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   1 
1. Introduction 

 

“[…] One day we were rehearsing a scene that required both of us to pass 

through the mayor`s office door simultaneously and in opposite 

directions. Scripts in hand, we started to walk the scene, but when we 

both got to the door, instead of passing by Michael, I froze directly 

in front of him. “You gotta move”, I said, rather more bluntly than 

intended. Michael is one of the nicest guys on the planet, but he was a 

little confused and taken aback by my direction. “What?” he replied. 

“You gotta move. I can`t move until you move.” He eventually complied, 

and after the rehearsal, I tried to explain what had just happened. 

Occasionally, when my brain asks my body to perform simple tasks that 

involve some degree of judgement regarding spatial relationships, the 

message gets lost in transmission. It takes some form of outside 

stimulus, like the movement of an obstacle, curiously, even the 

introduction of an obstacle, for me to move forward. Some Parkies who 

freeze when walking can resume again when a ruler is placed in front of 

their feet and they are forced to step over it. Michael, of course, 

accepted my explanation and even managed to laugh with me about the 

strangeness of it all. […].”1 

***** 

Michael J. Fox – actor, author and founder of the Michael J. Fox 

Foundation describing a situation when he suffered freezing of gait 

during a rehearsal with his friend Michael Boatman. 

                                            
1Source: Fox, Michael J. (2009): Always Looking Up. First edition. New York: Hyperion, p. 11. [Internet] 

Available from: http://www.amazon.de/Always-Looking-Up-Adventures-Incurable/dp/1401303382#reader 

_1401303382 [Accessed 01/12/2015]. 

 

http://www.amazon.de/Always-Looking-Up-Adventures-Incurable/dp/1401303382#reader
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With these words, the actor Michael J. Fox, described a daily scene on stage 

during which he experienced freezing of gait (FOG) and his strategy to overcome 

the feeling being glued to the floor. Like the famous founder of the Michael J. Fox 

foundation, many Parkinson’s patients suffer gait disturbances, especially in 

advanced disease stages.  

To date, there is still no therapeutic strategy to handle gait disturbances like FOG 

in a satisfying manner. With the introduction of deep brain stimulation (DBS) a 

precious therapeutic option was found to treat brain disorders like Parkinson’s 

disease (PD) and handle the leading symptoms of this disease, even FOG, in 

some patients (Vercruysse et al., 2014). 

 

In 1817, James Parkinson (1755 – 1824) described the symptoms of PD in his 

“An Essay of the Shaking Palsy” for the first time. Tremor, rigidity, bradykinesia 

as well as postural instability or hypomimia were clinical observations he made in 

six individuals. Until today, these symptoms define the clinical signs of PD 

(Jankovic, 2008). Since then, a lot of research on the pathophysiology of PD has 

been done and different therapeutic strategies were developed to address the 

symptoms of PD. However, the disease cannot be stopped or even cured. The 

imbalance of the dopaminergic system caused by the loss of neurons of the 

substantia nigra (SN) and subsequently the disturbance of activation of the 

different basal ganglia (BG) components is one major reason behind the motor 

disorder (Agid, 1991). However, dopaminergic depletion is not the only reason 

for the occurrence of parkinsonism. It is accompanied by an imbalance of other 

neurotransmitters as acetylcholine, serotonin, or noradrenalin in consequence of 

the neuronal death. 

Drug therapy can improve the symptoms to a certain degree and in advanced 

disease stages DBS is an established therapy option. In patients with levodopa-

related motor complications and in tremor dominant cases, neurostimulation 

showed a superior efficacy over best medical management (Schuepbach et al., 

2013, Deuschl et al., 2006b). Unfortunately, in spite of a variety of therapeutic 

options there are still patients who cannot be treated in a satisfying way. New 

stimulation techniques and new targets for DBS are needed to improve especially 
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axial symptoms, which currently cannot be treated adequately (Welter et al., 

2002). 
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2 
2. Background  

 

With a prevalence of 0.6 % within the group of people aged over 65 years and a 

prevalence of 3.5 % among people aged over 85 years, PD is one of the most 

common neurological diseases and besides Alzheimer’s Disease the second 

most frequent neurodegenerative disease in Europe (de Rijk et al., 1997).  

In Western Europe’s five and the world’s ten most populous nations the number 

of individuals suffering from PD was between 4.1 and 4.6 million in 2005 and is 

expected to increase to between 8.7 and 9.3 million in 2030 according to the 

available statistics (Dorsey et al., 2007). These large numbers reflect the 

worldwide increased life expectancy and the demand for therapeutic options for 

PD. 

As disease progresses, in most patients, bothersome levodopa-induced motor 

complications emerge. After five to ten years of dopaminergic therapy, a great 

proportion of patients suffer from levodopa-induced dyskinesia, motor 

fluctuations or psychosis (Poewe et al., 1986). An optimal treatment in advanced 

PD patients is often difficult once motor fluctuations emerge. 

DBS is a clinical tool used in advanced disease stages to treat levodopa-

responsive parkinsonian symptoms when medically intractable fluctuations and 

dyskinesia occur (Deuschl et al., 2006b, Williams et al., 2010, Okun et al., 2012). 

Typically, it is induced after eleven to 13 years of disease duration, when motor 

impairment and quality of life are severely affected. Interestingly, 

neurostimulation was also superior to medical treatment alone in earlier disease 

stages with emerging motor complications (Schuepbach et al., 2013). 
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The first implantable stimulation system for DBS was engineered by the company 

Medtronic (Minneapolis, USA) in 1987. In the last three decades, DBS developed 

to an established routine therapy in advanced PD (Schuepbach et al., 2013, 

Deuschl et al., 2006b). Owing to the pioneering work of Benabid and colleagues 

(Benabid et al., 1991) and broad research done on DBS since then, the Food and 

Drug Administration (FDA) approved the application of DBS of the thalamus for 

PD and essential tremor in 1997. Further approvals followed for DBS of the 

subthalamic nucleus (STN) and the globus pallidus (GP) for PD in 2002 and for 

dystonia in 20031.  

Stimulation techniques improve continuously and DBS is under consideration for 

diverse neuropsychiatric disorders. With respect to PD, the therapeutic challenge 

is to manage symptoms resistant to standard therapy. As such, axial symptoms 

including FOG cannot be addressed with conventional STN-DBS. In this thesis, 

we probe on novel stimulation techniques and stimulation targets to overcome 

these limitations. 

 

  Idiopathic PD – overview 

Idiopathic PD is a chronic and progressive neurodegenerative disease that 

affects the dopaminergic transmission resulting in disabling motor symptoms and 

several non-motor symptoms. It develops gradually, sometimes starting with a 

slight shaking in one hand (tremor), with body stiffness (rigidity), slowing of 

movements (bradykinesia) or difficulty with walking and gait (postural instability) 

(Ng, 1996).   

In early disease stages, these motor symptoms are the most obvious ones and 

the four symptoms mentioned are considered as the cardinal symptoms in PD 

(Jankovic, 2008). Presumably, neurodegeneration even starts years before any 

clinical symptoms are noticed (DelleDonne et al., 2008, Koller, 1992) and 

prodromal non-motor symptoms were established to this end (Gaenslen et al., 

2011, Berg et al., 2015).  

                                            
1Source: Homepage University of Wisconsin [Internet] Available from:  

http://www.uwhealth.org/neurosurgery/deep-brain-stimulation-dbs-frequently-asked-questions/12764 

[Accessed 03/01/2015] 

http://www.uwhealth.org/neurosurgery/deep-brain-stimulation-dbs-frequently-asked-questions/12764
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PD is diagnosed on the basis of the clinical symptoms and from the time the 

diagnosis is made, the course of the disease is progressive (Cheng et al., 2010). 

After emergence of the first motor symptoms and diagnosing PD, medical therapy 

with levodopa is typically introduced. This early phase, the so-called 

“honeymoon” period, is characterised by a good and constant response to the 

dopaminergic treatment. It usually lasts up to five to six years after disease onset 

(Krack et al., 2003, Rodriguez-Oroz et al., 2005). However, few years later the 

intermediate stage incorporates progression of motor symptoms. This generally 

necessitates a combination of diverese antiparkinonian drugs and presents with 

emergence of first levodopa-related side effects in terms of motor fluctuations, 

e.g. uncontrolled off phenomena or dyskinesias. Hence, at the intermediate 

disease stage, efficacy and safety of oral medication may be limited, and this 

could be the entrypoint for neurostimulation, which improves levodopa-

responsive parkinsonian symptoms (Limousin et al., 1998, Kleiner-Fisman et al., 

2006). Studies could show a superior effect of STN-DBS to medical therapy alone 

in intermediate disease stages when the response to dopaminergic therapy is still 

preserved, but first motor complications are about to emerge (Schuepbach et al., 

2013, Deuschl et al., 2006b).  

In late disease stages a decline not only of the therapeutic response to 

dopaminergic mediacation can be observed but also of the response to 

conventional subthalamic stimulation (Krack et al., 2003, St George et al., 2010, 

Castrioto et al., 2011). Unfortunately, the improvement achieved by DBS and the 

second “honeymoon” phase following surgery often fail to control for axial motor 

impairment on the long-term (Nutt et al., 2011, Castrioto et al., 2011). 

Presumably, disease progression plays a major role for this limited long-term 

STN-DBS effect (Rizzone et al., 2014). The question is whether and how DBS 

itself could help to address such late stage symptoms. Fine-tuning concerning 

the stimulation parameters showed inconsistent results for the improvement of 

especially axial motor signs (di Biase and Fasano, 2016). Different long-term 

therapeutic outcomes of STN-DBS concerning segmental and axial motor 

symptoms may mirror an origin and involvement of those symptoms in different 

functional neuronal pathways (Potter-Nerger et al., 2008, Kuriakose et al., 2010, 
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Weiss et al., 2012a, Chastan et al., 2009, Ferraye et al., 2010, Moro et al., 2010b, 

Tsang et al., 2010, Thevathasan et al., 2011b). The aim of this study was to 

interfere on the level of these different neuronal pathways via neurostimulation of 

different stimulation targets. 

 

2.1.1. Clinical symptomatology of PD 

The most easily recognised symptom of PD is tremor. Usually it is a rest tremor 

affecting the distal part of the limb. At disease onset, it mostly appears in a single 

arm or leg. It is maximal when the limb is at rest and disappears when the limb is 

moved voluntarily or while asleep. The typical frequency of this rest tremor is 

between four and six hertz. The tremor is the most apparent and the most 

common symptom of the cardinal symptoms in PD (Jankovic, 2008). Another very 

disabling symptom and mandatory sign for PD is bradykinesia, the slowness of 

movements. Bradykinesia is mostly diagnosed by examining the diadochokinesia 

(e.g. pronation and supination of a hand in rapid succession). Normal daily life 

tasks like writing or dressing are difficult to perform for patients. The increased 

muscle tone in PD causes rigidity, a resistance or stiffness of the muscles during 

movements. The muscles are continuously contracted and can cause joint pain. 

In early disease stages, the muscles of the neck and the shoulders are the most 

affected. Along progression of PD, the whole body is affected, resulting in a 

reduced ability to move (Berardelli et al., 1983, Jankovic, 2008). Postural 

instability is a symptom in the late stages of idiopathic PD and is due to deficient 

postural reflexes. This axial symptom leads to impaired balance, and potentially 

falls as a common cause of bone fractures, hospitalisation and mortality in PD 

(Bloem et al., 2001, Stolze et al., 2004). Postural instability is the least treatable 

motor feature of the four cardinal symptoms in PD (Bloem, 1992, Jankovic, 2008). 

The axial motor symptoms (postural instability, gait disorders, dysarthria) largely 

contribute to the motor handicap in PD patients (Klawans, 1986, Bonnet et al., 

1987, Bloem et al., 2001). They poorly respond to levodopa treatment and 

probably emanate from the increasing prominence of non-dopaminergic lesions 

influencing brain areas outside the BG (Agid, 1991, Bejjani et al., 2000). 
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FOG is one of the most disabling gait disorders of Parkinson’s Disease and 

around 50% of all PD patients experience FOG in the course of the disease 

(Lamberti et al., 1997, Shoulson et al., 2002, Amboni et al., 2015, Macht et al., 

2007, Giladi et al., 1997)It is a mysterious clinical phenomenon that is common 

not only in advanced disease stages of idiopathic PD but also in other 

parkinsonian syndromes or microvascular ischemic lesions (Giladi et al., 2001, 

Macht et al., 2007). FOG may lead to falls, impair self-dependent mobility (Latt et 

al., 2009, Kerr et al., 2010, Okuma and Yanagisawa, 2008) and reduce quality of 

life (Moore et al., 2007, Rahman et al., 2008). The pathophysiology of FOG is 

poorly understood and even clinical operationalisation of the FOG phenomenon 

is highly non-trivial. FOG consists of several clinical subforms, however, the main 

linking feature is the absence or reduction of effective forward progression while 

walking (Nutt et al., 2011).  

It is an episodic gait disturbance consisting of features such as problems to 

initiate walking, the so-called start hesitation, episodes with arrest of forward 

progression while walking (so-called akinetic freezing or alternatively ‘trembling-

in-place like freezing’), or the so-called ‘turn’ and ‘destination’ hesitation (Nutt et 

al., 2011). The feeling of the ‘feet being glued to the floor’ or a ‘trembling of the 

legs’ can accompany FOG (Nutt et al., 2011). As a consequence of these various 

features, no universal clinical description exists for FOG and therefore one may 

postulate the underlying mechanisms are heterogeneous. The freezing episode 

mostly lasts a few seconds, but can sometimes persist up to more than 30 

seconds (Schaafsma et al., 2003). It occurs more frequently when patients are in 

a dopaminergic off state, connoting an important but not exclusive role of 

dopamine in FOG (Plotnik and Hausdorff, 2008). FOG is mostly related to 

advanced disease stages but it does not seem to be correlated to the cardinal 

symptoms of PD, as it occurs also in syndromes without parkinsonism (Factor, 

2008). The therapeutic options for axial symptoms and - in particular - FOG are 

still limited: despite optimal dopaminergic medication and STN-DBS a satisfying 

amelioration of the symptoms cannot be achieved in all patients (Castrioto et al., 

2011). Only about 50% of PD patients who suffer from freezing experience an 

alleviation of FOG six and twelve months after DBS surgery (Vercruysse et al., 
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2014). Thus, a huge number of patients stays resistant to best medical treatment 

and STN-DBS concerning FOG and axial symptoms. For this reason, advanced 

stimulation techniques, such as combined stimulation of both STN and the pars 

reticulata of the substantia nigra (SNr), are probed to address these unmet 

symptoms (Chastan et al., 2009, Weiss et al., 2011a). 

 

  BG structure and functions 

The importance of the BG for brain functions such as the control of voluntary 

movements, eye movements, learning, routine behaviours, emotion or cognitive 

function becomes obvious by the numerous neurological diseases associated 

with BG dysfunction. The integration in cortical loops, which involve the limbic 

cortex and the prefrontal association cortex, is the reason for the loss or at least 

the pathological transformation of these functions by a modified storage in these 

cortical areas (Middleton and Strick, 2000, Obeso et al., 2008). 

 

2.2.1. BG components 

The BG consist of several subcortical nuclei situated in the forebrain (mostly in 

the diencephalon and in the mesencephalon). The main structures belonging to 

the BG are the striatum, the largest nucleus consisting of the caudate nucleus, 

and the putamen, the GP, consisting of an internal (GPi) and an external part 

(GPe), the SN, consisting of the pars compacta (SNc) and the SNr and lastly the 

STN. These nuclei interact strongly with other brain structures, such as the 

thalamus, the cerebral cortex or the brain stem (Feger, 1997, Middleton and 

Strick, 2000, McHaffie et al., 2005). 

Historically, the BG were thought to be mainly involved in motor control and 

thereby, when impaired, the reason for movement deficits. However, today we 

know that the BG are associated with a variety of other functions, as mentioned 

above. Figure 1 illustrates the anatomical structures of the BG. 

http://en.wikipedia.org/wiki/Striatum
http://en.wikipedia.org/wiki/Caudate_nucleus
http://en.wikipedia.org/wiki/Putamen
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Figure 1 Basal Ganglia components illustrated by Leisman and Melillo (Leisman and Melillo, 2013).  
Int. = internal, Ext. = external. 

 

2.2.2. Pathogenesis and pathophysiology of PD 

It is known, that the parkinsonian symptoms are caused by a progressive 

degeneration of melanin containing neurons of the SNc (Schapira and Jenner, 

2011). The mechanism and cause for the degeneration is not totally clear at 

present, but genetic predisposition (Xiromerisiou et al., 2010, Kruger et al., 1998, 

Sharma et al., 2012) and environmental factors (Tanner and Langston, 1990) are 

probably involved in the process. 

The BG structures are not only interconnected (Joel and Weiner, 1994), they also 

build connections to a variety of other brain areas through different pathways 

such as connections to the thalamus or the brainstem motor centres (Obeso et 

al., 2008). Due to the manifold interconnections, almost all pathways in the brain 

are affected by the neuronal loss of the SNc and the lack of dopamine. As one 

major function, the BG adjust neuronal excitability in order to control motor output, 

i.e. executive functioning in terms of inhibition or execution (Leisman and Melillo, 

2013). The function of dopamine is to balance inhibitory and excitatory influences 

on the motor system (Obeso et al., 2008). 

Beside the four major pathways in the brain, the oculomotor, the associative, the 

limbic and the orbitofrontal circuit, the motor circuit is the best characterised 

pathway (Obeso et al., 2008). Almost all afferent projections of the BG have their 
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origin in the cortex and project to the striatum (Utter and Basso, 2008). The 

efferent output nuclei GPi and SNr have inhibitory GABAergic connecting 

pathways to their neighbouring targets. The GPi projects to the thalamus whereas 

the SNr projects to the GPi, to the superior colliculus, which is involved in eye 

movement, to the thalamus and to the pedunculopontine nucleus (PPN) 

(McHaffie et al., 2005). 

There are two main and parallel pathways within the BG for the transfer and the 

processing of the signals from the striatum to the output nuclei GPi and SNr (Albin 

et al., 1989, Graybiel, 2000).  

The direct pathway starts in the neurons of the striatum (D1 receptors), which 

have inhibitory GABAergic projections to the GPi. The GPi cells themselves also 

make inhibitory connections on the thalamic neurons (Lang and Lozano, 1998, 

Alexander and Crutcher, 1990). Excitation of the direct pathway activates the 

thalamic neurons (DeLong and Wichmann, 2007). 

The indirect pathway takes course from the neurons of the striatum (D2 

receptors) and consists of two inhibitory pathways: one between the striatum and 

the external globus pallidus (GPe) and the other one GABAergic between the 

GPe and the STN (DeLong and Wichmann, 2007). The STN has an excitatory 

glutatmatergic drive to both output nuclei, the GPi and the SNr (Parent and 

Hazrati, 1995). Excitation of the indirect pathway results in an inhibition of 

thalamic neurons (DeLong and Wichmann, 2007). Thus, the two pathways have 

opposite effects on motor output. An imbalance of those two pathways caused 

by the degeneration of nigro-striatal projections results in an increased activity of 

GABA and acetylcholine in striatal neurons and finally leads to the typical 

parkinsonian symptoms (DeLong and Wichmann, 2007).  

 

 The role of the SNr concerning movement and locomotion 

The SNr is located in the mesencephalon and belongs to the BG structures. It is 

the largest nucleus belonging to the midbrain. The SNr serves primarily as an 

output nucleus within the BG system and the neurons of the SNr produce mainly 

GABA and acetylcholine as neurotransmitter. Via the axons of the SNr neurons, 

signals are transferred to various other brain structures, such as the thalamus or 
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the PPN. The main input to the SNr comes from the striatum via the indirect and 

direct pathway of the BG routes. The STN is another important input nucleus to 

the SNr. Inhibitory effects on the SNr neurons are mediated via the 

neurotransmitter GABA and Substance P from the striatum. Excitatory input to 

the SNr comes mainly from the glutamatergic projections of the STN (Deniau et 

al., 2007).  

Efferents from the SNr project to the 

thalamus, to the superior colliculus, to the GPi 

and to caudally localised nuclei, such as the 

PPN and motor brainstem areas (Deniau et 

al., 2007). Several studies showed that the 

SNr is part of the nigropontine pathway, 

consisting of neuronal descending projections 

from the SNr to the pontomesencephalic 

area, which is known to be involved in 

locomotion and postural control (Takakusaki 

et al., 2003, Chastan et al., 2009). 

The pathophysiology of locomotion and the 

specific functions of the pontine nuclei and 

the descending pathways and loops in which 

the SNr and the BG are involved is still only 

fragmentarily understood. However, the 

current model of the interconnections 

between the different nuclei is illustrated in 

Figure 2: the SNr has GABAergic neuronal 

pathways to the midbrain tegmentum, 

consisting of the midbrain extrapyramidal area (MEA) and the PPN. From there, 

the subcortical route leads to the spinal motor neurons via the reticulospinal tract 

and the nuclei of the reticular formation (Delwaide et al., 2000). An inhibitory 

efferent GABAergic output from the SNr to the PPN could be displayed in animal 

studies on cats (Noda and Oka, 1986), rats (Childs and Gale, 1983, Grofova and 

Zhou, 1998) and non-human primates (Carpenter et al., 1981). 

Figure 2 Illustration of the anatomical 
relationship between the BG nuclei, 
including the cortico - basal ganglia - 
thalamo-cortical loop and the basal 
ganglia - tegmentum - basal ganglia 
loop. 
MEA = midbrain extrapyramidal area, 
NRGC = nucleus reticularis gignato-
cellularis, NRPC = nucleus reticularis 
pontis caudalis, PPN = 
pedunculopontine nucleus, STN = 
subthalamic nucleus, SNr = substantia 
nigra pars reticulata, GPi = internal 
globus pallidus, GPe = external globus 
pallidus, GABA = gamma-aminobutyric 
acid. From Delwaide et al. (Delwaide et 
al., 2000) 
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Based on the BG model with activity imbalances of the interconnected nuclei, the 

symptoms of PD are the coherent result. Given the monosynaptic efferent 

GABAergic neuronal transmission from the SNr to the PPN (Nandi et al., 2008), 

the idea of a nigral overinhibition on the PPN locomotor activity is conclusive. The 

consequence is a lack of postural control and locomotion. Consecutively, electric 

stimulation of the SNr may reduce the GABAergic drive from the SNr to the PPN 

and thus normalizes the neuronal activity of the PPN and the mesencephalic 

locomotor region (MLR). 

A modulation of the activity of the SNr by electric stimulation (Sutton et al., 2013), 

or by microinjection of GABAergic substances into the SNr (Wichmann et al., 

2001) could be seen in animal studies (Burbaud et al., 1994). A pharmacological 

inhibition of the SNr with infusions of GABA agonists, such as muscimol, results 

in a turning contralateral to the treated site and to a general hyperactivity after 

bilateral pharmacological SNr - inhibition in cats (Wolfarth et al., 1981, Boussaoud 

and Joseph, 1985) and rats (Scheel-Kruger et al., 1977, Olpe et al., 1977). This 

supports the idea of a GABAergic pathway from the SNr to the PPN and 

underlines the regulatory role of the SNr on PPN locomotor activity. Investigations 

on the postural muscle tone and locomotion by modulation of the GABAergic 

influence from the SNr to the PPN are the basis for exploring the effective sites 

in the SNr and for finding a possible functional topography of the SNr. 

Effects of nigral stimulation on locomotion and postural stability in PD patients 

was explored in several studies in the last years. Chastan found that bilateral SNr 

stimulation improved axial motor signs but had no effect on the distal 

parkinsonian motor symptoms (segmental symptoms like akinesia, rigidity and 

tremor) (Chastan et al., 2009). In contrast, STN stimulation reduced both axial 

and distal motor symptoms, however, axial sign to a lesser degree (Chastan et 

al., 2009). An improvement of axial motor signs in levodopa responsive PD 

patients with STN-DBS could also be shown by Bejjani et al. (Bejjani et al., 2000). 

The interconnections of the different components belonging to the BG network 

may be the reason why therapeutic addressing of different sites can result in 

similar clinical outcomes or may at least be the reason for affecting more than 

just one site.  
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  DBS in Parkinson’s Disease 

DBS is an established treatment option in many diseases concerning movement 

disorders like PD (Moro and Lang, 2006), essential tremor (Zhang et al., 2010) 

or dystonia (Krauss, 2002). Furthermore, it is approved for obsessive-compulsive 

disorder (Lakhan and Callaway, 2010) and epilepsy (Fisher et al., 2010). 

During the last 25 years, DBS became an internationally established and 

accepted therapy concept and it is not the success of this method, which is 

questioned nowadays, but how it exactly works and how one intervention can 

improve different diseases and symptoms. A lot of research has been done on 

this topic resulting in a better understanding of the pathophysiology of the 

involved structures and in an improvement of the stimulating techniques (Breit et 

al., 2004). We know that the electrode design and the manner of application of 

the electric impulses have to be adjusted to the different brain structures, which 

are used as the stimulating targets as they are differently shaped, sized and 

physiologically characterized. The attention in this study is on the SNr as 

stimulation target (in combination with the STN) and interleaving stimulation as 

manner of stimulation technique. 

 

2.4.1. Hardware and programming 

The necessary hardware for DBS consists of an internal pulse generator (IPG), 

electrode leads and an extension, which connects the IPG to the leads.  

The IPG is a battery-powered neurostimulator positioned under the skin below 

the collarbone. Continuous electric pulses are delivered by the IPG via the 

extensions to the leads and thus to the electrode in the brain at a set amplitude, 

frequency and pulse width. The extension is an insulated wire running 

subcutaneously from the IPG via the backside of the ear, up the side of the neck 

to the head and down to the upper ends of the leads in the brain. The electrode 

leads are implanted on both sides of the brain and are located in one or two 

different nuclei of the brain when they reach their final position. They consist of a 

coiled and insulated wire and four platinium/iridium contacts at the distal end of 

the lead. The special characteristic about the implantation is the need of the 

patient’s feedback to find the optimal localisation for the electrodes. The awake 
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procedure is done in local anaesthesia. The IPG and the extension can be 

implanted in general anaesthesia (Coffey, 2009). As already mentioned, different 

modes of application concerning the electric pulses exist 

and have proved to function effectively. The 

conventional stimulation settings include the monopolar 

stimulation, in which the active electrode contact is set 

as the cathode and the IPG case is set as the anode. 

With monopolar stimulation, the electric field is relatively 

wide and the stimulated area 

spreads equally in all directions 

(Volkmann et al., 2006).  

With double monopolar 

stimulation two adjacent 

negative contacts on the electrode are stimulated at 

similar amplitude and pulse width (Miocinovic et al., 

2014). 

Using bipolar stimulation, the 

anode is not the IPG case but 

another electrode contact. 

Thereby, the spread of current is minimized (Volkmann 

et al., 2006). In general, monopolar stimulation requires 

lower stimulation intensities, namely lower amplitudes, to 

achieve similar clinical effects as bipolar stimulation 

(Volkmann et al., 2006). The current spread is broader 

with monopolar stimulation because the positive and the 

negative potentials are relatively distinct from each other 

compared to bipolar stimulation, in which the current is more focused and the 

surrounding tissue, in particular the internal capsule, is less affected by the 

potential distribution. Hence, with a monopolar stimulation setting side effects 

occur on lower stimulation intensities compared to bipolar stimulation settings 

(O'Suilleabhain et al., 2003). 

Figure 3 Schematic 
illustration of monopolar 
stimulation.  
IPG = internal pulse 
generator, STN = 

subthalamic nucleus. 

Figure 4 Schematic 
illustration of double 
monopolar stimulation.  
IPG = internal pulse 
generator, STN = 
subthalamic nucleus. 

 

Figure 5 Schematic 
illustration of bipolar 
stimulation.  
STN = subthalamic 

nucleus. 
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Before finding the best stimulation parameters in each individual, the optimal 

electrode localisation is determined by clinical testing of effects and side effects 

of a single electrode contact. In addition, neuroanatomical representation can be 

analysed by fusion of the preoperative magnetic resonance imaging with 

postoperative computed tomography, as was done in this study. Finding the 

optimal stimulation parameters for every patient is empiric with the aim to induce 

the maximum of therapeutic effect and to  prevent or achieve a tolerable minimum 

of adverse effects (Volkmann et al., 2006). Each electrode contact has to be 

tested with various combinations of stimulation parameters according to 

standardised clinical algorithms to find the best individual stimulation parameters 

(Deuschl et al., 2006a). Side effects result from the flow of current to the 

surrounding areas of the stimulated sites (Grill, 2005, McIntyre et al., 2004). 

 

2.4.1.1. Stimulation techniques for DBS - interleaving stimulation 

Another programming option besides the commonly applied single monopolar or 

bipolar stimulation mode is the stimulation with interleaved pulses. It is available 

in the latest clinically approved IPGs (Activa series, Medtronic, Minneapolis, USA) 

and allows for switching between two different sets of stimulation parameters on 

two electrode contacts (Kovacs et al., 2012, Weiss et al., 2011a, Wojtecki et al., 

2011). In cases where stimulation at one contact cannot alleviate motor 

symptoms sufficiently or when simultaneous stimulation of multiple contacts at 

one amplitude cannot be tolerated due to side effects, interleaved stimulation can 

be useful (Wojtecki et al., 2011). Interleaving pulses are achieved by a rhythmic 

and rapid automatic switching of current flow between two groups of stimulation 

parameters on the same electrode but on different contacts (Miocinovic et al., 

2014). Each contact can be stimulated independently at its individual best 

amplitude and pulse width at a common frequency resulting in distinct current 

spreading at each of the contacts and thus in different tissue activation. Hence, 

one of the advantages of interleaved stimulation lies in modelling the field of 

current spread (Kovacs et al., 2012).  

Thereby, it provides an optional programming tool necessary for this study, as it 

allows to stimulate two different sites (STN and SNr) at their best individual 
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stimulation settings. Hence, it is possible to modulate different functional motor 

loops by co-stimulation of these two sites, which are probably integrated in 

different locomotor pathways (Miocinovic et al., 2014). 

 

 
Figure 6 Schematic illustration of the conventional monopolar STN-DBS (A) and interleaving 
stimulation of two electrode contacts (B) 

 

2.4.2. Mechanisms of DBS 

The mechanism of DBS is currently not completely understood and there exist 

several strongly debated ideas on the mechanism and effect of DBS. 

The earliest supposition was concluded from the similar clinical outcome of 

lesioning specific nuclei and DBS, hypothesising that high-frequency stimulation 

inhibits local neuronal activity and thus attenuates the output of the stimulated 

nuclei. An inhibition of neurons by high-frequency stimulation of the STN was first 

described in rats (Benazzouz et al., 2000). These findings could be confirmed in 

monkeys and humans by stimulation of the STN or the GPi (Meissner et al., 2005, 

Welter et al., 2004, Dostrovsky et al., 2000). Reduced activity of the GPi and the 

SNr was induced by STN-DBS (Benazzouz et al., 1995, Maltete et al., 2007). It 

was proposed that electric stimulation of the brain tissue causes an activation of 

presynaptic inhibitory afferents to the stimulated site, which is supposed to be the 

main mechanism underlying the observed inhibition (Boraud et al., 1996, Wu et 

al., 2001, Gradinaru et al., 2009). Another approach to explain the assumption 

that DBS inhibits the stimulated site is the depolarisation block of voltage-gated 



27 
 

currents in the neurons of the stimulated nucleus, which leads to a block of the 

neuronal output near the electrode (Beurrier et al., 2001, Burbaud et al., 1994). 

High-frequency DBS induces high-frequency firing rates in the cells of the 

stimulated site, but the membrane potential does not have enough time to 

repolarise, which leads to the depolarisation block (Dostrovsky et al., 2002). 

Other studies recording neuronal activity in the stimulated nuclei showed an 

increase of the firing pattern, proposing an increase of the output from the 

stimulated nucleus. In one study, STN-DBS was applied in parkinsonian monkeys 

resulting in an increased level of activity of the pallidal neurons (GPi and GPe), 

seen in the extracellular recordings (Hashimoto et al., 2003). An increased firing 

pattern of the stimulated site was not only found in excitatory efferents, but also 

in inhibitory efferents. An inhibition of thalamic neurons was observed in normal 

monkeys during DBS of the GPi (Anderson et al., 2003) and DBS of the GPe 

inhibited STN neurons in monkeys (Vitek et al., 2012). 

The activation theory is furthermore supported by imaging data. An increased 

blood flow could be detected in the GPi during STN-DBS and in the cortex during 

thalamic DBS in human positron emission tomography studies (Perlmutter et al., 

2002, Hershey et al., 2003). These findings are consistent with the idea of an 

activation of the output from the stimulated nucleus. Equally, in an MRI-study with 

STN-DBS in humans, an increase of the blood oxygen-level could be detected in 

the GPi (Jech et al., 2001).  

Despite the successful use of DBS and the astonishing clinical improvement of 

parkinsonian symptoms the exact mechanism of action remains unclear. There 

are probably additional processes taking part in the mechanism of action in DBS 

besides the mentioned. Recent works have shown that not only direct effects of 

high-frequency stimulation of the stimulated site play a role in the mechanism of 

DBS but also the effects of fibre tracts and glia surrounding the stimulated 

nucleus (Jantz and Watanabe, 2013). In summary, it can be stated that the 

mechanisms activation and inhibition both probably contribute to the functional 

principle of DBS, resulting in a complex model of excitatory and inhibitory effects 

on the whole BG network.  
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2.4.3. Benefits of DBS in PD patients 

The international gold standard in the therapy of PD is the drug therapy with 

dopaminergic medication (Brooks, 2008).  

In advanced disease stages, when the PD medication does not improve the PD 

symptoms in a sufficient way and when “on/off” fluctuations or dyskinesia occur 

more frequently, DBS can be a safe and effective therapy for well selected 

patients (Deuschl et al., 2006b). Furthermore, DBS allows for a reduction of 

antiparkinsonian medication by about 50 % of the daily levodopa equivalent 

dosage (Alexoudi et al., 2015, Deuschl et al., 2006a). This is an important fact for 

patients who suffer from medication-induced side effects, such as psychosis or 

impulse control disorder. 

It could be shown that DBS can improve quality of life in patients suffering from 

PD (Volkmann et al., 2009). With disease progression, PD is associated with a 

decline in physical and social functioning caused by motor and non-motor 

symptoms, such as motor fluctuation, pain, sleep problems or psychiatric 

symptoms. Neurostimulation was associated with an improvement of 25 % in 

quality of life-scales (Deuschl et al., 2006b). 

Recent studies showed that in some cases, DBS is not the last resort but a 

superior therapeutic option in earlier disease stages with beginning motor 

complications (Schuepbach et al., 2013). Thus, it is possible that prospectively 

more patients will undergo DBS earlier when quality of life and social functions 

are yet more preserved. 

 

2.4.4. Therapeutic stimulation – the different targets 

In PD, the DBS leads can be implanted in different target nuclei. The efficacy on 

motor deficits and the side effects caused by DBS depend on the targets applied. 

The STN and the GPi are the two sites in the brain tissue mostly used for DBS in 

PD and the efficacy of DBS of these two sites is well documented. The PPN as 

an experimental target for DBS in PD was studied in the last years with 

heterogeneous findings on axial motor signs, such as gait and balance 

impairment. As alternative target for resistant axial impairment, the SNr was 

proposed recently (Chastan et al., 2009, Weiss et al., 2011a, Weiss et al., 2011b).  
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2.4.4.1. Internal globus pallidus (GPi) 

Stimulation of the GPi and pallidotomy have been established treatment options 

in PD since years. Pallidotomy was a common therapy for PD in the 1960s 

(Svennilson et al., 1960). Then, levodopa was introduced for the therapy of 

parkinsonian symptoms (Barbeau, 1969, Cotzias et al., 1969) and the surgical 

treatment was not the preferred therapy for PD anymore. In 1987, Benabid et al. 

published results of thalamic-DBS for tremor in patients with PD and the high-

frequency stimulation era started (Benabid et al., 1987). 

Based on the pathophysiology of the BG and research done on this topic of 

neurology, we know that the firing rate of the neurons of the GPi is increased in 

PD, which is caused by the loss of the dopaminergic neurons of the SNc 

(Dostrovsky et al., 2002). The abnormal inhibitory outflow from the GPi to the 

thalamus can be blocked by DBS of the GPi, resulting in an alleviation of all 

cardinal symptoms of PD, a reduction of the drug-induced dyskinesias and an 

amelioration of quality of life (Volkmann et al., 1998, Pahwa et al., 1997).  

Compared to bilateral pallidotomy, DBS of the GPi seems to be more safe and 

side effects, especially neuropsychological side effects, are rarer with DBS 

(Volkmann et al., 1998). 

 

2.4.4.2. Subthalamic nucleus  

Interest in the STN as a target for DBS evolved from the appreciation of its 

important role in the BG projections to the GPi, the SNr and the GPe (Obeso et 

al., 2008). As described earlier, the increased excitation from the STN leads to 

the motor abnormalities of PD. The hyperactivity of the STN can be blocked, 

resulting in the inhibition of thalamocortical activity and thereby alleviating the 

cardinal signs of PD. Bergman et al. demonstrated in 1990 that the typical PD 

symptoms can be reversed by blocking the STN in terms of lesioning it (Bergman 

et al., 1990). In their study, they induced parkinsonism in monkeys by treatment 

with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), lesioned the STN and 

observed an amelioration of the parkinsonian symptoms.  

Lesioning of the STN is irreversible and side effects like hemiballism limit the 

procedure (Chen et al., 2002, Tseng et al., 2003).  
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Mimicking the effects of a lesion is possible with DBS (Benabid et al., 1991). 

Benabid et al. were the first ones to demonstrate that a chronic high-frequency 

stimulation of the STN could simulate the results of lesioning the STN. After this 

first study, numerous other clinical trials demonstrated the efficacy and safety of 

STN-DBS in PD patients (Limousin et al., 1998, Deuschl et al., 2006b). The 

clinical success of this method and the benefit of avoiding side effects, such as 

destruction of neighbouring structures, make it preferable to the subthalamotomy 

(Starr et al., 1998). 

Currently, STN-DBS, as a reversible and adjustable method of blocking the 

increased neuronal activity of the STN without a large destructive brain lesion, is 

the most widely used approach to address segmental motor symptoms and motor 

fluctuations in PD (Deuschl et al., 2006b).  

 

2.4.4.3. Comparison between GPi and STN as targets for DBS in PD  

There are clinical studies demonstrating a comparable effect of STN-DBS and 

GPi-DBS (Group, 2001, Burchiel et al., 1999)but also studies showing a 

superiority of STN-DBS compared to the GPi-DBS, especially concerning 

akinesia (Krack et al., 1998).  

Nowadays, STN-DBS is generally the preferred surgical method regarding DBS 

in PD. The amount of antiparkinsonian drugs patients have to take to address 

motor symptoms can be substantially reduced only with STN-DBS. However, 

drug adjustment may be easier with GPi-DBS (Vingerhoets et al., 2002). STN-

DBS has no direct effect on dyskinesia but the decrease of antiparkinsonian 

medication leads to a reduction of dyskinesia symptoms (Group, 2001). 

 

2.4.4.4. Pedunculopontine nucleus 

The increasing awareness that the PPN might play an important role in movement 

disorders made it interesting as target for medical and surgical intervention. 

The PPN is the principle site of the MLR, which is only loosely defined. It is a 

region in the rostral brainstem consisting of the PPN and the cuneate nucleus 

and it is involved in locomotion (Nandi et al., 2008),.  
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The PPN is formed by a collection of neurons within the upper brainstem. 

Caudally to the PPN, the pontine reticular formation is situated and rostrally, it 

lies next to the SN. The medial lemniscus is found laterally to the PPN and 

medially it is limited by the superior cerebellar peduncle. The PPN is composed 

of two parts on the basis of cell density. The pars compacta (PPNc) consisting of 

mainly cholinergic neurons and the pars dissipata (PPNd) containing mostly 

glutamatergic neurons but also cholinergic, dopaminergic, noradrenergic and 

GABAergic neurons (Mesulam et al., 1989). The PPNc is located in the 

dorsolateral part of the PPN and it is situated caudally, the PPNd is the rostral 

part of the PPN (Jones and Beaudet, 1987, Rye et al., 1988, Lavoie and Parent, 

1994). Afferents to the PPN arrive from the BG output nuclei, the GPi and the 

SNr. They consist mainly of GABAergic neurons projecting to the PPNd neurons 

(Jackson and Crossman, 1983). Ascending efferents from the PPN project mainly 

to the thalamus and are predominantly cholinergic (Garcia-Rill, 1991). 

Descending efferent pathways project to diverse brain areas such as the 

midbrain, the pons, the medulla, the spinal cord and deep cerebellar nuclei. They 

are partly cholinergic and partly non-cholinergic (Pahapill and Lozano, 2000). 

However, data for humans is available only rarely. Electrical stimulation and 

medical interventions such as the application of neuroactive substances to the 

PPN showed an influence on the locomotor activity in animal experiments. 

Therefore, the PPN is thought to be potentially involved in locomotion in humans 

as well. Electrophysiological studies suggest that glutamatergic PPNd neurons 

are associated with the initiation of movement, whereas cholinergic PPNc 

neurons may be important for the maintenance of gait (Garcia-Rill and Skinner, 

1987a, Garcia-Rill and Skinner, 1987b, Pahapill and Lozano, 2000). A 

pharmacological inhibition of the PPN leads to akinesia in primates. In preclinical 

studies it could be shown that lesioning of the PPN by injection of kainic acid 

leads to akinesia in nonhuman primates. Instead, injection of bicuculline (GABA 

receptor antagonist) into the PPN resulted in an improvement of akinesia in 

parkinsonian rendered nonhuman primates (Nandi et al., 2002a). Concerning 

electric stimulation, parkinsonian primates showed improved motor activity 

following low frequency PPN-DBS (Jenkinson et al., 2004). With additional 
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levodopa drug therapy the motor activity was  even greater (Nandi et al., 2008). 

In contrast, stimulation above 45 Hertz produced akinesia (Nandi et al., 2002b). 

The involvement of the PPN in the control of locomotion could not only be shown 

in animal studies (Nandi et al., 2002a, Takakusaki et al., 2003), but there is also 

evidence that PPN-stimulation in humans has a positive effect on axial symptoms 

which cannot be sufficiently treated with conventional STN-DBS.  

Lately, several studies showed a small effectiveness of motor signs such as gait 

disturbances and FOG by low-frequency PPN-stimulation in PD patients (Moro 

et al., 2010a, Ferraye et al., 2010, Stefani et al., 2007, Thevathasan et al., 2011a). 

Electric stimulation of the PPN in humans is currently still investigational as there 

is only little experience with PPN-DBS. The interindividual benefit varies strongly 

among treated patients and standard stimulation parameters are not identified 

yet. Furthermore, neither patient characteristics of potential candidates for PPN-

DBS nor the question whether unilateral or bilateral PPN stimulation is more 

effective is clear.  

The apparently strong interconnections between the SNr and the PPN are the 

reason for the interest in influencing the PPN on the level of the SNr. In a 

hypothetical model of the involvement of the BG in the control of movement, the 

projections from the SNr are separated into a projection from the medial part of 

the SNr to the MLR, which corresponds to the medial PPN and a projection from 

the lateral part of the SNr to the lateral part of the PPN (Figure 7). In this model, 

generated on findings in cat experiments, the PPNd is supposed to control 

locomotion whereas the PPNc is involved in the control of the postural muscle 

tone (Takakusaki et al., 2003). There is evidence that via cholinergic (Takakusaki 

et al., 1997, Takakusaki and Kitai, 1997) and non-cholinergic (including 

glutamatergic, GABAergic and peptidergic) (Mena-Segovia et al., 2008) 

pathways from the PPN to the reticulospinal tracts, muscle-tone is regulated and 

locomotion is controlled (Inglis and Winn, 1995).  SNr stimulation results in a 

suppression of the inhibitory effects of the PPN and this suppression could be 

blocked by application of GABA receptor antagonists into the PPN in cats 

(Takakusaki et al., 2011). The muscle tone suppression is due to a postsynaptic 

inhibition of the spinal motor neurons (Takakusaki et al., 2011). These findings 
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underline the hypothesis that PPN neurons are under the inhibitory control of 

GABAergic SNr neurons and interventions blocking SNr-activity could restore 

PPN-function resulting in a normalization of locomotion (Takakusaki et al., 2011).  

In cats, it could be shown that electric stimulation of the SNr leads to a 

suppression of PPN inhibitory effects. These effects could be restored by GABA 

antagonists injected into the PPN (Takakusaki et al., 2011). These findings lead 

to the following concept: blocking the overactive SNr in PD patients may lead to 

a normalization of the neuronal function of brainstem centres which are involved 

in motor control and locomotion and thus may reduce parkinsonian symptoms. 

 

 
Figure 7 Illustration of the hypothetical model for locomotion and postural stability involving the 
basal ganglia nuclei, the mesencephalic locomotor region (MLR), the reticulospinal tract and the 
spinal cord with its motor neurons (MNs).  
GPi = internal globus pallidus, SNr = Substantia nigra pars reticulata, PPN = pedunculopontine 
nucleus, PRF = pontine reticular formation, GABA = gamma-aminobutyric acid, Ach = acetylcholine. 
From Takakusaki et al. (Takakusaki et al., 2003). 

 

2.4.5. Clinical limitations of conventional STN-DBS 

The main treatment goal of DBS in PD patients is a satisfactory control of the 

burdening motor features. Unfortunately, conventional STN-DBS is limited by a 

decreasing effectiveness on axial impairment over the course of the years – 

speech, gait, posture, postural stability are affected(Castrioto et al., 2011, Krack 

et al., 2003, Nutt et al., 2011). Studies with a follow-up phase up to ten years 

showed a progressive loss of stimulation benefit concerning axial motor 

symptoms related to disease progression (Janssen et al., 2014, Castrioto et al., 
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2011, Zibetti et al., 2011). Nevertheless, a persistent effect of STN-DBS on the 

cardinal parkinsonian symptoms could be observed even after long-term 

stimulation. Especially motor-fluctuations and dyskinesias are still greatly 

reduced after several years, whereas axial motor symptoms often worsen. The 

development of levodopa unresponsive PD symptoms might have an important 

influence on the long-term outcome of STN-DBS (Fasano et al., 2010). 

With disease progression, besides the dopaminergic circuits, non-dopaminergic 

motor-circuits are gradually affected with the result that axial motor symptoms, 

which are less or not responsive to antiparkinsonian medication, appear. Several 

reprogramming options of the DBS system were tested with the aim to ameliorate 

axial symptoms. The so-called ‘better side reduction’ can positively influence the 

gait pattern in patients with asymmetric gait patterns via reduction of the 

stimulation amplitude on the hemisphere controlling the lower extremity with 

longer step length (Fasano et al., 2011). Hereby, a beneficial effect could be seen 

in some cases concerning FOG. Another tested strategy to ameliorate axial motor 

symptoms is low-frequency STN-DBS (≤ 80 Hz). Unfortunately, no significant 

improvement could be detected in PD patients with resistant axial motor 

symptoms compared to high-frequency STN-DBS (≥ 130 Hz) (Sidiropoulos et al., 

2013, Ricchi et al., 2012). 

As there are currently no satisfactory programming and reprogramming options 

for STN-DBS in PD patients suffering resistant axial motor symptoms, new 

treatment modalities are needed.  

The loss of DBS benefit is ascribed to the natural progression of the disease, but 

we know that conventional STN-DBS ameliorates mainly segmental symptoms 

probably via the thalamo-cortico-spinal motor loop, whereas axial motor 

symptoms could be associated and ascribed to a damaged motor processing of 

the mesencephalic motor pathways (Moro et al., 2010a, Ferraye et al., 2010) and 

nigropontine pathways (Potter et al., 2008, Chastan et al., 2009, Weiss et al., 

2012a, Tsang et al., 2010). Hence, the additional stimulation of structures with 

mesencephalic and nigropontine projections, namely the co-stimulation of the 

SNr, is warranted to study the efficacy on axial signs in advanced disease stages. 
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  Main questions 

The observation that disabling axial motor symptoms occur often in advanced 

disease stages despite an effective STN-DBS and standard dopaminergic 

medication concerning segmental symptoms leads us to the idea of different 

pathological motor network processing. 

Given the differing therapeutic responses of segmental and axial motor 

symptoms to standard STN-DBS and taking the diverse motor loops and the 

defective motor processing in PD into account, it seems to be conclusive that the 

different outcomes may reflect the idea of different functional sub-loops in which 

those symptoms are processed. 

With new stimulation techniques and the possibility of very accurate electrode 

placement in the right target we have the resources to test our ideas in the context 

of clinical studies.  

With this study, we want to explore the following hypotheses, which originate from 

the already existing neurophysiological and clinical background:  

 

 resistant axial motor impairment in PD, such as FOG, can be ameliorated 

with the concomitant interleaving high-frequency stimulation of the STN 

and the SNr in cognitively competent patients. 

 

 additional stimulation of the SNr does not interfere with the effect of the 

STN stimulation, hence, the motor response of the segmental symptoms 

remains similar to standard therapy during concomitant nigral stimulation. 

 

 nigral stimulation can be applied safely concerning non-motor issues in 

well selected patients who tolerated STN stimulation without serious 

neuropsychiatric side effects. 
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             3 

3. Material and Methods 

 

The main purpose of this clinical trial was to investigate the effects of interleaved 

stimulation on two different targets of the BG concerning axial symptoms in 

patients with PD. 

 

 Characteristics of the study population 

In the time from January 2011 to June 2012 screening for eligibility and enrolment 

of 28 PD patients with refractory gait disturbances under best individual STN-

DBS took place in the Centre for Neurology, Department for Neurodegenerative 

Diseases of the University of Tuebingen. 

The inclusion criteria were:  

 signed written informed consent  

 age between 18 and 80 years  

 idiopathic PD, including genetic forms of PD according to the “UK 

Parkinson’s Disease Society Brain Bank clinical diagnostic criteria” 

(Hughes et al., 1992) which is a three step path to diagnose idiopathic PD 

 disease duration at least five years or more 

 treatment with STN-DBS with the Activa® impulse generator (Medtronic, 

Minnesota, USA) 

 implantation of DBS electrodes at least six months prior to study enrolment 

 optimisation of subthalamic stimulation parameters before study 

enrolment to the best of our current knowledge (Weiss et al., 2011b) 

 gait disturbances refractory to the best individual DBS programming and 

to the best individual dopaminergic treatment 
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 12 or more points in the best clinical condition on the ‘axial score’ (score 

consisting of eight items of the anamnestic UPDRS II (items 3-5) and the 

clinical UPDRS III (items 27-31), rated on a five-point scale (0-4)) 

 constant dopaminergic medication for at least four weeks prior to the study 

enrolment 

 localisation of the lowermost contacts of the electrode in the border zone 

between the STN and the SNr 

 localisation of at least one of the two rostral contacts within the STN area 

 
 
  Table 1 Patient characteristics.  
  F = female, M = male, AaO = age at onset, LED = levodopa equivalent dosage. 

ID 
Age    

[years] 
Gender 

AaO    
[years] 

Disease 
duration 
[years] 

Time with 
DBS 

[months] 

LED 
[mg] 

‘axial 
score’ at 

enrolment 

PD1 63 F 42 21 18 490 20 

PD2 72 M 58 14 20 890 20 

PD3 74 F 48 26 61 275 15 

PD4 68 M 51 16 8 934 14 

PD5 61 M 44 16 53 150 14 

PD6 71 F 53 17 30 575 17 

PD7 71 M 57 13 6 807 23 

PD8 61 M 37 23 51 785 18 

PD9 61 M 47 14 7 1098 12 

PD10 67 M 41 26 79 440 14 

PD11 41 M 31 10 10 350 14 

PD12 70 M 55 15 33 1000 12 

 

Exclusion criteria were: 

 less than 25 points in the Mini Mental Status Examination (MMSE) 

 psychosis, suicidality and any other severe chronic diseases that might 

confound the treatment effects or the interpretation of the study results 

 any acute adverse effect from stimulation of the caudal border zone of 

STN and SNr 

 pregnancy 
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 participation in other clinical studies during enrolment in our trial or during 

the past three months before study enrolment 

 

16 patients were excluded because of a lack of fulfilling the inclusion criteria. One 

patient declined to participate, five patients showed cognitive impairment (MMSE 

< 25 points), five patients suffered other diseases that interfered with gait, four 

patients displayed image-guided localisation of the lower most electrode contact 

outside the border zone of STN and SNr and one patient was older than 80 years.  

Twelve patients were enrolled in the study. Nine patients were men, three 

patients were women, the mean age of the study cohort was 65.0 ± 8.9 years 

(range 41 – 74), the mean age of disease onset was 47.0 ± 8.3 years (range 31 

– 58), and the mean disease duration was 17.6 ± 5.2 years (range 10 – 26). The 

mean time since DBS implantation averaged 31.3 ± 24.4 months (range 6 – 79). 

The mean daily cumulative levodopa equivalent dosage of the twelve patients 

was 650 ± 310 mg (range 150 – 1098) and the mean composite ‘axial score’ at 

study enrolment was 16.1 ± 3.5 (range 12 – 23) points. The mean MMSE score 

was 28.7 ± 1.3 (range 25 – 30) points. 
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Figure 8 Flow diagram (Schulz et al., 2010) of the phases of this randomised controlled trial.  
n = number of patients, STN+SNr = combined stimulation of STN and SNr.  

 

All study patients participated after written informed consent. This trial was 

registered at ClinicalTrials.gov (NCT01355835) and approved by the local Ethics 

Committee of the Medical Faculty of the Eberhard Karls University Tuebingen, in 

accordance with the declaration of Helsinki. 

 

  Study design 

Considering randomised controlled trials as gold standard for clinical research, 

we chose a double-blind randomised cross-over study design. This phase II 

clinical trial consisted of two arms and was performed as single centre clinical 

trial. Twelve patients were enrolled and randomised on the two treatment arms in 

a 1:1 ratio. The study can be divided into two parts. The ‘baseline’ and ‘immediate 

testing’ part and the ‘3-week follow-up’ part. The course of the study phases is 

visualized in Figure 9. 
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Figure 9 Scheme of the different study phases.  
[OFF stim] = off stimulation, [STNmono] = conventional subthalamic stimulation, [STN+SNr] = 
combined stimulation of STN and SNr. 

 

First, the patient cohort underwent the ‘baseline’ assessment and the ‘immediate 

testings’ to assess short-term effects of the different stimulation settings. After 

overnight withdrawal of dopaminergic medication, three conditions were tested. 

The ‘baseline’ condition without stimulation [StimOff], the conventional 

subthalamic DBS [STNmono] and the combined interleaved stimulation of the 

STN and the SNr [STN+SNr]. The two latter ones were also performed in the 

dopaminergic off state. The reason for testing these three conditions ‘off 

dopaminergic medication’ was to assure the optimal subthalamic stimulation 

parameters and to identify the short term effects of both stimulation settings, the 

[STNmono] and [STN+SNr] condition. The blinding and the randomised order 

were kept while testing these three conditions.  Additionally, to limit the patients’ 

and the assessors’ knowledge about the finally programmed condition, the 

principle investigator switched between the three conditions [StimOffMedOff], 

[STNmono] and [STN+SNr] several times before applying the correct randomised 

stimulating condition. In some cases, the patients and assessors probably 

noticed when the stimulation was off because segmental symptoms normally 

occur quickly after switching off the stimulation. We were not able to avoid this 

but there is no indication that the patients or the assessors could distinguish 
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between the other two conditions, [STNmono] and [STN+SNr], as they controlled 

similarly for segmental symptoms and did not cause remarkable side effects or 

any ‘sensations’ the patients could feel, due to the titration of stimulation 

parameters. After finally programming the first condition, we waited 30 minutes 

before starting with the clinical testings to avoid carry-over effects. Then, all the 

clinical testings were performed. Afterwards, according to the allocation code, the 

next stimulation setting was introduced. Again 30 minutes of waiting were 

maintained, the clinical testings were performed for a second time and eventually 

the last stimulation setting was programmed and the same process was repeated. 

Finally, besides the clinical endpoint assessment, anamnestic measures were 

performed one time during this first testing session. The questions referred to 

motor symptoms, non-motor symptoms and quality of life issues during the past 

four weeks. The exact content of the anamnestic part of the testing, just as the 

different clinical tests, are explained in the  Clinical tests part of Chapter 3.4. 

Immediately after finishing the last endpoint assessment on the first testing day, 

the usual dopaminergic medication was taken by all patients. From then on, the 

ordinary and regular medication was taken without changes throughout the rest 

of the study duration, at least in most patients. After termination of the ‘immediate 

testings’, all twelve patients entered the 2 x 2 cross-over ‘3-week follow up’ phase 

of the study. The order of each treatment condition was randomised again and 

treatment was crossed after three weeks, respectively. The stimulation 

parameters remained, if possible, constant throughout the following three weeks.  

At the end of the first ‘3-week follow-up’ period, the first endpoint assessment 

(visit 1) took place. It consisted of the same testings performed during the first 

part of the study, the ‘immediate testing’. Stimulation settings were crossed after 

the clinical and anamnestic assessment (visit 1). Patients went home for another 

three weeks and finally came back for the second and last endpoint (visit 2). The 

study phase ended here for the participants of the study. They were asked during 

which of the two three-week phases they felt better and further stimulation 

settings were applied after consultation with the principle investigator of the study.  
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3.2.1. Randomisation 

The Department of Medical Biometry of the University of Tuebingen developed a 

computer-generated randomisation list. Randomisation results were kept closed 

until statistical analyses were finalized. 

3.2.2. Treatment 

A large number of patients treated with conventional DBS of the subthalamic 

nucleus develop severe refractory gait disturbances after several years of initially 

successful therapy (Krack et al., 2003). The first steps to take when gait 

disturbances emerge consider reprogramming of the stimulation parameters. 

Concerning the optimisation of the subthalamic stimulation parameters, one 

option is to increase the stimulation amplitude. Unfortunately, the positive 

influence of increasing the amplitude is limited and amplitude increases may even 

worsen gait disturbances (Moreau et al., 2008). Another reprogramming 

technique refers to the already mentioned concept of so-called ‘better side 

reduction’ (Fasano et al., 2011). The reduction of the stimulation amplitude on the 

hemisphere controlling the lower extremity with longer step length (‘better leg’) 

may improve frequency and duration of FOG. The gait pattern becomes more 

symmetric through ‘better side reduction’ in patients with asymmetric step lengths 

and was found to have positive impact on FOG (Fasano et al., 2011). In this 

study, ‘better side reduction’ was considered prior to study enrolment. 

Moreover, to ensure that every patient had best individual stimulation settings on 

the subthalamic electrode contacts [STNmono] before entering the study, DBS 

programming was optimised according to a standardised procedure (Weiss et al., 

2011b). This optimisation included an accurate and careful titration of the 

stimulation parameters of the subthalamic contacts (the second or most upper 

rostral electrode contacts) in medication off as so-called monopolar review. As 

such, we started the titration on the very low level of 0.5 V and gradually added 

0.5 V until a clinical effect was identified by the neurologist. The stimulation 

amplitude was further increased until slight and transient side effects occurred, 

such as blurred vision, paraesthesia or muscle contraction, indicating current-
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spreading to the adjacent neuroanatomic structures, for instance the internal 

capsule.  

This procedure is chosen to define the therapeutic width of the stimulation and to 

ensure well tolerable chronic stimulation parameters. The findings were recorded 

in the case report form (CRF). After this titration, optimal stimulation settings were 

defined and maintained during the whole study phase if possible. 

An accurate titration of the nigral stimulation parameters was performed in the 

same session and recorded in the CRF.  

Upon signing the informed consent and after performance of the mandatory 

monopolar review, the clinical testings started. 

To our knowledge and based on the current literature, a constant stimulation 

period of three weeks is sufficient to avoid carry-over effects of a prior stimulation 

setting (Chastan et al., 2009). Clinical effects of STN-DBS usually occur within a 

short period of time ranging from a few seconds to a few hours. The quick 

appearance of motor symptoms after switching off the stimulator could be shown 

recently in another study (Cooper et al., 2013) and we could notice them also in 

this trial. Consequently, we performed the endpoint assessments after three 

weeks of adaption to a special stimulation setting. 

We did not consider a ‘3-week follow-up’ period with only nigral stimulation, as 

other studies demonstrated this would not sufficiently control segmental 

symptoms, such as tremor, bradykinesia and rigidity (Chastan et al., 2009). 

 

3.2.3. Blinding 

In this double-blind randomised controlled clinical trial, the patients, the endpoint 

assessors and all other participants of the study were kept blinded to treatment 

allocation. Only the principle investigator (D.W.) was not masked. The principle 

investigator stored the allocation code and kept it strictly closed until all statistical 

data analyses were finished. Stimulation parameters were changed several times 

between [STNmono] and [STN+SNr] before maintaining the allocated treatment 

parameters as randomised in order to maintain the blinding to the treatment 

condition for the patients and the endpoint assessors. Programmings were 

performed by the principle investigator before baseline and immediate testing and 
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follow-up visits. The principle investigator did not conduct any endpoint 

assessments. The clinical endpoint assessment was accomplished by an expert 

neurologist who was trained on PD and DBS treatment. 

 

  Outcome measures 

The primary endpoint of this clinical trial was to investigate the impact of 

combined interleaved stimulation [STN+SNr] on composite axial motor symptoms 

at ‘3-week follow-up’. Therefore, a broad-scaled primary outcome measure was 

defined consisting of a composite ‘axial score’, built from eight items of the 

anamnestic UPDRS II and the clinical UPDRS III. The evaluation of the primary 

endpoint took place after three weeks of constant [STNmono] and [STN+SNr] 

stimulation respectively in a randomised order (Weiss et al., 2013). The chosen 

items from the UPDRS II and III cover a broad spectrum of axial motor symptoms 

such as falling unrelated to freezing, freezing when walking, walking (UPDRS II 

items 13-15), arising from chair, posture, gait, postural stability, body 

bradykinesia and hypokinesia (UPDTS III items 27-31). All items were 5-point 

rated and represented by the numbers 0 to 4. The ‘axial score’ was the sum of 

these eight items with a possible range from 0 to 32 points. Higher scores 

represented higher levels of impairment on different axial motor domains.  

The secondary endpoint assessments consisted of a variety of clinical and 

anamnestic tests, which allowed a differentiated assessment of specific axial 

motor symptoms. The clinical ratings for these secondary efficacy variables were 

obtained at ‘baseline’ and at the ‘immediate testings’ as well as at the ‘3-week 

follow-up’ in all treatment conditions (Weiss et al., 2013).  

As three of the eight items of the composite ‘axial score’ (UPDRS II, items 13-15) 

represent anamnestic information, and as the ‘baseline’ condition and the 

‘immediate testings’ were separated by only 30 minutes, the score of these items 

would not respond so quickly and was therefore assessed only once during the 

‘baseline’ and ‘immediate testing’ session.  

The secondary clinical endpoint testings assessed axial motor function by means 

of the clinical UPDRS III (items 27-31), FOG in terms of the Freezing of Gait 

Assessment Course (Ziegler et al., 2010), balance with the Berg Balance Scale 
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(Berg et al., 1992), and gait with the timed walking test from CAPSIT-PD (Defer 

et al., 1999). Further secondary self-reporting scores assessed gait impairment 

related to FOG with the Giladi Freezing of Gait Questionnaire (Giladi et al., 2009), 

quality of life with the PDQ-39 (Jenkinson et al., 1997), non-motor symptoms with 

the Non-motor Symptoms Scale (Storch et al., 2010) and neuropsychiatric 

symptoms with the Beck’s Depression Inventory (Beck et al., 1961) and the 

Barratt Impulsiveness Scale (Preuss et al., 2008). 

The aim of the secondary endpoint assessment is explorative data analysis and 

the results were assessed only for descriptive purpose, not for hypothesis testing 

or for generating evidence for efficacy. 

Concerning the statistical evaluation of the primary endpoint only the changes 

after the ’3-week follow-ups’ were of importance. 

 

  Clinical tests 

In this trial, we evaluated a broad spectrum of axial motor symptoms to detect 

any amelioration. Therefore, several tests were used to assess different kinds of 

symptoms.  

The primary endpoint was defined as a change in the ‘axial score’ after three 

weeks of constant stimulation. This score was built from three items of the 

anamnestic UPDRS II (items 13-15) concerning FOG and walking and five items 

of the clinical UPDRS III (items 27-31) concerning rising from chair, posture, gait, 

postural stability, body bradykinesia and hypokinesia.  

The differentiated assessment of the secondary clinical endpoints contained the 

UPDRS III (items 27-31) for testing axial motor symptoms, the Berg Balance 

Scale for testing balance, the timed walking test from the Core Assessment 

Program for Surgical Interventional Therapies in Parkinson’s Disease (CAPSIT-

PD) for evaluating gait, the Freezing of Gait Assessment Course (FOG-AC) for 

testing FOG. These mentioned clinical ratings were obtained in all treatment 

conditions during ‘baseline’, ‘immediate testing’ and the ‘3-week follow-up’. 

Furthermore, some anamnestic tests were taken during the assessment of the 

secondary endpoint (‘baseline’ and ‘3-week follow-up), such as the Giladi 

Freezing of Gait Questionnaire to evaluate FOG, the Parkinson’s Disease 
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Questionnaire (PDQ-39) to assess quality of life, the Beck’s Depression 

Inventory (BDI) and the Barratt Impulsiveness Scale (BIS) to evaluate 

neuropsychiatric symptoms and the Non-Motor Symptoms Scale (NMSS) to 

assess non-motor symptoms.  

More detailed information about the diverse tests is appended in the Attachment. 

 

  Electrode placement 

To assess specifically the effects caused by additional stimulation of the SNr, it 

was of great importance to characterise the localisation of the electrode contacts. 

The electrode localisation, namely the correct position of the active STN and SNr 

contacts, were determined and verified by coregistration analysis. In brief, pre-

surgical MR scans were coregistered with post-surgical MR scans and the 

coordinates of the lowest electrode contacts lying in the border zone of the STN 

and SNr were determined. From this point, the coordinates of the second most 

upper electrode contact, lying within the STN region, could be determined. Figure 

10 shows the result of the visualisation technique used. The determined 

coordinates within the STN and SNr were integrated in a coronal image of the 

Atlas of the Human Brain (Mai et al., 1997) by visualizing the current spread within 

the activated tissue. Using the Atlas of the Human Brain as reference allows to 

approximate the correct localisation as this atlas provides accurate delineations 

of all brain structures. However, we are also aware that such atlas-derived 

location analysis has immanent limitations, such as interindividual neuroanatomic 

variability and others (Yelnik et al., 2007). 
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Figure 10 Visualization of the (A) second upper active electrode contact within the dorsolateral STN 
and of the (B) lowest active electrode contact within the dorsolateral SNr on a coronal view of the 
Atlas of the Human Brain (Mai et al., 1997). (C) Illustrative image of the STN (blue) and the SNr (purple) 
with the electrode (orange) and a simulation of the stimulation field (yellow) based on work by Yelnik 
et al. 2007 and D’Haese et al. 2012 provided by Medtronic. 

 

3.5.1. Imaging methods 

The active electrode contacts were localised within the STN and the SNr by 

coregistration analyses (Matlab 7.0, Nattick, USA) and the open-source toolbox 

spm5 (Statistical Parametric Mapping). In the following, the main four steps of the 

electrode determination are explained. 

First, pre-surgical 3D T1-weighted MP-RAGE MR scans, as well as post-surgical 

3D T1-weighted FLASH MR scans of the patients’ brains were uploaded with the 

spm program for visualisation. As target structures in deep brain areas are usually 

determined under specification of coordinates, the first step after uploading the 

MR scans was to determine the point of origin of a coordinate system within the 

BG structures. The coordinate system itself is defined in the pre-surgical MR 

scans with the help of distinct field markers within the brain tissue. The midpoint 

of the line between the anterior commissure (AC) and the posterior commissure 

(PC) on the sagittal scan is the midcommissural point (MCP). In general, the MCP 

serves as zero point for the determination of electrode localisations in images of 

the brain. Figure 11 shows an MR scan with AC, PC and MCP marked in a 

coordinate system. The AC-PC line is one of the axes of the coordinate system. 

A C B 
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The other two axes are 

determined by the 

symmetrical plane of the brain 

and the perpendicular to that 

plane. The challenge of this 

step is the fact that the 

identifiable field markers (AC 

and PC) are determined 

manually which may yield some investigator-dependent variability.  

After defining the coordinate system, the pre-

surgical MR scans had to be coregistered with 

the MR scans of a reference brain with the aim 

to find and erase skew positions of the head. 

Hence, the purpose of this coregistration with 

the reference brain was to eliminate possible 

tilts and rotations in all three planes of the pre-

surgical MR scans. In the next step, the pre-

surgical MR scans served as reference data and 

the post-surgical scans were coregistered. This 

step guaranteed the correct position of the post-

surgical MR scans. Between the steps, it was important to check the position of 

the MCP and to correct it manually, if necessary. Next, the contacts of the lowest 

electrode contact were determined on both sides of the brain, namely the contact 

within the border zone of the STN and the SNr. As the lowest contact of the 

electrode begins only 0.5 mm from the tip and the electric stimulation field 

spreads some millimetres around the contact, the tip of the electrode 

approximates the lowest contact and represents the coordinates of it (McIntyre et 

al., 2004, Butson et al., 2007).  

AC PC 

MCP 

Figure 11 Localisation of AC, PC and MCP in a sagittal T1-
weighted MR scan.  
AC = anterior commissure, PC = posterior commissure, 
MCP = midcommissural point. 

 

Figure 12 Postoperative MR scan 
showing MCP in all three planes  
a) coronal b) sagittal c) axial. 
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This was performed on both hemispheres of 

the brain. Figure 13 illustrates postoperative 

MR scans with the artefact caused by the 

electrode localised on the level of the lowest 

contact within the border zone of STN and 

SNr.  

Based on the coordinates of the lowest 

electrode contact, the coordinates of the 

second upper electrode contact lying in the 

STN were determined by using the 

mathematic formula to calculate the 

Euclidean distance between two points. The 

Euclidean vector was represented by the 

electrode itself. 

Figure 14 demonstrates a postoperative MR 

scan with two electrode generated lesions 

localised at the level of the top of the 

electrode. 

Assuming that point P (
𝑎
𝑏
𝑐
) equates to the 

determined lowest electrode contact within 

the SNr and point Q (
𝑥
𝑦
𝑧
) equates to a point 

which is as far away from P as possible, the 

directional vector of the straight line 

representing the electrode reads as follows: 

 

𝑃𝑄⃗⃗⃗⃗  ⃗ (
𝑥 − 𝑎
𝑦 − 𝑏
𝑧 − 𝑐

). 

 

 
The length (l) of the directional vector is calculated with the following formula: 
 

l = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + (𝑧 − 𝑐)2.  
 

Figure 14 Axial post-surgical MR scan 
showing two determined points on the 

top of the electrode. 

Figure 13 Postoperative MR scan 
showing the artefact caused by the 
electrode implantation and the 
determination of the coordinates of the 
lowest electrode contact in all three 
planes. a) coronal b) sagittal c) axial.
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As the second upper electrode contact is expected to lie within the STN and as 

the structure of the electrode is known, the second upper electrode contact must 

have a distance of 4.75 mm from point P. Figure 15 illustrates a model of an 

electrode. 

 

 

Figure 15 Structure of an electrode; electrode contacts measure 1.5mm, interspaces measure 0.5mm, 
distance between the beginning of the lowest electrode contact to the middle of the second upper 
contact measures 4.75 mm. 

 

To finally determine the coordinates of the point S, lying within the STN, the factor 

t has to be determined and multiplied with the directional vector 𝑃𝑄⃗⃗⃗⃗  ⃗: 

4,75 = t * l        

t = 
4,75

𝑙
 

S = P + t * 𝑃𝑄⃗⃗⃗⃗  ⃗  = (
𝑎
𝑏
𝑐
) + t * (

𝑥 − 𝑎
𝑦 − 𝑏
𝑧 − 𝑐

) =  (

𝑎 + 𝑡 ∗ (𝑥 − 𝑎)
𝑏 + 𝑡 ∗ (𝑦 − 𝑏)
𝑐 + 𝑡 ∗ (𝑧 − 𝑐)

) 

The MR scans of all twelve patients underwent this process of coordinate 

determination and the results of the mean coordinates were visualised in a 

coronal image of the Atlas of the Human Brain (Mai et al., 1997). The coordinates 

of the right SNr in the three-dimensional space were 12.1 ± 1.3 mm medio-lateral 

(x-coordinate), -3.3 ± 1.7 mm anterio-posterior (y-coordinate) and -5.8 ± 1.5 mm 

rostro-caudal (z-coordinate) to MCP. For the left SNr, the x-coordinate was -10.0 

± 0.9 mm, the y-coordinate was -3.4 ± 2.1 mm and the z-coordinate was -6.4 ± 

1.8 mm. The coordinates for the right STN were 13.5 ± 1.1 mm (x-coordinate), -

0.5 ±1.7 mm (y-coordinate) and -2.2 ± 1.5 mm (z-coordinate). The left STN had 

the coordinates -11.4 ± 0.8 mm (x), -0.9 ± 2.0 mm (y) and -3.0 ± 1.7 mm (z).  

An overview of the computed positions of the electrode contacts within the SNr 

and the STN in relation to MCP is presented in Table 2. 

0.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 

4.75 
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Regarding the depth of the lowest active contact on both sides within the SNr (y-

coordinate in the SNr) and the electric potential spread around the electrode in 

all directions, which we visualised on coronal images on the Atlas of the Human 

Brain (Mai et al., 1997) (Figure 10), we can approximate that the lowest active 

contact of the electrode stimulated the SNr. Hence, the additional effects and 

clinical benefits of the interleaved stimulation compared to the effects and 

benefits of the conventional STN-DBS are attributable to the effect the current 

has on the neuronal tissue of the SNr. 

Similar coordinates for the SNr were found by Chastan et al. when testing the 

effects of nigral stimulation on postural stability and locomotion in Parkinson’s 

patients (Chastan et al., 2009). However, there is a difference concerning the 

laterality in our study, as the SNr coordinates are more lateral in our patient 

cohort. 

 

Table 2 Electrode placement in relation to MCP in all twelve patients; SNr representing the 
localisation of the lowest electrode contact, STN representing the localisation second upper 
electrode contact. SD = standard deviation, x = medio-lateral, y = anterio-posterior, z = rostro-caudal. 
STN = subthalamic nucleus, SNr = substantia nigra pars reticulata.  

SNr right SNr left STN right STN left 

Patient x y z x y z x y z x y z 

1  11.8 -2.5 -5.9 -9.4 0.0 -5.0 13.0 0.6 -2.6 -10.5 -0.3 -1.7 

2  10.7 -3.6 -7.7 -9.5 -3.4 -9.8 12.3 -0.8 -3.6 -10.9 -0.5 -6.1 

3  11.8 -2.8 -4.7 -10.8 -2.4 -4.3 13.1 0.1 -0.9 -11.5 0.7 -0.8 

4  14.3 -3.9 -3.6 -10.5 -2.9 -4.7 15.7 -1.1 -0.1 -12.7 0.0 -1.4 

5  13.6 -5.9 -5.7 -11.3 -6.3 -7.3 14.8 -3.6 -1.4 -12.5 -4.2 -3.5 

6  10.4 -2.7 -3.6 -9.8 -2.9 -4.8 11.8 0.3 -0.6 -11.5 0.2 -1.2 

7 11.4 -1.4 -7.0 -10.4 -2.9 -4.5 13.5 1.7 -3.9 -11.8 0.6 -1.4 

8  12.2 -3.6 -8.8 -8.1 -7.6 -7.3 13.8 -0.6 -5.0 -9.8 -5.2 -3.8 

9  11.4 -5.8 -6.4 -9.4 -5.0 -6.6 12.9 -2.4 -3.5 -10.8 -1.5 -4.3 

10  14.1 -2.9 -5.5 -11.1 -1.8 -7.0 14.6 -0.6 -1.8 -11.9 0.6 -3.0 

11  12.9 -4.7 -5.7 -9.8 -1.6 -7.3 13.8 -2.3 -1.8 -11.4 0.8 -3.3 

12  11.1 -0.2 -5.4 -10.0 -4.2 -8.5 12.6 2.2 -1.7 -11.7 -1.4 -5.1 
   

    
 

    
 

  
   

SD 1.3 1.7 1.5 0.9 2.1 1.8 1.1 1.7 1.5 0.8 2.0 1.7 

Mean 12.1 -3.3 -5.8 -10.0 -3.4 -6.4 13.5 -0.5 -2.2 -11.4 -0.9 -3.0 

Rounded 12 -3 -6 -10 -3 -6 14 -1 -2 -11 -1 -3 
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3.5.2. Stimulation parameters 

All patients in this study were implanted with the Activa® impulse generator 

invented by Medtronic. The Activa® impulse generator allows for interleaved 

programming due to its advanced technology. It was available at our study site 

since 2009 and some of the enrolled study patients had the Kinetra® impulse 

generator implanted first, which was changed to the Activa® impulse generator 

after battery depletion. All patients were treated with pre-existing intracranial 

electrode localisation and were not reimplanted in order to participate in this 

study. 

The electric field and especially the spread of the electric field within the neuronal 

tissue generated by deep brain stimulation depends on several factors, such as 

the location of the active electrode contacts, the distribution of the electric field 

and the composition of the tissue surrounding the electrode (Kuncel and Grill, 

2004). Besides these factors, the correct setting of the stimulation parameters is 

important to address the diverse symptoms of PD. As described earlier, there are 

several stimulation techniques and different possibilities for varying the electrode 

geometry. In this clinical trial, the patients underwent a careful adjustment of the 

electrode programming prior to study enrolment. According to the pre-defined 

study-protocol (Weiss et al., 2011b), the stimulation parameters were defined by 

following several aspects to ensure the best individual STN-DBS. This included 

i) an optimal control of the segmental motor symptoms, such as tremor, 

bradykinesia and rigidity, which was determined by testing different amplitudes 

and determining the threshold for the clinical effects and side effects. This 

‘titration’ for effects and side effects was done for the SNr as well. Possible effects 

on the upper contacts within the STN are improvement of segmental motor 

symptoms, such as a reduction of rigidity. Side effects that can potentially occur 

are face contraction or dysarthria due to the spread of the electric field to the 

capsula interna. Possible effects occurring when stimulating only the lowest 

active electrode contacts within the SNr are reduction of tremor, less rigidity, gait 

improvement, reduction of FOG, greater step length or no acute effect. Side 

effects potentially occurring when stimulation is delivered only on the lowest 

active electrode contacts within the SNr, namely during nigral titration, can 
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present as diplopia, blurred vision, brachiofacial dystonia, heaviness of eyelids, 

fatigue, vertigo, dysarthria, globus sensation, face contraction or paresthesia of 

the face and limbs (Chastan et al., 2009).  

Another important aspect to ensure optimal individual stimulation parameters was 

ii) a sufficient topographical distance between the active contact within the STN 

and the border zone of the SNr, to avoid current spread to the SNr and 

consequently incorrect results concerning the clinical effects of conventional 

STN-DBS. This was ensured on the one hand by checking the patients’ 

postoperative MR-scans. An experienced neurologist of the study group 

estimated the distance together with a neuroradiologist of the University of 

Tuebingen. On the other hand, the rostral electrode contacts 2 (second upper 

contact within the left STN) and 10 (second upper contact within the right STN) 

were predominantly used for STN-stimulation. iii) The prestudy programming 

envisaged the concept of ‘better side reduction’. This concept provides a 

programming algorithm for STN-DBS by adjusting the stimulation voltage on both 

sides of the brain and thus improving symmetry and coordination of gait in PD 

patients (Fasano et al., 2011). In patients with poor leg symmetry, this 

programming algorithm was implemented in the programming session before 

entering the study.  

The optimal control for segmental motor symptoms was checked and confirmed 

again after entering the study in the ‘baseline’ testing and the ‘immediate testing’ 

session after overnight withdrawal of dopaminergic medication. This was done 

very carefully and according to best clinical practice. The stimulation parameters 

of the [STNmono] condition, namely the parameters of the active dorsolateral 

STN, were maintained when introducing the [STN+SNr] condition.  

The best individual stimulation settings remained unchanged throughout the 

whole study in most patients.  

Two patients, PD2 and PD9, needed reprogramming of the nigral electrode 

contacts due to dyskinesias that occurred a few days after introduction of the 

[STN+SNr] condition in the ‘3-week follow-up’ (Weiss et al., 2013). According to 

the intention to treat principle, which means that the outcome of these patients 

was still considered as equal part of the [STN+SNr] ‘3-week follow-up’ condition, 
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the programming was adjusted. In PD2 the stimulation amplitude was lowered on 

both active nigral contacts by 0.4 V and thus reduced to 0.7 V. Bothersome 

dyskinesias disappeared after reprogramming. PD9 reduced his daily levodopa 

medication dosage by 125 mg based on his own discretion and experience and 

contacted the study site. The dosage reduction ameliorated the dyskinesias but 

as they did not disappear completely, the patient was rescheduled by the principle 

investigator of the study. The stimulation amplitudes of the nigral contacts were 

lowered by 0.1 V to 1.1 V. With this adjustment of the stimulation settings, 

bothering dyskinesias were satisfactorily resolved. Both patients subsequently 

completed the ‘3-week follow-up’ period. 

Concerning the electrode geometry, one can see in Table 3 that almost all 

patients received similar programming settings. In most patients, the best 

symptom control was reached with a monopolar or bipolar stimulation setting. In 

PD6, the resting tremor of the right upper extremity was quite insistent and 

required bipolar programming of the left STN with two negative contacts, the 

second upper active electrode contact 2 and the most upper active contact 3. 

With this stimulation setting, high stimulation amplitudes up to 5.7 V could be 

applied without causing side effects. In this patient, monopolar settings were 

limited effective as side effects were induced at 3.5 V without maximal tremor 

suppression. The amplitudes, pulse widths and the diverse polarities on all active 

contacts within the STN and SNr are presented in Table 3. 
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Table 3 Stimulation Parameters of the active electrode contacts in all twelve patients.  
2- = second upper left electrode contact as cathode, 3- = most upper left electrode contact as 
cathode, C+ = pulse generator case as anode, 2+ = second upper left electrode contact as anode, 1+ 
= second lowest left electrode contact as anode, 3+ = most upper left electrode contact as anode, 
11- = most upper right electrode contact as cathode, 10- = second upper right electrode contact as 
cathode, 10+ = second upper right electrode contact as anode, 0- = lowest left electrode contact as 
cathode, 8- = lowest right electrode contact as cathode, 9+ = second lowest right electrode contact 
as anode; PD2* and PD9* needed reprogramming of the SNr-voltage due to dyskinesias. Hz = hertz, 
V = voltage, µsec = microsecond, STN = subthalamic nucleus, SNr = substantia nigra pars reticulata. 
 

Patient Frequency 

(Hz) 

Amplitude (V) Pulse width (μsec) Polarity 

Left 

STN 

Right 

STN 

Left 

SNr 

Right 

SNr 

Left 

STN 

Right 

STN 

Left 

SNr 

Right  

SNr 

Left 

STN 

Right 

STN 

Left 

SNr 

Right 

SNr 

              

PD1 125 4.0 3.2 1.0 1.0 90 60 60 60 2- C+ 11- 10+ 0- C+ 8- C+ 

PD2* 125 3.3 1.4 0.7 0.7 60 60 60 60 3- 2+ 10- C+ 0- C+ 8- C+ 

PD3 125 2.2 2.4 3.0 3.0 120 120 60 60 2- C+ 10- C+ 0- C+ 8- C+ 

PD4 125 3.8 1.4 0.7 0.7 90 90 60 60 2- C+ 10- C+ 0- C+ 8- C+ 

PD5 125 4.6 2.7 1.3 1.3 90 60 60 60 2- 3+ 10- C+ 0- C+ 8- C+ 

PD6 125 5.7 3.2 0.8 0.8 180 60 60 60 3- 2-1+ 10- C+ 0- C+ 8- C+ 

PD7 125 3.7 3.5 1.8 1.8 120 120 60 60 2- C+ 10- C+ 0- C+ 8- C+ 

PD8 125 4.3 3.6 1.3 1.3 60 60 60 60 3- 2+ 11- C+ 0- C+ 8- 9+ 

PD9* 125 2.2 1.7 1.2 1.2 60 60 60 60 2- C+ 10- C+ 0- C+ 8- C+ 

PD10 125 2.7 1.6 2.2 2.2 60 60 60 60 2- C+ 10- C+ 0- C+ 8- C+ 

PD11 125 3.3 2.8 1.5 1.5 60 60 60 60 2- C+ 10- C+ 0- C+ 8- C+ 

PD12 125 4.0 2.8 1.5 1.5 120 120 60 60 2- 3+ 10- C+ 0- C+ 8- C+ 

 

  Data management 

In the time from January 2011 to June 2012, patient screening was performed by 

the principle investigator. If all inclusion criteria were fulfilled and none of the 

exclusion criteria applied to the patients, they could be enrolled after signing the 

written informed consent. Personal data and information about the medical 

history of the patients as well as the whole data collected during the diverse visits 

were documented in paper form in the CRF immediately after the assessment. 

The necessary recordings were documented only by authorized investigators and 

monitored for completeness and correctness. The study software koordobas was 

used for data management. koordobas is an Oracle-based application of the 

Department of Medical Biometry of Tuebingen. The complete data was entered 

to koordobas by two authorized and independent staff members and 



56 
 

automatically reviewed by the program for completeness, errors and 

inconsistency. Differences were corrected in a reproducible way. The study data 

base consisted only of complete and correct data. 

All study material will be stored for at least ten years in the archive of the 

Department of Neurodegenerative Diseases of the Centre of Neurology, 

Tuebingen. The storage, the processing and the deletion of all person related 

data was and will be performed according to the German law. 

 

  Data evaluation and statistical analysis 

The statistical analyses were carried out by the Department of Biometry of the 

University of Tuebingen. 

For the confirmatory statistical analysis, the primary endpoint was the difference 

in the ‘axial score’ (UPDRS II items 13-15 and UPDRS III items 27-31) of the two 

stimulation conditions [STNmono] and [STN+SNr] at ‘3-week follow-up’. 

A minimum sample size of ten patients was calculated to be sufficient to detect 

an effect, namely a difference of four points on the primary outcome measure (the 

range across the eight items was 0 - 32). 

A two-sided paired t-test with α = 0.05 was applied on the null hypothesis, based 

on the assumption that the data was normally distributed and stating that the two 

stimulation conditions had the same effect (Weiss et al., 2011b). 

Statistical power and sample size calculations were determined with the 

statistical software NQuery Advisor 7.0. 

In order to align the sample size to an expected drop-out of two patients, twelve 

patients were enrolled in this study (Weiss et al., 2011b). To avoid that a possible 

period effect could confound the results, the primary outcome measures and all 

secondary outcomes underwent a control for period effects. Therefore, a 

comparison of the sum of the scores in the two treatment periods was performed 

using the unpaired t-test (Wellek and Blettner, 2012). 

Normal distribution was verified with the Shapiro-Wilk test. Differences which 

were not normally distributed (P < 0.05 of Shapiro-Wilk test) were analysed using 

the sign test. 
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Given the small sample size and some clinical heterogeneity concerning the time 

since DBS implantation and the disease duration in our cohort, non-parametric 

statistical testing on the primary endpoint was additionally performed using a sign 

test. Of note, the endophenotypic spectrum of idiopathic PD involves the typically 

observed variable disease duration and accordingly the variable time since DBS 

implantation in our cohort. 

All analyses of the secondary outcome were descriptive and no confirmatory 

interpretation was drawn from the results. Secondary endpoints without normal 

distribution were analysed using a sign test. This was necessary for the ‘Non-

motor Symptoms Scale’, the ‘CAPSIT-PD’ and the ‘Berg Balance Scale’. 

In the result section, the measurements are presented using tables and box plots 

under specification of the mean ± standard deviation for parametric tests and the 

median with range for non-parametric tests as well as the two-sided p-values 

without adjustments. 

 

  Safety  

Several safety measures were carefully observed in order to protect the 

participants from any undesired harm. All safety issues were recorded in the CRF. 

The endpoints of safety were (i) death as a serious adverse event, (ii) severe 

exacerbation of pre-existing relevant gait disturbances and falls due to 

aggravated FOG or imbalance. This was evaluated with the items 13 and 14 of 

the UPDRS II and with item 30 of the UPDRS III. (iii) A worsening of segmental 

motor symptoms like tremor or rigidity were evaluated with item 20-26 of the 

UPDRS III. More frequent motor fluctuations were reported by means of the 

UPDRS IV. (iv) New occurrence or worsening of pre-existing depressive 

symptoms were evaluated with the BDI, suicidal tendency with item 9 of the BDI, 

hallucinatory behaviour and psychosis with item 2 of the UPDRS I and impulsivity 

with the BIS. 
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             4 
4. Results 

 

Out of 28 screened patients, twelve were eligible for study participation. These 

patients were enrolled between January 2011 and June 2012 at the Centre for 

Neurology, Department for Neurodegenerative Diseases of the University of 

Tuebingen. In the following, the results for the different endpoints and for all 

testings are described in detail and illustrated with box plots. A general overview 

of all study results is given in Table 4 for the ‘baseline’ and ‘immediate testing’ 

and in Table 5 for the results of the ‘3-week follow-up’.  

 

Table 4 Results of the ‘baseline’ and ‘immediate testing’.  
[STNmono] = conventional subthalamic stimulation, [STN+SNr] = combined stimulation of STN and 
SNr, STN = subthalamic nucleus, SNr = substantia nigra pars reticulata, UPDRS = Unified Parkinson's 
Disease Rating Scale, FOG-AC = Freezing of Gait Assessment Course, CAPSIT = timed walking test 
from the Core Assessment Program, a t-Test, b Sign-Test, § Median (Min-Max).  

 ‘baseline’ ‘immediate testing’ 

[MedOffStimOff] [STNmono] [STN+SNr] p-value 

Secondary 

endpoints 

  

Axial UPDRS III 

(items 27-31) 

11.17±3.56 9.25±4.67 8.17±4.09 0.041a 

Segmental UPDRS 

III (items 20-26) 

38.0±5.10 29.17±6.62 27.58±7.96 0.1347a 

FOG-AC 22.17±11.74 16.25±12.78 8.67±10.92 0.0056a 

CAPSIT [steps] 18.5 (13–82)§ 14.5 (8–51.5)§ 14.5 (8.5–36)§ 0.5488b 

CAPSIT [time] 12 (6.5–105)§ 7.5 (5.5–67.5)§ 8.5 (5–28)§ 0.7539b 

CAPSIT [freezing] 0.5 (0–3)§ 0.5 (0–3)§ 0 (0–0.5)§ > 0.99b 

Berg Balance Scale 41.5 (11–56)§ 47 (15–56)§ 50 (9–56)§ 0.7266b 
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Table 5 Results of the ‘3-week follow-up’.  
[STNmono] = conventional subthalamic stimulation, [STN+SNr] = combined stimulation of STN and 
SNr, STN = subthalamic nucleus, SNr = substantia nigra pars reticulata, UPDRS = Unified Parkinson's 
Disease Rating Scale, FOG-AC = Freezing of Gait Assessment Course, CAPSIT = timed walking test 
from the Core Assessment Program, FOG-Q = Freezing of Gait Questionnaire, PDQ-39 = Parkinson’s 
disease questionnaire, BDI = Beck’s Depression Inventory, NMSS = Non-motor Symptoms Scale, a t-
Test, b Sign-Test, § Median (Min-Max).  

 ‘baseline’ ‘3-week follow-up’ 

[MedOffStimOff] [STNmono] [STN+SNr] p-

value 

     

Primary endpoint                    

(axial UPDRS II + III) 

17.25±4.31 14.25±5.75 13.42±6.47 0.470a 

0.5078b 

   

Secondary endpoints   

Segmental UPDRS III (items 

20-26) 

38.0±5.10 28.75±6.03 29.75±5.53 0.5180a 

Axial UPDRS III (items 27-

31) 

11.17±3.56 8.08±4.01 8.08±4.38 >0.99a 

FOG-AC 22.17±11.74 14.42±13.19 8.33±10.91 0.0468a 

CAPSIT [steps] 18.5 (13–82)§ 14.25 (8–115)§ 13 (8.5-28.5)§ 0.2266b 

CAPSIT [time] 12 (6.5–105)§ 7.5 (4.5–71)§ 7 (5–22.5)§ 0.3438b 

CAPSIT [freezing] 0.5 (0–3)§ 0.25 (0–3.5)§ 0 (0–0.5)§ 0.0625b 

Berg Balance Scale 41.5 (11–56)§ 51.5 (19–56)§ 51.5 (17–56)§ >0.99b 

FOG-Q 14.67±4.70 16.17±3.83 14.50±4.89 0.1013a 

PDQ-39     

Mobility 53.96±23.78 54.32±27.23 49.38±25.30 0.2925a 

Activities of daily living 42.01±20.45 45.08±23.04 45.14±22.46 0.4825a 

Emotional well-being 26.74±15.02 25.38±21.45 23.96±17.87 0.5697a 

Stigma 21.88±27.24 22.73±25.35 20.31±21.01 0.4592a 

Social support 18.06±23.26 18.94±23.89 11.81±10.93 0.2767a 

Cognition 31.25±24.28 23.30±22.89 24.48±21.89 0.4933a 

Communication 40.97±18.62 31.82±21.99 36.81±22.88 0.6250a 

Bodily discomfort 35.42±21.06 34.85±22.61 36.81±16.84 0.7623a 

BDI 8.67±3.37 7.91±3.94 9.25±5.55 0.3497a 

NMSS     

     Cardiovascular 1 (0–9)§ 0 (0–6)§ 0 (0–9)§ 0.3750b 

     Sleep 9 (0–20)§ 8 (0–24)§ 11.5 (0–28)§ 0.1797b 

     Mood 5.5 (2–18)§ 8 (0–28)§ 7 (0–49)§ 0.7539b 

     Cognition 0 (0–12)§ 0 (0–4)§ 0 (0–13)§ >0.99b 

     Concentration 6 (0–27)§ 4 (0–24)§ 5 (0–32)§ 0.2891b 
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     Gastrointestinal 8 (0–25)§ 8 (0–20)§ 6.5 (0–20)§ 0.7266b 

     Micturition 7 (0–30)§ 8 (0–28)§ 8.5 (0–18)§ >0.99b 

     Sexual function 4 (0–18)§ 0 (0–12)§ 1 (0–12)§ >0.99b 

     Sundries 7 (0–24)§ 4 (0–26)§ 9 (0–18)§ 0.7266b 

Barratt Impulsiveness Scale 62.6±5.91 63.55±4.3 61.67±5.18 0.2894a 

UPDRS IV 5.75±1.96 6.27±2.45 5.17±3.04 0.2335a 

 

  Primary outcome measure 

At ‘baseline testing’ (medication off, stimulation off), all enrolled patients 

presented with severe axial motor symptoms, which is reflected in the ‘axial 

score’. Patients attained 17.25 ± 4.31 points at ‘baseline testing’. No statistically 

significant difference could be detected on the ‘axial score’ between the 

conditions [STN+SNr] and [STNmono] after the ‘3-week follow-up’. After three 

weeks of constant [STN+SNr] stimulation, patients attained 13.42 ± 6.47 points 

on the ‘axial score’ and after three weeks of constant [STNmono] stimulation, 

patients presented with 14.25 ± 5.75 points on the ‘axial score’. This resulted in 

an effect of 0.83 ± 3.86. The 95% confidence interval of the arithmetic mean of 

the effect ranged from -1.62 to 3.82 and the p-value resulted in p = 0.47. An 

additional non-parametric analysis of the primary endpoint, using the sign-test, 

confirmed the statistical findings of the parametric analysis and reassured that 

the findings of the primary endpoint were not statistically significant. Figure 16 

illustrates the box plots of the primary endpoint. 
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Figure 16 Box plots of the primary endpoint at ‘baseline’ and ‘3-week follow-up’.  
x-axis = therapeutic condition, y-axis = ‘axial score’, [STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra 
pars reticulata. 
 
 

For the evaluation of the primary endpoint, it is necessary to consider the already 

mentioned fact that four patients wished to discontinue treatment prematurely 

during the conventional stimulation of the STN [STNmono]. PD 3 after three hours 

of standard STN stimulation, PD 7 after 19 days, PD 10 after two days and PD 

11 after nine days. All these patients completed the entire [STN+SNr] treatment. 

Three of these patients (PD 3, PD 10, PD 11) were randomised first to the 

combined treatment of STN and SNr [STN+SNr]. Table 6 shows the number of 

points of the individual ‘axial score’ of these patients after the premature 

discontinuation of the standard STN treatment [STNmono] and after the 

completed three weeks of combined stimulation of STN and SNr [STN+SNr]. 
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Table 6 Comparison of the individual ‘axial score’ of patients who discontinued [STNmono] treatment 
prematurely.  
[STNmono] = standard STN stimulation, [STN+SNr] = combined STN and SNr stimulation, STN = 
subthalamic nucleus, SNr = substantia nigra pars reticulata. 

 Primary endpoint [STNmono] Primary endpoint [STN+SNr] 

   

PD3 19 16 

PD7 27 25 

PD 10 13 9 

PD 11 9 4 

  Secondary outcome measures 

The secondary outcome measures were performed and analysed to detect 

possible effects on distinct axial motor domains which we did not necessarily 

expect prior to the study beginning. The results of the secondary endpoints are 

presented in the following box plots.  

4.2.1. Immediate testing 

The ‘immediate testing’ was performed during the same testing session as the 

‘baseline testing’. All testings were performed off medication [MedOff]. The aim 

was to detect short term effects of the two different stimulation settings 

[STNmono] and [STN+SNr]. 

According to the segmental UPDRS III items 20-26, similar results could be 

detected between [STNmono] and [STN+SNr] in the ‘immediate testing’. 

At ‘baseline testing’, patients achieved 38.0 ± 5.01 points. While stimulated with 

[STNmono], patients achieved 29.17 ± 6.62 points and with [STN+SNr] 27.58 ± 

7.96 points. This resulted in an effect of 1.58 ± 3.4. The 95% confidence interval 

of the arithmetic mean of the effect ranged from  

-0.57 to 3.74 (p = 0.13). The box plots in Figure 17 illustrate the results of the 

UPDRS III items 20-26. 
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Figure 17 Box plots of the UPDRS III items 20-26 after ‘immediate testing’.  
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

Concerning the results of the axial UPDRS III items 27-31, a greater 

improvement could be detected with [STN+SNr] compared to [STNmono], which 

is reflected in the p-value. 

The result of the ‘baseline testing’ was 11.17 ± 3.56 points. After switching to 

[STNmono], patients achieved 9.25 ± 4.67 points and with [STN+SNr] stimulation, 

this reduced to 8.17 ± 4.09 points. This resulted in an effect of 1.08 ± 1.62. The 

95% confidence interval of the arithmetic mean of the effect ranged from 0.05 to 

2.11 (p = 0.04). The box plots in Figure 18 illustrate the results of the UPDRS III 

items 27-31. 
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Figure 18 Box plots of the UPDRS III items 27-31 after ‘immediate testing’.  
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

 

The next box plots (Figure 19) show the results of the Freezing of Gate 

Assessment Course. At ‘baseline testing’, patients presented with severe FOG 

with 22.17 ± 11.74 points. During [STNmono], they obtained an average of 16.25 

± 12.78 points and during [STN+SNr] of 8.67 ± 10.92 points. This resulted in an 

effect of 7.58 ± 7.66. The 95% confidence interval of the arithmetic mean of the 

effect ranged from 2.72 to 12.45 (p = 0.01). 
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Figure 19 Box plots of the FOG-AC after ‘immediate testing’.  
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata.  

 

The results of the CAPSIT - PD timed walking test, with the subdomains ‘steps’, 

‘time’ and ‘freezing’ are shown in the next three figures (Figure 20, Figure 21 and 

Figure 22). In all subdomains, no relevant differences between the conditions 

could be observed at ‘immediate testing’. 

The effect concerning ‘steps’ results in 5.73 ± 10.85. The 95% confidence interval 

of the arithmetic mean of the effect ranged from -1.56 to 13.02 (p = 0.55). In the 

subdomain ‘time’, the calculated effect was 7.09 ± 17.64. The 95% confidence 

interval of the arithmetic mean of the effect ranged from -4.76 to 18.94 (p = 0.75). 

The result of the ‘freezing’ subdomain had an effect of 0.91 ± 3.02. The 95% 

confidence interval of the arithmetic mean of the effect ranged from -1.12 to 2.93 

(p > 0.99).  
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In the Berg Balance Scale, patients achieved 41.5 (11 - 56)§ points in the 

‘baseline testing’, 47 (15-56)§ points during [STNmono] stimulation and 50 (9 - 

56)§ points during [STN+SNr].  This resulted in an effect of -1.5 ± 4.85. The 95% 

confidence interval of the arithmetic mean of the effect ranged from -4.58 to 1.58 

(p = 0.31). Figure 23 shows the box plots for the Berg Balance Scale. 

Figure 21 Box plots of the CAPSIT ‘time’ after 
‘immediate testing’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 

= substantia nigra pars reticulata. 

Figure 20 Box plots of the CAPSIT ‘steps’ after 
‘immediate testing’.  
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 

= substantia nigra pars reticulata. 

Figure 22 Box plots of the CAPSIT ‘freezing’ 
after ‘immediate testing’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 
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Figure 23 Box plots of the Berg Balance Scale after ‘immediate testing’.  
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 
 
 

4.2.2. 3-week follow-up 

4.2.2.1. Axial motor symptoms 

In the 3-week follow-up, similar results could be detected between both conditions 

concerning the UPDRS III items 27-31, the subscore for ‘axial’ motor symptoms. 

Patients achieved 8.08 ± 4.01 points after three weeks of constant [STNmono] 

stimulation and 8.08 ± 4.38 points after three weeks of [STN+SNr] stimulation. 

This resulted in an effect of 0 ± 2.95. The 95% confidence interval of the arithmetic 

mean of the effect ranged from -1.88 to 1.88 (p = 1.0). Figure 24 illustrates the 

results of the UPDRS III items 27-31 after the ‘3-week follow-up’.  

 



68 
 

 

Figure 24 Box plots of the UPDRS III items 27-31 after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

 

In the UPDRS III items 20-26, the subscore for ‘segmental’ motor symptoms, the 

outcome was similar in [STNmono] (28.75 ± 6.03 points) and [STN+SNr] (29.75 

± 5.53) (p = 0.52). The effect was -1.0 ± 5.19 and the 95% confidence interval of 

the arithmetic mean of the effect ranged from -4.3 to 2.3. Figure 25 shows the 

box plots of the results of the UPDRS III items 20 - 26 after three weeks of 

constant stimulation in both tested conditions. 
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Figure 25 Box plots of the UPDRS III items 20-26 after ‘3-week follow-up’.  
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

 

According to the FOG-AC, patients presented with severe FOG at ‘baseline 

testing’. The gait disturbances improved more with [STN+SNr] compared to 

[STNmono]. This improvement is reflected in the p-value (p = 0.047). Patients 

achieved 14.42 ± 13.19 points after three weeks of [STNmono] and 8.33 ± 10.91 

points after [STN+SNr]. This resulted in an effect of 6.08 ± 9.41. The 95% 

confidence interval of the arithmetic mean of the effect ranged from 0.10 to 12.06. 

The box plots in Figure 26 illustrate the results of the FOG-AC after three weeks 

of constant stimulation. 
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Figure 26 Box plots of the FOG-AC after ‘3-week follow-up’.  
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

 

The CAPSIT-PD timed walking test showed only little differences between both 

conditions in all three subdomains after three weeks of constant stimulation. No 

improvement was observed concerning the conditions ‘time’ and ‘steps’ but 

freezing-episodes occurred less frequently with [STN+SNr] than with [STNmono]. 

In the subdomain ‘steps’, patients needed 14.25 (8 - 115)§ step safter 

[STNmono] and 13 (8.5 – 28.5)§ steps with [STN+SNr]. This resulted in an effect 

of 12.05 ± 27.61 The 95% confidence interval of the arithmetic mean of the effect 

ranged from -6.51 to 30.60 (p = 0.23). 

Concerning the ‘time’ subdomain, patients needed 7.5 (4.5 - 71)§ seconds with 

[STNmono] stimulation and 7 (5 - 22.5)§ seconds with [STN+SNr]. The effect was 

7.05 ± 17.52 and the 95% confidence interval of the arithmetic mean of the effect 

ranged from -4.73 to 18.82 (p = 0.34). With the standard [STNmono] stimulation, 

patients achieved 0.25 (0 – 3.5)§ freezing episodes in the ‘freezing’ subdomain 

and 0 (0 – 0.5)§ freezing episodes with [STN+SNr]. The effect in this domain 

resulted in 0.55 ± 0.93. The 95% confidence interval of the arithmetic mean of the 

effect ranged from -0.08 to 1.17 (p = 0.063). The box plots of the CAPSIT-PD 

timed walking test and its subdomains are shown in Figure 27, Figure 28 and in 

Figure 29.  
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Concerning the Berg Balance Scale, no differences were observed in the two 

conditions after three weeks of constant stimulation. Patients achieved  

51.5 (19 – 56)§ points after three weeks of [STNmono] stimulation and 51.5 (17 

– 56)§ points after three weeks of [STN+SNr] stimulation. This resulted in an 

effect of -0.58 ± 5.04 points. The 95% confidence interval of the arithmetic mean 

of the effect ranged from -3.78 to 2.62 (p = 0.70). Figure 30 shows the box plots 

of the Berg Balance Scale after the ‘3-week follow-up’. 

Figure 27 Box plots of the CAPSIT-PD ‘steps’ 
after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 
 

Figure 28 Box plots of the CAPSIT-PD ‘time’ 
after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 
 

Figure 29 Box plots of the CAPSIT-PD 
‘freezing’ after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 
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Figure 30 Box plots of the Berg Balance Scale after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

 

The FOG-Q was only performed after the ‘3-week follow-up’ phases, as it is an 

anamnestic test. Patients had less freezing symptoms after [STN+SNr] than after 

[STNmono]. At ‘baseline testing’, patients achieved 14.67 ± 4.7 points, after three 

weeks of [STNmono] they achieved 16.17 ± 3.83 points and after three weeks of 

[STN+SNr] 14.50 ± 4.89 points. This resulted in an effect of 1.67 ± 3.23 points. 

The 95% confidence interval of the arithmetic mean of the effect ranged from  

-0.38 to 3.72 (p = 0.10). The box plots of the results of the FOG-Q are shown in 

Figure 31. 
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Figure 31 Box plots of the FOG-Q after ‘3-week follow-up’.  
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

 

4.2.2.2. Non-motor symptoms 

The evaluation of the non-motor symptoms was performed by means of different 

scores. 

The BDI was used to measure the severity of potentially existing depressions. 

The average score patients reached in this study were not higher than 9.25 

points. At ‘baseline’, patients presented with an average of 8.67 ± 3.37 points. 

After three weeks of constant [STNmono], the results barely differed from the 

‘baseline’ results (7.91 ± 3.94). At ‘3-week follow-up’ of [STN+SNr], the average 

score (9.25 ± 5.55) was similar to [STNmono] and ‘baseline’ (p = 0.35). The box 

plots in Figure 32 illustrate the results of the BDI. 
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Figure 32 Box plots of the results of the BDI after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

  

Concerning the range of the results, there was a wider range of points reached 

after the [STN+SNr] stimulation, as seen in Table 7. Thus, on group level no 

changes were found but two patients (PD1 and PD7) presented with an increased 

BDI score during the combined stimulation [STN+SNr] compared to the 

conventional stimulation [STNmono]. The scores of all patients in all three 

conditions are given in Table 8. 

Of note, PD1 had a longer lasting history of depression. The medical history of 

PD 7 also showed increased BDI scores in the past. Both patients took 

antidepressant drugs prior to study enrolment.  

 
Table 7 Range of the points reached in the BDI over all stimulation conditions.  
[STNmono] = standard STN stimulation, [STN+SNr] = combined STN and SNr stimulation, STN = 
subthalamic nucleus, SNr = substantia nigra pars reticulata. 

 ‘baseline’ [STNmono] [STN+SNr] 

Minimum 2 3 0 

Maximum 15 15 19 
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Table 8 BDI scores for all patients after the three conditions ‘baseline’, ‘STNmono’ and ‘STN+SNr’. 
[STNmono] = standard STN stimulation, [STN+SNr] = combined STN and SNr stimulation, STN = 
subthalamic nucleus, SNr = substantia nigra pars reticulata. 

 ‘baseline’ [STNmono] [STN+SNr] 

    

PD1 10 7 18 

PD2 11 5 6 

PD3 10 - 11 

PD4 7 5 6 

PD5 2 5 0 

PD6 12 12 13 

PD7 8 15 19 

PD8 5 3 5 

PD9 8 6 7 

PD10 15 13 12 

PD11 7 6 6 

PD12 9 10 8 

 

Concerning the results of the UPDRS IV consisting of eleven items dealing with 

the complications of the therapy, like dyskinesia or clinical fluctuation, similar 

results could be identified. 

After ‘baseline testing’ patients achieved 5.75 ± 1.96 points, after three weeks of 

constant [STNmono] patients achieved 6.27 ± 2.45 points and after three weeks 

of constant [STN+SNr] patients achieved 5.17 ± 3.04 points, which resulted in an 

effect of 0.73 ± 1.90. The 95% confidence interval of the arithmetic mean of the 

effect ranged from -0.55 to 2.01 (p = 0.23). Figure 33 illustrates the box plots of 

the results of the UPDRS IV. 
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Figure 33 Box plots of the UPDRS IV after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

 

Another test assessing non-motor symptoms is the BIS. The evaluation of the 

neuropsychiatric symptoms was similar between both treatments. At ‘baseline 

testing’, patients achieved 62.6 ± 5.91 points, after three weeks of [STNmono], 

the testing resulted in 63.55 ± 4.3 points, and after three weeks of [STN+SNr], 

patients achieved 61.67 ± 5.18 points. The effect was 2.89 ± 7.64 and the 95% 

confidence interval of the arithmetic mean of the effect ranged from -2.98 to 8.76 

(p = 0.29). The box plots of these results are illustrated in Figure 34. 
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Figure 34 Box plots of the BIS after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

 

Similar to the other non-motor issues, the NMSS detected no relevant differences 

between both stimulation conditions. None of the nine subdomains of the NMSS 

improved or worsened substantially with [STN+SNr] stimulation.  

Concerning the ‘Cardiovascular’ subdomain, patients achieved 1 (0 – 9)§ points 

after ‘baseline testing’, 0 (0 – 6)§ points after three weeks of [STNmono]  and 0 

(0 - 9)§ points after [STN+SNr]. The effect resulted in -0.09 ± 3.18. The 95% 

confidence interval of the arithmetic mean of the effect ranged from -2.22 to 2.04 

(p = 0.38). 

In the ‘Sleep’ subdomain, patients achieved 9 (0 – 20)§ points after ‘baseline 

testing’, 8 (0 – 24)§ points after [STNmono] and 11.5 (0 - 28)§ points after 

[STN+SNr]. The effect resulted in -3.55 ± 8.77. The 95% confidence interval of 

the arithmetic mean of the effect ranged from -9.44 to 2.34 (p = 0.18).  

The ‘Mood’ subdomain showed similar results in both groups. Patients achieved 

5.5 (2 - 18)§ points after ‘baseline testing’, 8 (0 – 28)§ points after [STNmono] 

and 7 (0 - 49)§ points after [STN+SNr]. The effect resulted in 0.0 ± 10.0. The 95% 

confidence interval of the arithmetic mean of the effect ranged from -6.72 to 6.72 

(p = 0.75).  
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In the subdomain ‘Cognition’, the score after the ‘baseline’ examination (0 (0 - 

12)§) was similar to the score after three weeks of [STNmono] 0 (0 - 4)§ and after 

three weeks of [STN+SNr] (0 (0 - 13)§). The effect resulted in -1.91 ± 4.78 points 

and the 95% confidence interval ranged from  

-5.12 to 1.31 (p > 0.99).  

Concerning the ‘Concentration’ subdomain, patients achieved 6 (0 – 27)§ points 

after ‘baseline testing’, 4 (0 – 24)§ points after[STNmono] and 5 (0 - 32)§ points 

after [STN+SNr]. The effect resulted in -2.82 ± 11.77 points. The 95% confidence 

interval of the arithmetic mean of the effect ranged from -10.73 to 5.09 (p = 0.29).  

The assessment of the ‘Gastrointestinal’ function in this testing showed no 

difference between the two conditions. After ‘baseline testing’, patients achieved 

8 (0 – 25)§ points. After three weeks of [STNmono], the result was 8 (0 – 20)§ 

points and after [STN+SNr] 6.5 (0 – 20)§ points. The effect resulted in 1.55 ± 

3.11. The 95% confidence interval of the arithmetic mean of the effect ranged 

from -0.54 to 3.63 (p = 0.73).  

In the subdomain ‘Micturition’, the score after ‘baseline’ examination  

(7 (0 - 30)§) was similar to the score after [STNmono] (8 (0 - 28)§) and to the 

score after [STN+SNr] (8.5 (0 - 18)§). The effect resulted in 0.81 ± 4.38 points 

and the 95% confidence interval ranged from -2.76 to 3.12 (p = 1.0).  

Similarly, in the subdomain ‘Sexual function’ similar results were found between 

the treatment conditions. After ‘baseline testing’ patients achieved 4 (0 - 18)§ 

points, after [STNmono] 0 (0 - 12)§ points and after [STN+SNr], patients achieved 

1 (0 – 12)§ points. The effect resulted in -0.91 ± 3.94 points and the 95% 

confidence interval ranged from -3.55 to 1.74 (p = 1.0).  

Concerning the ‘Sundries’ subdomain, patients achieved 7 (0 – 24)§ points after 

‘baseline’ testing, 4 (0 – 26)§ points after [STNmono] and 9 (0 - 18)§ points after 

[STN+SNr]. The effect resulted in 0.27 ± 8.26 points. The 95% confidence interval 

of the arithmetic mean of the effect ranged from -5.28 to 5.82 (p = 0.73).  

The results of the subdomains of the NMSS are illustrated in box plots from Figure 

35 to Figure 43. 
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Figure 35 Box plots of the NMSS subdomain  
‘Cardiovascular’ after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 
 

Figure 36 Box plots of the NMSS subdomain 
‘Sleep’ after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 
 

Figure 37 Box plots of the NMSS subdomain 
‘Mood’ after ‘3-week follow-up’.  
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 

 

Figure 38 Box plots of the NMSS subdomain 
‘Cognition’ after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 
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Figure 39 Box plots of the NMSS subdomain 
‘Concentration’ after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 

 

Figure 40 Box plots of the NMSS subdomain 
‘Gastrointestinal’ after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 

 

Figure 41 Box plots of the NMSS subdomain 
‘Micturition’ after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 

 

Figure 42 Box plots of the NMSS subdomain 
‘Sexual function’ after ‘3-week follow-up’. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 
 

Figure 43 Box plots of the NMSS subdomain 
‘Sundries’ after ‘3-week follow-up’ 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 
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4.2.2.3. Quality of life 

Quality of life was assessed with the PDQ-39 summary index. The PDQ-39 

assesses the health status concerning quality of life from the patient’s subjective 

point of view. 

None of the subdomains of this index showed serious differences between the 

two tested conditions at ‘3-week follow-up’. However, the results of this testing 

reveal slight differences in several domains after the ‘3-week follow-up’, which 

are illustrated by box plots and explained by means of concrete figures. 

The ‘summary index’ of the PDQ-39 was unchanged in both treatment arms, as 

shown in Figure 44. At ‘baseline’, patients presented with a ‘summary index’ of 

270.28 ± 108.27 points. After the [STNmono] ‘3-week follow-up’, they achieved 

256.40 ± 127.51 points and after three weeks of [STN+SNr] 248.68 ± 94.16 

points. Thus, barely a difference could be detected which was also reflected in 

the p-value (p = 0.55). 

 

 

Figure 44 Box plots of PDQ-39 summary index.  
x-axis = therapeutic condition, y-axis = score, [STNmono] = standard STN stimulation, [STN+SNr] = 
combined STN and SNr stimulation, STN = subthalamic nucleus, SNr = substantia nigra pars 
reticulata. 

 

The subdomain ‘Mobility’ consists of ten items. At ‘baseline’, patients presented 

with a high score in this subdomain (53.96 ± 23.78). After [STNmono], the 
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outcome was almost the same (54.32 ± 27.23) but it improved slightly with 

[STN+SNr] (49.38 ± 25.30). The p-value resulted in (p = 0.29).  

The subdomain ‘Activities of daily living’ consists of six items. At ‘baseline’, 

patients presented with a lower score in this subdomain (42.01 ± 20.45) than after 

[STNmono] (45.08 ± 23.04) or after [STN+SNr] (45.14 ± 22.46). The  

p-value of these similar outcomes resulted in (p = 0.48).  

The score in the ‘Emotional well-being’ subdomain was higher after the 

‘baseline’ examination (26.74 ± 15.02) than after [STNmono] (25.38 ± 21.45). 

After three weeks of [STN+SNr], the score was even lower (23.96 ± 17.87) than 

after the standard stimulation (p = 0.57).  

The subdomain ‘Stigma’ consists of four items. After [STNmono], patients had a 

slightly higher score (22.73 ± 25.35) than after ‘baseline’ examination (21.88 ± 

27.24). The score was marginally lower after [STN+SNr] (20.31 ± 21.01). The  

p-value resulted in (p = 0.46). 

In the subdomain ‘Social support’, a slightly greater improvement could be 

observed with [STN+SNr] (11.81 ± 10.93) compared to [STNmono] (18.94 ± 

23.89), but the difference was marginal (p = 0.28). At ‘baseline’ examination 

patients achieved 18.06 ± 23.26 points.  

The subdomain ‘Cognition’ consists of four items. At ‘baseline’, patients 

presented with the highest score (31.25 ± 24.28). The results of [STNmono] 

(23.30 ± 22.89) were similar to the results of [STN+SNr] (24.48 ± 21.89). Thus, 

no significant difference could be detected (p = 0.49).  

The subdomain ‘Communication’ consists of three items. The highest score was 

reached after ‘baseline’ examination (40.97 ± 18.62). After [STNmono] the results 

(31.82 ± 21.99) were lower than after [STN+SNr] (36.81 ± 22.88). The p-value 

resulted in (p = 0.63).  

The subdomain ‘Bodily discomfort’ consists of three items. The results hardly 

differed between the ‘baseline’ examination (35.42 ± 21.06), [STNmono] (34.85± 

22.61) and [STN+SNr] (36.81 ± 16.84). This is reflected in the p-value (p = 0.76).  

The results of the subdomains of the PDQ-39 are illustrated in the box plots from 

Figure 45 to Figure 52. 
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Figure 49 Box plots of PDQ-39, ‘social 
support’ domain. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 

= substantia nigra pars reticulata. 

Figure 50 Box plots of PDQ-39, ‘cognition’ 
domain. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 

= substantia nigra pars reticulata. 

Figure 45 Box plots of PDQ-39, ‘mobility’ 
domain. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 

= substantia nigra pars reticulata. 

Figure 46 Box plots of PDQ-39, ‘activities of 
daily living’ domain. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 

 

Figure 47 Box plots of PDQ-39, ‘well-being’ 
domain.  
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 

 

Figure 48 Box plots of PDQ-39, ‘stigma’ 
domain. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 
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4.2.3. Correlation between FOG and electrode coordinates 

Exact electrode localisation and precise methods for coordinate identification are 

important factors to compare the outcome of SNr-DBS. To investigate whether 

there is an interrelation between the determined electrode coordinates and the 

FOG outcome, we calculated the correlation between the single electrode 

coordinates, the x-, y- and z-coordinate, and the change of the FOG outcome of 

the FOG-AC during the ‘immediate testing’ phase (Δ StimOff - [STN+SNr]) for all 

active electrode contacts. 

Figure 53 to Figure 64 show that there is no strong positive or negative correlation 

between our determined electrode coordinates and the FOG outcome. All results 

were statistically non-significant. The coefficient of correlation (r) ranged from 

-0,19 to 0.5. 

 

Figure 51 Box plots of PDQ-39, 
‘communication’ domain. 
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 
= substantia nigra pars reticulata. 

Figure 52 Box plots of PDQ-39, ‘bodily 
discomfort’ domain.  
x-axis = therapeutic condition, y-axis = score, 
[STNmono] = standard STN stimulation, 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr 

= substantia nigra pars reticulata. 
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Figure 53 Correlation between the x-coordinate 
of the left SNr and the FOG outcome.  
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 

Figure 54 Correlation between the y-coordinate 
of the left SNr and the FOG outcome.  
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 

Figure 55 Correlation between the z-coordinate 
of the left SNr and the FOG outcome.  
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 

Figure 56 Correlation between the x-coordinate 
of the right SNr and the FOG outcome. 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 

Figure 57 Correlation between the y-coordinate 
of the right SNr and the FOG outcome. 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 
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Figure 58 Correlation between the z-coordinate 
of the right SNr and the FOG outcome. 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 

Figure 59 Correlation between the x-coordinate 
of the left STN and the FOG outcome. 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 

Figure 60 Correlation between the y-coordinate 
of the left STN and the FOG outcome. 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient.  

Figure 61 Correlation between the z-coordinate 
of the left STN and the FOG outcome. 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 
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  Safety measures 

No suicidality was reported in any patient (Weiss et al., 2013). On group level, no 

change was found concerning the BDI. During [STN+SNr], PD1 presented with 

increased BDI scores compared to [STNmono]. The score after the ‘3-week 

follow-up’ in the [STN+SNr] condition was 18 and after three weeks of constant 

[STNmono] stimulation 7. PD7 had a former personal history of hallucinations, 

which was documented in the preoperative recordings, and he developed visual 

benign hallucinations with retained insight (item 2, UPDRS I) during the 

[STN+SNr] condition. At group level, item 2 of the UPDRS I was unchanged 

Figure 62 Correlation between the x-coordinate 
of the right STN and the FOG outcome. 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 

Figure 63 Correlation between the y-coordinate 
of the right STN and the FOG outcome. 
[STN+SNr] = combined STN and SN 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 

Figure 64 Correlation between the z-coordinate 
of the right STN and the FOG outcome. 
[STN+SNr] = combined STN and SNr 
stimulation, STN = subthalamic nucleus, SNr = 
substantia nigra pars reticulata, r = correlation 
coefficient. 
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between the two therapeutic conditions. Psychosis did not occur in any patient. 

Concerning the evaluation of the BIS, the segmental symptoms (items 20-26, 

UPDRS III) and motor fluctuations (UPDRS IV), the comparison of [STN+SNr] 

and [STNmono] showed no difference between the two treatments. 

 

  Adverse events 

Before entering the study, several strategies were applied to optimise the efficacy 

of DBS, such as the optimisation of the electrode geometry and the programming 

of the electrodes by titration of subthalamic and nigral stimulation parameters. 

Effects and side effects were carefully evaluated. Nevertheless, control over the 

current spread during the stimulation is limited (Kringelbach et al., 2007). 

Despite the best effort of minimizing the chance of occurring adverse events, the 

probability of the appearance of any side effects is high, hence an accurate 

observation and reporting of these effects is greatly important for the 

interpretation of the clinical applicability of the evaluated therapeutic strategy. 

Our patients were instructed to be watchful concerning side effects and to report 

them to the study site as soon as they occur during the ‘3-week follow-up’. 

In the final analysis, no serious adverse events were observed in both treatment 

arms. During [STN+SNr] treatment, no acute side effects were observed in the 

‘immediate testing’ but during the ‘3-week follow-up’ four adverse events were 

reported. Two patients (PD2 and PD 9) suffered from a delayed onset of relevant 

dyskinesias within the first days after introduction of [STN+SNr]. PD2 came on 

day two after the introduction of [STN+SNr] and required therapy adjustment 

according to the intention-to-treat principle. The stimulation amplitudes were 

lowered on both active caudal contacts, the SNr-contacts by -0.4V and the 

symptoms resolved completely within a short time. PD9 informed the study site 

for therapy adjustment after he had already independently conducted a self-

administered reduction of the daily levodopa dosage by 125 mg. This reduction 

ameliorated the dyskinesias but as they did not disappear completely, the patient 

was rescheduled and the SNr amplitudes were additionally lowered by  

-0.1V on both sides. After these interventions, the dyskinesias completely 
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resolved in both patients and they could stick to the schedule and completed the 

‘3-week follow-up’ period according to the intention-to-treat-principle. 

At the ‘3-week follow-up’ visit, one patient (PD 8) reported that few intermittent 

episodes of double vision occurred during the [STN+SNr] condition. They lasted 

for a few seconds and were not highly bothersome for the patient, hence the 

patient did not contact the study site before the ‘3-week follow-up’ visit. 

PD7 and his caregiver reported an initial improvement of FOG during the first two 

weeks of the [STN+SNr] condition, however increased immobility and recurrent 

falls occurred during the third week of the ‘3-week follow-up’. 

Four patients wished to discontinue standard STN stimulation [STNmono] 

prematurely (PD3, PD7, PD10, PD11) due to more pronounced gait impairment, 

immobility and falls. No patient discontinued the ‘3-week follow-up’ prematurely 

during the [STN+SNr] condition (Weiss et al., 2013). 
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5 

5. Discussion 

 

A lot of research is conducted on the pathophysiology of the BG and on the mode 

of action and the effectiveness of DBS in PD, however, there are still symptoms, 

which cannot be addressed in a satisfactory way by standard STN-DBS. 

Especially in advanced disease stages, the response to STN-DBS concerning 

axial motor symptoms is limited.  The focus in this study was on the treatment of 

those axial motor symptoms by use of combined stimulation of the STN and SNr. 

Based on the theoretical background concerning pathological functional sub-

loops of BG motor networks, the main question of this work was whether co-

stimulation of segregated motor loops, in which the STN and SNr are involved, is 

more effective than standard stimulation of only the STN concerning debilitating 

axial motor symptoms. 

In the following chapters the results of this phase II trial will be discussed with a 

special focus on the relevance of the SNr as a possible new and additional target 

for DBS in PD patients with axial motor impairment. 

 

  SNr as an additional target for DBS in PD 

We tested the hypothesis that concomitant stimulation of the STN and SNr 

[STN+SNr] with interleaved pulses is superior on axial symptoms in patients with 

advanced PD compared to standard stimulation of only the STN [STNmono]. A 

broad spectrum of axial motor symptoms was tested to cover a wide range of 

possible clinical features so that the primary endpoint included a variety of 

different symptoms reflected as ‘axial score’.  
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Moreover, the effect of concomitant stimulation was unravelled and the trial 

focused on specific motor subdomains. 

In this study, a general therapeutic effect on axial motor signs with concomitant 

stimulation [STN+SNr] could not be demonstrated, as reflected by the negative 

primary endpoint.  

Although the study patients were selected carefully with special attention given 

to gait disturbances, mainly FOG as leading symptom, the primary endpoint of 

this study obviously covered a too broad spectrum of different clinical features to 

detect specific motor features.  However, the results of the secondary endpoint 

open the perspective that SNr stimulation in addition to the conventional STN 

stimulation might improve intractable FOG. 

Looking into detail on the exploratory secondary investigation, we noted an 

improvement of FOG in the FOG-AC in the ‘immediate testing’ and in the ‘3-week 

follow-up’ with [STN+SNr]. 

However, the freezing part of the CAPSIT test did not improve with additional 

nigral stimulation, neither in the ‘immediate testing’ nor in the ‘3-week follow-up’. 

The provocation of FOG seems to be more distinct in the FOG-AC presumably 

due to the distraction tasks reliably detecting FOG, whereas the CAPSIT walking 

test is not primarily designed for detecting FOG but gait parameters in general. 

In line with the improvement of FOG in the FOG-AC, the mobility subdomain of 

the PDQ-39, as part of the exploratory secondary endpoint, showed an 

improvement with interleaved pulses [STN+SNr] compared to the standard 

[STNmono] stimulation (Weiss et al., 2013). This non-significant difference 

amounted to 5 points, which does not allow for a final reasoning because of the 

small sample size of this clinical trial. Nevertheless, it is worth mentioning that 

difference of 3.2 points in the mobility subdomain of the PDQ-39 was identified to 

be relevant concerning the patients’ subjective clinical well-being. Peto et al. 

showed this in large PD cohorts (Peto et al., 1998). A larger follow-up trial is 

needed to this end. 
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Nigral stimulation [STN+SNr] did not show superiority compared to the standard 

[STNmono] stimulation concerning postural control as a cardinal symptom of PD 

(Jankovic, 2008) according to the BBS. Impaired balance due to the loss of 

postural reflexes can cause falls and is the least treatable symptom of PD (Koller 

et al., 1989). Studies on descending neuronal projections from the SNr to the 

pontomesencephalic area showed the involvement of the SNr in nigropontine 

pathways, which are known to influence postural control and locomotion 

(Chastan et al., 2009, Takakusaki et al., 2003). Based on those neuronal 

projections, our assumption was that nigral stimulation could interfere with 

balance difficulties and possibly at least partly restore them. However, the results 

of the BBS could not reflect our assumption, as the scores remained unchanged 

regardless of which stimulation settings were applied. Postural instability is 

generally an intricate symptom regarding a solid and correct diagnosis (Visser et 

al., 2008). The BBS, just as many other balance tests, is a quite subjective clinical 

examination measuring impairment in balance function. To limit the bias 

generated by a subjective judgement of different examiners, only one competent 

neurologist carried out the test in all patients and during all study conditions. But 

first and foremost, the randomised and controlled study design contributed to the 

limitation of the bias.  

Cognitive and emotional factors can influence the outcome of balance tests 

(Bloem et al., 2001). Cognitive impairment, as error source, could partly be 

eliminated by means of determining a specific range of points, which had to be 

achieved in the MMSE as an inclusion criterion. Emotional factors, however, 

could hardly be influenced. Altogether, we tried to minimize possible errors during 

balance assessment, but nevertheless, no amelioration of postural stability could 

be detected with interleaved pulses [STN+SNr]. Interestingly, Chastan et al. 

reported a significant effect of high frequency nigral stimulation on postural 

control and balance assessed by means of biomechanical analysis during gait 

initiation in PD patients (Chastan et al., 2009). Step length and step velocity as 

anteroposterior gait parameters and braking capacity as vertical gait parameter 

were examined. The reason for the discrepancy concerning our balance results 

according to the BBS and Chastan’s results regarding postural control and 
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balance is probably due to the more accurate assessment of postural instability 

and balance control by use of objective biomechanical methods compared to the 

clinical assessment with the BBS. However, a reasonable comparison of these 

two assessment methods is limited. 

After termination of the study, all patients were asked to choose one stimulation 

setting of the two conditions tested, with which they wanted to be treated 

hereafter. Their choice should be made based on the motor outcome and 

subjective general well-being during the different stimulation settings. 

Ten out of twelve study patients wished to continue DBS therapy with combined 

[STN+SNr] stimulation (Weiss et al., 2013).  

It is important to note that four out of twelve study patients discontinued the ‘3-

week follow-up’ phase while being treated with the conventional STN stimulation 

[STNmono] earlier than scheduled, due to intolerable side effects concerning gait 

impairment, immobility and falls (see chapter 4.4.). Three of those patients were 

randomised in the group, which was treated first with [STN+SNr] and in the 

second phase with [STNmono]. This means that in these patients the direct 

comparison between the two stimulation settings led to a subjectively better 

outcome with combined nigral stimulation [STN+SNr]. Moreover, in all four of 

these patients, the primary endpoint score (‘axial score’) was superior after 

[STN+SNr] compared to [STNmono] (Table 6). Even if the primary endpoint of 

our clinical trial did not show significant results, the patients’ feedback and their 

wish to continue DBS therapy with the [STN+SNr] condition after completion of 

the study gives us a valuable hint and a tendency concerning the subjective 

clinical efficacy of interleaved pulses on the level of the STN and SNr.  

Generally, it has to be taken into consideration that anamnestic outcome 

measures of the secondary endpoint have to be interpreted with caution as the 

33% drop out rate emerged only during standard [STNmono] stimulation.  

Furthermore, another important fact that has to be taken into account while 

interpreting the results of the study is the variability of the endophenotype within 

the idiopathic PD. In every PD cohort, a large spectrum of different 

endophenotypes is likely to be represented. These diverse endophenotypes 

show a clinical heterogeneity concerning the age at disease onset and a 
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variability concerning disease progression. This was reported for example in 

LRRK2 mutation carriers (Schiesling et al., 2008). In this context, the 

heterogeneity could be a factor influencing some of the collected patient 

characteristics. A rapid disease progression and consequently an early 

emergence of axial symptoms, like FOG, could be more likely in some inherited 

forms of Parkinsonism compared to other non-hereditary endophenotypes. 

Biomarkers, such as the glucocerebrosidase gene (GBA), which was detected to 

be a risk allele for PD, might be helpful to classify patient subgroups with a special 

profile concerning disease progression, especially motor impairment and an early 

onset of FOG (Weiss et al., 2012b, Winder-Rhodes et al., 2013).  

Independent of an accurate description of the endophenotype clinical experience 

with PD patients shows that patients with predominant FOG exist mainly in 

advanced disease stages (Okuma, 2006). These patients could possibly benefit 

from an early treatment regime including nigral stimulation. Future studies might 

help accurately identifying PD patients with prevalent FOG and assessing the 

potential benefit of nigral neuromodulation in these patients. 

Of note, a heterogeneous catalogue of treatment responses was also observed 

in studies dealing with DBS of the PPN in PD patients with axial motor symptoms 

(Ferraye et al., 2010, Hamani et al., 2011).  

The identification of endophenotype subgroups and the typical related disease 

features in these patients might help selecting patients more accurately in further 

studies on gait impairment. The benefit could be a better treatment of resistant 

axial motor symptoms in those who are affected. 

 

  Therapeutic option for FOG 

Although many PD patients are faced with intractable FOG  and despite the 

awareness of FOG to be a dramatic episodic gait pattern the pathogenesis of this 

phenomenon is not understood so far (Giladi et al., 2001). Therapeutic 

approaches like medications, DBS and rehabilitation techniques can alleviate gait 

impairment resulting from this clinical phenomenon, although in patients with 

advanced FOG, these treatments are of poor efficacy (Nutt et al., 2011). For this 

reason, FOG is an unresolved problem and a challenge for our understanding of 
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the normal gait pattern and disorders concerning gait. Clinicians and scientists 

dealing with FOG phrased a definition of FOG, which was accepted in the year 

2010 and reads “brief, episodic absence or marked reduction of forward 

progression of the feet despite the intention to walk” (Giladi and Nieuwboer, 

2008). The notion that FOG is an episodic phenomenon suggests that it occurs 

every once a while, thus, every once a while there is a transient disruption of the 

locomotion. These disruptions can be provoked by turning, by passing narrow 

passages or by approaching a destination (Nutt et al., 2011). Furthermore, the 

likelihood that FOG occurs can be triggered by distraction while walking and 

stressing situation like being under time pressure (Okuma and Yanagisawa, 

2008). This is what we provoked during the FOG-AC. Our patients were 

distracted by dual-tasking and even triple-tasking and the fact that their 

performance was assessed created a stressful situation for them. An amelioration 

of FOG can be observed when auditory cueing at the proper pace is applied, 

when visual cues are used or during excitement (Plotnik et al., 2014). 

In our study, we observed less FOG with additional nigral stimulation compared 

to the conventional STN stimulation which raises the question of the relationship 

between the SNr and the clinical phenomenon of FOG. As we know that 

environmental influence including cognitive and emotional conditions can have 

an effect on FOG, there might be a linkage between the SNr, mental function and 

FOG. The interplay of all these components is complex and the pathophysiology 

of all properties only partly understood at present, for which reason we are still 

far away from a definite answer to the question whether there is a connection 

between the SNr and FOG which is controllable by electric pulses. Nevertheless, 

some of our ideas and thoughts seem to provide potential explanations.  

Based on the idea of an overinhibitory drive from the SNr to the PPN (Nandi et 

al., 2008) and the linkage between the PPN and the reticular formation (Delwaide 

et al., 2000), it could be possible that the imbalance of the BG nuclei also affects 

the reticular formation. This could be of interest as the ascending reticular 

activating system (ARAS) is part of the reticular formation. The ARAS connects 

the brainstem to the cortex and has multiple functions. It modulates states of 

sleep and of attention and alertness (Garcia-Rill, 1997). A suppressed PPN in PD 
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patients might be the reason for a reduced activity of this activating system, 

resulting in a decreased alertness which subsequently increases the chance of 

the occurrence of FOG. Consequently, an involvement of mental function is likely 

in FOG (Giladi and Hausdorff, 2006). 

Another hint to the disorder of the reticular formation and the involvement of the 

ARAS in the development of FOG could be the sleep disturbances many PD 

patients suffer from (Tandberg et al., 1998, Gjerstad et al., 2008). The prevalence 

of sleep disturbances in PD patients in general approaches up to 100% (Lees et 

al., 1988). Some studies could even show that sleep disturbances are a possible 

early predictor for the development of neurodegenerative diseases like PD 

(Iranzo et al., 2006). During the so called rapid eye movement (REM) sleep 

behaviour disorder (RBD) patients act out their dreams and do not have a normal 

muscle relaxation while sleeping (Iranzo et al., 2009).  The RBD seems to be 

related to neurodegenerative diseases, such as PD (Iranzo et al., 2009). The 

efficacy of STN-DBS concerning sleep improvement has been studied by sleep 

poligraphy with the result that there is an association between an extended  REM 

sleep after STN-DBS and the degree of improvement of motor functions (Monaca 

et al., 2004). Consequently, the loss of neuronal structures and the complex 

neurotransmitter dysfunction of diverse BG nuclei seem to possibly affect the 

REM sleep centres of the brain, such as the ARAS (Rye et al., 2000). 

Hence, a direct connection between FOG and sleep disorders in PD is not 

evident, but there is probably a connection between FOG and alertness and 

between PD and sleep disorders which makes a certain relationship and a 

common pathophysiology of these components presumably. 

 

 

Figure 65 Connection between PD and several features of the disease.  
ARAS = ascending reticular activating system, FOG = freezing of gait, PD = Parkinson’s disease.  
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In this study, we did not directly compare the effect of interleaved STN and SNr 

stimulation [STN+SNr] and PPN stimulation concerning axial signs, and our 

findings are exploratory, but the positive effects of DBS on both stimulation sites 

raises the question whether the subcortical downstream circuity from the BG 

nuclei to the motor neurons of the spinal cord can be modulated with DBS on 

every junction with a similar effect on axial signs. 

Consequently, a better motor response in terms of less FOG might not only be 

the result of a normalization of the PPN function and its role in locomotion by 

electric modulation of the overactive SNr, but also the result of an improved ability 

to concentrate, via a normalization of other downstreaming pathways to brain 

structures, such as the reticular formation and the ARAS. Accordingly, the SNr 

can be seen as a junction point of ascending and descending motor and non-

motor neuronal pathways. DBS influences FOG probably via both components. 

 

  Influence of nigral stimulation on segmental symptoms and side 

effects 

The segmental UPDRS III showed no improvement with additional SNr 

stimulation, as expected. This result is in line with the results of other studies 

demonstrating that STN stimulation mainly improves segmental motor symptoms 

while SNr stimulation mainly shows positive effects on axial motor symptoms 

(Chastan et al., 2009). It must be pointed out that concomitant stimulation of the 

STN and the SNr did not change or even worsen the effect of STN stimulation on 

segmental symptoms. Likewise, motor fluctuations remained unchanged and 

were well controlled with additional nigral stimulation. Importantly, concomitant 

stimulation was well-tolerated and safe. In the [STN+SNr] ‘3-week follow-up’, side 

effects such as dyskinesias occurring from the current flow to the surrounding 

areas of the stimulated sites arose in a mild form a few days after introduction of 

the concomitant stimulation in two patients. These dyskinesias could be 

completely resolved by reprogramming of the SNr-voltage. We assume that in 

those patients the topographical distance between the two active contacts within 

the STN and the border zone of the SNr was probably not sufficient and when 
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additional nigral stimulation was introduced, the current flow spread to the already 

stimulated STN area with the effect of an overstimulation. Hence, one leading 

advantage of concomitant stimulation of the STN and SNr is the possibility to 

maintain the best individual subthalamic stimulation parameters, even if side 

effects occur after introduction of nigral stimulation with the need of 

reprogramming. 

Furthermore, concerning the side effects of nigral stimulation, one of the most 

important results of this clinical trial was the absence of non-motor issues such 

as behavioural changes and neuropsychiatric disorders, for instance depressive 

or psychotic symptoms, impulsivity, mood changes or a suicidal tendency (Weiss 

et al., 2013). These symptoms were observed in some earlier studies (Bejjani et 

al., 1999, Ulla et al., 2011, Kulisevsky et al., 2002) and are probably the reason 

for a very careful consideration of the SNr as stimulation target. Earlier, in few 

selected cases, acute depressive clinical states occurred after introduction of 

high-frequency stimulation of contacts located within the SNr (Bejjani et al., 1999, 

Blomstedt et al., 2008). Ulla et al. observed hypomanic clinical states in PD 

patients after electric stimulation of contacts lying mainly in the ventral part of the 

SNr (Ulla et al., 2011). The reason for the mood changes after nigral stimulation 

could be an electric activation of the GABAergic pathway from the SNr to the 

ventral nuclei of the thalamus, which has neuronal projections to the prefrontal 

and orbitofrontal cortices. These areas are obviously involved in processing 

mood disorders (Jackowski et al., 2012, Petrovic et al., 2015). Another trial 

described an involvement of the ventral STN in mood changes via affection of 

non-motor circuits the STN is involved in (Okun et al., 2009).  

Taking into account the previous findings, we assessed very carefully for 

neuropsychiatric interference in this study and could observe a safe use of 

additional nigral stimulation. Nevertheless, recognizing the results of the 

mentioned case reports, a reliable statement on the causal structure leading to 

the non-motor side effects of DBS cannot be made. The incidence of 

neuropsychiatric symptoms after SNr stimulation in random DBS cohorts was 

never tested and consequently remains undefined. In this trial, it seems plausible 

that the SNr can be at least involved in the emergence of easily reversible 
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unwanted effects, as they appeared in some cases after introduction of 

concomitant nigral stimulation. Taking into account the findings of our study and 

the previous findings patients with subthalamic and/or nigral stimulation should 

always be monitored attentively for neuropsychiatric symptoms. For an 

evaluation of the actual risk of neuropsychiatric interference during nigral 

stimulation, the cohort of this phase II trial was too small and the follow-up time 

of three weeks was too short to assess all possible neuropsychiatric side effects 

of SNr stimulation. Nevertheless, as concomitant SNr stimulation was safe in 

these twelve patients, neuropsychiatric issues might limit the concept only in a 

proportion of patients. Treatment vigilance towards neuropsychiatric issues is 

generally needed in PD treatment including standard medication and 

neurostimulation regimens, as well as novel treatment strategies. 

Further assessment on larger cohorts and an extended follow-up period is 

necessary for solid results concerning the side effects of nigral stimulation. 

 

  Topography of the SNr and stimulation settings 

The SNr is largely unexplored concerning the application of DBS in human 

beings. Neither the best stimulation parameters and programming nor the most 

adequate location within the SNr for an optimal symptom control concerning axial 

motor symptoms is fully unravelled at present. This suggests SNr as experimental 

target that should be considered only in clinical trials. 

The motor-related dorsal putamen of the striatum projects to the lateral SNr, 

which was observed in primates (Hedreen and DeLong, 1991, Lynd-Balta and 

Haber, 1994). The SNr itself projects to the thalamic motor region, the VM, and 

then to the supplementary motor area, which was also observed in primates 

(Francois et al, 2002). These demonstrated connections underline the 

involvement of the SNr in motor circuitries and predict an important role of the 

SNr in the modulation and control of neuronal motor activity. 

Several studies describe a specific association between the SNr and axial 

posture control. Burbaud et al. observed severe postural abnormalities after 

injection of GABAergic agents into the SNr of primates (Burbaud et al., 1998) 

while Henderson et al. investigated the effect of SNr lesioning in 
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hemiparkinsonian primates (Henderson et al., 2005) with the result of no 

improvement concerning bradykinesia, but an influence on body orientation 

changes such as the direction of the head position. 

This data suggests an important role of the SNr in axial motor symptoms in 

animals, which is in line with the results of our study performed in humans. 

Some studies suggest that there is probably a functional topography within the 

SNr. Different effects on motor symptoms during the application of electric pulses 

could be observed concerning the medial and lateral part of the SNr. Monkeys, 

rendered hemiparkinsonian, showed different motor outcomes depending on the 

site of the SNr where GABA antagonists were injected (Wichmann et al., 2001). 

Limb akinesia and bradykinesia were reduced after injection of the GABA 

antagonist in the centrolateral part of the SNr, while injections in the medial part 

of the SNr caused a general behavioural activation. Injections in the most lateral 

and the posterior parts of the SNr showed no motor effects in Wichman et al.’s 

study. In other studies, a beneficial motor outcome could be detected with a 

localisation of the active electrode contacts more within the medial part of the SNr 

in PD patients (Chastan et al., 2009) or more in the caudolateral part in the 

hemiparkinsonian rat (Sutton et al., 2013). In our study, the active electrode 

contacts were positioned rather within the dorsolateral part of the SNr as shown 

by the coordinates (Table 2).  

Of course, studies performed in humans provide the most reliable results, but due 

to the lack of SNr studies in the human, the primate SNr is anatomically best 

comparable to that of the human. In the topography context of stimulation sites, 

we compared our identified coordinates of the active electrode contacts within the 

STN and the SNr with those of other studies. The coordinates Chastan et al. 

determined in their study for the SNr have the mean values 9.7 mm lateral, 8.1 

mm posterior and 6.9 mm inferior in relation to the AC-PC line (Chastan et al., 

2009). In this study, the mean values for the active contacts within the SNr are 

11.1mm lateral, 3.4 mm posterior and 6.1 mm inferior to the MCP. Hence, in our 

trial the active contact is laying more lateral compared to Chastan’s work. This 

result is in agreement with the effects of GABA antagonist injections in the 
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posterior part of the SNr in experimental hemiparkinsonian animals showing no 

motor amelioration in those primates (Wichmann et al., 2001). 

Concerning the coordinates of the STN, similar results could be found compared 

to other studies. In one study using MRI localisation to determine the correct 

electrode target within the STN, the mean of the final electrode contacts in 

relation to the AC-PC line was 11.8 mm lateral, 2.4 mm posterior and 3.7 mm 

inferior to the MCP (Starr et al., 2002). In another study using the fusion of pre- 

and postoperative MR images to place the electrode correctly within the STN, the 

mean of the coordinate-values of the contacts laying within the STN was 11.7 

mm lateral, 2.1 mm posterior and 3.8 mm inferior in relation to the AC-PC line 

(Hamid et al., 2005). In our study, the mean values were 12.4 mm lateral, 0.7 mm 

posterior and 2.6 mm inferior in relation to the MCP (Weiss et al., 2013).  

A very important factor in the comparison of the mentioned studies is the 

interpatient variability of the STN localisation. Of course, the final target 

coordinates are dependent on features such as age, sex and the method used 

for localising the target (ParvareshRizi et al., 2010). Optimal electrode placement 

is a combination of finding the best point for stimulation, thus the point showing 

the most characteristic electrophysiological recordings, combined with the 

possibilities MR image fusions offer. Using only a coordinate-template and fixed 

reference values is not sufficient to detect the best place for the active contacts. 

Nevertheless, to evaluate whether there is a correlation between the determined 

coordinates and the FOG outcome in this study, we calculated the correlation 

coefficient in chapter 4.2.3. The results show that there is no strong correlation 

between the results of the FOG-AC and the coordinates of the active electrode 

contacts. The strongest correlation with a coefficient of r = 0.5 was detected 

concerning the z-coordinate of the right SNr, standing for the rostro-caudal 

orientation of the electrode. This could give a rough tendency concerning the 

depth of the contact lying within the SNr and the change of the results in the FOG-

AC between the modes [StimOff] and [STN+SNr]. The expectation was that the 

deeper and the more lateral the lowest active electrode contact was located the 

better the FOG outcome. This assumption was not confirmed in our study. 

Reasons could be the small sample size of this study, too small differences 
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concerning the coordinates in our patients or the interpatient variability 

concerning the right electrode localisation for the individual optimal clinical 

outcome. To generate better results and an authentic correlation one important 

aspect would be to use, for instance, the results of the FOG-AC during the 

[StimOff] mode as reference value, thus to compare only patients with the same 

result in the FOG-AC while [StimOff] as basis. Only then, the change in the FOG 

outcome can really be compared. 

Table 9 shows the distance between the z-coordinates of the centres of the active 

contacts on the electrodes within the STN and the SNr. A sufficient distance 

between these active contacts is important as the current spread from the 

stimulated STN to the stimulated SNr and vice versa could influence the adjacent 

tissue and affect or falsify the study results. Wu et al. showed that neuronal tissue 

can be activated by a 3 volts monopolar stimulation within a radius of 2.5 mm 

from the centre of the stimulated electrode contact (Wu et al., 2001). This 

distance is kept in all patients, except PD 9. The mean distance between STN 

and SNr in all patients was 3.6 mm for the right electrode and 3.5 mm for the left 

electrode. Of all 48 stimulated electrode contacts, 41 were stimulated with a 

monopolar programming, six contacts needed bipolar programming and one 

contact required bipolar programming with two negative contacts. In the above 

mentioned study, the 3 volts and 2.5 mm current spread were applied in a 

monopolar setting. Of note, in bipolar stimulation settings, as we used them for 

six contacts, the current spread is even smaller than in the monopolar 

programming. Thus, the 2.5 mm radius should be applicable here as well. In PD 

9, the distance between the active contacts is less than 3 mm on both sides. The 

voltage used on all four active electrode contacts in this patient was at most 2.2 

volts, which means that the current spreads probably less than a radius of 2.5 

mm and one could assume that side effects were caused by the influence of the 

current delivered to the STN- or SNr-contact. Anyhow, PD 9 needed 

reprogramming of the SNr-voltage due to dyskinesias occurring within the first 

days after introduction of [STN+SNr] (Weiss et al., 2013). 
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Table 9 Distance between the STN- and SNr-contacts on the 24 electrodes of our seven patients in 
millimetres.  
SD = standard deviation, STN = subthalamic nucleus, SNr = substantia nigra pars reticulata. 

Patient 
distance between z-coordinates 
(right STN-right SNr) 

distance between z-coordinates 
(left STN-left SNr) 

1 3.3 3.3 
2 4.1 3.7 
3 3.8 3.5 
4 3.5 3.3 
5 4.3 3.8 
6 3 3.6 
7 3.1 3.1 
8 3.8 3.5 
9 2.9 2.3 
0 3.7 4 
11 3.9 4 
12 3.7 3.4 
      
SD 0.44 0.46 
mean  3.59 3.46 
rounded 3.6 3.5 

 

Another important fact related to the stimulation of the SNr is the observation that 

stimulation of only the SNr does not control the wide spectrum of motor symptoms 

in PD. Chastan et al. could demonstrate an amelioration of axial motor symptoms 

with nigral stimulation but an insufficient control of segmental symptoms when 

only the SNr was stimulated (Chastan et al., 2009). For this reason, an additional 

follow-up phase with only nigral stimulation was not taken into account in this 

study.  

Regarding the stimulation frequency, earlier studies showed a broad spectrum of 

different frequencies used for different stimulation sites. PPN stimulation for gait 

therapy turned out to be effective at lower frequencies like 35Hz (Stefani et al., 

2007, Ferraye et al., 2010, Moro et al., 2010a, Thevathasan et al., 2011a) and at 

50 and 70Hz (Moro et al., 2010a) for unilateral PPN stimulation. Given the 

pathological overactivity of the SNr in PD (Breit et al., 2006) and the idea of a 

suppression of the local neuronal activity of the SNr with high frequency 

stimulation (Lafreniere-Roula et al., 2010), frequencies above 70Hz might be 

more effective on the level of the SNr. In this trial, we used a frequency of 125Hz.  
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In contrast to the electrophysiological idea of an activation of the PPN with low 

frequency PPN-DBS (Zitella et al., 2013, Stefani et al., 2007), the mentioned 

studies underline the idea of an inhibition of the SNr with electric stimulation of 

this site, resulting in a more balanced function of the BG. 

We could not find examples showing the motor outcome of nigral stimulation with 

low-frequencies in the human, which certainly would be interesting. 

Concerning the STN, changing DBS settings to lower frequencies leads to the 

fact that segmental symptoms are likely to occur, for which reason a 

reprogramming of the STN stimulation parameters was not possible and not 

tested in this clinical trial (Moreau et al., 2008, Ricchi et al., 2012). 

Nigral stimulation might be a step in the right direction to approach FOG by 

reprogramming the stimulation settings to interleaved pulses on the level of the 

STN and SNr. 

 

  Clinical relevance of the study and future development 

The present study underlines the potential role of nigral stimulation concomitant 

to the conventional subthalamic stimulation in the improvement of specific gait 

disturbances, especially FOG, in patients with advanced PD (Weiss et al., 2013). 

Even if the actual mechanism of action of DBS is still not fully understood, and 

although the pathophysiology of gait disability and FOG is not completely figured 

out, it is known that DBS modulates neuronal circuitries within the BG, which are 

involved in controlling locomotion and gait (St George et al., 2010). The central 

question of this study is whether the SNr takes up a key position in the modulation 

and control of axial symptoms, especially FOG, and whether the imbalance of the 

SNr function in patients with PD can be restored by DBS of this stimulation site. 

Summarizing the data of this clinical trial and of several previous studies dealing 

with the effect of DBS on axial motor symptoms in advanced PD, we can approve 

our key assumption at least partly: there may be a positive effect of interleaved 

STN and SNr stimulation on specific axial motor symptoms in some patients 

suffering from advanced PD. The motor feature which improved was FOG. 

In conclusion this study demonstrated that: (1) interleaved stimulation of the STN 

and SNr may lead to a specific subjective amelioration of the distinct axial 
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symptom FOG in PD patients with predominant FOG as disturbing motor 

symptom and advanced disease stages; (2) concomitant nigral stimulation does 

not interfere with the positive effect of conventional STN stimulation on segmental 

motor symptoms; (3) additional nigral stimulation is well-tolerated and can be 

applied safely in well-selected patients with advanced PD (Weiss et al., 2013). 

For the future development in the field of new applications and programming 

techniques for DBS, our clinical trial suggests that interleaved pulses of STN and 

SNr might be utilized as a reprogramming option for patients who develop FOG 

resistant to conventional STB-DBS along disease progression (Weiss et al., 

2013). Currently, a follow-up multicentre randomized controlled trial is active and 

studies 54 patients for the efficacy and safety of [STN-SNr] compared to standard 

[STNmono] on refractory FOG as primary endpoint after 3 months of active 

stimulation1. Whether the results of this study can be affirmed and consolidated 

shall be evaluated in this follow-up trial. 

To address gait disturbances in an even more specific way than we can do at 

present, sensitive biomarkers detecting FOG are needed and would provide 

objective readout about the emergence of FOG under daily life conditions. As 

indicator of a characteristic electrophysiological neuromuscular mechanism, 

biomarkers which can be identified by the neurostimulator, could help switching 

between two stimulating programmes, for instance between the conventional 

[STNmono] setting and interleaved pulses [STN+SNr]. In this manner, FOG could 

be addressed in a symptom-oriented manner, warranting the best therapy for 

segmental and axial symptoms at the same time. Definite and generally accepted 

electrophysiological neuromuscular patterns behind FOG are not found to date, 

but they are investigated, for instance by monitoring of freezing episodes while 

performing fingertapping tasks (Scholten et al., 2015). Real-time monitoring of 

neuronal activity and establishing closed-loop neurostimulation control systems 

could help avoiding frequent adjustment of stimulation settings while considering 

the nature of a neurochemically changing brain environment (Grahn et al., 2014, 

Rosin et al., 2011). 

                                            
1 Source: https://clinicaltrials.gov/ct2/show/record/NCT02588144 [Accessed 03/12/2016] 
 

https://clinicaltrials.gov/ct2/show/record/NCT02588144
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  Methodological limitations 

In this phase II clinical trial, the effect of concomitant STN and SNr stimulation on 

FOG was assessed within a patient population consisting of twelve participants. 

This sample size seems modest, however, small patient populations are 

characteristic for pilot studies. The primary aim of this pilot study was to evaluate 

methods and procedures for larger future studies on the same topic and to detect 

possible connections. Even with a sample size of only twelve patients, we could 

identify some relevant tendencies and made important observations as basis for 

further studies on greater sample sizes.  

The patient characteristics displayed in Table 1 show a group, which seems quite 

heterogeneous regarding the duration of STN stimulation prior to the study 

enrolment (six to 79 months) and the duration of the disease. We chose the wide 

time frame to detect all patients in our centre with severe axial motor symptoms 

despite best individual therapy. Obviously, a typical feature of advanced disease 

stages is the occurrence of these resistant axial motor symptoms which are 

presumptively the result of a progressive neuronal degeneration (Obeso and 

Olanow, 2011). Thus, the assumption that criteria like disease duration or age at 

onset are indicators for late-stage PD and therefore for severe axial motor 

symptoms is comprehensible (Kempster et al., 2010). Nevertheless, a more 

homogeneous patient population concerning the mentioned aspects could 

possibly reveal more specific results. Otherwise, a broader spectrum of patients 

would increase generalisability of the findings from a clinical trial. 

The variability within the endophenotypes of idiopathic PD lead to a natural 

heterogeneity of the patient population. It was reported that criteria, such as age 

at disease onset or disease progression, can differ broadly between individuals 

even with genetic classification (Schiesling et al., 2008). Derived from this fact, 

disease duration is not the only or most important aspect connected to the 

development of resistant axial motor symptoms.  

As all patients met with the inclusion and exclusion criteria, there was no extrinsic 

factor interfering with the outcome of the study. Thus, based on the study 

outcome, there was no evidence for excluding patients from the study analysis 
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as no differences between patients were found that interfered with the intention-

to-treat-principle.  

Taking into account that DBS might lead to neuronal plastic changes (St George 

et al., 2010), the wide time range concerning the duration of STN stimulation prior 

to the study enrolment could be seen as a methodological limitation of the study. 

However, derived from the current literature, no concluding statement can be 

made concerning long term plastic changes caused by DBS.  

Certainly, a more selective patient recruitment and more specific inclusion criteria 

might result in a more distinct outcome in future randomised controlled trials on 

axial motor symptoms in late-stage PD patients. 

Another aspect of this study which could be seen as a limitation of the methods 

is the duration of the follow-up time. As mentioned in chapter 3.2.2., it is quite 

improbable that a period of three weeks does not suffice to reveal the full outcome 

of specific DBS programming. Given the observation that bothersome motor 

symptoms occur immediately after switching off the stimulator and the fact that 

the motor effects caused by conventional subthalamic stimulation and nigral 

stimulation can be differentiated shortly after changing the stimulation settings, 

the assumptions that a 3-week follow-up phase could be sufficient to detect the 

effect of a certain programming should be acceptable (Chastan et al., 2009, 

Cooper et al., 2013). However, it is possible that longer observation periods 

reveal other results as found in this study and unexpected long-term effects, 

especially for the nigral stimulation setting [STN+SNr]. As PD is a chronic disease 

and the therapeutic regime a long lasting matter, the long-term outcome is of 

utmost interest. This aspect is considered in the ongoing follow-up trial 

(ClinTrials.gov NCT02588144). 
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                                                                                                              6 

6. Summary 

 

In advanced disease stages of Parkinson’s disease burdening gait and balance 

disturbances like FOG occur in many cases. Therapeutic options to address 

these symptoms are dopaminergic medication and DBS of the STN. 

Unfortunately, FOG response is quite limited in advanced disease stages. 

Therefore, we tested a novel approach concerning the option of DBS in this study. 

An advanced programming technique with interleaved pulses applied on the SNr 

was introduced additionally to the conventional stimulation of the STN. The main 

aim of the study was to investigate whether the concomitant stimulation of both 

nuclei [STN+SNr] is superior to the standard stimulation of only the subthalamic 

nucleus [STNmono] concerning axial symptoms. Twelve patients were enrolled 

in this randomised controlled double-blind clinical trial. The two stimulation 

settings were tested in a 2 x 2 cross-over design. The broad-scaled primary 

outcome measure of the study was the change of the composite ‘axial score’, a 

sum score built from the UPDRS II (items 13-15) and the UPDRS III (items 27-

31), at the ‘3-week follow-up’. The secondary endpoints assessments consisted 

of clinical and anamnestic tests, which addressed specific axial motor symptoms 

such as FOG, balance, non-motor-symptoms, neuropsychiatric symptoms and 

quality of life. The outcome of the primary endpoint revealed no statistically 

significant difference between the two stimulation settings [STNmono] and 

[STN+SNr] at the ‘3-week follow-up’. However, the results of the secondary 

endpoint pointed to a possible superiority of [STN+SNr] concerning specifically 

FOG, whereas balance did not improve with combined stimulation. Beside 

efficacy, safety was evaluated and we observed no longer lasting clinically 
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relevant adverse effects and no neuropsychiatric side effects during [STN+SNr]. 

Thus, combined stimulation of both nuclei is safe. Altogether, no overall effect 

and superiority could be detected with the tested stimulation regime concerning 

a wide spectrum of axial motor symptoms. Nevertheless, concomitant stimulation 

of both nuclei mentioned might specifically improve FOG resistant to other 

therapeutic approaches. This study supports the hypothesis that combined 

stimulation of STN and SNr might be superior to improve FOG. Hence, the 

findings from this study translate into an ongoing follow-up multicentre 

randomised controlled clinical trial (ClinTrials.gov NCT02588144). 

              
              
             
              



110 
 

             7 

7. German summary 

 

In fortgeschrittenen Krankheitsstadien der Parkinson-Erkrankung treten häufig 

belastende Gang- und Gleichgewichtsstörungen auf. Die therapeutischen 

Optionen, um diese Symptome adäquat zu behandeln sind derzeit limitiert und 

sprechen inkomplett auf konventionelle dopaminerge Therapie oder die 

konventionelle Tiefe Hirnstimulation des Nucleus subthalamicus an. Aus diesem 

Grund wurde in dieser Studie ein neuer Ansatz der Tiefen Hirnstimulation 

getestet. Eine fortschrittliche Programmierungstechnik, bestehend aus 

sogenannten „interleaved pulses“, welche zusätzlich zur konventionellen 

Stimulation des STN eine gleichzeitige Stimulation im Bereich der SNr erlaubt, 

wurde geprüft. Das Ziel der Studie war zu evaluieren, ob die gleichzeitige 

Stimulation zweier Hirnkerne [STN+SNr] der gewöhnlichen STN-Stimulation 

[STNmono] überlegen ist in Bezug auf axiale motorische Symptome. 

Zwölf Patienten wurden in diese randomisierte kontrollierte doppelblinde 

klinische Studie eingeschlossen. Die beiden zu testenden 

Stimulationseinstellungen [STNmono] und [STN+SNr] wurden in einem 2 x 2 

cross-over Design geprüft.  

Der breit gefächerte primäre Endpunkt der Studie war festgelegt als Änderung 

des Ergebnisses des zusammengesetzten „axialen Scores“, eines Summen-

Scores bestehend aus Teilen des UPDRS II (Frage 13-15) und des UPDRS III 

(Frage 27-31). Die ausgewerteten Ergebnisse bezogen sich auf die Resultate 

nach jeweils 3-wöchiger konstanter Stimulation in den beiden Einstellungen. Die 

sekundären Endpunkte bestanden aus diversen klinischen und anamnestischen 

Testungen, welche spezifische axiale motorische Symptome untersuchen, wie 
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FOG und Balance, aber auch neuropsychiatrische Symptome, Lebensqualität 

und nicht-motorische Beschwerden. Das Ergebnis des primären Endpunktes 

zeigte keinen statistisch signifikanten Unterschied des axialen Scores zwischen 

den beiden getesteten Stimulationseinstellungen nach jeweils 3-wöchiger 

Stimulationsdauer. Die Ergebnisse der sekundären Endpunkte zeigten jedoch 

eine mögliche Überlegenheit der kombinierten Simulation [STN+SNr] gezielt 

bezüglich FOG, wohingegen sich die Balance durch die kombinierte Stimulation 

nicht besserte verglichen mit der konventionellen Stimulation [STNmono]. 

Neben der Effektivität bezüglich des motorischen Outcomes wurde auch die 

Sicherheit der kombinierten Stimulation evaluiert. Es wurden keine länger 

anhaltenden relevanten klinischen unerwünschten Wirkungen beobachtet, sowie 

keine neuropsychiatrischen Nebenwirkungen während und nach der [STN+SNr] 

Stimulation. Folglich kann die kombinierte Stimulation des STN und der SNr als 

sicher bezeichnet werden. Insgesamt betrachtet konnte mit der [STN+SNr] - 

Einstellung kein allumfassender positiver axialer motorischer Effekt beobachtet 

werden und keine Überlegenheit verglichen mit dem konventionellen 

Stimulationsregime. Nichtsdestotrotz konnte festgestellt werden, dass die 

kombinierte Stimulation möglicherweise gezielt das FOG verbessern kann, 

welches durch andere therapeutische Ansätze bislang nicht in einer 

zufriedenstellenden Weise adressiert werden kann. Die Resultate der Studie 

bieten eine solide und wertvolle Grundlage für weitere Studien zur geschilderten 

Thematik, sowie für eine sich anschließende randomisierte Phase-III-Studie 

(ClinTrials.gov NCT02588144). 
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11 
11. Attachment 

 

UPDRS II (items 13-15) and UPDRS III (items 27-31) 

In the clinical observations and study of Parkinson’s disease the UPDRS is the 

most commonly used scale to asses a broad spectrum of symptoms associated 

with the disease. The test consists of five sections assessing different kinds of 

symptoms. Section I evaluates mood, behaviour and mentation. Section II 

assesses the activities of daily living (ADL), such as speech, swallowing, 

handwriting, dressing, hygiene or cutting food in an anamnestic way. Section III 

clinically evaluates motor symptoms. Section IV assess the severity of the 

disease by means of the Hoehn and Yahr scale. Finally, section V evaluates the 

activities of daily living by means of the Schwab and England ADL Scale. 

All items of the UPDRS assessed in the primary and secondary endpoint of this 

study are 5-point rated and represented by the numbers 0 to 4. Increasing levels 

of numbers represent increasing levels of impairment on diverse axial motor 

symptoms. The ‘axial score’ is a sum score and ranges from 0 to 32 points 

(Martinez-Martin et al., 1994). 

 

Berg Balance Scale 

The Berg Balance Scale is a clinical test, which evaluates balance abilities of a 

person. It is the gold standard for functional balance tests. The test consists of 14 

items, all 5-point rated and represented by the numbers 0 to 4. The sum of all 

scores is the final measure. Higher scores represent a better outcome and a more 

independent accomplishment of the task. The balance tasks differ on the level of 



130 
 

difficulty and range from standing up from a sitting position to standing on one 

foot (Berg et al., 1992). 

 

Core Assessment Program for Surgical Interventional Therapies in Parkinson’s 

Disease (CAPSIT-PD) – timed walking test 

The timed walking test from the CAPSIT-PD is a test during which patients have 

to walk seven metres straight and as fast as possible, turn around and walk back. 

The number of steps, the time the walk takes and the number of freezing 

episodes are counted (Defer et al., 1999). 

 

Freezing of Gait Assessment Course 

The FOG-AC is a rating instrument, which assesses FOG and festinations by 

means of a show-jumping course which provokes motor blocks through adding 

motor and mental tasks like carrying a tray with a cup full of water or counting 

loudly to the actual walking course. The total score of this course ranges from 0 

to 36 points, higher scores corresponding to more festinations and FOG during 

the tasks (Ziegler et al., 2010). 

 

Giladi Freezing of Gait Questionnaire 

The Giladi Freezing of Gait Questionnaire consists of six items assessing gait 

and falls related to freezing in a detailed and subjective way. Two of those items 

assess gait and four items assess the severity of FOG. All items are 5-point rated 

and range from 0 = absence of symptoms to 4 = most severe occurrence of the 

symptom. The total score ranges between 0 and 24 points, higher scores 

corresponding to more severe symptoms than lower scores (Giladi et al., 2009). 

 

Parkinson’s Disease Questionnaire (PDQ-39) 

The PDQ-39 is an anamnestic rating instrument which comprises of 39 questions, 

including typical motor and non-motor symptoms of Parkinson’s disease. The test 

is designed to evaluate the function and well-being of Parkinson’s patients. 

Scores from 0 to 100 reflect the subjective disease state, lower scores indicating 

less symptoms and a better health and higher scores indicating more severe 
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symptoms. The questionnaire can be divided in eight subscales: mobility, 

activities of daily living, emotional well-being, stigma, social support, cognition, 

communication, bodily discomfort. The answers include an indication of 

frequency (never, occasionally, sometimes, often, always) with which an event 

occurs (Peto et al., 1998). 

 

Barratt Impulsiveness Scale (BIS) 

The BIS is a self-report measure to assess impulsiveness. It includes 30 items 

which are scored on a four-point scale. The questionnaire evaluates impulsive 

personality traits, such as self-control, attention or cognitive complexity. It is a 

sum score with higher rates expressing an increased impulsivity (Patton et al., 

1995). 

 

Beck’s Depression Inventory (BDI) 

The BDI is a multiple-choice inventory consisting of 21 questions. It is widely used 

to measure the severity of depressions by evaluation of different items related to 

the symptoms of depression such as sadness, hopelessness, feelings of guilt or 

irritability. Physical symptoms are also identified through questions concerning 

symptoms, such as weight loss, tiredness or a lack of appetite. 

The score for each question ranges between 0 and 3 points, higher scores 

meaning a larger intensity of the depression. By summing the ratings, a maximum 

score of 63 points can be reached in this inventory. Patients have no or just a 

minimal depression when they reach < 10 points, a mild to moderate depression 

with 10 - 18 points, a moderate to severe depression when 19 - 29 points are 

reached and a severe depression with 30 - 63 points (Beck et al., 1961). 

 

Non-motor Symptoms Scale 

The NMSS is a 30-item-questionnaire which can be divided in nine subdomains, 

assessing non-motor symptoms in Parkinson’s patients. This subjective test 

allows a measurement of the disease by looking at the severity and frequency of 

different symptoms. Severity is measured on a scale from 0 to 3, frequency can 

range between 0 and 4 (Storch et al., 2010). 
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