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1. Abstract

1.1. English

The main topic of this compilation thesis is the investigation of multipartite entangle-
ment of finite dimensional systems. We developed a numerical algorithm that detects if
a multipartite state is entangled or separable in a finite number of steps of a semi-definite
optimization task. This method is an extension of previously known semi-definite meth-
ods, which are inconclusive when the state is separable. In our case, if the state is
separable, an explicit decomposition into a mixture of separable states can be extracted.
This was achieved by mapping the entanglement problem onto the mathematically well
studied truncated moment problem. Additionally, a new way of writing the partially
transposed state for symmetric multi-qubit states was developed which simplifies many
results previously known in entanglement theory. This new way of writing the par-
tial transpose criterion unifies different interpretations and alternative formulations of
the partial transpose criterion and it is also a part in the aforementioned semi-definite
algorithm.

The geometric properties of entangled symmetric states of two qubits were studied in
detail: We could answer the question of how far a given pure state is from the convex hull
of symmetric separable states, as measured by the Hilbert-Schmidt distance, by giving
an explicit formula for the closest separable symmetric state. For mixed states we could
provide a numerical upper and analytical lower bound for this distance. For a larger
number of qubits we investigated the ball of absolutely classical states, i.e. symmetric
multi-qubit states that stay separable under any unitary transformation. We found an
analytical lower bound for the radius of this ball around the maximally mixed symmetric
state and gave a numerical upper bound on this radius, by searching for an entangled
state as close as possible to the maximally mixed symmetric state.

The tensor representation of a symmetric multi-qubit state, or spin-j state, allowed us
to study entanglement properties based on the spectrum of the tensor via tensor eigenval-
ues. The definiteness of this tensor relates to the entanglement of the state it represents
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and, hence, the smallest tensor eigenvalue can be used to detect entanglement. However,
the tensor eigenvalues are more difficult to determine than the familiar matrix eigenval-
ues which made the investigation computationally more challenging. The relationship
between the value of the smallest tensor eigenvalue and the amount of entanglement
in the state was also investigated. It turned out that they are strongly correlated for
small system sizes, i.e. for up to six qubits. However, to investigate this correlation we
needed an independent way to gauge the amount of entanglement of a state and in order
to do so we improved existing numerical methods to determine the distance of a state
to the set of separable symmetric states, using a combination of linear and quadratic
programming. The tensor representation of symmetric multi-qubit states was also used
to formally define a new tensor class of regularly decomposable tensors that corresponds
to the set of separable symmetric multi-qubit states.

1.2. Français

Le thème central de cette thèse cumulative est l’étude de l’intrication multi-partite quan-
tique pour des systèmes de dimension finie. Nous avons developpé un algorithme numé-
rique basé sur un problème d’optimisation semi-définie, qui permet de décider si un état
est intriqué ou pas en un nombre fini d’itérations. Cet algorithme est une extension
d’algorithmes déjà connus qui ne permettent pas de conclure lorsque l’état en question
est séparable. Dans notre cas, si l’état est séparable, l’algorithme permet d’obtenir une
décomposition de l’état en une mixture d’états séparables. Ces résultats ont été obtenus
en exploitant la correspondance entre le problème de l’intrication et le problème des mo-
ments tronqués (truncated moment problem). Nous avons aussi développé une nouvelle
manière d’exprimer l’état partiellement transposé d’un état symétrique de plusieurs qu-
bits, simplifiant par la-même nombre de résultats bien connus en théorie de l’intrication.
Cette nouvelle manière d’écrire le critère de transposée partielle unifie différentes inter-
prétations et formulations alternatives dudit critère, et fait partie intégrante de notre
algorithme d’optimisation semi-définie.

Nous avons aussi etudié en détails les propriétés géométriques des états intriqués de
deux qubits : nous avons pu répondre à la question de savoir à quelle distance un état pur
est de l’enveloppe convexe des états symétriques et séparables, en donnant une formule
explicite de l’état symétrique et séparable le plus proche — la distance étant celle de
Hilbert-Schmidt. Pour les états mixtes nous avons pu obtenir et une borne supérieure
numérique et une borne inférieure analytique pour cette distance. Pour un plus grand
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nombre de qubits, nous nous sommes intéressés à la boule des états absolument classique,
c’est à dire des états symétriques de plusieurs qubits qui restent séparables sous n’importe
quelle transformation unitaire. Nous avons trouvé une borne inférieure analytique pour le
rayon de cette boule autour de l’état maximallement mixte ainsi qu’une borne supérieure
numérique, cette dernière ayant été obtenue en cherchant un état intriqué aussi proche
que possible de l’état maximallement mixte.

La représentation tensorielle d’un état symétrique de plusieurs qubits, autrement dit
de l’état d’un spin j, nous a permis d’étudier des propriétés de l’intrication en nous basant
sur le spectre du tenseur (valeurs propres du tenseur). Le caractère defini du tenseur est
relié à l’intrication de l’état qu’il représente, donnant la possibilité de détecter la presence
d’intrication à l’aide de la valeur propre minimale du tenseur. Toutefois, les valeurs
propres du tenseur sont autrement plus compliquée à calculer que les valeurs propres
matricielle, rendant l’analyse numérique plus délicate. La relation entre la valeur propre
minimale du tenseur et la quantité d’intrication présente dans l’état a aussi été étudiée.
Il en ressort que les deux quantités sont étroitement corrélées pour des systèmes de petite
taille, c’est à dire jusqu’a six qubits. L’étude de ces corrélations a nécessité une méthode
indépendente pour jauger de la quantité d’intrication présente dans un état. Pour cela
nous avons amélioré des méthodes numériques pour déterminer la distance entre un état
et l’ensemble composé des états symétriques et séparables, en utilisant une combinaison
d’algorithmes d’optimisation quadratique et d’optimisation linéaire. La représentation
tensorielle des états symétriques de plusieurs qubits a aussi été utilisée pour définir
formellement une nouvelle classe de tenseurs, appellés "regularly decomposable tensors",
qui correspond à l’ensemble des états symétriques et séparables de plusieurs qubits.

1.3. Deutsch

Das zentrale Thema dieser kumulativen Dissertation ist die Untersuchung der multi-
partiten Quantenverschränkung endlich dimensionaler Systeme. Wir entwickelten einen
semidefiniten Optimisierungsalgorithmus der in einer endlichen Anzahl von Schritten
erkennt, ob ein Zustand separabel oder verschränkt ist. Dieser Algorithmus ist eine Er-
weiterung von bestehenden semidefiniten Methoden, die keine Aussage treffen, wenn der
Zustand separabel ist. Wir hingegen sind in der Lage in diesem Fall eine explizite Zer-
legung in ein Gemisch aus reinen separablen Zuständen auszugeben. Dies erreichten wir
indem wir das Verschränkungsproblem als mathematisches „truncated moment problem”
umschreiben, für welches es wiederum existierende numerische Lösungsmethoden gibt.
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Darüber hinaus entwickelten wir eine neue Art das partielle Transpositionskriterium zu
formulieren, wodurch wir in der Lage waren einige existierende Verschränkungskriteri-
en zu vereinen. Diese Reformulierung wird auch in dem neu entwickelten numerischen
Algorithmus genutzt.

Die geometrischen Eigenschaften von symmetrischen zwei Qubit Zuständen wurden
detailliert untersucht. Wir konnten die Frage beantworten, wie weit ein reiner Zustand
von der konvexen Hülle der separablen symmetrischen Zuständen entfernt liegt. Au-
ßerdem konnten wir für gemischte Zustände eine analytische untere Schranke und eine
numerische obere Schranke für diese Entfernung angeben. Für größere Qubitsysteme
untersuchten wir den Ball der absolut klassischen Zustände, d.h. der symmetrischen
Vielteilchen-Qubit Zustände, die unter jeder unitären Transformation separable bleiben.
Für den Radius dieses Balles um den maximal gemischten Zustand fanden wir eine analy-
tische untere Schranke; außerdem konnten wir eine numerische obere Schranke angeben,
indem wir nach einem verschränkten Zustand gesucht haben der sich so nah wie möglich
an dem maximal gemischten Zustand befindet.

Die Tensor-Darstellung von symmetrischen Vielteilchen-Qubit Zuständen, oder auch
Spin-j Zuständen, erlaubte uns Verschränkungseigenschaften mit dem Spektrum eines
Tensors in Verbindung zu bringen, indem wir Tensoreigenwerte untersuchten. Die Defi-
nitheit dieses Tensors steht im Verhältnis zu der Verschränkung des zugrunde liegenden
Zustandes und daher kann der kleinste Tensoreigenwert genutzt werden um Verschrän-
kung zu detektieren. Allerdings sind Tensoreigenwerte komplizierter zu berechnen als
die üblichen Matrixeigenwerte, was diese Untersuchung erschwerte. Darüber hinaus un-
tersuchten wir auch das Verhältnis zwischen dem Wert des kleinsten Tensoreigenwerts
und der Quantität der Verschränkung. Es stellte sich heraus, dass diese zwei für kleine
Systeme von bis zu sechs Qubits stark korreliert sind. Für diese Untersuchung benötigten
wir allerdings eine unabhängige Methode um die Verschränkungsstärke zu messen, da-
her entwickelten wir eine bekannte Methode weiter, die den minimalen Hibert-Schmidt
Abstand zu den separablen symmetrischen Zuständen bestimmt. Dies wurde durch ei-
ne Kombination aus einem linearen und einem quadratischen Programm erreicht. Die
Tensor-Darstellung wurde auch genutzt um eine neue Klasse von "regulär zerlegbaren
Tensoren" formal zu definieren, die exakt der Menge der separablen symmetrischen Zu-
ständen entspricht.
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2. Spin states

In this chapter we will introduce spin coherent states and related concepts, which are
essential ingredients in the publications of this thesis. The presentation will be more
detailed than in the papers to help readers who are not familiar with those concepts
and to provide a sound background to understand the more compact descriptions in the
publications. The descriptions in this chapter are based on the book [1].

2.1. Spin-j states

The theory of spin states can be started with the generators of rotation around the i-th
axes Ji, which obey the fundamental commutator relations

[Ji, Jj] = iεijkJk, i, j, k ∈ {1, 2, 3}, (2.1)

with εijk the Levi-Civita symbol. We take ~ = 1 throughout this thesis and use as label
for the axes either letters as in Jx, Jy, Jz or equivalently numbers as in J1, J2, J3. Since
the three Ji operators do not commute a basis of all spin-j states cannot be given only
by eigenstates of the Ji operators. Instead we will also use the operator

J 2 ≡ J · J = J2
x + J2

y + J2
z , (2.2)

which commutes with all Ji, as

[J 2, Ji] = 0 ∀i. (2.3)

Therefore, any spin state can be written in the basis |j,m〉 of common eigenstates of J 2

and e.g. Jz with

J 2 |j,m〉 = j(j + 1) |j,m〉 , j =
n

2
, n ∈ N (2.4)

Jz |j,m〉 = m |j,m〉 , m ∈ {−j, . . . , j}. (2.5)
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The rotation operator around the normalized vector n with the rotation angle φ can
be written with the generators of rotation defined by (2.1) as

Rj(n, φ) = e−iφJ·n. (2.6)

From this definition it is obvious that a rotation cannot change the value of j because
J2 commutes with every Jk and hence also with functions of it.

For computational aid we define the ladder operators as

J± = Jx ± iJy. (2.7)

These non-Hermitian operators obey the commutation relations

[J+, J−] = 2Jz, [Jz, J±] = ±J±, and [J 2, J±] = 0, (2.8)

which can be worked out with (2.3). These ladder operators have the property that they
raise or lower the quantum number m, as

J± |j,m〉 =
√

(j ∓m)(j ±m+ 1) |j,m± 1〉 , (2.9)

which can be derived with (2.8).

2.2. Spin coherent states

Spin coherent states can be defined as the eigenstates of the vector spin operator with
eigenvalue j, such that

J · n |α〉 = j |α〉 , (2.10)

with n = (sin θ cosφ, sin θ sinφ, cos θ)T , where T stands for the transposition.
To find all states of this form we start by guessing a state that fulfills (2.10), which is

the spin-up state |j, j〉, and n = (0, 0, 1)T such that

Jz |j, j〉 = j |j, j〉 . (2.11)

With that solution we can generate all states of the form (2.10) by rotating the state
|j, j〉 around the y-axes and then the z-axes with angles θ and φ [we define the compact
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notation α = (θ, φ)] such that θ is the polar angle and φ the azimuthal angle, as

|α〉 = Rj(θ, φ) |j, j〉 = e−iφJze−iθJy |j, j〉 . (2.12)

All rotated states of |j, j〉 can be reached in this way. All states of this form satisfy
(2.10), which can be seen by a direct calculation of

Rj(θ, φ)†(J · n)Rj(θ, φ) = Jz (2.13)

or intuitively by rotating the coordinate system. With this definition of spin coherent
states it is obvious that they remain coherent under rotation, since only the angles (θ, φ)

will change.
For practical applications it is useful to write the spin coherent state in the usual |j,m〉

basis. This calculation will be worked out here in detail. First we insert the identity
operator in the |j,m〉 basis to get

|α〉 =

j∑

m=−j
|j,m〉 〈j,m| e−iφJze−iθJy |j, j〉

=

j∑

m=−j
e−imφ |j,m〉 〈j,m| e−iθJy |j, j〉 , (2.14)

where we have used 〈j,m| e−iφJz = e−imφ 〈j,m| by Eq. (2.5). That leaves the calculation
of

dm(θ) = 〈j,m| e−iθJy |j, j〉 , (2.15)

which is a special case of the general Wigner d-matrix [2]. To derive the explicit form
of dm(θ), we will introduce Schwinger’s oscillator model.

2.2.1. Schwinger’s oscillator model

Schwinger’s oscillator model [3] connects a spin-j state to the state of two uncoupled
harmonic oscillators with a total number of 2j excitations, such that the description is
formally equivalent.

The first harmonic oscillator will be labeled with a plus and the second with a minus
sign. The usual commutation relations between the creation and annihilation operators
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apply,

[a+, a
†
+] = 1, [a−, a

†
−] = 1, (2.16)

where a+ (a−) is the annihilation operator of the plus (minus) type oscillator.
The harmonic oscillators are separated physical systems and therefore

[a+, a
†
−] = [a−, a

†
+] = 0. (2.17)

All number states of the harmonic oscillators can be generated from the ground state of
both oscillators defined by a± |0, 0〉 = 0 by

(
a†+

)n+
(
a†−

)n−
|0, 0〉 =

√
n+!n−! |n+, n−〉 , n+, n− ∈ N. (2.18)

With those operators one can then define

Jz ≡
a†+a+ − a†−a−

2
, J+ ≡ a†+a−, J− ≡ a†−a+. (2.19)

It is easy to see that these operators satisfy the angular momentum commutation rela-
tions (2.8) and are therefore formally equivalent to angular momentum operators. The
application of J+ destroys one excitation in the minus-type oscillator and creates one
in the plus-type. Hence, just like the action of the ladder operator given in (2.7), the
action of J+ corresponds to an increase of the spin quantum number m by one. The
operator J− does the opposite action, while the Jz counts the difference between the two
occupation numbers of both oscillators. This allows to make the connection

j =
n+ + n−

2
, m =

n+ − n−
2

, (2.20)

where n+ (n−) is the number of photons in the plus (minus) type oscillator, given as

a†±a± |n+, n−〉 = n± |n+, n−〉 . (2.21)

This allows us to make the identification

|j,m〉 =

(
a†+

)j+m (
a†−

)j−m
√

(j +m)!(j −m)!
|0, 0〉 , (2.22)
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where |0, 0〉 is the again the ground state of both harmonic oscillators. With that a spin-
j state can be visualized as being a symmetric state of 2j bosonic spin-1/2 particles,
with (j +m) of them pointing upwards and (j −m) pointing downwards.

In the process of calculating the expression (2.15) we will further use the operator

Jy =
a†+a− − a†−a+

2i
, (2.23)

which is derived from Jy = 1
2i

(J+ − J−) and the state

|j, j〉 =
(a†+)2j√

(2j)!
|0, 0〉 . (2.24)

2.2.2. Wigner’s d-Matrix

Using this connection allows to utilize (2.23) and (2.24) to write

dm(θ) =
1√
(2j)!

〈j,m| e−iθJy(a†+)2jeiθJy e−iθJy |0, 0〉︸ ︷︷ ︸
|0,0〉

, (2.25)

where the identification in the underbracket is correct since the operator Jy (2.23) acts
always first with an annihilation operator, so only the first term in the expansion of the
exponential function, 1, contributes. By repeatedly inserting identities in the form of
eiθJye−iθJy in between the products of a†+, Eq. (2.25) can be written as

dm(θ) =
1√
(2j)!

〈j,m|
(
e−iθJya†+e

iθJy
)2j
|0, 0〉 . (2.26)

Using the Baker-Campbell-Hausdorff formula, the bracket in (2.26) can be calculated as

e−iθJya†+e
iθJy =

∞∑

k=0

(iθ)k

k!
[Jy, a

†
+]k (2.27)

with the commutator function defined as

[A,B]0 = B, and [A,B]k = [A, [A,B]k−1]. (2.28)
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Next, we calculate the commutator function appearing in the sum by using Eq. (2.23)
and obtain for

[Jy, a
†
+] = − 1

2i
[a†−a+, a

†
+] = − 1

2i
a†−, (2.29)

and

[Jy, a
†
−] =

1

2i
[a†+a−, a

†
−] =

1

2i
a†+. (2.30)

With these two results we get the general form, as

[Jy, a
†
+]k =





2−ka†+ k even

i2−ka†− k odd.
(2.31)

Now, inserting (2.31) into Eq.(2.27) and sorting the sum into even and odd parts gives

∞∑

k=0

(iθ)k

k!
[Jy, a

†
+]k =

∞∑

k=0

{
(−1)k

(2k)!

(
θ

2

)2k

a†+ −
(−1)k

(2k + 1)!

(
θ

2

)2k+1

a†−

}
(2.32)

= cos

(
θ

2

)
a†+ − sin

(
θ

2

)
a†−. (2.33)

This result is now inserted into Eq. (2.26), as

dm(θ) =
1√
(2j)!

〈j,m|
[
cos

(
θ

2

)
a†+ − sin

(
θ

2

)
a†−

]2j
|0, 0〉 . (2.34)

Because the operators of the plus and the minus type commute, we can use the binomial
formula and apply it to the zero state, as

dm(θ) =
1√
(2j)!

〈j,m|
2j∑

k=0

(
2j

k

)
cos

(
θ

2

)2j−k
sin

(
θ

2

)k
(a†+)2j−k(a†−)k |0, 0〉 (2.35)

=
1√
(2j)!

2j∑

k=0

(
2j

k

)
cos

(
θ

2

)2j−k
sin

(
θ

2

)k√
(2j − k)!

√
k!〈j,m |j, j − k〉 , (2.36)

(2.37)
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where we have used (2.22) to get |j, j − k〉. The orthonormality of the |j,m〉 basis allows
to identify 〈j,m |j, j − k〉 = δm,j−k = δk,j−m, and thus

dm(θ) =
1√
(2j)!

(
2j

j −m

)√
(j +m)!

√
(j −m)!

(
cos

θ

2

)j+m(
sin

θ

2

)j−m
(2.38)

=

√(
2j

j +m

)(
cos

θ

2

)j+m(
sin

θ

2

)j−m
. (2.39)

Now, we can finally insert this into Eq. (2.14) to get the explicit form of a spin coherent
state in the |j,m〉 basis as

|α〉 =

j∑

m=−j

√(
2j

j +m

)(
cos

θ

2

)j+m(
sin

θ

2
eiφ
)j−m

|j,m〉 , (2.40)

where the state was multiplied with an irrelevant phase factor eijφ. Note that in the
literature there is no agreement on the conventions of the signs of the angles θ and φ.

2.3. Properties of spin coherent states

In this section we will discuss some properties of spin coherent states. In the following
we will use two different names for two-level states, either spins-1/2 states if we talk
about a single system, or qubits if we consider multi-partite states of many two-level
systems.

2.3.1. Spin-j states as combination of qubits

By the rules of addition of angular momentum, a N qubit symmetric state can be seen
as a spin-j state, with j = N/2, if the qubits are added to a maximal total spin of j.
This can be seen easily by acting with the ladder operator J− = Jx − iJy on the state
|j, j〉, where this state can be created by adding N times the qubit up-state, as

∣∣1
2
, 1
2

〉⊗N

in the Hilbert space of N qubits. Note that one can use the operator J− to go from one
basis state to another, as

J− |j,m〉 =
√

(j +m)(j −m+ 1) |j,m− 1〉 . (2.41)

So by repeatedly applying J− to |j, j〉 one can generate all basis states |j,m〉. Because
both |j, j〉 and J− are fully symmetric under the permutation of all qubits, all |j,m〉
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states also lie in the fully symmetric subspace of the total Hilbert space H = C2N of
N -qubits.

The explicit form of the spin-j states |j,m〉 in the Hilbert space of N -qubits H = C2N ,
is given as the Dicke state [4]

∣∣∣D(k)
N

〉
= N

∑

π

| ↑ . . . ↑︸ ︷︷ ︸
k

↓ . . . ↓︸ ︷︷ ︸
N−k

〉, k = 0, . . . N, (2.42)

where the sum runs over all permutations of the the qubits, written here as |↑〉 ≡
∣∣1
2
, 1
2

〉

and |↓〉 ≡
∣∣1
2
,−1

2

〉
, and with N a normalization constant.

Then we have the correspondence

|j,m〉 ↔
∣∣∣D(j+m)

2j

〉
, (2.43)

since in the state
∣∣∣D(j+m)

2j

〉
, (j +m) qubits point upwards each of them give a contribu-

tion of 1
2
to m, and the remaining (j −m) qubits point downwards which give each a

contribution of −1
2
to m. So the value of m is indeed

1

2
(j +m)− 1

2
(j −m) = m. (2.44)

With that correspondence, we see that spin-j coherent states have a particular simple
decomposition as a multi-qubit state, since they can be written as tensor product of
identical qubit states as

|α〉j = |α〉 1
2
⊗ · · · ⊗ |α〉 1

2︸ ︷︷ ︸
2j

(2.45)

where we have added a subscript indicating the total spin quantum number and we
denote a pure qubit state as |α〉 1

2
, since all pure qubit states are also spin-1/2 coherent

states. This identification can be seen by direct calculation or more easily with the
definition of spin coherent states (2.12): The state |j, j〉 can be written as the 2j-fold
tensor product of the qubit state

∣∣1
2
, 1
2

〉
and the rotation of the state |j, j〉 can be written
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as identical rotations on the individual qubit states, as

|α〉j = Rj(θ, φ) |j, j〉 = R1/2(θ, φ)

∣∣∣∣
1

2
,
1

2

〉
⊗ · · · ⊗R1/2(θ, φ)

∣∣∣∣
1

2
,
1

2

〉

︸ ︷︷ ︸
2j

(2.46)

= |α〉 1
2
⊗ · · · ⊗ |α〉 1

2︸ ︷︷ ︸
2j

, (2.47)

where Rj(θ, φ) is a rotation of a spin-j state and R1/2(θ, φ) is a rotation of a single qubit.
Until here we have only talked about symmetric pure states. If also symmetric mixed

states are considered, the situation becomes more subtle. A mixed symmetric state of
qubits is a classical mixture of pure symmetric states |ψi〉sym as

ρ =
∑

i

wi |ψi〉sym 〈ψi|sym , (2.48)

with
∑

iwi = 1 and wi > 0. This definition implies that a symmetric state is equal
to its projection onto the symmetric subspace spanned by the Dicke states. It is im-
portant to stress that for mixed states it is not enough to demand that a state should
be invariant under permutations of the subsystems, since this can also be achieved by
classical symmetrization. We want to consider only a symmetry which originates in the
quantum nature of indistinguishable particles. To make this distinction clear we will
give an example of a state which is not symmetric in this sense. Consider the state

ρ = σ ⊗ σ (2.49)

with σ a non-pure qubit state. This state is not a symmetric state, which can be seen
by writing σ as a decomposition of two pure qubit states

σ = w |ψ〉 〈ψ|+ (1− w) |φ〉 〈φ| . (2.50)

Then

ρ = w2 |ψψ〉 〈ψψ|+ (1− w)2 |φφ〉 〈φφ|+ w(1− w)(|ψφ〉 〈ψφ|+ |φψ〉 〈φψ|), (2.51)

where the last two contributions are not symmetric, i.e. the projection onto the anti-
symmetric singlet state |Ψ〉 = 1√

2
(|↑↓〉− |↓↑〉 is in general (for |φ〉 6= |ψ〉 and 1 > w > 0)
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not zero:
〈Ψ| ρ |Ψ〉 = 2w(1− w)| 〈Ψ|ψφ〉|2 6= 0. (2.52)

Therefore the projection of ρ onto the Dicke states does not reproduce ρ. This is a subtle
point as the classical uncertainty in the mixed state σ prevents the state ρ to be sym-
metric. Or in other words, every mixed symmetric state is invariant under permutation
of the subsystems, but the reverse is, in general, not true.

2.3.2. Overlap of spin coherent states

The spin coherent states form an overcomplete basis of the (2j+ 1) dimensional Hilbert
space of spin-j states as,

2j + 1

4π

∫
|α〉 〈α| dα = 12j+1. (2.53)

However, they are in general not orthogonal to each other. This can be seen by calcu-
lating the overlap of two different spin coherent states, with the explicit form (2.40) and
the orthonormality of the |j,m〉 basis, as

〈α′|α〉 =

(
cos

θ

2
cos

θ′

2
+ ei(φ−φ

′) sin
θ

2
sin

θ′

2

)2j

, (2.54)

which is in general not zero. The only states which are orthogonal to each other are the
spin coherent states which lay at antipodal points on the sphere. This can be seen by
calculating the absolute value of (2.54), as

|〈α′|α〉| =
[

1 + cos θ cos θ′ + sin θ sin θ′ cos (φ− φ′)
2

]2j

= cos2j
(
β

2

)
, (2.55)

with β the angle between the two vectors n = (sin θ cosφ, sin θ sinφ, cos θ)T and n′ =

(sin θ′ cosφ′, sin θ′ sinφ′, cos θ′)T . Therefore Eq. (2.55) can only be zero if β = π, i.e. if
the spin coherent states point in opposite directions.

14



2.3.3. Minimal uncertainty states

The spin coherent states are the states which have a minimal quantum uncertainty [5].
One possible uncertainty relation for spin states, which is invariant under SU(2), reads

j 6 ∆J2
x + ∆J2

y + ∆J2
z = 〈J2〉 −

3∑

k=1

〈Jk〉〈Jk〉 6 j(j + 1) (2.56)

with
∆J2

k = 〈J2
k 〉 − 〈Jk〉2. (2.57)

The upper bound can be reached by rotating Eq.(2.56) into

〈J2〉 − 〈Jz〉2 (2.58)

and then choosing a state which has a zero expectation value of Jz, and by noting that
〈J2〉 = j(j + 1) for all spin-j states. With the same argument the lower bound can be
reached by states that have the maximal value j as expectation value of Jz.
This is exactly the case for all spin coherent states, as the uncertainty relation (2.56)

gives

〈α|J2 |α〉 − 〈α|J |α〉2 = j(j + 1)− j2 = j, (2.59)

where the first expectation value comes from Eq. (2.4) and the second from Eq. (2.10).
In this sense the spin coherent states are the states which point as much as possible

in a well-defined direction, as

〈α|J |α〉 = j n. (2.60)

This property is in general not fulfilled for an arbitrary spin-j state, if j is larger than
one half, even if the state is pure: E.g. the state |1, 0〉 points nowhere.

2.4. Visualization of spin states

It is often elucidating to have an easy visual representation of a quantum state to get an
intuition of its properties. One well known visualization of a spin-1/2 state is the Bloch
ball which we will describe in the following.
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2.4.1. Bloch Sphere

Any spin-1/2 state, i.e. a state of a two-level system can be written in the |j,m〉 basis
as

|ψ〉 = cos
θ

2

∣∣∣∣
1

2
,
1

2

〉
+ eiφ sin

θ

2
,

∣∣∣∣
1

2
,−1

2

〉
(2.61)

since the angles (θ, φ) give all possible linear combinations of the two basis states (mod-
ulus a global phase). This equates to the definition of the spin coherent states (2.40)
with j = 1

2
. Therefore all pure qubit states are spin coherent states.

By using the vector v = (sin θ cosφ, sin θ sinφ, cos θ)T the two angles can be mapped
to a vector of length one which represents any pure spin-1/2 state. This vector is called
Bloch vector. As we have seen in Eq.(2.60) this vector gives the direction in which the
state |ψ〉 points.

Figure 2.1.: The Bloch vector of a pure state |ψ〉. This state is represented by a Bloch
vector with length one.

In the case of spin-1/2 states this concept is also valid for mixed states, as the bloch
vector can visualize any mixed spin-1/2 state, with a Bloch vector of length smaller than
one. This can be seen by writing the 2 × 2 density matrix of a spin-1/2 state ρ in the
basis of the J operator, i.e. one half times the three Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.62)
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and the 2× 2 identity matrix as,

ρ =
1

2
(1 + v1σ1 + v2σ2 + v3σ3) . (2.63)

Any qubit state, pure or mixed, can be written in this form. Just as in the case of pure
states the entries of the bloch vector can be determined by,

v = tr {ρσ} . (2.64)

A crucial property of the Bloch vector is its behavior under rotation of the qubit
state. If the state is rotated with U a SU(2)-rotation operator into ρ′ = UρU †, the
corresponding Bloch vector v′ of ρ′ is obtained by rotation of the original Bloch vector,
namely v′ = Rv, with R the O(3) rotation matrix which corresponds to the same
rotation angle and rotation axes as the unitary operator U .

2.4.2. Majorana Representation

For values of j larger than 1/2 the Bloch vector can be generalized to a tensor of 2j-
indices [6] which behaves similarly under rotation as the Bloch vector and which has
a particular simple form for spin coherent states. However, this so called Bloch tensor
does not have a simple visual interpretation.

For this task we will introduce the Majorana representation, which gives an easy
graphical picture of an arbitrary pure spin-j state [7]. Any spin-j state |ψ〉 can be
written as

|ψ〉 = N
∑

π

{|χ1〉 ⊗ |χ2〉 ⊗ · · · ⊗ |χ2j〉} , (2.65)

where the sum runs over all permutations of the 2j qubit states |χk〉 and N corresponds
to the normalization factor. Each of these qubit states |χk〉 has a Bloch vector vk, with
length one, and therefore defining 2j points on the bloch sphere. These points are called
Majorana-stars [8]. (Note that in the original definition the Majorana stars are on the
opposite side of the sphere, i.e. at −vk)
However, transforming a given state into the form of Eq.(2.65) is not trivial. It can

be achieved by exploiting the fact that antipodal spin coherent states are orthogonal to
each other, as shown in (2.55). So one can calculate the overlap of the state with a spin
coherent state 〈α′|j written as the tensor product of identical qubit states as in (2.45).
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Figure 2.2.: The Majorana rep-
resentation of the spin-3 state
1√
2

(|3, 3〉+ |3,−3〉) in the |j,m〉
notation. Black balls indicate the
positions of the Majorana stars.

Figure 2.3.: The Majorana rep-
resentation of the spin-5/2 state
1√
2

(|α1〉+ |α2〉), i.e. the superposition
of two spin coherent states as in
(2.40), with α1 =

(
θ = π

3
, φ = 0

)
and

α2 =
(
θ = π

3
, φ = 1

5

)
.

Figure 2.4.: The Majorana rep-
resentation of the spin-4 state
1
3

∑4
m=−4 |4,m〉 in the |j,m〉 nota-

tion.

Figure 2.5.: The Majorana represen-
tation of the spin coherent state |α〉
with α =

(
θ = 2π

3
, φ = 7π

4

)
. This visu-

alization is independent of j, since all
2j-points coincide.

The angle of the spin coherent state 〈α′| is chosen to be α′ = (θ + π, φ) so that the
spin coherent state is on the opposite side of the sphere in comparison with the usual
definition 〈α| in Eq. (2.40).
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Then, each of the identical qubit states 〈α′|1/2 gets multiplied with the |χk〉 in (2.65):

〈α′|ψ〉 ∝ 〈α′|χ1〉1/2〈α′|χ2〉1/2 · · · 〈α′|χ2j〉1/2 (2.66)

=

2j∏

k=1

〈α′|χk〉1/2 (2.67)

This product defines a polynomial of degree 2j in a single complex variable given by α̂′.
This polynomial can then be decomposed as

〈α′|ψ〉 ∝
2j∏

k=1

(α̂′ − χ̂k), (2.68)

where χ̂k are its complex roots. These roots define exactly the position of the Majorana
stars.
This can be intuitively understood in the sense that the spin coherent state 〈α′| scans

which qubit contributions are present in the state |ψ〉, because if a certain value of
α′ makes the polynomial vanish, the state |ψ〉 must have a contribution |χk〉 which is
antipodal to |α′〉. Thus calculating all roots, with their multiplicity gives all the |χk〉 in
(2.65).
For an explicit calculation of these roots, Eq.(2.67) can be written with the state
|ψ〉 =

∑j
m=−j ψm |j,m〉, as

〈α′|ψ〉 ∝
j∑

m=−j

√(
2j

j +m

)(
−e−iφ cot

θ

2

)j−m
ψm (2.69)

=

2j∑

k=0

√(
2j

k

)(
−e−iφ cot

θ

2

)2j−k
ψk−j (2.70)

=

2j∑

k=0

√(
2j

k

)
ψk−jz

2j−k, (2.71)

which has 2j roots in the complex variable z = −e−iφ cot θ
2
. These roots can then be

expressed with the angles (θk, φk). If the state |ψ〉 is a spin coherent state itself, the
polynomial has only a singe root which is 2j-fold degenerated.
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2.5. Entanglement and Quantumness

2.5.1. Classical spin states

Any spin-j state ρ can be expressed in the overcomplete basis of spin coherent states,
with the Glauber-Sudarshan P-function [9, 10] as

ρ =

∫
P (α) |α〉 〈α| dα (2.72)

with dα = sin θdθdφ. The normalization of the state ρ gives the condition

trρ =

∫
P (α)dα = 1, (2.73)

and the P-function can always be chosen as a real function.
Any state for which a positive P-function exists is called a classical spin state [11]

and the set of classical spin states is denoted C. This definition is reasonable since the
P-function can be seen as a probabilistic mixture of spin coherent states, which in turn
resemble a classical objects as close as possible.

If a spin-j state is classical it can be written as a decomposition over at most (2j+1)2

spin coherent states as,

ρ =

(2j+1)2∑

k=1

pk |αk〉 〈αk| . (2.74)

This can be derived by applying Carathéodory’s therorem to the Hilbert space of a spin-
j state, where one degree of freedom is removed due to the normalization of the state,
trρ = 1. Therefore the question if a spin-j state is classical is equivalent to the question
if there exists spin coherent states |αk〉 and numbers pk > 0, with

∑
k pk = 1, such that

Eq. (2.74) holds.
With this definition of classical states one can ask which states are non-classical? A

measure1 of this non-classicallity will be called Quantumness and defined [13] as,

Q(ρ) = min
ρc∈C
||ρ− ρc|| (2.75)

1The word "measure" is used here, not in the sense that this defines an entanglement measure, since
it was shown that the Hilbert-Schmidt distance does not fullfill all axioms demanded from an en-
tanglement measure [12].
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where ||A|| =
√

tr(A†A) is the Hilbert-Schmidt norm, and the minimization is performed
over all classical states. SoQ(ρ) gives the Hilbert-Schmidt distance to the closest classical
state and hence the state ρ is non-classical if and only if Q(ρ) > 0.

2.5.2. Separable states

Classicality or Quantumness, is a property defined for a spin-j state. However, if one
sees a spin-j state as a symmetric multi-qubit state, as in (2.65), one can investigate
how these concepts are viewed for a multi-partite state.

A pure state |ψ〉 in a Hilbert space is called fully separable if it can be written as a
direct product of pure states of subsystems,

|ψ〉 =
∣∣ψ(1)

〉
⊗ · · · ⊗

∣∣ψ(N)
〉
. (2.76)

If a pure state cannot be written in this tensor product form it is called entangled
[14]. For symmetric states every state which is not fully separable is automatically
genuine full-partite entangled, i.e. all subsystems are entangled with all others, since all
subsystems are interchangeable. Therefore the definition of entanglement is simpler if
the state is a symmetric state of 2j qubit states, i.e. equivalent to a spin-j state.
We have seen in Eq.(2.45) that a spin coherent state |α〉 can be written as tensor

product of identical qubit states, each one pointing in the same direction as |α〉. There-
fore every spin coherent state is equivalent to a fully separable state of 2j-qubits. The
converse is also true since any fully separable symmetric state of N qubits has to have
all qubits identical and, since every pure qubit state is a spin coherent state, combing
N of them gives a spin-N/2 coherent state.

These equivalences give an interesting connection between directionality and sepa-
rability, in the sense that the counter intuitive picture of a spin without a direction
corresponds to another genuine quantum feature: entanglement. This is directly vis-
ible with the Majorana representation: If the Majorana stars do not all coincide the
equivalent multi-qubit state is entangled.

The definition of entanglement can be extended to mixed states. A mixed state is
called fully separable if it can be written as

ρ =
∑

i

wiρ
(1)
i ⊗ · · · ⊗ ρ(N)

i , (2.77)

with ρ(k) a state of the subsystem k,
∑

iwi = 1 and wi > 0. Now, if the separable mixed
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state should also be symmetric, this restricts the definition further as a symmetric state
can only be build by mixing pure symmetric states as shown in (2.48). Hence, a mixed
symmetric separable state must be given by

ρ =
∑

i

wi

∣∣∣χ(1)
i

〉〈
χ
(1)
i

∣∣∣⊗ · · · ⊗
∣∣∣χ(N)

i

〉〈
χ
(N)
i

∣∣∣ (2.78)

=
∑

i

wi

∣∣∣χ(1)
i · · ·χ(N)

i

〉〈
χ
(1)
i · · ·χ(N)

i

∣∣∣ , (2.79)

with the qubit pure states
∣∣∣χ(k)

i

〉
=
∣∣∣χ(k′)

i

〉
, ∀k, k′,∑iwi = 1 and wi > 0. The qubit

states have to be all identical since otherwise the multi-qubit states may be entangled.
Therefore the pure states in the decomposition (2.78) are equivalent to spin coherent
states (2.45). So every separable mixed state is equivalent to a classical state (2.74).
The other direction is obvious, since classically mixing separable states, i.e. spin coherent
states, can only give a mixed separable state.

These equivalences are summarized in Table 2.1.

Table 2.1.: Connection between multi-qubit states and spin-j states
Spin-j ↔ Symmetric state of N qubits

spin coherent state ↔ separable state
|α〉 |ψsep〉 =

∣∣ψ(1)
〉
⊗ · · · ⊗

∣∣ψ(N)
〉

classical spin state ↔ separable mixed state
ρ =

∫
P (α) |α〉 〈α| dα ρ =

∑
iwi |ψsep〉i 〈ψsep|i

with P (α) > 0 with wi > 0

This identification allows to use tools designed to test for entanglement, e.g. the posi-
tive partial transpose criterion [15, 16], as a test for classicality. This criterion is defined
for a bipartite state

ρ =
∑

ijkl

pijkl|i〉〈j| ⊗ |k〉〈l|, (2.80)

which acts on HA ⊗HB, as

ρpt =
∑

ijkl

pijlk|i〉〈j| ⊗ |k〉〈l| > 0. (2.81)

(Note the interchange in the index l↔ k in the coefficient p.) Here the partial transpo-
sition is performed on the second Hilbert space HB.
In the case of j = 1 a necessary and sufficient classicality criterion was derived in [11]
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as,

Zab = tr {ρ(JaJb + JbJa)} − tr{ρJa}tr{ρJb} − δa,b > 0, (2.82)

with a, b ∈ {1, 2, 3} and Ja the spin-1 angular moment operators. This criterion turns
out to be just the positive partial transpose criterion in disguise, as the Z-matrix (2.82)
is positive semi-definite if and only if the partial transposed density matrix of the cor-
responding two-qubit state is positive semi-definite. This can be seen by writing the
partial transposed state of a symmetric two qubit state as [A.2],

2(U †ρptU)a,b = tr{ρ σa ⊗ σb} = Tab, (2.83)

with U a unitary matrix, σ0 = 12, and σ1,2,3 the three Pauli matrices. The right-
hand-side is positive semi-definite if and only if the partial transposed state is positive
semi-definite, because ρpt has the same eigenvalues up to a factor two as the matrix T .
A method to test if a d-dimensional matrix M is positive semi-definite is to calculate

the Schur complement [17]. One special case of this method is with respect to the upper
left corner M00 as,

Sab = Mab −Ma0M
−1
00 M0b, a, b ∈ {1, 2, . . . , d− 1}. (2.84)

Then the matrix M is positive semi-definite if and only if M00 > 0 and S is positive
semi-definite.
Applying this criterion to the matrix T with respect to the upper left corner (T00 = 1)

gives exactly the definition of the 3× 3 Z-matrix (2.82).
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3. Convex Optimization

The numerical methods used in the publications of this thesis, can be formulated in
three standard forms. The first is called linear programming in which the objective
function which should be minimized as well as the constraints on the variables are all
formulated as linear equations. The second method is called quadratic programming in
which the constraints are still linear, but the objective function is a quadratic function
of the variables. The third is called semi-definite programming where the variables are
not vectors but positive-semi-definite matrices, and the objective function is a linear
function of these matrices.

All three of these problems can be solved very efficiently with standard numerical
methods. They are so effective that one can argue that formulating a problem in this
form constitutes a solution of it. In the following we will give a brief summary of one
solution method for linear programming, which is the easiest to understand. However,
we will not describe the details of this method, but instead give an explicit example,
which incorporates the general procedure, without taking into account all the special
cases and complications, which might arise in general. For a more detailed description
of the methods, we refer to Refs. [18, 19].

The definitions of the quadratic and semi-definite programs are given in the following
and we refer to the Refs. [20, 21] for a description of the numerical solution methods.

3.1. Linear Programming

3.1.1. Standard form

A linear problem is an optimization task in which the objective function and the set of
constraints are linear functions of the real variables. Every optimization problem of this
type can be written in the standard form (SF), defined as

min
x

cTx, s.t. Ax = b,x > 0, (3.1)
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with A a real, not necessary square matrix and c and b real vectors. Additionally, all
entries of the vector b should be positive. The vector inequality x > 0 is understood
that every entry of the vector is larger or equal to zero. The vectors that satisfy the
constraints are called feasible and the value of the objective function cTx will be called
the cost of x.

Every linear program can be transformed into this SF by adding additional variables,
called slack variables. If some, or all, of the constraints are not given as equalities,
but instead as inequalities, slack variables are used to transform these inequalities into
equalities i.e. if an equation is given as (Ax)j > bj, one reformulates it by demanding
that

(Ax)j − s = bj (3.2)

with the new slack variable s > 0. This is equivalent to the original inequality. If the
inequality is given as (Ax)j 6 bj the slack variable simply has a plus sign. The equation
(3.2) can then again be written in the form A′x′ = b, but with A extended to more
columns and the variables into x′ = (xT , sT )T , where the vector of slack variables s has
the length of the number of inequalities of the original program. To fulfill the condition
that all entries of the vector b should be positive, one can simply pick the negative
entries bi < 0 and multiply the equation (Ax)i = bi by −1 to get a new vector with all
bi > 0.

The slack variables can also be used to transform an unconstrained variable xj ∈ R

into

xj = s1 − s2 (3.3)

with s1, s2 > 0. In this way the variable is represented equivalently by two constraint
variables. Another adjustment can be made if a variable is restricted to a subset of
the real numbers: If a variable is restricted to xi > k this would give a new variable
yi = xi−k > 0 with the bj shifted to be bj−kAji. And finally if the problem in question
is a maximization problem the vector c is replaced by −c to get the SF.

With those reformulations all linear programs can be written, without restriction of
generality, in the standard form. Therefore, from here on, we will only consider programs
of the type (3.1).
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Example

Consider this transformation of a maximization problem into the SF.

Maximization problem

maximize 2x1 − x2 + 5x3

subject to 2x1 − x2 − x3 > −1

x1 + 3x3 6 7

−x1 + 2x2 6 −4

x1, x2, x3 > 0

Converted into standard form

minimize − 2x1 + x2 − 5x3

subject to − 2x1 + x2 + x3 + s1 = 1

x1 + 3x3 + s2 = 7

x1 − 2x2 − s3 = 4

x1, x2, x3, s1, s2, s3 > 0

3.1.2. Dual Problem

For every linear problem one can define a so called dual problem, which is given as

max
y

bTy, s.t. ATy 6 c,y > 0, (3.4)

with c,b, A the same as in (3.1) and the ATy 6 c is understood for each entry. The
dual problem has a very useful property, which is that it can be used to determine if an
optimal solution of (3.1) is found by bounding the linear problem from below. Because
for any feasible vector x of the SF and any vector y which satisfies the constraints of
the dual problem, it holds that

cTx > bTy. (3.5)

This can be proven by injecting the constraints as

cTx = xTc > xT
(
ATy

)
= (Ax)T y = bTy. (3.6)

This fact is called weak duality. Therefore, the dual problem bounds the standard
problem from below, and likewise the standard problem gives an upper bound on the
dual problem. With that one can give a maximal error on an intermediate result, when
the optimal value of the cost function is not yet found. The dual problem is also useful
in detecting infeasibility, since if the SF is unbounded from below the dual problem is
infeasible, and vice-versa, if the dual problem is unbound from above the SF is infeasible.
If the SF and the dual problem are both feasible, the strong duality holds [21]. It
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states that the optimal solutions x∗ and y∗ of both problems coincide, as

cTx∗ = bTy∗. (3.7)

That means that there is no gap between the optimal solutions, thus, solving one problem
also solves the other one.

3.1.3. Simplex algorithm

In the following we will describe an efficient way to find an optimal solution to a linear
problem. There are two main ingredients in this approach, the first is the fact that
all local extremas are global ones, and the second that every optimal solution can be
written in a special form called basic solutions. Therefore one can search in the finite set
of basic solutions for a local minimum. This minimum is then automatically the global
minimum.

First note that the set of feasible vectors, i.e. vectors that satisfy Ax = b, is a convex
set. This can be seen easily by taking two feasible vectors x and y, and calculating all
vectors in between with r ∈ [0, 1] as

A[rx + (1− r)y] = rAx + (1− r)Ay = rb + (1− r)b = b, (3.8)

which shows that this vector is feasible for all r ∈ [0, 1]. We can use this fact to prove
the following Theorem:

Theorem 1 ([18]). Every local minimum of a linear problem in standard form is a global
minimum.

Proof. Let x be a feasible vector, which is a local minimum and y a feasible vector which
is the global minimum. Additionally assume that cTy < cTx, so that the local minimum
is not a global one. Take the feasible vector z = εx + (1− ε)y with ε ∈ (0, 1). Then

cTz = εcTx + (1− ε)cTy < εcTx + (1− ε)cTx = cTx, (3.9)

hence, the vector z has a smaller value of the cost function ∀ε ∈ (0, 1), therefore x

cannot be a local minimum. This contradicts the assumptions and, hence, proves the
theorem.

Now we will define a basic solution. In the SF (3.1) assume that A ∈ Rm×n, with
m < n, rank(A)=m. This is always possible by introducing new variables that do not
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enter in the cost function. Then we can rearrange the columns of A in such a way that
the first m columns are linearly independent and appear first as entries of a non-singular
square matrix B, such that A = [B,D] with D anm×(n−m) matrix with the remaining
columns of A. With that a solution for the system of equations

Ax = b (3.10)

is given as x = [xTB,0
T ]T , with 0 the vector of zeros, and

xB = B−1b. (3.11)

The solutions of the form [xTB,0
T ]T are called basic solutions with respect to the basis

B. The variables xB are called basic variables and the variables which were set to zero
are non-basic variables.
However, they do not need to be feasible, i.e. some entries of xB might be negative.

But this is not a fundamental problem since the optimal solution to the optimization in
SF can always be written as a basic feasible solution:

Theorem 2 (Fundamental Theorem of linear programming1).

1. If there exists a feasible solution, then there exists a basic feasible solution.

2. If there exists an optimal solution, then there exists an optimal basic feasible solu-
tion.

Therefore it is enough to search for an optimal solution in the finite subset of feasible
basic solutions. One can cycle through the solutions in a systematic way such that the
costs of each new step is at least as small as the previous one. If one reaches a step
from which there is no improvement possible the solution is the desired optimal solution.
This uses that every local minimum is immediately a global minimum, because of the
convexity of the feasible set, as shown in Theorem 1. This method is called simplex
algorithm and it can be schematically given as

1. Find an initial basic feasible solution as starting point. Go to Step 2.

2. Check if the basic feasible solution is optimal or if the linear problem is unbounded.
If so Stop, if not go to Step 3.

1The proof of this theorem can be found in [21].
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3. Generate another basic feasible solution with a smaller value of the cost function
and go to Step 2.

The step 3 of the algorithm is essentially exchanging the role of a basis variable with
a non-basis variable, in such a way that the new cost function has a smaller value for
its basic solution. There exists heuristics that make sure to exchange the two variables
with the biggest influence on the value of the cost function first, and also methods to
avoid to be stuck in a circle, i.e. to reach a basic solution already considered. We will
not give the details of the various implementations, such as how to find the basic feasible
solution in Step 1 in general. The interested reader is referred to the books [21, 18] for
the details. Instead we will present an example of the simplex method which exemplifies
the main ideas.

Example of the simplex algorithm

Consider this linear problem in standard form:

minimize x1 − 2x2 − 3x3 (3.12)

subject to 2x1 − x2 − x3 + 11 = s1 (3.13)

−x1 − 3x3 + 3 = s2 (3.14)

x1 − 2x2 + 8 = s3 (3.15)

x1, x2, x3, s1, s2, s3 > 0. (3.16)

A feasible basic solution can be read of as (x1, x2, x3, s1, s2, s3)
T = (0, 0, 0, 11, 3, 8)T ,

therefore s1, s2, s3 are the basic variables. The cost of this feasible basic solution is 0. It
is however not optimal since there are negative coefficients of x2 and x3. Therefore one
can lower the cost by increasing these two variables. As a next step we will exchange
a non-basic variable with a basic one. We pick x3 since it has the strongest influence
on the costs. The variable x3 is restricted by the first two constraints (with keeping
x1 = x2 = 0), to x3 6 11 and x3 6 1. Where the values of s1 and s2 are assumed to be
larger or equal to zero, but not anymore fixed to the values given in the basic feasible
solution.

Note that if the constraints would not give an upper bound on x3 the linear problem
would be unbounded, since then the variable could be made arbitrary large, without
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violating the constraints, and therefore the costs of this vector could reach −∞.
However, since the variable is bounded, we can continue by picking the second con-

straint for the exchange since it gives a stronger restriction to the variable. So we switch
the role of x3 with s2. Rearranging (3.14) gives

−1

3
x1 −

1

3
s2 + 1 = x3 (3.17)

and thus the equivalent linear problem reads,

minimize 2x1 − 2x2 + s2 − 3 (3.18)

subject to
7

3
x1 − x2 +

1

3
s2 + 10 = s1 (3.19)

−1

3
x1 −

1

3
s2 + 1 = x3 (3.20)

x1 − 2x2 + 8 = s3 (3.21)

x1, x2, x3, s1, s2, s3 > 0. (3.22)

Now we get the basic solution as (x1, x2, x3, s1, s2, s3)
T = (0, 0, 1, 10, 0, 8)T with a value of

the cost function −3, this basic feasible solution is also not optimal, since the coefficient
of x2 is still negative. So we exchange x2 with one of the basic variables s1 or s3. The
restriction from the variable s1 is x2 6 10, but the restriction from s3 is stronger as it
gives x2 6 4. Therefore we exchange x2 with s3. Rearranging Eq. (3.21) gives then

1

2
x1 −

1

2
s3 + 4 = x2 (3.23)

and the new linear problem is

minimize x1 + s2 + s3 − 11 (3.24)

subject to
11

6
x1 +

1

3
s2 +

1

2
s3 + 6 = s1 (3.25)

−1

3
x1 −

1

3
s2 + 1 = x3 (3.26)

1

2
x1 −

1

2
s3 + 4 = x2 (3.27)

x1, x2, x3, s1, s2, s3 > 0. (3.28)

The basic feasible solution of this is (x1, x2, x3, s1, s2, s3)
T = (0, 4, 1, 6, 0, 0)T , with the

value of the cost function −11. This solution is a local minimum, because all variables
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have positive coefficients, so changing x1, s2 or s3 to a value larger than zero can only in-
crease the costs. Using Theorem 1, we conclude that we have found the global minimum
of the given problem (3.12).

3.2. Quadratic Programming

A quadratic optimization problem with linear constraints is of the form

min
x

1

2
xTQx + cTx s.t. Ax 6 b,x > 0, (3.29)

with A a real matrix, c and b real vectors and Q a real square matrix. The equation
Ax 6 b and the inequality x > 0 are understood for each component of the vector.

One special case of these problems arise if the matrix Q is positive semi-definite. In
this case a set of necessary conditions for optimality, i.e. that a point x∗ is the global
minimum of the problem, becomes a set of necessary and sufficient conditions. These
are called the Karush-Kuhn-Tucker conditions [22] and they can be derived [23] from
the Lagrange function

L(x,µ) = cTx +
1

2
xTQx + µ(Ax− b) (3.30)

with µ the row-vector of Lagrange multipliers, to be

∂L

xj
> 0,

∂L

µi
6 0, xj

∂L

xj
= 0, µi(Ax− b)i = 0, xj > 0, µi > 0, ∀i, j. (3.31)

By introducing two vectors of slack variables y > 0 and v > 0 the conditions (3.31) can
be written in a more compact form as,

Qx + ATµT − y = −cT , (3.32)

Ax + v = b, (3.33)

x > 0,µ > 0,y > 0,v > 0, (3.34)

yTx = 0,µv = 0. (3.35)

Note that the first two lines are just linear equalities. So a global minimum of the
quadratic problem can be found by searching for a point that satisfies the conditions
(3.32)-(3.35). This can be achieved e.g. with an adjusted simplex algorithm [23] or by
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employing the Cholesky decomposition to get a Newton step [24] in the direction of a
solution (for details see [25]).

3.3. Semi-definite Programming

A semi-definite problem [26] can be written as

min
x

cTx, s.t. F (x) > 0, (3.36)

F (x) = F0 +
m∑

i=1

xiFi, (3.37)

with the minimization over a vector of real variables x. The Fi are real symmetric
matrices, and the inequality sign in F (x) > 0 means that the matrix F (x) is positive
semi-definite. These types of problems are more general than the linear and quadratic
problems given in Sections 3.1 and 3.2, because one can always write a linear or quadratic
problem in the form of a semi-definite problem (3.36) by choosing the matrices Fi and the
vector c accordingly. However, from a computational point this would not be efficient,
since the more specialized numerical solution methods for linear and quadratic problems
are, in general, faster.

Nevertheless these semi-definite problems are not much harder to solve than the linear
or quadratic problems. This is due to the fact that these problems are convex, i.e. if
F (x) > 0 and F (y) > 0 then

F (λx + (1− λ)y) = λF (x) + (1− λ)F (y) > 0 (3.38)

for λ ∈ [0, 1]. With this it follows that a local minimum is also the global one, by the
same reasoning as in Theorem 1 on page 27.

By using the property of convexity the semi-definite problems can be solved e.g. with
primal-dual interior point methods [27, 28, 26], where these methods are generalizations
of interior point methods originally derived for linear problems.
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4. Results and Outlook

4.1. Framework

The main topic of this thesis is the study of entanglement of multi-partite states. This
genuine quantum feature is the cornerstone of many applications and possible future
technologies, such as quantum computation [29, 30], quantum cryptography [31] or
quantum metrology1 [33]. It is also conceptually fascinating, since one can argue that it
embodies the core essence of quantum theory, or as Schrödinger put it [34],

I would not call that one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of
thought.

In our research we focused mainly on symmetric quantum states, i.e. pure states
invariant under permutation of particles and mixtures of such states. This has the main
advantage that the Hilbert space used to describe these states only growth linearly with
the number of constituents, in contrast to the exponential growth of the full Hilbert
space of multi-partite systems with the number of particles. This restriction makes
even large number of particles experimentally [35] and computationally accessible. But
symmetric states have other useful properties besides being more tractable. It was for
example shown that random symmetric states, in general, achieve Heisenberg scaling in
quantum enhanced measurements, while random non-symmetric states, even after local
unitary optimization, do not [36].

The close investigation of symmetric states can also be helpful in deriving results for
a more general class of states, i.e. it was possible to derive a numerical method that
detects entanglement or separability in quantum states of arbitrary, finite, size for any
partition into sub-systems desired.

1Although there exist quantum enhanced measurements schemes that do not require entanglement
[32].
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4.1.1. Partial transpose criteria for symmetric states

The tensor representation of spin-j states [6] was a central tool and starting point for
the derivation of many of the results presented in this thesis. This tensor representation
is a generalization of the familiar Bloch-vector representation of spin-1/2 states to spin-j
states, with j > 1

2
. This tensor representation of a spin-j state ρ is given as,

Xµ1...µN = tr
{
ρPs(σµ1 ⊗ · · · ⊗ σµN )P †s

}
, (4.1)

with Ps the projector onto the symmetric subspace of tensor products of spins-1/2,
N = 2j, σ0 the 2 × 2 identity matrix, and σk, k ∈ {1, 2, 3} the usual Pauli matrices.
As we have seen in section 2.3.1, a spin-j state is equivalent to a symmetric state of N
qubits. Hence, the tensor representation X can also be seen as a representation of the
latter.

Using this tensor it is possible to find a simple way to write down the partial transpose
criterion as condition on the real matrix

Tµ,ν = Xµ1...µjν1...νj , (4.2)

where the matrix indices are vectors, with µ = (µ1 . . . µj) and ν = (ν1 . . . νj). The
partial transpose criterion for the state ρ is then equivalent to the condition

Tµ,ν > 0, (4.3)

because this matrix is similar (i.e. it has the same eigenvalues) up to a factor, to the
density matrix of the partial transposed state.

This identification allowed us to show that some separability or classicallity criteria
are equivalent to the partial transpose criterion. For example, the Z-matrix [11] of
a spin-1 state is similar to the partial transposed state of a symmetric state of two
qubits. Positivity of the correlation matrix in [37] was already proven to be equivalent
to the partial transpose criterion, however, showing that this matrix is just the Schur
complement of the matrix T , gives a more direct proof of this fact.
The same connection also holds for the correlation matrices of local observables as

given in [38]: They too are Schur complements of the matrix T . But most striking, a
reduced version of the matrix T plays also a central role in Lassere’s method of polyno-
mial optimization [39] under the name moment matrix. This showed that there is a deep
connection between the entanglement problem in physics and the mathematical fields of
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polynomial optimization as well as the problem of truncated moment sequences, i.e. the
question if a certain set of moment values is compatible with a positive measure.

4.1.2. Truncated moment sequences for entanglement detection

In fact, the entanglement problem, i.e. the question if a state is entangled or separable,
can be mapped onto a truncated moment problem. With that mapping we could use nu-
merical tools designed for the truncated moment problem to decide if a state is separable
or not. This is done by a semi-definite program which gives an answer to this question in
a finite number of steps, and if a state is separable it also gives an explicit decomposition
into separable states with almost no extra costs. If this numerical method is applied to
symmetric states, the simpler structure of those states can be easily accounted for and
it results in a large computational speed-up.

This numerical algorithm is an extension of the known methods of semi-definite pro-
gramming for the entanglement problem [40, 41, 42, 43], in which extensions of a state
were constructed to detect entanglement. Our approach unifies some of these methods in
a more abstract way and fills some interpretational gaps of the semi-definite algorithms,
e.g. the central role of the moment matrix as representation of the partial transpose
criterion. By using the software GloptiPoly 3 [44] it was possible to give a very short
implementation of this method in the software MATLAB.

This method can also be used for other tasks, e.g. to numerically investigate the
minimal number of pure separable symmetric states necessary to construct every mixed
separable symmetric state, or to test if the marginals, i.e. states after partial tracing,
are sufficient to detect entanglement in the original state, even when the marginals are,
themselves, all separable [45].

From an experimental point of view it is desirable to conclude from a partial set of
measurement results that a state had to be entangled. This question can be directly
addressed with the formulation as truncated moment problem, by just not fixing the
unknown measurement results in the definition of the truncated moment problem.

4.1.3. Numerical tools to compute quantumness

The numerical method for the truncated moment problem gives a certificate of entan-
glement, but it does not give information on the amount of entanglement. For this task
we improved existing numerical methods to determine the Hilbert-Schmidt distance of
a symmetric multi-qubit state to the convex hull of separable symmetric states, defined
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by the term "quantumness" [46], given as

Q(ρ) = min
ρc∈C
||ρ− ρc||, (4.4)

with C denoting all separable symmetric states.
To determine this minimum, we developed a two step algorithm, where the main

ingredient is not to optimize over the full set of separable symmetric states, but instead
only over a computationally manageable approximation of it. This approximation are
all states that can be constructed by mixing a large number of pre-chosen fixed separable
states {φi}, as

Q(ρ) 6 min
wi,

∑
i wi=1

||ρ−
∑

i

wi |φi〉 〈φi| ||. (4.5)

This gives an upper bound, because the optimization on the right-hand-side is per-
formed just over a sub-set of all separable symmetric states C. This bound can be cal-
culated efficiently since the right-hand-side of (4.5) can be transformed into a quadratic
optimization program in the real variables wi. For computational reasons, we also split
the set {φi} into smaller sub-sets and optimize over them one by one. To mitigate the
negative effects of this splitting, we add the states which had the largest weights in the
previous iteration to the next subset of pre-chosen states. When the quadratic program
terminates it gives an approximation of the closest symmetric separable state σ̃, and
hence an upper bound on the quantumness (4.4).
This approximated closest separable state is the starting point in refining the ap-

proximation by moving the state σ̃ as far as possible into the direction of ρ, under the
constraint that it stays separable. Again we just approximate the separable states by a
mixture of a finite sample {φi} of pre-chosen separable states. This can be formulated
as a linear optimization task as,

max
k,wi

k, s.t. kρ+ (1− k)σ̃ =
∑

i

wi |φi〉 〈φi| , (4.6)

where k ∈ [0, 1] parametrizes the line between ρ and σ̃.
This second step usually slightly improves the approximation of the quadratic opti-

mization (4.5), because the number of states {φi} used, can be much larger, e.g. two
orders of magnitude, due to the faster execution time of a linear optimization problem.
This decreases the upper bound usually by a value smaller than 10−4.
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This gain in accuracy to the methods used before [46], was the starting point in the
successful search for an analytic solution to the aforementioned problem in the case of
symmetric two-qubit pure states.

4.1.4. Quantumness of spin-1

We found an explicit analytic formula for the closest separable symmetric state of an
arbitrary symmetric pure state, and hence a direct formula for the minimal Hilbert-
Schmidt distance to the set of symmetric separable states.

Interestingly, the distance depends only on a single parameter, the smallest eigenvalue
λmin of the matrix T (4.2). As we have mentioned earlier the matrix T is similar to the
partial transposed density matrix by a simple factor, hence, λmin is equal to twice the
negativity of the state, i.e. the smallest eigenvalue of the partial transpose states. It
is well known, that for two qubits, λmin < 0 is a necessary and sufficient entanglement
criterion. But now λmin is also the parameter of a geometric property of entanglement,
i.e. the minimal distance to the separable symmetric states. This analytic formula is
found to be,

Q(|ψ〉) = f(λmin) =




−
√

3
8
λmin for λmin 6 −1

2
,

h(λmin) for λmin > −1
2
.

(4.7)

It is linear in λmin, for highly entangled states, but for weaker entangled states (λmin >

−1/2) its expression is quite complicated, however, h(λmin) can still be given as a closed
expression. The formula (4.7) was derived by finding the explicit form of the closest
separable symmetric state for any pure state. These states are all mixed states, except
in the case when the pure state is itself separable and, hence, it is its own closed separable
state.

The case of mixed states is more complex in the sense that the distance seems not to
depend anymore on a single parameter. However, we conjectured that the pure state
result serves as upper bound of the quantumness of a general mixed symmetric state of
two qubits. Unfortunately, we were not able to prove this in the general case, but just
for special sub-classes of mixed states, namely all states on a line between a pure state
and its closest classical state. Nonetheless, we have strong numerical evidence that the
conjectured upper bound

Q(ρ) 6 f(λmin) (4.8)
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is in fact true. This was shown with the two step quadratic-linear program, which gives
upper bounds on the quantumness of a given state. In every random state tested, it
was possible to decrease the approximated quantumness below the upper bound given
by f(λmin), where λmin is also the smallest eigenvalue of the matrix T of the states. This
indicates that λmin is the best choice to parameterize the distance to the set of symmetric
separable states.

Additionally, we were able to prove a lower bound on the quantumness of mixed states,
as

Q(ρ) > −λmin√
3
. (4.9)

This lower bound was found by optimizing, not as in Eq. (4.5) over a smaller set than all
separable states, but instead of lifting some requirements that the matrix ρc represents
a valid symmetric multi-qubit state. Then, a careful reparameterization allowed to
simplify the minimization task into a form that could be solved analytically.

4.1.5. Absolutely classical states

Since, separable symmetric multi-qubit pure states can be identified with spin coherent
states, this equivalence allows one to write the definition of separability as a condition
on the P-function, as given in Eq. (2.72): A state is separable (or classical) if, and only
if, there exists a P (α) > 0 that represents this state. We utilized this definition to
investigate the set of absolutely classical states, which are states that remain classical,
i.e. separable, under any unitary transformation.

The maximally mixed symmetric state is an absolutely classical state. Therefore we
asked the question what is the largest distance around the maximally mixed state, in
which all states are absolutely classical. We were able to find a lower bound on the
largest ball radius of absolutely classical states around the maximally mixed state for
any system size. This bound is found to be

{
(1 +N)

[
(4N + 2)

(
2N

N

)
− (N + 2)

]}−1/2
6 BN , (4.10)

for symmetric states of N qubits, so that all states that fulfill

||ρ− ρ0|| 6 BN , (4.11)
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are separable and stays separable under any (possible non-local) unitary transformation,
with ρ0 the maximally mixed state of the symmetric subspace of N -qubits, and the dis-
tance measured with the Hilbert-Schmidt norm. This bound was found by expanding the
P-function over the spherical harmonics and then using the Cauchy-Schwarz inequality
to get a condition on the positivity of the P-function.

To test the sharpness of the bound (4.10), we conducted a numerical search by linear
programming to get an upper bound on the maximal radius of absolutely classical states,
by searching for a non-classical state as close as possible to the maximally mixed state.
These bounds are schematically depicted in Fig. 4.1, where the outer circle depicts the
numerically found upper bound and the inner circle the bound given by Eq. (4.10).

Figure 4.1.: A visualization of the absolute separable states marked as light red area.
The lower bound (4.10) is marked as dotted circle around the maximally mixed sym-
metric state ρ0. The upper bound is marked as the dashed circle. This upper bound was
found by searching for an entangled state as close as possible to the maximally mixed
symmetric state. The scaling of this figure does not correspond to the real values. It
should be noted that there are absolutely classical states further away than the upper
bound of the largest ball of absolutely classical states, which corresponds to the colored
area at a larger distance than the outer circle.

A similar question was already investigated in the case of non-symmetric states in
[47]. The restriction onto symmetric states changes the problem, since the set of allowed
states is smaller, which makes the problem more challenging. Also the maximally mixed
states of the symmetric states and of the full states are centered at different positions,
therefore we did not expect that the results would give comparable values. Surprisingly
the numerical values were nonetheless comparable to the non-symmetric case, however,
we know that they cannot be the same. This can be deducted from the case of the
symmetric states of two qubits, since there, the full analytic parameterization of the
separable states is known [48]. Hence, in this case, the largest separable ball can be
calculated analytically and the symmetric and non-symmetric results do not coincide,
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thus showing that the largest separable balls have different sizes.

4.1.6. Tensor eigenvalues for entanglement detection

The identification of a symmetric multi-qubit state with a tensor allowed to make another
interesting finding, which relates the spectral properties of a tensor to the entanglement
problem.

The definition of positive semi-definiteness of a tensor coincides with a necessary
condition for separability of a symmetric state of an even number N of qubits. Therefore
if the tensor representation Xµ1...µN of a state ρ is not positive semi-definite the state
is entangled. A way to determine if a tensor is positive semi-definite is to calculate the
tensor eigenvalues. These are generalizations of the usual matrix eigenvalues, however,
they are more complicated to calculate, since it involves non-linear optimizations and
there are different definitions of tensor eigenvalues in the literature [49].

We choose a type of tensor eigenvalues called ’Z-eigenvalues’ [50], which is invariant
under rotations and which has the property that a tensor is positive semi-definite if and
only if the smallest tensor eigenvalue λmin is non-negative. That allowed us to link the
value of the smallest tensor eigenvalue to the entanglement properties of a quantum
state: If λmin < 0 the state is entangled.
This criterion works well for highly entangled states, however, very weakly entangled

states are not reliably detected. This is not a contradiction, since it is only a necessary
condition for entanglement and weakly entangled states can have a positive semi-definite
tensor representation.

Inspired by the entanglement measure ’negativity’ [51], we investigated if and how the
magnitude of the smallest tensor eigenvalue is correlated to the amount of entanglement,
measured as the Hilbert-Schmidt distance to the convex hull of separable symmetric
states. For small system sizes, i.e. N 6 6 there is a strong correlation, however, this
correlation gets weaker with increasing system size. In the case of twelve qubits the
correlation between the value of the smallest tensor eigenvalue and the quantumness is
almost gone. This means that a state with e.g. λmin = −0.5 is not necessarily more
entangled than a state with λmin = −0.2.

4.1.7. Tensor classes for separable states

The connection between the spectral properties of a tensor with the entanglement prob-
lem of symmetric states, inspired the definition of a new type of tensors called the
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regularly decomposable tensors. This mathematical formulation of the quantum entan-
glement problem allowed us to clearly define separability in the formal mathematical
language of tensor theory, and to generalize the description, so that also half-integer
values of j, i.e. an odd number of qubits, can be investigated. With that, it was shown
that a tensor, which represents a symmetric state of qubits, is a regularly decomposable
tensor if and only if the state is separable.

4.2. Future endeavors

4.2.1. Efficient partial transpose implementations

The size of the Hilbert space of a symmetric multi-qubit state scales only linearly with the
number of qubits. However, a direct implementation of the partial transpose criterion
embeds the state in the exponentially large Hilbert space of N qubits, and therefore
requires to compute the positive definiteness of a matrix of size 2N × 2N . The matrix
T , which is similar, up to a factor, to the partial transposed density matrix of bi-
partition into equally sized parts, can be reduced in size by removing recurring rows
and columns, which does not change the positive-semi-definiteness of T . In this way the
partial transpose criterion between two equally sized partitions can be implemented as
a condition on a square matrix with number of rows equal to 1

6
(N + 2)(N + 3)(N + 4).

This connection should be extendable to the case of an uneven number of qubits, and
of different numbers of transposed qubits, and not just to a partition into equally sized
subsystems.

This question was already investigated in [52], where the partial transpose criterion
was implemented on a matrix whose size scales quadratically in the number of qubits.
It would be interesting to see, how the reduced version of the matrix T relates to these
results.

4.2.2. Polynomial optimization in relation to the entanglement

problem

There is still all lot of work to be done in working out the details between the entangle-
ment problem and the connection with polynomial optimization. For example, it would
be interesting to investigate the connection between positive polynomials, which are not
sum-of-square polynomials, with the concept of bound entangled states, i.e. entangled
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states which have a positive partial transpose. This question is related to Hilbert’s 17th
problem [53] and was already investigated in [54, 55].

It would be also interesting to apply the physical interpretation of the concept of
partial transposition on the purely mathematical field of polynomial optimization, to
get a better intuition on the methods employed there. This showed to be a fruitful
direction already, by translating the well known fact that the partial transpose criterion
is necessary and sufficient for a qubit-qutrit system, into the language of truncated
moment sequences. This gave a solution to a particular subclass of moment problems,
and this solution seemed to be unknown in the mathematical community.
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We investigate quantumness of spin-1 states, defined as the Hilbert-Schmidt distance to the convex hull of
spin coherent states. We derive its analytic expression in the case of pure states as a function of the smallest
eigenvalue of the Bloch matrix and give explicitly the closest classical state for an arbitrary pure state. Numerical
evidence is given that the exact formula for pure states provides an upper bound on the quantumness of mixed
states. Due to the connection between quantumness and entanglement we obtain new insights into the geometry
of symmetric entangled states.

DOI: 10.1103/PhysRevA.93.012104

I. INTRODUCTION

The quantum world is the realm of the most counterintuitive
phenomena, from the tunnel effect to the more recent quantum
teleportation. There are, however, instances of quantum states
which behave in an almost classical way. The best-known
example of such a behavior is that of coherent states. With the
rise of quantum information technology the need to identify
genuine quantum states, where truly quantum phenomena
could occur, has become important. Several notions of “quan-
tumness” exist, emphasizing different physical consequences
of quantum behavior. One of the oldest ones goes back to
quantum optics, where coherent states of light are considered
the most classical pure states possible. These are states with
minimal quantum uncertainty in the quadratures, i.e., localized
as much as possible in phase space, and this property is
preserved under the free time evolution of the electromagnetic
field [1]. The purely classical procedure of randomly choosing
such states adds classical noise but no quantum noise. The
resulting mixed states, whose Glauber representation is a
convex combination of coherent state projectors, form a convex
set of states with positive P function, and there is widespread
agreement that such states are to be considered the most
classical states [2,3]. Coherent states can be defined in other
physical systems; see [4,5].

The definition of classicality was extended to finite-
dimensional systems in [6], where spin-coherent states [SU(2)
coherent states] play the role of the pure states with minimal
quantum fluctuations of the angular-momentum operators [7].
The property of minimal quantum fluctuations is conserved
under unitary operations representing rotations. A mixed state
can be considered classical if it can be written as a statistical
mixture of spin-coherent states, meaning that a representation
with a positive P -function exists. The set of “classical spin
states” can thus be defined as the convex hull of spin-coherent
states [6,8]. Any state outside this set may be considered
truly quantum. To measure the departure from the classical
behavior it is convenient to define “quantumness” as the
Hilbert-Schmidt distance from the state to the set of classical
states [8,9]. Other quantifiers of quantumness are based on
different sets of “classical states,” e.g., states with positive
Wigner function [10], and use various measures of distance,
such as the trace distance [11] or the Bures distance [12]. Note
that different distance measures may lead to different ordering

of quantum states [13], a problem that was addressed by using
a topological measure [14].

Alternative measures of quantumness are based on entan-
glement [15–17]. Even though formal analogies of entangle-
ment can be found also in classical physics, and have attracted
attention recently in optics [18], entanglement is a signature
of a quantum behavior. Entangled quantum states can lead
to stronger-than-classical correlations between subsystems. A
number of entanglement measures have been proposed in order
to quantify entanglement. A way of defining such a measure,
in the case of finite-dimensional systems we consider here,
is through the distance between a state and the convex set
of separable states. While this distance was shown to yield a
good measure of entanglement when it is taken as the relative
entropy or the Bures distance [19,20], it is currently still
unclear whether the Hilbert-Schmidt distance yields a good
measure of entanglement [21], as it is not contractive [22].
However, this measure is mathematically convenient as a
Euclidean distance on Hilbert space, and has nice physical
properties. For instance, the Hilbert-Schmidt distance is equal
to the maximum amount by which a certain type of a
generalized Bell inequality is violated [23]. Furthermore, we
show here that the Hilbert-Schmidt distance gives new insight
into the geometry of entangled states.

In the present paper, we investigate the problem of finding
the distance from a state to the set of classical states, as well as
the classical state closest to a given state. The closely related
problem of finding the separable state closest to a given state
has already been investigated in the literature. For instance, if
one restricts the set of separable states to pure states then it was
shown in [24] that the closest separable pure state in terms of
Bures distance to a pure symmetric state is always symmetric.
This result also holds for the Hilbert-Schmidt distance as both
distances are simply related to the overlap of the two states
in this pure state case. In [25], the problem of the Hilbert-
Schmidt distance from a bipartite two-qubit state to the closest
(possibly mixed) separable state was investigated. Specializing
the results of [25] to symmetric states, one can observe that
the separable state closest to a symmetric state (pure or not) is
in general mixed and not necessarily symmetric.

Here we solve the problem of finding the classical state
closest to a general spin-1 state, in terms of the Hilbert-Schmidt
distance. We find an analytical solution for pure states. Our
findings generalize a result obtained in [9] for the most

2469-9926/2016/93(1)/012104(10) 012104-1 ©2016 American Physical Society
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quantum spin-1 pure state. As we will see, this also solves
the problem of finding the symmetric separable state closest
to a pure symmetric bipartite state of two qubits.

The paper is organized as follows. In Sec. II we introduce
the Bloch matrix representation that we will use throughout the
paper. Section III solves the problem of finding the classical
state closest to any given pure spin-1 state, while Sec. IV
tackles the problem for mixed states. Section V makes the
connection with entanglement and entanglement measures.

II. DEFINITIONS

A. Tensor representation

A way of representing spin-j states which is particularly
convenient when dealing with spin-coherent states is the tensor
representation proposed in [26]. It is a generalization of the
well-known Bloch picture for spin- 1

2 states. In the case j = 1
2 ,

any state ρ can be expanded as

ρ = 1

2

3∑
μ=0

XμSμ, (1)

with S0 the 2 × 2 identity matrix, and Si = σi,1 � i � 3, the
three Pauli matrices. In this basis, the coordinates of ρ are
X0 = 1 and Xi = tr(ρSi), so that X = (X1,X2,X3) forms the
usual Bloch vector.

For higher spin, it is possible to associate with any spin-j
state ρ a tensor with 2j indices [26]. For spin-1 this tensor
reduces to a matrix that can be defined as

Xμν = tr(ρ Sμν), 0 � μ,ν � 3, (2)

with S00 = 1, the 3 × 3 identity matrix, Sa0 = S0a = Ja ,
and Sab = JaJb + JbJa − δab1, where Ja is the usual spin-1
angular momentum operator, 1 � a,b � 3 (here we take
� = 1). The matrices Sμν are such that ρ can be expanded
as

ρ = 1

4

3∑
μ,ν=0

XμνSμν. (3)

The 4 × 4 matrix X is real and symmetric with trace two.
As in the spin- 1

2 case, where the Bloch vector transforms
as a three-dimensional (3D) vector under rotations of the
coordinate frame, for spin-1, X transforms under a 3D rotation
according to X′ = RXR†, with Rab,1 � a,b � 3, the 3 × 3
rotation matrix, and R0μ = Rμ0 = δμ0,0 � μ � 3. We will
thus call X the Bloch matrix.

This representation is particularly well-suited to our prob-
lem, since, as we will see, coherent states take a very simple
form in this framework.

B. Quantumness

The set C of classical spin states is defined [6] as the
ensemble of all density matrices which can be expressed as
a mixture of spin-coherent states with positive weights, i.e.,
states ρc for which there exist weights wi � 0 and coherent
states |αi〉 such that

ρc =
∑

i

wi |αi〉〈αi |, (4)

with 0 � wi � 1, and
∑

i wi = 1. Here we use the following
definition of spin-coherent states |α〉 = |θ,φ〉, with θ ∈ [0,π ]
and φ ∈ [0,2π [ the usual spherical angles,

|α〉 =
j∑

m=−j

√(
2j

j + m

)(
cos

θ

2

)j+m(
sin

θ

2
e−iφ

)j−m

|j,m〉,

(5)

where |j,m〉 is the usual spin basis, here with j = 1 and m =
−1,0,1.

The Bloch matrix of a coherent state takes the sim-
ple form Xμν = nμnν,0 � μ,ν � 3, with n0 = 1 and n =
(n1,n2,n3) = (sin θ cos φ, sin θ sin φ, cos θ ). The decomposi-
tion (4) can be reexpressed in terms of the Bloch matrix W of
ρc as

Wμν = tr(ρcSμν) =
∑

i

win
(i)
μ n(i)

ν , (6)

with n(i) = (sin θi cos φi, sin θi sin φi, cos θi) the Bloch vectors
corresponding to coherent states |αi〉 and n

(i)
0 = 1.

Quantumness of an arbitrary state ρ can be defined [9] as
the (Hilbert-Schmidt) distance to the convex set C. Namely,
the quantumness Q(ρ) is given by

Q(ρ) = min
ρc∈C

||ρ − ρc||, (7)

where ||A|| =
√

tr(A†A) is the Hilbert-Schmidt norm. In the
following we will refer to Q(ρ) simply as “the quantumness,”
keeping in mind that other measures of quantumness can be
defined; see, e.g., [14]. It has the natural properties that Q(ρ) �
0 for all ρ with equality for classical states ρ, and Q(ρ) is a
convex function of ρ. Using Eq. (3), one can show that the
quantumness can be re-expressed in terms of Bloch matrices
as

Q(ρ) = 1

2
min

Wclassical
||X − W ||, (8)

where X is the Bloch matrix of ρ and W is given by (6).
In [6], a necessary and sufficient criterion for classicality

in the spin-1 case was obtained. A spin-1 state is classical
if and only if the 3 × 3 matrix Z defined (using the present
notation) by Zab = Xab − Xa0Xb0, with 1 � a,b � 3, is posi-
tive semidefinite. Remarkably, the matrix Z is nothing but the
Schur complement of the 1 × 1 upper left block of matrix X

(note that X00 = 1). Therefore positive semidefiniteness of Z

is equivalent to positive semidefiniteness of X. In other words,
a spin-1 state is classical if and only if its matrix X is positive
semidefinite. Equivalently, a spin-1 state is quantum if and
only if the smallest eigenvalue of its matrix X is negative.

The Bloch matrix thus provides a simple classicality
criterion. In the case of pure states, it also allows one to obtain
an exact expression for the quantumness measure defined in
Eq. (7). This is the goal of the next section.

III. PURE STATES

Starting from a one-dimensional parametrization of pure
states, we now prove a lower bound to the minimization
problem (7) and then show that this lower bound can be reached

012104-2
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by a classical state. This gives an analytic expression for Q for
all pure states.

A. Parametrization

The Majorana representation [27,28] allows one to uniquely
map any pure spin-j state to 2j points on the Bloch sphere.
If the pure state undergoes a unitary transformation eiϕJ.n

that represents a rotation of angle ϕ about vector n then the
Majorana points are rotated rigidly by that rotation. Under
such a transformation, coherent states are rotated into coherent
states, so that from its definition it is clear that quantumness is
invariant under rotation of the coordinate system. Moreover,
since X transforms under rotations as explained in Sec. II A,
its eigenvalues are unchanged under such rotations.

The Majorana representation of a spin-1 pure state |ψ〉
just consists of two points on the unit sphere. These points
correspond, via the stereographic projection z = cot θ

2 eiφ , to
the roots of the Majorana polynomial P (z) = d1 − √

2d0z +
d−1z

2, with dm,−1 � m � 1, the coefficients of the state |ψ〉
in the |j,m〉 basis. The sphere (or the spin-1 state) can always
be rotated in such a way that these two Majorana points are
brought to a canonical position where they have spherical
coordinates (θ,φ) = (γ,0) and (π − γ,0) without changing the
quantumness. States with Majorana points at positions (γ,0)
and (π − γ,0) are given (up to normalization N ) by

|ψγ 〉 = N
(

|1,−1〉 +
√

2

sin γ
|1,0〉 + |1,1〉

)
, (9)

with γ ∈ [0,π/2] (see Fig. 1). We will use this expression as
a canonical form for spin-1 pure states. The corresponding
Bloch matrix X is given by

X =

⎛
⎜⎜⎝

1
√

1 − λ2 0 0√
1 − λ2 1 0 0

0 0 −λ 0
0 0 0 λ

⎞
⎟⎟⎠, (10)

FIG. 1. The Majorana representation of the pure state |ψγ 〉 given
through Eq. (9), shown for γ = π

4 , which corresponds to λ = − 1
3 .

with

λ = sin2 γ − 1

sin2 γ + 1
. (11)

The eigenvalues of X are ±λ and 1 ± √
1 − λ2. When γ varies

in [0,π/2],λ varies in [−1,0], so that the smallest eigenvalue
(and the only negative one) is λ. We will use λ as the parameter
for spin-1 pure states.

According to the criterion of Sec. II B, a state ρ is classical
if and only if X is positive semidefinite, that is, if and only
if λ � 0. For pure states, since λ ∈ [−1,0] this implies that
λ = 0. The Bloch matrix (10) then corresponds to the Bloch
matrix of a coherent state with vector n = (1,0,0). Another
way of seeing this is to note that λ = 0 is equivalent to γ =
π/2, which corresponds to both Majorana points coinciding,
i.e., a coherent state. We recover the known fact that the only
classical pure states are coherent states.

B. Lower bound for the full range

We now show that for an arbitrary pure state |ψ〉 whose
Bloch matrix X has smallest eigenvalue λ, quantumness is
such that

Q(|ψ〉) � −
√

3

8
λ. (12)

Without loss of generality, the quantumness of |ψ〉 can be
calculated by first transforming it to the canonical form (9).
Then we write the quantumness (8) as

Q(|ψ〉) = 1

2
min

Wclassical

√√√√ 3∑
μν=0

(Xμν − Wμν)2, (13)

with W of the form (6) and X given by (10). In order to
obtain (12) it is sufficient to show that

∑
μν(Xμν − Wμν)2 �

3
2λ2 for all classical states W . This is possible by proving

(Xμν − Wμν)2 � 0, (14)

(X33 − W33)2 − λ2 � 0, (15)

(X11 − W11)2 + (X22 − W22)2 − λ2

2
� 0. (16)

The first claim is true for all μ,ν, since the entries of X and W

are real numbers. Using (10), condition (15) can be rewritten
as

(|λ| + W33)2 − λ2 � 0, (17)

which obviously holds since W33 = ∑
i wi cos2 θi � 0. In

order to prove (16), we define a = (W11 + W22) and b =
(W11 − W22). Then one can show the identity,

(X11 − W11)2 + (X22 − W22)2 − λ2

2

= 1

2
[(1 − a)2 − 2λ(1 − a) + (λ + 1 − b)2]. (18)

Noting that a = ∑
i wi sin2 θi ∈ [0,1] and λ � 0, it imme-

diately follows that this quantity is non-negative, which
completes the proof of (12).
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C. Exact value of Q(|ψ〉) for λ ∈ [−1, − 1
2 ]

It turns out that in the parameter range λ ∈ [−1,− 1
2 ] there

is a classical state at precisely the distance given by the lower
bound (12). We consider the family of states of the form,

ρc(w,β) = (1 − 2w)

∣∣∣∣π2 ,0

〉〈
π

2
,0

∣∣∣∣
+w

∣∣∣∣π2 ,β

〉〈
π

2
,β

∣∣∣∣ + w

∣∣∣∣π2 ,−β

〉〈
π

2
, − β

∣∣∣∣, (19)

which are classical by construction for w ∈ [0,1/2], since
they are a mixture of coherent states |θ,φ〉. By calculating
the unconstrained minimum,

min
w,β

|||ψ〉〈ψ | − ρc(w,β)||, (20)

the optimal choices for the parameters w and β are found to
be

w = (4λ + 2)(1 − √
1 − λ2) − λ2

17λ + 8
, (21)

and

β = arccos

(−√
1 − λ2 − 2λ − 1

2λ

)
. (22)

The condition w ∈ [0,1/2] translates to λ � −1/2. For these
values the Bloch matrix of the state (19) reduces to

W =

⎛
⎜⎜⎝

1
√

1 − λ2 0 0√
1 − λ2 1 + λ

2 0 0
0 0 − λ

2 0
0 0 0 0

⎞
⎟⎟⎠. (23)

Note that since the set of classical states is closed and
convex [6], there is a unique closest state to any given state for
the (Euclidean) Hilbert-Schmidt distance. Since the distance
from the state W to the state X (10) is exactly the value of the
lower bound, it shows that W represents the closest classical
state (ccs) for |ψ〉 in the range of λ ∈ [−1,− 1

2 ].
If λ > − 1

2 the state corresponding to (23) does not represent
a quantum state any more, since the corresponding density
matrix is no longer positive. Actually, in the next section we
find a tighter lower bound for λ ∈] − 1

2 ,0], which in particular
implies that the distance between a quantum state and the set
C is larger than

√
3/8|λ| for λ ∈] − 1

2 ,0[. This proves that no
classical state exists in this range λ ∈] − 1

2 ,0[ that saturates
the bound (12).

D. Tighter bound in the range λ ∈] − 1
2 ,0]

In this section we show that for λ ∈] − 1
2 ,0] one has

Q(|ψ〉) � 1

2

√
λ2 + �(λ), (24)

where �(λ) is given by

�(λ) = 1

216

[
3h5

√
1 − λ

(λ + 1)3
− 6h2(λ2 − 52λ + 55)

λ + 1

+h4 − 216h
√

1 − λ2 + 72(11 − 4λ2 + 4λ)

]
, (25)

with

h = 61/3[9
√

1 − λ2 +
√

3(λ + 1)(25 − 31λ − 2λ2)]1/3.

(26)

The bound (24) is tighter than the one obtained in Sec. III B,
as can be shown by proving that over the range λ ∈] − 1

2 ,0[
one has √

λ2 + �(λ)

2
> −

√
3

8
λ (27)

(see end of the Appendix).
In order to prove the lower bound (24) it is sufficient to show

that
∑

μν(Xμν − Wμν)2 � λ2 + �(λ) for all classical states.
This is possible by proving

(Xμν − Wμν)2 � 0, (28)

(X33 − W33)2 − λ2 � 0, (29)

(X11 − W11)2 + (X22 − W22)2 + 2(X01 − W01)2 � �(λ).

(30)

Conditions (28) and (29) were already proven in the previous
section, so we only have to show (30). This can be done by
analytically calculating the minimal value of the left-hand side
of (30) under the restrictions on the values of Wμν implied by
Eq. (6). For readability, we rewrite the left-hand side of (30),
using the form (10) for a general pure state Bloch matrix X

and Eq. (6) for a general classical state W as

F (u,v,g) := (1 − u)2 + (λ + v)2 + 2(
√

1 − λ2 − g)2, (31)

with u = ∑
i wi sin2 θi cos2 φi,v = ∑

i wi sin2 θi sin2 φi , and
g = ∑

i wi sin θi cos φi . These new variables are such that

u + v � 1, u,v � 0

−√
u � g �

√
u. (32)

The last condition is derived from Jensen’s inequality
(
∑

i wiai)
2 �

∑
i wia

2
i with ai = sin θi cos φi . The minimum

of F (u,v,g) under the constraints (32) can be calculated
analytically, and, as shown in the Appendix, it is equal to �(λ)
given in (25). This proves Eq. (30), and thereby the tighter
lower bound (24) for the range λ ∈] − 1

2 ,0].

E. Exact value of Q(|ψ〉) for λ ∈] − 1
2 ,0]

The tighter lower bound (24) can be reached in the range
of λ ∈] − 1

2 ,0], since there are classical states at this distance.
Using a similar approach as in Sec. III C, we consider a family
of classical states of the form,

ρc(β) = 1

2

(∣∣∣∣π2 ,β

〉〈
π

2
,β

∣∣∣∣ +
∣∣∣∣π2 ,−β

〉〈
π

2
,−β

∣∣∣∣
)

, (33)

which are a mixture of just two coherent states |θ,φ〉 with
equal weights 1

2 . Let a pure state |ψ〉 have a Bloch matrix with
smallest eigenvalue λ. The state ρc(β) closest to the canonical
form (9) of |ψ〉 is determined by the condition,

∂

∂β

|||ψ〉〈ψ | − ρc(β)|| = 0, (34)
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which has the solution β = arccos d, with d defined as the real
root of the polynomial,

P (y) =
√

1 − λ2 + y(1 + λ) − 2y3, (35)

where λ ∈] − 1
2 ,0], corresponding to d ∈]

√
3

2 ,1]. Using this
value of β gives the Bloch matrix of ρc as

W =

⎛
⎜⎝

1 d 0 0
d d2 0 0
0 0 1 − d2 0
0 0 0 0

⎞
⎟⎠. (36)

The state represented by (36) is then exactly at the distance
to the pure state (10) given by the tighter lower bound (24).
Therefore we have proven that the classical state closest to (10)
is (36) for the parameter range λ ∈] − 1

2 ,0].

F. Summary of results for pure states

To conclude, let an arbitrary pure spin-1 state |ψ〉 be given
by its Bloch matrix (2). If the smallest eigenvalue of X is
denoted by λ, then the quantumness of |ψ〉 is equal to the
quantumness of a state with Bloch matrix (10), and takes the
form,

Q(|ψ〉) = f (λ), (37)

with

f (λ) :=
{

−
√

3
8λ for λ � − 1

2 ,
1
2

√
λ2 + �(λ) for λ > − 1

2 ,
(38)

and �(λ) given by Eq. (25). The function f (λ) is shown in
Fig. 2. It is continuous at λ = − 1

2 . At this plot scale, f (λ) is
almost indistinguishable from a linear function. The maximal

difference between f (λ) and −
√

3
8λ is less than 0.0016 over

the interval [−1,0].
The classical states closest to a pure state |ψ〉 take a

different expression in the two regions λ < − 1
2 and λ > − 1

2 ,
respectively, given by (23) and (36). A video showing how
the closest classical states vary as a function of the pure states
is given in the Supplemental Material [29]. In contrast to the

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.1

0.2

0.3

0.4

0.5

0.6

λ

Q
(ρ
) −0.17 −0.16 −0.15 −0.14

0.08

0.09

0.1

−0.7 −0.695 −0.69 −0.685 −0.68

0.42

0.43

FIG. 2. Quantumness of randomly generated mixed states, as a
function of the smallest eigenvalue of their Bloch matrix. There are
50 000 points, each one corresponding to a random state. Red line
corresponds to the pure state analytic result f (λ) given by Eq. (38).
Dashed line indicates the lower bound (45). Function f (λ) appears
to be an upper bound on the quantumness of mixed states (see inset).

case of the queen of quantum for j = 1, corresponding to
λ = −1 [9], these closest classical states (ccs) are not simply
a mixture of the pure state |ψ〉 itself and the maximally mixed
state, i.e., for λ �= −1,

ccs �= a|ψ〉〈ψ | + (1 − a)
1

3
, 0 � a � 1. (39)

IV. MIXED STATES

A. Mixed state quantumness

For pure states we obtained the analytical expression (37)
for quantumness as a function of a single parameter, namely the
smallest eigenvalue λ of the Bloch matrix of the state. In this
section we investigate the dependence of Q(ρ) as a function of
λ for mixed states. For a given state ρ the quantumness can be
obtained numerically by determining the closest classical state
of ρ. To find this state we randomly generate a large sample
of coherent states {|θi,φi〉} defined through Eq. (5), and then
optimize the weights wi of this decomposition,

ρc =
∑

i

wi |θi,φi〉〈θi,φi |, (40)

so that the distance from ρ to ρc is minimal. As the function Q2

defined in (7) corresponds to the minimization of a function
which is quadratic in the wi , this optimization can be done
by quadratic programming. The result of the optimization
yields an approximation of the quantumness: In general it is
overestimated by this approach, as coherent states appearing in
the decompositions of the closest classical state may not be in-
cluded in our random sample. The overestimation incurred by
the numerical approach can be estimated by considering pure
states, for which the analytical expression (37) is available.
For these states the overestimation is typically of the order of
∼10−6 for the numerical parameters used in the paper. For
mixed states, the overestimation can be probed, for instance,
by increasing the number of coherent states involved in the
sum (40), or by changing the choice of coherent states in the
random list. The results obtained are quite independent on in-
creasing the number of coherent states over which we optimize.

In Fig. 2 we plot the quantumness of mixed states as a
function of the smallest eigenvalue of their Bloch matrix.
Since, from the classicality criterion X � 0, nonclassical states
are such that λ ∈ [−1,0[, we restrict our plot to this interval
(note that for classical states λ takes positive values, while
the quantumness is zero by definition). The mixed states were
randomly generated from the Hilbert-Schmidt ensemble of
matrices ρ = AA†/tr(AA†), with A a complex matrix with
independent Gaussian entries (see [30] for detail). All points
lie very close to the pure state result. This signifies that
quantumness of a mixed state appears to largely depend on a
single parameter, which is the smallest eigenvalue of its Bloch
matrix, although mixed states cannot be reduced to a one-
parameter family (as is the case for pure states, up to rotations).

B. Upper bound for quantumness of mixed states

We conjecture that the function f provides an upper bound
for the quantumness of mixed states, namely,

Q(ρ) � f (λ), (41)
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with λ the smallest eigenvalue of the Bloch matrix of ρ.
This conjecture is supported by strong numerical evidence
as shown in the inset of Fig. 2. More precisely, Fig. 3
displays the difference between the quantumness and f (λ)
as a function of the smallest eigenvalue of the Bloch matrix.
In fact, we were not able to find a single state which violates
the bound. It may happen that, for states very close to pure
states, the numerical overestimation of quantumness due to
our optimization procedure leads to a result larger than f (λ);
however, by increasing the accuracy of our estimation [that
is, taking more coherent states in the sum (40)], we were
always able to get this estimate back below the threshold f (λ).
Numerical evidence thus suggests that this upper bound is valid
for all mixed states. Note that the true value of the quantumness
can only be smaller than the numerical estimate, as there is at
least one classical state at the corresponding distance.

The almost empty region in the upper right corner of Fig. 3
(visible also just below the upper bound in the upper inset of
Fig. 2) corresponds to the region between f (λ) and the straight
line −√

3/8λ in the interval [− 1
2 .0]. This apparent emptiness

just comes from our numerical sampling: Indeed, this region
can be filled, e.g., by points corresponding to mixed states of
the form,

ρ = a|ψ〉〈ψ | + (1 − a)ccs(|ψ〉), (42)

with 0 � a � 1 and |ψ〉 a pure state with closest classical state
ccs(|ψ〉) and λ ∈ [− 1

2 .0].
In the special case where a mixed state ρ can be written as

a convex combination of a pure state and its closest classical
state ccs, as in (42), Eq. (41) can be proven. This can be shown
by the fact that ||ρ − ccs(|ψ〉)|| = aQ(ψ), so that Q(ρ) �
af (λψ ), with λψ the smallest eigenvalue of the Bloch matrix
of |ψ〉. By using the explicit form of f given by (38), one
can show that af (λψ ) � f (aλψ ), for 0 � a � 1 (this is true
for −1 � λ � −1/2 because of the inequality (27), and for
−1/2 � λ � 0 by concavity of f over this interval). From
the forms (10) and (23),(36) of the Bloch matrices, one can
show that for states (42) the smallest eigenvalue of the Bloch

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−8

−6

−4

−2

0
x 10

−3

λ

Q
(ρ
)
−

f
(λ
)

FIG. 3. Difference between the quantumness and the hypothetical
upper bound f (λ) as a function of the smallest eigenvalue of the
Bloch matrix (same data as in Fig. 2). The difference between the
upper bound and the quantumness is of the order of 10−3. The
numerical error is of order 10−6, and our numerical procedure can
only overestimate quantumness so that the points could only be lower
than they appear here by that amount. The dashed line corresponds
to the lower bound (45).

matrix of ρ is given by λ = aλψ , hence (41). This proves the
upper bound for the family of states (42). However, a proof for
arbitrary mixed states is still missing.

C. Lower bound for quantumness of mixed states

The quantumness of mixed states can be bound from below
by minimizing over a larger set than in Eq. (8) (see [25] for a
similar approach). Let X be the Bloch matrix of some state ρ

and λ be the smallest eigenvalue of X. A lower bound can be
obtained as

1

2
min

Wclassical
||X − W || � 1

2
min
W̃ ,X̃

||X̃ − W̃ ||, (43)

where W̃ runs over all positive semidefinite matrices with
trW̃ = 2, and X̃ runs over all real symmetric matrices with
one eigenvalue equal to λ and trX̃ = 2. Furthermore, we can
write X̃ in its diagonal form X̃ = diag(x1,x2,x3,λ) with xi

arbitrary real numbers since the norm and the set over which
W̃ runs in the right-hand side of Eq. (43) are invariant under
orthogonal transformations.

Because X̃ is diagonal the optimal W̃ will also be in diag-
onal form. Since W̃ is positive, let W̃ = diag(w2

1,w
2
2,w

2
3,w

2
4),

with real wi such that
∑4

i=1 w2
i = 2. The right-hand side

of (43) can then be rewritten as

1

2
min

xi ,wi ∈ R∑3
i=1 xi = 2 − λ∑4

i=1 w2
i = 2

[(
λ − w2

4

)2 +
3∑

i=1

(
xi − w2

i

)2

]1/2

. (44)

This is a simple problem of minimization under constraints,
which can be solved by introducing appropriate Lagrange
multipliers. When λ is negative (nonclassical states), the
critical points of the Lagrange function are found to be such
that either wi = 0 for 1 � i � 3, or w4 = 0. The latter case
yields the smallest value for the quantumness, which is equal
to − λ√

3
. So the quantumness of any mixed state ρ with smallest

eigenvalue λ of its Bloch matrix is bound by

Q(ρ) � − λ√
3
. (45)

This lower bound corresponds to the dashed line in Figs. 2
and 3. For small enough quantumness, the two bounds
provided in this section are close to tight in the sense that
the quantumness of random mixed states extends almost over
the whole range between them.

V. CONNECTION WITH ENTANGLEMENT

We now establish a connection between quantumness and
entanglement, and relate the smallest eigenvalue of the Bloch
matrix to known entanglement measures such as the negativity
and the concurrence.

A. Entanglement

A bipartite pure state |ψ〉 is called separable if it can be
written as a direct product of pure states of its subsystems,

|ψ〉 = |ψ (1)〉 ⊗ |ψ (2)〉. (46)
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This definition can be extended to mixed states: A bipartite
mixed state is called separable if it can be written as a convex
sum of tensor products of quantum states of the subsystems,

ρ =
∑

i

wiρ
(1)
i ⊗ ρ

(2)
i , (47)

where the wi are classical probabilities with wi � 0 and∑
i wi = 1. If a state cannot be written in this form then it

is called entangled [31].
For two spin- 1

2 states, entanglement can be detected by
use of the partial transpose [32]. The necessary and sufficient
“positive partial transpose” (PPT) criterion [33] states that a
state of two spins- 1

2 (or a spin- 1
2 and a spin-1) is separable if

and only if ρPT is positive semidefinite, where PT denotes the
partial transpose operation. For higher spins there exist PPT
entangled states [17,34].

In order to quantify entanglement, commonly used mea-
sures are the negativity and the concurrence. The negativity is
given as

N (ρ) =
∑

i

|μi | − μi

2
, (48)

where μi are the eigenvalues of ρPT. The concept of negativity
is also connected to the concept of robustness of entangle-
ment [35].

The concurrence C was developed as an analytic solution
of the entanglement of formation for two spins- 1

2 [36]. For a
two spin- 1

2 state ρ it is given as

C(ρ) = max{0,τ1 − τ2 − τ3 − τ4}, (49)

where τi are the square roots of the eigenvalues of the matrix,

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), (50)

in decreasing order, and ∗ denotes the complex conjugation.
In Sec. V C we will relate these entanglement measures with
quantumness. We first discuss the analogy between classicality
and separability.

B. Classicality and separability

Classicality is a property defined for a spin-j state. It is
interesting to look at a spin-j state as the projection of a
tensor product of 2j spin- 1

2 states onto the subspace symmetric
under permutation of the particles. Any basis vector |j,m〉 then
appears as a symmetrized 2j -fold tensor product.

The subspace of pure symmetric states of two spins- 1
2 is

spanned by the Dicke states,

|D0〉 = |↑↑〉, |D1〉 = 1√
2

(|↑↓〉 + |↓↑〉), |D2〉 = |↓↓〉.

(51)

The basis vector |1,m〉 corresponds to |D1−m〉 for −1 � m �
1. There is a difference between mixed symmetric states
and symmetric mixtures of states. The former are defined
as mixtures of pure symmetric states and arise from the
physics of indistinguishable particles; the latter correspond to
symmetrically mixing arbitrary states, i.e., a purely classical

symmetrization procedure. For example, consider the state,

ρ = 1

2
|α〉〈α|j=1/2 ⊗ |α′〉〈α′|j=1/2

+ 1

2
|α′〉〈α′|j=1/2 ⊗ |α〉〈α|j=1/2, (52)

which is mixture of two distinct spin- 1
2 coherent states |α〉j=1/2

and |α′〉j=1/2. Such a state is a symmetric mixture, but not a
mixed symmetric state.

We now show that the set of two-qubit symmetric separable
states is identical to the set of classical spin-1 states. First, spin-
coherent states are separable: Identifying (in |j,m〉 notation)
| 1

2 , 1
2 〉 = |↑〉 and | 1

2 , − 1
2 〉 = |↓〉, the tensor product of two

identical spin- 1
2 coherent states (5) is(

cos
θ

2
|↑〉 + sin

θ

2
e−iφ|↓〉

)⊗2

= cos2 θ

2
|D0〉 +

√
2 cos

θ

2
sin

θ

2
e−iφ|D1〉

+ sin2 θ

2
e−2iφ|D2〉, (53)

which, from the correspondence |1,m〉 = |D1−m〉, is equiva-
lent to

|α〉j= 1
2 ⊗ |α〉j= 1

2 = |α〉j=1, (54)

where |α〉j is a spin-j coherent state given by (5). Thus the
spin-1 coherent states are separable in the tensor product space.
Therefore, all classical states of the form (4), as mixtures of
coherent states, can be identified with separable states.

Conversely, a two qubit symmetric separable state ρs =∑
i wiρ

(1)
i ⊗ ρ

(2)
i with wi > 0 can be identified with a classical

spin-1 state. Indeed, if ρs is symmetric then

〈D−|ρs |D−〉 = 0, (55)

with |D−〉 = 1√
2
(|↑↓〉 − |↓↑〉). This is equivalent to∑

i

wi〈D−|ρ(1)
i ⊗ ρ

(2)
i |D−〉 = 0. (56)

Since all summands are non-negative (by positivity of density
matrices) it follows that

〈D−|ρ(1)
i ⊗ ρ

(2)
i |D−〉 = 0 ∀i. (57)

If the qubit states ρ(1,2) are written with the Bloch vectors X(1,2)

according to Eq. (1), direct calculations give

〈D−|ρ(1)
i ⊗ ρ

(2)
i |D−〉 = 1

4
(1 − X(1) · X(2)). (58)

Because the Bloch vectors are such that ||X(1,2)|| � 1, Eq. (58)
implies that X(1) = X(2) and ||X(1,2)|| = 1. Thus ρ

(1)
i = ρ

(2)
i ,

which corresponds to the same pure qubit state |αi〉〈αi |j=1/2.
Therefore one can write

ρs =
∑

i

wi |αi〉〈αi |j=1/2 ⊗ |αi〉〈αi |j=1/2. (59)

With (54) it follows that ρs can be identified with∑
i

wi |αi〉〈αi |j=1, (60)
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which represents a classical state (4). Thus, the set of classical
spin-1 states can be identified with the set of separable
symmetric states of two qubits. Note that in the context of
quantum optics, there have been attempts to unify several
notions of quantumness; see e.g., [37–39].

This equivalence can also be shown indirectly using the PPT
criterion. Indeed, there is a remarkable connection between
the partial transpose of a state ρ and the Bloch matrix X of ρ.
Namely, one can easily check that

ρPT = 1

2
RXR†, (61)

with the unitary matrix,

R = 1√
2

⎛
⎜⎝

1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1

⎞
⎟⎠. (62)

Therefore, the Bloch matrix is nothing but the partial transpose
of ρ expressed in a different basis. As shown in Sec. II B, a
necessary and sufficient condition for classicality is that X be
positive semidefinite. As the eigenvalues are unchanged by
the change of basis (61) (but for a factor 1

2 ), this condition is
equivalent to the positive semidefiniteness of ρPT, which in
turn is equivalent to separability. In other words, this proves
that a spin-1 state is entangled (when seen as a bipartite system)
if and only if its quantumness is nonzero.

Any separable state can be written in the form (47), with
possibly ρ

(1)
i �= ρ

(2)
i . If that state lies in the subspace spanned

by (51), then necessarily, from the considerations above, ρ(1)
i =

ρ
(2)
i , so that ρ can be cast in the form,

ρ =
∑

i

wiρi ⊗ ρi, (63)

with ρi spin- 1
2 coherent states. This shows that spin-1 classical

states are at the same time mixtures of symmetric bipartite
spin-1/2 states and symmetric mixtures of the form (63).

C. Quantumness and entanglement

In Secs. III and IV we related quantumness of a state ρ to
the smallest eigenvalue of its Bloch matrix (2). If this smallest
eigenvalue is denoted by λ, then from the correspondence (61),
the smallest eigenvalue of ρPT is equal to λ/2. In the case
of a bipartition of two spin- 1

2 states, ρPT has at most one
negative eigenvalue [40], so that negativity (48) reduces to
N (ρ) = −λ/2. In the case of pure states, the concurrence
defined in (49) reduces to

C(|ψ〉〈ψ |) = −λ. (64)

Of course, as is expected for pure states, the negativity
and the concurrence are simply related by C(|ψ〉〈ψ |) =
2N (|ψ〉〈ψ |) [40].

The function f (λ) defined in (38) thus allows us to express
quantumness as a function of negativity for pure spin-1 states.
For mixed spin-1 states Eq. (41) becomes

dHS(ρ,C) � f (−2N (ρ)), (65)

and as we showed equality holds for pure states. Furthermore,
it gives an insight into the geometry of entangled states as

it allows one to connect negativity to a geometric property,
namely the Hilbert-Schmidt distance dHS from an entangled
state to the set C of symmetric separable states. In general,
since the closest separable state found in [25] is nonsymmetric,
the corresponding minimal Hilbert-Schmidt distance obtained
in [25] is smaller than the one we get as we consider the
distance to symmetric separable states only.

VI. CONCLUSION

In this paper we investigated the quantumness of spin-1
states, defined as Hilbert-Schmidt distance to the convex set
of classical spin-1 states. We found the analytical solution for
the quantumness Q(|ψ〉) of arbitrary pure states. It can be
expressed as a function of the smallest eigenvalue of the Bloch
matrix associated with |ψ〉. For mixed states, the same function
appears to give an upper bound for Q(ρ) according to extensive
numerical investigations. We established the connection of
Q(ρ) with entanglement measures.

The closest classical state also provides a classicality
witness, in the spirit of [41]. Our derivations provide another
example of the usefulness of the tensor representation of spin
states [26].

Spin-1 states have important physical applications. For in-
stance, there is a connection between spin-1 states and two pho-
ton states. De la Hoz et al. showed that unpolarized two-photon
states correspond to the states of maximal quantumness, i.e.,
the states given by Eq. (10) with λ = −1 [42–44]. Our findings
might therefore become important for improving the under-
standing of the quantum properties of the polarization of light.
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We thank the Deutsch-Französische Hochschule (Univer-
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APPENDIX: ANALYTIC CALCULATION
OF THE MINIMA

Here we will calculate the minimal value of F defined
in (31) under the constraints (32). If λ = 0, the minimum of F

is zero. We exclude this case in the following for convenience
and restrict ourselves to the interval λ ∈] − 1/2,0[. We will
use the fact that the minimal value of a function, restricted to
a certain parameter range, has its minimal value either on a
critical point or at the border of the parameter range. This will
give a list of candidates for the global minimum. The smallest
value in this list is then the global minimum.

To calculate the minimal value, we distinguish two cases,
u � 1 − λ2 and u < 1 − λ2. In each case we can simplify the
problem by setting the variable g to its optimal value. In the first
case D := F (g = √

1 − λ2) so that the third term vanishes,
and in the second case E := F (g = √

u), which makes the
last term as small as possible.

In both cases the new functions,

D = (1 − u)2 + (λ + v)2, (A1)

E = (1 − u)2 + (λ + v)2 + 2(
√

1 − λ2 − √
u)2, (A2)
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FIG. 4. Visualization of the allowed parameter range of the
variables u and v. The upper area corresponds to u � 1 − λ2, while
the lower corresponds to u � 1 − λ2. We call the function F (u,v,g)
restricted to the upper (lower) area D (E).

do not have critical points in the allowed parameter range
of u and v (32), since ∇u,vD = 0 is only solved by (u,v) =
(1, − λ), which is outside the parameter range for λ < 0, and
∇u,vE = 0 is only solved by (u,v) = ( 3

√
1 − λ2, − λ), which is

also outside the parameter range for λ < 0, since it contradicts
the condition u + v � 1. Therefore both functions have to have
their minimal value on the borders of the parameter range
depicted in Fig. 4. The function D restricted to the line (1)
in Fig. 4 will be referred to as D1, analogs D2,D3. These
three functions do not have a critical point on the interior of
their respective parameter ranges, so the minimal value must
be in all three cases on one of the two vertices. Consider the
candidates for the minimal value for the function D, as

D1(u = 1)

D2(v = 0)

}
= λ2, (A3)

D1(u = 1 − λ2)

D3(v = 0)

}
= λ4 + λ2, (A4)

D2(v = λ2)

D3(v = λ2)

}
= λ2(2λ2 + 2λ + 1). (A5)

Comparing these values the minimal value of D is found to be
λ2(2λ2 + 2λ + 1).

The minimum of the function E will be calculated analo-
gously. The function on the line (3) in Fig. 4 will be referred to

as E3, similar E4 on line (4), and so forth. The function E3 is
the same as D3 so its minimal value is also λ2(2λ2 + 2λ + 1).

The function E4(u) = (1 − u)2 + λ2 + 2(
√

1 − λ2 − √
u)2

has a critical value at u = 3
√

1 − λ2, which is larger than 1 −
λ2, and therefore outside the allowed range of the lower area
in Fig. 4. So the minimal value is reached at the second of the
two edges,

E4(u = 0) = 3 − λ2, (A6)

E4(u = 1 − λ2) = λ4 + λ2. (A7)

The function E5(v) = 1 + (v + λ)2 + 2(1 − λ2) has a crit-
ical value in the allowed parameter range, at v = −λ, corre-
sponding to a minimum,

E5(v = −λ) = 3 − 2λ2. (A8)

The function E6(u) = (1 − u)2 + (λ + 1 − u)2 +
2(

√
1 − λ2 − √

u)
2

has a critical value in the allowed
parameter range of u ∈ [0,1 − λ2[. The condition ∂uE

6 = 0
gives

1 + λ +
√

1 − λ2

√
u

− 2u = 0, (A9)

with the substitution u = y2 the optimal value of u is given
through the real root d of√

1 − λ2 + y(1 + λ) − 2y3 = 0, (A10)

which is the same polynomial as in (35). The second derivative,

∂2E6

∂u2
=

√
1 − λ2

u3/2
+ 4, (A11)

is positive over the whole parameter range, so the critical point
is a minimum, with the value,

�(λ) = E6(u = d2). (A12)

With this list of local minima, for all possible cases, the global
minimum of (31) is found to be (A12), which yields (25).

Proving Eq. (27) is equivalent to showing that �(λ) � λ2

2 .

We have E6 � λ2

2 , since

E6 − λ2

2
= 2(

√
u −

√
1 − λ2)2 + 1

2
[λ + 2(1 − u)]2, (A13)

which, as the sum of squares, is always non-negative. There-
fore, the minimum of E6 is also larger or equal to λ2

2 . As an
immediate consequence, inequality (27) holds.
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We express the positive-partial-transpose (PPT) separability criterion for symmetric states of multiqubit systems
in terms of matrix inequalities based on the recently introduced tensor representation for spin states. We construct
a matrix from the tensor representation of the state and show that it is similar to the partial transpose of the density
matrix written in the computational basis. Furthermore, the positivity of this matrix is equivalent to the positivity
of a correlation matrix constructed from tensor products of Pauli operators. This allows for a more transparent
experimental interpretation of the PPT criteria for an arbitrary spin-j state. The unitary matrices connecting
our matrix to the partial transpose of the state generalize the so-called magic basis that plays a central role in
Wootters’ explicit formula for the concurrence of a two-qubit system and the Bell bases used for the teleportation
of a one- or two-qubit state.

DOI: 10.1103/PhysRevA.94.042343

I. INTRODUCTION

Quantum information provides a window on various re-
markable features of quantum mechanics, such as entangle-
ment [1] or teleportation [2]. A central resource in quantum
information processing is quantum entanglement. A quantum
state is said to be separable if it can be written as a convex
sum of product states, i.e., states that are tensor products of
states of all the subsystems; otherwise it is said to be entangled
[3]. The state of a bipartite quantum system is known to be
separable if and only if it remains positive under all positive
quantum maps. Looking at a subclass of positive quantum
channels, one obtains necessary conditions for separability,
which therefore signal bipartite entanglement if the condition
is violated. In this respect, a central role is played by
the “positive-partial-transposed criterion” (PPT), physically
obtained by time reversal of one of the two subsystems [4,5].
For systems with Hilbert-space dimensions at most 2 × 2
or 2 × 3, PPT is also sufficient for separability. For higher
dimensional systems, entangled states exist that have positive
partial transpose [6,7].

For multipartite systems, the situation is substantially more
complicated due to the possibility that only certain bipartitions
could be entangled [8]. For three qubits, six different stochastic
local operations and classical communication (SLOCC) -
equivalence classes exist (i.e., families of states that can be
transformed into each other with nonzero probability using
only stochastic local operations and classical communication),
including two of genuine multipartite entanglement [9,10].
For four qubits, there are already uncountably many SLOCC
classes [11]. Polynomial invariants (under SLOCC) have
been used to classify and even quantify the entanglement of
multiqudit states [12,13].

For symmetric states, that is, states belonging to the
vector space spanned by pure states invariant under particle
exchange, the situation is somewhat simpler, in the sense
that several entanglement criteria coincide [14]. Continuous
sets of SLOCC classes of pure states can be grouped into
SLOCC-invariant families based on the degeneracy structure
of the involved single particle states [15]. Notably, PPT is
equivalent to the positivity of a correlation matrix of moments

of local orthogonal observables [14]. PPT symmetric states of
two or three qubits are all separable [16], whereas for four, five,
or six qubits entangled symmetric PPT states exist [14,17].
PPT mixed symmetric states for N qubits were studied in
[18], where criteria for separability in terms of the ranks of
such states were found.

In a parallel line of research, the concept of classical spin
states and the notion of quantumness of a spin state was
introduced [19–22]. In analogy to quantum optics, a pure spin
state is considered (most) classical if the quantum fluctuations
of the spin vector are minimal, i.e., as small as allowed by
Heisenberg’s uncertainty principle. This selects uniquely the
SU(2)-coherent states as pure “classical spin states.” Their
convex hull is the set of all classical spin states, and the
distance of a given state ρ from this convex set is a measure of
its “quantumness.” In [20,21] the quantumness based on the
Hilbert-Schmidt distance and the Bures distance was analyzed,
and the “most quantum” state for these measures identified.
Classical states of a spin j are in fact formally identical to fully
separable symmetric states of N = 2j spins- 1

2 (see Sec. II C).
Statements about the classicality of spin-j states therefore
immediately translate to statements about the separability of
symmetric states of multiqubit systems.

In [22], it was noted that PPT for spin-1 states is equivalent
to the positivity of a matrix built from tensor entries of a
recently introduced tensor representation of the state [23]. The
aim of the present work is to generalize this result to arbitrary
spin and bipartition. We show that an appropriate arrangement
of the components of the tensor representing a spin-j state
leads to a matrix that is similar to the partial transposed
multiqubit state written in the computational basis. Hence,
positivity of this matrix is equivalent to PPT of the multiqubit
state. We explicitly construct the unitary transformations that
connect the two matrix representations, and show that they
generalize the “magic basis” that for two qubits allows one
to obtain an explicit form of the concurrence [24]. We also
point out the connection to correlation functions that were
introduced earlier for studying entanglement of symmetric
spin states [14,25,26]. After recalling the basic definitions
in Sec. II, we first consider the easier case of an equal
bipartition in Sec. III, then move on to the general case in
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Sec. IV. In Sec. V we discuss various consequences of our
results.

II. CLASSICAL SPIN STATES

A. Tensor representation

Let ρ be a spin-j state (mixed or pure), with j integer or
half-integer, and N = 2j . In [23] we introduced a tensorial
representation of ρ as

ρ = 1

2N
Xμ1μ2···μN

Sμ1μ2···μN
, (1)

where

Xμ1μ2···μN
= tr(ρ Sμ1μ2···μN

) (2)

is a real symmetric tensor (we use Einstein sum convention,
summing over repeated indices). The matrices Sμ1μ2···μN

can
be obtained from the expansion of the matrix corresponding
to the (j,0) representation of a Lorentz boost along a
four-vector. Alternately, they can be constructed from Pauli
matrices σμ, 0 � μ � 3, with σ0 the 2 × 2 identity matrix, as
the projection of the tensor product σμ1 ⊗ σμ2 ⊗ · · · ⊗ σμN

onto the subspace spanned by pure states invariant under
permutation [23]. The tensor representation is such that

3∑
a=1

Xaaμ3···μN
= X00μ3···μN

(3)

for arbitrary 0 � μ3, . . . ,μN � 3. The matrix S0···0 is the
(N + 1) × (N + 1) identity matrix, so that in particular, the
condition trρ = 1 is equivalent to X0···0 = 1.

B. Classical states

A spin-j coherent state |αj 〉 associated with the Bloch
vector n = (sin θ cos φ, sin θ sin φ, cos θ ) is defined as

|αj 〉 =
j∑

m=−j

√(
2j

j + m

)(
cos

θ

2

)j+m(
sin

θ

2
e−iφ

)j−m

|j,m〉,

(4)
where {|j,m〉; −j � m � j} is the usual angular momentum
basis. Such a state has tensor entries given by Xμ1μ2···μN

=
nμ1nμ2 · · · nμN

, with n = (1,n) [23]. For spin- 1
2 we denote

coherent states simply by |α〉. If |αj 〉 is written in the N -spins- 1
2

computational basis, we have the identities

|αj 〉 = |α〉 ⊗ |α〉 ⊗ · · · ⊗ |α〉, (5)

the tensor product of N copies of the spin- 1
2 coherent state,

and

nμ = 〈α|σμ|α〉. (6)

In [19] we introduced classical spin states as the convex hull of
coherent states, that is, states ρ such that there exists a positive
function P (α) defined on the unit sphere and verifying

ρ =
∫

dα P (α)|αj 〉〈αj |. (7)

In tensor terms, classical states are states ρ whose tensor
representation is given by

Xμ1μ2···μN
=

∫
S

dnP (n)nμ1nμ2 . . . nμN
, (8)

where S is the unit sphere of R3 and dn is the flat measure on
the sphere. Since the we are considering finite-dimensional
Hilbert spaces, Caratheodory’s theorem ensures that the
integral in (8) can be replaced by a finite sum, so that there
exist weights wi � 0 and vectors n(i) = (1,n(i)) such that

Xμ1μ2...μN
=

∑
i

win
(i)
μ1

n(i)
μ2

· · · n(i)
μN

. (9)

C. Classicality and separability

A spin-j state can be seen as the projection of the state of
N spins- 1

2 onto the vector space S spanned by pure symmetric
states. We call a mixed state ρ symmetric if it is equal to its
projection onto S. If a convex combination of pure states ρ =∑

wi |vi〉〈vi |, with |vi〉 pure states and wi � 0, is symmetric,
then necessarily all |vi〉 belong to S. Indeed, let S⊥ be the
vector space orthogonal to S. Then for any vector |u〉 ∈ S⊥ the
symmetry of ρ implies that 〈u|ρ|u〉 = 0, thus

∑
wi |〈u|vi〉|2 =

0. Positivity of the wi then implies that 〈u|vi〉 = 0, and thus
|vi〉 ∈ (S⊥)⊥ = S.

Classical spin-j states can thus be seen as separable fully
symmetric states of 2j spin- 1

2 states, and vice versa, via the
following theorem:

Theorem 1. A symmetric state is (fully) separable if and
only if there exists a P representation for which the P function
is positive on the two sphere. In other words, classical states
are identified with fully separable symmetric states.

This theorem was proved many times in many guises (see,
e.g., [27], p. 4 or [28]). For completeness we briefly give a
proof of this fact.

Proof. If ρ is fully separable, then it is possible to write
ρ = ∑

i λiρ
(i)
1 ⊗ · · · ⊗ ρ

(i)
N , and then to decompose each ρ

(i)
k

in its eigenvector basis, so that

ρ =
∑

i

μi

∣∣v(i)
1

〉〈
v

(i)
1

∣∣ ⊗ · · · ⊗ ∣∣v(i)
N

〉〈
v

(i)
N

∣∣
=

∑
i

μi

∣∣v(i)
1 · · · v(i)

N

〉〈
v

(i)
1 · · · v(i)

N

∣∣, (10)

with μi � 0. Since ρ is symmetric one has |v(i)
1 · · · v(i)

N 〉 ∈ S.
The symmetry imposes that |v(i)

1 〉 = · · · = |v(i)
N 〉. As spin- 1

2
states are all coherent states and from Eq. (5) the tensor product
of identical spin- 1

2 coherent states yields a spin-j coherent
state, this completes the proof. The converse is obvious, since
inserting (5) into (7) shows that any classical state is separable
and symmetric. �

Seeing a spin-j state as a multipartite state allows one to
define partial operations on subsystems, such as partial tracing
or partial transposition. An important property of the tensor
representation (1) is the following: the partial trace of a state ρ

with tensor Xμ1μ2···μN
, taken over N − k qubits, is a symmetric

k-qubit state with tensor coefficients Xμ1···μk0···0 [23]. This will
allow us to reexpress various separability criteria in terms of
the Xμ1μ2···μN

.
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D. Separability criteria

Using the correspondence outlined above, classicality
criteria can be obtained from known separability criteria, such
as the PPT criterion. Let us consider a bipartite quantum state
ρ ∈ H1 ⊗ H2, with H1,H2 two finite-dimensional Hilbert
spaces of dimension d1 and d2, respectively. The partial
transpose of ρ with respect to subsystem 2 is defined by

(ρPT)i1i2,j1j2 = ρi1j2,j1i2 , 0 � ik,jk � dk − 1. (11)

Peres [4] showed that positivity of the partial transpose matrix
ρPT is a necessary condition for separability. It was conjectured
[4] and later proved [5] that PPT is a necessary and sufficient
condition in the case where dA = 2 and dB = 2 or 3.

In the case of classical spin-j states seen as fully separable
symmetric states of N = 2j spins- 1

2 , PPT yields a necessary
criterion for any bipartition of the N qubits into r and N − r

qubits. As the state is symmetric this criterion only depends
on the number r of the qubits and not on which qubits are
chosen. We denote by PT(N − r : r) the partial transpose
matrix associated with such a bipartition, where transposition
only affects the Hilbert space associated with the last r qubits.
For instance, for a five-qubit separable state ρ1 ⊗ ρ2 ⊗ ρ3 ⊗
ρ4 ⊗ ρ5 we have PT(3 : 2) = ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ρT

4 ⊗ ρT
5 . As

PT(r : N − r) is the transpose of the matrix PT(N − r : r)
we shall only consider the case r � j .

The Peres separability criterion [4] gives as a necessary
classicality criterion

PT(N − r : r) � 0, 1 � r � N/2. (12)

For states of two or three qubits, the Peres-Horodecki criterion
[5] yields a necessary and sufficient separability condition that
reads

PT(N − 1 : 1) � 0. (13)

Equivalently, with j = N/2, this gives a necessary and
sufficient classicality condition for spin-j states with j = 1
or j = 3/2.

III. PPT AND TENSOR REPRESENTATION

A. Matrix T for equal bipartition

In this section we reformulate the classicality criterion (12)
for integer j and equal bipartition (j : j ) in terms of tensor
entries Xμ1μ2···μN

. We start by introducing the 4j × 4j matrix

Tμ,ν = Xμ1···μj ν1···νj
, (14)

where matrix indices are vectors μ = (μ1 · · · μj ) and ν =
(ν1 · · · νj ), 0 � μi, νi � 3. [In this paper we use commas to
separate the two (multi-)indices of a square matrix, while
tensor indices have no commas.] According to the definition
of Xμ1···μN

, the matrix elements of T can all be obtained
as expectation values of tensor products of Pauli operators.
The matrix T is real and symmetric. It turns out, as we will
show, that ρPT = PT(j : j ) is similar to a multiple of T , that
is, there exists a unitary matrix R and a (positive) constant
λ such that R†ρPTR = λT . In particular, this implies that
for the equal bipartition (j : j ), the positivity of the partial
transpose ρPT is equivalent to the positivity of the matrix T ,
so that the corresponding necessary classicality criterion can

be expressed as T � 0. We first examine the cases of small j

and then move on to the general situation.

B. Spin-1 case

In the spin-1 case the matrix T in (14) coincides with the
4 × 4 matrix X, since the multi-indices μ and ν reduce to
single indices μ and ν, 0 � μ, ν � 3. Let ρPT be the partial
transpose of the spin-1 state ρ written in the canonical basis
of two qubits; it can be expressed as in (11). We want to find
a 4 × 4 unitary matrix R with the property that

(R†)μ,i1i2ρi1j2,j1i2Rj1j2,ν = λXμ,ν (15)

with 0 � i1,i2, j1,j2 � 1 and 0 � μ, ν � 3. Suppose that ρ

is a coherent state. Then the left-hand side of Eq. (15) reads

(R†)μ,i1i2 (|α〉〈α|)i1,j1 (|α〉〈α|)j2,i2Rj1j2,ν , (16)

which can be rewritten as

〈α|i2 (R†)μ,i1i2 |α〉i1 〈α|j1Rj1j2,ν |α〉j2 , (17)

while from Eq. (6) the tensor coordinates of ρ can be
expressed as Xμ,ν = 〈α|σμ|α〉〈α|σ ν |α〉. One easily checks
that a possible choice of R that complies with Eq. (15) is

Ri1i2,μ = 1√
2
σ

μ

i1,i2
(18)

together with λ = 1/2. Since R and λ chosen are both
independent of |α〉, they will in fact fulfill Eq. (15) for any
coherent state. As any density matrix ρ can be expanded as a
linear combination of coherent states [as in (7), but possibly
with a negative P function], R and λ will be suited for any
density matrix. Moreover, the matrix R is unitary since

(R†R)μ,ν = 1
2 tr{σμσ ν} = δμ,ν, (19)

with δμ,ν the Kronecker symbol. Thus, (R†ρPTR)μ,ν = λXμ,ν ,
so that the PPT criterion PT(1 : 1) � 0 is equivalent to
positivity of the 4 × 4 matrix (Xμ,ν)0�μ,ν�3.

C. Spin-2 case

For spin 2, the matrix T is indexed by multi-indices (μ1μ2)
and (ν1ν2), while the matrix ρ expressed in the computational
basis of qubits is indexed by multi-indices (i1i2i3i4) and
(j1j2j3j4), with again ik,jk ∈ {0,1} and μk,νk ∈ {0,1,2,3}. We
are looking for a unitary matrix R and a constant λ such that
R†ρPTR = λT , with ρPT the partial transpose taken over the
last two qubits. As before, we can first consider the case where
ρ is a coherent state. Explicitly, the analog of Eq. (16) for the
components of R†ρPTR reads

(R†)μ1μ2,i1i2i3i4 |α〉〈α|i1,j1 |α〉〈α|i2,j2

× |α〉〈α|j3,i3 |α〉〈α|j4,i4Rj1j2j3j4,ν1ν2 , (20)

while the analog of (17) reads

〈α|i3〈α|i4 (R†)μ1μ2,i1i2i3i4 |α〉i1 |α〉i2

× 〈α|j1〈α|j2Rj1j2j3j4,ν1ν2 |α〉j3 |α〉j4 . (21)

The matrix T can now be written as

〈α|σμ1 |α〉〈α|σμ2 |α〉〈α|σ ν1 |α〉〈α|σ ν2 |α〉. (22)
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A choice of R and λ that fulfills the required relation between
(21) and (22) is

Ri1i2i3i4,μ1μ2 = 1
2σ

μ1
i1,i3

σ
μ2
i2,i4

. (23)

The corresponding value of λ is then λ = 1/4. Note that
other choices are possible for R: a different solution would
be 1

2σ
μ1
i1,i4

σ
μ2
i2,i3

. Since R and λ are independent of |α〉, they are
valid for any coherent state and thus for any density matrix ρ.
Unitarity of the matrix R comes from the identity

(R†R)μ,ν = 1
4 tr{σμ1σ ν1}tr{σμ2σ ν2} = δμ1ν1δμ2ν2 , (24)

with μ = (μ1μ2), ν = (ν1ν2). Therefore, the necessary PPT
criterion (12) for spin-2 states can be expressed as T � 0,
where T is the 16 × 16 matrix defined by Tμ,ν = Xμ1μ2ν1ν2 .

D. General case

The above construction easily generalizes to higher integer
spin sizes. For spin j the 4j × 4j matrix R reads

Ri,μ = 1

2j/2

j∏
k=1

σ
μk

ik,ik+j
, (25)

where i = (i1i2 · · · iN ) and μ = (μ1μ2 · · ·μj ), with 0 � μk �
3 and 0 � ik � 1. Note that each Pauli matrix is indexed by one
index associated with a nontransposed qubit and one associated
with a transposed qubit. Any such pairing would yield a valid
R. It is easy to check that matrices R are unitary and such that
R†ρPTR = λT , with ρPT = PT(j : j ) and λ = 1/2j . Thus, the
corresponding PPT criterion yields the classicality criterion
T � 0.

IV. PPT FOR ANY BIPARTITION

A. T (r) matrices

The results of Sec. III can be further generalized to uneven
bipartitions of symmetric states. In this section we show that
matrices PT(N − r : r) are similar to a multiple of matrices
T (r) defined by

T
(r)
μ i,ν i′ = Xτ1···τN−2rμ1···μrν1···νr

N−2r∏
k=1

σ
τk

ik,i
′
k
, (26)

where μ = (μ1 · · ·μr ), ν = (ν1 · · · νr ), i = (i1 · · · iN−2r ), and
i′ = (i ′1 · · · i ′N−2r ) are multi-indices with 0 � μk � 3 and 0 �
ik, i ′k � 1, and summation over the τk ∈ {0,1,2,3} is implicit.
In this definition, indices ν are associated with the transposed
subspace, while indices τ and μ are associated with the
nontransposed one. Matrices T (r) are of size 4j × 4j . In the
case of equal bipartition r = j , Eq. (26) reduces to Eq. (14).

B. Spin 3/2

Let us start by considering the smallest-size case. Let ρ be a
spin-3/2 state and ρPT = PT(2 : 1), its transpose with respect
to the third qubit. The matrix T (1) in Eq. (26) is given by

T
(1)
μ i,ν i ′ = Xτμνσ

τ
i,i ′ . (27)

Building on the results of the previous section, it is easy to
construct a unitary matrix R such that R†ρPTR = λT (r). As

before we consider the case where ρ is a coherent state. In
such a case, R†ρPTR reduces to

(R†)μ i,a1a2a3 |α〉〈α|a1,b1

× |α〉〈α|a2,b2 |α〉〈α|b3,a3Rb1b2b3,ν i ′ , (28)

with 0 � ak, bk � 1, or equivalently

〈α|a3 (R†)μ i,a1a2a3 |α〉a1 |α〉a2〈α|b1〈α|b2Rb1b2b3,ν i ′ |α〉b3 , (29)

while the matrix T (1) defined in (27) can be written for this
coherent state |α〉 as

〈α|σμ|α〉〈α|σ ν |α〉(2|α〉〈α|)i,i ′ (30)

(we used the fact that 1
2nτσ

τ = |α〉〈α|). Identifying Eqs. (29)
and (30) up to a constant we see that a unitary R can be defined,
for instance, as

Ra1a2a3,μ i = 1√
2
δa1,iσ

μ
a2,a3

. (31)

In fact, the indices a2,a3 of the matrix σμ in (31) have to pair
any index associated with the nontransposed subspace with
an index associated with the transposed subspace, while the
delta function pairs the remaining indices in (29), leading to
the projector |α〉〈α| in (30). Unitarity of R is easily verified,
since

(R†R)μ i,ν i ′ = 1

2
tr{σμσ ν}

∑
i2

δi,i2δi2,i ′ = δμ,νδi,i ′ . (32)

As in the equal bipartition case, linearity ensures that R defined
in (31) together with λ = 1/4 is such that R†ρPTR = λT (r).

C. General R matrices

The above case contains the essence of the general proof
and generalizes to arbitrary values of j and r . In order to
recover matrix T (r) from PT(N − r : r), we have to construct
a matrix R built out of products of σμ matrices and Kronecker
deltas, such that the Pauli matrices pair r indices among those
associated with the nontransposed subspace together with
all r indices associated with the transposed subspace. The
remaining N − 2r indices, corresponding to the remaining
part of the nontransposed subspace, go into Kronecker deltas.
More precisely, we choose these latter indices to be the N − 2r

first ones, and to pair indices k with k + r for N − 2r + 1 �
k � N − r . We thus define matrices R(r) by

R(r)
a,μ i = 1

2r/2

N−2r∏
k=1

δak,ik

r∏
k=1

σμk

aN−2r+k ,aN−r+k
, (33)

with a = (a1 · · · aN ), μ = (μ1 · · · μr ), and i = (i1 · · · iN−2r ),
with μk ∈ {0,1,2,3} and ak,ik ∈ {0,1}. One can check, as
above, that R(r) are unitary and such that

(R(r))†ρPTR(r) = 1

2N−r
T (r) (34)

with ρPT = PT(N − r : r). Unitarity trivially comes from the
fact that indices of the Pauli matrices and the Kronecker
deltas in (33) are all distinct, so that the identity (19) can be
applied to each pair of matrices. To show (34), we first write
ρPT in the computational basis with the help of the tensor
representation. As explained in Sec. II, the expansion (1) can
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be obtained by projecting tensor products of Pauli matrices
onto the symmetric subspace. In the computational basis of N

qubits, ρ can thus be expressed as

ρ = 1

2N
Xμ1μ2···μN

σμ1 ⊗ σμ2 ⊗ · · · ⊗ σμN , (35)

so that ρPT reads

ρPT
a,b = 1

2N
Xτ1···τN

N−r∏
k=1

σ
τk

ak,bk

N∏
k=N−r+1

σ
τk

bk,ak
(36)

with a = (a1 · · · aN ) and b = (b1 · · · bN ), ak,bk ∈ {0,1}. The
left-hand side of (34) has components

[(R(r))†ρPTR(r)]μ i,ν i′ = (R(r)
a,μ i)

∗ρPT
a,bR

(r)
b,ν i′ , (37)

where ∗ denotes complex conjugation. Using (33) and (36),
this can be expressed as

1

2r+N
Xτ1···τN

N−2r∏
k=1

δak,ik

N−r∏
k=N−2r+1

σμk−N+2r

ak+r ,ak

N−r∏
k=1

σ
τk

ak,bk

×
N∏

k=N−r+1

σ
τk

bk,ak

N−2r∏
k=1

δbk,i
′
k

N−r∏
k=N−2r+1

σ
νk−N+2r

bk,bk+r
. (38)

The above product contains terms

δak,ik σ
τk

ak,bk
δbk,i

′
k
= σ

τk

ik,i
′
k

(39)

for 1 � k � N − 2r , terms

σμk−N+2r

ak+r ,ak
σ

τk

ak,bk
σ

νk−N+2r

bk,bk+r
= (σμk−N+2r σ τkσ νk−N+2r )ak+r ,bk+r

(40)

for N − 2r + 1 � k � N − r , and terms

σ
τk

bk,ak
(41)

for N − r + 1 � k � N (recall that we are considering a case
where N − r � r). Taking the product of all terms (39)–(41)

and summing over the remaining ak and bk (those with N −
r + 1 � k � N ), (38) becomes

Xτ1···τN

2r+N

N−2r∏
k=1

σ
τk

ik,i
′
k

r∏
k=1

tr{σμkσ τk+N−2r σ νkσ τk+N−r }. (42)

As can be checked explicitly, one has the identity

1
4yτ,τ ′ tr{σμσ τσ νσ τ ′ } = yμ,ν (43)

for any real symmetric matrix (yμ,ν)0�μ,ν�3 such that∑3
a=1 yaa = y00. Applying this identity to the summation

over pairs of indices (τk+N−2r ,τk+N−r ) for 1 � k � r in (42)
[and using property (3) of the tensor], we recover the term
Xτ1···τN−2rμ1···μrν1···νr

of (26). The product of terms (39) yields
the Pauli matrix terms in (26). The overall remaining factor is
λ = 1/2N−r . This proves Eq. (34).

V. SOME CONSEQUENCES

A. PPT criteria

As mentioned in Sec. II D, the PPT separability criterion
provides necessary, and in some instances sufficient, clas-
sicality criteria. The previous sections have shown that the
partial transpose takes a very simple form for symmetric states
expressed as in (1). Thus each PPT criterion is equivalent to a
linear matrix inequality T (r) � 0. In the simplest case of spin-1
states, T (r) is given by Eq. (14), so that the PPT criterion
PT(1 : 1) � 0 is equivalent to X � 0 for the 4 × 4 matrix
(Xμ,ν)0�μ,ν�3. This was already observed in [22], where the
same relation between ρPT and X was obtained. Our present
results generalize this relation: For integer spin and equal
bipartition r = j , the PT(j : j ) criterion is expressed in a very
transparent way in our tensor language, as the positivity of the
matrix (Tμ,ν) indexed by j tuples of indices and defined in
(14). More generally, each PPT criterion yields a classicality
criterion as the positivity of a matrix T (r).

In the case of spin- 3
2 , using the results of Sec. IV, a

necessary and sufficient classicality criterion can be expressed
as T (1) � 0, where T (1) is defined in (27). In terms of the tensor
entries, this criterion reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X000 + X003 X001 − iX002 X001 + X013 X011 − iX012 X002 + X023 X012 − iX022 X003 + X033 X013 − iX023

X001 + iX002 X000 − X003 X011 + iX012 X001 − X013 X012 + iX022 X002 − X023 X013 + iX023 X003 − X033

X001 + X013 X011 − iX012 X011 + X113 X111 − iX112 X012 + X123 X112 − iX122 X013 + X133 X113 − iX123

X011 + iX012 X001 − X013 X111 + iX112 X011 − X113 X112 + iX122 X012 − X123 X113 + iX123 X013 − X133

X002 + X023 X012 − iX022 X012 + X123 X112 − iX122 X022 + X223 X122 − iX222 X023 + X233 X123 − iX223

X012 + iX022 X002 − X023 X112 + iX122 X012 − X123 X122 + iX222 X022 − X223 X123 + iX223 X023 − X233

X003 + X033 X013 − iX023 X013 + X133 X113 − iX123 X023 + X233 X123 − iX223 X033 + X333 X133 − iX233

X013 + iX023 X003 − X033 X113 + iX123 X013 − X133 X123 + iX223 X023 − X233 X133 + iX233 X033 − X333

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

(44)

This matrix inequality can in turn be expressed as positivity
of a 16 × 16 real symmetric matrix, whose entries are of the
form ±Xμ1μ2μ3 , i.e., ±〈σμ1 ⊗ σμ2 ⊗ σμ3〉, which provides a
necessary and sufficient classicality condition as positivity of
a matrix of observables.

B. Correlation matrices

Let X be the tensor representation (2) of a spin-j state ρ

with j integer. We define correlation matrices associated with
the tensor X as the 4r × 4r matrices (1 � r � j )

C(r)
μr ,νr

= Xμrνr 0N−2r
− Xμr 0N−r

Xνr 0N−r
, (45)
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where μr = (μ1 · · · μr ), νr = (ν1 · · · νr ), and 0k is the zero
vector of length k. Since the first line and column of C(r) are
indexed by 0r , and X0···0 = 1, it takes the form

C(r) =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0

0
... S(r)

0

⎞
⎟⎟⎟⎟⎠, (46)

where the matrix S(r) is of size (4r − 1) × (4r − 1). In terms
of the entries of the matrix T defined in (14), S(r) can be
expressed as

S(r)
μr ,νr

= Tμr 0j−r ,νr 0j−r
− Tμr 0j−r ,0j

Tνr 0j−r ,0j
. (47)

The matrix S(r) can thus be interpreted as the Schur com-
plement of the matrix (Tμr 0j−r ,νr 0j−r

)μr ,νr
with respect to the

upper left entry T0j ,0j
= 1. The matrix (Tμr 0j−r ,νr 0j−r

)μr ,νr
is

the restriction of T to its 4r first lines and columns. This
4r × 4r subblock coincides with the matrix T associated with
the spin-r state ρr obtained from ρ by tracing out N − 2r

qubits. Since positivity of a matrix is equivalent to positivity
of its Schur complement (if the part complemented is itself
positive), one has that the upper left 4r × 4r block of T is
positive if and only if C(r) � 0. Together with the results
of the previous sections, this shows that the PPT criterion
PT(j : j ) � 0 applied to ρ is equivalent to positivity of the
correlation matrix C(j ), and more generally the PPT criterion
PT(r : r) � 0 applied to the reduced density matrix ρr is
equivalent to positivity of the correlation matrix C(r).

If ρ is a classical state, then all its reduced density matrices
ρr are classical as well. The PPT criterion thus leads to a
sequence of necessary classicality conditions C(r) � 0. These
conditions are those obtained by different means in [25], where
the so-called “intergroup covariance matrices” coincide with
our matrices C(r). This also allows us to recover results from
[14] that the partial transpose criterion for partition into two
equally sized subsystems is equivalent to positivity of the
correlation matrix of local orthogonal observables.

From the above considerations, we see that all these
necessary conditions are encompassed in a compact way in the
single condition T � 0. This latter condition is not sufficient,
nor is the condition that all partial transposes be positive. For
instance, there exist symmetric four-qubit entangled states for
which all partial transposes are positive [17].

C. Teleportation and generalized magic bases

The matrix Ri,μ = 1√
2
σ

μ

i1,i2
with i = (i1,i2) defined in (18)

can be written out explicitly in the computational basis as

R = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 1

0 1 −i 0

0 1 i 0

1 0 0 −1

⎞
⎟⎟⎟⎠. (48)

The μth column of R contains the elements of the Pauli matrix
σμ (up to normalization). These are equal, up to a phase
factor, to the two-qubit Bell states. More precisely, the Bell
states are the columns of the matrix R̃i1i2,μ = 1√

2
σ̃

μ

i1,i2
, where

σ̃ μ = σμ for μ 
= 2 and σ̃ μ = iσμ for μ = 2. They are also
proportional to the magic basis introduced in [29]: namely,
the three last columns of R have to be multiplied by −i in
order to recover the magic basis of [29]. We recall that, among
other properties, the magic basis is such that when a state |ψ〉
is written in this basis, with some coefficients αi, 1 � i � 4,
then its concurrence is given by C(|ψ〉) = |∑4

i=1 α2
i |.

Bell states are used in the quantum teleportation protocol
of a single qubit [2]. If Alice and Bob share a Bell state, it is
possible for them to teleport a one-qubit state by exchanging
only two classical bits. In a similar spirit, four-qubit general-
ized Bell states |gi〉, 1 � i � 16, were introduced in [30]: if
Alice and Bob share one of these generalized Bell states, they
are able to teleport a two-qubit pure state by exchanging four
classical bits (the protocol of [30] is essentially the same as in
the one-qubit case). It turns out that the columns of our spin-2
matrix R, defined explicitly in (23), are equal, up to a phase
factor, to the 16 states |gi〉. More precisely, the |gi〉 of [30] are
exactly the columns of the matrix

R̃i1i2i3i4,μ1μ2 = 1
2 σ̃

μ1
i1,i3

σ̃
μ2
i2,i4

(49)

(again the σ̃ are such that σ̃ μ = iσμ for μ = 2, and σμ other-
wise). The generalized Bell basis also provides a generalization
of the magic basis to higher qubits. The two-qubit magic basis
|ei〉, 1 � i � 16, in [30] is constructed by multiplying the |gi〉
by appropriate phases. A state expressed in this basis as |ψ〉 =∑16

i=1 αi |ei〉 is then such that the generalized concurrence [31]
is given by C(|ψ〉) = | ∑16

i=1 α2
i |. We can recover the magic

basis |ei〉 just by multiplying by i the eight columns of R̃

indexed by pairs (μ1,μ2) such that |μ1 − μ2| = 1. Our formula
thus provides a very compact form both for the Bell states
appearing in the two-qubit teleportation protocol and for the
generalized magic basis of [30].

It is clear from Eq. (49), and from the general form (25)
of matrices R, that this approach can be straightforwardly
generalized to an arbitrary number of qubits. The N -qubit
teleportation protocol proposed in [30] was obtained from the
action of products of the form (σ z)α(σx)β , with α,β ∈ {0,1}, on
a state

∑N−1
j=0 |j 〉|j 〉. Using the fact that σ zσ x = iσ y , one can

check that the generalized Bell basis coincides, up to phases,
with the columns of our matrices. In particular, this means that
R can also be interpreted as the unitary matrix that Alice has to
apply on her side to make a Bell measurement in the N -qubit
teleportation protocol.

VI. CONCLUSION

The present results provide a unifying framework for
various concepts dealing with symmetric states. It allows us to
reformulate several known results in a much simpler way. In
the language of the tensor representation, criteria such as the
PPT separability criterion can be expressed in a much more
transparent way by positivity of the matrix T . In particular, this
allows one to directly relate the partial transpose to correlations
of observables, which provides a physical interpretation of the
partial transpose beyond time reversal. Note that the matrix R

in (48) was used in [32] to generate local unitary invariants
in terms of partial transpose and realignments. It may be
possible to extend our expressions to that setting as well.
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Furthermore, such representations may also be generalized to
qudit symmetric states, that is, symmetric tensor products of
d-level systems. However, the symmetric sectors are then less
easy to describe and their description would require additional
work.
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(Received 16 August 2016; published 17 October 2016)

Tensor eigenvalues and eigenvectors have been introduced in the recent mathematical literature as a
generalization of the usual matrix eigenvalues and eigenvectors. We apply this formalism to a tensor that
describes a multipartite symmetric state or a spin state, and we investigate to what extent the corresponding
tensor eigenvalues contain information about the multipartite entanglement (or, equivalently, the quantumness)
of the state. This extends previous results connecting entanglement to spectral properties related to the state. We
show that if the smallest tensor eigenvalue is negative, the state is detected as entangled. While for spin-1 states
the positivity of the smallest tensor eigenvalue is equivalent to separability, we show that for higher values of the
angular momentum there is a correlation between entanglement and the value of the smallest tensor eigenvalue.

DOI: 10.1103/PhysRevA.94.042324

I. INTRODUCTION

In the study of multipartite entanglement, symmetric
multipartite states have drawn some attention recently [1–3].
One reason for that is that they span a Hilbert space whose
dimension grows only linearly with the number of constituents,
rather than exponentially for arbitrary multipartite states. They
are therefore easier to deal with than generic states, and they
provide a first step towards a more general understanding of
multipartite entanglement. A pure symmetric N -qubit state
can be written as a superposition of the Dicke states familiar
in quantum optics. A Dicke state is a state of N two-level
atoms (i.e., qubits) where a given number of excitations is
symmetrically distributed over the N constituents, so that
the state is invariant under permutations of the qubits. Such
states have important technological potential for quantum
storage, as the coupling constants of photons to atoms can
effectively be increased by a factor

√
N when coupling the

atoms symmetrically to the light field [4]. Another physical
realization of Dicke states is provided by angular momentum
eigenstates, i.e., spin-j states arising as collective angular
momentum states of N = 2j physical spins-1/2. The Dicke
states are formally equivalent to eigenstates |j,m〉 of operators
J2 and Jz, where Jx,Jy,Jz are the usual angular momentum
operators. A mixed symmetric state is then defined as a mixture
of pure symmetric states (note that this notion is distinct from
that of a “symmetrized mixed state,” which would be a tensor
product of spin-1/2 density matrices symmetrized by summing
over all permutations).

Among the pure spin-j states, spin coherent states [also
called SU(2)-coherent states] are the ones that come as close
as possible to the ideal of a classical phase-space point,
in the sense that their quantum fluctuations for the angular
moment components are as small as allowed by Heisenberg’s
uncertainty relation [5]. Furthermore, they keep this property
under the dynamics induced by Hamiltonians linear in the
angular momentum components, corresponding physically,
for example, to precession in a magnetic field. For a spin-j
coherent state, the expectation value of the angular momentum
operator in a specific direction n is 〈J · n〉 = �j , a feature not
true for a general pure spin-j state. In this sense a spin-j
coherent state points in a well-defined direction (note that all

pure spin-1/2 states are coherent states, as they can be specified
by a Bloch vector on the unit sphere). If a spin-j coherent state
is interpreted as a symmetric N -fold tensor product of N = 2j

qubits, it can be expressed simply as the tensor product of N

identical spin-1/2 coherent states. Therefore, spin-j coherent
states coincide with symmetric separable pure states. Classical
spin-j states are defined as statistical mixtures of spin coherent
states [6–8]. When expressed in the Dicke basis, they can be
seen as separable symmetric N -qubit states.

Just as entanglement of a quantum state can be measured
as the distance to the set of separable states, the quantumness
(or nonclassicality) of a spin-j state can be measured as its
distance to the set of classical states [9]. Our purpose here is
to investigate the quantumness properties of a state from its
spectral properties. There has been substantial research trying
to figure out what entanglement properties can be derived from
the spectrum of eigenvalues of the density matrix representing
a composite system [10–16] and how to directly access
the spectrum experimentally without having to reconstruct
the full density matrix [17–19]. Measures of entanglement
based on the spectrum have the immediate advantages of
being relatively easy to compute and being invariant under
unitary transformations, i.e., capturing “absolute separability”
[13]. Other well-known entanglement criteria are based on
bounds of spin correlations [20,21], which in turn exploit
the positive-partial-transpose (PPT) criterion. In [22] we
introduced a tensorial representation for spin states. In this
representation, a spin-j density matrix is expanded as a sum
over matrices of dimensions (2j + 1) × (2j + 1), and the
expansion coefficients take the form of a tensor Aμ1μ2...μN

with N = 2j indices. We showed in [23] that the PPT criteria
applied to symmetric multiqubit states can be unified by means
of a matrix T , obtained from the tensor representation of the
equivalent spin-j state by splitting the set of indices in two
subsets and considering each set as coding for the row or
column index of the T matrix. The positive partial transpose is
then equivalent to the positivity of the T matrix, and correlation
criteria for observables, such as spin-squeezing inequalities,
can also be derived from the positivity of T [23].

In light of these entanglement criteria based on the spectral
properties of the density matrix or on the positivity of the

2469-9926/2016/94(4)/042324(8) 042324-1 ©2016 American Physical Society



F. BOHNET-WALDRAFF, D. BRAUN, AND O. GIRAUD PHYSICAL REVIEW A 94, 042324 (2016)

T matrix constructed from the tensor A, one may wonder
whether the spectrum of the tensor A itself contains deeper
information about the entanglement of the state. While the
spectral theory of matrices is more than one century old,
its extension to tensors is much more recent. The spectral
theory of tensors has developed a lot in the past decade,
and various tools have been proposed in the mathematical
literature to tackle this problem (see [24] for a short review
and also Sec. III). But the relevance of the spectral theory of
tensors for the separability (or classicality) problem has just
recently attracted some attention in the quantum information
community. For example, in [25] it was shown that for pure
states the largest tensor eigenvalue is equal to the geometric
measure of entanglement, i.e., the maximal overlap of the
state with a pure separable state. This entanglement measure
is, in fact, essentially equivalent to finding the best rank-1
approximation of the tensor. Therefore, the largest tensor
eigenvalue is directly related to the entanglement of a state. In
this paper we will explore another connection, which relates
the smallest tensor eigenvalue to the entanglement of a pure or
mixed state. This originates from the fact that the entanglement
of a state is related to the positive definiteness of a tensor, which
in turn is linked to the sign of its smallest tensor eigenvalue.
We show that if the smallest eigenvalue is negative, the state
is entangled. If it is positive and sufficiently large, the state is
separable with high probability. The latter criterion works best
for relatively small values of j .

In the present paper we report the results of our inves-
tigations on the connection between the spectral properties
of the tensor of order 2j associated with a spin-j state
and the classicality of that state. The paper is organized as
follows. First, we recall some definitions of quantumness
and the tensor representation and show how the spectrum of
the tensor is connected to the quantumness and classicality
question. In Sec. III we introduce tensor eigenvalues and as
an illustration calculate them explicitly for two examples. In
Sec. IV we introduce an efficient algorithm for calculating the
distance from a state to the set of classical states. Section V
explores numerically the connection between the smallest
tensor eigenvalue and quantumness.

II. DEFINITIONS

A. Entanglement and quantumness

We consider a system of N qubits, and we restrict the Hilbert
space to the subspace of symmetric states. We will describe
them with the terminology of spin-j states with N = 2j . Spin
coherent states can be written as [26]

|α〉 =
j∑

m=−j

√(
2j

j + m

)(
cos

θ

2

)j+m(
sin

θ

2
e−iφ

)j−m

|j,m〉,

(1)

with θ ∈ [0,π ] and φ ∈ [0,2π [ being spherical angles. Here
|j,m〉 are the usual angular momentum basis vectors, i.e.,
the simultaneous eigenvectors of the total angular momentum
squared J2 and its Jz component, with eigenvalues j (j + 1)
and m, respectively (� = 1). The spin coherent state |α〉
can be seen as a spin j pointing in the direction n =

(sin θ cos φ, sin θ sin φ, cos θ ). A spin-j state ρc is classical
if and only if it can be expressed as a mixture of spin coherent
states with positive weights [7], i.e., if there exist spin coherent
states |αi〉 such that

ρc =
∑

i

wi |αi〉〈αi |, 0 � wi � 1,
∑

i

wi = 1. (2)

We denote by C the ensemble of such states. Since a coherent
spin state is formally exactly a pure symmetric separable state
and vice versa [23], an entangled symmetric multiqubit state
is therefore a state which cannot be written as a classical state
as in Eq. (2). The amount of entanglement translates into a
certain amount of nonclassicality, or quantumness, defined as
the (Hilbert-Schmidt) distance to the convex set of classical
states, i.e.,

Q(ρ) = min
ρc∈C

||ρ − ρc||, (3)

where ||A|| =
√

tr(A†A) is the Hilbert-Schmidt norm [9]. A
spin-j state has a quantumness larger than zero whenever the
corresponding N -qubit state is entangled.

It is known that the separable state closest to a symmetric
state in terms of the Bures distance is also symmetric [27].
However, for other distances this may not be the case.
In particular, the Hilbert-Schmidt distance of an N -qubit
symmetric state to the set of separable states is, in general,
not equal to the quantumness of the corresponding state of
a physical spin-j system, as some separable nonsymmetric
states may lie closer.

B. Tensor representation

In order to conveniently deal with expansions of quantum
states over spin coherent states, we use a representation suited
to this purpose that has recently been introduced in [22]. We
express a spin-j density matrix ρ in the following way. Let
σa , 1 � a � 3, be the usual Pauli matrices and σ0 be the 2 ×
2 identity matrix. We define the 4N matrices Sμ1...μN

(with
N = 2j ) by

Sμ1···μN
= P

(
σμ1 ⊗ σμ2 · · · ⊗ σμN

)
P †, 0 � μi � 3, (4)

with P being the projector onto the symmetric subspace of
tensor products of N spins- 1

2 (the subspace spanned by Dicke
states). The matrix ρ can be expanded over Sμ1···μN

as

ρ = 1

2N
Aμ1μ2···μN

Sμ1μ2···μN
(5)

(summation over repeated indices is implicit), with real
coefficients

Aμ1μ2...μN
= tr(ρ Sμ1μ2···μN

) (6)

(see [22] for details). Aμ1μ2···μN
are invariant under permutation

of the indices and enjoy the property that for any μi , 3 � i � N

and 0 � μi � 3,

3∑
a=1

Aaaμ3···μN
= A00μ3···μN

. (7)

Normalization of the states ρ in (5), trρ = 1, translates to
A00···0 = 1.
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The coordinates Aμ1μ2···μN
can be seen as a symmetric

order-N tensor. We thus refer to (6) as the tensor representation
of ρ. This representation is a generalization of the spin- 1

2 Bloch
sphere representation

ρ = 1
2 AμSμ, (8)

with Bloch vector A = tr(ρ σ ) and A0 = 1 (noting that
Sμ = σμ).

C. Classicality in the tensor representation

The tensor associated with a spin coherent state |α〉 pointing
in direction n is simply given by

Aμ1μ2···μN
= 〈α|Sμ1μ2···μN

|α〉 = nμ1nμ2 · · · nμN
, (9)

with n0 = 1 and n = (n1,n2,n3) [22]. The definition of
classicality, Eq. (2), can be reexpressed in terms of tensors.
A state is classical if and only if there exist positive weights
wi and unit vectors n(i) such that its tensor of coordinates A

can be written as

Aμ1μ2···μN
=

∑
i

win
(i)
μ1

n(i)
μ2

· · · n(i)
μN

, (10)

with n(i)
μ = (1,n(i)). Contracting such a tensor with an arbitrary

real order-1 tensor q gives

Aμ1μ2···μN
qμ1qμ2 · · · qμN

=
∑

i

wi

(
n(i)

μ qμ

)N
. (11)

If j is an integer (i.e., if N is even), the right-hand side is
always positive since the weights wi are positive. Therefore,
any tensor having the form (10) is such that its contraction
with an arbitrary order-1 tensor is positive. This precisely
corresponds to the definition of positive semidefiniteness of
the tensor A as introduced in [28]. A necessary condition for
classicality of ρ is thus that its associated tensor be positive
semidefinite. In the case of a spin-1 system, where the tensor
reduces to a matrix, this is also a sufficient condition [29].
However, for j � 2 it is not sufficient anymore since there exist
nonclassical states which have a positive tensor representation,
as will be discussed below.

Before continuing the discussion of the relationship be-
tween classicality and tensor properties, we introduce some
elements of the spectral theory of tensors.

III. TENSOR EIGENVALUES

A. Definitions

Let Aμ1···μN
be the tensor representation of a spin-j state.

Its entries are real and symmetric under any permutation of
indices. Tensor eigenvalues and eigenvectors of such a real
symmetric tensor are defined in [28]. Different definitions have
been introduced. For instance, for a tensor with N indices, each
ranging from 0 to n − 1 (in our case n = 4), Z eigenvalues,
which we will use in this paper, are the real numbers λ such
that there exists a real vector v with n components verifying

Av[N−1] = λv,

vT v = 1,
(12)

where Av[k] denotes the tensor of order N − k given by

(Av[k])μk+1···μN
= Aμ1μ2···μN

vμ1vμ2 · · · vμk
(13)

and vT is the transpose of v.
The different definitions of tensor eigenvalues can be

written as special cases of the B eigenvalues, which are defined
[30] as

Av[N−1] = λBv[m−1], Bv[m] = 1, (14)

where B is a real symmetric order-m tensor and λ,vμ ∈ C.
If B is chosen as the identity matrix (i.e., m = 2) and λ,vμ

are restricted to real values, then the solutions λ are the Z

eigenvalues defined in Eq. (12). If m = N and B is the identity
tensor (i.e., Bμ1···μn

= 1 if all μi are identical and Bμ1···μn
= 0

otherwise), so that Bx[m] = xm
0 + xm

1 + · · · xm
n , real solutions

to (14) are called H eigenvalues [28]. Another type is the
D eigenvalues, which have recently found application in
magnetic resonance imaging studies of the diffusion kurtosis
coefficients of water molecules [31]. They can be written as
real B eigenvalues if m = 2 and there exists a symmetric
positive-definite matrix D ∈ Rn×n with Bx[2] = xT Dx, such
that there exists a real vector v with

Av[m−1] = λDv, vT Dv = 1. (15)

For a more detailed overview on the topic of tensor eigenvalues
see [24,28,32].

It is possible, via resultant theory, to generalize the usual
matrix notions of the determinant and of the characteristic
polynomial and to obtain eigenvalues as the (generally com-
plex) roots of the characteristic polynomial associated with
the tensor [28]. Note, however, that the Z (or H ) eigenvalues
defined above are real numbers. If this restriction to real num-
bers is lifted, many properties of ordinary matrix eigenvalues
are recovered (for instance, the number of eigenvalues, or
their total sum, is known). Nevertheless, the restriction to real
numbers is justified if one wants to generalize the property that
a matrix is positive semidefinite if and only if its eigenvalues
are positive. Indeed, both Z and H eigenvalues share the
property that a tensor is positive semidefinite if and only if
all Z or H eigenvalues are positive, which makes them the
most natural suitable generalization of matrix eigenvalues. But
the H eigenvalues are not invariant under rotation, while Z

eigenvalues are, as will be shown below. Since spin coherent
states behave in a very simple way under rotation, we will
concentrate on the Z eigenvalues defined by Eq. (12), which
we will refer to, from now on, as “tensor eigenvalues.” Note
that we also tested our methods on the H eigenvalues, and they
gave results comparable to the ones presented in Sec. V.

B. Properties

Tensor eigenvalues do not share all the properties of the
familiar matrix eigenvalues. For example, it is, in general, not
true that the tensor eigenvalues of a diagonal tensor are just
its diagonal elements. However, the tensor eigenvalues are
invariant under rotations, and the corresponding eigenvectors
are just the rotated eigenvectors (Theorem 7 of [28]). In order to
familiarize the reader with the tensor notation, let us show this
explicitly. Take v as a tensor eigenvector of the real symmetric
tensor A with tensor eigenvalue λ, i.e., fulfilling (12). Given a
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real orthogonal matrix R and the rotated objects marked with
primes, then

A′v′[N−1] =
N∏

i=1

Rμi,νi
Aν1···νN

N−1∏
j=1

Rμj ,ηj
vηj

(16)

=
N−1∏
j=1

(RT R)νj ,ηj
RμN ,νN

Aν1···νN
vηj

(17)

= RμN,νN
Aν1···νN

N−1∏
j=1

vνj

(12)= RμN,νN
λvνN

= λv′,

(18)

which proves that the eigenvalues are unchanged by rotations
and the new eigenvectors are just the rotated old ones. This
feature is particularity important in our case because a rotated
spin-j quantum state ρ ′ = R̂†ρR̂, with R̂ = exp(−iθ J · n)
being the spin-j representation of a rotation, has a tensor
representation given by A′

μ1···μN
= Rμ1,ν1 · · · RμN,νN

Aν1···νN
,

with R being the 4 × 4 matrix whose 3 × 3 lower right block
is the orthogonal matrix associated with the rotation of axis n
and angle θ and Rμ,0 = R0,μ = δ0,μ [22].

Determining tensor eigenvalues is usually a computation-
ally hard problem. It can be expressed in the following way:
The tensor eigenvalues defined by (12) are the critical points
of the polynomial

L(λ; x1,x2, . . . ,xN ) = Ax[N] − λ
(||x||N2 − 1

)
, (19)

with

||x||2 =
√

x2
0 + x2

1 + x2
2 + x2

3 . (20)

Indeed, critical points of L are defined by ∇L = 0; the
conditions ∂L/∂xν = 0 are equivalent to the first line in
Eq. (12), as can easily be seen from the fact that if A is a
symmetric tensor, one has

∂

∂xν

Ax[N] = N (Ax[N−1])ν (21)

and

∂

∂xν

||x||N2 = N
(
x2

0 + x2
1 + x2

2 + x2
3

)N/2−1
xν. (22)

Condition ∂L/∂λ = 0 gives the second line in Eq. (12). Thus,
the tensor eigenvalues can be obtained as the local extrema of
Ax[N] over the three-sphere x2

0 + x2
1 + x2

2 + x2
3 = 1.

As shown in [33], a real symmetric tensor is positive
semidefinite, i.e., Ax[N] � 0 for all x, if and only if all of its ten-
sor eigenvalues are non-negative. Hence, it is sufficient to cal-
culate the smallest tensor eigenvalue to determine the positivity
of the tensor. In particular, a tensor can be positive definite
only if the tensor has an even number of indices: Otherwise,
each tensor eigenpair (λ,v) also has a negative counterpart
(−λ,−v), as can be seen by the definition (12). Numerically,
the smallest tensor eigenvalue is obtained by computing the
global minimum of Ax[N] over the three-sphere. Such a
problem can be tackled numerically using methods described,
e.g., in [30]. In the next section we show examples of quantum
states where tensor eigenvalues can be derived analytically.

C. Examples

1. Tensor eigenvalues of spin coherent states

For a spin-j coherent state with Bloch vector n the tensor
representation Aμ1···μN

takes the simple form (9). In order to
deduce all tensor eigenvalues λ and eigenvectors xμ, we have
to solve Eq. (12), which then reads

Aμ1···μN
x[N−1] = (

nμ1xμ1

) · · · (nμN−1xμN−1

)
nμN

= λxμN
, ||x||2 = 1. (23)

Since the tensor eigenvalues are invariant under rotation, we
can, without loss of generality, rotate n to the form (1,0,0).
This simplifies Eq. (23) to

(x0 + x1)N−1

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠ = λ

⎛
⎜⎝

x0

x1

x2

x3

⎞
⎟⎠, ||x||2 = 1. (24)

From the third and fourth lines it is clear that there are two
solutions, λ = 0 or x2 = x3 = 0. If λ = 0, then x0 = −x1, and
x2,x3 are arbitrary under the restriction ||x||2 = 1. Otherwise,

λ = √
2

N
for even N or λ = ±√

2
N

for odd N , and x0 = x1 =
±1/

√
2,x2 = x3 = 0. Thus, the tensor eigenvalues of a tensor

associated with a coherent spin-j state are (±1)N 2j and 0. For
integer j we recover the fact that the tensor is positive, as it
should be since a spin coherent state is classical.

2. Tensor eigenvalues of the maximally mixed state

For the maximally mixed state ρ0 = 1
N+11N+1, the tensor

representation is given by

AxN =
�j	∑
k=0

(
N

2k

)
2k + 1

x
2(j−k)
0

(
x2

1 + x2
2 + x2

3

)k
, (25)

where �·	 is the floor function [22]. For vectors x constrained
by x2

0 + x2
1 + x2

2 + x2
3 = 1, Eq. (25) can be rewritten as

AxN =
�j	∑
k=0

(
N

2k

)
2k + 1

x
2(j−k)
0

(
1 − x2

0

)k
:= g(x0), (26)

with −1 � x0 � 1. If j is an integer, g(x0) is a sum of positive
terms and thus larger than zero. The tensor eigenvalues are
local extrema of AxN on the three-sphere, or, equivalently,
the local extrema of g(x0) over the interval [−1,1]. The local
extrema on the border of the interval, |x0| = 1, give a tensor
eigenvalue λ = 1. Because g(x0) is symmetric, there is a
local extremum at x0 = 0, which gives the tensor eigenvalue
λ = 1/(N + 1). For j � 3 the function g(x0) has exactly one
extremum in the interval ]0,1[, which gives a third tensor
eigenvalue (see the Appendix for a proof). Thus, for integer
j the tensor associated with the maximally mixed state has
three tensor eigenvalues, and the minimal tensor eigenvalue is
λmin = 1/(N + 1).

For half integer j there are two tensor eigenvalues on the
border of the interval which give ±1. For j � 5/2 the function
g(x0) has a maximum in ]0,1[ (see the Appendix for a proof)
and, since g(x0) is antisymmetric, also a corresponding min-
imum in ]−1,0[. Thus, the tensor has four tensor eigenvalues.
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IV. CALCULATING QUANTUMNESS

Our goal is to compare quantumness of a spin-j state as
measured by the distance (3) with spectral properties of the
tensor associated with it. In order to compute quantumness
(3) efficiently, the calculation can be rewritten as a quadratic
optimization problem by fixing a large number of spin coherent
states in the sum (2) and optimizing over the weights wi . This
is detailed in Sec. IV A. However, this does not guarantee
finding the global minimum, as the decompositions of the
closest classical states may involve spin coherent states which
do not belong to the large set chosen. To improve the accuracy
of the estimation we will use the outcome of the quadratic
optimization as a starting point in a linear optimization routine
detailed in Sec. IV B.

A. Quadratic algorithm

The state is written as a [2(N + 1)2]-dimensional real vector
r, whose entries are the real and imaginary entries of its density
matrix ρ in the |j,m〉 basis (or any other fixed basis). In the
same way the classical state ρc in Eq. (2) is written as Cw,
where C is a [2(N + 1)2] × M real matrix whose ith column is
given by the real and imaginary parts of entries of |θi,φi〉〈θi,φi |
expressed in the same basis as ρ, w is the vector of weights,
and M is the number of spin coherent states used in the sum of
the form of Eq. (2). The squared quantumness can be written as

Q2(ρ) = min
C,w

2(N+1)2∑
i=1

[ri − (Cw)i]
2, (27)

which can be expressed as

Q2(ρ) = min
C,w

[wT (CT C)w − (2rT C)w + rT r]. (28)

To approximate the solution to this optimization problem we
generate a large set of M (∼800) spin coherent states |θi,φi〉
that determine a matrix C and a vector c = (rT C) and solve

min
w

wT (CT C)w − 2cT w, wi � 0 (29)

(we removed the constant term rT r). Note that the entries of
(CT C) are given by

(CT C)ik = |〈θi,φi |θk,φk〉|2
= 4−j [1 + cos θi cos θk

+ cos(φi − φk) sin θi sin θk]2j (30)

and that

ci = 〈θi,φi |ρ|θi,φi〉. (31)

The optimization (29) can be performed with the pow-
erful numerical algorithms available, e.g., the “interior-point-
convex” method [34]. It is notable that the size of the quadratic
optimization problem, given by the vector c and the matrix
CT C, does not depend on the spin size j but only on the
number of random spin coherent states used. However, for
very large values of j (∼1000) even the one-time calculation
of c and CT C can become computationally expensive.

To improve the outcome it is advantageous to iterate the
optimization several times with different sets of spin coherent
states. In the subsequent iterations, only the spin coherent

states with large weights are kept, and additional nearby states
are added to the set. The set is then completed with random spin
coherent states. After typically around eight iterations, we take
the best outcome as an approximation of the global minimum
of (27). This also provides an approximation ρ̃c of the true
closest classical state ρc. By construction, ρ̃c is a classical
state, so that quantumness is necessarily overestimated since
the distance to any classical state gives an upper bound on the
quantumness. To further improve its determination, a linear
optimization can then be performed as follows.

B. Linear algorithm

Suppose we have obtained an approximation ρ̃c for the
closest classical state ρc by running the quadratic algorithm
above. If the classical state ρ̃c is not exactly on the border of
the classical domain, it is possible to move it in the direction of
the state ρ while remaining in the classical domain. This yields
a better approximation of the global minimum and thus of the
actual quantumness. This step can be formulated as a linear
optimization problem by parametrizing the states in between
the classical state ρ̃c and ρ as

ρk = (1 − k)ρ̃c + kρ = ρ̃c + k(ρ − ρ̃c), (32)

with k ∈ [0,1]. Now the optimization task is to maximize
k under the constraint that ρk stays classical, which can be
formulated in the form of linear constraints as∑

i

wi |θi,φi〉〈θi,φi | + k(ρ̃c − ρ) = ρ̃c, (33)

and the optimization is now performed on wi and k, with
0 � wi � 1 and k > 0, while |θi,φi〉 are (a large number of)
fixed spin coherent states. Like in Sec. IV A, this optimization
problem can be written as

max
w,k

k, Cw + (r̃c − r)k = r̃c, (34)

where the ith columns of C are given by the real and imaginary
parts of entries of |θi,φi〉〈θi,φi | and r,r̃c are the real and
imaginary parts of entries of the density matrices ρ and ρ̃c.
Since a linear optimization is much faster than a quadratic
optimization, the set of random spin coherent states used to fix
the linear constraints can be much larger, e.g., usually by two
orders of magnitude, and still have a run time comparable to the
quadratic optimization. However, in contrast to the quadratic
algorithm the computational demands depend on the spin size
j since the number of rows in C scales as O(j 2). In the results
presented in the next section this linear optimization step
improves the quadratic results for Q(ρ) usually by an absolute
amount smaller than 10−4. While this improvement is usually
negligible, it becomes relevant for estimating quantumness of
states close to the boundary of classical states and to properly
identify classical states.

V. CONNECTION BETWEEN TENSOR EIGENVALUES
AND QUANTUMNESS

A. Tensor eigenvalues for entanglement detection

As mentioned earlier, a classical state must have a positive-
semidefinite tensor representation. Therefore, if its smallest
tensor eigenvalue λmin is negative, the state is detected as
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FIG. 1. Probability distribution of the smallest tensor eigenvalue
λmin for random states on the border of the classical domain, with
j = 2 (black dots), j = 3 (red crosses), and j = 4 (blue solid line).
These states are the closest classical states to random mixed states and
were determined with the quadratic and linear algorithms described
in Sec. IV.

nonclassical, i.e., entangled. To test the rigor of the detection
we generated states just on the border of the set of classical
states. This was done by taking random states drawn from
the Hilbert-Schmidt ensemble of matrices ρ = GG†/tr(GG†),
with G being a complex matrix with independent Gaussian
entries (see [35] for details), and calculating its closest classical
state according to the method presented in the previous section.
In Fig. 1 the distribution of the smallest eigenvalues is shown
for this ensemble of closest classical states. If positivity of A

were a sufficient condition for classicality, then λmin would
be equal to zero for all closest classical states. Numerically,
we rather get values centered around 0.03, 0.04, and 0.06 for
j = 4,3,2, respectively.

Thus, states lying at the border of classical states, with zero
quantumness, have a smallest tensor eigenvalue significantly
larger than zero, which indicates that for the values of j
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)]

FIG. 2. Probability distribution of the quantumness Q(ρ) (3) for
states having a positive smallest tensor eigenvalue smaller than 10−5.
The states are created by mixing a random mixed state with the
maximally mixed state according to (35) and decreasing a until the
smallest tensor eigenvalue is close to zero. The numerical uncertainty
of the quantumness is of the order of 10−4. The black line with
circles, red line with crosses, and blue solid line correspond to spin
sizes j = 2,3,4. These states are all entangled but nevertheless have
a positive definite tensor representation.

considered this method of entanglement detection is not well
suited for too weakly entangled states.

Conversely, one may wonder what is the typical quan-
tumness of states which have a vanishing smallest tensor
eigenvalue. To investigate this we generated states such that
λmin � 0 by mixing a random initial state ρ with the maximally
mixed state

aρ + (1 − a)
1

N + 1
1, 0 � a � 1 (35)

(with 1 being the identity matrix), and decreasing a until the
smallest tensor eigenvalue was close to zero. The results for
these states are shown in Fig. 2. The quantumness is distributed

FIG. 3. The quantumness (3) as a function of the smallest tensor
eigenvalue (12) for ∼60 000 randomly generated mixed spin-j states.
The top panel corresponds to spin size j = 2, the middle panel
corresponds to j = 3, and the bottom panel corresponds to spin
size j = 4. There is a clear correlation between the amount of
quantumness and the magnitude of the negative smallest tensor
eigenvalue; however, this correlation gets weaker for j = 3 and even
weaker for j = 4.
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FIG. 4. The quantumness (3) of ∼60 000 randomly generated
spin-6 mixed states as a function of their smallest tensor eigenvalue
(12). For this system size there is almost no correlation between the
magnitude of the smallest tensor eigenvalue and the quantumness.

around the value of 0.06, irrespective of the spin size j ,
which again indicates that the smallest tensor eigenvalue is
not able to detect weakly entangled states. This appears to
be a systematic underperformance because we did not find
instances of classical states which also have a smallest tensor
eigenvalue equal to zero. Instead, almost all states on the
“detection border” λmin = 0 already have a quantumness larger
than 0.02.

To conclude, the smallest tensor eigenvalue detects entan-
glement (or quantumness) in spin-2 to spin-4 states reliably
only if the quantumness is at least about 0.1. In the other
direction, spin-2 to spin-4 states can be assumed to be separable
(or classical) only if the smallest tensor eigenvalue is larger
than 0.12.

B. Measure of entanglement based on tensor eigenvalues

The results above show that while any state with λmin < 0
is entangled, the positivity of λmin does not seem to be a good
indicator of separability. However, for nonclassical states, the
amount by which λmin is negative is correlated with the amount
of entanglement as measured by the quantumness.

This is an approach similar to that for the entanglement
measure of negativity [36], where the amount of entanglement
is taken as the sum of all negative eigenvalues of the partially
transposed state ρPT, namely,

N (ρ) =
∑

i

|μi | − μi

2
, (36)

where μi are the eigenvalues of ρPT. For j = 1, we showed in
[23] that the tensor eigenvalues are exactly the eigenvalues
of ρPT. Unfortunately, in the case of tensor eigenvalues
(j � 3/2), it is computationally expensive to find all tensor
eigenvalues. But the smallest tensor eigenvalue provides at
least an indicator of the amount of entanglement. This is
illustrated in Fig. 3, where quantumness is plotted as a function
of the smallest tensor eigenvalue (computed by the algorithms
described in Sec. IV) for a large set of random states. The
correlation between the two quantities gets weaker for larger
system sizes, i.e., j � 4. For spin j = 6, the correlation is
almost gone, as can be seen in Fig. 4.

VI. CONCLUSION

We introduced a connection between the mathematical
concept of tensor eigenvalues and the study of entanglement.
The smallest tensor eigenvalue can be used to detect quan-
tumness in symmetric states and can also give an estimator of
its amount. Interestingly, this extends previous results in the
mathematical literature relating the largest tensor eigenvalue
to the geometric measure of entanglement. If the smallest
tensor eigenvalue is negative, the state is detected as entangled.
In the case of spin-1 the positivity of the smallest tensor
eigenvalue is even a necessary and sufficient separability
criteria. For j � 2 the correlation between the amount of
quantumness and the magnitude of the (negative) smallest
tensor eigenvalue is noticeable for j = 2,3,4, but for higher
values of j quantumness and magnitude of the smallest tensor
eigenvalue are almost uncorrelated.

In regard to detecting separability, a state can be assumed to
be classical if the smallest tensor eigenvalue is larger than 0.12.
However, for j � 2 and 0 � λmin < 0.12, entangled states are
not detected with high probability, rendering the criteria less
useful in this regime. This is due to the fact that weakly
entangled states usually have a positive-semidefinite tensor
representation (and are therefore not detected by the smallest
tensor eigenvalue criterion).

A possible way to improve these results might be to
use the sum of all negative tensor eigenvalues as an es-
timator for the quantumness of a state, instead of just
the smallest tensor eigenvalue. However, the calculation
of all tensor eigenvalues is computationally much more
demanding.
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APPENDIX: TENSOR EIGENVALUES OF THE
MAXIMALLY MIXED STATE

Here we will prove that the function g(x) defined in (26)
has only one local extremum in the open interval ]0,1[ for
j � 5

2 . We reparametrize the function g with

x → cos t + sin t√
2

, (A1)

with t ∈]π
4 , 3π

4 [, so that we get

g(x) → f (t) = 2j

2j + 1

cos2j+1 t − sin2j+1 t

cos t − sin t
. (A2)

The condition f ′(t) = 0 is equivalent to H (t) = 0, with

H (t) : = (sin t + cos t)(cosk t − sink t) + k sin t cos t

× (sin t − cos t)(cosk−2 t + sink−2 t), (A3)

with k = 2j + 1. Using H (π/4) = 0 and H (3π/4) � 0, we
show that H (t) has only one real root in the interval ]π

4 , 3π
4 [ by

showing that it is strictly increasing, then strictly decreasing,
then strictly increasing over this interval for j � 5

2 .
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To find the extreme points of H (t) we calculate

H ′(t) = (k − 1)(cos t − sin t)

×
[

sink t − cosk t + k

(
tan2 t cosk t − sink t

tan2 t

)]
.

(A4)

Now we show that H ′(t) has two roots in ]π
4 , 3π

4 [ by setting
u = cot t in (A4) with u ∈] − 1,1[ and counting the roots of

P (u) := −uk + kuk−2 − ku2 + 1 (A5)

in the interval ]−1,1[. Descartes’s rule of signs tells us that this
function has either three or one roots in ]0,∞[. As P (0) = 1,
P (1) = 0, P ′(1) = k(k − 5) > 0, and limu→∞ P (u) = −∞,
there are necessarily three roots in ]0,∞[ and exactly one in
]0,1[. To study the negative side u < 0, note that if k is even,

the function P (u) is symmetric, so that there is also only one
root in u ∈]−1,0[. In the case of odd k, we set w = −u ∈]0,1[,
and

P (−u) = P̃ (w) = wk − kwk−2 − kw2 + 1. (A6)

Applying Descartes’s rule again to P̃ , we get that P̃ (w) has
either two or zero real roots in ]0,∞[. However, since P̃ (0) =
1, P̃ (1) = 2(1 − k) < 0 and limw→∞ P̃ (w) = ∞, the function
has to have exactly one root in the interval ]0,1[ and one in
]1,∞[.

This shows that H ′(t) has one root in ]π/4,π/2[ and one
in ]π/2,3π/4[. Since H ′(π/2) = 1 − k < 0, we conclude that
H (t) increases, decreases, and then increases again, so that it
has only one root in ]π/4,3π/4[. So g(x) defined in (26) also
has only one extreme point in the open interval ]0,1[, which
gives a single tensor eigenvalue x ∈]0,1[.
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We introduce the concept of “absolutely classical” spin states, in analogy to absolutely separable states of
bipartite quantum systems. Absolutely classical states are states that remain classical (i.e., a convex sum of
projectors on coherent states of a spin j ) under any unitary transformation applied to them. We investigate the
maximal size of the ball of absolutely classical states centered on the maximally mixed state and derive a lower
bound for its radius as a function of the total spin quantum number. We also obtain a numerical estimate of this
maximal radius and compare it to the case of absolutely separable states.

DOI: 10.1103/PhysRevA.95.012318

I. INTRODUCTION

The rise of quantum information technology has led to
the need to classify and quantify the resources that ulti-
mately enable a quantum advantage in certain computational,
communicational, or metrological tasks. Most of the efforts
have concentrated on classifying entanglement. Indeed, en-
tanglement has been recognized to be necessary for, e.g.,
computational speedups (at least for pure states) [1], quantum
teleportation [2], superdense coding [3], and quantum data
hiding [4]. It can also be used for quantum key distribution [5]
or for achieving enhanced precision in certain metrological
applications [6]. Recently, it has been realized that other types
of quantum mechanical correlations in the form of “quantum
discord” exist that do not require entanglement but may still
have useful applications [7].

Quantum entanglement necessarily requires at least
bipartite systems. However, even for a single system, one can
meaningfully ask to what extent a particular quantum state
shows genuine quantum mechanical properties. In quantum
optics, such questions were investigated at least as early as the
middle of the last century. Quasiprobability distributions were
introduced that allow one to distinguish “classical” quantum
states from states that show genuine quantum effects such as
enhanced quantum fluctuations of observables, or quantum
interference, including multiphoton interference. An important
role is played by coherent states of the radiation field, in which
the quantum fluctuations of the field quadratures are minimal
and evenly distributed over the canonical coordinates. Such
states come as close as quantum mechanically possible to a
point in classical phase space and, in general, one can consider
states that can be expressed as a convex sum (i.e., a classical
mixture) of (projectors onto) coherent states as classical [8,9].
Recently, these ideas were transferred to spin states, where
SU(2) coherent states (introduced in [10]) play the role of the
most classical pure states, and a mixed spin state is considered
“classical” if it can be written as a statistical mixture of SU(2)
coherent states [11]. With this classification, all states of a
spin 1/2 are classical as they can be expressed as classical
mixtures of pure states with minimal quantum fluctuations.
For a spin 1, there are genuinely nonclassical states, and
necessary and sufficient conditions are known for classicality.
These conditions can be used to explore analytically the
geometry of quantum states [12] and provide a full analytical

parametrization of the classical domain [13]. For higher values
of j , one can find sufficient conditions for nonclassicality
from the positivity of correlation functions of spin
observables [11,14]. By definition, the classical states
form a convex set, and one can define a “quantumness”
measure of a state as the distance from this state to the convex
set of classical states, in analogy to geometric measures of
entanglement [15,16]. Indeed, the two problems are related
through the fact that spin-j states can also be understood as
states of N = 2j spins 1/2 that are fully symmetric under
permutation of particles, so that quantumness of a spin j

is equivalent to entanglement of N = 2j spins 1/2 in the
fully symmetric sector of the Hilbert space of N two-level
systems [14].

Any measure of entanglement E(ρ) is by definition in-
variant under local unitary operations. But one can also ask
for states for which E(ρ) is invariant under any unitary
operation. In particular, states ρ such that E(UρU †) = 0
for all unitary operations U , called “absolutely separable”
states, have attracted substantial interest [17–23]. Absolutely
separable states have the property that no entanglement can be
created from them, no matter how strongly and how long the
corresponding particles interact. Conversely, for states which
are not absolutely separable, there is at least in principle the
possibility that some entanglement be created from a common
unitary evolution. The maximally mixed state ρ0, which is
proportional to the identity matrix, is obviously an absolutely
separable state. As separable states form a closed set, there is a
ball around ρ0 such that all states within that ball are absolutely
separable. Finding the largest radius of such a ball provides a
sufficient condition for absolute separability; such a question
was addressed in [20].

In the present work, we ask an analogous question for
quantumness: what are the states of a spin j that remain
classical no matter what unitary evolution is applied to
them? These states have the physical interpretation that no
quantumness can be created from them in the course of
any unitary time evolution, generated by an arbitrary, even
time-dependent Hamiltonian. We correspondingly call these
states “absolutely classical.” Alternatively, states that are not
absolutely classical have the potential that in the course of
some unitary evolution, some quantumness may appear.

The aim of the paper is to provide a characterization of
the set of absolutely classical states in terms of a maximum

2469-9926/2017/95(1)/012318(5) 012318-1 ©2017 American Physical Society
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distance from the maximally mixed spin-j state, such that any
state closer to the fully mixed state is guaranteed to be classical.
This distance is the maximal radius that a ball of classical
states around the maximally mixed spin-j state can have. We
provide a lower bound for this maximum radius based on an
expansion of the Glauber-Sudarshan P function into spher-
ical harmonics and calculate a numerical approximation by
randomly sampling a large number of states and mixing them
with the fully mixed state until their quantumness vanishes.
We start by defining the above concepts more precisely.

II. ABSOLUTELY CLASSICAL STATES

A. Classical spin states

Pure classical spin states were defined in [11] as SU(2)
coherent states. This is motivated by the fact that these states
have minimal possible uncertainty of the angular momentum
operator J. Moreover, when the spin undergoes a unitary time
evolution driven by a Hamiltonian linear in the components of
J, corresponding, for example, to a precession in a magnetic
field, this minimal uncertainty property is conserved (similarly
as what happens for field coherent states; see, e.g., [24]). A
spin-j coherent state points in a well-defined direction n that
we can parametrize with polar and azimuthal angles θ,φ as
n = (sin θ cos φ, sin θ sin φ, cos θ ). In terms of the usual |j,m〉
basis states [i.e., eigenstates of J2 and Jz with eigenvalues
j (j + 1) and m, respectively, with � = 1], a spin-j coherent
state can be expanded as [25]

|α〉 =
j∑

m=−j

√(
2j

j + m

)(
cos

θ

2

)j+m(
sin

θ

2
e−iφ

)j−m

|j,m〉,

(1)

with θ ∈ [0,π ] and φ ∈ [0,2π [. By a stereographic pro-
jection α = eiφ tan(θ/2), we can alternatively parametrize
the spin-j coherent states with a complex number α. The
|α〉 form an overcomplete basis and we have the identity
(1/4π )

∫
dα|α〉〈α| = I2j+1, where I2j+1 is the identity op-

erator in the (2j + 1)-dimensional Hilbert space spanned by
the |j,m〉 basis states. Any density operator ρ of a spin-j state
can be expanded in terms of the |α〉 in the form of a diagonal
representation,

ρ =
∫

dαP (α)|α〉〈α|, (2)

where P (α) is known as the (Glauber-Sudarshan) P func-
tion [26] [in general, P (α) depends on both α and α∗, but it is
customary to write P (α) for short].

Classically mixing pure states should not increase their
quantumness. This principle underlies the well-known defini-
tion of classicality in quantum optics [27]. In close correspon-
dence, one can therefore define mixed classical spin states as
those states that can be written as a classical mixture of spin-j
coherent states, i.e., a convex combination of projectors onto
spin-j coherent states. This means that a general spin-j state
ρ is classical iff there exists a positive function P (α) with
which ρ can be written as in Eq. (2) [11]. Note that the P

function is not unique: indeed, when expanded over spherical
harmonics YKQ(θ,φ), only components with K � 2j play a

role in the integral (2), so that arbitrary spherical harmonics
with K � 2j + 1 can be added to P (α) without changing ρ

(see an example in [11]). Classical spin-j states are hence those
states for which at least one P function is positive. Classical
spin-j states form a convex set by definition.

Deciding whether or not a spin-j state is classical then
becomes a problem of convex optimization (see below). Note
that the Wigner function of a spin-j coherent state is not
everywhere positive in general, not even for a spin 1/2;
see [28].

This is different from the harmonic oscillator, where
positivity of the P function implies positivity of W .

B. Absolutely classical spin states

Let Hm be a Hilbert space of dimension dm, and B(Hm) the
space of bounded linear operators on Hm. Consider a bipartite
physical system with Hilbert space H = Hm ⊗ Hn. In [17],
the absolute separability problem was introduced: What are
the states ρ ∈ B(H) such that UρU † is separable for all unitary
matrices U ∈ B(H)? The problem can also be understood as
“separability from spectrum” problem [18]: Since all UρU †

have the same spectrum of eigenvalues as ρ, it is natural to
try to characterize the set of absolutely separable states by
conditions on the spectrum. For n = m = 2, a necessary and
sufficient condition is known in terms of a single inequality for
the eigenvalues [19]: if λ1 � λ2 � λ3 � λ4 are the eigenvalues
of ρ, then it is absolutely separable if and only if [(λ1 − λ3)2 +
(λ2 − λ4)2]1/2 � λ2 + λ4. Absolute separability is evidently a
stronger condition than separability. For instance, a coherent
state of two spins 1/2 is a separable state, but it can become
entangled under a general unitary transformation U ∈ B(H).
More generally, no pure two-qubit state satisfies the above
inequality, hence any two-qubit absolutely separable state is
mixed. The general problem is still open.

In [20], an important step was made by finding the largest
ball of separable states (in terms of any p norm, 0 � p � ∞)
centered at the maximally mixed state ρ0 = Im ⊗ In/d with
d = mn. In the Frobenius norm (p = 2), its radius is given
by rd = 1/

√
d(d − 1), i.e., all ρ with ||ρ − ρ0|| � rd are

separable, and rd is the largest such constant. In terms of
purity, this means that ρ is separable if the purity trρ2 is
less than or equal to 1/(d − 1), as was already conjectured
in [21]. Although all states within this ball are absolutely
separable, there are also absolutely separable states outside
this ball [22]. This can be clearly seen in the case n = m = 2:
it is easy to find examples of states ρ whose distance to ρ0 in the
Frobenius norm satisfies [

∑
i(λi − 1/4)2]1/2 > rd = 1/

√
12,

while the absolute separability condition [(λ1 − λ3)2 + (λ2 −
λ4)2]1/2 � λ2 + λ4 is satisfied (for instance, λ1 = λ2 = 13/32
and λ3 = λ4 = 3/32). Witnesses for states that are not abso-
lutely separable were introduced in [23].

Here we ask a corresponding question for classicality: what
are the spin-j states ρ ∈ B(H2j+1) such that UρU † is classical
for all unitary matrices U ∈ B(H2j+1)? The states that fulfill
this criterion will be called “absolutely classical.” They are
such that no unitary spin-j operator can create quantumness
or, equivalently, entanglement among the underlying N = 2j

spins 1/2. We proceed similarly to the approach of [20], i.e., we
establish a lower bound on the maximal radius rmax(j ) of the
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ball around the maximally mixed state ρ0 = I2j+1/(2j + 1),
in which any state is classical.

C. Analytical lower bound for rmax( j )

Let ρ be an arbitrary density matrix of a spin-j state. This
state can always be written as

ρ(r) = ρ0 + rρ̃, (3)

where ρ0 = I2j+1/(2j + 1), and ρ̃ = (ρ − ρ0)/||ρ − ρ0|| is
traceless and normalized so that the (Hilbert-Schmidt or
Frobenius) norm of ρ̃ is ||ρ̃||2 = trρ̃2 = 1 without restriction
of generality. This fixes the scale for the real positive parameter
r . Therefore, the state ρ(r) is at the distance r from the
maximally mixed state. The P function of ρ(r), defined
through the coherent state representation

ρ(r) =
∫

dαP (r,α)|α〉〈α|, (4)

can be written

P (r,α) = 1

4π
+ rP̃ (α), (5)

where 1/4π is the P function of ρ0. In order to show that for
a given r and arbitrary direction ρ̃ a positive P function can
be found, it is enough to consider traceless parts that can be
expanded as

P̃ (α) =
2j∑

K=1

K∑
Q=−K

P̃KQYKQ(α), (6)

where the YKQ are spherical harmonics and P̃KQ ∈ C. Note
that more generally, P̃ (α) can contain spherical harmonics
with arbitrarily large K , but any ρ(r) can be represented by a
P function that contains values of K only up to 2j . Indeed,
a given quantum state fixes the components in P (α) up to
K = 2j uniquely (see below), whereas the higher ones are
arbitrary. Hence we can set them to zero and look for the
largest r that still guarantees for all ρ̃ a positive P (α) of the
form (6). We can expand ρ̃ in terms of the irreducible tensor
operators TKQ as

ρ̃ =
2j∑

K=1

K∑
Q=−K

ρ̃KQTKQ. (7)

Completely analogously, we can also expand ρ(r) and P (r,α)
in terms of TKQ and YKQ(α), respectively,

ρ(r) =
2j∑

K=0

K∑
Q=−K

ρKQ(r)TKQ, (8)

P (r,α) =
2j∑

K=0

K∑
Q=−K

PKQ(r)YKQ(α). (9)

One then immediately finds PKQ(r) = rP̃KQ and ρKQ(r) =
rρ̃KQ for all integer K � 1 and −K � Q � K . Since ρ(r) is
a valid density matrix, the PKQ(r) are related to the ρKQ(r) by
a simple factor [29],

PKQ(r) = fKQ ρKQ(r) ∀ K,Q, (10)

fKQ = (−1)K−Q

√
(2j − K)!(2j + K + 1)!

2
√

π (2j )!
, (11)

and hence also

P̃KQ = fKQ ρ̃KQ, (12)

∀K � 1,−K � Q � K . The Cauchy-Schwarz inequality ap-
plied to (6) then yields

|P̃ (α)| �

⎛
⎝ 2j∑

K=1

K∑
Q=−K

|ρ̃KQ|2
⎞
⎠

1/2

×
⎛
⎝ 2j∑

K=1

K∑
Q=−K

|fKQYKQ(α)|2
⎞
⎠

1/2

. (13)

The normalization of ρ̃ implies

2j∑
K=1

K∑
Q=−K

|ρ̃KQ|2 =
2j∑

K,K ′=1

K∑
Q,Q′=−K

ρ̃KQρ̃∗
K ′Q′ trTKQT

†
K ′Q′

= trρ̃2 = 1, (14)

where we have used the orthogonality of the irreducible tensor
operators. By noting that |fKQ| is independent of Q and using
the identity

K∑
Q=−K

|YKQ(θ,ϕ)|2 = 2K + 1

4π
, (15)

we get from (13) that |P̃ (α)| � P̃
(j )
max, with

P̃ (j )
max =

{
2j + 1

8π2

[
(4j + 1)

(
4j

2j

)
− (j + 1)

]}1/2

. (16)

This implies a lower bound P̃ (α) � −P̃
(j )
max, and hence

P (r,α) = 1

4π
+ rP̃ (α) � 1

4π
− rP̃ (j )

max. (17)

If the right-hand side is non-negative, so is the left-hand side.
Thus if

r � 1

4πP̃
(j )
max

=
{

(4j + 2)

[
(4j + 1)

(
4j

2j

)
− (j + 1)

]}−1/2

≡ r̂max(j ) (18)

in the state (3), then the P function, given by P (r,α) in Eq. (5),
is positive. Hence, ρ(r) is classical for r � r̂max(j ). Since
ρ(r) = ρ for r = ||ρ − ρ0||, we have proved that

||ρ − ρ0|| � r̂max(j ) ⇒ ρ ∈ C, (19)

where C is the set of classical states. The distance ||ρ − ρ0||
is invariant under conjugation by an arbitrary unitary matrix
U ∈ B(H2j+1). Hence, if ρ satisfies the inequality in (19),
all states UρU † verify ||UρU † − ρ0|| � r̂max(j ) and are thus
classical. Therefore, r̂max(j ) is a lower bound for the ball size
rmax(j ).

The Cauchy-Schwarz inequality (13) can be saturated for
any given α by choosing ρ̃KQ = AfKQYKQ(α), where A is
a proportionality constant such that trρ̃2 = 1. However, due
to the restriction of the P function to (6), with components
K � 2j only, we do not exhaust all possible P functions.
Hence, it may be possible to increase the lower bound of P̃ (α)
in (16) by adding components YKQ with K > 2j .
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D. Numerical result for rmax( j )

To test the lower bound (18), we search for nonclassical
states that are as close as possible to the maximally mixed
state, since each of these states gives an upper bound on the
true ball size rmax(j ).

To do this, we generate random mixed states ρ from
the Hilbert-Schmidt ensemble of matrices ρ = AA†/tr(AA†),
with A a complex matrix with independent Gaussian entries
(see [30] for details). With these states, we construct families
of states,

ρk = (1 − k)ρ0 + kρ, (20)

as function of a parameter k ∈ [0,1], which interpolate
between the maximally mixed state ρ0 and the state ρ. The
task is to find the largest value kmax of k, under the condition
that ρk is classical. This can be rewritten as

max
k

k such that ρk =
∫

dαP (α)|α〉〈α|, P (α) � 0. (21)

This problem can be formulated in the form of a linear
programming problem, of the form

max
x

cT x such that Ax = b, x � 0, (22)

where x is the vector of variables, c,b are real given vectors,
and A is a real given matrix. These types of optimizations
can be solved very efficiently, e.g., with an interior-point
method [31]. Another great property is the existence of a dual
problem. If the optimal value of the dual problem coincides
with the optimal value of the original problem (22), i.e., if
there is no duality gap, the solution is proven to be optimal.
We will now explain how to reformulate the problem (21) in
the form (22).

Due to Carathéodory’s theorem, a positive P function for
finite j can always be written as a convex sum of δ functions, so
any classical state has the form

∑N
i=1 wi |αi〉〈αi | with wi � 0

and N � (2j + 1)2 (where the number of states needed is
reduced by one due to normalization of the state). With this
form, ρk is classical iff there exist wi � 0 with

∑
i wi = 1 and

coherent states |αi〉 such that

N∑
i=1

wi |αi〉〈αi | = ρk, (23)

which can be rewritten as
N∑

i=1

wi |αi〉〈αi | + k(ρ0 − ρ) = ρ0. (24)

This equation can be written as Ax = b as in (22), where the
vector of variables is given by x = ({wi}i=1,...,N ,k). The vector
b is fixed by the maximally mixed state, and the matrix A is
constructed from the real and imaginary entries of the left-
hand side of Eq. (24). Then with the choice c = (0, . . . ,0,1)
in (22), the problem (21) is in the form of a linear optimization
problem.

However, since the αi in (24) are unknown, we generate a
large list of uniformly distributed coherent states, of the order
of 106 many, so that it should be possible to construct almost
all classical states by varying the weights wi . This assumption
can be tested by repeating the linear optimization with a new

set of random angles and also with an increased number of
them. These tests showed that for j � 21/2, increasing the
number of random angles beyond 106 does not visibly change
the results.

We applied this procedure to a list of n ∼ 3000 different
states ρ in (20) for system sizes of up to j = 21/2. The states
that maximize k are found at distances

rl = ||ρk̃max
− ρ0|| = ||ρ − ρ0||k̃max, l = 1,2, . . . ,n, (25)

from the fully mixed spin-j state, where k̃max is the numerical
result of the optimization problem (22) and (24). Numerically,
not all directions ρ can be sampled, and only a finite number
of coherent states can be considered. On the one hand, the
fact that we can sample only a finite number of coherent states
entails that the numerically found k̃max for a given ρ is a
lower bound of the corresponding exact kmax. On the other
hand, even if one started with all coherent states, as in the
decomposition (21), one would achieve the exact values k̃max =
kmax, but each rl , and hence r̃max(j ) ≡ min1�l�n rl , would still
give only an upper bound on the true radius of the ball rmax(j ).
Therefore, r̃max is simply a numerical approximation of rmax,
but a priori neither a strict upper nor lower bound.

It is worth mentioning that the entangled states closest to the
maximally mixed state are not on a straight line with the queen
of quantum state, i.e., the state with maximum quantumness
for given j [15], except in the j = 1 case.

III. DISCUSSION

In Fig. 1, we compare the numerically found r̃max(j )
and the analytical lower bound r̂max(j ) from Eq. (18) with
the radius of the ball of absolutely separable states, rd =
1/(2j

√
4j − 1) with d = 22j [20]. The lower bound r̂max(j )

decays exponentially with j . It is still substantially below the
numerically found r̃max(j ), which can be considered close to
the exact value rmax(j ). Also, r̃max(j ) decays exponentially

1 2 3 4 5 6 7 8 9 10

10
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10
−3
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j

ba
ll 
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di
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FIG. 1. Maximal radius rmax(j ) of a ball of classical states
centered at the fully mixed state as a function of j . Blue dots:
the value of the lower bound ≡ r̂max(j ); Eq. (18). Black crosses:
smallest numerically found distance from the maximally mixed state
to a nonclassical state. Red line: maximal ball size 1/(2j

√
4j − 1)

for arbitrary (not necessarily symmetric) separable states [20]. This
function gives an excellent approximation of the numerically found
maximal ball size r̃max(j ) of classical spin-j states, but slightly
overestimates it for small j .
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with j , and the ratio between r̃max(j ) and r̂max(j ) increases
only slowly with increasing j over the whole examined
range 1 � j � 10.5. The function 1/(2j

√
4j − 1) agrees with

r̃max(j ) remarkably well over the whole range of ρ. However,
it is not to be expected that 1/(2j

√
4j − 1) is the correct result

for rmax(j ) for at least two reasons: (i) The fully mixed state
in the fully symmetric sector of Hilbert space I2j+1/(2j + 1)
(under exchange of qubits) is not identical to the fully mixed
state in the full Hilbert spaceH, I22j /22j , of N = 2j spins 1/2.
Hence, the balls of absolutely separable states and absolutely
classical states are not centered at the same point. For example,
for two spins 1/2, we have a fully symmetric subspace of H of
dimension 3 (the triplet sector) with the identity matrix I3 ≡∑1

m=−1 |1,m〉〈1,m|, whereas the identity in the full H also
contains a projector onto the singlet state |j = 0,m = 0〉〈j =
0,m = 0|, and has hence to be normalized differently as
well, I4 ≡ ∑

j=0,1

∑j

m=−j |j,m〉〈j,m|. (ii) When minimizing
the distance to nonclassical states, the relevant set of states
is larger without the restriction to symmetric states. From
the latter argument, one would expect that 1/(2j

√
4j − 1)

underestimated rmax(j ), if it were evaluated centered on the
same identity. This appears to be correct for large values of j

(starting at about j � 4), but could also be due to the numerical
uncertainty of the very small value of rmax(j ). For small values
of j , we have rather r̃max(j ) < 1/(2j

√
4j − 1). The case j = 1

is particularly instructive, as there we have a full analytical
characterization of the set of classical states [13]. The
numerically found value r̃max(j ) � 0.2052 agrees well with the
analytical one 1/(2

√
6) � 0.2041, whereas 1/(2j

√
4j − 1) =

1/(2
√

3) � 0.288. Nevertheless, altogether we see that the
closest nonclassical symmetric state of a spin j is about as
close to the fully mixed state in the symmetric sector as the
closest entangled state without any symmetry restrictions to
the fully mixed state in the full 22j -dimensional Hilbert space
of N = 2j spins 1/2.
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Abstract

Recently, in physics, a tensor representation for spin states was introduced. The tensor repre-

senting a spin-j state is a symmetric tensor of order N = 2j and dimension 4. Here, j can be a

positive integer, which corresponds to a boson; j can also be a positive half-integer, which corre-

sponds to a fermion. In this paper, we introduce regularly decomposable tensors. In the even-order

case, a regularly decomposable tensor is a completely decomposable tensor but not vice versa; a

completely decomposable tensors is a sum-of-squares (SOS) tensor but not vice versa; an SOS

tensor is a positive semi-definite (PSD) tensor but not vice versa. In the odd-order case, the

first row tensor of a regularly decomposable tensor is regularly decomposable and its other row

tensors are induced by the regular decomposition of its first row tensor. In the literature, PSD

and SOS tensors have been studied extensively, but very little has been studied for completely

decomposable tensors, and regularly decomposable tensors are only introduced here. We show

that in both the odd-order (fermion) and even-order (boson) cases a spin-j state is classical if and

only if its representing tensor is a regularly decomposable tensor. Complete decomposability

and regular decomposability are invariant under orthogonal transformations of the tensor. We

also show that the completely decomposable tensor cone and the regularly decomposable tensor

cone are closed convex cones. Furthermore, in the even-order case, the completely decompositive

tensor cone and the PSD tensor cone are dual to each other. The Hadamard product of two

completely decomposable tensors is still a completely decomposable tensor. Since one may apply

the positive semi-definite programming algorithm to detect whether a symmetric tensor is an SOS

tensor or not, this gives a checkable necessary condition for classicality of a spin-j state. Further

research issues on regularly decomposable tensors are also raised.
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1 Introduction

A geometrical picture of quantum states often helps getting some insight on underlying physical

properties. For arbitrary pure spin states, such a geometrical representation was developed by Ettore

Majorana [1]: a spin-j state is visualized as N = 2j points on the unit sphere S2, called in this

context the Bloch sphere. The advantage of such a picture is a direct interpretation of certain unitary

operations: namely, if a quantum spin-j state is mapped to another one by a unitary operation that

correspond to a (2j + 1)-dimensional representation of a spatial rotation, its Majorana points are

mapped to points obtained by that spatial rotation. Recently a tensor representation of an arbitrary

mixed or pure spin-j state was proposed that generalizes this picture [2]. It consists of a real symmetric

tensor of order N = 2j and dimension 4. A spin-j state corresponds to a boson if j is a positive integer,

and corresponds to a fermion if j is a positive half-integer. Thus, a boson corresponds to an even-order

four dimensional tensor, while a fermion corresponds to an odd order four dimensional tensor.

The geometrical picture is particularly useful when it comes to studying classicality properties of

spin states. In quantum optics, coherent states are quantum states that behave the most classically,

in that they minimize the uncertainty relation between position and momentum. Coherent states can

also be defined in the context of spins. Statistical mixtures of coherent states can thus be considered

the “least quantum” states. The set of classical spin states was introduced in [3] as the convex hull of

the set of coherent spin states. It can be interpreted (see e.g. [4]) as the set of fully separable states in

the symmetric sector of the tensor product of 2j spins-1/2. The above geometric picture easily allows

one to characterize coherent spin states: a coherent spin-j state can be represented by N = 2j points

located at the same position on the Bloch sphere. The characterization of classical states is less easy

to obtain, but the tensorial picture helps to get some results on this issue. For instance, in [4] it was

shown that when j is an integer, i.e., N is an even number, a classical spin-j state is such that its

representing tensor is positive semi-definite (PSD) in the sense of [5] (see Section 2).

Positive semi-definiteness of the tensor representation is a necessary and sufficient condition of

classicality in the case j = 1 [6]. It is only a necessary condition for classicality of a spin-j state,

and only if j is a positive integer, as pointed out in [4]. A natural question is therefore whether it is

possible to formulate a necessary and sufficient condition for classicality of a spin-j state in terms of

its tensor representation, first in the case where j is a positive integer, i.e., the boson case, and then

in the case where j is a half-integer, i.e., the fermion case. The aim of this paper is to introduce tools

in order to reformulate these two questions from a mathematical perspective.

The PSD condition can be expressed in terms of tensor eigenvalues. A tensor is PSD if and only

if its smallest H-eigenvalue or Z-eigenvalue is nonnegative [5]. This links classicality of a spin-j state

(with j as a positive integer) with the smallest tensor eigenvalue of its representing tensor. This result

echoes the result of [7], which stated that the geometric measure of entanglement of a pure state is

equal to the largest tensor eigenvalue. Note that tensor eigenvalues have found applications in different

areas of physics [8, 9, 10, 11]. To go beyond the PSD condition for classicality, we have to consider

stronger properties. A property stronger than positive semi-definiteness is the sum-of-squares (SOS)

property. SOS tensors were introduced in [12, 13]. According to the Hilbert theory [14], an SOS tensor

is a PSD tensor but not vice versa. Both PSD and SOS tensors have been studied intensively in recent

years. Some references on PSD and SOS tensors include [15, 16, 17, 18, 19, 20, 21, 22]. One can show
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(see below) that when j is an integer, if a spin-j state is classical, then its representing tensor is an SOS

tensor in the sense of [15, 12, 13]. But this is still a necessary condition. A property stronger than

the SOS property is complete decomposability. Completely decomposable tensors were introduced

and studied in [23, 24]. An even-order completely decomposable tensor is an SOS tensor but not vice

versa [23, 24]. Again, when j is an integer, if a spin-j state is classical, then its representing tensor is

a completely decomposable tensor, and this is still a necessary condition.

In this paper, we introduce regularly decomposable tensors. A regularly decomposable tensor is

a completely decomposable tensor but not vice versa. Furthermore, we define regularly decompos-

able tensors also in the odd-order case. In the odd-order case, the first row tensor of a regularly

decomposable tensor is regularly decomposable and its other row tensors are induced by the regular

decomposition of its first row tensor. We show that in both the odd-order (fermion) and even-order

(boson) cases a spin-j state is classical if and only if its representing tensor is a regularly decomposable

tensor. Thus, it is important to study properties of regularly decomposable tensors and completely

decomposable tensors, as well as some further properties of PSD tensors and SOS tensors.

The remaining part of this paper is organized as follows. In Section 2, we review the definitions

of PSD, SOS and completely decomposable tensors, and define regularly decomposable tensors. In

Section 3, we show that in both the odd-order (fermion) and even-order (boson) cases a spin-j state is

classical if and only if its representing tensor is a regularly decomposable tensor. Some properties of

completely decomposable tensors and regularly decomposable tensors and their implications in physics

are studied in Section 4. Some further research issues on regularly decomposable tensors are raised in

Section 5.

2 PSD, SOS, Completely Decomposable and Regularly De-

composable Tensors

In this paper, for a vector x ∈ ℜn+1, we denote it as x = (x0, x1, . . . , xn)
⊤. Later, in physical

applications, we will have n = 3. Here, we assume that n ≥ 2. Denote the zero vector in ℜn+1 by 0.

Let A = (ai1...im) be an mth order (n+1)-dimensional real tensor. We say that A is a symmetric

tensor if the entries ai1...im are invariant under permutation of their indices. Denote Tm,n+1 as the

set of all mth order (n+ 1)-dimensional real tensors, and Sm,n+1 as the set of all mth order (n+ 1)-

dimensional real symmetric tensors. Then Tm,n+1 is a linear space, and Sm,n+1 is a linear subspace

of Tm,n+1. Denote the zero tensor in Sm,n+1 by O.

Let A = (ai1...im) ∈ Tm,n+1 and B = (bi1...ip) ∈ Tp,n+1. The outer product of A and B, denoted
as C = A ⊗ B, is a real tensor in Tm+p,n+1, defined by C = (ai1...imbim+1...im+p). We also denote

A⊗2 = A⊗A, A⊗(k+1) = A⊗k⊗A for k ≥ 2. A symmetric rank-one tensor is defined as a symmetric

tensor in Sm,n+1 of the form αx⊗m, where α ∈ ℜ and x ∈ ℜn+1.

Let A = (ai1...im) and B = (bi1...im) in Sm,n+1. The inner product of A and B, denoted as A • B,
is a scalar, defined by

A • B =
n∑

i1,...,im=0

ai1...imbi1...im .

Let A = (ai1...im) ∈ Sm,n+1 and x ∈ ℜn+1. Then we have

A • x⊗m ≡
n∑

i1,...,im=0

ai1...imxi1 . . . xim .

If for any x ∈ ℜn+1, we have A • x⊗m ≥ 0, then we say that A is a positive semi-definite (PSD)

tensor. If for any x ∈ ℜn+1,x 6= 0, we have A • x⊗m > 0, then we say that A is a positive definite

3



(PD) tensor. Clearly, if m is odd, then the only PSD tensor is the zero tensor, and there is no PD

tensor. Thus, we only discuss even-order PSD and PD tensors.

Suppose that m = 2l is even. Let A ∈ Sm,n+1. If there are symmetric tensors A(1), . . . ,A(r) ∈
Sl,n+1 such that for all x ∈ ℜn+1,

A • x⊗m =
r∑

k=1

(
A(k) • x⊗l

)2

,

then A is called a sum-of-squares (SOS) tensor. Then, for any x ∈ ℜn+1, we have A • x⊗m ≥ 0.

Thus, an SOS tensor is always a PSD tensor, but not vice versa. By the Hilbert theory [14], only in

the following three cases: 1) m = 2, 2) n = 1, 3) m = 4 and n = 2, a PSD tensor is always an SOS

tensor; otherwise, there are always PSD tensors which are not SOS tensors. David Hilbert [14] stated

this in the language of polynomials. But the meanings are the same.

Let A ∈ Sm,n+1. Here, m can be either even or odd. If there are vectors u(1), . . . ,u(r) ∈ ℜn+1

such that

A =
r∑

k=1

(
u(k)

)⊗m

, (2.1)

then we say that A is a completely decomposable tensor. If all the vectors u(1), . . . ,u(r) ∈ ℜn+1

are nonnegative vectors, then A is called a completely positive tensor [34, 20]. Actually, all odd-

order symmetric tensors are completely decomposable tensors [23]. Thus, the concept of completely

decomposable tensors is not useful for odd order. However, if m = 2l is even, and A is a completely

decomposable tensor as defined by (2.1), then by letting A(k) =
(
u(k)

)⊗l
, we see that A is an SOS

tensor. On the other hand, by the examples given in [23, 24], an SOS tensor may not be a completely

decomposable tensor.

In order to define regularly decomposable tensors, we still need two more concepts: regular vectors

and row-tensors.

Definition 2.1 Let x = (x0, x1, . . . , xn)
⊤ ∈ ℜn+1. We say that x is a regular vector if x0 6= 0 and

x20 = x21 + . . .+ x2n.

Definition 2.2 For any A = (ai1...im) ∈ Sm,n+1, define its ith row tensor Ai as a symmetric tensor

in Sm−1,n+1, by Ai = (aii2...im), for i = 0, . . . , n.

We can then define regularly decomposable tensors as follows:

Definition 2.3 (i.) Let the order m = 2l be even and A ∈ Sm,n+1. If A is a completely decomposable

tensor defined by (2.1), where u(1), . . . ,u(r) are regular vectors, then we say that A is a regularly

decomposable tensor of even order.

(ii.) Let the order m = 2l + 1 be odd and A ∈ Sm,n+1. If A0 ∈ S2l,n+1 is a regularly decomposable

tensor with the regular decomposition

A0 =

r∑

k=1

(
u(k)

)⊗2l

, (2.2)

where u(k) =
(
u
(k)
0 , . . . , u

(k)
n

)⊤
, k = 1, . . . , r, are regular vectors, and the other row tensors of A are

induced by this regular decomposition,

Ai =

r∑

k=1

u
(k)
i

u
(k)
0

(
u(k)

)⊗2l

, (2.3)

for i = 1, . . . , n, then we say that A is a regularly decomposable tensor of odd order.
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Clearly an even-order regularly decomposable tensor is a completely decomposable tensor but not vice

versa.

Theorem 2.4 A regularly decomposable tensor A = (ai1...im) ∈ Sm,n+1 can be written as

A =
r∑

k=1

αk

(
v(k)

)⊗m

, (2.4)

where αk > 0 and v(k) =
(
1, v

(k)
1 , . . . , v

(k)
n

)⊤
,

n∑

i=1

(
v
(k)
i

)2

= 1, (2.5)

for k = 1, . . . , r. Furthermore, we have

a00i3...im =

n∑

i=1

aii i3...im (2.6)

for m ≥ 2 and all i3, . . . , im = 0, 1, . . . , n.

Proof. Suppose that m is even, and A is defined by (2.1), where u(1), . . . ,u(r) are regular vectors.

Let

v(k) =
u(k)

u
(k)
0

, (2.7)

for k = 1, . . . , r. Then we see that A can be expressed by (2.4), where αk =
(
u
(k)
0

)m

> 0 and

v(k) =
(
1, v

(k)
1 , . . . , v

(k)
n

)⊤
satisfy (2.5) for k = 1, . . . , r. Suppose that m = 2l + 1 is odd, and

A0 is defined by (2.2), where u(1), . . . ,u(r) are regular vectors and the other row tensors of A are

defined by (2.3). Then we see that A can also be expressed by (2.4), where αk =
(
u
(k)
0

)2l

> 0,

v(k) =
(
1, v

(k)
1 , . . . , v

(k)
n

)⊤
, still defined by (2.7), satisfy (2.5) for k = 1, . . . , r. By these, we see that

(2.6) is satisfied. �

Suppose that A = (ai1...im) ∈ Sm,n+1 satisfies (2.6). Then we call A a regular symmetric

tensor. If moreover a00...0 = 1 we call A a regular normalized symmetric tensor. In the next

section we will see that an important research issue is to determine whether a given regular symmetric

tensor is a regularly decomposable tensor or not.

3 Regularly Decomposable Tensors and Classicality of Spin

States

Several definitions of classicality of a quantum state exist in the literature, based e.g. on the posi-

tivity of the Wigner function, or the absence of entanglement in the case of multi-partite systems

[25, 26, 27, 7, 28]. In [3] a suitable definition of classicality of spin states was introduced. Firstly, pure

classical spin states are defined as angular-momentum coherent states, also called “SU(2)-coherent

states”, and in the following also simply “coherent states”. Their properties are well-known from

work in quantum optics [29, 30] and quantum-chaos [31]. For being self-contained, we briefly review
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them here.

SU(2)-coherent states can be labeled by a complex label α, related by stereographic projection

to polar and azimuthal angles θ and φ, α = tan(θ/2)eıφ. Let J ≡ (Jx, Jy, Jz) denote the angular

momentum vector, and |j,m〉 the joint-eigenbasis states of the angular momentum component Jz and

the total angular momentum J2 ≡ J2
x + J2

y + J2
z , with Jz |j,m〉 = m |j,m〉, J2 |j,m〉 = j(j + 1) |j,m〉.

The components Jx and Jy are related to the ladder operators J± by J± = Jx ± ıJy and J± |j,m〉 =√
j(j + 1)−m(m± 1) |j,m± 1〉, where ı =

√
−1 is the imaginary unit. The coherent states can be

written as

|α〉 =
j∑

m=−j

√(
2j

j +m

)(
cos

θ

2

)j+m (
sin

θ

2
eıφ

)j−m

|j,m〉 , (3.8)

with θ ∈ [0, π] and φ ∈ [0, 2π[. For θ = 0 or θ = π, |α〉 = |j, j〉 or |j,−j〉 respectively, i.e. the angular

momentum states with largest or smallest Jz-component are always coherent states. Geometrically, a

coherent state |α〉 with α = tan(θ/2)eıφ is associated to a direction n̂ = (sin θ cosφ, sin θ sinφ, cos θ)

on the Bloch sphere. Coherent states have the important property that the quantum uncertainty

of the rescaled angular momentum vector J/j of a spin-j is minimal for all pure quantum states,

(〈α|J2|α〉 − 〈α|J|α〉2)/j2 = 1/j. The uncertainty vanishes in the classical limit of a large spin,

j → ∞. The coherent states come as closely as possible to the ideal of a classical phase space point,

i.e. represent as best as allowed by the laws of quantum mechanics an angular momentum pointing in

a precise direction,

〈α|J|α〉 = j(sin θ cosφ, sin θ sinφ, cos θ) = jn̂ . (3.9)

Another important feature of coherent states is that they remain coherent under unitary transforma-

tions of the form U = e−ıγn̂·J. Such unitary transformations arise from the dynamics of the angular

momentum in a magnetic field (assuming that the angular momentum is associated with a magnetic

moment). Classically, the spin precesses around the axis given by the magnetic field, and this is

reproduced by the behavior of the coherent state. One can see this most easily for n̂ = êz = (0, 0, 1),

i.e. a magnetic field in the z-direction, in which case U = e−ıγJz can be immediately applied to the

basis states |j,m〉 and gives rise to additional phase factors e−ıγm, i.e. φ 7→ φ+γ, and correspondingly

the expectation value 〈α|J|α〉 is rotated by the angle γ about the z−axis. In general, the mapping

|α〉 7→ |α̃〉 = e−ıγn̂·J |α〉 leads to an expectation value 〈α̃|J|α̃〉 = R(n̂, γ) 〈α|J|α〉, where R(n̂, γ) is a

3 × 3 orthonormal matrix representing rotation about the axis n̂ with a rotation angle γ. Due to

Eq. (3.9), it is clear that all coherent states can be obtained by an appropriate unitary transformation

of the form U = e−ıγn̂·J acting on the state |j, j〉 associated with the direction êz.

The quantum state of any physical system with finite dimensional Hilbert space can be represented

by a density operator (also called density matrix) ρ, a positive semi-definite hermitian operator with

trρ = 1. If λi and |ψi〉 are respectively the eigenvalues and eigenvectors of ρ, one has the eigende-

composition ρ =
∑

i λi |ψi〉 〈ψi|. The density matrix ρ can therefore be interpreted as representing

a quantum state which is in some pure state |ψi〉 with probability λi. The condition trρ = 1 en-

sures that the probabilities are normalized to 1; it is however possible to work with unnormalized

density matrices by relaxing the constraint on trρ. In the present paper we will follow that option.

As most equations we consider are linear in ρ, this just means that we may forget about an overall

normalization constant.

The density operator of an arbitrary spin-j quantum state can be written in the form of a diagonal
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representation,

ρ =

∫

S2

dαP (α)|α〉〈α| , (3.10)

where P (α) is known as the (Glauber-Sudarshan) P−function [30], and dα = sin θdθdφ is the inte-

gration measure over the unit sphere S2 in three dimensions. Classically mixing states, i.e. drawing

randomly pure states according to a classical probability distribution, should not increase the non-

classicality of a state. Hence, a spin-state is called classical, if and only if a decomposition of ρ in the

form of Eq. (3.10) exists with P (α) ≥ 0, in which case P (α) can be interpreted as classical probability

density of finding the pure SU(2)-coherent state |α〉 in the mixture. Since by definition classical states

form a convex set, Caratheodory’s theorem implies immediately that a classical state can be written

as a finite convex sum of projectors onto coherent states,

ρ =

(N+1)2+1∑

i=1

wi|αi〉〈αi| , (3.11)

where wi ≥ 0. Eq. (3.11) is the general definition of a classical spin state adopted in [3], and we will

base the rest of the paper on it.

A single spin-1/2 is equivalent to a qubit, i.e. a quantum-mechanical two state system. The

two states “spin-up” and “spin-down”, namely | 12 , 12 〉 and | 12 ,− 1
2 〉 in the above |j,m〉 notation, are

also called “computational-basis”. Denoted as |0〉 and |1〉 in quantum-information theory, they are

represented as column-vectors (1, 0)T and (0, 1)T . In this basis, the density operator can be represented

by a 2× 2 complex hermitian matrix with trρ = 1 that can be expanded over the Pauli-matrix basis,

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −ı
ı 0

)
and σ3 =

(
1 0

0 −1

)
,

ρ =
1

2

3∑

i=0

σiai . (3.12)

The four components ai, i ∈ {0, 1, 2, 3} form an order-1 tensor A of dimension 4. The Pauli matrices

(σ1, σ2, σ3) ≡ σ are matrix representations of the components of the operator 2J in the “spin-up”

and “spin-down” computational-basis. We have trρ = a0. The vector v ≡ (a1, a2, a3)
T ∈ ℜ3 is the

so-called Bloch vector. It satisfies ||v||2 ≤ a0 in order to guarantee the positivity of ρ. In particular,

||v||2 = a0 signals pure states (i.e. rank-1 states), and ||v||2 < a0 mixed states (rank-2 states). Due

to the orthonormality of the Pauli-matrix basis, v can be obtained from a given state as v = trρσ.

In particular, for a SU(2)-coherent state |α〉, one finds v = 〈α|2J|α〉 = (sin θ cosφ, sin θ sinφ, cos θ),

as evidenced by Eq. (3.9). The Bloch picture is particularly useful for visualizing unitary operations:

Due to the rotation properties of the coherent states under a unitary operation, if ρ̃ = UρU †, the
corresponding Bloch vector ṽ of ρ̃ is obtained by rotation of the original Bloch vector, namely ṽ =

R(n̂, γ)v. As the zero-component of tensor A has to remain unchanged due to the conservation of

the trace under unitary operations, ã0 = a0, the transformation of A reads ãi = Rijaj with

R00 = 1, R0i = Ri0 = 0 (i ∈ {1, 2, 3}) and Rij = R(n̂, γ)ij (i, j ∈ {1, 2, 3}). (3.13)

In [2] the Bloch-vector of a spin-1/2 was generalized to a Bloch-tensor of a spin-j. A spin-j can

be composed from N = 2j spins-1/2. The total spin is then the sum of the N spins-1/2, i.e. J =∑N
i=1 σ

(i)/2. In general, combining two spins j1 and j2 gives rise to total spins j ranging from |j1− j2|
to j1 + j2. A spin j = N/2 is hence the maximum total spin achievable with N spins-1/2. All basis

7



states |j,m〉 can be created by acting with the ladder operator J− on the state |j, j〉, which in turn

is the state | 12 , 12 〉
⊗N

of all spins-up in the full Hilbert space of N spins-1/2. Since both |j, j〉 and

J− are fully symmetric under the exchange of all spins-1/2, all |j,m〉 states lie in the fully symmetric

subspace HS of the total Hilbert-space H = C2N . A projector PS onto that subspace can be obtained

as

PS ≡
N∑

k=0

∣∣∣D(k)
N

〉〈
D

(k)
N

∣∣∣ , (3.14)

where the so-called Dicke states |D(k)
N 〉 are defined as

∣∣∣D(k)
N

〉
= N

∑

π

| 0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸
N−k

〉, k = 0, . . .N,

N is a normalization constant, and the sum is over all permutations of the spin-1/2 states, written

here as tensor product of the computational basis states |0〉 and |1〉 of each spin-1/2. The Dicke states

are in 1-1 correspondence with the |j,m〉 states, with j = N/2 and m = k −N/2.

It was shown in [2] that a tight frame of matrices Si1...iN can be obtained by projecting σi1i2...iN ≡
σi1 ⊗ σi2 . . .⊗ σiN into HS . More precisely, the Si1i2...iN are the (N + 1)-dimensional blocks spanned

by the |D(k)
N 〉 (k = 0, 1, . . . , N) of the matrix PS σi1i2...iN P†

S , i.e. in terms of matrix elements

〈D(k)
N |Si1i2...iN |D(l)

N 〉 = 〈D(k)
N |σi1i2...iN |D(l)

N 〉 . (3.15)

By definition, there are 4N matrices Si1i2...iN . However, since they are invariant under permuation

of indices, many of them coincide. S0...0 is the identity matrix acting on HS . Due to the tight-frame

property, one can expand any density operator of a spin-j as

ρ =

n∑

i1,...,iN=0

1

2N
ai1i2...iNSi1i2...iN , (3.16)

with real and permutationally invariant coefficients

ai1i2...iN = tr(ρ Si1i2...iN ) . (3.17)

Therefore, each density matrix ρ corresponds to a 4-dimensional tensor AN,4 = (ai1i2...iN ). Note that

there are other ways than (3.17) to choose the ai1,...,iN as the Si1...iN form an overcomplete basis.

The representing tensor of a coherent state is particularly simple: Since any spin-j coherent state

|α〉 can be obtained by acting with U = e−ıγn̂·J on |j, j〉 = | 12 , 12 〉
⊗N

, a spin-j coherent state is simply

a tensor product of spin-1/2 coherent states, |α〉j = |α〉1/2 ⊗ . . . ⊗ |α〉1/2, where we have added a

subscript indicating the total spin-quantum number. Since it is a symmetric state (PS |α〉 = |α〉) we
have

〈α|Si1i2...iN |α〉 = 〈α|PSσi1i2...iNP†
S |α〉 = 〈α| ⊗ . . .⊗ 〈α| σi1 ⊗ σi2 . . . σiN |α〉 ⊗ . . .⊗ |α〉 (3.18)

= vi1vi2 . . . viN . (3.19)

As a consequence, ρ = |α〉〈α| has the tensor representation ai1...iN = vi1 . . . viN , i.e. the representing

tensor A of ρ = |α〉〈α| is a rank-1 tensor with v0 = 1 and ||v|| = 1.

For an arbitrary density matrix ρ, the tensor AN,4 enjoys useful properties. Firstly, the ai1i2...iN
in Eq. (3.17) are such that

a00i3...iN =
3∑

i=1

aii i3...iN . (3.20)
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To see this, let |α〉 be a coherent state. Since its representing tensor is ai1...iN = vi1 . . . viN , and

v2 = v20 = 1, we have

v0v0vi3 . . . viN =

3∑

a=1

vavavi3 . . . viN , (3.21)

which is Eq. (3.20) for coherent states. Due to the linearity of the decomposition (3.10) of ρ in terms

of coherent states, Eq. (3.20) for arbitrary states follows.

Secondly, by Eqs. (3.10), (3.17) and (3.18), we have

a00...0 = tr(ρ S00...0)

= tr

(∫

S2

dαP (α)|α〉〈α|S00...0

)

=

∫

S2

dαP (α)〈α|S00...0|α〉

=

∫

S2

dαP (α)〈α|σ00...0|α〉

=

∫

S2

dαP (α), (3.22)

so that a00...0 = 1 if the state is normalized. Finally, as shown in [2], the ai1i2...iN are unique if they

are restricted to real numbers, invariant under permutation of the indices, and verifying the condition

Eq. (3.20). There is therefore a mapping from the density matrices ρ of a spin-j state to 4-dimensional

real symmetric normalized tensors of order N = 2j, AN,4 = (ai1i2...iN ) ∈ SN,4. We call this tensor

the “representing tensor” of the state ρ.

Hence, by Eq. (3.11), a spin-j state is classical if and only if there are positive weights wk > 0 for

k = 1, . . . , r, and vectors v(k) =
(
1, v

(k)
1 , v

(k)
2 , v

(k)
3

)⊤
∈ ℜ4, satisfying

(
v
(k)
1

)2

+
(
v
(k)
2

)2

+
(
v
(k)
3

)2

= 1, (3.23)

for k = 1, . . . , r, such that the representing tensor A = (ai1...iN ) ∈ SN,4 of that spin-j state satisfies

A =
r∑

k=1

wk

(
v(k)

)⊗N

, (3.24)

i.e., A is a regularly decomposable tensor.

Based upon the above discussions and Theorem 2.4, we have the following theorem.

Theorem 3.1 The tensor A = (ai1...iN ) ∈ SN,4 representing a spin-j state (with N = 2j) is a

regular symmetric tensor. A spin-j state is classical if and only if its representing tensor is a regularly

decomposable tensor.

Thus, the physical problem of determining whether a spin-j state is classical or not is equivalent

to a mathematical problem to determine whether its representing tensor is a regularly decomposable

tensor or not.

9



4 Properties of Completely Decomposable and Regularly De-

composable Tensors

There is already substantial literature on PSD tensors and SOS tensors, including [15, 16, 17, 23,

5, 18, 19, 20, 21, 24, 22]. There are only two papers on completely decomposable tensors [23, 24].

Regularly decomposable tensors are introduced in this paper. By the discussion in the last section, we

see that regularly decomposable tensors play a significant role for the classicality of spin states. Thus,

in this section, we discuss properties of completely decomposable tensors and regularly decomposable

tensors.

4.1 Invariance of complete decomposability and regular decomposability

Any measure of entanglement should be invariant under local unitary transformations (see e.g. [32]).

Hence, also the set of fully separable states must be invariant under local unitary transformations.

Correspondingly, the classicality of a spin-j state should be invariant under rotations of the coordinate

system. For a physical system in three spatial dimensions, such a rotation is represented by the 3×3

orthogonal transformation matrix R(n̂, γ) introduced above that acts on a vector of spatial coordinates

x1, x2, x3. The corresponding transformation of a covariant tensor (i.e. a tensor that transforms as the

coordinates) of dimension 4 and order m is given by its inner product with R⊗m, where R is defined

by Eq. (3.13). More generally, we expect the regular decomposability of a tensor to be a property

invariant under orthogonal transformations described by an (n+ 1)× (n+ 1) matrix

R =

(
1 0⊤

0 R

)
,

where 0 is the zero vector in ℜn, and R is now an n× n orthogonal matrix. Then

R




x1
x2
.

.

.

xn−1

xn




=




y1
y2
.

.

.

yn−1

yn




and

R




x0
x1
x2
.

.

.

xn−1

xn




=




y0
y1
y2
.

.

.

yn−1

yn




with x0 = y0. We call such an orthogonal matrix a normalized orthogonal matrix. Denote R =

(rli). As in [5], for any symmetric tensor A = (ai1...im) ∈ Sm,n+1, let B = (bl1...lm) ≡ RmA ∈ Sm,n be

defined by

bl1...lm =

n∑

i1,...,im=0

ai1...imrl1i1 . . . rlmim

10



for l1, . . . , lm = 0, . . . , n. By [5], A and B have the same E-eigenvalues and Z-eigenvalues. In particular,

when m is even, A is PSD if and only if B is PSD. By [13], when m is even, A is SOS if and only if B
is SOS. This shows that the PSD property and the SOS property can represent physical properties,

as they are invariant under orthogonal transformation.

Theorem 4.1 Let R be a normalized orthogonal matrix, A,B ∈ Sm,n+1,B = RmA. Then A is

completely decomposable if and only if B is completely decomposable, and A is regularly decomposable

if and only if B is regularly decomposable.

Proof. Suppose that A = (ai1...im) ∈ Sm,n+1 is completely decomposable, B = (bk1...km) ∈ Sm,n+1,

B = RmA, where R = (rli) is an (n + 1) × (n + 1) orthogonal matrix. Then there are vectors

u(1), . . . ,u(r) ∈ ℜn+1, where u(k) = (u
(k)
0 , . . . , u

(k)
n )⊤ for k = 1, . . . , r, such that

A =
r∑

k=1

(
u(k)

)⊗m

,

i.e., for i1, . . . , im = 0, . . . , n,

ai1...im =

r∑

k=1

u
(k)
i1
. . . u

(k)
im
.

Then, for l1, . . . , lm = 0, . . . , n, we have

bl1...lm =
n∑

i1,...,im=0

ai1...imrl1i1 . . . rlmim =
r∑

k=1

n∑

i1,...,im=0

u
(k)
i1
. . . u

(k)
im
rl1i1 . . . rlmim =

r∑

k=1

v
(k)
l1

. . . v
(k)
lm
,

where for k = 1, . . . , r, l = 0, . . . , n,

v
(k)
l =

n∑

i=0

rliu
(k)
i .

This implies that

B =

r∑

k=1

(
v(k)

)⊗m

,

where v(k) = (v
(k)
0 , . . . , v

(k)
n )⊤ for k = 1, . . . r. This implies that B is completely decomposable. By [5],

if B = RmA, then A = (R⊤)mB. Thus, if B is completely decomposable, then A is also completely

decomposable.

Assume that m is even, A is regularly decomposable and R is a normalized orthogonal matrix.

Then, we may assume that in the above discussion, vectors u(1), . . . ,u(r) are regular. Since v(k) =

Ru(k) for k = 1, . . . , r, and R is a normalized orthogonal matrix, we may conclude that v(1), . . . ,v(r)

are also regular. This implies that B is also regularly decomposable. By [5], if B = RmA, then

A = (R⊤)mB. Thus, if B is regularly decomposable, then A is also regularly decomposable.

Now assume that m is odd, A is regularly decomposable and R is a normalized orthogonal ma-

trix. Then B0 is also regularly decomposable. As Ai for i = 1, . . . , n, are induced from the regular

decomposition of A0, we may see that Bi for i = 1, . . . , n, are induced from the regular decomposition

of B0. This implies that B is also regularly decomposable. Similarly, if B is regularly decomposable,

then A is also regularly decomposable. �

These show that complete decomposability and regular decomposability are invariant under nor-

malized orthogonal transformation.
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4.2 Hadamard Products

For any two tensors A = (ai1···im), B = (bi1···im) ∈ Tm,n+1, their Hadamard product, denoted as

A ◦ B, is defined by

A ◦ B = (ai1···imbi1···im) ∈ Tm,n+1. (4.25)

In matrix theory, the Hadamard product of two PSD symmetric matrices is also a PSD symmetric

matrix. This is no longer true for tensors. In [18], an example was given that the Hadamard product

of two PSD Hankel tensors may not be PSD. Hankel tensors are symmetric tensors. Thus, the

Hadamard product of two PSD symmetric tensors may not be PSD. In [13], an example was given

that the Hadamard product of two SOS tensors may not be an SOS tensor. However, we have the

following proposition:

Proposition 4.2 Suppose that A = (ai1···im), B = (bi1···im) ∈ Sm,n+1 are completely decomposable

tensors. Then their Hadamard product A ◦ B is also a completely decomposable tensor.

Proof. Suppose thatA and B are completely decomposable. Then there are vectors u(1), . . . ,u(r),v(1), . . . ,v(p) ∈
ℜn+1, such that

A =

r∑

k=1

(
u(k)

)⊗m

and

B =

p∑

l=1

(
v(l)

)⊗m

.

Then is easy to see that

A ◦ B =

r∑

k=1

p∑

l=1

(
u(k) ◦ v(l)

)⊗m

,

i.e., A ◦ B is completely decomposable. �

This property is no longer true for regularly decomposable tensors. In this sense, completely

decomposable tensors are similar to completely positive tensors studied in [20]: the Hadamard product

of two completely positive tensors is still a completely positive tensor.

4.3 Duality between the PSD Tensor Cone and the Completely Decom-

posable Tensor Cone

Denote the set of all completely decomposable tensors in Sm,n+1 by CDm,n+1, the set of all regularly

decomposable tensors in Sm,n+1 by RDm,n+1. Let m be even, denote the set of all PSD tensors in

Sm,n+1 by PSDm,n+1, the set of all SOS tensors in Sm,n+1 by SOSm,n+1. Then CDm,n+1, RDm,n+1,

PSDm,n+1, and SOSm,n+1 are cones.

Let C be a cone in Sm,n+1. Then its dual cone C∗ is defined by

C∗ := {A ∈ Sm,n+1 : A • B ≥ 0, for all B ∈ C}.

The dual cone C∗ is a closed convex cone. The dual cone of C∗ is the closure of the convex hull of C.

If C is closed and convex, then C and C∗ are dual cones to each other. Let A = (ai1...im) ∈ Sm,n+1

and ℜn+1
+ be the nonnegative orthant of ℜn+1. If for any x ∈ ℜn+1

+ , we have A • x⊗m ≥ 0, then we

say that A is a copositive tensor. Copositive tensors have also applications in physics [9]. By [20],

the completely positive tensor cone and copositive tensor cone are dual cones to each other.

By [33] and the definition of completely decomposable tensors, we have the following proposition.

12



Proposition 4.3 Suppose that m is even. Then PSDm,n+1 and CDm,n+1 are dual cones to each

other. Thus, both are closed convex cones.

4.4 Closedness and Convexity of the Regularly Decomposable Tensor Cone

In the last subsection, we already knew that if m is even, then PSDm,n+1 and CDm,n+1 are closed

convex cones. By [23], if m is odd, CDm,n+1 is neither closed nor convex. By [13], SOSm,n+1 is also

a closed convex cone. We now discuss closedness and convexity of RDm,n+1.

Proposition 4.4 RDm,n+1 is a closed convex cone.

Proof. Suppose that {A(l) : l = 1, 2, . . . , } is a sequence of regularly decomposable tensors in RDm,n+1

such that

A = lim
l→∞

A(l).

By Theorem 2.4, we may assume that

A(l) =

rl∑

k=1

αk,l

(
v(k,l)

)⊗m

,

where αk,l ≥ 0, v(k,l) = (1, v
(k,l)
1 , . . . , v

(k,l)
1 )⊤,

(
v
(k,l)
1

)2

+ . . .+
(
v(k,l)n

)2

= 1,

for k = 1, . . . , rl, for l = 1, 2, . . .. By the Carathéodory theorem, we may assume that

rl ≤ R ≡
(
n+m+ 2

m

)
+ 1.

Thus, by taking a subsequence if necessary, without loss of generality, there is a r ≤ R such that

rl = r for l = 1, 2, . . .. Then, we may conclude that there are αk ≥ 0, v(k) = (1, v
(k)
1 , . . . , v

(k)
1 )⊤,

(
v
(k)
1

)2

+ . . .+
(
v(k)n

)2

= 1,

for k = 1, . . . , r. Thus, by Theorem 2.4, A is a regularly decomposable tensor. This shows that

RDm,n+1 is a closed cone. Similarly, we prove that RDm,n+1 is a convex cone. �

5 Concluding Remarks

In this paper, we have introduced the concept of regularly decomposable tensors. We have shown that

a spin state is classical if and only if its representing tensor is a regularly decomposable tensor. Thus,

the problem for determining whether a spin state is classical or not is mathematically equivalent to

the problem of determining whether a given regular symmetric tensor is a regularly decomposable

tensor or not.

How can we construct an algorithm for determining a given regular symmetric tensor is a regularly

decomposable tensor or not? We see that the properties of completely decomposable tensors and regu-

larly decomposable tensors in some extent are similar to those of completely positive tensors [34, 20].

Recently, an algorithm for determining whether a given symmetric nonnegative tensor is completely

positive or not was proposed [35]. Perhaps we may learn from that algorithm how to construct an

algorithm determining whether a given regular symmetric tensor is regularly decomposable or not.
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We map the quantum entanglement problem onto the mathematically well-studied truncated
moment problem. This yields a necessary and sufficient condition for separability that can be checked
by a hierarchy of semi-definite programs. The algorithm always gives a certificate of entanglement
if the state is entangled. If the state is separable, typically a certificate of separability is obtained in
a finite number of steps and an explicit decomposition into separable pure states can be extracted.

I. INTRODUCTION

The renewed interest that entanglement theory at-
tracted in the last decades has led to a tremendous
amount of new results (see the recent reviews [1–4] and
references therein). Still, characterization and detection
of multipartite entanglement is largely an open question.
For quantum states describing a collection of qubits, the
size of Hilbert space, exponential in the number of qubits,
makes the problem daunting. A simpler but still chal-
lenging problem is to restrict the question of character-
izing entanglement to a smaller set of quantum states,
such as for instance symmetric states, which are pure
states invariant under permutations of constituents, or
mixtures thereof. Symmetric states lie in a Hilbert space
of size linear in the number of qubits, which makes the
investigation more tractable. Once the symmetric case
is understood, it can shed light onto the general case.
This is the strategy we will follow here, first consider-
ing the symmetric case, which is easier to handle and to
present from a pedagogical point of view, then extending
our results to the fully general non-symmetric case.

Various results on entanglement for symmetric states
have been obtained in the literature [5–9]. For instance,
criteria for certifying separability in symmetric mixed
states of N qubits were found in [10]. Separable symmet-
ric N -qubit pure states are always fully separable [11].
They are easily characterized, as there is a one-to-one
correspondence between these states and points on the
Bloch sphere via the Majorana representation [12]. As
will be detailed in the paper, a symmetric state is sepa-
rable (that is, it can be written as a convex combination
of separable pure states) if and only if it can be associ-
ated with a probability distribution on the sphere; this
measure then gives the positive weights associated with
each separable pure state. A convenient representation
to describe symmetric states in terms of symmetric ten-
sors was proposed in [13], generalizing the Bloch sphere
picture of spins-1/2. In terms of this tensor represen-
tation, decomposing a state into a convex combination
of separable pure states amounts to finding a probabil-
ity distribution whose lowest-order moments are fixed by
the tensor entries. In fact, as we will see, the generic
problem of finding whether an arbitrary (not necessarily
symmetric) multipartite state can be decomposed into

product states can be cast into the problem of finding a
probability distribution whose lowest-order moments are
fixed.

The problem of finding a probability distribution from
the knowledge of its moments has been extensively stud-
ied in the literature. When only a finite number of mo-
ments is known, the problem is to find a probability dis-
tribution compatible with these moments. In the case of
multivariate distributions, it corresponds to the so-called
truncated moment problem: given a truncated moment
sequence (tms), that is, fixing all moments up to a certain
order, is there a probability distribution (or, in mathe-
matical terms, a nonnegative measure) whose moments
coincide with those of the tms? When it exists, such
a measure is called a representing measure of the tms.
Of practical relevance is the closely related K-tms prob-
lem, where the measure reproducing the fixed moments
is constrained to be supported on some compact K.

The non-truncated K-moment problem, where all mo-
ments are given, was solved in [14] in the case where the
compact K is semi-algebraic (i.e. defined by polynomial
inequalities). For the K-tms problem (and for K semi-
algebraic), Curto and Fialkow [15] obtained a necessary
and sufficient condition for a tms to admit a representing
measure (see Theorem 1 below). In [16], a semidefinite
algorithm was introduced, allowing one to find a repre-
senting measure (if it exists), and later generalized to
situations where only a subset of moments up to a cer-
tain order are known [17]. This algorithm was also used
in [18] to test positivity of linear maps and separability
of matrices in relation with the entanglement problem.
More detail on the history of the tms problem can be
found in the review [19].

The goal of the present paper is to show how the sep-
arability problem for an arbitrary quantum state can be
mapped to the K-tms problem, and to use results from
the tms literature to elucidate some aspects of entan-
glement detection and characterization of separability.
From an analytical point of view, the mapping allows us
to make use of theorems providing necessary and suffi-
cient separability conditions. Numerically, semi-definite
programming yields an algorithm to obtain an explicit
decomposition of separable states.

The idea of using semi-definite programming to test
for entanglement was already proposed in [20–22] by Do-
herty, Parrilo, and Spedalieri, and independently in [23].
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In [21] an algorithm was provided which detects entan-
glement, but this algorithm never stops if the state is
separable. Conversely, the algorithm proposed in [24]
detects separable states but does not certify entangle-
ment. The algorithms in [20–22] use the concept of “ex-
tensions”, i.e. states in a larger Hilbert space are consid-
ered, such that their partial trace gives back the original
state. By going to larger and larger extensions, a hi-
erarchy of semi-definite programs (SDPs) arises whose
infeasability at any stage signals that the original state
ρAB is entangled. The authors of [20–22] add the re-
quest that the extensions have positive partial transpose
(i.e. are “PPT”) as a necessary criterion for separability.
This additional condition can be implemented at little
extra cost in the SDP. Furthermore, they search in the
space of “N Bose-symmetric extensions”, where the ex-
tended state ρABN (besides being positive semi-definite
and reproducing ρAB = trBN−1 [ρABN ]) is invariant under
projection onto the symmetric subspace of BN . These al-
gorithms were further improved in [25–28].

The algorithm we propose here gives a unifying mathe-
matical framework that also uses semi-definite program-
ming and extensions, but in a somewhat more abstract
way, based on a matrix of moments and a theorem in
the theory of moment sequences. It provides an elegant
solution of the entanglement problem, and in particu-
lar provides a certificate of separability, together with
an explicit decomposition into product states if the state
is separable. Moreover, it applies to arbitrary quantum
state with arbitrary number of constituents and arbitrary
symmetries between the subparts and easily accomodates
missing data, i.e. incompletely specified states.

After setting up the notations, we define the K-tms
problem (Section II), explain the procedures and algo-
rithms allowing to solve it (Section III) and then show
explicit numerical results (Section IV). In Section V we
show that, conversely, some solutions of the entanglement
problems may shed light on a particular tms problem. A
discussion of the advantages and novelties of our treat-
ment compared to previous algorithms is provided in the
conclusions.

II. ENTANGLEMENT AND THE TRUNCATED
MOMENT PROBLEM

To familiarize the reader with the notations in this pa-
per, we will first consider the case of symmetric states
of qubits, since in this case the equations are more com-
pact. After that we will explain the general case in the
following subsection.

A. Symmetric qubit case

Multi-qubit pure states which are invariant under any
permutation of the qubits are called symmetric pure
states. Symmetric states are mixtures of symmetric pure

states. Such states are formally equivalent to spin states
with spin quantum number N/2, where N is the number
of qubits. This connection can be made explicit with the
Dicke states defined by

|D(k)
N 〉 = N

∑

π

| 0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸
N−k

〉, (1)

where N is a normalization constant and the sum runs
over all permutations of the qubits. These states with
k ∈ {0, . . . , N} form a basis of the symmetric subspace
of the Hilbert space C2N of N qubits. We now intro-
duce a convenient way of representing symmetric states
as tensors. For a state ρ, let

Xµ1µ2...µN
= tr

{
ρP †s σµ1 ⊗ · · · ⊗ σµN

Ps
}
, (2)

with σ0 the 2 × 2 identity matrix, σ1, σ2, σ3 the three
Pauli matrices, and Ps the projector onto the symmetric
subspace spanned by Dicke states (1). Then ρ can be
expanded [13] as

ρ =
1

2N
Xµ1µ2...µN

P †s σµ1
⊗ · · · ⊗ σµN

Ps (3)

(with summation over repeated indices). The tensor
Xµ1µ2...µN

is real and invariant under permutation of in-
dices, and verifies

X0...0 = trρ = 1. (4)

In this representation, the tensor associated with a pure
separable symmetric state |ψsep〉 of N qubits takes the
particularly simple form

Xµ1µ2...µN
= nµ1

· · ·nµN
(5)

with n0 = 1 and n = (n1, n2, n3) the Bloch vector of the
individual qubit, n21 + n22 + n23 = 1. Note that since the
state is invariant under the exchange of qubits, a pure
state can only be the tensor product of identical qubits
(with same Bloch vector n), and a separable pure sym-
metric state has to be fully separable [29]. As a conse-
quence, a symmetric state is separable if and only if its
tensor representation can be written as

Xµ1µ2...µN
=
∑

j

wjn
(j)
µ1
· · ·n(j)µN

, (6)

with wj > 0, n(j)0 = 1 and each Bloch vector n(j) normal-
ized to 1. This can be equivalently written in an integral
form as

Xµ1µ2...µN
=

∫

K

xµ1
xµ2
· · ·xµN

dµ(x), (7)

with K = {x ∈ R3 : x21 + x22 + x23 = 1} the unit sphere,
x0 = 1, and dµ a positive measure on K. Indeed, if (6)
holds then the tensor can be written as in (7) with

dµ(x) =
∑

j

wjδ(x− n(j)). (8)
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Conversely, since the system is finite-dimensional,
Carathéodory’s theorem implies that the integral in (7)
can always be reduced to a finite sum as in (6), so that
the positive measure can always be expressed as a sum of
delta functions. Expressing Eq. (7) in words, a symmet-
ric state is separable if and only if there exist a positive
measure dµ such that all entries of the tensor Xµ1µ2...µN

(for all µj , 1 6 j 6 N and 0 6 µi 6 3) are given by
moments of that measure.

In order to prepare for the generalization to arbi-
trary states in the next subsection, let us introduce a
more compact notation for Eq. (7). For any N -tuple
(µ1, . . . , µN ) we define a triplet α = (α1, α2, α3) of inte-
gers such that

xµ1
xµ2
· · ·xµN

= xα, (9)

where we use the notation xα = xα1
1 xα2

2 xα3
3 . So e.g. for

α = (1, 3, 0) we have xα = x1x
3
2. The degree of the

monomial xα is denoted |α| ≡∑i αi. We also denote the
Xµ1µ2...µN

by yα, where α corresponds to (µ1µ2...µN ) via
Eq. (9), so that e.g. for N = 6, y(2,1,0) = X000112. With
this notation we can rewrite (7) as

yα =

∫

K

xαdµ(x). (10)

To test if a symmetric state is separable, a necessary
and sufficient condition is therefore that a positive mea-
sure dµ exists that fulfills (10) for all |α| 6 N . Problems
of this type are known as truncated K-moment sequence
problems (orK-tms problems), and they can be solved by
a semi-definite relaxation procedure. Before we describe
this method in Section III we generalize the description
to arbitrary states of finite-dimensional systems.

B. General case

Consider a multipartite quantum state ρ acting on the
tensor product H = H(1) ⊗ H(2) ⊗ · · · ⊗ H(d) of Hilbert
spaces H(i). For each i, let S(i)

µ , 0 6 µ 6 ti be a set of
ti + 1 Hermitian matrices forming an orthogonal basis
(with respect to the scalar product trA†B) of the set of
bounded linear operators on H(i), with the choice that
S
(i)
0 is the identity matrix. An orthogonal basis of H is

then given by matrices

Sµ1µ2...µd
= S(1)

µ1
⊗ S(2)

µ2
⊗ · · · ⊗ S(d)

µd
(11)

and any state can be written as

ρ = NXµ1µ2...µd
Sµ1µ2...µd

(12)

where summation over repeated indices is understood,
and the normalization constant N =

∏d
i=1Ni, with

Ni = 1/
√
ti + 1, is chosen so that X0...0 = 1. A quantum

state ρsep is said to be separable (over that particular
factorization of H) if it can be written as

ρsep =
∑

j

wj ρ
(1)
j ⊗ ρ

(2)
j ⊗ · · · ⊗ ρ

(d)
j (13)

with wj > 0, and ρ
(i)
j density matrices acting on H(i)

[30]. Any ρ(i) acting on H(i) can be expanded as ρ(i) =

Ni
∑
µi
y
(i)
µi S

(i)
µi , with y(i) a real (ti + 1)-dimensional vec-

tor. The condition trρ(i) = 1, together with the choice
that S(i)

0 is the identity matrix and the normalization,
implies that y(i)0 = 1.

Rewriting condition (13) in terms of average values,
we get that a state is fully separable if and only if all
averaged basis operators can be expressed as

〈Sµ1µ2...µd
〉ρ =

∑

j

wj〈S(1)
µ1
〉
ρ
(1)
j
〈S(2)
µ2
〉
ρ
(2)
j
· · · 〈S(d)

µp
〉
ρ
(d)
j

(14)
with wj > 0, i.e. the expectation values of all Sµ1µ2...µd

are convex combinations of the product of local expecta-
tion values. This condition can be reexpressed in terms
of the coefficients Xµ1µ2...µd

of ρsep in the expansion (12)
and the coefficients y(i;j)ai , 1 6 ai 6 ti, in the expan-
sion ρ(i)j = Ni

∑
µi
y
(i;j)
µi S

(i)
µi , with y

(i;j)
0 = 1. Separability

is then equivalent to the existence of wj > 0 and real
numbers y(i;j)ai , 1 6 ai 6 ti, such that for all µi with
0 6 µi 6 ti one has

Xµ1µ2...µd
=
∑

j

wj y
(1;j)
µ1

y(2;j)µ2
· · · y(d;j)µd

(15)

and
∑
µi
y
(i;j)
µi S

(i)
µi > 0 for all i and j. This lat-

ter condition comes from the fact that each ρ
(i)
j =

Ni
∑
µi
y
(i;j)
µi S

(i)
µi appearing in (13) is a density matrix,

and thus has to be positive. Since matrices are Her-
mitian and thus have all their eigenvalues real, one can
use Descartes sign rule to express this positivity con-
dition as inequalities on the coefficients of the charac-
teristic polynomial of ρ(i)j . Each of these coefficient is
a linear combination of traces of powers of ρ(i)j , and
therefore a polynomial in the variables y

(i;j)
µ . Thus,

each vector y(i;j) = (y
(i;j)
1 , . . . , y

(i;j)
ti ) is restricted to

a certain compact subset K(i) ⊂ Rti defined by some
polynomial inequalities, e.g. for a qubit the polynomial
is a quadratic equation of the Bloch vector, restrict-
ing its maximal length to one. Defining the compact
K = K(1) ×K(2) × · · · ×K(d) ⊂ Rn, n =

∑
i ti, and the

vector y(j) = (y(1;j),y(2;j), . . . ,y(d;j)) ∈ Rn, the positiv-
ity condition on the partial density matrices amounts to
impose that y(j) ∈ K with K a compact defined by poly-
nomial inequalities. Equation (15) can then be rewritten,
for 0 6 µi 6 ti, as

Xµ1µ2...µd
=

∫

K

x(1)µ1
x(2)µ2
· · ·x(d)µd

dµ(x) (16)

with x
(i)
0 = 1, x =

(
x(1),x(2), . . . ,x(d)

)
∈ Rn, x(i) =

(x
(i)
a )16a6ti ∈ Rti , and dµ the measure over Rn defined
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by

dµ(x) =
∑

j

wj δ(x− y(j)). (17)

Equation (16) is the generalization of the symmetric case
Eq. (7), the difference being that each Hilbert space H(i)

has its own set of variables (x
(i)
a )16a6ti . As in the sym-

metric case, the existence of an arbitrary measure dµ(x)
such that (16) holds is equivalent to the existence of a
’discrete’ measure of the form (17), since one can apply
Carathéodory’s theorem to our finite dimensional Hilbert
spaces. The separability problem, for a state given by
(12), is thus equivalent to the question whether a posi-
tive measure dµ with support K exists whose moments
coincide with the coordinates Xµ1µ2...µd

of the state.
We now rewrite Eq. (16) in a more compact form.

Let us relabel the entries of x as x = (x1, x2, . . . , xn),
and introduce the notation xα ≡ ∏n

i=1 x
αi
i , where α =

(α1, α2, . . . , αn) is a vector of integers. For instance for
two qubits we have x =

(
x
(1)
1 , x

(1)
2 , x

(1)
3 , x

(2)
1 , x

(2)
2 , x

(2)
3

)
=

(x1, x2, . . . , x6). For any given tuple (µ1, . . . , µd), there
exists an index α such that

x(1)µ1
x(2)µ2
· · ·x(d)µd

= xα. (18)

Thus, α1 counts the number of x(1)1 in the monomial
x
(1)
µ1 x

(2)
µ2 · · ·x(d)µd , α2 counts the number of x(1)2 , and so

on until αn, which counts the number of x(d)td . For in-
stance for a bipartite state of d = 2 qubits, (µ1, µ2) =
(2, 3) corresponds to α = (0, 1, 0, 0, 0, 1) or to the mono-
mial x(1)2 x

(2)
3 , while (µ1, µ2) = (1, 0) corresponds to

α = (1, 0, 0, 0, 0, 0) or to the monomial x(1)1 . As each
monomial x(1)µ1 x

(2)
µ2 · · ·x(d)µd contains at most one variable

of each type x(i), the vector α is such that each tu-
ple (α1, . . . , αt1), (αt1+1, . . . , αt1+t2),. . ., contains at most
one 1. For instance for qubits, where ti = 3, each triplet
(α3i+1, α3i+2, α3i+3) must therefore contain at most one
1.

If we denote Xµ1µ2...µd
by yα, where α is the index

corresponding to the tuple (µ1, . . . , µd) via (18), then
Eq. (16) can be simply rewritten as

yα =

∫

K

xαdµ(x). (19)

Hence, a state is separable if and only if all its coordi-
nates yα can be written as in Eq. (19), with dµ a positive
measure.

C. Examples and special cases

The general setting of the previous Subsection allows
one to test separability for a given fixed partition. For
example, in order to check full separability for a three-
qubit state ρ one has to consider d = 3 sets of variables

x
(i)
ai , each set being associated with a qubit (thus with

1 6 ai 6 3), and K is the product of three Bloch spheres.
One then relabels the coordinates Xµ1µ2µ3

of ρ as yα and
the variables as (x1, . . . , xn) with n = 9, in order to get
Eq. (19). Among all 9-tuples α = (α1, . . . , αn), only the
64 values which correspond to some triplet (µ1, µ2, µ3)
for 0 6 µi 6 3 via (18) have to be considered. The state
ρ is separable if and only if there exists a measure dµ
such that Eq. (19) is fulfilled for all these α.

However if one is only interested in the question of
entanglement of the first two qubits with respect to the
third one, one would have to take the first two qubits
as a 4-level system. There would then be two sets of
variables in Eq. (16), the first one with t1 = 15 variables
(characterizing the density matrix of a 4-level system),
and the second with t2 = 3 variables (characterizing a
mixed qubit state). Thus one has d = 2 and n = 18
variables. Finding whether or not (19) can be solved
answers the question whether or not the third qubit
is entangled with the first two, while ignoring any
entanglement between the first two qubits.

It is instructive to see how the symmetric case of
Subsection IIA can be recovered from the general case.
As we saw in Subsection IIA, the problem of finding
whether a symmetric N -qubit state is fully separable
can be cast into the form (10), with K the 2-sphere
and α running over triplets of integers with |α| 6 N .
Applying the general case to the N -qubit case implies
d = N parties, and the Hilbert space H is decomposed
as H = H(1)⊗H(2)⊗· · ·⊗H(N). Each Hilbert space H(i)

has its own set of variables x(i)ai , 1 6 ai 6 3, appearing
in the right-hand side of Eq. (16). The basis S(i)

µ in the
decomposition ρ(i) = 1

2

∑
µ y

(i)
µ S

(i)
µ is the Pauli basis, the

vectors (y
(i)
a )16a63 are the Bloch vectors and the com-

pact K(i) such that
∑
µ y

(i)
µ S

(i)
µ is positive is the Bloch

ball. Symmetry then implies that the variables corre-
sponding to each Hilbert space are not independent but
equal, so that one has to require x(i)µ = xµ for all i and
µ, and replace the compact K(1) ×K(2) × · · · ×K(d) by
K = K(1), a single Bloch sphere. To account for the fact
that the different sets of variables should no longer be
distinguished, the n-tuple α in (19) should be replaced
by the triplet (

∑
i α3i+1,

∑
i α3i+2,

∑
i α3i+3) giving the

multiplicities of x1, x2, x3. The entries of the triplet can
now take values larger than one. Since Eq. (19) and
Eq. (10) coincide, the symmetric and the general case are
in essence the same problem; the difference between them
lies only in the definition of the compact K supporting
the measure, and also in the set of tuples α considered.

The general formalism (19) allows us in fact to play
with any kind of constraint, just by adjusting the sets of
variables and α vectors accordingly. The symmetric case
explained above is just one example, but this method is
general. For instance if one wants to impose a symmetry
between two of the subsystems one just has to equate
the sets of independent variables. This adjustment can
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be easily generalized to test for entanglement for any type
of partition. The algorithms for the truncated moment
problem that we will present in Section III provide a so-
lution to all these cases.

D. Partial knowledge of a state

An interesting question in practical application is
whether or not a partial set of measurement results is
compatible with a separable state. If for example a state
tomography is not carried to its end, or if only local mea-
surements are available, can one in some instances infer
that the state was entangled? Another interesting ques-
tion is whether the partial traces of a state can be used
to show entanglement of the global state even if all the
reduced states are separable [31].

Such problems of partial knowledge can be formulated
in the form of Eq. (19) very simply. The only change
is the range of tuples over which α varies: since the un-
known measurements correspond to unknown yα, these
values of α should not be taken into account as con-
straints on dµ. If for example only the results of lo-
cal measurements are known, only averages of the form
〈S(1)

0 ⊗ S(2)
0 ⊗ · · ·S(i)

µ · · · ⊗ S(d)
0 〉 are known (recall that

S
(i)
0 is the identity matrix). Therefore one only knows the

values of yα such that the α = (α1, . . . , αn) have only one
non-zero entry. This problem can then be solved in the
same way as the general one, just by putting no con-
straint on the unknown moments.

III. TMS PROBLEMS: DEFINITIONS AND
SOLUTIONS

Identifying the entanglement problem with the K-tms
problem allows us to use analytical results and numeri-
cal methods from the tms literature to get insight in en-
tanglement theory. We now introduce the mathematical
formalism used to describe and solve the tms problem.

A. Truncated moment problems

A truncated moment sequence (tms) of degree d is
a finite set of numbers y = (yα)|α|6d indexed by n-
tuples α = (α1, . . . , αn) of integers αi > 0 such that
|α| = ∑i αi 6 d [17]. The truncated K-moment problem
consists in finding conditions under which there exists a
(positive) measure dµ such that each moment yα with
|α| 6 d can be represented as an integral of the form

yα =

∫

K

xαdµ(x) (20)

with x = (x1, . . . , xn) ∈ Rn, xα = xα1
1 xα2

2 . . . xαn
n , and dµ

a measure supported on a semi-algebraic set

K = {x ∈ Rn|g1(x) > 0, · · · , gm(x) > 0} (21)

with gi(x) multivariate polynomials in the variables
x1, . . . , xn. If such a measure exists it can be written
as the sum of delta functions

dµ(x) =
r∑

j=1

wjδ
(
x− y(j)

)
(22)

with some finite r, wj > 0 and y(j) ∈ K. Such a
measure is then called a finitely atomic representing
measure. Equation (20) is nothing but Eq. (10), where
K is the Bloch sphere, d = N , and n = 3. Therefore the
entanglement problem for symmetric states is a special
case of K-tms problem.

The AK-tms problem [17] is a generalization of the
K-tms problem in which moments yα are known only for
a finite subset A ⊂ Nn of indices of degree |α| 6 d. The
only difference with the K-tms problem is that Eq. (20)
now has to be fulfilled only for α ∈ A. This is exactly
the situation found in the general case of Subsection
II B. Indeed, in that case, we showed that K is defined
by polynomial inequalities, so that it is a semi-algebraic
compact set. Moreover, only indices α associated with
some tuple (µ1, . . . , µd) for 0 6 µi 6 ti do correspond
to a certain moment yα, so that a restriction on indices
α is required. This is also the situation encountered in
Subsection IID, where the state is only known partially.
All these cases therefore correspond to the AK-tms
problem, and can in fact be solved in the same way as
the K-tms problem, only with fewer constraints (since
less moments are fixed).

In all what follows, to ease notations, we will only treat
the original K-tms problem where all moments yα with
|α| 6 d are known. However, we must stress that the
AK-tms problem is treated in exactly the same way, just
by considering α ∈ A rather than |α| 6 d in all equations
involving that restriction.

B. Moment matrices

Let us now present the mathematical setting for theK-
tms problem defined by Eq. (20). Let y = (yα)|α|6d be a
tms of degree d, with α = (α1, . . . , αn) being n-tuples of
integers. The integrand in the right-hand side of Eq. (20)
is a monomial in n variables (x1, . . . , xn) of degree less
than d. Any polynomial of degree less than d can be
written as a vector in the basis of monomials ordered in
degree-lexicographic order (that is, monomials are sorted
by order and within each order in a lexicographic order).
For instance for n = 3 and d = 2 the monomial basis is
{1, x1, x2, x3, x21, x1x2, x1x3, x22, x2x3, x23}, and a polyno-
mial such as e.g. p(x) = 7x3 − 3x22 + 2 would be written
as the vector (2, 0, 0, 7, 0, 0, 0,−3, 0, 0). The components
of the vector representing p(x) are coefficients pα such
that p(x) =

∑
α pαx

α.
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For any integer k 6 d/2, let Mk(y) be the matrix de-
fined by

Mk(y)αβ = yα+β , |α|, |β| 6 k. (23)

It is called the moment matrix of order k associated with
the tms y. A necessary condition for a tms to admit
a representing measure as in (20) is that the moment
matrix of any order is positive-semidefinite. Indeed, if
(20) holds, then for any vector p = (pα)|α|6k representing
a polynomial p(x) of degree k or less we have

pTMk(y)p =
∑

|α|,|β|6k
pαyα+βpβ =

∑

|α|,|β|6k
pαpβ

∫

K

xα+βdµ(x) =

∫

K

p(x)2dµ(x) > 0, (24)

so that Mk(y) a is positive-semidefinite matrix [15, 16].
Other necessary conditions can be obtained from the

polynomial constraints gi(x) > 0 which define the set K
in (21). For any polynomial g of degree deg(g) > 1, one
can define a ’shifted tms’ of degree d− deg(g) as

(g ? y)α =
∑

|γ|6deg(g)
gγyα+γ , |α| 6 d− deg(g). (25)

Let dg = ddeg(g)/2e (we denote by dxe the smallest
integer larger than x and by bxc the largest integer
smaller than x). Applying definition (23), one can de-
fine the (k − dg)th moment matrix of g ? y, for any
integer k such that 0 6 k − dg 6 [d − deg(g)]/2, by
Mk−dg (g ? y)αβ = (g ? y)α+β . This matrix is called the
kth-order localizing matrix of g [16]. In explicit form, it
reads

Mk−dg (g ? y)αβ =
∑

|γ|6deg(g)
gγyα+β+γ , |α|, |β| 6 k − dg.

(26)

Using the fact that b(d−deg(g))/2c = bd/2c−dg, we have
that the kth-order localizing matrix is defined for any in-
teger k such that dg 6 k 6 d/2 (the definition of dg has
been precisely chosen in such a way that the upper bound
k 6 d/2 is the same as that for the kth-order moment
matrix). If a tms admits a representing measure then
any kth order localizing matrix is necessarily positive-
semidefinite: indeed for any vector p = (pα)|α|6k−dg rep-
resenting a polynomial p(x) with degree k−dg or less we
have

pTMk−dg (g ? y)p =
∑

|α|,|β|6k−dg
pαpβ

∑

|γ|6deg(g)
gγyα+β+γ

=

∫

K

g(x)p(x)2dµ(x) > 0, (27)

which is positive because g is positive on K by the defi-
nition (21). Another way of seing that is to observe that
if y admits a positive representing measure then so does
the shifted tms g ? y.

As moment matrices of order k′ are submatrices of ma-
trices of order k if k′ 6 k it suffices to consider the largest
possible value for k to get the strongest necessary condi-
tions. For a tms y of order d, the above analysis leads to
the necessary condition Mbd/2c(y) > 0. If the compact
K is defined as in (21) by polynomial inequalities, the
localizing matrices for each polynomial gi, 1 6 i 6 m,
have to be positive, namely Mbd/2c−dgi (gi ? y) > 0,
dgi = ddeg(gi)/2e.

C. A necessary and sufficient condition

The above conditions are only necessary conditions. A
sufficient condition was obtained in [15] for even-order
tms. We formulate it following Theorem 1.1 of [16].
Namely, if a tms z of even order 2k is such that its kth or-
der moment matrix and all kth order localizing matrices
are positive, and if additionally

rankMk(z) = rankMk−d0(z) (28)

with d0 = max16i6m{1, ddeg(gi)/2e}, then the tms z ad-
mits a representing measure composed of r = rankMk(z)
delta functions. Note that the rank condition already ap-
peared in [25] under the name rank-loop, using a result
from [32].

As the above condition is only sufficient, a tms y ad-
mitting a representing measure does not necessarily ful-
fill (28). However, one can search for an extension z of
y which fulfills it. An extension of a tms y of degree d
is defined as any tms z of degree 2k with 2k > d, such
that zα = yα for all |α| 6 d. A extension z is called flat
if it satisfies Eq. (28). If z verifies the sufficient condi-
tions above, then it has a representing measure, and so
does y as a restriction of z. This allows us to formulate
the following necessary and sufficient condition for the
existence of a representing measure.

Theorem 1 ([15] (see also Theorem 1.2 of [16])). A tms
(yα)|α|6d admits a representing measure supported by K
if and only if there exists a flat extension (zβ)|β|62k with
2k > d such that Mk(z) > 0, and Mk−dgi (gi ? z) > 0 for
i = 1, . . . ,m.

This theorem can be implemented as a semi-definite
program, as shown in Section IIID. It has been extended
to an abritrary AK-tms in proposition 3.3 in [17]. With
the identifications made in Sec.II between the entangle-
ment and the tms problem, these results can be reformu-
lated as a necessary and sufficient condition for separa-
bility of an arbitrary quantum state:

Theorem 2. A state ρ is separable if and only if its
coordinates Xµ1µ2...µd

defined in (12) correspond to a tms
(yα)α∈A such that there exists a flat extension (zβ)|β|62k

with 2k > d, Mk(z) > 0, and Mk−dgi (gi ? z) > 0 for
i = 1, . . . ,m.
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D. Semi-definite program and the entanglement
problem

For a given tms (yα)|α|6d, finding a extension
(zβ)|β|62k as in the theorem above amounts to construct-
ing a positive matrix Mk(z)αβ = zα+β with some entries
given, namely zα = yα for |α| 6 d, and constraints of pos-
itivity of moment matrices and localizing matrices, which
are linear in the zα. This type of problem corresponds
to what is known in numerical analysis as semi-definite
program (SDP) problems. Here, the variables of the SDP
are the zβ for |β| 6 2k. The smallest extension order is
k0 = bd/2c+ 1. All the constraints of Theorem 1 can be
directly implemented in the SDP apart from the flatness
condition (28). If also the flatness condition could be
implemented efficiently then P = NP [19]. To take into
account the flatness condition, the idea [17] is to consider
the SDP

min
z

∑

α,|α|6k0
Rαzα such that (29)

Mk(z) > 0 (30)
Mk−di(gi ? z) > 0 for i = 1, . . . ,m (31)

zα = yα for |α| 6 d. (32)

The coefficients Rα are chosen randomly, but in order
to ensure that

∑
α,|α|6k0 Rαzα has indeed a global min-

imum, the polynomial R(x) =
∑
αRαx

α is taken as a
sum-of-squares polynomial of degree 2k0. When the or-
der of the extension k is increased, the polynomial is kept
the same, so that minimization is realized only on the zβ
with |β| 6 2k0.

According to the theorems above, finding a represent-
ing measure, or finding a decomposition into a mixture
of separable product states, amounts to finding an ex-
tension z that fulfills the constraints (30)–(32), i.e. such
that the SDP is "feasible", and that also fulfills the rank
condition (28). We can now propose an algorithm which,
for any entangled state, provides a certificate of entangle-
ment, and for a separable state usually halts at the first
iteration k = k0 and provides a decomposition into pure
product states. This algorithm is illustrated in Fig. 1.
One runs the algorithm by starting from the lowest pos-
sible extension order k = k0 and increasing k. If there
exists an order k such that the SDP is infeasible, then
the tms y admits no representing measure. In terms of
entanglement, this means that the quantum state whose
coordinates are given by the yα is entangled. If, on the
contrary, the SDP problem is feasible at some order k
(i.e. if all constraints can be met) and if for that value
of k the extension obtained fulfills (28), then the tms y
admits a representing measure, and the corresponding
quantum state is separable with respect to the multipar-
tite factorization of Hilbert space considered. The algo-
rithm remains inconclusive as long as the SDP remains
feasible but with an extension which is not flat. In such
a case, one can either repeat the SDP with the same k
and a different R, or increase the order k by one. As

FIG. 1: Flow diagram to visualize the algorithm. ”Solve SDP”
refers to (29)-(32)

Solve SDP
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soon as the rank condition is met, or the SDP becomes
infeasible, the algorithm stops and gives a certificate of
separability, or entanglement. The only situation where
the algorithm does not give an answer in a finite number
of steps is the case where extensions are found for any k
and all choices of R, but are never flat.

When the algorithm stops with a feasible flat extension
z it is possible to extract a representing measure as a
sum of rank[Mk(z)] delta functions [16], which provides
an explicit factorization of the separable quantum state.
Indeed, suppose the algorithm stops at order k and gives
an extension z = z∗ which optimizes (29) and fulfills the
rank condition (28). If the moment matrix of the optimal
solutionMk(z∗) has rank r, then it is possible to calculate
an explicit decomposition of the form

Mk(z∗)αβ =
r∑

j=1

wj x
∗(j)αx∗(j)β , |α|, |β| 6 k, (33)

with wj > 0,
∑
j wj = 1, and x∗(j) ∈ K, with the

methods described in [33] and implemented in the Mat-
lab package Gloptipoly 3 [34] (see Appendix A). These
r vectors yield r delta functions in the decomposition of
the representing measure, and for a separable quantum
state they yield an explicit decomposition as a sum of r
factorized states.
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IV. IMPLEMENTATION AND NUMERICAL
RESULTS

A. Two-qubit symmetric states

We now apply this tms approach to some concrete ex-
amples of entanglement detection, starting with the sim-
plest case of two-qubit symmetric states. Any state ρ can
be expanded as in Eq. (3) with N = 2. The tms problem
is given by (10) with d = N = 2 and n = 3 variables. We
can choose to obtain a decomposition of the state either
into mixed states, in which case the compactK should be
taken as the unit ball, or into pure states, where K has
to be the unit sphere. Here we consider the pure state
decomposition, so that we define K = {x ∈ R3|g(x) = 0}
with g(x) = x21 +x22 +x23−1 (equality g(x) = 0 obviously
means that K is semi-algebraic and defined by the two
polynomials g > 0 and −g > 0). The measure dµ must
satisfy constraints such as

y110 =

∫

||x||=1

x1x2dµ(x) or y002 =

∫

||x||=1

x23dµ(x)

(34)

where ||x||2 = x21 + x22 + x23 and the yα are the entries
corresponding to the Xµ1µ2

.

The necessary condition given in Subsection III B is
positivity of the moment matrix of order d/2 = 1, that
is, M1(y) > 0, with

M1(y) =




y000 y100 y010 y001
y100 y200 y110 y101
y010 y110 y020 y011
y001 y101 y011 y002


 . (35)

Solving the entanglement problem in this case amounts
to constructing a tms (zβ)|β|62k which is a flat extension
of y. Since k0 = 2, the lowest-order moment matrix of
the extension is M2(z), which is a 10× 10 matrix whose
upper left 4× 4 block is the matrix (35). The conditions
of Theorem 2 imply that we look for an extension such
that M2(z) > 0 and M1(g ∗ z) > 0, where

M1(g ∗ z) =




z000 − z200 − z020 − z002 z100 − z300 − z120 − z102 z010 − z210 − z030 − z012 z001 − z201 − z021 − z003
z100 − z300 − z120 − z102 z200 − z400 − z220 − z202 z110 − z310 − z130 − z112 z101 − z301 − z121 − z103
z010 − z210 − z030 − z012 z110 − z310 − z130 − z112 z020 − z220 − z040 − z022 z011 − z211 − z031 − z013
z001 − z201 − z021 − z003 z101 − z301 − z121 − z103 z011 − z211 − z031 − z013 z002 − z202 − z022 − z004




(36)

is the 4 × 4 localizing matrix of z. The SDP is then
to find minz

∑
αRαzα, with R an arbitrary given list of

coefficients so that
∑
αRαzα is positive and bounded,

under the constraints that M2(z) > 0, M1(g ∗ z) > 0 and
zα = yα for |α| 6 2.

The point of this subsection was to illustrate the differ-
ent ingredients of our algorithm. In fact, in this case, the
necessary conditionM1(y) > 0 is necessary and sufficient.
Indeed, M1(y) is exactly the 4× 4 matrix (Xµν)06µ,ν63,
which was proven in [29] to be similar to the partial trans-
pose matrix of ρ up to a factor 1/2. It is well-known that
the partial transpose criterion is a necessary and suffi-
cient separability condition for two qubits [35, 36], hence
positivity of M1(y) suffices to prove separability.

In Theorem 4.7 of [37] the authors solved the K-tms
problem of degree 2 in the case where K is defined by
a single quadratic equality, by direct proof rather than
using the above theorems on generic tms. The key point
is a result from [38]. Applying this theorem to a tms y
of degree 2 when K is a sphere, the necessary and suf-
ficient conditions for y to admit a representing measure
areM1(y) 6 0 and y000−y200−y020−y002 = 0. Using the

mapping between the tms problem and the separability
problem, this theorem of [37] directly yields the neces-
sary and sufficient conditionM1(y) > 0 mentioned above
for separability of a symmetric two-qubit state (the con-
dition y000 − y200 − y020 − y002 = 0 being fulfilled for
any symmetric two-qubit state). Actually, this problem
also coincides with problem of characterizing the convex
hull of spin coherent states. For spin-1, a necessary and
sufficient criterion was established in terms of positiv-
ity of a matrix [39]. Again, this criterion can be shown
to coincide with the condition M1(y) > 0. Moreover,
it was shown in [40] that any separable symmetric two-
qubit state could be decomposed as a mixture of four
pure product states. The tms approach provides a con-
cise constructive proof of the same fact, as we show in
Appendix B.

B. N-qubit symmetric states

The case of an N -qubit symmetric state ρ can be
mapped onto the tms problem of Eq. (10) where x =
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States \N 2 3 4 5 6 7 8 9 10 11 12
ρent 0.2 0.2 0.4 0.6 1.0 2.1 5.2 11.6 26.8 54.6 170.5
ρsep 0.7 0.4 0.6 1.0 2.0 4.2 10.2 20.8 66.9 94.5 716.3

TABLE I: Timing of the algorithm in seconds for N -qubit
symmetric states as function of N , averaged over 100 random
states, when run on a standard desktop PC. The first row
corresponds to random states drawn from the uniform Haar
measure (following [41]), which are usually entangled. They
are typically detected by the condition Mk(y) > 0. The sec-
ond row corresponds to random separable states created by
randomly mixing random pure separable states. The timing
can vary depending on the separable state tested and the ran-
domly generated functional R in (29). Up to six different R
are tested before moving to the next order.

(x1, x2, x3) is a vector of R3. We define K = {x ∈
R3|g(x) = 0}, with g(x) = x21 +x22 +x23−1 as in the two-
qubit case. The highest degree of the monomial xα in
(10) is the total number of indices of the tensor Xµ1...µN

,
i.e. d = N . The degree of the polynomial defining K is
2, and therefore d0 = 1.

To numerically investigate the algorithm for an N -
qubit symmetric state we have to solve a SDP with degree
d = N and flatness condition rankMk(z) =rankMk−1(z).
If the state is entangled (ρent) the SDP (29)–(32) should
prove infeasible at some value of k, but this usually hap-
pens already at the lowest order k = k0. When the state
is separable (ρsep) the algorithm has to find a flat exten-
sion for some k, which may require to run the SDP for
more than one R, or to increase the values of k. Hence,
the run time is typically longer than in the case of an
entangled state, as can be seen in Table I. Usually we
found a flat extension either at the lowest order k = k0
or at order k = k0 + 1.

C. Physical interpretation of the positivity of Mk(y)

Consider a 2k-qubit symmetric state ρ. The necessary
condition Mk(y) > 0 of Sec.III B turns out to be equiv-
alent to the positivity of the partial transpose of ρ with
respect to the k first qubits. Indeed, let T be the real
symmetric matrix defined by

Tµ,ν = Xµ1...µkν1...νk (37)

in terms of the coordinates Xµ1µ2...µ2k
of ρ [see Eq. (3)],

where matrix indices µ and ν are multi-indices µ =
(µ1, . . . , µk) and ν = (ν1, . . . , νk), with 0 6 µi, νi 6 3.
Then, up to a constant numerical factor, the matrix T
is similar to the partial transpose of the density matrix
in the computational basis for the partition into two sets
of k qubits each [29]. Moreover, T has some recurring
rows and columns, which when removed yield exactly the
moment matrix Mk(y). A symmetric matrix is positive
semi-definite if and only if all principal minors, i.e. the
determinant of all submatrices, are non-negative. The
determinant of a matrix which has a recurring column

or row is equal to zero, so only the submatrices with
non-recurring rows and columns have to be considered.
Therefore, T , and thus the partial transpose, is positive
semi-definite if and only if the matrix Mk(y) is positive
semi-definite. So the necessary condition Mk(y) > 0 is
equivalent to the positive partial transpose criterion of a
symmetric state of 2k-qubits with equal size partitions.
Since for a separable N -qubit state ρ any reduced den-
sity matrix of 2k qubits has to be separable, the necessary
conditionsMk(y) > 0 with k 6 N/2 can be interpreted as
positivity of the partial transpose of the reduced density
matrices of ρ. This provides an interesting interpretation
of the physical meaning of the positivity of the moment
matrix.

D. Minimal number of pure product states needed

If a quantum state is separable it can be written as a
convex sum of product states. Replacing each product
state by its eigenvalue-eigenvector decomposition we ob-
tain a decomposition of the initial quantum state as a
convex sum of pure product states. What is the minimal
number rmin of pure product states required to decom-
pose an arbitrary separable state?

The answer is unknown in the general case. For sym-
metric states, pure states in the decomposition have to
be symmetric themselves (see e.g. Theorem 1 in [29]). As
the appendix B shows, and as was obtained in [40], in the
case of two qubits, four states are sufficient to represent
any separable symmetric state.

The above algorithm yields rankMk(z) = r as an upper
bound to the number of pure states required to decom-
pose a given quantum state. In order to investigate sys-
tematically the number of states required, we generated
symmetric separable states by mixing a large number m
of random separable symmetric pure states with random
weights as

ρsep,sym =

m∑

i=1

wi (|ψi〉〈ψi|)⊗N , (38)

with
∑
i wi = 1, and applied the algorithm to the result-

ing mixed states. When our algorithm stops with a flat
extension z such that rankMk(z) = r, then r is an upper
bound on the true minimal number of separable states
required to express ρsep,sym. Indeed, since the extension
depends on the random choice of Rα there may be ex-
tensions with a smaller rank, as the algorithm does not
minimize this rank. Therefore every number r < m ob-
tained should give an upper bound to the actual generic
value for rmin. In practice we generated a large list of
separable symmetric states with a value of m = 25 for
N 6 6 and m = 45 for N > 6 and found a flat extension
for each one. The smallest numbers found are reported
in Table II.
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N Min r # min States tested
2 4 37304 61494
3 6 2410 60641
4 9 1104 174011
5 12 17 174193
6 17 408 153081
7 22 18 16129
8 29 12 16030
9 35 2 10000
10 42 1 10000

TABLE II: The smallest value of r found, which gives an
upper bound on the true value rmin of the maximal number
of pure states needed to generate every separable symmetric
state. In the third column, # min gives the number of states
for which the value min r has been reached among the states
tested.

V. A NEW SOLUTION TO A PARTICULAR
TMS PROBLEM

The mapping presented above not only helps solving
the separability problem, but it can also, conversely, shed
light on particular tms problems by using results from
entanglement theory. We now give an example of such a
situation.

One of the best-known results from entanglement

theory is the Peres-Horodecki criterion, which states
that 2× 2 and 2× 3 systems are separable if and only if
the partial transpose is positive [35, 36] (PPT-criterion).
It has been generalized to the following two statements:
If ρ is supported on C2×CN and the rank r(ρ) = N then
ρ is separable (Theorem 1 of [42]) and can be written
as a convex sum of projectors on N product vectors
(Corollary 3a of [42]).

When ρ is fully symmetric, the above characterizations
yield the following result:

Theorem 3 ([43]). Let ρ be a symmetric N -qubit state
with positive partial transpose with respect to the first
qubit. If N = 2 or 3, or if N > 3 and r(ρ) 6 N , then ρ
is fully separable.

Note that for four qubits there exist entangled sym-
metric states with a positive partial transpose [44]. As
shown in [29], the PPT conditions can be expressed as lin-
ear matrix inequalities involving the entries of the tensor
Xµ1µ2...µN

, or equivalently the yα. Rewriting the above
theorem for N = 3 in the language of K-tms problems,
this yields a theorem for a special case of a tms. Even
more, by using the fact that 2× 3 systems are separable
if and only if they are PPT, we directly get a necessary
and sufficient condition for a tms problem of degree d = 3
to admit a representing measure supported on the unit
sphere of R3. This condition reads




y000 + y001 y100 − iy010 y100 + y101 y200 − iy110 y010 + y011 y110 − iy020 y001 + y002 y101 − iy011
y100 + iy010 y000 − y001 y200 + iy110 y100 − y101 y110 + iy020 y010 − y011 y101 + iy011 y001 − y002
y100 + y101 y200 − iy110 y200 + y201 y300 − iy210 y110 + y111 y210 − iy120 y101 + y102 y201 − iy111
y200 + iy110 y100 − y101 y300 + iy210 y200 − y201 y210 + iy120 y110 − y111 y201 + iy111 y101 − y102
y010 + y011 y110 − iy020 y110 + y111 y210 − iy120 y020 + y021 y120 − iy030 y011 + y012 y111 − iy021
y110 + iy020 y010 − y011 y210 + iy120 y110 − y111 y120 + iy030 y020 − y021 y111 + iy021 y011 − y012
y001 + y002 y101 − iy011 y101 + y102 y201 − iy111 y011 + y012 y111 − iy021 y002 + y003 y102 − iy012
y101 + iy011 y001 − y002 y201 + iy111 y101 − y102 y111 + iy021 y011 − y012 y102 + iy012 y002 − y003




> 0.

(39)

(see the expression of [29] which explicitly gives the
PPT criterion for 3 qubits). This result does not ap-
pear to have been known previously in the tms literature.

While (39) is a necessary and sufficient condition in the
case of a tms of degree N = 3, Theorem 3 also provides
us with a sufficient condition for a tms of arbitrary degree
N . Indeed, suppose one wants to know whether a given
tms y of degree N > 3 admits a representing measure
on the unit sphere. Using the mapping inverse to the
one in Sec.IVB one can construct the density matrix ρ
associated with the tms via (3). If ρ is PPT and has rank

r(ρ) 6 N , then there exists a representing measure.

VI. CONCLUSIONS

We have proposed a new and elegant solution of the
entanglement problem by mapping it to the truncated
K-moment problem. Benefiting from the mathemati-
cally well-developed field of the theory of moments, we
provide an algorithm that for an entangled state certifies
its entanglement in a finite number of steps. If the state
is separable, it usually halts at the first iteration (k = k0
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in Fig.1) and then returns an explicit decomposition of
the state into a convex sum of product states. Similarly
to previous algorithms, our algorithm makes use of semi-
definite programming and “extensions”, but there are a
number of conceptual differences that allow us express
and solve the problem very elegantly and adapt it easily
to different physical situations, including subsystems of
different dimensions or symmetries, or incomplete data.

In our approach, rather than working directly with the
density matrix, the semi-definite optimization problem is
based on moment matrices and localizing matrices, where
the latter incorporate the constraints of the states of the
sub-spaces. This is possible since these states in the sub-
spaces are restricted to compact sets characterized by
polynomial constraints (e.g. to Bloch spheres in the case
of individual spins-1/2). Both the moment matrix and
the localizing matrices must be positive semi-definite for
a state to be separable. Extensions are extensions of
the moment matrix, and we need not impose a particu-
lar symmetry on such an extension, nor positivity of the
partial transpose of the state, since this is taken care of
by positivity of the moment matrix (see Sec.IVC).

Our algorithm contains in addition a crucial element,
namely the idea of “flat extensions”: if at a given order
k of the extension the SDP is feasible, one checks
whether the rank of the extended moment matrix is
the same as the one at order k − d0 [with d0 related
to the largest degree of the constraint polynomials,
see after eq.(28)]. If so, the state is separable and one
obtains its explicit convex decomposition into product
states. In [25] it was already noted that when PPT is
imposed on the extensions in the algorithm by Doherty
et al. [20–22], sometimes separability can be concluded
in a finite number of steps by checking whether the
rank of the found extension of the density matrix has
not increased compared to the original state, a situation
called “rank loop”. There, the sufficiency of a rank loop
for separability follows from a theorem due to Horodecki
et al. [32], according to which a PPT state is separable
if its rank is smaller or equal than the rank of the
reduced state. In our case, the implementation of the
flat-extension query is a decisive part of the algorithm,
based on Theorem 1.

Formulating the entanglement as a truncated K-tms
problem also has the advantage that the algorithm
readily accepts incomplete data from an experiment.
Indeed, since for multi-partite systems fully determining
the state requires an effort that grows exponentially
with the number of subsystems, fully specifying or
experimentally determining the state becomes at some
point impossible in practice. Since our algorithm is
based from the very beginning on a truncated sequence
of moments (that can be chosen to be expectation values
of Hermitian operators that were measured), we can
leave open additional moments that were not measured
and still run the algorithm. Using the algorithm in this

way should allow one to determine how many and which
moments one should measure in order to still be able to
prove that a state is entangled.

Finally, as symmetric states of N qubits coincide with
spin-j states with N = 2j, separable symmetric states
can be identified with classical spin-j states (see e.g. [39]).
The latter, defined in [39], are convex combinations of
spin-coherent states, and can be considered the quantum
states which are closest to having a classical behaviour
in the sense of minimal quantum fluctuations [13, 29,
45]. Applying the algorithm presented here to symmetric
states of N -qubits also allows one to check whether a
spin-j state is classical.
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Appendix A: Matlab implementation

Here we give a Matlab implementation of the easiest
case of the symmetric state of two qubits, (or a spin-1
state [46]). The quantum state ρ is given as in (2) as

Xµ1µ2
= tr{ρP †s σµ1

⊗ σµ2
Ps}, (A1)

with Ps the projector onto the symmetric states. The
following implementation uses Matlab and the programs
GloptiPoly 3 [34] and the solver SeDuMi [47]. To in-
crease the probability of finding a flat extension, the semi-
definite solver should use the highest possible accuracy
in the calculation of the minimal value of the SDP.

1 mpol x 3
2 xMom=[1 x (1 ) x (2 ) x (3 ) x (1 ) ^2 x (1 ) ∗x (2 )

x (1 ) ∗x (3 ) x (2 ) ^2 x (2 ) ∗x (3 ) x (3 ) ^2 ] ;
3 y=[X(1 , 1 ) X(1 , 2 ) X(1 , 3 ) X(1 , 4 ) X(2 , 2 ) X

(2 , 3 ) X(2 , 4 ) X(3 , 3 ) X(3 , 4 ) X(4 , 4 ) ] ;
4 con=[mom(xMom)==y ] ;
5 K = [ x (1)^2+x (2)^2+x (3) ^2−1==0];
6 G = randn ( l ength (xMom) ) ;
7 R = xMom∗(G’∗G) ∗xMom’ ; k=2;
8 P = msdp(min (mom(R) ) ,K, con , k ) ;
9 pars . eps=0; mset ( pars ) ;

10 [ s t a tu s ] =msol (P) ;

Line 3 is given by Eq. (A1). Line 4 corresponds to
Eq.(10). K fixes the variables to Bloch vectors of length
1. R is the arbitrary positive bounded polynomial which
should be minimized. At line 8, ’msdp’ formulates the
problem in the language of SDPs (construction of mo-
ment matrices and localizing matrices). Line 9 sets the
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accuracy of the SDP solver to its highest value. At line
10, ’msol’ solves the SDP.

• If the problem is detected as infeasible (status=-1)
the state is entangled.

• If there is no flat extension found (status=0), one
can re-run the program with a different R, or in-
crease the order by one.

• If the state is separable and a flat extension is found
(status=1) the solution can be extracted with the
command "sol=double(x)". Then "sol" contains a
list of Bloch vectors of the pure states that give a
decomposition into separable states as in Eq. (6).
The vector of weights wi can then be easily calcu-
lated.

This implementation can be extended to a larger num-
ber of qubits by adapting the monomial basis in line 2 to a
higher degree and line 3 to contain all entries of the tensor
Xµ1...µN

(Eq. (2)). The generalization to non-symmetric
states is also possible, but the number of variables in-
creases. E.g. two qubits would require one independent
Bloch vector for each subsystem, so one would need six
variables in total.

Appendix B: Minimal rank for symmetric two-qubit
states

Theorem 4.7 of [37] states that a tms y of degree 2 ad-
mits a representing measure supported by K if and only
if M1(y) is positive and y000 − y200 − y020 − y002 = 0.
We therefore obtain that a two-bit symmetric state ρ is
separable if and only if it is associated with a tms such
that M1(y) is positive and y000 − y200 − y020 − y002 = 0.
These two conditions in fact coincide respectively with
the PPT criterion (see Sec.IVC) and with the condi-
tion that X00 =

∑3
a=1Xaa. The latter condition itself is

a consequence of properties of the projections of tensor
products of Pauli matrices over the symmetric subspace,
as was shown in [13].

The proof of the fact that iff M1(y) is positive and
y000 − y200 − y020 − y002 = 0 then ρ is separable into a
mixture of only 4 separable states can be simplified by
using the tms formalism. Let us derive the necessary and
sufficient condition above in our language. The ’neces-
sary’ direction is obvious. The proof for the ’sufficient’

direction goes as follows. Let us assume that the coor-
dinates Xµν form a positive rank-r matrix M1(y). Since
the state is symmetric, M1(y) is a real symmetric 4× 4
matrix and hence r ≤ 4. ThenM1(y) can be decomposed
into a sum of r projectors on orthogonal vectors u(k) as

Xµν =
r∑

k=1

u(k)µ u(k)ν . (B1)

Let ∆u = (u0)2 −∑3
a=1(ua)2 for any 4-vector u. Since

Xµν verify X00 =
∑3
a=1Xaa we have

∑r
i=1 ∆u(i) = 0.

Whenever ∆u(i) = 0, one has u(i)0 6= 0 (otherwise the
whole vector u(i) vanishes and does not contribute to the
sum (B1)), so that the corresponding projector can be
rewritten

u(i)µ u(i)ν =
(
u
(i)
0

)2
n(i)µ n(i)ν (B2)

with n(i) = (1,n) and |n| = 1. If all ∆u(i) = 0 then
Eqs. (B1)–(B2) immediately yield a sum over r separable
pure states. If not, then since

∑
i ∆u(i) = 0 there must

be two indices i and j with ∆u(i) < 0 and ∆u(j) > 0. Let
v(t) = tu(i) + (1− t)u(j). Then ∆v(0) > 0 and ∆v(1) < 0,
so that there has to be a tc ∈]0, 1[ such that ∆v(tc) = 0.
The vector v′(t) = −(1− t)u(i) + tu(j) is then such that

u(i)µ u(i)ν + u(j)µ u(j)ν =
v(tc)µv(tc)ν + v′(tc)µv′(tc)ν

t2c + (1− tc)2
. (B3)

Then subtracting a projector on v(tc) yields

Xµν −
v(tc)µv(tc)ν
t2c + (1− tc)2

=
r−1∑

k=1

ũ(k)µ ũ(k)ν (B4)

where ũ(k) are the orthogonal states u(k
′) (k′ 6= i, j) and

v′(tc). Because of the definition of tc and using (B2), the
projector on v(tc) is proportional to a projector repre-
senting a separable pure state, and the remaining sum is
such that

∑r−1
k=1 ∆ũ(k) = 0. We are therefore back to the

form (B1) but with the rank reduced by one. The same
procedure can be applied repeatedly to further reduce
the rank down to 1; the last projector is then necessarily
of the form (B2). In the end, ρ is written as a sum of
r 6 4 projectors on separable pure states.
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