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Summary	
Visual	 processing	 along	 the	 primate	 ventral	 stream	 takes	 place	 across	 a	 hierarchy	 of	
areas,	 characterized	 by	 an	 increase	 in	 both	 complexity	 of	 neuronal	 preferences	 and	
invariance	 to	 changes	 of	 low-level	 stimulus	 attributes.	 A	 basic	 type	 of	 invariance	 is	
form-cue	invariance,	where	neurons	have	similar	preferences	in	response	to	first-order	
stimuli,	defined	by	changes	 in	 luminance,	 and	global	 features	of	 second-order	 stimuli,	
defined	 by	 changes	 in	 texture	 or	 contrast.	 Whether	 in	 mice,	 a	 now	 popular	 model	
system	 for	 early	 visual	 processing,	 visual	 perception	 can	 be	 guided	 by	 second-order	
stimuli	is	currently	unknown.		
In	 this	 project,	 we	 asked	whether	mice	 can	 use	 second-order	 stimuli	 to	 guide	 visual	
perception	in	a	cue-invariant	way	and	assessed	potential	cue-invariant	representations	
of	stimulus	orientation	in	two	areas	of	mouse	visual	cortex.		
For	 both	 behavioral	 and	 electrophysiological	 experiments,	 we	 used	 a	 common	 set	 of	
luminance-modulated	 gratings	 (LGs)	 and	 contrast-modulated	 gratings	 (CGs),	 obtained	
by	multiplying	 a	 contrast	 envelope	with	 a	 noise	 carrier.	We	 created	 two	 types	 of	CG	
stimuli	 that	 differed	 in	 the	 Fourier	 energy	 distribution	 of	 the	 carrier:	 high-frequency	
noise	and	low-frequency	noise.	To	examine	a	potential	effect	of	different	contrast	of	LGs	
and	CGs,	we	matched	the	root-mean-square	(RMS)	contrast	between	first-	and	second-
order	gratings,	in	which	case	c	was	0.335	for	the	LGs.		
We	 tested	whether	mice	 can	 generalize	 orientation	 discrimination	 learned	with	 first-
order,	LGs	to	various	untrained	second-order,	CGs.	We	first	trained	head-fixed	mice	in	a	
classical	conditioning	paradigm	to	perform	a	coarse	orientation	discrimination	on	LGs.	
Once	the	animal	reached	stable	and	reliable	orientation	discrimination	performance,	we	
replaced	LGs	with	CGs	with	 low-frequency	 noise	 carriers	 to	 test	 the	 generalization	 of	
orientation	discrimination	to	second-order	gratings.	We	found	that	mice,	after	learning	
a	 coarse	 orientation	 discrimination	 involving	 only	 LGs,	 could	 readily	 generalize	
orientation	discrimination	to	CGs,	albeit	with	a	substantial	drop	in	performance.	Then,	
we	wondered	whether	the	overall	lower	performance	for	CGs	was	related	to	their	lower	
RMS	 contrast	 compared	 with	 LGs.	 To	 test	 this	 hypothesis,	 we	 probed	mice	 with	 LGs	
whose	 RMS	 contrast	 was	 lowered	 to	 match	 that	 of	 CGs.	 We	 found	 that	 mice	 could	
perform	 well	 during	 the	 orientation	 discrimination	 task	 for	 LGs	 matched	 in	 RMS	
contrast.	 Indeed,	across	all	 animals	 tested,	performance	was	similar	 for	both	 levels	of	
contrast.	 Finally,	 we	 tested	 mice	 with	 CGs	 with	 high-frequency	 noise	 carriers.	 Again,	
mice	 could	 see	 this	 type	of	CG	 and	 importantly,	 they	 could	also	discriminate	between	
the	 two	 grating	 orientations,	 albeit	 performance	 was	 again	 considerably	 lower	
compared	 with	 that	 for	 LGs.	 Together,	 these	 results	 demonstrate	 that	 mice	 can	 use	
second-order	stimuli	to	guide	visual	perception.		
We	 performed	 extracellular	 recordings,	 both	 during	 anesthesia	 and	 wakefulness,	 in	
mouse	areas	V1	and	LM,	where	we	compared	orientation	tuning	curves	to	LGs	and	CGs.	
We	found	that	neurons	in	area	V1	and	LM	were	less	responsive	and	less	selective	to	CGs	
than	to	LGs,	both	during	anesthesia	and	wakefulness.	 Interestingly,	 this	reduction	was	
particularly	prominent	during	anesthesia.	We	wondered	whether	our	finding	of	weaker	
responses	and	broader	orientation	tuning	for	CG	than	LG	responses	could	be	explained	
by	the	lower	RMS	contrast	of	CGs.	Thus,	we	performed	control	experiments,	in	which	we	
measured	 responses	 to	LGs	 that	were	matched	 in	RMS	 contrast	 to	 the	CGs.	We	 found	
that	neurons	in	both	visual	areas	still	responded	more	weakly	to	CGs	than	LGs	but	this	
reduction	 in	 responsiveness	was	 less	pronounced	 compared	with	 conditions	with	 full	
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contrast	 LGs.	 Similar	 to	 our	 results	 with	 full-contrast	 LGs,	 orientation	 selectivity	 also	
decreased	 considerably	 between	 LGs	 matched	 in	 RMS	 contrast	 and	 CGs.	 Indeed,	
orientation	selectivity	did	not	differ	significantly	between	responses	to	full-contrast	and	
reduced-contrast	LGs.	 Together,	 the	 reduced	RMS	 contrast	 of	CGs	might	 contribute	 to	
the	 reduction	 in	 peak	 responsiveness	 to	 CGs	 but	 cannot	 account	 for	 the	 poorer	
orientation	 selectivity	 for	 CGs.	 We	 also	 investigated	 the	 underlying	 mechanism	 of	
responses	to	second-order	stimuli	in	awake	recordings:	we	tested	orientation	tunings	of	
both	 V1	 and	 area	 LM	 in	 response	 to	 a	 high-frequency	 noise	 CGs,	 in	 which	 the	 noise	
carrier’s	spatial	frequency	distribution	was	concentrated	beyond	the	passband	of	many	
V1	and	LM	neurons	(Marshel	et	al.,	2011).	We	first	observed	that	 less	than	half	of	 the	
recorded	neurons	with	significant	responses	to	LGs	also	had	visually	evoked	activity	to	
CGs	 with	 high-frequency	 noise.	 This	 fraction	 of	 responsive	 neurons	was	 considerably	
lower	 compared	 to	 that	 obtained	 for	CGs	with	 low-frequency	 noise.	 Interestingly,	 the	
difference	in	responsiveness	between	the	two	types	of	CG	stimuli	was	stronger	for	area	
V1	than	LM.	To	examine	whether	the	CG	 representation	might	contribute	toward	cue-
invariant	perception	of	stimulus	orientation,	we	also	compared	the	neurons’	preferred	
orientation,	separately	 for	each	grating	type.	We	found	that	preferred	orientations	 for	
CGs	 with	 low-frequency	 noise	 and	 LGs	 were	 correlated	 for	 both	 areas	 V1	 and	 LM.	
Interestingly,	 for	 CGs	 with	 high-frequency	 noise,	 the	 distribution	 of	 differences	 in	
preferred	 orientation	 was	 non-uniform	 only	 for	 area	 LM	 and	 preferred	 orientations	
were	 only	 correlated	 for	 area	 LM.	 Together,	 the	 broad	 similarity	 of	 preferred	
orientations	 between	 grating	 types	 provides	 some	 evidence	 for	 a	 coarse	 cue-	
invariance,	which	might	in	turn	be	part	of	the	neural	basis	for	perceptual	generalization	
of	orientation	discrimination.		
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Introduction	

Central	visual	pathways	
The	last	50	years	have	seen	major	advances	in	our	understanding	of	the	visual	system,	
and	 in	particular	 of	 the	 visual	 cortex.	Responses	 of	 neurons	 in	 the	mammalian	 visual	
cortex	were	 first	 thoroughly	quantified	by	Hubel	 and	Wiesel,	more	 than	50	years	ago	
(Hubel	and	Wiesel,	1959).	Today,	we	know	that	the	processing	of	visual	information	is	
performed	to	a	large	extent	in	the	visual	cortex,	which	is	subdivided	into	distinct	areas:	
in	the	primate,	there	are	approximately	32	separate	neocortical	areas	involved	in	visual	
processing	(Felleman	and	Van	Essen,	1991).	These	areas	are	organized	into	two	broadly	
segregated	processing	streams:	the	ventral	stream	for	object	recognition	and	the	dorsal	
stream	for	object	localization.	Each	stream	consists	of	multiple	areas	beyond	V1	and	has	
V1	as	a	primary	input	source	(Mishkin	and	Ungerleider,	1982;	Ungerleider	and	Haxby,	
1994)	(Figure	1).	

	
Figure	1.	Two	parallel	pathways	of	visual	processing	in	primates.	(Adapted	from	Erik	R.	Kandel,	Principles	of	Neural	
Sciences	p.1164)	

Hierarchy	of	visual	processing	
In	primates,	visual	processing	along	the	ventral	stream	takes	place	across	a	hierarchy	of	
areas.	 In	 this	 hierarchy	 the	 complexity	 of	 neural	 preferences	 increases,	 such	 that	 V1	
neurons	prefer	orientated	edges	(Hubel	and	Wiesel,	1959,	1962;	De	Valois	et	al.,	1982),	
V2	neurons	respond	to	contours,	textures	and	combination	of	orientations	(Anzai	et	al.,	
2007;	 Willmore	 et	 al.,	 2010;	 Freeman	 et	 al.,	 2013),	 V4	 neurons	 process	 curvatures	
(Pasupathy	and	Connor,	1999)	and	 finally	neurons	 in	 IT,	 the	 final	 stage	of	 the	ventral	

file:///H|/file%20of%20classes%20of%20phd/Principles%20of%20Neural%20Science/gateway.ut.ovid.com/gw2/ovidweb.cgisidnjhkoalgmeho00dbookimagebookdb_7c_2fc~34.htm

file:///H|/file%20of%20classes%20of%20phd/Principles%20of%20Neural%20Scie...t.ovid.com/gw2/ovidweb.cgisidnjhkoalgmeho00dbookimagebookdb_7c_2fc~34.htm (4 of 47)2007/05/12 07:24:08 È.Ù
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stream,	 prefer	 complex	 objects	 such	 as	 faces	 (Desimone	 et	 al.,	 1984;	 Logothetis	 and	
Sheinberg,	1996;	Tanaka,	1996).		
The	 selectivity	 of	 V1	 neurons	 was	 reported,	 for	 the	 first	 time,	 by	 Hubel	 and	 Wiesel	
(Hubel	 and	 Wiesel,	 1959).	 In	 the	 seminal	 experiments	 of	 Hubel	 and	 Wiesel,	 they	
discovered	that	cells	in	cat	primary	visual	cortex	tended	to	respond	in	one	of	two	ways.		
The	 first	 group,	 which	 they	 termed	 “simple	 cells”,	 responds	 more	 when	 the	 light	 is	
presented	 in	 a	 certain	 direction	 and	 these	 responses	 can	 be	 predicted	 based	 on	 the	
excitatory	 and	 inhibitory	 organization	 of	 their	 receptive	 fields.	 However,	 the	 second	
group,	which	they	named	“complex	cells”,	does	not	have	fixed	inhibitory	and	excitatory	
subregions	in	their	receptive	fields	and	the	direction	selectivity	of	these	neurons	cannot	
be	 predicted	 based	 on	 their	 receptive	 fields	 organizations.	 One	 step	 further	 in	 the	
hierarchy,	V2	neurons	respond	to	combinations	of	similar	and	dissimilar	orientations.	
The	property	of	having	different	orientation	preferences	 in	 receptive	 field	 subregions	
gives	V2	neurons	the	capability	to	process	curves	and	angles	(Anzai	et	al.,	2007),	despite	
the	fact	V2	neurons	do	not	show	more	than	one	peak	in	their	orientation	tuning	curve	
when	 probed	 with	 bars	 or	 gratings.	 Further	 evidence	 for	 gradually	 increasing	
complexity	 comes	 from	 a	 study	 comparing	 V1	 and	 V2	 neuronal	 responses	 to	 natural	
images.	 Whereas	 most	 of	 V2	 neurons	 respond	 to	 natural	 images	 stronger	 than	 to	
control	stimuli,	this	modulation	effect	is	minimal	in	V1	neurons	(Freeman	et	al.,	2013).	
V4	neurons	process	even	more	complicated	visual	features	and	prepare	the	information	
for	 shape	 recognition	 in	 the	 next	 stages.	 The	 modulation	 depth	 of	 V4	 neurons	 by	
contour	features	is	much	stronger	than	by	edges	and	bars.	Moreover,	a	subpopulation	of	
V4	neurons	are	selective	for	contour	features	and	show	a	bias	toward	convex	contours	
(Pasupathy	and	Connor,	1999).	Finally,	in	IT,	the	final	stage	of	ventral	stream,	neurons	
respond	more	to	complex	than	simple	images	such	that	a	subpopulation	of	IT	neurons	is	
specialized	to	recognize	faces	(Desimone	et	al.,	1984;	Logothetis	and	Sheinberg,	1996;	
Tanaka,	1996).		

Gradually	increasing	invariance	
Another	 example	 of	 increasing	 the	 complexity	 of	 visual	 information	 processing	 along	
ventral	 stream	 is	 the	 tolerance	 to	 changes	 in	 low-level	 stimulus	 features	 in	 object	
recognition.	 Previous	 studies	 have	 shown	 that	 IT	 neurons	 conserve	 their	 selectivity	
despite	 changes	 in	 position,	 scale	 and	 context	 of	 an	 image.	 As	 depicted	 in	 Figure	 2,	
monkeys	 were	 shown	 different	 images,	 where	 each	 individual	 image	 varies	 in	 scale,	
position	and	context,	and	the	ability	of	V4	and	IT	neurons	to	generalize	their	selectivity	
was	tested.	Many	neurons	in	V4	and	IT	maintain	their	shape	selectivity	across	changes	
in	position,	 size	 and	 context	 (Schwartz	 et	 al.,	 1983;	Rust	 and	DiCarlo,	 2010).	Another	
study	demonstrated	that	area	IT,	which	has	overlapping	columns	forming	a	continuous	
mapping	 of	 complex	 features,	 is	 able	 to	 produce	 the	 image	 of	 an	 object,	 invariant	 to	
different	 viewing	 angles	 and	 illumination	 conditions	 (Tanaka	 et	 al.,	 1996).	Moreover,	
the	tolerance	increases	as	visual	information	travels	from	V4	to	IT	along	ventral	stream,	
and	therefore	neurons	become	more	tolerant	to	changes	in	low-level	stimulus	attributes	
(Rust	and	DiCarlo,	2010)	(Figure	2).	
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Figure	2.	 In	the	hierarchy	of	the	ventral	stream	(e.g.	in	V4	and	IT	areas),	neural	selectivity	is	tolerant	to	changes	in	
low-level	visual	features	(Adapted	from	Rust	and	DiCarlo,	2010).		

Form-cue	invariance	
One	basic	type	of	invariance	is	form-cue	invariance	(Baker	and	Mareschal,	2001),	where	
neurons	 have	 similar	 preferences	 whether	 driven	 by	 first-order	 or	 second-order	
stimuli.		
	

	
Figure	3.	Examples	of	first-order	and	second-order	stimuli	in	the	nature	(Adapted	from	Li	et	al.,	2014)	

First-order	and	second-order	stimuli	
In	order	to	perform	object	recognition,	our	visual	system	needs	to	first	analyze	the	local	
features	 of	 natural	 images,	 which	 are	 due	 to	 surface	 properties,	 illumination,	 and	
boundaries.	It	has	been	established	that	neurons	in	early	visual	system	encode	the	local	
changes	in	luminance.	However,	there	are	other	types	of	objects,	which	are	segregated	
from	 their	 background	with	 other	 cues	 than	 luminance	 and	 our	 visual	 system	 is	 still	
able	to	perceive	them.	In	the	natural	image	in	Figure	3,	we	recognize	the	tree	from	the	
grassy	 background	 and	 the	 grass	 from	 its	 reflection	 in	 the	 water	 with	 two	 different	
mechanisms:	 in	the	first	case	the	luminance	is	the	local	attribute	change	between	tree	
and	 grassy	 background,	 whereas	 the	 grass	 is	 distinguished	 from	 its	 reflection	 by	 a	
difference	 in	 contrast.	 Those	 stimuli	 whose	 principal	 features	 are	 characterized	 by	
changes	 in	 luminance	 are	 referred	 to	 as	 first-order	 stimuli;	 sine	wave	 gratings	 are	 a	

model of the human visual system, suggesting that such process-
ing might only occur at higher levels of the visual cortex in pri-
mates (El-Shamayleh and Movshon, 2011). These findings raise
several key questions about detection of CMs in the primate vi-
sual system: Do such neurons occur in the early visual cortex
(V1/V2), or only at higher levels? Are CMs detected only by sim-
ple early nonlinearities of conventional luminance-coding neu-
rons, or by specialized neuronal mechanisms? Do such neurons
respond with similar orientation preference to contrast-defined
and luminance-defined patterns (“form-cue invariance”)? Do
neuronal responses to CM stimuli provide a plausible neural sub-
strate for human psychophysics?

Here we approach these questions by recording single neu-
rons in macaque area V2, an early visual cortical area known to
exhibit more complex processing (Anzai et al., 2007; Willmore et
al., 2010). We find that a substantial fraction of V2 cells show
highly specific responses to CM stimuli. These responses are
form-cue invariant and exhibit high ratios of carrier to modula-
tion SF that are consistent with human psychophysics.

Materials and Methods
Animal preparation and maintenance. Acute experiments were per-
formed in 14 macaque monkeys (Macaca mulatta; 11 males and 3 fe-
males). All surgical and experimental procedures were in accordance
with the guidelines and policies of the Canadian Council on Animal Care
and were approved both by the Animal Care Committee of McGill Uni-
versity and by the Institutional Animal Care and Use Committee of the
University of Science and Technology of China. Monkeys were first se-
dated with ketamine HCl (10 mg/kg) and then were maintained with
isoflurane (3–5%, in oxygen) for venous cannulation, followed by
propofol (5 mg ! kg !1 ! h !1, i.v.) during subsequent surgery. All surgical
wounds were infused with 0.5% bupivacaine, and the corneas were pro-
tected with topical hydroxypropyl methylcellulose (2.3%). Electrocardi-
ography, respiratory rate, oxygen saturation (SpO2), and expired CO2

were monitored (PM-7000, Mindray) throughout the surgery and sub-
sequent recording. Expired CO2 was maintained at "4% and rectal tem-
perature was kept at 37.5°C (Harvard Apparatus). After tracheal
cannulation, the animal was mounted in a stereotaxic frame, with a long-
acting anesthetic (2% lidocaine-HCl jelly) applied to all pressure points.
A craniotomy was begun by thinning the skull "8 mm posterior to the

a b

c d

Figure 1. Detection of contrast modulation. a, Objects in natural scenes can be delineated from one another by changes of contrast as well as by luminance differences, as in this photograph taken
at the University of Science and Technology of China. The tree is clearly distinguished from the grassy background by a luminance difference (solid square), but the grass is distinguished from its
reflection in the water primarily by a change in contrast (dashed square). b, Luminance variations can be detected by a linear spatial filter; however, pure contrast changes are invisible to such a filter
when local luminance falling in adjacent excitatory and inhibitory regions averages to zero. c, Filter-rectify-filter (F-R-F) model. Early-stage filters mediate selectivity for fine structures (texture). The
outputs are rectified and summed by a later, coarse-scale filter to detect contrast changes along a boundary. d, CM grating. CM gratings are generated by the product of a stationary high SF (fCarrier)
sine wave grating (carrier) with a moving low SF (fEnvelope) sine wave grating (envelope). In the Fourier frequency domain (graphs to the sides of the stimulus images), such stimuli consist of a linear
sum of three components closely centered about fCarrier, but no energy at fEnvelope. Black ellipses indicate bandwidth of a neuron’s luminance response. A neuron was considered CM-responsive if it
showed a bandpass response to a CM stimulus whose Fourier components were all clearly outside the neuron’s frequency-selective range for luminance. In this and subsequent figures, we employ
a unifying color scheme for signals or responses: red for carrier, blue for envelope, and black for luminance.
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more local structure whereas neurons at higher stages of the vi-
sual system become more sensitive to specific conjunctions of
those local features, at least at the sizes of images we presented
and the scales at which we scrambled the images. Furthermore,
these results suggest that neurons in IT do not merely encode any
arbitrary configuration of local structure, rather the IT popula-
tion is tuned for (i.e., best encodes) the particular configurations
found in natural images.

Comparison of tolerance (invariance) in V4 and IT
Next, we used similar population readout approaches to compare
the tolerance with object-identity-preserving image transforma-
tions between V4 and IT. We used the term “tolerance” instead of
“invariance” because it better reflects the fact that object recog-
nition behavior and IT neuronal object recognition performance
(Hung et al., 2005; Li et al., 2009) are somewhat insensitive, but
not absolutely so, to identity-preserving image transformations.
Here, we focus specifically on changes in the position, scale, and
background of an object (Hung et al., 2005). Ten objects were
presented under six identity-preserving transformations: in ad-
dition to a reference condition, which corresponded to an object
approximately centered in the 5° aperture on a gray background,
the object was shifted left and right, presented at a smaller and
larger size, and presented in a natural context (see Materials and
Methods) (Fig. 6). We began by training each population to dis-
criminate between objects at the fixed reference condition (Fig.
7a, black). Similar to that described above for comparison of
selectivity, we regarded discriminability to the reference images
as the baseline estimate of the encoding performance of each
population. We then asked how well this representation could
generalize to the same images presented at the other positions,
scales, and at the other background condition (Fig. 7a, blue). If
the clouds of response vectors corresponding to different trans-
formations of an image remain segregated according to identity,
this will translate into good generalization performance (Fig. 7a,
right). Conversely, if clouds corresponding to the transformed

images intermingle with those corresponding to different objects
or become located in a completely new location, this will result in
poor generalization performance for these identity-preserving
transformations (Fig. 7a, left). Notably, in this scenario, poor
generalization results not from a lack of an ability of the popula-
tion to encode the individual images themselves but because the
identity information about one object is “tangled” with identity
information about other objects (DiCarlo and Cox, 2007).

Before probing the ability of the population to generalize
across identity-preserving transformations, it was important to
ensure that each image corresponding to each transformation
was itself well represented by the population. For example, if we
had failed to record from V4 receptive fields that tiled the left side
of the image, we may have failed to encode the “shift-left” condi-
tion altogether and poor generalization would result trivially.
Thus, we first tested the ability of the population to discriminate
between the 10 objects under each transformed condition sepa-
rately, and, although we found some variability, in all cases dis-
criminability was high. Notably, consistent with our results on
encoding natural images (see above and Fig. 5), we found
similar encoding performance for these “natural” objects in
V4 and IT (Fig. 7b). Specifically, drawing on the same number
of neurons in each area (n ! 140), we found that, on average,
V4 and IT encoded the object-related information in each of
the transformed conditions with similar, high performance
(mean magnitude performance in V4 and IT was 79 and 83%
across all six conditions).

Having established that all the individual images were en-
coded by the V4 and IT populations we recorded, we then asked
how well the format of the information in each population was
suited for an invariant object recognition task. Specifically, we
assessed generalization capacity in V4 and IT using linear classi-
fier methods (Fig. 7a). When asked to generalize across small
changes in position (from the reference to shifts right or left of
1.5°), the V4 population performance was above chance but de-
creased markedly relative to the reference (V4 generalization

Figure 6. Images used to compare tolerance in V4 and IT. Ten objects were presented under six different transformed conditions. The reference objects (black) were always presented near the
center of the 5° aperture. The transformed conditions (blue) included rescaling to 1.5" and 0.5" at the center position, presentation at 1" scale but shifted 1.5° to the right (R) and left (L), and
presentation at the reference position and scale but in the context of a natural background.
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common	type	of	first-order	stimuli	and	have	been	used	in	many	studies.	Visual	stimuli,	
which	 are	 characterized	 by	 variations	 in	 other	 visual	 cues	 than	 luminance,	 such	 as	
contrast,	texture	and	color	are	defined	as	second-order	stimuli.	By	now,	different	types	
of	second-order	stimuli	have	been	used	to	investigate	second-order	processing.	Figure	
4	 illustrates	 a	 few	 types	 of	 second-order	 stimuli.	 One	 of	 the	 most	 common	 types	 of	
second-order	stimuli	is	a	contrast-modulated	grating	(CG).	CGs	consist	of	two	elements:	
a	noise	texture,	called	a	carrier,	and	a	low	spatial	frequency	grating,	called	an	envelope.	
In	CGs	the	contrast	of	carrier	changes	by	envelope.		
	
	
	
	

	
Figure	4.	Examples	of	second-order	stimuli	used	in	previous	studies.	a.	Texture-defined	bar.	b.	Illusory	contours.	c.	
Texture-defind	gratings.	d.	Contrast-modulated	gratings	(CGs).	

Neuronal	responses	to	second-order	stimuli	
Neural	 responses	 to	 second-order	 motion	 was	 reported	 first	 by	 Albright	 1992,	 who	
showed	 that	 neurons	 in	 area	 MT/V5	 have	 the	 same	 preferred	 direction	 to	 LGs	 and	
moving	 dynamic	 noise	 on	 a	 static	 noise	 background	 (Form-cue	 invariance)	 (Albright,	
1992).	So	far,	cue-invariant	neurons	have	been	observed	in	primate	V2	(Li	et	al.,	2014)	
(but	see	El-Shamayleh	and	Movshon,	2011;	An	et	al.,	2014),	MT	(Albright,	1992)	and	IT	
(Sary	 et	 al.,	 1993),	 and	 cat	 area	 18	 (Zhou	 and	 Baker,	 1994;	 Leventhal	 et	 al.,	 1998;	
Mareschal	and	Baker,	1998a,	b;	Zhan	and	Baker,	2006;	Song	and	Baker,	2007).	
In	 most	 of	 these	 electrophysiological	 and	 anatomical	 studies,	 the	 second-order	
responsive	 neurons	 showed	 weaker	 responses	 to	 second-order	 than	 to	 first-order	
stimuli	 (Mareschal	 and	 Baker,	 1998a;	 Zhan	 and	 Baker,	 2006;	 Li	 et	 al.,	 2014).	 For	
instance,	optical	imaging	in	area	18	of	cats	has	shown	that	the	population	responses	to	
both	 contrast-contour	 and	 illusory-contour	 stimuli,	 which	 are	 two	 types	 of	 second-
order	stimuli,	were	approximately	20%	of	those	to	LGs	(Zhan	and	Baker,	2006).	Similar	
results	 have	been	obtained	 in	 electrophysiological	 studies	 conducted	 in	monkeys	 and	
cats,	such	that	only	one-third	of	V2	neurons	responded	to	CGs	and	these	responses	were	
weaker	 than	 those	 to	 first-order	 stimuli	 (Mareschal	 and	 Baker,	 1998a;	 Li	 and	 Baker,	
2012;	Li	et	al.,	2014).	Therefore,	cue-invariant	neurons	have	been	shown	to	be	typically	
less	responsive	to	second-order	than	to	first-order	stimuli.		
The	 properties	 of	 both	 global	 and	 local	 features	 of	 second-order	 stimuli	 have	 been	
studied	in	details.	Spatial	frequency	and	orientation	of	both	the	carrier	and	the	envelope	
have	 been	 shown	 to	 determine	 second-order	 responses.	 Furthermore,	 it	 has	 been	
shown	that	the	ratio	of	carrier	spatial	frequency	to	envelope	spatial	frequency	used	to	
construct	 second-order	 stimuli,	 influences	 the	 probability	 of	 driving	 neurons	 with	
second-order	 stimuli.	 	 For	 example,	 applying	 various	 combinations	 of	 carrier	 and	
envelope	 spatial	 frequency	 demonstrated	 that	 different	 ratios	 of	 carrier	 spatial	
frequency	to	envelope	spatial	frequency	(Zhou	and	Baker,	1994)	instead	of	a	fixed	ratio	
(Albrecht	 and	 Hamilton,	 1982)	 increases	 the	 probability	 of	 driving	 neurons	 with	
second-order	 stimuli.	 Furthermore,	 the	 spatial	 frequency	 tuning	measurements	of	 the	

a b c d
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carrier	 have	 revealed	 that	 second-order	 responsive	 neurons	 prefer	 higher	 carrier	
spatial	 frequencies,	 and	 although	 the	 preferred	 ratio	 of	 carrier	 spatial	 frequency	 to	
envelope	spatial	frequency	differs	across	neurons,	this	ratio	tends	to	be	around	8	(Li	et	
al.,	 2014)	 (Figure	 5).	 However,	 there	 is	 no	 fixed	 relationship	 between	 carrier	 and	
envelope	 spatial	 frequency	 and	 the	 preferred	 spatial	 frequency	 for	 the	 envelope	 is	
similar	to	that	of	LGs	(Zhan	and	Baker,	2006;	Li	et	al.,	2014).		
	
	
	
	
	
	
	

	
Figure	 5.	 	 The	 preferred	 spatial	 frequencies	 of	 the	 carrier	 (red)	 are	 around	 8	 times	 than	 those	 for	 the	 envelope	
(blue).	 Triangles	 represent	 neurons	with	 complex-type	 responses	 and	 circles	 represent	 neurons	with	 simple-type		
responses.	For	more	details	see	Li	et	al.,	2014.	(Adapted	from	Li	et	al.,	2014).	 

Another	 feature	 of	 second-order	 stimuli	 that	 has	 been	 investigated	 in	 detail	 is	 the	
carrier	 and	 envelope	 orientations.	 Previous	 studies	 have	 demonstrated	 that	 envelope	
orientation	is	the	main	factor	of	second-order	responses	(Mareschal	and	Baker,	1999a).	
However,	further	studies	revealed	the	role	of	carrier	orientation	and	spatial	frequency	
in	responsiveness	to	second-order	stimuli.	Indeed,	neurons	responsive	to	second-order	
stimuli	are	also	selective	to	orientation	and	spatial	frequency	of	carrier	(e.g.	Mareschal	
and	 Baker,	 1999b).	 Theses	 findings	 led	 to	 further	 investigations	 which	 constructed	
second-order	stimuli	using	different	combinations	of	carrier	and	envelope	orientations	
and	also	to	find	a	bigger	number	of	responsive	neurons	to	second-order	stimuli	(Li	and	
Baker,	2012;	Li	et	al.,	2014).	Although	there	is	no	fixed	relationship	between	the	optimal	
orientation	of	carrier	and	that	of	envelope	(Mareschal	and	Baker,	1999a;	Li	et	al.,	2014),	
second-order	 responsive	 neurons	 have	 been	 shown	 to	 be	 well	 tuned	 to	 carrier	
orientations.	 The	 finding	 of	 carrier	 orientation	 tuning	 in	 second-order	 responsive	
neurons	rules	out	any	source	of	nonlinear	artifact	in	those	neuron	responses	(Zhou	and	
Baker,	1993;	Li	et	al.,	2014)	(Error!	Reference	source	not	found.).	Indeed,	those	artifacts	
which	might	potentially	arise	from	display	device	or	photoreceptors,	cannot	yield	such	
carrier	tuning,	or	even	if	they	can,	it	would	be	the	same	in	every	neuron.	Therefore,	the	
observed	 carrier	 tunings	 in	 previous	 studies	 that	 were	 variable	 among	 neurons	 and	
distinct	 from	that	of	envelope,	provided	some	evidence	to	exclude	any	contribution	of	
artifacts	in	second-order	responses.		

and to luminance gratings. For instance, the peak responses of the
neuron shown in Figure 2e displayed very similar values (!11
spikes/s) when measured with either type of stimulus.

MU responses extracted from the same three recordings (Fig.
2, right) had tuning curves very similar to those for the simulta-
neously recorded single units (Fig. 2a,c,e). This result was gener-
ally observed and suggests that both kinds of SF selectivity for CM
stimuli are clustered in macaque V2 in a similar manner as pre-
viously demonstrated for carrier SF in cat visual cortex (Li and
Baker, 2012).

The CM-responsive neurons were bandpass tuned for all of
these three SF responses on which they were tested. Note that the
bandpass tuning to carrier SF, in a range that was clearly outside
the neurons’ luminance passbands, demonstrates that the ob-
served CM responses were not luminance artifacts caused by
nonlinearities of the CRT or early neural processing (Zhou and
Baker, 1993).

Relationship between optimal SFs
The above three example neurons exhib-
ited similar or identical optimal values for
luminance and envelope SF response, but
had much higher optimal carrier SFs.
To examine the generality of this result
across the population of sampled CM-
responsive neurons, the optimal SFs mea-
sured using luminance gratings and CM
stimuli are compared in scatterplots in the
left column of Figure 3, where each point
represents the optimal values obtained for
one neuron to different stimuli. The his-
tograms at the right show the distribu-
tions of ratios of the compared optimal
values.

Each neuron’s optimal CM carrier SF
is plotted against its optimal luminance SF
in Figure 3a. The optimal carrier and lu-
minance SF values are distributed in a
range of !1–10 and 0.1–1 cpd, respec-
tively. Note that all the data points fall in
the upper left corner, well above the unity
line, with a moderate degree of correlation
(r60 " 0.56, p " 2.50 # 10$6). This result
indicates that the optimal carrier SF of a
given CM neuron is much higher than its
optimal luminance SF. This relationship
is more evident in the histogram of ratios
of optimal carrier SF to optimal lumi-
nance SF (Fig. 3b). The ratios exhibited a
range from 3.4-fold to 52-fold (median,
12.8), with most neurons (55 of 62) hav-
ing optimal ratios between 4:1 and 32:1.
Note that the lack of neurons with low
ratios might have been due to the selection
criterion of only including neurons for
further analysis if the carrier SF tuning
was higher than the luminance SF tuning.

The differences between optimal SF
values for CM envelope and luminance
stimuli are much less pronounced, as
shown in Figure 3c. The data points are
distributed along the unity line (r23 "
0.75, p " 1.49 # 10$5) indicating that the
optimal envelope SF and luminance SF for

a given neuron are similar, with a difference of %1 octave in 84%
of tested neurons (21 of 25). The ratios of neurons’ optimal CM
envelope SF to their optimal luminance SF are distributed in a
range from !1:2.4 to 2.7:1 with a median of 1.3:1, indicating that
neurons typically showed only slightly higher optimal envelope
than luminance SFs. A histogram plot of the ratios is shown in
Figure 3d.

The ratio of optimal carrier SF to optimal envelope SF is the-
oretically important, for inferences about possible neuronal
mechanisms as well as comparison to human psychophysics (see
Discussion). Figure 3e plots the optimal carrier SF against opti-
mal envelope SF for 25 CM-responsive neurons. The data points
are scattered in the upper left corner, well above the unity line (r23

" 0.42, p " 0.048), indicating that a given neuron’s optimal
carrier SF is much higher than its optimal envelope SF. The ratios
(Fig. 3f) ranged from 2.0-fold to 41-fold with a median of 8.2-

a b

c d

e f

Figure 3. Optimal SFs for CM gratings and luminance gratings. a, c, e, Scatter plots of optimal SFs of sampled neurons. Each
point represents one neuron’s optimal SF for CM carriers plotted against that for luminance gratings (a), envelope plotted against
luminance (c), and carrier plotted against envelope (e). Solid lines depict the unity ratio. b, d, f, Histograms of ratios for data shown
in a, c, and e. b, Ratios of neurons’ optimal carrier-to-luminance SF values (median, 12.8:1). d, Ratios of neurons’ optimal
envelope-to-luminance SF. The ratios were !1:1, indicating that a neuron’s optimal envelope SF was similar to its optimal
luminance SF (median, 1.32:1). f, Ratios of neurons’ optimal carrier-to-envelope SF (median, 8.21:1). Due to limitations of record-
ing stability, the envelope tuning properties were only measured in a subset of CM neurons. Thus there are 62 pairs shown in a and
b, and 25 pairs in c–f. Circles indicate neurons with simple-type responses (21 in a, 10 in c and e). Triangles indicate neurons with
complex-type responses (41 in a, 15 in c and e). Open symbols indicate the three example neurons shown in Figure 2.
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Figure	6.	There	is	no	fixed	relationship	between	carrier	(red)	and	envelope	(blue)	orientations.	Other	conventions	as	
Figure	5	(Adapted	from	Li	et	al.,	2014).	

Cortical	organization	of	responsive	neurons	to	second-order	stimuli	
The	cortical	organization	of	responsive	neurons	to	second-order	stimuli	also	has	been	
investigated	with	imaging	and	electrophysiological	methods	(Zhan	and	Baker,	2006;	Li	
and	 Baker,	 2012).	 Intrinsic	 optical	 imaging	 in	 area	 18	 of	 cats	 revealed	 similar	
orientation	preference	maps	 for	 first-order	 and	 second-order	 stimuli.	 In	 fact,	LGs	 and	
illusory	and	contrast	envelopes	evoked	 the	 same	orientation	preference	maps	 in	area	
18.	The	orientation	preference	of	neuronal	populations	in	response	to	first-	and	second-
order	 stimuli	was	 very	 similar,	 such	 that	 a	majority	 of	 neurons	 showed	 <30	 degrees	
difference	 in	 orientation	 preference.	 However,	 the	 fraction	 of	 responsive	 neurons	 to	
second-order	was	less	than	that	to	first-order	stimuli	and	neural	responses	to	second-
order	 were	 weaker	 than	 those	 to	 first-order	 stimuli.	 In	 addition,	 the	 population	
responses	 to	 contrast	 and	 illusory	 contours	 were	 immune	 to	 different	 carrier	
orientations	 and	 therefore	 second-order	 responses	 were	 dependent	 on	 envelope	
orientation	rather	than	carrier.	The	similarities	of	 first-	and	second-order	maps	 led	to	
the	 idea	 of	 homogeneous	 distribution	 of	 second-order	 neurons	 across	 the	 cortical	
surface	 (Zhan	 and	Baker,	 2006).	However,	 conflicting	with	 this	 notion,	 another	 study	
investigating	the	functional	organization	of	responsive	neurons	to	second-order	stimuli,	
in	area	18	cats,	 argued	against	 the	homogenous	distribution	of	 second-order	neurons	
across	 the	 cortical	 surface	 and	 instead,	 showed	 that	 responsive	 neurons	 to	 second-
order	are	highly	clustered	and	organized	 in	a	columnar	manner	(Li	and	Baker,	2012).	
Indeed,	 nearby	 neurons	 shared	 similar	 spatial	 frequency	 and	 to	 some	 extent	 similar	
orientation	preference	of	carrier,	and	moreover,	 they	formed	a	columnar	organization	
along	the	cortex.	While	both	spatial	frequency	and	orientation	maps	of	carrier	showed	
clustered	 organization,	 carrier	 orientation	 maps	 were	 more	 scattered	 and	 therefore,	
this	mini-cluster	 organization	 could	 be	missed	 in	 intrinsic	 optical	 imaging	 (Zhan	 and	
Baker,	 2006),	 which	 accesses	 only	 the	 superficial	 layers	 and	 has	 limited	 spatial	
resolution	(Li	and	Baker,	2012).		
	
	

from 0.94 to 12 cpd with a median of 5.1
cpd, which are much higher than for cats
(from 0.56 to 1.70 cpd; median, 1.05 cpd;
U ! 53; Z ! "7.49; p ! 3.07 # 10"19; r !
0.77, Mann–Whitney U test). Similar dif-
ferences were seen in the envelope SF tun-
ing results (Fig. 8b): the optimal envelope
SFs are much higher for monkey neurons
(median, 0.59 cpd) than for cats (median,
0.06 cpd; U ! 2; Z ! "6.44; p ! 1.16 #
10"10; r ! 0.84; Mann–Whitney U test).
However this difference should not be
surprising, given these species’ rather dif-
ferent acuities and optimal SFs for lumi-
nance gratings (Movshon et al., 1978;
Foster et al., 1985).

A second clear species difference was in
carrier orientation tuning bandwidths,
shown in Figure 8c. Unlike the CM-
responsive neurons in cat area 18, for
which carrier orientation bandwidths can
often be quite broad or even isotropic
(Mareschal and Baker, 1998a, 1999), the
CM-responsive neurons in macaque V2
are often narrowly tuned to carrier orien-
tation (U ! 1061, Z ! 5.40, p ! 6.48 #
10"8, r ! 0.62, Mann–Whitney U test).

Discussion
Our results have demonstrated that neu-
rons in the early primate visual system can
detect boundaries defined by variations
not only in luminance but also in contrast.
These neurons also exhibited clear spatial
selectivity for carrier patterns of CM stim-
uli, indicating a specialized nonlinear
mechanism for their detection. Most im-
portantly, this carrier selectivity rules out
possible artifactual responses due to spu-
rious luminance signals from simple early
nonlinearities or stimulus artifacts (Zhou
and Baker, 1993, 1994). For example, a
simple early nonlinearity due to inade-
quate gamma correction of the CRT dis-
play, or photoreceptor nonlinearities
(MacLeod et al., 1992), would have been
largely indiscriminate to the carrier pattern. Luminance signals
from “pixel clumping” in noise carriers (Smith and Ledgeway,
1997) were not an issue due to our use of carrier patterns that
were narrowband in SF and outside the luminance passband of
each neuron. Artifactual CM responses from an “adjacent pixel
nonlinearity” (Klein et al., 1996), in which a given pixel’s lumi-
nance may depend on the preceding pixel along the CRT line
scan, would always exhibit an optimal carrier SF at the highest
value tested, and an optimal carrier orientation perpendicular to
the CRT scan lines. Instead we found that different neurons were
tuned to a variety of distinct carrier SFs and orientations. Thus it
is highly unlikely that these CM responses are due to such lumi-
nance artifacts.

Surround suppression can give rise to tuned responses to CM
gratings (Tanaka and Ohzawa, 2009; Hallum and Movshon,
2011; Figure 9a). However, approximately half of the CM-
responsive neurons in this study exhibited little or no surround

suppression to luminance gratings (Fig. 4). Also the high carrier/
envelope SF ratios of our CM-responsive neurons (median, 8.21;
Fig. 3e,f) are markedly inconsistent with a surround suppression
mechanism, which yields carrier/envelope SF ratios of $2
(Tanaka and Ohzawa, 2009). In addition, the form-cue invari-
ance and direction selectivity in many of our CM responses are
inconsistent with a surround suppression mechanism (Tanaka
and Ohzawa, 2009). From our multielectrode recordings, we also
inadvertently obtained some “2:1 neurons” (Fig. 7) in which the
ratios of the optimal carrier-to-envelope SFs are similar to those
of surround suppression-mediated CM responses (Tanaka and
Ohzawa, 2009; Hallum and Movshon, 2011). These neurons did
not exhibit form-cue invariance (Fig. 7f), unlike our CM-
responsive neurons (Fig. 6c). Thus it seems highly likely that these
2:1 neurons’ responses to CM stimuli were mediated by surround
suppression and not by the kind of mechanism underlying the
responses described in the main body of this paper.

a b
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Figure 6. Measured optimal orientations to CM and luminance gratings, shown in similar format as Figure 3. a, c, e, Scatter
plots of optimal orientations. Each point represents one neuron’s measured optimal orientation to carrier versus luminance (a),
envelope versus luminance (c), and envelope versus carrier (e). Solid and dashed lines depict orientation differences of 0 and%90°,
respectively. Circles and triangles indicate neurons with simple-type (20 in a, 11 in c and e) and complex-type (36 in a, 16 in c and
e) responses, respectively. Open symbols indicate the three sample neurons shown in Figure 5. b, d, f, Histograms of differences
between the preferred orientations for data shown in a, c, and e. The envelope tuning properties were only measured in a subset
of CM-responsive neurons. Thus, 56 neurons are shown in a and b, and 27 neurons are shown in c–f.
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Figure	 7.	 Luminance	 grating	 presented	 in	 an	 optimal	 spatial	 frequency	 and	 orientation	 evokes	 maximal	 neural	
responses	(Adapted	from	Baker	and	Mareschal,	2001).		

	

	
Figure	8.	Linear	mechanism	cannot	explain	the	second-order	responses,	unlike	to	first-order	(Adapted	from	Baker	
and	Mareschal,	2001).		

Potential	model	for	second-order	processing	

Filter-Rectify-Filter	model	
Linear	 summation	 is	 the	 well-known	 underlying	 mechanism	 of	 first-order	 stimuli	 to	
elicit	a	response	in	simple	and	complex	cells.	Figure	7	illustrates	how	a	conventional	LG	
can	activate	 simple	 cell	 sub-regions	 if	 it	 is	presented	with	an	optimal	orientation	and	
spatial	 frequency.	 As	 this	 figure	 shows,	 to	 evoke	maximally	 effective	 summation,	 the	
orientation	and	spacing	of	dark	and	light	bars	have	to	be	aligned	with	the	excitatory	and	
inhibitory	 sub-regions	 of	 the	 simple	 cell.	 Although	 complex	 cells	 do	 not	 show	 such	
spatially	segregated	excitatory	and	inhibitory	sub-regions,	they	are	selective	to	different	
orientations,	 spatial	 frequencies	 and	velocities.	Hubel	 and	Wiesel	 in	1962	 (Hubel	 and	
Wiesel,	 1962)	 suggested	 that	 complex	 cells	 sum	 up	 the	 responses	 from	 neighboring	
simple	cell	type	neurons,	which	have	similar	preferences,	but	slightly	different	receptive	
filed	positions.	Therefore,	complex	cells’	orientation	selectivity	could	be	also	explained	
by	 linear	 summation.	 However,	 a	 linear	 summation	 mechanism	 cannot	 account	 for	
second-order	processing.	As	Figure	8	shows	while	linear	mechanism	could	account	for	
luminance-modulated	responses,	CG	responses	could	only	be	explained	by	a	nonlinear	
mechanism.	Although	light	and	dark	bars	of	an	optimal	LG	can	stimulate	sufficiently	the	
excitatory	and	inhibitory	sub-regions	of	the	receptive	field	of	a	simple	cell	and	evoke	a	
maximal	 response,	 the	 spatial	 frequency	 of	 the	 noise	 texture	 in	 CGs	 is	 too	 high	 to	
provide	any	net	luminance	changes	within	the	neuron’s	receptive	field.	In	fact,	light	and	
dark	elements	of	 the	 carrier	 cancel	out	within	 individual	 sub-regions	of	 the	 receptive	
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field	 and	 thus	 linear	 summation	 cannot	 account	 for	 contrast-modulated	 responses.	
Although	 the	 underlying	mechanism	 of	 second-order	 processing	 has	 been	 intensively	
debated	(e.g.	Tanaka	and	Ohzawa,	2009;	El-Shamayleh	and	Movshon,	2011;	Hallum	and	
Movshon,	2014;	Li	et	al.,	2014),	human	psychophysics	(Landy	and	Graham,	2004)	and	
electrophysiological	 studies	 in	 higher-order	mammals	 (Movshon	 et	 al.,	 1978b;	 Issa	 et	
al.,	 2000)	 suggested	 a	 two-stage	model	 of	 second-order	 processing	 (Zhan	 and	 Baker,	
2006).	This	model	consists	of	two	linear	filters	and	one	non-linear	rectifier	(Figure	9).	
According	 to	 this	 filter-rectify-filter	 (FRF)	model,	 neurons	with	 small	 receptive	 fields	
would	respond	to	the	carrier,	and	their	output	 is	rectified	and	summed	by	the	second	
and	larger	linear	filter	of	low	spatial	frequency,	providing	orientation-selectivity	to	the	
envelope.	 However,	 it	 is	 currently	 unclear	 which	 brain	 structures	 serve	 as	 filters,	 in	
particular	 the	 first-stage	 filter.	 Considering	 the	 established	 spatial	 frequency	 and	
orientation	 tuning	 of	 carrier,	 the	 potential	 candidate	 for	 the	 first	 stage	 has	 to	 be	
selective	 for	 those	 features.	V1	neurons	might	be	 the	primary	potential	 candidates	 to	
play	the	first-stage	filter	role	in	filter-rectify-filter	model,	as	they	are	selective	for	spatial	
frequency	 and	 orientation	 of	 carrier	 (Mareschal	 and	 Baker,	 1999a).	 However,	 recent	
studies	suggested	that	LGN	neurons	could	provide	carrier-tuned	input	for	V1	neurons,	
as	they	are	spatial	frequency	and	orientation	selective	to	carrier	(Rosenberg	et	al.,	2010;	
Rosenberg	and	Issa,	2011).	In	any	manner,	first-stage	information	will	be	carried	by	V1	
neurons,	 which	 constitute	 the	 subunits	 of	 V2	 receptive	 fields,	 and	 thus	 the	 complex	
images	could	be	perceived	by	V2	neurons	(Li	et	al.,	2014).	
 

	
Figure	9.	Two-stage	model	suggested	for	second-order	processing	(Adapted	from	Baker	and	Mareschal,	2001).		

Surround	suppression	mechanism	
Although	several	studies	have	postulated	the	filter-rectify-filter	model	as	the	underlying	
mechanism	 of	 second-order	 responses,	 it	 is	 uncertain	 if	 such	 a	 mechanism	 exists	 in	
primates	 and	 other	 mammals	 (e.g.,	 Tanaka	 and	 Ohzawa,	 2009;	 El-Shamayleh	 and	
Movshon,	2011;	Hallum	and	Movshon,	2014;	Li	et	al.,	2014).	 Indeed,	another	series	of	
second-order	studies	proposed	that	responses	to	second-order	stimuli	could	arise	from	
other	 mechanisms,	 such	 as	 surround	 suppression	 (Tanaka	 and	 Ohzawa,	 2009;	 El-
Shamayleh	 and	 Movshon,	 2011;	 Hallum	 and	 Movshon,	 2014).	 Tanaka	 and	 Ohzawa	
suggested	that	the	spatial	organization	of	center-surround	of	neurons	in	area	17	of	cats	
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Fig. 10. Relationships of different kinds of orientation tuning. (A) Optimal orientation to luminance grating, compared to optimal
orientation of envelope of a contrast modulation stimulus. Each point represents measurements from one neuron; solid line shows unity
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Mareschal and Baker (1998a).
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is	 suitable	 to	 encode	 the	 orientation	 of	 higher-order	 contours.	 Based	 of	 neural	
responses	 to	 second-order	 stimuli,	 they	 reconstructed	 the	 spatial	 organization	 of	 V1	
classical	receptive	fields	and	their	surrounds	and	found	that	center-surround	receptive	
fields	 of	 V1	 neurons,	 generally,	 are	 organized	 elongated	 and	 parallel	 to	 each	 other.	
These	 findings	 led	 them	 to	 conclude	 that	 center-surround	 receptive	 fields	 act	 as	 a	
spatial	 filter	 and	 extract	 the	 higher-order	 borders	 by	 their	 filter	 shapes	 (Tanaka	 and	
Ohzawa,	2009).		

Mice	as	a	popular	model	system	for	visual	processing		
Over	the	past	few	years,	 interest	in	mouse	visual	cortex	has	considerably	grown.	Until	
now,	 the	 non-human	 primate	 has	 been	 the	 preferred	 animal	 model	 for	 studies	 of	
cortical	 visual	 processing	 because	 it	 has	 an	 elaborate	 visual	 system	 whose	 key	
properties,	 such	 as	 acuity	 or	 color	 vision,	 are	 mostly	 similar	 to	 those	 of	 humans.	 In	
many	 other	 areas	 of	 neuroscience,	 however,	 mice	 have	 played	 a	 prominent	 role	
(Boulanger,	2009;	Crook	and	Housman,	2011;	Mentis	et	al.,	2011),	 since	 the	mouse	 is	
currently	 the	 only	 mammal	 in	 which	 genetic	 engineering	 methods	 are	 routinely	
employed.	 Here,	 the	 advent	 of	 transgenic	 and	 knockout	 techniques	 has	 provided	
abundant	possibilities	to	study	normal	and	abnormal	brain	function	and	its	relationship	
to	brain	structure.	Because	the	availability	of	such	powerful	methods	holds	the	potential	
to	 resolve	 long-standing	 questions	 of	 cortical	 visual	 processing	 (Liu	 et	 al.,	 2009b)	
interest	 in	 the	mouse	model	has	grown	 in	 the	 field	of	visual	 systems	neuroscience.	 In	
studies	of	cortical	visual	processing,	the	use	of	a	system	as	simple	as	the	mouse	cortex,	
which	 lacks	 both	 fine-scale	 spatial	 acuity	 and	 columnar	 maps	 such	 as	 those	 for	
orientation,	promises	 to	determine	minimal	mechanisms	necessary	 for	 receptive	 field	
development	and	function	(Niell	and	Stryker,	2008b).	Remarkably,	recent	studies	show	
that	 some	 key	 response	 properties	 of	 mouse	 visual	 neurons	 are	 actually	 quite	
comparable	 to	 those	 known	 from	 decades	 of	 study	 in	 higher	 mammals	 (Niell	 and	
Stryker,	2008b;	Gao	et	al.,	2010b;	Van	den	Bergh	et	al.,	2010).	These	properties	include	
the	sharp	tuning	for	orientation,	luminance-invariant	contrast	sensitivity	and	contrast-
dependent	temporal	and	spatial	frequency	sensitivity.		
	

Functional	organization	of	mouse	higher	visual	areas	
Although	the	mouse	visual	cortex	 is	much	more	simple	 in	both	structure	and	function	
compared	to	primates	and	higher	mammals,	it	still	shares	some	basic	similarities	(Niell	
and	 Stryker,	 2008a;	 Gao	 et	 al.,	 2010a;	 Van	 den	 Bergh	 et	 al.,	 2010)	 For	 example,	
anatomical	 studies	 have	 established	 around	 10	 separated,	 retinotopically	 organized	
areas	in	mouse	visual	cortex	(Figure	10).	These	areas	include	the	primary	visual	area,	
which	is	surrounded	by	nine	other	extrastriate	areas,	each	containing	a	complete	map	
of	 the	entire	visual	hemifield	 (Wang	et	al.,	2007b).	Despite	 the	ongoing	debate	on	 the	
functional	division	of	rodent	extrastriate	areas,	studies	based	on	cytoarchitectonic	and	
chemoarchitectonic	markers	and	pathway	tracing	have	categorized	these	areas	into	two	
parallel	 streams:	 the	 ventral	 stream	 which	 consists	 of	 LM,	 LI,	 POR,	 P	 and	 which	 is	
suggested	to	be	responsible	for	object	recognition;	and	the	dorsal	stream	which	consists	
of	AL,	PM,	AM,	A,	RL	and	is	proposed	to	be	involved	in	object	localization	(Wang	et	al.,	
2011,	 Wang	 et	 al.,	 2012).	 Furthermore,	 distinct	 mouse	 extrastriate	 areas	 have	 been	
shown	 to	 have,	 to	 some	 extent,	 functional	 differences	 as	well,	 when	 they	 are	 probed	
with	first-order	gratings	(Van	den	Bergh	et	al.,	2010;	Andermann	et	al.,	2011;	Marshel	et	
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al.,	 2011;	Glickfeld	 et	 al.,	 2013).	 For	 example,	 neurons	 in	 area	AL,	 the	 gateway	 to	 the	
dorsal	stream,	prefers	visual	stimuli	with	higher	temporal	frequency	and	lower	spatial	
frequency	and	therefore	might	be	 involved	in	object	 localization,	while	neurons	 in	PM	
are	driven	better	 by	high	 spatial	 frequency	 and	 low	 temporal	 frequency	 gratings	 and	
thus	might	have	a	role	in	detecting	fine	texture	(Andermann	et	al.,	2011;	Marshel	et	al.,	
2011).	Therefore,	both	anatomical	and	functional	studies	support	the	idea	of	existence	
of	 ventral	 and	 dorsal	 streams	 in	 mouse	 visual	 cortex,	 similar	 to	 those	 in	 higher	
mammals,	but	probably	in	a	basic	and	simple	manner.		

	

	
Figure	10.	Extrastriate	visual	areas	in	the	primate	and	mouse	(Adapted	from	Niell,	2011)	

 

Can	mice	vision	rely	on	more	than	luminance	cues?	
Although	 the	 number	 of	 studies	 exploring	 mouse	 vision	 has	 been	 growing	 in	 recent	
years,	it	is	still	not	clear	whether	and	how	mice	can	extract	meaningful	representations	
from	visual	cues	other	than	luminance.	Studies	comparing	the	basic	properties	of	mouse	
visual	areas	(Van	den	Bergh	et	al.,	2010;	Andermann	et	al.,	2011;	Marshel	et	al.,	2011)	
and	examining	the	 functional	specificity	of	cortico-cortical	projections	(Glickfeld	et	al.,	
2013)	used	only	first-order,	LGs.	Although	using	LGs	offers	several	advantages	such	as	
direct	 comparison	 of	 the	 properties	 of	 extrastriate	 and	 V1	 neurons	 and	 precise	
measurements	of	basic	 and	discriminating	 features	of	 ventral	 and	dorsal	 streams	 (i.e.	
spatial	 frequency	 and	 temporal	 frequency),	 they	may	 not	 drive	 higher-order	 neurons	
optimally.	 Also,	 in	 psychophysical	 studies	 where	 mice	 had	 to	 perform	 visual	 tasks	
(Andermann	et	al.,	2010;	Histed	et	al.,	2012;	Lee	et	al.,	2012;	Bennett	et	al.,	2013),	so	far,	
only	LGs	have	been	employed.	Therefore,	it	is	not	established	yet	whether	and	how	the	
mouse	visual	system	represents	other	visual	cues	 than	 luminance	and	 if	mice	can	use	
those	second-order	stimuli	to	guide	visual	behavior.		
	

Area	LM	might	be	a	suitable	area	to	investigate	second-order	processing	
Among	mouse	extrastriate	areas,	LM	has	been	thought	to	be	homologous	to	area	V2	in	
higher-order	 mammals,	 where	 selectivity	 for	 second-order	 contours	 has	 been	 found	
(Zhou	and	Baker,	1994;	Leventhal	et	al.,	1998;	Mareschal	and	Baker,	1998a,	b;	Zhan	and	
Baker,	 2006;	 Song	 and	 Baker,	 2007;	 Li	 et	 al.,	 2014).	 V2	 and	 area	 LM	 are	 similar	 in	
several	 aspects:	 both	 areas	 share	 the	 representation	 of	 the	 vertical	meridian	with	V1	
(Coogan	and	Burkhalter,	1993);	Wang	et	al.,	2007b),	both	areas	are	primary	targets	of	
V1	projections	(Wang	et	al.,	2011)	and	both	contains	neurons	with	ventral	and	dorsal	
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stream	properties	(Wang	et	al.,	2012).	Another	reason	that	makes	LM	a	suitable	area	to	
study	 second-order	 processing	 in	 mouse	 is	 the	 potential	 role	 of	 this	 area	 in	 object	
recognition,	 as	 anatomical	 studies	 identified	 area	 LM	 as	 the	 gateway	 of	 the	 mouse	
ventral	stream	(Wang	et	al.,	2011).	Furthermore,	one	study	in	rodents	showed	that	LM	
lesions	 could	 disrupt	 some	 aspects	 of	 object	 recognition	 (Sacco	 and	 Sacchetti,	 2010).	
Taken	together,	the	established	properties	of	area	LM	make	this	area	as	an	interesting,	
putative	region	involved	in	second-order	processing.		
		

Can	 mice	 use	 second-order	 stimuli	 to	 guide	 visual	 perception	 in	 a	 �cue-invariant	
way?	 �	
In	this	study	I	 investigated	whether	mice	can	use	second-order	stimuli	 to	guide	visual	
perception	in	a	cue-invariant	way	and	examined	potential	cue-invariant	representations	
of	stimulus	orientation	in	two	areas	of	mouse	visual	cortex.	Using	a	classical	condition	
task,	I	tested	whether	orientation	discrimination	could	be	achieved	invariant	to	defining	
cue	 of	 visual	 stimuli.	 More	 precisely,	 I	 asked	 if	 mice	 can	 generalize	 orientation	
discrimination	from	first-order	LGs	to	second-order,	CGs.	I	found	that	mice	are	capable	
of	generalizing	orientation	discrimination	learning	from	familiar	cue	conditions	to	novel	
cue	conditions.	Then	I	performed	extracellular	recordings	of	neural	responses	to	LG	and	
CG	stimuli	 in	mouse	areas	V1	and	LM,	and	compared	 the	orientation	 tuning	curves	 to	
these	 two	types	of	gratings.	Although	 in	both	areas	 the	responses	 to	CGs	 compared	to	
those	 to	 LGs	 were	 weaker	 and	 less	 selective,	 neurons	 showed	 broadly	 similar	
preferences	 for	 the	 two	 types	of	 stimuli.	 I	 conclude	 that	mice	are	able	 to	use	 second-
order	stimuli	to	guide	visual	perception,	albeit	in	a	basic	form.	
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Material	&	Methods	
All	 procedures	 complied	 with	 the	 European	 Communities	 Council	 Directive	
2010/63/EC	 and	 the	 German	 Law	 for	 Protection	 of	 Animals,	 and	 were	 approved	 by	
local	authorities,	following	appropriate	ethics	review.	
	

Luminance-modulated	and	contrast-modulated	gratings	
Visual	 stimuli	 were	 presented	 using	 custom	 software	 (EXPO;		
https://sites.google.com/a/nyu.edu/expo/home)	on	 a	 calibrated	 liquid	 crystal	 display	
(LCD)	monitor	(Samsung	2233RZ;	mean	luminance	50	cd/m2),	placed	25	cm	in	front	of	
the	animal’s	eyes.	To	correct	 luminance	nonlinearities	of	the	display	I	used	an	inverse	
gamma	lookup	table	obtained	regularly	by	calibration	with	a	photometer.	
	
For	 both	 behavioral	 and	 electrophysiological	 experiments,	 I	 used	 a	 common	 set	 of	
luminance-modulated	 gratings	 (LGs)	 and	 contrast-modulated	 gratings	 (CGs),	 obtained	
by	multiplying	 a	 contrast	 envelope	with	 a	 noise	 carrier.	 I	 defined	 a	 two-dimensional	
moving	sine	wave	grating	as:	! !,!, ! =  sin (2!" sin ! ! + cos ! ! + 2!"#),	where	
!	is	the	spatial	frequency,	!	is	the	orientation,	and	!	is	the	temporal	frequency.	LGs	were	
then	 generated	 as:	 !" !,!, ! =  !! + !!!"(!,!, !) ,	 and	 CGs	 were	 generated	 as	
!" !,!, ! = !! + !!(! !,!, ! + 1)/2 ∗ !(!,!),	where	!!is	 the	mean	 luminance,	c	 is	 the	
contrast	 and	! !,! 	is	 the	 static	 noise	 carrier	with	 a	 spatial	 frequency	 spectrum	 that	
dropped	off	as	! !! ~1/(!! + !!).	 I	created	two	types	of	CG	stimuli	that	differed	in	the	
distribution	of	Fourier	energy	of	the	carrier.	For	CGs	with	low-frequency	noise,	I	set	!! 	
to	 0.05	 cycles/degree	 and	 imposed	 a	 high	 frequency	 cutoff	 at	 0.12	 cycles/degree;	 for	
CGs	 with	 high	 frequency	 noise,	 I	 used	 an	!! = 0	cycles/degree	 and	 a	 low	 frequency	
cutoff	at	0.12	cycles/degree.	For	recordings	from	area	V1,	the	LGs	and	the	envelope	of	
the	CGs	had	a	 spatial	 frequency	 f	 of	0.05	cycles/degree	and	a	 temporal	 frequency	!	of	
1.5	Hz.	To	optimize	stimulus	parameters	for	the	preferences	of	area	LM,	I	conducted	the	
LM	 recordings	 with	 f	 of	 0.028	 cycles/degree	 and	!	of	 1.8	 Hz	 (Marshel	 et	 al.,	 2011).	
Contrast	c	was	set	to	1,	except	for	experiments	where	I	matched	the	root-mean-square	
(RMS)	contrast	between	first-	and	second-order	gratings,	in	which	case	c	was	0.335	for	
the	LGs.	The	seed	for	generating	the	random	Gaussian	noise	texture	was	varied	across	
experimental	sessions.	

Analysis	of	visual	stimuli	
Following	An	et	al.	(2014),	I	performed	a	spectral	power	analysis	of	the	LGs	and	CGs.	To	
reveal	 the	difference	 in	power	between	 two	orthogonal	orientations,	 I	 first	 calculated	
! !! ,!! , ! =  !! !! ,!! , ! − !!_!"#$!(!! ,!! , !),	 where	 the	 power	 P	 is	 the	 squared	
amplitude	of	 the	3-dimensional	Fourier	 transform	of	 the	drifting	grating.	To	 illustrate	
the	 difference	 in	 power	 as	 a	 function	 of	 space,	D	 was	 further	 integrated	 to	 result	 in	
! !! ,!! =  ! !! ,!! , ! !".	 To	 illustrate	 the	 difference	 in	 power	 as	 a	 function	 of	
orientation,	! !! ,!! 	was	transformed	into	!(!,!)	and	was	further	integrated	to	result	
in	! ! =  !(!,!)!".	To	assess	the	spatial	frequency	and	temporal	frequency	content	
of	 the	 absolute	 differential	 power,	 I	 calculated	 ! ! =  ! !,! !" 	and	 ! ! =
 !! !! ,!! , ! − !!_!"#$!(!! ,!! , !) !!!!!! .	
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Surgical	preparation	for	head-fixed	visual	behavior	
Behavioral	experiments	were	performed	in	2-5	months	old	C57BL/6J	mice	of	either	sex	
(2	males,	4	females).	General	anesthesia	was	induced	by	5%	isoflurane	and	maintained	
during	 surgery	 at	 1–2%.	 Buprenorphine	 (0.1	 mg/kg,	 sc)	 was	 used	 for	 analgesia	 and	
atropine	(0.3	mg/g,	sc)	to	reduce	bronchial	secretions.	Animal	temperature	was	kept	at	
37°C.	 A	 custom-designed	 head	 post	 was	 mounted	 to	 the	 skull	 using	 dental	 cement	
(Tetrik	 EvoFlow,	 Ivoclar	 Vivadent).	 Mice	 were	 implanted	 with	 two	miniature	 screws	
over	 the	 cerebellum	 (#00-96X	 1/16,	 Bilaney),	 serving	 as	 reference	 and	 ground	 with	
extracellular	 recordings.	 The	 skull	 over	 the	 target	 area	 was	marked	 and	 sealed	 with	
KwikKast	 (WPI).	 For	 3	 days	 after	 surgery,	mice	were	 injected	 by	 antibiotics	 (Baytril,	
5mg/kg,	sc)	and	longer	lasting	analgesics	(Carprofen,	5mg/kg,	sc).		After	recovery,	mice	
were	 gradually	 habituated	 to	 being	 head-fixed	 and	 placed	 on	 an	 air-suspended	
Styrofoam	 ball	 (Holscher	 et	 al.,	 2005;	 Dombeck	 et	 al.,	 2007)	 (Figure	 1a).	 A	 spout	
connected	to	a	lick	sensor	was	used	to	measure	licks	and	deliver	fluid	rewards	(Schwarz	
et	al.,	2010).	

Orientation	discrimination	task	and	analysis	of	behavioral	data	
After	 habituation	 to	 the	 setup,	 mice	 were	 placed	 on	 a	 water	 restriction	 regimen.	
Throughout	all	 training	phases,	 the	animals’	daily	weight	and	 fluid	consumption	were	
monitored	 and	 recorded,	 and	 the	 animals	 were	 checked	 for	 signs	 of	 potential	
dehydration	(Guo	et	al.,	2014).	Following	Guo	et	al.	(2014),	in	a	first	phase,	daily	access	
to	water	was	systematically	reduced	until	the	animal	reached	a	target	weight	of	~85%	
of	 its	 initial	 weight.	 After	 the	 weight	 had	 stabilized,	 training	 in	 the	 behavioral	 task	
started	 and	mice	 received	most	 of	 their	water	 during	 performance	 in	 the	 behavioral	
apparatus.	
	
Using	classical	conditioning,	mice	were	trained	to	associate	the	orientation	of	the	visual	
stimulus	with	a	water	reward.	In	each	session,	mice	were	presented	with	120	trials	of	
either	45	deg	or	315	deg	gratings,	drifting	for	a	duration	of	3	s	behind	an	aperture	of	32	
deg	diameter.	The	presentation	of	the	315	deg	grating	was	automatically	followed	by	a	
fluid	 reward	 of	 5-7	 µl ,	 the	 orthogonal	 grating	 was	 never	 rewarded.	 Stimulus	
presentations	were	separated	by	an	 interstimulus	 interval	of	15	s	added	 to	a	 random	
delay	drawn	from	an	exponential	distribution	with	a	mean	of	15	s.	Drawing	onset	times	
from	an	exponential	distributions	yields	a	flat	hazard	rate,	ensuring	that	animals	cannot	
predict	the	time	point	of	reward	delivery.	
	
To	evaluate	orientation	discrimination	performance,	I	focused	on	licks	in	anticipation	of	
fluid	reward.	Following	Gallistel	et	al.	(2004),	I	computed,	separately	for	each	stimulus	
orientation,	a	lick	index	LI	=	(licksstimulus	–	licksbaseline)/(licksstimulus	+	licksbaseline	),	where			
licksstimulus	is	the	number	of	licks	during	the	last	1	second	of	stimulus	presentation	and	
licksbaseline		is	the	number	of	 licks	during	the	1	second	before	stimulus	presentation.	To	
identify	 learning	 I	 analyzed	 the	 cumulative	 records	 of	 LI,	 where	 changes	 in	 slope	
correspond	to	changes	in	the	level	of	performance.	For	instance,	a	positive	slope	of	the	
cumulative	 LI	 corresponds	 to	 increased	 licking	 during	 the	 stimulus	 compared	 to	 the	
baseline	period,	and	indicates	that	the	animal	anticipates	reward	after	seeing	any	of	the	
stimuli.	 A	 positive	 slope	 of	 the	 difference	 between	 cumulative	 LIs	 indicates	 that	 the	
animal	 licks	more	 strongly	during	 the	 rewarded	 than	during	 the	unrewarded	grating,	
and	shows	 that	 the	animal	has	 learned	 to	discriminate	grating	orientations.	To	assign	
trials	to	different	stages	of	orientation	discrimination	learning,	I	determined	significant	
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changes	 in	 the	 slope	 of	 the	 difference	 of	 the	 cumulative	 LI	 by	 using	 a	 change	 point	
analysis	 (Gallistel	 et	 al.,	 2001).	 To	 quantify	 discrimination	 performance	 across	 the	
different	stages	of	learning,	I	performed	an	ideal	observer	analysis	on	the	distributions	
of	LIs	for	the	two	orientations.	
	
I	 tested	 the	 mice	 in	 several	 conditions.	 I	 always	 started	 training	 using	 LGs	 until	 the	
animal	 reached	 stable	 and	 reliable	 orientation	 discrimination	 performance.	 Then,	 I	
replaced	LGs	with	CGs	with	 low-frequency	 noise	 carriers	 to	 test	 the	 generalization	 of	
orientation	discrimination	 to	 second-order	gratings.	To	 test	 for	 influences	of	 stimulus	
contrast,	 I	 switched	 back	 to	 LGs,	 but	 with	 contrast	 reduced	 to	 0.335,	 such	 that	 it	
matched	the	RMS	contrast	of	CGs.	After	that,	2	animals	were	additionally	tested	with	CGs	
with	high-frequency	noise	carriers.		

Surgical	preparation	for	electrophysiological	recordings	during	wakefulness	
Electrophysiological	 recordings	were	 performed	 in	 2-5	months	 old	 C57BL/6J	mice	 of	
either	 sex	 (4	 males,	 8	 females).	 Surgical	 procedures	 were	 identical	 to	 those	 for	
behavioral	experiments.	After	recovery	and	habituation	to	the	setup,	mice	underwent	a	
second	 surgical	 procedure	 under	 general	 anesthesia	 (1-2%	 Isoflurane,	 ~15	 min),	 in	
which	 a	 craniotomy	 was	 performed,	 which	 was	 sealed	 with	 KwikKast	 until	 the	
recording	 session.	 To	 avoid	 potential	 effects	 of	 anesthesia,	 recordings	 were	 never	
performed	on	the	same	day	of	the	craniotomy.	

Surgical	preparation	for	electrophysiological	recordings	during	anesthesia	
For	 electrophysiological	 recordings	 under	 anesthesia,	 I	 used	 4	 C57BL/6J	 mice.		
Anesthesia	 was	 induced	 by	 5%	 isoflurane	 and	 maintained	 during	 surgery	 by	 a	
combination	of	urethane	(375	mg/kg,	ip),	chlorprothixene	hydrochloride	(2	mg/kg,	ip)	
and	 isoflurane	 (1–2%).	 I	 used	 Buprenorphine	 (0.1	mg/kg,	 sc)	 analgesia	 and	 atropine	
(0.3	mg/g,	sc)	to	reduce	bronchial	secretions.	Animal	temperature	was	kept	at	37°C.	A	
custom-designed	 head	 post	 was	 mounted	 to	 the	 skull	 using	 dental	 cement	 (Tetrik	
EvoFlow,	 Ivoclar	Vivadent).	As	reference,	 I	used	a	wire	placed	 into	 the	cerebellum;	as	
ground,	a	wire	placed	under	the	exposed	skin.	During	recordings,	isoflurane	was	kept	at	
minimal	to	reduce	unwanted	side	effects	on	visual	responses	(Vaiceliunaite	et	al.,	2013).	
Depending	on	the	level	of	anesthesia	as	assessed	by	the	breathing	rate	and	presence	or	
absence	 of	 the	 pinch	 toe	 reflex,	 additional	 doses	 of	 chlorprothixene	 hydrochloride	
(2mg/kg,	ip)	were	injected	(approximately	every	3	h).	Recordings	typically	lasted	for	6	
h.		
	
Recordings	 from	 V1	 were	 obtained	 through	 a	 craniotomy	 (<1.5	 mm)	 located	 3	 mm	
lateral	to	the	midline	and	1.1	mm	in	front	of	the	anterior	margin	of	the	transverse	sinus.	
Recordings	 from	LM	were	 obtained	 from	4	mm	 lateral	 to	 the	midline	 and	 1.4	mm	 in	
front	of	the	anterior	margin	of	the	transverse	sinus	“Wang,	2011”.	Recordings	from	V1	
and	 LM	were	 performed	 in	 separate	 sessions	 using	 32-channel	 silicon	 probes	 in	 a	 4-
shank	 configuration	 (Buzsaki32-A32,	 Neuronexus;	 200	 inter-shank	 spacing).	
Extracellular	 signals	 were	 recorded	 at	 30	 kHz	 (Blackrock	 microsystems).	 Online	
estimates	 of	 tuning	 properties	 relied	 on	 high-pass	 filtered	 signals	 crossing	 a	 fixed	
threshold	(typically	4.5–6.5	SDs).	
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Visual	stimuli	for	electrophysiological	recordings	
To	estimate	receptive	field	(RF)	position,	I	mapped	ON	and	OFF	subfields	of	RFs	using	a	
sparse	 noise	 stimulus	 (Liu	 et	 al.,	 2009a).	 This	 stimulus	 consisted	 of	 white	 or	 black	
squares	 (4°	 diameter)	 briefly	 flashed	 (150	 or	 200	 ms)	 on	 a	 square	 grid	 (40	 or	 60°	
diameter).	Subsequent	stimuli	were	centered	on	the	online	estimates	of	the	average	RF	
maps	for	each	shank	of	a	32-channel	silicon	probe	(see	“Analysis	of	electrophysiological	
data”	 and	Figure	 1b).	To	measure	orientation	 tuning	 curves,	 I	 interleaved	 in	pseudo-
random	order	LGs	and	CGs	moving	for	a	duration	of	2	s	in	8	different	directions.		

Analysis	of	electrophysiological	data	

Unit	extraction	and	spike	sorting	
Recordings	from	V1	were	obtained	through	a	craniotomy	(~1.5	x	1.5	mm)	located	3	mm	
lateral	to	the	midline	and	1.1	mm	in	front	of	the	anterior	margin	of	the	transverse	sinus.	
Recordings	 from	LM	were	 obtained	 from	4	mm	 lateral	 to	 the	midline	 and	 1.4	mm	 in	
front	of	the	anterior	margin	of	the	transverse	sinus	(Wang	et	al.,	2011).	Recordings	from	
V1	and	LM	were	performed	in	separate	sessions	using	32-channel	silicon	probes	in	a	4-
shank	configuration	(Buzsaki32-A32,	Neuronexus;	200	μm	inter-shank	spacing,	Figure	
1b).	 Extracellular	 signals	were	 recorded	 at	 30	 kHz	 (Blackrock	microsystems).	 Online	
estimates	 of	 tuning	 properties	 relied	 on	 high-pass	 filtered	 signals	 crossing	 a	 fixed	
threshold	(typically	4.5–6.5	SDs).	
Wideband	extracellular	signals	were	digitized	at	30	kHz	(Blackrock	microsystems)	and	
analyzed	using	 the	NDManager	software	suite	 (Hazan	et	al.,	2006).	The	8	channels	on	
each	 shank	 were	 treated	 as	 an	 “octrode”.	 Using	 a	 robust	 spike	 detection	 threshold	
(Quiroga	et	al.,	2004)	set	to	6	standard	deviations	of	the	background	noise,	spike-waves	
were	 extracted	 for	 each	 “octrode”	 from	 the	 high-pass	 filtered	 continuous	 signal.	 The	
first	3	principal	 components	of	 each	channel	were	used	 for	automatic	 clustering	with	
KlustaKwik,	followed	by	manual	refinement	of	clusters	(Hazan	et	al.,	2006).	This	yielded	
high-quality	single	unit	activity	as	evident	from	distinct	spike	wave	shapes	and	a	clear	
refractory	period	in	the	autocorrelogram	(Figure	1d).	For	analysis	of	retinotopy,	I	used	
the	envelope	of	the	multiunit	activity	(MUAe,	van	der	Togt	et	al.,	2005),	averaged	across	
all	channels	in	each	shank.	

Analysis	of	tuning	
To	 determine	 RF	maps	 for	 single	 unit	 spiking	 activity,	 I	 fitted	 ON	 and	 OFF	 subfields	
separately	 with	 a	 two-dimensional	 Gaussian	 (Liu	 et	 al.,	 2009a):	
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!!! −  !!"!!! , where	 A	 is	 the	 maximum	 amplitude,	 B	 is	 the	
baseline	response,	a	and	b	are	half-axes	of	the	ellipse,	and	x’	and	y’	are	transformations	
of	the	stimulus	coordinates	x	and	y,	taking	into	account	the	angle	θ	and	the	coordinates	
of	 the	 center	 (xc,	 yc)	 of	 the	 ellipse.	 To	 quantify	 the	 progression	 of	 RF	 location	 in	 the	
recorded	visual	area,	I	constructed	maps	of	z-scored	MUAe	activity,	averaged	between	0	
–	0.35	s	after	stimulus	onset.	If	these	maps	had	a	sufficient	signal/noise	ratio	(standard	
deviation	>	0.035),	I	computed	the	average	RF	coordinates	from	the	peak	of	the	MUAe	
activity	for	each	shank.	Sessions	with	ambiguous	maps	were	discarded	from	all	further	
analyses.	
	
Orientation	tuning	curves	were	fitted	with	a	sum	of	two	Gaussians	with	peaks	180	deg	
apart,	which	could	have	different	amplitudes	but	equal	width	and	a	constant	baseline.	
To	quantify	orientation	selectivity,	I	computed	d-prime	(Berens	et	al.,	2008)	defined	as	



	 22	

!! = !!"#$! !!"#$!
! ,	where	! =  (!!"#$ ! +  !!"#$! 

! )/2.	 In	 contrast	 to	 the	more	 commonly	
used	OSI	(Niell	and	Stryker,	2008a),	 this	 index	has	the	advantage	to	not	only	consider	
modulation	depth	but	also	the	variability	of	responses.	I	performed	all	our	analyses	also	
on	 OSI	 (both	with	 and	without	 spontaneous	 activity	 removed),	 and	 circular	 variance	
(Ringach	 et	 al.,	 2002);	 results	 obtained	 with	 these	 alternative	 measures	 were	
qualitatively	 similar.	 I	 only	 considered	 neurons	 which	 passed	 3	 selection	 criteria	
applied	to	the	responses	to	LGs:	(1)	an	average	firing	rate	of	at	least	1	spike/s	to	at	least	
one	 orientation,	 (2)	 average	 responses	 to	 at	 least	 2	 orientations	 differing	 from	 the	
response	to	the	mean-luminance	gray	screen	by	at	least	2.58	times	the	standard	error	of	
the	mean,	and	(3)	explained	variance	of	the	Gaussian	fit	of	at	least	70%.		

Comparison	of	responses	to	luminance-modulated	and	contrast-modulated	gratings	
On	the	population	of	selected	neurons,	I	performed	a	log-linear	analysis	to	statistically	
assess	the	proportion	of	neurons	responsive	to	both	LGs	and	CGs	vs.	LGs	only.	To	model	
the	 observed	 counts,	 I	 fitted	 a	 generalized	 linear	 model	 (GLM)	 with	 a	 Poisson	 link	
function	considering	the	factors	responsiveness	(LGs	and	CGs	vs.	LGs	only)	and	area	(V1	
vs.	LM).	I	report	all	significant	interactions	with	the	factor	responsiveness.	In	addition,	I	
included	 the	 factor	 noise	 (low-frequency	 vs.	 high-frequency)	 to	 assess	 differences	 in	
responsiveness	across	experiments	with	different	noise	textures.	
	
To	investigate	differences	in	firing	rates	and	orientation	tuning	in	response	to	LGs	and	
CGs	 I	 performed	 an	 analysis	 of	 variance	 (ANOVA)	 with	 the	 within-subject	 factor	
stimulus	 (LGs	 vs.	 CGs),	 and	 the	 between-subject	 factors	 area	 (V1	 vs.	 LM).	 To	
appropriately	visualize	the	results,	I	show	the	mean	and	standard	error	of	the	pairwise	
differences	(Franz	and	Loftus,	2012).	To	compare	the	difference	in	responses	to	CGs	vs.	
LGs,	 for	LGs	with	full	contrast	and	matched	RMS	contrast,	I	performed	an	ANOVA	with	
the	 within-subject	 factor	 stimulus	 (LGs	 vs.	 CGs),	 and	 the	 between-subject	 factors	
contrast	(full	vs.	matched	LG)	and	area	(V1	vs.	LM).	All	post-hoc	pairwise	contrasts	were	
corrected	 for	 multiple	 comparisons	 (multcomp	 package	 in	 R,	 (R	 Development	 Core	
Team,	2015).	
	
To	 relate	 the	 preferred	 orientations	 in	 response	 to	 LGs	 and	 CGs	 I	 used	 the	 circular	
version	of	the	Pearson’s	product	moment	correlation	as	described	by	(Jammalamadaka	
and	Sengupta,	2001)	and	implemented	in	Matlab	by	(Berens,	2009).	

Histology	
For	 post-mortem	 histological	 reconstruction	 of	 recording	 sites	 	 (Figure	 1c)	 I	 coated	
each	 shank	 of	 the	 electrode	 alternating	 between	 a	 red-shifted	 fluorescent	 lipophilic	
tracer	 (DiD;	 D7757,	 Invitrogen)	 and	 an	 orange	 fluorescent	 lipophilic	 dye	 (DiI;	 D282,	
Invitrogen).	 After	 recordings,	 mice	 were	 transcardially	 perfused	 under	 pentobarbital	
sodium	anesthesia	(200	mg/kg)	with	0.2	M	sodium	phosphate	buffer	(PBS),	followed	by	
4%	paraformaldehyde	in	PBS.	Brains	were	postfixed	for	24	h	at	4°C	and	then	rinsed	3	
times	with	1x	PBS.	Brains	were	sliced	(40	μm)	using	a	vibratome	(Microm	HM	650	V-
Thermo	 Scientific)	 and	 mounted	 on	 glass	 slides	 with	 Vectashield	 DAPI	 (Vector	
Laboratories),	 and	coverslipped.	Slides	were	 inspected	 for	 the	presence	of	 the	 tracers	
using	a	Zeiss	Imager.Z1m	fluorescent	microscope.	
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Figure	 1.	 Behavior	 setup,	 recordings,	 and	 isolated	 single	 neurons.	 a,	 Setup	 for	 head-fixed	 behavior	 with	 air-
cushioned	spherical	 treadmill	and	 lick-sensor.	b,	 Schematic	of	 the	 four-shank	silicon	probe.	c,	Coronal	 section.	The	
four	 shanks	 of	 the	 electrode	were	 stained	 in	 alternating	 fashion	with	DiI	 (yellow)	 and	DiD	 (red).	 Blue	 represents	
DAPI.	Scale	bar,	400	m.	d,	Average	spike-waveforms	and	autocorrelograms	of	two	example	single	units	recorded	from	
area	V1.	Units	144	–5.x.31	and	144	–	4.x.5.		
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Results	
	

Stimuli	
To	 discriminate	 the	 global,	 first-order	 and	 local,	 second-order	 features	 of	 CGs,	 I	
performed	 a	 spectral	 analysis	 of	 the	 stimuli	 used	 in	 this	 study.	 Figure	 1	 shows	 the	
spectral	 analysis	 performed	 on	 the	 grating	 orientations	 used	 for	 the	 behavioral	
experiments.	 LGs	 (Figure	 1a1)	 contain	 power	 at	 a	 single	 spatial	 frequency	 and	
orientation	 (Figure	 1	a2)	 and	 the	 peaks	 of	 their	 differential	 power	 in	 the	 orientation	
domain	correspond	to	grating	orientations,	i.e.	at	−45	and	45	degrees	(Figure	1a3,	a4).	
The	 absolute	 differential	 power	 in	 the	 spatial	 frequency	 domain	 peaks	 at	 0.05	
cycles/degree	 (Figure	 1a5)	 and	 the	 absolute	 differential	 power	 in	 the	 temporal	
frequency	domain	peaks	at	1.5	Hz	(Figure	1a6),	which	correspond	to	the	grating	spatial	
frequency	 and	 temporal	 frequency,	 respectively.	 For	 CGs	 with	 low-frequency	 noise	
carrier	 (Figure	 1b1,	 b2),	 the	 differential	 power	 peaks	 at	 −45	 and	 45	 degrees,	 which	
correspond	 to	 the	 orientation	 of	 envelope	 (Figure	 1b3,	 b4).	 This	 is	 due	 to	 an	
inhomogeneity	in	the	distribution	of	local	luminance	of	the	noise	carrier,	induced	by	the	
envelope.	However,	 the	magnitude	 of	 this	 differential	 power	 is	 considerably	 different	
from	that	for	LGs,	it	is	smaller	(25%	of	that	for	LGs)	and	more	broadly	distributed	across	
orientations.	In	the	spatial	frequency	domain	also,	CGs	with	low-frequency	noise	show	a	
broad	 differential	 power	 distribution	 between	 0.02	 and	 0.15	 cycles/degree	 (Figure	
1b5),	while	in	the	temporal	frequency	domain,	absolute	differential	power	peaks	clearly	
at	1.5	HZ,	corresponding	to	the	drift	rate	of	the	envelope	(Figure	1b6).	In	comparison,	
the	spectral	analysis	on	CGs	with	high-frequency	noise	carrier	(Figure	1c1,	c2)	revealed	
only	little	differential	power	across	spatial	frequencies	(Figure	1c3),	as	no	clear	peaks	
and	 troughs	 of	 differential	 power	 were	 observed	 around	 the	 orientations	 of	 the	 LGs	
(Figure	 1c4).	 For	 this	 type	 of	 CGs,	 the	 absolute	 differential	 power	 in	 the	 spatial	
frequency	 domain	 is	 small	 for	 values	 lower	 than	 0.08	 cycles/degree,	 highest	 at	 0.16	
cycles/degree,	 and	 diminishes	 toward	 higher	 spatial	 frequencies	 (Figure	 1c5);	 the	
absolute	 differential	 power	 in	 the	 temporal	 frequency	 domain	 again	 peaks	 at	 1.5	HZ,	
which	is	the	drift	rate	of	the	envelope	(Figure	1c6).		
Together,	this	spectral	analysis	reveals	the	difference	between	the	two	types	of	CGs	 in	
activating	 the	 first-order	 luminance-sensitive	mechanism	 in	 the	mouse	 visual	 system:	
while	 the	 distortion	 signals	 in	 CGs	 with	 low-frequency	 noise	 carriers	 could	 lead	 to	
decoding	 stimulus	 orientation	 via	 first-order	mechanisms,	 it	 seems	 unlikely	 that	 CGs	
with	 high-frequency	 noise	 carrier	 invoke	 the	 same	 mechanism.	 Indeed,	 as	 explained	
above,	for	CGs	with	high-frequency	noise	carrier,	there	are	no	clear	peaks	and	troughs	
around	 the	 orientation	 of	 the	 LGs	 in	 the	 differential	 orientation	 signal	 across	 spatial	
frequencies	and	the	spatial	frequencies	of	the	noise	carrier	are	concentrated	beyond	the	
optimal	 values	 for	 mouse	 V1	 (0.045	 cycles/degree)	 and	 LM	 (0.028	 cycles/degree)	
neurons	(Marshel	et	al.,	2011).	
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Figure	1.	Analysis	of	visual	stimuli.	a,	LGs	(32	degrees	wide)	of	orthogonal	orientations	(a1)	and	their	power	spectra	
(a2).	Differential	power	in	the	Fourier	plane	(a3)	and	orientation	domain	(a4).	Spatial	frequency	(a5)	and	temporal	
frequency	content	(a6)	of	the	absolute	differential	power	distribution.	b,	Same	as	a,	for	the	CGs	with	low-frequency	
noise.	c,	 Same	as	a,	 for	 the	CGs	with	high-frequency	noise.	Red	circles	and	 lines	 indicate	a	 spatial	 frequency	of	0.1	
cycles/degree.		

Orientation	discrimination	learning	for	luminance-modulated	gratings	
I	wanted	to	test	whether	mice	can	use	second-order	stimuli	to	guide	visual	perception	
in	a	cue-invariant	way.	In	order	to	address	this	question,	first	I	trained	head-fixed	mice	
in	 a	 classical	 conditioning	 paradigm	 to	 discriminate	 different	 orientations	 of	 LGs	
(Figure	 2).	 I	 presented	 two	 orthogonal	 orientations	 and	 paired	 one	 of	 these	
orientations	 with	 a	 fluid	 reward.	 Next,	 I	 measured	 discrimination	 performance	 with	
analyzing	the	orientation-specific	licking	in	anticipation	of	reward.	At	the	beginning	of	
training,	 animals	 licked	 constantly,	 regardless	 of	 stimulus	 presentation	 and	 increased	
lick	rates	to	pick	up	the	reward	(Figure	2a).	However,	when	animals	learned	the	task,	a	
high	 rate	 of	 licks	 was	 observed	 during	 the	 presentation	 of	 the	 rewarded	 orientation	
(Figure	 2b).	 	 To	 evaluate	 licking,	 I	 computed,	 for	 each	 orientation	 separately,	 the	
cumulative	 sum	 of	 a	 lick	 index	 (LI),	 defined	 as	 the	 difference	 in	 the	 number	 of	 licks	
during	 the	 last	1	 s	of	 stimulus	presentation	and	 the	1	 s	before	 stimulus	presentation,	
divided	by	their	sum	(Figure	2c).	Then,	I	calculated	the	difference	between	cumulative	
LIs	 to	 the	 rewarded	 and	 unrewarded	 orientations	 and	 identified	 significant	 change	
points,	 which	 are	 related	 to	 significant	 changes	 in	 orientation	 discrimination	
performance	(Figure	2d).	Later,	I	performed	an	ideal	observer	analysis	on	the	animal’s	
LI,	 which	 indicated	 that	 orientations	 could	 not	 be	 decoded	 before	 (area	 under	 the	
receiver	 operating	 characteristic	 [AUROC]	 =	 0.52,	 95%	 CI	 =	 0.50–	 0.55),	 but	 after	
learning	(AUROC	=	0.78,	95%	CI	=	0.75–	0.80).	Finally,	 I	summarized	the	performance	
across	 all	 mice	 and	 found	 similar	 results,	 with	 average	 performance	 increasing	 from	
0.51±	0.008	(SEM)	to	0.80	±0.023.		
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Figure	 2.	 Orientation	 discrimination	 for	 LGs.	 a,	 Example	 behavioral	 session,	 before	 learning.	 Top,	 Licks	 to	 the	
rewarded	 orientation.	 Middle,	 Licks	 to	 the	 unrewarded	 orientation.	 Bottom,	 Trial-averaged	 lick	 density.	 Shaded	
regions	 represent	mean	 SEM.	 Gratings	 indicate	 stimulus	 onset.	 Black	 vertical	 lines	 indicate	 stimulus	 offset.	 Black	
horizontal	 lines	 indicate	 baseline	 and	 stimulus	 period	 used	 for	 computing	 the	 LI.	 Session	 5,	 b,	 Same	 as	 a,	 after	
learning.	Session	21,	c,	Cumulative	LI	as	a	function	of	trial	number	for	rewarded	(blue)	and	unrewarded	orientations	
(red).	d,	Difference	of	cumulative	LIs	between	the	two	orientations.	Dots	indicate	significant	change	points	used	for	
assigning	 sessions	 to	 training	 stages.	 Trials	 before	 the	 first	 change	 point	were	 assigned	 to	 the	 pre-learning	 stage	
(dashed	vertical	line).	Trials	after	the	last	change	point	(solid	vertical	line)	were	assigned	to	the	post-learning	stage.	
e,	ROC	analysis	based	on	distributions	of	LIs	 from	the	two	conditions	 in	 the	pre-learning	stage	(dashed	curve)	and	
post-learning	stage	(solid	curve).	a–e,	Example	mouse	278.	f,	AUROC	across	mice	(N=	6).	Crosses	represent	95%	CIs.  

Cue-invariant	generalization	of	orientation	discrimination	
Next,	I	tested	whether	mice	can	generalize	the	learned	orientation	discrimination	from	
LGs	 to	CGs,	 in	which	orientation	was	characterized	by	changes	 in	contrast	rather	 than	
luminance	 (Figure	 1b).	 After	 mice	 had	 successfully	 learned	 the	 orientation	
discrimination	task	and	reached	a	stable	and	reliable	performance,	I	switched	only	the	
stimulus	from	LGs	to	CGs	and	kept	all	other	aspects	of	the	task	identical.	I	replaced	LGs,	
first,	 with	 low-frequency	 noise	 carriers	 CGs	 because	 this	 would	 help	 to	 transfer	 of	
learning	 easier.	 Although	 the	 global	 appearances	 of	 LGs	 and	 CGs	 with	 low-frequency	
noise	carrier	are	different,	mice	could,	in	principle,	discriminate	the	two	orientations	of	
the	low-frequency	CGs	by	relying	on	first-order	mechanisms	similar	to	those	optimal	for	
the	 learned	 task	with	LGs.	The	positive	slopes	of	 the	cumulative	LIs	 for	rewarded	and	
unrewarded	 stimuli	 indicate	 that	 mice	 could	 distinguish	 the	 CGs	 from	 the	 mean-
luminance	gray	background.	 I	also	 found	that	all	 tested	animals,	with	the	exception	of	
one	 mouse,	 could	 judge	 the	 orientations	 of	 CGs	 with	 low-frequency	 noise	 carrier,	 as	
evident	 from	 the	 steeper	 increase	 of	 LI	 for	 the	 rewarded	 compared	 with	 the	
unrewarded	condition	(Figure	3a).	Furthermore,	no	significant	changes	were	found	in	
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the	slope	of	the	differential	cumulative	LI	across	trials,	which	means	mice	did	not	need	
to	 learn	 the	 orientation	 discrimination	 task	 from	 scratch	 but	 instead	 could	 readily	
generalize	 from	 LGs	 to	 CGs	 (Figure	 3b).	 	 The	 fact	 that	 the	 slope	 of	 the	 differential	
cumulative	 LI	 does	 not	 significantly	 change	 across	 trials	 also	 indicates	 that	 even	
extensive	 training	 of	 almost	 2000	 trials	 did	 not	 improve	 the	 performance	 for	 CGs.	
Overall,	 mice	 showed	 a	 considerably	 lower	 performance	 for	 CGs	 with	 low-frequency	
noise	 (AUROC	=	0.63,	95%	CI	=	0.62–0.65;	Figure	 3c)	 than	 for	 the	LGs	 and	all	 tested	
mice	showed	the	similar	results	(mean	AUROC	=	0.58	±	0.017	SEM;	Figure	3d).	
I	wondered	whether	 the	 lower	RMS	contrast	of	CGs	 compared	with	LGs	 could	account	
for	the	overall	lower	performance	for	CGs.	To	test	this	hypothesis,	I	performed	control	
experiments	 in	which	 the	RMS	 contrast	 of	LGs	was	 lowered	 to	match	 that	 of	CGs	 and	
trained	mice	with	 these	RMS	 contrast	matched	LGs	 in	 the	next	phase.	Mice	 showed	a	
good	performance	during	 the	orientation	discrimination	 task	 for	LGs	matched	 in	RMS	
contrast	 (mean	 AUROC	 =	 0.83	 ±	 0.03	 SEM;	 Figure	 3e–g).	 Indeed,	 summarizing	 the	
performances	across	all	tested	mice	revealed	similar	results	for	both	levels	of	contrast	
(p	=	0.23,	paired	t	test;	Figure	3h).	
Finally,	I	probed	mice	with	the	other	type	of	CGs,	for	which	I	imposed	a	low-frequency	
cutoff	 on	 the	noise	 carrier.	 This	 type	of	CGs	 did	not	 contain	 any	 energy	 at	 the	 spatial	
frequency	of	 the	 learned	LGs	and	 little	differential	power	across	spatial	 frequencies	at	
the	 learned	 orientations	 (Figure	 1c).	 Again,	 mice	 could	 distinguish	 CGs	 with	 high-
frequency	 noise	 carrier	 from	 the	 mean-luminance	 gray	 background,	 evident	 in	 the	
positive	slope	of	cumulative	LIs	across	trials	(Figure	3i).	Importantly,	the	mouse	could	
also	 tell	 the	 two	 grating	 orientations	 apart,	 which	 is	 revealed	 by	 the	 increase	 in	 the	
difference	of	 cumulative	LIs	 (Figure	 3j);	however,	 its	performance	 for	 this	 type	of	CG	
was	again	considerably	lower	compared	with	that	for	LGs	(AUROC	=	0.58,	95%	CI	=	0.56	
–	0.60;	Figure	3k).	Similar	results	were	obtained	when	I	tested	a	second	mouse	(AUROC	
=	0.56,	95%	=	CI	0.53–	0.60;	Figure	3l).	Together,	these	results	reveal	the	ability	of	mice	
in	using	second-order	stimuli	to	guide	visual	perception.	



	 28	

	
Figure	3.	Behavioral	performance	for	CGs	and	control	conditions.	a–d,	Performance	for	CGs	with	low-frequency	noise	
carrier.	 a,	 Cumulative	 LI	 as	 a	 function	 of	 trial	 number.	 Blue	 represents	 rewarded	 orientation.	 Red	 represents	
unrewarded	orientation.	b,	Difference	of	cumulative	LI	between	the	two	orientations.	c,	ROC	analysis	based	on	LIs.	a–	
c,	Example	mouse	278.	d,	Comparison	of	AUROC	values	for	LGs	(after	learning;	Fig.	3f)	and	CGs	(N	=		5	mice).	Crosses	
represent	95%	CI.	e–h,	Same	as	a–d,	for	performance	for	LGs	matched	in	RMS	contrast.	g,	I	only	considered	data	with	
stable	performance	(i.e.,	trials	after	the	first	change	point	in	f	).	i–l,	Same	as	a–d,	for	performance	for	CGs	with	high-
frequency	noise	carrier	(N	=		2	mice).	Conventions	as	in	Figure	2.  

Identification	of	areas	V1	and	LM	based	on	mirrored	retinotopic	representation	of	
azimuth		
To	 investigate	 potential	 neural	 correlates	 of	 observed	 cue-invariant	 generalization	 of	
orientation	 discrimination	 in	 behavioral	 experiments,	 I	 performed	 extracellular	
recordings	from	areas	V1	and	LM.	It	has	been	established	that	area	LM	in	mouse	shares	
the	 vertical	 meridian	 with	 V1	 (Coogan	 and	 Burkhalter,	 1993;	 Wang	 and	 Burkhalter,	
2007)	and	therefore	is	thought	to	be	homologous	to	area	V2	in	higher-order	mammals,	
where	neurons	have	been	indicated	to	be	selective	for	second-order	contours	(Zhou	and	
Baker,	 1994;	 Leventhal	 et	 al.,	 1998;	Mareschal	 and	 Baker,	 1998a,	 b;	 Zhan	 and	Baker,	
2006;	Song	and	Baker,	2007;	Li	et	al.,	2014).	In	addition,	area	LM	is	the	primary	target	
of	 V1	 projections	 (Wang	 et	 al.,	 2012)	 and	 prefers	 lower	 spatial	 frequencies	 than	 V1	
(Marshel	et	al.,	2011).		
The	mirrored	progression	of	retinotopy	along	the	azimuth	in	the	two	areas	provided	the	
advantage	 to	 verify	 that	 my	 recording	 sites	 were	 indeed	 in	 areas	 V1	 and	 LM.	 For	
recordings,	 I	 used	 a	 4-shank	 silicon	 probe	 (See	 “Material	 and	 methods”	 Fig.	 1b,c)	
spanning	 a	 large	 range	 of	 azimuths	 in	 either	 area	 and	 mapped	 RFs	 by	 presenting	 a	
sparse-noise	 stimulus	 (Figure	 4).	 In	 order	 to	 obtain	 RF	 maps	 individually	 for	 each	
neuron,	 two-dimensional	 Gaussians	 were	 fitted	 to	 the	 maps	 of	 average	 firing	 rates	
(Figure	 4a,d,	 top),	 separately	 for	ON	and	OFF	stimuli	 (Figure	 4a,d,	middle).	Finally,	 I	
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considered	only	RFs	with	well-fit	Gaussian	profiles	and	extracted	the	average	azimuth	
and	elevation	per	shank	for	those	RFs	(Figure	4b,e,	gray).	Considering	the	fact	that	RF	
locations	in	mouse	cortex	are	considerably	scattered	(Smith	and	Hausser,	2010;	Bonin	
et	 al.,	 2011),	 I	 also	 analyzed	 the	 MUAe	 (Super	 and	 Roelfsema,	 2005)	 for	 which	 I	
determined	the	peak	RF	coordinates	for	each	electrode	shank	(Figure	4a,d,	bottom,	b,e,	
black).	Similar	 to	previous	results	on	the	retinotopy	of	mouse	visual	areas	(Schuett	et	
al.,	 2002;	Wang	 and	 Burkhalter,	 2007),	 I	 found	 that	 in	 V1	 area,	 going	 from	 the	most	
medial	to	the	most	lateral	electrode	shank,	the	azimuth	of	RF	centers	shifted	from	more	
peripheral	 to	 more	 central	 (Figure	 4c);	 whereas,	 conversely,	 in	 LM	 recordings,	 the	
azimuth	of	RF	centers	moved	from	more	central	to	more	peripheral	(Figure	4f).		

	

Figure	4.	Identification	of	visual	areas	V1	and	LM	by	mirrored	retinotopic	progression	of	azimuth.	a,	Top,	Example	
single-unit	 RF	maps	 in	 area	 V1	 for	 each	 electrode	 shank	 in	 one	 example	 session.	 Red	 represents	 ON	 field.	 Green	
represents	 OFF	 field.	 Units	 291-2-x.17,	 46,	 62,	 76.	Middle,	 Contours	 of	 all	well-fitted	 RFs	 in	 this	 example	 session.	
Bottom,	RF	maps	based	on	multiunit	activity	for	this	example	session.	b,	RF	azimuth	in	the	example	session	based	on	
average	 single-unit	 RF	 centers	 (gray)	 and	 multiunit	 activity	 (black).	 c,	 Summary	 of	 RF	 azimuth	 across	 all	 V1	
recordings.	N	=	14	sessions.	d–f,	Same	as	a–c,	for	area	LM.	Units	241-4-x.47,	67,	70,	84.	f,	N	=	8	sessions.  

Responses	to	contrast-modulated	gratings	are	weaker	and	less	selective	
After	verifying	the	identity	of	the	targeted	area,	I	presented	visual	stimuli	on	the	center	
of	 mapped	 multiunit	 RFs	 and	 measured	 the	 orientation	 tuning	 curves	 of	 neurons	 in	
response	to	LGs	and	CGs.	Then,	I	compared	the	neural	responses	to	LGs	and	CGs	across	
areas	V1	and	LM.	Consistent	with	previous	studies	in	higher-order	mammals	(Albright,	
1992;	Zhou	and	Baker,	1994;	Mareschal	and	Baker,	1998a;	Zhan	and	Baker,	2006;	Li	et	
al.,	 2014),	 I	 found	 that	 a	 considerable	 percentage	 of	 neurons	 did	 not	 respond	 to	CGs,	
despite	significant	responses	to	LGs	(Figure	5).		
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Figure	5.	Example	neurons	unresponsive	to	CGs	despite	significant	responses	to	LGs.	a,	Activity	evoked	by	LGs	(black)	
and	CGs	with	low-frequency	noise	(red)	of	an	example	neuron	from	area	V1.	Top,	Raster	plots.	Each	gray	horizontal	
line	separates	 trials	with	different	stimulus	orientations.	Bottom,	Tuning	curves	of	 the	same	example	neuron	(Unit	
280-2-4.61).	Dashed	horizontal	 line	 indicates	response	to	gray	screen;	solid	 lines	 indicate	 fit	of	a	sum-of-Gaussians	
model.	b,	Same,	for	an	LM	example	neuron	(Unit	245-5-10.35).		

Responses	to	low-frequency	noise	contrast-modulated	gratings	
I	 interleaved	LGs	 and	CGs	with	 low-frequency	noise	 carrier	 in	8	different	orientations	
and	compared	the	responses	orientation	tuning	curves	in	response	to	LGs	and	CGs	with	
low-frequency	noise,	across	areas	V1	and	LM.	Among	all	recorded	neurons,	only	72%	of	
luminance-responsive	 neurons	 also	 responded	 to	 the	 CGs	 with	 low-frequency	 noise	
(Figure	6).	The	contribution	of	neurons,	which	were	responsive	not	only	to	LGs	but	also	
to	CGs	with	 low-frequency	noise	as	well,	was	higher	 in	V1	(77%,	178	of	230	recorded	
neurons)	than	in	LM	(61%,	69	of	114	recorded	neurons,	p	<	0.001,	two-way	interaction,	
log-linear	analysis;	Figure	 6).	Further	analysis	was	performed	only	on	 those	neurons	
with	a	significant	response	to	both	types	of	stimuli.		
	
Among	those	neurons	with	significant	responses	to	both	LGs	and	CGs,	example	neurons	
in	 both	 V1	 (Figure	 7a)	 and	 area	 LM	 (Figure	 7b)	 showed	 lower	 peak	 firing	 rates	 in	
response	to	CGs	with	 low-frequency	noise	than	to	LGs.	 In	the	population	of	neurons,	a	
similar	pattern	of	reduced	peak	firing	rates	to	CGs	was	observed.	Peak	responses	across	
both	V1	and	area	LM	decreased	by	27.8	±	3.2%,	from	11.2	spikes/s	in	response	to	LGs	to	
8.1	 spikes/s	 in	 response	 to	 CGs	 (ANOVA,	 main	 effect,	 p	 <	 10	 −16;	 Figure	 7c,d).	 This	
reduction	was	less	pronounced	in	area	V1	(25.9	±	3.1%)	than	in	area	LM	(31.8	±	7.3%;	
interaction,	p	<	0.065).	I	also	found	that	the	responses	to	the	orthogonal	orientation	for	
CGs	versus	LGs	were	similar	 in	area	V1	(mean	change	1.6	±	0.5%),	while	LM	neurons,	
more	 consistently,	 showed	 a	 reduction	 in	 their	CGs	 responses	 (mean	 change	 −18.6	 ±	
6.3%;	interaction	p=	0.0002;	Figure	7e,f).		
	
This	 pattern	 of	 changes	 in	 the	 responsiveness	 was	 reflected	 in	 the	 orientation	
selectivity,	both	in	the	example	cells	(Figure	7a,b)	and	in	the	population	(Figure	7g,h):	
neurons	 in	 both	 areas	 showed	 poorer	 orientation	 selectivity	 in	 response	 to	CGs	 with	
low-frequency	 noise	 carriers	 compared	 to	 LGs.	 To	 measure	 orientation	 selectivity,	 I	
computed	d’,	which	does	not	only	take	into	account	the	difference	between	responses	to	
preferred	 and	 orthogonal	 orientations	 but	 also	 the	 variability	 of	 responses	 (Berens,	
2009).	 Comparing	 orientation	 selectivity	 across	 V1	 and	 area	 LM	 revealed,	 overall,	 a	
lower	d’	for	LM	than	for	V1	(main effect, p = 0.003).	More	importantly,	d’	was	lower	for	
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CGs	 than	LGs	 (main	effect,	p	<	10	 −16),	 and	 this	 reduction	was	more	prominent	 for	V1	
(60.8	±	4.5%	from	1.39	for	LGs	to	0.54	for	CGs)	than	LM	(52.0	±	6.9%	from	0.99	for	LGs	
to	0.47	for	CGs;	interaction,	p	=	0.003).	Therefore,	responses	to	CGs	with	low-frequency	
noise	 carriers	 compared	with	LGs	 in	mouse	 visual	 cortex	 are	weaker	 and	 orientation	
selectivity	was	poorer.		
	

	
Figure	6.	Distribution	of	responsive	and	unresponsive	neurons	to	CGs	with	 low-frequency	noise	carrier	 in	V1	(N	=	
230)	and	area	LM	(N	=	114).	

	
	

	

Figure	7.	Responses	to	CGs	with	low-frequency	noise	carriers	in	mouse	visual	cortex.	a,	Responses	to	LGs	(black)	and	
CGs	(red)	of	an	example	neuron	from	area	V1.	Top,	Raster	plots.	Bottom,	Tuning	curves	of	the	same	example	neuron	
(Unit	221-1-7.61).	b,	Same,	for	an	LM	example	neuron	(Unit	245-4-6.35).	c,	d,	Response	to	the	preferred	orientation	
for	CGs	versus	LGs	in	the	population	of	responsive	neurons	recorded	from	V1,	N	=	178	(c)	and	LM,	N	=	69	(d).	Insets,	
Mean	 pairwise	 differences	 and	 their	 SEM	 (Franz	 and	 Loftus,	 2012).	 Stars	 represent	 significance	 of	 post	 hoc	
comparisons.	e,	f,	Same	as	c,	d,	for	response	to	orthogonal	orientation.	g,	h,	Same	as	c,	d,	for	d’	.	Red	crosses	represent	
means.	Conventions	as	in	Figure	5.	

Responses	to	RMS	matched	contrast	luminance-modulated	gratings	
To	 test	whether	 the	weaker	 responses	and	broader	orientation	 tuning	 for	CG	 than	LG	
responses	 could	 be	 explained	 by	 the	 lower	 RMS	 contrast	 of	CG	 gratings,	 I	 performed	
control	 experiments	 (Figure	 9).	 In	 these	 experiments,	 the	 RMS	 contrast	 of	 LGs	 was	
matched	with	that	of	CGs,	and	responses	to	this	type	of	LGs	were	measured.	In	V1	area	
only	71%	of	responsive	neurons	to	LGs	with	matched	RMS	contrast	also	responded	to	
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the	 CGs	 with	 low-frequency	 noise,	 this	 fraction	 was	 76%	 in	 area	 LM	 (Figure	 8).	
Comparing	 responses	 to	 preferred	 orientation	 between	CGs	 and	LGs	matched	 in	 RMS	
contrast	revealed	again	weaker	responses	to	CGs	than	LGs	in	both	areas	(7.3	spikes/s	vs.	
8.8	spikes/s,	main	effect,	p	<	10	−5;	Figure	9),	however,	this	reduction	in	responsiveness	
was	 less	 pronounced	 compared	 to	 conditions	 with	 full	 contrast	 LGs	 (27.8	 ±	 3.2%;	
compare	Figure	7c,d	and	Figure	9c,d;	interaction,	p	=	0.009).	I	also	found	that	in	area	
V1,	CGs	 evoked	 stronger	 responses	 to	 orthogonal	 orientations	 than	LGs	 (4.41	 sp/s	 vs	
3.65	sp/s,	20.9	±	4.2%),	however	this	was	not	the	case	for	area	LM,	i.e.	the	responses	to	
orthogonal	orientations	did	not	differ	significantly	between	LGs	and	CGs	(8.5	sp/s	vs	8.7	
sp/s,	2.1	±	4.7%;	 interaction,	p	<	0.01).	Overall	d’	was	again	 lower	 for	area	LM	(0.62±	
0.05) than	 V1	 (0.86±0.06;	 main	 effect,	 p	 =	 0.026),	 even	 with	matched	 RMS	 contrast.	
Similar	 to	 our	 results	 with	 full-contrast	 LGs,	 d’	 dropped	 considerably	 between	 LGs	
matched	 in	RMS	contrast	 and	CGs	 (66.2	±	5.5%,	 from	1.2	 for	LGs	 to	0.4	 for	CGs,	main	
effect,	 p	<	10	 −16), while	 d’	 was	 not	 significantly	 different	 between	 responses	 to	 full-
contrast	and	reduced-contrast	LGs	(d’	full	=	1.3,	d’	matched	=	1.2;	compare	Figure	7g,h	and	
Figure	 9g,h;	 two-sample	 t	 test,	 p	 =	 0.4),	 which	 is	 probably	 reminiscent	 of	 the	 well-
known	phenomenon	of	contrast	invariance	of	orientation	tuning	(Movshon	et	al.,	1978;	
Albrecht	 and	 Hamilton,	 1982;	 Sclar	 and	 Freeman,	 1982).	 Interestingly,	 reductions	 in	
orientation	selectivity	(d’)	between	CGs	and	LGs	with	matched	RMS	contrast	were	more	
prominent	 in	area	V1	(68.3	±	6.0%,	 from	1.3	 to	0.41) than	 in	area	LM	(56.3	±	11.5%,	
from	0.86	to	0.38;	interaction,	p	=	0.008).  

Together,	the	reduced	RMS	contrast	of	CGs	might	explain	the	weaker	responses	to	CGs	
but	 cannot	account	 for	 the	poorer	orientation	selectivity	 for	CGs.	 Instead,	 the	broader	
distribution	 of	 orientation	 energy	 in	 CGs	 compared	 with	 LGs	 might	 partially	 be	
responsible	for	poorer	orientation	selectivity	for	CGs	(Figure	1,b).		
	

	
Figure	 8.	 Distribution	 of	 responsive	 and	 unresponsive	 neurons	 to	 CGs	 with	 low-frequency	 noise	 carrier	 in	 RMS-
matched	contrast	LGs	experiments,	in	area	V1	(N	=	105)	and	LM	(N	=	59).	
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Figure	9.	Comparison	of	responses	to	LGs	matched	in	RMS	contrast	and	CGs.	a,	Responses	to	LGs	with	matched	RMS	
contrast	 (black)	 and	 CGs	 with	 low-frequency	 noise	 (red)	 of	 an	 example	 neuron	 from	 area	 V1.	 Top,	 Raster	 plot.	
Bottom,	Tuning	curves	of	the	same	example	neuron	(Unit	221-1-6.24).	b,	Same,	for	an	LM	example	neuron	(Unit	245-
5-7.17).	c,	d,	Responses	to	preferred	orientations	for	CGs	versus	LGs	with	matched	RMS	contrast	in	the	population	of	
(c)	V1	neurons,	N	=	73	and	(d)	LM	neurons,	N	=	23.	e,	f,	Same	as	c,	d,	for	responses	to	orthogonal	orientations.	g,	h,	
Same	as	c,	d,	for	d’	.	Conventions	as	in	Figure	7.  

Responses	to	high-frequency	noise	contrast-modulated	gratings	
Given	that	first-order,	luminance-sensitive	mechanisms	in	V1	and	LM	might	contribute	
to	the	responses	to	CGs	with	low-	frequency	noise,	I	performed	additional	experiments	
to	 test	 the	 level	 of	 this	 contribution.	 Indeed,	 my	 findings	 of	 weaker	 responses	 to	
preferred	orientations	of	CGs,	of	 stronger	responses	 to	orthogonal	orientations	and	of	
poorer	orientation	tuning	compared	with	LGs	are	consistent	with	a	potential	activation	
of	luminance-sensitive	mechanisms.	To	decrease	the	local	orientation-biased	luminance	
fluctuations	 of	 the	 CGs	 in	 the	 preferred	 range	 of	 spatial	 frequency	 for	 V1	 and	 LM	
neurons,	 I	 imposed	 a	 low-frequency	 cutoff	 on	 the	 noise	 carrier	 such	 that	 the	 noise	
carrier’s	spatial	frequency	distribution	was	concentrated	beyond	the	passband	of	many	
V1	and	LM	neurons	(mean	high-cutoffs	of	0.07	and	0.055	cycles/degree)	(Marshel	et	al.,	
2011)	 and	 also	 the	 differential	 energy	 at	 the	 orientation	 domains	 of	 the	 LGs	 across	
spatial	 frequencies	 was	 little	 (Figure	 1a,c).	 Then	 I	 compared	 the	 orientation	 tuning	
curves	for	LGs	and	CGs	with	high-frequency	noise	carrier	across	areas	V1	and	LM.		
Among	 all	 recorded	neurons	with	 significant	 responses	 to	LGs,	 less	 than	half	 of	 them	
also	 responded	 to	 CGs	 with	 high-frequency	 noise	 carrier	 (37%,	 51	 of	 139	 recorded	
neurons;	 Figure	 10).	 In	 comparison,	 CGs	 with	 low-frequency	 noise	 carrier	 evoked	
responses	 in	 a	 larger	 population	 (72%,	 p	 <	 10−11,	 log-linear	 analysis,	 interaction).	
Interestingly,	 this	 reduction	 of	 responsiveness	 between	 two	 types	 of	CGs	 stimuli	was	
more	prominent	in	area	V1	(77%	vs.	36%,	29	of	81	recorded	neurons) than	in	area	LM	
(61%	vs.	 38%,	 22	 of	 58	 recorded	 neurons;	p	 =	 0.040,	 log-linear	 analysis,	 interaction;	
compare	Figure	6	and	Figure	10).		
Again,	 a	 similar	 pattern	 of	 results	 was	 observed	 in	 the	 responses	 to	 LGs	 and	 high-
frequency	noise	carrier	CGs	(Figure	11).	In	both	example	neurons	and	in	the	population	
of	recorded	neurons	(Figure	11a,b)	responses	to	CGs	with	high-frequency	noise	carrier	
were	lower	than	to	LGs.	This	reduction	was	mediated	by	reduced	responses	to	both	the	
preferred	orientation	(decrease	of	49.2	±	9.8%,	from	13	sp/s	to	6.6	sp/s;	ANOVA,	main	
effect,	p	<	10	−5;	Figure	11c,d)	and	orthogonal	orientation	(decrease	of	29.0	10.4%,	from	
7.6	sp/s	to	5.4	sp/s;	ANOVA,	main	effect,	p	=	0.008;	Figure	11e,f).	Similarly,	d’	dropped	
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considerably	 by	 71.6	 ±	 6.7%	 for	 CGs	 with	 high-frequency	 noise	 compared	 with	 LGs	
(from	1.34	to	0.38;	ANOVA,	main	effect,	p	<	10	−13;	Figure	11g,h).	
	

	
Figure	10.	Distribution	of	responsive	and	unresponsive	neurons	to	CGs	with	high-frequency	noise	carrier	in	area	V1	
(N	=	81)	and	LM	(N	=	58).	

	

	
Figure	 11.	 Responses	 to	 CGs	 with	 high-frequency	 noise	 carrier.	 a,	 Responses	 to	 LGs	 (black)	 and	 CGs	 with	 high-
frequency	noise	(red)	of	a	V1	example	neuron.	Top,	Raster	plots.	Bottom,	Tuning	curves	of	the	same	example	neurons	
(Unit	326-1-2.48).	b,	Same	for	an	LM	example	neuron	(Unit	299-3-13.42).	c,	d,	Responses	to	preferred	orientations	
for	CGs	with	high-	frequency	noise	versus	LGs	in	the	population	of	V1	neurons,	N	=	29	(c)	and	LM	neurons,	N	=	22,	(d).	
e,	f,	Same	as	c,	d,	for	responses	to	orthogonal	orientations.	g,	h,	Same	as	c,	d,	for	d’	.	For	other	conventions,	see	Figure	
7.  

Preferred	 orientations	 for	 luminance-modulated	 and	 contrast-modulated	 gratings	 are	
broadly	similar	
Finally,	 to	 test	 the	 potential	 contribution	 of	 CG	 representation	 in	 the	 cue-invariant	
perception	 of	 stimulus	 orientation,	 I	 compared	 the	 neurons’	 preferred	 orientation,	
separately	 for	 each	 grating	 type	 (Figure	 12).	 Given	 the	 fact	 that	 stronger	 orientation	
selectivity	will	 entail	 a	more	 accurate	 estimate	 of	 preferred	 orientation,	 I	 considered	
only	those	neurons	with	d’	> 1 for	LGs	(Figure	12,	black	circles).	First,	I	examined	the	
degree	of	uniformity	in	the	distribution	of	differences	in	preferred	orientations	for	LGs	
and	CGs.	I	observed	that	the	distribution	of	differences	in	preferred	orientation	between	
LGs	and	CGs	with	low-frequency	noise	(Figure	12	a,b)	was	not	uniform	in	both	area	V1	
(Rayleigh	 test,	p	 <	10	 −10)	 	 and	LM	 (Rayleigh	 test,	p	 =	0.03).	 Indeed,	 in	both	areas	V1	
(0.43,	p	<	10	−4) and	LM	(0.4,	p	=	0.02),	preferred	orientation	for	CGs	with	low-frequency	
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noise	and	LGs	were	correlated.	However,	the	residual	activation	of	luminance-sensitive	
mechanisms	by	the	CGs	with	low-frequency	noise	also	could	give	rise	to	similar	results.	
Interestingly,	 for	 CGs	 with	 high-frequency	 noise	 (Figure	 12c,d),	 the	 differences	 in	
preferred	orientation	were	distributed	non-uniformly	only	for	area	LM	(Rayleigh	test,	p	
=	0.005)	and	correlations	between	preferred	orientations	were	observed	only	for	area	
LM	(0.58,	p	=	0.02).	This	 finding	 is	remarkable,	as	LM	neurons,	with	their	preferences	
for	lower	spatial	frequencies	(Marshel	et	al.,	2011),	are	expected	to	be	less	sensitive	to	
any	residual	orientation	signal	potentially	present	at	higher	spatial	frequencies.	As	the	
last	step,	I	performed	control	experiments	to	assess	how	much	of	the	observed	scatter	
of	 preferred	 orientations	 arises	 from	 estimation	 errors	 due	 to	 limited	 data.	 In	 these	
control	experiments,	only	LGs	were	presented	and	all	other	aspects	of	experiments	and	
analyses	were	 left	 identical	 (Figure	 12e,f).	 I	observed	 that	only	 little	variability	arose	
from	 limited	 data,	 at	 least	 for	 the	 strongly	 tuned	 neurons.	 Together,	 my	 finding	 of	
broadly	similar	preferred	orientation	between	grating	types	provides	some	evidence	for	
a	 coarse	 cue-invariant,	 which	might	 partially	 be	 the	 neural	 correlates	 for	 perceptual	
generalization	of	orientation	discrimination.		

	

	
Figure	12.	Comparison	of	preferred	orientation	for	contrast-modulated	versus	LGs.	a,	Top,	Preferred	orientations	of	
V1	neurons	 in	 response	 to	CGs	with	 low-frequency	noise	 carrier	 versus	LGs.	 Bottom,	Distribution	of	differences	 in	
preferred	orientations.	Black	represents	neurons	with	d’	>1	for	LGs	(N	=	110).	Gray	represents	neurons	with	d’	<	1	(N	
=	68).	Square	markers	represent	neurons	with	d’	>	1	for	both	grating	types.	b,	Same	as	a,	for	LM	neurons	(N	=	32	with	
d’>	1	and	N		=	37	with	d’	<	1).	c,	Same	as	a,	but	for	CGs	with	high-frequency	noise	carrier	versus	LGs	(V1,	N	=	16	with	
d’	>	1	and	N	=	13	for	d’	<	1).	d,	Same	as	c,	for	LM	neurons	(N	=	15	with	d’	>	1	and	N	=	7	for	d’	<	1).	e,	Same	as	a,	but	
repeating	the	LG	condition	(V1,	N	=	53	with	d’	>	1	and	N		=	70	with	d’	<	1).	f,	Same	as	e,	for	LM	neurons	(N	=	11	with	d’	
>	1	and		N	=	7	with	d’	<	1).		

	

Responses	to	contrast-modulated	gratings	during	anesthesia	
I	 also	 performed	 extracellular	 recordings	 under	 anesthesia,	 in	 which	 I	 measured	 the	
orientation	tuning	in	response	to	LGs	and	CGs	with	low-frequency	noise	carrier	across	
both	areas	V1	and	LM.	The	pattern	of	results	was	similar	to	those	during	wakefulness,	
such	that	both	V1	and	LM	neurons	were	less	responsive	and	selective	to	CGs	than	LGs.	
Indeed,	about	half	of	all	recorded	neurons	 in	both	V1	and	area	LM	did	not	respond	to	
CGs	 despite	 their	 significant	 responses	 to	LGs	 (Figure	 13).	The	 fraction	of	 responsive	
neurons	to	both	LGs	and	CGs	(49%)	was	lower	compared	to	during	wakefulness	(72%	p	
<	 0.001,	 interaction,	 log-linear	 analysis).	 The	 reduction	 of	 responsiveness	 with	 brain	
state	was	similar	for	LM	(awake:	61%	vs.	anesthetized:	42%) and	V1	(awake:	77%	vs.	
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anesthetized:	64%;	three-way	interaction,	p	=	0.85).	The	fraction	of	responsive	neurons	
to	second-order	stimuli	during	anesthesia	was	higher	in	V1	(64%)	than	in	LM	(42%,	p	<	
0.001,	interaction,	log-linear	analysis;	Figure	14).	
Among	those	neurons	with	significant	responses	to	both	LGs	and	CGs,	example	neurons	
in	both	areas	V1	(Figure	15a,c)	and	area	LM	(Figure	15b,d)	had	lower	peak	firing	rates	
for	CGs	 compared	 to	LGs.	This	 reduction	of	 firing	 rates	 to	CGs	was	also	evident	 in	 the	
population	of	recorded	neurons,	where	I	used	an	ANOVA	to	test	statistical	significance.	
Responses	 across	 recorded	 areas	 dropped	 by	 36.1%	± 	5.2,	 from	 9.8	 spikes/s	 in	
response	to	LGs	to	6.3	spikes/s	in	response	to	CGs	(ANOVA,	main	effect,	p	<	10-8,	Figure	
15e-h).	I	also	noted	that	the	responses	to	the	orthogonal	orientation	for	CGs	versus	LGs	
decreased	 in	 both	 areas	 (area	 V1,	 mean	 change	 25.3%	±	8.3;	 area	 LM,	 mean	 change	
21.1%	±	5.7;	main	effect,	p	<	10-4).	
	
This	decrease	in	responsiveness	was	accompanied	by	a	concomitant	drop	in	selectivity	
for	 stimulus	 orientation	 for	CGs,	 both	 in	 the	 example	 cells	 (Figure	 15a-d)	 and	 in	 the	
population	 during	 anesthesia	 (Figure	 15i-l).	 d’	 was	 lower	 during	 anesthesia	 than	
wakefulness	(main	effect,	p	<	0.01).	More	importantly,	d’	during	anesthesia	was	higher	
for	LM	than	V1	(main	effect,	p	=	0.03)	and	lower	for	CGs	than	LGs	(main	effect,	p	<	10-08),	
and	this	difference	tended	to	be	stronger	for	LM	(69.7%	±	13.9	from	1.22	for	LGs	to	0.36	
for	CGs)	than	V1	(57.3%	±	12.9)	from	0.76	for	LGs	to	0.32	for	CGs,	interaction,	p	=	0.05).	
Thus,	 responses	 to	CGs	 compared	to	LGs	 in	mouse	visual	cortex	during	anesthesia	are	
lower	and	less	selective	for	orientation.		

	

Figure	13.	Example	neurons	unresponsive	to	CGs	despite	significant	responses	to	LGs	during	anesthesia.	a,	Activity	
evoked	by	LGs	(black)	and	CGs	with	low-frequency	noise	(red)	of	an	example	neuron	from	area	V1.	Top,	Raster	plots.	
Each	 gray	 horizontal	 line	 separates	 trials	with	 different	 stimulus	 orientations.	 Bottom,	 Tuning	 curves	 of	 the	 same	
example	neuron	(Unit	232-5-8.23).	Dashed	horizontal	line	indicates	response	to	gray	screen;	solid	lines	indicate	fit	of	
a	sum-of-Gaussians	model.	b,	Same,	for	an	LM	example	neuron	(Unit	242-2-12.35).	
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Figure	14.	Distribution	of	responsive	and	unresponsive	neurons	to	CGs	with	low-frequency	noise	carrier	in	area	V1	
(N	=	55)	and	LM	(N	=	100)	during	anesthesia.		

	

	

	

Figure	 15.	 Responses	 to	 CGs	 with	 low-frequency	 noise	 carriers	 in	 mouse	 visual	 cortex	 during	 anesthesia.	 a,	
Responses	to	LGs	(black)	and	CGs	(red)	of	an	example	neuron	from	area	V1.	Top,	Raster	plots.	Bottom,	Tuning	curves	
of	the	same	example	neuron	(Unit	232-5-4.6).	b,	Same,	for	an	LM	example	neuron	(Unit	144-2-20.39).	c,	d,	Response	
to	the	preferred	orientation	for	CGs	versus	LGs	in	the	population	of	responsive	neurons	recorded	from	V1,	N	=	178	(c)	
and	LM,	N	=	69	(d).	e,	f,	Same	as	c,	d,	for	response	to	orthogonal	orientation.	g,	h,	Same	as	c,	d,	for	d’.	Conventions	as	in	
Figure	7.	
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Discussion	
In	 this	 thesis,	 I	 investigated	 whether	 mice	 can	 use	 second-order	 stimuli	 in	 a	 cue-
invariant	way	to	guide	visual	perception	during	an	orientation	discrimination	task,	and	
screened	for	potential	neural	correlates	in	mouse	visual	cortex.	I	found	that	mice	could	
readily	generalize	orientation	discrimination	learning	from	the	familiar	cue	condition	of	
luminance-modulated	 gratings	 (LGs)	 to	 a	 novel	 cue	 condition	 of	 contrast-modulated	
gratings	 (CGs),	 albeit	 with	 a	 substantial	 decrease	 in	 performance.	 My	
electrophysiological	data	supported	these	behavioral	results:	in	both	areas	V1	and	LM,	
the	 population	 of	 responsive	 neurons	 to	CGs	 was	 less	 than	 that	 of	LGs.	 Furthermore,	
responses	 to	 CGs	 were	 generally	 weaker	 and	 less	 orientation	 selective	 than	 to	 LGs.	
Despite	 these	 differences,	 preferred	 orientations	were	 broadly	 similar	 in	 response	 to	
both	 LGs	 and	 CGs,	 pointing	 to	 a	 potential	 underlying	 mechanism	 of	 the	 basic	 cue-
invariant	 generalization	 in	 mouse	 orientation	 discrimination	 performance.	 My	
observation	 of	 cue-invariance	 might	 provide	 the	 basis	 for	 object	 recognition	 and	
categorization	 invariant	 to	 changes	 in	object	appearance,	as	 recently	demonstrated	 in	
rats	 (Zoccolan	 et	 al.,	 2009;	 Tafazoli	 et	 al.,	 2012;	 Vermaercke	 and	Op	 de	 Beeck,	 2012;	
Alemi-Neissi	et	al.,	2013;	Vinken	et	al.,	2014;	De	Keyser	et	al.,	2015).		

Choice	of	paradigm	
From	previous	behavioral	studies	on	the	limits	of	rodent	vision,	it	has	become	clear	that	
the	particularity	of	 the	paradigm	can	 strongly	 influence	 the	measured	visual	 abilities.	
For	example,	Busse	and	her	 colleagues	 in	2011	 (Busse	et	 al.,	 2011)	used	a	nose-poke	
two-alternative	 forced	 task	 (2AFC)	 to	measure	mice	 contrast	 sensitivity	 at	 preferred	
spatial	frequency	and	reported	20%	contrast	threshold,	whereas	a	much	lower	contrast	
threshold	(2%)	was	estimated	when	a	yes-no	paradigm	was	used,	instead	(Histed	et	al.,	
2012).	The	discrepancy	present	between	these	two	studies	might	partly	be	explained	by	
the	difference	 in	both	 the	 level	and	the	stability	of	animals’	motivation	between	2AFC	
and	 yes-no	 paradigms.	 In	 the	 yes-no	 paradigm	 used	 in	 Histed’s	 study	 not	 only	mice’	
performance	was	close	 to	optimal	but	more	 importantly	 it	was	stable	across	different	
sessions	of	 training,	as	well.	 Indeed,	measuring	psychometric	 functions	 in	an	operant,	
lever-pressing	 paradigm	 provided	 the	 opportunity	 to	 detect	 any	 changes	 in	 animals’	
motivation,	 arousal	 or	 attention	 and	 it	 revealed	 negligible,	 near	 to	 zero,	 lapse	 rates.	
Moreover,	 their	 estimates	 of	 threshold	 were	 repeatable	 across	 sessions	 and	 mice,	
indicating	stability	in	performance	and	little	deviation	(if	at	all)	from	optimal	behavior.	
In	 contrast,	 in	 the	 2AFC	 paradigm	 used	 by	 Busse	 et	 al.,	 mice’	 performance	 was	
influenced	 by	 non-sensory	 factors	 such	 as	 past	 history	 of	 failures	 and	 rewards	 and	
estimates	of	reward	values	and	thus	by	fluctuations	in	animals’	motivation.	To	sum	up,	
estimates	 of	 mouse	 contrast	 sensitivity	 in	 a	 nose-poke	 2AFC	 task	 do	 not	 exclusively	
reflect	perceptual	 limits,	as	 it	 can	also	be	 limited	by	non-sensory	 factors	 (Busse	et	al.,	
2011),	whereas	 rigorous	 psychophysical	measurements	 using	 a	 lever-press	 paradigm	
under	head	fixation	can	reveal	perceptual	thresholds	that	are	less	influenced	(Histed	et	
al.,	2012).		
	

Why	did	I	choose	classical	conditioning?		
In	 order	 to	 test	 whether	 mouse	 vision	 is	 capable	 of	 perceiving	 CGs,	 despite	 its	 low	
acuity,	I	chose	a	classical	conditioning	paradigm.	Following	Gallistel	et	al.	(2004),	and	by	



	 40	

performing	a	quantitative	analysis	on	conditioned	responses	(LIs)	I	was	able	to	compare	
mouse	behavior	before	vs.	during	CGs	presentations.	The	positive	 slope	of	 cumulative	
records	 of	 conditioned	 responses	 (LIs)	 indicated	 that	mice	have	 stronger	 conditioned	
responses	during	CGs	presentation	than	before,	which	simply	confirms	CGs	perception.	
Furthermore,	 classical	 conditioning	 allowed	me	 to	 test	 separately	CGs	 perception	 and	
CGs	orientation	discrimination	abilities	in	mice.	The	difference	between	LIs	to	rewarded	
and	unrewarded	CGs	 orientations,	 demonstrated	 orientation	discrimination	 capability	
of	mice	 for	 CGs,	 albeit	 with	 a	 substantial	 drop	 in	 performance.	 Therefore,	 employing	
classical	 conditioning	 provided,	 for	 my	 study,	 the	 advantage	 of	 a	 distinct	 behavioral	
read-out	for	the	visibility	of	the	stimulus	and	discriminability	of	its	orientation.		
		

Can	classical	conditioning	paradigm	reveal	the	limits	of	visual	performance?	
Despite	offering	the	advantage	outlined	above,	classical	conditioning	might	not	be	able	
to	 measure	 near-threshold	 performance	 in	 my	 task,	 due	 to	 potential	 fluctuations	 in	
motivational	 states	 of	 animals.	 As	 explained	 earlier,	 any	 fluctuation	 of	 animal	
motivation	 could	 strongly	 influence	 on	 experimental	 results	 and	 be	 misleading	 to	
estimate	 visual	 limits	 (Busse	 et	 al.,	 2011;	Histed	 et	 al.,	 2012).	 In	 the	other	paradigms	
such	as	touch	screen	panels	(Bussey	et	al.,	2001),	and	operant	lever-pressing	(Histed	et	
al.,	 2012)	 which	 require	 mice	 to	 initiate	 the	 trial	 or	 participate	 actively	 in	 the	
experiment	 to	 obtain	 reward,	 the	 animals’	 attention	 and	 motivation	 might	 be	 more	
stable,	 the	 animals’	 performances	 might	 be	 less	 contaminated	 and	 might	 reflect	
accurately	 the	 perception	 limits.	 In	 contrast,	 classical	 conditioning,	 despite	 offering	
powerful	 insights	 into	several	aspects	of	visual	perception,	can	 involve	more	reflexive	
behavior	 and	 trial-to-trial	 fluctuations	 in	motivation	 cannot	 be	 excluded.	 Therefore,	 I	
speculate	 that	 using	 other	 paradigms,	 such	 as	 operant	 lever-pressing	 (Histed	 et	 al.,	
2012)	or	touch	screen	panels	(Bussey	et	al.,	2001),	might	result	in	a	better	performance	
for	 orientation	 discrimination	 of	 CGs	 compared	 to	 what	 I	 observed	 during	 classical	
conditioning	 in	 this	project.	 Indeed,	a	 reasonable	behavioral	generalization	of	 first-	 to	
second-order	stimuli	was	observed	recently	in	rats	trained	in	a	touch-screen	paradigm	
(De	Keyser	et	al.,	2015).	In	addition,	one	type	of	invariant	visual	object	recognition	has	
been	 reported	 during	 an	 operant	 paradigm,	 where	 rats	 had	 to	 recognize	 the	 objects	
despite	 a	 range	 of	 changes	 in	 size	 and	 positions.	 In	 this	 type	 of	 paradigm,	 rats	were	
trained	to	initiate	each	trial	by	inserting	their	head	into	a	whole	in	front	of	training	box	
(Alemi-Neissi	et	al.,	2013).		

It	 is	 important	 to	 note	 that	 despite	 my	 finding	 that	 mice	 are	 able	 to	 generalize	 the	
learned	orientation	discrimination	task	from	LGs	to	CGs,	this	generalization	was	rather	
limited.	First,	not	only	did	discrimination	performance	substantially	drop	 from	LGs	 to	
CGs,	but	extensive	training	also	did	not	lead	to	a	qualitatively	better	performance	during	
CGs.	Second,	 I	 tested	one	mouse	who	was	never	able	to	reliably	discriminate	CGs	even	
after	 prolonged	 sessions	 of	 training.	 Third,	 I	 realized	 that	 the	 wave	 shape	 of	 LGs	
determines	 successful	 transfer	 of	 learning	 to	 CGs	 later.	 Indeed,	 mice	 were	 able	 to	
generalize	 from	 LGs	 to	 CGs	 only	 after	 being	 initially	 trained	 with	 sine-wave	 LGs,	 but	
never	after	being	initially	trained	with	square-wave	LGs.	All	3	mice	trained	initially	with	
square-wave	 LGs,	 could	 no	 longer	 discriminate	 orientation	 when	 the	 gratings	 were	
contrast	modulated,	 despite	 being	 able	 to	 see	 the	 grating,	 as	 they	 showed	 unspecific	
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conditioned	responses	to	CGs’	presence.	Indeed,	these	mice	could	see	CGs	but	failed	to	
discriminate	different	orientations.	

Underlying	mechanism	of	second-order	
As	I	showed	in	this	study,	neurons	in	both	area	V1	and	LM	not	only	respond	to	CGs	but	
also	are	orientation-selective	for	CGs.	Furthermore,	comparing	the	preferred	orientation	
of	V1	and	LM	neurons	to	LGs	and	CGs	revealed	a	coarse	correspondence	between	them.	
Therefore,	 my	 electrophysiological	 data	 could	 potentially	 underlie	 the	 perceptual	
generalization	of	orientation	discrimination	from	LGs	to	CGs.	Previous	studies	in	higher-
order	 mammals	 guided	 by	 rich	 knowledge	 of	 the	 spatiotemporal	 properties	 across	
visual	areas	(Movshon	et	al.,	1978;	Issa	et	al.,	2000)	suggested	a	two-stage	filter	model	
for	 second-order	 processing.	 In	 this	 filter-rectify-filter	 model,	 the	 first	 linear	 spatial	
filter	 detects	 the	 fine	 structures	 of	 second-order	 stimuli	 and	 then	 its	 output	 is	
transferred	to	a	nonlinear	rectifier,	and	finally,	the	second	linear	spatial	filter	sums	up	
the	 rectified	 responses.	However,	 the	neural	 substrates	underlying	 these	 three	 stages	
remain	 controversial,	 particularly	 those	 pertaining	 to	 the	 first	 filter.	 An	
electrophysiological	 study	 in	 area	 V2	 of	 monkeys	 has	 proposed	 that	 small	 receptive	
fields	 in	 V1,	 tuned	 to	 spatial	 frequency	 and	 orientation,	 act	 as	 a	 potential	 neural	
substrate	 for	 the	 first	 linear	 filter	 (Li	 et	 al.,	 2014),	 while	 another	 study	 in	 cats	
(Rosenberg	et	al.,	2010;	Rosenberg	and	 Issa,	2011)	reported	nonlinear	 responses	and	
tuning	to	carrier	spatial	frequency	and	orientation	of	CGs	in	LGN	Y-cells,	suggesting	that	
subcortical	structures,	i.e.	LGN,	could	also	serve	as	first	stage	filter.	Regarding	the	neural	
substrate	of	the	second	filter,	it	has	been	suggested	that	V2	neurons	which	have	bigger	
receptive	fields	than	V1	neurons	and	consist	of	V1	receptive	fields	sum	up	the	rectified	
responses	coming	from	primary	visual	area’s	RF	and	provide	the	orientation	selectivity	
(Li	 et	 al.,	 2014).	 However,	 it	 is	 uncertain	 yet	 whether	 primate	 or	 carnivore	 brain	
possesses	 such	 second-order	 processing	 stages	 or	 whether	 mechanisms	 other	 than	
filter-rectify-filter,	 such	 as	 surround-suppression,	 explain	 the	 second-order	 responses	
(Tanaka	 and	Ohzawa,	2009;	El-Shamayleh	 and	Movshon,	 2011;	Hallum	and	Movshon,	
2014;	Li	et	al.,	2014).	Tanaka	and	Ohzawa	(2009)	suggested	that	neural	responses	to	a	
second-order	 stimuli	 in	 area	 17	 of	 cats	 arise	 from	 surround	 suppression,	 however,	
measuring	 the	 suppression	 index	 of	 V2	 neurons	 showed	 little	 or	 no	 surround	
suppression	for	half	of	second-order	responsive	neurons.	Furthermore,	employing	high	
ratio	of	carrier	spatial	frequency	to	envelope	frequency	indicated	that	the	second-order	
responses	could	potentially	be	explained	by	filter-rectify-filter	mechanism	instead	(Li	et	
al.,	 2014).	 My	 findings	 of	 cue-invariant	 responses	 to	 CGs	 in	mice	 cannot	 resolve	 this	
debate,	 as	 the	 stimulus	 I	 used	 cannot	 determine	 accurately	 the	 source	 of	 those	
responses.	 The	 observed	 cue-invariant	 responses	 to	 CGs	 used	 in	 this	 study	 could	
potentially	emerge	either	 from	 residual	activation	of	 luminance-sensitive	mechanisms	
or	 could	 be	 mediated	 by	 suppressive	 mechanisms	 from	 the	 surround	 (Tanaka	 and	
Ohzawa,	2009;	Hallum	and	Movshon,	2014).	Nevertheless,	the	pattern	of	LM	responses	
to	high-frequency	noise	carrier	CGs	 is	reminiscent	of	the	filter-rectify-filter	framework	
(see	below).	
		

Potential	role	of	LM	in	perception	of	texture	boundaries			
The	electrophysiological	data	that	I	acquired	in	this	project	points	towards	a	potentially	
interesting	role	of	area	LM	in	the	perception	of	texture	boundaries.	As	I	showed	in	this	
study,	LM	neurons	in	mice	not	only	respond	to	CGs	with	high-frequency	noise	carriers,	
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but	also	maintain	some	orientation	selectivity	to	these	CGs.	More	importantly,	unlike	in	
V1,	neurons	in	area	LM	showed	a	broadly	similar	preferred	orientation	for	LGs	and	CGs	
with	 high-frequency	 noise	 carriers.	 This	 finding	 is	 remarkable	 because	 first,	 it	 is	 not	
probable	 that	 the	 high	 spatial	 frequency	 distribution	 of	 the	 noise	 carrier	 evokes	 the	
luminance-sensitive	mechanism	 and	 second,	 area	 LM	 should	 be	 less	 sensitive	 to	 any	
residual	orientation	signal	potentially	present	at	higher	spatial	frequencies	(Marshel	et	
al.,	2011).	These	characteristics	of	LM	neurons	offer	the	potential	 involvement	of	area	
LM	in	the	perception	of	texture	boundaries.	This	potential	role	of	area	LM	is	particularly	
intriguing,	 as	 the	 properties	 of	 area	 LM	 fit	 well	 with	 the	 filter-rectify-filter	 model:	
similar	to	V2	and	area	18	in	monkeys	and	cats,	LM	has	been	indicated	to	be	a	primary	
projection	target	of	V1	(Levitt	et	al.,	1994;	Wang	et	al.,	2011;	2012),	has	bigger	receptive	
fields	(Levitt	et	al.,	1994;	Price	et	al.,	1994;	Van	den	Bergh	et	al.,	2010)	and	shows	lower	
spatial	 frequency	 tuning	 compare	 to	 V1	 (Movshon	 et	 al.,	 1978a;	 Foster	 et	 al.,	 1985;	
Marshel	et	al.,	2011).	However,	to	test	explicitly	whether	filter-rectify-filter	mechanisms	
exist	 in	 the	mouse	visual	 cortex,	 further	 experiments	 are	 required	 to	 assess	precisely	
the	 carrier	 spatial	 frequencies.	 In	 order	 to	 exclude	 any	 source	 of	 luminance-sensitive	
mechanism	in	cue-invariant	neuronal	responses,	a	carrier	with	high	spatial	frequencies	
unresolvable	by	the	first-order	mechanism	needs	to	be	employed.	In	such	experiments,	
one	 should	 determine	 tuning	 for	 carrier	 spatial	 frequency	 and	 aim	 to	 rule	 out	 any	
possible	source	of	nonlinear	artifacts,	which	might	come	either	from	the	display	device	
or	 the	 photoreceptors	 (Zhou	 and	 Baker,	 1994;	Mareschal	 and	 Baker,	 1998a;	 Li	 et	 al.,	
2014).	These	various	artifacts	either	cannot	yield	such	carrier	 tuning	or	 if	 they	can,	 it	
would	 be	 the	 same	 in	 every	 neuron.	 Therefore,	 tuning	 for	 spatial	 frequency,	 which	
varies	across	neurons	and	 is	distinct	 from	 that	of	 the	envelope,	 could	ensure	 that	 the	
observed	 nonlinearity	 does	 not	 emerge	 from	 artifacts.	 In	 addition,	 being	 able	 to	
demonstrate	a	spatial	frequency	tuning	to	the	carrier	distinct	from	that	predicted	by	a	
surround	 mechanism	 (Tanaka	 and	 Ohzawa,	 2009)	 would	 rule	 out	 activation	 of	
luminance-sensitive	mechanisms	(Li	et	al.,	2014).	
	

Are	the	other	mouse	extrastriate	areas	more	strongly	responsive	to	second-order	
stimuli?	
I	 demonstrated	 that	 area	 LM	 is	 responsive	 and	 orientation	 selective	 to	 second-order	
stimuli,	 however,	 it	 is	 not	 clear	 whether	 any	 of	 the	 other	 mouse	 extrastriate	 areas	
respond	more	 strongly	 to	 second-order	 stimuli.	 Currently,	 it	 is	 debated	whether	 area	
LM	belongs	to	the	ventral	or	dorsal	stream,	despite	being	identified	as	a	V2	homologous	
due	 to	 its	distinct	 connections	and	 the	 shared	 representation	of	 the	vertical	meridian	
(Coogan	 and	 Burkhalter,	 1993;	 Wang	 and	 Burkhalter,	 2007).	 Studies	 based	 on	
cytoarchitectonic	and	chemoarchitectonic	markers	and	pathway	tracing	suggested	that	
area	LM	belongs	to	ventral	stream	as	it	receives	its	strongest	projections	from	V1	and	
forwards	inputs	to	limbic	areas	(e.g.	the	lateral	entorhinal	cortex	and	the	amygdala)	and	
also	 to	 the	 superficial	 layers	 of	 the	 superior	 colliculus	 (Wang	 et	 al.,	 2011;	Wang	 and	
Burkhalter,	 2013).	 Despite	 being	 a	 powerful	 approach	 for	 exploring	 the	
interconnectivity	 and	 potential	 function	 of	 visual	 processing	 streams	 (Wang	 and	
Burkhalter,	2007;	Wang	et	al.,	2012),	pathway-tracing	methods	hold	some	 limitations.	
In	 fact,	 the	 strength	 of	 projections	 to	 a	 certain	 area	may	 not	 represent	 precisely	 the	
function	of	neurons	in	that	area.	This	is	because	it	 is	not	just	the	number,	but	also	the	
strength	and	functional	contents	of	synapses	which	determine	the	physiological	role	of	
a	 given	 structure	 (De	 Pasquale	 and	 Sherman,	 2011).	 On	 the	 other	 hand,	 measuring	
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fundamental	 properties	 of	 extrastriate	 areas	 in	 mouse	 visual	 cortex	 suggests	 that	
detailed	 structure	 of	 visual	 images	 are	 analyzed,	 not	 by	 LM,	 but	 rather	 other	 areas	
preferring	high	spatial	frequencies	such	as	PM	and	LI	(Andermann	et	al.,	2011;	Marshel	
et	al.,	2011).	Using	 two-photons	calcium	 imaging,	Marshel	et	al.	 (2011),	measured	 the	
fundamental	properties	of	mouse	visual	areas	and	suggested	that	area	PM	with	its	high	
spatial	 frequency	 preferences	 and	 high	 orientation	 selectivity	 could	 resemble	 the	
primate	ventral	stream.	They	also	proposed	a	similar	but	less	dominant	role	for	LI	area.	
However,	 their	 results	 in	 area	 LM	 were	 less	 compelling,	 as	 LM	 showed	 the	 highest	
temporal	 frequency	(1.8	HZ)	and	a	moderate	spatial	 frequency	(0.028	cycles/	degree)	
among	seven	visual	areas,	which	brought	them	to	conclude	that	area	LM	is	more	dorsal-
like	 than	ventral-like	area.	 In	addition,	another	study	comparing	responses	 to	pattern	
and	component	motion	across	different	visual	areas	showed	that	area	LM	responds	to	
pattern	motion,	 reminiscent	 of	 the	 dorsal	 stream,	 which	 is	 in	 contrast	 to	 V1	 and	 AL	
areas,	which	are	more	component-like	(Juavinett	and	Callaway,	2015).	To	sum	up,	 the	
functional	 division	 of	 rodent	 extrastriate	 areas	 is	 a	matter	 of	 debate	 and	 despite	 the	
established	 similarities	 of	mouse	 vision	 and	 primates,	 it	 is	 difficult	 to	 assign	 distinct	
tasks	to	each	individual	area	in	mouse	visual	cortex.	A	recent	study	in	rats	investigated	
the	correlation	of	neural	responses	in	extrastriate	areas	and	behavioral	performances	in	
a	shape	discrimination	 task	and	reported	 that	neural	responses	 in	higher	visual	areas	
represent	 more	 behavioral	 discriminability,	 while	 neural	 responses	 in	 V1	 area	 were	
more	closely	related	to	physical	differences	between	visual	stimuli	(Vermaercke	et	al.,	
2015).	 It	 is,	 therefore,	 likely	 that	other	extrastriate	areas,	which	are	 located	 in	higher	
levels	of	 the	mouse	ventral	 stream	hierarchy,	 respond	more	 strongly	 to	 second-order	
stimuli,	as	in	nonhuman	primates	(Poort	et	al.,	2012;	An	et	al.,	2014).	In	agreement	with	
this	notion,	studies	in	primates	which	examined	motion	perception	(An	et	al.,	2012)	and	
figure-ground	 segregation	 (Poort	 et	 al.,	 2012)	 across	 V1	 and	 higher	 visual	 areas	
observed	more	prominent	and	stronger	responses	in	V2	and	V4	areas	than	V1	area.		

It	 is	 also	 currently	 unknown	 whether	 responses	 to	 second-order	 gratings	 are	
stronger	during	task	performance.		
Whether	performing	a	task	could	enhance	the	second-order	responses	is	not	clear.	The	
ideal	experiments	would	be	those	in	which	neural	responses	to	both	grating	types	were	
measured	during	the	orientation	discrimination	task	in	both	naïve	and	trained	animals.	
A	 recent	 study	showed	 that	 learning	of	visual	discrimination	with	 first-order	gratings	
modulates	the	population	responses	in	area	V1	(Poort	et	al.,	2015).	Indeed,	by	imaging	
the	 population	 neurons	 in	 layer	 2/3	 of	 V1,	 they	 found	 that	 learning	 enhances	 the	
representation	 of	 task-relevant	 stimuli	 in	 the	 population-level	 in	 consecutive	 training	
sessions.	 Tracking	 individual	 neurons	 during	 consecutive	 training	 sessions	
demonstrated	 that	 the	 observed	 enhancement	 of	 neural	 representations	 at	 the	
population-level	 occurred	 via	 stabilizing	 the	 existing	 and	 recruiting	 new	 neurons	
selective	 for	 task-relevant	stimuli.	 In	 fact,	 learning	decreases	 the	variability	of	a	given	
neuron	 in	 its	 selectivity	 for	 a	 certain	 stimulus	 (Peters	 et	 al.,	 2014)	 and	 in	 addition,	
recruits	newly	selective	neurons,	which	were	not	selective	before	learning	(Poort	et	al.,	
2015).	It	is	also	possible	that	similar	alterations	occur	during	learning	of	other	grating	
types	such	as	second-order	stimuli.		
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Conclusion		
To	summarize,	 in	this	thesis	I	have	examined	the	processing	of	different	second-order	
visual	 stimuli	 in	 the	 mouse	 model.	 I	 found	 that	 mice	 are	 capable	 of	 generalizing	
orientation	discrimination	learning	from	first-order	to	second-order	gratings	and	their	
neurons	in	both	V1	and	area	LM	are	orientation-tuned	to	second-order	gratings.		These	
results	 are	 remarkable,	 as	 they	 offer	 new	 insights	 for	 future	 studies	 to	 investigate	
simple	 forms	 of	 invariance	 and	 their	 circuit-level	 neural	 mechanisms	 in	 the	 mouse	
model,	where	various	genetic	engineering	methods	are	available	for	chronic	imaging	of	
all	 visual	 cortical	 areas	 (Andermann	 et	 al.,	 2011;	 Marshel	 et	 al.,	 2011),	 causal	
manipulation	of	specific	cell	types	(Fenno	et	al.,	2011),	and	circuit	tracing	(Wickersham	
et	al.,	2007).	
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