
 
 

State-dependent modulation of cortico-spinal networks 

 

 

Dissertation 

 

zur Erlangung des Grades eines 

Doktors der Naturwissenschaften 

 

 

der Mathematisch-Naturwissenschaftlichen Fakultät 

und 

der Medizinischen Fakultät 

der Eberhard-Karls-Universität Tübingen 

 

 

vorgelegt 

von 

 

Fatemeh Khademi 

aus Hamedan,Iran 

 

Oktober 2017



1 

 

Tag der mündlichen Prüfung:  19.12.2017 

 

Dekan der Math.-Nat. Fakultät: Prof. Dr. W. Rosenstiel 

Dekan der Medizinischen Fakultät: Prof. Dr. I. B. Autenrieth 

 

1. Berichterstatter:   Prof. Dr. Alireza Gharabaghi 

2. Berichterstatter: Prof. Dr. Christoph Braun       

 

 
Prüfungskommission:    Prof. Dr. Alireza Gharabaghi  

   Prof. Dr. Christoph Braun       

   Prof. Dr. Ingo Hertrich 

      Prof. Dr. Andreas Bartels 

 

 



2 
 

Erklärung / Declaration: 

 

Ich erkläre, dass ich die zur Promotion eingereichte Arbeit mit dem Titel: “ State-dependent 

modulation of cortico-spinal networks” selbständig verfasst, nur die angegebenen Quellen 

und Hilfsmittel benutzt und wörtlich oder inhaltlich übernommene Stellen als solche 

gekennzeichnet habe.  Ich versichere an Eides statt, dass diese Angaben wahr sind und 

dass ich nichts verschwiegen habe.  Mir ist bekannt, dass die falsche Abgabe einer 

Versicherung an Eides statt mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft 

wird. 

 

I hereby declare that I have produced the work entitled “State-dependent modulation of 

cortico-spinal networks”, submitted for the award of a doctorate, on my own (without external 

help), have used only the sources and aids indicated and have marked passages included 

from other works, whether verbatim or in content, as such.  I swear upon oath that these 

statements are true and that I have not concealed anything.  I am aware that making a false 

declaration under oath is punishable by a term of imprisonment of up to three years or by a 

fine. 

 

 

 

Tübingen, den .........................................  ............................................................. 

   Datum / Date    Unterschrift /Signature 

  



3 
 

Table of contents 

1. Abstract ........................................................................................................5 

2. Introduction ..................................................................................................7 

3. Chapters........................................................................................................12 

3.1. Distinct beta-band oscillatory circuits underlie corticospinal gain 

modulation ……………………………………............................................12 

3.2. Brain-machine interface feedback shapes cortico-muscular control 

after stroke...............................................................................................13 

3.3. Brain-state dependent transcranial magnetic stimulation controlled 

by sensorimotor desynchronization induces robust increase of 

corticospinal excitability ........................................................................14 

3.4. Brain state-dependent stimulation enhances task-specific motor 

network connectivity................................................................................15 

3.5. Learned self-regulation of the lesioned brain with epidural 

electrocorticography................................................................................17 

4. Discussion......................................................................................................18 

5. References.....................................................................................................22 

6. Statement of contributions...........................................................................28 

7. Acknowledgement.........................................................................................31 

8. Included manuscripts .................................................................................. 32 

8.1. Manuscript 1.............................................................................................32 

8.2. Manuscript 2.............................................................................................73 

8.3. Manuscript 3...........................................................................................122 

8.4. Manuscript 4...........................................................................................132 

8.5. Manuscript 5...........................................................................................168 

 

  



4 
 

Table of Abbreviations 

BCI Brain-computer interface 

BMI Brain-machine interface 

ciCOH Corrected imaginary part of coherence 

CMC Cortico-muscular coherence 

CSE Cortico-spinal excitability 

ECoG Electrocorticography 

EEG Electroencephalography 

EMG Electromyography 

ERD Event-related desynchronization 

GABA Gamma-aminobutyric acid 

LFP Local field potential  

MEP Motor evoked potential  

MI Motor imagery 

PTN Pyramidal tract neuron 

RMT Resting motor threshold 

SRC Stimulus-response curve 

TEP Transcranial evoked potential 

TMS Transcranial magnetic stimulation  
  



5 
 

1. Abstract 

Beta-band rhythm (13-30 Hz) is a dominant oscillatory activity in the sensorimotor 

system. Numerous studies reported on links between motor performance and the 

cortical and cortico-spinal beta rhythm. However, these studies report divergent beta-

band frequencies and are, additionally, based on differently performed motor-tasks 

(e.g., motor imagination, muscle contraction, reach, grasp, and attention). This 

diversity blurs the role of beta in the sensorimotor system. It consequently challenges 

the development of beta-band activity-dependent stimulation protocols in the 

sensorimotor system. In this vein, we studied the functional role of beta-band cortico-

cortical and cortico-spinal networks during a motor learning task. We studied how the 

contribution of cortical and spinal beta changes in the course of learning, and how 

this modulation is affected by afferent feedback to the sensorimotor system. We 

furthermore researched the relationship to motor performance. Consider that we 

made our study in the absence of any residual movement to allow our findings to be 

translated into rehabilitation programs for severely affected stroke patients. 

This thesis, at first, investigates evoked responses after transcranial magnetic 

stimulation (TMS). This revealed two different beta-band networks, i.e., in the low and 

high beta-band reflecting cortical and cortico-spinal activity. We, then, used a broader 

frequency range in the beta-band to trigger passive opening of the hand (peripheral 

feedback) or cortical stimulation (cortical feedback). While a unilateral hemispheric 

increase in cortico-spinal synchronization was observed in the group with peripheral 

feedback, a bilateral hemispheric increase in cortico-cortical and cortico-spinal 

synchronization was observed for the group with cortical feedback. An improvement 

in motor performance was found in the peripheral group only. Additionally, an 

enhancement in the directed cortico-spinal synchronization from cortex to periphery 

was observed for the peripheral group. Similar neurophysiological and behavioral 

changes were observed for stroke patients receiving peripheral feedback. The results 
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suggest two different mechanisms for beta-band activity-dependent protocols 

depending on the feedback modality. While the peripheral feedback appears to 

increase the synchronization among neural groups, cortical stimulation appears to 

recruit dormant neurons and to extend the involved motor network. 

These findings may provide insights regarding the mechanism behind novel activity-

dependent protocols. It also highlights the importance of afferent feedback for motor 

restoration in beta-band activity-dependent rehabilitation programs.  
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2. Introduction 

The beta-band (13-30 Hz) oscillation is a prominent motor-related oscillatory activity 

in human and primates. However, different functional roles for this oscillatory rhythm 

were suggested. Modulation of both cortical and cortico-spinal beta was linked to 

performance and divergent motor task. This diversity increases as we include 

different sub-bands of 13-30 Hz. Here, some of these reports are introduced. Classen 

and colleague (1998) observed an intra- and inter-hemispheric increase in coherence 

(13-21 Hz) of electroencephalography signal (EEG) during a visuomotor task. The 

coherence was similar, when only the visual or motor task were performed; but it 

decreased when the subject was receiving a visual distractor. This finding suggests 

an information processing role for 13-21 Hz. In an awake behaving monkey, Fetz and 

colleagues (2000) showed that bursts of local field potential (LFP) oscillations in the 

motor cortex (20-40 Hz) but not for the electromyography (EMG) signal. This cortical 

modulation occurred during exploratory hand but not for wrist movements, suggesting 

an attentional role for 20-40 Hz rather than an involvement in motor execution. On 

the other side, during the hold period of a precision grip task performed by awake 

behaving monkey, Baker and colleagues (1997) showed bursts of 20-30 Hz LFP 

oscillation in the motor cortex and pyramidal tract neurons (PTN) coherent with EMG 

signals. This suggests a functional role for coherent cortical and spinal beta rhythms. 

All of these studies have in common is that the modulation of cortical and cortico-

spinal beta activity is linked to different behavioral task (Khana and Carmena, 2015). 

Therefore, we used new protocol to overcome this diversity.  

Cortico-muscular coherence (CMC) for 20-30 Hz was reported in stroke 

patients with upper limb discoordination during a reaching task (Fang et al., 2009). 

However, the control group of healthy subjects showed the CMC for 30-40 Hz. They 

(Fang et al., 2009), hence, concluded the CMC for 20-30 Hz might indicate the poor 

integration between sources of EEG and EMG signal for action processing. On the 

other side, 13-30 Hz and 30-41 Hz CMC was reported during static and dynamic 
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forces, respectively (Gewin and Ferris, 2012). Omlor and colleagues (2011) showed 

significant CMC for 15-30 Hz during a steady state and dynamic force generation in 

healthy subjects. The CMC was higher when processing was needed to predict the 

dynamic force, i.e., when the unpredictable amount of force was applied. They 

(Omlor et al., 2011) showed that the cortical beta power was lower during the task 

than rest. Specifically, it was lesser during unpredictable than predictable force. 

Moreover, they reported a linear relationship between the decrease in cortical beta 

power and an increase in beta CMC. However, in another study (Kriesteva et al., 

2007), the high cortical beta (15-30 Hz) power was reported contingent with high beta 

CMC (15-30 Hz) for the group of subjects with good performance. These findings, 

also, blurred the role of beta CMC in the sensorimotor loop. It is not clear whether 

cortical beta is essential to reach motor performance or is an epiphenomenal 

observation, and rather cortico-spinal beta coherence is more relevant for motor-

control.  

Pharmacological studies revealed different mechanisms for the cortical and 

cortico-spinal beta using the benzodiazepines diazepam and carbamazepine (Baker 

et al., 2003; Riddle et al., 2004). Diazepam decreases the neural excitability by 

enhancing the neurotransmitter gamma-aminobutyric acid (GABA) at the GABA-A 

receptors. It decreases the chance of firing of the neurons by increasing the chloride 

inside the cell. Carbamazepine, on the other side, binds to the voltage-gated sodium 

channel and stops the repetitive firing of the neurons. Diazepam increased the 

cortical beta power (~ 20 Hz; Baker et al., 2003) in a precision grip task, but led to a 

slight decrease in cortico-muscular coherence (~20 Hz). This might suggest the 

involvement of GABAergic activity in intracortical inhibition of the local cortical circuits 

for beta (~20 Hz) oscillations. On the other hand, carbamazepine significantly 

increased cortico-muscular coherence (~21 Hz), in a precision grip task, with no 

modulation of cortical power (Riddle et al., 2004). These pharmacological studies 

suggest a partially independent role of cortical and cortico-spinal beta; and an 

important role of cortico-muscular coherence for motor-control.  

https://en.wikipedia.org/wiki/Gamma-Aminobutyric_acid
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In another study by Riddle and Baker (2005), manipulating the peripheral 

nerve by cooling the arm (Riddle and Baker, 2005) showed a decrease in CMC and 

caused a modulation in the respective phase delay. Specifically, Witham and 

colleagues (2011) could estimate the directed coherence for three different groups of 

subjects after estimating the phase-frequency relationships of their beta CMC: a 

group with significant directed coherence for the descending pathway, a group with 

significant directed coherence for the ascending pathway, and a group with no 

significant directed coherence (Witham et al., 2011). These findings provide 

remarkable evidence that afferent pathways play a relevant role in the generation of 

CMC (Riddle and Baker, 2005; Baker and Baker, 2003; Witham et al., 2011). 

Therefore, a model based on efferent pathways cannot sufficiently describe CMC. A 

current "closed neural group" theory (Aumann and Prut, 2015) proposes that 

sensorimotor beta (~20 Hz) is generated not only through the firing of cortical 

neurons, but rather as a result of recurrent loops between sensorimotor cortex and 

periphery. The idea is that the generated beta oscillations in the primary motor cortex 

(M1) will be conveyed to the periphery and returned to the primary sensory cortex 

(S1) via efferent and afferent pathways, respectively, and later from S1 to M1. This 

recurrent cortical-peripheral-cortical loop allows the resonant generation of beta 

oscillations within the motor system (Aumann and Prut, 2015).  

In parallel to neurophysiological studies concerning the functional role of the 

beta-band, neuroprosthetic applications were developed in so-called brain-computer 

interface (BCI) platforms. In this platform the oscillatory activity of the cortex is 

transferred to a computer; and visual feedback is provided to the subject based on a 

linear classifier output (Schalk et al., 2004). Since beta-band oscillatory activity 

represents a repetitive modulation (Chen and Fetz, 2005; Witham and Baker, 2007) 

and has a topographical distribution (Neuper and Pfurtscheller, 2001; Pfurtcheler and 

da Silva, 1999) during movement preparation (Pfurtscheller et al., 1997; 

Pfurtschellerand da Silva, 1999; Salmelin and Hari, 1994) and motor execution (Tan 

et al., 2014; Tan et al., 2016), it was chosen as one of the target frequency bands for 
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neuroprosthetic applications.Importantly, kinesthetic motor imagery led to the similar 

functional and topographical modulations of the beta-band as movement execution 

(McFarland et al., 2000) by recruiting the neural population activated during active 

motor control (Pfurtscheller and Neuper 1997; Lotze et al. 1999; Neuper et al. 2005; 

Kaiser et al. 2011). The increase in CMC was also reported during kinesthetic motor 

imagery (Ridding and Rothwell 1999; Roosink and Zijdewind 2010; Stinear et al. 

2006). Hence, BCI applications have been applied for patients with movement 

disorders using modulation of cortical beta-band (Gharabaghi et al., 2015; Sitaram et 

al., 2017) in a so-called brain-machine interface (BMI) platform. In this vein, a recent 

study (Kraus et al., 2016) demonstrated that BMI led a robust increase in cortico-

spinal excitability (CSE). Current findings (Kraus et al., 2016) may suggest a beta-

band activity-dependent protocol for plasticity induction in the human sensorimotor 

system (Gharabaghi et al., 2015; Kraus et al., 2016).  

The contribution of state-dependent motor cortex oscillatory activity in CSE 

has been shown by Schulz and colleagues (2014). They used single TMS pulse after 

voluntary muscle contraction. They found a negative correlation between the power 

of cortical beta-band (15-30 Hz) and motor evoked potential (MEP) amplitude. 

Takemi and colleagues (2013) rather applied TMS pulse during kinesthetic motor 

imagery (7-26 Hz) and demonstrated that higher levels of event-related 

desynchronization (ERD) led to higher MEP amplitudes. A study by Kraus and 

colleagues highlights these findings. In this study, a correlation was found between 

the modulation level of 16-22 Hz desynchronization in the course of a BMI 

intervention and the MEP amplitude. For the intervention, they used a beta-band 

activity-dependent stimulation protocol. A robotic orthosis provided peripheral 

feedback by opening the hand of the subject contingent with 16-22 Hz 

desynchronization. They also showed an increase in the MEP amplitude but not in 

the area under the MEP curve after the intervention, suggesting an increase in the 

neural synchronization level (Kraus et al., 2016). The same beta-band activity-

dependent protocol was used by Naros and colleagues (2016). They adjusted the 
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threshold for 16-22 Hz desynchronization detection and showed that subjects could 

enhance ERD across the sessions of the intervention. Importantly, they observed an 

improvement in motor performance. However, in none of the studies mentioned 

above (Takemi et al., 2013; Kraus et al., 2016; Naros et al., 2016) the cortico-spinal 

oscillatory activity was investigated. In one study, van Elswijk and colleague (2010) 

demonstrated the dependency of CSE on spinal beta. They applied a short-lasting 

TMS pulse during consecutive periods of voluntary muscle contraction and rest. They 

found the rising phase of the spinal beta oscillations to led to higher MEP amplitudes. 

They did not find any relationship concerning the phase of cortical beta oscillations.  

We aimed to investigate the role of beta-band oscillations independent from 

any specific task first. The relationship between power and phase of cortical and 

spinal beta-band oscillations was quantified by the sensorimotor output, i.e., motor 

evoked potential (MEP). Then, the mechanism for a beta-band dependent stimulation 

protocol with contingent peripheral feedback with a robotic hand orthosis was 

explored. We, additionally, investigated the mechanism for the beta-band dependent 

stimulation protocol when peripheral feedback was replaced by cortical (TMS) 

feedback. The modulations of cortico-cortical and cortico-spinal connectivity were 

compared to a control group that was receiving the same peripheral or cortical 

feedback independent of the brain state. We also investigate da single ischemic 

stroke patient by moving from a non-invasive (EEG) to an invasive 

(electrocorticography, ECoG) platform for neurorehabilitation.  

 

 

 

 

 

 

 



12 
 

3. Chapters 

3.1. Distinct beta-band oscillatory circuits underlie corticospinal gain 

modulation 

Previous studies (van Elswijk et al., 2010; Keil et al., 2014) demonstrated phase-

specific gain modulation in the motor system. However, the final conclusion regarding 

the optimal timing of the TMS pulse are contradictory. In this work, we intended to 

address these contradictory findings and provide information regarding the increased 

responsiveness of the beta-band oscillatory cycle. we investigated the modulatory 

effect of the ongoing cortical (EEG) and cortico-spinal rhythms (EMG) on the MEP 

amplitude. Additionally, we studied a potential confounding effect of power on phase.  

During the experiment, the subjects were instructed to sit upright in a reclining 

chair and relax their arm. Single TMS pulses were applied to the right sensorimotor 

cortex of healthy subjects (Raco et al., 2017; Royter et al., 2016). We applied ten 

TMS pulses per eight different TMS intensities (90, 100, 110, 120, 130, 140, 145, and 

150 % of resting motor threshold (RMT)). The pre-TMS power and phase of the EEG 

and EMG were estimated for 6-30 Hz in steps of 1 Hz per TMS intensities, and the 

MEP amplitude was estimated (van Elswijk et al., 2010). We observed an influence of 

pre-TMS power and phase of the EEG (14-17 Hz) on MEP amplitude only for the 

stimulation of 100% of RMT.  

We, additionally, observed that pre-TMS phase, but not power, of EMG (20-24 

Hz) oscillatory activity could determine the MEP amplitude. We, therefore, found two 

distinct beta networks, i.e. in the lower (14-17 Hz) and upper beta-band (20-24 Hz) 

for cortical and cortico-spinal oscillatory activity, respectively. This may suggest state-

dependent and circuit-specific interventions for therapeutic applications. We, 

importantly, could demonstrate that the synaptic input is most efficient when it arrives 

at the rising phase of the cortical and cortico-spinal beta rhythm. Our findings, 
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confirm and extend the observations by van Elswijk and colleagues (2010). Further 

details can be found in the attached manuscript 1. 

 

3.2. Brain-machine interface feedback shapes cortico-muscular control after 

stroke 

Motor imagery-related (MI) neurofeedback is used as therapeutic tools for stroke 

rehabilitation (Sitaram et al., 2017). A recent study by Kraus et al. (2016) 

demonstrated that MI-related BMI intervention would increase CSE. Another study by 

Naros and colleagues (2016) showed the same intervention would increase cortical 

self-regulation of beta-band ERD, which was correlated with improvement in motor 

performance. However, the functional role of cortical beta-band ERD for the changes 

in motor performance remains unclear. In this study, we used a motor imagery (MI)-

related peripheral intervention and studied the modulation of cortical and cotico-

spinal beta and their relationships with improvement in performance.  

For this study, we used desynchronization of 16-22 Hz of cortical oscillatory 

rhythm to provide contingent peripheral feedback. To quantify the effect of the 

peripheral feedback we investigated a control group which received visual feedback 

only. The effect of sensorimotor rhythm based visual feedback already has been 

shown for healthy subjects and stroke patients (Buch et al., 2008; Gomez-Rodiguez 

et al., 2011; Bai et al., 2015; Ang et al., 2010; Ramos-Murguialday et al., 2013). But, 

no study investigated the modulation of the cortico-spinal network and its phase-

frequency relationship for the beta-band related brain-robot interface (BRI) and brain-

computer interface (BCI) training. In this vein, we quantified the modulation of the 

cortico-spinal synchronization before and after the intervention. Additionally, the 

behavioral gain modulation was investigated before and after the beta-band related 

BRI and BCI training.  
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We measured the changes in beta-band ERD during the intervention. Both 

groups showed an increase in the beta-band ERD, but only the group with peripheral 

feedback reached to a significant increase in cortico-spinal synchronization. This 

effect was observed during the post-intervention isometric motor-task as well when 

the performance improved. The phase-frequency spectra of the modulated cortico-

spinal synchronization showed significant changes in the slope of the fitted line. This 

suggests an enhanced directed coherence following the beta-band related BRI. The 

implementation of the same protocol, i.e., beta-band related BRI, for stroke patients 

led the similar physiological changes. The improvement in the upper-extremity Fugl-

Meyer assessment suggests the therapeutic potential of this intervention. Further 

details can be found in the attached manuscript 2. 

 

3.3.  Brain-state dependent transcranial magnetic stimulation controlled by 

sensorimotor desynchronization induces robust increase of corticospinal 

excitability 

It is known that desynchronization of cortical beta-band lead increase in cortico-spinal 

excitability. However, the cumulative effect of beta-band ERD contingent with TMS 

pulse remains unclear. In this study, the cumulative effect of cortical stimulation in the 

presence (experimental group) and absence (control group) of kinesthetic motor 

imagery was investigated. No peripheral feedback was provided and the cortical 

stimulation was paired with cortical beta-band ERD over the frequency range of 16-

22 Hz. The pattern of brain state-dependent cortical stimulation during the 

intervention was copied and applied to the control group independent of the brain 

state.  

The comparison between the spatial distribution of the ERD between the study 

and control group showed a significant difference for the modulated sensorimotor 
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cortex. The MEP amplitude and area under the curve showed a significant increase 

for the study group. This increase was observed in the range of 110-130% resting 

motor threshold (RMT). The increase in MEP amplitude with no changes in the area 

under the MEP curve suggests an increase in the synchronicity of neurons. In our 

study, however, we observed an increase in both MEP amplitude and the area under 

the curve, which suggest the recruitment of additional dormant neurons.  

On the other side, no increase in MEP amplitude was observed for the control 

group in the range of 110-130% RMT. However, a decrease in the plateau values 

over the range of 131-160% was observed. The same changes were observed for 

the area under the MEP curve.  

The cortical map of both study and control group was changed following the 

intervention. Brain state-dependent stimulation led to an increase in cortical 

excitability. Application of cortical stimulation independent of the state of the brain led 

to a decrease in cortical excitability. Further details can be found in the attached 

manuscript 3. 

 

3.4. Brain state-dependent stimulation enhances task-specific motor network 

connectivity 

In our previous study, MI-related ERD contingent with TMS pulse led the cortico-

spinal excitability. It also suggested the recruitment of additional dormant neurons as 

a mechanism for the observed post-intervention increase in the MEP amplitude and 

area under the MEP curve. In this study, we aimed to reveal neurophysiological 

mechanisms underlying the effects of brain-state dependent cortical stimulation. We 

hypothesized that such protocol modulates cortical motor circuits and enhanced task-

specific motor network connectivity. 
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Here, we analyzed the cortico-cortical and cortico-spinal connectivity of 

electrophysiological field potentials.  

We observed that the amplitude of the transcranial evoked potential (TEP) for 

the late positive deflection was higher for the experimental group as compared to the 

control group. None of the other TEP components (P25, N45, P70, N100) showed 

significant modulation. The observed modulation of TEP amplitude was dominant in 

the left cortex, i.e., contra-lateral to the side of TMS pulse.  

We, additionally, observed an increase in intra- and inter-hemispheric cortico-

cortical connectivity. For the experimental group, the TMS-induced cortico-cortical 

functional connectivity (corrected imaginary part of coherence; ciCOH) was higher, 

specific to the feedback frequency band (16-22 Hz), and paralleled by an increase in 

the TMS-induced cortico-muscular coherence. These intra- and inter-hemispheric 

patterns suggest the recruitment of addition cortical areas during brain-state 

dependent cortical stimulation. Also, the modulation of the TEP amplitude suggests 

the involvement of GABAergic activity for inter-hemispheric connectivity. The phase-

frequency relationships of the cortico-muscular coherence showed a different sign of 

the regression slope. While the right hemisphere showed a negative slope, indicating 

a directed coherence from the cortex to muscle, the left hemisphere showed a 

positive slope, indicating a directed coherence from the muscle to cortex.  

The observed spatial distributions of the increased cortico-cortical and cortico-

muscular coherence in the feedback frequency band (16-22 Hz) reoccurred after the 

intervention, i.e., during the isometric motor task in the absence of TMS. Importantly, 

this modulation was observed during the transition from finger flexion to extension. 

This pattern was thereby task-specific because participants performed kinesthetic 

motor imagery of hand opening during the intervention as well. Further details can be 

found in the attached manuscript 4. 
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3.5. Learned self-regulation of the lesioned brain with epidural 

electrocorticography 

 

Electroencephalography (EEG) is used as a common platform for neurofeedback 

rehabilitation program of stroke patients. But EEG, in general, has low signal-to-noise 

ratio and may be contaminated with muscle artifact. On the other side, ECoG can 

provide better signal to noise ratio with less contamination of artifact and may 

suggest better platform for rehabilitation programs. In this study, we compared 

different recording modalities of cortical oscillatory activity, i.e., EEG and ECoG. One 

patient with an extended ischemic lesion of the cortex participated in two 

rehabilitation interventions, i.e. EEG-based and ECoG-based feedback. Each of the 

intervention periods lasted for one month and followed the same paradigm, i.e., 

feedback of ipsilesional sensorimotor activity (16-22 Hz). 

EEG recordings were contaminated with muscle artifacts; they occurred during 

the "rest" period and to a lesser degree during the "move" period of the experiment. 

Since the closed-loop paradigm was using the oscillatory activity recorded during the 

"rest" period as a baseline for brain self-regulation, the patient learned to control the 

closed-loop paradigm by increasing and decreasing the muscle artifact. This learning 

correlated with the brain-machine interface performance.  

During ECoG neurofeedback, no systematic changes in the number of muscle 

artifact were observed. Importantly, we did not find any evolution of the number of 

muscle artifact over the training period. Furthermore, the patient could modulate the 

MI-related ERD significantly above baseline in the course of the training period. 

Further details can be found in the attached manuscript 5. 
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4. Discussion 

Two neural groups can effectively communicate when the input and output windows 

of the communication are open at the same time (Fries., 2005). In other words, only 

neural groups that oscillate coherently communicate efficiently (Fries., 2005). In this 

vein, the phase and the conduction delay of the frequency of the oscillatory neural 

groups should match (Fries., 2005). During unidirectional communication, however, 

the conduction delay can be translated to the phase of the frequency of the coherent 

oscillatory activity. This, specifically, can be addressed in the motor system. The 

coherent oscillatory activity between sensorimotor and spinal cord was repeatedly 

reported as a mechanism for the effective cortico-spinal communication (Schoffelen., 

2005; Baker and Baker 2003). However convincing evidence for the relationship of 

the cortical phase and sensorimotor system output, measured by the amplitude of 

MEP, was not reported yet. However, the modulatory effect of the phase of the spinal 

beta on MEP was quantified by van Elswijk and colleagues (2010). On the other side, 

the relationship between cortical beta power and MEP amplitude was reported 

(Takemi et al.; 2013; Schulz et al., 2014; Keil et al., 2014); i.e., higher sensorimotor 

power led to lower MEP amplitude. A Recent study showed that using a beta-band 

activity-dependent protocol contingent with the modulation of cortical beta led to 

robust increases in CSE (Kraus et al., 2016). These finding might suggest cortical 

beta activity as a target frequency band for activity-dependent protocols (Gharabaghi 

et al., 2014; Naros et al., 2016) to induce cortico-spinal plasticity (Kraus et al., 2016). 

To facilitate the beta-band activity-dependent protocol for therapeutic applications 

(Gomez-Rodriguez et al., 2011; Gharabaghi et al., 2014; Bai et al., 2015) 

understanding the mechanism behind this protocol is crucial. Specifically, current 

theory (Aumann and Purt, 2015) suggests the beta rhythm as a recurrent propagation 

within a closed neural loop.  
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Hence, in this thesis, we investigated the effect of a beta-band activity-

dependent stimulation protocol on cortico-cortical and cortico-spinal connectivity in 

the sensorimotor system with activity-dependent brain stimulation protocols. Before 

using any activity-dependent modulations, we quantified cortico-spinal connectivity 

with the motor system remained at rest, i.e., with no specific physical or mental task. 

We then perturbed the underlying networks with different TMS intensities. The 

optimal timing to apply the TMS pulse according to the state of the cortical and 

cortico-spinal sensorimotor rhythm was detected. Former studies during (van Elswijk 

et al., 2010) or after a motor task (Keil et la., 2014) had contradictory findings in this 

regard. Van Elswijk and colleagues (2010) found a phase-dependency for spinal, but 

not cortical activity. Keil and colleagues (2014) found a cortical phase dependency, 

but with two peaks of excitability within one oscillatory cycle. This observation, 

however, is in contradiction to previous reports of desynchronization and 

synchronization within one cycle of the beta rhythm (Baker, 2007; Fries et al., 2007; 

Lacey et al. 2014). Our study demonstrated cortical phase-specificity once per 

oscillatory beta cycle. Moreover, we detected two different networks on the cortical 

(14-17 Hz) and cortico-spinal (20-24 Hz) level. In line with former pharmacological 

studies, our work suggests different roles for cortical and cortico-spinal beta (Baker 

and Baker, 2003; Riddle et al. 2004). 

We used 16-22 Hz frequency band for the activity-dependent protocols with 

peripheral and visual feedback. This frequency band, thereby, covered both of the 

networks mentioned above. Both groups (visual and peripheral feedback) enhanced 

ERD specific to the feedback frequency (16-22 Hz). However, only the peripheral 

group showed an increase in CMC contingent with a subsequent improvement in 

motor performance. Enhancement in cortical beta power in both groups independent 

from feedback modality is in line with reports from Thut and Miniussi (2009) and 

Jensen and Mazaheri (2010) that sensorimotor oscillation may modulate through 
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thalamo-cortical and cortico-cortical interactions. The relationship between CMC and 

performance is also in line with former reports and the role of beta CMC in motor-

control (Baker et al., 1997; Kristeva et al., 2007). These findings complement Kraus 

and colleagues (2016) where the same intervention showed a robust increase in 

CSE. Therefore, pairing peripheral feedback with the sensorimotor ERD state of the 

cortex increased CSE (Mrachacz-Kersting et al., 2012, 2016). The recent study by 

Naros and colleagues (2016) also showed the improvement in motor performance to 

positively correlate with an increase in cortical desynchronization of beta-band 

activity. In this study, no quantification for the modulation in CMC has been done 

(Naros et al., 2016). In this context, our findings suggest beta-band CMC serves as a 

cortico-spinal functional gateway for the transfer of sensorimotor information (Omlor 

et al., 2011; Aumann and Prut, 2015). Moreover, the phase-frequency estimation 

showed changes in the directionality of the information flow. The results suggested 

an enhanced directed coherence from cortex to periphery at the end of the 

intervention with an extended motor network topography. This former studies (He et 

al., 1993; Kombos et al., 1999; Teitti et al., 2008; Schmidt et al., 2013) that showed 

extended cortico-spinal connections not restricted to the primary motor cortex. The 

same intervention led to improvements in motor performance in stroke patients. This 

could inform the therapeutic application of beta-band activity-dependent peripheral 

brain stimulation. 

Replacing the peripheral feedback with cortical (TMS) feedback within the 

same experimental design led, however, to a different topographical distribution of 

the cortico-cortical and cortico-spinal networks. Different than previous approaches 

which applied the TMS pulse during the resting state (Bestmann et al., 2003; 2005; 

Veniero et al., 2013; Nettekoven et al., 2014, Volz et al., 2016) or voluntary 

movement (Bütefisch et al., 2004; Thabit et al., 2010; Bütefisch et al., 2011; 

Narayana et al., 2014.), we applied it contingent to 16-22 Hz ERD in the absence of 
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actual movement. We observed enhanced motor network (cortico-cortical and 

cortico-spinal) connectivity during the intervention (i.e., immediately following the 

TMS pulse) and after the intervention (i.e., during the post-intervention motor-task 

without TMS) in comparison to the control group (with the same pattern and number 

of pulses as an experimental group). Importantly, the same task-related network of 

imagined or real hand opening was activated during and after the intervention, 

respectively. This observation is in line with Rehme and colleagues (2013) who 

demonstrated activity-dependency of motor-network connectivity. Notably, the 

activated motor-network in our study was bilateral. The transcranial evoked response 

showed an increase in positivity for the P180 peak. This may suggest the 

involvement of GABAergic activity (Premoli et al., 2014 a, b) for beta-band activity-

dependent cortical stimulation by TMS. The observed motor-network was extended 

to the contra-lateral hemisphere. This is in contrast to the unilateral cortico-spinal 

network which we observed for the peripheral feedback intervention. This suggests 

more the involvement of dormant neurons within an extended motor networks as a 

potential mechanism underlying this protocol in contrast to an increase in 

synchronization demonstrated by peripheral stimulation Kraus and colleagues (2016).  

In summary, this thesis demonstrates that activity-dependent sensorimotor 

stimulation increases the synchronization within the sensorimotor loop and may 

thereby lead to the behavioral gains. This intervention may also increase the 

synchronization within an extended motor network and enhance its task-specific 

modulation. Moreover, the potential of peripheral feedback was demonstrated for 

stroke patients. This will need more consideration, e.g. regarding the platform applied 

for this therapeutic intervention. In one stroke, we demonstrated that EEG 

approaches may be compromised by artifacts. For these cases, ECoG platforms may 

be an alternative. 
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Abstract 23 

Rhythmic synchronization of neurons is known to affect neuronal interactions. In the 24 

motor system, oscillatory power fluctuations modulate corticospinal excitability. 25 

However, previous research addressing phase-specific gain modulation in the motor 26 

system has resulted in contradictory findings. It remains unclear how many time 27 

windows of increased responsiveness each oscillatory cycle provides. Moreover, we 28 

still lack conclusive evidence as to whether the motor cortex entails an intrinsic 29 

response modulation along the rhythm cycle, as shown for spinal neurons. We 30 

investigated this question with single-pulse transcranial magnetic stimulation over the 31 

primary motor cortex at rest. Application of near-motor threshold stimuli revealed a 32 

frequency- and phase-specific gain modulation at both cortical and spinal level, 33 

independent of the spontaneous oscillatory power fluctuations at each level. We 34 

detected interhemispheric sensorimotor circuits in the lower beta-band (14-17 Hz) 35 

and unilateral corticospinal circuits in the upper beta-band (20-24 Hz). These findings 36 

provide novel evidence that intrinsic activity in the human motor cortex modulates 37 

input gain along the beta oscillatory cycle within distinct circuits.In accordance with 38 

periodic alternations of synchronous hyper- and depolarization, increased neuronal 39 

responsiveness occurred once per oscillatory beta cycle. This information may lead 40 

to new brain state-dependent and circuit-specific interventions for targeted 41 

neuromodulation. 42 

Keywords: Corticospinal, gain modulation, sensorimotor, state-dependent, 43 

transcranial magnetic stimulation.   44 

 45 

46 



3 
 

Introduction 47 

Oscillatory neuronal activity occurs in distinct frequency bands and mediates the 48 

information flow between distant brain regions (Buzsáki, 2006). These neurons have 49 

a greater influence on each other when their temporal interaction windows open 50 

simultaneously, i.e., when the rhythmic synchronization within the groups is also 51 

synchronized between them (Womelsdorf et al. 2007). When the strength of such a 52 

neuronal interaction is dynamically modulated, itis referred to as gain modulation of 53 

neuronal connections (Salinas and Thier, 2000). It has been proposed that the 54 

synchronization of high-frequency bands determines this neuronal interaction 55 

strength (Fries, 2005). In the motor system, synchronized beta-band activity of spinal 56 

neurons during isometric contraction modulates the efficacy of synaptic input into this 57 

neuronal group along the rhythm cycle (van Elswijk et al. 2010). This spinal phase-58 

dependent gain modulation revealed one peak of corticospinal excitability (CSE) per 59 

oscillatory cycle; minimum CSE occurred with a 180° phase shift. However, no 60 

response modulation was found in phase with the intrinsic oscillatory rhythm of the 61 

motor cortex. This was unexpected since the neuronal input in this study was 62 

mediated via transcranial magnetic stimulation (TMS) to the primary motor cortex 63 

(M1). Another study, performed during mild tonic contraction to keep the hand 64 

still,reported a phase-dependent CSE modulation in the oscillatory beta-band of both 65 

cortical and spinal activity (Keil et al. 2014). Surprisingly, however, this work 66 

described two CSE maxima in one cycle with a 180° phase shift, i.e., at both the 67 

peak and trough of the same oscillatory cycle. This contradicts the observations of 68 

van Elswijk and colleagues (2010) at spinal level and the known alternations of 69 

hyper- and depolarization within one beta oscillatory cycle (Baker, 2007; Fries et al. 70 

2007; Lacey et al. 2014). 71 
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In a parallel line of research, where M1 rhythmic activity was artificially 72 

modulated, the findings were different.Specifically, when rhythmic activity in the beta-73 

band was exogenously imposed on M1 by electrical (Pogosyan et al. 2009) or 74 

magnetic stimulation (Romei et al. 2016), corticomuscular coherence (CMC) 75 

increased in the stimulation frequency. Importantly, the entrainment effects depended 76 

on the precision with which the input was synchronized to the intrinsic cortical beta-77 

rhythm (Romei et al. 2016). The technique of combining alternating current 78 

stimulation in the beta frequency band with concurrently applied and temporally 79 

targeted single-pulse TMS (Guerra et al. 2016; Nakazono et al. 2016; Raco et al. 80 

2016) made it possible to detect the phase- and frequency-dependent characteristics 81 

of the different interneuronal populations in M1 (Guerra et al. 2016). Notably, these 82 

studies were performed when the subjects were at rest, thereby avoiding task-related 83 

modulations that might have altered the oscillatory characteristics of cortical 84 

interneuronal populations (Murthy and Fetz, 1996). However, conclusive evidence as 85 

to whether the intrinsic oscillations of the motor cortex entail a similar phase-specific 86 

response modulation independent of exogenously imposed rhythms is still lacking. 87 

 When searching for a phase-specific response modulation of M1 independent 88 

of exogenously imposed rhythms, task-related changes of interneuronal oscillatory 89 

characteristics are to be avoided, i.e., the study should be conducted at rest. 90 

Furthermore, to target distinct neuronal circuitries, the corticospinal pathway needs to 91 

be activated with different TMS intensities (Devanne et al. 1997; Di Lazzaro et al. 92 

1998, 2001; Ziemann and Rothwell, 2000; Garry and Thomson, 2009). Moreover, a 93 

recent study confirmed earlier suggestions (Kiers et al. 1993; Devanne et al. 1997; 94 

Capaday et al. 1999) that the variability of motor-evoked potentials (MEPs) at rest 95 

was inversely related to the stimulation intensity and described by a logarithmic fit 96 
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(Klein-Fluegge et al. 2013). This finding, in turn, may imply that a potential phase- 97 

and frequency-dependent gain modulation of intrinsic oscillations can be detected by 98 

applying near-threshold TMS intensities when maximizing the response variability. 99 

In the light of these considerations, the present study provides novel evidence 100 

for frequency- and phase-specific gain modulation along the beta rhythm cycle at 101 

both cortical and spinal level, independent of the spontaneous oscillatory power 102 

fluctuations at each level. Increased neuronal responsiveness occurred once per 103 

oscillatory cycle and was mediated by spectrally and spatially distinct neuronal 104 

networks. 105 

 106 

Material and Method  107 

Experimental design 108 

Subjects 109 

Sixty-one healthy, right-handed subjects (mean age, 24.32 ± 3.4 years, range 18-36 110 

years, 38female), with no contraindications to TMS (Rossi et al. 2009) and no history 111 

of a psychiatric or neurological disease, were recruited for this study. Edinburgh 112 

handedness inventory (Oldfield, 1971) was used to confirm right-handedness. All 113 

subjects gave their written informed consent before participation in the study, which 114 

had been approved by the ethics committee of the Medical Faculty of the University 115 

of Tuebingen. This study conformed to the standards set by the latest version of the 116 

Declaration of Helsinki. Data acquisition was performed as recently described by our 117 

group and is cited here when performed in the same way (Kraus et al. 2016a; Royter 118 

and Gharabaghi, 2016): 119 
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Electromyography (EMG) 120 

Ag/AgCIAmbuNeuroline 720 wet gel surface electrodes (Ambu GmbH, Bad Nauheim, 121 

Germany) were used to record electromyography (EMG) activity from the left 122 

Extensor Carpi Radialis (ECR) muscle. Two electrodes were placed 2 cm apart from 123 

each other on the muscle belly. Following filtering between 0.16 Hz and 1 kHz, 124 

signals were recorded with a 5 kHz sampling rate and downsampled to 1.1 kHz by 125 

the amplifier (antialiasing filter). The high-pass filter was 1st-order (6 dB/Octave), and 126 

the low-pass filter was 5th-orderButterworth filter (30 dB/Octave).  127 

Electroencephalography (EEG)  128 

For this study, Ag/AgCl electrodes (BrainCap for TMS, Brain Products GmbH, 129 

Gilching, Germany) and BrainVision software with DC amplifiers (low input 130 

impedance 10MΩ) and an inbuilt antialiasing filter (BrainAmp, Brain Products GmbH, 131 

Germany) were used to record electroencephalography (EEG) signals in a 64 132 

channel setup that complied with the international 10–20 system (Fp1, Fp2, AF7, 133 

AF3, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT9, FT7, FC5, FC3, FC1, FCz, 134 

FC2, FC4, FC6, FT8, FT10, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP9, TP7, CP5, 135 

CP3, CP1, CPz, CP2, CP4, CP6, TP8, TP10, P7, P5, P3, P1, Pz, P2, P4, P6, P8, 136 

PO7, PO3, POz, PO4, PO8, O1, Oz, O2, and Iz with FCz as reference). Impedances 137 

at all electrodes were kept below 10 kΩ. Following filtering between 0.16 Hz and 1 138 

kHz, EEG signals were recorded with a 5 kHz sampling rate and downsampled to 1.1 139 

kHz by the amplifier (antialiasing filter). The high-pass filter was 1st-order (6 140 

dB/Octave), and the low-pass filter was 5th-orderButterworth filter (30 dB/Octave). 141 

Since ambient noise could influence electrophysiological recordings we made every 142 

effort to remove any of its potential sources by unplugging superfluous power 143 

supplies and computers, etc. The corresponding effect, such as the decrease of 50 144 
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Hz line noise, was verified online (Kraus et al. 2016a; Royter and Gharabaghi, 145 

2016).In this study, ipsilateral and contralateral electrodes refer to the site of the TMS 146 

pulse, i.e., the right hemisphere. 147 

TMS protocol 148 

A navigated TMS stimulator (MagPro-R30+MagOption, MagVenture, Willich, 149 

Germany) with a biphasic current waveform connected to a figure-8 MCF-B70coil 150 

(97mm outer diameter) was used to determine the MEP amplitude. A frameless 151 

stereotaxy (TMS Navigator, Localite GmbH, SanktAugustin, Germany) with a 152 

standard MNI dataset (MNI ICBM152 non-linear symmetric T1 Average Brain) was 153 

used for coil navigation. Subjects were requested to sit in a comfortable reclining 154 

chair and keep their muscles relaxed throughout the TMS measurements. The 155 

representation of their left forearm muscles in the right M1 was determined prior to 156 

the first TMS assessment. The TMS hotspot for the recorded muscle was determined 157 

as the cortical location in the right hemisphere, where the MEPs were robustly 158 

elicited with the lowest stimulation intensity. The hotspot search procedure started at 159 

a location on the scalp overlying the right parietal bone and corresponding to the C4 160 

electroencephalogram (EEG) sensor (according to the international10/20 system) 161 

with a coil orientation perpendicular to the scalp and in the posterior-anterior 162 

direction. The initial TMS amplitude was set at 40% of the maximum stimulator 163 

output; stimulation was manually triggered as the coil was moved gradually around 164 

the initial position (Kraus and Gharabaghi, 2015). If the search did not elicit any 165 

discernable MEP, the intensity was increased in 5% steps, and the search was 166 

repeated. Once the location that robustly elicited the highest MEPs wasdetected 167 

(which was in the vicinity of C4), the stimulator intensity was reduced, using a 168 

staircase approach to diminish the current spread of the stimulation and hence 169 
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restricting the hotspot area eliciting MEPs (Kraus and Gharabaghi, 2015; Raco et al. 170 

2017).We then determined the resting motor threshold (RMT) by the relative 171 

frequency method, i.e., by detecting the minimum stimulus intensity (in steps of 2% of 172 

MSO) that resulted in MEPs>50 μV in the peak-to-peak amplitude in at least 5 out of 173 

10 consecutive trials (Groppa et al. 2012). 174 

Our aim was to target distinct neuronal circuitries by activating the 175 

corticospinal pathway with different TMS intensities (Devanne et al. 1997; Di Lazzaro 176 

et al. 1998, 2001; Ziemann and Rothwell, 2000; Garry and Thomson, 2009). As 177 

explained elsewhere (Raco et al.2016), TMS over the primary motor cortex (M1) 178 

evokes multiple descending volleys,generated by direct (D-wave) and indirect (I-179 

waves) activation of the corticospinal pathway (Di Lazzaro et al. 2001). The 180 

stimulation intensity determines the recruitment of neuronal structures (Di Lazzaro et 181 

al. 1998): TMS intensities below110% resting motor threshold (RMT) induce MEPs 182 

via the recruitment of early I-waves (Garry and Thomson, 2009), while later I-waves 183 

gradually mediate the propagation of the motor signals with increasing stimulation 184 

amplitude (Devanne et al. 1997; Di Lazzaro et al. 2001). These later waves are 185 

believed to be generated by a cortico-cortical circuitry that projects to the 186 

corticospinal neurons (Ziemann and Rothwell, 2000). When the stimulation intensity 187 

is increased further, the axons of the corticospinal neurons are directly activated (D-188 

wave; Di Lazzaro et al.1998). When induced by specific TMS intensities only, a 189 

phase-dependency during TMS may thus provide information about the neural 190 

circuitry involved (Raco et al. 2016). 191 

To avoid a bias by day-to-day variability, our study design aimed to examine 192 

different TMS intensities per subject in one session. We therefore had to restrict the 193 

number of stimuli per intensity to avoid carry-over effects. Since cumulative effects on 194 
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CSE have been described by the application of 200 single TMS pulses (Pellicciari et 195 

al. 2016), we chose an approach to minimize the absolute number of pulses applied, 196 

while still covering a broad range of different stimulation intensities. The experiment 197 

consisted of one session with eight blocks. Within each block, 10 TMS pulses were 198 

applied with the same intensity for 90, 100, 110, 120, 130, 140, 145, and 150% RMT 199 

(Fig. 1A). In all, 80 stimuli were applied during 10 minutes for each subject (Royter 200 

and Gharabaghi, 2016). Due to this relatively small number of stimuli per condition, 201 

pooling data was mandatory to enable us to compare the effects of different 202 

intensities. Potential issues with regard to pooling data are addressed in the statistics 203 

section (see below). 204 

[Please insert Fig. 1 approximately here] 205 

 206 

Data analysis 207 

EEG/ EMG analysis was performed as described by van Elswijk and colleagues 208 

(2010) and is cited here when performed in the same way: 209 

Electrophysiological signal preprocessing 210 

Data were analyzed offline using the MATLAB (The MathWorks, Inc., Natick, 211 

Massachusetts, United States) and FieldTrip open source MATLAB toolbox 212 

(http://fieldtrip. fcdonders.nl/; MathWorks).This included visual artifact rejection (eye 213 

movement, eye blinking, and muscle artifacts), MEP<50μV removal, and linear 214 

detrending, yielding per TMS intensity an average of 348 ± 119 artifact-free trials 215 

across all subjects (an average of 6 ± 3 trials per subject). Since most of the trials 216 

from the stimulation block at 90% RMT had to be rejected due to MEP<50μV 217 
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removal, this block was not used for further analysis. For the near-threshold 218 

stimulation block at 100% RMT, the number of trials was, per definition, lower than 219 

for the stimulation blocks at higher RMT, since the100 % RMT condition was defined 220 

as having MEPs>50 μV in the peak-to-peak amplitude in at least 5 out of 10 221 

consecutive trials (Groppa et al. 2012). To confirm the findings for the 100 % RMT 222 

condition, we also analyzed MEPs above the thresholds 40 µV, 30 µV, and 20 µV, 223 

respectively. The raw EEG and EMG signals were cut into epochs of ±1s around the 224 

TMS pulse. Only signals at 5 ms and before and at 15 ms and after the TMS artifact 225 

were included in the study.The pre-TMS EMG was subsequently rectified to estimate 226 

the EMG amplitude. Since the post-TMS EMG signal was required for determining 227 

the MEP amplitude (van Elswijk et al. 2010), it was not rectified, but estimated by its 228 

peak-to-peak amplitude, i.e., the difference between the lowest and highest value 229 

within 15–60 ms following the TMS pulse (Fig. 1C). 230 

Assessing the group data 231 

Since EEG/EMG power may differ across subjects, the absolute values of the latter 232 

cannot be compared. A normalization is thus necessary prior to group analysis. We 233 

therefore normalized the pre-TMS EEG/EMG power and MEP amplitude for each 234 

subject individually before group analysis. The MEP amplitude (and pre-TMS power 235 

accordingly) of each epoch was normalized for each subject with respect to the 236 

maximum MEP amplitude (power) across all epochs. We thereby acquired a relative 237 

measure of the maximum and minimum MEP amplitude and the corresponding pre-238 

TMS EEG/EMG power. For the subsequent analysis of this study we quantified the 239 

effect of pre-TMS phase and power on the peak-to-peak MEP amplitude.By contrast, 240 

no normalization was required for computing the phase-dependency (spaced 241 

between -π and +π) of MEPs across subjects. 242 
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Spectral analysis of pre-stimulus epochs 243 

The power of the EEG/EMG rhythm was estimated in 1 Hz intervals preceding the 244 

TMS pulse. Epochs were given a length of 360 ms before the TMS onset (5 ms 245 

before the onset of the TMS artifact) to ensure that they included at least two cycles 246 

of the respective frequency between 6-30 Hz. In detail, we chose a fixed time (Gross 247 

et al. 2013) window with sufficient window length to cover two cycles of the minimum 248 

frequency of interest (i.e., 6 Hz). In our setup, which had a sampling rate of 1100 Hz, 249 

this required a minimum of 367 samples. We therefore selected 400 samples, 250 

i.e.,360 ms, for our analysis. We chose this time window instead of a longer one 251 

(e.g., 1000 ms) to capture the effect of EEG oscillations close to the onset of the TMS 252 

pulse on the subsequent MEP. These were then Fourier transformed (with the zero-253 

padding technique) to provide the power spectrum. 254 

The phase of the EEG/EMG rhythm was estimated in 1 Hz intervals preceding 255 

the TMS pulse for from Fast Fourier analysis. Epochs had a length of two cycles at 256 

the respective frequency and ended prior to the TMS artifact. They were Fourier 257 

transformed to determine the phase at the respective frequency (vanElswijk et al. 258 

2010). 259 

 260 

Assessing the relationship between pre-TMS EEG and EMG phase and post-261 

TMS MEP amplitude 262 

In accordance with the procedure of van Elswijk and colleagues (2010), a frequency-263 

wise estimation of the pre-TMS EEG/EMG phase was used to bin the epochs. 264 

Sixteen phase bins were defined on the unit circle,with their centers equally spaced 265 

between -π and +π. For the binning procedure, we assigned the epochs in which the 266 
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pre-TMS EEG/EMG phases were closest to the center phase of the bin. The MEP 267 

amplitudes were averaged for each group of epochs (bins) to obtain the mean MEP 268 

amplitude. In addition, the pre-TMS EEG/EMG phase was averaged for each group 269 

of epochs. This averaged phase, which may vary slightly from the center phase of the 270 

corresponding phase bin, was used for further analysis. With an average of 22 trials 271 

per phase bin, an F-test was performed to test whether MEP amplitude variance had 272 

an influence on the results. MEP amplitude variance across phase bins did not differ 273 

significantly with regard to stimulation intensity and EEG/EMG frequency. The 274 

minimum and maximum p-value for the corresponding analysis were 0.07 and 1, 275 

respectively. In line with this, the minimum and maximum F-statistic values were 0.32 276 

and 3.15, respectively.This procedure provided us with 16 pairs (one per phase bin) 277 

of pre-TMS EEG/EMG phase and MEP amplitude per frequency. To quantify the 278 

relationship between the pre-TMS EEG/EMG phase and MEP amplitude, a cosine 279 

(least-squares) function was fitted to the MEP amplitudes as a function of the 280 

EEG/EMG phases (van Elswijk et al. 2010). Furthermore, the MEP amplitude was 281 

normalized by its SD, which was estimated by a jackknife procedure (Efron and 282 

Tibshirani, 1993; van Elswijk et al. 2010).We estimated the goodness of fit with a 283 

non-linear fitting model (NonLinearModel.fit function available in Matlab) by 284 

comparing the fitted model vs. zero model. 285 

Assessing the relationship between pre-TMS EEG and EMG power and post-286 

TMS MEP amplitude  287 

Previous work indicates that the MEP amplitude correlates positively with EMG 288 

activity (Di Lazzaro et al. 1998; Mitchel et al. 2007) and inversely with sensorimotor 289 

rhythms in the EEG (Takemi et al. 2013; Schulz et al. 2014). We therefore also 290 

computed the linear relationship between pre-TMS EEG/EMG power and MEP 291 
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amplitude to estimate frequency-wise the Spearman's rank correlation coefficient between the 292 

pre-TMS EEG/EMG power and MEP amplitude for each EEG and EMG channel.  293 

Assessing the pre-TMS EEG and EMG coherence  294 

We investigated the synchronous oscillatory activity between the signal of the brain 295 

and the forearm muscle by analyzing the corticomuscular coherence (CMC).The 296 

epochs used for pre-TMS power estimation (i.e., 360 ms time window before TMS 297 

artifact, see above) were also used to assess the CMC between EEG and EMG. We 298 

calculated the CMC by estimating the cross-spectral density matrix per frequency 299 

between EEG channels and EMG channels (Schulz et al. 2014). The cross-spectral 300 

density matrix was calculated frequency wise by the multi-taper method (3 tapers) in 301 

the frequency range from 6 to 30 Hz in steps of 1 Hz using the zero-padding 302 

technique. The coherence values were obtained by normalizing the magnitudes of 303 

the summed cross-spectral density matrix for each frequency by the corresponding 304 

power values at that frequency (Schulz et al. 2014). 305 

Assessing post-TMS MEP amplitude in relation to the pre-TMS CMC  306 

To investigate the influence of the pre-TMS CMC on the MEP amplitude, we used the 307 

16 bins described earlier in the methods section. We then estimated the CMC for 308 

each bin. The magnitude of the coherency is a function of the sample size (Maris et 309 

al. 2007). Since the number of epochs differed in each bin, we transformed the CMC 310 

values to z-values in each bin. This entailed using the number of degrees of freedom 311 

(d.f.) of the sample coherence. When CMC values were above 0.4 and the d.f. 312 

greater than 20, the latter represented the variance of the sample coherence and the 313 

CMC values could then be transformed to z-values (Enochson and Goodman, 1965; 314 

Maris et al. 2007). When the CMC values were below 0.4, we used d.f.as the 315 
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standard deviation. This led to a z-value transformation and coherence statistics 316 

comparable to the method proposed by Rosenberg and colleagues (1989). We used 317 

the following transformation: 318 

     
                          

            
 

where the C(f) is the coherence at the frequency f. A nonparametric test (Maris et al. 319 

2007) was then used to test the linear relation between CMC and MEP.The average 320 

of the z-values from the EEG channels of interest was estimated, yielding one z-321 

value for each group of epochs. The average of the peak-to-peak MEP amplitude of 322 

each group of epochs was now used as the MEP amplitude for correlation with the 323 

corresponding bin. This procedure rendered 16 pairs of the transformed CMC and 324 

MEP values, which were used to test the linear relationship between pre-TMS CMC 325 

and MEP amplitude.  326 

Statistical analysis 327 

Since pooling data from different subjects was mandatory in our study design, we 328 

took the following precautions to avoid potential issues related to this approach:  329 

(i) Both power and MEP amplitudes of each subject were normalized. 330 

(ii) To rule out a bias during estimation by fixed-effects we also applied the Bootstrap 331 

method. By plotting the variance around the estimated effect, we assured that the 332 

former did not change across frequencies. Furthermore, the lower confidence limit 333 

was still above the threshold of the estimated bias for our observed significant result 334 

(see below). This analysis ensured that the findings were not compromised by 335 

specific subjects (outliers). 336 
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(iii) The significance of the effects was quantified by a randomization test (10,000 337 

repetitions). For this purpose, we shuffled the independent versus dependent 338 

variables among subjects.  339 

Testing the coefficient of variation for MEP and phase 340 

By dividing the estimated standard deviation (SD) of the MEP amplitudes by the 341 

mean of the same population for each subject and TMS intensity, we calculated their 342 

coefficient of variation (CV) which we then used to assess the MEP variability (Klein-343 

Fluegge et al. 2013). We assessed the variability of the phase distribution on the unit 344 

circle (Fig. 1D) for each frequency and TMS intensity by estimating the CV for the 345 

phase-lag between adjacent phases, i.e., the phase difference between neighboring 346 

phases. CV differences between stimulation intensities were tested with a one-way 347 

ANOVA for MEP and phase, respectively. 348 

Testing significance of EEG and EMG power-dependent MEP amplitudes 349 

We used a Spearman's rank correlation coefficient to assess the relationship 350 

between the pre-TMS power and MEP amplitude. To test the significance of the 351 

estimated effect, we applied the randomization approach. Our null hypothesis was 352 

that the pre-TMS power and MEP were not correlated. A cluster-based randomization 353 

test with 10,000 repetitions was therefore performed at each electrode (i.e., one-354 

dimensional clustering for the frequency) for multiple frequency bins by shuffling the 355 

pre-TMS EEG/EMG amplitudes (independent variable) versus MEP amplitudes 356 

(dependent variable). We calculated the Spearman's rank correlation coefficient for 357 

each frequency bin and clustered adjacent frequency bins in the same set when the 358 

Spearman's rank correlation coefficient exceeded the threshold of p<0.001. We then 359 

calculated the cluster-level statistics by taking the sum of the Spearman's rank 360 
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correlation coefficient for each cluster. The maximum of the cluster-level statistics 361 

was used later for comparisons if multiple clusters were observed. The p-value to 362 

reject the null hypothesis was the proportion of cluster-based randomizations that 363 

resulted in larger test statistics than observed here (without randomization). We 364 

rejected the null hypothesis if p≤0.0001. 365 

Testing significance of EEG and EMG phase-dependent MEP amplitudes 366 

Our analysis showed that the relationship between pre-TMS EEG/EMG phase and 367 

MEP amplitude was cosine-shaped (Fig. 1E for the pre-TMS EEG). We therefore 368 

quantified this relationship by (least-squares) fitting a cosine function with the 369 

unconstrained phase (dashed line in Fig. 1E). The modulation depth (peak-to-peak 370 

difference) of the fitted cosine was used as an estimate of the strength of the 371 

relationship between pre-TMS EEG/EMG phase and MEP amplitude. Since the 372 

cosine fitted with the unconstrained phases, it had an amplitude with a positive bias 373 

(van Elswijk et al. 2010). We estimated this bias by randomly shuffling (100 374 

repetitions) pre-TMS phase (independent variable) versus MEP amplitudes 375 

(dependent variable). At each randomization, we fitted the cosine function and 376 

estimated the modulation depth. After 100 repetitions, we averaged the modulation 377 

depth. The analysis described above was performed per frequency so that, by the 378 

end of the procedure, we had two spectra per intensity: one spectrum of the effect 379 

and one of the bias estimate (van Elswijk et al. 2010). To determine whether the 380 

estimated effect was significantly greater than the estimated bias, we designed a 381 

randomization test with the null hypothesis that the effect spectrum was no greater 382 

than the bias spectrum (vanElswijk et al. 2010). We conducted the following 383 

procedure: the sum of the modulation depth from the frequency bands, when greater 384 

than the estimated bias, was considered as the observed test statistics; we did not 385 



17 
 

consider single frequency bins but studied instead bands with a width of at least 3 386 

Hz. Later, we randomly shuffled the pre-TMS phases (independent variable) versus 387 

MEP amplitudes (dependent variable; as estimated for bias) with 10,000 repetitions. 388 

We calculated the sum of the modulation depth for the frequency bands of interest for 389 

each randomization (see above). The p-value to reject the null hypothesis was the 390 

proportion of randomizations that resulted in larger test statistics than observed here. 391 

We rejected the null hypothesis if p≤0.001. 392 

Testing for confounding of EEG phase and power 393 

For the EEG channel and frequency of interest (see results section), the average 394 

power of those epochs resulting from the phase binning was used to fit a (least-395 

squares) cosine function. Other groups have suggested that low power of 396 

sensorimotor rhythms predicts high MEP amplitude and vice versa (Takemi et al. 397 

2013; Schulz et al. 2014).When EEG phase and power are confounded, we would 398 

expect a cosine-shaped fitting curve (with the phase-lag of π) for power when the 399 

fitting curve for phase and MEP is cosineshaped. This would indicate that the phase 400 

which predicts high MEP also predicts low power. 401 

 402 

 403 

Testing significance of corticomuscular coherence 404 

For CMC, the significance level was calculated according to the procedure proposed 405 

by Rosenberg and colleagues(1989).  406 

  
          

     
 

     

http://www.sciencedirect.com/science/article/pii/S1053811907004880#bib40
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Where α is the confidence probability and n the number of epochs in which n-1 is the 407 

d.f. In our case, d.f. was 2* number of epochs (n) * number of tapers (k) (Maris et 408 

al.2007). We therefore calculated as follows: 409 

  
          

     
 

       

A confidence probability of α=0.999% (p=0.001)was chosen. The resulting 410 

confidence limit provided us with the significance level. The CMCs from the 411 

frequency bins above the significance level were considered as significant. 412 

Testing significant correlation of CMC and MEP 413 

We used a randomization test with 10,000 repetitions for the null hypothesis that the 414 

relationship between pre-TMS CMC and MEP was random. We shuffled pre-TMS 415 

CMC (independent variable) and MEP amplitude (dependent variable). At each 416 

randomization step, Spearman's rank correlation coefficient was used to estimate the 417 

test statistics. The proportion of the randomizations test that led to larger test 418 

statistics than observed here (without randomization) was used to reject the null 419 

hypothesis. 420 

  421 
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Results 422 

The variability of corticospinal excitability(CSE), i.e., the coefficient of variation for 423 

MEP (CVMEP), increased with lower stimulation intensities and was at its highest at 424 

near-threshold intensity. CVMEP increased from 0.25 ± 0.15at 150% RMT to 0.85 ± 425 

0.37 at 100% RMT(Fig. 1G). One-way ANOVA showed that CVMEP differed 426 

significantly between intensities (F(6,460)=51.49, p<0.00001, ANOVA); the post-hoc 427 

test revealed a significant difference between CVMEP at 100% RMT and at all other 428 

stimulation intensities (t(120)=3.76, p<0.00001, 110% RMT; t(120)=5.98, p<0.00001, 429 

120% RMT; t(120)=8.88, p<0.00001, 130% RMT; t(120)=10.09, p<0.00001, 140% 430 

RMT; t(120)=11.32, p<0.00001, 145% RMT, and t(120)=11.66, p<00001, 150% 431 

RMT, unpaired t-test, p= 0.05 Bonferroni corrected to p=0.0071). 432 

The phases' distribution on the unit circle (Fig. 1D, at the time of stimulation) 433 

did not differ significantly between the various intensities (Fig. 1H), i.e., the coefficient 434 

of variation for phase (CVphase) remained unchanged across different stimulation 435 

intensities (average CVphase of 2.33 ± 0.59), with no statistically significant difference 436 

of CVphase between intensities (F(6,168)=0.33, p=0.92, ANOVA, Fig. 1H). Together, 437 

these findings suggest that the stimulation intensity-dependent findings were not 438 

biased by a potentially different distribution of phases at the time of stimulation. 439 

Further analysis revealed that robust predictions of CSE were possible only when 440 

stimuli were applied at near-threshold intensity (Fig. 2, Fig. 3). 441 

At the cortical level, power (15-17 Hz; p=0.0001, randomization 442 

test,10,000repetitions) and phase (14-17 Hz; p=0.001,randomization test, 10,000 443 

repetitions) in the lower beta-band predicted CSE in a frequency-specific way (Fig. 444 

2B, 2E) and revealed a stable topographical pattern (Fig. 2C, 2F). This pattern 445 
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showed that CSE could be predicted at the site of stimulation (C4) and in a more 446 

distributed cortical network: specifically, by the oscillatory beta phase recorded at 447 

sensors projecting to the sensorimotor cortex ipsilateral (C4, CP4) and contralateral 448 

(C3, CP3) to the site of stimulation, and at contralateral FC3, CP5 and P5 (Fig. 2F); 449 

and by the beta power recorded at sensors projecting to the ipsilateral motor cortex 450 

(C2) and contralateral CP1, P5, P3, and PO3 (Fig. 2C). 451 

[Please insert Fig. 2 approximately here] 452 

At the spinal level, CSE was predicted in a frequency-specific way by the 453 

phase in the upper beta-band (20-24 Hz, Fig. 3D; p=0.001, randomization test, 454 

10,000 repetitions), but not by power (Fig. 3B; p>0.16, randomization test, 10,000 455 

repetitions). CMC coherence in this frequency band projected to the sensorimotor 456 

(C4, C6, CP4, CP6) and parietal cortex (P2, P4, P6, PO4) in the stimulated 457 

hemisphere (Fig. 3E;d.f.=690, p=0.001, significance level0.010). This pre-TMS CMC 458 

predicted post-TMS CSE (Fig. 4; r=0.63p=0.0031, Spearman's rank correlation, 459 

randomization test, 10,000 repetitions). 460 

[Please insert Fig. 3 approximately here] 461 

[Please insert Fig. 4 approximately here] 462 

When the bins were sorted into 16 overlapping bins (Fig. 1D) according to the 463 

beta phase immediately preceding the neuronal input (TMS pulse), and the response 464 

modulation (MEP amplitude) was determined separately for each phase bin (Fig. 1E), 465 

the CSE resulted in a cosine-shaped function of pre-stimulus beta phase (Fig. 1E). 466 

This pattern occurred at both the cortical (EEG) and spinal (EMG) level in the lower 467 

(14-17 Hz) and upper (20-24 Hz) beta-band, respectively. Specifically, CSE was at its 468 

highest when stimuli arrived at the rising phase of cortical oscillations in the lower 469 
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beta-band (Fig. 5A; r-squared=0.108; F-statistic vs. zero model: 7.87;p=0.0066)or 470 

spinal oscillations in the upper beta-band (Fig. 5B; r-squared=0.246;F-statistic vs. 471 

zero model;16.30;p<0.0001), but at its lowest when stimuli arrived at the falling phase 472 

of cortical oscillations in the lower beta-band (Fig. 5C; r-squared= 0.094;F-statistic vs. 473 

zero model: 6.76; p=0.0115) or spinal oscillations (Fig. 5D; r-squared=0.162; F-474 

statistic vs. zero model; 9.66; p=0.0031) in the upper beta-band (Fig. 5). 475 

[Please insert Fig. 5 approximately here] 476 

Notably, the phase of ipsilateral (C4, CP4) and contralateral (C3, CP3) 477 

sensorimotor beta-rhythms, which predicted CSE, was shifted by ~π radian (Fig. 6A). 478 

Moreover, the phase-dependent modulation of CSE was consistent across 479 

frequencies (14-17 Hz) and within each hemisphere, i.e., the maximum MEP mapped 480 

onto the corresponding spot in the rising phase of the oscillatory cycle for each of the 481 

frequencies that predicted CSE (Fig. 6A). Furthermore, the phase-dependent 482 

modulation of CSE remained stable during modification of the threshold of included 483 

MEPs (Fig. 7). 484 

[Please insert Fig.6 approximately here] 485 

[Please insert Fig. 7 approximately here] 486 

Importantly, the phase-dependent CSE modulation at the cortical and spinal 487 

level was not confounded by the respective power fluctuation in the EEG and EMG. 488 

Specifically, EMG power did not predict CSE at all, whereas EEG power showed a 489 

significant inverse correlation with CSE in frequency bins (15-17 Hz) that overlapped 490 

with those showing the phase-dependent modulation (14-17 Hz). Pre-TMS phases 491 

preceding high MEPs might, therefore, be confounded by low beta power which 492 

preceded high MEPs as well, and vice versa. However, a cosine fitting to the average 493 
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power of each of the 16 bins that led to the cosine-shaped function of pre-stimulus 494 

beta phase resulted in a flat curve (Fig. 1F, dashed line), i.e., the phase modulation 495 

of CSE was not confounded by power fluctuations in the same frequency band. 496 

 497 

Discussion 498 

This study has demonstrated that the intrinsic beta-rhythm of the motor cortex entails 499 

rhythmical gain changes. This frequency- and phase-specific response modulation, 500 

mediated by spectrally and spatially distinct neuronal networks, occurred 501 

independent of spontaneous oscillatory power fluctuations at cortical and spinal 502 

levels. 503 

Methodological consideration 504 

The gain modulation was revealed only when stimuli were applied at near-threshold 505 

intensity, i.e., at 100% RMT. This might be due to the larger variability of the evoked 506 

MEP amplitudes compared to those elicited at higher stimulation intensities (Klein-507 

Fluegge et al. 2013) or to the activation of distinct neuronal circuitries (Di Lazzaro et 508 

al.1998). Specifically, TMS intensities below 110% RMT induce MEPs by recruiting 509 

indirect circuits in the motor cortex, i.e., the early presynaptic activation of the 510 

corticospinal pathway (Di Lazzaro et al. 2001; Garry and Thomson, 2009). 511 

Alternatively, the gain modulation of intrinsic oscillations might have been detected 512 

due to the maximized response variability during the application of near-threshold 513 

TMS intensities (Fig. 1E). Since the phenomenon of gain modulation at near-514 

threshold stimulation intensities was observed at both cortical (Fig. 2E) and spinal 515 

(Fig. 3D) level, the latter explanation appears more plausible in the light of the 516 

findings of the present study. The various stimulation intensities were, however, 517 
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examined in a predefined order in this study, i.e., incrementally increasing the TMS 518 

intensity from block to block. This might have prevented us from detecting gain 519 

modulation at higher TMS intensities, i.e., in later blocks within one session, since 520 

even these single TMS pulses can induce a systematic modulation of corticospinal 521 

excitability over time (Pellicciari et al. 2016). To minimize undesirable order effects, 522 

future studies investigating the influence of stimulation intensity on corticospinal gain 523 

modulation should therefore examine different intensities in a randomized order.  524 

Power-related gain modulation 525 

At the cortical and spinal level, spontaneous oscillatory power fluctuations 526 

played a different role in predicting CSE in this study. Specifically, EMG power did 527 

not predict CSE, which might be most parsimoniously explained by the fact that the 528 

experiment was performed in resting state. Albeit the observation that beta 529 

corticomuscular coherence could predict CSE may appear surprising in this context, 530 

Romei and colleagues (2016) recently proposed that, even while at rest, low-level 531 

tonic firing from spontaneous spiking in spinal motor neurons (Blankenship and Kuno, 532 

1968) may occur in some motor units. Corticomuscular beta coherence could then 533 

ensue from increased temporal structuring at beta frequencies of this spontaneous 534 

spiking activity (Romei et al. 2016). This work provides evidence that such a temporal 535 

structuringoccurs along the rhythm cycle of synchronized beta activity of spinal 536 

neurons even in the resting state, i.e., without overt movement. 537 

Unlike the EMG power, the EEG power in the lower beta-band (15-17 Hz) 538 

predicted CSE even at rest. This was not surprising, given that sensorimotor 539 

oscillations are modulated by thalamo-cortical and cortico-cortical interactions (Thut 540 

and Miniussi, 2009; Jensen and Mazaheri, 2010) and reflect the current brain state 541 

(Salinas and Thier, 2000; Chance et al. 2002), i.e., high and low oscillatory power 542 
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indicate the inhibitory and excitatory state, respectively. Intrinsic fluctuations of 543 

oscillatory activity may thus determine the brain's responsiveness to external stimuli 544 

and at least partly account for the variability of CSE in this study.  545 

The state of the motor system, i.e., rest or movement, and the influence of 546 

concurrent muscle activity might be responsible for the ambiguous results of previous 547 

studies on the oscillatory power-related gain modulation of the sensorimotor cortex. 548 

In particular, studies in which single TMS pulses were applied during rest revealed an 549 

inverse correlation between CSE and pre-stimulus power. There was, however, some 550 

ambiguity with regard to the frequency bands and cortical sites involved, i.e., 551 

ipsilateral sensorimotor cortex for the alpha- (Zarkowski et al. 2006; Sauseng et al. 552 

2009) or beta-band (Lepage et al. 2008; Mäki and Ilmoniemi, 2010), and the posterior 553 

parietal cortex contralateral to the stimulation site in the beta-band (Keil et al. 2014). 554 

These diverse findings are probably related to the large variability of spontaneous 555 

oscillatory activity in the human sensorimotor cortex captured in relatively small 556 

sample sizes. Notably, studies that applied the same stimulation during movement 557 

tasks showed a correlation of the CSE with the pre-stimulus EMG activity in the beta-558 

band (Mitchell et al. 2007; van Elswijk et al. 2010) or the cortico-muscular coherence 559 

in the alpha-band (Schulz et al. 2014) but not with the oscillatory power in stimulated 560 

sensorimotor cortex (Mitchell et al. 2007; van Elswijk et al. 2010). When the CSE 561 

correlated with cortical power, it tended to be located in a more distant fronto-parietal 562 

beta-network (Schulz et al. 2014). This ambiguity is probably related to the respective 563 

task designs, i.e., isometric contraction (Mitchell et al. 2007; van Elswijk et al. 2010) 564 

vs. post-movement beta-rebound (Schulz et al. 2014). Specifically, the task-related 565 

periods of increased cortical beta-power, i.e., reduced cortical excitability, were 566 

paralleled by elevated EMG power in the alpha- and beta-band during the isometric  567 
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contraction task (Kilner et al. 2000), which, in turn, correlated significantly with 568 

CSE. This suggests a more complex interaction between the oscillatory state of the 569 

peripheral and central motor system with respect to the stimulation-induced MEP, 570 

i.e., between the EMG activity immediately before the stimulus and the cortical 571 

excitability at the moment of stimulation (Mitchell et al. 2007). 572 

In the present work, we reduced this complexity by studying the cortical gain 573 

modulation at rest by minimizing confounding EMG activity and by avoiding task-574 

related modulations that can alter the oscillatory characteristics of cortical 575 

interneuronal populations (Murthy and Fetz, 1996). Furthermore, the robustness of 576 

the findings was ensured by the statistical approach chosen – the application of a 577 

randomization test with 10,000 repetitions to the frequency spectrum between 6-30 578 

Hz in a rather large group of subjects. 579 

Moreover, the spectrum and topography of the beta power, which correlated 580 

inversely with CSE, overlapped at least partially with the spectrum and topography of 581 

the phase-dependent modulation (see below), thereby underlining the consistency of 582 

the findings. Importantly, both power- and phase-dependency of CSE in the present 583 

study converged at the M1 site of stimulation (i.e., at the C4 sensor), while previous 584 

studies showed rather distributed cortical patterns (Schulz et al. 2014; Keil et al. 585 

2014). 586 

Phase-related gain modulation 587 

Previous discrepancies with regard to the CSE phase-dependency might be related 588 

to methodological differences of data processing and phase estimation, e.g.,broad-589 

band filtering with Fast Fourier Transform (van Elswijk et al.2010) vs. narrow-band 590 

filtering with Hilbert Transform (Keil et al. 2014). In particular, Keil and colleagues 591 
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(2014) did not show a phase dependency along the beta oscillatory cycle, whereas 592 

van Elswijk and colleagues (2010) fitted a cosine function to the MEP amplitudes. 593 

Instead, Keil and colleagues (2014) estimated an angular-linear correlation which 594 

showed two MEP peaks within one cycle for the very same 18 Hz frequency for 595 

which van Elswijk et al. (2010) had already demonstrated one MEP peak. 596 

In the present work, we applied the data analysis proposed by van Elswijk and 597 

colleagues (2010), but removed the task-related muscle activity following the 598 

observations in the study of Keil and colleagues (2014). By fitting a cosine function to 599 

the MEP amplitudes, we observed a frequency-specific response modulation in-600 

phase with the intrinsic oscillatory rhythm, i.e., along the beta rhythm cycle at both 601 

the cortical and spinal level. At the cortical level, the phase in the lower (14-17Hz) 602 

beta-band predicted CSE (Fig. 2E). At the spinal level, CSE was predicted by the 603 

phase in the upper (20-24Hz) beta-band (Fig. 3D). CMC coherence in this latter 604 

frequency band also predicted the post-TMS amplitude(Fig. 4). 605 

Notably, CSE was highest when stimuli arrived at the rising phase of cortical 606 

or spinal beta oscillations (Fig. 6), thereby reflecting the responsiveness of the 607 

respective neuronal pools to a synaptic input. This was already known to be the case 608 

for spinal beta-rhythms during movement (van Elswijket al. 2010) and has now been 609 

extended to the resting state and the cortical level, suggesting a more general 610 

mechanism. This phase-dependent input gain is therefore probably attributable to the 611 

rhythmic inhibition after population spikes, depending systematically on the delay 612 

from the last population spike (Burchell et al. 1998; van Elswijket al. 2010). 613 

 614 

 615 
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Distinct beta-band oscillatory circuits 616 

Our frequency-specific findings suggest a response modulation of CSE in two distinct 617 

neuronal circuitries: a cortical oscillatory circuit in the lower, and a corticospinal circuit 618 

in the upper beta-band. These two networks could also be distinguished on the basis 619 

of their topographical patterns. While the cortical network was characterized by an 620 

interhemispheric topography of homologous sensorimotor sensors (Fig. 2F), the 621 

corticospinal connectivity projected to a broader unilateral area of the sensorimotor 622 

and parietal cortex in the stimulated hemisphere (Fig. 3E). 623 

Accordingly, previous pharmacological studies functionally dissociated the 624 

power of cortical beta oscillations (Baker and Baker, 2003) from the magnitude of 625 

corticomuscular beta coherence (Riddle et al.2004). Specifically, carbamazepine was 626 

shown to significantly increase beta CMC without affecting the power or frequency of 627 

cortical oscillations (Riddle et al. 2004). The same group also showed that diazepam 628 

could double the power of cortical beta oscillations without altering the magnitude of 629 

CMC (Baker and Baker, 2003). Our work complements these findings by proposing 630 

that the effective information flow within these distinct beta circuits is mediated in a 631 

frequency- and phase-dependent way. 632 

The network showing a significant inverse correlation of beta power (15-17 Hz) 633 

with CSE overlapped at least partly with the spectrum (14-17 Hz) and topography 634 

(specifically at the C4 sensor, i.e., at the site of stimulation) of the network revealing a 635 

phase-dependent modulation. This suggests that different motor system circuits 636 

converge (Fig. 2) prior to signal propagation to downstream spinal motor neurons. 637 

Importantly, however, the phase modulation of CSE was not confounded by power 638 

fluctuations in the same frequency band (Fig. 1F).  639 
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In conclusion, these findings provide novel evidence that intrinsic activity in the 640 

human motor cortex modulates phase- and frequency-specific input gain along the 641 

beta oscillatory cycle.In accordance with periodic alternations of synchronous hyper- 642 

and depolarization, increased neuronal responsiveness occurred once per oscillatory 643 

beta cycle. These findings may lead to novel brain state-dependent and circuit-644 

specific interventions (Kraus et al. 2016a, 2016b; Naros et al. 2016) for addressing 645 

neurorehabilitation of motor function after stroke (Belardinelli et al.2017; Naros and 646 

Gharabaghi, 2017). 647 

 648 
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801 
Figure 1 Experimental design, example data of pre-TMS oscillatory activity 802 

(EEG/EMG) and MEP. (A) Experiment consisted of 8 blocks; 10 TMS pulses were 803 

applied within each block, with intervals of ~2 s between consecutive pulses. (B) 804 

Example of pre-TMS EEG/EMG signals. (C) Response was quantified by the peak-805 

to-peak amplitude of the TMS-evoked motor potential (MEP). (D) Group data of the 806 

distribution of the phase after Fourier decomposition of the EEG (C4 channel, 17 Hz; 807 

near-threshold intensity). Circle segments illustrate the phase binning, and the colors 808 

signify phase in the same way as in E and F. (E) Mean peak-to-peak MEP 809 

amplitudes as a function of the pre-TMS phase of the EEG. The dashed line is a 810 

least-squares fitted cosine function. The MEP (as a function of phase) modulation 811 

was quantified by the fitted cosine function called modulation depth (denoted by the 812 

symbol D). (F) Same as (E) but for average EEG power. (G) Coefficient of variation 813 

of the MEP amplitude (y-axis) was estimated for each subject (represented by a 814 



34 
 

circle) and intensity (x-axis). (H) Same as G but for EEG phase; each diamond 815 

represents one frequency (between 6 to 30 Hz). 816 

  817 
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 818 

Figure 2 Pre-TMS EEG power and phase predict corticospinal excitability (CSE). 819 

(A) Spearman's rank correlation between pre-TMS EEG power and MEP amplitude 820 

(group data, right sensorimotor cortex was the site of stimulation). (B) Same as (A) 821 

but with statistically significant frequency bands (p≤0.0001). (C) Topographical 822 

distribution of the significant frequency band (15-17 Hz) of (B) at near-threshold TMS 823 

intensity (100% RMT). (D) Modulation of MEP by pre-TMS EEG phase with the bias 824 

for the cosine-fitted function subtracted (group data). (E) Same as (D) but with 825 

significant modulation depth (p≤0.001) with respect to the positive bias of the cosine 826 

fit. (F) Topographical distribution of the significant frequency band (14-17 Hz) of (E) 827 

at near-threshold TMS intensity (100% RMT). 828 

  829 
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 830 

Figure 3Pre-TMS EMG phase (but not power) predicts CSE. (A) Spearman's rank 831 

correlation between pre-TMS EMG power and MEP amplitude. (B) Same as (A)but 832 

with no statistically significant frequency band (p>0.16). (C) Modulation of MEP by 833 

pre-TMS EMG phase with the bias for the cosine-fitted function subtracted (group 834 

data). (D) Same as (C) but with significant modulation depth (p≤0.001). (E)The CMC 835 

topographical distribution of the significant frequency band (20-24 Hz) of (D) at near-836 

threshold TMS intensity (100% RMT). 837 

  838 
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 839 

Figure 4 Pre-TMS CMC predicts CSE. Spearman's rank correlation (r=0.63, 840 

p=0.0031) between CMC in the 20-24 Hz band and MEP amplitude with the 841 

regression line in gray.Each circle represents one phase bin. 842 

 843 

  844 
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 845 

Figure 5 Synaptic input is most effective when it arrives at the rising phase of the 846 

cortical and spinal beta rhythm. (A) and (C) Average of the pre-TMS EEG epochs at 847 

17 Hz preceding (A) maximum (vertical solid line) and (C) minimum (vertical dashed 848 

line) MEP amplitudes. (B) and (D) Average of the pre-TMS EMG epochs at 22Hz 849 

preceding (B) maximum (vertical solid line) and (D) minimum (vertical dashed line) 850 

MEP amplitudes. In all figures, the light gray curve is the fitted cosine continued to 851 

the moment of TMS-induced synaptic input (vertical line) to the cortex (A) and (C) or 852 

spinal cord (B) and (D) to estimate the phase of the respective beta rhythm. 853 

  854 
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 855 

Figure 6 The phase bin preceding maximum MEP amplitude was shifted by ~π 856 

radian between the left and right hemisphere. (A) Peak-to-peak amplitudes of MEPs 857 

(group data) as a function of the pre-TMS phase of the EEG for C3 and CP3 (left) 858 

and C4 and CP4 (right). (B) Simulation of the phase-lag from 14 Hz to 17 Hz 859 

oscillations starting with a zero phase-lag. The color-coded dots represent the 860 

phases according to (A). The spot of maximal MEP (vertical dashed lines) moves 861 

along the oscillatory cycle with increasing frequency, for the stimulated (left dashed 862 

line) and not stimulated (right dashed line) hemispheres, respectively. 863 

  864 
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 865 

Figure 7 Pre-TMS EEG phase predicts corticospinal excitability for different MEP 866 

thresholds. (A) Modulation of MEP by pre-TMS EEG phase (with significant 867 

modulation depth (p≤0.001) with respect to the positive bias of the cosine fit) for 868 

different MEP thresholds, i.e., 50 µV, 40 µV, 30 µV, and 20 µV. (B), (C), and (D) 869 

Average of the pre-TMS EEG (at 15 Hz) preceding the maximum (left; solid line) and 870 

minimum (right; dashed line) MEP amplitude at different MEP thresholds, 871 
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respectively. A light gray curve is the fitted cosine continued to the time of TMS-872 

induced synaptic input (vertical line) to the cortex.  873 

 874 
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Abstract 

Brain-machine interfaces (BMI) are currently investigated as therapeutic tools for 

motor rehabilitation after stroke. Following neurofeedback principles, limb movements 

are synchronized to motor-related brain activity to strengthen or restore cortico-

muscular control on the basis of Hebbian plasticity. Knowledge about the underlying 

neural processes remains however vague.  

Here, we applied the same BMI intervention in healthy subjects (for one session) and 

chronic stroke patients with hand paralysis (for 20 sessions) to disentangle 

intervention-related plasticity from post-stroke reorganization. A robotic orthosis 

turned sensorimotor beta-band desynchronization (ERD) during kinesthetic motor-

imagery (MI) into contingent hand opening. The specificity of the intervention was 

investigated by studying a control group of healthy subjects who performed the same 

MI task but received visual feedback only without proprioceptive input via the hand 

orthosis. We computed cortico-muscular coherence (CMC) with the finger extensors 

in the course of the interventions and during a motor task performed beforehand and 

afterward to capture a potential generalization of the effects.  

Independent of the feedback modality, ERD was enhanced in the targeted 

sensorimotor area in a frequency-specific way, i.e., in the feedback frequency band 

(16-22 Hz). This specific activation pattern was paralleled by CMC increases in the 

same cortical area and frequency band only when proprioceptive feedback was 

provided. This enhanced beta-band CMC transferred to the motor task and correlated 

with task-specific behavioral improvements. Estimation of the phase–frequency 

relationships indicated an enhancement of the directed coherence (i.e., predominant 

information flow) from the cortex to the finger extensors. In the patient group, ERD 

was enhanced in the cortical area targeted by the feedback, i.e. in the ipsilesional 

sensorimotor cortex, as well. This modulation was, however, not restricted to the 
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feedback frequency band, but also included the alpha frequency band; the same was 

true for the induced CMC increases, which covered extended sensorimotor areas of 

the contralesional hemisphere as well. The directed coherence from cortex to 

periphery increased, however, in a restricted perilesional area of the affected 

hemisphere only. Specifically, training-related enhancement of beta-band CMC in the 

ipsilesional premotor cortex correlated with clinical improvements after the 

intervention. 

BMI feedback increases cortico-muscular control in the healthy and post-stroke brain 

by enhancing both cortical activity and network connectivity to the periphery when 

proprioceptive feedback is provided. Activating the motor cortex with MI and closing 

the loop by robot-assisted natural feedback allows for sensorimotor integration 

beyond the lesioned corticospinal tract and may, thereby, facilitate 

neurorehabilitation. 
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Introduction 

Motor rehabilitation can be effective at improving outcome beyond spontaneous 

neurobiological processes that reach a plateau around six months after stroke. Active 

movements on the basis of motor learning principles are particularly relevant for 

recovery (Murphy and Corbett, 2009; Langhorne et al., 2011). Stroke patients are, 

however, more likely to be severely disabled compared with other conditions 

(Adamson et al., 2004). Patients with severe arm impairment often fail to show any 

spontaneous recovery, particularly when the integrity of the corticospinal tract (CST) 

is compromised beyond a certain threshold (Krakauer and Marshall, 2015; Koch et 

al., 2015, Hayward et al., 2017; Kim and Winstein, 2017). When active physical 

practice of the upper extremities was, furthermore, no longer possible in this patient 

group, the re-learning of movements remains restricted (Doyon and Benali, 2005; 

Halsband and Lange, 2006). Therefore, motor recovery in severely impaired stroke 

patients with a long-lasting hand paralysis is limited (Dobkin, 2004; Feigin et al., 

2008; Jørgensen et al., 1999). 

In these patients, motor-imagery (MI) might be an alternative for physical 

practice (Boe et al., 2014; Halsband and Lange, 2006) since it activates the 

sensorimotor system without any overt movement, particularly, when reinforced by 

feedback (Gao et al., 2011; Szameitat et al., 2012; Vukelić and Gharabaghi, 2015a; 

Bauer et al., 2015; Naros et al., 2016). Neurofeedback of MI-related brain-states with 

brain-computer/brain-machine interfaces (BCI/BMI) is therefore being explored as an 

experimental training to improve the motor outcome of stroke rehabilitation (Sitaram 

et al., 2017). Controlled trials applied this intervention in addition to standard 

rehabilitation training, i.e., as a priming intervention before physiotherapy and 

demonstrated that MI with contingent feedback resulted in larger improvement than 
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interventions that provided no (Pichiorri et al., 2015) or random feedback(Ramos-

Murguialday et al., 2013; Frolov et al., 2017). However, neurofeedback interventions 

have not achieved clinical benefits beyond those of dose-matched robot-assisted 

therapy yet (Ang et al., 2010, 2014), which has, in turn, provided only little additional 

benefit over dose-matched classical physiotherapy so far (Kwakkel et al., 2008; Lo et 

al., 2010; Klamroth-Marganska et al., 2014). In this context, current neurofeedback 

interventions resemble (if applied contingently to MI) other priming interventions such 

as transcranial electrical (Allmann et al., 2016) or magnetic brain stimulation 

techniques (Volz et al., 2016) that increase (as compared to sham stimulation) the 

general responsiveness of the brain for the subsequent active practice. These 

approaches may, thereby, improve the motor outcome of patients who can participate 

in standard physiotherapy. 

For severely impaired stroke patients, however, which lack upper limb function 

and are not able to engage their hand in useful physical training, the BMI intervention 

needs to provide more specific effects beyond the practice of primed physiotherapy 

to be beneficial (Naros and Gharabaghi, 2015). Importantly, recovery from paralysis 

after stroke would necessitate a result of plasticity along the neuroaxis the re-

establishment of functionally relevant motor network interactions, e.g., mediated via 

the up-regulation of descending pathways other than the lesioned CST (McMorland 

et al., 2015). For this purpose, BMI technology may be used in conjunction with 

commercially available rehabilitation devices for the arm (Brauchle et al., 2015) or 

hand (Naros and Gharabaghi, 2015), to synchronize robot-assisted movements of 

the paralyzed limb to motor-related brain activity; such an approach can be assumed 

to strengthen or restore cortico-muscular control via alternate pathways on the basis 

of Hebbian plasticity (Hebb, 1949). Empirical support for this hypothesis is, 

however,still missing. 
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In this study, we applied in both healthy subjects and chronic stroke patients with 

hand paralysis the same BMI intervention providing feedback via a robotic orthosis to 

disentangle intervention-related plasticity from post-stroke reorganization. The 

findings indicate that BMI feedback increases cortico-muscular control in the healthy 

and post-stroke condition by enhancing both cortical activity and behaviorally relevant 

network connectivity to the periphery beyond the lesioned corticospinal tract. 

 

Materials and Methods 

Experimental design 

The study had been approved by the ethics committee of the University of Tuebingen 

Faculty of Medicine and conformed to the standards set by the latest version of the 

Declaration of Helsinki. All participants gave their written informed consent before 

participation.  

We applied the same BMI intervention in healthy subjects (for one session) 

and chronic stroke patients with hand paralysis (for 20 sessions). A robotic orthosis 

turned sensorimotor beta-band desynchronization (ERD) during kinesthetic motor-

imagery (MI) into contingent hand opening. The specificity of the intervention was 

investigated by studying a control group of healthy subjects who performed the same 

MI task but received visual feedback only.  

 

Subjects 

We recruited twenty-seven right-handed healthy subjects (mean age, 27.30 ± 4.38 

years, range 19-37 years, 22 males) with no history of psychiatric or neurological 

disorder. The Edinburgh handedness inventory (Oldfield, 1971) was used to confirm 

right-handedness. Fifteen subjects participated in the intervention with proprioceptive 
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feedback (brain-machine interface, BMI), and twelve subjects participated in the 

control condition with visual feedback (brain-computer interface, BCI). For the BMI 

group, changes of corticospinal excitability at rest have been reported elsewhere 

(Kraus et al., 2016).  

Patients 

Eight right-handed patients (mean age, 57 ± 11 years, range 34-68 years, 7 males) 

participated in the same BMI intervention with proprioceptive feedback like the 

healthy subjects. They were, moreover, part of a larger study on BMI-assisted 

neurorehabilitation of the upper extremity in severely affected chronic stroke patients. 

Clinical details of this group of patients have previously been reported and are cited 

here accordingly (Belardinelli et al., 2017; Grimm et al., 2016): The patients were in 

the chronic phase after stroke (70 ± 34 months) and presented with a severe and 

persistent hemiparesis of the left side due to a right hemispheric lesion. All patients 

had a left-hand paralysis and were unable to extend their fingers. The upper 

extremity Fugl-Meyer-Assessment (UE-FMA) was evaluated before and after the 

four-week intervention, respectively. The UE-FMA score for this group of patients 

was 16.23 ± 6.79 (range 6.80-28.60). These patients participated in 20-sessions of 

proprioceptive BMI-feedback intervention (four-week rehabilitation period, i.e., one 

session per day). They have been reported previously with respect to increases in 

corticospinal connectivity after the intervention (Belardinelli et al., 2017). The 

underlying neural processes and their impact on actual motor improvements 

remained, however, unclear and necessitated a secondary analysis. The present 

study evaluated, therefore, the motor-network changes in the course of the 

intervention in relation to subsequent behavioral gains. 

The data acquisition methods applied in this study have been described in 

detail in our previous work and are cited here where appropriate (Kraus et al., 2016): 

http://www.sciencedirect.com/topics/page/Hemiparesis
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Electromyography (EMG) 

We used Ag/AgCIAmbuNeuroline 720 wet gel surface electrodes (Ambu GmbH, Bad 

Nauheim, Germany) to record electromyography (EMG) activity from the left Extensor 

Digitorum Communis (EDC) muscle (Kraus et al., 2016). Two electrodes were placed 

2 cm apart from each other on the muscle belly. EMG was band-passed filtered 

between 0.16 Hz (1st order with 6 dB/octave) and 1 kHz (Butterworth 5th order with 

30 dB/Octave) recorded with 5 kHz sampling rate and downsampled to 1 kHz 

(BrainAmpExG amplifier with an antialiasing filter). 

Electroencephalography (EEG)  

To record electroencephalography (EEG) signals, we used Ag/AgCl electrodes 

(BrainCap for TMS, Brain Products GmbH, Gilching, Germany) and BrainVision 

software with DC amplifiers and an antialiasing filter (BrainAmp, Brainproducts 

GmbH, Germany). A 32-channel EEG setup,which complied with the international 

10–20 system, was used (FP1, FP2, F3, Fz, F4, FT7, FC5, FC3, FC1, FC2, FC4, 

FC6, FT8, C5, C3, C1, Cz, C2, C4, C6, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, 

TP9, P3, P4, and POz with FCz as reference). We kept the impedances at all 

electrodes below 10 kΩ. After EEG signals were band-pass filtered between 0.16 Hz 

(first-order with 6 dB/Octave) and 1 kHz (Butterworth fifth-order with 30 dB/octave), 

they were recorded with a 5kHz sampling rate and downsampled to 1 kHz. Later, 

EEG signals were transferred to the BCI2000 software (Schalk et al., 2004) for online 

analysis and offline storage. Every effort was made to remove the potential sources 

of ambient noise from the experimental environment (Kraus et al., 2016). 
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Experimental conditions 

Fig. 1A represents the schematic illustration of the experimental design. The 

experiment started with anisometric motor task (5 minutes), which was followed by 

the intervention (40 minutes) and another isometric motor task (5 minutes).  

The intervention consisted of 15 runs. Each run lasted approximately 2.5 

minutes and included 11 trials. Each trial started with a 6 s rest phase which was 

followed by a 2 s preparation phase and a 6 s move phase, i.e., kinesthetic motor 

imagery (Fig. 1B). The audio taped cues of a female voice: ‘relax', ‘left hand,' and 'go' 

were used to initiate the rest, preparation, and move phases, respectively. All 

subjects were instructed to keep their muscles relaxed during the intervention. During 

the move phase, the subjects were instructed to perform kinesthetic motor imagery, 

i.e. to imagine the feeling of opening their left hand, i.e., finger extension, from a first-

person perspective. During the move phase, the passive opening of the left hand 

(proprioceptive group) and changing the color of the cross on a screen (visual group) 

was initiated by the BCI2000 software after detection of motor imagery-related ERD 

in the beta-band (16–22 Hz; Gharabaghi et al., 2014). This feedback was contingent, 

i.e. the participants were rewarded with robotic opening of the hand (proprioceptive 

group) or color change on a screen (visual group), when the predefined brain state 

(i.e. beta-ERD) was achieved and sustained; whenever the respective ERD was 

insufficient, the robotic movement ceased but could be restarted to continue when 

the ERD threshold was reached again. Importantly, the robotic hand opening was 

synchronized to the respective motor imagery-related brain activation, whereas the 

robotic hand closing occurred after the relax command automatically and 

independent of the respective brain state, (Kraus et al., 2016) The feedback 

frequency band was selected on the basis of previous work in our group on beta-
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band oscillatory circuits in the extended motor network (Khademi et al., unpublished 

observation). 

ERD was analyzed over the right surface EEG channels FC4, C4, and CP4 

(Fig. 1B) during the move phase (McFarland et al., 2000). ERD detection was 

performed with an adaptive linear classifier (Gharabaghi et al., 2014; Kraus et al., 

2016). The spectral power was computed with an autoregressive model order of 16 

(McFarland and Wolpaw, 2008), fitted to the last 500 ms of the signal and updated 

every 40 ms. To avoid a noisy control signal for the orthosis, five consecutive 40 ms 

epochs (i.e., 200 ms) had to be classified as ERD positive (negative) in order to start 

(stop) feedback (Bauer and Gharabaghi, 2015a, 2017; Vukelić and Gharabaghi, 

2015a, 2015b). 

Before and after the intervention, an isometric motor task was performed by 

the subject. This task has been described in detail elsewhere and is cited here 

accordingly (Naros et al., 2016): During the isometric motor task, the fingers of the 

subject were connected to the robotic orthosis via small magnets which were 

attached to the finger tips. Thereby, the fingers could not move and the applied 

forces were translated into cursor movements on a screen instead. There, a 

horizontal target bar, which oscillated vertically with a frequency of 0.1 Hz, was 

presented about 150 cm in front of the subject. The subject had to control the vertical 

position of a simultaneously presented cursor via the force of the fingers (digit II–V), 

Fig. 1C. This task consisted of 15 trials (10 s each) per run (2 runs). Each trial had 

one flexion (5 s) and extension (5 s) phase, i.e., downward and upward direction of 

the cursor, respectively (Fig 1C). 
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EEG/EMG analysis 

Data were analyzed offline using MATLAB (The MathWorks, Inc., Natick, 

Massachusetts, United States) and the FieldTrip open source MATLAB toolbox 

(http://fieldtrip. fcdonders.nl/; MathWorks). This included bandpass filtering (finite 

impulse response) between 2 Hz and 46 Hz, linear detrending, and 

visualocular/muscular artifact rejection. 

Assessing intervention-related cortical and corticomuscular modulation  

We analyzed EEG spectral modulation and EEG-EMG corticomuscular coherence 

(CMC) during the BMI and BCI interventions. The raw EEG and EMG signals were 

cut into epochs of 1 s (for CMC and 500 ms for ERD) before feedback onset. We 

studied epochs with at least 500 ms continuous MI-related ERD below the predefined 

threshold (see above); this resulted on average in 93 ± 27 epochs per subject. To 

capture the evolution of EEG oscillations in the course of the intervention, epochs 

were divided into 10 subgroups, yielding on average 9 ± 3 epochs per subgroup. 

To quantify the evolution of ERD, the data epochs from the rest phase of the 

intervention were chosen as baseline with epochs of 500 ms length with a floating 

window and no overlapping. The epochs were randomly downsampled so that the 

number of rest phase epochs and the number of MI-related epochs were the same; 

they were divided into 10 subgroups to estimate the power spectrum. A Hann window 

was applied on each epoch to attenuate edge effects (Nuttall, 1981). The power 

spectral density (PSD) of each epoch was calculated frequency-wise from 2 to 46 Hz 

in steps of 1 Hz using Fast Fourier Transform (FFT). Later, the average of estimated 

PSD for each subgroup was estimated. For the CMC estimation see the following 

section.  

 

 

http://www.jneurosci.org/content/27/9/2424#ref-33
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Assessing motor task-related corticomuscular modulation  

We studied the synchronous oscillatory activity between EEG and EMG of the EDC 

muscle by analyzing CMC. To estimate CMC, each trial of the motor task (10 s) was 

divided into ten non-overlapping time-windows (1 s) denoted by F1-F5 and E1-E5 

during flexion and extension, respectively. Epochs from each interval were visually 

inspected for ocular/muscular artifacts, yielding on average of 26 ± 4 epochs per 

interval and subject. Finally, the EMG signals were rectified.  

CMC was estimated as the cross-spectral density matrix frequency between 

EEG and EMG channels (Schulz et al., 2014). This was calculated frequency-wise 

using the multi-taper method (9 tapers; with 1 s signal width) over the frequency 

range from 2 to 46 Hz in steps of 1 Hz. We, then, obtained the magnitude of the 

coherence values by normalizing the magnitudes of the summed cross-spectral 

density matrix for each frequency to the corresponding power values at that 

frequency (Schulz et al., 2014). Further, we neither found changes in EEG or EMG 

spectral power between conditions (BMI vs. BCI) nor a correlation of EEG or EMG 

spectral power with the difference in CMC strength values in the course of the 

intervention in healthy and stroke subjects. We therefore could exclude that CMC 

modulation was confounded by amplitude changes of neuronal oscillations (von 

Carlowitz-Ghori et al., 2015), which were shown to affect the estimation of CMC 

(Bayraktaroglu et al., 2013) as they relate to the signal-to-noise ratio (Nikulin et al., 

2011). 

Assessing behavioral gains 

The difference between the cursor movements on a screen controlled by the subject 

and the oscillating horizontal target bar resulted in the error rate during the motor 

task; i.e., area under the curve (AUC). Reduction of this error rate was defined as an 

improved motor performance (Fig.1D). 



13 
 

             
                  

        
      

 

 

Assessing the relationships between intervention-related, motor task-related 

corticomuscular modulation, and behavioral gain  

We used Spearman's rank correlation to evaluate the relationship between CMC 

magnitude during the intervention (CMC [intervention]) and during the motor task 

(CMC [motor task]), and CMC [motor task] and motor performance across subjects. 

The statistically significant clusters of the previous analyses (see above) were 

chosen for this estimation. Specifically, the maximum CMC value of EEG channels 

from the respective cluster was subtracted from the median value of them for each 

subject individually to compensate for variability. Per subject, one pair of CMC 

[intervention]/CMC [motor task] was used for further analysis.  

Assessing the phase-frequency relationships of corticomuscular modulation  

The phase-frequency relationships of CMC were estimated frequency-wise (every 1 

Hz). Specifically, the phase was estimated by taking the argument from the estimated 

EEG-EMG cross-spectrum (Witham et al., 2011), see statistical section.  

Patient data 

Data analysis for the group of patients was identical to the approaches described 

above for the group of healthy subjects. Since the patient group performed 20 

intervention sessions (instead of one session by each healthy subject); the session 

were evaluated individually yielding 20 different data sets for ERD and CMC 

modulation per patient. We averaged the data of sessions 3 to 20 of each patient and 

compared it to baseline (session 1 and 2), to compensate for the day-to-day 

performance variability in the course of the 4 week training. The resulting 
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physiological changes were then compared to the motor improvement assessed by 

the UE-FMA. 

            
                  

        
     

Statistical analysis 

Testing significance of ERD and CMC modulation 

We used a nonparametric randomization test with 1000 repetitions to test the 

modulation of ERD/CMC magnitude in the course of the intervention. The null 

hypothesis was that observed increase in ERD/CMC magnitude was not related to 

the intervention.  Therefore, ERD/CMC from begining and end of the intervention, 1st 

to the 9th ± 1 subgroup (see above), were exchangeable, consqquently the pre- and 

post-motor task CMC values.  

For the CMC estimation, we estimated Z-statistic of the coherence difference 

prior to the nonparametric statistical test (Maris et al., 2007); since the artifact 

rejection led an unequal degree of freedoms (d.f.) for each group of epochs (e.g., 474 

± 72 d.f. for motor-task). 

We performed the cluster-based randomization test for each frequency band 

of interest. The frequency bands were selected to cover the feedback frequency 

band of the intervention (16-22 Hz) and the neighboring frequency bands with the 

same bandwidth (9-15 Hz, 23-29 Hz, and 30-36 Hz) for balanced statistical 

comparisons. When the maximum of t-statistic (paired t-test; ERD) or Z-statistic 

(CMC) exceeded the threshold p<0.05, adjacent EEG channels were clustered in the 

same set (Maris et al., 2007). Cluster-level statistics were, then, conducted by taking 

an average of the t-statistics. The maximum of the cluster-level statistics was used 

for later comparisons in case multiple clusters were observed. The p-value to reject 
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the null hypothesis was the proportion of cluster-based randomizations that resulted 

in a larger test statistics than the observed one (without randomization). 

Testing significance of ERD and CMC modulation in the patients 

For the stroke patients, the randomization test was applied for each EEG channel. 

And, similar approach as explained in the section above was conducted. The null 

hypothesis was that the observed cortical and corticospinal modulations were not the 

effects of intervention so that the baseline sessions could be exchanged with the 

following sessions. 

Testing significance of the behavioral gains 

Three-way ANOVA was performed for three main factors of group (two levels: 

proprioceptive vs. visual), condition (two levels: pre- versus post-isometric motor 

task), and time (ten levels: ten different intervals of the motor task). For each interval 

of interest, two-way ANOVA were performed for the two main factors of group (two 

levels) and condition (two levels).  

Testing significance of the relationships estimated with Spearman's rank 

correlation  

We tested the significance of the relationship between intervention-related and motor 

task-related CMCs, and motor task-related CMCs and improved performance across 

subjects. Our null hypothesis was that they were not correlated. Therefore, 

independent and dependent variables were exchangable, i.e., intervention-related 

CMCs versus motor task-related CMCs and motor task-related CMCs versus 

performance.. For this purpose, we shuffled the independent variable versus 

dependent variable with 1000 repetitions. At each repetition, we calculated 

Spearman's rank correlation. The p-value to reject the null hypothesis was the 

proportion of randomizations that resulted in a larger test statistics than the observed 

one (without randomization). 
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Testing significance of phase-frequency relationships 

We calculated the mean of the estimated CMC phase for each frequency across 

subjects, yielding one phase-frequency spectrum. We, then, fitted a line to the phase-

frequency plot using a linear regression (i.e., over a range of frequencies with 

significant CMC). The regression slope was significantly different from zero if p<0.05. 

Results 

Healthy subjects learned to modulate motor imagery (MI)-related sensorimotor ERD 

over the feedback frequency range (16-22 Hz) independent of the feedback modality. 

ERD and CMC changes in the course of the intervention were frequency-specific and 

restricted to the right hemisphere, i.e. ipsilateral to the side of feedback channels, 

and overlapped in the primary sensorimotor and premotor cortex (Fig. 2). Specifically, 

a cluster-based randomization test (1000 repetitions) revealed significant ERD 

modulation over the frequency range of 16-22 Hz for the proprioceptive (Fig. 2A; 

EEG channels FC2, C2, C4, Cp2, and CP4; p=0.017) and visual (Fig. 2B; EEG 

channels C2, C4, C6, CPz, CP2, CP4, CP6, and P4; p=0.004) groups.The CMC 

changes were specific for the same frequency range (16-22 Hz), but occurred in the 

proprioceptive group only (Fig. 2A; EEG channels: FC2, FC6, C2, C4, C6, CP2, CP4, 

CP6,and P4; p=0.014, cluster-based randomization test, 1000 repetition).  

This increase in CMC magnitude (16-22 Hz) in the course of the MI 

intervention was also observed in the motor task (MT) after the intervention (Fig. 3; 

cluster-based randomization test, 1000 repetitions). The topography of the MT-

related CMC modulation was restricted to the right hemisphere, i.e. ipsilateral to the 

side of feedback channels, and projected to the primary sensorimotor and premotor 

cortex. In the proprioceptive group, MT-related increase in CMC magnitude occurred 

at movement intervals reflecting transitions between finger flexion (16-22 Hz, 
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p=0.002; and 23-29 Hz, p=0.002) and extension (16-22 Hz, p=0.007; and 23-29 Hz, 

p=0.006). In the visual group, this increase occurred during finger extension 

independent of the transition intervals (23-29 Hz, p=0.007; and 30-36 Hz, p<0.0001). 

In the proprioceptive group, the increase of CMC magnitude correlated 

significantly (Fig. 4A; r=0.56 p=0.0015; Spearman's rank correlation, randomization 

test, 1000 repetitions) between the MI-related finger extension (Fig. 2A, 16-22 Hz) 

and the MT-related finger extension (Fig. 3A, 16-22 Hz). 

The MT-related error rate increased around the transition interval from flexion 

(denoted by F) to extension (denoted by E) for the proprioceptive and visual groups. 

When comparing the motor tasks before (Fig. 4B) and after (Fig. 4C) the intervention, 

a three-way ANOVA (full model) showed a significant effect for the main factors of 

condition (F(1,500)=38.62, p<0.0001) and time (F(9,500)=145.2, p<0.0001) but not 

group (F(1,500)=0.96, p=0.33). Furthermore, a significant interaction was observed 

for group by condition (F(1,500)=4.39, p=0.04) but not for group by time 

(F(9,500)=1.33, p=0.22), condition by time (F(9,500)=0.79, p=0.62), or group by time 

by condition (F(9, 500)=0.21, p=0.99). However, the interaction model of the three 

main factors, i.e. group by condition by time, showed a significant interaction 

(F(9,530)=12.44, p<0.0001). In a next step, a two-way ANOVA was performed for 

each time interval, separately. Thereby, we found a significant difference (Fig. 4D) for 

the main factor condition (F(1,50)=6.69, p=0.01) for the time interval with maximum 

error rate (marked by E1 in Fig.4B and 4C), but not for group (F(1,50)=0.19, p=0.67, 

ANOVA) or group by condition (F(1,50)=1.81, p=0.18). Post-hoc test (p<0.05, 

Bonferroni corrected for number of groups yielding p<0.025) showed a significant 

decrease in error rate for the proprioceptive (Post versus Pre, t(28)=-2.87, p=0.008, 

unpaired Student t-test) but not visual group (t(22)=-0.86, p=0.40, unpaired Student t-

test).  
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This improved performance in the proprioceptive group correlated with the 

increase in CMC magnitude (Fig. 4E) in the same movement interval (E1) for 16-22 

Hz, (r=0.74, p<0.0001, Spearman's rank correlation, randomization test, 1000 

repetitions), but not 23-29 Hz (r=0.11 p=0.70, Spearman's rank correlation).  

Finally, the intervention led to a significant change in the phase-frequency 

relationship (in the feedback channels) in the course of the intervention (Fig. 5A, 

middle column), which persisted in the motor task after the intervention (Fig. 5A, right 

column). This phase-frequency relationship showed consistently a negative slope 

significantly different from zero (F-statistic, p<0.05) indicating a direction of 

interaction from cortex to muscle. The respective cortical topography included 

extended sensorimotor and premotor areas ipsilateral to the side of feedback (EEG 

channels: F4, FC2, FC4, FC6, Cz, C2, C4, C6, CPz, CP2, CP4, and CP6; F-statistic, 

p<0.05), which persisted during the post-intervention motor task (EEG channels: 

FC2, FC4, Cz, C2, C4, C6, CPz, CP2, CP4, CP6, P4, CP1, P3, and POz; F-statistic, 

p<0.05). The average phase delays of the phase-frequency relationship were 33.5 ± 

10.12 ms and 25.16 ± 7.45 ms for the intervention and post-MT, respectively. 

Stroke patients learned modulating motor imagery (MI)-related sensorimotor 

ERD over the feedback frequency range (16-22 Hz) and channels (FC4, C4, and 

CP4; p<0.001, randomization test, 1000 repetitions; Fig. 6A, left column). An 

increase in ERD magnitude was also observed over the frequency range of 9-15 Hz 

(p<0.001 randomization test, 1000 repetitions). These ERD changes were restricted 

to the ipsilesional right hemisphere. The changes in CMC magnitude, however, were 

bilateral (Fig. 6A, right column). Specifically, ipsilesional premotor CMC increased in 

the beta-band (16-22 Hz), whereas contralesional CMC of extended sensorimotor, 

premotor and parietal areas increased in the alpha- and beta-band (9-15 Hz and 16-

22 Hz; p<0.001 randomization test, 1000 repetitions). 
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In the patient group, the increase in CMC magnitude of ipsilesional premotor 

cortex (F4, FC2, and FC4) correlated significantly with the improvement of the UE-

FMA score after the intervention period (Fig. 6B; r=0.71 p=0.02; Spearman's rank 

correlation; randomization test, 1000 repetitions). 

Finally, also in the patient group the intervention led to a significant change in 

the phase-frequency relationship in the course of the intervention (Fig. 6C). The 

phase-frequency relationship in the end of the intervention showed a negative slope 

significantly different from zero (F-statistic, p<0.05) indicating an enhanced direction 

of interaction from cortex to muscle. The respective cortical topography included 

premotor (FC4), somatosensory (CP4), and parietal (P4) channels ipsilateral to the 

side of feedback(F-statistic, p<0.05). The average phase delays of the phase-

frequency relationship during the intervention were 23.75 ± 12.32 ms and 26.55 ± 

7.09 for the ipsi- and contralesional hemisphere, respectively. 

 
Discussion 

The present study indicates that BMI feedback induces plasticity along the neuroaxis 

by enhancing functionally relevant corticospinal interactions via the up-regulation of 

alternate descending pathways beyond the primary corticospinal tract. This effect 

occurred in both the healthy and post-stroke condition and correlated with 

subsequent motor improvements. Healthy subjects and stroke patients differed, 

however, with regard to the cortical topography and involved frequency spectrum of 

the cortico-motor connectivity pattern. 

Neural processes related to brain-machine interface feedback  

Healthy subjects learned to enhance ERD in the targeted sensorimotor area in a 

frequency-specific way, i.e., in the feedback frequency band (16-22 Hz), irrespective 

of the provided feedback modality (proprioceptive or visual). This was not surprising, 
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given that sensorimotor oscillations are modulated by thalamo-cortical and cortico-

cortical interactions (Thut and Miniussi, 2009; Jensen and Mazaheri, 2010) and do, 

therefore, not necessarily dependent on proprioceptive input. However, only when 

proprioceptive feedback was provided, this specific activation pattern was paralleled 

by CMC increases as well. They occurred in the same cortical area and frequency 

band as the ERD modulation, thereby, suggesting interacting processes (figure 2A). 

Since MI-related ERD has been shown to reduce intracortical inhibition (Takemi et 

al., 2013), it may serve as the pre-synaptic input for an excitatory drive via 

proprioceptive  input (Kraus et al., 2016). This is in accordance with previous studies 

that paired specific brain states with peripheral (Mrachacz-Kersting et al., 2012, 

2016), cortical (Kraus et al., 2016b) or combined stimulation (Gharabaghi et al., 2014; 

Royter and Gharabaghi, 2016) to increase corticospinal excitability. We speculate 

that the kinesthetic MI that was applied in the present study has modulated the 

susceptibility of an extended cortical motor network to the provided natural 

proprioceptive input and would thereby fulfill the requirements of Hebbian-stimulation 

(Hebb, 1949).  

Recently, the same BMI intervention was studied by transcranial magnetic 

stimulation (TMS) and motor evoked potentials (MEP) applying refined TMS 

protocols (Kraus and Gharabaghi, 2015, 2016a; Mathew et al., 2016). This evaluation 

provided a link between the ERD modulation and the changed connectivity to the 

periphery (Kraus et al., 2016a). Specifically, the largest MEP gains were found in 

those cortical areas that were most strongly modulated by the intervention (Kraus et 

al., 2016a). Furthermore, this topographic specificity was paralleled by a correlation 

between the ERD changes and the increased connectivity to the periphery, i.e., the 

largest MEP gains were observed in the subjects with the strongest ERD modulation 

range (Kraus et al., 2016a). The direct dependency of ERD strength and CMC 
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magnitude is thereby in accordance with the gating by inhibition framework (Jensen 

and Mazaheri, 2010) 

Beta-band corticomuscular coherence and motor performance 

The present study complements and extends these previous findings; it suggests- 

consistent with the communication through coherence hypothesis (Fries, 2005) - 

synchronized neural activity at cortical and spinal level in the feedback frequency 

range as the underlying neural mechanism of the BMI induced effects. The cognitive 

demands of the feedback task alone could not account for this phenomenon since 

the control intervention with visual feedback only did not lead to these connectivity 

changes (figure 2B). 

Furthermore, we demonstrated that this enhanced beta-band CMC during the 

MI task with dynamic movement feedback transferred to the subsequent isometric 

motor task. It occurred during the transition intervals between flexion and extension 

and in a broader beta frequency band (16-22 Hz, 23-29 Hz), which may be related to 

elevated attentional demands (Murthy and Fetz, 1992; Kristeva-Feige et al., 2002). 

The magnitude of beta-band CMC during the BMI and the motor tasks correlated with 

each other (figure 4A) and with motor performance (figure 4E). The motor task-

related correlation between beta-band CMC and performance is a known 

phenomenon and reflects its proposed role in effective corticospinal interactions 

(Baker et al., 1999; Kristeva et al., 2007).Moreover, motor learning has been shown 

to both increase pre existing (Houweling et al., 2010) and develop new beta-band 

CMC (Mendez-Balbuena et al., 2011). 

Notably, the improved motor performance in our study revealed task-specificity 

by occurring during the initiation of finger extension only (E1 interval, figure 4D), i.e., 

the very movement that was reinforced during the preceding BMI task. Moreover, this 

specific improvement of motor performance correlated with the feedback frequency 
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only (16-22 Hz) and not with the higher beta-band (23-29 Hz) that changed as well. 

Together these observations suggest a link between sensorimotor processing during 

the BMI task and the following motor-task related beta-band CMC; this relationship 

implies the generation of the later independence of memory traces induced by the 

former (Omlor et al., 2011). A similar mechanism has been described for the primary 

motor cortex in association with the preceding motor experience (Chouinard et al., 

2005; Nowak et al., 2005; Berner et al., 2007; Loh et al., 2010) and for beta-band 

CMC during steady force following a dynamic force task (Omlor et al., 2011). Along 

these lines, beta-band CMC has been suggested to serve as the major functional 

corticospinal gateway for efficient integration and transmission of sensorimotor 

information (Omlor et al., 2011; Aumann and Prut, 2015). The present findings 

suggest BMI feedback as a mean to enhance this process. 

The estimation of the phase–frequency relationships indicated, moreover, an 

enhancement of the directed coherence (i.e., predominant information flow) from the 

cortex to the finger extensors (Halliday et al., 1998; Mima et al., 2000; Witham et al., 

2011) in the course of the intervention and thereafter (figure 5A). This is, to the best 

of our knowledge, the first observation of shaping the CMC directionality by an 

intervention. Importantly, this phenomenon occurred in an extended sensorimotor 

area beyond the primary motor cortex (figure 5B). This indicates the functionally 

relevant engagement of an extended motor network for task performance and 

provides, thereby, the rationale for the application of this technique in patients with a 

lesioned primary CST. These observations are in line with earlier studies (He et al., 

1993; Kombos et al., 1999; Teitti et al., 2008; Schmidt et al., 2013; Kraus and 

Gharabaghi, 2016), which indicated that corticospinal connections are not limited to 

the primary motor cortex but may originate from different regions of the sensorimotor 

system. The phase delays estimated in this study are consistent with a range of 
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conduction times and may thereby reflect the involvement of both direct and indirect 

(e.g., cortico-rubro-spinal, cortico-reticulo-spinal) pathways.  

Post-stroke reorganization related to brain-machine interface feedback 

The rationale for patients selection in this study has been reported previously 

(Belardinelli et al., 2017): To detect common processes underlying the intervention 

and potential factors relevant for functional restoration, the patients were unified as 

far as possible. This ensured that the detected CMC changes were attributable to the 

BMI feedback. The patients were specifically selected on the basis of their clinical 

symptoms and not on the basis of their lesion location. The impaired transmission 

along the efferent pathway in the corticospinal tract was the common factor in all of 

them. This is due to the fact that the recruitment of cortical areas during motor 

performance (Ward et al., 2007; Ward et al., 2006) and motor function (Stinear et al., 

2012; Stinear et al., 2007) depends on corticospinal integrity post-stroke (von 

Carlowitz-Ghori et al., 2014). Our patients therefore had a similar severity level of 

motor impairment, i.e., a persistent hand paralysis in the chronic stage after stroke. 

They were, moreover, all right-handers and had their lesion in the right, non-dominant 

hemisphere. Although other factors such as lesion type, volume and location, age or 

time since stroke differed between the patients, none of these properties influenced 

the motor gains or post-intervention CMC changes as reported previously 

(Belardinelli et al., 2017). 

Since the patients were unable to voluntary extend their fingers, performing 

this movement with robotic assistance and contingent to the respective MI allowed 

both activating and physiologically monitoring the related neural circuitry on a 

moment-to-moment basis. We report that the BMI intervention resembled in stroke 

patients the neurophysiological processes observed in healthy subjects: Operant 

conditioning of ERD in the cortical area targeted by the feedback; an increase of the 
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CMC magnitude in the course of the intervention; enhancement of the directed 

coherence from the cortex to the finger extensors. 

Stroke patients differed, however, with regard to the cortical topography and 

involved frequency spectrum of the cortico-motor connectivity pattern from healthy 

subjects. Both ERD and CMC changes were not restricted to the feedback frequency 

in the beta band, but included the alpha frequency band as well. Consistently, cortical 

networks in the oscillatory alpha and beta band have been related to both BMI 

control (Buch et al., 2012, Vukelic et al., 2014, Bauer et al., 2015; Vukelic and 

Gharabaghi, 2015a,b) and post-stroke recovery (Dubovik et al., 2012; Westlake et 

al., 2012; Nicolo et al., 2015).  Moreover, work in healthy subjects indicated that 

cortical oscillations in the alpha range are important for the selection of task-relevant 

cortical areas via the functional coupling of distant cortical regions (Başar et al., 1997; 

Palva and Palva, 2011; Pineda, 2005), as well as for suppression of task-irrelevant 

areas by inhibition (Jensen and Mazaheri, 2010; Klimeschet al., 2007). Furthermore, 

CMC in the alpha range has been shown to correlate with corticospinal excitability 

(Schulz et al., 2014), movement discontinuities (Gross et al., 2002) and transitions in 

force output with a time delay from muscle to cortex indicating afferent interactions 

(Mehrkanoon et al., 2014). One might speculate that the patients in our study relied in 

comparison to healthy subjects on a different mode of sensorimotor processing 

during integration of sensory reafference into the motor command to ensure 

maintenance of a stable output (Witham et al., 2011). 

The cortical CMC topography of the patients group was, moreover, 

characterized by the extended bihemispheric involvement in the course of the 

intervention (figure 6A).Having in mind that not all post-stroke neuronal 

reorganization relates to functional restoration, CMC may nonetheless serve as a 

measure to detect functionally relevant efferent drive (Braun et al., 2007; Gerloff et 
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al., 2006a;b; Rossiter et al., 2013) and neural plasticity (von Carlowitz-Ghori et al., 

2014; Belardinelli et al., 2017). Therefore, our observation of increased influence of 

non-primary motor areas over the finger extensors in the course of the intervention 

complements earlier reports of widespread changes of brain activity in patients with 

more severe impairment (Brown, 2008; Gerloff et al., 2006b; Serrien et al., 2004; 

Ward et al., 2003, Volz et al., 2015; Diekhoff-Krebset al., 2017, Belardinelli et al., 

2017).  

Furthermore, experimental work indicates the motor control system to maintain 

a variability of representations so that it can adapt to unpredictable changes (Peters 

et al., 2017); similarly, the descending corticospinal connectivity is known to be 

malleable (Brus-Ramer et al., 2007; Mosberger et al., 2017). In this context, our 

findings indicate that the amount of synchronization between cortical and spinal cord 

activity (Brown et al., 1998; Mima and Hallett, 1999; Salenius and Hari, 2003) during 

the execution of a (robot-assisted) movement will represent the task-relevant 

recruitment of the available corticospinal output after stroke and the corresponding 

motor network representation. This view is supported by cross-sectional and 

longitudinal structural (Koch et al., 2015) and functional magnetic resonance imaging 

(Grefkes and Fink, 2011, 2014) studies in stroke patients: Specifically, in chronic 

stroke patients damage to the descending output fibers from one region of the 

cortical motor system was compensated by activity in areas that retain corticofugal 

outputs, e.g., from secondary motor areas such as the dorsal premotor cortex 

(Newton et al., 2006; Riley et al., 2011; Schulz et al., 2012, 2015a,b; Potter-Baker et 

al., 2016). 

Our findings support the observation that the contralesional hemisphere can 

act as a source of coherent descending cortical drive to functionally relevant muscles 

after stroke (Rossiter et al., 2013). Moreover, we provide empirical support that BMI 
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feedback may serve as a technique to enhance this connectivity. The directed 

coherence from cortex to periphery increased, however, in a restricted perilesional 

area of the affected hemisphere only. Specifically, training-related enhancement of 

beta-band CMC in the ipsilesional premotor cortex correlated with clinical 

improvements after the intervention. Future approached may directly address this 

biomarker by applying CMC feedback (von Carlowitz_Ghori et al., 2015) between this 

specific area and the targeted muscles. A shift of cortico-muscular coherence 

anteriorly and medially from the ipsilesional primary motor cortex has already been 

described in chronic stroke patients (Mima et al., 2001). This has led to the 

development of interventions that specifically target premotor areas with brain 

stimulation (Cunningham et al., 2015; Sankarasubramanian et al., 2017). 

Furthermore, inhibition of the dorsal premotor cortices in either hemisphere with 

magnetic stimulation disrupted motor performance in chronic stroke patients, but not 

in control subjects (Johansen-Berg et al., 2002; Fridman et al., 2004; Lotze et al., 

2006), thereby implicating that these regions contribute to post-stroke motor recovery 

(Belardinelli et al., 2017). 

Our findings are in accordance with recent work that applied in vivo two-

photon calcium imaging in mice to longitudinally monitor the activity of corticospinal 

neuron populations across learning (Peters et al., 2017). This study revealed that 

corticospinal activity changed with time to create novel relationships between activity 

and movement, thereby, suggesting the corticospinal output itself (and not only 

intercortical circuits) to be plastic. Our results complement this work by demonstrating 

that learning related plastic reorganization of corticospinal out may be induced not 

only within the motor cortex but on a more distributed network level as well. 
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Limitations and future perspectives 

Direct comparisons between the healthy subject and patient groups have to be made 

with caution due to apparent differences with regard to age, dose of intervention and 

motor evaluation. Bearing this in mind the BMI-related similarities are, however, 

remarkable. Specifically, the enhancement of cortico-muscular control seems to be a 

robust BMI-related phenomenon across groups. Future work may apply a dose-

matched intervention in age-matched healthy subjects to better delineate 

physiological patterns related specifically to post-stroke reorganization. Moreover, 

source analysis may help to better describe possible generators of CMC beyond the 

primary motor cortex. Direct comparisons with magnetic resonance imaging metrics 

may, furthermore, allow a better understanding how structural determinants of 

connections interrelate with task-related functional connectivity measures (Koch et 

al., 2015). 

The present study intended to elucidate neurophysiological mechanisms 

related to BMI feedback and not its impact on motor outcome improvement after 

stroke. This would have necessitated a controlled study design. The observed 

correlation of ipsilesional premotor beta-band CMC with clinical improvement might 

therefore be influenced by non-specific factors in the course of the training 

program.Previous BMI/BCI studies in stroke rehabilitation with a controlled 

designindicate,however, the importance of contingent feedback to achieve clinical 

benefits (Ramos-Murguialday et al., 2013; Pichiorri et al., 2015; Frolov et al., 2017). 

Here, we extended these observations by demonstrating – albeit in healthy subjects 

– that this feedback needed to be proprioceptive to enhance cortico-muscular control; 

the according pattern of CMC modulation, enhancement of directed coherence from 

cortex to finger extensors and corresponding motor improvements observed in 

healthy subjects was then replicated in stroke patients undergoing the same BMI 
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intervention. This provides empirical support for the consistency of the finding across 

different populations but needs to be replicated in controlled studies with larger 

patient cohorts and longer follow-up periods.Future work on patients with hand 

paralysis may, furthermore, consider capturing objectively, e.g., by sensors, even 

minimal motor improvements not detectable by clinical scores as well to better relate 

physiological changes to specific behavioral gains.  

 

Conclusion 

Operant conditioning of cortical oscillations with proprioceptive feedback enhances 

both cortical activity and behaviorally relevant connectivity to the periphery. This 

enhanced cortico-muscular control can be induced in the healthy and post-stroke 

brain. Thereby, activating the motor cortex with MI and closing the loop by robot-

assisted natural feedback allows for sensorimotor integration beyond the lesioned 

corticospinal tract. This may facilitate neurorehabilitation in the absence of volitional 

muscle control. 
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Figure 1 Experimental design and example data.(A) Schematic illustration of the 

experimental design and timeline. (B)Participants (healthy subjects and patients) 

underwent a neurofeedback intervention of modulating beta-activity (16-22 Hz) in 

circumscribed premotor and sensorimotor regions (marked by '+' on the topography) 

of the right (i.e. ipsilesional in stroke patients) hemisphere by kinesthetic motor 

imagery (MI). Healthy participants participated in an intervention session (~40 

minutes) receiving feedback which was contingent to their MI-associated brain 

activity in a parallel-group design with one of two different modalities: (I) visual 

feedback with a brain–computer interface (BCI; n=12) or (II) proprioceptive feedback 

with a brain–machine interface (BMI; n=15) orthosis attached to the left hand. In a 

subsequent study with stroke patients (n=8), proprioceptive BMI-feedback was 
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applied to the paralyzed left hand in 20 sessions the course of four weeks. 

(C)Healthy subjects performed a motor task (~5 minutes) before (pre-MT) and after 

(post-MT) the intervention. An oscillating target (0.1 Hz) was presented to the 

subjects on a screen. The subject was instructed to follow the target by a cursor 

which was controlled by isometric flexion and extension of the left hand that was 

attached to a hand orthosis. (D) Motor performance was defined as the difference 

between target and actual force applied to the hand orthosis which was paralleled by 

a deviation between the target and the actual oscillation on the screen, i.e. the closer 

the target and the actual oscillation, the better the performance. 
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Figure 2 Modulation of motor imagery-related event-related desynchronization 

(ERD) and corticomuscular coherence (CMC).(A)Group data of the proprioceptive 

group in healthy subjects. Black circles indicate clusters with statistically significant 

modulation (nonparametric randomization test) in the course of the intervention (the 

contrast between end and start, see methods). Cortical topographies are presented 

for the feedback frequency band (16-22 Hz) and the neighboring bands (9-15 Hz, 23-

29 Hz, and 30-36 Hz). (B) same as A but for the visual group.  
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Figure 3 Modulation of motor task-related corticomuscular coherence 

(CMC).(A)Group data of the proprioceptive group in healthy subjects. Black circles 

indicate clusters with statistically significant modulation (nonparametric cluster-based 

randomization test) in the course of the experiment (the contrast between post-MT 

vs. pre-MT). Cortical topographies are presented across the motor task in 1-second 

intervals, i.e. during flexion (F1-F5) and extension (E1-E5), for the feedback 

frequency band (16-22 Hz) and the neighboring bands (9-15 Hz, 23-29 Hz, and 30-

36 Hz). Transitions of the motor task are marked with arrows (blue: flexion to 

extension; purple: extension to flexion). The grand-average of the EMG of the EDC 
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muscle across all subjects is plotted below the topographies. (B) same as A but for 

the visual group.  
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Figure 4 Modulation of corticomuscular coherence (CMC) correlates with 

behavioral gains.(A)Group data of the proprioceptive group in healthy subjects. The 

increase of CMC (16-22 Hz) in the course of the intervention correlates with the (post 

vs. pre) CMC increase (16-22 Hz) during the flexion to extension transition of the 

motor task (r=0.56, p=0.0015, Spearman's rank correlation, randomization test); each 

triangle represents one subject. The regression line is represented in gray.(B)Error 

estimation (mean and standard error) across the motor task (pre-intervention) in 1-

second intervals, i.e. during flexion (F1-F5) and extension (E1-E5). E1 represents the 
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interval with the maximum error (i.e. the transition from flexion to extension). (C) 

Same as B but for the post-intervention motor task. (D) The proprioceptive group 

showed a statistically significant decrease of error (t(28)=-2.87, p=0.008, unpaired t-

test, potshot test after performing ANOVA) during the motor task (i.e. improved 

performance) for the interval with the maximum error (i.e., E1). (E)That improved 

performance correlated significantly with the increase in CMC magnitude (16-22 Hz; 

r=0.74 p<0.0001, Spearman's rank correlation, randomization test). Each triangle 

represents one subject. The regression line is represented in gray.  
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Figure 5 Changed directionality of corticomuscular coherence (CMC). (A) 

Phase-frequency plots of healthy subjects in the proprioceptive group (mean and 

standard error) for the EEG feedback channels (FC4, C4, and CP4) and frequencies 

with significant CMC modulation. Left and right columns represent the motor task-

related finding before (gray) and after (black) the intervention, respectively. The 

middle column represents the intervention-related findings at the start (gray) and end 

(black) of the intervention, respectively. The regression slopes for the frequency band 

between 18-26 Hz are represented by lines; this frequency band was determined by 

a change of the sign of the regression slope. Regression slopes significantly different 

from zero are indicated by magenta. (B) Topographies of the respective regression 

slopes. Magenta and yellow colors indicate the directionality of information flow from 
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cortex to the periphery and from peripheral to the cortex, respectively. Black circles 

represent the EEG channels which have a regression slope that is significantly 

different from zero.   
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Figure 6 Modulation of corticomuscular coherence (CMC) correlates with motor 

improvement in stroke patients. (A)Modulation of motor imagery-related event-

related desynchronization (ERD) and corticomuscular coherence (CMC).Group data 

of stroke patients with proprioceptive BMI-feedback. Black circles indicate clusters 

with statistically significant modulation (randomization test) in the course of the 

intervention ( the contrast between end and start, see methods). Cortical 

topographies are presented for the feedback frequency band (16-22 Hz) and the 

neighboring bands (9-15 Hz, 23-29 Hz, and 30-36 Hz). (B) The relationship between 

improvement in the Fugl-Meyer-Assessment score and the CMC modulation (16-22 

Hz; F4, FC2, and FC4 channels). Each circle represents one patient. The regression 

line is represented in gray (r=0.71 p=0.02 Spearsman's rank correlation, 
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randomization test). (C) Phase-frequency plots (mean and standard error) for the 

EEG feedback channels (FC4, C4, and CP4) and frequencies with significant CMC 

modulation at the start (gray) and end (black) of the intervention, respectively. The 

regression slopes for the frequency band between 18-26 Hz are represented by 

lines; this frequency band was determined by a change of the sign of the regression 

slope. Regression slopes significantly different from zero are indicated by magenta. 

(D) Topographies of the respective regression slopes. Magenta and yellow colors 

indicate the directionality of information flow from cortex to the periphery and from 

peripheral to the cortex, respectively. Black circles represent the EEG channels 

which have a regression slope that is significantly different from zero. 
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A B S T R A C T

Background: Desynchronization of sensorimotor rhythmic activity increases instantaneous corticospi-
nal excitability, as indexed by amplitudes of motor-evoked potentials (MEP) elicited by transcranial magnetic
stimulation (TMS). The accumulative effect of cortical stimulation in conjunction with sensorimotor
desynchronization is, however, unclear.
Objective: The aim of this study was to investigate the effects of repetitive pairing event-related
desynchronization (ERD) with TMS of the precentral gyrus on corticospinal excitability.
Methods: Closed-loop single-pulse TMS was controlled by beta-band (16–22 Hz) ERD during motor-
imagery of finger extension and applied within a brain–computer interface environment in eleven healthy
subjects. The same number and pattern of stimuli were applied in a control group of eleven subjects during
rest, i.e. independent of ERD. To probe for plasticity resistant to depotentiation, stimulation protocols
were followed by a depotentiation task.
Results: Brain state-dependent application of approximately 300 TMS pulses during beta-ERD resulted
in a significant increase of corticospinal excitability. By contrast, the identical stimulation pattern applied
independent of beta-ERD in the control experiment resulted in a decrease of corticospinal excitability.
These effects persisted beyond the period of stimulation and the depotentiation task.
Conclusion: These results could be instrumental in developing new therapeutic approaches such as the
application of closed-loop stimulation in the context of neurorehabilitation.

© 2016 Elsevier Inc. All rights reserved.

Introduction

For the induction of motor cortex (M1) plasticity, different
transcranial magnetic stimulation (TMS) protocols are available [1,2],
e.g. application of stimuli with a fixed frequency (rTMS), pat-
terned theta burst stimulation (TBS) and associative pairing of
peripheral and cortical stimulation (PAS), to name a few. One
common feature of all of these protocols is that they can modu-
late corticospinal excitability measured by changes in motor-
evoked potential (MEP) amplitude that outlast the stimulation itself.
Although significant efforts have already been made to describe the
stimulation effects during different conditions [2], e.g. stimulation

at rest or during a task, reports on their dependency on the actual
oscillatory brain state remain sparse.

The activity of the sensorimotor rhythm (SMR) is indicative of
the brain’s responsiveness to an excitatory drive and reflects the
current excitatory state [3,4] with high and low sensorimotor ac-
tivity, suggesting an inhibitory and excitatory brain state, respectively,
caused by thalamo-cortical and cortico-cortical interdependences
[5,6]. Oscillatory variations between these brain states may at least
partly account for the large trial-to-trial variance of MEP ampli-
tude induced by TMS [7–9]. The MEP amplitude was recently shown
to increase during up-states of slow oscillation sleep waves [10].
Moreover, the MEP amplitude increases with the event-related
desynchronization (ERD) of sensorimotor rhythms [11,12].

Sensorimotor ERD in both α- and β-frequency bands occurs
during actual, imagined and observed movements with a highly
correlated pattern. However, these frequency bands serve
distinct functional mechanisms [13–15]. While α-activity gates

* Corresponding author. Tel.: +49 7071 29 83550; fax: +49 7071 29 25104.
E-mail address: alireza.gharabaghi@uni-tuebingen.de (A. Gharabaghi).

1935-861X/© 2016 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.brs.2016.02.007

Brain Stimulation 9 (2016) 415–424

Contents lists available at ScienceDirect

Brain Stimulation

journal homepage: www.brainst imjrnl .com

mailto:alireza.gharabaghi@uni-tuebingen.de
http://www.sciencedirect.com/science/journal/1935861X
http://www.brainstimjrnl.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.brs.2016.02.007&domain=pdf


information by inhibiting task-irrelevant regions [6], β-activity me-
diates the disinhibition of the sensorimotor cortex and the coherent
interaction with themuscles [14–19]. These differences become par-
ticularly relevant when applying neurofeedback interventions which
aim at operant learning of specific brain states for novel therapeu-
tic purposes. Bearing the restoration of corticospinal connectivity
inmind [19], we chose ERD of the β-band as the physiological marker
for our intervention [20].

However, the extent to which repetitive pairing of stimulation
with ERD would lead to a lasting change of corticospinal excitabil-
ity remains unclear. This challenge is related to the strong influence
of prior muscle activity on stimulation effects and the large inter-
trial variability in spontaneous andmovement-related brain activity
[9,21–23].

Neurofeedback devices could constitute a viable solution to over-
come such unpredictability of intrinsic brain states. The power
changes in oscillatory activity during motor imagery are known to
mimic the spectral activation patterns during an actual move-
ment, i.e. sensorimotor ERD [24]. Contingent feedback of theses brain
states using a brain–computer interface (BCI)-based technique can
help subjects to repeatedly activate the targeted oscillatory pat-
terns without performing actual movements [25–27].

We used a brain–computer interface environment in conjunc-
tion with kinesthetic motor imagery to pair TMS of the precentral
gyrus with event-related desynchronization (ERD) in the β-band (16–
22 Hz), and tested for increases in corticospinal excitability, indexed
by MEP amplitude, that were resistant to a depotentiation motor
task following the stimulation protocol [28]. Results were com-
pared to a control experiment inwhich the same number and pattern
of stimuli were applied during rest, i.e. independent of ERD.

Materials and methods

Subjects

Seventeen different healthy subjects (mean age, 26.4 ± 3.4 years,
range 21–35 years, 10 male) with no contraindications to TMS [29]
and no history of psychiatric or neurological disease were re-
cruited for this study. Five subjects participated in both experiments;
in these cases, we ensured that there was a pause of at least five
days between the sessions to avoid carry-over effects. The study com-
prised a total of 22 sessions, i.e. 11 subjects/sessions for Experiment
1 and 11 subjects/sessions for Experiment 2. Right-handedness was
confirmed by the Edinburgh handedness inventory [30]. All sub-
jects gave their written informed consent prior to participation in
the study, which had been approved by our local ethics commit-
tee. The study was carried out in accordance with the latest version
of the Declaration of Helsinki.

Recordings

Electromyography (EMG)
We used Ag/AgCI AmbuNeuroline 720 wet gel surface elec-

trodes (Ambu GmbH, Germany) to record electromyography (EMG)
activity from the left Extensor Digitorum Communis (EDC) muscle
during the intervention. We placed two electrodes on the muscle
belly 2 cm apart from each other. After filtering between 0.16 Hz
and 1 kHz, EMG was recorded with 5 kHz sampling rate and
downsampled to 1 kHz by the BrainAmp Amplifier. To determine
plastic changes (see below) we applied the integrated 6 channel EMG
device of the eXimia Navigated Brain Stimulation (NBS) system
(Nexstim Inc., Finland) with 3 kHz sampling rate and band-pass filter
of 10–500 Hz before and after the intervention.

Electroencephalography (EEG)
Throughout the experiment, Ag/AgCl electrodes and BrainVision

software with DC amplifiers and an antialiasing filter (BrainAmp,
Brainproducts GmbH, Germany) were used to record electroen-
cephalography (EEG) signals in a 32 channel setup that complied
with the international 10–20 system (Fp1, Fp2, F3, Fz, F4, FT7, FC5,
FC3, FC1, FC2, FC4, FC6, FT8, C5, C3, C1, Cz, C2, C4, C6, TP7, CP5, CP3,
CP1, CPz, CP2, CP4, CP6, TP8, P3, P4, POz with FCz as reference). For
each experiment, impedances at all electrodes were set below 10 kΩ.
Following digitization at 1 kHz rate, high-pass filtering with 0.16 Hz
and low-pass filtering with 1000 Hz, the EEG signals were trans-
ferred for online analysis to BCI2000 software, where they were later
stored offline [31]. Since ambient noise could influence electro-
physiological recordings, wemade every effort to remove its potential
sources from the experimental environment by turning off mobile
phones, unplugging superfluous power supplies and computers, etc.
The effect of this procedure on, for example the 50 Hz line noise,
was verified online.

The aim of the EEG data analysis was to register the differential
information contents between experimental conditions, i.e. en-
hanced ERD during the motor imagery condition. We were also
interested in the contingency of TMS with beta-ERD during the in-
tervention and the topographic distribution of the beta-band
modulation. We therefore examined the EEG differences between
experiments (i.e. Experiment 1–Experiment 2).

TMS protocol

We used a navigated TMS stimulator (eXimia®, Nexstim, Hel-
sinki, Finland) with a biphasic current waveform connected to a
figure-8 eXimia Focal Bipulse Coil (5 cm mean winding diameter)
to determine MEP stimulus–response curves (SRC) before and after
the intervention, as well as to stimulate during the intervention
(Fig. 1). Prior to the experiment, a 3-tesla Siemens TIM Trio MRI
system (Siemens AG, Germany) was used to obtain anatomical T1
weightedmagnetic resonance imaging (MRI) sequences for each par-
ticipant. Images were loaded into the eXimia NBS system for
coregistration with the participant’s head. Subjects were seated in
a comfortable reclining chair. The representation of the left EDC in
the right M1 was determined for each subject prior to the onset of
the first experiment. As initial intensity, we used 40% of maximum
stimulator output and the anatomically defined ‘hand knob’ of M1.
Whenever the initial stimulator output did not suffice to elicit MEPs,
we increased output in steps of 5%. We ensured that the orienta-
tion of the coil remained perpendicular to the central sulcus and
defined the coil site that consistently elicited the largest MEPs as
our stimulation site. Having determined this ‘hotspot’, we varied the
orientation of the coil in steps of roughly 10° around the original
orientation to ascertain which orientation elicited the largest MEP
at this site. The optimal coil orientation and location remained con-
stant throughout the session. We then determined the resting motor
threshold (RMT) by the relative frequency method, i.e. by detect-
ing the minimum stimulus intensity (closest 2% of maximum
stimulator output (MSO)) that resulted in MEPs >50 μV in the peak-
to-peak amplitude in at least 5 out of 10 consecutive trials [32]. We
calculated the RMT and the MEP stimulus–response curve to de-
termine corticospinal excitability at baseline (prior to intervention)
and after the intervention. The estimated electrical field of the NBS
system at the ‘hotspot’ in a depth of ~22mm [33,34] was then used
to determine the intensities for the MEP stimulus–response curve.
The initial intensity was set at 60% RMT and increased in steps of
10 V/m. Ten MEPs were recorded for each intensity step. We next
acquired a cortical map representation at 110% RMT andwith evenly
distributed stimuli until MEP could no longer be evoked in the in-
vestigated muscle. During the mapping procedure, a visual grid

416 D. Kraus et al. / Brain Stimulation 9 (2016) 415–424



(5 × 5 × 5mm) which was predefined in the navigation software was
used for guidance. The actual navigation coordinates of each stim-
ulus were then used for data analysis, resulting in a spacing of
approximately 3 mm. Finally, these spots were interpolated and
sampled on a 1 × 1 × 1 mm grid for visualization to close the gap
between stimulation sites and then projected onto the gyral anatomy
to decrease the variability of the cortical motor maps following a
procedure recently described in detail elsewhere [35]. Approxi-
mately 100 stimuli were applied during this ~15-minute mapping
procedure. Subjects were requested to keep their muscles relaxed
for the duration of all TMS measurements. We inspected the EMG
data during offline analysis, discarding any trials containing muscle
preactivation. Less than 1% of all trials were rejected due to con-
tamination by muscle activity.

Depotentiation of fragile stimulation effects
To identify stimulation effects that persisted despite voluntary

muscle contraction, participants were asked to perform a
depotentiation task [28,36]. This task consisted of a bar drifting rhyth-
mically up and down on a computer screen. Subjects were requested
to match the bar with a ball on the screen. This ball was con-
trolled by a hand orthosis (Amadeo®, Tyromotion GmbH, Austria)
attached to the subject’s hand. Subjects were instructed to extend
the fingers in the hand orthosis to initiate an upward movement
of the ball and to flex the fingers to move the ball downwards on
the screen accordingly. Whenmatched with the moving bar, the ball
on the screen turned from red to green. This depotentiation task,
which lasted for five minutes, was performed twice during the ex-
periment (Fig. 1): (a) after the first TMSmapping to rule out potential
effects on the TMS measurements per se [36] since 150 stimuli had
already been shown to induce transient changes of corticospinal ex-
citability [37], and (b) following the intervention to identify robust
changes of corticospinal excitability [28].

Experimental condition

An outline of the experiment is provided in Fig. 1. The interven-
tion lasted for approximately 40min and consisted of 15 runs. Each
run took approximately 2.5 min and contained 11 trials. A prepa-
ration phase of 2 s marked the onset of each trial. This was followed
by a 6 s motor imagery phase and a 6 s rest phase. The auditory cues
‘left hand’ and ‘go’ – presented by a recorded female voice – marked
the onset of the preparation and imagery phases. In all trials, sub-
jects performed the same kinesthetic motor imagery task during

the motor imagery phase. They were instructed to imagine and to
sense the opening of their left hand from a first person perspec-
tive without actually moving it. To prevent active movement, the
hand was attached to an immobile hand orthosis throughout the
experiment. The motor imagery feedback consisted of a red cross
in themiddle of a computer screen. During themotor imagery phase,
this cross changed to green whenever ERD was detected. In the rest
phases, the subjects were asked to count backwards from tenwithout
paying any attention to their left hand.

Experiment 1: TMS during sensorimotor desynchronization (n = 11)

A biphasic single TMS pulse was used to stimulate the EDC
‘hotspot’ of the right M1 with 110% RMT. Whenever event-related
desynchronization (ERD) was observed in the β-band (16–22 Hz)
during the motor imagery phase, the BCI2000 software triggered
cortical stimulation [38]. If ERD was sustained or reestablished after
the first stimulus, more than one TMS pulse was applied during the
motor imagery phase (Fig. 2a). The minimum interstimulus inter-
val was set at 500ms. ERD detection was confined to electrodes FC4,
C4 and CP4 over the right sensorimotor area [39]. Once ERD dis-
appeared, stimulation ceased.We used a linear classifier of 9 features
consisting of three 2-Hz frequency bins (16–22 Hz) and three chan-
nels (FC4, C4, and CP4) to detect decreases in sensorimotor rhythm
(SMR) power in the β-band. An autoregressive model, with a model
order of 16 and based on the Burg Algorithm, was used to esti-
mate frequency power [40]. Five consecutive 40 ms epochs had to
be classified as ERD-positive before stimulation could be initiated.
This ensured that stimulation occurred during prolonged sessions
of ERD only (Fig. 2). Prior to the experiment, a desynchronization
task, consisting of three motor imagery training runs without stim-
ulation, was performed for calibration to account for each subject’s
ability for desynchronization. Following this calibration session, an
individual desynchronization threshold, described in detail else-
where [41], was implemented for the intervention. This threshold
balanced challenge and motivation of the participant and pre-
served the specificity of the feedback, i.e. stimulation was not
provided until subjects attained consistent ERD. Stimulation did not
occur in instances where the threshold was not met due to event-
related synchronization (ERS) or when the ERD was not consistent,
i.e. not long and/or strong enough. The ERD threshold ensured that
each subject received the same task-related demand and that this
remained constant in each subject throughout the intervention. We
discarded the first 50 ms after each pulse and used a modified Burg

Figure 1. Experimental design and temporal structure of the study.
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algorithm for segmented data in the online analysis to interpolate
the gap [42]. This ensured that the EEG signal in the β-range was
not contaminated by the TMS artifact.

Experiment 2: TMS in rest without sensorimotor desynchronization
(n = 11)

In this control experiment, cortical stimulation was not trig-
gered by ERD. The stimulation intensity relative to RMT, the amount
of stimuli and the sequential pattern of cortical stimulation pulses
in this experiment were recorded from Experiment 1 andwere there-
fore identical in both experiments (Fig. 2b). This ensured that the
same number and pattern of cortical stimuli were applied in Ex-

periments 1 and 2, but independent of the ongoing brain activity
in the latter. In Experiment 2, subjects were instructed not to perform
motor imagery and to maintain muscle relaxation throughout the
intervention.

Data analysis

Matlab R2010b (Mathworks) with custom built code and SPSS
V21 (IBM) were used to analyze the data.

Resting motor threshold and map parameters
Using the coil coordinates acquired by the navigation system [35],

we projected all stimulation points of the cortical map onto the

Figure 2. Exemplary single trial raw data of EMG recordings (red) of the EDC muscle (in μV, left y-axis) and the online classifier output (black, ß-power, in arbitrary units, right
y-axis) of Experiment 1 (a) and 2 (b). Please note that, in the closed-loop feedback condition (a), motor imagery-related ERD frequently reaches the predefined threshold during the
movement imagination phase (6s after “go” signal). Moreover, TMS is applied during these ERD phases only. In the control condition (b), the same number and pattern of stimuli are
applied independent of the brain state. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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cortex along the coil axis in the direction of the magnetic field. The
resulting map area (with responses above 50 μV) was obtained for
each pre- and post-measurement. We then calculated the follow-
ing parameters: Mean MEP of the map, number of active grid cells
(Map area) and center of gravity (CoG). A repeatedmeasures ANOVA
(rmANOVA) was performed for changes in map parameters (Mean
MEP, Area and CoG) and RMT for the within-subject effect of Time
(pre-, post-) and the between-subject effect of Experiment (Exper-
iment 1, Experiment 2).

Changes in MEP amplitude and area under the MEP curve
rmANOVA with Time and Intensity as within-subject effect and

Experiment as between-subject effect were performed on the binned
data (Bins: 71–90% RMT, 91–110% RMT, 111–130% RMT, 131–
160% RMT) for MEP peak-to-peak amplitude and MEP area. When
violation of sphericity was observed, a Greenhouse–Geisser cor-
rection was performed. Post-hoc testing was carried out as described
below for the parameters of the stimulus response curve.

We fitted a three parameter Boltzmann sigmoidal function to the
pre- and post-intervention MEP SRC of all subjects. Peak-to-peak
amplitude was calculated using Equation 1 [43–45] and the area
under theMEP curvewas derived from Equation 2. A Huber weighted
least square method, which compensated for outliers and
heteroscedasticity, was used to perform a robust fit, i.e. the further
it moved away from the curve in each fitting iteration step, the
further the response decreased linearly in weight [46].

MEP S MEPmax k S S( ) = + −( )( )( )1 50exp (1)

MEP Area S MEPmax area m Sarea S( ) = + −( )( )( )1 50exp (2)

In Equations 1 and 2, MEP(S) represents the mean peak-to-
peak MEP and the MEP Area(S) stands for the mean area under the
MEP curve elicited by a stimulus S normalized to the RMT stimu-
lation intensity. The saturation amplitude of the peak-to-peak MEP
amplitude and the MEP area are represented by MEPmax and
MEPmax area. S50 and Sarea50 stand for the stimulation intensity
required to gain 50% of the maximum response, while k and m are
the slope parameters of MEP(S) and the MEP Area(S), respectively,
representing the recruitment gain in the corticospinal pathway [35]
or trans-synaptic excitability [47].

This resulted in one mean stimulus response curve for all sub-
jects under the pre and post conditions. We calculated a 95%
confidence for each curve parameter, as well as for the actual curves.
We then calculated the 95% confidence interval of the differences
between the means of the pre- and post-intervention curve pa-
rameters. This resulted in a confidence interval for the change
between pre and post condition similar to a paired sample t-test.
The method described by Altmann and Bland [48] was used to cal-
culate P-values for the differences in MEPmax, MEPmax area, S50,
Sarea50, k and m. These were then Bonferroni-corrected for mul-
tiple comparisons (α = 0.004).

Electrophysiological analysis
Differences in EMG-trace and event-related desynchronization

were assessed for statistical significance using a mixed permuta-
tion approach, allowing us to account for the five subjects who took
part in both experimental conditions. All tests were run for 10,000
repetitions.

Results

The average number of stimuli applied per subject was
304.2 ± 82.3 in both experiments. An overlaid plot of rectified EMG
enabled us to directly compare the background activity of both ex-
periments. The whole trial period, i.e. the −2s to 8s epoch relative
to the Go-cue, was detrended, rectified and baselined to zero. The
grand median activity within this epoch was 3.15 μV (range of
0–9.93 μV) for Experiment 1 and 2.46 μV (range of 0–7.95 μV) for
Experiment 2. There was no significant difference in the median ac-
tivity of these two experiments (Z = 0.178, p > 0.859). Furthermore,
statistical analysis for every time-point (i.e. millisecond-wise) re-
vealed no evidence for significant differences (at 5% alpha error)
between Exp. 1 and 2 during the feedback period when the stim-
ulation was applied. These findings indicate that the differences in
corticospinal excitability between conditions were not related to dif-
ferent EMG activity in the experiments.

EEG time–frequency analysis illustrated the differential infor-
mation contents between imagery and rest in Experiment 1 (motor
imagery) and Experiment 2 (control), with enhanced ERD in the
former (Fig. 3a). Stimulus-averaged EEG time–frequency analysis re-
vealed contingency of TMS pulses to preceding beta-ERD in
Experiment 1 but not in Experiment 2 (Fig. 3b). Evaluation of EEG
topography of beta-power showed distributed MI-related ERD with
a particular focus over contralateral sensorimotor areas in Exper-
iment 1 in contrast to Experiment 2 (Exp.1–Exp.2) (Fig. 3c).

MEP mapping

The rmANOVA revealed a significant effect of Time × Experi-
ment on the mean MEP of the cortical map (F1, 20 = 12.33; p = 0.002)
but not onMap area or CoG. A post-hoc paired sample t-test between
pre and post mean MEP of the cortical map revealed a significant
increase in Experiment 1 (p = 0.0113) and a decreasing trend in Ex-
periment 2 (p = 0.0748). Fig. 4 shows the topographic changes in
the cortical TMS maps, revealing consistent MEP increases and
decreases in comparison to baseline for Experiments 1 and 2, re-
spectively. The MEP increases in Experiment 1 were distributed and
covered large parts of the pre- and postcentral gyrus, while small
parts of the precentral gyrus showed MEP increases in Experi-
ment 2 as well. There were no significant effects of Time or
Experiment on any of the other MEP map measurements (Table 1).
Measures of goodness of fit supported the Boltzmann sigmoidal func-
tion and the validity of subsequent statistical analysis: The pre/
post goodness of fit was computed for the MEP amplitude and the

Table 1
Summary of RMT and map parameters before and after the intervention (Mean ± SD). CoG in individual MRI coordinates with reference to the lower right corner. *indicates
significant change post vs. pre (p < 0.05).

Measure RMT (% MSO) Mean MEP (μV) Map area (mm3) CoG anterior–
posterior (mm)

CoG lateral–
medial (mm)

Pre
Experiment 1 45.9 ± 9.2 147.8 ± 46.5 2260.4 ± 1556 110.2 ± 8 54.5 ± 8.5
Experiment 2 43.9 ± 7.5 220.5 ± 102.1 1734.5 ± 856.7 116.1 ± 26 54.2 ± 10.1
Post
Experiment 1 47.5 ± 9.6 212.2 ± 103.2* 2872.7 ± 1510.7 109.5 ± 7.8 54.3 ± 8.8
Experiment 2 44 ± 8.6 170.9 ± 67.2 1513.7 ± 881 114 ± 24.8 56.3 ± 5.2
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MEP area of Experiment 1. This resulted in values of r2 = 0.95/0.94
and r2 = 0.97/0.98. For the MEP amplitude and the MEP area of Ex-
periments 2, the pre/post goodness of fit values were r2 = 0.99/
0.99 and r2 = 0.98/0.99, respectively.

MEP stimulus–response curves

rmANOVA after Greenhouse-Geisser correction revealed a sig-
nificant effect of Experiment for the MEP area (F1, 42 = 14.95;
p < 0.001), a significant effect of Intensity for both MEP peak-to-
peak amplitude (F2.1, 88.3 = 183.22; p < 0.001) and MEP area (F1.51,
63.55 = 194.65; p < 0.001), an interaction of Experiment × Intensity for
MEP peak-to-peak amplitude (F2.1, 88.3 = 4.7; p = 0.01) and MEP area
(F1.51, 63.55 = 15.9; p < 0.001), as well as an interaction for Time × In-
tensity for theMEP peak-to-peak amplitude (F1.54, 64.55 = 5.68; p = 0.01)
and the MEP area (F1.175, 49.4 = 6.81; p = 0.009). In addition, the in-
teraction Experiment × Time was significant for the MEP peak-to-
peak amplitude (F1, 42 = 4.15; p = 0.048) and theMEP area (F1, 42 = 4.98;
p = 0.031). The empirical data and the Boltzmann fit of the mean
MEP stimulus–response curve (Fig. 5a + c) and the area under the
MEP curve (Fig. 5b + d) for pre- and post-intervention are pre-
sented for Experiment 1 (Fig. 5a + b) and Experiment 2 (Fig. 5c + d),
respectively. There is a significant increase in corticospinal excit-
ability between 110% and 130% of RMT in the stimulus response

curve of Experiment 1, which is reflected in decreases of both S50
and Sarea50 and in increases of both slopes k and m.

Experiment 1: TMS with sensorimotor desynchronization
In comparison to baseline, significant alterations were ob-

served in the Boltzmann parameters S50, Sarea50, k and m, but not
in MEPmax amplitude, MEPmax area (Fig. 5a + b), or RMT follow-
ing the intervention (pre: 45.9 ± 9.2% MSO; post: 47.5 ± 9.6% MSO).

The slopes k and m increased to 149.1% (p = 0.0008) and 149.3%
(p = 0.0003) of the baseline value, respectively. S50 and Sarea50 de-
creased to 91.2% (p < 0.0001) and 89.7% (p = 0.0002) of the baseline
value, respectively (Fig. 6a). The MEP increase in the steep part of
the SRC correlated positively with the applied number of ERD trig-
gered stimuli (rho = 0.82; p = 0.004).

Experiment 2: TMS without sensorimotor desynchronization
TMS applied during rest led to a significant decrease in MEPmax

to 84.4% of baseline value (p < 0.0001) and to 87% of baseline value
(p = 0.0015) in MEPmax area (Fig. 5b). Changes were not signifi-
cant in S50, Sarea50, k and m or RMT (pre: 43.9 ± 7.5% MSO; post:
44 ± 8.6% MSO) (Fig. 5c + d, Fig. 6b). There was no correlation of the
SRC with the applied number of stimuli.

Discussion

In the present study, we tested whether closed-loop single-
pulse cortical stimulation triggered bymotor imagery-related ß-ERD
could induce a robust increase in corticospinal excitability. We chose
kinesthetic motor imagery because this task activates similar neu-
ronal correlates to those during motor execution [49–52], increases
corticospinal excitability [53–56] and decreases short intracortical
inhibition (SICI) [57] in a muscle- and time-specific way [55].
However, to the best of our knowledge, previous cortical stimula-
tion studies revealed an increase of corticospinal excitability during
specific brain states only [11,12] and did not show any robust changes
following a brain state-dependent intervention.

A stable LTP-like increase in corticospinal excitability has been
shown only in studies using peripheral stimulation with either
passive movement or electrical stimulation of the peroneal nerve
timed to the peak negativity of the movement-related cortical po-
tential during motor imagery [58,59]. Interestingly, these studies
showed no increase of corticospinal excitability whenmotor imagery
was performed without additional input, i.e. peripheral stimula-
tion. Bearing this in mind, we reasoned that such additional input
could also be provided at the cortical level. We therefore con-
ducted a pairing study in which TMS pulses were applied during
ERD. The motor-imagery related power modulations resulted in dis-
tributed ERD of non-primary motor areas, e.g. temporo-parietal and
precuneus area, as well; the most relevant modulation however oc-
curred over contralateral sensorimotor areas with the strongest ERD
projecting to C4, i.e. the hand knob area of the motor cortex which
was used for online decoding and targeted by TMS. We hypoth-
esized that such an approach could stimulate the cortico-cortical
connections to pyramidal neurons during depolarization, albeit the

Figure 3. (a) EEG time–frequency analysis shows evidence for stronger desynchronization during the feedback period relative to rest for the feedback channels (i.e. FC4, C4
and CP4), contrasting Experiment 1 with Experiment 2 (Exp.1–Exp.2). (b) Stimulus-locked EEG time–frequency analysis shows frequency-contingency of TMS pulses in Ex-
periment 1 in comparison to Experiment 2 (Exp.1–Exp.2), based on the spatial average of all channels. The black line delineates areas with desynchronization at the p < 0.01
level, indicating significant desynchronization in the 16–22 Hz range around 700–200 ms before the TMS-pulse. The gray trace indicates the time–frequency response of
the TMS-artifact. All plots present the log10 of the p-value in a color-coded fashion, with blue and red colors showing relative desynchronization and synchronization, re-
spectively. (c) Evaluation of EEG topography of beta-power (16–22 Hz) in the 500 ms period before the GO-cue and with TMS artifact rejection (−5 ms to +20 ms around the
pulse) revealed distributed MI-related ERD in comparison to the rest period baseline with a particular focus over contralateral sensorimotor areas in Experiment 1 in con-
trast to Experiment 2 (Exp.1–Exp.2) with the strongest ERD projecting to C4 at the p < 0.0001 level. The red trace around FC4, C4 and CP4 highlights the channels used for
on-line classification. Colored areas indicate ERD of at least p < 0.05 level.
◀

Figure 4. Topographic changes in cortical TMS maps pre- versus post-intervention
on the group level. Color bar indicates percentage increases in MEP size (red/
yellow) and decreases in MEP size (blue/turquoise); the green dot represents the
stimulation spot where the stimulus response curve was acquired.
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exact mechanisms of both TMS and ERD still require clarification.
Our approach modulated the corticospinal excitability without rel-
evant muscle contraction by decreasing intracortical inhibition via
motor imagery-related ERD [12], using ERD as presynaptic input for
a Hebbian-like stimulation protocol [60].

The results of the present study indicate that stimulation during
the β-ERD brain state presents an appropriate target for closed-
loop approaches aiming at an increase of motor cortex excitability.
These findings are in accordance with previous TMS studies which
showed an inverse correlation of MEP amplitude with β-band power
[11] and an inverse correlation of intracortical inhibition with the
ERD level during motor imagery [12]. A decrease of intracortical in-
hibition, in turn, was shown to enhance the effectiveness of α-motor
neuron recruitment, i.e. the corticospinal excitability [61,62].

To further clarify the neurophysiological mechanisms of the in-
creases observed in corticospinal excitability and indexed by
significant changes of the peak-to-peak stimulus–response curve,
we analyzed changes of the area under the MEP curve. This enabled
us to disentangle whether the observed increase in MEP peak-to-

peak amplitude was mediated by more synchronous firing of the
stimulated neuronal population, repetitive discharges of motor
neurons or by the recruitment of additional neurons [63,64]. The
detected increase in peak-to-peak MEP amplitudes was paralleled
by a significant increase in the respective area under the MEP curve,
a finding that supports the concept that the increase in corticospi-
nal excitability is the result of the recruitment of additional neurons
[65,66]. Moreover, repetitive discharges of motor neurons cannot
explain our findings (restricted to the steep part of the stimulus re-
sponse curve), since such phenomena have been reported for the
saturation level and during additional pre-activation of the muscle
only [64]. Since the MEP changes in the present study were ob-
served during rest (pre- and post-intervention), conventional
explanations, i.e. relating them to the background muscle activity
[43], a higher recruitment gain [43] or trans-synaptic excitability
of the corticospinal pathway during movement [46] are not appli-
cable either. The increase in corticospinal excitability between
110% and 130% of RMT in the stimulus response curve of our
intervention, reflected in decreases of both S50 and Sarea50 and in

Figure 5. Empirical data (dots) and Boltzmann fit (lines) of (a,c) the mean MEP stimulus–response curves (in μV) and (b,d) the area under the MEP curve (in μV ×ms) for
pre-intervention (gray) and post-intervention (black) for Experiment 1 (a,b) and Experiment 2 (c,d), respectively. Each Boltzmann curve is paralleled by thin lines running
above/below it and indicating the respective 95% confidence intervals. Shaded areas indicate significant differences between pre vs. post curves.
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increases of both slopes k and m, is therefore most likely due to the
additional recruitment of higher threshold corticospinal neurons
[67–69]. The correlation detected between the increased cortico-
spinal excitability and the number of ERD triggered stimuli suggests
a dose-effect for this intervention. This question needs to be ad-
dressed in detail in future studies.

Single-pulse stimulation at rest (as applied in Experiment 2) in-
creased the slope parameters k andm as well, albeit not significantly.
However, like in standard low-frequency TMS protocols [68,70] or
traditional inhibiting PAS protocols [68,71], this intervention de-
creased MEPmax and the MEPmax area. When pairing the same
pattern and number of stimuli with the brain state (as applied in
our β-ERD-triggered stimulation paradigm, Experiment 1) the de-
creasing effect of single-pulse stimulation on the plateau of the
stimulus response curve dissolved, thus highlighting the impor-
tance of the brain state on the induced effects on corticospinal
excitability.

In future studies, some of the limitations of the present study
need to be addressed: We applied the identical sequential pattern
and number of cortical stimuli during both interventions by re-
cording them during the ERD experiment and applying them several
days later during the non-ERD experiment. This might introduce
order effects (although this is improbable due to the wash out period
between the interventions) and could be avoided by randomizing
Experiments 1 and 2 and waiving the matching of the stimulation
patterns. More relevantly, future experiments may consider adding
a control attention task to the experimental setup to ensure that
different vigilance levels do not influence the observed effects. Al-
ternatively, a control experiment with the same task but
asynchronous delivery of pulses or with varying levels of ERDmight
be considered in future.

In conclusion, we showed that TMS of the motor cortex during
β-ERD increased corticospinal excitability that persisted beyond the
period of stimulation and the depotentiation task. These findings
may be instrumental in developing new closed-loop interventions
based on the oscillatory brain state to facilitate use-dependent plas-
ticity, e.g. in the context of neurorehabilitation.
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Abstract  24 

Recovery from paralysis after stroke necessitates restoration of motor network 25 

connectivity. This requires the re-establishment of functionally relevant network 26 

interactions. Standard brain stimulation protocols, however, address plasticity in the 27 

resting brain. We investigated a novel stimulation protocol to enhance task-specific 28 

motor network interactions. 29 

Sensorimotor event-related desynchronization (ERD) in the beta-band (16-22 Hz) 30 

during motor-imagery (MI) of finger extension triggered transcranial magnetic 31 

stimulation (TMS) to the respective cortical motor representation within a brain-32 

computer interface environment in eleven healthy subjects. The same number and 33 

pattern of stimuli were applied in a control group of eleven subjects during rest, i.e., 34 

independent of MI-related ERD.  35 

The application of approximately 300 TMS pulses – when applied state-dependently 36 

only -resulted in a significant and frequency-specific (16-22 Hz) enhancement of 37 

cortico-spinal and cortico-cortical motor network connectivity in the course of the 38 

intervention and thereafter. This network plasticity was task-specific, i.e., occurred in 39 

the subsequent motor task only during initiation of finger extension. 40 

Functional enhancement of task-specific network interactions may be achieved when 41 

the cortical input is paired with self-regulated intrinsic brain states. These findings are 42 

probably mediated via a Hebbian mechanism and are potentially important for 43 

developing closed-loop brain stimulation for the treatment of hand paralysis after 44 

stroke.  45 



3 
 

Significance  46 

Recovery from paralysis after stroke necessitates restoration of task-specific motor 47 

network interactions. Standard brain stimulation protocols, however, address 48 

plasticity in the resting brain.  49 

In this study with healthy subjects, we investigated a novel stimulation protocol that 50 

applied intrinsic brain states during motor-imagery of finger extension to trigger 51 

transcranial magnetic stimulation to the respective cortical motor representation 52 

within a brain-computer interface environment. The state-dependent approach – but 53 

not the same number and pattern of stimuli applied during rest - resulted in a 54 

significant and frequency-specific enhancement of cortico-spinal and cortico-cortical 55 

motor network connectivity in the course of the intervention and thereafter. This 56 

network plasticity was task-specific, i.e., occurred in the subsequent motor task only 57 

during initiation of finger extension. 58 

  59 
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Introduction  60 

Neural plasticity at the local and systems level contributes to the reorganization and 61 

repair of the lesioned brain (Murphy and Corbett, 2009) and is a largely stimulus-62 

dependent synaptic phenomenon (Small et al., 2013; Dayan and Cohen, 2011). For 63 

the induction of plasticity in the human brain, different transcranial magnetic 64 

stimulation (TMS) protocols are available, e.g. application of pulses with a fixed 65 

frequency (rTMS), patterned theta burst stimulation (TBS) and associative pairing of 66 

distinct stimuli (PAS), to name a few (Kraus et al., 2016).  67 

In the motor system, local plasticity is usually captured as the modulation of 68 

cortico-spinal excitability that outlasts the stimulation itself-indexed by the motor-69 

evoked potential (MEP) amplitude (Ziemann et al., 2008). The strength of the 70 

connectivity between motor cortex and specific muscles can however also be 71 

measured by the magnitude of coherence between cortical and muscular activity, i.e. 72 

by cortico-muscular coherence (CMC; Schnitzler and Gross, 2005). This measure 73 

provides additional motor state-dependent information on the cortical topology, 74 

spectral characteristics, and type of interaction between cortex and muscles on a 75 

moment-to-moment basis (Mehrkanoon et al., 2014).  76 

Systems-level plasticity is commonly assessed via the strength of connections 77 

between spatially distinct cortical regions by identifying motor network nodes with 78 

correlated activity, e.g. of the resting blood oxygen-level-dependent (BOLD) signal 79 

(Fox and Raichle, 2007). When measuring the magnitude of coherence between 80 

nodes within a cortico-cortical oscillatory network, e.g., with electroencephalography 81 

(EEG), additional information can be acquired. This approach allows for 82 

characterizing motor state-dependent transitions by distinct carrier frequencies which 83 

reflect different types of neural processing (Schnitzler and Gross, 2005). 84 
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Several TMS protocols have been shown to modify both local and network-85 

level plasticity; rTMS (Bestmann et al., 2003; 2005), PAS (Veniero et al., 2013) and 86 

TBS (Nettekoven et al., 2014; Volz et al., 2016) not only modulated the excitability of 87 

the stimulated motor cortex but also its connectivity with remote but interconnected 88 

brain areas. One common feature of these protocols was their application during rest; 89 

the induced local and network-based plasticity were evaluated at rest as well. 90 

Resting-state connectivity within the motor system is however only weakly correlated 91 

with task-related network connections (Rehme et al., 2013). Functional restoration 92 

after brain lesions such as stroke needs, therefore, a more targeted reorganization of 93 

connectivity (Small et al., 2013), e.g. via the enhancement of task-specific motor 94 

network interactions. 95 

For this purpose, current task-related approaches apply single-pulse TMS 96 

concurrently with specific voluntary movements (Bütefisch et al., 2004; Thabit et al., 97 

2010; Bütefisch et al., 2011; Narayana et al., 2014). Even though these activity-98 

dependent interventions have been shown to effectively induce local motor cortex 99 

(M1) plasticity, evidence for enhanced network-level connectivity is still missing. 100 

Moreover, these protocols depend on voluntary muscle control and are, therefore, not 101 

applicable to severely affected patients, e.g., with hand paralysis after stroke. For 102 

them, novel plasticity-inducing interventions are required that reestablish both cortico-103 

spinal and motor network connectivity. Activating intrinsic brain states without 104 

performing actual movements could constitute a viable solution for state-dependent 105 

stimulation that targets functionally specific oscillatory networks (Kraus et al., 2016).  106 

Motor-imagery (MI) is known to mimic actual movements with regard to both 107 

spectral activation, e.g., sensorimotor event-related desynchronization (ERD; 108 

Pfurtscheller and Neuper, 1997; Miller et al., 2007; 2010), and cortical connectivity 109 
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patterns, e.g. interhemispheric coherence (Vukelic et al., 2014; Bauer et al., 2015; 110 

Vukelic and Gharabaghi, 2015 a,b). Furthermore, MI-related ERD has been shown to 111 

reduce intracortical inhibition (Takemi et al., 2013); it may, therefore, be applied as 112 

the pre-synaptic input for an excitatory drive via TMS within a brain-computer 113 

interface environment (Gharabaghi et al., 2014; Kraus et al., 2016).  114 

We hypothesized that such a modified PAS protocol (Suppa et al., 2017) 115 

would modulate the susceptibility of cortical motor circuits to an external input and 116 

thereby fulfill the requirements of Hebbian-stimulation at the network level (Hebb, 117 

1949). Here, we provide empirical support that state-dependent primary motor cortex 118 

(M1) stimulation enhanced task-specific motor network connectivity beyond the site 119 

of stimulation in a frequency-selective way. 120 

 121 

Material and method 122 

Experimental design 123 

Subjects 124 

All subjects gave their written informed consent prior to participation in the study, 125 

which had been approved by the local ethics committee. The study was carried out in 126 

accordance with the latest version of the Declaration of Helsinki. The current work 127 

was part of a larger study on plasticity induction by brain state-dependent TMS. In the 128 

group of healthy subjects reported here, we have previously described an increase in 129 

cortico-spinal excitability (CSE), indexed by MEP changes, following the same 130 

intervention (Kraus et al., 2016). This previous work studied local M1 plasticity of the 131 

stimulated sensorimotor cortex after the intervention and at rest. In the present 132 
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secondary analysis, we intended to study task-related network-level plasticity and the 133 

underlying intervention-related neurophysiological mechanisms. We, therefore, 134 

explored more distributed network changes of functional connectivity (both cortico-135 

cortical and cortico-muscular) during the intervention and there after, i.e., during an 136 

isometric motor task. This allowed us to capture task-related online effects and 137 

aftereffects of coherent oscillatory activity. The material and methods of data 138 

acquisition applied here are identical to the previous study (Kraus et al., 2016) and 139 

are cited accordingly: Seventeen healthy subjects (mean age, 26.4 ± 3.4 years, 140 

range 21–35 years, 10 male) with no contraindications to TMS (Rossi et al., 2009) 141 

and no history of psychiatric or neurological disease participated. Five subjects took 142 

part in both experiments; in these cases, we ensured that there was a pause of at 143 

least five days between the sessions to avoid carry-over effects. The study 144 

comprised a total of 22 sessions, i.e., 11 subjects/sessions for Experiment 1 and 11 145 

subjects/sessions for Experiment 2  (Kraus et al., 2016). Right-handedness was 146 

confirmed by the Edinburgh handedness inventory (Oldfield, 1971)  147 

Electromyography (EMG) 148 

We used Ag/AgCIAmbuNeuroline 720 wet gel surface electrodes (Ambu GmbH, 149 

Germany) to record electromyography (EMG) activity from the left Extensor Digitorum 150 

Communis (EDC) muscle during the intervention. We placed two electrodes on the 151 

muscle belly 2 cm apart from each other. After filtering (antialiasing filter) between 152 

0.16 Hz and 1 kHz, EMG was recorded with 5 kHz sampling rate and downsampled 153 

to 1 kHz by the BrainAmp Amplifier (Kraus et al., 2016).   154 
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Electroencephalography (EEG) 155 

Throughout the experiment, Ag/AgCl electrodes and BrainVision software with DC 156 

amplifiers and an antialiasing filter (BrainAmp, Brainproducts GmbH, Germany) were 157 

used to record electroencephalography (EEG) signals in a 32 channel setup that 158 

complied with the international 10–20 system (Fp1, Fp2, F3, Fz, F4, FT7, FC5, FC3, 159 

FC1, FC2, FC4, FC6, FT8, C5, C3, C1, Cz, C2, C4, C6, TP7, CP5, CP3, CP1, CPz, 160 

CP2, CP4, CP6, TP8, P3, P4, POz with FCz as reference). For each experiment, 161 

impedances at all electrodes were set below 10 kΩ. After filtering (antialiasing filter) 162 

between 0.16 Hz and 1 kHz, EEG was recorded with 5 kHz sampling rate and 163 

downsampled to 1 kHz by the BrainAmp Amplifier (Kraus et al., 2016). The EEG 164 

signals were, then, transferred for online analysis to BCI2000 software, where they 165 

were later stored offline (Schalk et al., 2004; Kraus et al., 2016)  166 

TMS protocol 167 

We used a navigated TMS stimulator (eXimiaR, Nexstim, Helsinki, Finland) with a 168 

biphasic current waveform connected to a Figure-8 eXimia Focal Bipulse Coil (5 cm 169 

mean winding diameter) during the intervention (Figure 1D). Prior to the experiment, 170 

a 3-tesla Siemens TIM Trio MRI system (Siemens AG, Germany) was used to obtain 171 

anatomical T1 weighted magnetic resonance imaging (MRI) sequences for each 172 

participant. Images were loaded into the eXimia NBS system for coregistration with 173 

the participant’s head. Subjects were seated in a comfortable reclining chair. The 174 

representation of the left extensor digitorium carpi (EDC) in the right M1 was 175 

determined for each subject prior to the onset of the first experiment. As initial 176 

intensity, we used 40% of maximum stimulator output and the anatomically defined 177 

‘hand knob’ of M1. Whenever the initial stimulator output did not suffice to elicit 178 

MEPs, we increased output in steps of 5%. We ensured that the orientation of the coil 179 
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remained perpendicular to the central sulcus and defined the coil site that 180 

consistently elicited the largest MEPs as our stimulation site. Having determined this 181 

‘hotspot’, we varied the orientation of the coil in steps of roughly 10° around the 182 

original orientation to ascertain which orientation elicited the largest MEP at this site. 183 

The optimal coil orientation and location remained constant throughout the session. 184 

We then determined the resting motor threshold (RMT) by the relative frequency 185 

method, i.e., by detecting the minimum stimulus intensity (closest 2% of maximum 186 

stimulator output (MSO)) that resulted in MEPs >50 μV in the peak-to-peak amplitude 187 

in at least 5 out of 10 consecutive trials (Groppa et al., 2012).  188 

Study design  189 

The general design of the experiment is illustrated in Figure 1A. The experiment 190 

consisted of a forty-minute intervention; an isometric motor task (5 min) was 191 

performed before and after the intervention, which consisted of 15 runs. Each run 192 

lasted approximately 2.5 min and included 11 trials. Each trial started with a 6 s rest 193 

phase followed by a 2 s preparation phase and a 6 s motor imagery phase (Figure 194 

1D). During the motor imagery phase, subjects performed a kinesthetic motor 195 

imagery task of finger extension. They were instructed to imagine and to sense the 196 

finger extension during the opening of their left hand from a first-person perspective 197 

without actually moving it. To prevent active movement, the hand was attached to an 198 

immobile hand orthosis throughout the experiment. The motor-imagery feedback 199 

consisted of a red cross in the middle of a computer screen. During the motor-200 

imagery phase, this cross changed to green whenever ERD was detected. In the rest 201 

phases, the subjects were asked to count backward from ten without paying any 202 

attention to their left hand. The subjects were, moreover, asked to sustain or 203 
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reestablished the green cross whenever it turned red during the imagery phase by 204 

reinitiating motor-imagery of finger extension. 205 

A biphasic single TMS pulse was used to stimulate the EDC ‘hotspot’ of the 206 

right M1 with 110% RMT for cortical brain-state dependent stimulation (experimental 207 

group). Whenever event-related desynchronization (ERD) was observed in the beta-208 

band (16–22 Hz) during the motor imagery phase, the BCI2000 software triggered 209 

cortical stimulation (Gharabaghi et al., 2014). This frequency band was selected on 210 

the basis of previous work in our group on beta-band oscillatory circuits in the 211 

extended motor network (Khademi et al., unpublished observation). If ERD was 212 

sustained or reestablished after the first stimulus, more than one TMS pulse was 213 

applied during the motor imagery phase (Figure 1D). On average, 331 ± 77 TMS 214 

pulses were applied per subject. The minimum interstimulus interval was set at 500 215 

ms. ERD detection was confined to electrodes FC4, C4 and CP4 over the right 216 

sensorimotor area (McFarland et al., 2000).The method that was used to detect ERD 217 

has been described in detail elsewhere (Gharabaghi et al., 2014; Kraus et al., 2016). 218 

Prior to the experiment, a desynchronization task, consisting of three motor-imagery 219 

training runs without stimulation, was performed for calibration to account for each 220 

subject’s ability for desynchronization (Kraus et al., 2016). In the primary data 221 

analysis (Kraus et al., 2016), the stimulus-locked EEG time-frequency analysis 222 

revealed frequency-contingency of TMS pulses during the intervention in comparison 223 

to control, i.e., indicating ERD specificity in the 16-22 Hz range before the TMS-224 

pulses. 225 

In the control group, cortical non-specific brain stimulation, cortical stimulation 226 

was not triggered by ERD. The stimulation intensity relative to RMT, a number of 227 

stimuli and the sequential pattern of cortical stimulation pulses in this measurement 228 
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were recorded from the experimental group and were therefore identical in both 229 

groups (Figure 1B). This ensured that the same number and pattern of cortical stimuli 230 

were applied in experimental and control group, but independent of the ongoing brain 231 

activity in the latter. The subjects in the control group were instructed not to perform 232 

motor imagery and to maintain muscle relaxation throughout the intervention (Kraus 233 

et al., 2016). 234 

During the isometric motor task, a horizontal target bar was presented on a 235 

screen 150 cm in front of the subjects and oscillated vertically with a frequency of 0.1 236 

Hz (i.e., cycles of 10 s length). The vertical position of a simultaneously presented 237 

cursor could be controlled by the participant via the force of the fingers (digit II–V) 238 

which were connected to the robotic orthosis via small magnets attached to the 239 

fingertips (Amadeo®, Tyromotion, Graz, Austria). During this isometric motor task, 240 

subjects were instructed to control the cursor through flexion and extension to follow 241 

the moving horizontal target bar on the screen as quickly and accurately as possible 242 

(Figure 1C). This task consisted of 15 trials (10 s each) per each run (2 runs), each of 243 

which had one flexion (5 s) and one extension (5 s) phase (Kraus et al., 2016; Naros 244 

et al., 2016). 245 

  246 
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EEG/EMG analysis 247 

The data analysis in this study was different from the previous one (Kraus et al., 248 

2016), which studied motor evoked potentials only. Here, we intended to capture 249 

network modulations during the intervention and the motor task thereafter. Data were 250 

analyzed offline using the MATLAB (The MathWorks, Inc., Natick, Massachusetts, 251 

United States) and FieldTrip open source MATLAB toolbox (http://fieldtrip. 252 

fcdonders.nl/; MathWorks). To study the synchronous oscillatory activity of the 253 

cortical networks, we applied two complementary methods. We investigated (i) 254 

transcranial stimulation evoked potentials (TEP) during the TMS intervention,  and (ii) 255 

corrected imaginary part of the coherence (ciCOH) both during the intervention and 256 

the isometric motor task afterward. Additionally, we investigated (ii) cortico-muscular 257 

coherence (CMC) both during the intervention and the isometric motor task to study 258 

the synchronous oscillatory activity of EEG and EMG. We, furthermore, explored the 259 

phase-frequency relationships within the cortico-muscular network.  260 

Data preprocessing 261 

First, the TMS artifact was cut out, i.e. from -5 ms to +15 ms with respect to the TMS 262 

onset. Then, the data during the intervention was cut into 1 s epochs preceding and 263 

following each TMS pulse, respectively. If another TMS pulse occurred within this 264 

period, i.e. -1 s to +1 s, this epoch was not considered for further analysis to avoid 265 

interferences of different stimuli. Thereby, on average of 167 ± 80 epochs were 266 

removed from the 331 ± 77 TMS pulses, which were applied per subject. Then, the 267 

remaining epochs were visually inspected and excluded, when ocular and muscular 268 

artifacts occurred; thereby, on average 45 ± 30 epochs had to be removed. This 269 

yielded on average 148 ± 39 TMS pulses (and respective epochs) per subject for 270 

further analysis. In the primary data analysis (Kraus et al., 2016), we have already 271 
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tested that there was no significant difference in the EMG activity of the two 272 

experiments during the intervention and that the induced differences in cortico-spinal 273 

excitability after the intervention were not related to different EMG activity in the 274 

experiments. 275 

For the isometric motor task, each trial (10 s) was divided into ten 1 s 276 

segments. They were visually inspected and excluded, when ocular and muscular 277 

artifacts occurred, yielding on average 246 ± 32 epochs per subject, i.e., 25 ± 5 278 

epochs per 1 s segment.  279 

Assessing cortico-cortical connectivity with TEP  280 

In line with former reports (Lioumis et al., 2009; Premoli et al., 2014a), we considered 281 

five different TMS-evoked EEG potential (TEP) components (Figure 3A), i.e., P25 282 

(25-30 ms), N45 (35-60 ms), P70 (60-80 ms), N100 (85-140 ms), and P180 (150-230 283 

ms).To assess the TEP peak amplitudes, the signals from each EEG channel were 284 

averaged after baseline correction and subtraction of the mean amplitude during an 285 

interval between -100 ms and -10 ms before TMS onset (Petrichella et al., 2017). 286 

Later, the mean of the amplitude for the specified latency was divided by the baseline 287 

absolute value to normalize the amplitude of TEP components for further analysis.  288 

Assessing cortico-cortical connectivity with ciCOH 289 

We used the corrected version of the iCOH function (ciCOH) as suggested by Ewald 290 

et al. (2012). The ciCOH shares the same properties as the original iCOH function 291 

but includes additional features, i.e., compensating for preference for remote 292 

interactions (Ewald et al., 2012). The ciCOH results in an increase in signal to noise 293 

ratio (SNR), which potentially leads to observations of interactions, which are 294 

otherwise hidden in the noise when studying connectivity between sensors. The 295 

http://www.sciencedirect.com/science/article/pii/S1053811915000853#bb0135
http://www.sciencedirect.com/science/article/pii/S1053811915000853#bb0135
http://www.sciencedirect.com/science/article/pii/S1053811915000853#bb0135
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imaginary part of coherence was computed by using the cross-spectral density matrix 296 

frequency analysis between the C4 channel and all other EEG channels. The cross-297 

spectral density matrix was calculated frequency-wise using the multi-tapper method 298 

(9 tappers) over the frequency range from 2 to 46 Hz in steps of 1 Hz. Then, the 299 

imaginary part of coherence was normalized according to the square root of the real 300 

part and was Fisher z-transformed to fit a Gaussian distribution (Nolte et al., 2004; 301 

Rosenberg et al., 1989). For contrasting conditions, the absolute value of the ciCOH 302 

was used. The contrast between pre- and post-TMS ciCOH indicated the induced 303 

cortico-cortical coherence, which was used for further analysis.  304 

Assessing cortico-muscular connectivity with CMC 305 

Cortico-muscular coherence (CMC) was computed by using the cross-spectral 306 

density matrix frequency analysis between EEG and a rectified signal of EMG 307 

channels. The cross-spectral density matrix was calculated using the multi-tapper 308 

method (9 tappers) over the frequency range of 2 to 46 Hz in steps of 1 Hz. We 309 

obtained the magnitude of the coherence values by normalizing the magnitudes of 310 

the summed cross-spectral density matrix for each frequency to the corresponding 311 

power values at that frequency. Then the CMC magnitudes were Fisher z-312 

transformed to fit a Gaussian distribution (Nolte et al., 2004; Rosenberg et al., 1989). 313 

The contrast between pre- and post-TMS CMC indicated the induced cortico-314 

muscular coherence, which was used for further analysis.  315 

Assessing the relationship between ciCOH and CMC 316 

We used Spearman's rank correlation to evaluate the relationship between ciCOH 317 

and the corresponding CMC across subjects. The statistically significant clusters of 318 

the previous analyses for ciCOH and CMC (see above) were chosen for this 319 

http://www.sciencedirect.com/science/article/pii/S1053811915000853#bb0255
http://www.sciencedirect.com/science/article/pii/S1053811915000853#bb0340
http://www.sciencedirect.com/science/article/pii/S1053811915000853#bb0255
http://www.sciencedirect.com/science/article/pii/S1053811915000853#bb0340
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estimation. Specifically, the maximum ciCOH/CMC value from each cluster was 320 

subtracted from the median value of the respective cluster for each subject 321 

individually to compensate for variability. Per subject, one pair of ciCOH/CMC was 322 

used for further analysis.  323 

Assessing the CMC phase-frequency relationships  324 

The phase-frequency relationships (PFR) were estimated frequency-wise (every 1 325 

Hz) following the CMC estimation (Witham et al., 2011) PFR were estimated for pre- 326 

and post-TMS epochs. The phase was estimated by taking the argument from the 327 

estimated EEG-EMG cross-spectrum. The phase delays were calculated by fitting a 328 

line to the phase–frequency plot by using linear regression over the frequency range, 329 

which showed a significant increase in the CMC magnitude (Witham et al., 2011). 330 

 331 

Statistical analysis 332 

Testing significance of cortico-cortical connectivity with TEP 333 

Cluster-based randomization test statistic (Maris et al., 2007) was chosen to quantify 334 

the significance of the difference between experimental and control groups. The null 335 

hypothesis was that there is no difference between the amplitude of TEP components 336 

of experimental and control groups. The student t-test (p=0.05) was chosen for the 337 

selection of significant channels. When the t-statistic exceeded the threshold 338 

(p=0.05), adjacent EEG channels were clustered in the same set. Cluster-level 339 

statistics were, then, conducted by taking the sum of the t-statistics from the EEG 340 

channels. In case multiple clusters were observed, the cluster with the maximum 341 

cluster-level statistics was used for later comparisons. The p-value to reject the null 342 

hypothesis was the proportion of cluster-based randomizations that resulted in larger 343 
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test statistics than the observed one (without randomization). The same procedure 344 

was used to quantify the significance of the difference between start and end of 345 

intervention for each group, separately.  346 

Testing significance of cortico-cortical connectivity with ciCOH and cortico-muscular 347 

connectivity with CMC 348 

The artifact rejection led an unequal d.f. for the epochs during the intervention 2953 ± 349 

646 and the motor task (443 ± 82). We, therefore, estimated a Z-statistic of the 350 

induced coherence difference in the course of the intervention before nonparametric 351 

statistical evaluation (Maris et al., 2007). 352 

Having the null hypothesis that the observed increase in ciCOH/CMC was not 353 

the effect of the intervention, we used cluster-based randomization test statistic to 354 

randomize (1000 times) ciCOH/CMC values between experimental and control 355 

groups. We used a cluster-based nonparametric statistic to assess the significant 356 

coherence modulation of neighboring EEG channels. The cluster-based 357 

randomization test was performed for each frequency band of interest. The frequency 358 

bands were selected to cover the frequency band targeted by the intervention (16-22 359 

Hz) and the neighboring frequency bands with the same bandwidth (9-15 Hz, 23-29 360 

Hz, and 30-36 Hz) for balanced statistical comparisons. 361 

In each step of randomization, we calculated the Z-statistic frequency-wise. 362 

For every frequency band, adjacent EEG channels were clustered in the same set 363 

when the maximum of Z-statistics from the respective frequency band exceeded the 364 

threshold of Z>1.65 (p<0.05, Maris et al., 2007). Cluster-level statistics were, then, 365 

calculated by taking the sum of the Z-statistics from the corresponding frequency 366 

band for each cluster. In case of multiple clusters, the maximum cluster-level statistic 367 
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was used for later comparisons. The p-value to reject the null hypothesis was the 368 

proportion of cluster-based randomizations that resulted in a larger test statistic than 369 

the observed one (with no randomization). We reject the null hypothesis for 370 

p≤0.0001. 371 

Testing significance of the phase-frequency relationships 372 

We calculated the mean of the estimated CMC phase for each frequency across 373 

subjects, yielding one phase-frequency spectrum. We, then, fitted a line to the phase-374 

frequency plot using a linear regression (i.e., over a range of frequencies with 375 

significant CMC) and estimated the contrast of the estimated regression slope 376 

between pre- and post-TMS phase spectra. The estimated regression slope was 377 

significantly different from zero for p<0.05.  378 

 379 

Results 380 

The experimental group showed a significant increase in the positivity of the P180 381 

TEP component as compared to the control group (Figure 3A, B). Moreover, this TEP 382 

component was the only one increasing in the course of the intervention; this 383 

evolution was specific for the experimental group (Figure 3C). The cortical 384 

topography of the P180 TEP component showed an inter-hemispheric pattern when 385 

comparing the experimental and control groups (Figure 3B; F3, FC5, FC3, C5, C3, 386 

C1, CP5, CP3, CP1, and P3; p<0.0001; cluster-based randomization test; 1000 387 

repetitions); the experimental group showed, furthermore, an intra-hemispheric 388 

pattern to posterior areas in the course of the intervention (Figure 3C; Figure 3C; 389 

FC5, FC3, C5, CP5, CP3, CPz, CP2, Cp4, CP6, and P4; p<0.0001; cluster-based 390 

randomization test; 1000 repetitions). 391 
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This inter- and intra-hemispheric pattern was also observed in the coherence 392 

analysis. Specifically for the targeted frequency band (16-22 Hz), the induced cortico-393 

cortical functional connectivity (ciCOH) was significantly higher in the experimental 394 

group than the control group (Figure 4A; FC2, FC4, FC6, C2, C6,CP5, CP3, CP1, 395 

CPz,CP2, CP4, and P4; p<0.0001; cluster-based randomization test; 1000 396 

repetitions). This connectivity pattern was paralleled by significantly increased 397 

cortico-muscular coherence (CMC) in the targeted frequency band (16-22 Hz) from 398 

bilateral sensorimotor areas to the left EDC muscle (Figure 4B, FC6, C5, C3, Cz, C2, 399 

C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, and P4;p< 0.0001; cluster-based 400 

randomization test; 1000 repetitions). 401 

The induced CMC in the experimental group was paralleled by a significant 402 

change in the phase-frequency relationships (PFR). The PFR showed different 403 

directionality for each hemisphere, i.e., there was a negative and positive slope 404 

significantly different from zero (p<0.05; F-statistic) for the right and left hemisphere, 405 

respectively (Figure 4C). This indicated a leading direction of interaction from cortex 406 

to muscle in the right hemisphere, i.e., ipsilateral to the site of TMS (C2, C6, and 407 

CP4), and from muscle to cortex in the left hemisphere, i.e., contralateral to the site 408 

of TMS (C5, C3, CP5, CP3, and CP1). The average PFR phase delays were 19.33 ± 409 

9.07 ms and 19.80 ± 5.11 for the right and left hemisphere, respectively. 410 

Spearman’s rank correlation showed a significant relationship between the 411 

induced bilateral cortico-cortical (ciCOH) and cortico-muscular (CMC) coherence in 412 

the experimental group (Figure 4D, E; r=0.65 p=0.013; Spearman’s rank correlation, 413 

nonparametric randomization test, 1000 repetitions).  414 

The connectivity pattern induced in the experimental group during the 415 

intervention persisted afterward during the motor task, i.e., in the absence of TMS, 416 
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revealing an inter-hemispheric pattern in the coherence analysis. Specifically for the 417 

targeted frequency band (16-22 Hz), the induced cortico-cortical functional 418 

connectivity (ciCOH) was significantly higher in the experimental group than the 419 

control group (Figure 5A; FC5, FC3, FC1, C5, C3, C1, Cz, CP5, CP3, and CP1; 420 

p=0.026; cluster-based randomization test; 1000 repetitions). This connectivity 421 

pattern was paralleled by significantly increased cortico-muscular coherence (CMC) 422 

in the targeted frequency band (16-22 Hz) from bilateral sensorimotor areas to the 423 

left EDC muscle (Figure 5B; FC2, FC4, FC6, C5, C3, C1, C2,C6, CP5,Cp3,Cp1,CPz, 424 

Cp2,Cp4, and P4; p<0.0001; cluster-based randomization test; 1000 repetitions). 425 

Importantly, both ciCOH and CMC connectivity modulations occurred in the 426 

same movement interval of the motor task, i.e., during initiation of the finger 427 

extension movement. 428 

 429 

Discussion  430 

In this study with healthy subjects, we investigated a novel stimulation protocol that 431 

applied intrinsic brain states during motor-imagery of finger extension to trigger 432 

transcranial magnetic stimulation to the respective cortical motor representation 433 

within a brain-computer interface environment. The state-dependent approach – but 434 

not the same number and pattern of stimuli applied during rest - resulted in a 435 

significant and frequency-specific enhancement of cortico-spinal and cortico-cortical 436 

motor network connectivity in the course of the intervention and thereafter. This 437 

network plasticity was task-specific, i.e., occurred in the subsequent motor task only 438 

during initiation of finger extension. 439 

 440 
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Methodological considerations 441 

This study differed from previous work in several methodological regards: (i) The 442 

stimulation protocol was applied during a cognitive task. (ii) The induced local and 443 

network-based plasticity was evaluated task-dependent as well. (iii) Both online 444 

effects and aftereffects of the stimulation were captured in the same way, i.e., by 445 

cortico-spinal and cortico-cortical connectivity. (iv) Both local and network-level 446 

effects were measured with the same neurophysiological parameter, i.e., the 447 

coherence of oscillatory activity. 448 

(i) Previous TMS protocols for plasticity induction were applied at rest 449 

(Bestmann et al., 2003; 2005; Veniero et al., 2013; Nettekoven et al., 2014, Volz et 450 

al., 2016) or during overt movement (Bütefisch et al., 2004; Thabit et al., 2010; 451 

Bütefisch et al., 2011; Narayana et al., 2014). In this study, we stimulated the 452 

activated motor system, but in the absence of an actual movement; single TMS 453 

pulses were applied during self-regulation of the intrinsic brain state via motor 454 

imagery of finger extension. In future patient studies, this approach may provide a 455 

useful activity-triggered stimulation protocol for targeting brain circuits of lost motor 456 

function.  457 

(ii) Previously, the TMS-induced plasticity of motor networks has been 458 

evaluated at rest as well (Bestmann et al., 2003; 2005; Veniero et al., 2013; 459 

Nettekoven et al., 2014; Volz et al., 2016). Motor network connectivity is, however, 460 

known to be state-dependent (Rehme et al., 2013). Activity-dependent properties of 461 

the cortical motor system before the intervention were, furthermore, shown to be 462 

indicative of the resulting excitability changes (Cardenas-Morales et al., 2014). It was 463 

therefore plausible to assume that stimulation protocols applied during different 464 

activity states (i.e., MI vs. rest) will impact task-related motor network connectivity 465 
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differentlly - both with regard to online effects and after effects. This study provided 466 

empirical support for this hypothesis. The same number and pattern of stimuli applied 467 

during MI resulted in significantly enhanced motor network connectivity as compared 468 

to the control application during rest. One possible explanation for this findings is that 469 

stronger activity-dependent synaptic transmission increases the susceptibility of the 470 

stimulated motor network for an external stimulus and Hebbian-like plastic changes.  471 

(iii) Potential neurophysiological mechanisms of motor network plasticity could 472 

be elucidated by capturing the same connectivity parameters both during the 473 

intervention and thereafter. This approach revealed, in particular, the frequency-474 

selectivity of the motor network entrainment by the state-dependent stimulation 475 

protocol. Importantly, this frequency-selectivity persisted during the subsequent 476 

motor task for both cortico-spinal and cortico-cortical connectivity.  477 

(iv) Previous studies on motor network plasticity measured local and systems-478 

level plasticity usually by different means, e.g., cortico-spinal excitability by TMS 479 

induced MEPs and cortical connectivity changes by the resting BOLD signal, 480 

respectively (Bestmann et al., 2003; 2005; Nettekoven et al., 2014; Volz et al., 2016). 481 

Applying the same neurophysiological parameter, i.e., the magnitude of coherence 482 

between oscillatory activity for both cortico-muscular and cortico-cortical connectivity 483 

allowed studying their interaction with regard to the cortical topology and spectral 484 

characteristics. Moreover, this approach provided additional motor state-dependent 485 

information to elucidate the task-specificity, i.e. for finger extension, of the motor 486 

network entrainment on a moment-to-moment basis during the isometric motor task 487 

(Mehrkanoon et al., 2014).  488 

 489 
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Neurophysiological considerations 490 

The brain state-dependent stimulation paradigm applied here has already been 491 

shown to induce M1 plasticity, i.e., increased cortico-spinal excitability (indexed by 492 

the MEP amplitude) that outlasted the stimulation itself (Kraus et al., 2016). In this 493 

study, we demonstrated that this local plasticity was paralleled by frequency-selective 494 

and task-specific network-level plasticity as well: 495 

Single-pulse TMS applied to the primary motor cortex during rest has been 496 

shown to induce synchronization, likely reflecting phase-resetting, of ongoing β-band 497 

oscillations - which are amplified by the thalamus- for several hundred milliseconds in 498 

the vicinity of the stimulation site (Paus et al. 2001; van der Werf and Paus, 2006; 499 

Chung et al. 2015). When increasing the intensity of the TMS pulse applied to the 500 

primary motor cortex, the induced oscillatory activity did not occur at the targeted site 501 

only but extended to distant cortical areas such as the frontal and parietal cortex of 502 

the ipsilateral hemisphere as well (Fuggetta et al., 2005). When comparing these 503 

TMS induced oscillatory activity with movement-related spectral perturbations such 504 

as event-related sensorimotor desynchronization (ERD), the same study revealed a 505 

larger magnitude of modulation and a relevant involvement, i.e. functional 506 

connectivity, of both hemispheres for the latter. However, TMS and the ERD-task 507 

were not applied simultaneously but in different experiments, leaving the open 508 

question how TMS induced oscillatory synchronization would interact with task-509 

related desynchronization, e.g., during motor-imagery. 510 

In this study, the TMS stimuli were applied during a cognitive task of MI and 511 

neurofeedback that has previously been shown to modulate both ERD and cortico-512 

cortical connectivity in a frequency-specific way (Vukelic and Gharabaghi, 2015 a, b; 513 

Naros et al., 2016). In this data, the self-regulated ERD before the TMS pulses was 514 
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frequency-specific as well, i.e., in the 16-22 Hz range that was reinforced by the 515 

neurofeedback task (Kraus et al., 2016). 516 

The state-dependent stimulation resulted in a significant intra- and 517 

interhemispheric TEP increase in the course of the intervention; specifically, to the 518 

parietal and sensorimotor area ipsi- and contralateral to the site of stimulation, 519 

respectively (Figure 3C). There was no TEP change in the control condition. This 520 

observation suggests a facilitation of signal propagation during the MI task and is 521 

consistent with previous task-related findings; during a memory task an increased 522 

spatial spread of the TMS-evoked activity to distal brain regions and increased phase 523 

reset of oscillatory activity as compared to the stimuli applied at rest was detected 524 

(Johnson et al., 2012). The contrast between intervention and control in the present 525 

study was particularly characterized by an inter-hemispheric enhancement of 526 

effective connectivity, i.e., TEP (Figure 3B), potentially facilitated by the dense 527 

transcallosal connections. This phenomenon was specific to the P180 TEP-528 

component (Figure 3A) and suggests, therefore, an MI task-related GABAergic 529 

modulation of long-interval intracortical inhibition at the motor network-level (Premoli 530 

et al., 2014 a, b). This extends and complements previous findings that demonstrated 531 

MI-related modulation of short-interval intracortical inhibition of the motor cortex at 532 

the local level (Abbruzzese et al., 1999; Stinear and Byblow, 2004). 533 

Importantly, both the immediate and the subsequent entrainment of oscillatory 534 

interactions were specific for the targeted frequency (16-22 Hz); this suggests that 535 

the cognitive task during the intervention contributed to a shaping of the TMS 536 

induced phase reset within the motor network. One might speculate that the 537 

coactivation of these interconnected regions enhanced not only the signal 538 

transmission between them but also the synchronicity of the respective neural activity 539 
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(Nettekoven et al., 2014). The increased frequency-specific coherence of motor 540 

network connections persisted after the intervention and re-occurred during the 541 

subsequent motor task which was performed in the same way by both groups. This 542 

finding indicates that the observed differences in connectivity were - at least not 543 

completely - related to instantaneous attentional differences between conditions 544 

during the intervention. While attention has been shown to influence PAS protocols 545 

(Stefan et al., 2004), the present findings may reflect rather a Hebbian-like 546 

modulation of specific circuits as suggested by the both the frequency-selectivity and 547 

the task-specificity of the connectivity changes. This specificity is most 548 

parsimoniously explained by the fact that the kinesthetic MI task applied here 549 

activates similar neuronal correlates to those during motor execution (Lotze et al., 550 

1999; Neuper et al., 2005), increases cortico-spinal excitability and decreases short 551 

intracortical inhibition in a muscle- and task-specific way (Stinear and Byblow, 2004; 552 

Roosink and Zijdewind, 2010). This would open the interesting possibility to 553 

functionally target and enhance specific circuits with a state-dependent stimulation 554 

paradigm, e.g. during MI of finger extension, in order to restore (and not only to 555 

compensate for) a lesioned motor network that does not lead to an overt movement 556 

yet (Small et al., 2013). 557 

Limitations and future directions 558 

Future work needs to clarify several questions: do the observed effects last for longer 559 

periods than examined in the present study, are they dose-dependent and would 560 

ultimately lead to behavioral gains as well. Future studies may explore this paradigm 561 

during other movements as well to better delineate the task-specificity of the effects. 562 

To strengthen the brain state-dependency of the observation, future studies may also 563 

include event related synchronization (ERS)-related TMS as a control condition. To 564 
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confirm the frequency-selectivity of the effects, other frequency bands, e.g., the α-565 

band which gates information by inhibiting task-irrelevant regions (Jensen and 566 

Mazaheri, 2010) should also be explored. 567 

In conclusion, functional enhancement of task-specific motor network 568 

interactions may be achieved when the cortical input is paired with self-regulated 569 

intrinsic brain states. These findings are probably mediated via a Hebbian 570 

mechanism and are potentially important for developing closed-loop brain stimulation 571 

for the treatment of hand paralysis after stroke. 572 

 573 
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 741 

Figure 1. Experimental design and example data. A, Schematic illustration of the 742 

experimental design and timeline. B, Participants underwent a neurofeedback 743 

intervention of modulating beta-activity (16-22 Hz) in circumscribed premotor and 744 

sensorimotor regions (marked by '+' on the topography, i.e., FC4, C4, and CP4) of 745 

the right hemisphere by kinesthetic motor imagery (MI). Participants received single-746 

pulse TMS with one of two different modalities. In the experimental group (n=11), 747 

TMS pulses were applied contingent to motor imagery-associated beta 748 

desynchronization. In the control group (n=11), TMS pulses were applied 749 

independent of the brain state but with the identical pattern, which was recorded from 750 

the experimental group. C, Participants performed a motor task (~5 minutes) before 751 
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and after the intervention. An oscillating target (0.1 Hz) was presented on a screen. 752 

Participants were instructed to follow the target by a cursor which was controlled by 753 

isometric flexion and extension of the left hand that was attached to a hand orthosis.  754 

 755 

  756 
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 757 

Figure 2. Example data of pre/post-TMS oscillatory activity (EEG/EMG) and MEP. A, 758 

The raw EEG signals were cut into epochs of ±1s around the TMS pulse to estimate 759 

the pre-TMS (left topography) and post-TMS (right topography) networks connected 760 

to the site of stimulation, i.e., C4 channel (indicated by ‘+’). The contrast between 761 

these two networks indicated the induced cortico-cortical coherence(lower 762 

topography). B, The raw EEG (upper left plot) and EMG (upper right plot) signals 763 

were cut into epochs of 1s after the TMS pulse to estimate the post-TMS CMC 764 

between cortex and EDC muscle. The CMC spectra (lower plot) demonstrate group 765 

results of the induced CMC between the C4 channel and EDC muscle for 766 

experimental (black) and control (gray) groups, respectively. 767 

  768 
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 769 

Figure 3. TMS evoked cortical potentials. A, Average of TEPs (over FC3, C3, and 770 

CP3 electrodes) induced by TMS to the right motor cortex at the hotspot of the left 771 

EDC muscle. TEP components are labeled according to their polarity and 772 

approximate latency. B, Topographical distributions of surface voltages were 773 

presented for the most pronounced TEP components (P25, N45, P70, N100, P180) 774 

for the experimental (upper topographies) and control group (middle topographies) 775 

and the significant difference between groups (lower topography), respectively. Black 776 

circles indicate clusters with statistically significant modulation (cluster-base test 777 

statistic). Red represents an increase in positivity. N.s. stands for not significant. C, 778 

Same as B but comparison between start and end of the intervention for each group 779 

separately. 780 

 781 

  782 
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 783 

Figure 4. TMS induced cortico-cortical and cortico-muscular coherence. A, Group 784 

data of the TMS induced ciCOH for four frequency bands (9-15 Hz, 16-22 Hz, 23-29 785 

Hz, and 30-36 Hz). Black circles indicate clusters with statistically significant 786 

modulation (cluster-base test statistic) in the course of the intervention as a contrast 787 

between experimental and control groups. B, Same as A but for the TMS induced 788 

CMC. C, Topography of the regression slope of phase spectra for 16-22 Hz (group 789 

result; contrast between pre- and post TMS phase spectra of the experimental 790 

group). Magenta and dark yellow colors indicate the directionality of information flow 791 

from cortex to periphery and from periphery to cortex, respectively. Black circles 792 

represent the EEG channels, which have a regression slope that is significantly 793 

different from zero. D, Spearman’s rank correlation between induced ciCOH (A) and 794 

CMC (B) for 16-22 Hz in the experimental group. E, Same as D but for the peak of 795 

the correlation coefficient 19 ±1 Hz; r=0.65p=0.013. Each triangle represents one 796 

subject.  797 

 798 

  799 
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 800 

Figure 5. Cortico-cortical and cortico-muscular coherence during the motor task. A, 801 

The average of the EMG activity of the EDC muscle across all subjects. Blue and 802 

purple arrows represent the start of flexion and extension, respectively. B, Group 803 

data of cortical connectivity (i.e., ciCOH) as the contrast between experimental and 804 

control groups.Black circles indicate clusters with statistically significant modulation 805 

(cluster-base test statistic). C, Same as B but for CMC. 806 

 807 
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Introduction: Different techniques for neurofeedback of voluntary brain activations are
currently being explored for clinical application in brain disorders. One of the most
frequently used approaches is the self-regulation of oscillatory signals recorded with
electroencephalography (EEG). Many patients are, however, unable to achieve sufficient
voluntary control of brain activity. This could be due to the specific anatomical and
physiological changes of the patient’s brain after the lesion, as well as to methodological
issues related to the technique chosen for recording brain signals.

Methods: A patient with an extended ischemic lesion of the cortex did not gain
volitional control of sensorimotor oscillations when using a standard EEG-based approach.
We provided him with neurofeedback of his brain activity from the epidural space by
electrocorticography (ECoG).

Results: Ipsilesional epidural recordings of field potentials facilitated self-regulation of brain
oscillations in an online closed-loop paradigm and allowed reliable neurofeedback training
for a period of 4 weeks.

Conclusion: Epidural implants may decode and train brain activity even when the cortical
physiology is distorted following severe brain injury. Such practice would allow for
reinforcement learning of preserved neural networks and may well provide restorative
tools for those patients who are severely afflicted.

Keywords: electrocorticography, neuroprosthetics, epidural implant, brain-machine interface, neurofeedback,
cortical lesion, stroke

INTRODUCTION
Specific feedback and reward of brain activity allows
learning of self-regulation strategies. Operant conditioning
of electroencephalography (EEG) and of blood-oxygen-level-
dependent (BOLD) signal activity has been applied to reduce
disorder-specific symptoms in a variety of neurological and
neuropsychiatric conditions (Wyckhoff and Birbaumer, 2014).
When neurofeedback is coupled to external devices such as
brain-machine interfaces (BMI), the volitional control of
brain activity can often be attained, opening up novel training
opportunities for the very severely brain-injured and even
paralyzed (Buch et al., 2008, 2012; Ang et al., 2011, 2014;
Gomez-Rodriguez et al., 2011; Ramos-Murguialday et al., 2012,
2013); first results using EEG-based BMI were promising (Ang
et al., 2011, 2014; Ramos-Murguialday et al., 2013). Some -even
healthy- participants, however, fail to achieve volitional control

of brain activity (Vidaurre and Blankertz, 2010) because of
subject-specific anatomical (Halder et al., 2011; Buch et al., 2012;
Várkuti et al., 2013) and physiological (Blankertz et al., 2010;
Grosse-Wentrup et al., 2011; Vukelić et al., 2014) limitations
of the brain, or methodological issues of brain signal recording
(Leuthardt et al., 2009). In the context of rehabilitation,
additional neurophysiological considerations might contribute to
limitations of EEG-based BMI: previous approaches have chosen
those frequency bands and algorithms which differentiated
best between “motor imagery” and “rest”, e.g., the mu/alpha-
band and/or modified common spatial filter algorithms to
optimize the selection of temporo-spatial discriminative EEG
characteristics (Buch et al., 2008, 2012; Ang et al., 2011, 2014;
Ramos-Murguialday et al., 2013). Although even larger groups
of stroke patients have participated in BMI training with this
approach, a more restricted feature space, e.g., perturbations
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in the beta-band over selected sensorimotor electrode contacts,
might be preferred as a reinforced therapeutic target for
restorative purposes (Gharabaghi et al., 2014a,b), despite the fact
that they might be less optimal from classification purposes, e.g.,
to differentiate movement-related brain states in stroke patients
(Gomez-Rodriguez et al., 2011; Rossiter et al., 2014).

In general, EEG-based approaches have a characteristically low
spatial resolution and a low signal-to-noise ratio because of signal
attenuation caused by the skull, possible contamination by muscle
artifacts and external electrical activity. These approaches might
therefore be specifically challenged in cases of an intentionally
limited feature space due to therapeutic purposes. Moreover, they
often require a relatively long period of training before subjects
can gain real-time control of devices (Birbaumer et al., 1999;
Leuthardt et al., 2009; Gharabaghi et al., 2014b).

By contrast, electrocorticographic (ECoG) neurofeedback
approaches may be able to surmount such difficulties thanks to
their proximity to the neural signal source. We recently pro-
posed a new approach which is less invasive than the classical
implanted approaches with subdural grids (Yanagisawa et al.,
2011, 2012; Wang et al., 2013) or even brain penetrating elec-
trodes (Hochberg et al., 2012; Collinger et al., 2013). This
novel approach entailed the application of epidural ECoG to
decode volitional brain activity in patients with locked-in syn-
drome suffering from amyotrophic lateral sclerosis (Bensch et al.,
2014), with chronic pain as a result of upper limb amputation
(Gharabaghi et al., 2014c), and with hemiparesis following sub-
cortical hemorrhagic stroke (Gharabaghi et al., 2014b). In all of
these cases, however, most of the cortical tissue of the patients was
preserved.

Essential questions with regard to the clinical usefulness of
implantable brain-computer interfaces based on epidural ECoG
remain unanswered. For instance, would this technique also be
applicable in patients with extended cortical lesions? Are these
patients able to learn consistent online-control of brain activity?
Would high intensity neurofeedback training in these patients be
possible? Would ECoG neurofeedback be applicable in patients
who are not using volitional control of their brain oscillations
with a standard EEG-based approach?

We therefore investigated a brain-machine interface
based on epidural ECoG and examined its practicability for
neurofeedback training in a patient with an extended ischemic
lesion of motor cortical areas who did otherwise not adequately
engage in voluntary modulation of brain activity based on EEG
recordings.

METHODS
PATIENT
The patient, a 52-year-old man, had suffered an ischemic stroke of
the right hemisphere with extended cortical lesions (see Figure 1)
13 years prior to implantation. This caused a persistent severe
hemiparesis and he no longer had control of his left upper
extremity (Medical Research Council motor scale < 2).

Several months before surgery, the patient underwent twenty
sessions of EEG-based BMI neurofeedback similar to the train-
ing described earlier (Ramos-Murguialday et al., 2012; Vukelić
et al., 2014) with the same study design that was later used

for ECoG-based BMI neurofeedback (see Section Experimental
Procedure and Figure 2). Offline evaluation of the EEG data
revealed artifacts in the recorded brain signals induced by mus-
cle contraction, i.e., showing EEG amplitudes which exceeded
the mean cortical activity by at least two standard deviations.
For each feedback electrode (FC4, C4 and CP4) we calculated,
separately for the “move” and “rest” period of each trial, the
percentage of artifacted samples per session and compared their
evolution over time with the respective BMI performance eval-
uated by the area under the recipient operating characteristics
curve (AUC).

Several months later, the patient participated in a different,
long-term study for motor cortex stimulation with epidural
implants simultaneously with rehabilitation training to improve
upper limb motor function following the stroke. The study
protocol, approved by the ethics committee of the Medical
Faculty of the University of Tuebingen, also involved a four-
week evaluation period immediately subsequent to implantation,
with electrodes externalized with percutaneous extensions to
assess the patient’s cortical physiology for optimization of
stimulation. The data shown below is derived from this
period.

Following implantation of the electrode array, i.e., several
months after the preoperative evaluation with EEG, the patient
was subjected to several different experiments for parame-
ter selection and optimization of motor cortex stimulation
(not part of the present report) which included altogether
30 ECoG-based neurofeedback sessions with a mean of ∼108
feedback trials per session. Due to their heterogeneity these
sessions are not suited to evaluate the evolution of BMI
performance during this period, however, they may serve as
a valuable source of information for estimating the influ-
ence of muscle artifacts, which were visually detected during
offline analysis, and the feasibility and reliability of ECoG-based
neurofeedback.

EPIDURAL ELECTROCORTICOGRAPHY
The epidurally implanted 4 × 4 electrode array consisted of four
electrode leads for chronic application (Resume II, Medtronic,
Minneapolis, USA) with four platinum iridium electrode con-
tacts, each (4 mm diameter, 10 mm center-to-center distance)
covering parts of the right primary motor, somatosensory cortex
and premotor cortex. During the evaluation period, the electrode
grid was externalized with percutaneous extensions which were
connected to a recording and processing unit and a robotic
hand orthosis. A monopolar amplifier (BrainAmp MR plus,
BrainProducts, Munich, Germany) with 1 kHz sampling rate
and a high-pass filter (cutoff frequency at 0.16 Hz) and a low-
pass filter (cutoff frequency at 1000 Hz) was used for ECoG
recording. Online processing of brain signals was performed
using the BCI 2000 framework (Schalk et al., 2004) extended
with custom-built features to control an electromechanical hand
orthosis (Amadeo, Tyromotion GmbH, Graz, Austria). The data
was collected batch-wise, i.e., every 40 ms, the recording computer
received a batch of data that contained 40 samples per channel
(Walter et al., 2012; Gharabaghi et al., 2014a). The reference
electrode was chosen from the contacts on the somato-sensory

Frontiers in Behavioral Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 429 | 2

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Gharabaghi et al. Epidural ECoG for brain self-regulation

FIGURE 1 | Lesion mask: Normalized lesion mask displayed on MNI (Montreal neurological institute) brain in standard space (Fonov et al., 2009).

FIGURE 2 | Study design.

cortex, i.e., medio-posterior or latero-posterior corner of
the grid.

EXPERIMENTAL PROCEDURE
We used closed-loop, orthosis-assisted opening of the paralyzed
left hand which was triggered online by ipsilesional oscillatory
brain activity during cued kinesthetic motor imagery of hand
opening (Walter et al., 2012; Gharabaghi et al., 2014a). Each
session contained 4–16 runs (average 10.86 ± 4.5 runs). Each of
the runs had a duration of circa 3 min and consisted of 11 trials.
Each trial began with a preparation phase of 2 s, followed by a 6 s
movement imagination phase and an 8 s rest phase (see Figure 3).
Preparation, imagination and rest phases were instigated by a
recorded female voice that gave the commands “left hand”, “go”
and “rest” respectively.

A hand orthosis passively opened the affixed left hand as soon
as motor imagery-related event-related desynchronization (ERD)
in the beta-band (17–23 Hz) was identified during the movement
imagination phase. An epoch was regarded as ERD-positive only
when the output of the classifier exceeded a threshold. The latter
and the electrode selection were determined individually from
three training runs before the test sessions (Walter et al., 2012;
Gharabaghi et al., 2014a). The spectral power was calculated
using an autoregressive model with an order of 16 (McFarland
and Wolpaw, 2008) over a normalized 500 ms sliding window
shifting every 40 ms. In order to sidestep a noisy control signal

FIGURE 3 | Lesion size in percentage of affected cortical AAL
(=automated anatomical labeling) region (Tzourio-Mazoyer et al.,
2002): Affected cortical regions are named according to the AAL brain
atlas labels: PreCG = precentral gyrus, IFGoperc = pars opercularis of
inferior frontal gyrus, MFG = middle frontal gyrus, PoCG = postcentral
gyrus, SFGdor = superior frontal gyrus, dorsolateral, IFGtriang = pars
triangularis of inferior frontal gyrus, SMA = supplementary motor area,
IPL = inferior parietal lobule, SMG = supramarginal gyrus.

for the orthosis, i.e., giving robust and harmonic feedback, we
initiated or discontinued orthosis-assisted movement only when
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five consecutive 40 ms epochs (i.e., 200 ms) where classified as
ERD-positive or negative, respectively.

PERFORMANCE EVALUATION
To determine the patient’s ability to modulate his brain activity
contingent on the BMI feedback task, we determined the percent-
age of trials with orthosis movement (i.e., ERD) and the average
time with orthosis movement (i.e., ERD) divided by the total
feedback duration phase (Gharabaghi et al., 2014b,c).

We also measured a baseline condition to supervise sponta-
neous perturbations of brain activity which could cause fluc-
tuations in the online performance during the feedback task,
i.e., could start the orthosis movement independent of motor-
imagery. This baseline condition entailed several ECoG recordings
which were taken while the patient rested, i.e., one run with
eyes open and one run with eyes closed before each session
throughout the whole study period. All in all, we recorded approx-
imately 20 min of such spontaneous baseline ECoG activity for
offline analysis, segmented it into trials of the same structure
and processed it in the same way as in the feedback sessions
(Gharabaghi et al., 2014b,c). For statistical analysis, we used
the Matlab toolbox (Wilcoxon rank-sum test) to compare the
distribution of performance values per run in each feedback
session with the distribution of performance values for the
baseline data.

IMAGING EVALUATION
Before implantation magnetic resonance imaging (MRI) was per-
formed on a 3.0-Tesla Siemens Trio Scanner (TR 1.95 s, TE 2.26
ms, 176 slices of 1 mm slice thickness). For lesion segmentation
MRIcron software1 was used to manually delineate the lesion. The
anatomical image and the mask were normalized to MNI space
using SPM 8 (Statistical Parametric Mapping, The Wellcome
Department of Imaging Neuroscience, Institute of Neurology,
University College London, UK). The overlap of the Automated
Anatomical Labeling (AAL) atlas regions and the normalized
lesion mask were calculated.

RESULTS
Lesion segmentation revealed that extended parts of the right
hemisphere were affected by the stroke, in particular the primary
motor and somatosensory cortex with 45% and 33% lesion size
and higher motor areas with 35% (middle frontal gyrus) and
22% (superior frontal gyrus) lesion size with respect to the
AAL atlas. The basal ganglia were not affected by the lesion
(Figure 3).

EEG analysis of the non-invasive training showed a systematic
change of the number of muscle artifacts. In the course of the
training, there was an increase of artifacted samples in the “rest”
period of each trial and a decrease in the respective “move”
periods. The patient learned to increase and decrease muscle
tension in the rest period and in the move period of each trial,
respectively (see Figures 4A,B).

These changes correlated significantly (p < 0.05) with the
BMI performance for all channels and both conditions (rest and

1http://www.mccauslandcenter.sc.edu/mricro/mricron/install.html

move), i.e., channel FC4 r = 0.8905 for rest and r = −0.8254
for move; channel C4: r = 0.7045 for rest and r = −0.8447 for
move; channel CP4: r = 0.8878 for rest and r = −0.8386 for move
(Pearsons correlation coefficient). As a result of the increasing
difference between the rest and move condition, there was an
increase of BMI control (see Figure 4B), i.e., the increased base-
line activity in “rest” made it easier to reach the desynchronization
threshold in the “move” period for controlling the BMI. Thus, the
patient did not volitionally control his oscillatory brain activity
for the neurofeedback training.

In contrast, ECoG analysis of the implant based training
showed no systematic change in the number of muscle artifacts.
Due to the low distance of the two recording channels, the number
of artifacted samples was identical. In the course of the training,
there was a fluctuating amount of artifacted samples both in the
“rest” period and in the “move”. Similar to the EEG experiment
there were more artifacts in the rest period, but showed no evolu-
tion over time. Thus, although muscle tension was not completely
eliminated, it did not influence the volitional control of oscillatory
brain activity (see Figure 5).

Accordingly, in the ECoG-based approach, the patient mod-
ulated his motor-imagery related ERD contingent on the BMI
feedback task, i.e., initiated the orthosis movement in a mean of
90.49 ± 13.73% of all trials (baseline condition: 32.72 ± 9.77%),
thus retaining significant control of brain activity throughout the
whole study period (see Figure 6).

In fact, he controlled the orthosis movement (i.e., ERD) for a
mean of 37.15 ± 15.27% of the feedback duration in each trial.
Thus, his performance in this online closed-loop paradigm was
constant and significantly higher than in the baseline condition
(14.52 ± 7.30%) throughout the study period (see Figure 7).

DISCUSSION
The patient presented here—with an extended ischemic lesion
of the cortex—learned control of high intensity neurofeedback
training based on self-regulation of brain oscillations recorded
from the epidural space by ECoG. Although the ECoG based
approach enabled the patient to maintain consistent control
of his sensorimotor rhythms in the beta-band in an online
closed-loop paradigm throughout the study period, his perfor-
mance in controlling the neurofeedback device in ∼30–40%
of the feedback duration was—while significantly better than
baseline (∼15%)—nonetheless markedly lower than comparable
ECoG-based (Gharabaghi et al., 2014b) or EEG-based (Ramos-
Murguialday et al., 2013) approaches in other similarly affected
patients who had attained control rates of ∼50–60% of the
feedback duration. These variations in performance might be
explained by physiological and morphological differences: The
respective patients showed strikingly different baseline condi-
tions, i.e., spontaneous perturbations of brain activity in the beta-
band could start the orthosis movement independent of motor-
imagery during ∼15% vs. ∼30% of the feedback period in the
present and in previous cases (e.g., Gharabaghi et al., 2014b),
respectively. These physiological baseline differences could be
explained by the different lesion characteristics, namely extended
cortical vs. circumscribed subcortical lesions, respectively. Since
this brain activity is known to originate from primary motor and
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FIGURE 4 | (A) EEG recordings during the feedback task with the orthosis
before grid implantation: Green and red lines indicate “Go” and “Rest” cues
during each trial, respectively. Arrows highlight muscle artifacts during the
run. From the first to the last session the number of the artifacts in the rest
period of each trial increased. (B) Percentage of artifacted samples during the

rest and move condition for the three feedback electrodes (FC4, C4, CP4) in
the course of twenty sessions. As a result of the increasing difference of
artifacts in the rest and the move condition, there was an increase of BCI
control measured by the area under the recipient operating characteristics
curve (AUC).

somatosensory as well as from secondary motor areas, the most
plausible explanation for the decrease of spontaneous perturba-
tions in the presented case is that they have been affected by the
lesion. Our results are in line with recent findings that movement-
related beta desynchronization in the contralateral primary motor
cortex was found to be significantly reduced in stroke patients
compared to controls, while within this patient group, smaller
desynchronization has been seen in those with more motor
impairment (Rossiter et al., 2014). Moreover, these observations
support our general strategy, applied in the present case as well,
to choose beta-band desynchronisation as a therapeutic target

for restorative interventions in severely affected stroke patients
(Gharabaghi et al., 2014a,b).

An intriguing insight gained in this study was that the epidu-
ral ECoG technique enabled the patient to engage in feedback
exercises based on voluntary modulation of brain activity despite
the fact that he did otherwise not use properly a standard
EEG-based approach. Interestingly enough, prior to using the
implanted brain interface, the patient learned to increase and
decrease muscle tension in the rest period and in the move
period of each trial, respectively, for BMI control. This alterna-
tive conditioning probably occurred because the extent of his
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FIGURE 5 | Percentage of artifacted samples during the rest and move condition of the ECoG recordings for two epidural feedback electrodes in the
course of thirty sessions.

own voluntary modulation of brain activity was too insignificant
to be detected by EEG whereas the muscle contractions could
sufficiently be detected and were reinforced by feedback and
reward. This alternative control strategy applied by the patient was
unexpected. The participants in this study and in previous studies
with healthy subjects (Vukelić et al., 2014) and similarly severely
affected stroke patients (Ramos-Murguialday et al., 2012) were
instructed to avoid blinking, chewing, head and body compen-
sation movements. Along with visual inspection and feedback by
an experienced examiner this approach proved to be a sufficient
method to prevent alternative BMI control in the past. Moreover,
the examiners were prepared to detect compensatory movements
during the “move” phase of the feedback task as this is the most
commonly observed strategy to pretend volitional modulation
of ERD, and not before the actual task in the “rest” phase.
Therefore, increasing baseline activity in “rest” through elevated
muscle tension and concurrent reduced muscle tension in the
“move” period, have in future to be considered as subtle bypassing
strategies to reach the desynchronization threshold more easily.

For this purpose, online detection of EMG contamination
with dedicated spectral and topographical analyses might be
necessary to prevent alternative BMI control in future. Previ-
ous work in this field was conducted without such precautions
most probably due to the fact that lower frequency bands were
applied for BMI control, which are usually less affected by mus-
cle artifacts (Goncharova et al., 2003). However, due to their
relevance for sensorimotor control (Kilavik et al., 2013; Brittain
et al., 2014), motor learning (Herrojo Ruiz et al., 2014) and
corticospinal excitability (Takemi et al., 2013) as well as due to
their correlation with the extent of functional impairments after
stroke (Rossiter et al., 2014), higher frequency bands in the beta

FIGURE 6 | Percentage of EcoG trials with orthosis movement (i.e.,
event-related desynchronisation [ERD] in the beta-band): The mean ±

standard deviation of the performance measure per week is indicated
by solid lines. The mean of the baseline data is indicated as a dotted line.
An asterisk (*) marks weeks in which the mean of the performance
measure differs significantly (p < 0.05) from the mean of the baseline value.

range might be considered in future more often as therapeutic
targets for restorative EEG neurofeedback and motor rehabilita-
tion (Gharabaghi et al., 2014a,b), necessitating the consideration
of even subtle EMG contamination as observed in the presented
case. EMG artifact detection may include relatively simple meth-
ods such as rejection of EEG segments that exceed a predefined
amplitude threshold or more sophisticated methods such as factor
decomposition using principal component or independent com-
ponent analysis with or without source reconstruction algorithms
(Goncharova et al., 2003; Hipp and Siegel, 2013). In any case,
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FIGURE 7 | Percentage of average ECoG-based orthosis movement
(i.e., event-related desynchronisation [ERD] in the beta-band) divided
by the total feedback duration phase: The mean ± standard deviation
of the performance measure per week is indicated by solid lines. The
mean of the baseline data is indicated as a dotted line. An asterisk (∗) marks
weeks in which the mean of the performance measure differs significantly
(p < 0.05) from the mean of the baseline value.

applicable approaches need to work even with only few available
channels within a narrow frequency band and have to provide real
time processing and low computational complexity (Tiganj et al.,
2010).

Should EMG artifacts turn out to be too difficult to mitigate
(yet not explicitly addressed by this study) or should the targeted
physiological brain state, e.g., motor imagery-related beta-band
desynchronisation, be too weak to be robustly detected in the
EEG of severely affected stroke patients, implantable approaches
might provide an alternative. In this context, the ECoG approach
has two advantages over EEG: On account of its proximity to
the neural signal source, it surmounts difficulties related to signal
attenuation caused by the skull. It is also less susceptible to con-
tamination by muscle artifacts, and, in this case, benefits from the
signal attenuation caused by the skull. In this vein, simultaneously
recorded ECoG and EEG activity in motor cortical areas revealed
that invasively measured signals had a twenty to hundred times
better brain signal quality than signals that were acquired non-
invasively (Ball et al., 2009).

The technique presented here is limited by the necessity
to connect the intracranial implant to an external online pro-
cessing framework for recording and neurofeedback training
via extension leads which are externalized through the skin
(Gharabaghi et al., 2014b,c). Future applications of this brain self-
regulation approach will require wireless devices capable of fast
and reliable information transfer (Borton et al., 2013; Piangerelli
et al., 2014). This would facilitate the application of this inter-
vention on a day-patient basis or even in the patient’s home
environment.

However, before drawing definite conclusions regarding effec-
tiveness of various neurofeedback approaches, future studies
need to directly compare ECoG-based techniques to EEG-based
methods which control for EMG artifacts. This research needs
to consider further aspects such as direct and indirect costs,

complications, learning curve, motivation, applicability for long-
term use and the possibility of performing training independent
of professional support. Based on the respective findings, patients
with different impairment levels might then be referred to the
specific treatment modality best suited for the individual patho-
physiological state.

In conclusion, epidural implants could provide reliable feed-
back interfaces for brain self-regulation in patients in whom non-
invasive approaches fail on account of signal attenuation caused
by the skull or due to the underlying pathophysiology. This
could establish them as valuable tools in the context of reinforce-
ment learning in a variety of neurological and neuropsychiatric
conditions.
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