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ZUSAMMENFASSUNG 

Brutkannibalismus (das Fressen des eigenen Nachwuchses durch Elterntiere) ist 

erstaunlich weit verbreitet im Tierreich und besonders häufig bei Fischen mit väterlicher 

Brutfürsorge. Obwohl an sich ein gut bekanntes Phänomen, hat diese augenscheinlich 

sonderbare Verhaltensweise Wissenschaftler jahrzehntelang vor Rätsel gestellt und ihr 

adaptiver Nutzen ist bis heute nicht vollständig geklärt. Die bisherige Forschung zu diesem 

Thema hat sich hauptsächlich auf die Hypothese konzentriert, dass Eltern ihren 

Nachwuchs fressen um ihren eigenen Energiebedarf zu decken. Allerdings deuten die 

verfügbaren Ergebnisse daraufhin, dass noch mehr dahinter steckt. Im Rahmen dieser 

Doktorarbeit habe ich verschiedene alternative Hypothesen zum adaptiven Nutzen von 

Brutkannibalismus untersucht. Dazu habe ich eine Reihe umfangreicher Laborexperimente 

durchgeführt mit einem kleinen marinen Fisch, der Strandgrundel (Pomatoschistus 

microps), als Modellsystem. Indem ich brutpflegenden, männlichen Strandgrundeln 

gleichzeitig Eier unterschiedlichen Alters zur Verfügung gestellt habe, konnte ich zeigen, 

dass vorzugsweise die jungen, weniger wertvollen Eier kannibalisiert werden (Kapitel I). 

Dieses Ergebnis bestätigt die Vorhersage, dass Brutkannibalismus ein Mechanismus sein 

könnte um selektiv Nachwuchs von „minderer Qualität“ zu entfernen. Auf ähnliche Weise 

konnte ich zeigen, dass Eiinfektionen, aber nicht die vaterschaftliche Beziehung, solch 

selektiven Brutkannibalismus auslösen können (Kapitel II). Mithilfe eines anderen 

experimentellen Ansatzes habe ich außerdem untersucht wie sich Salinität, Dichte der Eier 

im Gelege, und die Interaktion beider Faktoren auf den Kannibalismus auswirken (Kapitel 

III). Ich konnte zeigen, dass der Brutkannibalismus bei niedriger Salinität höher ist, was 

den Erwartungen entspricht, weil unter solchen Bedingungen Ei-Pathogene besser 

wachsen. Dies war allerdings nicht der Fall bei Gelegen mit hoher Ei-Dichte, obwohl hier 

ebenso bessere Bedingungen für Pathogene herrschen sollten (Kapitel III). Indem ich diese 

einerseits unterschiedlichen aber gleichzeitig auch zusammenhängenden Faktoren 

untersucht habe, konnte ich in dieser Arbeit darlegen, dass Brutkannibalismus tatsächlich 
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durch eine Vielzahl verschiedener Umwelt-, Eltern- und Nachwuchsparameter beeinflusst 

zu sein scheint, wobei ich Eiinfektionen als einen Hauptfaktor hervorheben konnte.  
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SUMMARY 

Filial cannibalism – the consumption of one’s own offspring – has been described in a 

wide range of animal taxa, while being particularly common in fish showing paternal care. 

Despite being a well-known phenomenon, this seemingly odd behaviour has puzzled 

researchers for decades and its adaptiveness is still not fully understood. Previous research 

on this topic has mainly focussed on the hypothesis that parents may consume their 

offspring to satisfy their own energetic needs, but the available evidence indicates that 

there is more to filial cannibalism than energetics alone. During the course of this thesis, I 

investigated several alternative hypotheses on the adaptiveness of filial cannibalism. For 

this, I conducted a series of extensive laboratory experiments using a small marine fish, 

the common goby (Pomatoschistus microps), as a model species. By simultaneously 

presenting egg-guarding male common gobies with eggs of varying age, I was able to show 

that the young, least valuable eggs are preferentially cannibalised (chapter I). This confirms 

the prediction that filial cannibalism may be a mechanisms to selectively remove and 

consume offspring with a certain “low-quality” phenotype. Similarly, I could demonstrate 

that egg infections, but not paternity, trigger such selective filial cannibalism (chapter II). 

Using a different approach, I tested how water salinity, egg density and their interaction 

relate to cannibalistic behaviour (chapter III). I could show that filial cannibalism is 

increased in low salinity as predicted due to increased growth of egg pathogens under such 

conditions, while this was not the case for the presumably similarly susceptible high-

density egg clutches (chapter III). By investigating these different yet connected factors, I 

could demonstrate in this thesis that filial cannibalism is indeed likely influenced by a wide 

array of environmental, parental and offspring parameters, while highlighting egg 

infections as a major driver at least in fish. 
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INTRODUCTION 

Parental care 

From a human’s point of view, it seems only natural to care for one’s own offspring and 

many parents go to great lengths to support their children. Not surprisingly, this 

phenomenon is not restricted to humans, but is in fact widespread in the animal kingdom 

(Gross & Sargent 1985, Clutton-Brock 1991, Royle et al. 2012). But what exactly is 

parental care? First of all, it is important to note that parental care is per definition not 

restricted to certain behavioural traits, but rather incorporates any form of parental 

investment into offspring aimed at increasing offspring condition and survival, and 

ultimately offspring fitness (Trivers 1972, Clutton-Brock 1991, Royle et al. 2012). Hence, 

it can in principle span from the production of yolk-containing eggs over directly 

provisioning for offspring before and after egg laying or birth to more indirect behaviours 

such as cleaning or guarding offspring (Blumer 1982, Royle et al. 2012). Some animals 

even go to extremes to ensure the wellbeing of their offspring, such as females of the 

subsocial spider (Stegodyphus lineatus), which repeatedly regurgitate food and then 

ultimately sacrifice themselves to let their young feed upon their body (Salomon et al. 

2015).  

While there has been some debate in the past about where to draw the line between parental 

care and other forms of reproductive investment, a common definition is that parental care 

can be given both before and after the eggs are fertilized (Clutton-Brock 1991). According 

to other, more narrow definitions, prezygotic gamete investment such as nutritious 

investment into female gametes (sometimes also by males in form of nuptial gifts) is not a 

part of actual parental care, while other prezygotic investments like nest building behaviour 

are less controversial (Kvarnemo 2010).  
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Parental care can generally be given by either the female (maternal care), the male (paternal 

care), or both (biparental care)1. Interestingly, the predominant mode often differs between 

taxonomic groups (Kvarnemo 2010). In birds, biparental care is most common (e.g. 

incubation of eggs), while the majority of mammal species features female-only care (e.g. 

gestation and lactation). Likewise, maternal care is the dominant mode in insects. Reptiles 

and amphibians often feature maternal or biparental and maternal or paternal care, 

respectively (Clutton-Brock 1991, Reynolds et al. 2002, Kvarnemo 2010).  

Notably, fishes are the only group where male-only care is clearly more common than care 

by females or both parents. This otherwise rather uncommon mode occurs in more than 60 

% of all families of bony fishes exhibiting parental care (Gittleman 1981). Due to the fact 

that all three modes occur to some extend (sometimes within the same taxonomic family) 

and are widespread across fish phylogeny, fishes are a common model system to study 

evolutionary transitions in parental care (Baylis 1981, Gittleman 1981, Gross & Sargent 

1985, Reynolds et al. 2002, Amundsen 2003).  

Paternal care in fishes incorporates a wide range of different behaviours including nest 

building and maintenance, and egg-directed behaviours such as cleaning and guarding 

(Blumer 1982). While direct nutritional provisioning for hatched young is rare (but see 

peculiar cases such as ectodermal mucus feeding in discus fish; Buckley et al. 2010), larvae 

are sometimes also guarded, e.g. by returning them to the nest or school when straying off 

too far (Wootton 1984) or by directly providing shelter as in mouth-brooding species 

(Balshine-Earn & Earn 1998).  

In addition, fishes exhibit a characteristic care behaviour related to their aquatic lifestyle; 

using fanning movements with one or several fins simultaneously, the caring parent (male 

or female) creates water movement inside the often quite sheltered nest. While not strictly 

unique to fish (see for example a similar behaviour in Japanese giant salamanders Andrias 

                                                            
1 Please note that extraordinary cases such as, for example, cooperative breeding in fishes 
(Taborsky 1994) or social insects (Andersson 1984) go beyond the scope of this thesis and will 
not be discussed further. 
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japonicus; Okuda et al. 2014), this so-called egg fanning is particularly common in this 

group and is thought of as primarily serving the function of improving oxygenation of the 

eggs (van Iersel 1953, Jones & Reynolds 1999). Alternative, non-mutually exclusive 

functions of egg fanning are removal of sediments from the eggs and active prevention of 

infections via inhibiting settlement of pathogens by creating a constant water flow (Côté 

& Gross 1993, Hale et al. 2003, St Mary et al. 2004).  

Not surprisingly, regular egg fanning is energetically costly (Townshend & Wootton 1985, 

Lindström & Hellström 1993), which is – to a varying degree – also true for most other 

forms of parental care (Clutton-Brock 1991, Smith & Wootton 1995, Cooke et al. 2006, 

Bose et al. 2016b).   
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Infanticide 

Although many animal invest heavily in the wellbeing of their offspring as described 

above, it is surprisingly common that parents abandon or even kill their very own young 

(Polis 1981, Royle et al. 2012). The killing of own offspring by parents is a special form 

of infanticide (i.e. the killing of conspecific young by mature animals irrespective of 

relatedness) and is typically known as filial or parental infanticide. Infanticide in general 

has been observed in a wide array of animal taxa (Hrdy 1979, van Schaik & Janson 2000) 

and is best documented in social species such as primates (Hiraiwa-Hasegawa 1988) and 

carnivores (Packer & Pusey 1984, Balme & Hunter 2013).  

Infanticide is assumed to be often related to sexual conflict, as males can use it to improve 

their fitness by increasing their opportunity to sire offspring (Hrdy 1979, Palombit 2015). 

A well-known example is the killing of young cubs by individual male lions to be able to 

impregnate the now once again available female (Packer & Pusey 1983, Packer & Pusey 

1984). Similarly, male subsocial spiders (Stegodyphus lineatus) destroy eggs sacs of 

females fertilized by other males to encourage them to mate again (Schneider & Lubin 

1996). Another common explanation for infanticide is competition for limited physical 

resources such as food or nest sites (Hrdy 1979, Palombit 2015), which may be particularly 

relevant under high population densities (Ebensperger 1998). For instance, in the 

cooperatively-breeding meerkat (Suricata suricata) pregnant females regularly kill new-

born pups of other females in the group, presumably to increase future food availability 

(i.e. availability of adult helpers) for their own pups (Clutton-Brock et al. 1998).  

However, such mechanisms seem less and less suitable to adequately explain the 

occurrence of infanticide the closer related the killed young are to the mature animal. It is 

indeed initially hard to image how killing one’s own offspring should increase paternal 

reproductive success. Notably, filial infanticide seems to be often connected to actual 

consumption of the killed offspring (Hrdy 1979, Polis 1981, Elgar & Crespi 1992, Manica 

2002, Royle et al. 2012).   
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Filial cannibalism 

Parents eating their own eggs or young is generally known as filial cannibalism (hereafter 

referred to as FC), while sometimes also termed ‘kronism’ (Schüz 1957) after the titan 

Kronos who – according to Greek mythology – swallowed his own children whole (Allaby 

2010). This seemingly odd behaviour is in fact widespread in the animal kingdom and can 

be exhibited by either sex of the parents (Polis 1981, Elgar & Crespi 1992; Table 1).  

 

 

Table 1. Examples for cases of filial cannibalism from different taxonomic groups.  

Species Cannibalising 
parent Reference 

Wolf spider 
(Pardosa milvina) Female Anthony (2003) 

Maritime earwig 
(Anisolabis maritima) Female Miller and Zink (2012) 

Assassin bug 
(Rhinocoris tristis) Male Thomas and Manica 

(2003) 
Burying beetle 
(Nicrophorus quadripunctatus) Both Takata et al. (2013) 

Japanese giant salamander 
(Andrias japonicus) Male Okada et al. (2015) 

Three-spined stickleback 
(Gasterosteus aculeatus) Both Rohwer (1978), FitzGerald 

and van Havre (1987) 
Beaugregory damselfish 
(Stegastes leucostictus) Male Payne et al. (2002) 

House finch 
(Carpodacus mexicanus) Female Gilbert et al. (2005) 

Chestnut-backed Sparrow-lark 
(Eremopterix leucotis) Female Engelbrecht (2013) 

Norway rat 
(Rattus norvegicus) Female Boice (1972) 

House mouse 
(Mus musculus) Female König (1989) 
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Nevertheless, the question remains why parents should consume their very own offspring. 

Several decades ago, FC was often simply considered as a maladaptive or abnormal 

behaviour, or even a laboratory artefact (Manica 2002). In contrast, nowadays it is typically 

seen as an adaptive behaviour that increases the cannibalising parent’s lifetime 

reproductive success (FitzGerald 1992, Manica 2002), while there is no strict consensus 

on the actual adaptive function. However, a number of different hypotheses have been 

suggested and most are not necessarily mutually exclusive (FitzGerald 1992, Manica 2002, 

Klug & Bonsall 2007, Royle et al. 2012).  

It is often assumed that FC is connected to energetic or nutritional needs of the 

cannibalising parent. According to the so-called energy-based hypothesis, the energy 

gained by consuming offspring may be necessary for the parent to be able to sustain care 

for remaining offspring or can be reinvested in future offspring, hence actually improving 

overall parental fitness (Rohwer 1978, Sargent 1992). In this context, it is important to 

distinguish between two very distinct processes when assessing the adaptiveness of FC: In 

many cases only a part of the eggs or young are consumed, but it also happens regularly 

that parents consume all of their current offspring and thereby fully terminate their current 

reproduction (Manica 2002). While the former (so-called partial filial cannibalism) can 

potentially serve as an investment in both the current and future reproductive success, the 

latter (total filial cannibalism), consequently can only be beneficial for future reproductive 

success (Sargent 1992).  

Empirical and theoretical work on the adaptiveness of FC is often conducted using fishes, 

where this behaviour seems to be particularly common (Elgar & Crespi 1992, FitzGerald 

1992, Manica 2002, Lindström & St. Mary 2008) and which will also be the main focus of 

this thesis. There is indeed a large number of documented cases with records from 17 

different taxonomic families of teleost fish. Notably, in fish FC is often exhibited only by 

males in form of consuming eggs during paternal care (Manica 2002).  

As described earlier, paternal care in fish is usually an energy-intensive process, often 

involving demanding activities such as egg fanning (Smith & Wootton 1995, Cooke et al. 
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2006, Bose et al. 2016b). At the same time, egg-guarding males often do not venture far 

from the nest and thus likely only have limited feeding opportunities (Magnhagen 1986, 

Marconato et al. 1993, Smith & Wootton 1995). Hence, sacrificing eggs, i.e. using them 

as an alternative energy source, may enable males to survive and provide care in the first 

place (Rohwer 1978, Sargent 1992). In addition, eggs are very nutritious and it has been 

suggested that they are eaten primarily due to specific nutrients otherwise hard to obtain 

for egg-guarding males (Belles-Isles & FitzGerald 1991, FitzGerald 1991).  

This potential connection between FC and energetic needs of the cannibalising parent in 

fish has been the focus of various empirical studies during the last decades (earlier studies 

reviewed in Manica 2002). Specifically, those experiments were designed to test the 

prediction that limited food availability or bad parental condition lead to an increase in FC 

(Lindström & St. Mary 2008). Manica (2004) could indeed show that male scissortail 

sergeants (Abudefduf sexfasciatus) consumed significantly fewer eggs when given a 

supplementary feeding treatment. Likewise, starved male common gobies (Pomatoschistus 

microps) showed more FC than males given food in excess (Kvarnemo et al. 1998) and 

field observation in river bullheads (Cottus gobio) indicate that the frequency of FC is 

negatively correlated with the male’s chance of getting other food items (Marconato et al. 

1993). However, others found no such effect in other species where FC occurs regularly: 

FC was unrelated to food ration in threespine sticklebacks, Gasterosteus aculeatus (Belles-

Isles & FitzGerald 1991) and to initial body condition in fantail darters, Etheostoma 

abellare (Lindström & Sargent 1997). In addition, male flagfish (Jordanella floridae) from 

a low-food treatment (Klug & St Mary 2005) and sand gobies (Pomatoschistus microps) 

in poor condition (Klug et al. 2006) surprisingly even cannibalised fewer eggs than their 

well-fed conspecifics. Related to such experiments, Bose et al. (2016b) did not find a 

difference in body energy reserves between cannibals and non-cannibals after a given care 

period in plainfin midshipman (Porichthys notatus). It thus clearly seems like there is more 

to FC than energetics alone.  
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As indicated earlier, various other ideas on the adaptiveness of FC have previously been 

suggested. However, those have not received the same level of attention as energy-based 

models and thus often have neither been fully developed theoretically nor adequately 

addressed in empirical studies. For instance, offspring survival may often be density-

dependent. Under such circumstances, cannibalising a fraction of the eggs or young may 

directly increase survival of the remaining offspring and thus overall parental reproductive 

success (Payne et al. 2002, Klug et al. 2006). It has specifically been suggested that oxygen 

availability to fish eggs may be the driving factor in this case (Payne et al. 2002, 2004), 

but other factors such as reduced spread of egg diseases in low density clutches are just as 

likely.  

Filial cannibalism may also be connected to variation in offspring phenotype. Parents could 

increase their reproductive success by selectively removing “unwanted”, low-quality 

offspring (e.g. offspring that is diseased, has a low reproductive value due to long 

maturation time or is connected to a low certainty of paternity). Although this possibility 

has been given consideration already many decades ago, particularly in relation to the 

consumption of dead or diseased eggs (e.g. Bailey 1952, Winn 1958), actual empirical 

evidence is rare and not conclusive, as generally the case for the overall assessment of FC. 

Using a small gobiid fish, the common goby (Pomatoschistus microps, Krøyer 1838) as a 

model system, the work for this thesis was conducted to further our understanding on the 

evolutionary conundrum that is filial cannibalism.   
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The common goby as a model system 

Common gobies are small benthic fish occurring from the Mediterranean to the Baltic Sea 

(Miller 1975, 1986, Louisy 2002, Gysels et al. 2004). Adults inhabit shallow, soft-bottom 

coastal and estuarine habitats (Miller 1986), while larvae mostly develop in deeper waters 

(Jones & Miller 1966). Common gobies are short-lived and typically reproduce repeatedly 

only during a single, 2-3 month reproductive season (Miller 1975).  

Nests are built using suitable hard structures such as mussel shells of the soft clam Mya 

arenaria (Nyman 1953, Vestergaard 1976). Occasionally also small rocks, pieces of wood 

(Nyman 1953) or even man-made material (e.g. plastic) found on the seafloor are used 

(personal observation). The male excavates underneath the hard structure and covers 

everything with sand, sometimes leaving only a small opening (Nyman 1953, Vestergaard 

1976). During courtship, which also involves acoustic signals (Blom et al. 2016), the 

female is led into the nest to spawn. The eggs are attached to the ceiling of the nest in a 

single layer and spawning can take several hours (Nyman 1953). Afterwards, the female 

abandons the eggs and leaves the male to care for them until hatching. Males can receive 

several egg clutches of different females, depending on the size of the nest, and care for all 

eggs simultaneously during a single breeding cycle (Magnhagen & Vestergaard 1993). 

Competition for mussel shells and other nest structures can be fierce (Borg et al. 2002) and 

large males often manage to obtain larger shells, which can also result in more eggs in their 

nest (Magnhagen & Vestergaard 1993). Small males may try to ‘sneak’ fertilisations while 

a spawning is happening in another male’s nest (Magnhagen 1992, 1998, Svensson et al. 

1998), an alternative reproductive tactic also present in numerous other fish species (see 

Taborsky 1994 for a review). Aggression by nest-holding males against other males that 

get close to their nest is thus typically strong (Magnhagen 1994, Magnhagen 1995). Other 

males may also try to completely take over the nest even if eggs are already present, leading 

to complete destruction of the current egg batch through cannibalism. In addition, eggs 

often have to be guarded against egg predators. Feeding possibilities for egg guarding 
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males are consequently limited and they feed significantly less than females during this 

period (Magnhagen 1986).  

Filial cannibalism by male common gobies seems to occur frequently in the field (personal 

observation) and has been observed and quantified in various laboratory studies (e.g. 

Kvarnemo et al. 1998, Svensson et al. 1998, Vallon et al. 2016b). Those and similar 

previous experiments have shown that artificial nest structures such as halved ceramic 

flowerpots or bathroom tiles are often quickly occupied when brought out in the field 

(Magnhagen & Vestergaard 1991) and also readily accepted when offered in the lab, 

facilitating artificial spawnings and subsequent experimental work in a controlled 

laboratory setting. Hence, the common goby is the ideal model system for the purpose of 

this thesis.  
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STUDY GOALS 

The general aim of this thesis was to explore possible alternative functions of filial 

cannibalism that go beyond satisfying the energetic needs of the parent. This was done 

based on several extensive laboratory experiments using wild-caught common gobies. 

Previous experience from laboratory experiments with common gobies had indicated that 

egg-guarding males readily re-accept egg clutches that are temporarily removed from their 

nests. This behavioural feature was in principle the basis for the experimental work for this 

thesis and has two major benefits: First, it generally greatly facilitates determination of 

initial egg number and subsequent reduction via FC by allowing for repeated photography 

of egg clutches. And second, it enabled me not only to directly manipulate individual 

clutches (e.g. in relation to egg density) but also to mix clutch parts of different origin to 

create mixed egg batches that simultaneously included differently treated (or naturally 

different) eggs. 

Based on these methods, the first two studies both foremost addressed the general question 

whether the cannibalising parent is able to specifically pick out offspring of a certain 

phenotype (chapter I and II). In particular, I investigated in a series of experiments if eggs 

of low reproductive value due to young age (chapter I), egg infections (chapter II) or 

unrelatedness (chapter II) are preferentially eaten. For chapter II, I partly made use of 

indirectly manipulating microbial infections by influencing their growth via adjusting 

water salinity. Promising results in these earlier fundamental studies then led me to develop 

those considerations on putative alternative functions of FC further. Only very little is 

currently known about the influence of environmental conditions on FC. However, I 

suspected that salinity, by influencing growth of water mould and other pathogens, 

indirectly influences FC. More specifically, I assessed the possibility that density-

dependent filial cannibalism is driven by egg infections – which are in turn influenced by 

salinity – because pathogens spread more easily on high-density clutches (chapter III).  
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While not comprehensive in covering all alternative functions of FC, the chosen topics for 

the three chapters forming this thesis are inherently connected with each other and aimed 

at shedding light on particularly promising and understudied aspects of FC. Hence, 

combined they may contribute significantly to our general understanding of this behaviour. 
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Abstract 

Although counterintuitive at first sight, filial cannibalism is common in the animal 

kingdom and has been recognized as a mechanism to increase the cannibalizing parent’s 

lifetime reproductive success. However, previous evidence is often inconclusive and 

the adaptiveness of filial cannibalism is still not fully understood. We here address the 

notion that parents do not cannibalize at random but preferably consume offspring with 

a particular phenotype. To assess if differences in developmental stage and thus 

reproductive value of eggs trigger such selectivity, we experimentally presented male 

common gobies (Pomatoschistus microps) with two differently aged egg clutches 

within mixed broods. We found that males consumed significantly more young than 

old eggs. This result indicates that parents are not only able to discriminate between 

eggs based on developmental stage, but might use this to reduce the cost of partial filial 

cannibalism by selectively removing eggs of lower reproductive value. 

 

Significance Statement 

Cannibalizing some of one’s own eggs instead of caring for them can be seen as an 

extreme form of strategically redirecting parental investment to the remaining 

offspring. This is the first controlled experiment confirming the prediction that animal 

parents caring for mixed broods with eggs of different developmental stages should 

preferentially eat the younger, to the parent less valuable eggs.  

 

Keywords  

Foster care, Life history evolution, Offspring age, Paternal care, Reproductive value, 

Selective filial cannibalism, Kin discrimination   
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Introduction 

Some animal parents are known to regularly consume their own offspring, a 

phenomenon that has been coined filial cannibalism. This peculiar behavior occurs in a 

large number of taxa (Polis 1981) and is particularly common in fish exhibiting paternal 

care (Manica 2002). While cannibalizing one’s own eggs or young may seem odd at 

first, it is generally thought to represent an adaptive strategy, where parents sacrifice 

some (partial filial cannibalism) or even all of their current offspring (total filial 

cannibalism) to enhance survival of the remaining or possible future progeny (Rohwer 

1978; Manica 2002). Total filial cannibalism (or whole-clutch termination) relates 

conceptually to life-history related brood abandonment strategies and mainly depends 

on future mating opportunities and hence the trade-off between investment in current 

versus future reproduction (Manica 2002; Kvarnemo 2010; Klug et al. 2012). In 

contrast, partial filial cannibalism is not necessarily only an investment in future 

reproduction, but can also be considered as an extreme form of facultative adjustment 

of parental investment into offspring with greater reproductive value within the brood 

currently cared for. Various mutually non-exclusive hypotheses on benefits of filial 

cannibalism for the caring parent or the remaining offspring exist (Manica 2002; Klug 

et al. 2012). In particular, it is often argued that the consumption of offspring provides 

energy needed for sustaining brood care and the cannibal’s own survival (the energy-

based hypothesis: Rohwer 1978; Sargent 1992; Mehlis et al. 2009). Which eggs or 

young are actually eaten may, however, not be random. In accordance with parental 

investment theory (Klug et al. 2012), given the choice, one would expect cannibals to 

specifically consume offspring of lower reproductive value to reduce the cost of 

cannibalism.  

Notably, in many species showing paternal care, differently aged eggs can be present 

in one nest since males often accept clutches from more than one female (Baylis 1981). 

Long time lags between individual spawnings potentially lead to substantial differences 

in age and thus developmental stage between eggs. The more developed an egg is, the 
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more valuable it should be for the male, particularly when considering the large effort 

usually needed to keep eggs alive until hatching and the continuous risk of losing the 

whole brood. This in turn implies that young eggs should be cannibalized preferentially. 

While there are indications that males selectively eat younger eggs when differentially 

aged clutches are present, egg age in earlier studies was at least partially confounded 

with other variables such as position in the nest or clutch size (Sikkel 1994; Klug and 

Lindström 2008). In addition, previous manipulative experiments in the lab have so far 

failed to confirm these results (Manica 2003; Takegaki et al. 2011). Thus, an 

experimental confirmation of theoretical predictions on filial cannibalism based on 

offspring age is still missing. 

We here addressed this topic with a direct experimental approach using a small marine 

fish, the common goby (Pomatoschistus microps, Krøyer), as a model system. Common 

gobies have a resource-based mating system and exclusive paternal care. Males often 

care for multiple clutches laid by different females within a single nest at the same time 

and frequently cannibalize their own eggs (Nyman 1953). To assess if paternal males 

selectively cannibalize based on egg age, we provided each male with eggs from two 

differently aged clutches simultaneously while controlling for egg number, position in 

the nest, kinship and female size.  
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Material and methods 

The experiment was conducted at Tvärminne Zoological Station, Finland, in July 2013. 

Fish were collected using either a beach seine or a hand net while snorkeling. We 

measured body size as total length (to the nearest mm) prior to use. Males were housed 

in separate aquaria (35 L), each equipped with a half-flowerpot (4.5 cm diameter) as 

artificial nest site. Individual nests contained a removable plastic sheet at the ceiling 

onto which females laid their eggs during spawning. All aquaria were continuously 

supplied with fresh sea water and water temperature was measured daily. All fish were 

fed with frozen chironomid larvae twice a day. 

Males were divided into two groups: “fathers” (mean ± SE total length: 35.0 ± 0.9 mm) 

and “surrogates” (35.1 ± 0.9 mm). Each father spawned sequentially (time difference 

of 3.3 ± 0.2 days) with two similar-sized females (female 1: 37.9 ± 0.5 mm; female 2: 

37.8 ± 0.8 mm), while each surrogate reared the first clutch of one father until the father 

acquired its second clutch to keep the two clutches as independent as possible. 

Surrogate males were used because rearing common goby eggs without a male and thus 

without brood care often leads to mold infections on eggs (MV and KUH, personal 

observation). All surrogates also had to spawn once (the clutch was discarded 

afterwards) to initiate paternal care behavior, which ensured that they accepted and 

cared for a foreign clutch inserted into their nest. 

Following the second spawning, both clutches were cut into two halves each, while 

removing a central stripe with eggs from the larger clutch to achieve a similar number 

of eggs on all pieces (young halves: 480.3 ± 39.4 eggs; old halves: 472.3 ± 39.4 eggs; 

no difference in egg number between halves: paired t-test; t = 0.06, df = 14, P = 0.953). 

The left side of the older clutch was then recombined with the right side of the younger 

clutch and vice versa. One random pair was inserted into the father’s nest. In addition, 

we inserted the other pair into the corresponding surrogate’s nest to check for potential 
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kinship effects. Males were left to care for these mixed-age broods until the end of the 

experiment three days later. 

To quantify original egg number and filial cannibalism, clutches (or clutch halves) were 

photographed at several stages throughout the experiment (after first and second 

spawning, after recombining the two halves, at the end of the experiment). Males 

always accepted eggs returned after photography without detectable changes in paternal 

care behavior and similar methods involving repeated nest disturbances have been 

successfully applied before (e.g. Jones and Reynolds 1999; Heubel et al. 2008; Andrén 

and Kvarnemo 2014). We analyzed all images by manually counting eggs using the 

Cell Counter plugin (Kurt De Vos, University of Sheffield, UK) in ImageJ version 

1.44p (Wayne Rasband, NIH, USA), while being blind to the treatments. 

After excluding all fish that either did not spawn twice or suffered from water mold 

infections (on adult fish or eggs), and one case of consumption of the entire brood 

(unconnected to any infection), we were able to quantify cannibalism on mixed-age 

broods for 15 males (fathers and surrogates). To analyze if males cannibalized 

differentially on young and old halves, we fitted a generalized linear mixed model 

(GLMM) with binomial error distribution (considering for each male number of eggs 

eaten and initial egg number as binomial denominator; Manica 2004) with number of 

eggs eaten (‘successes’) versus eggs remaining (‘failures’) after three days as response 

variables and thus incorporating a measure of initial egg number (see analyses of 

proportion data in Crawley 2007; Zuur et al. 2009; Korner-Nievergelt et al. 2015). Since 

each male provided a data point for young eggs eaten as well as for old eggs eaten, Male 

ID was included as a random factor to account for the paired measurements, while also 

fitting random slopes to individuals over egg age. Considering that two broods were 

sired by one male (the father from a father-surrogate pair), we used Father ID as a 

second random factor with nine levels. Fixed factors were egg age (young or old) and 

group (father or surrogate). Additionally including their interaction or total length of 

males did not improve model fit according to the Bayesian Information Criterion (BIC) 
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and was not considered further. All statistical analyses were conducted using the lme4 

package (Bates et al. 2014) in R v. 3.0.3 (R Core Team 2014).  
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Results 

Males cannibalized on average 127.3 ± 30.1 (mean ± SE) young eggs (i.e. 25.8 ± 6.0 

%) and only 57.0 ± 27.4 old eggs (11.9 ± 5.4 %), which is reflected in a highly 

significant effect of egg age (Table 1). Only 3 out of 15 individuals did not consume 

more eggs from the younger clutch half, but two of these barely cannibalized at all (Fig. 

1). 

 

Table 1. Fixed effect estimates from a generalized linear mixed model with binomial 

error structure. The model evaluated the effect of egg age (young or old; paired 

measurements per male) and group (fathers or surrogates; nfathers = 6, nsurrogates 

= 9) on the number of eggs cannibalized by common goby males (n = 30 observations 

of 15 individuals) while considering the initial number of eggs. Note that estimates are 

on the logit-scale 

 estimate SE z-value P 

(Intercept) -1.26 0.59 -2.13 0.033 

egg age -1.16 0.29 -4.02 < 0.001 

group -0.59 0.57 -1.04 0.300 

 

Whether a male was a father (i.e. caring for its own eggs after a phase of no paternal 

care) or a surrogate (i.e. continuing foster care) did not affect cannibalism levels (group; 

Table 1, Fig. 2). In addition, testing the effect of the main factor egg age excluding all 

surrogates and thus only using the six fathers still confirmed the observed difference 

(egg age; n = 12 observations of 6 individuals, z = -2.63, P = 0.009; see father group in 

Fig. 2). 
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Figure 1. Absolute filial cannibalism on young and old clutch halves after three days. 

Lines connect data points of individual males. Each box shows the interquartile range 

(IQR) divided by the median and whiskers extend to the most extreme data points still 

within 1.5 × IQR from the edges of the box 
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Figure 2. Difference in filial cannibalism between groups. Values are split by egg age 

within each group. Each box shows the interquartile range (IQR) divided by the 

median. Whiskers extend to the most extreme data points still within 1.5 × IQR from 

the edges of the box while data beyond this range are plotted as points 
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Discussion 

Male common gobies showed a clear preference for younger eggs when cannibalizing 

their brood. This supports our prediction that paternal males selectively cannibalize 

based on egg age when multiple clutches are present. Filial cannibalism of younger 

eggs may provide several benefits. Less developed eggs are generally more nutritious 

(Gilbert 1985) and thus more beneficial to eat from an energetic point of view. At the 

same time, they still require more time and energy in terms of paternal care to reach 

independence, while typically facing a high risk of being lost to egg predators (Chin-

Baarstad et al. 2009) or nest take-overs by conspecifics (Lindström and Hellström 1993) 

during each additional day. Hence, young eggs should have a lower reproductive value 

compared to eggs that are closer to hatching (Pressley 1981) and, following theoretical 

predictions on parental investment and filial cannibalism, be a preferred target for 

cannibalistic decisions (Klug and Bonsall 2007). Since cannibalizing eggs with lower 

value could also be seen as a drastic form of redirecting parental care to the remaining 

eggs, our result thus also fits well with the general prediction that parents should give 

more care to offspring with higher reproductive value (Klug et al. 2012). 

The hypotheses above share the assumption that parents consume their offspring due to 

energetic requirements and the selectivity only arises to minimize the cost of filial 

cannibalism. In contrast, Klug and Lindström (2008) argue that males may consume 

slower developing eggs to decrease the duration of the current brood cycle and acquire 

a new brood more quickly, thus increasing the chance for an additional brood cycle 

during the breeding season. However, in common gobies, eggs from a single clutch do 

not vary much in developmental time and usually hatch nearly synchronously within a 

few hours (MV and KUH, personal observation). This would imply that males have to 

consume whole young clutches instead of only a subset of eggs to considerably decrease 

duration of care, which seems implausible and never happened in our experiment. 
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Previous studies that assessed selective filial cannibalism by manipulating clutches of 

two fish species in the lab did not find a similar preference for younger eggs (Manica 

2003; Takegaki et al. 2011). The authors argue that the age difference between clutches 

in one nest relative to the duration of clutch development, and consequently the 

difference in value between eggs, may be too small for a preference to have evolved. 

In common gobies, however, time lags of three days between individual spawnings are 

regularly observed, which can constitute a substantial proportion of a full clutch cycle 

(5.5 days in 21.9° C, but 11.7 days in 15.8° C; MV, unpublished data). 

Water temperature was comparably low in the present study (Mean ± SE: 12.7 ± 0.1 ° 

C), indicating that there was only a small difference in development between young and 

old clutches. It is striking that males were nevertheless able to discriminate between 

eggs. In contrast, the similarity in average cannibalism levels between fathers and 

surrogates suggests that foreign eggs were not recognized. However, sample size was 

low for this comparison and fathers and surrogates also differed in other aspects in 

addition to kinship (e.g. if there was a prolonged period of paternal care before receiving 

the mixed-age brood or not). Kin recognition of eggs is generally predicted by theory 

and has wide empirical support (Loiselle 1983; Frommen et al. 2007; Mehlis et al. 

2010). The potential absence of kin recognition of eggs in our study thus needs further 

examination and offers scope for future experiments. Generally, there is only little 

information on how fish manage to assess egg phenotype. Visual discrimination 

appears rather unlikely given the low light levels that reach the eggs inside the almost 

fully enclosed nests in many species. In contrast, olfactory cues of eggs have been 

suggested to be a major trigger for kin recognition (Loiselle 1983; Frommen et al. 2007; 

Mehlis et al. 2010) and might also be important to assess egg age, assuming the odor of 

individual eggs changes during development.  

We could not prevent surrogate males in our study from cannibalizing some eggs 

already while rearing the “old” clutches (mean ± SE eaten after 3 days: 7.0 ± 3.2 % of 

1301.9 ± 109.3 eggs). However, the amount of cannibalism fathers and surrogates 
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showed subsequently on the same (now halved) clutches after getting the mixed-age 

broods back was still higher (see Results for proportion cannibalized on old halves and 

Methods for initial egg number). This indicates that although surrogates may have 

possibly removed low-quality (e.g. sick) eggs already during the rearing period, this did 

apparently not induce particularly low rates of cannibalism on the old eggs later in the 

experiment and is unlikely to explain our results. 

A preferential consumption of young eggs by males may also affect female reproductive 

decisions. Females of various species prefer to lay eggs in nests of males that already 

care for eggs (e.g. Marconato and Bisazza 1986; Goldschmidt et al. 1993; Forsgren et 

al. 1996), possibly to lower the risk of filial cannibalism on their own eggs by diluting 

them with others (for alternative hypotheses, see Forsgren et al. 1996). But there are 

also indications that some specifically choose males with only early-stage eggs 

(Petersen and Marchetti 1989; Sikkel 1989), which may theoretically protect their eggs 

from being selectively picked out. In the present case, one might alternatively expect 

females to avoid being the last to spawn altogether and rather pick nests without any 

eggs present. More work is needed to address female choice and other fitness and 

population-level consequences of selective filial cannibalism and its interaction with 

environmental and intrinsic factors (Vallon et al. 2016). 
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Abstract 

Filial cannibalism, i.e. the consumption of own offspring, has fascinated animal 

ecologists for many decades but is still not fully understood. Often assumed to happen 

primarily due to energetic needs of the cannibalizing parents, we here address a more 

recent notion that suggests an interplay between egg density, salinity, egg infections 

and filial cannibalism in fish. Previous evidence indicates that (a) filial cannibalism 

may be related to egg density, that (b) egg pathogens such as water moulds spread more 

easily on high density clutches and are (c) generally suppressed in high salinity 

conditions, and that (d) parents selectively cannibalize infected eggs, suggesting 

cannibalism to maximise in high density clutches in low salinity as a response to egg 

infections. We thus tested if egg density, salinity and their interaction directly affect 

filial cannibalism using the common goby (Pomatoschistus microps) as a model 

system. We additionally recorded male brood care behaviour and weight to account for 

other potentially salinity-related effects. While males unexpectedly cannibalized more 

eggs in low density instead of high density clutches, we found that egg consumption 

was higher in low salinity conditions in agreement with our prediction. Neither male 

behaviour nor metabolism did adequately explain this finding, indicating that variation 

in filial cannibalism under different environmental conditions such as salinity may 

indeed be driven by a differential prevalence of egg infections.   
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Introduction 

Many animals care for their offspring, e.g. by providing food or protection from 

predators (Clutton-Brock 1991, Royle et al. 2012). Parental care is often costly but can 

be seen as an investment to increase offspring survival and reproductive success 

(Clutton-Brock 1991, Smith & Wootton 1995). However, some animal parents 

simultaneously show filial cannibalism (FC), i.e. they regularly cannibalize some or 

even all of their current offspring (Polis 1981, Klug & Bonsall 2007). This behaviour 

is surprisingly widespread despite its counterintuitive nature (e.g. Anthony 2003, 

Gilbert et al. 2005, Miller & Zink 2012) and is particularly common in fish with male 

brood care (Manica 2002). It is often assumed that the cannibalized offspring are used 

as an additional or alternative source of energy that can be reinvested into care for the 

remaining offspring or future reproduction (Rohwer 1978, Sargent 1992). However, the 

empirical evidence for this hypothesis is mixed and energetics alone cannot adequately 

explain all occurrences and patterns of FC (Manica 2002, Klug & St Mary 2005, Klug 

et al. 2006, Vallon et al. 2016b).  

Addressing FC in beaugregory damselfish (Stegastes leucostictus), Payne et al. (2002, 

2004) proposed that the cannibalizing parent actively reduces egg density to enhance 

oxygen availability and thus the survivorship of the remaining eggs in the nest. Other 

studies indeed indicate a general influence of egg density per se on FC (Klug et al. 

2006), but question the importance of oxygen in this context (Lissåker et al. 2003, Klug 

et al. 2006). In particular, they found no (Lissåker et al. 2003) or only inconsistent 

effects (Klug et al. 2006) of oxygen manipulation on egg survivorship and FC in sand 

gobies (Pomatoschistus minutus), a species where males oxygenate their eggs via 

fanning. Such egg fanning is common in teleost fish with male brood care (Blumer 

1982), possibly limiting the broader relevance of oxygen-mediated FC. Hence, while 

the apparent effect of egg density on FC remains intriguing, the underlying mechanisms 

remain unclear.  
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Recent work shows a strong influence of mould infections on FC in fish and suggests 

that parents selectively cannibalize infected offspring to inhibit the spread of the disease 

(Bandoli 2016, Vallon et al. 2016a). Such microbial infections are a frequent threat in 

fish and can damage and kill eggs or entire clutches (van West 2006, Brown & 

Clotfelter 2012). Preventing infections thus likely constitutes an important part of 

parental care in many fish species (Bronstein 1982, Côté & Gross 1993, Knouft et al. 

2003, Giacomello et al. 2008). Water moulds (oomycetes) of the genus Saprolegnia, 

common pathogens in aquatic systems (van West 2006), are known to spread within 

egg clutches primarily by hyphal growth from egg to egg, and less so by release of 

zoospores (Smith et al. 1985, Thoen et al. 2011). Accordingly, one may expect that not 

only the specific removal of infected eggs by parents, but also a general reduction of 

egg density (and thus less direct contact between individual eggs) would impede 

spreading of Saprolegnia and other pathogens (as proposed by Lehtonen & Kvarnemo 

2015b). Hence, density-dependent FC could represent a measure to contain egg 

infections.  

Lehtonen and Kvarnemo (2015b) indeed found that artificially reared sand goby 

clutches had a lower prevalence of Saprolegnia and a higher egg survivorship when 

egg density was low, suggesting that creating a lower density via FC may be beneficial 

for parents. Notably, this effect was only present when clutches were raised in low 

salinity water but not when salinity was high, where mould growth was generally 

reduced. Such a susceptibility of Saprolegnia water moulds to high salinity levels has 

also been observed in many other studies (e.g. Marking et al. 1994, St Mary et al. 2004, 

Ali 2005, Vallon et al. 2016a). While discussing their findings, the authors note that 

mould infections and their sensitivity to salinity might in fact explain why average FC 

levels tend to be higher in sand goby studies conducted in low salinity environments 

(Finnish coast of the Baltic Sea) compared to high salinity environments (Swedish west 

coast), where conditions are less favourable for the pathogen (Lehtonen & Kvarnemo 

2015b and references therein). Likewise, they argue that this relationship could explain 
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why Klug et al. (2006), who used low salinity conditions, found higher egg survival at 

low egg densities, while a recent study conducted in higher salinity did not (Andrén & 

Kvarnemo 2014). However, it remains impossible to disentangle the potential direct 

effect of salinity from other confounding factors that differ between all these studies.  

In the present study, we further pursue the ideas of Lehtonen and Kvarnemo (2015b) 

and directly assess FC in relation to egg density and salinity using the common goby 

(Pomatoschistus microps, Krøyer), a small fish closely related to sand gobies with male 

brood care and regular FC (Vallon et al. 2016b). Specifically, by manipulating both 

factors simultaneously while allowing male access to eggs, we tested the prediction that 

FC increases when egg density is high, but only in conditions favourable for mould 

growth such as low salinity. In other words, we predicted an interaction between egg 

density and salinity with a positive effect of egg density on FC in low but not in high 

salinity. To further assess potential effects of salinity per se on male brood care or 

metabolism we additionally recorded fanning behaviour and male weight.  
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Material and methods 

Study species 

The common goby is widespread along the European coast from the Mediterranean to 

the Baltic Sea including estuaries (Miller 1975) and thus naturally occurs in a very 

broad salinity range spanning from nearly freshwater to full marine conditions (0.5 - 35 

ppt; Fonds & Van Buurt 1974). Common gobies usually live only for one year and 

reproduce during several consecutive breeding cycles in summer (Miller 1975). Adults 

live and mate in shallow soft-bottom areas close to the shore and rely on suitable hard 

structures (e.g. mussel shells) as a nest substrate (Borg et al. 2002). After courtship, the 

female attaches its eggs to the ceiling of the nest, but abandons the clutch afterwards. 

Brood care (e.g. cleaning and ventilating the eggs) is thus done exclusively by the male 

(Nyman 1953), which can care for several clutches of different females simultaneously 

(Magnhagen & Vestergaard 1993). After 1 to 2 weeks, depending on water temperature, 

larvae hatch and leave the nest and the male (Rogers 1988). 

 

Animal maintenance 

We conducted the experiment in July 2014 at Tvärminne Zoological Station near 

Hanko, Finland. Common gobies were collected close to the shoreline at Henriksberg 

either by using a beach seine or from previously deployed artificial nests (ceramic tiles 

measuring 5 x 5 cm) using a hand net while snorkelling. All fish were measured for 

body size (total length to the nearest mm) prior to use. Males were additionally weighed 

to the nearest mg. To increase sample size, we conducted two consecutive rounds of all 

experimental procedures using two different cohorts of males (mean ± SE total length 

[TL]; cohort 1: 34.8 ± 0.4 mm; cohort 2: 35.3 ± 0.4 mm). Forty-eight experimental 

tanks (35 l) were each fitted with a halved flowerpot of 4.5 cm diameter as an artificial 

nesting site, which was placed upside-down on sandy substrate and faced the front 

window. Each nest contained a removable plastic sheet at the ceiling for females to 



 CHAPTER III 
 
  

51 
 

spawn on. While all tanks were covered with black plastic foil to prevent interactions 

between neighbouring males, the front cover was easily detachable to enable 

behavioural recordings. Individual males received a standardised amount of frozen 

chironomid larvae (two small ones in the morning and evening) as food during the 

experiment. All fish experienced a 19:5 h day:night light regime. 

 

Salinity treatments 

To achieve two different, stable salinity treatments, experimental tanks were connected 

to one of two closed flow-through systems. Each system was connected to a large water 

basin (120 l) which could be used to add or remove water and salt without disturbing 

fish and which was heavily aerated via airstones to provide aeration for the whole 

system. The low (mean ± SE salinity: 6.14 ± 0.02 ppt) and high (18.22 ± 0.01 ppt) 

salinity treatments were chosen based on previous results showing drastic differences 

in growth of water moulds on common goby clutches under these conditions (Vallon et 

al. 2016a). We created both salinities by adding the corresponding amount of sea salt 

(commercially available mix for marine aquaria from Instant Ocean, Aquarium 

Systems, Sarrebourg, France) to a mix of 50 % natural Baltic Sea water and 50 % 

purified water (Milli-Q). We refrained from using only natural Baltic Sea water from 

the local inflow to keep the procedure similar for both treatments, considering that 

otherwise the salinity would have been already high enough for our low salinity 

treatment without adding salt.  

Approximately 18 % of the total water volume in each system was exchanged daily. 

For this, we stopped the water flow-through, removed all water from the water basin, 

added a fresh water-salt mix (often with lower salinity to account for water evaporation) 

and then restarted the system. Water temperature and salinity in individual tanks were 

monitored on a daily basis. Since there was no permanent water inflow from the outside, 

water temperature was primarily determined by the room temperature but was similar 
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in both salinity systems (mean ± SE; low salinity: 20.23 ± 0.05 °C; high salinity: 20.29 

± 0.03 °C).  

 

Acclimatisation and spawning procedures 

We gradually acclimatised males of the first cohort to the treatment salinity conditions 

in a stepwise fashion. To make sure that both treatment groups experienced a similar 

change in salinity, we first put all males in a stock tank with intermediate salinity (12 

ppt) for 8 h. Afterwards, individual males were moved to their respective experimental 

tanks and kept at 9 ppt (low salinity group) or 15 ppt (high salinity group) overnight. 

After an additional day at 8 or 16 ppt the final salinities were set and the experiment 

started. Previous evidence suggests that much shorter time periods should be sufficient 

to allow for metabolic readjustment after even larger changes in salinity (von Oertzen 

1984). Since we also did not observe prolonged signs of stress in the first cohort, we 

shortened the total acclimatisation time for the second cohort of males to one day, while 

still gradually adjusting salinity. Females were also kept in a stock tank with 

intermediate salinity (12 ppt) for several hours before being used for spawning.  

All males received a female to spawn with after acclimatisation, which was inserted in 

the early evening and removed the next afternoon (if spawning had happened). 

Although females were larger than males on average, we assigned pairs according to 

body length and obtained a similar average female size in both salinity (mean ± SE TL; 

low salinity: 36.1 ± 0.3 mm; high salinity: 35.9 ± 0.4 mm) and egg density treatments 

(see below; low egg density: 36.1 ± 0.3 mm; high egg density: 35.9 ± 0.3 mm). Nests 

were checked for the presence of eggs using a flashlight. Males without eggs were left 

with the same female for another day, then provided with a new female the day after if 

necessary, but were not considered further if still unsuccessful after the next two days.  
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Egg density manipulation 

Seventy-eight males successfully acquired a clutch during the course of the experiment. 

Individual clutches were removed, photographed and manipulated to fit in one of two 

egg density treatments. There was no significant difference in initial egg number 

between clutches laid in low (mean ± SE eggs: 892.9 ± 41.6) and high (954.8 ± 40.3; t-

test; t = -1.07, df = 76, P = 0.290) salinity. Egg density was manipulated by manually 

scraping off eggs using scissors. To create a low egg density, we removed eggs from 

within the clutch in a grid-like fashion. Specifically, we traced several thin diagonal 

stripes (actual number depended on the size of the clutch) with the tip of the scissors, 

followed by additional stripes perpendicular to the first ones (Fig. 1a). For high 

densities, we removed eggs only from the edge of the clutch (Fig. 1b).  

While we aimed at removing similar proportions of eggs in both treatments we ended 

with an unexpectedly large difference in egg number after the density manipulation 

(mean ± SE eggs; low egg density: 512.2 ± 27.3; high egg density: 699.9 ± 28.4). 

Although our main analysis was based on proportional data and thus accounted for 

differences in clutch size, we decided to sacrifice some sample size in order to achieve 

a more similar baseline between groups. For this, all males whose manipulated egg 

number was more than 0.4 times lower or higher than the overall mean were excluded 

from the analysis (n = 21), leading to a reduced data set with a much smaller, non-

significant difference in egg number between groups (mean ± SE eggs; low egg density: 

585.4 ± 23.9; high egg density: 639.4 ± 23.3; t-test; t = -1.61, df = 55, P = 0.112).  
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(a) 

(b) 

Figure 1. Sample photographs of clutches before and after egg density manipulation 

for the (a) low egg density treatment and (b) high egg density treatment. See main text 

for details on the procedure. 
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Data collection 

Immediately following manipulation, clutches were photographed to have a baseline 

for the assessment of filial cannibalism and then returned to the males, which were left 

to care for their respective clutch for 3 days in total. On the last day, clutches were 

removed, photographed again and discarded. FC was determined by comparing egg 

numbers between those two pictures. All eggs were counted manually using the Cell 

Counter plugin (K. de Vos, University of Sheffield, UK) in ImageJ version 1.47v (W. 

Rasband, NIH, USA). It is well established in the literature that the concept of FC in 

fact includes two distinct phenomena, which are typically analysed separately 

(reviewed in Manica 2002): partial FC (parents eat some of their offspring) and total 

FC (parents eat all of their current offspring). In our study, total FC was rare (n = 5) 

and spread evenly among treatment groups, preventing meaningful inference. We thus 

excluded all corresponding males and one individual that was found dead on the last 

day from statistical analysis.  

In addition to FC, we measured male egg fanning behaviour using video recordings two 

days after the egg density manipulation. Recordings were made in a randomised order 

with a digital video camera through the front windows of the experimental tanks. 

Individual males were given 10 min with the front cover of the tank removed before the 

actual 10 min recording started. To further reduce potential disturbance (e.g. by turning 

the camera on and off), only the central 5 min of the video recording were used for 

analysis. We evaluated three different aspects of egg fanning behaviour using JWatcher 

version 1.0 (D. T. Blumstein et al., University of California, USA & Macquarie 

University, Australia): overall time spent fanning eggs within 5 min, number of distinct 

fanning bouts, and egg fanning rate (fin flaps per second). Males that were never visible 

on the recording were excluded from this analysis. 

All males (expect one which was accidentally forgotten) were weighed once more at 

the end of the experiment and released to the wild one day after the clutches had been 

removed. We calculated the difference between final weight and initial weight to assess 
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weight change. In total, we obtained data on FC, egg fanning and weight for 51, 49 and 

50 males, respectively.  

 

Statistical analysis 

FC was analysed using a generalised linear mixed model (GLMM) with binomial error 

distribution, which incorporated a measure of initial clutch size (i.e. eggs present after 

density manipulation) by using the number of eggs cannibalised versus the number of 

eggs remaining as response variables (Vallon et al. 2016a, Vallon & Heubel 2016). The 

random model component contained an observation-level random factor, which was 

added to correct for otherwise present overdispersion (Gelman & Hill 2007, Korner-

Nievergelt et al. 2015). Fixed factors included the main treatments salinity (low or 

high), egg density (low or high) and their interaction. We further added cohort (1 or 2) 

and male length to check for potential confounding effects.  

We analysed all remaining response variables in separate models with corresponding 

error distributions using the same fixed factors, except additionally including clutch 

size (after density manipulation) as a covariate. However, since there was a small 

difference in clutch size between egg density groups even in the reduced data set (see 

‘Egg density manipulation’), we decided to centre clutch size around its group-wise 

density mean to avoid confounding in the models, i.e. we subtracted the mean value for 

a respective density group from each observation. Time spent egg fanning and weight 

difference (end weight - start weight) both followed a normal distribution and were 

analysed using linear models. Number of fanning bouts was analysed as count data in 

a GLMM (including an observation-level random factor) with Poisson error 

distribution. For egg fanning rate we used a similar Poisson GLMM but with the total 

number of fin flaps as response variable and the time a male actually spent fanning as 

an offset (see analysis of rates in Korner-Nievergelt et al. 2015).  
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All models were fitted using the ‘lme4’ package (Bates et al. 2014) in R v. 3.0.3 (R 

Core Team 2014). We used the Bayesian Information Criterion (BIC) for backward 

model selection and individual factors were removed when their inclusion did not 

reduce the BIC by at least two (Zuur et al. 2009), while salinity and egg density were 

always retained as our main treatment factors. Ultimately, all models except the ones 

for time spent fanning and weight development contained only those two factors, since 

we found no significant contribution to model fit of either their interaction or any of the 

additional factors (exceptions detailed in the Results).  
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Results 

Average FC was significantly higher in the low salinity treatment compared to the high 

salinity treatment (salinity; Table 1; Fig. 2). We also found a significant effect of egg 

density on FC, but contrary to our predictions males cannibalized more on low density 

than on high density clutches (Table 1; Fig. 2). Irrespective of these overall differences, 

there was no evidence for an interaction between both treatments on FC (Fig. 2), and 

the interaction term dropped out early during model selection (removal of interaction 

improved model BIC by 3.59).  

 

 

Figure 2. Interaction plot based on model estimates for the mean proportion of eggs 

cannibalized after three days (excluding cases of TFC). Presented are group means and 

standard errors for each factor combination of salinity (nlow = 24, nhigh = 27) and egg 

density (nlow = 27, nhigh = 24).  
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Table 1. Test results for the analysis of FC (n = 51), different aspects of egg fanning 

behaviour (n = 49) and weight (n = 50). Note that estimates for the binomial model are 

on the logit-scale and for the Poisson models on the log-scale. Test statistics are given 

as either t-values (Gaussian error distribution) or z-values (binominal or Poisson error 

distribution). Bold-type P-values indicate significant effects.  

 Estimate ± SE Test statistic P-value 

Filial cannibalism    
 Binomial GLMM    
 (Intercept) -1.07 ± 0.28   
 Salinity -0.67 ± 0.30 z = -2.20 0.028 
 Egg density -0.78 ± 0.30 z = -2.55 0.011 

Time spent egg fanning    
 Linear model    
 (Intercept) 111.79 ± 18.28   
 Salinity 26.21 ± 19.66 t = 1.33 0.189 
 Egg density -0.03 ± 19.66    t = -0.002 0.999 
 Clutch size (centred) 0.17 ±   0.08 t = 2.17 0.036 

Number of egg fanning bouts    
 Poisson GLMM    
 (Intercept) 2.37 ± 0.12   
 Salinity 0.01 ± 0.13 z = 0.04 0.966 
 Egg density 0.03 ± 0.13 z = 0.24 0.808 

Egg fanning rate    
 Poisson GLMM    
 (Intercept) 0.97 ± 0.04   
 Salinity 0.02 ± 0.04 z = 0.35 0.729 
 Egg density 0.05 ± 0.04 z = 1.06 0.291 

Weight difference    
 Linear model    
 (Intercept) 91.94 ± 42.25   
 Salinity -22.33 ±   6.24 t = -3.58 0.001 
 Egg density -11.24 ±   6.42 t = -1.75 0.086 
 Length -2.92 ±   1.18 t = -2.48 0.017 
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Our analysis of male egg fanning behaviour revealed that neither time spent fanning 

(Fig. 3a), nor number of egg fanning bouts (Fig. 3b), nor egg fanning rate (Fig. 3c) were 

affected by salinity (Table 1). Similarly, there was no effect of egg density on any of 

the measured aspects of egg fanning (Table 1). However, we found that males spent 

more time fanning eggs when they had more eggs in their nest (clutch size; Table 1; 

Fig. 4). At the end of the experiment, high salinity males had lost on average 8.9 ± 1.2 

% (mean ± SE) of their body weight while low salinity males had only lost 4.0 ± 0.9 %, 

which is reflected in a significant effect of salinity on weight difference (Table 1; Fig. 

5). A similar but much weaker and non-significant trend was observed for egg density 

(Table 1). In addition, weight loss was higher in larger individuals (length; Table 1).  
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(a)      (b) 

(c) 

Figure 3. Comparison of egg fanning behaviour shown by low (n = 22) and high 

salinity males (n = 27). Evaluated were (a) time spent egg fanning within 300 seconds, 

(b) number of egg fanning bouts and (c) egg fanning rate as fin flaps per second. 
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Figure 4. Time spent fanning eggs as determined by behavioural recordings in relation 

to the number of eggs present after density manipulation (n = 49). The grey area depicts 

the 95% confidence interval of the regression line. 
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Figure 5. Difference in weight development between males that were kept in low 

salinity (n = 24) versus high salinity (n = 26) conditions. Negative values indicate a 

weight loss over the course of the experiment. 
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Discussion 

Contrary to our prediction we found no significant interaction effect of salinity and egg 

density on FC. Although there seems to be a weak trend that egg density was more 

important under low salinity conditions (as predicted), the effect of egg density was 

directly opposite to what we expected. Irrespective of salinity, males cannibalized a 

higher proportion of their eggs when egg density was low. This is particularly 

surprising, as many studies highlight the potential positive effects of lower egg densities 

on offspring survival or disease inhibition, not only in fish (Payne et al. 2002, Klug et 

al. 2006, Lehtonen & Kvarnemo 2015b) but also in amphibians (Kiesecker & Blaustein 

1997, Green 1999), suggesting that parents should benefit more from FC on high 

density clutches. Intriguingly, Lehtonen and Kvarnemo (2015a) found that mould 

growth was higher in low density clutches and argued that the possibly increased water 

movement between eggs could have facilitated infection by spores. However, contrary 

to our study, this effect was only present in high salinity conditions.  

To our best knowledge, ours is one of only two studies that tested whether 

experimentally manipulated egg densities affect levels of FC. While Klug et al. (2006) 

could show that FC was indeed increased in the high egg density group, this was only 

true for total FC (a conceptually different mechanism not analysed in our study due to 

the low number of occurrences; see Methods), but not partial FC. The different egg 

densities in this study were created by letting females spawn in differently sized nests, 

inducing more densely packed eggs when nest size was small (Klug et al. 2006). In 

contrast, spawning conditions were identical in our treatments and we afterwards 

carefully removed eggs using scissors from either within the clutch or along the edge. 

While we cannot fully exclude procedural damage on eggs that later were cannibalized 

(to a possibly greater extent in the low density treatment because there were more 

surrounding eggs to be touched), we think it is unlikely that this happened on a scale 

large enough to explain our results. Visually assessing our clutch pictures revealed 

rather random patterns of FC. For example, we could not observe FC in the high density 
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treatment to happen mostly along the margin with its possibly damaged eggs. Scraping 

off eggs did also not seem to affect adjacent eggs in a previous study in common gobies 

(Vallon et al. 2016a).  

The actual egg density in our low egg density treatment, however, could have possibly 

been too low or the egg distribution too patchy. We generally aimed at maximising the 

difference between treatments. Particularly in respect to the potential function of 

preventing the spread of infections, a high mean distance between eggs seemed 

appropriate. Similarly patchy clutches regularly occur in the lab, but typically only after 

males had already removed eggs via FC. Although this is the situation we were trying 

to simulate with our manipulation, males may reject such clutches when received 

directly after spawning. Specifically, patchy or very low density clutches are potentially 

of low quality and are gradually consumed while the male tries to attract additional 

mates.  

Intriguingly, we found that males cannibalized a greater proportion of their clutch in 

low compared to high salinity. In contrast to the puzzling outcome of the egg density 

manipulation, this supports the predictions of Lehtonen and Kvarnemo (2015b) and 

ourselves. In principle, one may argue that salinity could have influenced egg 

development and thus possibly FC in other ways than only via mould growth. For 

instance, there is evidence from other brackish-water fish species that salinity can affect 

egg developmental rate (Brooks et al. 1997, Karås & Klingsheim 1997). However, a 

previous study in common gobies shows that eggs raised under similar salinity and 

temperature conditions as in our experiment do not differ in time until hatching or size 

of larvae after hatching, indicating no negative effect of the lower salinity in this respect 

(Fonds & Van Buurt 1974).  

Alternatively, salinity could have influenced the behaviour or metabolism of adult fish 

directly. While we cannot rule out potential effects on other aspects of behaviour, our 

results clearly indicate that salinity did not affect egg fanning, an important part of 

paternal care and thus potentially very relevant in the context of FC. Effects of salinity 
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on behaviour often vary strongly with the behaviour measured, rendering 

generalisations difficult. In sand gobies, salinity influenced male aggression but not 

courtship (Lehtonen et al. 2016a) and only some aspects of nest building behaviour 

(Lehtonen et al. 2016b). Notably, male flagfish (Jordanella floridae) decreased 

cleaning and fanning of eggs at high salinity while other, non-egg-directed behaviours 

remained unaffected (St Mary et al. 2001). The authors argue that this happened likely 

due to reduced egg needs compared to low salinity conditions (St Mary et al. 2001) and 

specifically highlight the potential impact of egg diseases in this context (St Mary et al. 

2004).  

There is generally mixed evidence regarding how parents should adjust fanning 

behaviour if conditions are challenging. For example, while breeding convict cichlids 

(Cichlasoma nigrofasciatum) spent less time fanning eggs when on low food rations 

(Townshend & Wootton 1985), upland bullies (Gobiomorphus breviceps) spent more 

time fanning when heavily infected with parasites (Stott & Poulin 1996). Similarly, a 

previous study in common gobies showed that males increase fanning rate and duration 

under low oxygen conditions (Jones & Reynolds 1999). This is interesting because 

oxygen availability is known to decrease with increasing salinity (Kinne & Kinne 1962, 

Fonds & Van Buurt 1974) and one may thus have expected egg fanning to also increase 

in our high salinity treatment. However, since we did not measure dissolved oxygen 

levels in our setup, we lack the data to assess the actual differences between treatments. 

Neither salinity nor egg density influenced any of the egg fanning measures in our 

study, but the time a male spent fanning increased with the number of eggs in its nest. 

This may seem surprising at first, as parental care in fishes is typically assumed to be 

sharable among all offspring (‘non-depreciable’ sensu Clutton-Brock (1991)) and thus 

theoretically independent of offspring number (Blumer 1982, Smith & Wootton 1995). 

Yet, although the cost of care is similar, a large clutch has a greater reproductive value 

and thus offers a higher potential benefit of care (Sargent & Gross 1985, Sargent & 

Gross 1986). Our results are indeed consistent with previous studies showing higher 



 CHAPTER III 
 
  

67 
 

parental effort for larger clutches in terms of egg fanning (St Mary et al. 2001, Suk & 

Choe 2002, Karino & Arai 2006) or other parental care behaviours (Sargent 1988, 

Lindström 1998).  

In contrast to behaviour, male weight loss varied with salinity. Although fed regularly, 

males of both salinity treatments lost weight on average over the course of the 

experiment with weight loss being higher in the high salinity group. In principle, this 

corresponds to a previous finding that common gobies lose more weight during paternal 

care when levels of dissolved oxygen are low (Jones & Reynolds 1999a), conditions 

that might have also been present in our high salinity treatment (as discussed earlier). 

However, increased weight loss was likely connected to more energy spent on paternal 

care in this study (Jones & Reynolds 1999a), which cannot explain our result.  

Unrelated to behaviour, three-spined sticklebacks (Gasterosteus aculeatus) from a low 

native salinity regime subjected to high salinity in a long-term common garden 

experiment were smaller and in worse condition than fish subjected to mid or low 

salinities (DeFaveri & Merilä 2014). Such potential local adaptation may also be 

relevant in our study, since the low salinity treatment corresponded to the native salinity 

of our study population. While a reduced osmoregulatory efficiency may be important 

in this context in sticklebacks (DeFaveri & Merilä 2014), it does not seem to be a likely 

factor in common gobies: Several studies highlight the very efficient osmoregulatory 

capabilities of this species under a broad range of salinities irrespective of the origin of 

the studied fish (Tolksdorf 1978, von Oertzen 1984, Rigal et al. 2008). Intriguingly, the 

standard metabolic rate (Tolksdorf 1978, von Oertzen 1984) and the routine metabolic 

rate (defined as the oxygen consumption during a feeding or digestion phase with 

normal locomotory activity; von Oertzen (1984)) vary only slightly between salinities 

similar to our experiment (at similar temperature conditions), suggesting that energy 

demands for osmoregulation are negligible.  

Nevertheless, Tolksdorf (1978) found that males consumed significantly more food in 

the high salinity treatment and although they also gained more weight compared to 
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males in the lowest salinity, their food conversion rate was lower. This might explain 

why male weight loss differed between treatments in our study although all males 

received the same amount of food. Likewise, larger individuals with likely higher 

energy demands lost more weight. In principle, these findings also correspond to our 

main FC result, as additional energy gained via increased cannibalism in low salinity 

could have led to less weight loss. Yet, this effect was much less pronounced between 

the egg density groups despite even larger differences in FC. Considering the reverse 

situation speaks against FC to be driven by energetic needs: The potentially higher food 

requirements in high salinity did not induce more FC.  

Although we could not directly confirm our predictions of an interacting effect between 

salinity and egg density on FC as well as overall higher FC under low density, our 

results clearly demonstrate that FC is influenced by salinity as well as egg density. 

Furthermore, our combined findings strongly suggest that differences in FC between 

salinities are caused by differential mould growth. This is concordant with our own 

previous work, where males preferentially cannibalized eggs that had been raised (and 

developed mould) in low compared to high salinity conditions, although males 

themselves were housed in low salinity (Vallon et al. 2016a). Brackish water conditions 

as found in the Baltic Sea can thus drastically influence reproductive decisions of 

aquatic organisms and may have an even larger impact in the future, as salinity levels 

in the Baltic Sea are predicted to decrease further (Meier 2006, Neumann 2010).  
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DISCUSSION 

Previous research on the adaptiveness of filial cannibalism has largely focussed on 

energy-based explanations (Manica 2002), although there are indications that FC 

cannot satisfy the energy requirements associated with parental care (Smith 1992). 

While it has been acknowledged earlier that other factors may also play a role (Klug & 

Bonsall 2007), corresponding empirical evidence is scarce and the theoretical 

framework often inconclusive. Selective filial cannibalism, i.e. selective consumption 

of offspring with a certain “low-quality” phenotype, seemed particularly promising to 

me, because of its obvious benefits to the cannibalising parent. Hence, I first assessed 

the general occurrence of selective FC in the common goby (chapter I). 

In common gobies, as in many similar species with male brood care, males can care for 

clutches of several females simultaneously (Baylis 1981, Magnhagen & Vestergaard 

1993). This reproductive feature has an influence on mate choice (Reynolds & Jones 

1999) and operational sex ratio (Kvarnemo & Ahnesjö 1996), and often leads to 

significant age differences between eggs in the same nest. Age thus naturally seemed 

like a relevant offspring parameter that could influence the reproductive value of eggs 

and thus male FC.  

By manipulating egg age within one batch of eggs, I could show that egg-guarding 

males indeed preferentially cannibalise the younger, less valuable eggs in their nest 

(chapter I). Firstly, this result clearly confirms the predicted general occurrence of 

selective FC. The ability to weed out specific offspring may be a fundamental 

mechanism particularly in variable environments, because it generally enables parents 

to alter the phenotypic composition of their current offspring after fertilization (Klug & 

Bonsall 2007). Secondly, this result pinpoints egg age as an important offspring 

phenotype where seemingly marginal differences can drive cannibalistic behaviour. 

While selectively removing offspring of low reproductive value could be seen as an 

extreme form of allocating parental care to the more valuable offspring and thus 
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generally fits well with parental investment theory (Trivers 1972, Sargent & Gross 

1985, Klug et al. 2012), it may seem surprising at first that offspring age induces such 

a strong response.  

 However, the importance of offspring age as a determinant of offspring reproductive 

value has strong support from earlier studies in common gobies. Magnhagen and 

Vestergaard (1991) and Magnhagen and Vestergaard (1993) tested risk-taking and 

aggression of egg-guarding males in relation to the time the male had spent guarding a 

particular brood. Males were presented either with a conspecific competitor 

(Magnhagen & Vestergaard 1991) or with an eelpout (Zoarces viviparus), a potential 

predator (Magnhagen & Vestergaard 1991, 1993), and were subsequently chased away 

from their nests. The time away from the nest decreased significantly the longer the 

male had already spent guarding its brood in both studies. In addition, males attacking 

the researchers’ finger, when those deliberately disturbed the nest, had on average more 

developed clutches than non-attacking males (Magnhagen & Vestergaard 1993). Both 

results strongly suggest that males use egg developmental stage as a cue to determine 

reproductive value of the eggs and adjust their behaviour accordingly.  

Similarly, parents increase their aggression or intensity of nest defence with increasing 

maturation of young in a diverse array of fish (Huntingford 1976, Colgan & Gross 1977, 

Pressley 1981) and bird species (Møller 1984, Weatherhead 1989, Brunton 1990). 

Theoretical models also predict that the relative importance of offspring for the parent 

increases the closer the young get to maturity due to increased probability of survival 

(Andersson et al. 1980) and this effect may be particularly pronounced in species such 

as the common goby with only a restricted reproductive season (Sargent & Gross 1985).  

After having established the general occurrence of selective FC and specifically 

selective FC in relation to offspring age (chapter I), I moved on to assess additional 

promising factors that may be connected to selective FC, namely egg infections and 

paternity (chapter II). By manipulating growth of microbial infections (water moulds) 

on common goby egg clutches and presenting egg-guarding males with eggs from two 
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differently treated clutches simultaneously, I could show with two independent 

experiments (using different methods to induce infection) that such egg infections 

indeed trigger selective FC (chapter II). In particular, males preferentially cannibalised 

eggs that had been previously exposed to water mould compared to uninfected eggs. 

Although egg infections were only manipulated indirectly in both experiments (either 

by temporarily preventing paternal care or by manipulating salinity), I am confident 

that the observed effect is indeed related to previous infection status of eggs and not to 

any of the possible confounding factors as discussed in chapter II.  

Firstly, this result confirms the findings of chapter I in relation to the general occurrence 

of selective FC. Secondly, it confirms offspring health as modulated by infection history 

as an essential offspring phenotype and key trigger for selective removal by the parent. 

Similarly, honey bee workers selectively kill and remove developing larvae (to which 

they are typically closely related) infected with foul brood to prevent the spread of the 

disease in the hive (Rothenbuhler 1964). 

Compared to offspring age, diseases may likely be an even more important driver of 

cannibalistic behaviour, particularly in aquatic organisms where egg infections are a 

ubiquitous threat that can also be directly harmful to the adult animals (Green 1999, 

Barber & Poulin 2002, van West 2006, Sagvik et al. 2008, Bandoli 2016). This is 

supported by the outcome of experiment 1 of chapter II, where males preferentially 

cannibalised the infected eggs, although those were at the same time the older, more 

developed ones. In addition, comparing the magnitude of the observed effects between 

chapter I and chapter II indicates that egg infections trigger a stronger response (while 

keeping in mind that the two studies were not conducted in exactly the same manner 

and may thus not be directly comparable): Males consumed on average 26.9 % more 

infected than non-infected eggs (average of both experiments), while the difference 

between treatments was much lower in the egg age experiment (13.9 %). 

It is important to note that selective FC can generally serve different functions and that 

this behaviour should be considered in conjunction with the mechanisms advocated by 
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other hypotheses on FC. In particular, selective FC can be beneficial due to two 

different main processes: The first option is based on the assumption that FC is indeed 

generally driven by energetic needs of the parents, i.e. we assume that the energy-based 

hypothesis sensu Rohwer (1978) and Sargent (1992) is true. If this is the case, it seems 

reasonable to assume that a caring parent needs to consume a certain amount of eggs or 

young per day to satisfy its needs. Hence, by consuming preferentially offspring of low 

quality and thus only sacrificing the least valuable offspring, the cannibal should be 

able to effectively reduce the cost of FC. One potential example for this is the 

preferential consumption of less valuable and highly nutritious young eggs described 

in this thesis (chapter I).  

The second option is that there are direct benefits from removing certain offspring that 

trigger selective FC. For instance, removal of diseased or dead offspring may inherently 

be advantageous to prevent spread of infections (chapter II). Option two naturally also 

offers the additional benefit of simultaneously providing energy via actual offspring 

consumption instead of simply killing or abandoning the young or eggs. Notably, there 

is also significant overlap possible between both options. In relation to egg 

developmental stage, it has also been suggested that the eggs that take longest to mature 

are removed to reduce the overall duration of the breeding cycle (Klug & Lindström 

2008). While unlikely to be relevant in common gobies (as described in chapter II), this 

would represent a direct benefit independent of the energetic needs of the parent.  

Likewise, selective FC by males of offspring with a low certainty of paternity may be 

connected to both options. If the male can in fact specifically recognise foreign 

offspring by olfactory or visual cues, which seems not to be the case in common gobies 

(chapter II) or plainfin midshipmans, Porichthys notatus (Bose et al. 2016a), but 

evidently in several other fish species (Loiselle 1983, Green et al. 2008, Mehlis et al. 

2010), it would represent a direct benefit to remove such offspring to avoid spending 

unnecessary, costly care on unrelated offspring and/or to free space for potential own 

offspring. However, it may often be the case that paternity (or rather the lack thereof) 
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cannot be ascertained because it is only assessed via indirect cues such as observation 

of sneaker male intrusions (Neff 2003, Manica 2004, Gray et al. 2007), and paternity 

can remain relatively high even if the sneaking attempt was successful (Malavasi et al. 

2001, Svensson & Kvarnemo 2007). In this case there might be a gradient following 

the uncertainty of paternity, with high uncertainty still leading to selective removal 

being beneficial per se, but lower uncertainty only triggering FC to potentially minimise 

the costs if eggs need to be sacrificed anyway.  

I did not find any evidence for an effect of paternity on selective FC in common gobies 

(chapter II). However, the clear result regarding egg infections (chapter II) intrigued me 

and I aimed at investigating this further in chapter III. Following the successful 

manipulation of water mould growth via varying salinities in experiment 2 of chapter 

II, further use of salinity manipulation seemed promising to relate cannibalistic 

behaviour to environmental conditions. By simultaneously manipulating egg density, I 

aimed at addressing another well-known, but currently inconclusive hypothesis on the 

adaptiveness of FC (density-dependent FC; Payne et al. 2002, 2004, Klug et al. 2006), 

while at the same time investigating its interaction with selective FC (chapter III).  

Specifically, I expected to find an interaction between salinity and egg density with FC 

being highest in low salinity (due to increased growth of egg pathogens) on high egg 

density clutches (due to easier spread of pathogens on egg clutches). However, while 

FC was indeed higher under low salinity conditions, I could not detect a significant 

interaction with egg density. Furthermore, the observed effect of egg density alone on 

FC was in fact contrary to my prediction since males cannibalised more on low density 

clutches.  

Hence, I could neither directly confirm the predictions of the density-dependent FC 

hypothesis sensu Payne et al. (2004), nor the suspected interaction of egg density with 

selective FC. As discussed extensively in chapter III these results are indeed puzzling, 

particularly when considering the various earlier studies indicating that lower egg 

densities should in principle be beneficial in aquatic organisms (e.g. Green 1999, Klug 
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et al. 2006, Lehtonen & Kvarnemo 2015), and I cannot fully exclude methodological 

issues (egg density possibly too low or eggs too patchy; possible procedural damage on 

eggs during treatment).  

In contrast, the increased cannibalism in low salinity generally confirmed my 

prediction. I could also exclude possible confounding factors by additionally assessing 

variation between salinity treatments in male brood care behaviour (egg fanning) and 

male body weight, and its potential influence on FC. While there was indeed a 

difference in weight loss between salinity treatments with higher losses under high 

salinity conditions, this difference cannot adequately explain the observed cannibalistic 

behaviour in relation to salinity. The results of chapter III in relation to salinity thus 

clearly further support and highlight the strong influence of environmental conditions 

and egg infections on FC already indicated in chapter II.  

In this regard, it seems particularly noteworthy to consider the extensive gradient in 

environmental conditions, particularly in salinity, which common gobies as a whole 

species may experience, and also the rather extreme conditions present at the study site 

at the southern Finnish coast used for this thesis. Common gobies occur from the 

Mediterranean to the Baltic Sea (Miller 1975, 1986, Louisy 2002). Even when only 

considering the Baltic Sea, the variation in salinity in the shallow waters inhabited by 

common gobies can be immense, ranging from more than 25 ppt (close to marine 

conditions) at the Swedish west coast to below 2 ppt (close to fresh water) at the 

innermost parts (HELCOM 1996).  

As indicated in chapter III, various studies on reproduction in the closely related sand 

goby show that average FC tends to be higher in low salinity areas compared to high 

salinity areas and it has been suggested that this is related to facilitated growth of egg 

pathogens under low salinity conditions (Lehtonen & Kvarnemo 2015). Unfortunately, 

most FC-related data for common gobies is derived from studies conducted in low 

salinity areas (i.e. Tvärminne at the eastern Baltic Sea coast; including the current 

studies) and a reasonable comparison with high salinity areas is thus not possible. 
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However, my results clearly indicate that a similar pattern as for sand gobies should be 

expected.  

Variation in environmental conditions and in salinity in particular can generally heavily 

influence reproduction, e.g. via resource availability, which in turn affects competition, 

operational sex ratios and thus sexual selection (Emlen & Oring 1977, Kvarnemo & 

Ahnesjö 1996). For instance, nest resources that are typically used by sand and common 

gobies such as mussel shells are much scarcer in Tvärminne at the Finnish Baltic Sea 

coast compared to the Swedish west coast due to their limited tolerance to low salinity 

(Forsgren et al. 1996, Mück 2016), consequently leading to stronger male-male 

competition over nests in sand gobies in Tvärminne (Forsgren et al. 1996). A recent 

study assessed various reproductive parameters in five common goby populations 

across the Baltic Sea and indeed found considerable variation between populations, e.g. 

in mating success, brood size, egg density and egg size. However, there was only 

limited data available for FC. In addition, while the results indicate that egg density is 

generally lower in low salinity populations compared to high salinity ones, egg density 

was highest at intermediate locations and there was also no clear and consistent pattern 

observable in relation to salinity or other environmental influences for any of the other 

assessed parameters (Mück 2016). It thus remains unclear if and how the expected 

higher cannibalism levels in low salinity areas relate to general differences in 

reproduction and sexual selection between populations. 

While the results of my thesis highlight selective removal of offspring as one of the 

main drivers of FC, it should be noted that selective FC as such is not necessarily 

mutually exclusive to other possible mechanisms affecting cannibalistic behaviour. As 

indicated earlier, various alternative factors have been suggested which potentially 

influence FC (FitzGerald 1992, Manica 2002, Klug & Bonsall 2007). Most notably, 

besides the already addressed energy-dependence (Rohwer 1978) and the still 

inconclusive relationship between FC and egg density (see chapter III), FC may also be 

related to the availability of potential mates (Kondoh & Okuda 2002, Deal & Wong 
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2016). In particular, various studies show that high mate availability leads to elevated 

levels of FC (Okuda & Yanagisawa 1996, Okuda et al. 2004, Myint et al. 2011, 

Takeyama et al. 2013), presumably because the cost of replacing young is reduced 

under such circumstances. However, the opposite has also been observed (Pampoulie 

et al. 2004, Klug et al. 2005) and it has been suggested that in this case parents may use 

FC to facilitate survival until times of higher mate availability (Deal & Wong 2016). 

Considering that mate availability can also be influenced by environmental conditions 

through the interplay of resource availability and operational sex ratio (see above), this 

is another factor that could affect FC in the field in combination with the directly 

salinity-driven effects described in this thesis. 

Nevertheless, there may generally also be cases where parents cannibalise offspring 

accidentally. For instance, mouthbreeding fish might eat a few of their eggs by mistake 

while removing unfertilised eggs because they simply stick together (Mrowka 1987, 

FitzGerald & Whoriskey 1992). Other parents have been observed ‘making the best of 

a bad situation’ (Manica 2002): female three-spined sticklebacks participate in 

cannibalistic raids on conspecific nests even if they had previously laid their eggs in 

one. However, in this case they never initiate the attack but only join after egg 

consumption by other females has already started and their eggs are thus lost anyway 

(FitzGerald & van Havre 1987).  

A more recent notion considers a fundamentally different approach to address FC based 

on intrinsic behavioural differences instead of extrinsic influences (Vallon et al. 2016b). 

When looking at the empirical data for FC across species not only from this thesis but 

also from the literature (e.g. Salfert & Moodie 1985, Nemtzov & Clark 1994, Lindström 

& Sargent 1997), it is apparent that there is often considerable variation in the extent of 

FC between individuals under very similar environmental conditions. Inter-individual 

behavioural differences that are consistent over time or across contexts are well 

established in the literature within the concept of animal personality (Gosling 2001, Sih 

et al. 2004b, Réale et al. 2007), which also includes so-called behavioural syndromes: 
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population-wide intrinsic correlations between multiple behavioural traits (Sih et al. 

2004a). Vallon et al. (2016b) investigated the influence of animal personality on male 

FC (and other behavioural traits) using the common goby. They indeed found strong 

indications for an intrinsic coupling between FC and general activity, a behaviour for 

which consistent inter-individual differences between males were found in the same 

study. This indicates that individuals might not be able to adjust their cannibalistic 

behaviour independently of their intrinsic personality and their phenotypic plasticity 

regarding FC might thus be limited (Vallon et al. 2016b). However, more research is 

needed to confirm these findings and relate them to clearly environmentally-driven 

effects such as those found in the present thesis. 

In conclusion, my thesis provides clear evidence for selective FC in relation to offspring 

age (chapter I) and egg infections (chapter II). In addition, I could establish the 

influence of environmental conditions such as salinity on FC, while the putative effects 

of egg density remain unclear (chapter III). The interplay of these different factors is 

thoroughly discussed throughout the thesis and I also highlight the role of other factors 

potentially influencing FC that were not directly assessed as part of the presented 

empirical work. Further research is thus crucial to connect the different drivers of filial 

cannibalism. 
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