, 1999). Bidirectional motion signals on each position are integrated locally to 

produce local unidirectional aftereffects, such effects are then integrated over space in higher brain areas (Curran and 
Benton, 2006; Lee and Lu, 2012; López-Moliner et al., 2004; Vidnyánszky et al., 2002). Researchers have indicated 
that precise local information is retained during the motion integration procedure (Lee and Lu, 2012; Scarfe and 

Johnston, 2011),  which is important for motion feature representations (Braddick, 1993). For example, it has been 
found that the integrated motion aftereffects are weak for non-adapted locations with multi-aperture stimuli (Lee and 
Lu, 2012).  

 Despite the extensive use of plaid stimuli over the past decades in this field (Movshon et al., 1985), the 

underlying mechanism of motion coherence and transparency of such stimuli remains unclear. Importantly, it has been 
shown that the luminance of intersections within a plaid pattern could bias our perception, and it would be more chance 
to perceive coherent motion if the intersections are too bright or too dark (Stoner et al., 1990; Thiele and Stoner, 2003). 

But, Noest and van den Berg have already investigated how local manipulations of plaid stimuli influence coherent and 
transparent perception (Noest and van den Berg, 1993).  
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1.2.2.MULTI-STABLE PHENOMENON AND PERCEPTUAL STABILIZATION 

At each moment, our visual system is challenged by an immense amount of information to process. However, only a 
small fraction of the inputs reaches our awareness. When our brain fails to reach a single interpretation of these inputs 
from the environment, perceptual multi-stability occurs. The issue of multi-stable phenomenon has intrigued scientific 

minds for decades. This phenomenon has been found in vision (Leopold and Logothetis, 1999), audition (Repp, 2007), 
olfaction (Repp, 2007; Zhou and Chen, 2009)  and speech (Warren and Gregory, 1958). Crucial features are similar 
within and across modalities (Schwartz et al., 2012). For the visual modality, a number of ambiguous visual patterns 
have been described, such as, the Necker cube and binocular rivalry. Ambiguous perception can be evoked by static 

visual stimuli, and also by motion patterns, such as, moving plaids. Multi-stable stimuli provide unique insight into 
visual processing, as changes in perception are decoupled from changes in the stimulus. Thus, understanding multi-
stable perception helps us to understand visual perception in general. Investigators suggest that both top-down and 

bottom-up processes are involved in multi-stable perception (García-Pérez, 1989). Others argue that high-level 
processing is not necessary, happening automatically in the form of low-level competition between the stimulus features 
(Akman et al., 2009; Wilson et al, 2000). Further, the changes in stimulus features can bias perception in one or another 
direction (Klink et al., 2012). The percentage of neurons modulating their activity in response to perceptual changes 

increases hierarchically along the visual information pathway. At early stages of visual processing (V1/V2), only 20% 
of neurons were found to exhibit perceptual modulations (Keliris et al., 2010; Leopold and Logothetis, 1999). 
Moreover, our group has demonstrated that this finding is also consistent with the level of perceptual modulation of the 

local field potentials (Keliris, et al., 2010). Neuronal activity related to perception increases to 40% in areas V4 and MT 
(Leopold and Logothetis, 1999) and reach 90% in the inferior-temporal cortex (IT) (Sheinberg and Logothetis, 1997). 

 Previous research has found strong evidence for perceptual stabilization mechanisms in the visual system; 
such as, the reorganization of sensory information during intermittent viewing (Leopold et al., 2002), top-down 

modulation of beta-band synchronization (Kloosterman et al., 2015), feedforward inhibition (Bollimunta and Ditterich, 
2012), arousal (de Gee et al., 2014; Mather and Sutherland, 2011a), memory (Wimmer and Shohamy, 2012), and the 
interaction of multiple priors (Zhang et al., 2017). For instance, perception of a successive stimulus could be impaired if 

post-stimulus processing was not already finished for the first stimulus (Keysers and Perrett, 2002). The rate of 
perceptual switching can be stabilized by periodically removing the stimulus during binocular rivalry (Leopold et al., 
2002). Research has proposed an offset transient suppression mechanism to explain the observation that ongoing 
processing is suppressed by offset transient neural activity (de Graaf et al., 2017). Another recent study indicated that 

the interaction of multiple priors affects perceptual stability with bi-stable stimuli: compatible priors facilitate 
stabilization, while conflict priors lead to enhanced rivalry (Zhang et al., 2017). It is well-known that motion perception 
could be influenced by context, such as, cross-orientation suppression (Heeger et al., 1997), surround suppression, 

opponent-direction suppression (Qian et al., 1994), and induced motion (Duncker, 1929). A recent study reported that 
coherent and transparent perception can be biased by the surrounding motion signals (Takemura et al., 2011), indicating 
the interactive modulation of nearby signals may potentially contribute to stabilizing neuronal representations. 

1.3.NEURAL CORRELATES OF POST-STIMULUS MOTION PERCEPTION 

1.3.1.PERCEPTUAL DYNAMICS 

The primate visual system is highly dynamic. Ongoing neural activity fluctuates even when sensory inputs are constant 
(Sadaghiani et al., 2015). Recent studies have proposed that perception is a continuous, rather than a discrete event, and 

that perceptual function is periodically modulated by specific brain rhythms (Ainsworth et al., 2012; Fries, 2015). In 
order to coherently perceive the environment as stable in space and time, ongoing processing is required to balance the 
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internal representations and to accumulate sensory evidence (Murphy et al., 2015). The perceptual system roughly and 

rapidly estimates initial sensory inputs, and then gradually refines this estimation (Born et al., 2010). Internal 
representations are continuously updated in response to perceptual modulation (Ma et al., 2014; Nakamura and Colby, 
2002; Tajadura-Jiménez et al., 2016).  

 Nevertheless, systematic perceptual errors were observed from human subjects when a stimulus was 
presented briefly (Lorenceau et al., 1993), indicating that the initial estimation is not veridical. During binocular rivalry, 
onset rivalry may be  strongly biased, and its underlying mechanism was recently found to differ from sustained rivalry 
by stochastic processing (Attarha and Moore, 2015; Carter and Cavanagh, 2007; Stanley et al., 2011). Similar temporal 

evolution has been confirmed by eye-movement studies in the motion domain. For instance, substantial evidence has 
shown that initial eye-movements do not reflect the direction of pattern motion, rather the components (Born et al., 
2006; Masson and Castet, 2002; Masson et al.; Pack and Born, 2001). The ongoing processing is also associated with 

the inherent noise of the neural system (Neri, 2010; Rolls, 2016). Thus, the observed trial-to-trial variability is thought 
to be related to the dynamic state of brain activity (Arieli et al., 1996; Platt and Glimcher, 1999; Shadlen and Kim, 
1999; Thompson and Schall, 1999).  

1.3.2.PERSISTENT NEURAL ACTIVITY AND OFFSET RESPONSE 

An increasing number of studies have confirmed that stable perception is not only affected by ongoing visual 
processing but also by the pre-stimulus brain state (Jehee et al., 2006; Jensen et al., 2012; Kayser et al., 2016; Kok and 
de Lange, 2015; Leske et al., 2015; Lou et al., 2014; Sadaghiani et al., 2015; Spratling, 2008), which is influenced by 

perceptual history (Brascamp et al., 2008; Jellema and Perrett, 2003; Leopold et al., 2005; St John-Saaltink et al., 2016) 
and expectations (Freeman, 1981; Friston, 2003; Mumford, 1992; Peelen et al., 2009; Summerfield et al., 2006; Zelano 
et al., 2011).  
 Relevant neural processing continues even when the stimulus is removed from presentation; such post-

stimulus processing with persistent neural activity has been identified in various brain areas (Akaike, 1977; Andersen et 
al., 1987; Funahashi et al., 1989; Fuster and Alexander, 1971; Levick and Zacks, 1970; Mendoza-Halliday et al., 2014; 
Meyer et al., 2007; Miller et al., 1996a, 1996b; Schiller, 1968; Tark and Curtis, 2009). Just this year researchers have 

drawn great attention to the relationship between working memory and neural persistence (Bolkan et al., 2017; Guo et 
al., 2017; Schmitt et al., 2017; van Kerkoerle et al., 2017), revealing the maintained neural activity in thalamocortical 
circuit in the absence of a stimulus plays an important role in working memory (Bray, 2017). Indeed, it has been 
proposed that post-stimulus neural activity is also associated with conscious access (Babiloni et al., 2006; Dehaene et 

al., 2006; Pun et al., 2012; Sergent and Dehaene, 2004), aftereffect (Huang et al., 2008; Li et al., 2017), visible 
persistence (Coltheart, 1980a, 1980b; Duysens et al., 1985; Di Lollo, 1980; Sperling, 1960), and can bias competing 
neural presentations to reach a stable percept (Keysers and Perrett, 2002). 

 Whether previous visual information can be maintained during post-stimulus processing in early brain areas 
(Pasternak and Greenlee, 2005) is currently a controversial topic. It has been suggested that visual information can be 
stored in working memory only at higher brain areas (Mendoza-Halliday et al., 2014). For example, sustained neural 
activity during the post-stimulus period was observed in MST and lateral prefrontal cortex (LPFC), but not in MT, 

suggesting that only higher brain areas are involved in working memory (Mendoza-Halliday et al., 2014). On the other 
hand, post-stimulus neural modulation was found to be strongly correlated with previous stimulus information in V1 
(Super et al., 2001). One recent study has revealed that neural modulation of working memory was stronger in the 

superficial and deep layers of V1 (van Kerkoerle et al., 2017). These studies revealed that V1 contributes not only to 
sensory coding but also to post-stimulus memory activity.  
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 Neurons from different brain areas and species can respond to the termination of stimulation with transient 

spiking activity (Bair et al., 2002; Duysens et al., 1996; Hartley et al., 2011; He, 2002; McLelland et al., 2009; Qin et 
al., 2007). Surprisingly, being the first state of post-stimulus neural activity, little attention have been given to the visual 
offset responses since the first study in 1927 (Adrian and Matthews, 1927). A handful of studies on anesthetized 

animals has demonstrated offset responses to static stimuli in V1, which are orientation-tuned and more accurate than 
onset responses with shorter latency and less variability (Bair et al., 2002; McLelland et al., 2010) suggesting that offset 
response is informative. However, to our knowledge no research has reported visual motion offset responses in 
behaving animals. The signature of motion offset responses in the alert brain is still unknown along with whether visual 

motion information is maintained, with layer specificity, during offset responses in V1. 
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2.METHODS 

2.1.PSYCHOPHYSICS AND BAYESIAN MODELING 

2.1.1.SUBJECTS 

Five subjects (4 females) participated in all of the experiments, four of whom were naïve to the aims of the study. All of 

them had either normal or corrected-to-normal vision. The study was approved by the ethical committee of the 
University of Tuebingen. Before participating in the experiment, written consent was obtained from each subject.  

2.1.2.APPARATUS 

The experiments were performed in a dimly lit room. The stimuli were programmed using MatLab Psychophysics 

Toolbox (Brainard, 1997) and presented on a 17-inch CRT monitor with a resolution of 1280 × 1024 and a refresh rate 
of 100 Hz. The monitor was gamma corrected with a mean luminance of 15.6 cd / m2. The distance from the eyes of 
subject to the monitor was 43 cm. Subject responses were collected using a custom 2-button response box (see 

Procedures). The eye movements were monitored continuously using an infrared eye tracker (iView XTM Hi-speed, 
SMI). 

2.1.3.STIMULI 

The novel pseudo-line-plaid stimuli in this study were designed 

to mimic the standard upward-moving line-plaid by 
decomposing pattern into two different types of apertures (see 
Fig.6.a-c): separated lines (SL) and line intersections (LI). The 

mimicked plaid consisted of two identical superimposed 
asymmetric rectangular-wave gratings (Hupé and Rubin, 2003; 
Moreno-Bote et al., 2010; Takahashi, 2004) with a directional 
difference of 120˚ (± 60 with respect to vertical). The spatial 

frequency of each grating was 1 cycle per degree with a speed 
of 2 degrees per second. In order to minimize the luminance 

effect of the intersection for plaid stimuli (Stoner et al., 1990; 
Thiele and Stoner, 2003), the width of the lines was set equal to 
one pixel. Thus, the gratings intersect at a point in the screen 
that amounts to approximately one pixel (0.038°). The color of 

the lines was black and the background was gray. The apertures 
of each type were identical, and their phases were locked 

according to the underlying classic plaid pattern. The 
spatiotemporal properties of SL and LI were identical over the 
full presentation cycle. The diameter of each aperture was 
around 0.2˚ of the viewing-angle, and they were non-

overlapping. The potential locations for SL or LI were calculated 
beforehand as a location-grid, which followed the spatial 
organization of the real plaid stimulus (similar as showed in Fig. 
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Figure 6. Stimuli. (a) Illustration of moving stimuli. 
The line-plaid (composed of two overlaying drifting 
line gratings) can be distinguished as two different 
local inputs, namely LI (red) and SL (green). The line 
locations at time t and t + Δt were plotted in black and 
gray, respectively, for each aperture; (b and c) Cartoon 
versions of regular and irregular stimuli. Note that in 
this cartoon all possible apertures are shown, while 
our experiments randomly selected a number as 
defined by the density. 



6b). According to the location-grid, the vertical and horizontal distances between adjacent apertures was 0.5˚ and 0.28˚ 

of the viewing-angle, respectively. These locations were ‘labeled’ as SL and LI, which meant that the given aperture 
could be readout by its location. For example, LI can only be located on continuous vertical lines where the two 
gratings of the plaid stimulus intersect. The diameter of the whole stimulus pattern was 23˚ of the view-angle. In total, 

we used 720 potential aperture-locations. A rhombus-shaped mask was applied to each aperture, thus, no terminators 
(Pack et al., 2003) could be seen. The length of its vertical diagonal was 0.2˚ of the view-angle, and the vertical interior 
angle was 60˚. In order to avoid the ‘flashing’ experience (lines from all apertures appearing on and off at the same 
time), we jittered the location of each mask vertically (up or down) with a random distance (maximum 0.025˚ of the 

view-angle) to avoid overlapping and adjusted the timing accordingly. A red fixation cross (0.2˚ of the view-angle) was 
displayed at the center of the stimulus. Apertures were not located within the circular area (2˚ of the visual-angle 
diameter) where the fixation cross was centered. Our stimuli were similar, but also different, in a number of ways to 

previously used multi-aperture stimuli (Amano et al., 2009b). For example, a) we used the line instead Gabor apertures, 
b) the aperture locations were selected according to the underlying plaid pattern, c) the number of apertures was 
manipulated (see below), and d) the proportion of different types was used to parametrically change perception. 

 For each experiment, the total number of apertures was chosen as one of three possible density conditions: 

low (L), medium (M), and high (H), with 180, 340 and 680 apertures, respectively. In addition, we parametrically 
manipulated the ratio between LI and SL along 11 homogeneously spaced proportions: 0% to 100%. In Experiment 2, 
the type of aperture did not depend on the structure of the underlying plaid pattern, that is, SL and LI could be located 

in any of on the locations on the underlying grid. 

2.1.4.PROCEDURES 
The same experimental pipeline was applied in Experiments 1 
and 2 (see Fig.7). Subjects were instructed to press a key on 

the response box to start a trial. After that, a red fixation cross 
was shown on the center of the monitor for 1 second. Before 
the start of the trial, the background luminance was adjusted 

slightly to match the mean luminance, depending on the 
density condition, and to exhibit a homogeneous mean 
luminance across conditions and trials. First, a static image 
was presented for 0.5 seconds to control for transitional eye 

movements. Then, the stimulus started moving for 1 second, 
and subjects had to report their perception (either coherent or 
transparent) during this period by pressing one of the two 

keys. They were instructed to do so as fast as possible, and 
according to their first impression. In order to avoid potential 
adaptation effects, each trial was followed with a short (0.5 
second) full-field Gaussian noise pattern with mean 

luminance equal to the average of all trials. Each 
psychometric point represents 30 measurements for each 
subject. All conditions were presented in a pseudo-

randomized fashion with all conditions being presented once 
before a second repetition with a different order. The positions 

for SL and LI were randomly selected from the location-grid for each repetition. 
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Figure 7. Experiment procedure. Subjects had 
to press a key on the response box to start a 

trial. After that, a red fixation cross was shown 
on the center of the monitor for 1 second. The 
luminance of the background is the same as the mean 
luminance of the following trial to exclude the 
influences of luminance changing. A static image in 
the following trial was presented for 0.5 seconds to 
avoid transitional eye movement. After that, the 
stimulus was shown for 1 second, and subjects had to 
report their perception of each condition. 



 At the beginning of each block (330 trials), a standard 9-point eye-tracking calibration was performed. A new 

block would not begin if the subject’s eye movements were not successfully calibrated. Subjects could freely take a 
break for up to 15 minutes after each block. For training, subjects performed 4 blocks of 15 trials before each 
experiment, and were instructed to fixate their eyes on the center of the monitor, using a chin-rest to prevent head 

movement.  

2.1.5.PSYCHOPHYSICS DATA ANALYSIS 

For each experiment, the ratio of coherence was treated as a measurement of bi-stability for each condition across 
repetitions for each subject. This was calculated by dividing the number of coherent response times by the total number 

of valid trials for that condition.  

 Data were fit using a cumulative Logistic psychometric function. A goodness-of-fit test was completed for 
each psychometric function using the Nelder-Mead-Simplex method to find the maximum likelihood. Residual 

deviances from the fits were used to quantify the goodness, 

#                                                                           (1)                                  

where D1 is deviance values from simulations that were larger than that of real data, and D0 is deviance values from all 

simulations. A better fit would indicate a greater value of pDev (pDev for all functions in this study: range: 0.12~1; 
mean: 0.79). 

 The raw eye movement data were interpolated with the method of the nearest neighbor after removing the 

blinks. The gaze positions in x- and y- dimensions were smoothed with a 200 ms running average window. At each time 
point, the absolute position of fixation was calculated. The trials with eye movements larger than 2˚ were excluded from 
further analysis.  

2.1.6.MODEL CONSTRUCTION 

Modeling transparent motion perception presents the challenge of separating a distribution of unlabeled signals along a 
directional space. Generally, the unlabeled signals arise from one source or from multiple sources, thereby posing a 

pDev =  D1 / D0
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difficult computational problem, which has been studied with vowel sounds (Beck and Kastner, 2009; Morgan et al., 

2012). Here, we used the approaches cited above for inspiration, and consider the computational problem to be solved 
in an explicit two-step hierarchical processing with an initial unity/separation estimation, and subsequent direction 
perception which was made as a conditional estimate (Adelson and Movshon, 1982; Ouhnana et al., 2013; Pack and 

Born, 2001).  

 We constructed four models of the Bayesian observer faced with the decision on whether a given trial 
contains transparently or coherently moving stimuli. An optimal Bayesian model would average the probability of both 
hypotheses in this case, coherence dominated by components H= hc, and transparency dominated by the plaid pattern 

H= hp, determining the average probability distribution. For a difficult categorical perceptual decision like ambiguous 
global motion, we followed previous work (Adelson and Movshon, 1982; Beck and Kastner, 2009; Sato et al., 2007) 
and proposed that optimality might be sacrificed for a quick and self-consistent decision. The visual stimulus contains a 

superimposed distribution of multiple component directions, θs, from which a sensory measurement of the same 
direction θm, is made; an estimate contaminated by noise. Given the task at hand, in which the alternatives, hc 
(components) and hp (pattern), are not mutually compatible, we impose an assumption that ambiguity resolution forces 
the system to commit to just one of the alternatives and its corresponding prior distribution (P(θ|hc) or P(θ|hp)), 

illustrated in Figure 8 (Morgan et al., 2012). The four model variants are driven by the following assumptions: M1 
assumes no additional hypothesis and estimates the maximum P(θm) to categorize direction (no prior); M2 makes a 
categorical decision after multiplication with an excitatory prior (hp) on trials where early estimates suggest integration, 

which supports motion integration; M3 makes a decision after multiplication with an inhibitory prior (hc) is suggested 
by early noisy computations, which supports motion segregation. The general Bayesian formulation for the probability 
of the alternative categorical hypotheses, H, is given by equation (1) which combines the likelihoods and priors, 

#                                                  (1)  

Applying model averaging over this posterior distribution results in each model of the corresponding equations (2), 

#                                                                                                       (2.1) 

#                              (2.2) 

where the composite posterior is obtained by adding both probabilities. We simplify the equation (2) by proposing an 
initial fast binary variable computation χ (1, 2), corresponding to hypotheses H= hc and H= hp respectively. In each 
case, one alternative is selected and the unselected term is set to a probability of zero. The calculation uses an early 

noisy estimate of the direction measurement, θm, to compute a vector average (VA) and a maximum likelihood estimate 
(MLE), before assigning a decision value of χ = 1, if the MLE is closer to the VA, or pattern direction than a threshold 
direction, which is the component direction, θc, and χ = 2 if the MLE is closer to the threshold direction, θc. The 
conditional inference is therefore computed according to either,  

#                                         (3), 

in the coherent case or, 

#                                          (4), 

P(H θm) =  P (θm |H )P (H )/P (θm)

∫ P(θs θm) d θ =  1

P(θs θm) =  P(θs θm ,  H = hc)P(H = hc θm) +  P(θs θm ,  H = hp)P(H = hp θm)

P(θ θm, χ = 1) =  P (θm |θ )P(θ hp)/P(θm)

P(θ θm, χ = 2) =  P (θm |θ )P(θ hc)/P(θm)
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in the case of the transparent choice. In both equations (3) and (4), the likelihood term P(θm|θ) contains Gaussian 

functions of two components and one pattern terms whose width captures the sensory noise. The respective prior terms 
P(θ|hp) and P(θ|hc) are also both Gaussian terms centered on the VA direction which either enhance (hp) or inhibit (hc) 
the pattern to support integration or segregation, respectively. Simulated trials are fitted against psychometric data to 

study the interaction of sensory motion representations and prior distributions.  

 Each single simulated trial was run with a fixed set of input parameters, θC = 60° and θP = 0°, and the four 
model distribution parameters, σc, σp, σpp and σpc, were tested with the given ranges.  

 Once χ has been determined, the posterior analytical function of Equation (4) was computed by combining 

Equations (3) and (5). RN draws are made across this posterior distribution with the results binned into a posterior 
discrete probability distribution PF(θ). An MAP estimation was used to obtain a final direction, θf, and for the single 
trial, which simulated a forced-choice decision (i.e. transparent or coherent) based on the maximum direction (T: θC/2<|

θf| or C: θC/2>|θf|). 

2.2.HIGH-DENSITY LAMINAR ELECTROPHYSIOLOGICAL RECORDING IN MONKEY V1 

2.2.1.ANIMALS 

Two adult awake monkeys (Macaque mulatta, Monkeys M1 and M2, 7-years-old, weighing 9 and 11 kg, respectively) 

participated in this study. All protocols and experiments were approved by the local authorities and the institutional 
representatives for animal protection. Experiments were performed according to the guidelines of the German Law for 

Animal Protection, and in full compliance with the European Community guidelines for the care and use of laboratory 

animals (EUVS 86/609/EEC). Recording chambers (plastic, inner diameter 22 mm) for both monkeys were positioned 
over the left hemispheres for access to V1, as according to target stereotaxic coordinates. Chamber implantation was 
aided by high-resolution magnetic resonance anatomical imaging. The anatomical scan and recording chamber 

implantation was done while the animals were under general anesthesia (isoflurane). 

2.2.2.STIMULI 

Visual stimuli were full-field drifting sinusoidal gratings (see Fig.9a, spatial frequency: 1 cycles/degree, speed: 2 
degree/second) of eight directions (0-315˚ at 45˚ increments), programmed using OpenGL-based stimulation toolbox. 

The duration of presenting drifting gratings was manipulated using a parametric design with three conditions (50, 100, 
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Figure 9. Stimuli and procedure. (a) Stimuli. Full field drifting 
sinusoidal gratings were used in current study. A drifting grating 
moved into one of the eight directions for each trial, and its duration 
was manipulated according to experiment design. See text for details; 
(b) Experiment procedure. The duration of stimulation was 
manipulated in three conditions (C50, C100 and C200, with 50, 100 
and 200 ms respectively). For each condition, monkeys were trained 
to keep fixating after stimulus offset until getting juice reward. The 
rewards were randomly delayed (125-250 ms). 



200 ms). All conditions were presented in a pseudo-randomized manner, and all conditions were presented once before 

a second repetition with a different order. Each condition was repeated at least 10 times during a session. The animals 
had to passively fixate the central fixation spot during each trial.  

2.2.3.PROCEDURE 

Each trial started with an indication sound, followed by a red fixation spot displayed on the center of the monitor 
against a gray background. After the pre-stimulus fixation period of 300 ms, a drifting grating was presented. Monkeys 
kept fixating when the grating turned off. The background during the post-stimulus period was with the same luminance 
as the pre-stimulus fixation period (see Fig.9b). Both monkeys were well-trained to maintain fixation during the whole 

trial. A trial would be aborted at any moment when the monkey failed to fixate or move the eye more than 0.2˚. The 
total trial length was 1 s, followed by a randomized delay (range: 120 - 250 ms) in juice-reward.  

2.2.4.APPARATUS 

All stimuli were displayed on a LCD monitor (width: 60 cm, height: 34 cm) with a resolution of 1920 ×1080 and a 
refresh rate of 100 Hz. The monitor was gamma corrected with a mean luminance of 22.2 cd / m2. The distance from 
the eyes of monkeys to the monitor was 100 cm. All experiments were performed in a dimly lit room. The eye 
movements were monitored continuously online using an infrared eye tracker (IView X™ Hi-Speed Primate, SMI). 

 Recordings were performed using a 24-channel linear microelectrode (V-probes, Plexon) with an equal inter-
contact spacing of 100 µm, with contact impedance between 0.3 and 0.5 MΩ at 1 kHz. The electrodes were guided into 
the brain manually using custom, adjustable micro-drives. Signals were amplified and recorded using Neuralynx Digital 

Lynx system (Neuralynx, USA). LFPs were recorded against a reference screw located at the posterior part of the skull. 
LFP was defined as band-pass filtered (.01–100 Hz) continuous signals recorded from each compartment of 
microelectrode, and were used as the basis of the analysis. The power of LFPs was calculated as the envelope amplitude 
of a Hilbert transformation from raw LFP signals. All data were processed using a custom MATLAB (The Mathworks 

Inc.) code. 
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3.RESULTS 

3.1.INDIVIDUAL BIAS AND PERCEPTUAL STABILITY 

Human psychophysics experiments were performed using novel bi-stable line-plaid stimuli, which we refer to as 
pseudo-plaids (Fig. 6b-c). Subjects were instructed to report their perception of either a coherent pattern moving 

upward or two transparent surfaces sliding over each other (see Methods). Inspired by the geometric properties 

typically used with 
moving line-plaids (Fig. 
6 a ) ( A d e l s o n a n d 

Movshon, 1982; Pack 
and Born, 2001) and the 
n a t u r e o f s m a l l 
receptive fields (RFs) in 

early visual areas, we 
deve loped a nove l 
s t i m u l u s b y 

decomposing the plaid 
i n t o t w o t y p e s o f 
apertures: separated 
lines (SL) and line 

intersections (LI). In 
this way, the stimuli 
could mimic two basic 

inputs that the visual 
system could experience 
locally: 1D- or 2D-
m o t i o n ( g r e e n / r e d 

apertures respectively in 
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Figure 10. Eye movement results. Each subplot shows the averaged eye movement 
results of each subject from regular/irregular conditions.

Figure 11. Estimation of bias and stability. (a) Psychometric functions of each subject for 
Low (L), Medium (M) and High (H) density conditions in Experiment 1. The confidence 
area (in gray) was defined so that the probability of coherent or transparent perception was 
higher than 75%; (b) The direction and amount of bias for each subject corresponding to the 
conditions of (a). Error bars represent the standard error of the mean as estimated by 400 
times resampling each psychometric function. (c) Bias estimation: in each plot, the direction 
of the arrow indicates the bias and the length of its denoted strength and bias direction. 



Fig. 6a). We performed two experiments with the only difference being the aperture positioning. In Experiment 1 

(regular, R) the structure of the mimicked plaid was maintained (Fig. 6b), whereas in Experiment 2 (irregular, I), the 
structures were spatially jittered (Fig. 6c). This manipulation retained the geometric plaid properties only for R stimuli, 

a n d t h u s , t h e 

u n d e r l y i n g 
structure had a 
higher chance of 
being detected 

with increasing 
aperture density. 
T h e l e v e l o f 

c o n t e x t u a l 
organization was 
h i g h e r i n 
Experiment 1 (R) 

as compared to 
Experiment 2 (I). 
F o r e a c h 

experiment, the 
ratio between SL 

and LI was selected from a homogeneously spaced set of eleven ratios ranging from 0 (all SL) - 100% (all LI), and the 
total number of apertures was chosen from a set of three density conditions: Low (L), Medium (M), and High (H); with 

n=180, 340 and 680, respectively). Eye-movements were recorded during the experiments with a video eye-tracker and 
all subjects could consistently fixate within a circular window with radius 0.4 degrees of the visual angle (Fig. 10). For 
each subject, we first estimated the bias towards one of the two possible percepts (transparent or coherent) for the low-

density condition by calculating the difference between the 50% coherence threshold taken from its fitted psychometric 
function and the same threshold was calculated from the population trend (Fig. 11). Then, we used linear mixed models 
with subjects as random factor to explore the relationship between bias and density for both regular and irregular 
conditions. The results displayed a significant linear fit between bias and density for regular (p < 0.005), but not for 

irregular conditions (p > 0.05; Fig. 12a). 

 To more explicitly estimate the stability of the two percepts for each condition, a perceptual stability index 
(PSI, Fig. 12b) was calculated for each subject. First, we defined the confidence area for stability as the probability of 

coherent or transparent perception (i.e. either side of the psychometric curve) which exceeded a threshold of 75%. 
Then, the PSI was calculated as the fraction of fitted data-points within the confidence area corresponding to the 
dominant percept and the rest of the points. As with the bias data, a linear regression analysis was performed on the PSI. 
The results showed a significant linear fit between PSI and density only for the regular (p < 0.05), but not irregular 

conditions (p > 0.05; Fig. 12b). To control for possible effects of threshold differences, we performed this analysis again 
with a threshold of 90%. Similar results were obtained, a significant linear correlation of PSI and density only for the 
regular condition (p < 0.05, results not shown).  

 To study the relative contribution of prior experience and the sensory representation of motion direction, we 
modeled the underlying motion perception task using a Bayesian framework (Sato et al., 2007; Stocker and Simoncelli, 
2007). To this end, we used models of increasing complexity (no prior, a transparent prior or a coherent prior, 
conditional use of both priors). In the simplest model architecture (M1, no prior), the maximum likelihood was 
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Figure 13. (a) Example model fitting results from a representative subject. Empirical and model 
simulated psychometric functions were plotted for each experiment and conditions. (b) 
Comparison of AIC scores (see text). Individual subjects (left) and corresponding box plot (mean 
+/− SEM, right). Significance of statistical comparisons was marked with respect to M3. (c) Linear 
correlation between the sensory representation of SL aperture and the amount of bias to 
transparent perception. Data points were collapsed from all density conditions of regular/irregular 
experiments. 



estimated and categorized depending on whether it was closer to the coherent or transparent direction. For models M2 

and M3, an initial noisy direction estimate was used to determine whether to apply an excitatory (M2) or an inhibitory 
(M3) prior, each of which required a single additional width parameter centered on the average direction. These would 
have an effect of biasing perception either towards the coherent (M2) or transparent (M3) direction. The basic 

assumptions and architecture of these models were inspired by a previous model for ambiguous perception (Meso et al., 
2016a). Motion direction was represented as a multiplicative combination of Gaussian probability density functions 
representing the LI and SL aperture direction and variance (see Methods). The set of models, M1-M3 were tasked with 
a forced-choice decision on whether each simulated trial corresponded to a transparent or coherent direction over a 

number of conditions replicating Experiments 1 and 2. 

 An example of model-fitting results for representative subjects is shown in Fig. 13a. We then performed a 
model comparison based on the Akaike information criterion (AIC (Akaike, 1977)) to identify the optimal model 

architecture. AIC measurements are based off of the likelihood of fitting residuals to determine which model provides 
the best explanation for the data, giving a lower score for better fits, but penalizing models with more parameters. We 
calculated the AIC scores of M1-3 (Fig. 13b). A repeated one-way ANOVA was performed across all models. The 
results showed significant differences between models (F (2, 8) = 21.87, p < 0.001). A post-hoc pairwise comparison 

showed that M3 was significantly better than M1 (p < 0.01) and M2 (p < 0.005), and we therefore considered M3 
(transparent prior) as the most appropriate model. This could be interpreted as a general tendency of the visual system 
to separate motion components unless there is strong sensory evidence for integration into a single object (here 

provided by the line intersections (LI) apertures). 

 Further, we analyzed the relationship between the best model parameters of M3 and perceptual bias from 
empirical data to investigate the potential insights into the mechanisms of subjective biases. We found a significant 
linear correlation of bias and variability of the sensory representation (Gaussian sigma) for SL apertures (p < 0.05, Fig. 

13c) only for the regular experiment, indicating that regularity influences the effectiveness of the sensory representation 
by increasing the standard deviation of its distribution. 

3.2.OFFSET RESPONSE IN AWAKE MONKEY BRAIN 

We used the following notations in the figures: n (not significant), p ≥ .05; .05 > * p > .005; .005 ≥ ** p > 1e-5; 1e-5≥ 
*** p >1e-10, and **** p ≤ 1e-10. 

 We first calculated the amplitude of the LFP power and found that amplitudes increased transiently after 
stimulus offset for all layers and conditions (see Fig.1c for example channels). The mean results across all sessions for 

each monkey (monkey 1: n = 9; monkey 2: n = 8) are denoted in Fig.14a. The mean offset responses (averaged from 
0-300ms post-stimulus) increased from superficial (supra-granular, SG; granular, G) to deep (infra-granular, IG) layers, 
where the mean from the superficial layers was significantly smaller than that of the deep layers (two-sample t-test; 

monkey 1: t (9) = -3.19, p < .05; monkey 2: t (8) = -2.47, p < .05; different time-window revealed similar results). In 
order to identify the differences between channels, we normalized the data across channels (see Fig. 14b). We can see 
clearly that superficial layers were relatively suppressed after stimulus offset, whilst deep layers were activated. Distinct 
responses were separated by the edge of layers 4 and 5. 

 

In order to measure the offset response relative to the onset, we normalized the LFP power time-course at a trial-by-trial 
basis from the peak of onset transition to (see Fig. 15a, example results for condition C50). The magnitude of the offset 

response was found to be largest in the IG. Nevertheless, the magnitude of the offset response was smaller than for the 
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transient onset peak in SG and G for 

almost all trials. We computed the ratio of 
channels with offset peaks larger than 
onset peaks for all layers. The ratio for 

each layer across all duration conditions 
was plotted in the top-right corners of 
Fig. 15a. A one-way ANOVA was 
performed to compare the ratios across 

layers for each monkey. For monkey 1, 
the results revealed a significant main 
effect (F (2, 69) = 195.24, p = 3.90e-29). 

Post-hoc pair-wise comparisons indicated 
the difference of ratios between SG and G 
was not significant (p >.05), the ratio of 
IG was greater than G and IG (p = 

9.56e-10 for both). Similar results were 
found for monkey 2, but the main effect 

was significant (F (2, 45) = 57.61, p = 3.90e-13). No significant difference was found between SG and G (p >.05), and 

IG was greater than G and IG (p = 1.08e-09, p = 9.58e-10, respectively) for post-hoc comparisons. 

 We compared the variance amongst the channels in each layer (see Fig. 15b). The variance was calculated 
based on the LFP power time-course within a 300 ms time-window around the reference time point (100 ms before and 
200 ms after) between channels of each layer (number of channels, SG: 8; G: 4 and IG: 8). The reference point was the 

median offset peak time for all channels. The variance values of each layer, collapsed across each time point and 
duration condition, were subjected to a one-way ANOVA for each monkey. For monkey 1, the results revealed a 
significant difference amongst layers (F (2, 750) = 147.57, p = 9.06e-55). A post-hoc pair-wise analysis showed that the 

variance of G was significantly smaller than that of SG or G (p = 3.63e-08, p = 9.56e-10 respectively). The variance of 
IG was larger than that of SG (p = 9.56e-10). For monkey 2, the results revealed a significant difference amongst layers 
(F (2, 750) = 481.70, p = 2.81e-135). A post-hoc pair-wise analysis revealed that the variance of G was significantly 
smaller than of SG or G (p = 3.33e-09, p = 9.56e-10). The variance of IG was larger than that of SG (p = 9.56e-10). 

 Next, we calculated the power coherence of the offset response (300 ms or a 200 ms time-window from the 
offset for monkeys 1 and 2, respectively) between channels. The coherence was estimated as the magnitude-squared 
coherence averaged by Welch’s method. The mean inter-channel coherence for all sessions and duration conditions is 

shown in Fig. 15c, where we can see the abrupt decreasing of coherence from layer G to IG.  
 We analyzed the modulation of stimulation duration on offset response. The mean LFP dynamics after 
alignment of onset peaks across channels for each condition and monkey are displayed in Fig. 16a. The peak amplitude 
of the offset response within the time-window 50-250 ms after the offset of each trial was subjected to further statistical 

analyses. Note that, since we looked for the peak, using reasonably different time-windows would not change the 
results. We first collapsed the results from all duration conditions and compared the difference amongst layers with a 
one-way ANOVA (see Fig. 16b). Similar results were found for both monkeys: the main effect was significant (monkey 

1: F (2, 46) = 118.67, p = 1.45e-13; monkey 2: F (2, 46) = 57.10, p = 7.57e-14), with post-hoc analyses revealing no 
significant differences between layers SG and G (p > .05 for both monkeys), and IG was significantly larger than SG (p 
= 9.83e-10, p = 1.39e-09, for monkey 1 and 2, respectively) and G (p = 5.22e-09, p = 3.95e-07, for monkeys 1 and 2, 
respectively). We then performed a one-way repeated measures ANOVA for each layer. For monkey 1, the mean effect 
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Figure 14. Laminar differences of motion offset effect for each monkey. (a) 
The mean LFP power time-course across sessions and conditions (see 
Supplementary Information for the results of each condition) and plotted as a 
function of time and cortical depth. SG, G and IG, supra-granular, granular 
and infra-granular layers, respectively; (b) Data from (a) was normalized 
across layers. Note that, consistent with both monkeys, distinct offset effects 
were found across layers: power amplitude decreased in supra-granular and 
granular layers (offset inhibition), but increased in the infra-granular layer 
(offset activation). 



of the difference between peak amplitude was not significant for SG (F (2, 14) = 1.61, p > .05) nor for G (F (2, 14) = 

2.37, p > .05), but significant for IG (F (2, 14) = 23.86, p = 3.08e-05). A post-hoc analysis of layer IG showed that the 
mean peak amplitude for the duration condition of C200 was significantly less than that C50 and C100 (both p < .005), 

and C100 was larger than C50 (p < .

05). The results of monkey 2 showed 
no significant main effect for SG (F (2, 
16) = 1.48, p > .05). The main effect 
for G was significant (F (2, 16) = 5.69, 

p < .05), but no significance was found 
from post-hoc comparisons (all p > .
05). A significant main effect for IG (F 

(2, 16) = 7.19, p = .005) indicated that 
C200 was significantly smaller than 
C50 (p < .05) and C100 (p < .05), and 
no significant difference between C50 

and C100 (p > .05) was seen from 
post-hoc analysis. 
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Figure 15. Relative offset responses and variance comparison for each monkey. (a) Example relative offset responses 
for condition C50. Each trace signifies the mean LFP power time-course across trials and sessions, plotted as a function 
of time from the onset transition peak. Each trial was aligned from its onset peak after normalization. The mean 
probability of channels with offset peak larger than onset peak for each layer was collapsed across duration conditions 
and plotted in the top-right corners. Error-bar, SEM.; (b) Comparisons of within channel variances. The variance 
among channels in each layer was calculated based on the LFP power time-course within a 300 ms time-window 
around a reference time point (100 ms before, and 200 ms after the reference) between channels of each layer (SG: 8; 
G: 4 and IG: 8). The reference point was the median offset response peak time across all channels. The variance values 
of each layer were then collapsed across each time point and duration conditions for statistical comparison. Each data 
point (left) and box plot (right). (c) Mean offset inter-channel coherence (ICC) of LFPs was calculated between all pairs 
of channels (SG: 8; G: 4 and IG: 8; note that two channels between layers were not included) across all sessions and 
duration conditions during the offset period (0-300, 0-200 ms from stimulus offset for monkey 1 and 2 respectively). 
Each colored square indicates the value of pair wise coherence. The colored bars at left side and bottom edges indicate 
the channels from each layer. Coherence decreased abruptly between granular and infra-granular layers. This pattern 
consists with the ICC profile calculated by using common method (see text). 



4.DISCUSSION 

4.1.SUBJECTIVE MOTION PERCEPTION 

We used bi-stable motion perception as a tool to better 
understand the process of perceptual stabilization in the 

human brain. Also, we used a Bayesian framework to 
model the internal decision process, leading to one of the 
two alternative interpretations with the aim to understand 
the relative role of priors and sensory evidence in the 

selection process. We found, counter-intuitively, that 
adding more motion information increased response biases 
in the task. Individuals’ tendencies to either one or the 

other percepts were amplified substantially when we 
increased the density of stimulus elements, leading to an 
increased inter-subject variability, with each subject 
diverging from the population trend with a magnitude and 

direction depending on its original bias (Fig. 12a). 
Interestingly, this effect was largely abolished when the 
position of elements was jittered with respect to their 

original location (according to the underlying plaid 
pattern), indicating that this form of contextual 
organization created by spatial regularity plays a major 
role in the amplification of the bias. As a measure of the 

effect of bias amplification, we computed a perceptual 
stability index and found that it linearly increased with 
element density (Fig. 12b).  

 To further understand the brain processes leading to this 
result, in particular with respect to prior information 
encoded in the brain of each participant, we built a battery 
of Bayesian models (M1-M3; see Methods) with the task 

to probabilistically select one of the two percepts on a 
trial-by-trial basis simulating the experiments. These 

modeled the sensory representations of 1D- and 2D-motion input signals as Gaussian processes with separate sigma 

parameters and, in addition, one of four different prior probability configurations. M3 (segregation prior) provided the 
best model suggesting that the visual system selectively applies inhibition within the direction space to help separate 
components. Importantly, it should be noted that M3 was the better model even in subjects that were biased towards 
coherent percepts. We conjectured that the brain, when faced with such tasks, applies a conditional implementation of 

separating priors on some critical trials and not an integrating one because integration might arise naturally from 
overlapping signal distributions (Mahani et al., 2005).   
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Figure 16. Laminar differences and duration 
dependence of motion offset effect for each monkey. (a) 
Temporal LFP power dynamics after stimulation offset. 
The mean LFP power time-course after stimulation 
offset was plotted as a function of time and cortical 
depth for each condition. Black horizontal bars indicate 
the edges of adjacent layers (SG, G and IG, supra-
granular, granular and infra-granular layers, 
respectively); (b) Statistical comparisons of offset 
responses from the same data as (a) across layers and 
conditions with corresponding box plot (mean results 
from each session, gray dots on top). 



 Bias stands at the core of signal detection theory (SDT) when applied to both living organisms and machines. 

In fact, Green and Swets, 1966, being the first to develop SDT approaches in psychophysics, directly criticized 
previously used methods for not being able to separate the sensitivity of subjects from their potential biases. In addition 
to the principle problem of detecting a signal within noise, our brains also face the problem of inherently ambiguous 

sensory inputs. Thus, to make veridical interpretations of the outside world, the brain needs to employ additional 
mechanisms, such as attention and prior experience (Desimone, 1998; Desimone and Duncan, 1995; Knill and 
Richards, 1996; Meso et al., 2016b; Rao et al., 2002). One theory suggested that objects simultaneously presented in the 
visual field compete and attention can bias the outcome of this competition (Desimone, 1998; Desimone and Duncan, 

1995; Knill and Richards, 1996; Rao et al., 2002). Our results are consistent with the general framework of the biased 
competition hypothesis; however, attention does not seem to be the primary source of the observed biases as we did not 
manipulate attention across the different conditions and the subjects had to continuously perform the task of reporting 

their percepts so it should have remained constant. Moreover, individual bias directions were independent of the 
stimulus configuration (which was the same for all subjects) precluding bottom-up stimulus-driven attention effects. 
The subject specific results suggested a strong influence of prior experience or assumptions, and thus, we expected our 
modeling results to reveal that some subjects use a ‘coherence’ prior (M2) while others use a ‘component’ prior (M3). 

To our surprise, M3 (in comparison to M2; Fig. 12a) was a better model for all our subjects. This suggests that the 
selectivity of the visual system of each participant to the two motion signals (sensory  input standard deviations) was 
more important for determining bias direction in comparison to the prior.  

 Furthermore, bias in our experiments was increased with stimulus element density. This was an unexpected 
finding, as previous studies have shown that increases in the density of random-dot-kinematograms (RDKs) result in 
decreased coherence thresholds (Barlow and Tripathy, 1997) or being unaffected (Eagle and Rogers, 1997; Talcott et al., 
2000; Welchman and Harris, 2000). We note, however, that RDK experiments are closer to the foundations of SDT (i.e. 

detecting a signal within noise). We conjecture that in our scenario, competition between the two motion representations 
may be enhanced by density, resulting in the observed increase of bias towards a preferred representation, acting like a 
perceptual attractor. This is consistent with contrast-based motion signal increases, which result in stronger 2D motion 

attractors in a tri-stable motion stimulus (Meso et al., 2016b). In addition, research with RDKs has demonstrated that 
coherence thresholds in 5-6-year-olds were a) much higher and b) decreased with dot density in comparison to adults 
(Narasimhan and Giaschi, 2012). In our view, this indicates that sensory representations of this form, and perhaps the 
connectivity of the circuit, are also prone to changes by experience during development. This could explain the different 

directions of the biases in different subjects. 

 Interestingly, the bias-amplification and the increases in the perceptual stability index with density were 
largely abolished in the stimuli with jittered aperture positions. This is consistent with previous work demonstrating the 

importance of regularity (Barlow and Tripathy, 1997; Green and Swets, 1966), which appears to play a role in the 
selection of stable neural representations. Another interpretation is that the reduction of regularity eliminates, the 
correspondence of single stimulus elements to the underlying patterns, or ‘objects’, interfering with their spatial 
integration. This is consistent with studies that have demonstrated a precedence of global features in visual perception 

(Beck and Kastner, 2005; Phillips et al., 2015). Moreover, the influence of position jitter on bias indicates that the scale 
of integration cannot be completely local nor global as both these conditions should not elicit an effect. We, thus, 
suggest our results directly indicate that the motion integration mechanisms contributing to individual biases are of 

‘meso-scale’, i.e. go beyond single-neuron receptive fields (RFs) in V1 to scales more typical for area V5/MT, but not 
the very large RFs found in size-invariant object selective areas like inferotemporal cortex (IT). 

Previous research has found strong evidence for active perceptual stabilization mechanisms in the visual system, such 
as, the  reorganization of sensory representations during intermittent viewing (Leopold et al., 2002), top-down 
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modulation of beta-band synchronization (Kloosterman et al., 2015), feedforward inhibition (Bollimunta and Ditterich, 

2012), arousal (de Gee et al., 2014; Mather and Sutherland, 2011b), and memory (Wimmer and Shohamy, 2012). Our 
study suggests that bias may serve as an additional factor our brains use to stabilize our perception of the world. 

4.2.DYNAMIC LAMINAR PROFILE OF VISUAL MOTION OFFSET RESPONSE 

In general, we found that, comparing to the fixation period, neural activity increased with a transition offset response 
for all V1 layers when a briefly presented moving stimulus turned off. Such persistent neural activity lasted around 300 
ms from the offset of stimulation, and only the infra-granular (IG) layer was duration dependent. Similar results were 
observed in both monkeys. These results suggested that temporal dynamics are coded differently in V1 layers and 

highly dependent on the local network. In front of abrupt changes, temporal information is coded transiently in 
superficial layers, but additional duration information was maintained in deep layers. Superficial layers were relatively 
suppressed after stimulus removal, indicating that these layers may be more sensitive to ongoing sensory inputs. 

Importantly, we found that the transient offset response from the granular layer is highly consistent with the lowest 
inter-channel variability as compared to other layers, which is consistent with the latest observations that information 
encoded by neuronal populations in the granular layer is more accurate than in other layers (Ecker et al., 2010; Hansen 
et al., 2012). 

 Persistent neural activity after removal of stimulation has been found in various brain areas (Akaike, 1977; 
Andersen et al., 1987; Funahashi et al., 1989; Fuster and Alexander, 1971; Levick and Zacks, 1970; Mendoza-Halliday 
et al., 2014; Meyer et al., 2007; Miller et al., 1996a, 1996b; Schiller, 1968; Tark and Curtis, 2009), and the perception of 

a successive stimulus could be impaired if post-stimulus processing of the first one has not been finished (Keysers and 
Perrett, 2002). Recent research has reported that when the stimulus is abruptly turned off from one eye, the stimulus on 
the other eye would be invisible under binocular rivalry (de Graaf et al., 2017). The authors proposed a transient offset 
suppression mechanism, whereby ongoing processing is suppressed by offset transient neural activity. Our results may 

provide direct evidence for this hypothesis. While the robust offset response from the infra-granular layer may interrupt 
the processing of an ongoing stimulus, it has been known that pyramidal cells in V1 layer 6 project back to the 
dorsolateral geniculate nucleus (dLGN), from which V1 receives visual inputs (Bourassa and Deschênes, 1995; Jones 

E. G., 2007), and the suppression of inhibitory neurons in layer 6 throughout most of the superficial layers (Briggs and 
Callaway, 2001; Olsen et al., 2012). Thus, the offset transient neural activity of infra-granular layers may indicate active 
suppression processing. 

 Visual memory for briefly-presented stimuli can be maintained as iconic memory with rapid decay 

(Coltheart, 1980a, 1980b; Duysens et al., 1985; Di Lollo, 1980; Phillips and Routh, 1983; Sperling, 1960). Our results 
show that offset response lasted around 300 ms, and its amplitude was inversely dependent on the duration at the infra-
granular layer. Consistent with previous research, our results suggest that visual motion information can be maintained 

in V1 (van Kerkoerle et al., 2017; Super et al., 2001), but only in the infra-granular layer. Additionally, since the 
monkeys were awake and behaving, our study provides direct evidence that the offset response is related to visual 
persistence. Visual persistence refers to a phenomenon that visual perception remains for a period of time when a 
briefly-presented stimulus turns off and the duration of visual persistence is inversely related to the stimulus duration 

and decays rapidly (Coltheart, 1980; Di Lollo, 1980; Sperling, 1960). One early study with anesthetized cats showed 
that the firing rates of some neurons from area 17 decreased with longer stimulation, while some others were 
independent of stimulus duration (Duysens et al., 1985). These observations are in line with our results indicating that 

only the infra-granular layer may be involved in this phenomenon.  
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 It has been suggested that the offset response may be driven by the interaction between inhibition and 

disinhibition, that the offset response may originate from the released inhibition (Calford and Webster, 1981; Takahashi 
et al., 2004; Volkov and Galazjuk, 1991). Lateral suppression is a fundamental mechanism in visual system, where 
cross-orientation suppression of orientation-tuned neurons can be suppressed by cross-orientated stimuli (Morrone et 

al., 1982) and opponent direction suppression where different directions of motion suppress each other (Qian and 
Andersen, 1994). Thus, offset responses may reflect the released suppression after removal of oriented stimuli 
(McLelland et al., 2010), or an opponent motion signal. However, other researchers reported that the offset response is 
highly precise both in visual and auditory modalities (Bair et al., 2002; Qin et al., 2007), revealing that the offset 

response is mediated by an active mechanism (Qin et al., 2007). The hypothesis of suppression preceding offset 
response predicts increased neural activity with longer stimulation. However, our results exhibited an inverse 
correlation of durations for the infra-granular layer, and that the longest stimulation induced the weakest offset response 

in the infra-granular layer and a null effect for superficial layers. In addition, if the offset response was from the 
released suppression of stimulation, the amplitude of the offset response should be less or at most equal to the onset 
amplitude, but we found that the peak amplitude of the offset response was significantly larger than onset peak from 
infra-granular layer. Thus, our results revealed that the offset response in the infra-granular layer was actively 

“amplified”. Indeed, previous studies reported the spiking activity of the offset response was larger for longer stimulus 
durations(Duysens et al., 1985, 1996). Possible explanations could be that a) previous studies used a static stimulus, 
thereby different results from our study indicate that the offset response to moving stimuli may be potentially different; 

b) anesthetized animals were studied by those researchers, while we used alert monkeys; c) some of the previous 
studies took all post-stimulus neural activity into analysis, but not the transient offset response, it has been suggested 
that the transient offset response is different from the whole post-stimulus response. 

 In anesthetized animals, duration-dependent offset responses were found in the LGN with parvocellular cells 

(P cells), but not magnocellular cells (M cells) (McLelland et al., 2010). Additionally, some of the V1 neurons were not 
affected by the stimulus duration (Duysens et al., 1985). According to these results, researchers suggested that the 
duration-dependent offset responses may reply on cell types, and that the lack of duration dependence of the V1 

neurons reflect the inputs from LGN M cells. However, V1 layer 4c receives inputs from both M and P LGN pathways 
(Blasdel and Lund, 1983; Hubel and Wiesel, 1972), and we found that there is no duration modulation in the granular 
layer with awake monkeys. Lastly, it had been shown that the offset response of complex cells is larger than simple 
cells in the anesthetized V1 (McLelland et al., 2010). However, we found that the amplitude of the offset response was 

highest only in the infra-granular layer, and it was already known that both layer 2/3 and 5 have a majority of complex 
cells (Orban, 1984). Therefore, the offset response in the awake brain may not reflect the downstream neural activity 
from LGN, but rather involves population neural activity under intra-cortical mechanisms regardless of cell type. 
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