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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der evolving surface finite
element method (ESFEM), zu Deutsch, Finite-Elemente-Methode auf
bewegten Oberflächen. Eines der vielen Einsatzgebiete der ESFEM
ist das Nähern von Lösungen parabolischer partieller Differential-
gleichungen auf bewegten Oberflächen. Solche Gleichungen spielen
bei der Modellierung von Problemen der mathematischen Biologie
eine Rolle. Beispielsweise kann das Wachstum eines Tumors auf
diese Weise modelliert werden.

Das Hauptaugenmerk dieser Arbeit liegt auf der numerischen
Analyse der ESFEM, angewandt auf parabolische Probleme. Es
werden fünf verschiedene Problemstellungen betrachtet.

Die Arbeit ist wie folgt aufgebaut: Zu Beginn werden im We-
sentlichen bekannte Ergebnisse zusammengefasst, auf die im Laufe
der Arbeit verwiesen wird. Im nachfolgenden Kapitel werden die
Problemstellungen, die in dieser Arbeit behandelt werden, vorge-
stellt. Für jedes Problem wird die partielle Differentialgleichung,
die gewählte numerische Methode und das Endresultat angegeben.
Nach diesen einleitenden Kapiteln folgt die ausführliche Betrach-
tung der Beweise der Theoreme. Alle wichtigen Techniken und
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Ideen werden vorgestellt und erläutert. Im Anschluss daran wird
verdeutlicht, welche dieser Techniken und Ideen neu sind und bis-
her noch nicht bekannt waren. Zu jeder Problemstellung werden
numerische Experimente vorgestellt. Im letzten Kapitel wird noch
ein neues Resultat bewiesen, dass während der Entstehung dieser
Dissertation entdeckt worden ist.

Die vier bereits publizierte Forschungsresultate, sind im Anhang
beigefügt.
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Abstract

The present work investigates the evolving surface finite element
method (ESFEM). One of its many applications is to approximate the
solution of a parabolic partial differential equation on an evolving
surface. Such equations are of interest for mathematical biology.
For example, the growth of a tumor can be modeled with such an
equation.

The main interest of this work is the numerical analysis of the
ESFEM, applied on some parabolic problems. Five different prob-
lems are considered here.

The structure of the work is as follows: The first chapter summa-
rizes results, which are essentially already known in the literature.
The subsequent chapter presents the investigated problems. The au-
thor explains for each problem the partial differential equation, the
chosen numerical method and the final result. These introductory
chapters are followed by a detailed summary and discussion of the
proofs of the corresponding theorems. All important techniques
and ideas are presented and explained. Afterwards, the author em-
phasizes the originality of the work. Every problem is concluded by
some numerical experiments. In the last chapter the author proves
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a novel result, which has been discovered during the preparations
of this thesis.

The four already published results are provided in the appendix.
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I Chapter 1.

Introduction

Let no one ignorant of geometry enter.

— Inscription over the entrance of the worlds first
university at a place called Academy, named after

an ancient hero Academus.

The present work studies the stability and convergence of the evol-
ving surface finite element method, i.e. a finite element method
for surface problems, where the surface is changing in time. In
all our problems we are considering advection diffusion equations,
which are used to model important problems. We briefly describe
our problems. Our first problem consists of analyzing an arbitrary
Lagrangian-Eulerian evolving surface finite element method. It is
well known that for the standard evolving surface finite element
method mesh distortion may quickly happen. Thus, it make sense
to analyze numerical schemes, which try to prevent mesh distortion.
The second problem consists of analyzing a quasilinear advection
diffusion equation. Since many important problem are nonlinear,
the author considers analyzing such a problem as interesting. The
third problem is the derivation of maximum norm bounds for the
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1. Introduction

evolving surface finite element method. The author thinks that
the topic fits well within the current literature, since they are a
nontrivial extension of both L2-based bounds of evolving surface
finite elements and maximum-norm bounds of finite elements on
Euclidean domains. Our forth problem consists of analyzing finite
elements on an evolving surface driven by diffusion. Numerical
experiments, done by the author, show that regularizing with a
velocity law, like it is done in the problem, is competitive to the
standard mean curvature regularization. Hence, analyzing such a
scheme is of great interest. The fifth problem consists of analyzing
the last mentioned problem for linear finite elements. Since the ma-
jority of evolving surface finite element simulations are performed
with linear finite elements, the author considers this problem as
important. The analysis of this fifth problem has been done during
the preparation of this thesis. It has not been submitted yet.

The thesis is organized as follows: First, we introduce notation
and recall basic results from the literature. Then, we present the
objectives of our four submitted articles. This is followed by a
carefully selected summary of the submitted and published results.
The summary is enriched by additional content, which for different
reasons was not included in the published articles. The last chapter
analyzes the fifth problem.

Acknowledgments

Isaac Newton once said: “If I have seen further it is by standing on
the shoulders of giants”. I want to thank my supervisor Christian
Lubich for introducing me into this amazingly interesting topic.
Without his encouragement and intuition I would have certainly
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Jonathan Seyrich, Bernd Brumm, Buyang Li, Raphael Rieber, Florian
Skorzinski, Pirmin Vollert and Jonathan Walz for the time we spend
together in Tübingen. Fortunately, I will still stay with some of you
guys in contact.

I want to thank my family who always supports me in everything
I am doing.
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I Chapter 2.

Notation and preliminaries

In this chapter we introduce the evolving surface finite element
method (ESFEM) and collect results known from the literature. If
the reader is familiar with the ESFEM, then the author recommends
the following quick guide for the notation: The generic notation
below, the notation “X is an evolving surface” (2.11), the notation
for material derivative (2.13) and velocity (2.14), the notation for
bilinear forms (2.19) with their product rule (2.20) and the finite
element nodal value notation (2.29).

This chapter is organized as follows: The first section introduces
evolving surfaces and cover necessary analytic tools for them. The
next two sections are devoted to ESFEM. First, evolving meshes
with finite element functions are covered. Then, the lifting pro-
cess with some geometric perturbation errors are presented. The
preliminaries are closed with some finite element error bounds.

Generic notation

The author denotes the generic constant with const. The notation
const (1.1) is used, if the author wants to refer to the generic constant
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2. Notation and preliminaries

from equation (1.1). tv means the transpose of v. The symbol
1X: X → X denotes the identity map. Id ∈ Rd×d is used for the unit
matrix of dimension d ∈ N, where N denotes the set of positive
integers.

2.1. Evolving surfaces

The aim of this section is to give a rigorous definition of an evolving
surface together with the necessary analytic tools and identities
to efficiently work with them. Since the finite element method,
analyzed in this work, does not use level set functions, we restrain
ourselves to parametric evolving surfaces. This section is organized
as follows: The author begins with a rigorous definition of surfaces.
Then, tangent space and normal vector fields are introduced. Then,
the oriented distance function is explained. Next, the tangential gra-
dient, the extended Weingarten, the mean curvature, the tangential
divergence, the tangential Jacobian, the Laplace-Beltrami operator
and the tangential Hessian are defined. Intrinsic definitions are
used, which imply the corresponding extrinsic characterizations.
Afterwards, Lebesgue and Sobolev spaces on surface are given.
Finally, evolving surfaces are defined. The author extends the ori-
ented distance function to the time depending case and concludes
with the definition of the material derivative together with some
useful product rules.

Surfaces

We write Ω Ť Rd, if and only if Ω is an open set with compact
support.

For k ∈ N we call Γ ⊂ R3 a surface of class Ck, if and only for
every point x ∈ Γ there exists an open neighborhood U Ť R3 of x,
and a parametrization X ∈ Ck(Ω;R3), with Ω Ť R2, such that X is

6



2.1. Evolving surfaces

injective, X(Ω) = U ∩ Γ and the Jacobian of X has full rank. X is
called local parametrization and we set θ – X−1.

We say f ∈ Ck(Γ), if for every local parametrization X of Γ we
have f ◦ X ∈ Ck(Ω;R).

The tangent space at x ∈ Γ is the linear span of ∂1X and ∂2X,
where X is a local parametrization around x. The subspace is
denoted with TxΓ and ξ ∈ TxΓ is called tangent vector. TxΓ is
well-defined, i.e. it is independent of X. A vector orthogonal to TxΓ
is called normal vector, if it has unit length. We call n ∈ Ck−1(Γ;R3)
a normal field, if for every x ∈ Γ we have that n(x) is a normal
vector.

From now on we will always assume that Γ ∈ C2 is a compact surface
equipped with the outwards pointing normal field n.

Oriented distance function

For N Ť R3 we say that dΓ ∈ C2(N ) is an oriented distance
function for Γ, if Γ ⊂ N and for each p ∈ N there exists only
one x ∈ Γ with minimal distance to p and in addition we have the
formula

p = x + dΓ(p)n(x). (2.1)

For X ∈ C2 such a function always exists, cf. [46, lemma 14.16].
As a consequence a function f : Γ → R can always be extended to
f̄ : N → R be setting f̄ (p) – f (x). In particular this applies to n
itself and a short calculations reveals

∇R3 dΓ = n̄. (2.2)

From now on we will always assume that n is defined on N like above.
Further, we denote with f̄ ∈ Ck(N ) an arbitrary extension of f ∈ Ck(Γ).

7



2. Notation and preliminaries

Derivatives

For f ∈ C1(Γ) we define the tangential gradient at x ∈ Γ via

∇ f (x) = (∇1 f (x), . . . ,∇3 f (x)) –

2

∑
i,j=1

∂i f (θ)gij(θ)∂jX(θ), (2.3)

where (gij(θ))2
i,j=1 is the inverse of (gij(θ))2

i,j=1 with gij(θ) – ∂iX(θ) ·
∂jX(θ). Again, this is well defined. We also have the alternative
formula

∇ f (x) = (I3 − n(x) tn(x))∇R3 f̄ (x) — prTxΓ∇R3 f̄ (x), (2.4)

where f̄ is an extension of f on N , tn denotes the transpose of n and
∇R3 f̄ (x) denotes the R3-gradient of f̄ at x. For f = ( f 1, . . . , f d) ∈
Ck(Γ;Rd) we take

∇ f (x) =
(
∇ f 1(x) · · · ∇ f d(x)

)
∈ R3×d.

The extended Weingarten map is defined as

H(x) – ∇n(x) = ∇R3n(x) =
(
∇R3n1(x) · · · ∇R3n3(x)

)
.

Obviously, H(x) is symmetric with prTxΓH(x) = H(x) prTxΓ = H(x).
The mean curvature is defined as

H(x) = trace(H(x)).

Note that we are following the convention of not taking the arith-
metic mean.

For an arbitrary vector field F ∈ C1(Γ;R3), not necessarily tangent
to Γ, we define the tangential divergence via

div F(x) –

2

∑
i,j=1

gij(θ)∂iX(θ) · ∂jF(θ). (2.5)

8



2.1. Evolving surfaces

We also have the alternative formula

div F(x) = trace (prTxΓ
t
(jacR3 F̄(x))),

where trace denotes the trace of a matrix and jacR3 F̄(x) denotes the
R3-Jacobian matrix of F̄ at x.

For F: Γ1 → Γ2 we define the tangential Jacobian as

jac F(x) –

2

∑
i,j,k=1

∂iY(ρ)∂k(ρi ◦ F ◦ X)(θ)gjk t(∂jX(θ)), (2.6)

where Y is parametrization around F(x) with ρ = (ρ1, ρ2) – Y−1.
Using the chain rule for F = Y ◦ (ρ ◦ F) one easily sees that we have
the following alternative formula

jac F(x) = prTF(x)Γ2
jacR3 F̄(x) prTxΓ1

.

We observe
‖t(jac F)‖ ≤ ‖∇F‖, (2.7)

where ‖ · ‖ denotes the operator norm induced by the Euclidean
norm. Further, we have the following chain rule

∇Γ1( f ◦ F)(x) = t(jac F(x))∇Γ2 f (F(x)). (2.8)

The Laplace-Beltrami operator is given via

∆ f – div∇ f ,

where f ∈ C2(Γ;R). For f = ( f 1, . . . , f d) ∈ C2(Γ;Rd) we set ∆ f =
(∆ f 1, . . . , ∆ f d).

Finally, for f ∈ C2(Γ) we define the tangential Hessian as

∇2 f (x) – ∇(∇ f (x)) =
(
∇(∇ f )1(x) · · · ∇(∇ f )3(x)

)
.

We have the following alternative formula

∇2 f (x) = prTxΓ∇
2
R3 f̄ (x) prTxΓ−n(x) ·∇R3 f̄ (x)H(x)−H∇R3 f̄ (x) tn(x)

= prTxΓ∇
2
R3 f̄ (x) prTxΓ−n(x) · ∇R3 f̄ (x)H(x)−H∇ f (x) tn(x).

9



2. Notation and preliminaries

where ∇2
R3 f̄ (x) denotes the R3-Hessian of f̄ at x. From this we

deduce the commutator relation

∇i∇j f (x)−∇j∇i f (x) = (H∇ f (x))jni − (H∇ f (x))inj

and further the following useful formula for numerical experiments

∆ f (x) = ∆R3 f − tn(x)∇2
R3 f (x)n(x)− n · ∇R3 f (x)H,

were ∆R3 f (x) is the R3-Laplace of f at x.

Lebesgue and Sobolev spaces on surfaces

We consider on Γ ⊂ R3 the Hausdorff measure of dimension 2. For
p ∈ [1, ∞] and f ∈ C0(Γ) we define the p-Lebesgue norm for p < ∞
as

‖ f ‖p
Lp(Γ) –

∫
Γ
| f |p,

and for p = ∞ as

‖ f ‖L∞(Γ) – inf
N

sup
x∈Γ\N

| f (x)|

where N ⊂ Γ ranges over all null sets. Lp (Γ) is the completion of
C0(Γ) w.r.t. the norm ‖ · ‖Lp(Γ). For k ∈ {0, 1, 2} and f ∈ Ck(Γ) we
define the (k, p)-Sobolev norm as

‖ f ‖p
Wk,p(Γ) –

k

∑
i=0
‖∇i f ‖p

Lp(Γ).

‖ · ‖Wk,p(Γ) is the completion of Ck(Γ) w.r.t. Wk,p(Γ). We set Hk(Γ) –

Wk,2(Γ). The (k, p)-Sobolev seminorm is given by

| f |Wk,p(Γ) = ‖∇k f ‖Lp(Γ).

10



2.1. Evolving surfaces

For explicit computations we have the useful formula

∫
Γ

f =
N

∑
i=1

∫
Ui

ϕi(θ) f (θ)
a

g(θ) dθ, (2.9)

where (Ui)N
i=1 is an open covering of Γ with subordinated partition

of unity (ϕi)N
i=1 and with

?g –

b

det(gij)2
i,j=1.

Integration by parts reads for f ∈ C1(Γ) or equivalently for F ∈
C1(Γ;R3) as∫

Γ
∇ f =

∫
Γ

f Hn,
∫

Γ
div F =

∫
Γ

Hn · F. (2.10)

Parametric evolving surfaces

For a < b and l, k ∈ N. We say f ∈ Cl(a, b; Ck(Γ;R3)), if f : Γ ×
[a, b]→ R3 and if ∂l′

t ∂k1
1 ∂k2

2 f (x, t) exists for l′ ≤ l and k1 + k2 ≤ k.
A dynamic parametrization is a map X ∈ C1(a, b; C2(Γ;R3)) such

that for all t ∈ [a, b] we have that

Xt: Γ→ R3, Xt(x) = X(x, t), (2.11)

is injective and the Jacobian of Xt(θ) has full rank. As a consequence
we have that Γ(t) – Γt – X(Γ, t) is a surface.

A family of surface (Γ(t))t∈[a,b], or simply Γ(t), is called a para-
metrizable evolving surface, if and only if there exists a dynamic
parametrization for it. We say “X ∈ C1(a, b; C2(Γ;R3)) is an evol-
ving surface”, if we want to emphasize that we are considering an
evolving surface Γ(t) with a fix dynamic parametrization.

Time dependent oriented distance function

We say that dΓ(t): N → R is a time dependent oriented distance
function for Γ(t), if and only if

⋃
t∈[a,b] Nt × {t} = N Ť R3 × R

11



2. Notation and preliminaries

with Γ(t) ⊂ Nt Ť R3 and for each p ∈ N (t) there exists only one
x ∈ Γ(t) having minimal distance to p, which satisfy

p = x + dΓ(t)(p, t)n(p, t), (2.12)

where we have used that n is extended on N , cf. (2.1). With the
same reference as in the stationary case [46, lemma 14.16] we can
easily see existence and observe that dΓ(t) inherits its regularity from
X.

Time derivative for evolving surfaces

For an evolving surface Γ(t) we say f ∈ Cl(a, b; Ck(Γt)), if and only if
(x, t) 7→ f (X(x, t), t) ∈ Cl(a, b; Ck(Γ)). This is well-defined, i.e. it does
not depend on X. Similar we define the spaces Lq(a, b; Wk,p(Γt))
and Cl(a, b; Wk,p(Γt)). The latter two spaces are equipped with the
obvious norms.

For an evolving surface X we define the material derivative of
f ∈ C1(a, b; C0(Γt)) as

∂X
t f (x, t) –

d f (X(x0, t), t)
dt

(2.13)

and the velocity of X via

vX(x, t) – ∂X
t 1(x, t) =

∂X(x0, t)
∂t

, (2.14)

where we assumed that x0 ∈ Γ and x = X(x0, t). For the material
derivative we have the alternative formula

∂X
t f (x, t) =

∂ f̄ (x, t)
∂t

+∇R3 f̄ (x, t). (2.15)

Having the definition of material derivative and velocity we want
to comment on the definition of evolving surface. For an evolving
surface the notion of spatial derivative does not depend on the

12



2.1. Evolving surfaces

dynamic parametrization. The notion of time derivative depends
on the chosen dynamical system, i.e. for two evolving surfaces X
and Y with X(Γ, t) = Y(Γ, t) we have in general ∂X

t 6= ∂Y
t . However,

in that case we still have

vX(x, t)− vY(x, t) ∈ TxΓ(t). (2.16)

This readily follows from d
dt Y
−1
t ◦ Xt(x0) ∈ Tx0 Γ and the equation

∂Y−1
t (x)
∂t

= − jac(Y−1
t )(x)vY(x, t).

As a consequence, (2.16) with (2.15) imply

∂X
t f (x, t)− ∂Y

t f (x, t) = (vX(x, t)− vY(x, t)) · ∇ f (x, t). (2.17)

The following commutator relation is useful

∂X
t ∇ f −∇∂X

t f = −∇vX∇ f + n tn t(∇vX)∇ f . (2.18)

This follows from a tedious calculation with (2.3).

Time derivatives of some bilinear forms

The following bilinear forms are frequently used

m( f , g) – m(t; f , g) –

∫
Γ(t)

f g, (2.19a)

a( f , g) – a(t; f , g) –

∫
Γ(t)
∇ f · ∇g, (2.19b)

a∗( f , g) – a∗(t; f , g) – m( f , g) + a( f , g), (2.19c)

(∂X
t m)( f , g) – (∂X

t m)(t; f , g) –

∫
Γ(t)

div vX f g, (2.19d)

(∂X
t a)( f , g) – (∂X

t a)(t; f , g) –

∫
Γ(t)

D(X)∇ f · ∇g, (2.19e)

(∂X
t a∗)( f , g) – (∂X

t a∗)(t; f , g) – (∂X
t m)( f , g) + (∂X

t a)( f , g), (2.19f)

13



2. Notation and preliminaries

where D(X) – div vX −∇vX − t(∇vX). We claim the following
product rule:

d
dt

m( f , g) = (∂X
t m)( f , g) + m(∂X

t f , g) + m( f , ∂X
t g), (2.20a)

d
dt

a( f , g) = (∂X
t a)( f , g) + a(∂X

t f , g) + a( f , ∂X
t g), (2.20b)

d
dt

a∗( f , g) = (∂X
t a∗)( f , g) + a∗(∂X

t f , g) + a∗( f , ∂X
t g). (2.20c)

The last equation is obviously a consequence of the first and second
one. The first equation follows from (2.9) and (2.5). For the second
equation we use additionally (2.18). Of course, if we are in the
situation of (2.16), then we interchange the letter X with Y for the
product rule.

2.2. Evolving discrete surface

In this section the spatial discrete counterpart of evolving surfaces
together with some useful tools and identities are introduced. Ge-
ometric perturbation errors are not covered here. This topic is
postponed to the subsequent section. This section is organized as
follows: First, the definition of an admissible linear mesh is given.
Then, the discrete tangent space, discrete normal fields and discrete
tangential derivatives are given. Next, Lebesgue spaces and Sobolev
spaces together with an useful local formula are given. Afterwards,
finite element functions are given. The author continues with the
discrete dynamic parametrization and introduces discrete bilinear
forms together with some useful product rules. This section is
completed with the definition of finite element matrices together
with some useful Lipschitz estimates.

14



2.2. Evolving discrete surface

Evolving meshes

Denote by ∆2 ⊂ R2 the standard simplex of dimension 2 and
let [a, b] be a time interval. A linear evolving mesh or evolving
discrete surface on [a, b] consist of continuously time depending
nodes (xi(t))N

i=1 ⊂ R3 and 2-dimensional simplex relations (Eı(t))M
ı=1,

where we identify Eı(t) ⊂ R3 with the simplex itself, which we
require to satisfy:

• For ı = 1, . . . , M we have that Eı(t) = (xı(1), . . . , xı(3)) is non-
degenerated, i.e. the map Tı: ∆2 × [a, b]→ Eı(t),

Tı(θ, t) = xı(1) +
(
xı(3) − xı(1) xı(2) − xı(1)

)
θ

— xı(1) + Dı(t)θ,
(2.21)

is a bijection.

• The intersection of two simplices is a common edge, a com-
mon node or empty.

• There are no boundary simplices, i.e. every edge is the inter-
section of two different simplices.

We set the mesh width h as

h(t) –
M

max
ı=1

diam(Eı(t)), h – sup
t∈[a,b]

h(t),

where diam denotes the 2-dimensional diameter, the in-ball radius
at time t as

hmin(t) –
M

min
ı=1

ρ(Eı(t)),

where ρ denotes the radius of the maximum inner circle. We set
xh(t) – (xi(t))N

i=1 ∈ RN ⊗R3 and

Γ(xh) – Γ(xh(t)) – Γh(t) – Γh,t –

M⋃
ı=1

Eı(t).

15



2. Notation and preliminaries

The degeneracy of Γh(t) is measured via

σ(h) – sup
t∈[a,b]

h(t)
hmin(t)

.

A family (Γh(t))h>0 is called admissible, if and only if

sup
h>0

σ(h) ≤ const . (2.22)

From now on we denote with Γh(t) an admissible family of evolving
meshes.

Discrete spatial derivatives

We consider on Γh(t) ⊂ R3 the Hausdorff measure of dimension
2. Since any element has a smooth parametrization, we can define
for ı = 1, . . . , M on Eı(t) \ ∂Eı(t) derivatives as in the smooth surface
case. This gives us for almost every point x ∈ Γh(t) the notion of
a discrete tangent space, a discrete normal field nh(x, t) and an
element-wise extended function f̄ (x, t). Indeed, the tangent vectors
are the first column Dı

1(t) and second column Dı
2(t) of Dı(t), cf.

(2.21). Hence, we define

(gı
ij(t))

2
i,j=1

= tDı(t)Dı(t). (2.23)

The inverse of (gı
ij(t))

2
i,j=1

is denoted by (gij
ı (t))2

i,j=1.

The discrete tangential gradient of a function f : Γh(t) → R on
Eı(t) \ ∂Eı(t) is given by

∇h f (x, t) –

2

∑
i,j=1

∂i f (θ, t)gij
ı (t)Dı

i(t), (2.24)

where f (θ, t) = f (Tı(θ, t), t). The discrete tangential divergence of a
function F: Γh(t)→ R3 on Eı(t) \ ∂Eı(t) is given by

divh F(x, t) –

2

∑
i,j=1

gij
ı (t)Dı

i(t) · ∂jF(θ, t), (2.25)
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2.2. Evolving discrete surface

where F(θ, t) = F(Tı(θ, t), t). Assume that for two evolving discrete
surfaces Γ(xh), Γ(yh) the function F: Γ(xh)→ Γ(yh) maps the element
Eı(t) ⊂ Γ(xh) onto the element rEı(t) ⊂ Γ(yh). Then, the discrete
tangential Jacobian of F on Eı(t) \ ∂Eı(t) is given by

jach F(x, t) –

2

∑
i,j,k=1

rDı
i(t)∂k(ρi ◦ F ◦ X)(θ, t)gjk

ı
tDı

j(t), (2.26)

where ρ = (ρ1, ρ2) is the inverse of rTi: ∆2 × [a, b] → rEi(t), cf. (2.21).
As in the smooth case we can give alternative (extrinsic) formulas
for the discrete tangential gradient, discrete tangential divergence
and discrete tangential Jacobian:

∇h f (x, t) = (I3 − nh(x, t) tnh(x, t))∇R3 f̄ (x, t)

— prTxΓh,t
∇R3 f̄ (x, t),

divh F(x, t) = trace (prTxΓ
t
(jacR3 F̄(x, t))),

jach F(x, t) = prTF(x)Γ(yh) jacR3 F̄(x, t) prTxΓ(xh),

where ∇R3 f̄ (x, t) and jacR3 F̄(x, t) are the gradient and Jacobian,
respectively, w.r.t. the spatial variable x ∈ Γh(t) ⊂ R3. Note that
these formulas are only almost everywhere defined. Also observe
that for the discrete Jacobian the estimate (2.7) and the chain rule
(2.8) almost everywhere holds.

Integration

The Lebesgue space Lp (Γh,t) and even the Sobolev space W1,p(Γh,t)
are readily defined having in mind that the derivative is element-
wise given. Formula (2.9) now becomes

∫
Γh(t)

f =
M

∑
i=1

∫
∆2

f (θ, t)
b

gh,i(t) dθ, (2.27)
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2. Notation and preliminaries

where f (θ, t) – f (Ti(θ, t), t) and
a

gh,i(t) –

b

det((gi
ı(t))2

ı,=1), cf.

(2.21) for Ti and (2.23) for (gi
ı(t))2

ı,=1. Unfortunately, there is no
meaningful integration by parts formula on Γh(t).

Finite element functions

On an evolving discrete surface Γh(t) we define for i = 1, . . . , N the
i-th Lagrange basis function via the requirement

χi(t): Γh(t)→ R, χi(xj(t), t) – χi(t)(xj(t)) – δij, (2.28)

where δij denotes the Kronecker delta, e.g. we have δij = 1 iff
i = j and δij = 0 else, and for each element Ej(t) we require that
χi(Tj(θ), t): ∆2 × [a, b] → R is, for a fix t ∈ [a, b], a polynomial of
degree 1. We define the finite element space as

Sh(xh(t)) – Sh(xh) – Sh(t) – span{χ1(t), . . . , χN(t)},

where span denotes the linear span. We write Sh(xh;Rd), if the
finite element function takes values in Rd for d ∈ N. If we want to
emphasize that φh ∈ Sh(xh) is defined on xh(t), then we write φh[xh].

For the analysis of some consistency errors we define the follow-
ing finite element Sobolev dual norm

‖φh‖H−1
h (Γh(t)) = sup

0 6=ψh∈Sh(t)

mh(φh, ψh)
‖ψh‖H1(Γh(t))

.

We introduce a special nodal value notation. If

φh(t) =
N

∑
i=1

φi(t)χ(t) ∈ Sh(t;Rd),

then we overload the symbol and also denote the nodal value vector
with

φh(t) – (φi(t))
N
i=1 = (φ1

i (t), . . . , φd
i (t))

N
i=1 ∈ R

N ⊗Rd. (2.29)
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2.2. Evolving discrete surface

It will be always clear from the context, if we are considering a
function or a degree of freedom vector. The reason for introducing
this notation is that the authors gets constantly confused, if the
degree of freedom vector is denoted by an other unrelated letter, as
it is usual in the literature.

Discrete dynamical parametrization

Unlike for Γ(t), there is for Γh(t) only one meaningful dynamical
parametrization. The discrete dynamical parametrization is given
via

Xh: Γh(a)× [a, b]→ R3, (x0, t) 7→
N

∑
i=1

xi(t)χi[xh(a)](x0).

Just like in (2.13) and (2.14), we define the discrete material deriva-
tive as

∂Xh
t f (x, t) –

d f (Xh(x0, t), t)
dt

, (2.30)

and the discrete velocity as

vXh (x, t) – vxh (x, t) – ∂Xh
t 1(x, t) =

∂Xh(x0, t)
∂t

,

where x = Xh(x0, t).
We remark, that we have purposely avoided the notation ∂h

t f ,
because for consistency reasons this would have forced us to define
vh, which is already heavily overused in the literature.

From (2.28) we immediately deduce χi(Xh(xj(0), t), t) = δij, which
implies

∂Xh
t χi = 0. (2.31)

Having this result and the nodal value vector notation (2.29) in
mind we write

dxh(t)
dt

= vxh (t).
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2. Notation and preliminaries

With basically the same proof we can show the discrete counter part
of the commutator relation (2.18) is given by

∂Xh
t ∇h f −∇h∂Xh

t f = −∇hvXh∇h f + nh
tnh

t(∇hvXh)∇h f . (2.32)

In this case we use (2.24).

Time derivatives of some discrete bilinear forms

The following discrete bilinear forms are frequently used

mh( f , g) – mh(t; f , g) –

∫
Γh(t)

f g, (2.33a)

ah( f , g) – ah(t; f , g) –

∫
Γh(t)
∇h f · ∇hg, (2.33b)

a∗h( f , g) – a∗h(t; f , g) – mh( f , g) + ah( f , g), (2.33c)

(∂Xh
t mh)( f , g) – (∂Xh

t m)(t; f , g) –

∫
Γh(t)

divh vXh f g, (2.33d)

(∂Xh
t ah)( f , g) – (∂Xh

t ah)(t; f , g) –

∫
Γh(t)

D(Xh)∇h f · ∇hg, (2.33e)

(∂Xh
t a∗h)( f , g) – (∂Xh

t a∗h)(t; f , g) – (∂Xh
t mh)( f , g) + (∂Xh

t ah)( f , g),
(2.33f)

where D(Xh) – divh vXh −∇hvXh −
t(∇hvXh). The following dis-

crete product rules are proven just like for (2.20):

d
dt

mh( f , g) = (∂Xh
t mh)( f , g) + mh(∂Xh

t f , g) + mh( f , ∂Xh
t g), (2.34a)

d
dt

ah( f , g) = (∂Xh
t ah)( f , g) + ah(∂Xh

t f , g) + ah( f , ∂Xh
t g), (2.34b)

d
dt

a∗h( f , g) = (∂Xh
t a∗h)( f , g) + a∗h(∂Xh

t f , g) + a∗h( f , ∂Xh
t g). (2.34c)

This requires the integral representation (2.27), the definition of
tangential divergence (2.25) and discrete commutator relation (2.32).
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2.2. Evolving discrete surface

Finite element matrices

The mass matrix and stiffness matrix are defined as

M(t) – M(xh) – (mh(χi, χj))
N
i,j=1

,

A(t) – A(xh) – (ah(χi, χj))
N
i,j=1

.

From (2.31) and (2.34) we deduce

d
dt

M(t) =
d
dt

M(xh) = ((∂Xh
t mh)(χi, χj))

N

i,j=1
,

d
dt

A(t) =
d
dt

M(xh) = ((∂Xh
t ah)(χi, χj))

N

i,j=1
.

Further, for a nodal value vector φh ∈ Sh(t) we write

M(t)φh – M(t)φh(t).

In this work, finite element matrices appear in every time stability
lemma. Hence, Lipschitz bounds for them are of interest. Assuming
that

‖vXh‖L∞(a,b;W1,∞(Γh,t)) ≤ const (2.35)

we claim for φh, ψh ∈ Sh(t) and s, t ∈ [a, b] with |s− t| sufficiently
small that

|φh · (M(t)−M(s))ψh| ≤ |t− s| |φh|M(t) |ψh|M(t) const, (2.36a)

|φh · (A(t)− A(s))ψh| ≤ |t− s| |φh|A(t) |ψh|A(t) const, (2.36b)

|φh · (M−1(t)−M−1(s))ψh| ≤ |t− s| |φh|M−1(t) |ψh|M−1(t) const,
(2.36c)
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2. Notation and preliminaries

where

|φh|2M(t) – φh ·M(t)φh = ‖φh‖2
L2(Γh,t), (2.37a)

|φh|2A(t) – φh · A(t)φh = |φh|2H1(Γh,t), (2.37b)

|φh|2M−1(t) – φh ·M−1(t)φh, (2.37c)

‖φh‖2
∗,t – φh · (M(t) + A(t))−1φh. (2.37d)

(2.37e)

We sketch how to prove (2.36). Consider

M(t)−M(s) =
∫ t

s

d
dτ

M(τ) dτ.

For ψh = φh we get

|φh|2M(t) ≤ |ψh|2M(s) +
∫ t

s
|ψh|2M(τ) dτ const (2.35).

Using a Gronwall estimate together with a size restriction on |t− s|
gives us the desired bound. The other bounds are proven with
similar arguments.

2.3. Lift

In this section we provide tools to compare functions and bilinear
forms on the continuous surface with their discrete counter parts
on the finite element mesh. This section is organized as follows: We
begin with a formal definition of lifted function and then describe
the standard evolving surface mesh. Then, we introduce the lifted
discrete material derivative. Afterwards, we present geometric
perturbation error and sketch some proofs. After discussing the
equivalence of discrete and continuous norm we list some bilinear
form errors and sketch their proofs.
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2.3. Lift

Lifting process

We recall that the time depended oriented distance function is
introduced in (2.12). We say Γh(t) can be compared with Γ(t), if
and only if we have Γh(t) ⊂ N (t) and Γh(t) is a single covering of
Γ(t), i.e. there is a bijection between p ∈ Γh(t) and x ∈ Γ(t), which is
given through (2.12),

p = x + dΓ(p, t)n(p, t).

We say that x = x(p) is the lift of p and p = p(x) is the negative lift
of x. For a function f : Γh(t)→ R we define its lift f l : Γ(t)→ R via

f l(x) – f (p), (2.38)

where p is the negative lift of x. The negative lift of function is
given by ( f l)−l = f . We say f ∈ Sl

h(t), if f = φl
h for some φh ∈ Sh(t).

A standard way to approximate Γ(t) is to take an initial triangula-
tion of (xi(0))N

i=1 ⊂ Γ(0), then to set

xi(t) – X(xi(0), t) (2.39)

and finally to assume that xh(t) does not degenerate.

From now on we assume (2.39) unless otherwise stated.

Lifted discrete dynamical parametrization

The lifted discrete dynamical parametrization is per definition the
function Xl

h. It is an important additional dynamic parametrization
of Γ(t). Its material derivative is called lifted discrete material

derivative ∂
Xl

h
t and its velocity is called lifted discrete velocity vXl

h
.

Using the definitions (2.13) and (2.38) we observe that the lifted
material derivative commutes in some sense with the lifting process:

(∂Xh
t f )

l
= ∂

Xl
h

t f l . (2.40)
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The following identities are corollaries from the previous section
and commonly used: From (2.17) we deduce the following formula
for the difference of the material derivative and the lifted material
derivative:

∂X
t f (x, t)− ∂

Xl
h

t f (x, t) = (vX(x, t)− vXl
h
(x, t)) · ∇ f (x, t). (2.41)

From (2.20) we deduce the following product rule:

d
dt

m( f , g) = (∂Xl
h

t m)( f , g) + m(∂Xl
h

t f , g) + m( f , ∂
Xl

h
t g), (2.42a)

d
dt

a( f , g) = (∂Xl
h

t a)( f , g) + a(∂Xl
h

t f , g) + a( f , ∂
Xl

h
t g), (2.42b)

d
dt

a∗( f , g) = (∂Xl
h

t a∗)( f , g) + a∗(∂Xl
h

t f , g) + a∗( f , ∂
Xl

h
t g). (2.42c)

Geometric perturbation estimates

We recall that n−l = n. In this sense we may consider prTxΓ(t) as a
function on Γh(t).

We define δh = δh(t): Γh(t) → R via the requirement that for all
fh ∈ L1 (Γh,t) it holds ∫

Γ(t)
f l
h =

∫
Γh(t)

δh fh, (2.43)

We collect some bounds.

‖dΓ(t)‖L∞(Γh,t) ≤ h2 const, (2.44)

‖prTpΓh(t) n‖L∞(Γh,t) + ‖n− nh‖L∞(Γh,t) ≤ h const, (2.45)

1
const

≤ δh(p) ≤ const (2.46)

‖1− δh‖L∞(Γh,t) ≤ h2 const, (2.47)

‖prTxΓ(t)−prTxΓ(t) prTpΓh(t) prTxΓ(t)‖L∞(Γh,t) ≤ h2 const, (2.48)
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2.3. Lift

‖∂Xh
t dΓ(t)‖L∞(Γh,t) ≤ h2 const, (2.49)

‖∂Xh
t (prTpΓh(t) n)‖L∞(Γh,t) ≤ h const, (2.50)

‖∂Xh
t δh‖L∞(Γh,t) ≤ h2 const, (2.51)

‖∂Xh
t (prTxΓ(t)−prTxΓ(t) prTpΓh(t) prTxΓ(t))‖L∞(Γh,t) ≤ h2 const . (2.52)

Bounds (2.44) – (2.51) have bee done by Dziuk and Elliott [34, 35].
(2.52) appears in [66]. We sketch all proofs. For (2.44) observe
that after rotation we may consider dΓ(t) as a function on a straight
element Ei(t). Since on the nodes it vanishes, the interpolation
of dΓ(t) is zero. For (2.45) take (2.2) into account. Since we have
assumed that nh is the third standard basis vector of R3, this shows
that the first and second component of n are in O(h). Hence, we
have

‖prTpΓh(t) n‖L∞(Γh,t) ≤ h const .

To deduce (2.45) note that n has unit length and assume that h < h0

is sufficiently small.
For (2.47) and (2.46) consider [34, (4.12) and below]. These proofs

rely on (2.45).
For (2.48) observe that

prTxΓ(t)−prTxΓ(t) prTpΓh(t) prTxΓ(t) = prTxΓ(t) nh
tnn prTxΓ(t) .

The stated bound follows from

‖prTxΓ(t) nh‖ = ‖prTxΓ(t)(nh − n)‖ ≤ h const,

where we have used (2.45).
(2.49) and (2.50) follow from the same arguments as for (2.44)

and (2.45), since ∂Xh
t dΓ(t) vanishes on the nodes.

For (2.52) it suffices to show

‖∂Xh
t (prTxΓ(t) nh)‖ ≤ h const .
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Observe that

∂Xh
t (prTxΓ(t) nh) = ∂Xh

t (prTpΓh(t) prTxΓ(t) nh) + ∂Xh
t (nh

tnh prTxΓ(t) nh)

= − ∂Xh
t (prTpΓh(t) n tnnh) + ∂Xh

t (nh
tnh prTxΓ(t) nh).

Use (2.45) and (2.50) and observe that

∂Xh
t prTxΓ(t) = ∂Xh

t n tn + n
t
(∂Xh

t n), ∂Xh
t n · n = 0.

Equivalence of norms

We want to compare Lebesgue and Sobolev norms on Γ(t) and Γh(t).
For any p ∈ [1, ∞] we claim

‖ f l‖Lp(Γt)
1

const
≤ ‖ f ‖Lp(Γh,t) ≤ ‖ f l‖Lp(Γt) const . (2.53)

The case p = ∞ is trivial. The other cases follow from (2.46). Using
(2.12), (2.4) and the chain rule we deduce the formula

∇h f (p) = prTpΓh
(prTxΓ−dX(p)H(p))∇ f (x). (2.54)

Again using (2.46) we deduce

| f l |W1,p(Γt)
1

const
≤ | f |W1,p(Γh,t) ≤ | f

l |W1,p(Γt) const . (2.55)

Bilinear form bounds

For f , g: Γh(t)→ R and p, q ∈ [1, ∞] with p−1 + q−1 = 1 we claim

|m( f l , gl)− mh( f , g)| ≤ h2 ‖ f l‖Lp(Γt) ‖g
l‖Lq(Γt) const,

(2.56a)

|a( f l , gl)− ah( f , g)| ≤ h2 | f l |W1,p(Γt) |g
l |W1,q(Γt) const,

(2.56b)

26



2.4. Some finite element bounds

|(∂Xl
h

t m)( f l , gl)− (∂Xh
t mh)( f , g)| ≤ h2 ‖ f l‖Lp(Γt) ‖g

l‖Lq(Γt) const,
(2.56c)

|(∂Xl
h

t a)( f l , gl)− (∂Xh
t ah)( f , g)| ≤ h2 | f l |W1,p(Γt) |g

l |W1,q(Γt) const .
(2.56d)

All four inequalities use (2.43) and either (2.53) or (2.55). The first
inequality is an immediate consequence of (2.47). For the second
inequality we use (2.54). Then we have to take care of

prTxΓ(t)−prTxΓ(t) (I3 − dX(p)H(p))prTpΓh(t)×

× (I3 − dX(p)H(p))prTxΓ(t),
(2.57)

where × represents a line break for a too long product. This is easily
controlled with (2.44) and (2.48). For the third inequality observe

d
dt

∫
Γ(t)

Fl =
∫

Γ(t)
∂

Xl
h

t Fl + Fl div vXl
h
,

d
dt

∫
Γ(t)

Fl =
d
dt

∫
Γh(t)

δhF =
∫

Γh(t)
∂Xh

t δhF + δh∂Xh
t F + δhF divh vXh

The estimate follows using (2.47) and (2.49). For the forth and last
inequality we use the same idea. To handle the discrete material
derivative of (2.57) use (2.49) and (2.52).

2.4. Some finite element bounds

In this section we introduce bounds for the Lagrange finite element
interpolation operator, the lifted discrete velocity and a Ritz map.

An interpolation operator

For f ∈ H2(Γt) we define the Lagrange finite element interpolation
operator Ih f ∈ Sh(t) via the requirement Ih f (xi) = f (xi). The
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following estimate is well known:

‖ f −I l
h f ‖L2(Γt) + h | f −I l

h f |H1(Γt) ≤ h2 const . (2.58)

We remark that the constant above depends on const (2.22).
Using (2.30), (2.31) and (2.40) we easily see that the interpolation

satisfies

∂Xh
t Ih f = Ih∂X

t f , ∂
Xl

h
t I l

h f = I l
h ∂X

t f . (2.59)

Having (2.17) and (2.60) in mind we say that the interpolation
operator essentially commutes with the material derivative.

Bounds for the lifted discrete velocity

In general we have vl
Xh
6= vXl

h
, which implies that the following

bounds are not trivially obtained:

‖vX − vXl
h
‖L∞(Γt) + h |vX − vXl

h
|W1,∞(Γt) ≤ h2 const . (2.60)

We also have higher-order material derivatives bounds

‖(∂Xl

t )k(vX − vXl
h
)‖L∞(Γt) + h |(∂Xl

t )k(vX − vXl
h
)|W1,∞(Γt) ≤ h2 const,

(2.61)
where k ∈ N. This can be found in [66, lemma 6.3].

A Ritz map

The Ritz map Rh H1(Γt)→ Sh(t) is defined via the requirement that
for all φh ∈ Sh(t) we have

a∗( f , φl
h) = a∗h(Rh f , φh). (2.62)

The bounds

‖ f −R l
h f ‖L2(Γt) + h ‖ f −R l

h f ‖H1(Γt) ≤ h2 const, (2.63)
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2.4. Some finite element bounds

are standard in the literature, cf. [63, 66]. We sketch how to prove
them. The H1-estimate follows from the pseudo Galerkin orthogo-
nality

|a∗( f −R l
h f , φl

h)| ≤ h2 ‖ f ‖H1(Γt) ‖φh‖H1(Γt), (2.64)

which requires (2.56), and the interpolation H1-bound (2.58). The
L2-bounds follow from an Aubin-Nitsche trick with a PDE a priori
estimate.

In contrast to the interpolation operator, we know that in gen-
eral the Ritz map does not commute with the material derivative.
However, we still can prove for arbitrary higher-order material
derivatives

‖(∂Xl
h

t )k( f −R l
h f )‖L2(Γt) + h ‖(∂Xl

h
t )k( f −R l

h f )‖H1(Γt) ≤ h2 const,
(2.65)

where l ∈ N. We sketch how to obtain the first-order material
derivative bound. The basic idea is to take the time derivative of
(2.62) to get the Galerkin-type equation

a∗( f , φl
h)− a∗h(Rh f , φh) = (∂Xh

t a∗h)(Rh f , φh)− (∂Xl
h

t a∗)( f , φl
h).

An H1-bound can be obtained by using (2.59) and the H1-bounds
for the Ritz map. The L2-bound uses an Aubin-Nitsche argument.
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I Chapter 3.

Objectives of this work

We present four different parabolic problems, which correspond
to the articles [57, 56, 58, 55], respectively. A recently discovered
unpublished result will be presented in chapter 5.

In all our problems it is assumed that the surface evolution and
the solution of the partial differential equation (PDE) are sufficiently
regular, i.e. we have enough spatial and temporal derivatives for
our analysis.

3.1. An arbitrary Lagrangian-Eulerian evolving
surface finite element method

PDE 3.1.1. Let X ∈ C1(0, T; C2(Γ2
0;R3)) be an evolving surface,

u0 ∈ H2(Γ0) an initial value and f ∈ L2(0, T; L2(Γt)) a forcing
term. Find u ∈ L2(0, T; H2(Γt)), which satisfies

(∂X
t + div(vX)− ∆)u = f , u(0) = u0.
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We can approximate u by combining the ESFEM with the implicit
Euler method. Convergence in L2-based norms is known assum-
ing we have a quasi uniform mesh; cf. [34, 35, 33, 37, 31] for the
analysis and cf. (2.22) for the quasi uniform mesh condition. How-
ever, the standard algorithm, cf. (2.39), does not guarantee that the
resulting finite element mesh stays regular. This may lead to a
large const (2.22), which implies a bad approximation. Two natural
questions arise:

1. Is there another evolution A compatible with X and reason-
able computable such that the resulting const (2.22) is smaller
on the same time interval?

2. Does the resulting scheme converge?

Question 1 is investigated by Kovács in [53]. Our aim is to answer
question 2.

Let us make the notion of “compatible” and “resulting scheme”
more precise.

Definition 3.1.2. An evolving surface A is an arbitrary Lagran-
gian-Eulerian (ALE) map for X, if and only if for all t it holds
A(Γ0, t) = X(Γ0, t).

As a consequence we can prove that the difference of the velocities,
(vX − vA), is a tangent vector. This observation implies that the
solution of PDE 3.1.1 agrees with the solution of the next

PDE 3.1.3. Let X, u0 and f be like in PDE 3.1.1 and let A be an
ALE map for X. Find u ∈ L2(0, T; H2(Γt)), which satisfies

(∂At + div(vA)− ∆)u + div((vX − vA)u) = f , u(0) = u0.

The basic idea is to discretize PDE 3.1.3 instead of PDE 3.1.1.
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3.1. Arbitrary Lagrangian-Eulerian ESFEM

We describe our computational method. Modify the finite ele-
ment mesh movement, cf. (2.39), by using the nodes (A(xi, t))N

i=1
instead of (X(xi, t))N

i=1. Denote the resulting parametrization with
Ah. Redefine Γh(t) – Ah(Γh,0, t) and search for a numerical solu-
tion in the finite element space Sh(Ah). This modification is called
the arbitrary Lagrangian-Eulerian evolving surface finite element
method (ALE-ESFEM).

The matrix vector formulation of the ALE-ESFEM reads as

d
dt

(Muh) + Auh + Buh = fh, uh(0) = Ihu0 (3.1)

where M, A, B and fh are the mass matrix, stiffness matrix, ALE
matrix and load vector, respectively. The novel ALE matrix is given
by

Bij(t) –

∫
Γh(t)

χi(vAh −IhvX) · ∇hχj,

where (χi) ⊂ Sh(Ah) denotes the usual Lagrangian finite element
basis. Note that the sign above is correct.

For the initial value problem (IVP) above we consider two dif-
ferent classes of higher-order time stepping schemes: Backwards
difference formulas (BDF) and Runge-Kutta methods (RKM). Of
course, we restrict ourselves to a certain class of RKM, which will
contain the Radau IIa method. Both time stepping schemes are
popular stiff integrators and contain the implicit Euler method as a
special case. We start with the description of the BDF.

Let τ > 0 be the time step size and, for simplicity, assume that
N ∈ N exists with T = τN. Set tn – nτ. The k-step BDF applied on
(3.1) reads as

k

∑
j=0

δj Mn−juBDF
n−j + τAnuBDF

n + τBnuBDF
n = τ fn, n ≥ k (3.2)

where Mn – M(tn), An – A(tn) etc. and the coefficients (δj)k
j=0

are given by ∑k
j=0 δjxj = ∑k

`=1
1
` (1− x)`. To keep things simple, we
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3. Objectives of this work

assume that the initial steps uBDF
n = Ihu(tn), for n = 0, . . . , k− 1, are

given.
On the other hand, if we discretize (3.1) using a RKM with Butcher

tableau
(cj)s

j=1 (aij)s
i,j=1

(bj)s
j=1

,

then the resulting scheme reads as

Mn+1uRKM
n+1 = MnuRKM

n + τ
s

∑
j=1

bjU̇nj,

MniUni = MnuRKM
n + τ

s

∑
j=1

aijU̇nj, (3.3)

U̇nj = fnj − AnjUnj − BnjUnj,

where i = 1, . . . , s and where we have set Mni – M(tn + τci), Ani –

A(tn + τci) etc. In the above equations U̇nj is an unknown and not
the time derivative of Unj. We will assume that our RKM satisfies
the following

Definition 3.1.4. A RKM of stage order q ≥ 1 and classical
order p ≥ 1 is called admissible, if and only if it satisfy:

(i) p ≥ q + 1,

(ii) (aij) is invertible,

(iii) bj > 0 and (biaij − bjaji − bibj)s
i,j=1 is non-negative definite,

(iv) bj = asj and cs = 1.

In [49], property (iii) is called algebraic stability, which is stronger
then A-stability, and property (iv) is called stiff accuracy.

The objective of [57] was the following
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Theorem 3.1.5. Let u be the solution of the PDE 3.1.3. For the
ALE-ESFEM together with the k-step BDF method there exists h0

and τ0 such that for all h < h0 and τ < τ0 we have

‖u(t)− (uBDF
h,n )l‖L∞(0,T;L2(Γt)) ≤ (τk + h2) const,

|u(t)− (uBDF
h,n )l |L2(0,T;H1(Γt)) ≤ (τk + h) const .

For the ALE-ESFEM together with an admissible RKM there exists
h0 and τ0 such that for all h < h0 and τ < τ0 we have

‖u(t)− (uRKM
h,n )l‖L∞(0,T;L2(Γt)) ≤ (τk + h2) const,

|u(t)− (uRKM
h,n )l |L2(0,T;H1(Γt)) ≤ (τq + h) const .
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3.2. Full discretization of a quasilinear problem
on evolving surfaces

Many important evolving surface problems are nonlinear. It comes
as a surprise that for quasilinear problems there was not much
rigorous analysis done. The author wanted to fill this gap.

PDE 3.2.1. Let A :R→ R be a Lipschitz continuous function
that is bounded from above and below by some positive con-
stant. For given evolving surface X ∈ C1(0, T; C2(Γ2

0;R3)), initial
Data u0 ∈ H2(Γ0), forcing term f ∈ L2(0, T; L2(Γt)) and A find
u ∈ L2(0, T; H2(Γt)), which satisfies

∂X
t u + div(vX)u− div(A (u)∇u) = f , u(0) = u0.

For the choice A (z) = 1 we get the linear PDE 3.1.1 from the
previous section. We want to consider a fully discrete scheme to
approximate u. We use a standard ESFEM discretization. The
matrix vector formulation reads as

d
dt

(Muh) + A(uh)uh = fh, uh(0) = Ihu0, (3.4)

where the novel nonlinear stiffness matrix A(u) is given by

A(u; t)ij –

∫
Γh(t)

A (u)∇hχi · ∇hχj.

We consider two different time discretization methods for the IVP
(3.4): Linearly implicit BDF and fully implicit RKM. Fully implicit
BDF are also covered in [56], but since the linearly implicit variant
is computationally more interesting, we restrict ourselves to the
latter method here.

Again, let τ > 0 be the time step size and, for simplicity, assume
that there exists N ∈ N such that T = τN. Set tn – nτ. The linearly
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implicit k-step BDF applied on (3.4) reads as

k

∑
j=0

δj Mn−juBDF
n−j + τAn

(k−1

∑
j=0

γjuBDF
n−k+j

)
uBDF

n = τ fn, n ≥ k, (3.5)

where Mn – M(tn), fn – fh(tn) and the coefficients (γj)k−1
j=0 and

(δj)k
j=0 are given by

k−1

∑
j=0

γjxj = xk − (x− 1)k and
k

∑
j=0

δjxj =
k

∑
`=1

1
`

(1− x)`,

respectively. The nonlinear stiffness matrix is given by

An(φh) –

∫
Γh(tn)

A (φh)∇hχi · ∇hχj.

To keep things simple, we assume that the initial steps uBDF
n =

Ihu(tn), for n = 0, . . . , k− 1, are given. Note that uBDF
n only requires

us to solve a linear system.
On the other hand, if we discretize (3.4) using an admissible RKM,

cf. definition 3.1.4, with Butcher tableau,

(cj)s
j=1 (aij)s

i,j=1

(bj)s
j=1

,

then the resulting scheme reads as

Mn+1uRKM
n+1 = MnuRKM

n + τ
s

∑
j=1

bjU̇nj,

MniUni = MnuRKM
n + τ

s

∑
j=1

aijU̇nj, (3.6)

U̇nj = fnj − Anj(Unj)Unj,

where i = 1, . . . , s, Mni – M(tn + τci) etc. Again, U̇nj is an unknown
and not the time derivative of Unj.

The objective of [56] was the following
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Theorem 3.2.2. Let u be the solution of the PDE 3.2.1. For the
ESFEM together with the linearly implicit k-step BDF method there
exists h0 and τ0 such that for all h < h0 and τ < τ0 we have

‖u(t)− (uBDF
h,n )l‖L∞(0,T;L2(Γt)) ≤ (τk + h2) const,

|u(t)− (uBDF
h,n )l |L2(0,T;H1(Γt)) ≤ (τk + h) const .

For the ESFEM together with an admissible RKM there exists h0 and
τ0 such that for all h < h0 and τ < τ0 we have

‖u(t)− (uRKM
h,n )l‖L∞(0,T;L2(Γt)) ≤ (τk + h2) const,

|u(t)− (uRKM
h,n )l |L2(0,T;H1(Γt)) ≤ (τq + h) const .

38



3.3. Some maximum-norm error estimates

3.3. Some maximum-norm error estimates

During the preparation of our last theorem, the author proved an
optimal W1,∞-stability bound for our Ritz map. Since the techniques
were already developed by the author, we asked for maximum-norm
estimates for the ESFEM. Such error bounds are a technically non-
trivial extension of the corresponding L2-based bound for ESFEM
and maximum-norm error bounds for FEM on Euclidean domains.

Consider the linear heat equation on evolving surface, PDE 3.1.1.
We use the ESFEM without any further time stepping method.

Theorem 3.3.1. Let u be the solution of the PDE 3.1.1. Then for the
ESFEM there exists h0 such that for all h < h0 we have the estimate

‖u− ul
h‖L∞(0,T;L∞(Γt)) ≤ h2 |log h|4 const,

‖u− ul
h‖L∞(0,T;W1,∞(Γt)) ≤ h |log h|4 const .

This theorem has been shown in [58]. As a prerequisite we also
had to prove its elliptic counterpart, which is by itself an interesting
result.

Theorem 3.3.2. Let u be sufficiently regular. Then we have for the
Ritz map Rh (2.62) the following estimates

‖u−R l
hu‖L∞(Γt) ≤ h2 |log h|

3
2 const,

‖u−R l
hu‖W1,∞(Γt) ≤ h |log h| const,

‖∂Xl
h

t (u−R l
hu)‖L∞(Γt) ≤ h2 |log h|3 const,

‖∂Xl
h

t (u−R l
hu)‖W1,∞(Γt) ≤ h |log h|

5
2 const .

We remark that the logarithmic order in the inequalities above, is
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certainly not optimal. Since for evolving surfaces there are very few
results presented, we consider that as not essential.
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3.4. A semilinear parabolic problem coupled with
a regularized velocity law

A starting point for studying ALE-ESFEM is an article by Elliott
and Styles [42]. In that paper they considered a problem which
originates from mathematical biology. The task is to compute an
unknown surface, whose evolution is coupled with the solution of
a reaction diffusion equation on the surface. In a private communi-
cation with Prof. Madzvamuse during a workshop in Oberwolfach
it was revealed that originally Elliott and Styles wanted to consider
the coupled problem

(∂X
t + div(vX)− ∆)u = f , u(0) = u0,

vX = gnX , X(Γ0, 0) = Γ0. (3.7)

The ESFEM approximation to this problem behaves badly. Their
solution was to regularized the velocity law (3.7) to

vX = gnX + ε∆X, X(Γ0, 0) = Γ0, (3.8)

where ε > 0 is a small parameter. The ESFEM discretization of that
problem leads to satisfactory results.

Independently, Prof. Lubich and Buyang Li observed by a theo-
retical argument that it should not be possible to derive stability for
the velocity law (3.7). The numerical analysis of (3.8) in two space
dimensions is currently out of reach. Hence, Prof. Lubich suggested
to study the following

PDE 3.4.1. For a given surface Γ2
0 ⊂ R3, α > 0, initial Data

u0 ∈ H2(Γ0) and forcing terms f , g ∈ C1(R × R3) find an
evolving surface X ∈ C1(0, T; C2(Γ0;R3)), and a function u ∈
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L2(0, T; H2(Γt)), which satisfy

(∂X
t + div(vX)− ∆)u = f (u,∇u), u(0) = u0,

vX − α∆vX = g(u,∇u)nΓ(t), X(Γ0, 0) = Γ0.

In contrast to (3.8) we regularize with −α∆vX on the left-hand side
instead of −ε∆X on the right-hand side.

We describe the computational method. We modify the standard
ESFEM algorithm, cf. (2.39). We recall that xh(t) = (xi(t))N

i=1 ∈
RN ⊗R3 are the nodes of our approximation surface and uh(t) =
(ui(t))N

i=1 ∈ RN are the nodal values of our finite element function.
M(xh), A(xh) are the mass and stiffness matrices on Γ(xh). We set

M3(xh) – M(xh)⊗ I3, A3(xh) – A(xh)⊗ I3,

M∗(xh) – M3(xh) + αA3(xh).

Since X is unknown we determine xh and uh via the following ODE
system:

d
dt

(M(xh)uh) + A(xh)uh = fh(xh, uh), uh(0) = Ihu0,

M∗(xh)
dxh

dt
= gh(xh, uh), xh(0) = xh,0,

(3.9)

where fh(xh, uh) = ( fi(xh, uh))N
i=1 ∈ RN with

fi(xh, uh) –

∫
Γ(xh)

f (uh,∇huh)χi,

and gh(xh, uh) = (gi(xh, uh))N
i=1 ∈ RN ⊗R3 with

gi(xh, uh) –

∫
Γ(xh)

g(uh,∇huh)nΓ(xh)χi.

In [55] we have shown stability and convergence for (3.9). We need
some additional notation for the statement. If yh(t) = (yi(t))N

i=1 ∈
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3.4. A regularized coupled problem

RN ⊗R3 denotes some other admissible mesh, then we set uh[yh] –

∑N
i=1 uiχi[yh] and xh[yh] – ∑N

i=1 xiχi[yh], where (χi[yh]) ⊂ Sh(yh)
denotes the usual Lagrange finite element basis. The main result is
the following

Theorem 3.4.2. Let X and u be the solution of the PDE 3.4.1. As-
sume that for an admissible initial mesh (xi)N

i=1 ⊂ Γ0, and then
for every refinement, we have that the mesh yh(t) – (yi(t))N

i=1 –

(X(xi, t))N
i=1 ⊂ Γ(t) stays admissible. Then, it holds that for the

ESFEM of order k ≥ 2 there exists a sufficiently small h0 > 0 such
that for all h < h0 we have the estimates

‖u− uh[yh]l‖L∞(0,T;L2(Γt)) ≤ hk const,

‖u− uh[yh]l‖L2(0,T;H1(Γt)) ≤ hk const,

‖1Γ(t) − xh[yh]l‖L∞(0,T;H1(Γt)) ≤ hk const,

‖vX − ẋh[yh]l‖L∞(0,T;H1(Γt)) ≤ hk const,

where ẋh – d
dt xh.
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I Chapter 4.

Summary and discussion

We will discuss the techniques and ideas developed to prove the
theorems presented in the last chapter. For the convenience of the
reader, we use dependency graphs in our discussion. The arrow tips
in the graphs should be read as “depends on” and a highlighted
black box represents a final theorem.

All numerical experiments, which have been coded by the author,
have been written in the C++ programming language. The Dune-
FEM library, [22], provided the basis for our ESFEM code. Algebraic
computations have been done with SAGE [24].

4.1. On an arbitrary Lagrangian-Eulerian evolving
surface finite element method

We sketch how to show convergence for some fully discrete ALE-
ESFEM schemes, theorem 3.1.5. This is done in four steps. First, we
recall the problem using bilinear form notation. Then, we control
the spatial discretization error. In the last two steps, we consider
time stability of backwards difference formulas and Runge-Kutta
method. Afterwards, the author discusses the contributions made
in this work. Finally, numerical experiments are discussed.
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4. Summary and discussion

Summary

Let us recall the basic idea of the ALE-ESFEM mentioned in section
3.1. Using an ALE map A we are able to express u as the solution of
the PDE 3.1.3, which differs from the original PDE 3.1.1. Using the
mass and stiffness form notation (2.19) and (2.33) we may express
the weak form of PDE 3.1.3 as

d
dt

(m(u, φ)) + a(u, φ) + m(u, (vA − vX) · ∇φ) = m( f , φ) + m(u, ∂At φ).

(4.1)

For the precise construction of the ALE-ESFEM we refer to section
3.1. The finite element weak form reads as

(4.2)
d
dt

(mh(uh, φh)) + ah(uh, φh) + mh(uh, (IhvX − vAh ) · ∇φ)

= mh( fh, φh) + mh(uh, ∂Ah
t φh).

The corresponding matrix ODE system is formulated in (3.1). The
schemes resulting from applying BDF or RKM on (3.1) are formu-
lated in (3.2) and (3.3), respectively.

We will now sketch how to control the error. Regardless of time
stepping method we split the error as

u(tn)− ul
n = [u(tn)−R l

hu(tn)] + [R l
hu(tn)− ul

n] — ρ + θl
n,

where Rh is the Ritz map (2.62).
We can bound ρ with (2.63). The main difficulty was to control θn.

In graph 4.1 we display some steps necessary to achieve this goal.
We start to discuss the gray frames above the black frame, which
correspond to the spatial discretization error. Then, we proceed
with the gray frames below the black frame, which correspond to
the time stability.
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4.1. On an arbitrary Lagrangian-Eulerian ESFEM

Convergence of some fully discrete
ALE-ESFEM (theorem 3.1.5)

Bounding the semidiscrete residual

Controlling the novel term

m(φl
h, (vl

Ah
−I l

h vX) · ∇ψl
h)− mh(φh, (vAh −IhvX) · ∇hψh)

RKM stability

Energy estimates

BDF stability

A multiplier with G-stability

Graph 4.1.: Some dependencies for theorem 3.1.5
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4. Summary and discussion

Spatial discretization error

The semidiscrete residual Rh ∈ Sh(A) is given via the equation

(4.3)
d
dt

(mh(Rhu, φh))+ ah(uh, Rhu)+ mh(Rhu, (IhvX − vAh ) · ∇φ)

= mh( f−l , φh) + mh(uh, ∂Ah
t φh) + mh(Rh, φh).

Using the matrix vector notation we get

d
dt

(MRhu) + ARhu + BRhu = M fh + MRh,

where have used our nodal value notation (2.29) (a finite element
function and its nodal value vector are denoted by the same symbol).
To show the bound

‖Rh‖H−1
h (Γh(t)) ≤ h2 const, (4.4)

we take the difference of (4.3) and (4.1). The following ancillary
bound is novel.

Lemma 4.1.1. For linear finite elements φh, ψh ∈ Sh(A) we have
the estimate

m(φl
h, (vl

Ah
−I l

h vX) · ∇ψl
h)− mh(φh, (vAh −IhvX) · ∇hψh)

≤ h2 const .

Such an estimate also appears in the work of Elliott and Venkatara-
man [43, lemma B.3]. Unfortunately with the arguments presented
there we could only deduce a first order estimate in h.

Proof of lemma 4.1.1. We start with

mh(φh, (vAh −IhvX) · ∇ψh)

= m(φl
h, (vl

Ah
−I l

h vX) · 1
δl

h
prTΓh

(I − dAH) prTΓ∇ψl
h).
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4.1. On an arbitrary Lagrangian-Eulerian ESFEM

Using (2.44) and (2.47) it suffices to prove the critical estimate

|(prTΓ−prTΓ prTΓh
)(vl
Ah
−I l

h vX)| ≤ h2 const .

A quick calculation reveals

prTΓ−prTΓh
prTΓ = (nh − n + (nh − n) · nhn) tnh.

Having (2.45) in mind it suffices to show

|nh · (vl
Ah
−I l

h vX)| ≤ h const,

which is equivalent to

|Ihn · (vAh −IhvX)| ≤ h const .

Set Fh – vAh −IhvX and note that Ihn · Fh vanishes on the nodes
of Γh. Fix an element E ⊂ Γh and assume for simplicity that E is h
times the standard 2-simplex of ∆ ⊂ R2 ⊂ R3. Since we have linear
finite elements, a straightforward calculation using Lagrange basis
reveals

−Ihn · (vAh −IhvX) =

(n(h, 0, 0)− n(0, h, 0)) · (Fh(h, 0, 0)− Fh(0, h, 0))
x
h

y
h

+ (n(0, h, 0)− n(0)) · (Fh(0, h, 0)− Fh(0))
y
h

(
1− x

h
− y

h

)
+ (n(h, 0, 0)− n(0)) · (Fh(h, 0, 0)− Fh(0))

x
h

(
1− x

h
− y

h

)
.

A Taylor expansion argument concludes the proof. �

Using the lifted product rule (2.42a), the definition of our Ritz
map (2.62), the bilinear form bounds (2.56a), (2.56c), the Ritz map
bounds (2.63), (2.65) and lemma 4.1.1 we deduce (4.4).
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4. Summary and discussion

Time stability of backwards difference formulas

The perturbation defect δBDF
n , for n ≥ k, is given via the equation

k

∑
j=0

δj Mn−jθ
BDF
n−j + τAnθBDF

n + τBnθBDF
n = τ fn + Rn + δBDF

n . (4.5)

A tedious calculation using Peano kernels shows that we have the
bound

‖δBDF
n ‖2

∗,n – ‖δBDF
n ‖2

∗,tn
≤ τ2k

k

∑
l=0

∫ T

0
‖(∂Ah

t )lRhu‖2
L2(Γh(t)) dt const .

Using the lift identity (2.40), the material derivative Ritz map
bounds (2.65), the identity (2.41) and material derivative velocity
bounds (2.61) we deduce that the integral term above is bounded.

We sketch how to derive the stability bound

|θBDF
n |2Mn

+ τ
n

∑
j=k
|θBDF

j |2Aj
≤
(

τ
n

∑
j=k
‖δBDF

j ‖2
∗,j

+ max
0≤i≤k−1

|θBDF
i |2Mi

)
const .

We combine Dahlquist’s G-stability theory [20] together with Nevan-
linna’s and Odeh’s multiplier technique [69]. This means that for a
sufficiently small η ∈ (0, 1) (depending on the method) there exists
a positive definite matrix (gij)k

i,j=1 such that we have the crucial
estimate

(θBDF
n − ηθBDF

n−1) · Mn

k

∑
j =0

δjθ
BDF
n−j ≥

k

∑
i,j=1

gijθ
BDF
n−k+i · MnθBDF

n−k+j

−
k

∑
i,j=1

gijθ
BDF
n−k−1−i · MnθBDF

n−k−1−j.

We note that for the A-stable BDF 1 and BDF 2 we can even choose
η = 0. The estimate above implies that we can test (4.5) with the
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4.1. On an arbitrary Lagrangian-Eulerian ESFEM

multiplier θBDF
n − ηθBDF

n−1 . Differences of mass matrices are handled
with (2.36a), while differences of stiffness matrices are handled with
(2.36b). For the novel term Bn we readily deduce bound

|y · B(t)z| ≤ |z|M(t) |y|A(t) const . (4.6)

This in conjunction with some Young inequalities lead to the stabil-
ity bound.

Time stability of Runge-Kutta methods

The perturbation defects δRKM
n and δRKM

ni are defined via the equa-
tion system

Mn+1θRKM
n+1 = MnθRKM

n + τ
s

∑
j=1

bjΘ̇nj + δRKM
n ,

MniΘni = MnθRKM
n + τ

s

∑
j=1

aijΘ̇nj + δRKM
ni ,

Θ̇nj = MnjRnj,−AnjΘnj − BnjΘnj,

(4.7)

where i = 1, . . . , s, Rnj – R(tnj) etc. We remark that in this context
Θ̇nj is a mere symbol and not the time derivative of Θnj. Using
Peano kernels we can bound the defects with

‖δRKM
n ‖2

∗,n ≤ τ2p
p

∑
l=0

∫ T

0
‖(∂Ah

t )lRhu‖2
L2(Γh(t)) dt const,

‖δRKM
ni ‖2

∗,n ≤ τ2p
p

∑
l=0

∫ T

0
‖(∂Ah

t )lRhu‖2
L2(Γh(t)) dt const .

With the same arguments as in the BDF case we deduce that the
integral term above is bounded.
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4. Summary and discussion

We sketch how to show the stability bound

|θRKM
n |2Mn

+ τ
n

∑
k=1
|θRKM

k |2Ak

≤ C
{
|θRKM

0 |2M0
+ τ

n−1

∑
k=1

s

∑
i=1
‖MkiRki‖2

∗,ki + τ
n

∑
k=1

∣∣∣∣∣δRKM
k
τ

∣∣∣∣∣
2

Mk

+ τ
n−1

∑
k=0

s

∑
i=1

(
|M−1

ki δRKM
ki |2Mki

+ |M−1
ki δRKM

ki |2Aki

)}
.

Test (4.7) with θRKM
n+1 . Since the method is admissible we can use

property (iii) from definition 3.1.4 This leads to the estimate

|θRKM
n+1 |

2
Mn+1
≤ (1 + τ const) + 2τ

s

∑
i=1

biΘ̇ni · M−1
ni (MniΘni + δni)

+ τ |Θn+1|2Mn+1
+ (1 + τ const)τ

∣∣∣∣δn+1

τ

∣∣∣∣2
M−1

n+1

.

The novel term B is hidden in Θ̇ni. We use the same matrix estimates
as for the BDF case. Additionally, we need (2.36c).

Contribution

The contribution of the author can be summarized as:

• Giving a new proof for a bilinear form bound.

• Proving convergence for ALE-ESFEM with admissible RKM
fully discrete schemes. In particular the important Radau IIa
method is included as a time stepping method.

• Providing pictures and numerical experiments. More details
in the next section.
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4.1. On an arbitrary Lagrangian-Eulerian ESFEM

The author read the first time about ALE-ESFEM in a computational
paper of Elliott and Styles [42]. After reading an article of Formaggia
and Nobile [45] the author understood how to formulate the ALE-
ESFEM. The new proof for lemma 4.1.1 has been added by the
author during the preparations of this thesis. The RKM stability
proof was done by the author. He adapted a proof from Dziuk,
Lubich and Mansour [37] and Mansour [66] to the ALE setting.

We discovered after submitting our article that independent from
our work Elliott and Venkataraman formulated the same ALE-
ESFEM as we did, cf. [43]. They proved error bounds for the
semidiscrete ALE-ESFEM and for the fully discrete variant with
BDF 2 as time stepping method. The last result is contained as a
special case of our theorem 3.1.5.

We want to make clear in which points the analysis differs. In
their analysis they use the Ritz projection Rh

a(Rhz, φl
h) = a(z, φl

h), for
∫

Γ z = 0 and ∀φh ∈ Sh(Ah),

which is not the Ritz map Rh (2.62). Further their stability analysis
does not use Dahlquist G-stability or Nevanlinna and Odeh multi-
plier technique, which is the reason why higher-order BDF schemes
could not be considered there.

Numerical experiments

Consider the following experiment: For a(t) – 1 + 0.25 sin(2πt) we
consider the following family of implicit given surfaces

Γ(t) – {x ∈ R3 | a−1(t)x2
1 + x2

2 + x2
3 − 1 = 0}, t ∈ [0, 1].

The dynamic parametrization for the PDE 3.1.1 is chosen such that
the velocity has no tangential component. This evolution is not
computed analytically but numerically with the same time stepping
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4. Summary and discussion

method as for the fully discrete scheme. On the other hand, we
choose the ALE map for PDE 3.1.3 to be

A(x, t) =
(
a

a(t)x1, x2, x3

)
.

The movement of the corresponding meshes are illustrated in figure
A.1 . For the PDE we calculated f such that u(x, t) = e−6tx1x2 is the
exact solution of the problem. The fully discrete scheme is ALE-
ESFEM with BDF 1 or BDF 3. The sequence of meshes are chosen
such that for the maximum element diameter we have hi ≈ 2hi+1,
i = 1, . . . , 4. This is achieved by roughly doubling the number of
nodes of the mesh. For the sequence of time steps we choose for
BDF 1 τi ≈ 4τi+1 and for BDF 3 τi ≈

3
?

4τi+1, i = 1, . . . , 4. The k-th
experimental order of convergences, k = 2, . . . , 5, for the errors Ek−1
and Ek with mesh and time step sizes (hk−1, τk−1) and resp. (hk, τk)
is given via the formula

EOCk –

log
(

Ek−1
Ek

)
log

(
hk−1

hk

) . (4.8)

They are measured in table A.1 and table A.2. Some figures with
convergence slopes are given in figure A.2, A.3, A.6, A.7.

The figure with the mesh movement has been plotted by the
author. Forcing terms, error tables and error slopes for the BDF 1

and BDF 3 time stepping method have been computed by the author.

54



4.2. On a full discretization of a quasilinear problem

4.2. On a full discretization of a quasilinear
problem on evolving surfaces

We sketch how to show convergence for some fully discrete ESFEM
schemes for a quasilinear problem, theorem 3.1.5. This is done in
five steps. First, we recall the problem using bilinear form notation.
Then, we introduce a suitable Ritz map for the quasilinear problem.
We analyze the new Ritz map and prove Sobolev maximum norm
stability for this Ritz map. This is followed by a bound of the spatial
discretization error. In the last two steps, we consider time stabil-
ity of backwards difference formulas and admissible Runge-Kutta
methods. Afterwards, a discussion of our contributions follows.
This section is concluded with some numerical experiments.

Summary

The weak form of PDE 3.2.1 reads as

d
dt

(m(u, φ)) + a(u; u, φ) = m( f , φ) + m(∂X
t u, φ), (4.9)

where the quasilinear form is given via

a(u; v, w) – a(t; u, v, w) –

∫
Γ(t)

A (u)∇v · ∇w.

The ESFEM version reads as
d
dt

(mh(uh, φh)) + ah(uh; uh, φh) = mh( fh, φh) + mh(∂Xh
t uh, φh).,

where the discrete quasilinear form is given via

ah(u; v, w) – ah(t; u, v, w) –

∫
Γh(t)

A (u)∇hv · ∇hw.

The corresponding matrix ODE system is formulated in (3.4). The
schemes resulting from applying linearly implicit BDF or fully
implicit RKM on (3.4) are formulated in (3.5) resp. (3.6).
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4. Summary and discussion

We will now discuss how to control the error. To obtain optimal
order error bounds in the L2-norm we need to introduce a suitable
Ritz map for our nonlinear problem.

Definition 4.2.1. For given ψ, u ∈ L∞(0, T; H1(Γt)) we define
Rhu – Rh(φ)u ∈ Sh(t) via the requirement that for all φh ∈
Sh(t) it holds

a∗h(ψ−l ; Rhu, φh) = a∗(ψ; u, φl
h).

With this Ritz map we split regardless of time stepping method the
error as

u(tn)− ul
n = [u(tn)−R l

hu(tn)] + [R l
hu(tn)− ul

n] — ρ + θl
n.

Generic constant

Compared to the numerical analysis of the preceding ALE-ESFEM
section it is now essential that the generic constant depends on some
Sobolev maximum norm of the exact solution. In our original work
[56], we have led the generic constant depend on the W2,∞-norm of
the exact solution. This made the presentation there easier. In the
present work we will let the generic constant depend only on the
W1,∞-norm of the exact solution.

On the formal level we assume that u is an element of the set

S –

{
φ ∈ L∞(0, T; H1(Γt))

∣∣∣ ‖φ‖L∞(0,T;W1,∞(Γt)) < const
}

. (4.10)

Then, we let the generic constant depend on const (4.10).

Error bounds for a Ritz map

Consider graph 4.2. We start do discuss the gray frames above the
highlighted black frame, which corresponds to the spatial discretiza-
tion errors.
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4.2. On a full discretization of a quasilinear problem

Convergence of some fully
discrete schemes (theorem 3.2.2)

Bounding a semidiscrete residual

Maximum norm bound for that Ritz map

Error estimates for that Ritz map

Definition of a different Ritz map

RKM stability

Energy estimates

BDF stability

A multiplier and G-stability

Graph 4.2.: Some dependencies for theorem 3.2.2
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We need the following bounds for ρ:

‖ρ‖L2 + h ‖ρ‖H1 ≤ h2 const, (4.11)

‖(∂Xl
h

t )mρ‖L2 + h ‖(∂Xl
h

t )mρ‖H1 ≤ h2 const, (4.12)

where m ≥ 1. To derive the H1-bounds in (4.11) we require a
pseudo Galerkin orthogonality of the type

|a∗(ψ; u−R l
hu, φl

h)| ≤ h2 const .

For this we needed the bilinear form bound

|a(ψ; u, φ)− ah(ψ−l ; u−l , φ−l)| ≤ h2 const,

and the boundedness of A . To derive the L2-bound in (4.11) we
employed a Aubin-Nitsche argument, which relies on the a priori
estimate

‖u‖H2 ≤ ‖ f ‖L2 const, (4.13)

for the elliptic part of PDE 3.2.1,

u− div(A (ψ)∇u) = f . (4.14)

For (4.12) we need to assume that

∂
Xl

h
t A (ψ) ∈ L∞(0, T; L∞(Γt))

holds. Then, we can extend a standard proof for (2.65).

A Sobolev maximum-norm bound for a Ritz map

We sketch how to prove

‖R l
hu‖W1,∞ ≤ ‖u‖W1,∞ const . (4.15)

A related estimate for the usual Ritz projection on the plain domain
has been shown by Rannacher and Scott [74]. It is not a good
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4.2. On a full discretization of a quasilinear problem

strategy to repeat their proof with our Ritz map Rh. The reason is
that Rh is not a projection, RhR

l
hu 6= Rhu. We present a workaround.

Define an auxiliary Ritz projection R2u = R2(ψ)u via

a∗(ψ; R2u, φl
h) = a∗(ψ; u, φl

h), φh ∈ Sh(t),

where ψ, u ∈ H1(Γt). The technical part is to verify that the tech-
niques shown in [74] extend to the evolving surface case:

‖R2u‖W1,∞ ≤ ‖u‖W1,∞ const . (4.16)

The only serious obstacle are calculations with weight functions of
the type

σz(x) –

b

|x− z| + κ2h2, (4.17)

where κ > 0 is a big number independent of h. We postpone that
discussion to the next section, cf. section 4.3 (4.25).

With (4.16) we can deduce (4.15) as follows: Consider only one
component of ∇R l

hu and denote it with ∂R l
hu. Assume that ∂R l

hu
takes its maximum on a lifted element E ⊂ Γ. Let x ∈ E. Consider
a regularized delta function δx for E, i.e. δx ∈ C3

0(E) such that we
have

m(δx, φl
h) = φl

h(x), ∀φh ∈ Sh,

‖δx‖Lp ≤ h−2(1−1/p) const .

Let g ∈ H1(Γ) be the solution of

a∗(ψ; g, φ) = m(δ, ∂φ).

One easily gets the a priori estimate

‖g‖H1 ≤ h−1 const .
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4. Summary and discussion

Since ∂R l
hu is constant on E, we calculate

∂R l
hu = m(∂R l

hu, δx) = a∗(ψ; R l
hu, g) = a∗(ψ; R l

hu, R2g)

= a∗(ψ; R l
hu, R2g)− a∗h(ψ−l ; Rhu, R−l

2 g) + a∗(ψ; R2u, g)

= a∗(ψ; R l
hu, R2g)− a∗h(ψ−l ; Rhu, R−l

2 g) + m(∂R2u, δx).

For the last term we use a Hölder estimate in conjunction with
(4.16). For the bilinear form error we calculate

|a∗(ψ; R l
hu, R2g)− a∗h(ψ−l ; Rhu, R−l

2 g)|
≤ h2 ‖R l

hu‖W1,∞ ‖R2g‖W1,1 const

≤ h ‖R l
hu‖W1,∞ const

This shows

‖∇R l
hu‖L∞ ≤ (h ‖R l

hu‖W1,∞ + ‖u‖W1,∞ ) const

Repeat the argument for R l
hu instead of ∂R l

hu for a suitable choice
of x in δx. For a sufficiently small h < h0 we get (4.15).

Spatial discretization error

The semidiscrete residual Rh is defined via the equation

(4.18)
d
dt

(mh(Rhu, φh)) + ah(Rhu; Rhu, φh)

= mh(Rhu, ∂Xh
t φh) + mh( f−l , φh) + mh(Rh, φh)

or using the matrix vector notation

d
dt

(MRhu) + A(Rhu)Rhu = fh + MRh.

We take the choice Rh(u)u = Rhu. We sketch how this implies the
bound

‖Rh‖H−1
h
≤ h2 const . (4.19)
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4.2. On a full discretization of a quasilinear problem

Using the lifted product rule (2.42a), the bilinear form bounds
(2.56a), (2.56c) and the new Ritz map bounds (4.11), (4.12) we can
bound every term except for the stiffness form difference. For the
latter the definition of Rh(u) to get

a∗h(Rhu; Rhu, φh)− a∗(u; u, φl
h)

= a∗h(Rhu; Rhu, φh)− a∗h(u−l ; Rhu, φh)

=
∫

Γh

(A (Rhu)−A (u−l))∇hRhu · ∇hφh.

Using that A is Lipschitz continuous together with the Sobolev max-
imum norm bound (4.15) we can bound this term with an L2-L∞-L2

Hölder-estimate. This finishes the proof. Obviously, const (4.19)
depends on const (4.10).

Time stability of backwards difference formulas

The perturbation defect δBDF
n , for n ≥ k, is given via the equation

k

∑
j =0

δj Mn−jθ
BDF
n−j

+ τ

(
An

(k−1

∑
j=0

γjRhu(tn−k+j)
)
− An

(k−1

∑
j=0

γjuBDF
n−k+j

))
Rhu(tn)

+ τAn

(k−1

∑
j=0

γjuBDF
n−k+j

)
θBDF

n = MnRn.

A tedious calculation using Peano kernels shows that we have the
bound

‖δBDF
n ‖2

∗,n – ‖δBDF
n ‖2

∗,tn
≤ τ2k

k

∑
l=0

∫ T

0
‖(∂Ah

t )lRhu‖2
L2(Γh(t)) dt const .

Using the lift identity (2.40), the new material derivative Ritz map
bounds (4.12), the identity (2.41) and material derivative velocity
bounds (2.61) we deduce that the integral term above is bounded.
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4. Summary and discussion

We sketch how to derive the stability bound

|θBDF
n |2Mn

+ τ
n

∑
j=k
|θBDF

j |2Aj
≤
(

τ
n

∑
j=k
‖δBDF

j ‖2
∗,j

+ max
0≤i≤k−1

|θBDF
i |2Mi

)
const .

Like in the previous section we us Dahlquist’s G-stability theory
together with Nevanlinna’s and Odeh’s multiplier technique, i.e.
we can use the multiplier θBDF

n − ηθBDF
n−1 . Differences in the nonlinear

term can be handled by using Lipschitz estimates and letting the
generic constant depend on const (4.10). The nonlinear term can
be changed to the usual stiffness matrix norm by using the lower
bound of it.

Time stability of Runge-Kutta methods

The perturbation defects δRKM
n and δRKM

ni are defined via the equa-
tion

Mn+1θRKM
n+1 = MnθRKM

n + τ
s

∑
j=1

bjΘ̇nj + δRKM
n ,

MniΘni = MnθRKM
n + τ

s

∑
j=1

aijΘ̇nj + δRKM
ni ,

Θ̇nj = MnjRnj − (Anj (Rhu(tnj))− Anj(Unj))Rhu(tnj)

− Anj(Unj)ΘRKM
nj ,

where i = 1, . . . , s, Rnj – R(tnj) etc. Using Peano kernels we can
bound the defects with

‖δRKM
n ‖2

∗,n ≤ τ2p
p

∑
l=0

∫ T

0
‖(∂Ah

t )lRhu‖2
L2(Γh(t)) dt const,

‖δRKM
ni ‖2

∗,n ≤ τ2p
p

∑
l=0

∫ T

0
‖(∂Ah

t )lRhu‖2
L2(Γh(t)) dt const .
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4.2. On a full discretization of a quasilinear problem

With the same arguments as in the BDF case we deduce that the
integral term above is bounded.

We sketch how to show the stability bound

|θRKM
n |2Mn

+ τ
n

∑
k=1
|θRKM

k |2Ak

≤
(
|θRKM

0 |2M0
+ τ

n−1

∑
k=1

s

∑
i=1
‖MkiRki‖2

∗,ki + τ
n

∑
k=1

∣∣∣δRKM
k
τ

∣∣∣2
Mk

+ τ
n−1

∑
k=0

s

∑
i=1

(
|M−1

ki δRKM
ki |2Mi

+ |M−1
ki δRKM

ki |2Aki

))
const,

Like in the ALE section, we test the perturbed equation with θRKM
n+1 .

Using again that the method is admissible we a similar bound like
in the ALE section. The nonlinear difference is hidden in Θni. Like
in the BDF case, we can handle differences of the nonlinear term by
using Lipschitz continuity and by letting the constant depend on
const (4.10).

Contribution

The contribution of the author can be summarized as follows:

• Formulating together with the coauthor a suitable Ritz map
for a quasilinear problem on evolving surfaces.

• Providing existence and an a priori bound for the PDE (4.14).

• Proving W1,∞-best-approximation bounds for our Ritz map.

• Providing all numerical experiments. More details in the next
section.

The formulation of the Ritz map was done with the coauthor to-
gether. The coauthor extended the L2-error bounds by using an
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4. Summary and discussion

appropriated PDE lemma proven by the author. Material deriva-
tive bounds were partly derived by the author. The W1,∞-best-
approximation bounds for our Ritz map have been done by the
author alone. The proof presented here is not presented in the
article [56]. There the author used a simpler bound and let the
generic constant depend on the W2,∞-norm of the exact solution.

Numerical experiments

The numerical experiments have been coded solely by the author in
C++.

Consider the following experiments: Let Γ0 ⊂ R3 be the unit
sphere and let [0, T] = [0, 1]. As an evolving surface we choose

X: Γ0 × [0, T]→ R3, (x, t) 7→ (a(t)x1, x2, x3, t),

with a(t) – 1 + 0.25 sin(2πt). Set A (z) – 1− 1
2 e−z2/4. For the PDE

3.2.1 we choose the forcing term f such that u(x, t) = e−6tx1x2 is the
exact solution. We use the implicit Euler method and the linearly
implicit BDF 3 for time stepping. We already discussed in the last
section how to choose the time steps, the meshes and what EOC
means. In table B.1 we computed the EOC for the ESFEM with the
implicit Euler method. For figure B.1 and figure B.2 we calculate the
numerical solution until the end time T = 1 for different step sizes
and meshes. The first mentioned figure is for the implicit Euler
method and the second figure is for the linearly implicit BDF 3.
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4.3. On some maximum-norm error estimates

4.3. On some maximum-norm error estimates

In this section we discuss how to prove parabolic maximum norm
bounds for the ESFEM, theorem 3.3.1, and how to prove maximum
norm bounds for the Ritz map and its material derivative, theorem
3.3.2.

Summary

We consider a standard linear parabolic PDE on an evolving surface,
PDE 3.1.1, and discretize that equation with the ESFEM. We split
the error as follows:

u− ul
h = (u−R l

hu) + (R l
hu− ul

h) — ρ + θl
h,

where Rh is the Ritz map

ah(Rhu, φh) = a(u, φl
h), ∀φh ∈ Sh.

The semidiscrete residual Rh(t) satisfies per definition for all φh ∈ Sh
the equation

mh(t; ∂X
t Rhu, φh) + (∂Xh

t mh)(t; Rhu, φh) + ah(t; Rhu, φh)

= mh(t; f−l , φh) + mh(t; Rh(t), φh).

As a consequence we have

mh(t; ∂X
t θh, φh) + (∂Xh

t mh)(t; θh, φh) + ah(t; θh, φh) = mh(t; Rh(t), φh).

If Eh(t, s): Sh(s)→ Sh(t) denotes the solution operator of the ODE

d
dt

(Muh) + Auh = 0,

that means t 7→ Eh(t, s)φh solves the ODE with initial value φh at
time s, then the variation of constant formula implies

θh(t) = Eh(t, 0)θh(0) +
∫ t

0
Eh(t, s)Rh(s) ds.
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4. Summary and discussion

Hence, we have maximum-norm bounds,

‖u− ul
h‖L∞(0,T;L∞(Γt)) + h ‖u− ul

h‖L∞(0,T;W1,∞(Γt)) ≤ h2 |log h|p const

for some power p ≥ 1, if we can prove the estimates

‖ρ‖L∞(0,T;L∞(Γt)) + h ‖ρ‖L∞(0,T;W1,∞(Γt)) ≤ h2 |log h|p const, (4.20)

‖Rh‖L∞(0,T;L∞(Γh,t)) ≤ h2 |log h|p const, (4.21)

‖Eh(t, 0)‖L∞(0,T;L∞(Γh,t)) ≤ |log h|p const . (4.22)

In addition inequality (4.21) calls for the estimate

(4.23)‖∂X
t ρ‖L∞(0,T;L∞(Γt)) ≤ h2 |log h|p const .

Consider graph 4.3. Next, we discus the connection between the
maximum-norm with some weighted norms. This requires a com-
parison of an extrinsic distance with an intrinsic distance. After-
wards, we sketch how to proof maximum-norm Ritz error bounds,
(4.20), in three steps. The second step is the difficult derivation of
some weighted a priori estimates. Then, we sketch how this tech-
niques enable us to obtain maximum-norm bound for the material
derivative Ritz error, (4.23). Time stability is derived via the weak
discrete maximum principle, (4.22). This is obtained by bounding
the maximum norm of an elliptic finite element Greens function
and by considering the adjoint dynamic of Eh(t, s).

Extrinsic and intrinsic distance

For our moving surface X: Γ0 × [0, T]→ R3 we define the extrinsic
distance on Γ(t) = X(Γ0, t) as the Euclidean distance between two
points, |x− y|, and the intrinsic distance as the Riemannian dis-
tance between two points, dΓ(x, y), which means length of a length
minimizing geodesic joining them.1 For the analysis it is important

1The Hopf Rinow theorem implies that on a compact manifold without boundary
two points can always be joint by a length minimizing geodesic.
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4.3. On some maximum-norm error estimates

Maximum-norm
convergence of ESFEM

(theorem 3.3.1)

Bounding a Ritz error and
its material derivative

(theorem 3.3.2)

Weighted a priori estimates

Extrinsic/ intrinsic distance

Weak discrete maximum principle

Bounds for a Greens functionFinite element a priori estimate

An adjoint problem

Graph 4.3.: Some dependencies for theorem 3.3.1 and theorem 3.3.2
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4. Summary and discussion

to consider weight functions of the type

µ(x, y) = |x− y|2 + ρ2, (4.24)

µ̃(x, y) =
b

|x− y|2 + h2, (4.25)

where ρ2 – γh2 |log h|with a large number γ > 0, which we require
to be independent of h. A natural question arise: “Is it beneficial to
stay with the extrinsic distance or is it better to change everything to
the intrinsic distance”. Calculating the material derivative or the lift
of some weight function is better done with the extrinsic distance.
By some nontrivial argument we can show that for a function f (r)
with r = dΓ(x, y) we have the estimate∫

Γ(t)
f (dΓ(x, y)) dx ≤

∫ R

0
rm f (r) dr const .

This means that integral calculation via polar coordinates are feasi-
ble with the intrinsic distance. To have all the mentioned benefits
without any trade-offs we show that both distances are equivalent.

The following inequality is trivial:

|x− y| ≤ dΓ(x, y).

The converse inequality,

dΓ(x, y) ≤ |x− y| const , for const ≥ 1,

follows by some calculations in a local chart.

Some weight functions on evolving surfaces

With the weight function (4.24) we can establish a weak equivalence
of the maximum-norm and some weighted norm. We step into the
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4.3. On some maximum-norm error estimates

details. Set

‖u‖2
L2,α –

∫
Γ

µ−α |u|2,

‖u‖2
H1,α – ‖u‖2

L2 ,α + ‖∇u‖2
L2 ,α,

‖u‖2
H2,α – ‖u‖2

H1 ,α + ‖∇2u‖2
L2,α.

For simplicity assume that φh ∈ Sh takes its maximum (and also the
maximum of its derivative) on E ⊂ Γh(t). Using an inverse estimate
we verify

‖φl
h‖W1,∞(Γt) = ‖φl

h‖W1,∞(E) ≤ γ |log h|1/2‖φl
h‖H1 ,1 const,

‖φl
h‖L∞(Γt) = ‖φl

h‖L∞(E) ≤ h |log h|ρ−1‖u‖L2,2 const .

On the other hand, we calculate for arbitrary φ ∈ H1(Γ)

‖φl
h‖H1 ,1 ≤ ρ−1 ‖φl

h‖W1,∞(Γt) const,

‖φl
h‖L2 ,2 ≤ |log ρ|1/2 ‖φl

h‖W1,∞(Γt) const .

This means that ‖ · ‖W1,∞ and ‖ · ‖H1,1 are equivalent up to |log h|.
Further, ‖ · ‖H1,1 and ‖ · ‖L2 ,2 can be considered as equally strong
norms. This is advantageously for the analysis. The upshot of this
calculation is that we can formulate our maximum norm problem
in a Hilbert space setting.

Maximum-norm bounds for a Ritz map

Lemma 4.3.1.

‖u−R l
hu‖2

L2 ,2 + ‖u−R l
hu‖2

H1 ,1

≤ h2 |log h|3/2 ‖u‖2
W2,∞(Γt) const .

We sketch the proof in three steps.
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4. Summary and discussion

First step for lemma 4.3.1. Let us introduce the notation e, e1 and
e2 via

e = u−R l
hu = (u−I l

h u) + (I l
h u−R l

hu) = e1 + e2.

e1 is nice, because lemma 4.3.1 with I l
h instead of R l

h is correct.2

e2 is a finite element function. We can exploit that fact for the
following inequality

‖µ−1φl
h − Ih(µ−1φl

h)‖H1 ,−1 ≤
(

h
ρ

+ h
)
(‖φl

h‖L2,2 + ‖∇φl
h‖L2 ,1) const,

where we require φh ∈ Sh. For a sufficiently small h < h0 and
sufficiently large γ > γ0, cf. (4.24), we can make the first factor
arbitrary small. Thus, using e2 = e− e1 and a triangle inequality we
can perform helpful absorption arguments.

Our goal is to prove

‖e‖2
H1,1 ≤ (h2 |log h| ‖u‖2

W2,∞ + ‖e‖2
L2 ,2) const . (4.26)

An elementary calculation leads to the bound

‖e‖2
H1 ,1 ≤ a(e, µ−1e) + ‖e‖2

L2,2 const .

We split the first term as

a(e, µ−1e) = a(e, µ−1e1) + a(e, µ−1e2 −I l
h (µ−1e2)) + a(e, I l

h (µ−1e2))

Using the definition of the Ritz map and the already mentioned
arguments, we can handle all three terms. �

2It is even correct with |log h| instead of |log h|3/2.
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4.3. On some maximum-norm error estimates

Lemma 4.3.2 (second step). The solution u of

−∆u + u = µ−2 f ,

satisfy the a priori estimate

‖u‖2
H1 ≤ ρ−2 |log ρ|‖ f ‖2

L2 ,2 const .

Proof of lemma 4.3.2. By some complicated eigenvalue argument
we can reduce the task into finding a lower bound for the Rayleigh-
quotient

inf
u 6=0

‖u‖2
H1

‖u‖2
L2,2

.

Hence, we are done if we can prove the bound

‖u‖2
L2 ,2 ≤ ρ−2 |log ρ| ‖u‖2

H1 .

A Hölder inequality shows

‖u‖2
L2,2 ≤ ‖µ‖

2
L2p ‖u‖2

L2q ,

with p−1 + q−1 = 1. Observe that

h1/ |log h| = const .

Using the quantitative Sobolev estimate

‖u‖L2q ≤ q ‖u‖H1 const,

where the constant is independent of q, we can deduce the claim
for the choice q =

a

|log ρ|. �

Third step of lemma 4.3.1. Let e – u −R l
hu. It suffices to show

show that for arbitrary δ > 0 we have

‖e‖2
L2 ,2 ≤ δ‖e‖2

H1 ,1 + h4 ‖u‖2
W2,∞ const . (4.27)
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We employ a Aubin-Nitsche type argument. Let w be the solution
of

w− ∆w = µ−2e.

We calculate

‖e‖2
L2,2 = a∗(e, w) = a∗(e, w−I l

h w) + a∗(e, I l
h w)

Using the a priori estimate

‖w‖H2,−1 ≤ (‖µ−2e‖L2 ,−1 + ‖w‖H1) const

together with lemma 4.3.2, a sufficiently small h < h0 and suffi-
ciently large γ > γ0 concludes the proof. �

We remark that with (4.15) we can obtain a log free W1,∞-bound.

Maximum-norm error bound for the material derivative of a Ritz
map

Lemma 4.3.3.

‖∂Xl
h

t (u−R l
h)‖2

L2,2 + ‖∂Xl
h

t (u−R l
h)‖2

H1,1

≤ ch2 |log h|4(‖u‖2
W2,∞(Γ(t)) + ‖∂X

t u‖2
W2,∞(Γ(t))).

Proof. We introduce the notation ∂te, ∂te1 and ∂te2:

∂te = ∂
Xl

h
t u−R l

hu = (∂Xl
h

t u−I l
h ∂X

t u) + (I l
h ∂X

t u− ∂
Xl

h
t R l

hu)

= ∂te1 + ∂te2.

∂te1 is a good term, because lemma 4.3.2 with ∂te1 instead of ∂te
is valid.3 ∂te2 is a finite element function and the same arguments
as for e2 in the proof of lemma 4.3.1 apply. For simplicity we let

3The estimate would be still correct, if we would replace |log h|4 with |log h|.
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4.3. On some maximum-norm error estimates

from now on the generic constant depend on u. Then, ∂te satisfy
the inequality

|a∗(∂te, φl
h)| ≤ (h2‖∂te‖H1,1 + h |log h|1/2)‖φl

h‖H1,−1 const,

which is our substitute for the usual Galerkin orthogonality.
Step 1: This is similar as the first step for lemma 4.3.1. We aim to

show
‖∂te‖2

H1 ,1 ≤ (h2 |log h|4 + ‖∂te‖2
L2 ,2) const .

We start with

‖∂te‖2
H1 ,1 ≤ a(∂te, µ−1∂te) + ‖∂te‖2

L2,2 const,

and split the first term as follows

a(∂te, µ−1∂te) = a(∂te, µ−1∂te1) + a(∂te, µ−1∂te2 −I l
h (µ−1∂te2))

+ a(∂te, I l
h (µ−1∂te2)).

All three terms can be handled by the arguments mentioned above.
Step 2: We aim for the estimate

‖∂te‖2
L2,2 ≤ δ‖∂te‖2

H1 ,1 + h2 |log h|4 const,

where δ > 0 is an arbitrary small number. Let w be the solution of

w− ∆w = µ−2∂te.

We calculate

‖∂te‖2
L2,2 = a∗(∂te, w) = a∗(∂te, w−I l

h w) + a∗(∂te, I l
h w).

The first term can be handled like in lemma 4.3.1. The second term
is surprisingly technical due to the weighted norms. We refer to the
original source, lemma C.4.8. �
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A Lebesgue projection

We want to discuss how to reach the weak discrete maximum
principle. We require a suitable Lebesgue projection. The L2-
projection Ph: L2 (Γh,t)→ Sh is defined via the requirement that for
all φh ∈ Sh(t) we have

mh(Ph f , φh) = mh( f , φh). (4.28)

The L2-projection is stable in any Lp-norm, i.e. it holds for all
p ∈ [1, ∞]

‖Ph f ‖Lp(Γh,t) ≤ ‖ f ‖Lp(Γh,t) const .

Further, it satisfy the following exponential decay property: For
disjoint A1, A2 ⊂ Γh(t) with supp f ⊂ A1 we have

‖Ph f ‖L2(A2) ≤ e−disth(A1,A2)h−1 const ‖ f ‖L2(A1) const,

where disth is the intrinsic distance of Γh(t).
This difficult result was shown for Euclidean domain finite ele-

ments in [27]. By using definition (4.28) we can simply repeat their
arguments. Stability bounds for the bounds for the L2-projection
will be useful to prove the parabolic finite element maximum prin-
ciple.

A finite element delta function

The whole analysis is based on the finite element delta function
δt,x

h ∈ Sh(t), where x ∈ Γh(t), which satisfies per definition for all
φh ∈ Sh(t)

mh(δt,x
h , φh) = φh(x).

δt,x
h is compatible with the weight function σx(y) = σ(x, y), cf. (4.25),

i.e. it satisfies the bound

‖σxδt,x
h ‖L2 ≤ |log h| const . (4.29)
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4.3. On some maximum-norm error estimates

The proof of this requires the Lebesgue projection with its stability
and exponential decay property.

Two important finite element functions are related with δt,x
h : An

elliptic finite element Greens function and a parabolic finite element
Greens function.

An elliptic finite element Greens function

The elliptic finite element Greens function Gt,x
h satisfies per defini-

tion for all φh ∈ Sh(t)

a∗h(Gt,x
h , φh) = φh(x).

With the operator T∗,th : Sh(t)→ Sh(t), which fulfills per definition for
all φh ∈ Sh(t)

mh(uh, φh) = a∗h(T∗,th uh, φh),

we have the identity Gt,x
h = T∗,th δt,x

h .
To analyze Gt,x

h we need its smooth counter part.

Theorem 4.3.4. There exists an elliptic Greens function G(t; x, y)
for Γ(t) with the properties

|G(t; x, y)| ≤ log(1 + |dΓ(x, y)|) const,

|∇xG(t; x, y)| ≤ 1
dΓ(x, y)

const,

ϕ(x, t) =
1
V

∫
Γ(t)

ϕ(y, t)dy−
∫

Γ(t)
G(t; x, y)∆Γ ϕ(y, t)dy,

where ϕ ∈ C2(Γ(t)) and V denotes the 2-dimensional Hausdorff
measure of Γ(t) ⊂ R3.

Proof. First, we observe that the inverse function theorem can be
extended in such a way that for a family of diffeomorphism ( ft),
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4. Summary and discussion

which depend smooth on t, the open neighborhood, on which ft

is a diffeomorphism, is independent of t. Then, we show that the
injectivity radius of Γ(t) can be bounded from below independent
of t. With this we can repeat the construction of Aubin [5] to get
our desired Greens function. �

The existence of G(t; x, y) implies for arbitrary φh ∈ Sh the estimate

‖φl
h‖L∞(Γt) ≤ |log h|

1
2 ‖φl

h‖H1(Γt) const . (4.30)

An immediate consequence is the following nice observation

‖Gt,x
h ‖

2
L∞ ≤ |log h| ‖Gt,x

h ‖
2
H1 const

= |log h|Gt,x
h (x) const

≤ ‖Gt,x
h ‖L∞ |log h| const,

which gives us the bound

‖Gt,x
h ‖L∞ ≤ |log h| const . (4.31)

An adjoint evolution operator

We already introduced the evolution operator Eh(t, s). Its adjoint

Eh(t, s)∗: Sh(s)→ Sh(t),

satisfies per definition for all φh(s) ∈ Sh(s) and ψh(t) ∈ Sh(t)

mh(t; Eh(t, s)φh(s), ψh(t)) = mh(t; φh(s), Eh(t, s)∗ψh(t)).

A calculation shows that Eh(t, s)∗ is the solution operator of the
ODE

M(s)
d
ds

uh(s)− A(s)uh(s) = 0. (4.32)
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4.3. On some maximum-norm error estimates

The sign before A(s) is correct, since the time variable s is going
backwards in time. (4.32) comes with an important energy estimate.
The solution uh satisfy

‖uh‖2
L2(0,t;L2(Γh,s)) ≤ mh(t; T∗,th uh, uh) const . (4.33)

The proof of this estimates relies essentially on the matrix vector
formulation of ODE (4.32).

A parabolic finite element Greens function

We calculate

uh(x, t) = m(t; uh, δt,x
h ) = m(t; Eh(t, 0)uh, δt,x

h ) = m(0; uh, Gx(t, 0)),

where Gx(t, s) – Eh(t, s)∗δt,x
h is the parabolic finite element Greens

function. This means that the weak discrete maximum principle

‖uh‖L∞(0,T;L∞(Γh(t))) ≤ |log h| ‖uh‖L∞(Γh(0)),

follows if we have the bound

‖Gx(t, 0)‖L1(Γh,0) ≤ |log h| const .

We sketch the proof. We calculate

‖Gx(t, 0)‖L1 ≤ ‖(σx)−1‖L2 ‖σxGx(t, 0)‖L2

≤ |log h|1/2 ‖σxGx(t, 0)‖L2 const .

By using a generalization of the L2-projection for the ESFEM and by
using bilinear form bounds we reach after a tedious calculation at

− d
ds
‖σxGx(t, s)‖2

L2(Γh,s) + ‖σx∇σGx(t, s)‖2
L2(Γh,s)

≤ (‖σxGx(t, s)‖2
L2(Γh,s) + ‖Gx(t, s)‖2

L2(Γh,s)) const .

77



4. Summary and discussion

With a backward Gronwall estimate we deduce

‖σxGx(t, 0)‖2
L2(Γh,0)

≤
(
‖σxδt,x

h ‖
2
L2(Γh,t)

∫ t

0
‖Gx(t, s)‖2

L2(Γh,s) ds
)

const .
(4.34)

We conclude the proof by a combination of (4.29), (4.33) and (4.31).

Contribution

The following list details the contributions made by the author:

• Providing all necessary tools to extend techniques based on
weighted norms for evolving surfaces problems. This includes

– equivalence of an extrinsic and an intrinsic distance to-
gether with some helpful bounds on its spatial derivative
and material derivative,

– providing all necessary calculations to transfer polar co-
ordinate calculations on moving surfaces.

• Proving existence of an elliptic Greens function together with
some bounds on its derivative. This has been investigated for
stationary surfaces, but to our knowledge we provide the first
proof for the evolving surface case.

• Giving a new proof for the weighted norm a priori estimate
lemma 4.3.2.

Unfortunately, the proof of Nitsche could not be extended to
the evolving surface case. He explicitly uses that the smallest
Eigenvalue of

−∆Rd+1 u = λµ−2u, on Ω ⊂ Rd+1 with u|∂Ω = 0,

are monotonic decreasing w.r.t. Ω, i.e. we have

rΩ ⊇ Ω =⇒ λmin(rΩ) ≤ λmin(Ω).
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4.3. On some maximum-norm error estimates

Obviously this argument cannot be extended for surfaces. The
author wants to thank Buyang Li for teaching him a refined
Sobolev bound, which was essential for the proof.

• Proving maximum-norm bounds for the Ritz error (4.20) and
maximum-norm bounds for the material derivative of the Ritz
error (4.23).

In the initial phase of our article [58] we wanted to restrain
ourselves to prove the weak discrete maximum principle (4.22)
and then to search for an appropriate reference for (4.20). The
state of art for maximum-norm estimates on surfaces at that
time was an article of Demlow [23, corollary 4.6]. We want to
make clear why that article does not imply (4.20):

– Demlow considered an elliptic PDE on a stationary sur-
faces.

– His Ritz projection (in his notation uh, cf. equation (3.7))
is not identical to our Ritz map. The ancillary functional
F, which may encode geometric errors resulting from the
discrete approximation of the surface, is required to be
in the factor space H1(Γ)/R.

In addition, our sketch for the proof of (4.23) makes clear that
(4.23) is not a simple corollary of (4.20).

We want to remark that recently Körner [59] also derives error
bound for a full discretization of a heat equation. In that
work the surface is stationary and the error bounds are in
O(|log h|h +

?
τ). We suppose that a power of h is lost because

of the absence of a bound like 4.23.

• Formulating the adjoint problem (4.32).

In the original work of Schatz, Thomée and Wahlbin [75]
they based their analysis on the semi-group corresponding to
linear heat equation on a bounded domain. The author is not
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aware that a semi-group theory for evolving surface problems
has been developed. The author wants to thank Prof. Lubich,
whose intuition led to the discovery of this adjoint problem.

• Proving the energy estimate (4.33) for this adjoint problem.

Since the adjoint problem did not appear in Schatz, Thomée
and Wahlbin [75], the above mentioned estimate was not
required. Actually, we do not have a heuristic argument
why this estimate should be correct. After reaching (4.34)
the author guessed that such an energy estimate should be
correct.

• Verification of some technical weighted estimates and an ex-
tension of a L2-projection for evolving surfaces. This has been
done with the coauthor together.

• Providing all numerical experiments.

A numerical experiment

The numerical experiments have been coded solely by the author in
C++.

Let Γ0 ⊂ R3 be the unit sphere and let [0, T] = [0, 1]. As an
evolving surface we choose

X: Γ0 × [0, T]→ R3, (x, t) 7→ (a(t)x1, x2, x3, t),

with a(t) – 1 + 0.25 sin(2πt). For the PDE 3.1.1 we choose the
forcing term f such that u(x, t) = e−6tx1x2 is the exact solution. We
used a time stepping method with such a small time step such that
the spatial error was clearly dominating. Cf. section 4.1 for the
choice of meshes. For this problem we are considering the norms
‖ · ‖L∞(L∞) and ‖ · ‖L2(W1,∞). So, the errors in the EOC-formula (4.8)
have to be taken w.r.t. that norms. A error table is given in table
C.1.
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4.4. On a regularized coupled problem

4.4. On a semilinear parabolic problem coupled
with a regularized velocity law

In this section we discuss how to analyze the coupled problem (3.9)
and to prove convergence, theorem 3.4.2. For the convenience of
the reader we recap and introduce some notation. Then, we discuss
some evolving surface finite element matrix estimates and proceed
with stability estimates. We sketch how to obtain the residual
estimates and conclude with some numerical experiments.

Notation

Throughout this section we will assume that

• xh(t) – (xh(t))N
i=1 and yh(t) – (yi(t))N

i=1 with xh(t), yh(t) ∈ RN ⊗
Rd+1 represent the nodes of some admissible finite element
meshes, with silently fixed element relations,

• uh(t) – (ui(t))N
i=1, wh(t) – (wi(t))N

i=1 and zh(t) – (zi(t))N
i=1 with

uh(t), wh(t), zh(t) ∈ RN are the nodal values of some scalar-
valued finite element function,

• ~uh(t) – (~ui(t))N
i=1, ~wh(t) – (~wi(t))N

i=1 and ~zh(t) – (~zi(t))N
i=1 with

~uh(t), ~wh(t),~zh(t) ∈ RN ⊗ R3 are the nodal values of some
vector-valued finite element function, where uh(t), wh(t) and
zh(t) are not connected with ~uh(t), ~wh(t) and~zh(t), respectively,

• and that (yh, wh) are typically tied to something “close” to
the exact solution while (xh, uh) are generically the solution of
(3.9).

We define

|uh|2yh
– uh ·M(yh)uh,

‖uh‖2
yh

– uh · A(yh)uh,
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4. Summary and discussion

‖uh‖2
∗,yh

– uh ·M(yh) (M + A)−1(yh)M(yh)uh.

Note that | · |yh
and ‖ · ‖∗yh

are norms, but ‖ · ‖yh
is only a seminorm.

Further, we define the norms

‖xh‖2
yh

– xh ·M∗(yh)xh,

‖xh‖2
∗,yh

– xh ·M(yh)M∗(yh)−1M(yh)xh.

Note that we have overloaded ‖ · ‖yh
and ‖ · ‖∗,yh

. Their meaning
depend on the meaning of their arguments. If yh represents some
“good” nodes, then we write | · |, ‖ · ‖ or ‖ · ‖∗ instead of | · |yh

,
‖ · ‖yh

or ‖ · ‖∗,yh
, respectively. Finally, we set |xh|W1,∞(Γ(yh)) = |xh|1,∞

as the W1,∞(Γ(yh))-seminorm of the corresponding finite element
function.

Summary

We split the error as

u− uh[yh]l = (u− wh[yh]l) + (wh[yh]l − uh[yh]l)

= ρw + eu[yh]l ,

1Γ − xh[yh]l = (1Γ − yh[yh]l) + (yh[yh]l − xh[yh]l)

= ρy + ex[yh]l ,

vX − ẋh[yh]l = (vX − ẏh[yh]l) + (ẏh[yh]l − ẋh[yh]l)

= ρẏ + eẋ[yh]l ,

and take the choice yi – X(xi(0), t) and wh[yh] – Ihu[yh]. Since we
are working with higher-order finite elements, we refer to Kovács
[54] for the bounds on ρw, ρy and ρẏ. Our task is derive stability
estimates for eu, ex and eẋ. For this we observe that yh and wh satisfy
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4.4. On a regularized coupled problem

the following perturbed equation system

d
dt

(M(yh)wh) + A(yh)wh = fh(yh, wh) + δw, wh(0) = uh(0),

M∗(yh)
dyh

dt
= gh(yh, wh) + δy, yh(0) = xh(0),

(4.35)

where δw and δy are some semidiscrete residuals. We claim for the
perturbation residuals the following

Lemma 4.4.1. For the choice yi – X(xi(0), t) and wh = Ihu[yh]
we have the bounds

‖δy‖∗ ≤ hk const, ‖δw‖∗ ≤ hk const .

A nice feature about our stability analysis is that the calculations
are detached from the residual estimates. However, to derive the
required stability bound on the whole time interval we need lemma
4.4.1.

Lemma 4.4.2. Assume that lemma 4.4.1 holds for k > 1. Then,
there exists h0 > 0 sufficiently small such that for all h < h0 and for
all t ∈ [0, T] it holds

|eu|2(t) +
∫ T

0
‖eu‖2(s) ds + ‖ex‖2(t) +

∫ T

0
‖eẋ‖2(s) ds (4.36)

≤
(
|eu|2(0) + ‖ex‖2(0) +

∫ T

0
‖δy‖2

∗(s) + ‖δw‖2
∗(s) ds

)
const,

Consider graph 4.4. We will first describe the finite element Lip-
schitz estimates in the unknown nodes. Then we will describe
how to derive the stability estimates. Then, we continue with the
residual estimates. We conclude the section with some numerical
experiments.
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4. Summary and discussion

Convergence of the ESFEM
scheme (theorem 3.4.2)

Perturbation defect bounds

A stability estimate

Lipschitz estimates for the ESFEM

Graph 4.4.: Some dependencies for theorem 3.4.2

Evolving surface finite element estimates

As a first step, we establish some conditionally equivalence of
norms.

Lemma 4.4.3. If |ex[yh]|1,∞ ≤ 1
2 , then we have the bound

|uh[yh]|1,∞
1

const
≤ |uh[xh]|1,∞ ≤ |uh[yh]|1,∞ const .

Proof. We use the discrete tangential Jacobian (2.26) with the chain
rule (2.8) to deduce

∇Γ(yh)uh[yh] = ∇Γ(xh)uh[xh] jach(xh[yh])

= ∇Γ(xh)uh[xh] (1− jach(ex[yh])),

Use the von Neumann series to get∥∥∥(1− jach(ex[yh]))−1
∥∥∥

2
≤ 1

1− ‖jach(ex[yh])‖2
,
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4.4. On a regularized coupled problem

where ‖ · ‖2 denotes the operator norm induced by the Euclidean
norm | · |. Conclude the proof with bound (2.7). �

Such an conditionally equivalence statements also holds for mass
norm | · | and stiffness seminorm ‖ · ‖. For our error analysis we
require the following Lipschitz estimates.

Lemma 4.4.4. Provided |ex[yh]|1,∞ ≤ 1
2 we have the following

bound for scalar valued finite element functions

|uh · (M(xh)−M(yh))wh| (4.37a)

≤ |uh|yh
|wh|yh

|xh − yh|W1,∞(Γ(yh)) const,

|uh ·
d
dt

(M(xh)−M(yh))wh| (4.37b)

≤ |uh|yh
(‖xh − yh‖yh

+ ‖ẋh − ẏh‖yh
) |wh|yh ,∞ const,

|uh · (A(xh)− A(yh))wh| (4.37c)

≤ ‖uh‖yh
‖wh‖yh

|xh − yh|W1,∞(Γ(yh)) const,

|uh · (A(xh)− A(yh))wh| (4.37d)

≤ ‖uh‖yh
|wh|W1,∞(Γ(yh)) ‖xh − yh‖yh

const,

zh · |( fh(yh, wh)− fh(xh, uh))| (4.37e)

≤ |zh|yh
(‖yh − xh‖yh

+ |wh − uh|yh
+ ‖wh − uh‖yh

) const,

and the following bounds for vector valued finite elements functions

|~uh · (M∗(xh)−M∗(yh))~wh| (4.38a)

≤ ‖~uh‖yh
‖~wh‖yh

|xh − yh|W1,∞(Γ(yh)) const,

|~uh · (M∗(xh)−M∗(yh))~wh| (4.38b)

≤ ‖~uh‖yh
‖~wh‖W1,∞(Γ(yh)) ‖xh − yh‖yh

const,

|~zh · (gh(yh, wh)− gh(xh, uh))| (4.38c)
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4. Summary and discussion

≤ |~zh|yh
(‖yh − xh‖yh

+ |wh − uh|yh
+ ‖wh − uh‖yh

) const .

The basic idea is to introduce the intermediate mesh Γθ , where
θ ∈ [0, 1] with the corresponding nodes yh + θ(xh − yh). Then,
proceed similar as for (2.36), by replacing t with θ, and use lemma
4.4.3.

A stability estimate

Without doubt the most important result in this section is the
derivation of the stability estimates, lemma 4.4.2. We sketch the
proof in three steps.

First step for lemma 4.4.2. We want to show that lemma 4.4.2 is
correct on a feigned smaller time interval. The following idea is
due to Buyang Li. For a given h0 > 0 choose t∗ ∈ (0, T] maximal in
the sense that the estimate

|eẋ|1,∞(t) ≤ h1/2, ∀t ∈ [0, t∗]. (4.39)

holds on the biggest possible time interval. Existence of t∗ is clear,
because we anyway assume ẏh(0) = ẋh(0). �

Lemma 4.4.5 (second step for lemma 4.4.2). Bound (4.39) im-
plies the stability bound (4.36) on the time interval (0, t∗), i.e. replace
T with t∗ in the inequalities. const (4.36) is independent of t∗.

Proof. (a) Surface error bound: For ε > 0 arbitrary small we claim

d
dt
‖ex‖2 + ‖eẋ‖2 ≤ ε ‖eu‖2 + (‖ex‖2 + |eu|2 + ‖δy‖2

∗) const .

Calculate
d
dt
‖ex‖2 ≤ (‖ex‖2 + ‖eẋ‖2) const .
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4.4. On a regularized coupled problem

Then, formulate the error equation for eẋ:

M∗(yh)eẋ = (M∗(yh)−M∗(xh))ẋh + gh(yh, wh)− gh(xh, uh) + δy.

Test with eẋ and use (4.38a), (4.38b), (4.38c) and (4.39) to deduce

‖eẋ‖2 ≤ ε ‖eu‖2 + (‖ex‖2 + |eu|2 + ‖δy‖2
∗) const .

This implies (a).4

(b) Heat error: For ε > 0 we claim

d
dt
|eu|2 + ‖eu‖2 ≤ d

dt

(
eu · (M(yh)−M(xh))eu

)
+ ε ‖eẋ‖2 + (|eu|2 + ‖ex‖2 + ‖δw‖2

∗) const .

Formulate the error equation for eu:

d
dt

(M(yh)eu) + A(yh)eu =
d
dt

(
(M(yh)− M(xh))uh

)
+ (A(yh)− A(xh))uh + fh(yh)− fh(xh) + δw.

Test with eu, use (4.37a), (4.37b), (4.37c), (4.37d), (4.37e) and (4.39).
(C) Combination: Sum up (a) and (b) and absorb. Then, integrate

the resulting bound from 0 to t∗. After absorbing a term on the
right-hand side with (4.39) we get for all t ∈ (0, t∗)

‖ex‖2(t) +
∫ t∗

0
‖eẋ‖2(s) ds + |eu|2(t) +

∫ t∗

0
‖eu‖2(s) ds

≤
(∫ t∗

0
‖ex‖2(s) + |eu|2(s) ds + ‖ex‖2(0) + |eu|2(0)

+
∫ t∗

0
‖δy‖2

∗(s) + ‖δw‖2
∗(s) ds

)
const .

A Gronwall inequality finishes the proof. �
4We remark that without the parameter α we would not be able to reach that

inequality.
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Third step for lemma 4.4.2. Assuming that the defect is in O(hk),
lemma 4.4.1, where k ≥ 2 is the degree of the finite element space,
a combination of (4.36) and an inverse estimate shows

|eẋ|1,∞ ≤ hk−1 const .

Since t∗ is maximal and the constant above is independent of t∗ a
sufficiently small h0 implies t∗ = T. �

Residual estimates

The residual estimates do not use any new or unknown technique.
We sketch the proofs. Denote by Yh(t) – ∑N

i=1 yi(t)χ[xi(0)] the para-
metrization for Γ(yh(t)). For the diffusion equation we calculate

mh(δw, φh) = mh(∂Yh
t wh, φh) + (∂Yh

t mh)(wh, φh)
+ ah(wh, φh)− mh( f (wh,∇hwh), φh)

= (mh(∂Yh
t wh, φh)− m(∂Yl

h
t u, φl

h))

+ ((∂Yh
t mh)(wh, φh)− (∂Yl

h
t m)(u, φl

h))

+ (ah(wh, φh)− a(u, φl
h))

+ (m( f (u,∇u), φh)− mh( f (wh,∇hwh), φh))
= I1 + I2 + I3 + I4.

I1, . . . , I4 require higher-order version of the bilinear form bounds
(2.56) and interpolation estimates (2.58). Both may be found in [54].
For I1 we require in addition

I l
h ∂X

t u− ∂
Yl

h
t I l

h u = (vYl
h
− vX) · ∇u,

I l
h ∂X

t u = ∂
Yl

h
t I l

h u.

For I4 we need Lipschitz continuity of f , the identity

(∇hwh)l = prh(I − dXH)∇wl
h,
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4.4. On a regularized coupled problem

where pr denotes the projection onto the tangent space and prh
denotes the projection onto the discrete tangent space, and the
bound

‖pr−prh pr‖ ≤ h const .

For the regularized velocity law observe that with ẏh = IhvX we
have

mh(δy, φh) = mh(IhvX , φh)+α ah(IhvX , φh)−m(g(wh,∇hwh)nΓ(yh), φh)

= (mh(IhvX , φh)− m(vX , φl
h))

+ α (ah(IhvX , φh)− a(vX , φl
h))

+ (m(g(u,∇u)nΓ(t), φl
h)− mh(g(wh,∇hwh)nΓ(yh), φh)),

where φh ∈ Sh(yh;R3) is temporarily a vector-valued finite element
function. There are no new hidden techniques, thus, the already
mentioned arguments imply lemma 4.4.1.

Contribution

The contribution of the author can be summarized as follows:

• Discussing several matrix bounds with the authors. The proof
presented here for lemma 4.4.3 has been done by the author.

• Discussing and calculating the important stability lemma 4.4.5.

• Prove stability for a regularized mean curvature flow.

• Providing all pictures and numerical experiments.

Numerical experiments

The numerical experiments have been coded solely by the author in
C++.
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We use in all our experiments linear finite elements instead of
higher-order estimates, because they are easier to implement.5 Also,
we use a time stepping method with such a small time step that the
spatial error was clearly dominating. The sequence of meshes are
the same as in the previous numerical experiments.

We consider three different test cases. In our first test case, we
calculate some EOC, cf. (4.8). This shall illustrate our convergence
theorem 3.4.2. The PDE was

(∂X
t + div(vX)− ∆)u = f (t, x),

vX − α∆vX = δunΓ + g(t, x)nΓ,

with the parameters T = 1, α = 1 and δ = 0.4. The forcing terms f
and g are such that X(p, t) = r(t)p with

r(t) =
r0rK

rKe−kt + r0(1− e−kt)
, (4.40)

with the parameters r0 = 1, rk = 2 and k = 0.5, and u(X, t) =
X1X2e−6t are the exact solution of the problem. We refer to table
D.1 for the results. We observe that the surface and surface velocity
errors behave like we would expect. Also, the L∞(L2)-errors for u
are as expected. For the L2(H1)-errors we calculate an EOC of 2.
Our theory cannot explain that.

In our next test case, we want to compare quantitatively the
velocity law (3.8) with our velocity law, cf. PDE 3.4.1. For this we
considered the PDE

vX − α∆vX − β∆X = g(t, x)nΓ.

The exact solution is again (4.40) with the common parameters
T = 2, r0 = 1, rK = 2, k = 0.5. Our first experiment was done with
(α, β) = (0, 1) and the second with (α, β) = (1, 0). In table D.2 we plot

5The subsequent chapter discusses convergence for the linear ESFEM.
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4.4. On a regularized coupled problem

the results. We observe that the L∞(H1)-error of the mean curvature
velocity is growing for our sequence of meshes. The author believes
that it should not be possible to show convergence in this norm.
For our regularized velocity we predicted convergence in this norm
and also observe it. Additionally, every error calculated with our
velocity law is smaller then the mean curvature corresponding one.

In our last test case, we want to compare qualitatively the two
velocity laws. We consider the following PDE

(∂X
t + div(vX)− ∆)u = f1(u, w),

(∂X
t + div(vX)− Dc∆)w = f2(u, w),

vX − α∆vX − β∆X = δunΓ,

where

f1(u, w) = γ(a− u + u2w), f2(u, w) = γ(b− u2w),

with non-negative parameters Dc, γ, a, b, α, β. This is a variation
of a PDE, which appeared in Elliott and Styles [42] and Barreira,
Elliott and Madzvamuse [6]. The common parameters are Dc = 10,
γ = 100, a = 0.1, b = 0.9, T = 5. The generation of the initial values is
a complicated task.6 We take small perturbation around the steady
state (

ru0

rw0

)
=
(

a + b + ε1(x)
b

(a+b)2 + ε2(x)

)
,

where ε1(x), ε2(x) ∈ [0, 0.01] take random values. Then, we apply
the stationary surface finite element method and solve the problem
until rT = 5. We take that result as initial values for the coupled
problem, u0 = ru(rT) and w0 = rw(rT).

We remark that it appears that the actual values of the initial
perturbation have little effect on the solution (ru(rT), rw(rT)). Further,
we observed that the parameter γ influences the number of dots

6I want to thank Raquel Barreira for explaining me the procedure.
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on the surface: a small value of γ generates few dots and big dots,
while a huge value of γ generates many and smaller dots.

We computed the solution for (α1, β1) = (0, 0.01) and (α2, β2) =
(0.01, 0). The result is displayed in figure D.1. Clearly, our new
velocity law is competitive.

Implementation

The author wants to describe, which C++ technical obstacles ap-
peared during the implementation of the code.

• Slow compilation times.

Dune makes heavy use of C++ templates. We briefly describe
that feature. For C++ (also for C and Fortran) there is a sepa-
ration between compilation of code (translation into machine
language) and execution of code.7 C++ templates only exe-
cutes during compilation, i.e. the resulting binary cannot tell,
if the code used templates at all. This means

– we can perform flow control (if, else, for), and hence
theoretically every computation, during compile time,

– and further perform inlining of short function, i.e. instead
of calling a function, which is expensive if the body of
the function is short, we directly include the function
body in the binary.

It is known that proper usage of templates can lead to amaz-
ingly fast code. However, our initial code, which we got from
a Dune school, also used templates in places, where it does
not give substantial benefits (templates are no panacea). This
led to code, which took the compiler more then one minute
to produce an executable, regardless how small our changes

7Matlab on the other hand uses a JIT compiler (just in time compiler). It is very
difficult for the user to manipulate the compilation process.
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4.4. On a regularized coupled problem

were. This made testing and debugging a horror. Our solu-
tion was to break the big template file into multiple smaller
translation units. There we specialized our template classes
and functions. Afterwards, we could reduce the compilation
time to less then 10 seconds (in many cases).

• The finite element mesh is a private member.

Dune hides the actual values of its meshes from the users.
Once a mesh is constructed from a dgf-file (Dune grid format)
there is no way to change that values. This is not desirable for
evolving surface problems. However, it is possible to give the
corresponding Dune class an explicit parametrization. This pa-
rametrization does not change the underlining mesh. Instead
Dune generates for every for-loop on the fly the new mesh via
the given parametrization. To simulate an evolving surface
mesh, we use a so called hash-map.8 After constructing a
reasonable efficient hash function, we could easily manipulate
the image of our hash-map, which leads to our finite element
mesh movement.

8A hash-map is something like a more complicated and efficient red-green
balanced binary tree, where every node consist of a key value pair.
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I Chapter 5.

Almost best approximation for
linear finite elements on an
evolving surface driven by
diffusion on the surface

In this section we present a novel result, which has not been sub-
mitted elsewhere.

5.1. Objectives

We consider PDE 3.4.1. In section 3.4 we stated the convergence
theorem 3.4.2. There are three aspects, which the author considers
as unnatural:

• The convergence rate in the L2-norm is too low.

• It is not possible to state the result with the natural lift on the
numerical computed surface.
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5. Almost best approximation for linear finite elements

• The analysis only works for a higher-order finite element
method. The computationally import linear ESFEM case is
not covered.

Using the notation introduce there we can formulate our main

Theorem 5.1.1. Let X and u be the solution of the PDE 3.4.1. As-
sume that for an admissible initial mesh (xi)N

i=1 ⊂ Γ0, and then
for every refinement, we have that the mesh ryh(t) – (ryi(t))N

i=1 –

(X(xi, t))N
i=1 ⊂ Γ(t) stays admissible. Then, for every ε > 0 there

exists for the linear ESFEM a sufficiently small h0 > 0 such that for
all h < h0 we have the estimates

‖u− uh[xh]l‖L∞(0,T;L2(Γt)) ≤ h2−ε const,

‖u− uh[xh]l‖L2(0,T;H1(Γt)) ≤ h1−ε const,

‖dΓ(t)‖L∞(0,T;L∞(Γ(xh))) ≤ h2−ε const,

‖vX − ẋh[xh]l‖L2(0,T;L∞(Γt)) ≤ h2−ε const,

where ẋh – d
dt xh.

For simplicity we set from now on α = 1 in PDE 3.4.1.

5.2. Preliminaries

We require a modified result from our previous work. Assume for
an admissible mesh yh that for r > 3

4 we have the bound

‖dΓ(t)‖L∞(Γ(yh)) ≤ hr+ 1
2 const .

Then repeating the proofs for (2.45), (2.47) and (2.48) we get

‖prTpΓh(t) n‖L∞(Γ(yh)) + ‖n− nh‖L∞(Γ(yh)) ≤ hr− 1
2 const, (5.1a)
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5.2. Preliminaries

‖1− δh‖L∞(Γ(yh)) ≤ h2r−1 const, (5.1b)

‖prTxΓ−prTxΓ prTpΓ(yh) prTxΓ‖L∞(Γ(yh)) ≤ h2r−1 const . (5.1c)

We require the following PDE a priori estimate for evolving sur-
faces.

Lemma 5.2.1. For d1 ∈ L3 (Γt) and d2 ∈ W1,3(Γt;R3) there exists
an weak solution u ∈ H1(Γt) of the PDE

u− ∆u = d1 + div(d2),

with the a priori estimate

‖u‖L∞(Γt) ≤ (‖d1‖L3(Γt) + ‖d2‖L3(Γt)) const .

Proof. The estimate

‖u‖W1,3(Γt) ≤ (‖d1‖L3(Γt) + ‖d2‖L3(Γt)) const

has been shown in the Euclidean domain case in [25]. This can
be extended by using a dynamic parametrization with local charts
to the evolving surface case. A Sobolev estimate concludes the
proof. �

Theorem 5.2.2. For R2: H1(Γt;R3) → Sl
h(yh;R3), which satisfies

per definition for all φh ∈ Sh(yh;R3)

a∗(yh; R2u, φl
h) = a∗(yh; u, φl

h),

it holds

‖u−R2u‖L∞(Γt) ≤ |log h| ‖u−I l
h u‖L∞(Γt) const .
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5. Almost best approximation for linear finite elements

Proof. Such a result has been proven for the scalar valued Ritz
projection on a Euclidean domain with mixed boundary conditions
by Leykekhman and Li [61]. The theorem above follows by repeat-
ing their arguments. We sketch the steps. First, replace in that
work every occurrence of −∆ with 1− ∆ and every occurrence of
(∇ · ,∇ · ) with a∗( · , · ). The Poincaré lemma is not needed since
‖ · ‖L2 ≤ ‖ · ‖H1 . PDE existence and a priori estimates are also
correct in our case, since we have no boundary in contrast to the
polygonal boundaries appearing in [61]. We want to extend [61,
lemma 9]. The proof of this lemma is done in [61, section 4]. [61,
lemma 10] states the existence of a Green’s function with some
auxiliary bounds. For the evolving surface case this has been estab-
lished by us in theorem 4.3.4. A regularized delta function is then
introduced together with a regularized Green’s function, which also
exists in the evolving surface case. In [61, lemma 11] the domain
Ω is subdivided in disjoint radial symmetric subdomains. In [61,
lemma 12] bounds for the regularized Green’s function on such sub-
domains are proven. Such subdivision arguments were also present
for the proof of our parabolic maximum norm theorem 3.3.1. In
section 4.3 we showed that the intrinsic and extrinsic distance on
Γ(t) are equivalent and further showed how to calculate integrals
with geodesic polar coordinates. This technique allows us to extend
both lemmata to the evolving surface case. The last step is [61,
section 4.1], which can be repeated without any obstacles. �

5.3. Road map

Before stepping into the technical aspects we outline how to prove
theorem 5.1.1. We split the error as follows.

u− uh[xh]l = (u− wh[yh]l) + (wh[yh]l − uh[yh]l)

+ (uh[yh]l − uh[xh]l)
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= ρw + eu[yh]l + σu,

1Γ − xh[xh]l = (1Γ − yh[yh]l) + (yh[yh]l − xh[yh]l)

+ (xh[yh]l − xh[xh]l)

= ρy + ex[yh]l + σx,

vX − ẋh[yh]l = (vX − ẏh[yh]l) + (ẏh[yh]l − ẋh[yh]l)

+ (ẋh[yh]l − ẋh[xh]l)

= ρẏ + eẋ[yh]l + σẋ.

Set yh(t) as the Ritz mesh, which we define later, and set wh[yh] –

Rhu[yh], where Rh is our usual Ritz map (2.62), which is not R2.
First, we prove the following fundamental lemma for the Ritz
mesh.

Lemma 5.3.1. For h < h0 sufficiently small the Ritz mesh is an
admissible mesh for t ∈ [0, T]. For any ε > 0 there exists an h0 > 0
sufficiently small such that for all h < h0 and for all i = 1, . . . , N we
have

|ryi(t)− yi(t)| ≤ h2−ε const, (5.2a)

‖dΓ(t)‖L∞(Γ(yh)) ≤ h2− ε
2 const, (5.2b)

‖vX − vl
yh
‖L∞(Γt) ≤ h2−ε const . (5.2c)

The Euclidean norm of ρy is the absolute value of dΓ(t). Hence, (5.2b)
and (5.2c) imply the bound

‖ρy‖L∞(0,T;L∞(Γt)) + ‖ρẏ‖L∞(0,T;L∞(Γt)) ≤ h2−ε const .

The Ritz map bound

‖ρw‖L2(Γt) + h ‖ρw‖H1(Γt) ≤ h2−ε const,

are readily obtained by repeating the standard proofs with (5.2b)
and (5.1).
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5. Almost best approximation for linear finite elements

The next step is to bound eu, ex and eẋ. We consider the perturbed
error equation system (4.35) from section 4.4. We will show the
following bounds for the semidiscrete Residuals δw and δy.

Lemma 5.3.2. For the Ritz mesh yh(t) with the Ritz map wh =
Rhu[yh] we have the bounds

‖δy‖∗ ≤ h2−ε const, ‖δw‖∗ ≤ h2−ε const .

Assume for the moment that the lemma above is correct. Then, we
may apply stability lemma 4.4.2 to deduce

‖eu[yh]l‖L∞(0,T;L2(Γs)) + ‖eu[yh]l‖L2(0,T;H1(Γt)) ≤ h2−ε const,

‖ex[yh]l‖L∞(0,T;H1(Γt)) + ‖eẋ[yh]l‖L2(0,T;H1(Γt)) ≤ h2−ε const .

Use the forbidden Sobolev estimate,

‖φl
h‖L∞(Γt) ≤ |log h|

1
2 ‖φl

h‖H1(Γt) const,

cf. (4.30), to arrive at

‖eu[yh]l‖L∞(0,T;L2(Γs)) + ‖eu[yh]l‖L2(0,T;H1(Γt)) ≤ h2−ε const, (5.3a)

‖ex[yh]l‖L∞(0,T;L∞(Γt)) + ‖eẋ[yh]l‖L2(0,T;L∞(Γt)) ≤ h2−ε const, (5.3b)

where we let ε be a little bit larger. Assume for the moment the
following

Lemma 5.3.3. It holds

‖σl
u‖L∞(0,T;L2(Γt)) ≤ h2−ε const,

‖σl
x‖L∞(0,T;L∞(Γt)) + ‖σl

ẋ‖L2(0,T;L∞(Γt)) ≤ h2−ε const .

Use an inverse estimate to bound the lift-lift error σu in the norm
‖ · ‖L2(H1). This shows theorem 5.1.1.
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It remains to show that the assumed lemmata are correct. We
will first give a definition of the Ritz map and then prove the
fundamental Ritz mesh lemma 5.3.1. Then, we will proceed with
the residual estimate lemma 5.3.2. The final part consist of the proof
of lift-lift error lemma 5.3.3.

5.4. A Ritz mesh

We start with a

Definition 5.4.1. The Ritz mesh yh(t) of an evolving surface X
is given via the requirement that for all zh ∈ φh(yh;R3) we have

a∗h(yh; vyh , zh) = a∗h(yh; v−l
X , zh)

with yh(0) = ryh(0).

Short-time existence of an admissible Ritz mesh yh(t) follows by the
same argument as for the numerical solution xh(t) of (3.9): yh(t) is
the solution of an ODE, where the right-hand side is Lipschitz in
yh(t), cf. matrix bounds in lemma 4.4.4. Long-time existence of an
admissible Ritz mesh yh(t) follows, if the fundamental lemma 5.3.1
is correct.

Proof of the fundamental Ritz mesh lemma

The proof is subdivided into four steps.

First step

Let [0, δ] ⊆ [0, T] be the maximal time interval such that the bound

‖dΓ(t)‖L∞(Γ(yh)) ≤ hr+ 1
2 , (5.4)
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5. Almost best approximation for linear finite elements

with r > 3
4 is correct. We define d1 ∈ H1(Γt) and d2 ∈ H1(Γt;R3) as∫

Γ
−d1zl

h − d2 · ∇zl
h = a∗(vX − vl

yh
, zl

h).

Using (5.1) we calculate

‖d1‖L3(Γ) + ‖d2‖L3(Γ) ≤ h2r−1 ‖vl
yh
− vX‖W1,3(Γ) const

≤ h2r−1(‖vl
yh
−I l

h vX‖W1,3(Γ)

+ ‖I l
h vX − vX‖W1,3(Γ)) const

≤ h2r−1(h−
1
3 ‖vl

yh
−I l

h vX‖L∞(Γ) + h) const

≤ (h2r− 4
3 ‖vl

yh
− vX‖L∞(Γ) + h2r) const .

According to lemma 5.2.1 there exists w ∈ H1(Γ) such that

a∗(w, z) =
∫

Γ
d1z + d2 · ∇z,

with the a priori estimate

‖w‖L∞ ≤ (‖d1‖L3 + ‖d2‖L3) const .

Because of the opposite sign above we get the crucial identity

vl
yh

= R2(vX + w).

Using the almost best approximation property of the Ritz projection,
theorem 5.2.2, we calculate

‖vX + w− vl
yh
‖L∞(Γ) ≤ |log h| ‖vX + w−I l

h (vX + w)‖L∞(Γ) const

≤ |log h|(‖w‖L∞(Γ) + ‖vX −I l
h vX‖L∞(Γ)) const

≤ (h2r− 4
3 |log h| ‖vl

yh
− vX‖L∞(Γ)

+ h2r |log h|) const,
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On the other hand we have

‖vX − vl
yh
‖L∞(Γ) ≤ ‖vX + w − vl

yh
‖L∞(Γ) + ‖w‖L∞(Γ).

An absorption argument, which requires h < h0 sufficiently small,
shows

‖vX − vl
yh
‖L∞(Γ) ≤ h2r |log h| const . (5.5)

Second step

We want to use (5.5) to show

‖dΓ(t)‖L∞(Γ(yh)) ≤ h2r |log h| const . (5.6)

Recall the definition of the lifted velocity vyl
h
, cf. text before (2.40).

Let y = y(t) ∈ Γ(yh) flow according to the discrete mesh movement
and denote by p = p(t) ∈ Γ(t) its corresponding lift. A quick
calculation using (2.12) reveals

(5.7)vyl
h
(p, t) = −∂dX(y, t)

∂t
n(y, t)− dΓ(t)(y, t)

∂n(y, t)
∂t

+ (prTpΓ(t)−dΓ(t)(y, t)H(y, t))vyh (y, t).

Note that the first summand points in normal direction and the
other terms are tangent vectors. Further, use (2.16) to get

− ∂dX(y, t)
∂t

= vX(p, t) · n(y, t). (5.8)

Since p− y points in normal direction we have

1
2

d
dt
|p − y|2 = (vyl

h
(p, t)− vyh (y, t)) · (p − y)

= (vX(p, t)− vl
yh

(p, t)) · n(y, t) n(y, t) · (p − y)

≤ h4r |log h|2 const +
1
2
|p − y|2.

A Gronwall argument shows (5.6).
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Third step

We want to show

|ryi(t)− yi(t)| ≤ h2r |log h| const . (5.9)

Denote by pi = pi(t) ∈ Γ(t) the lift of yi. According to (5.6), it suffices
to show

|ryi(t)− pi(t)| ≤ h2r |log h| const . (5.10)

Using (5.5), (5.6), (5.7) and (5.8) we easily see

|vX(p, t)− vyl
h
(p, t)| ≤ h2r |log h| const .

For the velocity we calculate

|vX(ryi, t)− vyl
h
(pi, t)| ≤ |vX(ryi, t)− vX(pi, t)| + |vX(pi, t)− vyl

h
(pi, t)|

≤ (|ryi − pi| + h2r |log h|) const .

Combine the bound above with the estimate

1
2

d
dt
|ryi − pi|2 ≤

1
2
|ryi − pi|2 +

1
2
|vX(ryi(t), t)− vyl

h
(pi(t), t)|2.

Use a Gronwall argument to deduce (5.10).

Fourth step

With a sufficiently small h < h0 we can use (5.6) to show that (5.4)
must be already correct on a larger time interval. The bound (5.9)
guarantees that the mesh stays admissible. Lemma 5.3.1 follows
from (5.5), (5.6) and (5.9).
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5.5. Residual bounds

In this section we prove the semidiscrete residual bound lemma 5.3.2.
We calculate for the diffusion equation defect δu using φh ∈ Sh(yh)

mh(δw, φh) = (mh(∂yh
t Rhu, φh) + (∂yh

t mh)(Rhu, φh) + ah(Rhu, φh))

− (m(∂yl
h

t u, φl
h) + (∂yl

h
t m)(u, φl

h) + a(u, φl
h))

+ (mh( f (Rhu,∇hRhu), φh)− m( f (u,∇u), φl
h))

All terms, except for the last nonlinear f term, can be handled with
standard arguments. For the surface defect δy we calculate using
~φh ∈ Sh(yh;R3)

mh(δy,~φh) = (ah(vyh ,~φh)− mh(g(Rhu,∇hRhu)nΓ(yh),~φh))

− (a(vX ,~φl
h)− m(g(u,∇u)nΓ(t),~φl

h)).

Using definition 5.4.1 of our Ritz mesh it remains to bound the term
with g.

A normal bound

The following bound is novel and critical

Lemma 5.5.1. Let yh be an evolving discrete mesh, which satisfies
bounds like in lemma 5.3.1. For all f , g ∈ W1,∞(Γt) we have∫

Γt

(nΓ(t) − nΓ(yh)) · f ≤ h2−ε ‖ f ‖W1,1(Γt) const,∫
Γ(t)

(prTxΓ(t)−prTpΓ(yh)) f · g ≤ h2−ε ‖ f · g‖W1,1(Γt) const .

Proof. For the second inequality observe that

prTxΓ(t)−prTpΓ(yh) = (nΓ(yh) − nΓ(t))
t(nΓ(yh) − nΓ(t))

+ nΓ(t)
t(nΓ(yh) − nΓ(t)) + (nΓ(yh) − nΓ(t)) tnΓ(t).
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A combination of the first bound with (5.1a) shows the second
bound. Hence, it remains to show∫

Γ(t)
(nΓ(t) − nΓ(yh)) · f ≤ h2−ε ‖ f ‖W1,1(Γt) const .

The key idea is to use partial integration on the discrete normal
vector nΓ(yh), which is not obvious. We explain how this is done. We
parametrize Γ(yh) via the map

Y: Γ0 × [0, T]→ R3, Xh(x−l , t),

where Xh is the parametrization of Γ(yh) and x−l
0 is the negative lift

of x0 ∈ Γ0 on Γ(yh(0)). We note that Y is Lipschitz and hence in
W1,∞(Γ0 × [0, T]). In particular, we can use partial integration. For
the normal we have the formula

nΓ(yh)(x−l , t) =
∂1Y(x0)∧ ∂2Y(x0)
|∂1Y(x0)∧ ∂2Y(x0)| ,

where ∧ denotes the outer vector product on R3, x ∈ Γ(t) with
X(x0, t) = x and Y(x0, t) = x−l . The formula above is also correct for
nΓ(t) and X instead of nΓ(yh) and Y. We observe that the right-hand
side above is Lipschitz continuous in the six variables (∂1Y, ∂2Y).
Denote its first and second derivative w.r.t. this six variables with
Dn(X) and D2n(X), where the argument X means “insert the vari-
ables (∂1X, ∂2X)”. Using Taylor expansion we get

nΓ(t) − nΓ(yh) = Dn(X) (∂1(X−Y), ∂2(X−Y))

+
∫ 1

0
D2n(θX + (1− θ)Y) (∂1(X−Y), ∂2(X−Y))2 dθ.

(5.11)

A straightforward calculation shows X − Y = O(h2−ε) and ∂i(X −
Y) = O(h1−ε). Thus, the Taylor remainder is in O(h2−2ε). Use the
local integral formula (2.9) and partial integration to conclude the
proof. �
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Bounding the semilinear term

Lemma 5.5.2. If f , g ∈ C2(Γt) then we have for linear finite ele-
ments∫

Γ(t)
f (u,∇u)φh −

∫
Γ(yh)

f (Rhu,∇hRhu)φh

≤ h2−ε ‖φh‖H1 const .∫
Γ(t)

g(u,∇u)nΓ(t) · ~φl
h −

∫
Γ(yh)

g(Rhu,∇hRhu)nΓ(yh) · ~φh

≤ h2−ε ‖~φh‖H1 const .

Proof. It suffices to show the second bound. We calculate∫
Γ(t)

g(u,∇u)nΓ(t) · ~φl
h −

∫
Γ(yh)

g(Rhu,∇hRhu)nΓ(yh) · ~φh

=
∫

Γ(t)
g(u,∇u)nΓ(t) · ~φl

h − g(u, prh∇R l
hu)nΓ(yh) · ~φl

h

+
∫

Γ(t)
g(u, prh∇R l

hu)nΓ(yh) · ~φl
h −

∫
Γ(yh)

g(u−l ,∇hRhu)nΓ(yh) · ~φh

+
∫

Γ(yh)
(g(u−l ,∇hRhu)− g(Rhu,∇hRhu))nΓ(yh) · ~φh,

where prh = prTpΓ(x) is the projection on the discrete tangent space.
Using (5.1b) and the Lipschitz continuity of g we easily bound
the second and third difference. We introduce notation (only for
this proof!): We set pr = prTxΓ(t), g(u,∇u) = g(∇u), nh = nΓ(yh) and
uh = Rhu. Denote by gp and gpp the Jacobian and Hessian of g,
respectively, w.r.t. the argument ∇u. We calculate∫

g(∇u)n− g(prh∇ul
h)nh · ~φh

=
∫

(g(∇u)− g(prh∇u))n · ~φh

+
∫

(g(prh∇u)− g(prh∇ul
h))n · ~φh
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+
∫

(g(prh∇ul
h)− g(∇u))(n− nh) · ~φh

+
∫

g(u,∇u)(n− nh) · ~φh

= I1 + I2 + I3 + I4

I3 and I4 are easy. For I3 use the standard normal bound (5.1a),
Lipschitz continuity of g and the usual H1-bound for our Ritz map.
For I4 we use our normal vector lemma 5.5.1.

For I1 calculate

g(∇u)− g(prh∇u) = gp(∇u)(pr−prh)∇u

+
∫ 1

0
gpp (∇u + θ(pr−prh)∇u) ((pr−prh)∇u)2 dθ.

(5.1a) implies that the Taylor remainder is in O(h2−ε). Bound the
first term with the normal vector lemma 5.5.1.

For I2 calculate

g(prh∇u)− g(prh∇ul
h) = gp(prh∇u)∇(u− ul

h)

− gp(prh∇u)nh(nh − n) · ∇(u− ul
h)

+
∫ 1

0
gpp (prh∇ (u + θ(uh − u))) (prh∇(u− ul

h))2 dθ.

The second and the Taylor remainder term are in O(h2−ε). For the
first term we calculate

gp(prh∇u) = gp(∇u)

+
∫ 1

0
gpp (prh +θ(pr−prh)∇u)(pr−prh)∇u dθ.

Use the partial integration formula (2.10) for ∇(u − ul
h) and the

L2-bound for the Ritz map to bound I2. �
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5.6. Bounding the lift error

In this section we want to prove lemma 5.3.3. We start with an
ancillary

Lemma 5.6.1. For every p ∈ Γ(t) there exists an unique y ∈ Γ(yh)
and an unique x ∈ Γ(xh) such that the lift of y and x is equal to p.
For x exists a unique Y ∈ Γ(yh) such that x ∈ Ek(xh), Y ∈ Ek(yh)
and x, Y share the same standard simplex coordinates, cf. (2.21). For
Y exists a unique lifted point q ∈ Γ(t). It holds

|p− q| ≤ h2−ε const .

Proof. Existence of x, y, Y and q is obvious. Note that (5.3b) implies

|x−Y| ≤ h2−ε const .

Using the definition of lift (2.12) we have

p− q = (x− dΓ(t)(x)n(x))− (Y− dΓ(t)(Y)n(Y)).

The expression above is Lipschitz in x and Y. This gives us

|p− q| ≤ |x−Y| const . �

Proof of lemma 5.3.3. We calculate for σu

uh[yh]l(p)− uh[xh]l(p) = uh[yh](y)− uh[xh](x)
= uh[yh](y)− uh[yh](Y)
= uh[yh]l(p)− uh[yh]l(q)

=
∫ 1

0
∇uh[yh]l (p + θ(q − p)) · (q − p) dθ,

where we have extended uh[yh]l on Nt according to (2.1). Deduce
with (5.3a) and an inverse estimate that ‖uh[yh]l‖L∞(H1) is bounded.
Using lemma 5.6.1 we deduce the first stated bound in lemma 5.3.3.
The other bounds follow similarly. �
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5.7. Contribution

Buyang Li has shown the author the Ritz best approximation prop-
erty and the PDE a priori estimate used in this section. Further, he
discussed with the author, different kinds of Ritz meshes. Apart
from that, all proofs in this chapter has been done solely by the
author.

110



I Appendix A.

Higher-order time
discretization with arbitrary
Lagrangian Eulerian finite
elements on evolving surfaces

The content of this section is accepted for publication, cf. [57].

Abstract

A linear evolving surface partial differential equation is first dis-
cretized in space by an arbitrary Lagrangian Eulerian (ALE) evol-
ving surface finite element method, and then in time either by a
Runge-Kutta method, or by a backward difference formula. The
ALE technique allows one to maintain the mesh regularity during
the time integration, which is not possible in the original evolving
surface finite element method. Stability and high order convergence
of the full discretizations is shown, for algebraically stable and stiffly
accurate Runge-Kutta methods, and for backward differentiation
formulas of order less than 6. Numerical experiments are included,
supporting the theoretical results.
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A.1. Introduction

There are various approaches to solve parabolic problems on evol-
ving surfaces. A starting point of the finite element approximation
of (elliptic) surface partial differential equations is the paper of [29].
Later this theory was extended to general parabolic equations on
stationary surfaces by [32]. They introduced the evolving surface
finite element method (ESFEM) to discretize parabolic partial differen-
tial equations on moving surfaces, and shown H1-error estimates,
cf. [31]. They gave optimal order error estimates in the L2-norm, see
[35]. There is a review by [34], which also serves as a rich source of
details and references.

Dziuk and Elliott also studied fully discrete methods, see e.g. [33].
The numerical analysis of convergence of full discretizations with
higher-order time integrators was first studied by [37]. They proved
optimal order convergence for the case of algebraically stable im-
plicit Runge-Kutta methods, and [63] proved optimal convergence
for backward differentiation formulas (BDF).

The ESFEM approach and convergence results were later ex-
tended to wave equations on evolving surfaces by [62] and [67]. A
unified presentation of ESFEM for parabolic problems and wave
equations is given in [66].

These results are for the Lagrangian case.

As it was pointed out by Dziuk and Elliott, “A drawback of our
method is the possibility of degenerating grids. The prescribed velocity
may lead to the effect, that the triangulation Γh(t) is distorted”1. To
resolve this problem [42] proposed an arbitrary Lagrangian Eulerian
(ALE) ESFEM approach, which in contrast to the (pure Lagrangian)
ESFEM method, allows the nodes of the triangulation to move
with a velocity which may not be equal to the surface (or material)

1Quoted from Gerhard Dziuk and Charles M. Elliott from [31, Section 7.2]
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velocity. They presented numerous examples where smaller errors
can be achieved using a better mesh.

Arbitrary Lagrangian Eulerian FEM for moving domains were
investigated by [45]. They also suggest some possible ways to
define the new mesh if the movement of the boundary is given. [12,
13] proved stability and optimal order a-priori error estimates for
discontinuous Galerkin time discrete Runge-Kutta-Radau methods
of high order.

This paper extends the convergence results and techniques of [37]
for the Runge-Kutta discretizations and of [63] for the backward
differentiation formulas (both shown for the Lagrangian case), to
the ALE framework.

[42] proposed a fully discrete ALE ESFEM algorithm to solve
parabolic problems on evolving surfaces. [43] proved convergence
results for this type of scheme and in addition prove convergence
of fully discrete ALE ESFEM with second-order backward differen-
tiation formulas. They also give numerous numerical experiments.
The primary consideration of the present work is to prove conver-
gence of ALE ESFEM with higher-order time discretizations. We
use different techniques to achieve this and thus give a new proof
for the convergence of the fully discrete method suggested by [42].

We prove stability and convergence of these higher-order time
discretizations classes, and also their convergence as a full discretiza-
tion for evolving surface linear parabolic PDEs when coupled with
the arbitrary Lagrangian Eulerian evolving surface finite element
method as a space discretization. The stability results do not require
a time step restriction by powers of the mesh size, i.e. no CFL-type
condition is required.

First, the stability of stiffly accurate algebraically stable implicit
Runge-Kutta methods (having the Radau IIA methods in mind)
is shown using energy estimates and the algebraic stability as a
key property, using some of the basic ideas appeared in [64] for
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quasilinear parabolic problems.
Second, we show stability for the k-step backward differentiation

formulas up to order five. Because of the lack of A-stability of
the BDF methods of order greater than two, our proof requires a
different technique than [43], namely we used G-stability results
of [20], and multiplier techniques of [69]. Therefore, we handle all
BDF (k = 1, 2, . . . , 5) methods at once.

For the fully discrete convergence results, in both cases, the study
of the error of a generalized Ritz map, and also for the error in its
material derivatives, plays an important role.

In the presentation we focus on the main differences compared
to the previous results, and put less emphasis on those parts where
minor modifications of the cited proofs are sufficient. In most cases
the Lagrangian proof can be repeated in the ALE case, these are
therefore omitted.

Our convergence estimates for BDF 1 and BDF 2 match the ones
achieved with a different technique in [43].

This paper is organised as follows. In Section A.2 we formulate
the considered evolving surface parabolic problem, and describe
the concept of arbitrary Lagrangian Eulerian methods together with
other basic notions. The ALE weak formulation of the problem
is also given. In Section A.3 we define the mesh approximating
our moving surface and derive the semidiscrete version of the ALE
weak form, which is equivalent to a system of ODEs. Then we
recall some properties of the evolving matrices, and some estimates
of bilinear forms. We also prove the analogous estimate for the
new term appearing in the ALE formulation. The definition of the
used generalized Ritz map is also given here. In Section A.4 we
prove stability of high order Runge-Kutta (R-K) methods applied to
the ALE ESFEM semidiscrete problem and the same results for the
BDF methods. Section A.5 contains the main results of this paper:
convergence of the fully discrete methods, ALE ESFEM together
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with R-K or BDF method, having a high order convergence both in
time. Finally, in Section A.6 we present numerical experiments, to
illustrate our theoretical results.

A.2. The arbitrary Lagrangian Eulerian approach
for evolving surface PDEs

In the following we consider a smooth evolving closed hypersurface
Γ(t) ⊂ Rm+1, 0 ő t ≤ T, with m ≤ 3, which moves with a given
smooth velocity v. Let ∂•u = ∂tu + v · ∇u denote the material
derivative of u. Define the tangential gradient ∇Γ by ∇Γu = ∇u−
∇u · nn, where n is the unit normal and denote by ∆Γ = ∇Γ · ∇Γ the
Laplace-Beltrami.

We consider the following linear problem derived in [31]:
∂•u(x, t) + u(x, t)∇Γ(t) · v(x, t)

−∆Γ(t)u(x, t) = f (x, t) on Γ(t),

u(x, 0) = u0(x) on Γ(0).

(A.1)

Basic and detailed references on evolving surface PDEs are [31,
34, 35] and [66]. We are working in the same framework as these
references.

For simplicity reasons we set in all sections f = 0, since the exten-
sion of our results to the inhomogeneous case are straightforward.

An important tool is the Green’s formula (on closed surfaces),
which takes the form∫

Γ
∇Γz · ∇Γ ϕ = −

∫
Γ
(∆Γz)ϕ.

We use Sobolev spaces on surfaces: For a smooth surface Γ we
define

H1(Γ) = {ϕ ∈ L2(Γ) | ∇Γ ϕ ∈ L2(Γ)m+1},
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and analogously Hk(Γ) for k ∈ N [31, section 2.1]. Finally, GT

denotes the space-time manifold, i.e. GT –
⋃

t∈[0,T] Γ(t)× {t}. We
assume that GT ⊂ Rm+2 is a smooth hypersurface (with boundary
∂GT = (Γ(0)× {0}) ∪ (Γ(T)× {T})).

The weak formulation of this problem reads as

Definition A.2.1 (weak solution, [31, definition 4.1]). A func-
tion u ∈ H1(GT) is called a weak solution of (A.1), if for almost
every t ∈ [0, T]

d
dt

∫
Γ(t)

uϕ +
∫

Γ(t)
∇Γ(t)u · ∇Γ(t) ϕ =

∫
Γ(t)

u∂•ϕ (A.2)

holds for every ϕ ∈ H1(GT) and u( · , 0) = u0.

For suitable u0 existence and uniqueness results for (A.2) were
obtained by [31, theorem 4.4] and in a more abstract framework in
[3, theorem 3.6] (both works consider inhomogeneous problems).

A.2.1. The ALE map and ALE velocity

We assume that for each t ∈ [0, T], T > 0, Γm(t) ⊂ Rm+1 is a closed
surface. We call a subset Γm ⊂ Rm+1 a closed surface, if Γ is an
oriented compact submanifold of codimension 1 without boundary.
Moreover we assume m = 1, 2 or 3 and that Γ ∈ C∞, evolving
smoothly, cf. [34]. We assume that there exists a smooth map
n:GT → Rm+1 such that for each t the restriction

n( · , t): Γ(t)→ Rm+1

is the smooth normal field on Γ(t).

Now we shortly recall the surface description by diffeomorphic
parametrization, also used by [31], and by [13]. An other important
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representation of the surface is based on a signed distance function.
For this we refer to [31].

We assume that there exists a smooth map

Φ: Γ(0)× [0, T]→ Rm+1

which we call a dynamical system or diffeomorphic parametrization
satisfying that

Φt: Γ(0)→ Γ(t), Φt(y) – Φ(y, t)

is a diffeomorphism for every t ∈ [0, T]. (Φt) is called the flow of Φ.
We observe:

• If F: U ⊂ Rm → Γ(0) is a smooth parametrization of Γ(0) then
Ft – Φt ◦ F is a smooth parametrization of Γ(t), hence the
name diffeomorphic parametrization.

• If we interpret Γ(0)× [0, T] ⊂ Rm+2 as a hypersurface, then Φ
gives rise to a diffeomorphism

rΦ: Γ(0)× [0, T]→ GT , rΦ(y, t) – (Φt(y), t).

The dynamical system Φ defines a (special) vector field v and
(special) time derivative ∂• as follows: First, consider the differential
equation (for Φ)

∂tΦ( · , t) = v (Φ( · , t), t), Φ( · , 0) = 1. (A.3)

The unique vector field v is called the velocity of the surface evolution,
or the material velocity. We assume, that the material velocity is the
same velocity as in problem (A.1). It has the normal component vN.
Second, the derivative ∂• is defined as follows (see e.g. [31, Section
2].2 or [13, Section 1]): for smooth f :GT → R and x ∈ Γ(t), such
that y ∈ Γ(0) for which Φt(y) = x, the material derivative is defined as

∂• f (x, t) –
d
dt

∣∣∣∣
(y,t)

f ◦ rΦ. (A.4)
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Suppose that f has a smooth extension f̄ onto an open neighbour-
hood of Γ(t), then by the chain rule the following identity for the
material derivative holds:

∂• f (x, t) =
∂ f̄
∂t

∣∣∣∣
(x,t)

+ v(x, t) · ∇ f̄ (x, t),

which is clearly independent of the extension by (A.4). In section
2.3 [34] has shown how to use the oriented distance function to
construct an extension f̄ .

Remark A.2.2. An evolving surface Γ(t) generally posses many dif-
ferent dynamical systems. Consider for example the (constant)
evolving surface Γ(t) = Γ(0) = Sm ⊂ Rm+1 with the two (dif-
ferent) dynamical system Φ(x, t) = x and Ψ(x, t) = α(t)x, where
α: [0, T]→ O(m + 1) is a smooth curve in the orthogonal matrices.

Definition A.2.3. Let A 6= Φ be any other dynamical system for
Γ(t). It is called an arbitrary Lagrangian Eulerian map (ALE map).
The associated velocity will be denoted by w, which we refer
as the ALE velocity and finally ∂A denotes the ALE material
derivative.

One can show that for all t ∈ [0, T] and x ∈ Γ(t)

v(x, t)− w(x, t) is a tangential vector. (A.5)

The formula for the differentiation of a parameter-dependent sur-
face integral played a decisive role in the analysis of evolving surface
problems. In the following lemma we will state its ALE version,
together with the connection between the material derivative and
ALE material derivative.
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Lemma A.2.4. Let Γ(t) be an evolving surface and f be a function
defined in GT, such that all the following quantities exist.

(a) (Leibniz formula [31]/ Reynolds transport identity [13]) There
holds

d
dt

∫
Γ(t)

f =
∫

Γ(t)
∂A f + f ∇Γ(t) · w. (A.6)

(b) There also holds

∂A f = ∂• f + (w− v) · ∇Γ f . (A.7)

Proof. At first we prove (b): consider an extension f̄ of f . Use the
chain rule for ∂A f and ∂• f and note the identity (cf. (A.5))

(w( · , t)− v( · , t)) · ∇ f̄ ( · , t) = ((w( · , t)− v( · , t)) · ∇Γ f ( · , t).

To prove (a) use the original Leibniz formula from [31]:

d
dt

∫
Γ

f =
∫

Γ
∂• f + f ∇Γ · v.

Now use (b) and Greens identity for surfaces to complete the proof.
�

A.2.2. Weak formulation

Now we have everything at our hands to derive the ALE version of
the weak form of the evolving surface PDE (A.1).

Lemma A.2.5 (ALE weak solution). The arbitrary Lagrangian Eu-
lerian weak solution for an evolving surface partial differential equa-
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tion is a function u ∈ H1(GT), if for almost every t ∈ [0, T]∫
Γ(t)

uϕ +
∫

Γ(t)
∇Γ(t)u · ∇Γ(t) ϕ

+
∫

Γ(t)
u(w− v) · ∇Γ(t)ϕ =

∫
Γ(t)

u∂Aϕ

holds for every ϕ ∈ H1(GT) and u( · , 0) = u0. If u solves equation
(A.2) then u is an ALE weak solution.

Proof. We start by substituting the material derivative by the ALE
material derivative in (A.2). Now using the relation (A.7), connect-
ing the different material derivatives (cf. (A.5)), i.e. by putting

∂•ϕ = ∂Aϕ + (v− w) · ∇Γ ϕ

into (A.2), and rearranging the terms, we get the desired formula-
tion. �

A.3. Semidiscretization: ALE evolving surface
finite element method

This section is devoted to the spatial semidiscretization of the pa-
rabolic moving surface PDE with the ALE version of the evolving
surface finite element method. The ESFEM was developed by [31].
In the original case the nodes were moving only with the material
velocity along the surface, which could lead to degenerated meshes.
One can maintain the good properties of the initial mesh by having
additional tangential velocity.

The ALE ESFEM discretization will lead to a system of ordinary
differential equations (ODEs) with time dependent matrices. We
will prove basic properties of those matrices, which will be one
of our main tools to prove stability of time discretizations and
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convergence of full discretizations. We will also recall the lifting
operator and its properties introduced by [31], which enables us to
compare functions from the discrete and continuous surface.

A.3.1. Basic notations

First, the initial surface Γ(0) is approximated by a triangulated one
denoted by Γh(0), which is given as

Γh(0) –
⋃

E(0)∈Th(0)

E(0).

Let ai(0), (i = 1, 2, . . . , N), denote the initial nodes lying on the initial
continuous surface. Now the nodes are evolved with respect to the
ALE map A, i.e. ai(t) – A (ai(0), t). Obviously they remain on the
continuous surface Γ(t) for all t. Therefore the smooth surface Γ(t)
is approximated by the triangulated one denoted by Γh(t), which is
given as

Γh(t) –
⋃

E(t)∈Th(t)

E(t).

We always assume that the (evolving) simplices E(t) form an admis-
sible triangulation Th(t) with h denoting the maximum diameter.
Admissible triangulations were introduced in [31] section 5.1: every
E(t) ∈ Th(t) satisfies that the inner radius σh is bounded from below
by ch with c > 0 and Γh(t) is not a global double covering of Γ(t).

The discrete tangential gradient on the discrete surface Γh(t) is
given by

∇Γh(t) f – ∇ f −∇ f · nhnh = prh(∇ f ),

understood in a element-wise sense, with nh denoting the normal
to Γh(t) and prh – I − nhnT

h .

For every t ∈ [0, T] we define the finite element subspace

Sh(t) –

{
φh ∈ C (Γh(t))

∣∣∣ φh|E is linear, for all E ∈ Th(t)
}
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The piecewise linear moving basis functions χj are defined by
χj (ai(t), t) = δij for all i, j = 1, 2, . . . , N, and hence

Sh(t) = span{χ1( · , t), χ2( · , t), . . . , χN( · , t)}.

We continue with the definition of the interpolated velocities on
the discrete surface Γh(t):

Vh( · , t) =
N

∑
j=1

v (aj(t), t)χj( · , t),

Wh( · , t) =
N

∑
j=1

w (aj(t), t)χj( · , t)

(A.8)

are the discrete velocity, and the discrete ALE velocity, respectively.
The discrete material derivative, and its ALE version is given by

∂•hφh = ∂tφh + Vh · ∇φh, ∂Ah φh = ∂tφh + Wh · ∇φh,

where ∂tφh(x, t0) and ∇φh(x, t0) is meant in the following sense:
Denote by Gh –

⋃
t∈[0,T] Γh(t)× {t} ⊂ Rm+2 the discrete time space

manifold and for simplicity assume that the coefficients of φh:Gh →
R w.r. to the standard finite element basis are smooth in t. Assume
that x is lying in the interior of E(t0) ⊂ Γh(t0) and denote by E(t)
the evolution of E(t0). Finally set E –

⋃
t∈[0,T] E(t)× {t}. For the

restricted function φh|E there exists an smooth extension φh on a
(m + 2)-dimensional neighborhood of E . We set ∂tφh = ∂tφh and
∇φh = ∇φh. A straightforward calculation shows that ∂•hφh and
∂Ah φh are well-defined.

In the ALE setting the key transport property is the following

∂Ah χk = 0 for k = 1, 2, . . . , N. (A.9)

It can be shown as its non-ALE version, see [31, proposition 5.4].
The spatially discrete ALE problem for evolving surfaces is for-

mulated in
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Problem A.3.1 (Semidiscretization in space). Find Uh ∈ Sh(t) so
that∫

Γh(t)
Uhφh +

∫
Γh(t)
∇Γh(t)Uh · ∇Γh φh

∫
Γh(t)

Uh(Wh −Vh) · ∇Γh φh

=
∫

Γh(t)
Uh∂Ah φh, (∀φh ∈ Sh(t)), (A.10)

with the initial condition Uh( · , 0) = U0
h ∈ Sh(0) is a sufficient

approximation of u0.

A.3.2. The ODE system

The ODE form of the above problem can be derived by setting

Uh( · , t) =
N

∑
j=1

αj(t)χj( · , t) (A.11)

and testing by φh = χk for k = 1, 2, . . . , N in (A.10) and using the
transport property for evolving surfaces (A.9).

Proposition A.3.2 (ODE system for evolving surfaces). The spa-
tially semidiscrete problem is equivalent to the ODE system for the
vector α(t) = (αj(t)) ∈ RN , representing Uh( · , t),

d
dt

(M(t)α(t)) + A(t)α(t) + B(t)α(t) = 0

α(0) = α0

(A.12)

where M(t) and A are the evolving mass and stiffness matrices defined
by

M(t)kj =
∫

Γh(t)
χjχk, A(t)kj =

∫
Γh(t)
∇Γh(t)χj · ∇Γh(t)χk,
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and the evolving matrix B(t) is given by

B(t)kj =
∫

Γh(t)
χj(Wh −Vh) · ∇Γh(t)χk (A.13)

The proof of this proposition is analogous to the corresponding one
in [37, section 3].

Remark A.3.3. In the original ESFEM setting there was no direct
involvement of velocities, but in the ALE formulation there is. We
remark here that since the normal components of the continuous
ALE and material velocity are equal, during computations one can
work only with the difference of the two discrete velocities. We keep
the above formulation to leave the presentation plain and simple.

A.3.3. Lifting process

In the following we define the so called lift operator, which was
introduced by [29] and further investigated by [31, 35]. The lift
operator can be interpreted as a geometric projection: it projects a
finite element function φh: Γh(t) → R on the discrete surface Γh(t)
onto a function φl

h: Γ(t)→ R on the smooth surface Γ(t). Therefore
it is crucial for our error estimates.

We assume that there exists an open bounded set U(t) ⊂ Rm+1

such that ∂U(t) = Γ(t). The oriented distance function d is defined as

Rm+1 × [0, T]→ R, d(x, t) –

{
−dist (x, Γ(t)), x ∈ U(t),

dist (x, Γ(t)), else.

For µ > 0 we define N (t)µ – {x ∈ Rm+1 | dist (x, Γ(t)) < µ}.
Clearly N (t)µ is an open neighbourhood of Γ(t). In [46] lemma
14.16 it is shown the following important regularity result about
d.
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Lemma A.3.4. Let U(t) ⊂ Rm+1 be bounded and Γ(t) ∈ Ck for
k ≥ 2. Then there exists a positive constant µ depending on U such
that d ∈ Ck(N (t)µ).

The same reference also mentions that µ−1 bounds the principal
curvatures of Γ(t).

In the following we recall the lift operator from [29, equation (2)].
For each x ∈ Γ(t)µ there exists a unique p = p(x, t) ∈ Γ(t) such that
|x − p| = dist(x, Γ(t)), then x and p are related by the important
equation:

x = p + n(p, t)d(x, t). (A.14)

We assume that Γh(t) ⊂ N (t). The lift operator L maps a continuous
function φh: Γh(t) → R onto a function L(φh): Γ(t) → R as follows:
for every x ∈ Γh(t) exists via equation (A.14) a unique p = p(x, t).
We set pointwise

L(ηh)(p, t) – ηl
h(p, t) – ηh(x, t).

L(φh): Γ → R is continuous. If φh has weak derivatives then L(φh)
also has weak derivatives.

Finally, we have the lifted finite element space

Sl
h(t) – {ϕh = φl

h | φh ∈ Sh(t)}.

A.3.4. Properties of the evolving matrices

Clearly the evolving stiffness matrix is symmetric, positive semi-de-
finite and the mass matrix is symmetric, positive definite. Through
the paper we will work with the norm and semi-norm introduced
by [37]:

|z(t)|M(t) = ‖Zh‖L2(Γh(t)),

|z(t)|A(t) = ‖∇Γh Zh‖L2(Γh(t)),
(A.15)
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for arbitrary z(t) ∈ RN , where Zh( · , t) = ∑N
j=1 zj(t)χj( · , t).

A very important lemma in our analysis is the following.

Lemma A.3.5 ([37, lemma 4.1] and [63, lemma 2.2]). There are
constants µ, κ, depending on ‖∇Γ · w‖L∞(Γ(t)), but independent of h,
such that

zT (M(s)−M(t))y ≤ (eµ(s−t) − 1) |z|M(t) |y|M(t) (A.16)

zT (M−1(s)−M−1(t))y ≤ (eµ(s−t) − 1) |z|M−1(t) |y|M−1(t) (A.17)

zT (A(s)− A(t))y ≤ (eκ(s−t) − 1) |z|A(t) |y|A(t) (A.18)

for all y, z ∈ RN and s, t ∈ [0, T].

We will use this lemma with s close to t (usually, t = s + kτ for
some positive integer k independent of the time step τ). Hence,
(eµ(s−t) − 1) ≤ 2µ(s− t) holds. In particular for y = z we have

|z|2M(s) ≤ (1 + 2µ(t− s)) |z|2M(t), (A.19)

|z|2A(s) ≤ (1 + 2κ(t− s)) |z|2A(t). (A.20)

The following technical lemma will play a crucial role in this paper,
while handling the nonsymmetric term.

Lemma A.3.6. Let y, z ∈ RN and t ∈ [0, T] be arbitrary, then

|〈B(t)z | y〉| ≤ cA |z|M(t) |y|A(t),

where the constant cA > 0 depends only on the velocity difference
w− v.

Proof. Using the definition of the matrix B(t) (see (A.13)) we can
write
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|〈B(t)z | y〉| =
∣∣∣∫

Γh

Zh(Wh −Vh) · ∇ΓhYh

∣∣∣
≤ ‖Wh −Vh‖L∞(Γh(t))

∫
Γh

|Zh| |∇ΓhYh|.

For a first order finite element function ϕh ∈ Sh(t) it holds

‖ϕh‖L∞(Γh) = |ϕh(p)|

for an appropriate node p ∈ Γh(t). Hence using (A.8) we can
estimate as

‖Wh −Vh‖L∞(Γh(t)) ≤ (m + 1) ‖w− v‖L∞(Γh(t)). (A.21)

Now apply the Cauchy-Schwarz inequality and using the equiva-
lence of norms over the discrete and continuous surface (cf. [31],
Lemma 5.2) to obtain the stated result. �

A.3.5. Interpolation estimates

Let Ih: C(Γ(t))→ Sl
h(t) be the lifted Lagrange interpolation operator,

where C(Γ(t)) denotes the space of continuous functions on Γ(t); cf.
[31] for further details on the interpolation operator. The following
interpolation estimate holds.

Lemma A.3.7. For m ≤ 3 and p ∈ {2, ∞} there exists a constant
c > 0 independent of h and t such that for u ∈W2,p (Γ(t)):

‖u− Ihu‖Lp(Γ(t)) + h‖∇Γ(u− Ihu)‖Lp(Γ(t))

≤ ch2 (‖∇2
Γu‖Lp(Γ(t)) + h‖∇Γu‖Lp(Γ(t))).

Proof. Since m ≤ 3 and Γ(t) is smooth and compact, a Sobolev
embedding theorem, cf. [5, theorem 2].20, implies W2,p(Γ(t)) ⊂
C(Γ(t)). Hence Ihu is well defined.
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The estimate for the case p = 2 is stated in [31, lemma 5.3]. On the
reference element a interpolation estimate for the case p = ∞ was
shown in [76, theorem 3.1]. Using the estimates appearing in the
proof of [29, lemma 3] and combining these with standard estimates
of the reference element technique we obtain the stated result. �

A.3.6. Discrete geometric estimates

We recall some notions using the lifting process from [29], [31] and
[66] using the notation of the last reference. By δh we denote the
quotient between the continuous and discrete surface measures, dA
and dAh, defined as δh dAh = dA. Further, we recall that

pr – I − nnT and prh = I − nhnT
h ,

are the projections onto the tangent spaces of Γ and Γh. Finally H
(Hij = ∂ni

∂xj
) is the (extended) Weingarten map. For these quantities

we recall some results from [31, 35] and [66], having the exact same
proofs for the ALE case.

Lemma A.3.8. Assume that Γh(t) and Γ(t) satisfy the above, and
Γ(t) is C` in time, then we have the estimates

‖dX‖L∞(Γh) ≤ ch2, ‖n− nh‖L∞(Γh) ≤ ch,

‖1− δh‖L∞(Γh) ≤ ch2, ‖(∂Ah )(`)d‖L∞(Γh) ≤ ch2,

‖pr−pr prh pr‖L∞(Γh) ≤ ch2,

where (∂•h)(`) denotes the `-th discrete ALE material derivative.

Proof. The first three inequalities have been proven in [35] lemma
5.4. The fourth inequality for ` ≥ 1 is presented in [66] lemma 6.1.
The last inequality has been shown in [31] lemma 5.1. �
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A.3. Semidiscretization: ALE evolving surface finite element method

A.3.7. Bilinear forms and their properties

We use the time dependent bilinear forms defined as in [35] section
3.3. For z, ϕ ∈ H1 (Γ(t)) we set

a(z, ϕ) =
∫

Γ(t)
∇Γz · ∇Γ ϕ,

m(z, ϕ) =
∫

Γ(t)
zϕ,

g(w; z, ϕ) =
∫

Γ(t)
(∇Γ · w)zϕ,

b(w; z, ϕ) =
∫

Γ(t)
B(w)∇Γz · ∇Γ ϕ,

and for Zh, φh ∈ Sh(t) we define their discrete analogs as

ah(Zh, φh) = ∑
E∈Th

∫
E
∇Γh Zh · ∇Γh φh,

mh(Zh, φh) =
∫

Γh(t)
Zhφh

gh(Wh; Zh, φh) =
∫

Γh(t)
(∇Γh ·Wh)Zhφh,

bh(Wh; Zh, φh) = ∑
E∈Th

∫
E
Bh(Wh)∇Γh Zh · ∇Γh φh,

where the discrete tangential gradients are understood in a piece-
wise sense, and with the matrices

B(w)ij = δij(∇Γ · w)− ((∇Γ)iwj + (∇Γ)jwi),

Bh(Wh)ij = δij(∇Γ ·Wh)− ((∇Γh )i(Wh)j + (∇Γh )j(Wh)i),

where i, j = 1, 2, . . . , n.
Following [35] the ALE velocity of lifted material points is defined

as follows: Denote by L0: Γh(0)→ Γ(0) the Lift for the initial surface
and denote by Lt: Γh(t)→ Γ(t) the lift at time t, cf. equation (A.14).
In a straightforward way the ALE dynamical system A on Γ(t)
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defines a discrete ALE dynamical system Ah on Γh(t). Ah can be
interpreted as the interpolation of A. It holds

dAh

dt
(x0

h, t) = Wh(Ah(x0
h, t), t).

Define

Al
h: Γ0 × [0, T]→ Rm+1, (x0, t) 7→ Lt

(
Ah (L−1

0 (x0), t)
)

.

Obviously it holds Al
h(Γ0, t) = Γ(t). We note that Al

h is just curved
element wise smooth. Analogous to equation (A.3) we define the
corresponding velocity Γ(t)→ Rm+1, x 7→ wh(x, t) via

wh(Al
h(x0, t), t) –

d
dt
Al

h(x0, t). (A.22)

Again like in section A.2.1 the map

ĂAl
h: Γ0 × [0, T]→ GT

is bijective and now analogously to equation (A.4) we define the
corresponding discrete ALE material derivative for function on the
smooth surface as

∂Ah f (x, t) –
d
dt

∣∣∣∣
(ĂAl

h)−1(x,t)
f ◦ ĂAl

h.

If f̄ denotes an extension of f on an open neighborhood of GT then
we have

∂Ah f (x, t) =
∂ f̄
∂t

∣∣∣∣
(x,t)

+ wh(x, t) · ∇ f̄ (x, t).
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Lemma A.3.9. There exists c > 0 independent of h such that

‖w− wh‖L∞(GT) ≤ ch2.

Proof. The proof has been done in [35] lemma 5.6. For the conve-
nience of the reader we recap the main arguments. Applying the
chain rule at the right-hand side of (A.22) leads to

wh(x, t) = Ihw(x, t)− dX ((Lt)−1(x), t) (H(x, t)Ihw(x, t) +
∂n
∂t

(x, t))

− n(x, t)
(∂dX

∂t
((Lt)−1(x), t) + n(x, t) · Ihw(x, t)

)
.

Since
wh(x, t) · n(x, t) = w(x, t) · n(x, t)

and
∂n
∂t

(x, t) · n(x, t) = 0

it follows that multiplying the equation above by n(x, t) yields

∂dX

∂t
((L)−1(x), t) = w(x, t) · n(x, t).

The claim now follows by lemma A.3.8 and lemma A.3.7. �

Lemma A.3.10 ([35, lemma 4.2], [43, lemma 3.8]). For lifted ele-
ment functions zh, ϕh ∈ Sl

h(t) with discrete ALE material derivatives
∂Ah zh, ∂Ah ϕh ∈ Sl

h(t) we have:

d
dt

m(zh, ϕh) = m(∂Ah zh, ϕh) + m(zh, ∂Ah ϕh) + g(wh; zh, ϕh),

d
dt

a(zh, ϕh) = a(∂Ah zh, ϕh) + a(zh, ∂Ah ϕh) + b(wh; zh, ϕh).
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Versions of this lemma with continuous non-ALE material deriva-
tives, or discrete bilinear forms are also true, see e.g. [66] lemma
6.4.

We will need the following estimates between the continuous and
discrete bilinear forms.

Lemma A.3.11 ([35], [43]). For arbitrary Zh, φh ∈ Sh(t), with cor-
responding lifts zh, ϕh ∈ Sl

h(t) we have the bound

|m(zh, ϕh)− mh(Zh, φh)| ≤ ch2 ‖zh‖L2(Γ(t)) ‖ϕh‖L2(Γ(t)),

|a(zh, ϕh)− ah(Zh, φh)| ≤ ch2 ‖ϕh‖L2(Γ(t)) ‖∇Γ ϕh‖L2(Γ(t)),

|g(wh; zh, ϕh)− gh(Wh; Zh, φh)| ≤ ch2 ‖zh‖L2(Γ(t)) ‖ϕh‖L2(Γ(t)),

|m(zh, (w − v) · ∇Γ ϕh)− mh(Zh, (Wh − Vh) · ∇Γh φh)|
≤ ch2 ‖zh‖L2(Γ(t)) ‖∇Γ ϕh‖L2(Γ(t)).

Proof. For the first three inequalities we refer to [35] lemma 5.5.
For the last inequality observe that∣∣∣m(zh, (w− v) · ∇Γ ϕh)−mh(Zh, (Wh −Vh) · ∇Γh φh)

∣∣∣
≤
∣∣∣m(zh, ((w− v)− (W l

h −V l
h)) · ∇Γ ϕh)

∣∣∣
+
∣∣∣m(zh, (W l

h −V l
h) · ∇Γ ϕh)−mh(Zh, (Wh −Vh) · ∇Γh φh)

∣∣∣
≤ ch2 ‖zh‖L2(Γ(t)) ‖∇Γ ϕh‖L2(Γ(t))

+
∣∣∣m(zh, (W l

h −V l
h) · ∇Γ ϕh)−mh(Zh, (Wh −Vh) · ∇Γh φh)

∣∣∣,
where we have used lemma A.3.7 for the last inequality. The

inequality∣∣∣m(zh, (W l
h − V l

h) · ∇Γ ϕh)− mh(Zh, (Wh − Vh) · ∇Γh φh)
∣∣∣

≤ ch2 ‖zh‖L2(Γ(t)) ‖∇Γ ϕh‖L2(Γ(t))
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follows from [43, lemma B.3]. For the convenience of the reader we
recap the arguments. It holds∫

Γ(t)
zh(W l

h − V l
h) · ∇Γ ϕh dA −

∫
Γh(t)

Zh(Wh − Vh) · ∇Γh φh dAh

=
∫

Γ(t)
zh(W l

h − V l
h) · (pr−(δl

h)−1 prh(I − dH) pr)∇Γ ϕh dA.

Using lemma A.3.8 we estimate as

|pr−(δl
h)−1 prh(I − dH) pr|

≤ ch2 + |(I − prh(I − dH)) pr| ≤ ch2,

which implies the claim. �

A.3.8. The Ritz map

We use nearly the same Ritz map introduced in [62] definition 8.1,
but for the parabolic case a much simpler version suffices:

Definition A.3.12. For a given z ∈ H1(Γ(t)) there is a unique
ĂPhz ∈ Sh(t) such that for all φh ∈ Sh(t), with the corresponding
lift ϕh = φl

h, we have

a∗h(ĂPhz, φh) = a∗(z, ϕh), (A.23)

where a∗ – a + m and a∗h – ah + mh, to make the forms a and
ah positive definite. Then Phz ∈ Sl

h(t) is defined as the lift of
ĂPhz, i.e. Phz = (ĂPhz)l .

Remark A.3.13. The Ritz map in (A.23) is a simplified version of
the Ritz map considered in [66] definition 7.1 and [62] definition
8.1. The Ritz map in the first reference is actually a more general
one then (A.23), since for the choice ζ ≡ 0 there, we obtain our Ritz
map, see the proof below.
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A different Ritz projection has been used [35] and [43] appendix
C. In these articles a Ritz projection is defined via

a(Phz, ϕh) = a(z, ϕh), ∀ϕh ∈ Sl
h(t)

and ∫
Γ(t)
Phz dA =

∫
Γ(t)

z dA = 0.

More recently in [40, section 3].6, a different Ritz map is defined via

ah(ĂPhz, φh) = a(z, φl
h), ∀φh ∈ Sh(t)

and ∫
Γh(t)

ĂPhz dAh =
∫

Γ(t)
z dA.

Lemma A.3.14. The Ritz map satisfies the bounds, for 0 ≤ t ≤ T
and h ≤ h0 with a sufficiently small h0,

‖z − Phz‖L2(Γ(t)) + h ‖∇Γ(z − Phz)‖L2(Γ(t)) ≤ ch2 ‖z‖H2(Γ(t)),

‖(∂Ah )(`)(z − Phz)‖L2(Γ(t)) + h ‖∇Γ((∂Ah )(`)(z − Phz))‖L2(Γ(t))

≤ c`h2
`

∑
j=0
‖(∂A)(j)z‖H2(Γ(t)),

where the constants c and c` are independent of h and t ∈ [0, T].

Proof. [66] has defined a Ritz map as follows. For given ζ ∈ H1(Γ(t))
he defined ĂPh: H1(Γ(t))→ Sh(t) via the equation

a∗h(ĂPhz, φh) = a∗(z, φl
h) + m(ζ , (vh − v) · ∇Γφl

h) ∀φh ∈ Sh(t),

where vh plays no role in our setting. Nevertheless, since the proof
includes the case ζ ≡ 0 our claim follows from [66, theorem 7.2 and
7.3]. �
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A.4. Stability

A.4.1. Stability of implicit Runge-Kutta methods

We consider an s-stage implicit Runge-Kutta method (R-K) for the
time discretization of the ODE system (A.12), coming from the ALE
ESFEM space discretization of the parabolic evolving surface PDE.

In the following we extend the stability result for R-K methods of
[37], Lemma 7.1, to the case of ALE evolving surface finite element
method. Apart form the properties of the ALE ESFEM the proof is
based on the energy estimation techniques of [64, theorem 1].1.

For the convenience of the reader we recall the method: for
simplicity, we assume equidistant time steps tn – nτ, with step
size τ. Our results can be straightforwardly extended to the case of
nonuniform time steps. The s-stage implicit Runge-Kutta method,
defined by the given Butcher tableau.

(ci) (aij)
(bi)

, for i, j = 1, 2, . . . , s,

applied to the system (A.12):
d
dt (M(t)α(t)) + A(t)α(t) + B(t)α(t) = 0

α(0) = α0,

where we have set U0
h = ∑N

j=1 α0,jχj( · , 0), reads as

(A.24a)Mniαni = Mnαn + τ
s

∑
j=1

aijα̇nj, i = 1, 2, . . . , s,

(A.24b)Mn+1αn+1 = Mnαn + τ
s

∑
i=1

biα̇ni,

where the internal stages satisfy
(A.24c)0 = α̇ni + Bniαni + Aniαni, i = 1, 2, . . . , s,
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with Ani – A(tn + ciτ), Bni – B(tn + ciτ), Mni – M(tn + ciτ) and
Mn+1 – M(tn+1). Here α̇ni is not a derivative but a suggestive
notation.

We recall that Uh( · , t) = ∑N
j=1 αj(t)χj( · , t) for the semidiscrete

case from section A.3.2, and for the fully discrete case we define
Un

h = ∑N
j=1 αn,jχj( · , tn).

Assumption A.4.1. We assume that:

• The method has stage order q ≥ 1 and classical order p ≥
q + 1.

• The coefficient matrix (aij) is invertible; the inverse will be
denoted by upper indices (aij).

• The method is algebraically stable, i.e. bj > 0 ∀j and the follow-
ing matrix is positive semi-definite:

(biaij − bjaji − bibj)
s
i,j=1. (A.25)

• The method is stiffly accurate, i.e. for j = 1, 2, . . . , s it holds

bj = asj, and cs = 1. (A.26)

Instead of (A.12), let us consider the following perturbed equa-
tion: 

d
dt (M(t)rα(t)) + A(t)rα(t) + B(t)rα(t) = M(t)r(t),

rα(0) = rα0.
(A.27)

The substitution of the true solution rα(t) of the perturbed problem
into the R-K method, yields the defects ∆ni and δni, by setting
en = αn − rα(tn), Eni = αni − rα(tn + ciτ) and Ėni = α̇ni − ṙα(tn + ciτ),
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again Ėni is not a derivative. Then by subtraction the following error
equations hold:

MniEni = Mnen + τ
s

∑
j=1

aijĖnj − ∆ni, (A.28a)

Mn+1en+1 = Mnen + τ
s

∑
i=1

biĖni − δn+1, (A.28b)

where the internal stages satisfy:

Ėni + AniEni + BniEni = −Mnirni, (A.28c)

with rni – r(tn + ciτ) and i = 1, 2, . . . , n.

Similar to [37], lemma 7.1 or [66], lemma 3.1, we present a stability
estimate (such that the choice of τ is independent of h) for the
above class of Runge-Kutta methods. Since the method (A.24) and
the error equation (A.28) both involve only matrices and vectors,
we first establish this stability estimate in terms of nodal error
vectors with corresponding time-dependent norms (A.15). Using
(A.15) this estimate can be translated into L2- and H1-norms of the
corresponding finite element error functions. This result will be
related to the norms of Uh, through the error, later in theorem A.5.2
and A.5.3.

Lemma A.4.2. For an s-stage implicit Runge-Kutta method satisfy-
ing Assumption A.4.1, there exists a τ0 > 0, depending only on the
constants µ and κ, such that for τ ≤ τ0 and tn = nτ ≤ T, that the
error en is bounded by

|en|2Mn
+ τ

n

∑
k=1
|ek|2Ak

≤ C
{
|e0|2M0

+ τ
n−1

∑
k=1

s

∑
i=1
‖Mkirki‖2

∗,ki
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+ τ
n

∑
k=1

∣∣∣∣δk

τ

∣∣∣∣2
Mk

+ τ
n−1

∑
k=0

s

∑
i=1

(
|M−1

ki ∆ki|2Mki
+ |M−1

ki ∆ki|2Aki

)}
,

where ‖w‖2
∗,k = wT (A(tk) + M(tk))−1w. The constant C is inde-

pendent of h, τ and n, but depends on µ, κ, T and on the norm of
the difference of the velocities. The constant τ0 depends on the ALE
velocity, see lemma A.3.5.

Proof. (a) By using (A.28a) – (A.28c) and algebraic stability (A.25)
the following inequality holds for the ALE setting:

|en+1|2Mn+1
≤ (1 + 2µτ) |en|2Mn

+ 2τ
s

∑
i=1

bi 〈Ėni |M−1
n+1 |MniEni + ∆ni〉

+ τ |En+1|2Mn+1
+ (1 + 3τ)τ

∣∣∣∣δn+1

τ

∣∣∣∣2
M−1

n+1

. (A.29)

We want to estimate the second term on the right-hand side of
(A.29). Obviously the equation

〈Ėni |M−1
n+1 |MniEni + ∆ni〉 = 〈Ėni |M−1

ni |MniEni + ∆ni〉
+ 〈Ėni |M−1

n+1 −M−1
ni |MniEni + ∆ni〉 (A.30)

holds. The second term on the right-hand side of (A.30) can be
estimated by (cf. [66] lemma 3.1, (3.14)):

〈Ėni |M−1
n+1 −M−1

ni |MniEni + ∆ni〉

≤ C
{
|en|2Mn

+
s

∑
j=1
|Enj|2Mnj

+ |∆nj|2M−1
nj

}
. (A.31)

(b) We have to modify the estimation of the first term on the right-
hand side of (A.30). Using the definition of internal stages (A.28c),
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we have

〈Ėni |M−1
ni |MniEni + ∆ni〉 = − |Eni|2Ani

− 〈Mnirni | Eni + M−1
ni ∆ni〉

− 〈Eni | Ani |M−1
ni ∆ni〉

− 〈BniEni | Eni + M−1
ni ∆ni〉. (A.32)

The last term can be estimated by Lemma A.3.6 as

|〈BniEni | Eni + M−1
ni ∆ni〉| ≤ |〈BniEni | Eni〉| + |〈BniEni |M−1

ni ∆ni〉|
≤ C |Eni|Mni

|Eni|Ani
+ C |Eni|Mni

|M−1
ni ∆ni|Ani

≤ C |Eni|2Mni
+

1
4
|Eni|2Ani

+ C |Eni|2Mni
+ C |M−1

ni ∆ni|2Ani
. (A.33)

While the other terms can be estimated by the following inequality
(shown in [66] lemma 3.1):

− |Eni|2Ani
+ |〈Mnirni | Eni + M−1

ni ∆ni〉| + |〈Eni | Ani |M−1
ni ∆ni〉|

≤ −1
2
|Eni|2Ani

+
1
4
|Eni|2Mni

+ C(|M−1
ni ∆ni|2Mni

+ |M−1
ni ∆ni|2Ani

). (A.34)

We continue to estimate the right-hand side of (A.32) with (A.33),
(A.34) and arrive to

(A.35)
〈Ėni |M−1

n+1 |MniEni + ∆ni〉 ≤ −
1
4
|Eni|2Ani

+ C(|Eni|2Mni

+ |M−1
ni ∆ni|2Mni

+ |M−1
ni ∆ni|Ani

2
).

(c) Now we return to the main inequality (A.29), consider equation
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(A.32) and plug in the inequalities (A.31) and (A.35) to get

|en+1|2Mn+1
− |en|2Mn

+
1
4

τ
s

∑
i=1

bi |Eni|2Ani

≤ Cτ
{
|en|2Mn

+
s

∑
j=1
|Enj|2Mnj

+ ‖Mnjrnj‖2
∗,nj (A.36)

+
s

∑
j=1

(|M−1
nj ∆nj|2Mnj

+ |M−1
nj ∆nj|2Anj

) +
∣∣∣∣δn+1

τ

∣∣∣∣2
M−1

n+1

}
.

(d) Next we estimate |Enj|2Mnj
, in [66] lemma 3.1 one can find the

estimate:

|Eni|2Mni
≤ C

(
|en|2Mn

+ τ
s

∑
j=1

aij 〈Ėnj | Eni〉 + |M−1
ni ∆ni|2Mni

)
. (A.37)

We have to estimate 〈Ėnj | Eni〉, with equation (A.28c) we get

〈Ėnj | Eni〉 = − 〈Enj | Anj | Eni〉 − 〈Mnjrnj | Eni〉 − 〈BnjEnj | Eni〉.
(A.38)

The following inequalities can be shown easily using Young’s-
inequality (ε will be chosen later) and Cauchy-Schwarz inequality:

− 〈Enj | Anj | Eni〉 ≤ C(κ)(|Enj|2Anj
+ |Eni|2Ani

),

− 〈BnjEnj | Eni〉 ≤ ε |Enj|2Mnj
+

1
4ε

C(κ) |Eni|2Ani

− 〈Mnjrnj | Eni〉 ≤ C(µ, κ)
( 1

4ε
‖Mnjrnj‖2

∗,nj + ε(|Eni|2Mni
+ |Eni|2Ani

)
)

.

Using the above three inequalities to estimate (A.38), we get

(A.39)
〈Ėnj | Eni〉 ≤ C(µ, κ)

(
ε |Eni|2Mni

+ C(ε) |Eni|2Ani

)
+ |Enj|2Anj

+ C(ε) ‖Mnjrnj‖2
∗,nj.
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Using this for a sufficiently small ε (independent of τ) we can
proceed by estimating (A.37) further as

|Eni|2Mni
≤ C

(
|en|2Mn

+ τ
s

∑
j=1

aij(|Enj|2Anj
+ ‖Mnjrnj‖2

∗,nj) + |M−1
ni ∆ni|2Mni

)
.

(e) Now for a sufficiently small τ we can use the above inequality
to estimate (A.36) to

|en+1|2Mn+1
− |en|2Mn

+
1
8

τ
s

∑
i=1

bi |Eni|2Ani
≤

Cτ
{
|en|2Mn

+
s

∑
i=1
‖Mnirni‖2

∗,ni +
s

∑
i=1

(|M−1
ni ∆ni|2Mni

+

|M−1
ni ∆ni|2Ani

) +
∣∣∣∣δn+1

τ

∣∣∣∣2
M−1

n+1

}
.

Summing up over n and applying a discrete Gronwall inequality
yields the desired result. �

A.4.2. Stability of Backward Difference Formulas

We apply a backward difference formula (BDF) as a temporal dis-
cretization to the ODE system (A.12), coming from the ALE ESFEM
space discretization of the parabolic evolving surface PDE.

In the following we extend the stability result for BDF methods of
[63], Lemma 4.1 to the case of ALE evolving surface finite element
method. Apart from the properties of the ALE ESFEM the proof is
based on the G-stability theory of [20] and the multiplier technique
of [69]. We will prove that the fully discrete method is stable for
the k-step BDF methods up to order five. Again the stability holds
without a CFL-type condition.
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We recall the k-step BDF method, applied to the ODE system
(A.12), with step size τ > 0 and given starting values αn−k, . . . , αn−1:

1
τ

k

∑
j=0

δj M(tn−j)αn−j + A(tn)αn + B(tn)αn = 0, (n ≥ k), (A.40)

where the coefficients of the method is given by δ(ζ) = ∑k
j=0 δjζ

j =

∑k
`=1

1
` (1− ζ)`, while the initial values are α0, α1, . . . , αk−1. Again Uh

and α is related through (A.11). The method is known to be 0-stable
for k ≤ 6 (but not A-stable for k ≥ 3) and have order k, for more
details we refer to [49] chapter V.

Instead of (A.12), let us consider again the perturbed problem
d
dt

(M(t)α̃(t)) + A(t)α̃(t) + B(t)α̃(t) = M(t)r(t)

α̃(0) = α̃0.
(A.41)

By substituting the true solution α̃(t) of the perturbed problem
into the BDF method (A.40), we obtain

1
τ

k

∑
j=0

δj M(tn−j)α̃n−j + A(tn)α̃n + B(tn)α̃n = −dn, (n ≥ k).

Then by introducing the error en = αn − α̃(tn), multiplying by τ, and
by subtraction we have the error equation

k

∑
j=0

δj Mn−jen−j + τAnen + τBnen = τdn, (n ≥ k). (A.42)

We recall two important preliminary results.
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Lemma A.4.3 ([20]). Let δ(ζ) and µ(ζ) be polynomials of degree at
most k (at least one of them of exact degree k) that have no common
divisor. Let 〈 · | · 〉 be an inner product on RN with associated norm
‖ · ‖. If

Re
δ(ζ)
µ(ζ)

> 0, for |ζ|< 1,

then there exists a symmetric positive definite matrix G = (gij) ∈
Rk×k and real γ0, . . . , γk such that for all v0, . . . , vk ∈ RN〈

k

∑
i=0

δivk−i

∣∣∣∣∣ k

∑
i=0

µivk−i

〉
=

k

∑
i,j=1

gij 〈vi | vj〉

−
k

∑
i,j=1

gij 〈vi−1 | vj−1〉 +
∣∣∣ k

∑
i=0

γivi

∣∣∣2
holds.

Together with this result, the case µ(ζ) = 1 − ηζ will play an
important role:

Lemma A.4.4 ([69]). If k ≤ 5, then there exists 0 ≤ η < 1 such
that for δ(ζ) = ∑k

`=1
1
` (1− ζ)`,

Re
δ(ζ)

1− ηζ
> 0, for |ζ|< 1.

The smallest possible values of η is found to be η = 0, 0, 0.0836,
0.2878, 0.8160 for k = 1, 2, . . . , 5, respectively.

We now state and prove the analogous stability result for the BDF
methods. Again using (A.15) this estimate can be translated into L2-
and H1-norms of the corresponding finite element error functions,
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see later in theorem A.5.4.

Lemma A.4.5. For a k-step BDF method with k ≤ 5 there exists
a τ0 > 0, depending only on the constants µ and κ, such that for
τ ≤ τ0 and tn = nτ ≤ T, that the error en is bounded by

|en|2Mn
+ τ

n

∑
j=k
|ej|2Aj

≤ Cτ
n

∑
j=k
‖dj‖2

∗,j + C max
0≤i≤k−1

|ei|2Mi

where ‖w‖∗,k
2 = wT (A(tk) + M(tk))−1w. The constant C is inde-

pendent of h, τ and n, but depends on µ, κ, T and on the norm of
the difference of the velocities. The constant τ0 depends on the ALE
velocity, see lemma A.3.5.

Proof. Our proof follows the one of lemma 4.1 in [63].

(a) The starting point of the proof is the following reformulation
of the error equation (A.42)

Mn

k

∑
j=0

δjen−j + τAnen + τBnen = τdn +
k

∑
j=1

δj(Mn −Mn−j)en−j

and using a modified energy estimate. We multiply both sides by
en − ηen−1, for n ≥ k + 1, which gives us:

In + I In = I I In + IVn −Vn,

where

In =
〈 k

∑
j=0

δjen−j

∣∣∣Mn

∣∣∣ en − ηen−1

〉
,

I In = τ 〈en | An | en − ηen−1〉,
I I In = τ 〈dn | en − ηen−1〉,

IVn =
k

∑
j=1
〈en−j |Mn − Mn−j | en − ηen−1〉,
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Vn = τ 〈en | Bn | en − ηen−1〉.

(b) The estimates of In, I In, I I In and IVn are the same as in the
proof of [63, lemma 4.1]. For the convenience of the reader we
repeat them:

In ≥ ‖En‖2
G,n − ‖En−1‖2

G,n,
I In

τ
≥ 2− η

2
|en|2An

− cη |en−1|2An−1
,

|I I In|
τ
≤ c

1
1− η

‖dn‖2
∗,n +

1− η

2
(ε |en|2An

+ |en|2Mn
)

+ (1− η)c(|en−1|2An−1
+ |en−1|2Mn−1

),

|IVn|
τ
≤ c(‖En‖2

G,n + ‖En−1‖2
G,n).

We note that during the estimation of I I In we used Young’s
inequality with sufficiently small (τ independent) ε.

The nonsymmetric term Vn is estimated using Lemma A.3.6 and
Young’s inequality (with sufficiently small ε, independent of τ):

|Vn| ≤ Cτ |en|Mn
( |en|An

+ η |en−1|An−1
)

= Cτ |en|Mn
|en|An

+ Cητ |en|Mn
|en−1|An−1

≤ τC
1
ε
|en|2Mn

+ ετ |en|2An
+ τC

1
ε
|en|2Mn

+ εη2τ |en−1|2An−1
.

(c) Combining all estimates, choosing a sufficiently small ε (in-
dependently of τ), and summing up gives, for τ ≤ τ0 and for
k ≥ n + 1:

‖En‖2
G,n + (1− η)

τ

8

n

∑
j =k+1

|ej|2Aj
≤ Cτ

n−1

∑
j=k
‖Ej‖2

G,j

+ Cτ
n

∑
j=k+1
‖dj‖2

∗,tj
+ Cη2τ |ek|2Ak

,

(A.43)
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where En = (en, . . . , en−k+1), and the

‖En‖2
G,n –

k

∑
i,j =1

gij 〈en−k+1 |Mn | en−k+j〉.

(d) To achieve the stated result we have to estimate the extra term
|ek|2Mk

+ τ |ek|2Ak
. For that we take the inner product of the error

equation for n = k with ek to obtain

δ0 |ek|2Mk
+ τ |ek|2Ak

= τ 〈dk | ek〉 −
k

∑
j=1

δj 〈Mk−jek−j | ek〉

+ τ |〈ek | Bk | ek〉|.

Then the use of Lemma A.3.6 and Young’s inequality (again with
sufficiently small ε) and (A.16), yields

|ek|2Mk
+ τ |ek|2Ak

≤ Cτ ‖dk‖2
∗,k + C max

0≤i≤k−1
|ei|2Mi

.

Similarly as in [63, lemma 4.1] using the discrete Gronwall inequal-
ity for (A.43) and the above estimate concludes the result. �

A.5. Error bounds for the fully discrete solutions

We start by connecting the stability results of the previous section
with the continuous solution of the parabolic problem. Then using
the Ritz map of u we will show the convergence of the error, which
— together with the stability results — leads us to our main results.
We will prove that the full discretizations, ALE evolving surface
finite element method coupled with Runge-Kutta or BDF methods
converges. The convergence does not require a bound on τ in terms
of h.
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A.5.1. Bound of the semidiscrete residual

Before turning to the fully discrete problem we show error bounds
for the semidiscretization.

Since the stability analysis only uses the matrix-vector formula-
tion (A.27), (A.41), but not the semidiscrete weak form, we follow
[63, Section 5], using the Ritz map, to define the finite element
residual,

Rh( · , t) =
N

∑
j=1

rj(t)χj( · , t) ∈ Sh(t),

by duality pointwise in time, as follows. Let∫
Γh(t)

Rh( · , t)φh = Lt(φh), ∀φh ∈ Sh(t), (A.44)

where, for a fixed t ∈ [0, T], the linear functional Lt : Sh(t)→ R is
defined as follows: for a given finite element function

φh =
N

∑
j=1

cjχj( · , t) ∈ Sh(t),

define the temporal extension ϕh(s) ∈ Sh(s) as the finite element
function with the same nodal values

ϕh(s) =
N

∑
j=1

cjχj( · , s) ∈ Sh(s), (s ∈ [0, T]).

Then, ∂Ah ϕh(s) = 0 for all s, by the transport property (A.9) of the
basis functions. We now define

Lt(φh) =
d
dt

∫
Γh(t)

ĂPhu( · , t)ϕh( · , t) +
∫

Γh(t)
∇Γh (ĂPhu)( · , t)

· ∇Γh ϕh( · , t) +
∫

Γh(t)
(ĂPhu)( · , t)(Wh − Vh)( · , t) · ∇Γh ϕh( · , t)

and determine the residual Rh( · , t) by (A.44).
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The above construction yields the following linear ODE system
with the vector r(t) = (rj(t)) ∈ RN :

d
dt

(M(t)α̃(t)) + A(t)α̃(t) + B(t)α̃(t) = M(t)r(t),

which is the perturbed ODE system (A.27) and (A.41).
We show second order error bounds for the residual Rh using the

bounds on the Ritz map.

Theorem A.5.1 (Bound of the semidiscrete residual). Let u, the
solution of the parabolic problem, be smooth. Then there exists a
constant C > 0 and h0 > 0, such that for all h ≤ h0 and t ∈ [0, T],
the finite element residual Rh of the Ritz map is bounded by

‖Rh( · , t)‖H−1
h (Γh(t)) ≤ Ch2,

where the constant C is independent of h and t, but depends on T
and on the solution u. The H−1

h -norm of Rh is defined as

‖Rh( · , t)‖H−1
h (Γh(t)) – sup

φh 6=0

〈Rh( · , t), φh〉L2(Γh(t))

‖φh‖H1(Γh(t))
,

where φh ∈ Sh(t) is fix in time.

Proof. (a) We start by applying the discrete ALE transport property
to the residual equation (A.44) and using the definition of Lt, for
ĂPhu ∈ Sh(t):

mh(Rh, φh) = mh(∂Ah ĂPhu, ϕh) + ah(ĂPhu, ϕh) + gh(Wh; ĂPhu, ϕh)

+ mh(ĂPhu, (Wh − Vh) · ∇Γh ϕh).

(b) We continue by the transport property with discrete ALE
material derivatives from Lemma A.3.10, but for the ALE weak
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form (from Lemma A.2.5)

0 = m(∂Ah u, ϕl
h) + a(u, ϕl

h) + g(wh; u, ϕl
h) + m(u, (w − v) · ∇Γ ϕl

h).

(c) Subtraction of the two equations, and using the definition of
the Ritz map (A.23), we obtain the following expression for the
residual:

mh(Rh, φh) = mh(∂Ah ĂPhu, ϕh)−m(∂Ah u, ϕl
h)

+ gh(Wh; ĂPhu, ϕh)− g(wh; u, ϕl
h)

− (mh(ĂPhu, ϕh)−m(u, ϕl
h))

+ mh(ĂPhu, (Wh −Vh) · ∇Γh ϕh)−m(u, (w− v) · ∇Γ ϕl
h).

(d) We estimate these pairs separately, we show the basic idea by
using the nonsymmetric term: We aim to use lemma A.3.8 and the
error estimate for the Ritz map, Lemma A.3.14, namely we estimate
as

mh(ĂPhu, (Wh − Vh) · ∇Γh ϕh)− m(Phu, (w − v) · ∇Γ ϕl
h)

+ m(Phu − u, (w − v) · ∇Γ ϕl
h) ≤ Ch2 ‖ϕl

h‖H1(Γ(t)).

The other pairs can be estimated in the same way: by Lemma A.3.11

and the errors in the Ritz map (in fact they can be bounded by
Ch2 ‖ϕh‖L2(Γ(t))). �

A.5.2. Error bounds

The direct application of the stability lemmata for Runge-Kutta
methods and BDF methods (Lemma A.4.2 and Lemma A.4.5, re-
spectively) gives error estimates between the projection ĂPhu( · , tn)
and the fully discrete solution Un

h (ALE ESFEM combined with a
temporal discretization), i.e.

Un
h –

N

∑
j=1

αn
j χj( · , tn) ∈ Sh(t),
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where the vectors αn are generated, either by an s-stage implicit
Runge-Kutta method (A.24), or by a BDF method of order k (A.40).

Implicit Runge-Kutta methods

Now we can prove the analogous error estimation result from [37,
theorem 8.1] ([66, theorem 5.1]).

Theorem A.5.2. Consider the arbitrary Lagrangian Eulerian evol-
ving surface finite element method as space discretization of the
parabolic problem (A.1) with time discretization by an s-stage im-
plicit Runge-Kutta method satisfying Assumption A.4.1. Assume
that the solution u and the surface Γ(t) is smooth. Then there exists
τ0 > 0, independent of h, but depending on the ALE velocity (see
lemma A.3.5), such that for τ ≤ τ0, for the error

En
h = Un

h −ĂPhu( · , tn)

the following estimate holds for tn = nτ ≤ T:

‖En
h‖L2(Γh(tn)) +

(
τ

n

∑
j =1
‖∇Γh(tj)E

j
h‖

2
L2(Γh(tj))

) 1
2

≤ Cβ̃h,qτq+1 + C
(

τ
n−1

∑
k=0

s

∑
i=1
‖Rh( · , tk + ciτ)‖2

H−1
h (Γh(tk+ciτ))

) 1
2

+ C ‖E0
h‖L2(Γh(t0)),

where the constant C is independent of h and τ, but depends on T,
and we have

β̃2
h,q =

∫ T

0

q+2

∑
`=1
‖(∂Ah )(`)(ĂPhu)( · , t)‖L2(Γh(t))
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+
q+1

∑
`=1
‖∇Γh(t)(∂Ah )(`)(ĂPhu)( · , t)‖L2(Γh(t)) dt.

Later on in the proofs we will use the existence of high order
material derivatives of ĂPhu. This follows as a combination of the as-
sumed regularity of the evolution of Γ(t) and the assumed regularity
of the exact solution u.

The version with the classical order p from [37] Theorem 8.2
(or [66, Theorem 5.2]) also holds in the ALE case, if the stronger
regularity conditions are satisfied:∣∣∣∣∣M(t)−1 d(k j ,...,k1)

dt(k j ,...,k1)

(
A(t)M(t)−1

) dk̃−1

dtk̃−1

(
M(t)α̃(t)

)∣∣∣∣∣M(t) ≤ γ,∣∣∣∣∣M(t)−1 d(k j ,...,k1)

dt(k j ,...,k1)

(
A(t)M(t)−1

) dk̃−1

dtk̃−1

(
M(t)α̃(t)

)∣∣∣∣∣A(t) ≤ γ,

for all k j ≥ 1 and k̃ ≥ q + 1 with k1 + · · · + k j + k̃ ≤ p + 1, where

d(k j ,...,k1) f
dt(k j ,...,k1) –

dk j−1 f
dtk j−1 · · ·

dk1−1 f
dtk1−1

Theorem A.5.3. Consider the arbitrary Lagrangian Eulerian evol-
ving surface finite element method as space discretization of the para-
bolic problem (A.1), with time discretization by an s-stage implicit
Runge-Kutta method satisfying Assumption A.4.1 with p > q + 1.
Assuming the above regularity conditions. There exists τ0 > 0
independent of h, but depending on the ALE velocity (see lemma
A.3.5), such that for τ ≤ τ0, for the error En

h = Un
h −ĂPhu( · , tn) the
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following estimate holds for tn = nτ ≤ T:

‖En
h‖L2(Γh(tn)) +

(
τ

n

∑
j=1
‖∇Γh(tj)E

j
h‖L2(Γh(tj))

2) 1
2

≤ C0τp + C
(

τ
n−1

∑
k=0

s

∑
i=1
‖Rh( · , tk + ciτ)‖2

H−1
h (Γh(tk+ciτ))

) 1
2

+ C ‖E0
h‖L2(Γh(t0)),

where the constant C0 is independent of h and τ, but depends on T
and γ.

Proof of theorem A.5.2 and A.5.3. The proofs of the two theorem
above is a combination of our previous results, especially the stabil-
ity lemma, lemma A.4.2, and the relation

‖Mnrn‖∗,n = ‖Rh( · , tn)‖H−1
h (Γh(tn)),

cf. [66] (5.5). Otherwise they are the same as the proof in [37, section
8] or see [66, theorem 5.1, 5.2]. The h and τ independency holds
since the used stability lemma is also independent of them. �

Backward differentiation formulas

We prove the analogous result of [63, theorem 5.1] ([66, theorem
5.3]).

Theorem A.5.4. Consider the arbitrary Lagrangian Eulerian evol-
ving surface finite element method as space discretization of the
parabolic problem (A.1) with time discretization by a k-step backward
difference formula of order k ≤ 5. Assume that the solution u and the
surface Γ(t) is smooth. Then there exists τ0 > 0, independent of h,
but depending on the ALE velocity (see lemma A.3.5), such that for
τ ≤ τ0, for the error En

h = Un
h − ĂPhu( · , tn) the following estimate
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holds for tn = nτ ≤ T:

‖En
h‖L2(Γh(tn)) +

(
τ

n

∑
j =1
‖∇Γh(tj)E

j
h‖

2
L2(Γh(tj))

) 1
2

≤ Cβ̃h,kτk +
(

τ
n

∑
j=1
‖Rh( · , tj)‖2

H−1
h (Γh(tj))

) 1
2

+ C max
0≤i≤k−1

‖Ei
h‖L2(Γh(ti)),

where the constant C is independent of h and τ, but depends on T,
and we have

β̃2
h,k =

∫ T

0

k+1

∑
`=1
‖(∂Ah )(`)(ĂPhu)( · , t)‖L2(Γh(t)) dt.

Proof. The proof of this theorem relays on the corresponding h
and τ independent stability result, i.e. lemma A.4.5. Otherwise we
follow the proof of [63, theorem 5.1], or [66, theorem 5.3]. �

Remark A.5.5. The quantities rβ2
h,q and rβ2

h,k from theorem A.5.2 and
theorem A.5.4 require existence of higher order discrete ALE mate-
rial derivatives of the Ritz projection of u and further that they are
bounded w.r. to the L2 resp. H1 norm. The existence of higher order
material derivatives can be seen as follows: Rewrite equation (A.23)
as a matrix vector equation for the coefficients of ĂPhu. Discrete ALE
material derivatives corresponds to usual time derivatives for the
coefficients of ĂPhu. Hence if we assume that the ALE dynamical
system is smooth and that the exact solution is smooth, then it
follows that higher order discrete ALE material derivatives of u
exists. The boundedness of them follow from lemma A.3.14.
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A.5.3. Error of the full ALE discretizations

We compare the lifted fully discrete numerical solution un
h – (Un

h )l

with the exact solution u( · , tn) of the evolving surface PDE (A.1),
where Un

h = ∑N
j=1 αn

j χj( · , tn), where the vectors αn are generated by
the Runge–Kutta (A.24) or the BDF method (A.40).

Now we state and prove the main results of this paper.

Theorem A.5.6 (ALE ESFEM and R–K). Consider the arbitrary
Lagrangian Eulerian evolving surface finite element method as space
discretization of the parabolic problem (A.1) with time discretization
by an s-stage implicit Runge–Kutta method satisfying Assumption
A.4.1. Let u be a smooth solution of the problem, as in theorem A.5.2
and A.5.3, and assume that the initial value is approximated as

‖u0
h − (Phu)( · , 0)‖L2(Γ(0)) ≤ C0h2.

Then there exists h0 > 0 and τ0 > 0, such that for h ≤ h0 and
τ ≤ τ0, the following error estimate holds for tn = nτ ≤ T:

‖un
h − u( · , tn)‖L2(Γ(tn)) + h

(
τ

n

∑
j=1
|uj

h − u( · , tj)|2H1(Γ(tj))

) 1
2

≤ C (τq+1 + h2).

The constant C is independent of h, τ and n, but depends on T and
on the solution u.

Assuming that we have more regularity: conditions of Theorem
A.5.3 are additionally satisfied, then we have p instead of q + 1.

The analogous statement with BDF time discretization reads as
follows.
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Theorem A.5.7 (ALE ESFEM and BDF). Consider the arbitrary
Lagrangian Eulerian evolving surface finite element method as space
discretization of the parabolic problem (A.1) with time discretization
by a k-step backward difference formula of order k ≤ 5. Let u be a
smooth solution of the problem, as in theorem A.5.4, and assume that
the starting values are satisfying

max
0≤i≤k−1

‖ui
h − (Phu)( · , ti)‖L2(Γ(0)) ≤ C0h2.

Then there exists h0 > 0 and τ0 > 0, such that for h ≤ h0 and
τ ≤ τ0, the following error estimate holds for tn = nτ ≤ T:

‖un
h − u( · , tn)‖L2(Γ(tn)) + h

(
τ

n

∑
j=1
|uj

h − u( · , tj)|2H1(Γ(tj))

) 1
2

≤ C (τk + h2).

The constant C is independent of h, n and n, but depends on T and
on the smooth solution u.

Proof of theorem A.5.6–A.5.7. The global error is decomposed into
two parts

un
h − u( · , tn) =

(
un

h − (Phu)( · , tn)
)

+
(

(Phu)( · , tn)− u( · , tn)
)

,

and the terms are estimated by previous results.
The first term is estimated by a combination of the theorems and

lemmas form the previous sections, in particular the convergence
results for Runge–Kutta or BDF methods: theorem A.5.2, A.5.3 or
A.5.4, respectively, together with the residual bound theorem A.5.1,
and the errors for the Ritz map and for its material derivatives,
lemma A.3.14.

The second part is estimated again by the error estimates for the
Ritz map, lemma A.3.14.
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The h and τ independency holds, since all our previous results
are shown to be independent of these quantities, therefore this
property is preserved. The constant τ0 depends on the ALE velocity,
see lemma A.3.5. �

A.6. Numerical experiments

We present numerical experiments for an evolving surface parabolic
problem discretized by the original and the ALE evolving surface
finite elements coupled with various time discretizations. The fully
discrete methods were implemented in Matlab and DUNE [22],
while the initial triangulations were generated using distmesh from
[71].

The ESFEM and the ALE ESFEM case were integrated by identical
codes, except the involvement of the nonsymmetric B matrix and
the evolution of the surface. The ODE system giving the surface
movement (see (A.45) below) was solved by the exact same time
discretization method as the PDE problem itself (with the same step
size), while in one experiment the ALE map is given (see (A.46)).
To illustrate our theoretical results we choose two problems which

were intensively investigated in the literature before, see [37, 63, 43]
and [6]. Specially for ALE experiments see [42] and [43]. For all
experiments the material velocity equals the normal velocity.

Observed order of convergence: With the aid of the first experiment we
will present experimental order of convergences (EOCs). We choose
a problem which was presented before in, e.g. [37].

Namely the surface is given by

Γ(t) = {x ∈ R3 | a(t)−1x2
1 + x2

2 + x2
3 − 1 = 0},
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where a(t) = 1 + 0.25 sin(2πt). The problem is considered over the
time interval [0, 1]. The right-hand side f was computed as to have
u(x, t) = e−6tx1x2 as the true solution of the problem (A.1).

The normal velocity is given by the above distance function, cf.
[31, section 2]. The ALE velocity is chosen to be

w1(x, t) =
0.25π cos(2πt)

1 + 0.25 sin(2πt)
x1, w2(x, t) = 0, w3(x, t) = 0.

Discretization in space is always done with ALE ESFEM. Discretiza-
tion in time is done with BDF 1 and BDF 3. For k = 1, . . . , n let
(Tk(t)) and (τk) be a series of triangulations and time steps. In
general we choose 2hk ≈ hk−1. For BDF 1 we choose 4τk = τk−1
with initial step τ1 = 0.1 and for BDF 3 we choose 3

?
4τk = τk−1 with

initial step τ1 = 0.01. By ek we denote the error corresponding to
the mesh Tk(t) and stepsize τk. Then the EOCs are given as

EOCk =
ln(ek/ek−1)

ln(2)
, (k = 2, 3, . . . , n).

In table A.1 and table A.2 we report on the EOCs, for the ALE
ESFEM with backward Euler method (BDF 1) and BDF 3, respec-
tively, corresponding to the norm and seminorm

L∞(L2) : max
1≤n≤N

‖un
h − u( · , tn)‖L2(Γ(tn)),

L2(H1) :
(

τ
N

∑
n=1
‖∇Γ(tn)(un

h − u( · , tn))‖L2(Γ(tn))

)1/2
.

The results for BDF 1 have already independently been reported
in [43]. The non-ALE data for the same example can be found in
[37, 66].

Comparison of ALE and non-ALE methods: We consider the evolving
surface parabolic PDE (A.1) over the closed surface Γ(t) given by
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level dof L∞(L2) EOCs L2(H1) EOCs
1 126 0.02455766 − 0.05203599 −
2 516 0.00753037 1.7053 0.01689990 1.6224
3 2070 0.00201268 1.9036 0.00583376 1.5345
4 8208 0.00051164 1.9759 0.00282697 1.0451
4 32682 0.00012858 1.9923 0.00141542 0.9980

Table A.1.: Errors and EOCs for BDF 1 in the L∞(L2) and L2(H1)
norms for the ALE case

level dof L∞(L2) EOCs L2(H1) EOCs
1 126 0.00917003 − 0.02266929 −
2 516 0.00246862 1.8932 0.00977487 1.2136
3 2070 0.00061587 2.0030 0.00442116 1.1447
4 8208 0.00015516 1.9889 0.00210023 1.0739
5 32682 0.00003929 1.9815 0.00098204 1.0967

Table A.2.: Errors and EOCs for BDF 3 in the L∞(L2) and L2(H1)
norms for the ALE case

the zero level set of the distance function

d(x, t) – x2
1 + x2

2 + K(t)2G
( x2

3
L(t)2

)
− K(t)2,

i.e.,
Γ(t) – {x ∈ R3 | d(x, t) = 0}.

Here the functions G, L and K are given as

G(s) = 200s
(

s− 199
200

)
,

L(t) = 1 + 0.2 sin(4πt),

K(t) = 0.1 + 0.05 sin(2πt).
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The velocity v is the normal velocity of the surface defined by the
differential equation (formulated for the nodes):

(A.45)
d
dt

aj = Vjnj,

where,

Vj =
−∂td(aj, t)
|∇d(aj, t)| , nj =

∇d(aj, t)
|∇d(aj, t)| .

The right-hand side f is chosen as to have the function u(x, t) =
e−6tx1x2 to be the true solution of (A.1).

Finally we give the applied ALE movement (from [42] and [43]):

(ai(t))1 = (a0(t))1
K(t)
K(0)

, (ai(t))2 = (a0(t))2
K(t)
K(0)

,

(ai(t))3 = (a0(t))3
L(t)
L(0)

,
(A.46)

hence d(ai(t), t) = 0 for every t ∈ [0, T], for i = 1, 2, . . . , N.
The discrete surfaces evolved with normal and ALE velocities

shown in Figure A.1, for time t = 0, 0.2, 0.4, 0.6. In the following
we compare the ALE and non-ALE methods with three spatial
refinements, and integrate the evolving surface PDE with various
time discretizations, with a time step τ, until T = 0.6. We set
eh( · , t) – uh( · , T)− u( · , T) (T = nτ). and compute the following
norm and seminorm of it

|eh|M – ‖eh( · , T)‖L2(Γ(T)), |eh|A – ‖∇Γeh( · , T)‖L2(Γ(T)).

The following plots show the above error norms at time T = 0.6
(left M-norm, right A-seminorm) plotted against the time step size
τ (on logarithmic scale), different error curves are representing
different spatial discretizations.

In the experiments we used three different time discretizations.
The convergence in time can be seen (note the reference line). For
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A. Arbitrary Lagrangian Eulerian finite elements on evolving surfaces

Figure A.1.: Meshes with 376 nodes. Left: normal movement, with
Radau IIA method (s = 3). Right: ALE movement.
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A.6. Numerical experiments

sufficiently small time steps τ the spatial error is dominating, in
agreement with the theoretical results. The figures show that the
errors in the ALE ESFEM are significantly smaller than for the
non-ALE case.

Figure A.2 and A.3 show the errors obtained by the backward
Euler method coupled with the two different spatial discretizations.

The following plots, Figure A.4 and A.5, show the same norms
but they are made by the five order Radau IIA method (s = 3) as a
time integrator. The last two figures, Figure A.6 and A.7, show the
results obtained by the three step BDF method.

In the case of BDF methods with non-ALE ESFEM, for bigger
values of τ, the surface itself (but not the PDE) is evolved with
smaller time steps, due to difficulties within the time integration of
the surface.
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method
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Figure A.6.: Errors of the ESFEM and the BDF3 method
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Figure A.7.: Errors of the ALE ESFEM and the BDF3 method
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I Appendix B.

Error analysis for full
discretizations of quasilinear
parabolic problems on
evolving surfaces

The content of this chapter is published as [56].

Abstract

Convergence results are shown for full discretizations of quasilinear
parabolic partial differential equations on evolving surfaces. As
a semidiscretization in space the evolving surface finite element
method is considered, using a regularity result of a generalized Ritz
map, optimal order error estimates for the spatial discretization is
shown. Combining this with the stability results for Runge-Kutta
and BDF time integrators, we obtain convergence results for the
fully discrete problems.
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B. Full discretization of a quasilinear parabolic problem

B.1. Introduction

In this paper we show convergence of full discretizations of quasi-
linear parabolic partial differential equations on evolving surfaces.
As a spatial discretization we consider the evolving surface finite
element method. The resulting system of ordinary differential
equations is discretized, either with an algebraically stable Runge-
Kutta method, or with an implicit or linearly implicit backward
differentiation formulae.

To our knowledge [40] is the only work on error analysis for
nonlinear problems on evolving surfaces. They give semidiscrete
error bounds for the Cahn-Hilliard equation. The authors are not
aware of fully discrete error estimates published in the literature.

We show convergence results for full discretizations of quasilinear
parabolic problems on evolving surfaces with prescribed velocity.
We prove unconditional stability and higher-order convergence
results for Runge-Kutta and BDF methods. We show convergence
as a full discretization when coupled with the ESFEM method as a
space discretization for quasilinear problems. Similarly to the linear
case the stability analysis relies on energy estimates and multiplier
techniques.

First, we generalize some geometric perturbation estimates to the
quasilinear setting. We define a generalized Ritz map for quasilinear
operators, and use it to show optimal order error estimates for
the spatial discretization. For deriving the optimal order L2-error
bounds of the Ritz map we will use a similar argument as Wheeler
in [78], and elliptic regularity for evolving surfaces. A further
important point of the analysis is the required regularity of the
generalized Ritz map. This will be used together with the assumed
Lipschitz-type estimate for the nonlinearity, analogously as in [26,
64, 2].

We show stability and convergence results for the case of stiffly
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accurate algebraically stable implicit Runge-Kutta methods (having
the Radau IIA methods in mind), and for an implicit and linearly
implicit k-step backward differentiation formulae up to order five.
These results are relying on the techniques used in [64, 37] and
[2, 63]. By combining the results for the spatial semidiscretiza-
tion with stability and convergence estimates we show high-order
convergence bounds for the fully discrete approximation.

A starting point of the finite element approximation to (elliptic)
surface partial differential equations is the paper of Dziuk [29]. Var-
ious convergence results for space discretizations of linear parabolic
problems using the evolving surface finite element method (ESFEM)
were shown in [31, 35], a fully discrete scheme was analysed in [33].
These results are surveyed in [34].

The convergence analysis of full discretizations with higher-order
time integrators within the ESFEM setting for linear problems were
shown: for algebraically stable Runge-Kutta methods in [37]; for
backward differentiation formulae (BDF) in [63]. The ESFEM ap-
proach and convergence results were later extended to wave equa-
tions on evolving surfaces, see [62].

A unified presentation of ESFEM and time discretizations for
parabolic problems and wave equations can be found in [66].

A great number of real-life phenomena are modeled by nonlin-
ear parabolic problems on evolving surfaces. Apart from general
quasilinear problems on moving surfaces, see e.g. example 3.5 in
[32], more specific applications are the nonlinear models: diffusion
induced grain boundary motion [16, 44, 50, 21, 42]; Allen-Cahn and
Cahn-Hilliard equations on evolving surfaces [15, 39, 40, 41, 19];
modeling solid tumor growth [17, 42]; pattern formation mod-
eled by reaction-diffusion equations [60, 65]; image processing [52];
Ginzburg-Landau model for superconductivity [28].

A number of nonlinear problems, in a general setting, were
collected by Dziuk and Elliott in [31, 32, 34], also see the references
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therein. A great number of nonlinear problems with numerical
experiments were presented in the literature, see e.g. the above
references, in particular [31, 32, 42, 21].

The paper is organized in the following way: In section B.2 we
formulate our problem and detail our assumptions. In section B.3
we recall the evolving surface finite element method, together with
some of its important properties and estimates. We introduce the
generalized Ritz map, and show optimal order error estimates for
the residual, using the crucial W1,∞ regularity estimate mentioned
above. section B.4 covers the stability results and error estimates for
Runge-Kutta and for implicit and linearly implicit BDF methods.
section B.5 is devoted to the error bounds of the semidiscrete resid-
ual, which then leads to error estimates for the fully discretized
problem. In section B.6 we briefly discuss how our results can be
extended to semilinear problems, and to the case where the upper
and lower bounds of the elliptic part are depending on the norm
of the solution. Numerical results are presented in section B.7 to
illustrate our theoretical results.

B.2. The problem and assumptions

Let us consider a smooth evolving compact hypersurface Γ(t) ⊂
Rm+1 (m ≤ 2), 0 ≤ t ≤ T, which moves with a given smooth
velocity v. Let ∂•u = ∂tu + v · ∇u denote the material derivative
of the function u, where ∇Γ is the tangential gradient given by
∇Γu = ∇u−∇u · νν, with unit normal ν. We are sharing the setting
of [31, 35]. We consider the following quasilinear problem for
u = u(x, t):

∂•u + u∇Γ(t) · v−∇Γ(t) ·
(
A(u)∇Γ(t)u

)
= f , on Γ(t),

u( · , 0) = u0, on Γ(0),
(B.1)
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where A:R→ R is sufficiently smooth function. For simplicity we
set f = 0, but all our results hold with an non-vanishing f as well.

Remark B.2.1. The results of the paper can be generalized to the
case of a sufficiently smooth matrix valued diffusion coefficient
A(x, t, u) : TxΓ(t) → TxΓ(t). The proofs are similar to the ones
presented here, except they are more technical and lengthy, therefore
they are not presented here.

The abstract setting of this quasilinear evolving surface PDE is a
suitable combination of [64, section 1] and [3, section 2.3]: Let H(t)
and V(t) be real and separable Hilbert spaces (with norms ‖ · ‖H(t),
‖ · ‖V(t), respectively) such that V(t) is densely and continuously
embedded into H(t), and the norm of the dual space of V(t) is
denoted by ‖ · ‖V(t)′ . The dual space of H(t) is identified with
itself, and the duality 〈 · , · 〉t between V(t)′ and V(t) coincides on
H(t)×V(t) with the scalar product of H(t), for all t ∈ [0, T].

The problem casts the following nonlinear operator:

〈A (u)v, w〉t =
∫

Γ(t)
A(u)∇Γv · ∇Γw.

We assume that A satisfies the following three conditions:
The bilinear form associated to the operator A (u): V(t) → V(t)′ is
elliptic with m > 0

〈A (u)w, w〉t ≥m ‖w‖
2
V(t), (w ∈ V(t)), (B.2)

uniformly in u ∈ V(t) and for all t ∈ [0, T]. It is bounded with
M > 0

|〈A (u)v, w〉t| ≤M ‖v‖V(t) ‖w‖V(t), (v, w ∈ V(t)), (B.3)

uniformly in u ∈ V(t) and for all t ∈ [0, T]. We further assume that
there is a subset S(t) ⊂ V(t) such that the following Lipschitz-type
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estimate holds: for every δ > 0 there exists L = L(δ, (S(t))0≤t≤T)
such that

‖(A (w1)− A (w2))u‖V(t)′ ≤ δ ‖w1 − w2‖V(t) + L ‖w1 − w2‖H(t),
(B.4)

for u ∈ S(t), w1, w2 ∈ V(t), 0 ≤ t ≤ T.
The above conditions were also used to prove error estimates

using energy techniques in [77] and in [64, 26], or more recently in
[2].

The weak formulation uses Sobolev spaces on surfaces: For a
sufficiently smooth surface Γ we define

H1(Γ) = {η ∈ L2(Γ) | ∇Γη ∈ L2 (Γ)m+1},

and analogously Hk(Γ) for k ∈ N and Wk,p(Γ) for k ∈ N, p ∈ [1, ∞],
cf. [31, section 2.1]. Finally, GT = ∪t∈[0,T]Γ(t) × {t} denotes the
space-time manifold.

The weak problem corresponding to (B.1) can be formulated by
choosing the setting: V(t) = H1(Γ(t)) and H(t) = L2 (Γ(t)), and the
operator:

〈A (u)v, w〉t =
∫

Γ(t)
A(u)∇Γv · ∇Γw.

Assumption B.2.2. The coefficient function A:R→ R satisfies the
following conditions.

(a) It is bounded, and Lipschitz-bounded with constant `.

(b) The function A(s) ≥m > 0 for arbitrary s ∈ R.

Throughout the paper we use the following subspace of V(t), for
r > 0,

S(t) – S(t, r) – {u ∈ H2(Γ(t)) | ‖u‖W2,∞(Γ(t)) ≤ r},

i.e. W2,∞(Γ(t)) functions with norm less then r.
Then the following proposition easily follows.
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Proposition B.2.3. Under Assumption B.2.2 and u ∈ S(t) (0 ≤
t ≤ T) the above operator A satisfies the conditions (B.2), (B.3) and
(B.4) (with δ = 0), they possibly depend on S(t, r).

Proof. The first two conditions (B.2) and (B.3) follow from (a) and
(b). Condition (B.4) holds, since for u ∈ S(t), w1, w2 ∈ H1(Γ(t)) and
any z ∈ H1(Γ(t)), we have∣∣∣〈(A (w1)− A (w2))u, z

〉
t

∣∣∣ =
∣∣∣∣∫Γ(t)

(
A(w1)− A(w2)

)
∇Γu · ∇Γz

∣∣∣∣
≤ c` ‖w1 − w2‖L2(Γ(t))r ‖z‖H1(Γ(t)),

hence L = c`r, where the constant ` is from Assumption B.2.2
(a). �

Definition B.2.4 (Weak form). A function u ∈ H1(GT) is called
a weak solution of (B.1), if for almost every t ∈ [0, T]

d
dt

∫
Γ(t)

uϕ +
∫

Γ(t)
A(u)∇Γu · ∇Γ ϕ =

∫
Γ(t)

u∂•ϕ (B.5)

holds for every ϕ ∈ H1(GT) and u( · , 0) = u0.

B.3. Spatial semidiscretization: evolving surface
finite elements

As a spatial semidiscretization we use the evolving surface finite
element method introduced by Dziuk and Elliott in [31]. We shortly
recall some basic notations and definitions from [31], for more
details the reader is referred to Dziuk and Elliott [29, 35, 34].
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B.3.1. Basic notations

The smooth surface Γ(t) is approximated by a triangulated one
denoted by Γh(t), whose vertices ai(t), i = 1, 2, . . . , N, are sitting on
the surface, given as

Γh(t) =
⋃

E(t)∈Th(t)

E(t).

We always assume that the (evolving) simplices E(t) are forming
an admissible triangulation Th(t), with h denoting the maximum
diameter. Admissible triangulations were introduced in [31, section
5.1]: Γ(t) is a uniform triangulation, i.e. every E(t) ∈ Th(t) satisfies
that the inner radius σh is bounded from below by ch with c > 0,
and Γh(t) is not a global double covering of Γ(t). Then the discrete
tangential gradient on the discrete surface Γh(t) is given by

∇Γh φ := ∇φ−∇φ · nhnh,

understood in a piecewise sense, with nh denoting the normal to
Γh(t) (see [31]).

For every t ∈ [0, T] we define the finite element subspace Sh(t)
spanned by the continuous, piecewise linear evolving basis func-
tions χj, satisfying χj ((ai(t), t) = δij for all i, j = 1, 2, . . . , N, therefore

Sh(t) = span{χ1( · , t), χ2( · , t), . . . , χN( · , t)}.

We interpolate the surface velocity on the discrete surface using the
basis functions and denote it with Vh. Then the discrete material
derivative is given by

∂•hφh = ∂tφh + Vh · ∇φh, (φh ∈ Sh(t)).

The key transport property derived in [31, proposition 5.4], is the
following

∂•hχk = 0, for k = 1, 2, . . . , N. (B.6)
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The spatially discrete quasilinear problem for evolving surfaces
is formulated in

Problem B.3.1 (Semidiscretization in space). Find Uh ∈ Sh(t) such
that

(B.7)

d
dt

∫
Γh(t)

Uhφh +
∫

Γh(t)
A(Uh)∇ΓhUh · ∇Γh φh

=
∫

Γh(t)
Uh∂•hφh, (∀φh ∈ Sh(t)),

with the initial condition Uh( · , 0) = U0
h ∈ Sh(0) being a suitable

approximation to u0.

We postpone existence and uniqueness of (B.7) to the next sub-
section.

B.3.2. The ODE system

The ODE form of the above problem can be derived by setting

Uh( · , t) =
N

∑
j=1

αj(t)χ( · , t)

into (B.7), testing with φh = χj and using the transport property
(B.6).

Proposition B.3.2 (quasilinear ODE system). The spatially semi-
discrete problem (B.7) is equivalent to the following nonlinear ODE
system for the vector α(t) = (αj(t)) ∈ RN , collecting the nodal values
of Uh( · , t): 

d
dt

(
M(t)α(t)

)
+ A (α(t))α(t) = 0,

α(0) = α0,
(B.8)

where the evolving mass matrix M(t) and a nonlinear stiffness matrix
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A (α(t)) are defined as

M(t)kj =
∫

Γh(t)
χjχk,

A (α(t))kj =
∫

Γh(t)
A(Uh)∇Γh χj · ∇Γh χk,

for α(t) defining Uh = ∑N
j=1 αj(t)χj( · , t).

The proof of this proposition is analogous to the corresponding one
in [37].

Existence and uniqueness of (B.8) and hence of (B.7) can be shown
as follows. Since A(u) is Lipschitz continuous in u, we deduce that
A (α)α is Lipschitz continuous is α. Then since M(t) is invertible,
the existence and uniqueness of α(t) for the system (B.8) follows
from the Picard-Lindelöf theorem.

Time discretizations

We briefly introduce the time discretizations applied to the above
ODE system (B.8). However, more details can be found in section
B.4.

We use algebraically stable s-stage implicit Runge-Kutta methods,
defined by its Butcher tableau, with step size τ > 0:

Mniαni = Mnαn + τ
s

∑
j=1

aijα̇nj, for i = 1, 2, . . . , s,

Mn+1αn+1 = Mnαn + τ
s

∑
i=1

biα̇ni,

0 = α̇ni + A (αni)αni for i = 1, 2, . . . , s,

with Mni := M(tn + ciτ) and Mn+1 := M(tn+1).
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B.3. Spatial semidiscretization

We also use k-step BDF methods with step size τ > 0:

1
τ

k

∑
j=0

δj M(tn−j)αn−j + A (αn)αn = 0, (n ≥ k),

where the coefficients of the method are given by

δ(ζ) =
k

∑
`=1

1
`

(1− ζ)`.

Similarly, we also consider their linearly implicit modification, using
the polynomial γ(ζ) = ζk − (ζ − 1)k−1:

1
τ

k

∑
j=0

δj M(tn−j)αn−j + A
( k

∑
j=1

γjαn−j

)
αn = 0, (n ≥ k).

B.3.3. Discrete Sobolev norm estimates

Through the paper we will work with the norm and semi-norm
introduced in [37]. We denote these discrete Sobolev-type norms as

(B.10)|z(t)|M(t) – ‖Zh‖L2(Γh(t)), |z(t)|A(t) – ‖∇Γh Zh‖L2(Γh(t)),

for arbitrary z(t) ∈ RN , where Zh( · , t) = ∑N
j=1 zj(t)χj( · , t), further

by M(t) we mean the above mass matrix and by A(t) we mean the
linear (but time dependent) stiffness matrix:

A(t)kj –

∫
Γh(t)
∇Γh χj · ∇Γh χk.

A very important lemma in our analysis is the following:

Lemma B.3.3 ([37, lemma 4.1]). There are constants µ, κ (indepen-
dent of h) such that

zT(M(s)− M(t))y ≤ (eµ(s−t) − 1) |z|M(t) |y|M(t),

zT(M−1(s)− M−1(t))y ≤ (eµ(s−t) − 1) |z|M−1(t) |y|M−1(t),
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B. Full discretization of a quasilinear parabolic problem

zT(A(s)−A(t))y ≤ (eκ(s−t) − 1) |z|A(t) |y|A(t)

for all y, z ∈ RN and s, t ∈ [0, T].

B.3.4. Lifting process and approximation results

In the following we recall the so called lift operator, which was
introduced in [29] and further investigated in [31, 35]. The lift
operator projects a finite element function on the discrete surface
onto a function on the smooth surface.

that ∂U(t) = Γ(t). The oriented distance function dX is [46] in lemma
14.16 have shown the following important regularity result about
dX.

Using the oriented distance function dX ([31, section 2.1]), for a
continuous function φh: Γh(t)→ R its lift is define as

ηl
h(p, t) – φh(x, t), x ∈ Γ(t),

where for every x ∈ Γh(t) the value p = p(x, t) ∈ Γ(t) is uniquely
defined via x = p + n(p, t)dX(x, t). By η−l we mean the function
whose lift is η.

We now recall some notions using the lifting process from [29, 31]
and [66]. We have the lifted finite element space

Sl
h(t) – {ϕh = φl

h | φh ∈ Sh(t)}.

By δh we denote the quotient between the continuous and discrete
surface measures, dA and dAh, defined as δh dAh = dA. Further,
we recall that

pr – (δij − νiνj)
m+1
i,j=1 and prh – (δij − νh,iνh,j)

m+1
i,j=1

are the projections onto the tangent spaces of Γ and Γh. Further,
from [35], we recall the notation

Qh =
1
δh

(I − dH) pr prh pr(I − dH),
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where H (Hij = ∂ni
∂xj

) is the (extended) Weingarten map. For these
quantities we recall some results from [31, lemma 5.1], [35, lemma
5.4] and [66, lemma 6.1].

Lemma B.3.4. Assume that Γh(t) and Γ(t) is from the above setting,
then we have the estimates:

‖d‖L∞(Γh(t)) ≤ ch2, ‖νj‖L∞(Γh(t)) ≤ ch,

‖1− δh‖L∞(Γh(t)) ≤ ch2, ‖∂•hd‖L∞(Γh(t)) ≤ ch2,

‖pr−Qh‖L∞(Γh(t)) ≤ ch2, ‖pr(∂•hQh) pr‖L∞(Γh(t)) ≤ ch2,

with constants depending on GT, but not on t.

Lemma B.3.5. For 1 ≤ p ≤ ∞ there exists constants c1, c2 > 0
independent of t and h such that the for all uh ∈ W1,p(Γh(t)) it holds
that ul

h ∈ W1,p(Γ(t)) with the estimates

c1 ‖uh‖W1,p(Γh(t)) ≤ ‖ul
h‖W1,p(Γ(t)) ≤ c2 ‖uh‖W1,p(Γh(t)).

Proof. The proofs follows easily from the relation

∇Γh uh = prh(I − dH)∇Γul
h,

cf. [29, lemma 3]. �
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B.3.5. Bilinear forms and their estimates

Apart from the ξ dependence, we use the time dependent bilinear
forms defined in [35]: for arbitrary z, ϕ, ξ ∈ H1(Γ), ξ ∈ S(t) we set

m(z, ϕ) =
∫

Γ(t)
zϕ,

a(ξ; z, ϕ) =
∫

Γ(t)
A(ξ)∇Γz · ∇Γ ϕ,

g(v; z, ϕ) =
∫

Γ(t)
(∇Γ · v)zϕ,

b(ξ; v; z, ϕ) =
∫

Γ(t)
B(ξ; v)∇Γz · ∇Γ ϕ,

and for their discrete analogs for Zh, φh, ξh ∈ Sh we set

mh(Zh, φh) =
∫

Γh(t)
Zhφh

ah(ξh; Zh, φh) =
∫

Γh(t)
A(ξh)∇Γh Zh · ∇Γh φh,

gh(Vh; Zh, φh) =
∫

Γh(t)
(∇Γh · Vh)Zhφh,

bh(ξh; Vh; Zh, φh) =
∫

Γh(t)
Bh(ξh; Vh)∇Γh Zh · ∇Γh φh,

where the discrete tangential gradients are understood in a piece-
wise sense, and with the tensors given as

B(ξ; v)ij = ∂•(A(ξ)) +∇Γ · vA(ξ)− 2A(ξ)D(v),
Bh(ξh; Vh)ij = ∂•h(A(ξh)) +∇Γh · VhA(ξh)− 2A(ξh)Dh(Vh),

for i, j = 1, 2, . . . , m + 1, with

D(v)ij =
1
2
((∇Γ)ivj + (∇Γ)jvi),

Dh(Vh)ij =
1
2
((∇Γh )i(Vh)j + (∇Γh )j(Vh)i),

for i, j = 1, 2, . . . , m + 1. For more details see [35, lemma 2.1] (and
the references in the proof), or [34, lemma 5.2].
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B.3. Spatial semidiscretization

We will also use the transport lemma (note that ∂•hzh = ∂tzh + vh ·
∇zh for a zh ∈ Sl

h(t)):

Lemma B.3.6. For arbitrary ξ l
h ∈ Sl

h(t) and zh, ϕh, ∂•hzh, ∂•h ϕh ∈
Sl

h(t) we have:

d
dt

m(zh, ϕh) = m(∂•hzh, ϕh) + m(zh, ∂•h ϕh) + g(vh; zh, ϕh),

d
dt

a(ξ l
h; zh, ϕh) = a(ξ l

h; ∂•hzh, ϕh) + a(ξ l
h; zh, ∂•h ϕh)

+ b(ξ l
h; vh; zh, ϕh),

where vh is the velocity of the surface, see [35, definition 4.9].

Proof. This lemma can be shown analogously as [35, lemma 4.2],
therefore the proof is omitted. �

Versions of this lemma with continuous material derivatives, or
discrete bilinear forms are also true.

Lemma B.3.7 (Geometric perturbation errors). For any ξ ∈
S(t), and Zh, φh ∈ Sh(t) with corresponding lifts zh, ϕh ∈ Sl

h(t)
we have the following bounds

|m(zh, ϕh)− mh(Zh, φh)| ≤ ch2 ‖zh‖L2 ‖ϕh‖L2 ,

|a(ξ; zh, ϕh)− ah(ξ−l ; Zh, φh)| ≤ ch2 |zh|H1 |ϕh|H1 ,
|g(vh; zh, ϕh)− gh(Vh; Zh, φh)| ≤ ch2 ‖zh‖L2 ‖ϕh‖L2 ,

|b(ξ; vh; zh, ϕh)− bh(ξ−l ; Vh; Zh, φh)| ≤ ch2 |zh|H1 |ϕh|H1 .

Proof. The first estimate was proved in [35, lemma 5.5] and the
third in [62, lemma 7.5].

The proof of the second estimate is similar to the linear case
found in [34, lemma 4.7]. For the convenience of the reader we
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B. Full discretization of a quasilinear parabolic problem

recap the arguments. Using

Qh =
1
δh

(I − dH) pr prh pr(I − dH)

we obtain

A(ξ−l)∇Γh Zh · ∇Γh φh = δhA(ξ−l)Qh∇Γzh(p, · ) · ∇Γ ϕh(p, · ). (B.11)

Similarly as in [35, lemma 5.5], the boundedness (proposition B.2.3)
and the geometric estimate ‖pr−Qh‖L∞(Γh) ≤ ch2 provides the esti-
mate

|a(ξ; zh, ϕh)− ah(ξ−l ; Zh, φh)|

=
∣∣∣∫

Γ(t)
A(ξ)∇Γzh · ∇Γ ϕh dA −

∫
Γh(t)
A(ξ−l)∇Γh Zh · ∇Γh φh dAh

∣∣∣
=
∣∣∣∫

Γ(t)
A(ξ)(pr−Qh)∇Γzh · ∇Γ ϕh dA

∣∣∣
≤M ‖(pr−Qh)∇Γzh‖L2(Γ(t)) ‖Qh‖L∞(Γh(t)) ‖∇Γ ϕh‖L2(Γ(t))

≤M ch2 ‖∇Γzh‖L2(Γ(t)) ‖∇Γ ϕh‖L2(Γ(t)).

To prove the fourth estimate we follow [62]: starting with the
equality

d
dt

∫
Γh(t)
A(ξ−l)∇Γh Zh · ∇Γh φh =

d
dt

∫
Γ(t)
A(ξ)Ql

h∇Γzh · ∇Γ ϕh

then the transport lemma (lemma B.3.6 above) yields∫
Γh(t)
A(ξ−l)∇Γh ∂•hZh · ∇Γh φh +

∫
Γh(t)
A−l(ξ−l)∇Γh Zh · ∇Γh ∂•hφh

+
∫

Γh(t)
Bh(ξ−l ; Vh)∇Γh Zh · ∇Γh φh =

∫
Γ(t)
A(ξ)Ql

h∇Γ∂•hzh · ∇Γ ϕh

+
∫

Γ(t)
∇Γzh · A(ξ)Ql

h∇Γ∂•h ϕh +
∫

Γ(t)
B(ξ; vh)Ql

h∇Γzh

· ∇Γ ϕh +
∫

Γ(t)
A(ξ)∂•h(Ql

h)∇Γzh · ∇Γ ϕh.
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Therefore using that the lift of ∂•hZh is ∂•hzh, (B.11) and lemma
B.3.4 provides

|bh(ξ−l ; Vh; Zh, φh)− b(ξ; vh; Zh, φh)|

=
∣∣∣∫

Γ(t)
A(ξ)∂•h(Ql

h)∇Γzh · ∇Γ ϕh

∣∣∣
+
∣∣∣∫

Γ(t)
B(ξ; vh) (Ql

h − I)∇Γzh · ∇Γ ϕh

∣∣∣
≤ ch2 ‖∇Γzh‖L2(Γ(t)) ‖∇Γ ϕh‖L2(Γ(t)),

where the last estimates follow from lemma B.3.4, similarly as in
[62, theorem 7.5]. �

B.3.6. Interpolation estimates

By Ih: H1(Γ(t)) → Sl
h(t) we denote the finite element interpolation

operator, having the error estimate below.

Lemma B.3.8. For m ≤ 3, there exists a constant c > 0 independent
of h and t such that for u ∈ H2(Γ(t)):

‖u− Ihu‖L2(Γ(t)) + h |u− Ihu|H1(Γ(t)) ≤ ch2 ‖u‖H2(Γ(t))

Furthermore, if u ∈W2,∞(Γ(t)), it also satisfies

|u− Ihu|W1,∞(Γ(t)) ≤ ch ‖u‖W2,∞(Γ(t)),

where c > 0 is also independent of h and t.

Proof. The first inequality was shown in [29]. The dimension re-
striction is especially discussed in [34, lemma 4.3].

The analogue of the second estimate for a reference element were
shown in [76, theorem 3.1]. Denote by Eh(t) ⊂ Γh(t) an arbitrary
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element and denote by E(t) ⊂ Γ(t) the lift of this triangle.

‖∇Γ(u − Ihu)‖L∞(E(t)) ≤ c ‖∇Γh (u−l − Ihu−l)‖L∞(Eh(t))

≤ c
1
h
‖∇R2(û − Ihû)‖L∞(E0)

≤ c
1
h
‖∇2

R2 û‖L∞(E0)

≤ c
1
h

h2 ‖∇2
Γh

u−l‖L∞(Eh(t))

≤ ch ‖u‖W2,∞(E(t)),

where E0 ⊂ R2 is the standard unit simplex, û: E0 → R is the
representation of u−l |Eh(t) on E0 w.r.t. a suitable affine linear trans-
formation and ∇2

R2 û denote the usual Hessian of û. For the first and
the last inequality we have used, that the discrete and continuous
norms are equivalent. The intermediate steps uses the uniformity of
the triangulation together with standard estimates for the pullback,
cf. [14] or [4, section 10.3]. �

B.3.7. The Ritz map for nonlinear problems on evolving
surfaces

Ritz maps for quasilinear PDEs on stationary domains were inves-
tigated by Wheeler in [78]. We generalize this idea for the case of
quasilinear evolving surface PDEs. We define a generalized Ritz
map for quasilinear elliptic operators, for the linear case see [62].

By combining the above definitions we set the following.

Definition B.3.9 (Ritz map). For a given z ∈ H1(Γ(t)) and a
given function ξ: Γ(t) → R there is a unique ĂPhz ∈ Sh(t) such
that for all φh ∈ Sh(t), with the corresponding lift ϕh = φl

h, we
have

a∗h(ξ−l ; ĂPhz, φh) = a∗(ξ; z, ϕh), (B.12)
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where
a∗(ξ; z, ϕh) – a(ξ; z, ϕh) + m(z, ϕh)

and
a∗h(ξ−l ; z−l , φh) – ah(ξ−l ; z−l , φh) + mh(z−l , φh),

to make the forms a∗( · ; · , · ) and a∗h( · ; · , · ) positive definite.
Then Phz ∈ Sl

h(t) is defined as the lift of ĂPhz, i.e. Phz = (ĂPhz)l .

We recall here that by ξ−l we mean a function (living on the discrete
surface) whose lift is ξ.

Galerkin orthogonality does not hold in this case, just up to a
small defect:

Lemma B.3.10 (pseudo Galerkin orthogonality). For any given
ξ ∈ S(t) there holds, that for every z ∈ H1(Γ(t)) and ϕh ∈ Sl

h(t)

|a∗(ξ; z−Phz, ϕh)| ≤ ch2 ‖Phz‖H1(Γ(t)) ‖ϕh‖H1(Γ(t)), (B.13)

where c is independent of ξ, h and t.

Proof. Using the definition of the Ritz map we get

|a∗(ξ; z − Phz, ϕh)| = |a∗h(ξ−l ; ĂPhz, φh)− a∗(ξ;Phz, ϕh)|
≤M ch2 ‖Phz‖H1(Γ(t)) ‖ϕh‖H1(Γ(t)),

where we used lemma B.3.7. �

Error bounds for the Ritz map and for its material derivatives

In this section we prove error estimates for the Ritz map (B.12)
and also for its material derivatives, the analogous results for the
linear case can be found in [35, section 6], [66, section 7]. The ξ

independency of the estimates requires extra care, previous results,
e.g. the ones cited above, or [62, section 8], are not applicable.
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Theorem B.3.11. The error in the Ritz map satisfies the bound, for
arbitrary ξ ∈ S(t) and 0 ≤ t ≤ T and h ≤ h0 with sufficiently small
h0,

‖z−Phz‖L2(Γ(t)) + h ‖z−Phz‖H1(Γ(t)) ≤ ch2 ‖z‖H2(Γ(t)).

where the constant c is independent of ξ, h and t (but depends on m
and M ).

Proof. (a) We first prove the gradient estimate.
Starting by the ellipticity of the form a and the non-negativity of

the form m, then using the estimate (B.13) we have:

m ‖z−Phz‖2
H1(Γ(t)) ≤ a∗(ξ; z−Phz, z−Phz)

= a∗(ξ; z−Phz, z− Ihz) + a∗(ξ; z−Phz, Ihz−Phz)

≤M ‖z−Phz‖H1(Γ(t)) ‖z− Ihz‖H1(Γ(t))

+ ch2 ‖Phz‖H1(Γ(t)) ‖Ihz−Phz‖H1(Γ(t))

≤M ch ‖z−Phz‖H1(Γ(t)) ‖z‖H2(Γ(t))

+ ch2
(

2 ‖z−Phz‖2
H1(Γ(t)) + ‖z‖2

H1(Γ(t)) + ch2 ‖z‖2
H2(Γ(t))

)
,

using the interpolation error, and for the second term we used the
estimate

‖Phz‖H1(Γ(t)) ‖Ihz−Phz‖H1(Γ(t))

≤
(
‖Phz− z‖H1(Γ(t)) + ‖z‖H1(Γ(t))

)
(
‖Ihz− z‖H1(Γ(t)) + ‖z−Phz‖H1(Γ(t))

)
≤ 2 ‖z−Phz‖2

H1(Γ(t)) + ‖z‖2
H1(Γ(t)) + ch2 ‖z‖2

H2(Γ(t)).

Now using Young’s and Cauchy-Schwarz inequality, and for suffi-
ciently small (but ξ independent) h we have the gradient estimate

‖z−Phz‖2
H1(Γ(t)) ≤

1
m
M ch2 ‖z‖H2(Γ(t)).
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(b) The L2-estimate follows from the Aubin-Nitsche trick. Let us
consider the problem

−∇Γ · (A(ξ)∇Γw) + w = z−Phz on Γ(t),

then by elliptic theory, cf. theorem B.8.1, we have the estimate, for
the solution w ∈ H2(Γ(t))

‖w‖H2(Γ(t)) ≤ c ‖z−Phz‖L2(Γ(t)),

where c is independent of t and ξ. By testing the elliptic weak
problem with z−Phz we have

‖z − Phz‖2
L2(Γ(t)) = a∗(ξ; z − Phz, w)

= a∗(ξ; z − Phz, w − Ihw) + a∗(ξ; z − Phz, Ihw)
≤M ‖z − Phz‖H1(Γ(t)) ‖w − Ihw‖H1(Γ(t))

+ ch2 ‖Phz‖H1(Γ(t)) ‖Ihw‖H1(Γ(t)).

Then the estimates of the interpolation error and combination of
the above results yields

‖z − Phz‖L2(Γ(t))
1
c
‖w‖H2(Γ(t)) ≤ ‖z − Phz‖2

L2(Γ(t))

≤M ch2 ‖z‖H2(Γ(t)) ‖w‖H2(Γ(t)),

which completes the proof of the first assertion. �

Lemma B.3.12. For k ≥ 0 it holds there exists a constant c = c(k) >
0 independent of t and h such that

‖(∂•h)(k)(v− vh)‖L∞(Γ(t)) + h ‖∇Γ(∂•h)(k)(v− vh)‖L∞(Γ(t)) ≤ ch2.

We need to control higher-order material derivatives of the error
(∂•h)(k)(v− vh), because we want to show error estimates for higher-
order material derivatives of our Ritz map.

A proof of this lemma can be found in Mansour [66, lemma
6.3].
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Theorem B.3.13. Assume that ξ ∈ S(t) and in addition that for
k ≥ 1 it holds (∂•h)(k)(A(ξ)) ∈ L∞(GT). The error in the material
derivatives of the Ritz map satisfies the following bounds, for 0 ≤
t ≤ T and h ≤ h0 with sufficiently small h0,

‖(∂•h)(k)(z−Phz)‖L2(Γ(t)) + h ‖∇Γ(∂•h)(k)(z−Phz)‖L2(Γ(t))

≤M ckh2
k

∑
j=1
‖(∂•h)(j)z‖H2(Γ(t)).

The constant ck > 0 is independent of ξ and h (but depends on α and
M ).

Proof. The proof is a modification of [66, theorem 7.3].

For k = 1: (a) We start by taking the time derivative of the defi-
nition of the Ritz map (B.12), use the transport properties (lemma
B.3.6), and use the definition of the Ritz map once more, we arrive
at

a∗(ξ; ∂•hz, ϕh) = −b(ξ; vh; z, ϕh)− g(vh; z, ϕh) + a∗h(ξ−l ; ∂•h
ĂPhz, φh)

+ bh(ξ−l ; Vh; ĂPhz, φh) + gh(Vh; ĂPhz, φh).

Then we obtain

(B.14)a∗(ξ; ∂•hz − ∂•hPhz, ϕh) = −b(ξ; vh; z − Phz, ϕh)
− g(vh; z − Phz, ϕh) + F1(ϕh),

where

F1(ϕh) = ( a∗h(ξ−l ; ∂•h
ĂPhz, φh)− a∗(ξ; ∂•hPhz, ϕh)) + (bh(ξ−l ; Vh; ĂPhz, φh)

− b(ξ; vh;Phz, ϕh)) + (gh(Vh; ĂPhz, φh)− g(vh;Phz, ϕh)).

Using the geometric estimates of lemma B.3.7 F1 can be estimated
as

|F1(ϕh)| ≤ cMh2(‖∂•hPhz‖H1(Γ(t)) + ‖Phz‖H1(Γ(t))) ‖ϕh‖H1(Γ(t)).
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Then using ∂•hPhz as a test function in (B.14), and using the error
estimates of the Ritz map, together with the estimates above, with
h ≤ h0 independent of ξ, we have

‖∂•hPhz‖H1(Γ(t)) ≤M c ‖∂•z‖H1(Γ(t)) +M ch ‖z‖H2(Γ(t)).

Combining all the previous estimates and using Young’s inequality,
Cauchy-Schwarz inequality, for sufficiently small (ξ independent)
h ≤ h0, we obtain

a∗(ξ; ∂•hz− ∂•hPhz, ϕh)

≤M ch
(
‖z‖H2(Γ(t)) + h ‖∂•z‖H1(Γ(t))

)
‖ϕh‖H1(Γ(t)).

Then as in the previous proof we have

m ‖∂•hz − ∂•hPhz‖2
H1(Γ(t))

≤ a∗(ξ; ∂•hz − ∂•hPhz, ∂•hz − ∂•hPhz)
= a∗(ξ; ∂•hz − ∂•hPhz, ∂•hz − Ih∂•z)

+ a∗(ξ; ∂•hz − ∂•hPhz, Ih∂•z − ∂•hPhz)
≤M ‖∂•hz − ∂•hPhz‖H1(Γ(t)) ‖∂•hz − Ih∂•z‖H1(Γ(t))

+M ch
(
‖z‖H2(Γ(t)) + h ‖∂•z‖H1(Γ(t))

)
‖Ih∂•z − ∂•hPhz‖H1(Γ(t)).

Then the interpolation estimates, Young’s inequality, absorption
using h ≤ h0, yields the gradient estimate.

(b) The L2-estimate again follows from the Aubin-Nitsche trick.
Let us now consider the problem

−∇Γ · (A(ξ)∇Γw) + w = ∂•hz− ∂•hPhz, on Γ(t),

together with the elliptic estimate (cf. theorem B.8.1), for the solution
w ∈ H2(Γ(t))

‖w‖H2(Γ(t)) ≤ c ‖∂•hz− ∂•hPhz‖L2(Γ(t)),
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B. Full discretization of a quasilinear parabolic problem

again, c is independent of t and ξ.
Then a similar calculation as [35, theorem 6.2], [66, theorem 7.3]

provides the L2-norm estimate.
For k > 1 the proof is analogous. �

Remark B.3.14. If ξ ∈ Wk,∞(Γ(t)) and A ∈ Wk,∞(R) then it holds
that (∂•h)(k)A(ξ) ∈ L∞(Γ(t)). For the convenience of the reader we
give a proof for k = 2. It holds

(∂•h)(2)(A(ξ)) = ∂•h(A′(ξ)∂•hξ) = A′′(ξ)(∂•hξ)2 +A′(ξ)(∂•h)(2)ξ .

We have the identity

∂•hξ = ∂•ξ + (vh − v) · ∇Γξ .

For the second derivative we calculate

(∂•h)(2)ξ = (∂•h)(2)ξ + (vh − v) · ∇Γ∂•hξ + ∂•h(vh − v)
· ∇Γξ + (vh − v) · ∂•h∇Γξ +∇2

Γξ(vh − v)2.

Using lemma B.3.12 the claim follows.

Regularity of the Ritz map

The following technical result will play an important role in showing
optimal bounds of the semidiscrete residual.

Lemma B.3.15. For m ≤ 2, there exists a constant c > 0 inde-
pendent of h and t such that for a function u ∈ W2,∞(Γ(t)) for all
t ∈ [0, T], the following estimate holds

‖∇ΓPhu‖L∞(Γ(t)) ≤ c ‖u‖W2,∞(Γ(t)).

Proof. Using the triangle inequality we start to estimate as

‖∇ΓPhu‖L∞(Γ(t)) ≤ ‖∇Γ(Phu − Ihu)‖L∞(Γ(t))

+ ‖∇Γ(Ihu − u)‖L∞(Γ(t)) + ‖∇Γu‖L∞(Γ(t)).
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The last term is harmless. The second term is estimated using
lemma B.3.8. For the first term, using the inverse estimate, error
estimates for the Ritz map and for the interpolation operator we
obtain

‖∇Γ(Phu− Ihu)‖L∞(Γ(t)) ≤ ch−m/2 ‖∇Γ(Phu− Ihu)‖L2(Γ(t))

≤ ch−m/2
(
‖∇Γ(Phu− u)‖L2(Γ(t))

+ ‖∇Γ(u− Ihu)‖L2(Γ(t))

)
≤ ch−m/2h ‖u‖H2(Γ(t))

≤ c ‖u‖W2,∞(Γ(t)). �

Remark B.3.16. In fact the assumption u ∈ W1,∞(Γ(t)) is sufficient
to show the stronger bound

‖∇ΓPhu‖L∞(Γ(t)) ≤ c ‖u‖W1,∞(Γ(t)).

However, the proof requires more sophisticated arguments, which
are beyond the scope of this article, cf. [72].

B.4. Time discretizations: stability

B.4.1. Runge-Kutta methods

We consider an s-stage algebraically stable implicit Runge-Kutta
(R-K) method for the time discretization of the ODE system (B.8),
coming from the ESFEM space discretization of the quasilinear
parabolic evolving surface PDE.

In the following we extend the stability result for R-K methods of
[37, lemma 7.1], to the case of quasilinear problems. Apart form the
properties of the ESFEM the proof is based on the energy estimation
techniques, see Lubich and Ostermann [64, theorem 1.1]. Generally
on Runge-Kutta methods we refer to [49].
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B. Full discretization of a quasilinear parabolic problem

For the convenience of the reader we recall the method: for
simplicity, we assume equidistant time steps tn – nτ, with step
size τ. Our results can be straightforwardly extended to the case of
nonuniform time steps. The s-stage implicit Runge-Kutta method,
defined by the given Butcher tableau

(ci) (aij)
(bi)

, for i, j = 1, 2, . . . , s,

applied to the system (B.8), reads as

Mniαni = Mnαn + τ
s

∑
j=1

aijα̇nj, for i = 1, 2, . . . , s,

Mn+1αn+1 = Mnαn + τ
s

∑
i=1

biα̇ni,

where the internal stages satisfy

0 = α̇ni + A (αni)αni, for i = 1, 2, . . . , s,

with Mni – M(tn + ciτ) and Mn+1 – M(tn+1). Here α̇ni is not a
derivative but a suggestive notation.

We recall that the fully discrete solution is Un
h = ∑N

j=1 αn,jχj( · , tn).
Existence and uniqueness of the Runge-Kutta solution can be ob-
tained analogously to [48, theorem 7.2].

For the R-K method we make the following assumptions:

Assumption B.4.1. • The method has stage order q ≥ 1 and
classical order p ≥ q + 1.

• The coefficient matrix (aij) is invertible.

• The method is algebraically stable, i.e. bj > 0 for j = 1, 2, . . . , s
and the following matrix is positive semi-definite:

(biaij + bjaji − bibj)
s
i,j=1.
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• The method is stiffly accurate, i.e. bj = asj, and cs = 1 for
j = 1, 2, . . . , s.

Instead of (B.8), let us consider the following perturbed version
of the equation:

d
dt

(M(t)rα(t)) + A(rα(t))rα(t) = M(t)r(t)

rα(0) = rα0.
(B.15)

The substitution of the true solution rα(t) of the perturbed problem
into the R-K method, yields the defects ∆ni and δni, by setting
en = αn − rα(tn), Eni = αni − rα(tn + ciτ) and Ėni = α̇ni − ṙα(tn + ciτ),
then by subtraction the following error equations hold:

(B.16a)MniEni = Mnen + τ
s

∑
j=1

aijĖnj − ∆ni

(B.16b)Mn+1en+1 = Mnen + τ
s

∑
i=1

biĖni − δn+1,

where the internal stages satisfy
(B.16c)Ėni + A (αni)Eni = −(A (αni)− A (rαni))rαni − Mnirni,

where i = 1, . . . , s and rni – r(tn + ciτ).
Now we state one of the key lemmas of this paper, which pro-

vide unconditional stability for the above class of Runge-Kutta
methods.

Lemma B.4.2. For an s-stage implicit Runge-Kutta method satisfy-
ing Assumption B.4.1. If the equation (B.5) has a solution in S(t) for
0 ≤ t ≤ T. Then there exists a τ0 > 0, such that for τ ≤ τ0 and
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B. Full discretization of a quasilinear parabolic problem

tn = nτ ≤ T, that the error en is bounded by

(B.17)

|en|2Mn
+ τ

n

∑
k =1
|ek|2Ak

≤ C
(
|e0|2M0

+ τ
n−1

∑
k=1

s

∑
i=1
‖Mkirki‖2

∗,ki + τ
n

∑
k=1

∣∣∣δk

τ

∣∣∣2
Mk

+ Cτ
n−1

∑
k=0

s

∑
i=1

(
|M−1

ki ∆ki|2Mi
+ |M−1

ki ∆ki|2Aki

))
,

where ‖w‖2
∗,k – wT (A(tk) + M(tk))−1w. The constant C is inde-

pendent of h, τ and n (but depends on m, M , L, µ, κ and T).

Proof. The combination of proofs of theorem 1.1 from [64] and
of lemma 7.1 from [37] (or [66, lemma 3.1]) suffices, therefore it
is omitted here. To be precise, the proof of this result is more
closely related to [37]. Except the estimates involving the (nonlinear)
internal stages, see [64].

(a) We start as in the cited papers, i.e. to be able to benefit from
algebraic stability, we write

|Mn+1en+1|2M−1
n+1

=
∣∣∣Mnen + τ

s

∑
j=1

bjĖnj

∣∣∣2
M−1

n+1

− 2
〈

Mnen + τ
s

∑
j=1

bjĖnj

∣∣∣M−1
n+1

∣∣∣ δn+1

〉
+ |δn+1|2M−1

n+1
,

and by expressing Mnen from the Runge-Kutta method (B.16a), for
the first term, we obtain∣∣∣Mnen + τ

s

∑
j=1

bjĖnj

∣∣∣2
M−1

n+1

= |Mnen|2M−1
n+1

+ 2τ
s

∑
j=1

bj 〈Ėnj |M−1
n+1 |MnjEnj + ∆nj〉
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+ τ2
s

∑
i=1

s

∑
j=1

(bibj − biaij − bjaji) 〈Ėni |M−1
n+1 | Ėnj〉,

where the last term is non-positive by algebraic stability. The
middle term is rewritten as

〈Ėnj |M−1
n+1 |MnjEnj + ∆nj〉 = 〈Ėnj |M−1

nj |MnjEnj + ∆nj〉

+ 〈Ėnj |M−1
n+1 −M−1

nj |MnjEnj + ∆nj〉. (B.18)

All the terms in the above equations can be estimated identically as
in the mentioned proofs, except the first term in (B.18).

(b) To estimate this term, including the nonlinearity, we use
proposition B.2.3 (i.e. the inequalities (B.2), (B.3) and (B.4)), like in
[64]. Using (B.16c), the internal stages, give

〈Ėnj |M−1
nj |MnjEnj + ∆nj〉

= 〈Ėnj | Enj〉 + 〈Ėnj |M−1
nj ∆nj〉

= − 〈A (αnj)Enj | Enj〉 − 〈A (αnj)Enj |M−1
nj |∆nj〉

− 〈(A (αnj)− A (rαnj))rαnj | Enj + M−1
nj ∆nj〉

− 〈Mnj rnj | Enj + M−1
nj ∆nj〉

Using the results of proposition B.2.3 and that rαnj = u( · , tn + cjτ)
is assumed to be in S(tn + cjτ), we can estimate as follows (using
Cauchy-Schwarz and Young’s inequality)

|〈Ėnj |M−1
nj |MnjEnj + ∆nj〉| ≤ −m |Enj|2Anj

+M |Enj|Anj
|M−1

nj ∆nj|Anj

+ L |Enj|Mnj
|Enj + M−1

nj ∆nj|Anj

+ |〈Mnjrnj | Enj + M−1
nj ∆nj〉|

≤ −α

4
|Enj|2Anj

+ C |M−1
nj ∆nj|2Anj

+ C |M−1
nj ∆nj|2Mj

+ C |Enj|2Mj

+ C ‖Mnjrnj‖2
∗,nj.

193



B. Full discretization of a quasilinear parabolic problem

Since the right-hand side of this estimate is the same as in the cited
proofs, it can be finished in the exact same way as in the mentioned
references. �

Then, using the above stability results, the error bounds are
following analogously as in [37, theorem 8.1] (or [66, theorem
5.1]).

Theorem B.4.3. Consider the quasilinear parabolic problem (B.1),
having a solution in S(t) for 0 ≤ t ≤ T. Couple the evolving surface
finite element method as space discretization with time discretization
by an s-stage implicit Runge-Kutta method satisfying Assumption
B.4.1. Assume that the Ritz map of the solution has continuous
discrete material derivatives up to order q + 2. Then there exists
τ0 > 0, independent of h, such that for τ ≤ τ0, for the error En

h =
Un

h −Phu( · , tn) the following estimate holds for tn = nτ ≤ T:

‖En
h‖L2(Γh(tn)) +

(
τ

n

∑
j=1
‖∇Γh(tj)E

j
h‖

2
L2(Γh(tj))

) 1
2

≤ Cβ̃h,qτq+1 + C
(

τ
n−1

∑
k=0

s

∑
i=1
‖Rh( · , tk + ciτ)‖2

H−1
h (Γh(tk+ciτ))

) 1
2

+ C ‖E0
h‖L2(Γh(0)),

where the constant C is independent of h, τ and n (but depends on
m, M , L, µ, κ and T). Furthermore

β̃2
h,q =

∫ T

0

q+2

∑
`=1
‖(∂•h)(`)(Phu)( · , t)‖L2(Γh(t)) dt

+
∫ T

0

q+1

∑
`=1
‖∇Γh(t)(∂•h)(`)(Phu)( · , t)‖L2(Γh(t)) dt.
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The H−1
h -norm of Rh is defined as

‖Rh( · , t)‖H−1
h (Γh(t)) – sup

0 6=φh∈Sh(t)

〈Rh( · , t), φh〉L22 (Γh(t))

‖φh‖H1(Γh(t))
. (B.19)

Proof. Our proof is similar to [66, theorem 5.1].
We estimate the terms of the right-hand side of (B.17). At first we

connect ‖ · ‖∗,k and ‖ · ‖H−1
h (Γh(tk)):

‖Mr‖∗ = (rT M (A + M)−1Mr)
1/2

= ‖(A + M)−1/2Mr‖2

= sup
0 6=w∈RN

rT(A + M)−1/2w
wTw

= sup
0 6=z∈RN

rT Mz
(zT(A + M)z)1/2

= sup
0 6=φh∈Sh

〈Rh, φh〉L2 (Γh)

‖φh‖H1(Γh)
= ‖Rh‖H−1

h (Γh).

By Taylor expansion, the definition of stage and classical order, and
with the bounded Peano kernels K and Ki, the defects satisfy

δn+1 = τq+1
∫ tn+1

tn

K
( t− tn

τ

)
(Mrα)(q+2)(t) dt,

∆ni = τq
∫ tn+1

tn

Ki

( t− tn

τ

)
(Mrα)(q+1)(t) dt,

hence, by a simple but lengthy calculation (cf. [66]) the following
bound is obtained:

τ
n

∑
k=1

∣∣∣δk

τ

∣∣∣2
Mk

+ Cτ
n−1

∑
k=0

s

∑
i=1

(
|M−1

ki ∆ki|2Mi
+ |M−1

ki ∆ki|2Aki

)
≤ Cβ̃2

h,q(τ
q+1)2,

and therefore, by inserting everything into (B.17), the proof is com-
pleted. �
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B. Full discretization of a quasilinear parabolic problem

B.4.2. Backward differentiation formulae

We apply a k-step backward difference formula (BDF) for k ≤ 5 as
a discretization to the ODE system (B.8), coming from the ESFEM
space discretization of the quasilinear parabolic evolving surface
PDE. Both implicit and linearly implicit methods are discussed.

In the following we extend the stability result for BDF methods
of [63, lemma 4.1], to the case quasilinear problems. Apart from
the properties of the ESFEM the proof is based on Dahlquist’s G-
stability theory [20] and on the multiplier technique of Nevanlinna
and Odeh [69].

We recall the k-step BDF method for (B.8) with step size τ > 0:

1
τ

k

∑
j=0

δj M(tn−j)αn−j + A (αn)αn = 0, (n ≥ k), (B.20)

where the coefficients of the method are given by δ(ζ) = ∑k
j=0 δjζ

j =

∑k
`=1

1
` (1− ζ)`, while the starting values are α0, α1, . . . , αk−1. The

method is known to be 0-stable for k ≤ 6 and have order k (for more
details, see [49, chapter V]).

The linearly implicit modification is, using the polynomial γ(ζ) =
∑k

j=1 γjζ
j = ζk − (ζ − 1)k−1:

1
τ

k

∑
j=0

δj M(tn−j)αn−j + A
( k

∑
j=1

γjαn−j

)
αn = 0, (n ≥ k). (B.21)

For more details we refer to [2], in particular for existence and
uniqueness of the BDF solution see section 3.1 in [2].

Instead of (B.8) let us consider again the perturbed problem (B.15).
By substituting the true solution rα(t) of the perturbed problem into
the BDF method (B.20), we obtain

1
τ

k

∑
j=0

δj M(tn−j)rαn−j + A (rαn)rαn = −dn, (n ≥ k).
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By introducing the error en = αn − rα(tn), multiplying by τ, and by
subtraction we have the error equation

k

∑
j=0

δj Mn−jen−j + τA (αn)en + τ(A (αn)− A (rαn))rαn = τdn, (n ≥ k).

(B.22)
In the linearly implicit case we obtain:

k

∑
j =0

δj Mn−jen−j + τA
( k

∑
j=1

γjαn−j

)
en

+ τ

(
A
( k

∑
j=1

γjαn−j

)
− A

( k

∑
j=1

γjrαn−j

))
rαn = τd̂n, (n ≥ k),

where d̂n have similar properties as dn, therefore it will be also
denoted by dn.

The stability results for BDF methods are the following.

Lemma B.4.4. For a k-step implicit or linearly implicit BDF method
with k ≤ 5 there exists a τ0 > 0, such that for τ ≤ τ0 and tn = nτ ≤
T, that the error en is bounded by

|en|2Mn
+ τ

n

∑
j=k
|ej|2Aj

≤ Cτ
n

∑
j=k
‖dj‖2

∗,j + C max
0≤i≤k−1

|ei|2Mi

where ‖w‖2
∗,k = wT (A(tk) + M(tk))−1w. The constant C is indepen-

dent of h, τ and n (but depends on m, M , L, µ, κ and T).

Proof. The proof follows the proof of lemma 4.1 from [63], and
[2] section 6, using G-stability from [20] and multiplier techniques
from [69]. Except in those terms where the nonlinearity appears,
see theorem 1 in [2].
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(a) The starting point of the proof is the following reformulation
of the error equation (B.22):

Mn

k

∑
j =0

δjen−j + τA (αn)en + τ (A (αn)− A (rαn))rαn p

= τdn +
k

∑
j=1

δj (Mn − Mn−j)en−j

and using a modified energy estimate. Following [69], we multiply
both sides with the multiplier en − ηen−1, where the smallest possi-
ble values of η is found to be η = 0, 0, 0.0836, 0.2878, 0.8160 for
k = 1, 2, . . . , 5, respectively, cf. [69]. This gives us, for n ≥ k + 1:

In + I I1
n + I I2

n = I I In + IVn,

where

In =
〈 k

∑
j=0

δjen−j

∣∣∣Mn

∣∣∣ en − ηen−1

〉
,

I I1
n = τ 〈en | A (αn) | en − ηen−1〉,

I I2
n = τ 〈(A (αn)− A (rαn))rαn | en − ηen−1〉,

I I In = τ 〈dn | en − ηen−1〉,

IVn =
k

∑
j=1
〈en−j |Mn − Mn−j | en − ηen−1〉.

We only have to estimate these terms in a suitable way.
(b) We start by bounding the nonlinear terms. First, we will

estimate I I1
n from below using (B.2) and lemma B.3.3:

τ−1 I I1
n = 〈en | A (αn) | en〉 − η |〈en | A (αn) | en−1〉|
≥m |en|2An

−M η |en|An
|en−1|An

≥
(
m− m

4
η
)
|en|2An

− 1
m
M 2η(1 + 2κτ) |en−1|2An−1

.
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The other term is estimated using (B.4), Young’s inequality, and
again by lemma B.3.3:

τ−1 I I2
n ≥ −

∣∣∣〈((A (αn)− A (rαn))rαn

∣∣∣ en − ηen−1

〉∣∣∣
≥ −L |en|Mn

(|en|An
+ η |en−1|An

)

≥ −m
4
|en|2An

− 1
m

L2 |en|2Mn

− L
2

η |en|2Mn
+

L
2

η(1 + 2κτ) |en−1|2An−1
.

Combined, and using that 0 ≤ η < 1, we have

I I1
n + I I2

n ≥ τ
1
2
m |en|2An

− τη
( 1
m

L2 +
L
2

)
|en|2Mn

− τη
( 1
m
M 2 +

L
2

)
(1 + 2κτ) |en−1|2An−1

The estimations of In, I I In and IVn are the same as in the proof in
[63], with G-stability of [20] as the main tool.

(c) Combining all estimates and summing up gives, for τ ≤ τ0

and for n ≥ k + 1:

|En|2G,n+
m

4
τ

n

∑
j=k+1
|ej|2Aj

≤ Cτ
n−1

∑
j=k
|Ej|2G,j+Cτ

n

∑
j=k+1
‖dj‖2

∗,j + Cητ |ek|2Ak
,

where En = (en, . . . , en−k+1), and

‖En‖2
G,n –

k

∑
i,j=1

gij 〈en−k+i |Mn | en−k+j〉.

This is the same inequality as in [63], hence we can also proceed
with the discrete Gronwall inequality.

(d) To achieve the stated result we have to estimate the extra term
C ( |ek|2Mk

+ τ |ek|2Ak
). For that we take the inner product of the error
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equation for n = k with ek to obtain Similarly as for I Ii
n, use the

properties of operator A and lemma B.3.3, yields

|ek|2Mk
+ τρ |ek|2Ak

≤ Cτ ‖dk‖2
∗,k + C max

0≤i≤k−1
|ei|2Mi

.

The insertion of this completes the proof.
The result follows from analogous arguments for linearly implicit

methods, cf. [2, section 6]. �

Again, using the above stability results, the error bounds are follow-
ing analogously as in [63, theorem 5.1] (or [66, theorem 5.3]).

Theorem B.4.5. Consider the quasilinear parabolic problem (B.1),
having a solution in S(t) for 0 ≤ t ≤ T. Couple the evolving surface
finite element method as space discretization with time discretization
by a k-step implicit or linearly implicit backward difference formula
of order k ≤ 5. Assume that the Ritz map of the solution has
continuous discrete material derivatives up to order k + 1. Then there
exists τ0 > 0, independent of h, such that for τ ≤ τ0, for the error
En

h = Un
h −Phu( · , tn) the following estimate holds for tn = nτ ≤ T:

‖En
h‖L2(Γh(tn)) +

(
τ

n

∑
j=1
‖∇Γh(tj)E

j
h‖

2
L2(Γh(tj))

) 1
2

≤ Cβ̃h,kτk +
(

τ
n

∑
j=1
‖Rh( · , tj)‖2

H−1
h (Γh(tj))

) 1
2

+ C max
0≤i≤k−1

‖Ei
h‖L2(Γh(ti)),

where the constant C is independent of h, n and τ (but depends on
m, M , L, µ, κ and T). Furthermore

β̃2
h,k =

∫ T

0

k+1

∑
`=1
‖(∂•h)(`)(Phu)( · , t)‖L2(Γh(t)) dt.
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B.5. Error bounds for the fully discrete solutions

Proof. The proof of this result is analogous to that of theorem B.4.3,
it uses the norm identity, and bounded Peano kernels. For details
see the above references. �

B.5. Error bounds for the fully discrete solutions

We follow the approach of [63, section 5] by defining the FEM
residual Rh( · , t) = ∑N

j=1 rj(t)χj( · , t) ∈ Sh(t) as∫
Γh

Rhφh =
d
dt

∫
Γh

ĂPhuφh +
∫

Γh

A(ĂPhu)∇Γ(ĂPhu) ·∇Γφh−
∫

Γh

(ĂPhu)∂•hφh,

(B.23)

where φh ∈ Sh(t), and the Ritz map of the true solution u is given as

ĂPhu( · , t) =
N

∑
j=1

rαj(t)χj( · , t).

The above problem is equivalent to the ODE system with the vector
r(t) = (rj(t)) ∈ RN :

d
dt

(M(t)rα(t)) + A(rα(t))rα(t) = M(t)r(t),

which is the perturbed ODE system (B.15).

B.5.1. Bound of the semidiscrete residual

We now show the optimal second order estimate of the residual Rh.

Theorem B.5.1. Let u, the solution of the parabolic problem, be in
S(t) for 0 ≤ t ≤ T. Then there exists a constant C > 0 and h0 > 0,
such that for all h ≤ h0 and t ∈ [0, T], the finite element residual Rh
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B. Full discretization of a quasilinear parabolic problem

of the Ritz map is bounded as

‖Rh‖H−1(Γh(t)) ≤ ch2.

Proof. (a) We start by applying the discrete transport property to
the residual equation (B.23)

mh(Rh, φh) =
d
dt

mh(ĂPhu, φh) + ah(ĂPhu; ĂPhu, φh)−mh(ĂPhu, ∂•hφh)

= mh(∂•hĂPhu, φh) + ah(ĂPhu; ĂPhu, φh) + gh(Vh; ĂPhu, φh).

(b) We continue by the transport property with discrete material
derivatives from lemma B.3.6, but for the weak form, with ϕ –

ϕh = φl
h:

0 =
d
dt

m(u, ϕh) + a(u; u, ϕh)− m(u, ∂•ϕh)

= m(∂•hu, ϕh) + a(u; u, ϕh) + g(vh; u, ϕh) + m(u, ∂•h ϕh − ∂•ϕh).

(c) Subtraction of the two equations, using the definition of the
Ritz map with ξ = u in (B.12), i.e.

a∗h(u−l ; ĂPhu, φh) = a∗(u; u, ϕh),

and using that

∂•h ϕh − ∂•h ϕh = (vh − v) · ∇Γ ϕh

holds, we obtain

mh(Rh, φh) = mh(∂•hĂPhu, φh)−m(∂•hu, ϕh)

+ gh(Vh; ĂPhu, φh)− g(vh; u, ϕh)

+ a∗h(ĂPhu; ĂPhu, φh)− a∗h(u−l ; ĂPhu, φh)

+ m(u, ϕh)−mh(ĂPhu, φh)

+ m(u, (vh − v) · ∇Γ ϕh).
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B.5. Error bounds for the fully discrete solutions

All the pairs can be easily estimated separately as ch2 ‖ϕh‖L2(Γ(t)),
by combining the estimates of lemma B.3.7, and theorem B.3.11 and
B.3.13, except the third, and the last term.

The term containing the velocity difference (vh − v) can be esti-
mated, using |vh − v|+h|∇Γ(vh − v)|≤ ch2 from [35, lemma 5.6], as
ch2 ‖∇Γ ϕh‖L2(Γ(t)). The nonlinear terms are rewritten as:

a∗h(ĂPhu; ĂPhu, φh)− a∗h(u−l ; ĂPhu, φh)

= a∗h(ĂPhu; ĂPhu, φh)− a∗(Phu;Phu, ϕh)

+ a∗(Phu;Phu, ϕh)− a∗(u;Phu, ϕh)

+ a∗(u;Phu, ϕh)− a∗h(u−l ; ĂPhu, φh)

For the first and the third term lemma B.3.7 provides an upper
bound ch2 ‖∇Γ ϕh‖L2(Γ(t)) (similarly like before).

Finally, using lemma B.3.15 we obtain, similarly to (B.4), that the
second term can be bounded as

|a∗(Phu;Phu, ϕh)− a∗(u;Phu, ϕh)|

=
ˇ

ˇ

ˇ

∫
Γ(t)

(A(Phu)−A(u))∇ΓPhu · ∇Γ ϕh

ˇ

ˇ

ˇ

≤ c` ‖Phu− u‖L2(Γ(t)) ‖∇ΓPhu‖L∞(Γ(t)) ‖∇Γ ϕh‖L2(Γ(t))

≤ c` ‖Phu− u‖L2(Γ(t)) c r ‖∇Γ ϕh‖L2(Γ(t))

≤ c`r h2 ‖∇Γ ϕh‖L2(Γ(t)).

Therefore, by (B.19), and using the equivalence of norms [29] (φl
h =

ϕh), we have

‖Rh( · , t)‖H−1
h (Γh(t)) = sup

0 6=φh∈Sh(t)

mh(Rh( · , t), φh)
‖φh‖H1(Γh(t))

≤ ch2
‖ϕh‖H1(Γ(t))

‖φh‖H1(Γh(t))
≤ ch2. �
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B. Full discretization of a quasilinear parabolic problem

B.5.2. Error estimates for the full discretizations

We compare the lifted fully discrete numerical solution un
h – (Un

h )l

with the exact solution u( · , tn) of the evolving surface PDE (B.1),
where Un

h = ∑N
j=1 αn

j χj( · , t), where the vectors αn are generated by a
Runge-Kutta or a BDF method.

Theorem B.5.2 (ESFEM and R-K). Consider the evolving surface
finite element method as space discretization of the quasilinear para-
bolic problem (B.1), with time discretization by an s-stage implicit
Runge-Kutta method satisfying Assumption B.4.1. Let u be a suffi-
ciently smooth solution of the problem, which satisfies u( · , t) ∈ S(t)
(0 ≤ t ≤ T), and assume that the initial value is approximated as

‖u0
h − (Phu)( · , 0)‖L2(Γ(0)) ≤ C0h2.

Then there exists h0 > 0 and τ0 > 0, such that for h ≤ h0 and
τ ≤ τ0, the following error estimate holds for tn = nτ ≤ T:

‖un
h − u( · , tn)‖L2(Γ(tn)) + h

(
τ

n

∑
j=1
|uj

h − u( · , tj)|2H1(Γ(tj))

) 1
2

≤ C (τq+1 + h2).

The constant C is independent of h, τ and n, but depends on m, M
and L, from (B.2), (B.3) and (B.4), on µ, κ, from lemma B.3.3, and
on T.

Theorem B.5.3 (ESFEM and BDF). Consider the evolving surface
finite element method as space discretization of the quasilinear pa-
rabolic problem (B.1), with time discretization by a k-step implicit
or linearly implicit backward difference formula of order k ≤ 5. Let
u be a sufficiently smooth solution of the problem, which satisfies
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u( · , t) ∈ S(t) (0 ≤ t ≤ T), and assume that the starting values are
satisfying

max
0≤i≤k−1

‖ui
h − (Phu)( · , ti)‖L2(Γ(0)) ≤ C0h2.

Then there exists h0 > 0 and τ0 > 0, such that for h ≤ h0 and
τ ≤ τ0, the following error estimate holds for tn = nτ ≤ T:

‖un
h − u( · , tn)‖L2(Γ(tn)) + h

(
τ

n

∑
j=1
|uj

h − u( · , tj)|2H1(Γ(tj))

) 1
2

≤ C (τk + h2).

The constant C is independent of h, τ and n, but depends on m, M
and L, from (B.2), (B.3) and (B.4), on µ, κ, from lemma B.3.3, and
on T.

Proof of theorem B.5.2-B.5.3. The global error is decomposed into
two parts:

un
h − u( · , tn) =

(
un

h − (Phu)( · , tn)
)

+
(

(Phu)( · , tn)− u( · , tn)
)

,

and the terms are estimated by previous results.
The first one is estimated by our results for Runge-Kutta or

BDF methods: theorem B.4.3 or B.4.5, respectively, together with
the residual bound theorem B.5.1, and by the Ritz error estimates
theorem B.3.11 and B.3.13.

The second term is estimated by the error estimates for the Ritz
map (theorem B.3.11 and B.3.13). �

B.6. Semilinear problems extension

The presented results, in particular theorem B.5.2 and B.5.3, can be
generalized to semilinear problems. Convergence results for BDF
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B. Full discretization of a quasilinear parabolic problem

method were already shown for semilinear problems in [2]. For the
analogous results for Runge-Kutta methods follow [64, remark 1.1].
Problems fitting into this framework can be found in the references
given in the introduction.

Following remark 1.1 from [64], the inhomogeneity f (t) in the
evolving surface PDE (B.1) can be replaced by f (t, u) satisfying a
local Lipschitz condition (similar to (B.4)): for every δ > 0 there
exists L = L(δ, r) such that

‖ f (t, w1)− f (t, w2)‖V(t)′ ≤ δ ‖w1 − w2‖V(t)

+ L ‖w1 − w2‖H(t), (0 ≤ t ≤ T)

holds for arbitrary w1, w2 ∈ V(t) with ‖w1‖V(t), ‖w2‖V(t) ≤ r, uni-
formly in t. Such a condition can be satisfied by using the same S
set as for quasilinear problems.

To be precise: In this case the bilinear form a(t; · , · ) is not
depending on ξ, it reduces to the case presented in [35]. Therefore,
Section B.3 here would reduce to recall results mainly from [31, 35].
There is no ξ dependency in the definition of the generalized Ritz
map, hence it is the one appeared in [62, 66], together with the error
bounds presented there. The regularity result of the Ritz map is
still needed from section B.3.7.

The stability estimates for the Runge-Kutta and BDF methods
are needed to be revised in a straightforward way, cf. [64] and [2],
respectively. To give more insight we give some details in the case
of BDF methods. Runge-Kutta methods can be handled in a similar
way.

The error equation for the semilinear problem reads as

k

∑
j=0

δj Mn−jen−j + τAnen = τ( f (tn, αn)− f (tn,rαn)) + τdn, (n ≥ k).

After testing with the multiplier en − ηen−1 we obtain

In + I In = I I In + IVn + Vn.
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B.7. Numerical experiments

The new nonlinear term is now estimated as

τ−1 |Vn| = |〈 f (tn, αn)− f (tn,rαn) | en − ηen−1〉|
≤ ‖ f (t, αn)− f (t,rαn)‖H−1

h (Γh(t)) |en − ηen−1|An

≤ (δ |en|An
+ L |en|Mn

) (|en|An
+ η |en−1|An

)

≤ 2δ |en|2An
+ Cη |en−1|2An

+ C |en|2Mn
.

The other terms are either estimated as before, or in a much simple
way, for instance in the case of I In which is now linear, cf. [63].

B.7. Numerical experiments

We present a numerical experiment for an evolving surface quasi-
linear parabolic problem discretized by evolving surface finite ele-
ments coupled with the backward Euler method as a time integrator.
The fully discrete methods were implemented in DUNE-FEM [22],
while the initial triangulations were generated using DistMesh [71].

The evolving surface is given by

Γ(t) = {x ∈ R3 | a(t)−1x2
1 + x2

2 + x2
3 − 1 = 0},

where a(t) = 1 + 0.25 sin(2πt), see e.g. [31, 37, 66]. The problem is
considered over the time interval [0, 1]. We consider the problem
with the nonlinearity A(u) = 1− 1

2 e−u2/4. This satisfies the con-
ditions in assumption B.2.2, since it has lower bound 1/2, upper
bound 1, and its derivative A′(u) = u

4 e−u2/4 is also bounded, hence
A is Lipschitz continuous. The right-hand side f is computed as
to have u(x, t) = e−6tx1x2 as the true solution of the quasilinear
problem ∂•hu + u∇Γ(t) · v−∇Γ(t) ·

(
A(u)∇Γ(t)u

)
= f on Γ(t),

u( · , 0) = u0 on Γ(0).
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B. Full discretization of a quasilinear parabolic problem

level dof L∞(L2) EOCs L2(H1) EOCs

1 126 0.07121892 - 0.1404349 -
2 516 0.02077452 1.78 0.0404614 1.80
3 2070 0.00540906 1.94 0.0111377 1.86
4 8208 0.00136755 1.98 0.0033538 1.73
5 32682 0.00034289 2.00 0.0011904 1.49

Table B.1.: Errors and EOCs in the L∞(L2) and L2(H1) norms

The time integrations require the solution of a nonlinear system
at every timestep. As it is usual for Runge-Kutta methods, we used
the simplified Newton iterations, cf. [49, section IV.8].

Let (Tk(t))k=1,2,...,n and (τk)k=1,2,...,n be a series of triangulations and
timesteps, respectively, such that 2hk ≈ hk−1 and 4τk = τk−1, with
τ1 = 0.1. By ek we denote the error corresponding to the mesh
Tk(t) and step size τk. Then the experimental order of convergences
(EOCs) are given as

EOCk =
ln(ek/ek−1)

ln(2)
, (k = 2, 3, . . . , n).

In table B.1 we report on the EOCs, for the ESFEM coupled with
backward Euler method, corresponding to the norm and seminorm

L∞(L2) : max
1≤n≤N

‖un
h − u( · , tn)‖L2(Γ(tn)),

L2(H1) :
(

τ
N

∑
n=1
‖∇Γ(tn)(un

h − u( · , tn))‖L2(Γ(tn))
2
)1/2

.

We computed the numerical solution using the backward Euler
method coupled with ESFEM for four different meshes and a series
of time steps, until the final time T = 1. Then we computed the
errors in the discrete norm and seminorm, cf. (B.10), these error
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Figure B.1.: Errors of the ESFEM and the backward Euler method
at time T = 1

curves are displayed in figure B.1. The convergence in time can
be seen (note the reference line), while for sufficiently small τ the
spatial error is dominating, in agreement with the theoretical results.
Figure B.2 shows a similar plot: the errors here were obtained by
the three step linearly implicit BDF method coupled with ESFEM
for five different meshes and a series of time steps. Again the
results are matching with the theoretical ones. We note that, for
this example, no significant difference appeared between the fully
implicit and linearly implicit BDF methods.
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Figure B.2.: Errors of the ESFEM and the 3 step linearly implicit
BDF method at time T = 1
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B.8. A priori estimates

The result presented here gives regularity result, with a t indepen-
dent constant, for the elliptic problems appeared in the proofs of
the errors in the Ritz map.

Theorem B.8.1 (Elliptic regularity for evolving surfaces). Let
Γ(t) be an evolving surface, fix a t ∈ [0, T] and a function ξ: Γ(t)→
R.

(i) Let f ∈ H−1(Γ(t)) and

L(u) – −∇Γ · (A(ξ)∇Γu) + u. (B.24)

Then there exists a weak solution u ∈ H1(Γ(t)) of the problem

L(u) = f (B.25)

with the estimate

‖u‖H1(Γ(t)) ≤ c ‖ f ‖H−1(Γ(t)), (B.26)

where the constant above is independent of t.
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B. Full discretization of a quasilinear parabolic problem

(ii) Let L(u) be (B.24), let f ∈ L2(Γ(t)) and let u ∈ H1(Γ(t))
be a weak solution of (B.25). Then u is a strong solution of
(B.25), i.e. u solves (B.25) almost everywhere and there exists
a constant c > 0 independent of t and u such that

‖u‖H2(Γ(t)) ≤ c(‖u‖L2(Γ(t)) + ‖ f ‖L2(Γ(t))).

Proof. For (i): The Lax-Milgram lemma shows the existence of the
weak solution u. Because the coercivity and boundedness constants
(B.2) and (B.3) are independent of t, the constant in (B.26) also
not depends on t. For (ii): Basically we consider pullback of the
operator L to Γ(0), rewrite it in a local chart and then apply the
corresponding results of [46].

By assumption there exists a diffeomorphic parametrization of
our evolving surface Γ(t), i.e. we have a smooth map

Φ: Γ(0)× [0, T]→ Rm+1

such that
Φt: Γ(0)→ Rm+1, Φt(x) – Φ(x, t)

is an injective immersion which is a homeomorphism onto its image
with Φt(Γ(0)) = Γ(t). Because Γ(0) is compact, there exists a finite
atlas (

ϕn(0): Un(0) ⊂ Γ(0)→ Rm
)k

n=1

such that ϕn(Un(0)) ⊂ Rm is bounded and a finite family of compact
sets (Vn(0))k

n=1 with Vn(0) ⊂ Un(0), and
⋃k

n=1 Vn(0) = Γ(0). Using the
properties of the diffeomorphic parametrization the new collections,

Vn(t) – Φt(Vn(0)), Un(t) – Φt(Un(0)), ϕn(t) – ϕn(0) ◦Φ−1
t ,

still have the same properties. Now consider the following standard
formulae of Riemannian geometry [38]:

∇Γh(x, t) =
m

∑
i,j=1

gij
n (x, t)

∂(h ◦ ϕn(t)−1)
∂xi

∂(ϕn(t)−1)

∂xj ,
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B.8. A priori estimates

where

gij,n(x, t) –
∂(ϕn(t)−1)

∂xi · ∂(ϕn(t)−1)

∂xj

∣∣∣∣
x

is the first fundamental form and gij
n (x, t) are entries of the inverse

matrix of gn – (gij,n), and

∇Γ · X =
m

∑
i,j=1

1
?gn

∂

∂xi (
?

gngij
n Xj)

where X is a smooth tangent vector field with Xj = X · ∂(ϕ(t)−1)
∂xj and

?gn –
a

det(gn). It is straightforward to calculate that(
−∇Γ · A∇Γu + u

)
◦ ϕn(t)−1(x) =

m

∑
i,j=1

aij,n(x, t)
∂2(u ◦ ϕn(t)−1)

∂xi∂xj

+
m

∑
i=1

bi,n(x, t)
∂(u ◦ ϕn(t)−1)

∂xi

+ cn(x, t) u ◦ ϕn(t)−1

for appropriate aij,n ∈ W1,∞(Un(t)) and bi,n, cn ∈ L∞(Un(t)) where
aij,n represents a uniform elliptic matrix. Observe that the assump-
tions (B.2), (B.3) and (B.4) implies that the function above can be
bounded independently of t. Now [46, theorem 8.8] states that,
if u ◦ ϕn(t)−1 is the H1-weak solution of (B.25), then it must be a
strong solution as well.

For the estimate in (ii) observe that [46, theorem 9.11] gives us for
Vn(t) in particular the estimate

‖u ◦ ϕn(t)−1‖H2(V′n(t)) ≤ c(‖u ◦ ϕn(t)−1‖L2(U′n(t))

+ ‖ f ◦ ϕn(t)−1‖L2(U′n(t))), (B.27)

where V ′n – ϕn(t)(Vn(t)) and U′n – ϕn(t)(Un(t)) are obviously inde-
pendent of t. Thus the constant above is independent of t. Then
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B. Full discretization of a quasilinear parabolic problem

theorem 3.41 in [1] shows that

‖u‖H2(Vn(t)) ≤ c(t) ‖u ◦ ϕn(t)−1‖H2(V′n(t)) ≤ c ‖u ◦ ϕn(t)−1‖H2(V′n(t)),

where the constant in the middle depends continuously on t, hence
the last constant is independent of t. A similar estimate holds for
the right-hand side of (B.27). An easy calculation finishes the proof
for (ii). �
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I Appendix C.

Maximum norm stability and
error estimates for the
evolving surface finite element
method

The content of this chapter is based on [55].

Abstract

We show convergence in the natural L∞- and W1,∞-norm for a
semidiscretization with linear finite elements of a linear parabolic
partial differential equations on evolving surfaces. To prove this we
show error estimates for a Ritz map, error estimates for the material
derivative of a Ritz map and a weak discrete maximum principle.

C.1. Introduction

Many important problems can be modeled by partial differential
equations (PDEs) on evolving surfaces. Examples for such equations
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are given in material sciences, fluid mechanics and biophysics
[44, 51, 41]. The basic linear parabolic PDE on a moving surface is

∂•u + u∇Γ(t) · v− ∆Γ(t)u = f on Γ(t).

Here the velocity v is explicitly given and we seek to compute a
numerical approximation to the exact solution u. Dziuk and Elliott
[32] introduced the evolving surface finite element method (ESFEM)
to solve this problem. Error estimates for the semidiscretization
with piecewise linear finite elements in the L2- and H1-norm are
given in [35, 31].

The aim of this work is to give error bounds for the semidiscreti-
zation with linear finite elements in the L∞- and W1,∞-norm. Such
estimates are of interest for nonlinear parabolic PDEs on evolving
surfaces and if the velocity v is not explicitly given, but depends
on the exact solution u. Example of such problems are given in
[21, 44, 8, 42, 17] and the references therein. The treatment of such
more general equations are beyond the scope of this paper.

Our convergence proof for the semidiscretization of the linear
heat equation on evolving surfaces relies on three main results. In
our first result we give some error bounds in the L∞- and W1,∞-
norm for a suitable Ritz map. We give a proof based on Nitsche’s
weighted norm technique [70].

Our second result gives bounds in the L∞- and W1,∞-norm for
our material derivative Ritz map error, since the time derivative
does not commute with our Ritz map.

Our third result extends a weak finite element maximum prin-
ciple, which is due to Schatz, Thomée and Wahlbin [75], to the
evolving surface case. In [75] they use basic properties of the semi-
group corresponding to the linear heat equation on a bounded
domain. Since there is no semigroup theory for the linear heat equa-
tion on evolving surfaces we are going to use a different approach.
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The layout of the paper is as follows. We begin in section C.2 by
fixing some notation and introducing the most basic notion. In the
first three subsection of section C.3 we quickly develop the evolving
surface finite element method (ESFEM) and recall basic results
and estimates. In the following three subsection we introduce a
surface version of Nitsche’s weighted norms and finish with an
L2-projection. In section C.4 we give error bound in the maximum
norm for our Ritz map. In section C.5 we derive a weak ESFEM
maximum principle. In section C.6 we give error bounds for the
semi discretization of the linear heat equation on evolving surfaces
in the L∞- and W1,∞-norm. In section C.7 we present the results of
a numerical experiment. We gather technical details for calculations
with our weight functions in appendix C.9.

C.2. A parabolic problem on evolving surfaces

Let us consider a smooth evolving closed hypersurface Γ(t) ⊂ Rm+1

(our main focus is on the case m = 2, but some of our results
hold for more general cases), 0 ≤ t ≤ T, which moves with a
given smooth velocity v. More precise we assume that there exists
a smooth dynamical system Φ: Γ0 × [0, T] → Rm+1, such that for
each t ∈ [0, T] the map Φt – Φ( · , t) is an embedding. We define
Γ(t) – Φt(Γ0) and define the velocity v via the equation ∂tΦ(x, t) =
v(Φ(x, t), t). Let ∂•u = ∂tu + v · ∇u denote the material derivative of
the function u. The tangential gradient is given by∇Γu = ∇u−∇u ·
νν, where ν is the unit normal and finally we define the Laplace-
Beltrami operator via ∆Γu = ∇Γ · ∇Γu. This article shares the setting
of Dziuk and Elliott [31, 35], and [66].

We consider the following linear problem derived in [31, section
3]: {

∂•u + u∇Γ(t) · v− ∆Γ(t)u = f on Γ(t),

u( · , 0) = u0 on Γ(0).
(C.1)
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We use Sobolev spaces on surfaces: For a sufficiently smooth surface
Γ and 1 ≤ p ≤ ∞ we define

W1,p(Γ) = {η ∈ Lp(Γ) | ∇Γη ∈ Lp(Γ)m+1},

and analogously Wk,p(Γ) for k ∈ N [31, section 2.1]. We set Hk(Γ) =
Wk,2(Γ). Finally, GT denotes the space-time manifold, i.e. GT –

∪t∈[0,T]Γ(t)× {t}.
If f = 0 then a weak formulation of this problem reads as fol-

lows.

Definition C.2.1 (weak solution, [31] Definition 4.1). A function
u ∈ H1(GT) is called a weak solution of (C.1), if for almost every
t ∈ [0, T]

d
dt

∫
Γ(t)

uϕ +
∫

Γ(t)
∇Γ(t)u · ∇Γ(t)ϕ =

∫
Γ(t)

u∂•ϕ

holds for every ϕ ∈ H1(GT) and u(., 0) = u0.

For suitable f and u0 existence and uniqueness results, for the
strong and the weak problem, were obtained in [31, section 4].

Throughout this article we assume that f and u0 a such regular
that u ∈W3,∞(GT). Furthermore we set for simplicity reasons in all
sections f = 0, since the extension of our results to the inhomoge-
neous case are straightforward.

C.3. Preliminaries

We give a summary of this section. In section C.3.1 we introduce
the ESFEM, which is due to Dziuk and Elliott [31]. In section C.3.2
we recall the lifting process, which originates in Dziuk [29]. In
section C.3.3 we collect important results from Dziuk and Elliott
[35] and sometimes state them in a slightly more general fashion.
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In section C.3.4 we introduce weighted norms, which are due to
Nitsche [70], and give connections to the L∞-norm. In section C.3.5
we give interpolation estimates in the L2-, L∞- and weighted norms
and further give some special interpolation estimates in weighted
norms. The latter two were first stated in Nitsche [70]. In section
C.3.6 we introduce an L2-projection, give a stability bound in Lp-
norms and finish with a error estimate with respect to a different
weight function. The basic reference for this is Douglas, Dupont,
Wahlbin [27] and Schatz, Thomée, Wahlbin [75].

C.3.1. Semidiscretization with the evolving surface finite
element method

The smooth surface Γ(t) is approximated by a triangulated one
denoted by Γh(t), whose vertices aj(t) = Φ(aj(0), t) are sitting on the
surface for all time, such that

Γh(t) =
⋃

E(t)∈Th(t)

E(t).

We always assume that the (evolving) simplices E(t) are forming
an admissible triangulation Th(t), with h denoting the maximum
diameter. Admissible triangulations were introduced in [31, section
5.1]: Every E(t) ∈ Th(t) satisfies that the inner radius σh is bounded
from below by ch with c > 0, and Γh(t) is not a global double
covering of Γ(t). The discrete tangential gradient on the discrete
surface Γh(t) is given by

∇Γh(t)φ – ∇φ−∇φ · νhνh,

understood in a piecewise sense, with νh denoting the normal to
Γh(t) (see [31]).

For every t ∈ [0, T] we define the finite element subspace Sh(t)
spanned by the continuous, piecewise linear evolving basis func-
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tions χj, satisfying

χj(ai(t), t) = δij for all i, j = 1, 2, . . . , N,

therefore

Sh(t) = span{χ1( · , t), χ2( · , t), . . . , χN( · , t)}.

We interpolate the dynamical system Φ by Φh: Γh(0) → Rm+1, the
discrete dynamical system of Γh(t). This defines a discrete sur-
face velocity Vh via ∂tΦh(yh, t) = Vh(Φh(yh, t), t). Then the discrete
material derivative is given by

∂•hφh = ∂tφh + Vh · ∇φh (φh ∈ Sh(t)).

The key transport property derived in [31, Proposition 5.4], is the
following

∂•hχk = 0 for k = 1, 2, . . . , N. (C.2)

The spatially discrete problem for evolving surfaces is: Find
Uh ∈ Sh(t) such that for all φh ∈ Sh(t)

d
dt

∫
Γh(t)

Uhφh +
∫

Γh(t)
∇ΓhUh · ∇Γh φh =

∫
Γh(t)

Uh∂•hφh, (C.3)

with the initial condition Uh( · , 0) = U0
h ∈ Sh(0) being a sufficient

approximation to u0.

C.3.2. Lifts

In the following we recall the so called lift operator, which was
introduced in [29] and further investigated in [31, 35]. The lift
operator projects a finite element function on the discrete surface
onto a function on the smooth surface.

Using the oriented distance function d ([31, section 2.1]), for a
continuous function ηh: Γh(t)→ R its lift is define as

ηl
h(xl , t) – ηh(x, t), x ∈ Γ(t),
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where for every x ∈ Γh(t) the value xl = xl(x, t) ∈ Γ(t) is uniquely
defined via x = xl + ν(xl , t)dX(x, t). This notation for xl will also be
used later on. By η−l we mean the function whose lift is η, and by
El

h we mean the lift of the triangle Eh.
The following pointwise estimate was shown in the proof of

lemma 3 from Dziuk [29]:

1
c
|∇Γηl

h(xl)| ≤ |∇Γh ηh(x)| ≤ c |∇Γηl
h(xl)|. (C.4)

We now recall some notions using the lifting process from [29, 31].
We have the lifted finite element space

Sl
h(t) – {ϕh = φl

h | φh ∈ Sh}.

By δh we denote the quotient between the continuous and discrete
surface measures, dA and dAh, defined as δh dAh = dA. For these
quantities we recall some results from [31, Lemma 5.1], [35, Lemma
5.4] and [66, Lemma 6.1].

Lemma C.3.1. We have the estimates

‖d‖L∞(Γh(t)) ≤ ch2, ‖1− δh‖L∞(Γh(t)) ≤ ch2,

with constants independent of t and h.

C.3.3. Geometric estimates and bilinear forms

Let us denote by Φl
h: Γ0 × [0, T] → Rm+1 the lift of Φh. We define

the velocity vh via the formula ∂tΦl
h(x, t) = vh(Φl

h(x, t), t). Then the
discrete material derivative on Γ(t) is given by

∂•hu = ∂tu + vh · ∇u,

221



C. Maximum norm analysis for the ESFEM

which satisfies the following relations, cf. [35]:

∂•u = ∂•hu + (vh − v) · ∇Γu, (C.5)

‖v− vh‖L∞(Γ(t)) + h ‖v− vh‖W1,∞(Γ(t)) ≤ ch2 ‖v‖W2,∞(Γ(t)), (C.6)

We use the time dependent bilinear forms defined in [35, Section
3.3]: For z, ϕ ∈ H1(Γ(t)) we set

a(t; z, ϕ) =
∫

Γ(t)
∇Γz · ∇Γ ϕ,

m(t; z, ϕ) =
∫

Γ(t)
zϕ,

g(t; v; z, ϕ) =
∫

Γ(t)
(∇Γ · v)zϕ,

b(t; v; z, ϕ) =
∫

Γ(t)
B(v)∇Γz · ∇Γ ϕ,

and for Zh, φh ∈ H1(Γh(t)) we set

ah(t; Zh, φh) = ∑
E∈Th

∫
E
∇Γh Zh · ∇Γh φh,

mh(t; Zh, φh) =
∫

Γh(t)
Zhφh

gh(t; Vh; Zh, φh) =
∫

Γh(t)
(∇Γh · Vh)Zhφh,

bh(t; Vh; Zh, φh) = ∑
E∈Th

∫
E
Bh(Vh)∇Γh Zh · ∇Γh φh,

where the discrete tangential gradients are understood in a piece-
wise sense, and with the matrices

B(v)ij = δij(∇Γ · v)− ((∇Γ)ivj + (∇Γ)jvi),

Bh(Vh)ij = δij(∇Γ ·Vh)− ((∇Γh )i(Vh)j + (∇Γh )j(Vh)i),

where i, j = 1, 2, . . . , m + 1.
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First, we state a lemma for the time derivatives of the bilinear
and then state bounds of the geometric perturbation errors in the
bilinear forms. Important and often used results are the bounds of
the geometric perturbation errors in the bilinear forms.

Lemma C.3.2 (Discrete transport property). For z, ϕ ∈ H1(Γ(t))
we have

d
dt

m(z, ϕ) = m(∂•hz, ϕ) + m(z, ∂•h ϕ) + g(vh; z, ϕ),

d
dt

a(z, ϕ) = a(∂•hz, ϕ) + a(z, ∂•h ϕ) + b(vh; z, ϕ).
(C.7)

Similarly for Zh, φh ∈ H1(Γh(t)) we have

d
dt

mh(Zh, φh) = mh(∂•Zh, φh) + mh(Zh, ∂•φh) + gh(Vh; Zh, φh),

d
dt

ah(Zh, φh) = ah(∂•Zh, φh) + ah(Zh, ∂•φh) + bh(Vh; Zh, φh).
(C.8)

Lemma C.3.3. For all 1 ≤ p, q ≤ ∞, that are conjugate, p−1 +
q−1 = 1, and for arbitrary Zh ∈ Lp(Γh(t)) and φh ∈ Lq(Γh(t)), with
corresponding lifts zh ∈ Lp(Γ(t)) and ϕh ∈ Lq(Γ(t)) we have the
following estimates:

|m(zh, ϕh)−mh(Zh, φh)| ≤ ch2 ‖zh‖Lp(Γ(t)) ‖ϕh‖Lq(Γ(t)),

|a(zh, ϕh)− ah(Zh, φh)| ≤ ch2 |zh|W1,p(Γ(t)) |ϕh|W1,q(Γ(t)),

|g(vh; zh, ϕh)− gh(Vh; Zh, φh)| ≤ ch2 ‖zh‖Lp(Γ(t)) ‖ϕh‖Lq(Γ(t)),

|b(vh; zh, ϕh)− bh(Vh; Zh, φh)| ≤ ch2 |zh|W1,p(Γ(t)) |ϕh|W1,q(Γ(t)),

where the constant c > 0 is independent from t ∈ [0, T] and the
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mesh width h.

Proof of lemma C.3.2 and C.3.3. These geometric estimates were
established for the case p = q = 2 in [35, Lemma 5.5] and [62, Lemma
7.5]. To show the estimates for general p and q, the same proof
apply, except the last step where we use a Hölder inequality. �

C.3.4. Weighted norms and basic estimates

Similarly, as in the works of Nitsche [70], weighted Sobolev norms
and their properties play a very important and central role. In this
section we recall some basic results for them.

Definition C.3.4 (Weight function). For γ > 0 sufficiently big
but independent of t and h we set

ρ: [0, ∞)→ [0, ∞), ρ2 – ρ2(h) – γh2 |log h|.

We define a weight function µ = µ(t; · ): Γ(t) → R via the
formula

µ(x) – µ(x, y) – |x− y|2 + ρ2 ∀x ∈ Γ(t). (C.9)

The actual choice of γ is going to be clear from the proofs.

Definition C.3.5 (Weighted norms, [70, section 2]). Let µ be a
weight function and α ∈ R. We define the norms

‖u‖2
L2,α =

∫
Γ

µ−α |u|2,

‖u‖2
H1,α = ‖u‖2

L2 ,α + ‖∇Γu‖2
L2 ,α,

‖u‖2
H2,α = ‖u‖2

H1 ,α + ‖∇2
Γu‖2

L2,α.
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Lemma C.3.6. Let dim Γ(t) = 2. Let φh ∈ Sh(t) with corresponding
lift ϕh ∈ Sl

h(t). Then there exist constants c > 0 independent of t, h
and γ such that

‖ϕh‖L∞(Γ(t)) ≤ ch |log h|‖ϕh‖L2 ,2, (C.10)

‖ϕh‖W1,∞(Γ(t)) ≤ cγ |log h|1/2‖ϕh‖H1,1. (C.11)

Proof. There is a point y0,h ∈ E0 ⊂ Γh(t) such that

‖φh‖W1,∞(Γh(t)) = |φh(y0,h)| + |∇Γh φh(y0,h)| = ‖φh‖W1,∞(E0).

Note that on E0 the estimate µh(xh) ≤ cρ2 holds for h < h0, h0

sufficiently small. Then the second bound yields from using inverse
inequality (lemma C.3.13) and (C.54). The bound (C.10) is proved
using similar arguments. �

Lemma C.3.7. Let dim Γ(t) = 2. Let u: Γ(t) → R be a sufficiently
smooth function. Then the following estimates hold, with a sufficiently
small h0 > 0,

‖u‖L2,2 ≤ cρ−1 ‖u‖L∞(Γ(t)), (C.12)

‖u‖H1,1 ≤ c |log ρ|1/2 ‖u‖W1,∞(Γ(t)), (C.13)

for 0 < h < h0, where the constant c = c(h0) > 0 is independent of
t, h and γ.

Proof. For α = 1 or 2 we obviously have

‖u‖L2 ,α ≤ ‖u‖L∞(Γ(t)) ‖µ−α‖
1
2
L1(Γ(t)).

Then a straightforward calculation, using appendix C.9 shows both
estimates. �
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Naturally, there is a weighted version of the Cauchy-Schwarz
inequality, namely we have

|a∗(zh, ϕh)| ≤ ‖zh‖H1,α‖ϕh‖H1 ,−α,

|a∗h(Zh, φh)| ≤ c‖zh‖H1 ,α‖ϕh‖H1 ,−α,
(C.14)

and similarly for the bilinear forms g and b. Furthermore, this
yields a weighted version of the geometric errors of the bilinear
forms (lemma C.3.3).

Lemma C.3.8. The following estimates hold, with a constant c > 0
independent of t, h and γ,

(C.15)|a∗(zl
h, φl

h)− a∗h(Zh, φh)| ≤ ch2‖zl
h‖H1 ,α‖φl

h‖H1 ,−α,

(C.16)
|(g + b)(vh; zl

h, φl
h)− (gh + bh)(Vh; Zh, φh)|

≤ ch2‖zl
h‖H1,α‖φl

h‖H1 ,−α.

Lemma C.3.9. (i) Derivatives of µ−1 are bounded as

|∇Γµ−1| ≤ 2µ−1,5, |∆Γµ−1| ≤ cµ−2 (C.17)

with c > 0 independent of t, h and γ.

(ii) For arbitrary u ∈ H1(Γ(t)) the following norm inequalities
hold:

‖µ−1u‖H1,−1 ≤ c(‖u‖L2,2 + ‖u‖H1,1), (C.18)

‖µ−2u‖L2,−1 ≤ ρ−1‖u‖L2 ,2. (C.19)

Proof. (i): The first esitmate follows from

|∇Γµ−1| ≤ |∇µ−1| ≤ 2 |x− y|
µ2 ≤

2
?

µ

µ2 .
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For the second inequality consider the formula,

∆Γ f = ∆ f̄ −∇2 f̄ (ν, ν)− Hν · ∇ f̄ ,

where f̄ : U → R is an extension of the sufficiently smooth function
f to an open neighborhood U ⊂ Rm+1 of Γ(t), ∇2 f̄ denotes the
Hessian of f̄ and H denotes the trace of the Weingarten map of Γ(t).

(ii) In order to show these estimates we use the bounds (C.17)
obtained above. �

C.3.5. Interpolation and inverse estimates

Here we collect some results involving evolving surface finite ele-
ment functions.

For a sufficiently regular function u: Γ(t)→ R we denote by rIhu ∈
Sh(t) its interpolation on Γh(t). Then the finite element interpolation
is given by Ihu = (rIhu)l ∈ Sl

h(t), having the error estimate below, cf.
[34].

Lemma C.3.10. For m ≤ 3 and p ∈ {2, ∞}, there exists a constant
c > 0 independent of h and t such that for u ∈W2,p(Γ(t)):

‖u− Ihu‖Lp(Γ(t)) + h‖∇Γ(u− Ihu)‖Lp(Γ(t))

≤ ch2
(
‖∇2

Γu‖Lp(Γ(t)) + h ‖∇Γu‖Lp(Γ(t))

)
.

The interpolation estimates hold also if weighted norms are con-
sidered.

Lemma C.3.11. There exists a constant c > 0 such that for u ∈
W2,∞(Γ(t)) it holds

‖u− Ihu‖2
L2,2 + ‖u− Ihu‖2

H1 ,1 ≤ ch2 |log h| ‖u‖2
W2,∞(Γ(t)). (C.20)
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Proof. Use a Hölder inequality, lemma C.3.10 and lemma C.3.7
(C.12), (C.13) with the choice u ≡ 1. �

Lemma C.3.12. There exists h0 > 0, γ0 > 0 such that for all α ∈ R
there exists a constant c = c(h0, γ0) > 0 independent of t and h such
that for all γ > γ0 for the weight µ, cf. (C.9), and for all h < h0 the
following inequalities holds:

(i) Let u ∈ H1(Γ(t)) be curved element-wise H2. The interpola-
tion Ihu ∈ Sl

h(t) satisfies

(C.21)‖u − Ihu‖L2 ,α + h‖∇Γ(u − Ihu)‖L2,α

≤ ch2(‖∇2
Γu‖L2 ,α + ch‖∇Γu‖L2 ,α),

where ‖∇2
Γu‖L2 ,α is understood curved element-wise.

(ii) For any ϕh ∈ Sl
h(t) the following estimate holds:

‖µ−1 ϕh − Ih(µ−1ϕh)‖H1 ,−1

≤ c
(

h
ρ

+ h
)
(‖ϕh‖L2,2 + ‖∇Γ ϕh‖L2,1).

(C.22)

Proof. (i): To prove inequality (C.21) it suffices to show that there
exists a constant c = c(α) > 0 independent of t, h such that for each
element K ∈ Th(t) it holds∫

Kl
µα((w − Ihw)2 + h |∇Γ(w − Ihw)|2)

≤ ch2
∫

Kl
µα(|∇2

Γw|2 + ch |∇Γw|2),

where Kl ⊂ Γ(t) denote the lifted curved element of K. It is easy to
show that there exists γ0 = γ0(h0) > 0 and c = c(γ0) > 0 such that
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for all γ > γ0 it holds

max
K∈Th

(
maxx∈Kl µ(x, y)
minx∈Kl µ(x, y)

)
≤ c.

A straightforward calculation finishes the proof.
(ii): For an arbitrary function f : Γh(t)→ R, which is element-wise

H2, a short calculation, similar to the one done in Dziuk [29, lemma
3], shows that

|(∇Γ)i(∇Γ)j( f l)| ≤ c(|((∇Γh )i(∇Γh )j f )l | + ch |∇Γ( f l)|),

for a sufficiently small h0 > h > 0. A straightforward calculation
combined with (i) and (C.17) shows the claim. �

The following general version of inverse estimates for finite element
functions plays a key role later on, cf. [75].

Lemma C.3.13 (Inverse estimate). Let 1 ≤ q ≤ p ≤ ∞ and
0 ≤ m ≤ k ≤ 1. Then here exists c(q, p, m, k) > 0 such that for
each triangle Eh(t) ⊂ Γh(t) the following inequality holds for all
ϕh ∈ Sh(t)

‖ϕh(t)‖Wk,p(Eh(t)) ≤ chm−k−2(1/q−1/p) ‖ϕh(t)‖Wm,q(Eh(t)).

The lemma above does not require a separate proof, since it uses
the referent element technique.

Lemma C.3.14. There exists c > 0 with

‖ϕh‖L∞(Γ(t)) ≤
∣∣∣∣ 1
V

∫
Γ(t)

ϕh(y)dV(y)
∣∣∣∣ + c |log h|1/2 ‖∇Γ ϕh‖L2(Γ(t)).

Proof. Follow the steps in Schatz, Thomée, Wahlbin [75] using the
Green’s function from theorem C.8.1 and calculating with geodesic
polar coordinates. �
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C.3.6. Estimates for an L2-projection

This section shows some technical results for the L2-projection,
which is denoted by Ph,0 (in contrast with the Ritz map which will
be denoted by P1).

Definition C.3.15 (L2-projection). We define

Ph,0(t): L2(Γh(t))→ Sh(t)

as follows: Let uh ∈ L2(Γh(t)) be given. Then there exits a
unique finite element function Ph,0(t)u ∈ Sh(t) such that for all
φh ∈ Sh(t) it holds

mh(Ph,0(t)uh, φh) = mh(uh, φh). (C.23)

Theorem C.3.16. For p ∈ [1, ∞] let uh ∈ Lp(Γh(t)). Then there
exists a constant c > 0 independent of h and t such that

‖Ph,0(t)uh‖Lp(Γh(t)) ≤ c ‖uh‖Lp(Γh(t)).

Further there exists c2, c3 > 0 independent of h and t such that for
A1

h(t) and A2
h(t) disjoint subsets of Γh(t) with supp(uh) ⊆ A1

h we
have

‖Ph,0(t)uh‖L2(A2
h(t)) ≤ c2e−c3 disth(A1

h ,A2
h)h−1 ‖uh‖L2(A1

h(t)), (C.24)

where disth(x, y) = distΓh(t)(x, y) is the intrinsic Riemannian dis-
tance of Γh(t).

We do not need to reprove this result from Douglas, Dupont and
Wahlbin [27, equation (6) and (7)], since their proof holds without
any serious modification in our setting.
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For the proof of our discrete weak maximum principle we are
going to use a different weight function then (C.9). Let [0, T] →
Rm+1, t 7→ y(t) be a curve with the property y(t) ∈ Γ(t). In the
following we write y instead of y(t). We define

σ(x) – σy(x) – σ(x, y) – (|x− y|2 + h2)1/2. (C.25)

We gather some estimates concerning σ in the next lemma.

Lemma C.3.17. There exists a constant c > 0 independent of t and
h such that the following estimates hold

‖∂•σ‖L∞(Γ(t)) ≤ c, ‖∂•hσ‖L∞(Γ(t)) ≤ c, (C.26)

‖∇Γσ‖L∞(Γ(t)) ≤ 1, |∇2
Γσ| ≤ c

(
1
σ

+ 1
)

,

‖∇2
Γ(σ2)‖L∞(Γ(t)) ≤ c.

(C.27)

The proof of this lemma is a straightforward calculation and is
omitted here.

Lemma C.3.18. There exists c > 0 such for fixed t ∈ [0, T], xh ∈
Γh(t), σ = σxh , φh ∈ Sh(t) and ψh – Ph,0(σ2ϕh) the following
inequality holds:

‖σ2φh − ψh‖L2(Γh(t)) + h ‖∇Γh (σ2φh − ψh)‖L2(Γh(t))

≤ ch2( ‖φh‖L2(Γh(t)) + ‖σ∇Γh φh‖L2(Γh(t))).

Proof. Consider a triangle Eh ⊂ Γh(t) and set gh – rIh(σ2φh). Use
lemma C.3.17 and (C.55) and follow the steps in Schatz, Thomée
and Wahlbin [75, lemma 1.4]. �

231



C. Maximum norm analysis for the ESFEM

C.4. A Ritz map and some error estimates

Just as in the usual L2-theory the Ritz map plays a very important
role for our L∞-error estimates. This section is devoted to the careful
L∞- and weighted norm analysis of the errors in the Ritz map.

Definition C.4.1 (Ritz map, [62]). We define Ph,1(t): H1(Γ(t))→
Sh(t) as follows: Let u ∈ H1(Γ(t)) be given. Then there exits a
unique finite element function Ph,1(t)u ∈ Sh(t) such that for all
φh ∈ Sh(t) with ϕh = φl

h it holds

a∗h(Ph,1(t)u, φh) = a∗(u, ϕh). (C.28)

This naturally defines the Ritz map on the continuous surface:

P1(t)u = (Ph,1(t)u)l ∈ Sl
h(t).

Note that the Ritz map does not satisfy the Galerkin orthogonality,
however it satisfies, using (C.15), the following estimate, cf. [62].
For all ϕh ∈ Sl

h(t) we have

|a∗(u− P1(t)u, ϕh)| ≤ ch2‖P1(t)u‖H1 ,α‖ϕh‖H1,−α. (C.29)

In this section we aim to bound the following errors of the Ritz
map:

u− P1(t)u and ∂•h(u− P1(t)u),

in the L∞- and W1,∞-norms. Previously, H1- and L2-error estimates
have been shown in [31, 35].

C.4.1. Weighted a priori estimates

Before turning to the maximum norm error estimates, we state and
prove some technical regularity results involving weighted norms.
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Lemma C.4.2 (Weighted a priori estimates). For f ∈ L2(Γ(t)),
the problem

−∆Γw + w = f on Γ(t),

has a unique weak solution w ∈ H1(Γ(t)). Furthermore, w ∈
H2(Γ(t)) and we have the following weighted a priori estimates

‖w‖H1 ,−1 ≤ c(‖ f ‖L2,−1 + ‖w‖L2) (C.30)

‖w‖H2 ,−1 ≤ c(‖ f ‖L2,−1 + ‖w‖H1), (C.31)

where the constant c > 0 is independent of t, h and γ.

Proof. Existence and uniqueness of a weak solution follows from
[5]. Using integration by parts, Young inequality and |∇Γµ| ≤ ?

µ a
short calculation shows (C.30). For the details on elliptic regularity
and a derivation of the a priori estimate

‖w‖H2 ≤ c ‖−∆Γw + w‖L2 ,

where c > 0 is independent of t, we refer to [56, appendix A].
Because of (C.30) it suffices to prove (C.31) for ‖∇2

Γw‖2
L2,−1 as

the left-hand side instead of ‖w‖2
H2,−1. Apply the usual elliptic a

priori estimate on (xi − yi)w for i = 1, . . . , m + 1 to get the desired
estimate. �

Lemma C.4.3. For g ∈ L2(Γ(t)) the problem

−∆Γw + w = µ−2g.

has a unique weak solution w ∈ H1(Γ(t)). Furthermore, w ∈
H2(Γ(t)), and there exists a constant c > 0 independent of t and h
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such that

‖w‖2
H1 ≤ cρ−2 |log ρ|‖g‖2

L2 ,2. (C.32)

Proof. Lemma C.4.2 gives us existence, uniqueness and regularity
of w. Consider the number

λ−1(t) – sup{‖ f ‖2
H1 | f ∈ H2(Γ(t)), ‖−∆Γ f + f ‖2

L2,−2 ≤ 1}.

Inequality (C.32) is proven if we show

λ−1(t) ≤ cρ−2 |log ρ|,

where c is t independent. A short calculation shows that the smallest
eigenvalue rλmin(t) of the elliptic eigenvalue problem

−∆Γ f + f = rλµ−2 f on Γ(t)

is equal to λ(t). The weighted Rayleight quotient implies

rλmin = inf
f∈H1

‖ f ‖2
H1

‖ f ‖2
L2 ,2

.

Hence it suffices to prove

‖ f ‖2
L2,2 ≤ cρ−2 |log(ρ)| ‖ f ‖2

H1 , (C.33)

for a f ∈ H1. With a Hölder estimate we arrive at

‖ f ‖2
L2 ,2 ≤

(∫
Γ(t)

µ−2p
)1/p(∫

Γ(t)
f 2q
)1/q

=
(∫

Γ(t)
µ−2p

)1/p

‖ f ‖2
L2q(Γ(t)),

where 1 < p, q < ∞ satisfies p−1 + q−1 = 1. We take the choice
q =

a

|log ρ|. It is easy to prove the following quantitative Sobolev-
Nierenberg inequality for moving surfaces:

‖ f ‖Lq(Γ(t)) ≤ cq ‖ f ‖H1(Γ(t)),
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where c is independent of t and q. A straightforward calculation
with geodesic polar coordinates using lemma C.9.2 and lemma C.9.1
shows inequality (C.33). �

C.4.2. Maximum norm error estimates

Before showing L∞- and W1,∞-norm error estimates for the Ritz
map, we show similar estimates for weighted norms. Then, by
connecting the norms, use these results to obtain our original goal.

Throughout this subsection, we write P1u instead of P1(t)u.

Lemma C.4.4. There exists h0 > 0 sufficiently small and γ0 > 0
sufficiently large and a constant c = c(h0, γ0) > 0 such that for
u ∈W2,∞(Γ(t)) it holds

‖u− P1u‖2
L2 ,2 + ‖u− P1u‖2

H1,1 ≤ ch2 |log h| ‖u‖2
W2,∞(Γ(t)). (C.34)

Proof. Step 1: Our goal is to show

‖u− P1u‖2
H1,1 ≤ ch2 |log h| ‖u‖2

W2,∞(Γ(t)) + ĉ‖u− P1u‖2
L2,2. (C.35)

Similarly as in Nitsche [70, theorem 1], (C.17) and partial integration
yields

‖u − P1u‖2
H1 ,1 ≤ a∗(u − P1u, µ−1(u − P1u))+c

∫
Γ(t)

(∆Γµ−2)(u−P1u)2

≤ a∗(u − P1u, µ−1(u − P1u)) + c‖u − P1u‖2
L2,2.

For simplicity we set e = u− P1u, and use Ihu = (rIhu)l to obtain

a∗(e, µ−1e) = a∗(e, µ−1(u− Ihu))

+ a∗
(

e, µ−1(Ihu− P1u)− Ih(µ
−1(Ihu− P1u))

)
+ a∗

(
e, Ih(µ

−1(Ihu− P1u))
)

= I1 + I2 + I3.
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Using lemma C.3.8 (C.14), lemma C.3.9 (C.18), lemma C.3.11 (C.20)
and ε-Young inequality we estimate as

|I1| ≤ ε‖e‖2
H1,1 + ch2 |log h| ‖u‖2

W2,∞(Γ(t)).

For the second term use in addition lemma C.3.12 (C.22) and a
0 < h < h0 sufficiently small to get

|I2| ≤ ε‖e‖2
H1 ,1 + c(h2 |log h| ‖u‖W2,∞(Γ(t)) + ‖e‖L2 ,2).

For the last term use in addition lemma C.3.8 (C.29) to reach at

|I3| ≤ ε‖e‖2
H1 ,1 + c(h2 |log h| ‖u‖W2,∞(Γ(t)) + ‖e‖L2 ,2)

These estimates together, and absorbing ‖e‖2
H1,1, imply (C.35).

Step 2: Using an Aubin-Nitsche argument we prove that there
exists γ > γ0 > 0 sufficiently large such that for all δ > 0 the
following estimate holds

‖u− P1u‖2
L2 ,2 ≤ ch4 ‖u‖2

W2,∞(Γ(t)) + δ‖u− P1u‖2
H1,1. (C.36)

Let w ∈ H2(Γ(t)) be the weak solution of

−∆Γw + w = µ−2e.

Then by testing with e we obtain

‖e‖2
L2 ,2 = (a∗(e, w)− a∗(e, Ihw)) + a∗(e, Ihw)

= a∗(e, w− Ihw) + a∗(e, Ihw)

In addition to the already mentioned lemmata in Step 1 use lemma
C.4.2 (C.31), lemma C.3.9 (C.19), lemma C.4.3 (C.32) and a suffi-
ciently large γ > γ0 > 0 to estimate

|a∗(e, w− Ihw)| ≤ 1
4
‖e‖2

L2,2 +
δ

2
‖e‖2

H1 ,1.
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For the other term we estimate

|a∗(e, Ihw)| ≤ ch2 ‖e‖H1 ‖Ihw‖H1 ≤ ch4 ‖u‖2
W2,∞(Γ(t)) +

1
4
‖e‖2

L2,2.

By absorption, this implies (C.36).
The final estimate is shown by combining (C.35) and (C.36), and

choosing δ > 0 such that cδ < 1. Then an absorbtion finishes the
proof. �

Theorem C.4.5. There exist constants c > 0 independent of h and t
such that for all u ∈ W2,∞(Γ(t)) it holds

‖u − (Ph,1(t)u)l‖L∞(Γ(t)) ≤ ch2 |log h|3/2 ‖u‖W2,∞(Γ(t)),

‖u − (Ph,1(t)u)l‖W1,∞(Γ(t)) ≤ ch |log h| ‖u‖W2,∞(Γ(t)).

Proof. Using lemma C.3.10, lemma C.3.6 (C.11) and lemma C.3.7
(C.13) we get

‖u− P1u‖W1,∞(Γ(t)) ≤ ‖u− Ihu‖W1,∞(Γ(t)) + c ‖rIhu− Ph,1u‖W1,∞(Γh(t))

≤ ch ‖u‖W2,∞(Γ(t)) + c |log h|1/2‖rIhu− Ph,1u‖H1 ,1

≤ ch |log h| ‖u‖W2,∞(Γh(t)) + c‖u− (Ph,1u)l‖H1,1.

For the W1,∞-estimate use lemma C.4.4 to estimate the weighted
norms. The L∞-estimate is obtained in a similar way. �

C.4.3. Maximum norm material derivative error estimates

Since in general time derivatives are not commuting with the Ritz
map, i.e. ∂•hP1u 6= P1∂•hu, we bound the error ∂•h(u− P1u). Again we
first show our estimates in the weighted norms, and then use these
results for the L∞- and W1,∞-norm error estimates.
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For this subsection we write Ph,1u instead of Ph,1(t)u and further
P1u instead of P1(t)u.

We first state a substitute for our weighted pseudo Galerkin
inequality (C.29).

Lemma C.4.6. There exists a constant c > 0 independent of h and t
such that for all u ∈W2,∞(GT) and ϕh ∈ Sl

h(t) it holds

|a∗(∂•h(u− P1u), ϕh)| ≤ c
(

h2‖∂•h(u− P1u)‖H1,1

+ h |log h|1/2( ‖u‖W2,∞(Γ(t)) + ‖∂•u‖W1,∞(Γ(t)))
)
‖ϕh‖H1 ,−1.

(C.37)

Proof. The main idea is given by Dziuk and Elliott in [35]. Using
(C.5) and lemma C.3.7 (C.13) it is easy to verify

‖∂•hP1u‖H1 ,1 ≤ ‖∂•hu− ∂•hP1u‖H1,1

+ c |log h|1/2( ‖∂•u‖W1,∞(Γ(t)) + h ‖u‖W2,∞(Γ(t))).
(C.38)

Let φh ∈ Sh(t) such that ϕh = φl
h. Taking time derivative of the defi-

nition of the Ritz map (C.28), using the discrete transport properties
(C.7) lemma C.3.2, and the definition of the Ritz map, we obtain

a∗(∂•hu− ∂•hP1u, ϕh) = a∗h(∂•hPh,1u, φh)− a∗(∂•hP1u, ϕh)

+ (gh + bh)(Vh; u−l , φh)− (g + b)(vh; u, ϕh)

− (gh + bh)(Vh; u−l − Ph,1u, φh).
(C.39)

Then estimate using lemma C.3.8 (C.15), (C.16), lemma C.4.4 (C.34)
and the above inequality to finish the proof (cf. [66, Theorem 7.2]).

�
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Lemma C.4.7. For k ∈ {0, 1} there exists c = c(k) > 0 independent
of t and h such that for u ∈W3,∞(GT) the following inequalities hold

‖∂•hu− Ih∂•u‖Wk,∞(Γ(t))

≤ ch2−k( ‖u‖W2,∞(Γ(t)) + ‖∂•u‖W2,∞(Γ(t))),
(C.40)

‖∂•hu− Ih∂•u‖2
L2 ,2 + ‖∂•hu− Ih∂•u‖2

H1 ,1

≤ ch2 |log h|( ‖u‖2
W2,∞(Γ(t)) + ‖∂•u‖2

W2,∞(Γ(t))).
(C.41)

Proof. Using (C.5) we get

‖∂•hu− Ih∂•u‖Wk,∞(Γ(t))

≤ ‖(v− vh) · ∇Γu‖Wk,∞(Γ(t)) + ‖∂•u− Ih∂•u‖Wk,∞(Γ(t)).

Use lemma C.3.10 and (C.6) to show the first estimate.
For the second inequality use a Hölder estimate, and (C.40) with

lemma C.3.7 (C.12) and (C.13). �

Lemma C.4.8. There exists h0 > 0 sufficiently small and γ0 > 0
sufficiently large and a constant c = c(h0, γ0) > 0 such that for
u ∈W3,∞(GT) the following holds

‖∂•hu− ∂•hP1u‖2
L2 ,2 + ‖∂•hu− ∂•hP1u‖2

H1 ,1

≤ ch2 |log h|4(‖u‖2
W2,∞(Γ(t)) + ‖∂•u‖2

W2,∞(Γ(t))).
(C.42)

Proof. This proof has a similar structure as lemma C.4.4, and since it
also uses similar arguments, we only give references if new lemmata
are needed. For the ease of presentation we set e = u− P1u and
split the error as follows

∂•he = (∂•hu− Ih∂•u) + (Ih∂•u− ∂•hP1u) =: σ + θh.
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Step 1: Our goal is to prove

‖∂•he‖2
H1 ,1 ≤ ch2 |log h|( ‖u‖2

W2,∞(Γ(t)) + ‖∂•u‖2
W2,∞(Γ(t))) + ĉ‖∂•he‖2

L2 ,2.
(C.43)

We start with

‖∂•he‖2
H1,1 ≤ a∗

(
∂•he, µ−1∂•he

)
+ c‖∂•he‖2

L2 ,2

and continue with

a∗(∂•he, µ−1∂•he) = a∗(∂•he, µ−1σ)

+ a∗(∂•he, µ−1θh − I(µ−1θh))

+ a∗(∂•he, I(µ−1θh)) = I1 + I2 + I3.

We estimate the three terms separately. For the first ε-Young in-
equality and lemma C.4.7 (C.41) yields

|I1| ≤ ε‖∂•he‖2
H1,1 + ch2 |log h|(‖u‖2

W2,∞(Γ(t)) + ‖∂•u‖2
W2,∞(Γ(t))).

For a sufficiently small 0 < h < h0 we obtain

|I2| ≤ ε‖∂•he‖2
H1 ,1 + c(‖∂•he‖2

L2 ,2

+ h2 |log h|(‖u‖2
W2,∞(Γ(t)) + ‖∂•u‖2

W2,∞(Γ(t)))).

Using lemma C.4.6 (C.37) and a 0 < h < h1 sufficiently small we
arrive at

|I3| ≤ ε‖∂•he‖2
H1,1 + c(‖∂•he‖2

L2 ,2

+ h2 |log h|(‖u‖2
W2,∞(Γ(t)) + ‖∂•u‖2

W2,∞(Γ(t)))).

These estimates together, and absorbing ‖∂•he‖H1,1, imply (C.43).
Step 2: Using again an Aubin-Nitsche like argument we show

that, for any δ > 0 sufficiently small, we have

‖∂•he‖2
L2,2 ≤ δ‖∂•he‖2

H1 ,1 + ch2 |log h|4 (‖u‖2
W2,∞(Γ(t)) + ‖∂•u‖2

W2,∞(Γ(t))).
(C.44)
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Let w ∈ H2(Γ(t)) be the weak solution of

−∆Γw + w = µ−2∂•he.

Then we have

‖∂•he‖L2 ,2 = a∗(∂•he, w− Ihw) + a∗(∂•he, Ihw).

Again let ε > 0 be a small number. For γ > γ0 sufficiently big we
get

|a∗(∂•he, w− Ihw)| ≤ ε‖∂•he‖2
H1 ,1 + δ‖∂•he‖2

L2 ,2

Using equation (C.39) and proceeding similar like in Dziuk and
Elliott [35, theorem 6.2], by adding and subtracting terms, we get

− a∗(∂•he, Ihw)

= (a∗(∂•hP1u, Ihw)− a∗h(∂•hPh,1u, rIhw))

+ ((g + b)(vh; u, Ihw)− (gh + bh)(Vh; u−l , rIhw))

+ ((gh + bh)(Vh; u−l − Ph,1u, rIhw)− (g + b)(vh; u − P1u, Ihw))
+ ((g + b)(vh; u − P1u, Ihw)− (g + b)(v; u − P1u, Ihw))
+ ((g + b)(v; u − P1u, Ihw)− (g + b)(v; u − P1u, w))
+ (g + b)(v; u − P1u, w)

= J1 + J2 + J3 + J4 + J5 + J6.

Use lemma C.3.8 (C.16), (C.38), lemma C.4.4 (C.34) and the inequal-
ity

h‖Ihw‖H1 ,1 ≤ ε‖∂•he‖L2,2,

for γ > γ1 sufficiently big, we reach at

|J1| + · · · + |J4| ≤ δ‖∂•he‖2
H1 ,1 + ε‖∂•he‖2

L2,2 + ch2(‖u‖2
W2,∞ + ‖∂•u‖2

W1,∞ ).

With the same arguments like for a∗(∂•he, w− Ihw) we estimate

|J5| ≤ ε‖∂•he‖2
H1,1 + δ‖∂•he‖2

L2,2,
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for γ > γ2 sufficiently big. For γ > γ3 sufficiently big we estimate
the last term as follows

|J6| ≤ c‖e‖L2 ,1‖w‖H2,−1

≤ c ‖e‖L∞ |log ρ|1/2‖w‖H2 ,−1

≤ ch2 |log h|3/2 ‖u‖W2,∞‖w‖H2,−1

≤ ε‖∂•he‖2
L2 ,2 + ch2 |log h|4 ‖u‖2

W2,∞ .

By absorption, these estimates together imply (C.44).
The final estimate is shown by combining (C.43) and (C.44), and

choosing δ > 0 such that cδ < 1. Then an absorbtion finishes the
proof. �

From the weighted version of the error estimate in the material
derivatives, the L∞-norm estimate follows easily.

Theorem C.4.9 (Errors in the material derivative of the Ritz pro-
jection). Let z ∈ W3,∞(GT). For a sufficiently small h < h0 and a
sufficiently big γ > γ0 there exists c = c(h0, γ0) > 0 independent of
t and h such that

‖∂•h(z− (Ph,1(t)z)l)‖L∞(Γ(t))

≤ ch2 |log h|3(‖z‖W2,∞(Γ(t)) + ‖∂•z‖W2,∞(Γ(t))),

‖∂•h(z− (Ph,1(t)z)l)‖W1,∞(Γ(t))

≤ ch |log h|5/2(‖z‖W2,∞(Γ(t)) + ‖∂•z‖W2,∞(Γ(t))).

Proof. The above results are shown by exactly following the proof
of theorem C.4.5, lemma C.4.8 (C.42) being the main tool. �
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C.5. Maximum norm parabolic stability

The purpose of this section is to derive a ESFEM weak discrete
maximum principle. The proof is modeled on the weak discrete
maximum principle from Schatz, Thomée, Wahlbin [75]. For this we
are going to need a well known matrix formulation of (C.3), which
is due to Dziuk and Elliott [31]. It was first used in Dziuk, Lubich,
Mansour [37] for theoretical reasons, namely a time discretization
of (C.3). Using the matrix formulation we derive a discrete adjoint
problem of (B.7), which does not arise in Schatz, Thomé, Wahlbin
[75], but arises here, since the ESFEM evolution operator is not self
adjoint. Then we deduce a corresponding a priori estimate and
finally prove our weak discrete maximum principle.

C.5.1. A discrete adjoint problem

A matrix ODE version of (C.3) can be derived by setting

Uh( · , t) =
N

∑
j=1

αj(t)χj( · , t),

testing with the basis function φh = χj, where Sh(t) = span{χj |
j = 1, . . . , N}, and using the transport property (C.2).

Proposition C.5.1 (ODE system). The spatially semidiscrete prob-
lem (C.3) is equivalent to the following linear ODE system for the
vector α(t) = (αj(t)) ∈ RN , collecting the nodal values of Uh( · , t):

d
dt

(
M(t)α(t)

)
+ A(t)α(t) = 0

α(0) = α0

(C.45)

where the evolving mass matrix M(t) and stiffness matrix A(t) are
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defined as

M(t)kj =
∫

Γh(t)
χjχk, A(t)kj =

∫
Γh(t)
∇Γh χj · ∇Γh χk.

Definition C.5.2. Let 0 ≤ s ≤ t ≤ T. For given initial value
wh ∈ Sh(s) at time s, there exists unique solution uh (cf. [31]).
This defines a linear evolution operator

Eh(t, s): Sh(s)→ Sh(t), wh 7→ uh(t).

We define the adjoint of Eh(t, s)

Eh(t, s)∗: Sh(t)→ Sh(s)

via the equation

mh(t; Eh(t, s)ϕh(s), wh(t)) = mh(s; ϕh(s), Eh(t, s)∗wh(t)), (C.46)

where ϕh(s) ∈ Sh(s) and wh(t) ∈ Sh(t) are some arbitrary finite
element functions.

Lemma C.5.3 (Adjoint problem). Let s ∈ [0, t] where t ∈ [0, T]
and wh(t) ∈ Sh(t). Then s 7→ E(t, s)∗wh(t) is the unique solution of{

mh(s; ∂•,sh uh, ϕh)− ah(s; uh, ϕh) = 0, on Γ(s)

uh(t) = wh(t), on Γ(t).
(C.47)

where ∂•,sh is the discrete material derivative with respect to s.

Remark C.5.4. The problem (C.47) has the structure of a backward
heat equation, where s is going backward in time. Hence we
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considered (C.47) as a PDE of parabolic type. We recall, that using
lemma C.3.2 we may write equation (C.3) equivalently as{

mh(t; ∂•huh + (∇Γh ·Vh)uh, ϕh) + ah(t; uh, ϕh) = 0, on Γ(t),

uh(0) = wh, on Γ(0)
(C.48)

The problems (C.48) and (C.47) differ in the following way: If the
initial data for (C.47) is constant then it remains so for all times.
In general this does not hold for solutions of (C.48). On the other
hand (C.48) preserves the mean value of its initial data, which is in
general not true for a solution of (C.47).

Proof of lemma C.5.3. First we investigate the finite element matrix
representation of Eh(t, s) with respect to the standard finite element
basis, which we denote by Eh(t, s). From (C.45) we have

d
dt

(M(t)Eh(t, 0)uh(0)) + A(t)Eh(t, 0)uh(0) = 0.

Let Λ(t, s) the resolvent matrix of the ODE

dξ

dt
+ A(t)M(t)−1ξ = 0.

Then obviously it holds

Eh(t, s) = M(t)−1Λ(t, s)M(s).

Denote by Eh(t, s)∗ the matrix representation of Eh(t, s)∗. From
equation (C.46) it follows

Eh(t, s)∗ = M(s)−1Eh(t, s)T M(t) = Λ(t, s)T .

Now we calculate dΛ(t,s)
ds . Note that Λ(t, s) = Λ(s, t)−1 and it holds

dΛ(s, t)−1

ds
= −Λ(s, t)−1 dΛ(s, t)

ds
Λ(s, t)−1.
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From that it easily follows

dΛ(t, s)
ds

= Λ(t, s)A(s)M(s)−1,

which now implies

dEh(t, s)∗

ds
= M(s)−1A(s)Eh(t, s)∗. �

C.5.2. A discrete delta and Green’s function

Let δh = δxh
h = δt,xh

h ∈ Sh(t) be a finite element discrete delta function
defined as

mh(t; δt,xh
h , ϕh) = ϕh(xh, t) (ϕh ∈ Sh(t)). (C.49)

If δxh : Γh(t)→ R is a smooth function having support in the triangle
Eh containing xh, then since dim Γh(t) = 2 one easily calculates
‖δxh σxh‖L2(Γh(t)) ≤ c for some constant independent of h and t. For
the discrete delta function δh a similar result holds.

Lemma C.5.5. There exists c > 0 independent of t and h:

‖σxh δxh
h ‖L2(Γh(t)) ≤ c (xh ∈ Γh(t)).

The proof is a straight forward extension of the corresponding
one in Schatz, Thomée, Wahlbin [75] and uses the exponential decay
property of the L2-projection, cf. theorem C.3.16 (C.24).

Next we define a finite element discrete Green’s function as
follows. Let s ∈ [0, T]. For given uh ∈ Sh(s) there exists a unique
ψh ∈ Sh(s) such that

a∗h(s; ψh, ϕh) = mh(s; uh, ϕh) ∀ϕh ∈ Sh(s).
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This defines an operator

T∗,sh : Sh(s)→ Sh(s), T∗,sh uh – ψh.

We call Gs,x
h – T∗,sh δs,x

h a discrete Green’s function.
A short calculation shows that for all 0 6= ϕh ∈ Sh(s) it holds

mh(s; T∗,sh ϕh, ϕh) > 0,

which implies that Gs,x
h (x) > 0. Actually we can bound the singular-

ity x with c |log h|.

Lemma C.5.6. For the discrete Green’s function Gs,x
h we have the

estimate
Gs,x

h (x) ≤ c |log h|.

Proof. Using lemma C.3.14 with (C.4) we estimate as

‖Gs,x
h ‖L∞(Γh(s)) ≤ c |log h|1/2 ‖Gs,x

h ‖H1(Γh(s)) = c |log h|1/2
b

Gs,x
h (x).

�

The next lemma needs a different treatment then the one pre-
sented in Schatz, Thomée and Wahlbin [75]. The reason for that is
that the mass and stiffness matrix depend on time and further the
stiffness matrix is singular.

Lemma C.5.7. Let be uh a solution of (C.47). Then we have the
estimate ∫ t

0
‖uh‖2

L2(Γh(s))ds ≤ c ·mh(t; T∗,th uh, uh).

Proof. Note that lemma C.3.2 (C.8) reads with the matrix notation
as follows: If Zh and φh are the coefficient vectors of some finite
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element function, then we have the estimate

ZT
h

dM(s)
ds

φh ≤ c
b

ZT
h M(s)Zh

b

φT
h M(s)φh,

ZT
h

dA(s)
ds

φh ≤ c
b

ZT
h A(s)Zh

b

φT
h A(s)φh.

(C.50)

In the following with drop the s dependency. Let u be the time
dependent coefficient vector of uh. Then we have

0 = −M
du
ds

+ Au = −M
du
ds

+ (A + M)u−Mu.

Equivalently we write this equation as

− 1
2

d
ds

[uT M(A + M)−1Mu]

= −uT Mu +uT M(A + M)−1Mu− 1
2
uT d

ds
[M(A + M)−1M]u.

The last term expanded reads

1
2
uT d

ds
[M(A + M)−1M]u

= uT dM
ds

(A + M)−1Mu +
1
2
uT M

d(A + M)−1

ds
Mu = I1 + I2.

Using (C.50) and a Young inequality we estimate as

|I1| ≤ c · uT M(A + M)−1Mu +
1
2
uT Mu.

|I2| =
1
2

∣∣∣∣uT M(A + M)−1 d(A + M)
ds

(A + M)−1Mu
∣∣∣∣

≤ c · uT M(A + M)−1Mu

Putting everything together we reach at

− d
ds

[uT M(A + M)−1Mu] ≤ −uT Mu + c · uT M(A + M)−1Mu.

The claim then follows from lemma C.10.1. �
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C.5.3. A weak discrete maximum principle

Proposition C.5.8. Let Uh(x, t) ∈ Sh(t) the ESFEM solution of our
linear heat problem. Then there exists a constant c = c(T, v) > 0,
which depends exponentially on T and v such that

‖Uh(t)‖L∞(Γh(t)) ≤ c |log h| ‖Uh(0)‖L∞(Γh(0)).

Proof. There exists xh ∈ Γh(t) such that

‖Uh(t)‖L∞ = |Uh(xh, t)| = mh(t; Uh(t), δt,xh
h ) = mh(t; E(t, 0)U0

h , δt,xh
h )

= mh(0; U0
h , E(t, 0)∗δt,xh

h ) ≤ ‖U0
h‖L∞ ‖E(t, 0)∗δt,xh

h ‖L1 .

The claim follows from lemma C.5.9. �

Lemma C.5.9. For Gx
h (t, s) – Eh(t, s)∗δt,x

h , where δt,x
h is defined via

(C.49) and Eh(t, s)∗ is defined via (C.46), it holds

‖Gx(t, 0)‖L1(Γh(0)) ≤ c |log h|,

where the constant c = c(T, v) depending exponentially on T and v
such and is independent of x, h, t and s.

Proof. The proof presented here is a modification of the proof from
Schatz, Thomée and Wahlbin [75, lemma 2.1]. We estimate

‖Gx
h (t, 0)‖L1(Γh(0)) ≤ ‖1/σx‖L2(Γh(0)) ‖σxGx

h (t, 0)‖L2(Γh(0)).

With subsection C.9.1 it follows

‖1/σx‖2
L2(Γh(0)) ≤ c |log h|.

It remains to show

‖σxGx
h (t, 0)‖2

L2(Γh(0)) ≤ c |log h|.
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In the following we abbreviate σ = σx and Gh = Gx
h (t, s) With

equation (C.47) and the discrete transport property we proceed as
follows

−1
2

d
ds
‖σGh‖2

L2(Γh(s)) + ‖σ∇Γh Gh‖2
L2(Γh(s))

= −mh(s; ∂•,sh Gh, σ2Gh) + ah(s; Gh, σ2Gh)

− 2mh(s; σ∇Γh Gh, Gh∇Γh σ)

−mh(s; ∂•,sh σ, σG2
h)−

1
2

mh(s; σ2G2
h ,∇Γh ·Vh)

= −mh(s; ∂•,sh Gh, σ2Gh − ψh) + ah(s; Gh, σ2Gh − ψh)

− 2mh(s; σ∇Γh Gh, Gh∇Γh σ)

−mh(s; Gh∂•,sh σ, σGh)−
1
2

mh(s; σ2G2
h ,∇Γh ·Vh)

= I1 + I2 + I3 + I4 + I5.

For the choice ψh = Ph,0(σ2Gh) we have I1 = 0. Using Cauchy-
Schwarz inequality, lemma C.3.18 and an inverse estimate C.3.13

we get

|I2| ≤ c(‖Gh‖2
L2(Γh(s)) + ‖Gh‖L2(Γh(s)) · ‖σ∇Γh Gh‖L2(Γh(s))).

Using lemma C.3.17 (C.27) we reach at

|I3| ≤ c ‖Gh‖L2(Γh(s)) ‖σ∇Γh Gh‖L2(Γh(s)).

Using lemma C.3.17 (C.26) we have

|I4| ≤ c ‖Gh‖L2(Γh(s)) ‖σGh‖L2(Γh(s)),

|I5| ≤ c ‖σGh‖2
L2(Γh(s)).

After a Young inequality we have

− d
ds
‖σGh‖2

L2(Γh(s)) + ‖σ∇Γh Gh‖2
L2(Γh(s))

≤ c ‖Gh‖2
L2(Γh(s)) + c ‖σGh‖2

L2(Γh(s)).
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Lemma C.10.1 yields

‖σGh(t, 0)‖2
L2(Γh(0)) ≤ c

(∫ t

0
‖Gh(t, s)‖2

L2(Γh(s))ds + ‖σxδx
h‖L2(Γh(0))

)
.

For the first term we get from lemma C.5.7 and lemma C.5.6 the
bound ∫ t

0
‖Gh(t, s)‖2

L2(Γh(s))ds ≤ c |log h|.

The last term is bounded according to lemma C.5.5. �

C.6. Convergence of the semidiscretization

Theorem C.6.1. Let Γ(t) be an evolving surface, let u: Γ(t)→ R be
the solution of (C.1) and let uh = Ul

h ∈ H1(Γ(t)) be the solution of
(C.3). If it holds

‖Ph,1(t)u−Uh‖L∞(Γh(t)) ≤ ch2,

then there exists h0 > 0 sufficiently small and c = c(h0) > 0
independent of t, such that for all 0 < h < h0 we have the estimate

‖u− uh‖L∞(Γ(t)) + h ‖u− uh‖W1,∞(Γ(t))

≤ ch2 |log h|4(1 + t)( ‖u‖W2,∞(Γ(t)) + ‖∂•u‖W2,∞(Γ(t))).

Proof. It suffices to prove the L∞-estimate, since an inverse inequal-
ity implies the W1,∞-estimate.

For this proof we denote by Ph,1u = Ph,1(t)u, P1u = (Ph,1u)l and
uh = Ul

h. We split the error as follows

u− uh = (u− P1u) + (Ph,1u−Uh)l = σ + θl
h.
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Because of theorem C.4.5 it remains to bound θh. Obviously there
exists Rh ∈ Sh(t) such that for all φh ∈ Sh(t) it holds

d
dt

∫
Γh(t)

θhφh +
∫

Γh(t)
∇Γh θh · ∇Γh φh −

∫
Γh(t)

θh∂•hφh =
∫

Γh(t)
Rhφh.

By the variation of constant formula we deduce

θh(t) = Eh(t, 0)θh(0) +
∫ t

0
Eh(t, s)Rh(s) ds.

With Proposition C.5.8 we get

‖θh‖L∞(Γh(t)) ≤ c |log h|(‖θh(0)‖L2(Γh(t)) + t max
s∈[0,t]

‖Rh(s)‖L∞(Γh(t))).

Observe that if we denote by ϕh – φl
h, then a quick calculation

reveals

mh(Rh, φh) = mh(∂•hPh,1u, φh) + gh(Vh; Ph,1u, φh) + ah(Ph,1u, φh)

− (m(∂•hu, ϕh) + g(vh; u, ϕh) + a(u, ϕh))
(C.51)

lemma C.6.2 finishes the proof. �

Lemma C.6.2. Assume that Rh ∈ Sh(t) satisfies for all φh ∈ Sh(t)
with ϕh – φl

h equation (C.51). Then it holds

‖Rh‖L∞(Γh(t)) ≤ ch2 |log h|3(‖u‖W2,∞(Γ(t)) + ‖∂•u‖W2,∞(Γ(t))).

Proof. Using Definition C.3.15 (C.23), (C.51) and since L∞ is the
dual of L1 we deduce

‖Rh‖L∞(Γh(t)) = sup
fh∈L1(Γh(t))
‖ fh‖L1(Γh(t))=1

mh(Rh, fh) = sup
fh∈L1(Γh(t))
‖ fh‖L1(Γh(t))=1

mh(Rh, Ph,0 fh).
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Now consider

mh(Rh, Ph,0 fh) = mh(∂•hPh,1u, Ph,0 fh)−m(∂•hu, Ph,0 f l
h)

+ gh(Vh; Ph,1u, Ph,0 fh)− g(vh; u, Ph,0 f l
h)

+ ah(Ph,1u, Ph,0 fh)− a(u, Ph,0 f l
h)

= I1 + I2 + I3.

Using lemma C.3.3 and theorem C.3.16 it is easy to see

|I1| ≤ c(‖∂•hu− ∂•h(Ph,1u)l‖L∞(Γ(t))

+ h2(‖∂•u‖L∞(Γ(t)) + h2 ‖u‖W1,∞(Γ(t)))) ‖ fh‖L1(Γh(t))

|I2| ≤ c(‖u− Ph,1ul‖L∞(Γ(t)) + h2 ‖u‖L∞(Γ(t))) ‖ fh‖L1(Γh(t))

|I3| ≤ c(h2 ‖u‖L∞(Γ(t)) + ‖u− (Ph,1u)l‖L∞(Γ(t))) ‖ fh‖L1(Γh(t))

Theorem C.4.5 and theorem C.4.9 imply the claim. �

C.7. A numerical experiment

We present a numerical experiment for an evolving surface parabolic
problem discretized in space by the evolving surface finite element
method. As a time discretization method we choose backward
difference formula 4 with a sufficiently small time step (in all the
experiments we choose τ = 0.001).

As initial surface Γ0 we choose the unit sphere S2 ⊂ R3. The
dynamical system is given by

Φ(x, y, z, t) = (
a

1 + 0.25 sin(2πt)x, y, z),

which implies the velocity

v(x, y, z, t) = (π cos(2πt)/(4 + sin(2πt))x, 0, 0),
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over the time interval [0, 1]. As the exact solution we choose
u(x, y, z, t) = xye−6t. The complicated right-hand side was calculated
using the computer algebra system Sage [24].

We give the errors in the following norm and seminorm

L∞(L∞) : max
1≤n≤N

‖un
h − u( · , tn)‖L∞(Γ(tn)),

L2(W1,∞) :
(

τ
N

∑
n=1
|un

h − u( · , tn)|2W1,∞(Γ(tn))

)1/2
.

The experimental order of convergence (EOC) is given as

EOCk =
ln(ek/ek−1)

ln(2)
, (k = 2, 3, . . . , n),

where ek denotes the error of the k-th level.

level dof L∞(L∞) EOCs L2(W1,∞) EOCs

1 126 0.00918195 - 0.01921707 -
2 516 0.00308305 1.57 0.01481673 0.37
3 2070 0.00100752 1.61 0.00851267 0.80
4 8208 0.00025326 1.99 0.00399371 1.09

Table C.1.: Errors and EOCs in the L∞(L∞) and L2(W1,∞) norms
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Appendix

C.8. A Green’s function for evolving surfaces

Aubin [5, section 4.2] proves existence of a Green’s function on a
closed manifold M, that is a function which satisfies in M×M

∆Q distr.G(P, Q) = δP(Q),

where ∆ is the Laplace–Beltrami operator on M. The Green’s func-
tion is unique up to an constant. For lemma C.3.14 we need that the
first derivative of a Green’s function can be bounded independent
of t.

Theorem C.8.1 (Green’s function). Let Γ(t) with t ∈ [0, T] be an
evolving surface. There exists a Green’s function G(t; x, y) for Γ(t).
The value of G(x, y) depends only on the value of dΓ(x, y). G(x, y)
satisfies the inequality

|∇x
ΓG(t; x, y)| ≤ c

1
dΓ(x, y)

.

for some c > 0 independent of t.
Furthermore for all functions ϕ ∈ C2(GT) it holds

ϕ(x, t) =
1
V

∫
Γ(t)

ϕ(y, t)dy−
∫

Γ(t)
G(t; x, y)∆Γ ϕ(y, t)dy. (C.52)

Proof. As noted in Aubin [5, 4.10] the distance r = dΓ(x, y) is only a
Lipschitzian function on Γ(t). To use his construction we therefore
need to revise that the injectivity radius at any point P ∈ Γ(t) can
be bounded by below by a number independent of P and t. This
follows if the Riemannian exponential map is continuous in t and
from lemma C.10.2. To prove that the Riemannian exponential map
is continuous one carefully revises the construction of exponential
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map as it is given in Chavel [18, Chapter 1]. Formula (C.52) follows
from Aubin [5, theorem 4.13] and that the constant is independent
of t is a straightforward calculation. �

C.9. Calculations with some weight functions on
evolving surfaces

C.9.1. Integration with geodesic polar coordinates on
evolving surfaces

Assume we have sufficiently smooth function f : Γ(t)× Γ(t) → R,
where the value f (x, y) depends on the distance r = dΓ(x, y) and we
want to estimate the quantity

∫
Γ(t) f (x, y) dy for a fix y.

Applying the well known coarea formulae to the distance function
r, cf. Chavel [18, theorem 3.13] and Morgan [68, theorem 3.13], we
reach at∫

Γ(t)
f (x, y) dy =

∫ ∞

0

∫
{dΓ(x,y)=r}

f (r) dω dr

=
∫ ∞

0

Hm({dΓ(x, y) = r})
rm f (r)rm dr,

where Hm denotes the m-dimensional Hausdorff measure. If Γ(t) is

not a closed surface but Rm+1 then
Hm({dΓ(x,y)=r})

rm would be constant.
For closed surfaces the situation is different. Obviously there exists
a positive number R > 0 independent of t and x, y ∈ Γ(t) such that
for all r ≥ R it holds

Hm(dΓ(x, y) = r) = 0.

Lemma C.9.1. There exists c > 0 depending on t ∈ [0, T] and
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Γ(t)

p

q1

q2

q3

expp

TpΓ(t)Wp

0

w1,1

w1,2
w2,1

w2,2

w2,3

w2,4

w3,1 w3,2

Figure C.1.: Illustration of a possible Wp for the Torus as a subset
of R3 with induced metric. Note that the opposite
boundary of Wp are identified. It holds expp(wi,∗) = qi
and expp(0) = p.

x ∈ Γ(t) such that

sup
r>0

Hm({dΓ(x, y) = r})
rm ≤ c.

Proof. It holds

lim
r→0

Hm({dΓ(x, y) = r})
rm = ωm,

where ωm is the volume of the m-dimensional sphere in Rm+1, cf.
Gray [47, theorem 3.1]. Thus the proof is finished if find a c > 0
such that

Hm({dΓ(x, y) = r}) ≤ c ∀r ∈ [0, ∞).

This can be seen as follows. For a fix point p ∈ Γ(t) it is possible to
use the Riemannian exponential to flat out Γ(t), cf. figure C.1 for an
illustration on the torus. We make this argument precise.

For r ∈ [0, ∞) let

Sp(r) – {v ∈ TpΓ(t) | gp(v, v) = r2}
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be the sphere of radius r and for v ∈ Sp(1) consider the geodesic

fv: [0, ∞)→ Γ, λ 7→ expp(λv).

It is well known that a geodesic is just locally length minimizing.
Hence there exists a unique λ∗(v) > 0, such that fv|[0, λ∗(v)] is a
length minimizing geodesic and for every ε > 0 fv|[0, λ∗(v) + ε] is
not anymore length minimizing. We define

Wp(t) – {w ∈ TpΓ(t) | w = λ · v with v ∈ Sp and λ ∈ [0, λ∗(v)]}.

Obviously it holds for every w ∈ Wp(t) that dΓ(p, expp(w)) ≤ R.
Further there exists for every q ∈ Γ a unique w ∈Wp with expp(w) =
q. Clearly it holds

expp(Wp ∩ Sp(r)) = {dΓ(x, y) = r}.

Now apply a general Area-coarea Formula, cf. [68, theorem 3.13],
to finish the proof. �

Using this lemma we have the estimate∫
Γ(t)

f (x, y) dy ≤ c
∫ R

0
rm f (r) dr.

C.9.2. Comparison of extrinsic and intrinsic distance

Lemma C.9.2. There exists a constant c > 0 independent of t such
that for all x, y ∈ Γ(t) the following inequality holds

c · dΓ(x, y) ≤ |x− y|. (C.53)

Proof. For simplicity we assume that Γ(t) = Γ0 for all t ∈ [0, T]. The
basic idea is to find a radius r > 0 and two constant c1, c2 > 0 such
that (C.53) holds with c1 for dΓ(x, y) ≤ r and with c2 for dΓ(x, y) ≥ r.
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Observe that from the compactness from Γ0 it follows that there
exists r > 0 such that for all dΓ(x, y) ≤ r it holds

ν(x) · ν(y) ≥ cos(π/6).

After rotation we may assume x = 0, ν(x) = en+1 and that Γ0 may be
written as graph of a smooth function, that means that there exits
f : U(x) → R smooth with U(x) ⊂ Rn an open subset, such that
z = (z′, w) ∈ Γ0 ⊂ Rm ×R with dΓ(z, x) ≤ r if and only if z′ ∈ U(x)
and w = f (z′). For x = (0, 0) and y = (y′, f (y′)) consider the path
t 7→ (ty′, f (ty′)). We calculate

dΓ(x, y) ≤
∫ 1

0

b

1 + d fty′y′ dt ≤
b

1 + ‖ f ‖2
W1,∞ |y′|

≤
b

1 + ‖ f ‖2
W1,∞ |y− x|.

Now the derivatives of f are bounded by m · tan(π/6).
To get the existence of c2 > 0 observe that dΓ is continuous and

hence the set d−1
Γ {r > 0} is compact. On this set the function |x− y|

does not vanish and takes it maximum and minimum. �

C.9.3. Weight functions

Definition C.9.3. Let µ and rµ be like (C.9) resp. (C.25). For
given µ, rµ with curve y = y(t), we define a curve yh = yh(t) –

y(t)−l ∈ Γh(t). Now we define a weight function on the discrete
surface

µh: Γh(t)→ R, resp. rµh: Γh(t)→ R,

via the same formula like (C.9) resp. (C.25).
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Lemma C.9.4. There exists a constant h0 = h0(γ) > 0 sufficiently
small and c = c(h0) > 0 independent of t and h such that for all
0 < h < h0 it holds

1
c

µ ≤ µl
h ≤ cµ, (C.54)

1
c
rµ ≤ rµl

h ≤ crµ. (C.55)

Proof. The main idea is to observe that we have the inequalities

|x−l − yh| ≤ 2d + |x− y|,
|x− y| ≤ 2d + |x−l − yh|,

where d = d(t) – maxx∈Γ(t) distRn+1(x, Γh(t)). �

C.10. Modified analytic results for evolving
surface problems

Lemma C.10.1 (modified Gronwall inequality). Let c > 0 be a
positive constant, let ϕ, ψ and ρ be some positive functions defined
on [t, T] and assume for all s ∈ [t, T] we have the inequality

−dϕ

ds
(s) + ψ(s) ≤ cϕ(s) + ρ(s).

Then it holds

ϕ(t) +
∫ T

t
ψ(s)ds ≤ ec(T−t)

(
ϕ(T) +

∫ T

t
ρ(s)ds

)
.

Proof. Calculate − d
ds [ϕe−c(T−s)] and integrate from t to T. �
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Lemma C.10.2 (modified inverse function theorem). Let

f :Rn × [0, T]→ Rn

be a smooth map, denote by f (t)(x) – f (x, t) and assume that for all
t ∈ [0, T] the map d f (t)0 = ∂ f

∂x (0, t) is invertible. Then there exists
r > 0 independent of t such that

f (t): f (t)−1{Br(0)} → Rn, x 7→ f (x, t),

is a diffeomorphism onto its image and we have

Br/2(0) ⊂ f (t)−1{Br(0)}

for all t, where Br(0) – {x ∈ Rn | |x| ≤ r}. The map

g: [0, T]× Br(0)→ Rn, (t, x) 7→ f (t)−1(x)

is smooth. In particular g is smooth in t.

Proof. The results follows from the compactness of [0, T] and the
smoothness of f .

�
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I Appendix D.

Convergence of finite
elements on an evolving
surface driven by diffusion on
the surface

The content of this chapter is based on [58].

Abstract

For a parabolic surface partial differential equation coupled to
surface evolution, convergence of the spatial semidiscretization
is studied in this paper. The velocity of the evolving surface is
not given explicitly, but depends on the solution of the parabolic
equation on the surface. Various velocity laws are considered:
elliptic regularization of a direct pointwise coupling, a regularized
mean curvature flow and a dynamic velocity law. A novel stability
and convergence analysis for evolving surface finite elements for
the coupled problem of surface diffusion and surface evolution
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D. Solution driven evolving surfaces

is developed. The stability analysis works with the matrix-vector
formulation of the method and does not use geometric arguments.
The geometry enters only into the consistency estimates. Numerical
experiments complement the theoretical results.

D.1. Introduction

Starting from a paper by Dziuk and Elliott [31], much insight into
the stability and convergence properties of finite elements on evol-
ving surfaces has been obtained by studying a linear parabolic
equation on a given moving closed surface Γ(t). The strong formu-
lation of this model problem is to find a solution u(x, t) (for x ∈ Γ(t)
and 0 ≤ t ≤ T) with given initial data u(x, 0) = u0(x) to the linear
partial differential equation

∂•u(x, t) + u(x, t)∇Γ(t) · v(x, t)− ∆Γ(t)u(x, t) = 0,

where ∂• denotes the material time derivative, ∆Γ(t) is the Laplace-
Beltrami operator on the surface, and ∇Γ(t) · v is the tangential
divergence of the given velocity v of the surface. We refer to [34] for
an excellent review article (up to 2012) on the numerical analysis of
this and related problems. Optimal-order L2 error bounds for piece-
wise linear finite elements are shown in [35] and maximum-norm
error bounds in [58]. Stability and convergence of full discretiza-
tions obtained by combining the evolving surface finite element
method (ESFEM) with various time discretizations are shown in
[33, 37, 63]. Convergence of semi- and full discretizations using
high-order evolving surface finite elements is studied in [54]. Ar-
bitrary Euler-Lagrangian (ALE) variants of the ESFEM method for
this equation are studied in [42, 43, 57]. Convergence properties
of the ESFEM and of full discretizations for quasilinear parabolic
equations on prescribed moving surfaces are studied in [56].
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Beyond the above model problem, there is considerable interest
in cases where the velocity of the evolving surface is not given
explicitly, but depends on the solution u of the parabolic equation;
see, e.g., [6, 17, 42, 44] for physical and biological models where such
situations arise. Contrary to the case of surfaces with prescribed
motion, there exists so far no numerical analysis for solution-driven
surfaces in R3, to the best of our knowledge.

For the case of evolving curves in R2, there are recent preprints
by Pozzi & Stinner [73] and Barrett, Deckelnick & Styles [7], who
couple the curve-shortening flow with diffusion on the curve and
study the convergence of finite element discretizations without and
with a tangential part in the discrete velocity, respectively. The anal-
ogous problem for two- or higher-dimensional surfaces would be to
couple mean curvature flow with diffusion on the surface. Study-
ing the convergence of finite elements for these coupled problems,
however, remains illusive as long as the convergence of ESFEM for
mean curvature flow of closed surfaces is not understood. This
has remained an open problem since Dziuk’s formulation of such a
numerical method for mean curvature flow in his 1990 paper [30].

In this paper we consider different velocity laws for coupling the
surface motion with the diffusion on the surface. Conceivably the
simplest velocity law would be to prescribe the normal velocity at
any surface point as a function of the solution value and possibly
its tangential gradient at this point:

v(x, t) = g (u(x, t),∇Γ(t)u(x, t))νΓ(t)(x), for x ∈ Γ(t),

where νΓ(t)(x) denotes the outer normal vector and g is a given
smooth scalar-valued function. This does, however, not appear to
lead to a well-posed problem, and in fact we found no mention
of this seemingly obvious choice in the literature. Here we study
instead a regularized velocity law:

v(x, t)− α∆Γ(t)v(x, t) = g (u(x, t),∇Γ(t)u(x, t)) νΓ(t)(x), x ∈ Γ(t),
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D. Solution driven evolving surfaces

with a fixed regularization parameter α > 0. This elliptic regular-
ization will turn out to permit us to give a complete stability and
convergence analysis of the ESFEM semidiscretization, for finite
elements of polynomial degree at least two. The case of linear finite
elements is left open in the theory of this paper, but will be consid-
ered in our numerical experiments. The stability and convergence
results can be extended to full discretizations with linearly implicit
backward difference time-stepping, as we plan to show in later
work.

Our approach also applies to the ESFEM discretization of cou-
pling a regularized mean curvature flow and diffusion on the surface:

v− α∆Γ(t)v =
(
−H + g (u,∇Γ(t)u)

)
νΓ(t),

where H denotes mean curvature on the surface Γ(t).
The error analysis is further extended to a dynamic velocity law

∂•v + v∇Γ(t) · v− α∆Γ(t)v = g (u,∇Γ(t)u) νΓ(t).

A physically more relevant dynamic velocity law would be based
on momentum and mass balance, such as incompressible Navier–
Stokes motion of the surface coupled to diffusion on the surface. We
expect that our analysis extends to such a system, but this is beyond
the scope of this paper. Surface evolutions under Navier-Stokes
equations and under Willmore flow have recently been considered
in [11, 10, 9]. The paper is organized as follows.

In section D.2 we describe the considered problems and give
the weak formulation. We recall the basics of the evolving surface
finite element method and describe the semidiscrete problem. Its
matrix-vector formulation is useful not only for the implementation,
but will play a key role in the stability analysis of this paper.

In section D.3 we present the main result of the paper, which
gives convergence estimates for the ESFEM semidiscretization with
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finite elements of polynomial degree at least 2. We further outline
the main ideas and the organization of the proof.

In section D.4 we present auxiliary results that are used to relate
different surfaces to one another. They are the key technical results
used later on in the stability analysis. Section D.5 contains the
stability analysis for the regularized velocity law with a prescribed
driving term. In section D.6 this is extended to the stability anal-
ysis for coupling surface PDEs and surface motion. The stability
analysis works with the matrix-vector formulation of the ESFEM
semidiscretization and does not use geometric arguments.

In section D.7 we briefly recall some geometric estimates used for
estimating the consistency errors, which are the defects obtained on
inserting the interpolated exact solution into the scheme. Section
D.8 deals with the defect estimates. Section D.9 proves the main
result by combining the results of the previous sections.

In section D.10 we give extensions to other velocity laws: the
regularized mean curvature flow and the dynamic velocity law
addressed above.

Section D.11 presents numerical experiments that are comple-
mentary to our theoretical results in that they show the numerical
behaviour of piecewise linear finite elements on some examples.

We use the notational convention to denote vectors in R3 by italic
letters, but to denote finite element nodal vectors in RN and R3N

by boldface lowercase letters and finite element mass and stiffness
matrices by boldface capitals. All boldface symbols in this paper
will thus be related to the matrix-vector formulation of the ESFEM.
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D.2. Problem formulation and evolving surface
finite element semidiscretization

D.2.1. Basic notions and notation

We consider the evolving two-dimensional closed surface Γ(t) ⊂ R3

as the image
Γ(t) = {X(p, t) : p ∈ Γ0}

of a sufficiently regular vector-valued function X : Γ0 × [0, T]→ R3,
where Γ0 is the smooth closed initial surface, and X(p, 0) = p. In
view of the subsequent numerical discretization, it is convenient to
think of X(p, t) as the position at time t of a moving particle with
label p, and of Γ(t) as a collection of such particles. To indicate the
dependence of the surface on X, we will write

Γ(t) = Γ(X( · , t)), or briefly Γ(X)

when the time t is clear from the context. The velocity v(x, t) ∈ R3

at a point x = X(p, t) ∈ Γ(t) equals

∂tX(p, t) = v(X(p, t), t). (D.1)

Note that for a known velocity field v : R3 × [0, T] → R3, the
position X(p, t) at time t of the particle with label p is obtained by
solving the ordinary differential equation (D.1) from 0 to t for a
fixed p.

For a function u(x, t) (x ∈ Γ(t), 0 ≤ t ≤ T) we denote the material
derivative as

∂•u(x, t) =
d
dt

u(X(p, t), t) for x = X(p, t).

At x ∈ Γ(t) and 0 ≤ t ≤ T, we denote by νΓ(X)(x, t) the outer
normal, by ∇Γ(X)u(x, t) the tangential gradient of u, by ∆Γ(X)u(x, t)
the Laplace-Beltrami operator applied to u, and by ∇Γ(X) · v(x, t) the
tangential divergence of v; see, e.g., [34] for these notions.
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D.2. Problem formulation and semidiscretization

D.2.2. Surface motion coupled to a surface PDE: strong
and weak formulation

As outlined in the introduction, we consider a parabolic equation
on an evolving surface that moves according to an elliptically regu-
larized velocity law:

∂•u + u∇Γ(X) · v− ∆Γ(X)u = f (u,∇Γ(X)u),

v− α∆Γ(X)v = g(u,∇Γ(X)u)νΓ(X).
(D.2)

Here, f : R×R3 → R and g : R×R3 → R are given continuously
differentiable functions, and α > 0 is a fixed parameter. This system
is considered together with the collection of ordinary differential
equations (D.1) for every label p. Initial values are specified for u
and X.

On applying the Leibniz formula as in [31], the weak formula-
tion reads as follows: Find u(·, t) ∈ W1,∞(Γ(X(·, t))) and v(·, t) ∈
W1,∞(Γ(X(·, t)))3 such that for all test functions ϕ( · , t) ∈ H1(X(t))
with ∂•ϕ = 0 and ψ( · , t) ∈ H1(X(t);R3),

d
dt

∫
Γ(X)

uϕ +
∫

Γ(X)
∇Γ(X)u · ∇Γ(X) ϕ =

∫
Γ(X)

f (u,∇Γ(X)u)ϕ,

∫
Γ(X)

v · ψ + α
∫

Γ(X)
∇Γ(X)v · ∇Γ(X)ψ =

∫
Γ(X)

g(u,∇Γ(X)u) νΓ(X) · ψ,

(D.3)
alongside with the ordinary differential equations (D.1) for the
positions X determining the surface Γ(X).

We assume throughout this paper that the problem (D.2) or (D.3)
admits a unique solution with sufficiently high Sobolev regularity
on the time interval [0, T] for the given initial data u(·, 0) and X(·, 0).
We assume further that the flow map X(·, t) : Γ0 → Γ(t) ⊂ R3 is
non-degenerate for 0 ≤ t ≤ T, so that Γ(t) is a regular surface.
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D.2.3. Evolving surface finite elements

We describe the surface finite element discretization of our problem,
following [29] and [23]. We use simplicial elements and continuous
piecewise polynomial basis functions of degree k, as defined in [23,
Section 2.5].

We triangulate the given smooth surface Γ0 by an admissible
family of triangulations Th of decreasing maximal element diameter
h; see [31] for the notion of an admissible triangulation, which
includes quasi-uniformity and shape regularity. For a momentarily
fixed h, we denote by x0 = (x0

1, . . . , x0
N) the vector in R3N that

collects all N nodes of the triangulation. By piecewise polynomial
interpolation of degree k, the nodal vector defines an approximate
surface Γ0

h that interpolates Γ0 in the nodes x0
j . We will evolve the

jth node in time, denoted xj(t) with xj(0) = x0
j , and collect the nodes

at time t in a vector

x(t) = (x1(t), . . . , xN(t)) ∈ R3N .

Provided that xj(t) is sufficiently close to the exact position x∗j (t) –

X(pj, t) (with pj = x0
j ) on the exact surface Γ(t) = Γ(X( · , t)), the

nodal vector x(t) still corresponds to an admissible triangulation. In
the following discussion we omit the omnipresent argument t and
just write x for x(t) when the dependence on t is not important.

By piecewise polynomial interpolation on the plane reference tri-
angle that corresponds to every curved triangle of the triangulation,
the nodal vector x defines a closed surface denoted by Γh(x). We
can then define finite element basis functions

φj[x] : Γh(x)→ R, j = 1, . . . , N,

which have the property that on every triangle their pullback to the
reference triangle is polynomial of degree k, and which satisfy

φj[x](xk) = δjk for all j, k = 1, . . . , N.

270



D.2. Problem formulation and semidiscretization

These functions span the finite element space on Γh(x),

Sh(x) = span{φ1[x], φ2[x], . . . , φN[x]}.

For a finite element function uh ∈ Sh(x) the tangential gradient
∇Γh(x)uh is defined piecewise.

We set

Xh(ph, t) =
N

∑
j=1

xj(t) φj[x(0)](ph), ph ∈ Γ0
h,

which has the properties that Xh(pj, t) = xj(t) for j = 1, . . . , N, that
Xh(ph, 0) = ph for all ph ∈ Γ0

h, and

Γh(x(t)) = Γ(Xh( · , t)).

The discrete velocity vh(x, t) ∈ R3 at a point x = Xh(ph, t) ∈ Γ(Xh( · , t))
is given by

∂tXh(ph, t) = vh(Xh(ph, t), t).

A key property of the basis functions is the transport property [31]:

d
dt

(
φj[x(t)](Xh(ph, t))

)
= 0,

which by integration from 0 to t yields

φj[x(t)](Xh(ph, t)) = φj[x(0)](ph).

This implies for x ∈ Γh (x(t)) that the discrete velocity is simply

vh(x, t) =
N

∑
j=1

vj(t)φj[x(t)](x), with vj(t) = ẋj(t),

where the dot denotes the time derivative d
dt .
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The discrete material derivative of a finite element function

uh(x, t) =
N

∑
j=1

uj(t) φj[x(t)](x), x ∈ Γh (x(t)),

is defined as

∂•huh(x, t) =
d
dt

uh(Xh(ph, t), t) for x = Xh(ph, t).

By the transport property of the basis functions, this is just

∂•huh(x, t) =
N

∑
j=1

u̇j(t) φj[x(t)](x), x ∈ Γh (x(t)).

D.2.4. Semidiscretization of the evolving surface problem

The finite element spatial semidiscretization of the problem (D.3)
reads as follows: Find the unknown nodal vector x(t) ∈ R3N and the
unknown finite element functions uh( · , t) ∈ Sh(x(t)) and vh( · , t) ∈
Sh(x(t))3 such that, for all ϕh( · , t) ∈ Sh(x(t)) with ∂•h ϕh = 0 and all
ψh( · , t) ∈ Sh(x(t))3,

d
dt

∫
Γh(x)

uh ϕh +
∫

Γh(x)
∇Γh(x)uh · ∇Γh(x)ϕh

=
∫

Γh(x)
f (uh,∇Γh(x)uh)ϕh,∫

Γh(x)
vh · ψh + α

∫
Γh(x)
∇Γh(x)vh · ∇Γh(x)ψh

=
∫

Γh(x)
g(uh,∇Γh(x)uh)νΓh(x) · ψh,

(D.4)

and
∂tXh(ph, t) = vh(Xh(ph, t), t), ph ∈ Γ0

h. (D.5)

The initial values for the nodal vector u corresponding to uh and
the nodal vector x of the initial positions are taken as the exact
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initial values at the nodes x0
j of the triangulation of the given initial

surface Γ0:

xj(0) = x0
j , uj(0) = u(x0

j , 0) (j = 1, . . . , N).

D.2.5. Differential-algebraic equations of the matrix-vector
formulation

We now show that the nodal vectors u ∈ RN and v ∈ R3N of
the finite element functions uh and vh, respectively, together with
the surface nodal vector x ∈ R3N satisfy a system of differential-
algebraic equations (DAEs). Using the above finite element setting,
we set (omitting the argument t)

uh =
N

∑
j=1

ujφj[x], uh(xj) = uj ∈ R,

vh =
N

∑
j=1

vjφj[x], vh(xj) = vj ∈ R3,

and collect the nodal values in column vectors u = (uj) ∈ RN and
v = (vj) ∈ R3N .

We define the surface-dependent mass matrix M(x) and stiffness
matrix A(x) on the surface determined by the nodal vector x:

M(x)|jk=
∫

Γh(x)
φj[x]φk[x],

A(x)|jk=
∫

Γh(x)
∇Γh φj[x] · ∇Γh φk[x],

(j, k = 1, . . . , N).

We further let (with the identity matrix I3 ∈ R3×3)

M∗(x) = I3 ⊗
(

M(x) + αA(x)
)

. (D.6)
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The right-hand side vectors f (x,u) ∈ RN and g(x,u) ∈ R3N are
given by

f (x,u)|j=
∫

Γh(x)
f (uh,∇Γh uh) φj[x],

g(x,u)|3(j−1)+`=
∫

Γh(x)
g(uh,∇Γh uh) (νΓh(x))` φj[x],

for j = 1, . . . , N, and ` = 1, 2, 3.
We then obtain from (D.4)–(D.5) the following coupled DAE

system for the nodal values u, v and x:

d
dt

(
M(x)u

)
+ A(x)u = f (x,u),

M∗(x)v = g(x,u),

ẋ = v.

(D.7)

With the auxiliary vector w = M(x)u, this system becomes

ẋ = v,

ẇ = − A(x)u + f (x,u),

0 = −M∗(x)v + g(x,u),

0 = −M(x)u +w.

This is of a form to which standard DAE time discretization can be
applied; see, e.g., [49, Chap. VI].

As will be seen in later sections, the matrix-vector formulation
is very useful in the stability analysis of the ESFEM, beyond its
obvious role for practical computations.

D.2.6. Lifts

In the error analysis we need to compare functions on three different
surfaces: the exact surface Γ(t) = Γ(X( · , t)), the discrete surface Γh(t) =
Γh(x(t)), and the interpolated surface Γ∗h(t) = Γh(x∗(t)), where x∗(t) is
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the nodal vector collecting the grid points x∗j (t) = X(pj, t) on the
exact surface. In the following definitions we omit the argument t
in the notation.

A finite element function wh : Γh → Rm (m = 1 or 3) on the
discrete surface, with nodal values wj, is related to the finite element
function pwh on the interpolated surface that has the same nodal
values:

pwh =
N

∑
j=1

wjφj[x∗].

The transition between the interpolated surface and the exact sur-
face is done by the lift operator, which was introduced for linear
surface approximations in [29]; see also [31, 35]. Higher-order gen-
eralizations have been studied in [23]. The lift operator l maps a
function on the interpolated surface Γ∗h to a function on the exact
surface Γ, provided that Γ∗h is sufficiently close to Γ.

The exact regular surface Γ(X(·, t)) can be represented by a (suf-
ficiently smooth) signed distance function d : R3 × [0, T] → R, cf.
[31, Section 2.1], such that

Γ(X(·, t)) = {x ∈ R3 | d(x, t) = 0} ⊂ R3. (D.8)

Using this distance function, the lift of a continuous function
ηh: Γ∗h → R is defined as

ηl
h(y) – ηh(x), x ∈ Γ∗h ,

where for every x ∈ Γ∗h the point y = y(x) ∈ Γ is uniquely defined
via

y = x− ν(y)d(x).

For functions taking values in R3 the lift is componentwise. By η−l

we denote the function on Γ∗h whose lift is η.
We denote the composed lift L from finite element functions on

Γh to functions on Γ via Γ∗h by

wL
h = ( pwh)l .
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D.3. Statement of the main result: semidiscrete
error bound

We are now in the position to formulate the main result of this paper,
which yields optimal-order error bounds for the finite element
semidiscretization of a surface PDE on a solution-driven surface as
specified in (D.2), for finite elements of polynomial degree k ≥ 2.
We denote by Γ(t) = Γ(X( · , t)) the exact surface and by Γh(t) =
Γ(Xh( · , t)) = Γh(x(t)) the discrete surface at time t. We introduce
the notation

xL
h (x, t) = XL

h (p, t) ∈ Γh(t) for x = X(p, t) ∈ Γ(t).

Theorem D.3.1. Consider the space discretization (D.4)–(D.5) of the
coupled problem (D.1)–(D.2), using evolving surface finite elements
of polynomial degree k ≥ 2. We assume quasi-uniform admissible
triangulations of the initial surface and initial values chosen by finite
element interpolation of the initial data for u. Suppose that the
problem admits an exact solution (u, v, X) that is sufficiently smooth
(say, in the Sobolev class Hk+1) on the time interval 0 ≤ t ≤ T, and
that the flow map X(·, t) : Γ0 → Γ(t) ⊂ R3 is non-degenerate for
0 ≤ t ≤ T, so that Γ(t) is a regular surface.

Then, there exists h0 > 0 such that for all mesh widths h ≤ h0 the
following error bounds hold over the exact surface Γ(t) = Γ(X( · , t))
for 0 ≤ t ≤ T:

‖uL
h ( · , t)− u( · , t)‖2

L2(Γ(t))

+
∫ t

0
‖uL

h ( · , s)− u( · , s)‖2
H1(Γ(s)) ds ≤ Ch2k
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and (∫ t

0
‖vL

h ( · , s)− v( · , s)‖H1(X(s);R3) ds
) 1

2

≤ Chk,

‖xL
h ( · , t)− idΓ(t)‖H1(X(t);R3) ≤ Chk.

The constant C is independent of t and h, but depends on bounds of
the Hk+1 norms of the solution (u, v, X), on local Lipschitz constants
of f and g, on the regularization parameter α > 0 and on the length
T of the time interval.

We note that the last error bound is equivalent to

‖XL
h ( · , t)− X( · , t)‖H1(X(0);R3) ≤ chk.

Moreover, in the case of a coupling function g in (D.2) that is
independent of the solution gradient, so that g = g(u), we obtain an
error bound for the velocity that is pointwise in time: uniformly for
0 ≤ t ≤ T,

‖vL
h (·, t)− v(·, t)‖H1(Γ(t))3≤ Chk.

A key issue in the proof is to ensure that the W1,∞ norm of the

position error of the curves remains small. The H1 error bound and
an inverse estimate yield an O(hk−1) error bound in the W1,∞ norm.
This is small only for k ≥ 2, which is why we impose the condition
k ≥ 2 in the above result.

Since the exact flow map X(·, t) : Γ0 → Γ(t) is assumed to be
smooth and non-degenerate, it is locally close to an invertible linear
transformation, and (using compactness) it therefore preserves the
admissibility of grids with sufficiently small mesh width h ≤ h0.
Our assumptions guarantee that the triangulations formed by the
nodes x∗j (t) = X(pj, t) remain admissible uniformly for t ∈ [0, T]
(though the admissibility bounds may degrade with growing t).
Since k ≥ 2, the position error estimate implies that for sufficiently
small h also the triangulations formed by the numerical nodes
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xj(t) remain admissible uniformly for t ∈ [0, T]. This cannot be
concluded for k = 1.

The error bound will be proven by clearly separating the issues
of consistency and stability. The consistency error is the defect on
inserting a projection (interpolation or Ritz projection) of the exact
solution into the discretized equation. The defect bounds involve
geometric estimates that were obtained for the time dependent case
and for higher order k ≥ 2 in [54], by combining techniques of
Dziuk & Elliott [31, 35] and Demlow [23]. This is done with the
ESFEM formulation of section D.2.4.

The main issue in the proof of theorem D.3.1 is to prove stability in
the form of an h-independent bound of the error in terms of the de-
fect. The stability analysis is done in the matrix-vector formulation
of section D.2.5. It uses energy estimates and transport formulae
that relate the mass and stiffness matrices and the coupling terms
for different nodal vectors x. No geometric estimates enter in the
proof of stability.

In section D.4 we prove important auxiliary results for the stability
analysis. The stability is first analysed for the discretized velocity
law without coupling to the surface PDE in section D.5 and is then
extended to the coupled problem in section D.6. The necessary
geometric estimates for the consistency analysis are collected in
section D.7, and the defects are then bounded in section D.8. The
proof of theorem D.3.1 is then completed in section D.9 by putting
together the results on stability, defect bounds and interpolation
error bounds.

D.4. Auxiliary results for the stability analysis:
relating different surfaces

The finite element matrices of section D.2.5 induce discrete versions
of Sobolev norms. For any w = (wj) ∈ RN with corresponding finite
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element function wh = ∑N
j=1 wjφj[x] ∈ Sh(x) we note

|w|2M(x) – wT M(x)w = ‖wh‖2
L2(Γh(x)), (D.9)

|w|2A(x) – wT A(x)w = ‖∇Γh(x)wh‖2
L2(Γh(x)). (D.10)

In our stability analysis we need to relate finite element matrices
corresponding to different nodal vectors. We use the following
setting. Let x, y ∈ R3N be two nodal vectors defining discrete
surfaces Γh(x) and Γh(y), respectively. We let e = (ej) = x− y ∈ R3N .
For the parameter θ ∈ [0, 1], we consider the intermediate surface
Γθ

h = Γh(y + θe) and the corresponding finite element functions given
as

eθ
h =

N

∑
j=1

ejφj[y + θe]

and, for any vectors w, z ∈ RN ,

wθ
h =

N

∑
j=1

wjφj[y + θe] and zθ
h =

N

∑
j=1

zjφj[y + θe].

Lemma D.4.1. In the above setting the following identities hold:

wT(M(x)−M(y))z =
∫ 1

0

∫
Γθ

h

wθ
h(∇Γθ

h
· eθ

h)zθ
h dθ,

wT(A(x)− A(y))z =
∫ 1

0

∫
Γθ

h

∇Γθ
h
wθ

h · (DΓθ
h
eθ

h)∇Γθ
h
zθ

h dθ,

with DΓθ
h
eθ

h = trace(E)I3 − (E + ET) for E = ∇Γθ
h
eθ

h ∈ R3×3.

Proof. Using the fundamental theorem of calculus and the Leibniz
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formula we write

wT (M(x)− M(y))z =
∫

Γh(x)
w1

hz1
h −

∫
Γh(y)

w0
hz0

h

=
∫ 1

0

d
dθ

∫
Γθ

h

wθ
hzθ

h dθ

=
∫ 1

0

∫
Γθ

h

wθ
h(∇Γθ

h
· eθ

h)zθ
h dθ.

In the last formula we used that the material derivatives (with
respect to θ) of wθ

h and zθ
h vanish, thanks to the transport property

of the basis functions. The second identity is shown in the same
way, using the formula for the derivative of the Dirichlet integral;
see [31] and also [37, lemma 3.1]. �

A direct consequence of lemma D.4.1 is the following conditional
equivalence of norms:

Lemma D.4.2. If ‖∇Γθ
h
· eθ

h‖L∞(Γθ
h) ≤ µ for 0 ≤ θ ≤ 1, then

|w|M(y+e) ≤ eµ/2 |w|M(y).

If ‖DΓθ
h
eθ

h‖L∞(Γθ
h) ≤ η for 0 ≤ θ ≤ 1, then

|w|A(y+e) ≤ eη/2 |w|A(y).

Proof. By lemma D.4.1 we have for 0 ≤ τ ≤ 1

|w|2M(y+τe) − |w|
2
M(y) = wT(M(y + τe)−M(y))w

=
∫ τ

0

∫
Γθ

h

wθ
h · (∇Γθ

h
· eθ

h)wθ
h dθ ≤ µ

∫ τ

0
‖wθ

h‖
2
L2(Γθ

h) dθ

= µ
∫ τ

0
|w|2M(y+θe) dθ,
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and the first result follows from Gronwall’s inequality. The second
result is proved in the same way. �

The following result, when used with wθ
h equal to components of

eθ
h, reduces the problem of checking the conditions of the previous

lemma for 0 ≤ θ ≤ 1 to checking the condition just for the case
θ = 0.

Lemma D.4.3. In the above setting, assume that

‖∇Γh[y]e0
h‖L∞(Γh[y]) ≤

1
2

. (D.11)

Then, for 0 ≤ θ ≤ 1 the function wθ
h = ∑N

j=1 wjφj[y + θe] on
Γθ

h = Γ[y + θe] is bounded by

‖∇Γθ
h
wθ

h‖Lp(Γθ
h) ≤ cp ‖∇Γ0

h
w0

h‖Lp(Γ0
h), 1 ≤ p ≤ ∞,

where cp depends only on p (we have c∞ = 2).

Proof. We describe the finite element parametrization of the discrete
surfaces Γθ

h in the same way as in section D.2.3, with θ instead of t
in the role of the time variable. We set

Yθ
h (qh) = Yh(qh, θ) =

N

∑
j=1

(yj + θej)φj[y](qh), qh ∈ Γh[y] (D.12)

so that
Γ(Yθ

h ) = Γh[y + θe] = Γθ
h.

Since Y0
h (qh) = qh for all qh ∈ Γ0

h = Γh[y], the above formula can be
rewritten as

Yθ
h (qh) = qh + θe0

h(qh).

Tangent vectors to Γθ
h at yθ

h = Yθ
h (qh) are therefore of the form

δyθ
h = DYθ

h (qh) δqh = δqh + θ (∇Γ0
h
e0

h(qh))
T

δqh,
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where δqh is a tangent vector to Γ0
h at qh, or written more concisely,

δqh ∈ Tqh Γ0
h.

Letting |·| denote the Euclidean norm of a vector in R3, we have
at yθ

h = Yθ
h (qh)

|∇Γθ
h
wθ

h(yθ
h)| = sup

δyθ
h∈Tyθ

h
Γθ

h

(∇Γθ
h
wθ

h(yθ
h))T

δyθ
h

|δyθ
h|

= sup
δyθ

h∈Tyθ
h

Γθ
h

Dwθ
h(yθ

h)δyθ
h

|δyθ
h|

= sup
δqh∈Tqh Γ0

h

Dwθ
h(yθ

h)DYθ
h (qh) δqh

|DYθ
h (qh) δqh|

.

By construction of wθ
h and the transport property of the basis func-

tions, we have

wθ
h(Yθ

h (qh)) =
N

∑
j=1

wjφj[y + θe](Yθ
h (qh)) =

N

∑
j=1

wjφj[y](qh) = w0
h(qh).

By the chain rule, this yields

Dwθ
h(yθ

h)DYθ
h (qh) = Dw0

h(qh)

Under the imposed condition ‖∇Γ0
h
e0

h‖L∞(Γh[y]) ≤ 1
2 we have for

0 ≤ θ ≤ 1

|DYθ
h (qh) δqh|≥ |δqh|−θ|(∇Γ0

h
δe0

h(qh))
T

δqh|≥
1
2
|δqh|.

Hence we obtain

|∇Γθ
h
wθ

h(yθ
h)| = sup

δqh∈Tqh Γ0
h

Dw0
h(qh) δqh

|DYθ
h (qh) δqh|

≤ sup
δqh∈Tqh Γ0

h

Dw0
h(qh) δqh

1
2 |δqh|

= 2 |∇Γ0
h
w0

h(qh)|.
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This yields the stated result for p = ∞. For 1 ≤ p < ∞ we note in
addition that in using the integral transformation formula we have
a uniform bound between the surface elements, since DYθ

h is close
to the identity matrix by our smallness assumption on ∇Γ0

h
e0

h. �

The arguments of the previous proof are also used in estimating
the changes of the normal vectors on the various surfaces Γθ

h =
Γh[y + θe].

Lemma D.4.4. Suppose that condition (D.11) is satisfied. Let yθ
h =

Yθ
h (qh) ∈ Γθ

h be related by the parametrization (D.12) of Γθ
h over Γ0

h,
for 0 ≤ θ ≤ 1. Then, the corresponding unit normal vectors differ by
no more than

|νΓθ
h
(yθ

h)− νΓ0
h
(y0

h)|≤ Cθ|∇Γ0
h
e0

h(y0
h)|

with some constant C.

Proof. Let δq1
h and δq2

h be two linearly independent tangent vectors
of Γ0

h at qh ∈ Γ0
h (which may be chosen orthogonal to each other

and of unit length with respect to the Euclidean norm). With
δyθ,i

h = DYθ
h (qh) δqi

h = δqi
h + θ (∇Γ0

h
eh(qh))Tδqi

h for i = 1, 2 we then
have, for 0 ≤ θ ≤ 1,

νΓθ
h
(yθ

h) =
δyθ,1

h × δyθ,2
h

|δyθ,1
h × δyθ,2

h |
.

Since this expression is a locally Lipschitz continuous function of
the two vectors, the result follows. (The imposed bound (D.11) is
sufficient to ensure the linear independence of the vectors δyθ,i

h .) �

We denote by ∂•θ f the material derivative of a function f = f (yθ
h, θ)

depending on θ ∈ [0, 1] and yθ
h ∈ Γθ

h:

∂•θ f =
d
dθ

f (yθ
h, θ).
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From lemma D.4.4 together with lemma D.4.3 we obtain the follow-
ing bound:

Lemma D.4.5. If condition (D.11) is satisfied, then

‖∂•θ νΓθ
h
‖Lp(Γθ

h) ≤ C ‖∇Γ0
h
e0

h‖Lp(Γ0
h)

where C is independent of 0 ≤ θ ≤ 1 and 1 ≤ p ≤ ∞.

Proof. By lemma D.4.4 with Γθ
h in the role of Γ0

h, we obtain

|∂•θ νΓθ
h
(yθ

h)|= |lim
τ→0

(νΓθ+τ
h

(yθ+τ
h )− νΓθ

h
(yθ

h))/τ| ≤ C|∇Γθ
h
eθ

h(yθ
h)|,

which implies

‖∂•θ νΓθ
h
‖Lp(Γθ

h) ≤ C ‖∇Γθ
h
eθ

h‖Lp(Γθ
h),

and lemma D.4.3 completes the proof. �

A bound for the time derivatives of the mass and stiffness matri-
ces corresponding to nodes on the Γ(t) is a direct consequence of
[37, lemma 4.1].

Lemma D.4.6. Let Γ(t) = Γ(X( · , t)), t ∈ [0, T], be a smoothly
evolving family of smooth closed surfaces, and let the vector x∗(t) ∈
R3N collect the nodes x∗j (t) = X(pj, t). Then,

wT d
dt

M(x∗(t))z ≤ C |w|M(x∗(t)) |z|M(x∗(t)),

wT d
dt

A(x∗(t))z ≤ C |w|A(x∗(t)) |z|A(x∗(t)),

for all w, z ∈ RN and s, t ∈ [0, T]. The constant C depends only on
a bound of the W1,∞ norm of the surface velocity.

284



D.5. Stability under a prescribed driving-term

D.5. Stability of discretized surface motion under
a prescribed driving-term

In this section we begin the stability analysis by first studying
the stability of the spatially discretized velocity law with a given
inhomogeneity instead of a coupling to the surface PDE. This allows
us to present, in a technically simpler setting, some of the basic
arguments that are used in our approach to stability estimates,
which works with the matrix-vector formulation. The stability
of the spatially discretized problem including coupling with the
surface PDE is then studied in Section D.6 by similar, but more
elaborate arguments.

D.5.1. Uncoupled velocity law and its semidiscretization

In this section we consider the velocity law without coupling to a
surface PDE:

v− α∆Γ(X)v = g νΓ(X),

where g : R3 ×R→ R is a given continuous function of (x, t), and
α > 0 is a fixed parameter. This problem is considered together
with the ordinary differential equations (D.1) for the positions X
determining the surface Γ(X). Initial values are specified for X.

The weak formulation is given by the second formula of (D.3)
with the function g considered here. This is considered together
with the ordinary differential equations (D.1) for the positions X.
Then the finite element spatial semidiscretization of this problem
reads as: Find the unknown nodal vector x(t) ∈ R3N and the
unknown finite element function vh( · , t) ∈ Sh(x(t))3 such that the
following semidiscrete equation holds for every ψh ∈ Sh(x(t))3:∫

Γh(x)
vh · ψh + α

∫
Γh(x)
∇Γh(x)vh · ∇Γh(x)ψh =

∫
Γh(x)

g νΓh(x) · ψh,

(D.13)
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together with the ordinary differential equations (D.5). As before,
the nodal vector of the initial positions x(0) is taken from the exact
initial values at the nodes x0

j of the triangulation of the given initial
surface Γ0: xj(0) = x0

j for j = 1, . . . , N.
As in section D.2.5, the nodal vectors v ∈ R3N of the finite element

function vh together with the surface nodal vector x ∈ R3N satisfy
a system of differential-algebraic equations (DAEs). We obtain from
(D.13) and (D.5) the following coupled DAE system for the nodal
values v and x:

M∗(x)v = g(x, t)

ẋ = v
(D.14)

Here the matrix M∗(x) = I3 ⊗ (M(x) + αA(x)) is from (D.6), and the
driving term g(x, t) is given by

g(x, t))|3(j−1)+`=
∫

Γh(x)
g( · , t) (νΓh(x))` φj[x],

where j = 1, . . . , N, and ` = 1, 2, 3.

D.5.2. Error equations

We denote by

x∗(t) = (x∗j (t)) ∈ R3N with x∗j (t) = X(pj, t) (j = 1, . . . , N)

the nodal vector of the exact positions on the surface Γ(X( · , t)).
This defines a discrete surface Γh(x∗(t)) that interpolates the exact
surface Γ(X( · , t)).

We consider the interpolated exact velocity

v∗h(·, t) =
N

∑
j=1

v∗j (t)φj[x∗(t)] with v∗j (t) = ẋ∗j (t),

with the corresponding nodal vector

v∗(t) = (v∗j (t)) = ẋ∗(t) ∈ R3N .
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Inserting v∗h and x∗ in place of the numerical solution vh and x into
(D.13) yields a defect dh( · , t) ∈ Sh(x∗(t))3: for every ψh ∈ Sh(x∗(t))3,∫

Γh(x∗)
v∗h · ψh + α

∫
Γh(x∗)

∇Γh(x∗)v∗h · ∇Γh(x∗)ψh

=
∫

Γh(x∗)
g νΓh(x∗) · ψh +

∫
Γh(x∗)

dh · ψh.

With dh( · , t) = ∑N
j=1 dj(t)φj[x∗(t)] and the corresponding nodal vec-

tor dv(t) = (dj(t)) ∈ R3N we then have (I3 ⊗M(x∗(t)))dv(t) as the
defect on inserting x∗ and v∗ in the first equation of (D.14), and
the defect in the second equation is denoted dx. With M[3](x∗) =
I3 ⊗M(x∗), we thus have

M∗(x∗)v∗ = g(x∗) + M[3](x∗)dv ,

ẋ∗ = v∗.
(D.15)

We denote the errors in the surface nodes and in the velocity by
ex = x− x∗ and ev = v − v∗, respectively. We rewrite the velocity
law in (D.14) as

M∗(x∗)v = − (M∗(x)−M∗(x∗))v∗ − (M∗(x)−M∗(x∗))ev + g(x).

Then, by subtracting (D.15) from the above version of (D.14), we
obtain the following error equations for the uncoupled problem:

M∗(x∗)ev = − (M∗(x)−M∗(x∗))v∗ − (M∗(x)−M∗(x∗))ev
+ (g(x)− g(x∗))−M[3](x∗)dv ,

ėx = ev .
(D.16)

When no confusion can arise, we write in the following M(x∗) for
M[3](x∗) and ‖ · ‖H1(Γ) for ‖ · ‖H1(X(t);R3), etc.
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D.5.3. Norms

We recall that M∗(x) = I3 ⊗ (M(x) + αA(x)) and, for w ∈ R3N

and the corresponding finite element function wh = ∑N
j=1 wjφj[x] ∈

Sh(x)3, we consider the norm

|w|2M∗(x∗) –wT M∗(x∗)w

= ‖wh‖2
L2(Γh(x∗)) + α ‖∇Γh(x∗)wh‖2

L2(Γh(x∗)) ∼ ‖wh‖2
H1(Γh(x∗)).

For convenience, we will take α = 1 in the remainder of this section,
so that the last norm equivalence becomes an equality. For the
defect dh ∈ Sh(x∗)3 we use the dual norm (cf. [63, Proof of theorem
5.1])

‖dh‖H−1
h (Γh(x∗)) – sup

0 6=ψh∈Sh(x∗)3

∫
Γh(x∗) dh · ψh

‖ψh‖H1(x∗;R3)
. (D.17)

Further, a quick calculation shows

‖dh‖H−1
h (Γh(x∗)) = (dT

vM(x∗)M∗(x∗)−1M(x∗)dv)
1
2 . (D.18)

We denote

‖dv‖2
∗,x∗ – dT

vM(x∗)M∗(x∗)−1M(x∗)dv

so that
‖dv‖∗,x∗ = ‖dh‖H−1

h (x∗).

D.5.4. Stability estimate

The following stability result holds for the errors ev and ex, under
an assumption of small defects. It will be shown in section D.8
that this assumption is satisfied if the exact solution is sufficiently
smooth.
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Proposition D.5.1. Suppose that the defect is bounded as follows,
with κ > 1:

‖dv(t)‖∗,x∗(t) ≤ chκ, t ∈ [0, T].

Then there exists h0 > 0 such that the following error bounds hold
for h ≤ h0 and 0 ≤ t ≤ T:

‖ex(t)‖2
M∗(x∗(t)) ≤ C

∫ t

0
‖dv(s)‖2

?,x∗ ds, (D.19)

‖ev(t)‖2
M∗(x∗(t)) ≤ C ‖dv(t)‖2

?,x∗ + C
∫ t

0
‖dv(s)‖2

?,x∗ ds (D.20)

The constant C is independent of t and h, but depends on the final
time T and on the regularization parameter α.

We note that the error functions ev( · , t), ex( · , t) ∈ Sh(x∗(t))3 with
nodal vectors ev(t) and ex(t), respectively, are then bounded for
t ∈ [0, T] by

‖ev( · , t)‖H1(Γh(x∗(t))) ≤ Chk

and
‖ex( · , t)‖H1(Γh(x∗(t))) ≤ Chk,

Proof. The proof uses energy estimates for the error equations
(D.16) in the matrix-vector formulation, and it relies on the results
of Section D.4. In the course of this proof c and C will be generic
constants that take on different values on different occurrences.

In view of condition (D.11) for y = x∗(t), we will need to control
the W1,∞ norm of the position error ex( · , t). Let 0 < t∗ ≤ T be the
maximal time such that

‖∇Γh(x∗(t))ex( · , t)‖L∞(Γh(x∗(t))) ≤ h(κ−1)/2 for t ∈ [0, t∗].
(D.21)

At t = t∗ either this inequality becomes an equality, or else we have
t∗ = T.
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We will first prove the stated error bounds for 0 ≤ t ≤ t∗. Then
the proof will be finished by showing that in fact t∗ coincides with
T.

By testing the first equation in (D.16) with ev, and dropping the
omnipresent argument t ∈ [0, t∗], we obtain:

|ev|2M∗(x∗) = eT
vM∗(x∗)ev = − eT

v (M∗(x)−M∗(x∗))v∗

− eT
v (M∗(x)−M∗(x∗))ev

+ eT
v (g(x)− g(x∗))− eT

vM(x∗)dv .

We separately estimate the four terms on the right-hand side in an
appropriate way, with lemmas D.4.1 – D.4.4 as our main tools.

(i) We denote, for 0 ≤ θ ≤ 1, by eθ
v and vθ

h the finite element
functions in Sh(Γθ

h)3 for Γθ
h = Γh(x∗ + θex) with nodal vectors ev and

v∗, respectively. Lemma D.4.1 then gives us

eT
v (M∗(x)−M∗(x∗))v∗

=
∫ 1

0

∫
Γθ

h

eθ
v · (∇Γθ

h
· eθ

x)v
θ
h dθ + α

∫ 1

0

∫
Γθ

h

∇Γθ
h
eθ

v · (DΓθ
h
eθ

x)∇Γθ
h
vθ

h dθ.

Using the Cauchy-Schwarz inequality, we estimate the integral with
the product of the L2 − L2 − L∞ norms of the three factors. We thus
have

eT
v (M∗(x)− M∗(x∗))v∗

≤
∫ 1

0
‖eθ

v‖L2(Γθ
h) ‖∇Γθ

h
· eθ

x‖L2(Γθ
h) ‖v

θ
h‖L∞(Γθ

h) dθ

+ α
∫ 1

0
|eθ

v|H1(Γθ
h) ‖DΓθ

h
eθ

x‖L2(Γθ
h) ‖∇Γθ

h
vθ

h‖L∞(Γθ
h) dθ

≤ c
∫ 1

0
‖eθ

v‖H1(Γθ
h) ‖e

θ
x‖H1(Γθ

h) ‖v
θ
h‖W1,∞(Γθ

h) dθ.

By (D.21) and lemma D.4.3, this is bounded by

eT
v (M∗(x)−M∗(x∗))v∗

≤ c ‖ev‖H1(Γh(x∗)) ‖ex‖H1(Γh(x∗)) ‖v∗h‖W1,∞(Γh(x∗)),
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where the last factor is bounded independently of h. By the Young
inequality, we thus obtain

eT
v (M∗(x)−M∗(x∗))v∗ ≤ 1

6
‖ev‖2

H1(Γh(x∗)) + C ‖ex‖2
H1(Γh(x∗))

=
1
6
|ev|2M∗(x∗) + C |ex|2M∗(x∗).

(ii) Similarly, estimating the three factors in the integrals by L2 −
L∞ − L2, we obtain

eT
v (M∗(x)−M∗(x∗))ev ≤ c ‖ev‖2

L2(Γh(x∗)) ‖∇Γh · ex‖L∞(Γh(x∗))

+ cα ‖∇Γh ev‖2
L2(Γh(x∗)) ‖DΓh ex‖L∞(Γh(x∗))

≤ ch(κ−1)/2 |ev|2M∗(x∗),

where in the last inequality we used the bound (D.21).
(iii) In the following estimate we use lemma D.4.5. With the

finite element function eθ
v = ∑N

j=1(ev)jφj[x∗ + θex] on the surface
Γθ

h = Γh(x∗ + θex), for 0 ≤ θ ≤ 1, we write

eT
v (g(x)− g(x∗)) =

∫
Γ1

h

gνΓ1
h
· e1

v −
∫

Γ0
h

gνΓ0
h
· e0

v

=
∫ 1

0

d
dθ

∫
Γθ

h

gνΓθ
h
· eθ

v dθ.

Using the Leibniz formula, this becomes

eT
v (g(x)− g(x∗)) =

∫ 1

0

∫
Γθ

h

(
∂•θ (gνΓθ

h
· eθ

v) + (gνΓθ
h
· eθ

v)(∇Γθ
h
· eθ

x)
)

dθ.

Here we have, noting that ∂•θ eθ
v = 0,

∂•θ (gνΓθ
h
· eθ

v) = g′eθ
x νΓθ

h
· eθ

v + g ∂•θ νΓθ
h
· eθ

v.
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D. Solution driven evolving surfaces

With lemmas D.4.3 and D.4.5 we therefore obtain via the Cauchy-
Schwarz inequality∫

Γθ
h

∂•θ (gνΓθ
h
· eθ

v) ≤ c2
2‖g′‖L∞ ‖ex‖L2(Γh(x∗)) ‖ev‖L2(Γh(x∗))

+ c2
2‖g‖L∞ ‖∇Γh(x∗)ex‖L2(Γh(x∗)) ‖ev‖L2(Γh(x∗)),

and again with lemma D.4.3,∫
Γθ

h

(gνΓθ
h
· eθ

v)(∇Γθ
h
· eθ

x) ≤ c2
2‖g‖L∞ ‖ev‖L2(Γh(x∗)) ‖∇Γh(x∗) · ex‖L2(Γh(x∗)).

In total, we obtain a bound of the same type as for the terms in (i)
and (ii):

eT
v (g(x)− g(x∗)) ≤ c ‖ex‖H1(Γh(x∗)) ‖ev‖L2(Γh(x∗))

= c |ex|M∗(x∗) |ev|M(x∗)

≤ 1
6
|ev|2M∗(x∗) + C |ex|2M∗(x∗).

The combination of the estimates of the three terms (i)–(iii) with
absorptions (for sufficiently small h ≤ h0), and a simple dual norm
estimate, based on (D.18), for the defect term, yield the bound

|ev|2M∗(x∗) ≤ c |ex|2M∗(x∗) + c ‖dv‖2
∗,x∗ . (D.22)

Using this estimate, together with taking the |·|M∗(x∗) norm of both
sides of the second equation in (D.16), we obtain

1
2
|ėx|2M∗(x∗) = |ev|2M∗(x∗) ≤ c |ex|2M∗(x∗) + c ‖dv‖2

∗,x∗ . (D.23)

In order to apply Gronwall’s inequality, we connect d
dt |ex|

2
M∗(x∗)

and |ėx|2M∗(x∗) as follows:

1
2

d
dt
|ex|2M∗(x∗) = eT

xM∗(x∗)ėx +
1
2
eT
x

( d
dt

M∗(x∗)
)
ex

≤ |ėx|2M∗(x∗) + c |ex|2M∗(x∗),
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D.6. Stability of coupling surface PDEs to surface motion

where we use the Cauchy-Schwarz inequality and lemma D.4.6 in
the estimate. Inserting (D.23), we obtain

1
2

d
dt
|ex|2M∗(x∗) ≤ c |ex|2M∗(x∗) + c ‖dv‖2

∗,x∗ .

A Gronwall inequality then yields (D.19), using ej(0) = xj(0)− x0
j = 0

for j = 1, . . . , N. Inserting this estimate in (D.22), we can bound
ev(t) for 0 ≤ t ≤ t∗ by (D.20).

Now it only remains to show that t∗ = T for h sufficiently small.
For 0 ≤ t ≤ t∗ we use an inverse inequality and (D.19) to bound
the left-hand side in (D.21):

|ex( · , t)|W1,∞(Γh(x∗(t))) ≤ ch−1 |ex( · , t)|H1(Γh(x∗(t)))

≤ ch−1‖ex(t)‖M∗(x∗(t))

≤ cChκ−1 ≤ 1
2

h(κ−1)/2

for sufficiently small h. Hence, we can extend the bound (D.21)
beyond t∗, which contradicts the maximality of t∗ unless we have
already t∗ = T. �

D.6. Stability of coupling surface PDEs to surface
motion

Now we turn to the stability bounds of the original problem (D.4)–
(D.5), or in DAE form (D.7), which is the formulation we will
actually use for the stability analysis.

D.6.1. Error equations

Similarly as before, in order to derive stability estimates we consider
the DAE system when we insert the nodal values u∗(t) ∈ RN of
the exact solution u( · , t), the nodal values x∗(t) ∈ R3N of the
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D. Solution driven evolving surfaces

exact positions X( · , t), and the nodal values v∗(t) ∈ R3N of the
exact velocity v( · , t). Inserting them into (D.7) yields the defects
du(t) ∈ RN and dv ∈ R3N : omitting the argument t in the notation,
we have

d
dt

(
M(x∗)u∗

)
+ A(x∗)u∗ = f (x∗,u∗) + M(x∗)du,

M∗(x∗)v̇∗ = g(x∗,u∗) + M(x∗)dv ,

ẋ∗ = v∗,

(D.24)

where again M[3](x∗) = I3 ⊗M(x∗). As no confusion can arise, we
write again M(x∗) for M[3](x∗).

We denote the PDE error by eu = u− u∗, and as in the previous
section, ev = v − v∗ and ex = x− x∗ denote the velocity error and
surface error, respectively. Subtracting (D.24) from (D.7), we obtain
the following error equation:

d
dt

(
M(x∗)eu

)
+ A(x∗)eu = − d

dt

(
(M(x)− M(x∗))u∗

)
− d

dt

(
(M(x)− M(x∗))eu

)
− (A(x)− A(x∗))u∗

− (A(x)− A(x∗))eu
+ (f (x,u)− f (x∗,u∗)) − M(x∗)du

M∗(x∗)ev = − (M∗(x)− M∗(x∗))v∗

− (M∗(x)− M∗(x∗))ev
+ (g(x,u)− g(x∗,u∗)) − M(x∗)dv ,

(D.25)ėx = ev .

D.6.2. Stability estimate

We now formulate the stability result for the errors eu, ev and ex
of the surface motion coupled to the surface PDE. Here, we use the
norms (D.9)-(D.10) and those of Section D.5.3.
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Proposition D.6.1. Assume that the following bounds hold for the
defects, for some κ > 1 and 0 ≤ t ≤ T:

‖du(t)‖∗,x∗(t) ≤ chκ , ‖dv(t)‖∗,x∗(t) ≤ chκ , for t ∈ [0, T].

Then there exists h0 > 0 such that the following stability estimate
holds for all h ≤ h0 and 0 ≤ t ≤ T:

|eu(t)|2M(x∗) +
∫ t

0
|eu(s)|2A(x∗) ds + |ex(t)|2M∗(x∗)

+
∫ t

0
|ev(s)|2M∗(x∗) ds ≤ C

∫ t

0

(
‖du(s)‖2

∗,x∗ + ‖dv(s)‖2
∗,x∗
)

ds.

(D.26)
The constant C is independent of t and h, but depends on the final
time T and on the regularization parameter α.

We note that the error functions eu(·, t) ∈ Sh(x∗(t)) and the error
functions ev(·, t), ex(·, t) ∈ Sh(x∗(t))3 with nodal vectors eu(t) and
ev(t), ex(t), respectively, are then bounded by

‖eu(·, t)‖L2(Γh(x∗(t)))+
(∫ t

0
‖eu(·, t)‖2

H1(Γh(x∗(t))) ds
)1/2

≤ Chκ ,(∫ t

0
‖ev(·, t)‖2

H1(Γh(x∗(t)))3ds
)1/2

≤ Chκ , (D.27)

‖ex(·, t)‖H1(Γh(x∗(t)))3≤ Chκ , t ∈ [0, T].

Proof. The proof is an extension of the proof of proposition D.5.1,
again based on the matrix-vector formulation and the auxiliary
results of Section D.4. We handle the surface PDE and the surface
equations separately: we first estimate the errors of the PDE, while
those for the surface equation are based on section D.5. Finally
we will combine the results to obtain the stability estimates for the
coupled problem. In the course of this proof c and C will be generic
constants that take on different values on different occurrences.
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D. Solution driven evolving surfaces

Let 0 < t∗ ≤ T be the maximal time such that the following
inequalities hold:

‖∇Γh(x∗(t))ex( · , t)‖L∞(Γh(x∗(t))) ≤ h(κ−1)/2,

‖eu( · , t)‖L∞(Γh(x∗(t))) ≤ 1,
for t ∈ [0, t∗],

(D.28)
Note that t∗ > 0 since initially both ex( · , 0) = 0 and eu( · , 0) = 0.

We first prove the stated error bounds for 0 ≤ t ≤ t∗. At the end,
the proof will be finished by showing that in fact t∗ coincides with
T.

Testing the first two equations of (D.25) with eu and ev, and
dropping the omnipresent argument t ∈ [0, t∗], we obtain:

eT
u

d
dt

(
M(x∗)eu

)
+ eT

uA(x∗)eu = − eT
u

d
dt

(
(M(x)−M(x∗))u∗

)
− eT

u

d
dt

(
(M(x)−M(x∗))eu

)
− eT

u (A(x)− A(x∗))u∗

− eT
u (A(x)− A(x∗))eu

+ eT
u (f (x,u)− f (x∗,u∗))

− eT
uM(x∗)du,

|ev|2M∗(x∗) = − eT
v (M∗(x)−M∗(x∗))v∗

− eT
v (M∗(x)−M∗(x∗))ev

+ eT
v (g(x,u)− g(x∗,u∗))

− eT
vM(x∗)dv ,

ėx = ev − dx.

(A) Estimates for the surface PDE: We estimate the terms separately,
with Lemmas D.4.1 – D.4.3 as our main tools.

(i) The symmetry of M(x∗) and a simple calculation yields

eT
u

d
dt

(
M(x∗)eu

)
=

1
2

d
dt

(
eT
uM(x∗)eu

)
+

1
2
eT
u

( d
dt

M(x∗)
)
eu
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=
1
2

d
dt
|eu|2M(x∗) +

1
2
eT
u

( d
dt

M(x∗)
)
eu,

where the last term is bounded by lemma D.4.6 as∣∣∣eT
u

d
dt

M(x∗)eu
∣∣∣ ≤ c |eu|2M(x∗).

(ii) By the definition of the A-norm we have

eT
uA(x∗)eu = |eu|2A(x∗).

(iii) With the product rule we write

eT
u

d
dt

(
(M(x)−M(x∗))u∗

)
= eT

u (M(x)−M(x∗))u̇∗ + eT
u

( d
dt

(M(x)−M(x∗))
)
u∗.

(D.29)

With Γθ
h(t) = Γh[x∗(t) + θex(t)] and with the finite element functions

eθ
u(·, t), u∗,θh (·, t) ∈ Sh(x∗(t) + θex(t)) with nodal vectors eu(t), u∗(t),

resp., Lemma D.4.1 (with x∗(t) in the role of y) yields for the first
term, omitting again the argument t,

eT
u (M(x)−M(x∗))u̇∗ =

∫ 1

0

∫
Γθ

h

eθ
u (∇Γθ

h
· eθ

x) ∂•huθ
h dθ.

Using the Cauchy-Schwarz inequality we obtain for the first term

|eT
u (M(x)−M(x∗))u̇∗|

≤
∫ 1

0
‖eθ

u‖L2(Γθ
h) ‖∇Γθ

h
· eθ

x‖L2(Γθ
h) ‖∂

•
huθ

h‖L∞(Γθ
h) dθ.

Under condition (D.28) we obtain from lemmas D.4.2 and D.4.3 that
for 0 ≤ t ≤ t∗,

|eT
u (M(x)−M(x∗))u̇∗| ≤ c ‖e0

u‖L2(Γ0
h) ‖e0

x‖H1(Γ0
h) ‖∂•hu0

h‖L∞(Γ0
h)
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Now, the last factor is bounded by

‖∂•hu∗,0h ‖L∞(Γ0
h)≤ c‖u̇∗‖∞≤ C

because of the assumed smoothness of the exact solution u and
hence of its material derivative ∂•u(·, t), whose values at the nodes
are the entries of the vector u̇∗(t). Hence we obtain, on recalling the
definitions of the discrete norms,

−eT
u(M(x)−M(x∗))u̇∗ ≤ C |eu|M(x∗) |ex|A(x∗).

Using lemma D.4.1 together with the Leibniz formula, the last term
in (D.29) becomes

eT
u

( d
dt

(M(x)−M(x∗))
)
u∗ =

∫ 1

0

∫
Γθ

h

eθ
u ∂•h(∇Γθ

h
· eθ

x) uθ
h dθ

+
∫ 1

0

∫
Γθ

h

eθ
u (∇Γθ

h
· eθ

x) uθ
h (∇Γθ

h
· vθ

h) dθ.

where vθ
h is the velocity of Γθ

h (as a function of t), which is the
finite element function in Sh(x∗ + θex) with nodal vector ẋ∗ + θėx =
v∗ + θev, so that

vθ
h = v∗,θh + θeθ

v, (D.30)

where v∗,θh and eθ
v are the finite element functions on Γθ

h with nodal
vectors v∗ and ev, respectively. In the first integral we further use,
cf. [36, lemma 2.6],

∂•h(∇Γθ
h
· eθ

x) = ∇Γθ
h
· ∂•heθ

x − ((I3 − νθ
h(νθ

h)T)∇Γθ
h
vθ

h) : ∇Γθ
h
eθ

x

where : symbolizes the Euclidean inner product of the vectorization
of two matrices. Here we note that ∂•heθ

x is the finite element function
on Γθ

h with nodal vector ėx = ev, so that ∂•heθ
x = eθ

v.
We then estimate, using the Cauchy-Schwarz inequality in the

first step, Lemmas D.4.2 and D.4.3 in the second step (using (D.28)
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to ensure the smallness condition in these lemmas), the definition
of the discrete norms in the third step, and using the first bound of
(D.28) and the boundedness of the discrete gradient of the interpo-
lated exact velocity ∇Γh(x∗)v∗h and of the interpolated exact solution
u∗h in the fourth step,

ˇ

ˇ

ˇ

ˇ

∫ 1

0

∫
Γθ

h

eθ
u ∂•h(∇Γθ

h
· eθ

x) u∗,θh dθ

ˇ

ˇ

ˇ

ˇ

≤
∫ 1

0

∫
Γθ

h

‖eθ
u‖L2(Γθ

h)

(
‖∇Γθ

h
· eθ

v‖L2(Γθ
h)

+ ‖∇Γθ
h
v∗,θh ‖L∞(Γθ

h)·‖∇Γθ
h
eθ

x‖L2(Γθ
h)

+ ‖∇Γθ
h
eθ

v‖L2(Γθ
h)·‖∇Γθ

h
eθ

x‖L∞(Γθ
h)

)
‖u∗,θh ‖L∞(Γθ

h) dθ

≤ c ‖eu‖L2(Γh(x∗))

(
‖∇Γh(x∗)ev‖L2(Γh(x∗))

+ ‖∇Γh(x∗)v∗h‖L∞(Γh(x∗))·‖∇Γh(x∗)ex‖L2(Γh(x∗))

+ ‖∇Γh(x∗)ev‖L2(Γh(x∗))·‖∇Γh(x∗)ex‖L∞(Γh(x∗))

)
‖u∗h‖L∞(Γh(x∗))

≤ c |eu|M(x∗)

(
|ev|A(x∗) + ‖∇Γh(x∗)v∗h‖L∞(Γh(x∗)) |ex|A(x∗)

+ |ev|A(x∗)‖∇Γh(x∗)ex‖L∞(Γh(x∗))

)
‖u∗‖∞

≤ c |eu|M(x∗)

(
|ev|M∗(x∗) + C |ex|M∗(x∗) + |ex|M∗(x∗)h(κ−1)/2

)
C

≤ C′ |eu|M(x∗)

(
|ev|M∗(x∗) + |ex|M∗(x∗)

)
.

With the same arguments we estimate, on inserting (D.30),
ˇ

ˇ

ˇ

ˇ

∫ 1

0

∫
Γθ

h

eθ
u (∇Γθ

h
· eθ

x) u∗,θh (∇Γθ
h
· vθ

h) dθ

ˇ

ˇ

ˇ

ˇ

≤
∫ 1

0

∫
Γθ

h

‖eθ
u‖L2(Γθ

h) ‖∇Γθ
h
· eθ

x‖L2(Γθ
h) ‖u

∗,θ
h ‖L∞(Γθ

h) ‖∇Γθ
h
· v∗,θh ‖L∞(Γθ

h) dθ

+
∫ 1

0

∫
Γθ

h

‖eθ
u‖L2(Γθ

h) ‖∇Γθ
h
· eθ

x‖L∞(Γθ
h) ‖u

∗,θ
h ‖L∞(Γθ

h) ‖∇Γθ
h
· eθ

v‖L2(Γθ
h) dθ
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≤ c |eu|M(x∗) |ex|M∗(x∗)‖u∗‖∞‖∇Γh(x∗) · v∗h‖L∞(Γh(x∗))

+ c |eu|M(x∗) ‖∇Γh(x∗)ex‖L∞(Γh(x∗)) ‖u∗‖∞ |ev|M∗(x∗)
≤ C |eu|M(x∗)

(
|ev|M∗(x∗) + |ex|M∗(x∗)

)
.

Altogether we obtain the bound

− eT
u

d
dt

(
(M(x)−M(x∗))u∗

)
≤ C |eu|M(x∗)

(
|ev|M∗(x∗) + |ex|M∗(x∗)

)
.

(iv) We obtain similarly

− eT
u

d
dt

(
(M(x)−M(x∗))eu

)
= −1

2
eT
u

( d
dt

(M(x)−M(x∗))
)
eu

− 1
2

d
dt

(
eT
u(M(x)−M(x∗))eu

)
≤ c |eu|M(x∗)

(
|ev|M∗(x∗) + |ex|M∗(x∗)

)
‖eu‖L∞(Γh(x∗))

− 1
2

d
dt

(
eT
u(M(x)−M(x∗))eu

)
≤ C |eu|M(x∗)(|ev|M∗(x∗) + |ex|M∗(x∗))

− 1
2

d
dt

(
eT
u(M(x)−M(x∗))eu

)
,

where we used the second bound of (D.28) in the last inequality.
(v) Lemma D.4.1 and the Cauchy-Schwarz inequality yield

− eT
u(A(x)− A(x∗))u∗

= −
∫ 1

0

∫
Γθ

h

∇Γθ
h
eθ

u · (DΓθ
h
eθ

x)∇Γθ
h
u∗,θh dθ

≤ c |eu|A(x∗) |ex|A(x∗) ‖∇Γh(x∗)u∗h‖L∞(Γh(x∗))

≤ C |eu|A(x∗) |ex|M∗(x∗).
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(vi) Similarly we estimate

eT
u (A(x)− A(x∗))eu ≤ c |eu|2A(x∗) ‖DΓh ex‖L∞(Γh(x∗))

≤ ch(κ−1)/2 |eu|2A(x∗),

where we used the first bound of (D.28).
(vii) The coupling term is estimated similarly to (iii) in the proof

of proposition D.5.1:

eT
u (f (x,u)− f (x∗,u∗)) =

∫
Γ1

h

f (uh,∇Γ1
h
uh)e1

u −
∫

Γ0
h

f (u∗h ,∇Γ0
h
u∗h)e0

u

With

uθ
h =

N

∑
j=1

(u∗j + θ(eu)j) φj[x∗ + θex] = u∗,θh + θeθ
u (D.31)

we therefore have

eT
u (f (x,u)− f (x∗,u∗)) =

∫ 1

0

d
dθ

∫
Γθ

h

f (uθ
h,∇Γθ

h
uθ

h) eθ
u dθ

and with the Leibniz formula (noting that eθ
x is the velocity of the

surface Γθ
h considered as a function of θ), we rewrite this as

eT
u (f (x,u)− f (x∗,u∗))

=
∫ 1

0

∫
Γθ

h

(
∂•θ f (uθ

h,∇Γθ
h
uθ

h) eθ
u dθ + f (uθ

h,∇Γθ
h
uθ

h) eθ
u(∇Γθ

h
· eθ

x)
)

dθ.

Here we use the chain rule

∂•θ f (uθ
h,∇Γθ

h
uθ

h) = ∂1 f (uθ
h,∇Γθ

h
uθ

h) ∂•θ uθ
h + ∂2 f (uθ

h,∇Γθ
h
uθ

h) ∂•θ∇Γθ
h
uθ

h

and observe the following: by the assumed smoothness of f and
the exact solution u, and by the bound (D.28) for eu (and hence for
eθ

u by Lemmas D.4.2 and D.4.3), we have on recalling (D.31)

‖∂i f (uθ
h,∇Γθ

h
uθ

h)‖L∞(Γθ
h)≤ C, i = 1, 2.
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We note
∂•θ uθ

h = eθ
u

and the relation, see [36, Lemma 2.6],

∂•θ∇Γθ
h
uθ

h = ∇Γθ
h
∂•θ uθ

h −∇Γθ
h
eθ

x∇Γθ
h
uθ

h + νθ
h(νθ

h)T(∇Γθ
h
eθ

x)T∇Γθ
h
uθ

h.

We then have, on inserting (D.31) and using once again Lem-
mas D.4.2 and D.4.3 and the bound (D.28),

eT
u(f (x,u)− f (x∗,u∗))

=
∫ 1

0

∫
Γθ

h

eθ
u

(
∂1 f (uθ

h,∇Γθ
h
uθ

h)eθ
u + ∂2 f (uθ

h,∇Γθ
h
uθ

h)(∇Γθ
h
eθ

u

−∇Γθ
h
eθ

x∇Γθ
h
uθ

h + νθ
h(νθ

h)T(∇Γθ
h
eθ

x)T∇Γθ
h
uθ

h)
)

dθ

≤ c‖eu‖L2(Γh(x∗))

(
‖eu‖L2(Γh(x∗))

+ ‖∇Γh(x∗))eu‖L2(Γh(x∗))+‖∇Γh(x∗))ex‖L2(Γh(x∗)) ‖∇Γh(x∗))u∗h‖L∞(Γh(x∗))

+ ‖∇Γh(x∗))ex‖L∞(Γh(x∗)) ‖∇Γh(x∗))eu‖L2(Γh(x∗))

)
≤ C |eu|M(x∗)

(
|eu|M(x∗) + |eu|A(x∗) + |ex|A(x∗) + |eu|A(x∗)

)
≤ C |eu|M(x∗)

(
|eu|M(x∗) + |eu|A(x∗) + |ex|M∗(x∗)

)
.

The above estimates combined, yield the following inequality: Com-
bined, the above estimates yield the following inequality:

1
2

d
dt
|eu|2M(x∗) + |eu|2A(x∗) ≤ C |eu|2M(x∗)

+ C |eu|M(x∗)

(
|ev|M∗(x∗) + |ex|M∗(x∗)

)
+ C |eu|M(x∗) |ev|M∗(x∗) + c |eu|M(x∗) |ex|M∗(x∗)
+ C |eu|M(x∗) |ev|M∗(x∗)

− 1
2

d
dt

(
eT
u(M(x)−M(x∗))eu

)
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+ C |eu|A(x∗) |ex|M∗(x∗)
+ Ch(κ−1)/2 |eu|2A(x∗)

+ C |eu|M(x∗)

(
|eu|M(x∗) + |eu|A(x∗) + |ex|M∗(x∗)

)
+ C |eu|A(x∗)‖du‖?,x∗ .

Estimating further, using Young’s inequality and absorptions into
|eu|2A(x∗) (using h ≤ h0 for a sufficiently small h0), we obtain the
following estimate, where we can choose ρ > 0 small at the expense
of enlarging the constant in front of |eu|2M(x∗):

1
2

d
dt
|eu|2M(x∗) +

1
2
|eu|2A(x∗) ≤ c |eu|2M(x∗) + c |ex|2M∗(x∗)

+ ρ |ev|2M∗(x∗) −
1
2

d
dt

(
eT
u(M(x)−M(x∗))eu

)
+ c‖du‖2

?,x∗ .
(D.32)

(B) Estimates in the surface equation: Based on section D.5, we obtain

|ev|2M∗(x∗) ≤ c |ex|2M∗(x∗) + |eT
v (g(x,u)− g(x∗,u∗))| + c ‖dv‖2

∗,x∗ ,

where the coupling term can be estimated based on (iii) in the proof
of proposition D.5.1 and (vii) above:

|eT
v (g(x,u)− g(x∗,u∗))|
≤ |ev|M(x∗)(|eu|M(x∗) + |eu|A(x∗) + |ex|M∗(x∗)).

We then obtain

(D.33)|ėx|2M∗(x∗) ≤ C(|ex|2M∗(x∗) + |eu|2M(x∗) + |eu|2A(x∗) + ‖dv‖2
?,x∗).

As in Section D.5, this provides the estimate

1
2

d
dt
|ex|2M∗(x∗) ≤ C(|ex|2M∗(x∗) + |eu|2M(x∗) + |eu|2A(x∗) + ‖dv‖2

?,x∗).

(D.34)
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(C) Combination: We first insert (D.33) into (D.32), where we can
choose ρ > 0 so small that Cρ ≤ 1/2 for the constant C in (D.33).
Then we take a linear combination of (D.32) and (D.34) to obtain,
for a sufficiently small σ > 0,

d
dt
|eu|2M(x∗)+

1
2
|eu|2A(x∗) + σ

d
dt
|ex|2M∗(x∗)

≤ c |eu|2M(x∗) + c |ex|2M∗(x∗) +
d
dt

(
eT
u(M(x)−M(x∗))eu

)
+ c‖du‖2

?,x∗+c‖dv‖2
?,x∗ .

We integrate both sides over [0, t], for 0 ≤ t ≤ t∗, to get

|eu(t)|2M(x∗) +
1
2

∫ t

0
|eu(s)|2A(x∗) ds + σ |ex(t)|2M∗(x∗)

≤ |eu(0)|2M(x∗) + |ex(0)|2M∗(x∗) + c
∫ t

0
|eu(s)|2M(x∗) + |ex(s)|2M∗(x∗) ds

− eu(t)T (M(x)−M(x∗))eu(t)

+ c
∫ t

0
‖du(s)‖2

∗,x∗ + ‖dv(s)‖2
∗,x∗ ds.

The middle term can be further bounded using lemmas D.4.1–D.4.3
and an L2 − L∞ − L2 estimate, as

eu(t)T (M(x)−M(x∗))eu(t) =
∫ 1

0

∫
Γθ

h

eθ
u · (∇Γθ

h
· eθ

x)eθ
u dθ

≤ c |eu(t)|2M(x∗) ‖∇Γh(x∗) · ex‖L∞(Γh(x∗))

≤ ch(κ−1)/2 |eu(t)|2M(x∗),

where we used the first bound from (D.28) in the last inequality.
Absorbing this to the left-hand side and using Gronwall’s inequal-

ity yields the stability estimates:

|eu(t)|2M(x∗)+
∫ t

0
|eu(s)|2A(x∗) ds + |ex(t)|2M∗(x∗)

≤ c
∫ t

0
‖du(s)‖2

∗,x∗ + ‖dv(s)‖2
∗,x∗ ds,
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Inserting this bound in (D.33), squaring and integrating from 0
to t yields∫ t

0
|ev(s)|2M∗(x∗) ds ≤ c

∫ t

0

(
‖du(s)‖2

?,x∗+‖dv(s)‖2
?,x∗

)
ds.

With the assumed bounds of the defects, we obtain O(hk) error
estimates for 0 ≤ t ≤ t∗. Finally, to show that t∗ = T, we use the
same argument as at the end of the proof of Proposition D.5.1. �

D.7. Geometric estimates

In this section we give further notations and some technical lemmas
from [54] that will be used later on. Most of the results are high-
order and time-dependent extensions of geometric approximation
estimates shown in [29, 31, 35] and [23].

D.7.1. The interpolating surface

We return to the setting of section D.2, where X( · , t) defines a
smooth surface Γ(t) = Γ(X( · , t)). For an admissible triangulation of
Γ(t) with nodes x∗j (t) = X(pj, t) and the corresponding nodal vector
x∗(t) = (x∗j (t)), we define the interpolating surface by

X∗h(ph, t) =
N

∑
j=1

x∗j (t) φj[x(0)](ph), ph ∈ Γ0
h,

which has the properties that X∗h(pj, t) = x∗j (t) = X(pj, t) for j =
1, . . . , N, and

Γ∗h(t) – Γh(x∗(t)) = Γ(X∗h( · , t)).

In the following we drop the argument t when it is not essential.
The velocity of the interpolating surface Γ∗h, defined as in section
D.2.3, is denoted by v∗h.
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D.7.2. Approximation results

The lift of a function ηh : Γ∗h(t)→ R is again denoted by ηl
h : Γ(t)→

R, defined via the oriented distance function d between Γ∗h(t) and
Γ(t) provided that the surfaces are sufficiently close (which is the
case if h is sufficiently small).

Lemma D.7.1 (Equivalence of norms [29, lemma 3], [23]). Let
ηh : Γ∗h(t) → R with lift ηl

h : Γ(t) → R. Then the Lp and W1,p

norms on the discrete and continuous surfaces are equivalent for
1 ≤ p ≤ ∞, uniformly in the mesh size h ≤ h0 (with sufficiently
small h0 > 0) and in t ∈ [0, T].

In particular, there is a constant c such that for h ≤ h0 and 0 ≤ t ≤ T,

c−1 ‖ηh‖L2(Γ∗h(t)) ≤ ‖ηl
h‖L2(Γ(t)) ≤ c ‖ηh‖L2(Γ∗h(t)),

c−1 ‖ηh‖H1(Γ∗h(t)) ≤ ‖ηl
h‖H1(Γ(t)) ≤ c ‖ηh‖H1(Γ∗h(t)).

Later on the following estimates will be used. They have been
shown in [54], based on [23] and [35].

Lemma D.7.2. Let Γ(t) and Γ∗h(t) be as above in Section D.7.1. Then,
for h ≤ h0 with a sufficiently small h0 > 0, we have the following
estimates for the distance function d from (D.8), and for the error in
the normal vector:

‖d‖L∞(Γ∗h(t)) ≤ chk+1, ‖νΓ(t) − νl
Γ∗h(t)‖L∞(Γ(t)) ≤ chk,

with constants independent of h ≤ h0 and t ∈ [0, T].
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D.7.3. Bilinear forms and their estimates

We use surface-dependent bilinear forms defined similarly as in
[35]: Let X be a given surface with velocity v, with interpolation
surface X∗h with velocity v∗h. For arbitrary z, ϕ ∈ H1(Γ(X)) we set

m(X; z, ϕ) =
∫

Γ(X)
zϕ,

a(X; z, ϕ) =
∫

Γ(X)
∇Γz · ∇Γ ϕ,

q(X; v; z, ϕ) =
∫

Γ(X)
(∇Γ · v)zϕ,

and for Zh, φh ∈ Sh(x∗) we set

m(X∗h ; Zh, φh) =
∫

Γ(X∗h )
Zhφh,

a(X∗h ; Zh, φh) =
∫

Γ(X∗h )
∇Γh Zh · ∇Γh φh,

q(X∗h ; v∗h; Zh, φh) =
∫

Γ(X∗h )
(∇Γh · v

∗
h)Zhφh,

where the discrete tangential gradients are understood in a piece-
wise sense. For more details see [35, lemma 2.1] (and the references
in the proof), or [34, lemma 5.2].

We start by defining a discrete velocity on the smooth surface,
denoted by v̂h. We follow sections 5.3 of [54], where the high-
order ESFEM generalization of the discrete velocity on Γ(X) from
Sections 4.3 and 5.3 of [35] is discussed. Using the lifted elements,
Γ(X) is decomposed into curved elements whose Lagrange points
move with the velocity v̂h defined by

v̂h ((X∗h)l( · , t), t) =
d
dt

(X∗h)l( · , t).
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Discrete material derivatives on Γ(X∗h) and Γ(X) are given by for
φh ∈ Sh(x∗) by

∂•v∗h
ϕh – ∂t ϕh + v∗h · ∇ϕh,

∂•v̂h
ϕl

h – ∂t ϕl
h + v̂h · ∇ϕl

h.

In [35, lemma 4.1] it was shown that the transport property of the
basis functions carries over to the lifted basis functions φj[x∗]:

∂•v̂h
φj[x∗]l = (∂•v∗h φj[x∗])l = 0 (j = 1, . . . , N).

Therefore, the above discrete material derivatives and the lift opera-
tor satisfy,

∂•v̂h
ϕl

h = (∂•v∗h ϕh)l , (D.35)

for ϕh ∈ Sh(X∗h).

Lemma D.7.3 (Transport properties [35, lemma 4.2]). For any
z(t), ϕ(t) ∈ H1(Γ(X( · , t))),

d
dt

m(X; z, ϕ) = m(X; ∂•z, ϕ) + m(X; z, ∂•ϕ) + q(X; v; z, ϕ).

The same formulas hold when Γ(X) is considered as the lift of the
discrete surface Γ(X∗h) (i.e. Γ(X) can be decomposed into curved
elements which are lifts of the elements of Γ(X∗h)), moving with the
velocity v̂h:

d
dt

m(X; z, ϕ) = m(X; ∂•v̂h
z, ϕ) + m(X; z, ∂•v̂h

ϕ) + q(X; v̂h; z, ϕ).

Similarly, in the discrete case, for arbitrary zh(t), ϕh(t) ∈ Sh(x∗(t))
we have:

d
dt

m(X∗h ; zh, ϕh) = m(X∗h ; ∂•v∗h
zh, ϕh) + m(X∗h ; zh, ∂•v∗h

ϕh)

+ q(X∗h ; v∗h; zh, ϕh),
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where v∗h is the velocity of the surface Γ(X∗h).

The following estimates, proved in lemma 5.6 of [54], will play a
crucial role in the defect bounds later on.

Lemma D.7.4 (Geometric perturbation errors). For any Zh,ψh ∈
Sh(x∗) where Γ(X∗h) is the interpolation surface of piecewise polyno-
mial degree k, we have the following bounds, for h ≤ h0 with a
sufficiently small h0 > 0,

|m(X; Zl
h, ϕl

h)−m(X∗h ; Zh, ϕh)|
≤ chk+1 ‖Zl

h‖L2(Γ(X)) ‖ϕl
h‖L2(Γ(X)),

|a(X; Zl
h, ϕl

h)− a(X∗h ; Zh, ϕh)|
≤ chk+1 |Zl

h|H1(Γ(X)) |ϕl
h|H1(Γ(X)),

|q(X; v̂h; Zl
h, ϕl

h)− q(X∗h ; v∗h; Zh, ϕh)|
≤ chk+1 ‖Zl

h‖L2(Γ(X)) ‖ϕl
h‖L2(Γ(X)).

The constant c is independent of h and t ∈ [0, T].

D.7.4. Interpolation error estimates for evolving surface
finite element functions

For any u ∈ Hk+1(Γ(X)), there is a unique piecewise polynomial
surface finite element interpolation of degree k in the nodes x∗j ,

denoted by rIhu ∈ Sh(x∗). We set Ihu – (rIhu)l : Γ(X) → R. Error
estimates for this interpolation are obtained from [23, proposition
2.7] by carefully studying the time dependence of the constants, cf.
[54].

Lemma D.7.5. There exists a constant c > 0 independent of h ≤ h0,
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with a sufficiently small h0 > 0, and t such that for u( · , t) ∈
Hk+1(Γ(t)), for 0 ≤ t ≤ T,

‖u − Ihu‖L2(Γ(X)) + h |u − Ihu|H1(Γ(X)) ≤ chk+1 ‖u‖Hk+1(Γ(X)).

The same result holds for vector valued functions. As it will always
be clear from the context we do not distinguish between interpola-
tions for scalar and vector valued functions.

D.8. Defect bounds

In this section we show that the assumed defect estimates of propo-
sition D.5.1 and D.6.1 are indeed fulfilled when the projection Πh
is chosen to be the piecewise kth-degree polynomial interpolation
operator Ih for k ≥ 2.

The interpolations satisfy the discrete problem (D.4)–(D.5) only
up to some defects. These defects are denoted by du ∈ Sh(x∗), dv ∈
Sh(x∗)3, with x∗(t) the vector of exact nodal values x∗j (t) = X(pj, t) ∈
Γ(t), and are given as follows: for all ϕh ∈ Sh(x∗) with ∂•v∗h

ϕh = 0

and ψh ∈ Sh(x∗;R3),∫
Γh(x∗)

du ϕh =
d
dt

∫
Γh(x∗)

rIhu ϕh +
∫

Γh(x∗)
∇Γh(x∗)

rIhu · ∇Γh(x∗)ϕh

−
∫

Γh(x∗)
f (rIhu,∇Γh(x∗)

rIhu) ϕh,∫
Γh(x∗)

dv · ψh =
∫

Γh(x∗)
rIhv · ψh + α

∫
Γh(x∗)

∇Γh(x∗)
rIhv · ∇Γh(x∗)ψh

−
∫

Γh(x∗)
g(rIhu,∇Γh(x∗)

rIhu)νΓh(x∗) · ψh.

Later on the vectors of nodal values of the defects du and dv are
denoted by du ∈ RN and dv ∈ R3N , respectively. These vectors,
together with dx = 0, satisfy (D.24).
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Lemma D.8.1. Let the solution u, the surface X and its velocity v be
all sufficiently smooth. Then there exists a constant c > 0 such that
for all h ≤ h0, with a sufficiently small h0 > 0, and for all t ∈ [0, T],
the defects du and dv of the kth-degree finite element interpolation are
bounded as

‖du‖∗,x∗ = ‖du‖H−1
h (Γ(X∗h )) ≤ chk,

‖dv‖∗,x∗ = ‖dv‖H−1
h (Γ(X∗h )) ≤ chk,

where the H−1
h -norm is defined in (D.17). The constant c is indepen-

dent of h and t ∈ [0, T].

Proof. (i) We start from an identity for the dual norm as in (D.18),
(omitting the argument x∗ of the matrices):

‖du‖∗,x∗ = (dT
uM(M + A)−1Mdu)

1
2 = ‖du‖H−1

h (Γ(X∗h )).

In order to estimate the defect in u, we subtract (D.3) from the
above equation, and perform almost the same proof as in [35, section
7]. We use the bilinear forms and the discrete versions of the
transport properties from lemma D.7.3. We obtain, for any ϕh ∈
Sh(x∗) with ∂•v∗h

ϕh = 0,

m(X∗h ; du, ϕh) =
d
dt

m(X∗h ; rIhu, ϕh) + a(X∗h ; rIhu, ϕh)

−m(X∗h ; f (rIhu,∇Γh
rIhu), ϕh)

= m(X∗h ; ∂•v∗h
rIhu, ϕh) + q(X∗h ; v∗h; rIhu, ϕh) + a(X∗h ; rIhu, ϕh)

−m(X∗h ; f (rIhu,∇Γh
rIhu), ϕh),

and

0 =
d
dt

m(X; u, ϕl
h) + a(X; u, ϕl

h)−m(X; f (u,∇Γ(X)u), ϕl
h)
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= m(X; ∂•v̂h
u, ϕl

h) + q(X; v̂h; u, ϕl
h)

+ a(X; u, ϕl
h)−m(X; f (u,∇Γ(X)u), ϕl

h).

Subtracting the two equation yields

m(X∗h ; du, ϕh)

= m(X∗h ; ∂•v∗h
rIhu, ϕh)− m(X; ∂•v̂h

u, ϕl
h) + q(X∗h ; v∗h; rIhu, ϕh)

− q(X; v̂h; u, ϕl
h) + a(X∗h ; rIhu, ϕh)− a(X; u, ϕl

h)

−
(

m(X∗h ; f (rIhu,∇Γh
rIhu), ϕh)− m(X; f (u,∇Γu), ϕl

h)
)

.

We bound all the terms pairwise, by using the interpolation esti-
mates of lemma D.7.5 and the estimates for the geometric perturba-
tion errors of the bilinear forms of lemma D.7.4. For the first pair,
using that (∂•v∗h

rIhu)l = ∂•v̂h
Ihu, we obtain

|m(X∗h ; ∂•v∗h
rIhu, ϕh)− m(X; ∂•v̂h

u, ϕl
h)|

≤ |m(X∗h ; ∂•v∗h
rIhu, ϕh)− m(X; ∂•v̂h

Ihu, ϕl
h)|+ |m(X; Ih∂•v̂h

u − ∂•v̂h
u, ϕl

h)|
≤ chk+1 ‖ϕl

h‖L2(Γ(X)).

For the second pair we obtain

|q(X∗h ; v∗h; rIhu, ϕh)− q(X; v̂h; u, ϕl
h)|

≤ |q(X∗h ; v∗h; rIhu, ϕh)− q(X; v̂h; Ihu, ϕl
h)| + |q(X; v∗h; Ihu − u, ϕh)|

≤ chk+1 ‖ϕl
h‖L2(Γ(X)).

The third pair is estimated by

|a(X∗h ; rIhu, ϕh)− a(X; u, ϕl
h)| ≤ |a(X∗h ; rIhu, ϕh)− a(X; Ihu, ϕl

h)|

+ |a(X; Ihu− u, ϕl
h)|

≤ chk ‖∇Γ ϕl
h‖L2(Γ(X)).
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For the last pair we use the fact that ( f (u,∇Γu))−l = f (u−l , (∇Γu)−l)
and the local Lipschitz continuity of the function f , to obtain

|m(X∗h ; f (rIhu,∇Γh
rIhu), ϕh)−m(X; f (u,∇Γu), ϕl

h)|

≤ |m(X∗h ; f (rIhu,∇Γh
rIhu)− f (u−l , (∇Γu)−l), ϕh)|

+ |m(X∗h ; f (u,∇Γu)−l , ϕh)−m(X; f (u,∇Γu), ϕl
h)|

≤ c ‖ f (rIhu,∇Γh
rIhu)− f (u−l , (∇Γu)−l)‖L2(Γ(X∗h )) ‖ϕl

h‖L2(Γ(X))

+ chk+1 ‖ϕl
h‖L2(Γ(X)).

The first term is estimated, using the local Lipschitz continuity of f
and equivalence of norms, by

‖ f (rIhu,∇Γh
rIhu)− f (u−l , (∇Γu)−l)‖L2(Γ(X∗h ))

≤ ‖ f ‖W1,∞

(
c ‖Ihu− u‖L2(Γ(X)) + c ‖∇Γ(Ihu− u)‖L2(Γ(X))

+ c ‖(∇Γh u−l)l −∇Γu‖L2(Γ(X))

)
,

where the first two terms are bounded by O(hk) using interpolation
estimates, while the third term is bounded, using remark 4.1 in [35]
and lemma D.7.2, as

‖(∇Γh u−l)l −∇Γu‖L2(Γ(X)) ≤ chk.

Thus for the fourth pair we obtained

|m(X∗h ; f (rIhu,∇Γh
rIhu), ϕh)−m(X; f (u,∇Γu), ϕl

h)| ≤ chk ‖ϕl
h‖L2(Γ(X))

Altogether, we have

m(X∗h ; du, ϕh) ≤ chk ‖ϕl
h‖H1(Γ(X)),

which, by the equivalence of norms given by lemma D.7.1, shows
the first bound of the stated lemma.

313



D. Solution driven evolving surfaces

(ii) In order to estimate the defect in v, similarly as previously we
subtract (D.3) from the above equation and use the bilinear forms
to obtain

m(X∗h ; dv , ψh)

= m(X∗h ; rIhv, ψh)−m(X; v, ψl
h)

+ α
(

a(X∗h ; rIhv, ψh)− a(X; v, ψl
h)
)

+ m(X∗h ; g(rIhu,∇Γh
rIhu)νΓ(X∗h ), ψh)−m(X; g(u,∇Γu)νΓ(X), ψl

h).

Similarly as in the previous part, these three pairs are bounded
pairwise. For the first pair we have

|m(X∗h ; rIhv, ψh)−m(X; v, ψl
h)|≤ |m(X∗h ; rIhv, ψh)−m(X; Ihv, ψl

h)|
+ |m(X; Ihv− v, ψl

h)|
≤ chk+1 ‖ψl

h‖L2(Γ(X)).

For the second pair we use the interpolation estimate to bound

|a(X∗h ; rIhv, ψh)− a(X; v, ψl
h)|≤ |a(X∗h ; rIhv, ψh)− a(X; Ihv, ψl

h)|
+ |a(X; Ihv− v, ψl

h)|
≤ chk ‖∇Γψl

h‖L2(Γ(X)).

The third pair we estimate, similarly to the nonlinear pair above, by

|m(X∗h ; g(rIhu,∇Γh
rIhu)νΓ(X∗h ), ψh)−m(X; g(u,∇Γu)νΓ(X), ψl

h)|

≤ |m(X∗h ; (g(rIhu,∇Γh
rIhu)− g(u,∇Γu)−l)νΓ(X∗h ), ψh)|

+ |m(X∗h ; g(u,∇Γu)−l(νΓ(X∗h ) − ν−l
Γ(X)), ψh)|

+ |m(X∗h ; g(u,∇Γu)−lν−l
Γ(X), ψh)−m(X; g(u,∇Γu)νΓ(X), ψl

h)|

≤chk ‖g‖W1,∞ ‖ψl
h‖L2(Γ(X)) + c ‖∇Γ(X− X∗h)‖L2(Γ(X)) ‖ψl

h‖L2(Γ(X))

+ chk+1 ‖g‖L2 ‖ψl
h‖L2(Γ(X))

314



D.9. Proof of theorem D.3.1

≤ chk ‖g‖W1,∞ ‖ψl
h‖L2(Γ(X)) + chk ‖ψl

h‖L2(Γ(X))

≤ chk ‖ψl
h‖L2(Γ(X)),

where we have used the local Lipschitz boundedness of the func-
tion g, the interpolation estimate, lemma D.7.2, and lemma D.7.4,
through a similar argument as above for the semilinear term with
f .

Finally, the combination of these bounds yields

m(X∗h ; dv, ψh) ≤ chk ‖ψl
h‖H1(Γ(X)),

providing the asserted bound on dv. �

D.9. Proof of theorem D.3.1

The errors are decomposed using interpolations and the definition
of lifts from section D.2.6: omitting the argument t,

uL
h − u = (puh − rIhu)

l
+ (Ihu− u),

vL
h − v = (pvh − rIhv)

l
+ (Ihv− v),

XL
h − X = ( pXh − rIhX)

l
+ (IhX− X).

The last terms in these formulas can be bounded in the H1(Γ) norm
by Chk, using the interpolation bounds of lemma D.7.5.

To bound the first terms on the right-hand sides, we first use
the defect bounds of lemma D.8.1, which then together with the
stability estimate of proposition D.6.1 proves the result, since by the
norm equivalences of lemma D.7.1 and equations (D.9)–(D.10) we
have (again omitting the argument t)

‖(puh − rIhu)
l‖L2(Γ) ≤ c ‖puh − rIhu‖L2(Γ∗h) = c |eu|M(x∗),

‖∇Γ (puh − rIhu)
l‖L2(Γ) ≤ c ‖∇Γ∗h (puh − rIhu)‖L2(Γ∗h) = c |eu|A(x∗),

and similarly for pvh − rIhv and pXh − rIhX.
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D.10. Extension to other velocity laws

In this section we consider the extension of our results to different
velocity laws: adding a mean curvature term to the regularized
velocity law considered so far, and a dynamic velocity law. We
concentrate on the velocity laws without coupling to the surface
PDE, since the coupling can be dealt with in the same way as
previously. We only consider the stability of the evolving surface
finite element discretization, since bounds for the consistency error
are obtained by the same arguments as before.

D.10.1. Regularized mean curvature flow

We next extend our results to the case where the velocity law
contains a mean curvature term:

v− α∆Γ(X)v− β∆Γ(X)X = g( · , t)νΓ(X) (D.36)

where g : R3 ×R→ R is a given Lipschitz continuous function of
(x, t), and α > 0 and β > 0 are fixed parameters. Here ∆Γ(X)X is a
suggestive notation for −Hn, where H denotes the mean curvature
of the surface Γ(X). (More precisely, ∆Γ(X)1 = −HνΓ(X).)

The corresponding differential-algebraic system has the following
form:

M∗(x)v + A(x)x = g(x). (D.37)

Similarly as before the corresponding error equation is given as

M∗(x∗)ev + A(x∗)ex = − (M∗(x)− M∗(x∗))v∗

− (M∗(x)− M∗(x∗))ev
− (A(x)− A(x∗))x∗ − (A(x)− A(x∗))ex
+ (g(x)− g(x∗)) − M(x∗)dv ,

together with ėx = ev.
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Proposition D.10.1. Under the assumptions of proposition D.5.1,
there exists h0 > 0 such that the following stability estimate holds for
all h ≤ h0, for 0 ≤ t ≤ T:

|ex(t)|2M∗(x∗(t)) ≤ C
∫ t

0
‖dv(s)‖2

∗,x∗ + |dx(s)|2M∗(x∗(s)) ds,

|ev(t)|2M∗(x∗(t)) ≤ C ‖dv(t)‖2
∗,x∗ + C

∫ t

0
‖dv(s)‖2

∗,x∗

+ |dx(s)|2M∗(x∗(s)) ds.

The constant C is independent of t and h, but depends on the final
time T, and on the parameters α and β.

Proof. We detail only those parts of the proof of proposition D.5.1
where the mean curvature term introduces differences, otherwise
exactly the same proof applies.

In order to prove the stability estimate we again test with ev, and
obtain

|ev|2M∗(x∗) = −eT
v (M∗(x)− M∗(x∗))v∗ − eT

v (M∗(x)− M∗(x∗))ev
− eT

v (A(x)− A(x∗))x∗ − eT
v (A(x)− A(x∗))ex

− eT
vA(x∗)ex + eT

v (g(x)− g(x∗)) − eT
vM(x∗)dv .

Every term is estimated exactly as previously in the proof of
proposition D.5.1, except the terms corresponding to the mean
curvature term, involving the stiffness matrix A. They are estimated
by the same techniques as previously:

eT
v (A(x)− A(x∗))x∗ + eT

v (A(x)− A(x∗))ex

≤ 1
6
|ev|2M∗(x∗) + c |ex|2M∗(x∗),

eT
vA(x∗)ex ≤

1
6
|ev|2M∗(x∗) + c |ex|2M∗(x∗).

317



D. Solution driven evolving surfaces

Altogether we obtain the error bound

|ev|2M∗(x∗) ≤ c |ex|2M∗(x∗) + c ‖dv‖2
∗,x∗ ,

which is exactly (D.22). The proof is then finished as before. �

With proposition D.10.1 and the appropriate defect bounds, theo-
rem D.3.1 extends directly to the system with mean curvature term
in the regularized velocity law.

D.10.2. A dynamic velocity law

Let us consider the dynamic velocity law, again without coupling
to a surface PDE:

∂•v + v∇Γ(X) · v− α∆Γ(X)v = g( · , t) νΓ(X),

where again g : R3 × R → R is a given Lipschitz continuous
function of (x, t), and α > 0 is a fixed parameter. This problem is
considered together with the ordinary differential equations (D.1)
for the positions X determining the surface Γ(X). Initial values are
specified for X and v.

The weak formulation and the semidiscrete problem can be ob-
tained by a similar argument as for the PDE on the surface in section
D.6. Therefore we immediately present the ODE formulation of the
semidiscretization. As in section D.2.5, the nodal vectors v ∈ R3N

of the finite element function vh, together with the surface nodal
vector x ∈ R3N satisfy a system of ODEs with matrices and driving
term as in section D.5:

d
dt

(
M(x)v

)
+ A(x)v = g(x, t)

ẋ = v,
(D.38)

By using the same notations for the exact positions x∗(t) ∈ R3N ,
the interpolated exact velocity v∗(t) ∈ R3N , and for the defects dv(t)
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and dx(t), we obtain that they fulfill the following equation

d
dt

(
M(x∗)v∗

)
+ A(x∗)v∗ = g(x∗, t) + M(x∗)dv

ẋ∗ = v∗.

By subtracting this from (D.38), and using similar arguments as
before, we obtain the error equations for the surface nodes and
velocity:

d
dt

(
M(x∗)ev

)
+ A(x∗)ev = − d

dt

(
(M(x)− M(x∗))v∗

)
− d

dt

(
(M(x)− M(x∗))ev

)
− (A(x)− A(x∗))v∗

− (A(x)− A(x∗))ev
+ (g(x)− g(x∗)) − M(x∗)dv

ėx = ev − dx.

We then have the following stability result.

Proposition D.10.2. Under the assumptions of Proposition D.5.1,
there exists h0 > 0 such that the following error estimate holds for all
h ≤ h0, uniformly for 0 ≤ t ≤ T:

‖ex(t)‖2
M∗(x∗(t))+‖ev(t)‖2

M(x∗(t))

+
∫ t

0
‖ev(s)‖2

A(x∗(s)) ds ≤ C
∫ t

0
‖dv(s)‖2

?,x∗ ds.

The constant C > 0 is independent of t and h, but depends on the
final time T and the parameter α.
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Proof. By testing the error equation with ev we obtain

eT
v

d
dt

(
M(x∗)ev

)
+ eT

vA(x∗)ev = − eT
v

d
dt

(
(M(x)−M(x∗))v∗

)
− eT

v

d
dt

(
(M(x)−M(x∗))ev

)
− eT

v (A(x)− A(x∗))v∗

− eT
v (A(x)− A(x∗))ev

+ eT
v (g(x)− g(x∗))− eT

vM(x∗)dv .

The terms are bounded in the same way as the corresponding terms
in the proofs of Propositions D.5.1 and D.6.1. With these estimates,
a Gronwall inequality yields the result. �

With proposition D.10.2 and the appropriate defect bounds, the-
orem D.3.1 extends directly to the parabolic surface PDE coupled
with the dynamic velocity law.

D.11. Numerical results

In this section we complement theorem D.3.1 by showing the nu-
merical behaviour of piecewise linear finite elements, which are
not covered by theorem D.3.1, but nevertheless perform remarkably
well. Moreover, we compare our regularized velocity law with
regularization by mean curvature flow.

D.11.1. A coupled problem

Our test problem is a combination of (D.2) with a mean curvature
term as in (D.36):

∂•u + u∇Γ · v− ∆Γu = f (t, x),

v− α∆Γv− β∆ΓX = δunΓ + g(t, x)νΓ,
(D.39)
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for non-negative parameters α, β, δ. The velocity law here is a
special case of (D.2) for β = 0, and reduces to (D.36) for δ = 0. The
matrix-vector form reads

d
dt

(
M (x(t))u(t)

)
+ A (x(t))u(t) = f (t,x(t))

M∗ (x(t))ẋ(t) + βA (x(t))x(t) = δN (x(t))u(t) + g (t,x(t))

for 0 ≤ t ≤ T and given x(0) and u(0), where

N (x)u|3(j−1)+` =
∫

Γh(x)
(nΓh)`ujφj[x],

for j = 1, . . . , N and ` = 1, 2, 3.
In our numerical experiments we used a linearly implicit Euler

discretization of this system with step sizes chosen so small that the
error is dominated by the spatial discretization error.

Example D.11.1. We consider (D.39) and choose f and g such that
X(p, t) = r(t)p with

r(t) =
r0rK

rKe−kt + r0(1− e−kt)

and u(X, t) = X1X2e−6t are the exact solution of the problem. The
parameters are set to be T = 1, α = 1, β = 0, δ = 0.4, r0 = 1, rK = 2
and k = 0.5.

We choose (Tk) as a series of meshes such that 2hk ≈ hk−1. In table
D.1 we report on the errors and the corresponding experimental
orders of convergence (EOC). Using the notation of section D.2.6,
the following norms are used:

‖erru‖L∞(L2) = sup
[0,T]
‖puh( · , t)− rIhu( · , t)‖L2(Γ∗h(t)),

‖erru‖L2(H1) =
(∫ T

0

∥∥∥puh( · , s)− rIhu( · , s)
∥∥∥2

H1(Γ∗h(s))
ds
) 1

2

,
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‖errv‖L∞(H1) = sup
[0,T]
‖pvh( · , t)− rIhv( · , t)‖H1(Γ∗h(t)),

‖errx‖L∞(H1) = sup
[0,T]
‖pxh( · , t)− 1Γ∗h(t)‖H1(Γ∗h(t)).

The EOCs for the errors E(hk−1) and E(hk) with mesh sizes hk−1, hk
are given via

EOC(hk−1, hk) =
log
(

E(hk−1)
E(hk)

)
log
(

hk−1
hk

) (k = 2, . . . , n).

The degree of freedoms (DOF) and maximum mesh size at time T
are also reported in the tables.

In table D.1 we report on the errors and EOCs observed using
example D.11.1. The EOCs in the PDE are expected to be 2 for
the L∞(L2) norm and 1 for the L2(H1) norm, while the errors in
the surface and in the surface velocity are expected to be 1 in the
L∞(H1) norm.

Example D.11.2. Again we consider (D.39), but this time we quanti-
tatively compare the two different regularized velocity laws. Hence,
we let δ vanish. We use a g like in example D.11.1 and run two
tests with the common parameters T = 2, r0 = 1, rK = 2 and k = 0.5,
and use the same mesh and time step levels as before. The first test
uses α = 0 and β = 1 and the second test uses α = 1 and β = 0. The
results are captured in table D.2.

Our regularized velocity law provides smaller errors as regular-
izing with mean curvature flow. The EOCs in the errors in the
surface and in the errors for the surface velocity are expected to be
1 in L∞(H1)v and L∞(H1)x norm, see table D.2.b. While it can be
observed that for this particular example the convergence rates for
α 6= 0 are higher then for β 6= 0.
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DOF h(T) ‖erru‖L∞(L2) EOC ‖erru‖L2(H1) EOC

126 0.6664 0.1519165 - 0.2727214 -
516 0.4088 0.0896624 1.08 0.1498895 1.22
2070 0.1799 0.0222349 1.70 0.0344362 1.79
8208 0.0988 0.0070552 1.91 0.0109074 1.92
32682 0.0499 0.0018319 1.98 0.0029375 1.92

(a) Errors for u

DOF h(T) ‖errv‖L∞(H1) EOC ‖errx‖L∞(H1) EOC

126 0.6664 0.2260428 - 0.1473157 -
516 0.4088 0.0595755 2.73 0.0298673 3.27
2070 0.1799 0.0158342 1.61 0.0106836 1.25
8208 0.0988 0.0053584 1.81 0.0042312 1.54

32682 0.0499 0.0019341 1.50 0.0017838 1.27

(b) Surface and velocity errors

Table D.1.: Errors and EOCs for example D.11.1

D.11.2. A model for tumor growth

Our next test problem is the coupled system of equations

∂•u + u∇Γ · v− ∆Γu = f1(u, w),

∂•w + w∇Γ · v− Dc∆Γw = f2(u, w),

v− α∆Γv− β∆ΓX = δunΓ,

(D.40)

where

f1(u, w) = γ(a− u + u2w), f2(u, w) = γ(b− u2w),

with non-negative parameters Dc, γ, a, b, α, β.
For α = 0 this system has been used as a simplified model for

tumor growth; see Barreira, Elliott and Madzvamuse [6] and [42, 17].
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h(T) L∞(L2)v EOC L∞(H1)v EOC L∞(H1)x EOC

0.6664 0.756045 - 1.31532 - 1.601255 -
0.4088 0.393067 1.34 0.78538 1.06 0.522342 2.29
0.1799 0.095914 1.72 0.96206 −0.25 0.137396 1.63
0.0988 0.035166 1.67 1.48784 −0.73 0.044666 1.87
0.0499 0.019755 0.85 2.73584 −0.89 0.013507 1.75

(a) Surface and velocity errors with parameters α = 0 and β = 1.

h(T) L∞(L2)v EOC L∞(H1)v EOC L∞(H1)x EOC

0.6664 0.149836 - 0.225114 - 0.143419 -
0.4088 0.036118 2.91 0.058147 2.77 0.024087 3.65
0.1799 0.009286 1.65 0.015843 1.58 0.009702 1.11
0.0988 0.002705 2.06 0.005361 1.81 0.003990 1.48
0.0499 0.000686 2.01 0.001935 1.49 0.001746 1.21

(b) Surface and velocity errors with parameters α = 1 and β = 0.

Table D.2.: Errors and EOCs for example D.11.2.

These authors used the mean curvature term with a small parameter
β > 0 to regularize their velocity law.

We used piecewise linear finite elements and the same time
discretization scheme as in [6, 42].

Example D.11.3. We consider (D.40) and want to compare qualita-
tively the two different regularized velocity laws α 6= 0 and β 6= 0.
As common parameters we use Dc = 10, γ = 100, a = 0.1, b = 0.9
and T = 5. The initial surface is a sphere and the initial values
u0 and w0 are calculated by solving an auxiliary surface PDE as
follows. We take small perturbations around the steady state(

ru0

rw0

)
=
(

a + b + ε1(x)
b

(a+b)2 + ε2(x)

)
,
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where ε1(x), ε2(x) ∈ [0, 0.01] take random values. We solve the
auxiliary coupled diffusion equations with the stationary initial
surface until time rT = 5. We set u0 = ru(rT) and w0 = rw(rT), which we
used as initial values for (D.40).

We perform two experiments with (α, β) = (0, 0.01) and (α, β) =
(0.01, 0). We present snapshots in figure D.1. We observe that both
velocity laws display the same qualitative behavior, also agreeing
with [42].
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Figure D.1.: Simulation for example D.11.3. The first column cor-
responds to (α, β) = (0, 0.01) and the second column to
(α, β) = (0.01, 0).
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