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Abstract

Josephson junctions (JJs) with nontrivial current phase relation (CPR)
have attracted a large interest over the last 20 years, due to the new fun-
damental physics and their potential for many applications in both classical
and quantum circuits, e.g., as phase batteries or memory elements.

In this thesis, the properties of ϕ Josephson junctions in the classical
and in the quantum domain are studied. A ϕ JJ is a junction with a
doubly degenerate ground state phase φ = ±ϕ, where 0 < ϕ < π. Such a
system can be obtained combining a 0 and a π JJ, with phases φ = 0 and
φ = π in the ground state, respectively. The two segments should not be
very di�erent, with a small asymmetry either in the geometrical lengths
(L0 6= Lπ) or in the di�erent critical currents densities (jc0 6= jcπ).

The experiments presented here have been performed on ϕ junctions
fabricated with two di�erent technologies. The �rst one is based on su-
perconductor-insulator-ferromagnet-superconductor (SIFS) JJs with a tai-
lored ferromagnetic barrier. Realization of the ϕ state with such a technol-
ogy was already proven in the past. In the thesis, SIFS ϕ junctions were
used for two main experiments in the classical limit. First, we studied the
retrapping dynamics of the Josephson phase upon returning from the re-
sistive to the zero-voltage state. Since a ϕ JJ has two possible ground state
phases, it is not obvious where the phase ends when the junction jumps
back to the zero-voltage state. Second, we demonstrated the operation of
the ϕ JJ as a deterministic ratchet. The energy U(φ) of a ϕ JJ is tunable
by an external magnetic �eld, and a ratchet potential with no re�ection
symmetry can be easily obtained.

In the quantum regime a ϕ JJ can be regarded as macroscopic two-level
system. Hence, it would also be interesting to investigate its quantum
properties. However, several technological drawbacks a�ecting the SIFS
ϕ JJs (e.g., low jc and high damping) prevented experiments in this do-
main. As a �rst attempt to improve our technology, we fabricated SIFS
JJs with an additional thin superconducting interlayer s, obtaining SIsFS
structures. It was proposed that such junctions can have parameters (e.g.,
jc, characteristic voltage Vc) comparable to conventional superconductor-
insulator-superconductor (SIS) junctions. Although we actually detected
an improvement with respect to the SIFS JJs, the typical parameters ob-
tained did not ful�ll our purposes. A more successful technology was
attained with SIS JJs, where the phase discontinuity is arti�cially created
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by means of the current Iinj circulating through two microinjectors at-
tached to the junction. In this thesis, I present the experiments carried
out on such JJs in the quantum regime, where we investigated the escape
mechanism of the Josephson phase from both ground states ±ϕ.

Finally, I give an outlook on measurements to be performed in the
near future, where we want to create a ϕ JJ with an energy pro�le which
is fully tunable electronically. Simulations predict that such a junction can
be realized out of a SIS JJ with three pairs of injectors. The Josephson
potential can be then controlled by adjusting the current through the two
additional injector pairs, Iinj2 and Iinj3, and the external magnetic �ux
Φ. Preliminary experimental characterization of such multiple injector
junctions in the classical limit, together with numerical �ts, are shown.
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Kurzfassung

Josephsonkontakte (JK) mit nichttrivialer Strom-Phasen-Beziehung
(SPB) haben, dank ihrer neuen grundlegenden Physik und ihrer vielen
Anwendungsmöglichkeiten in klassischen und Quanten-Schaltkreisen, wie
z.B. als Phasenbatterien oder Speicherelemente, in den letzen zwanzig Jah-
ren ein groÿes Interesse geweckt.

In dieser Doktorarbeit werden die Eingenschaften von ϕ-Josephson-
kontakten im klassischen und im quantenmechanischen Regime studiert.
Ein ϕ-JK ist ein Kontakt, der eine zweifach entartete Grundzustandsphase
φ = ±ϕ hat, wobei 0 < ϕ < π. Ein ϕ-JK kann durch die Kombination
eines 0- und eines π-JKs hergestellt werden, deren Grundzustandsphasen
φ = 0 bzw. φ = π sind. Die zwei Teile sollen nicht zu unterschiedlich
sein, mit einer kleinen Asymmetrie etweder in den geometrischen Längen
(L0 6= Lπ) oder in den kritischen Stromdichten (jc0 6= jcπ). Die hier prä-
sentierten Experimente wurden mit ϕ-Kontakten durchgeführt, die mit
zwei verschiedenen Technologien hergestellt wurden. Die erste basiert auf
Supraleiter-Isolator-Ferromagnet-Supraleiter-Josephson-Kontakten (SIFS-
JK) mit einer maÿgeschneiderten ferromagnetischen Barriere. Die Reali-
sierung von ϕ-Kontakten mithilfe dieser Technologie wurde bereits in der
Vergangenheit demonstriert. Im Rahmen meiner Doktorarbeit wurden sol-
che Kontakte für zwei Hauptexperimente im klassischen Regime benutzt.
Erstens studierten wir die Dynamik des Retrapping-Prozesses der Joseph-
sonphase bei der Rückkehr aus dem resistiven in den spannungslosen Zu-
stand. Da der ϕ-JK zwei Grundzustandsphasen hat, ist es nicht ersichtlich,
welche Phase sich einstellt, wenn der Kontakt in den Spannungslosen Zu-
stand zurückspringt. Zweitens demonstrierten wir den Betrieb eines ϕ-JK
als deterministische Ratsche. Die Energie U(φ) eines ϕ-JKs kann mithil-
fe eines äuÿeren Magnetfelds gesteuert werden, und ein Ratschenpotential
mit gebrochener Re�ektionssymmetrie kann auf einfache Art realisiert wer-
den.

Im quantenmechanischen Regime kann der ϕ-JK als ein makrosko-
pisches zwei-Niveau-System aufgefasst werden, was Untersuchungen im
Quantenregime interessant macht. Experimente in diesem Regime waren
jedoch wegen mehrerer technologischer Nachteile für SIFS-ϕ-JK (z.B. nied-
riges jc und hohe Dämpfung) nicht möglich. In einem ersten Versuch, un-
sere Technologie zu verbessern, stellten wir SIFS-JK mit einer zusätzlichen
dünnen supraleitenden Zwischenschicht s her, was SIsFS-Strukturen ergab.
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Es wurde vermutet, dass solche Kontakte vergleichbare Parameter (z.B. jc,
charakteristische Spannung Vc) wie Supraleiter-Isolator-Supraleiter-Kon-
takte (SIS-JK) haben können. Obwohl wir tatsächlich eine Verbesserung
gegenüber der vorherigen SIFS-Technologie erzielen konnten, erfüllten die
typischerweise erreichten Parameter nicht unsere Anforderungen. Eine er-
folgreichere Technologie wurde mit SIS-JK entwickelt, wobei die Phasen-
diskontinuität künstlich mithilfe eines in einem mit dem Kontakt verbun-
denen Injektorpaar �ieÿenden Stromes erzeugt wurde. In dieser Arbeit
präsentiere ich die Versuche, die mit solchen JK im quantenmechanischen
Regime durchgeführt wurden, wobei wir das Entkommen der Josephson-
phase aus beiden Grundzuständen ±ϕ untersuchten.

Abschlieÿend gebe ich einen Ausblick auf Geometrien, die einen ϕ-JK
mit vollständig elektronisch steuerbarem Energiepro�l verwirklichen kön-
nen. Simulationen sagen vorher, dass ein solcher Kontakt aus einem SIS-JK
mit drei Injektorpaaren realisiert werden kann. In diesem System kann das
Josephsonpotenzial gesteuert werden, indem man den Strom durch zwei
zusätzliche Injektorpaare, Iinj2 und Iinj3, sowie den äuÿeren magnetischen
Fluss Φ anpasst. Die vorläu�ge experimentelle Charakterisierung und die
numerische Analyse von solchen Kontakten mit Multiinjektoren im klassi-
schen Regime werden vorgestellt.
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1 Introduction

The Josephson e�ect, �rst predicted by B. Josephson [1], is a quantum
coherent phenomenon that describes the transfer of Cooper pairs (elec-
trons correlated in momentum space) across a thin barrier separating two
superconductors. The barrier can be an insulator (I), a normal metal
(N) or a ferromagnet (F). More recently barriers based on semiconducting
and organic materials have been explored, e.g., semiconducting nanowires,
quantum dots, carbon nanotubes and graphene. Such a device, known as a
Josephson junction (JJ), represents the building block of superconducting
electronics.

The physics and the properties of a JJ are derived from the �rst Joseph-
son relation linking the (super)current Is through the junction to the dif-
ference of the phases φ = φ2 − φ1 of the wave functions Ψ1,2 describing
the two superconductors. The equation is also known as current�phase
relation (CPR). For most type of JJs, the CPR is a 2π-periodic function
of the phase. Below, I will refer to only one of the periods.

Generally, for conventional JJs, the CPR is Is(φ) = Ic sin(φ), where
Ic > 0 is the highest current that can �ow without dissipation. In this
case, the junction energy U(φ), calculated as the integral of the CPR with
respect to φ, has a minimum at φ = 0. Therefore the junction is called a
0 JJ.

In the past four decades, unconventional JJs with di�erent CPRs [2]
and a non-zero phase energy minimum have been proposed and were in-
tensively investigated, due to the potential for new applications in classical
and quantum superconducting circuits. These types of junctions are π JJs,
ϕ0 JJs and ϕ JJs.

In a π JJ the phase di�erence φ carries an additional shift of π in
the CPR with respect to the 0 JJ, i.e. Is(φ) = Ic sin(φ + π). Hence the
Josephson energy has a minimum at φ = π. The interesting aspect of a π
JJ is evident when such a junction is closed into a superconducting ring.
In order to satisfy the �uxoid quantization, a spontaneous current carrying
a half �ux quantum ±Φ0/2 (called a �Semi�uxon�) may be generated in
the ring [3, 4]. This current can be used to feed other circuits, thus one
creates a phase battery. Predicted in 1977 by Bulaevski�i [5], in the last
twenty years, π JJs have been realized with several technologies, [6�21],
and found application in both classical [22] and quantum circuits [23, 24].

Similarly to the π JJ, one de�nes a ϕ0 JJ as a junction exhibiting an
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arbitrary �nite phase shift in the CPR, i.e. Is(φ) = Ic sin(φ+ϕ0). In this
case, the energy pro�le shows a minimum at φ = ϕ0 6= 0, π. These kind of
junctions have been intensively studied from the theoretical point of view
[25�27], but realized for the �rst time in a quantum interference device
(SQUID) based on a nanowire quantum dot only recently [28].

In my thesis I focus on the third type of the listed novel JJs: the
ϕ JJ. A ϕ JJ can be realized by a CPR with two harmonics, I(φ) =
Ic1 sin(φ)+Ic2 sin(2φ), with Ic2 < −|Ic1|/2 [29, 30]. The distinctive feature
of such a junction is that the energy U(φ) has two degenerate ground states
at φ = ±ϕ within each 2π-period, where 0 < ϕ < π. As a consequence, the
junction has two critical currents (with di�erent amplitude), corresponding
to the escape of the Josephson phase from the +ϕ and the −ϕ well. The
two phase states can be used to store information [31] or, in the quantum
limit, to study quantum coherence, since the junction can be pictured as
a quantum mechanical two-level system. Furthermore, similarly to the π
JJ, a ϕ JJ can be used to realize a phase battery.

It was theoretically predicted that a JJ with an e�ective negative sec-
ond harmonic Ic2 in the CPR can be realized out of a 0-π JJ [32, 33].
Experimentally, such a junction was realized for the �rst time in 2012 by
the Tübingen group in collaboration with Forschungszentrum Jülich using
a SIFS junction with a stepped ferromagnetic layer [34].

In the �rst part of my thesis I show results obtained in the investiga-
tion of ϕ JJs fabricated with SIFS technology. In particular, we studied
the process of the retrapping of the Josephson phase. Since the ϕ JJ has
two energy minima, it is interesting to understand in which one the phase
will be trapped when the JJ returns from the �nite to the zero-voltage
state, and to �nd which parameters may play a role. To this purpose, we
performed measurements of switching current distributions as a function
of temperature and compared the results to the theory [35]. Furthermore,
since the re�ection symmetry of the energy pro�le U(φ) of a ϕ JJ can be
broken upon application of an external magnetic �eld H [32], we demon-
strate the operation of the ϕ JJ as a voltage recti�er (ratchet) in the idle
regime and in the presence of a counterforce. A theoretical model describ-
ing the ratchet is derived and main �gures of merit are estimated.

The realization of a ϕ JJ based on the SIFS technology is quite chal-
lenging and it is a�ected by several problems. The balance between the
0 and π segments is rather complicated, and a precision of less than 1 Å
is required in the thickness of the ferromagnetic layers dF,0 and dF,π for



3

short junctions (the length L is smaller than the Josephson penetration
depth λJ). Moreover, the presence of the F-layer causes a low critical cur-
rent density (jc . 60A/cm2), that translates into a classical-to-quantum
crossover temperature T ? of only a few mK, and a strong dissipation. As
a consequence, the SIFS junctions are not suitable to study the proper-
ties of ϕ JJs in the quantum limit. Our attempt to increase jc to typical
values of the SIS JJs (i.e. jc ∼ kA/cm2) by inserting a thin superconduct-
ing interlayer in the structure (SIsFS JJs) as proposed in [36�40] was not
successful. The highest critical current density achieved in the π region
was only 60 A/cm2 for an s-layer 11 nm thick. SIsFS JJs with thicker ds

showed a much higher jc. However, no 0-π phase transition was observed
by varying dF.

In the second part of my thesis I present the investigation of a ϕ JJ real-
ized with the conventional SIS technology, where a 0-π phase discontinuity
is arti�cially induced by two tiny leads (aka current injectors) attached to
one of the junction electrodes [41, 42]. The technology has been developed
in collaboration with the Karlsruhe Institute of Technology, and it has been
improved in the past few years to provide high quality junctions with very
narrow injectors. Up to now, the tiniest working injectors have a width of
1 µm. Further progress is needed in order to get sub-µm dimensions. SIS
junctions exhibit many advantages with respect to the ferromagnetic ones.
Firstly, they have typically very low dissipation, and secondly, they can
be realized with high jc � up to a few kA/cm2 � by simply controlling
the oxidation of the insulating barrier. A larger jc results in a crossover
temperature T ? of hundreds of mK. In this way, at T = 20 mK (the base
temperature of a dilution refrigerator), one is deep in the quantum regime.
In the frame of my Ph.D. project, such junctions were used to investigate
the quantum dynamics of the Josephson phase in the ϕ JJ potential. I will
present here evidence of macroscopic quantum tunneling (MQT) from the
±ϕ wells.

The thesis is organized as follows. The �rst chapter reviews the ba-
sics of conventional Josephson junctions. The properties of a ϕ JJ are
described in chapter two. The third chapter concerns the investigation
of the retrapping of the Josephson phase in a SIFS ϕ JJ. Here, I summa-
rize the experimental results published in Publication 1. In the fourth
chapter, I summarize the content of two of my papers (Publication 2 and
3) that report on a Josephson ratchet. Publication 2 illustrates a simple
and generic theoretical model that describes and derives main key �gures
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of a ratchet based on JJ systems. In Publication 3, I show the experimen-
tal demonstration of a voltage recti�er realized from a single SIFS ϕ JJ,
and apply the theoretical model to it. In the �fth chapter, I present the
experimental investigation of the 0-π transition in SIsFS JJs that we per-
formed in order to realize a ϕ JJ with a higher jc. The work is the subject
of Publication 4. The sixth chapter deals with the realization of a ϕ JJ
with current injectors. Experimental characterization in the classical and
quantum domain is shown (manuscript in preparation). The thesis closes
with a Summary and an Outlook, where I discuss unsolved problems
and possible new experiments. The Bibliography precedes the reprints
of all my publications at the very end of the thesis.



2 Fundamentals of Josephson junctions

2.1 Superconductivity

Superconductors (SCs) are materials exhibiting zero electrical resistance
[43] and a perfect diamagnetic state [44] below a critical temperature Tc

and below some critical magnetic �eld (Bc1 for type-II SCs). Their discov-
ery in 1911 [43] opened a new and exotic �eld in physics, that fascinates
scientists ever since.

It took almost 50 years for physicists to �nd a microscopic explanation
to the phenomenon of superconductivity, that is elegantly described in the
Bardeen-Cooper-Schrie�er (BCS) theory [45]. According to this theory,
superconductivity arises due to the formation of pairs of weakly interacting
electrons (Cooper pairs). At the transition to the superconducting state,
the Cooper pairs (CPs) condense in the same quantum state, that can be
described by a single macroscopic wave function

Ψ(r) = Ψ0(r)eiφ(r) (2.1)

where Ψ0(r) is linked to the density of pairs and φ(r) describes the center of
mass motion of all pairs. The function Ψ is also called the superconducting
order parameter [46].

The nature of the electron interaction in superconductors is of funda-
mental importance as it determines their properties. In conventional SCs,
such as niobium and many other low-temperature SCs, the Cooper pair-
ing is mediated through the excitations of the crystal lattice (phonons). In
these materials, the CPs have total spin S = 0 (spin singlet) and total an-
gular momentum L = 0, which de�ne an isotropic wave function Ψ in the
k-space (s-wave symmetry), i.e. Ψ has the same sign in all directions. In
unconventional SCs, the pairing mechanism is non-phononic and the sym-
metry of the superconducting order parameter may not be s-wave-like.
High temperature cuprate superconductors, for instance, have S = 0 and
L = 2, that correspond to a wave function with a dx2−y2 symmetry, with
Ψ changing sign going from the kx to the ky direction. For most of these
materials, the way pairing of electrons occurs is still a matter of debate.

In the following, I will describe one of the most striking applications
of superconductivity, i.e. the Josephson junction. Here the combination
of conventional and unconventional SCs may lead to novel junctions with
unique properties.
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2.2 Josephson relations

A Josephson junction is a contact composed of two superconductors cou-
pled through a weak link, as sketched is Fig. 2.1. The weak link is generally
a thin layer of another material. In his historical paper [1], B. Joseph-
son considered an insulator. Since then, a large variety of materials have
been explored. The superconducting order parameter of the two super-
conductors Ψ1,2 decays into the barrier (see Fig. 2.1), but if the barrier is
thin enough for Ψ1,2 to overlap, coherence is preserved and CPs can �ow
through the barrier. This results in a supercurrent �owing through the
junction with no voltage drop.

The physics of JJs is described by two main relations that can be
derived by solving the Schrödinger equation of the system [1]. The �rst
Josephson relation, also denoted as current-phase relation, is given by

Is(φ) = Ic sin(φ2 − φ1) = Ic sin(φ) (2.2)

and it describes the variation of the supercurrent Is crossing the junction
as a function of the di�erence of the phases φ1 and φ2 of the two supercon-
ductors. Is is zero for φ = 0, while it reaches its maximum value Is = Ic
at φ = π/2. The amplitude of Ic is determined by the strength of the
coupling of the two superconductors. The Josephson phase φ evolves in
time according to the second Josephson relation:

dφ

dt
=

2πV

Φ0
, (2.3)

with Φ0 = 2.07 × 10−15 Wb being the �ux quantum. Assuming a time-
independent voltage V , by integrating Eq. (2.3) and substituting the result
in Eq. (2.2), one gets a supercurrent oscillating in time with the Josephson
frequency fJ = V/Φ0 ≈ V · 483.6 MHz/µV. From Eq. (2.2) and Eq. (2.3),
one can calculate the coupling energy of a JJ:

U(φ) =

∫ t

0

IsV dt =
IcΦ0

2π

∫ φ

0

sin(φ)dφ = EJ[1− cos(φ)]. (2.4)

The energy is a 2π-periodic function of the phase. Its minima represent the
ground state of the JJ. For conventional junctions, the minimum occurs
at φ = 0 mod 2π, therefore they are generally named �0 JJs�. Further in
the thesis, I will discuss the more general case of junctions where Umin =
U(φ 6= 0).
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Figure 2.1: Cartoon of a Josephson junction: two superconductors (green) sep-
arated by a barrier (yellow). The superconducting order parameters Ψ1,2 decay
into the barrier. The junction has length L and width W .

2.3 The RCSJ Model

The phase dynamics of a JJ is well described by the Resistively and Ca-
pacitively Shunted Junction (RCSJ) Model [47, 48]. The theory represents
the JJ as an ideal non-linear element in parallel with a resistance R and
a capacitance C, as sketched in Fig. 2.2(a). The ideal JJ sustains the cur-
rent Is of Eq. (2.2). The resistance accounts for the quasiparticle transport
through the junction, that causes the current In. In the simplest picture,
the dependence of In on the applied voltage is approximated to be ohmic.
Eventually, one can extend the model to a more general In(V ) (non-linear
RCSJ model). The capacitance de�nes a displacement current Id = CV̇ .
Thus, the total current crossing the junction is:

I = Is + In + Id = Ic sinφ+
V

R
+ CV̇ , (2.5)

that together with Eq. (2.3) and Eq. (2.4) leads to:

EJ
d

dφ

[
γφ− (1− cosφ)

]
=

1

R

(Φ0

2π

)2 dφ

dt
+ C

(Φ0

2π

)2 d2φ

dt2
, (2.6)

where γ = I/Ic. The equation above is equivalent to the equation of a
particle of massM = C(Φ0/2π)2, moving with a friction η = (Φ0/2π)2R−1

in a washboard potential U ∝ (1− cosφ)− γφ (see Fig. 2.2 (b)). Eq. (2.6)
is often rewritten in a dimensionless form by normalizing the time t to the
inverse of the eigenfrequency of the junction ω−1

p0 , obtaining

γ = sin(φ) +
1√
βc

dφ

dt
+
d2φ

dt2
, (2.7)
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where βc = 2πIcR
2C/Φ0 is called the Stewart-McCumber parameter and

it describes the damping of the JJ. More often, in literature, one refers to
the dimensionless damping with the parameter α = 1/

√
βc. The frequency

ωp0, also called plasma frequency for historical reasons, is de�ned as

ωp0 =

√
2πIc
Φ0C

(2.8)

and it corresponds to the frequency of the eigenoscillations of the Joseph-
son phase at the bottom of the energy minimum at zero bias (i.e. untilted
potential).

The dynamics of a JJ strongly depends on βc. Commonly, if βc < 1 the
junction is called overdamped, whereas for βc > 1 is called underdamped.
In the former, the �ctitious particle representing the Josephson phase has
a small mass M and it is subject to a large friction. In the latter, the
particle is heavy (largeM) and it moves less viscously. The two types of JJs
have di�erent current-voltage characteristics (IVCs), as shown Fig. 2.2(c).
Here, I is the bias current applied to the junctions and V is the time
averaged voltage detected across it. Three main transport regimes can be
distinguished in both IVCs. (I) Starting from zero bias current I = 0,
a supercurrent with zero voltage is measured across the junctions up to
the value I = Ic. In the picture of the washboard potential, the �ctitious
particle is pinned in the metastable minimum of the potential U(φ). (II)
For I ≥ Ic, the junctions switch to the voltage state. For these values
of the bias, the energy well disappears (cf. Fig. 2.2(b)) and the phase-
particle escapes and rolls down the washboard. As the phase varies in
time, a voltage appears according to Eq. (2.3). For large I, both IVCs
approach a linear behavior, with the slope given by the inverse of the
normal resistance of the junction. In the experiments, due to the presence
of thermal �uctuations, the phase can actually escape from the energy
minimum already for I < Ic, therefore the measured critical current (aka
switching current) of the junction is always somewhat smaller than the
noise-free Ic0. By lowering the temperature of the JJ, one can achieve a
better estimation of Ic, that will approach Ic0 as T → 0. (III) As the bias
current is reduced back to zero (i.e. the washboard is brought back to
the untilted con�guration), the overdamped and underdamped JJ behave
very di�erently. For βc < 1, the IVC follows the same curve measured for
increasing bias and the junction returns to the zero voltage state at I ≤ Ic.
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Figure 2.2: (a) Sketch of the equivalent circuit of a Josephson junction according
to the RCSJ model. (b) Josephson washboard potential for di�erent values of
the normalized bias current γ. The particle of mass M represents the particle-
like Josephson phase. (c) Simulated IVCs (from Eq. (2.13)) of a JJ in the
underdamped (black curve) and in the overdamped (blue curve) regime. The
arrows indicate the sweeping direction of the bias current.

For βc > 1, a hysteresis appears in the IVC and the voltage jumps back to
zero at a value of the current Ir (return current) smaller than Ic.

2.4 Josephson junctions in a magnetic �eld

The phase di�erence across the junction changes in space in the presence
of an external magnetic �eld H, applied in the plane of the junction in the
y direction (see Fig. 2.1). In order to derive the φ(x) dependence, one has
to consider the phase spatial variation induced by the �eld between two
in�nitesimally close points x and x + dx. Since the Josephson phase is a
gauge invariant variable, the variation can be expressed as follows:

φ(x+ dx)− φ(x) =
2π

Φ0
µ0HΛdx, (2.9)

with the e�ective magnetic thickness Λ and the vacuum permeability µ0.
Integration of Eq. (2.9), under the assumption that (i) the magnetic �eld
penetrates the barrier uniformly and (ii) the critical current density is
homogeneous, leads to:

φ(x) =
2π

Φ0
Λµ0Hx+ φ0. (2.10)
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Therefore, substituting this in the �rst Josephson relation js = jc sinφ(x)
and integrating in space to get the total current, one �nds that the crit-
ical current oscillates with the magnetic �eld according to a Fraunhofer
pattern:

Ic(H) = Ic

∣∣∣∣∣ sinπ
Φ
Φ0

π Φ
Φ0

∣∣∣∣∣, (2.11)

with the total �ux through the junction Φ = Λµ0HL.

2.5 Sine-Gordon equation

The RCSJ model and the Ic(H) dependence derived in the previous sec-
tions apply in the limit of a short JJ, that is for a junction with length
small compared to the Josephson penetration depth λJ, i.e. L . λJ. In
this geometrical con�guration, self-�eld e�ects � generation of magnetic
�elds caused by the Josephson and the screening currents � are negligible.
However, this condition does not hold in the case of long JJs, i.e. L > λJ.

In this section I introduce the sine-Gordon model, that is a more gen-
eral model describing the phase dynamics in a long JJ. The model takes as
equivalent circuit of the junction RCSJ cells connected in parallel through
an inductance. Calculations based on the Kirchho� laws lead to the fol-
lowing spatial variation of the Josephson phase:

2πjcλ
2
J

Φ0
µ0Λ

∂H(x)

∂x
− jcλ2

J

∂2φ

∂x2
= jb − j(x), (2.12)

where jb is the bias current density and j is the current density across the
barrier. Eq. (2.12) together with Eq. (2.6) gives the perturbed sine-Gordon
equation, that reads:

∂2φ

∂x2
− ∂2φ

∂t2
− sinφ = α

∂φ

∂t
− γ +

∂h(x)

∂x
, (2.13)

with x normalized to λJ, the time t to the inverse of the plasma frequency
ω−1

p0 , and the �eld to the critical �eld Hc1 = Φ0/2πλJµ0Λ.
Later, I will use Eq. (2.13) to numerically simulate some characteristic

dependences, e.g., Ic(H). By comparing numerical results obtained for dif-
ferent sets of parameters with the experimental curves, one can determine
λJ and βc that are not measurable directly.
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2.6 Macroscopic quantum tunneling

Consider the Josephson energy potential tilted by a bias current I just
below the critical value Ic, i.e. Ic − I � Ic. In these conditions, the
height of the energy barrier ∆U (cf. see Fig. 2.3) is small and the phase
may escape to the voltage state either due to thermal �uctuations or due
to quantum tunneling through the energy barrier. In the �rst case, one
talks about thermal activation (TA) or classical escape process, while in
the second case one has macroscopic quantum tunneling (MQT). The rate
at which the two processes occur depends on the applied bias current via
the energy barrier ∆U(γ) [49]

∆U(γ) = 2EJ[
√

(1− γ2)− γ arccos γ]

≈ 4

3

√
2EJ(1− γ)3/2 , (1− γ)� 1,

and the plasma frequency

ωp(γ) = ωp0(1− γ2)1/4. (2.14)

At high temperature, the escape mechanism is dominated by TA. The
escape rate in this regime is given by the Kramers formula [50]

Γt = at
ωp(γ)

2π
exp

(
− ∆U(γ)

kBT

)
, (2.15)

with at . 1 being a damping-dependent parameter. For strong damping
α, at can signi�cantly deviate from one, i.e. Γ decreases. The case of low,
intermediate and high α in the escape process has been discussed in several
works and expressions for at have been derived in each regime [50�53].

The escape rate in the classical domain depends exponentially on the
temperature T . Hence, activation over the barrier is suppressed as T is
lowered. For su�ciently low T , MQT can be observed, with a rate for
�nite damping given by [54]

Γq = aq
ωp(γ)

2π
exp

[
− 7.2

∆U(γ)

~ωp(γ)

(
1 +

0.87

Q

)]
, (2.16)
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Figure 2.3: Tilted Josephson potential U(φ). The phase-particle is trapped in the
potential well and it oscillates with ωp. The red arrows indicate two escape pro-
cesses: thermal activation over the barrier (TA) and quantum tunneling through
the barrier (MQT).

where the prefactor aq depends of the damping and Q = ωpRC is the qual-
ity factor at high frequency. Note that in both Eq. (2.15) and Eq. (2.16),
the damping is assumed to be not vanishing, in such a way that equilibrium
is present for each value of γ. The crossover temperature T ? that sepa-
rates the thermal (T > T ?) from the quantum tunneling (T < T ?) regime
can be estimated from the condition Γt = Γq, that in the approximation
Q� 1 leads to

T ? =
~ωp(γ)

7.2kB
. (2.17)

Experimentally the escape process of the Josephson phase is studied by
measuring the switching current distribution of the JJ. To this purpose,
the bias current is ramped up with a constant rate İ and the current at
which the junction switches to the voltage state is recorded. Due to the
presence of �uctuations, the switching current is statistically distributed.
Thus, by collecting a large amount of measurements, one can generate a
histogram and determine the escape rate from [49]

Γ(Ik) =
İ

∆I
ln

∑M
j=k P (Ij)∑M
j=k+1 P (Ij)

, (2.18)
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with M the total number of bins of size ∆I of the probability distribution
P (I). If the measurements are repeated at di�erent temperatures T , one
can observe the transition from the TA to the MQT regime by plotting
the width σ of the histograms vs T . In the classical limit, σ reduces as
the temperature is lowered, due to the decrease of the thermal energy
kBT . Theory predicts σt(T ) ∝ T 2/3 [49, 55]. In the quantum limit, the
switching current distribution does not depend on the temperature and
σq(T ) = const. In the experiment, the intersection of σt and σq gives the
crossover temperature T ?.





3 Unconventional Josephson junctions

3.1 The current phase relation

The �rst Josephson relation introduced in Chapter 1 is fundamental and
determines all the main properties of a JJ. The sinusoidal-like function of
Eq. (2.2) holds for most type of experimentally available junctions. How-
ever, one can write down a more general expression [2]:

Is(φ) =

∞∑
n=1

Icn sin(nφ) (3.1)

The equation above satis�es the following general properties, which are
independent from the junction geometry and the material used:

(i) The current-phase relation (CPR) is 2π-periodic

Is(φ) = Is(φ+ 2π) ;

(ii) The supercurrent is time-reversal symmetric

Is(−φ) = −Is(φ) ;

(iii) No supercurrent �ows if the phase di�erence is a multiple of π

Is(nπ) = 0, n = 0,±1,±2, ...

A review on di�erent types of CPRs is given in [2]. In this Chapter I
will describe three kinds of novel JJs, whose CPR deviates from the one
in Eq. (2.2).

3.2 π Josephson junction

Conventionally, the critical current of a JJ is positive, Ic > 0, and the
energy, calculated as the integral in φ of the CPR, has a minimum at
φ = 0 (see Fig. 3.1(a) and (b)). However, the case Ic < 0 may also occur
(Fig. 3.1(c)). A negative critical current corresponds to a phase shift of π
in the ground state of the junction, thus the CPR and the energy can be
written as:

Is(φ) = |Ic| sin(φ+ π), (3.2)

U(φ) = EJ[1− cos(φ+ π)], (3.3)
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with EJ = |Ic|Φ0/2π. As shown in Fig. 3.1(d), in this case the minimum
of the energy is located at φ = π, from which the name of π JJs derives.

There is a lot of interest in π JJs. They can be used in classical and
quantum circuits as phase batteries [22�24]. When closed into a super-
conducting loop, the π JJ may lead to the spontaneous generation of a
supercurrent, that can be used to feed external circuits. The main ad-
vantage of such a battery is that it is never discharging (as long as the
temperature is kept below the critical value Tc) and it allows to eliminate
feeding lines into the circuit, thus it can substantially reduce thermal dis-
sipation of the whole circuit. In the quantum limit, using a phase bias
instead of an applied magnetic �eld may provide a better decoupling from
the environment.

π JJs were �rst predicted by Bulaevski�i et al. in 1977 [5] for SIS junc-
tions with magnetic impurities in the barrier [6]. Some 20 years later, the
π state was suggested and/or demonstrated in JJs realized with di�erent
technologies, e.g., JJs with ferromagnetic layers [7�12], nano-constriction-
type JJs (so-called �geometric� d-wave JJs) [56], d-wave/s-wave based JJs
[13�15], grain boundary JJs in d-wave superconductors [16�18], SNS JJs
with a non-equilibrium distribution of the electrons in the barrier [19] and
quantum dot based JJs [20, 21].

3.3 ϕ0 Josephson junctions

It has been suggested that the CPR may show a phase shift di�erent
from 0 and π in JJs involving unconventional superconductors [57, 58],
non-centrosymmetric normal metal barriers [25], nonaligned geometries
[26], current injectors [59] or asymmetric dc SQUIDs [60]. These types of
junctions are generally called ϕ0 JJs and their CPR and energy read as

I(φ) = Ic sin(φ+ ϕ0), (3.4)

U(φ) = EJ[1− cos(φ+ ϕ0)]. (3.5)

A plot is shown in Fig. 3.1(e) and (f). Contrary to other junctions, ϕ0

JJs do not satisfy conditions (ii) and (iii) of Section 3.1, that is time-
reversal symmetry is not preserved and the current is not zero at φ = 0.
A ϕ0 ground state phase can be revealed if the junction is connected to a
superconducting loop. In such a system, a circulating current should be
detected with no bias or magnetic �ux applied.
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Figure 3.1: Normalized current phase relation γ(φ) = Is/Ic1 and energy pro�le
U(φ)/EJ for a 0 JJ (a)-(b), a π JJ (c)-(d), a ϕ0 JJ (e)-(f) and a ϕ JJ (g)-(h).

Only recently, a ϕ0 JJ has been demonstrated in a junction realized
with a quantum dot [28].

3.4 ϕ Josephson junctions

From the combination of a 0 and a π JJ, one can obtain a so-called ϕ JJ.
The ϕ JJ has a doubly degenerate ground state at φ = ±ϕ with 0 < ϕ < π
[29, 61]. In terms of energy, this corresponds to an energy pro�le that looks
like a 2π-periodic double well. The simplest CPR that results in such a
U(φ) is a CPR with a negative second harmonic Ic2 < 0 (cf. Eq. (3.1)):

Is(φ) = Ic1 sin(φ) + Ic2 sin(2φ). (3.6)

The potential has two degenerate wells if Ic2 < −|Ic1|/2, i.e. it results in
a ϕ JJ [30]. The energy pro�le derived from Eq. (3.6) is:

U(φ) = EJ

[
1− cos(φ) +

Ic2

2Ic1
cos(2φ)

]
where EJ =

Ic1Φ0

2π
. (3.7)
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A plot of the supercurrent and of the energy for |Ic2| = 1.2Ic1 is displayed
in Fig. 3.1(g) and (h).

ϕ JJs are very interesting devices showing unusual physics, e.g., a mag-
netically tunable CPR [32], chaotic dynamics of the phase for low damping
[35, 62] and splintered vortices [30, 63, 64]. They have high potential for
many applications, like arbitrary phase batteries, memories [31] and ratch-
ets [65]. The phase dynamics and the ratchet operation of a ϕ JJ are the
subject of two of my publications, that I summarize in the next chapters.

3.5 Methods for the realization of a ϕ JJ

Grain boundary JJs. It was theoretically proposed that a JJ made
with d-wave superconductors may lead to the ϕ state for certain orienta-
tions of the crystal axis and below some temperature T ∗ [57, 58]. The key
ingredient here is the formation of zero-energy states (ZES's) around the
surface of the d-wave superconductor if the pair potential of the quasipar-
ticles involved into the Andreev re�ections has opposite sign depending on
the electronic trajectory. For T < T ∗, the ZES's lead to a negative and
strongly suppressed �rst harmonic of the CPR, thus the second harmonic
becomes important. Some indications of the ϕ JJ-like CPR (temperature
dependence of Ic and degenerate ground state) were given by di�erent
groups in 45◦ YBCO grain boundaries (GB) junctions [66, 67].

Long arrays of 0 and π JJs. A long JJ with a critical current density
randomly alternating between positive and negative values was proposed as
a possible setup to realize a ϕ JJ by Mints [61], having in mind real GBs
of d-wave superconductors. Later, Buzdin [29] came to the same result
considering a similar setup composed of a periodic array of 0 and π facets,
realized using JJs with ferromagnetic barrier. In their work, the authors
show that an e�ective CPR with a second harmonic can be derived by
spatially averaging the total phase of the array. The CPR gives an energy
with doubly degenerate ground states when the mismatch between the 0
and the π facets is small. Experimentally, such structures were realized
with long GB JJs, and evidence of a nontrivial CPR were demonstrated
by detecting nonquantized (splintered) vortices [64]. Nevertheless a full
characterization of the system was not carried out, probably due to a poor
control over the junction parameters and a high damping.
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Asymmetric 0-π JJ. The theoretical arguments in [29, 61] for the chain
of 0 and π JJs, were later used by Goldobin et al. [32] to demonstrate a ϕ JJ
based on a single 0-π period of such a chain. The junction was considered
to be asymmetric in the length of the two segments, i.e. L0 6= Lπ. The
same calculation has been later generalized by Lipman et al. [33] to the
case of a junction with jc0 6= jcπ. An asymmetric 0-π JJ resulting in a ϕ
JJ behavior was shown by Sickinger et al. in 2012 using a ferromagnetic
junction [34]. Currently, this is the only experiment showing the existence
of two critical currents [30] and manipulation of the two phase states.

In the following, I will dedicate separated and more detailed sections
to the theoretical model and to the experiments on the ϕ JJ realized with
this technology, since the �rst part of my thesis shows works performed on
such junctions.

A constriction-type JJ with a d-wave superconductor. ϕ JJs were
proposed also by Gumann et al. [56] for a JJ patterned from a thin �lm of
a d-wave superconductor narrowed down from one side by a wedge-shaped
incision. The orientation of the d-wave order parameter is considered as
α = 45◦ relative to the constriction. The model shows that the phase
of the junction exhibits a 0-π transition depending on the width w of
the constriction. The transition is marked by a critical width wc that
is a function of temperature. For w > wc, the phase is zero, while for
w < wc the phase is π. When T < Tc, due to a larger contribution of the
second harmonic of the CPR, the ϕ state appears in the vicinity of the 0-π
crossover. As the temperature decreases, the ϕ domain widens. The ϕ JJ
is possible also for α 6= 45◦, in the limit that α > 22.5◦.

s-wave/s± superconductor based JJs. A ϕ JJ has been also sug-
gested based on a junction fabricated using a conventional superconductor
(s-wave) and an iron pnictide (s± state) [68]. According to several the-
oretical works, superconductivity in iron pnictides is mediated by spin
�uctuations giving order parameters with opposite signs in the electron
and hole bands (s± state) [69�73]. When an s-wave and an s± supercon-
ductor are brought closely together to create a JJ, the Josephson energy
is expressed as the sum of two terms, EJ1 > 0 and EJ2 < 0, given by
the alignment of the order parameters with the s± states. In the limit of
|EJ1| ≈ |EJ2|, higher harmonics must be taken into account in the calcula-
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tion of the total energy of the system. If the second harmonic is negative,
a junction with a degenerate double well potential is realized.

Normal/ferromagnet JJs. An SFS JJ lying on top of a normal metal
(N) has been suggested as a possible candidate for the realization of a
ϕ JJ [39, 74]. In this system a negative second harmonic in the CPR is
obtained combining the properties of an SNS and an SFS junction. For
some ranges of length and thickness of the F- and N-layer, in the SNS JJ,
at low temperature, the �rst harmonic IN

c1 is positive and the second IN
c2 is

large and negative; in the SFS JJ, IF
c1 can become negative with decreasing

temperature, minimizing the total amplitude of the �rst harmonic.

Asymmetric dc SQUID. Recently Goldobin et al. [60] have shown
that an asymmetric dc SQUID (Superconducting QUantum Interference
Device) with non-vanishing inductance can e�ectively behave as a system
having two degenerate ground states. A dc SQUID is a superconducting
ring interrupted by two JJs. If the two junctions have di�erent ground
state phases and critical currents, i.e. one is a 0 JJ with I1

c and the other
a π JJ with |I2

c | < I1
c , then the energy potential of the system develops two

wells, if αc < |α| < 1. The parameter α = I2
c /I

1
c de�nes the asymmetry

of the two critical currents. The parameter αc is the value of asymmetry
for which the CPR becomes ϕ JJ-like and it depends on the inductance of
the SQUID.

3.6 A ϕ JJ based on an asymmetric 0-π JJ

Consider a JJ with a 0 and a π segment as sketched in Fig. 3.2. The
critical current density pro�le is then written as [32, 33]:

jc(x) =

{
jc0, 0 ≤ x ≤ L0,

−jcπ, −Lπ ≤ x < 0,
(3.8)

with jc0, jcπ > 0.
More conveniently, one can write jc(x) as follows [61]:

jc(x) = 〈jc(x)〉[1 + g(x)], (3.9)
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Figure 3.2: Schematic of a 0-π JJ with L0 6= Lπ and jc0 6= jcπ. From [33].
c© 2014 American Physical Society.

with the average 〈jc(x)〉 and g(x) de�ned by

〈jc(x)〉 =
1

L

∫ L0

−Lπ
jc(x)dx =

1

L
(jc0L0 − jcπLπ), (3.10)

g(x) =
jc(x)

〈jc(x)〉 − 1, (3.11)

where L = L0 + Lπ is the total length of the junction and the average of
the function g(x) is zero.

The spatial distribution of the phase along the junction is described
by the sine-Gordon equation (Eq. (2.13)). For simplicity, here the static
situation (∂φ/∂t = 0) is considered:

φ′′ − jc(x) sinφ = −j, (3.12)

where the prime denotes the spatial derivative and j is the bias current
(not normalized). The spatial coordinate is normalized to the Josephson
length λJ de�ned as:

λJ =

√
Φ0

2πµ0Λ|〈jc〉|
. (3.13)

Below, the normalized lengths L0/λJ and Lπ/λJ will be denoted with l0
and lπ, respectively. By inserting Eq. (3.9) into Eq. (3.12) and normalizing
the currents to 〈jc〉, one gets:

φ′′ − sgn(〈jc〉)[1 + g(x)] sinφ = −γ. (3.14)
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Short JJs. In the limit of short JJs, the CPR can be obtained from
Eq. (3.14) analytically. Following the arguments of [29, 61], one can write
the phase along the junction as the sum of two terms:

φ(x) = ψ + ξ(x) sinψ. (3.15)

The constant ψ = 〈φ(x)〉 is the spatial average of φ(x), while ξ(x) sinψ is
an oscillating function describing the variation of the phase around ψ. The
oscillation has zero spatial average (|〈ξ(x)〉| = 0) and a small amplitude
(|〈ξ(x) sinψ〉| � 1). Plugging this ansatz in Eq. (3.14) and expanding to
the �rst order in ξ(x), one �nds:

ξ′′ sinψ − sgn(〈jc〉)[1 + g(x)][1 + ξ(x) cosψ] sinψ = −γ. (3.16)

Eq. (3.16) can be split into a system of two equations, one for the constant
terms and one for the varying ones. These equations lead to the following
e�ective CPR:

j(ψ) = 〈jc〉
[

sinψ ± Γ0

2
sin(2ψ)± hΓh cosψ

]
, (3.17)

where the signs ± stands for 〈jc〉 > 0 and 〈jc〉 < 0, respectively, h =
2H/Hc1 is the normalized applied magnetic �eld, and the coe�cients Γ0

and Γh are geometrical factors, de�ned as

Γ0 = − l
2
0l

2
π

3

(jc0 + jcπ)2

(jc0l0 − jcπlπ)2
and Γh =

l0lπ
2

jc0 + jcπ
jc0l0 − jcπlπ

.

The energy corresponding to the CPR in Eq. (3.17) is:

U(ψ) = 〈jc〉
[
1− cosψ ± Γ0

2
sin2 ψ +±hΓh sinψ

]
. (3.18)

Thus, a JJ with unequal 0 and π segments can exhibit a CPR with a
negative second harmonic, resulting in a ϕ JJ. The value of the ground
state is calculated from Eq. (3.17) with j, h = 0, giving:

ϕ = ± arccos

(
− 1

Γ0

)
. (3.19)

However, not all the asymmetries between the 0 and the π facets can lead
to an e�ective ϕ JJ, as shown in the domain of existence of the ϕ state
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Figure 3.3: (a) The phase diagram calculated for the case jc0 = jcπ. The solid
lines correspond to constant values of ϕ, as indicated by the numbers interrupting
the lines, and they are calculated numerically from Eq. (3.16). Adapted from
[33]. c© 2014 American Physical Society. E�ective CPR (b) and energy pro�le
(c) of a 0-π JJ with l0 = 1 and lπ = 0.9. Di�erent colors correspond to di�erent
values of the normalized magnetic �eld h indicated by the numbers. One can
notice that at h = ±1 the ∓ϕ well is not present anymore. Adapted from [32].
c© 2011 American Physical Society.

in the l0,lπ plane in Fig. 3.3(a). Expressions for l0(lπ) and lπ(l0) can be
found in [33].

What is remarkable to notice in Eq. (3.17) is that the presence of an
external magnetic �eld contributes to an additional term in the CPR,
making both the supercurrent and the energy pro�le tunable with h, as
shown in Fig. 3.3(b) and (c).

Calculating the extrema of j(ψ) (Eq. (3.17)), one can also obtain the
dependence jc(h), that for small h has multiple values corresponding to the
escape of the phase out of the two energy wells. The curves jc(h) for some
sets of parameters l0 and lπ with jc0 = jcπ are plotted in Fig. 3.4. Here γc is
the normalized critical current. In Fig. 3.4(a), the chosen l0,lπ correspond
to a value of ϕ deep inside the domain of existence. The dependence has a
minimum at h close to zero, as expected in 0-π JJs. However, contrary to
the case of a symmetric 0-π JJ, where the minimum sits exactly at h = 0,
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in the asymmetric con�guration the minimum is slightly shifted. The shift
is point symmetric with respect to the polarity of the current, and its
value depends on Γ0: the smaller |Γ0|, the larger the shift. The o�set of
the minimum from zero-�eld is a distinct feature of a ϕ JJ. Moreover, two
critical currents (γc±) appear for each bias polarity for |h| < 0.6. The
two branches correspond to the depinning of the phase from the left and
the right potential well in Fig. 3.3(b). The �eld |h| ≈ 0.6 at which the
branches meet corresponds to the disappearance of one of the local energy
minima. When the junction gets more asymmetric (see Fig. 3.4(b) and
(c)), the diamond-shaped domain created by the crossing of the branches
shrinks and �nally it collapses. The point of collapse corresponds to the
boundary of the domain of existence of the ϕ state.

Figure 3.4: Dependence of the normalized critical current γc on the normalized
magnetic �eld h for di�erent segments lengths. The dashed lines indicate the
asymptotic behavior (see [32]), while the pink curves are the result of numerical
simulations of Eq. (3.16). Adapted from [32]. c© 2011 American Physical Society.

Long JJs. In the limit of a long JJ, for x far away from the 0-π boundary,
the spatial variation of the phase in the presence of a bias current can be
approximated by

φ(x) ≈
{
±π − arcsin(j/jcπ), x < 0,

arcsin(j/jc0), x > 0.
(3.20)

If one takes into account the 0-π interface, in the absence of bias and
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magnetic �eld, the phase describes a semi�uxon:

φ(x) ≈
{

4 arctan exp
(
x−x0

λJ0

)
, x < 0,

4 arctan exp
(
x−xπ
λJπ

)
− π, x > 0,

(3.21)

where λJ0,Jπ =
√

(Φ0/2πµ0Λjc0,cπ). Analytical solutions are reported in
[33].

3.7 Evidence of a ϕ�state in a SIFS JJ

The asymmetric 0-π JJs described in Section 3.6 were investigated in 2012
by Sickinger et al. [34] using a SIFS structure. The junctions were fab-
ricated using Nb|Al−Al2O3|Ni0.6Cu0.4|Nb heterostructures, as displayed
in Fig. 3.5(a). The junctions have a length of 200 µm and a width of
10 µm. In order to realize the 0 and the π segments, the ferromagnetic
layer is patterned with a step in the middle of the JJ. As a result, half
of the junction has a barrier of thickness dF,π and the other half has
dF,0 < dF,π. The thicknesses are chosen in such a way that the critical
current jcπ = jc(dF,π) < 0 and jc0 = jc(dF,0) > 0 are slightly di�erent.

In the experimental characterization of such a junction, two di�erent
critical currents for each bias polarity were successfully detected at a tem-
perature T = 2.35 K, as displayed in the current-voltage curve (IVC) in
Fig. 3.5(b). The currents are labeled as ±Ic± where the ± in front indi-
cates the current polarity and the ± in the subscript states for the right
(+ϕ)and left (−ϕ) well, respectively, for positive bias I > 0 and vice versa
for I < 0. For T > 3.5 K, only one critical current (for each bias polar-
ity) was measured, due to an increase of the damping with temperature.
A further evidence of the ϕ state was found in the Ic(H) modulation,
were a minimum around H = 0 and four current branches were observed
(Fig. 3.5(c)).

The same sample has been used by the group to demonstrate the oper-
ation of a memory bit [31]. The ±ϕ wells can be considered as the logic �0�
and �1�, therefore the junction can be used to store (1 bit) of information.
The writing and reading procedures of such a memory are rather simple.
For the writing one uses the fact that the degeneracy of the energy potential
can be lifted upon application of an external magnetic �eld. In particular
for H > H1 (cf Fig.3.5(c)), the energy well at ψ = +ϕ disappears, thus
one force the phase into the ψ = −ϕ well. Similarly, for H < −H1, one
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write the ψ = +ϕ state. The read-out of the phase state, carrying the
information, is executed by applying a bias current Ic− < IRO < Ic+. The

Figure 3.5: (a) Sketch of the SIFS 0-π JJ realized with a step along the ferro-
magnetic barrier (in green). (b) IVC measured at T = 2.35 K. The four critical
currents ±Ic± are clearly visible. (c) Measured Ic(H) dependence (black) com-
pared to simulations (red). Here the shift of the minimum from H = 0 can be
observed. The magnetic �eld H is applied by means of a coil with H = ηIcoil
and η ∼ 5µT/mA. Adapted from [34]. c© 2012 American Physical Society.
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output will be then a �nite voltage if ψ = −ϕ or zero voltage if ψ = +ϕ.
Realization of ϕ JJs using the SIFS structures is quite challenging,

especially in the limit of short JJs. In fact, by looking at the ϕ state
domain in Fig. 3.3(c) it is evident that as the junction length shortens,
the area of the domain shrinks signi�cantly. In technological terms, this
means that the asymmetry in the critical current of the 0 and π part has
to be very small, thus the thicknesses dF,0 and dF,π have to be controlled
on the Å scale.
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Phase retrapping in a ϕ Josephson junc-

tion: Onset of the butter�y e�ect

A ϕ JJ is de�ned as having an energy pro�le in the shape of a 2π-periodic
double well potential, with minima at ψ = ±ϕ + 2πn (with integer n).
While studying the dynamics of the phase in such a potential, a question
naturally arises: in which of the two wells the phase-particle ends when it
returns from the running state to the zero-voltage state? The answer to
this questions is not trivial, as discussed for the case of a point-like junction
in the theoretical paper of Goldobin et al. [35]. For a large damping α,
the phase is always trapped in the +ϕ well. However, as α decreases the
destination well is predicted to oscillate between the two ±ϕ values. In
the limit α→ 0, the �nal state cannot be predicted as it strongly depends
on the initial conditions of the system, in other words one deals with the
butter�y e�ect.

In this publication, we experimentally investigate the retrapping pro-
cess and compare the results to the predictions of the theory. The sample

Figure 4.1: (a) IVC of the investigated SIFS ϕ JJ at T = 0.3 K. Di�erent colors
correspond to di�erent bias sweep sequences. (b) Ic(H) dependence measured
by applying the �eld in-plane to the junction with a coil that has ηIcoil = µ0H,
with η ∼ 5µT/mA. Figure from the appended Publication 1. c© 2016 American
Physical Society.
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we used for the measurements is the same SIFS JJ as in Ref. [34]. Basic
characterization of the junction at T = 0.3 K is shown in Fig. 4.1. The two
critical currents Ic− = 421.2µA and Ic+ = 496.5µA are clearly visible in
the IVC and Ic(H). The di�erent colors in Fig. 4.1(a) indicate di�erent
sweep sequences of the bias current. We call �S1 pos(neg)� the sequence
where the bias starts from I = 0, goes to a maximum value on the positive
(negative) McCumber branch and then back to zero. The �S2 pos(neg)�
sequence corresponds instead to a sweep from a maximum I on the nega-
tive (positive) McCumber branch to the same I on the positive (negative)
voltage branch and then back. For the study of the retrapping dynamics

Figure 4.2: (a) A histogram built from the collected N = 104 measurements of
switching current at T = 0.3 K with the sweep sequence �S1 pos�. Two peaks
can be observed in the plot, which correspond to the escape currents from the
−ϕ and +ϕ wells. (b) Probability of the phase to be retrapped in the −ϕ well
as a function of the temperature for two bias sweep sequences. Each point is
extracted from the number of events populating the peak at Ic = Ic− in (a).
All the measurements are performed at zero �eld. Figure from the appended
Publication 1. c© 2016 American Physical Society.

we measured N = 104 times the switching current of the junction by ramp-
ing the bias current with a constant rate İ = 0.1194 A/s and a repetition
rate of 20 Hz. We performed the measurements at H = 0 � when the ±ϕ
wells have the same depth � with di�erent sweep sequences and for di�er-
ent temperatures in the range from 0.27 K to 2.30 K. The temperature is
the parameter with which we can control the damping in the experiment,
since α = α(T ). Hence, we change T to change α. For each T we built
histograms, which show two peaks (see Fig. 4.2(a)) corresponding to the
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depinning current of the phase from the ±ϕ wells. Further we calculated
P± from the number of events in each peak. Obviously, the probabilities
are such that the condition P− + P+ = 1 is always satis�ed. In the four
sweep sequences that we used, the retrapping occurs at opposite values of
the bias current during the cycle, hence the probabilities are inversed, i.e.
PS1
± = PS2

∓ . In Fig. 4.2(b) we show only the behavior of P−(T ) for �S1 pos�
and �S2 neg�. The results obtained with the other sweeps is similar. In the
P−(T ) dependence one can distinguish three regions. (I) For T > 2.25 K
the probability that the phase ends into the −ϕ well is zero; the retrap-
ping dynamics is deterministic. (II) For 1.3 K < T < 2.25 K, P− increases
and it shows some oscillations. In particular three peaks can be discerned
at temperatures T = 2.15, 1.76, 1.56 K, where P− is enhanced. (III) For
T < 1.3 K, P− saturates to ≈ 0.33. The experimental P−(T ) curve agrees
qualitatively with theoretical predictions [35]. However, in the experiment
P− saturates at a value smaller than the expected 0.5. We believe that the
most probable reason for this discrepancy is the saturation of the damping
α at low temperature. This may be caused, for instance, by leakage cur-
rents in the barrier of the junction. A dependence of the damping of our
device on the temperature has been extracted by numerical �ts of the IVCs
using the sine-Gordon equation (see Section 2.5). The estimation of α is
only qualitative, since in the simulations we consider a linear resistance
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Figure 4.3: Temperature dependence of the damping α estimated from numerical
simulation of the IVCs of the junction. Figure from the appended Publication
1. c© 2016 American Physical Society.
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(in the RCSJ fashion) which does not apply to our junction. Nevertheless,
as one can see from the results plotted in Fig. 4.3, indeed the damping
saturates to αsat ≈ 0.057 for T < 1.2 K, which corresponds to the temper-
ature range where P−(T ) → 0.33. Further simulations of the retrapping
probability show a P−(T ) comparable to the experiments, that saturates
at 0.5 if the damping is lowered below αsat (not shown).

In conclusion, we have investigated experimentally the phase dynamics
of a ϕ JJ and we studied the probability of retrapping in the ±ϕ wells as
a function of the temperature. The results con�rm theoretical predictions:
at high temperature (high damping) the process is deterministic, for de-
creasing temperature (lower damping) the probability of retrapping in one
of the well increases and �nally it saturates. Due to a saturation of the
damping of the junction, just the onset to the butter�y e�ect with only
three oscillations was observed, that is the saturation value of P−(T ) is
below the expected value of 0.5. In the future, a ϕ JJ built with a di�er-
ent technology providing smaller damping may give more insights into the
topic.
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Model I�V curves and �gures of merit of

underdamped deterministic Josephson ratch-

ets

&

Publication 3

Tunable ϕ Josephson junction ratchet

A ratchet is a periodic system lacking re�ection symmetry that can be
employed to extract work out of nonequilibrium thermal �uctuations, to
rectify ac signals with zero average value and to provide unidirectional
motion [75�78]. Since in the framework of the RCSJ model the Joseph-
son phase is pictured as a �ctitious particle moving along the washboard
potential, a JJ represents a system very close to the paradigmatic ratchet
described in literature, where the driving force is an ac bias current ap-
plied to it. Nevertheless, the energy potential of a JJ is generally re�ection
symmetric and its pro�le is not controllable. In order to study the ratchet
mechanism of the Josephson phase, researchers have realized complex de-
vices based on multiple JJs [79�86]. Ratchets based on the motion of a
Josephson vortex were also demonstrated [83�86]. Thus, for a long time a
ratchet based on a single JJ was missing.

In these publications, �rst we derive a simple general model describing
the current-voltage characteristic (IVC) of a Josephson ratchet and calcu-
late some �gures of merit in the presence of a counterforce to the ratchet.
Second, we experimentally demonstrate an ac current to dc voltage rec-
ti�er based on a single ϕ JJ. As described in Section 3.6, the potential
U(ψ) of a ϕ JJ is re�ection symmetric at zero magnetic �eld H and zero
bias, but its pro�le is tunable with H 6= 0. Hence, the re�ection symmetry
can be easily broken. Finally, we apply the theoretical model to the ϕ JJ
ratchet so obtained and extract useful parameters.

Model. We consider a JJ biased with a quasistatic drive Iac sin(ωt)
with ω � ωp, ωJ, where ωp, ωJ are the plasma and Josephson frequency,
respectively. Moreover, we apply an additional dc current Idc that pushes
the Josephson phase in the direction opposite to the recti�cation. In this
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Figure 5.1: Two types of (I+c 6= |I−c |) IVC used for the ratchet model. (a) IVC
with a constant voltage step at V1 = 1. (b) IVC with linear voltage V = RnI,
with Rn = 4. Figure from the appended Publication 2. c© 2016 American
Physical Society.

conditions, the ratchet is not idle � it works against the counterforce �
and it produces power. The total current biasing the junction is thus:

I(t) = Idc + Iac sin(ωt). (5.1)

The drive is recti�ed into a mean dc voltage, that can be obtained by
integrating the V (I) curve over one period T = 2π/ω:

V =
1

T

∫ T

0

V [I(t)]dt. (5.2)

In the paper, we treat the case of two types of asymmetric and hysteretic
IVCs, namely the IVC with a constant voltage step and the IVC with a
linear branch, see Fig. 5.1. In the case of Idc = 0, we denote the positive
and negative critical current of the junction as I+

c and I−c , and the positive
and negative currents at which the JJ returns from the voltage to the zero-
voltage state as I+

r and I−r . A �nite dc current Idc shifts the IVC by Idc.
Thus, we de�ne the new values of the currents by

J±c = I±c ∓ Idc and J±r = I±r ∓ Idc. (5.3)
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The sign of the mean voltage V depends on the ratio of I+
c and I−c : if

I+
c < I−c (I+

c > I−c ), then V ≥ 0 (V ≤ 0), and the counterforce must be
Idc < 0 (Idc > 0).

Since the case of IVC with a constant voltage (cf. Fig. 5.1(a)) does not
apply to the experiment shown later, and since the main results are qual-
itatively the same, below I will report only on the linear voltage model.
Here, the voltage is de�ned as V (I) = RnI, where Rn is the normal resis-
tance. The recti�cation curve V (Iac) is calculated by using Eq. (5.2) and
it is displayed in Fig. 5.2(a) for di�erent values of Idc. Here we can dis-
tinguish three di�erent regimes. (i) For Iac < J+

c , the recti�ed voltage is
zero (pinning regime). (ii) For J+

c < Iac < J−c , the recti�cation is strong,
because V > 0 in the positive semiperiod of the drive and V = 0 in the
negative one. We call this region �recti�cation window�. Notice here that
the abrupt jump of V at Iac = J+

c is due to the hysteresis in the IVC (un-
derdamped JJ). In an overdamped junction, the output voltage increases
smoothly. (iii) For Iac > J−c , V decreases, since the voltage in the negative
semiperiod is now �nite and negative. In this region, the Josephson phase
goes back and forth and does not produce any appreciable power (Sisyphus
regime). By looking at the di�erent curves in Fig. 5.2(a), we notice also
that the recti�cation window shrinks as the amplitude of Idc increases. In
particular, it closes completely at

Ioff
dc = (I+

c − I−c )/2, (5.4)

indicating that the ratchet stopped.
The e�ciency of the ratchet can be computed by the ratio of the mean

output and input power as follows:

η = −P out

P in

(5.5)

and its dependence on the drive amplitude is plotted in Fig. 5.2(b) for
di�erent Idc. For all the values of the counterforce, the maximum e�ciency
is achieved at the beginning of the recti�cation window, i.e. when Iac =
J+

c , and it is given by

ηmax =

−2Idc

[
Idc arccos

(
J+
r

J+
c

)
+

√
J+

c
2 − J+

r
2
]

J+
c

2
arccos

(
J+
r

J+
c

)
+

√
J+

c
2 − J+

r
2
(J+

r + 2Idc)

. (5.6)
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Figure 5.2: Recti�cation curves (a) and e�ciency (b) of a JJ with a linear voltage
(Rn = 1) for di�erent values of the counterforce Idc = 0,−0.1,−0.2,−0.29.
Figure from the appended Publication 2. c© 2016 American Physical Society.

The value of ηmax increases as |Idc| increases. However, Idc cannot be
arbitrary large. The last value of it that makes sense is Ioff

dc (see Fig. (5.4)).
Hence, the ultimate maximum e�ciency is calculated by inserting Eq. (5.4)
in Eq. (5.6).

In the following, we apply the model to the ratchet obtained with
a SIFS-based ϕ JJ. Although in our junction the V (I) is not linear, as
assumed in the theory, the formulas for some important key �gures, e.g.,
the stopping force Ioff

dc and the e�ciency, are still valid. These depend only
on the boundaries of the recti�cation window, that is de�ned by I+

c and
I−c . The non-linearity of the V (I) a�ects only the output power and the
amplitude of V .

Experiment. For the experiment we used again a JJ fabricated with the
SIFS technology, as in Publication 1. The measurements were conducted
below T = 2.35 K, where the probability of detecting the escape current
from the −ϕ well is non-zero.

In Fig. 5.3(a) the magnetic modulation of the critical current is shown
for T = 1.70 K. We chose this as the working temperature for this study,
because here the ratchet operation is strong and the recti�cation curves are
free from extra structures, due to resonance on the IVC, e.g., half-integer
zero �eld steps (see Fig. 4 of [34]). We label the critical currents as I±c,L
and I±cR, where the superscripts ± indicate the polarity of the applied bias
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current, and the subscripts L,R refer to the left (−ϕ) and right (+ϕ) well.
In the �rst part of the experiment, we prove that the junction works as

a ratchet and that its operation can be tuned by the magnetic �eld H. To
this purpose, we measured the recti�cation curves V (Iac) at the values ofH
indicated by the vertical lines in Fig. 5.3(a). We chose as drive a sinusoidal

Figure 5.3: In (a) the dependence of the critical current on the magnetic �eld,
that is applied through a coil, at T = 1.70 K is shown. Two branches of critical
currents for each polarity of the bias I are visible. The dots on the I+cL and
I−cR branch indicate that these currents are semistable, thus they do not always
appear. The vertical lines correspond to the magnetic �elds at which we mea-
sured the recti�cation windows in (b). Figure from the appended Publication 3.
c© 2016 American Physical Society.
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Figure 5.4: IVC (a) and recti�cation curves (b) for µ0H = 12.9µT. In (b) each
curve corresponds to a di�erent amplitude of the dc current Idc (counterforce).
Figure from the appended Publication 3. c© 2016 American Physical Society.

ac current I(t) = Iac sin(2πft), with f = 10 Hz (period T = 100 ms)
synthesized by a DAC with an update rate of 10000 points/s. The mean
recti�ed voltage is obtained by recording and averaging the voltage across
the junction 1000 times during one period, for each amplitude Iac. The
results are displayed in Fig. 5.3(b). As expected, for H = 0 we detected
no recti�cation (V = 0) for any value of Iac, since the energy potential
U(ψ) is re�ection symmetric. For H 6= 0, the asymmetry is broken and
recti�cation occurs. The pro�le of the V (Iac) curves obtained at H 6= 0 is
similar to the ones in Fig. 5.2(a). The width of the recti�cation window
changes with the magnetic �eld. This is explained by keeping in mind that
by varying the �eld we change the asymmetry of the potential. For some
values of H � e.g., µ0H = 12.9µT (magenta curve in Fig. 5.3(b)) � the
asymmetry is larger than for others.

In the second part of the paper, we study the ratchet in the presence
of the counterforce Idc. We carried out this experiment at the value of
�eld µ0H = 12.9µT, because here the recti�cation window is largest. The
IVC of the junction at this �eld, in the absence of the counterforce, is
shown in Fig. 5.4(a). The relevant currents are I+

c = I+
cL = 389µA and

I−c = I−cL = 997µA. Further, we applied the dc current and measured the
recti�cation curve at di�erent amplitudes Idc, see Fig. 5.4(b). As expected
from our theoretical model, the recti�cation window narrows as |Idc| in-
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creases, and at Ioff
dc = −305µA it vanishes completely. The theoretical

value Ioff
dc can be calculated from Eq. (5.4), which gives Ioff,th

dc = −304µA,
that perfectly matches the experimental value. Finally, we estimated the
maximum e�ciency of our ratchet system. This is a function of Idc and
it reaches its highest value at Ioff

dc . Using Eq. (5.6), we have estimated
ηmax = 48 %, that is a rather good result if compared to other kind of
speci�cally designed ratchets [86].

In conclusion, we have theoretically and experimentally investigated a
ratchet based on a ϕ JJ. We have demonstrated that its performance can
be tuned with the magnetic �eld and calculated its maximum e�ciency in
the presence of a counterforce.
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M. Weides fabricated the sample.



6 Publication 4

Observation of 0-π transition in SIsFS

Josephson junctions

In a Josephson junction with a ferromagnetic (F) barrier, the phase drop
φ across the junction depends of the thickness dF of the F-layer and it
can be either 0 or π [87]. The 0-to-π phase transition as a function of dF

and temperature has been intensively studied and experimentally proven
in the last �fteen years in SFS [7, 9, 88] and SIFS junctions [8, 10, 89] (S:
superconductor, I: insulator). Since the ground state phase depends on dF,
the patterning of a step in the ferromagnetic barrier gives the possibility to
create 0-π JJs, where half of the junction would have φ = 0 and the other
half would have φ = π [90, 91]. Using the SIFS technology with a step-like
thickness of the F-layer to create an asymmetric 0-π JJ, we fabricated a ϕ
JJ with two degenerate phase ground states [34].

Ferromagnetic junctions are generally characterized by very low values
of the characteristic voltage Vc = IcRn, with Ic being the critical current
and Rn the normal resistance of the junction, and low critical current densi-
ties jc. The former lowers the switching frequency of the junction, limiting
integration of such structures in superconducting logic circuits. The latter
reduces the classical-to-quantum crossover temperature T ? (that scales as
∝ jc) and coherence times.

Driven by the necessity to increase jc in the SIFS-based ϕ JJs in order
to study their quantum properties, we realized SIsFS JJs, where s is a thin
superconducting interlayer. Recent studies showed that the s-layer helps
to recover superconductivity, leading to an enhancement of jc to values
typical of conventional SIS JJs [36�40].

In this paper we present our experimental investigation of the 0-π phase
transition in Nb|AlOx|Nb|Ni60Cu40|Nb structures by varying the thickness
of the ferromagnet dF and of the s-layer ds. To this purpose we fabricated
two sets of samples. In the �rst one (F-wedge), the ferromagnetic layer
is deposited as a wedge, while ds is kept constant. In the second one (s-
wedge) the s-interlayer forms a wedge, while dF is constant. An additional
di�erence in the wafers is the thickness of the insulating barrier. For all
the F-wedge JJs, the barrier was oxidized in order to obtain reference SIS
JJs with jc = 7 kA/cm2. The s-wedge JJs have jc = 1.2 kA/cm2.

F-wedge JJs. The current-voltage characteristic (IVC) and the mod-
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ulation of the critical current with the magnetic �eld Ic(H) was measured
for several samples with di�erent dF and ds. For each junction we recorded
the maximum value of jc and plotted it in the jc(dF) dependences shown

Figure 6.1: Dependence of the critical current density jc as a function of the
ferromagnetic layer thickness dF for F-wedge SIsFS JJs (a) and as a function
of the superconducting interlayer thickness ds for s-wedge SIsFS JJs (b). The
arrows in (a) indicate the junctions whose IVC and Ic(H) characteristics are
shown in Fig. 6.2. The insets in (a) and (b) show a schematic of the SIsFS
structure. Figures from the appended Publication 4. c© 2015 American Institute
of Physics.
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in Fig. 6.1(a). As the s-layer becomes thicker, one observes a general
tendency of the critical current density to increase, con�rming the recov-
ery of superconductivity. Additionally, the pro�le of the curves changes
signi�cantly. For ds < 11 nm, the jc(dF) dependence exhibits a well dis-
tinct minimum, that is a strong indication of the transition of the phase
ground state from 0 to π. The crossover thickness d0−π

F moves gradually
from 5.8 nm for ds = 0 (SIFS JJ) toward 7.1 nm for ds = 11 nm. For

Figure 6.2: Current-voltage characteristics and magnetic modulation of the crit-
ical current for the SIsFS junctions marked by the letters (a)-(d) in Fig. 6.1(a).
Figure from the appended Publication 4. c© 2015 American Institute of Physics.
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ds = 13 nm and ds = 19 nm, the junctions showed extreme sensitivity to
the magnetic history and no 0-π transition can be observed (or resolved).
For ds > 30 nm, jc does not depend on dF any longer and it reaches the
value of 7 kA/cm2 of the reference SIS JJ. Again, no 0-π transition is vis-
ible. The measured curves match rather well the expectations from the
theory [38, 40, 92]. A thin s-layer in the SIsFs stack behaves like a normal
metal and shifts d0−π

F to higher values. On the other hand, if the s-layer is
thick, with ds comparable to or larger than the niobium coherence length
ξs = 38 nm, the SIsFS JJ behaves as a SIs JJ connected in series with a
sFS JJ, where the physics is dominated by the junction with smaller jc
(i.e. the SIs one). A few selected IVC and Ic(H) corresponding to di�erent
ds and dF (indicated by the arrows in Fig. 6.1(a)) are shown in Fig. 6.2.
What can be notice here is that the IVC is more and more SIS-like as ds

becomes thicker. At ds = 30 nm (cf. Fig. 6.2(c) and (d)), the only e�ect
of the F-layer is to increase the subgap resistance. Finally, the junctions
were always overdamped in the π region for ds < 11 nm (see Fig. 6.2(b)).

s-wedge. The same set of measurements was repeated for the s-wedge
samples. The results are displayed in Fig. 6.1(b). Again, we see an en-
hancement of jc with increasing ds. All the curves, corresponding to di�er-
ent values of dF, saturate for very large s-layer thicknesses to the reference
value of 1.2 kA/cm2. By looking at both Fig. 6.1(a) and (b) one can easily
deduce that a 0-π JJ can be obtained by introducing a step in the F-layer.
Theoretically, it has been suggested that a 0-π transition may also be in-
duced by temperature for dF ≈ d0−π

F [40]. Unfortunately, we were not able
to observe this in our samples.

In conclusion, we have experimentally observed a 0-π phase transition
in SIsFS JJs induced by the ferromagnetic layer, for several thickness of the
superconducting interlayer. The latter leads, as expected, to an increase
of the critical current density of 2-3 orders of magnitude. However, in the
range of ds < 11 nm where the 0-π crossover was actually observed, the
maximum obtained jc in the π-region was of the order of only 60 A/cm2 at
4.2 K, that is not a signi�cant improvement with respect to the previous
SIFS technology.



47

Contributions to this publication

The junctions used for the work reported in this publication were fabri-
cated by N. Ruppelt, who at that time was a Ph.D student in the group
of Prof. H. Kohlstedt at the University of Kiel. He also wrote the paper.
H. Sickinger and me performed the experimental characterization of the
JJs at T = 4.2 K and evaluated the data. Additionally, we reviewed the
paper.





7 Manuscript in preparation

An arti�cial ϕ Josephson junction: Evi-

dence of macroscopic quantum tunneling

from both ground states

A �rst draft of a paper we are preparing is given in this chapter.

Authors: R. Menditto, M. Merker, M. Siegel, D. Koelle, R. Kleiner
and E. Goldobin

ϕ Josephson junctions (JJs) are fascinating devices, since they show
unique physics [30, 35, 62] and a potential for applications in superconduct-
ing electronics, e.g., phase batteries, memories and ratchets [22, 23, 31, 65].
Furthermore, in the quantum domain, such junctions can be seen as a
macroscopic two-level system, thus macroscopic quantum e�ects (MQE)
can be investigated. Our group realized the �rst ϕ JJ out of 0-π JJ based
on a SIFS heterostructure with a tailored ferromagnetic barrier [34]. The
experiment follows the theoretical prediction that a 0-π JJ with unequal
0 and π segments (L0 6= Lπ or jc0 6= jcπ) results in a ϕ JJ, if parameters
are carefully chosen [32, 33, 93]. In our SIFS sample, the existence of two
phase states was successfully demonstrated by detecting two critical cur-
rents: Ic+ and Ic−, corresponding to the escape of the phase from the ±ϕ
wells of the potential. Further theoretical and experimental investigation
of the SIFS-based ϕ JJs was carried out and reported by our group in
several works [31, 35, 62, 65]. However, the quantum properties of a ϕ
JJ remain uninvestigated. Only in one work known to us [94] the macro-
scopic quantum tunneling (MQT) in grain boundary biepitaxial JJs was
investigated. In such JJs a strong second harmonic in the current-phase re-
lation (CPR) appears at low temperatures and, therefore, one deals with a
double-well potential. Although an MQT-like saturation of the histogram
peak width with an unusual temperature dependence was demonstrated
[94], the evidence for the presence of two critical currents expected in this
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Figure 7.1: Sketch of the investigated Josephson junction with two current in-
jector leads attached on the top electrode. The orange line represents the spatial
variation of phase along the junction length.

case is missing.
In this work, we realize a ϕ JJ based on conventional SIS technology

and investigate the phase escape from both potential wells of the energy
U(φ), giving evidence of macroscopic quantum tunneling. Our sample
consists of a 0 JJ where the 0-π phase discontinuity is arti�cially created
by means of two tiny current injectors placed on top of the junction, at a
position slightly away from its center. The injectors have a widthWinj and
are separated by a distance Wd. In order to have an ideal discontinuity,
injectors dimensions are chosen in such a way that 2Winj + Wd � λJ ,
where λJ is the Josephson penetration depth. The current �owing through
the injectors Iinj twists the phase φ, consequently φ changes from 0 to κ
between the injector leads. The value of κ is proportional to Iinj, thus a
κ, e.g., π, discontinuity can be created by applying the proper Iinj [41].

The injector concept was implemented in the past to realize symmetric
0-π, or more generally 0-κ, JJs aimed to the investigation of integer [85,
86, 95, 96] and fractional vortices [41, 42, 97, 98]. Now, we demonstrate
that a similar device can be used to built a junction that can be turned
from a 0 into a ϕ JJ by simply controlling the current applied to the
injectors [59]. The tunability of the phase discontinuity is a powerful tool
for measurements in the quantum domain, since it allows us to rule out
e�ects due to parasitic noise in our system.

In the following, we introduce the model used to describe and nu-
merically simulate a JJ with an arti�cially induced phase discontinuity.
Results are compatible with the ones obtained from the e�ective model
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for a point-like JJ with δ-injectors presented in [59]. However, here, we
take into account the �nite size of the junction and of the injectors leads.
We show simulations of the energy of the junction as a function of various
parameters and discuss the results. Further, we present characterization
in the classical regime and statistics of both switching currents of our ϕ
JJ in the quantum limit. The dependence of the widths σ± of both his-
tograms vs temperature and injector current, together with calculation of
the escape rate, is shown and proofs of MQT are provided.

The model. We consider a 1D JJ of normalized length l = L/λJ
equipped with a pair of current injectors of width winj = Winj/λJ and
distance wd = Wd/λJ from each other, that are connected on top of the
junction at a position x0 = X0/λJ 6= 0. A sketch of the investigated device
is shown in Fig. 7.1. In this work, we will describe the case x0 > 0 ; the
opposite con�guration (x0 < 0) is analogous. In such a system, the dynam-
ics of the Josephson phase φ(x, t) can be modeled by the 1D sine-Gordon
equation

φxx − φtt − sinφ = αφt − γ − γinj(x) (7.1)

where α = 1/
√
βc is the damping parameter, γ = j/jc is the bias current

density normalized to the critical current density of the junction and γinj(x)
is the injector current density. In Eq. (7.1), the spatial coordinate x is
normalized to λJ and the time t is normalized to the inverse of the plasma
frequency ω−1

p . The injector current density distribution is considered as

γinj =


κ

winj(winj+wd) x0 − (winj + wd

2 ) < x < x0 − wd

2 ,

0 x0 − wd

2 < x < x0 + wd

2 ,

− κ
winj(winj+wd) x0 + wd

2 < x < x0 + (winj + wd

2 ).

(7.2)

The phase pro�le in the injector area φinj(x) is derived by doubly inte-
grating Eq. (7.2) and it is depicted in Fig. 7.1. For the numerical solution
of Eq. (7.1), we introduce the phase µ(x, t) = φ(x, t) + φinj(x) + 2πϕextx,
where ϕext is the externally applied magnetic �ux Φ, normalized to the
�ux quantum Φ0. Eq. (7.1) can be rewritten in terms of µ(x, t) as:

µxx − φtt − sin[µ− φinj(x) + 2πϕextx] = αµt − γ (7.3)

Next, we describe the physics of the device in Fig. 7.1 by showing
simulations of the e�ective energy potential U(ψ), with ψ = 〈µ(x)〉 the
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Figure 7.2: Simulated potential U(ψ) for L = 10µm, Winj = Wd = 1µm,
X0 = 0.15µm and λJ = 5µm. (a) Josephson potential for κ = 0 and κ = π.
Tunability of the Josephson energy with κ/2π (b) and Φ/Φ0 (c). In panel (b),
κ/2π varies from 0.5 (blue curve) to 0.5532 (red curve), while Φ/Φ0 is constant
and equal to zero. In panel (c), Φ/Φ0 varies from 0 (blue curve) to -0.094 (red
curve), while κ/2π is constant and equal to 0.5. (d) Josephson energy as a
function of the injector distance from the center of the junction. The value of κ
is adjusted to keep the potential symmetric. No magnetic �eld is applied.
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average phase, as a function of di�erent parameters. For this purpose, we
considered l = 2, winj = wd = 0.2 and x0 = 0.03, close to the experimental
values. In Fig. 7.2(a), the potential U(ψ) normalized to the Josephson
energy EJ = IcΦ0/2π for κ = 0, π is displayed. When κ = 0, the JJ is in
the 0 state and the potential changes as ∼ cos(ψ) with minima at ψ = 2πn,
with n an integer. As κ approaches π, two minima develop within every 2π-
period in the potential at ψ = ±ϕ. The value of ϕ depends on the geometry
of the junction. This result con�rms previous theoretical predictions, made
for a point-like JJ with δ-injectors [59]. However, in our case of �nite
injectors, an asymmetry in the potential at κ = π appears, i.e. the two
energy wells have di�erent depths. We associate this asymmetry to the
presence of an e�ective �eld component due to the �nite size of the junction
and of the injector leads. The �eld component can be compensated by
either varying κ slightly from π or by applying a small magnetic �ux Φ to
the junction, see Fig. 7.2(b) and (c). For a �ner tuning of the potential,
κ and Φ can be changed simultaneously (not shown). Furthermore, the
height of the energy barrier U0 separating the ±ϕ wells decreases as the
injectors move away from the center of the junction, as shown in Fig. 7.2(c).
Here we observe that by varying the injector position, together with κ to
retain the symmetry of the potential, the two wells become more and more
shallow with increasing distance x0. Eventually, for x0 > xc, U0 disappears
completely and one returns to the case of a single minimum. However,
the minimum is shifted from zero, i.e. we obtain a ϕ0 JJ. The value of xc

strongly depends on the length of the junction � the shorter l, the smaller
xc � as already pointed out in previous works [29, 32, 33, 59]. Below
we use this model to numerically �t the experimental results. Possible
discrepancies are to be explained considering that the theory describes the
simple geometry of a 1D junction with 1D injectors, while in real samples,
we have 3D objects and the distribution of the currents applied to the
junction and to the injectors may �ow in a more complex way.

Experiment. We fabricated Nb-AlOx-Nb JJs with two injectors con-
nected on the top electrode of the junction. The JJs have moderate
length L ∼ 1.25...2.5λJ and di�erent width Winj = 1, 1.5µm and posi-
tion X0 ∼ 0...9µm of the injectors [99]. In all our samples, Wd 'Winj. A
picture of one of the JJ is shown in Fig. 7.3. We have measured several
junctions. The data presented in this letter were obtained on a junction
with L = 40µm, width W = 0.8µm, Winj = 1.5µm and X0 ∼ 0.125µm.
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The junction has a perfect SIS JJ current-voltage (I�V ) characteristic and
Ic(H) dependence (both not shown), with critical current Ic = 667µA at
T = 4.2 K and Ic = 727µA at T = 20 mK (estimated from single I�V
measurement). This corresponds to jc ≈ 2.8 kA/cm2 and λJ ≈ 16µm
(calculated from a numerical �t of Ic(H)) at T = 4.2 K. Thus, our JJ has
a normalized length l = 2.5λJ and normalized injectors size winj ∼ 0.09.

Figure 7.3: Optical image in false colors of one of the investigated JJ with current
injectors. The junction is nominally equal to the one used for the experiments
shown here.

Classical domain. In order to understand which value of the current
Iinj we need to apply to have a phase discontinuity κ = π, we use the fact
that κ ∝ Iinj. Therefore we measure the Ic(Iinj) dependence, also referred
to as �injectors calibration curve�. We know from [42] that for a perfectly
symmetric JJ (X0 = 0) and no self-�eld e�ect, κ = π corresponds to the
�rst minimum of the Ic(Iinj) curve, which is symmetric for positive and
negative bias. For a JJ with X0 6= 0, the �rst minimum of the |Ic(Iinj)|
curves occur at di�erent values of Iinj. The injector current corresponding
to κ = π is centered between these values. The experimental calibration
curve of our junction is shown in Fig. 7.4(a) and (b). The �rst thing to
notice here is that four critical currents (two for each bias polarity) appear
around the �rst minimum of the curve. In addition, if we zoom in and
inspect more carefully, we observe a tiny asymmetry between the positive
and negative bias curves (see Fig. 7.4(b)). These two features prove our ϕ
JJ. The dotted line in Fig. 7.4(b) indicates the value of Iinj corresponding to
the middle point between the crossing of the four current branches, where
the Josephson potential has symmetric wells, that is Isym

inj = 3.67 mA.
From the comparison with the simulated curve, cf. Fig. 7.4(b), we can
notice that Isym

inj corresponds to a κ = 1.02π slightly di�erent from π,
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Figure 7.4: (a) Experimental (blue line) and simulated (orange line) calibration
of the injectors of a 40µm long JJ with 1.5µm wide injectors located at X0 =
0.125µm at T = 4.2 K and H = 0. In (b) a zoom around the �rst minimum
is displayed. The dotted line indicates the value of κ (or Iinj) for which the
potential has symmetric ±ϕ wells. (c) The I�V curve at Isyminj = 3.67 mA showing
two distinct critical currents is plotted.

as expected, due to the �nite size of the junction and of the injectors.
The value of Isym

inj changes slightly with temperature; at T = 20 mK we
measured Isym

inj = 3.71 mA.

Fig. 7.4 shows the I�V curve measured for Isym
inj = 3.67 mA. By apply-

ing the bias current using special sweep sequences, we were able to detect
the two critical currents Ic− and Ic+. The two currents are also observable
in the Ic(H) dependence, where a characteristic minimum around H = 0
appears (not shown), as we know from [32]. In our previous work, where
we used the SIFS-based ϕ JJ, the high damping prevented us to observe
two critical currents at T = 4.2 K. In the present junctions, instead, the
damping is very low and two critical currents are measurable in a wide
range of temperatures.

Quantum domain. Further we investigated the phase escape from the
double well potential of the ϕ JJ. For this, we have cooled down our sample
in a dilution refrigerator and performed measurements in a temperature
range from 20 mK to 600 mK. We have collected statistics of critical cur-
rents at Isym

inj = 3.71 mA by sweeping the bias current with a constant
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ramp rate İ = 79.6 mA/s, recording the exact value of the switching cur-
rent during each sweep. By repeating such measurements N = 5000 times,
we were able to plot histograms of critical current distributions. Since at
low damping the initial state (−ϕ or +ϕ) is random [35, 62], we obtain
histograms containing two peaks corresponding to Ic− and Ic+, as shown
in Fig. 7.5(a). As the temperature decreases, each peak shifts towards the
noise-free critical current Ic0± and the width of the histogram decreases.
The dependence of the width σ±(T ) of each peak is extracted from the
experimental data and presented in Fig. 7.5(b). One clearly sees that
both σ±(T ) saturate at T < T ? ≈ 260 mK at values σsat

+ ≈ 137 nA and
σsat
− ≈ 142 nA. Such a saturation of the escape peak width is an evidence

of the crossover from the thermal escape to the macroscopic quantum tun-
neling of the phase out of the −ϕ or +ϕ well.

However, one should be extremely careful with such conclusions, since
the saturation might be caused (a) by the parasitic heating of the sample
to a temperature above the bath temperature due to temporary switching
to the resistive state or (b) by some background noise in our experimental
setup, which has little to do with MQT. There can be several types of
such noise: (i) constant background noise picked up from the environment
because some wires work as an antenna; (ii) noise in the bias current circuit
with σb = c0 + c1I; (iii) the noise in the injector circuit with σinj ∝ Iinj.

To rule out overheating, we have repeated our measurements using
di�erent duty cycles and di�erent ramp rates and observed no qualitative
di�erence.

The standard technique to exclude the saturation due to electronic
noise is to demonstrate that in the used setup one can measure σ values,
which are below σsat

± , possibly in the same experiment and with the same
sample. Already from Fig. 7.5(b) one can conclude that σsat

− is not due
to the background noise because we have measured a smaller value of
σsat

+ at the same Iinj. Nevertheless, if the noise is ∝ I, one can easily
observe such σsat

− as Ic− > Ic+. An analysis of the σ(Ic) dependence
suggests that this is not the case in our measurements, since σ±(Ic) stays
approximatively constant when Ic is modulated by the injector current,
see Fig.7.6. Moreover, we can exclude signi�cant contribution of random
noise in the bias circuit as, for T < T ?, the dependences of the skewness
(S) and kurtosis (K) of escape histograms on Ic are constant and they
tend to the universal values of S = −1 and K = 5 [100].

In MQT experiments with conventional small JJs, one usually changes
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some parameter, e.g., one applies a magnetic �eld, in order to decrease the
e�ective Ic and, accordingly [101], the histogram width σ ∝ I

3/5
c . In our

system the tuning parameter is κ, therefore we have measured σsat
± (Iinj)

at T = 20 mK, see Fig. 7.6. The dependence is almost symmetric with
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Figure 7.5: (a) Several switching current histograms taken at Isyminj = 3.71 mA
(κ ∼ π) and at di�erent temperatures. Each histogram has two peaks corre-
sponding to the escape from the −ϕ and the +ϕ well. Each peak is somewhat
below Ic0+ and Ic0−, the �uctuation-free critical currents of the ϕ JJ. (b) The
widths σ± of the Ic− and Ic+ peaks in (a) as a function of temperature T is
shown.
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respect to the value Isym
inj = 3.71 mA. One can see that both σsat

+ and σsat
−

have a maximum at κ ≈ π and that our setup is able to measure values
of σ as low as 130 nA. The presence of points (κ values) where σ± < σsat

±
automatically means that at all other values of κ, where σ± is larger, we do
not observe saturation due to noise. Also, if the noise would be caused by
Iinj, one would observe its monotonous increase as κ ∝ Iinj grows. Fig. 7.6
clearly shows that this is not the case. The higher moments S(Iinj) ≈ −1
and K(Iinj) ≈ 5 con�rm also absence of white noise contributions. We
conclude that we indeed observe MQT.

The presence of some background noise of non-thermal origin is never-
theless obvious. One can see that the extrapolation of the σ±(T ) ∼ T 2/3

dependence, shown in Fig. 7.5(b), from the thermal escape region towards
T → 0, results in σbg ≈ 60 nA, which can be taken as a reasonable estimate
of the parasitic noise level in our system.

Additional indications of the quantum behavior of the phase in our ϕ
JJ can be found in the analysis of the escape rate Γ as a function of the
bias current. For the computation of the experimental Γ for both switching
current peaks in Fig. 7.5(a) we have used the formula [49]

Γ±(Ik) =
İ

∆I
ln

∑M
j=k P (Ij)∑M
j=k+1 P (Ij)

, (7.4)
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where M is the number of bins of width ∆I of the built histogram and
P (Ij) is the discretized probability distribution of the switching current.
The results are compared to the theoretical expectations for the ther-
mal activation (TA) and the MQT regime, which, in the low-to-moderate
damping limit, are respectively given by [50, 54]

Γt(I) = at
ωp
2π

exp

(
− ∆U

kBT

)
, (7.5)

Γq(I) = aq
ωp
2π

exp

(
− 7.2

∆U

~ωp

)
, (7.6)

where at and aq are damping-dependent prefactors, ωp(I) = Pω0
(1 −

I/Ic0)1/4 is the plasma frequency and ∆U = P∆U (1 − I/Ic0)3/2 is the
energy barrier. Pω0 and P∆U are the plasma frequency and the energy
barrier prefactors for a JJ with two degenerate ground states. The ex-
pression and the theoretical study of such parameters are given in [59].
By explicating the current dependence of all parameters in the exponent
of Eq. (7.5) and Eq. (7.6), one obtains Γt,Γq ∼ exp[(1 − I/Ic0)m], where
m = 3/2 in the thermal regime and m = 5/4 in the quantum regime.

To perform the comparison, we �rst plotted the quantity
[ln(ωp/2πΓ±)]1/m versus the switching current I for a few temperatures in
the range from 600 to 30 mK. In such a way, one gets a linear function and
the noise-free current Ic0± can be extrapolated from the intercept with the
current axis. We iteratively �tted the experimental data with a weighted
linear least-square �t in order to have a precise estimation of Ic0±. For the
sake of simplicity, in our procedure we adopted at, aq = 1. Subsequently,
we graphed the double logarithm of the normalized inversed escape rate
ωp/2πΓ± as a function of ln(1−I/Ic0), that is again a linear function. The
choice of the double-log plot has been made in order to highlight the dif-
ference in the slopes m of the thermal and quantum formulas. Our results
are displayed in Fig. 7.7 for both the right and left peak of Fig. 7.5(a). In
Fig. 7.7(a) and (c), we �tted the data using the thermal formula for the es-
cape rate (Eq. (7.5)), while in (b) and (d) we used the quantum expression
(Eq. (7.6)). What is evident here is that, for both peaks, Γt matches the
experimental points perfectly for T > T ?, but it deviates signi�cantly for
T < T ?. The experimental escape below T ? is �tted very well by Γq, which
in turn fails for higher temperature. This analysis lends further support to
the claim that below the crossover temperature the escape mechanism in
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Figure 7.7: Double logarithm of the normalized inverse escape rate lnln(ωp/2πΓ)
for di�erent temperatures in the range 600 mK < T < 30 mK for the right peak
of Fig. 7.5(a) (panels (a) and (b)) and for the left peak of Fig. 7.5(a) (panels
(c) and (d)). In the graphs, the points represent the experimental data and the
lines the �ts obtained by using the equations Eq. (7.5) (TA-�t) and Eq. (7.6)
(MQT-�t). One can clearly observe that for both peaks (both energy wells ±ϕ)
the TA-formula �ts very well the experimental points above T ?, but it does
not below T ?. The opposite occurs for the MQT-formula, proving quantum
tunneling below the crossover, where the standard deviations σ± saturate. In
panels (b) and (d), the curves where manually shifted by −0.5 to display them
better. Since there is no dependence on temperature in Γq, the curves sit almost
at the same position in the diagram.
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our junction is dominated by quantum tunneling of the phase. Note that
the assumption of at = 1 and aq = 1 does not a�ect latter result, since the
prefactors logarithmically enter into the escape rate computation.

In conclusion, we have demonstrated a ϕ JJ realized with an arti�cial
phase discontinuity κ created in a SIS JJ by two tiny current injectors
of �nite size and investigated the quantum properties of the phase. We
have described the system theoretically and have shown simulations of
the Josephson energy potential taking into account the �nite size of the
junction and of the injectors. We have proven experimentally that such
a junction can be turned from a 0 JJ to a ϕ JJ by simply varying the
amplitude of the current applied to the injector Iinj. To adjust possible
asymmetries of the potential, one can �ne-tune the injector current or
apply an external magnetic �ux. Simulations show that by changing the
position of the injectors along the length of the junction, the energy barrier
U0 between the ±ϕ wells decreases down to values of the order of 10−5EJ ,
which is interesting if one wants to perform measurements to study macro-
scopic quantum coherence between the −ϕ and +ϕ states. However, the
technology is not ideal for such an operation. In order to have very shal-
low and symmetrical wells, the position of the injectors and the values of
the applied Iinj have to be controlled with high precision [29, 32, 33, 59].
In the future, one can think about more advanced technological designs
of our junction, for instance one could implement more than one injector
pair, to be able to fully control the energy pro�le electronically, without
moving the injectors.

Finally, we have performed quantum mechanical experiments of the
Josephson phase escape and provided evidence of macroscopic quantum
tunneling of the average phase ψ from both minima of the Josephson po-
tential. The thermal to MQT crossover temperature occurring at T ? ≈
260 mK is indicated by the saturation of the width σ± of the histograms of
the switching currents Ic− and Ic+. We exclude the possible in�uence of
background noise in our system, since we could measure values of σ lower
than σsat by sweeping the injector current. Further proofs of MQT are
given by the calculated escape rate from both wells. Fits of the experimen-
tal data with the formulas present in literature clearly show that thermal
activation is the dominant escape process above T ?, while quantum tun-
neling prevails below T ?.
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Contributions to this publication

For this publication, I performed all the simulations and the experiments
presented and analyzed the results. Moreover, I wrote the paper.
M. Merker is a Ph.D student in the group of Prof. M. Siegel. He fabricated
the sample, according to design parameters given by me.



8 Summary

The focus of my thesis is the experimental investigation of ϕ Josephson
junctions (JJs) in the classical and in the quantum limit.

A ϕ JJ is a bi-stable system exhibiting a degenerate ground state at
phases ±ϕ, with 0 < ϕ < π [29, 30, 32, 61]. In terms of the Josephson
energy U(ψ), this corresponds to a double well potential with a periodic-
ity of 2π. The special pro�le of U(ψ) originates from an unconventional
current-phase relation (CPR) that has a non-zero and negative second har-
monic. The supercurrent Is(ψ) and the energy U(ψ) are tunable with an
externally applied magnetic �eld.

ϕ JJs are fascinating devices showing unique physics, e.g., non-quan-
tized Josephson vortices [30, 63, 64] and a nontrivial phase dynamics [35,
62]. Additionally, in the quantum limit, the junction can be pictured as a
quantum-mechanical two-level system, thus it represents an ideal tool to
study quantum coherence. The properties of a ϕ JJ are of huge interest
for many applications [31, 65]. The most attracting one is de�nitively the
realization of an arbitrary (never discharging) phase battery, providing a
current to be used to feed other circuits.

Several systems have been suggested as possible candidates for the
realization of a ϕ JJ [29, 39, 56, 58, 60, 61, 68, 74]. However, the sim-
plest setup is a single JJ with asymmetric 0 and π segments [32]. Experi-
mentally, an asymmetric 0-π JJ has been realized using Superconductor-
Insulator-Ferromagnet-Insulator (SIFS) JJs, where the ϕ was state suc-
cessfully proven [34].

In the �rst part of my thesis we used these SIFS JJs to investigate the
retrapping dynamics of the Josephson phase [62]. Since two possible �nal
states of the phase exist, it is not obvious where the phase-particle ends
when returning from the running (V 6= 0) to the trapped state (V = 0).
In particular, we have measured switching current distributions and esti-
mated the probability P of retrapping the phase in the �unnatural well�,
that is −ϕ (+ϕ) for a positive (negative) bias. We have collected measure-
ments at several temperatures below T = 2.30 K and plotted the P−(T )
dependence. From this curve we could demonstrate that the retrapping
process is deterministic for high temperature (i.e. high damping), while it
is unpredictable for low temperature (i.e. low damping), con�rming the-
oretical predictions [35]. However, due to a saturation of the damping of
our junctions, we could not penetrate the regime of extremely low damping
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and observe the predicted butter�y e�ect. Here a probability P− = 50%
is expected, while we observed P− ≈ 33%.

In the future, we plan to realize a ϕ JJ using a discrete device, i.e. an
0-π asymmetric dc SQUID [60] or a three JJs SQUID, where the damping
is expected to be very low, since the junction are fabricated with standard
SIS technology. Such systems o�er many advantages over the continuous
ones, like a wider ϕ domain and less geometrical constrictions. One could
take also a 0-0 SQUID with asymmetric junctions, which can turn from an
e�ective 0 JJ to a ϕ0 or even a ϕ0±ϕ upon application of half �ux quantum
Φ = Φ0/2, provided proper values of the junctions critical currents and
inductance of the SQUID.

The same SIFS samples have been used to demonstrate a deterministic
and tunable ratchet [65]. A ratchet can be realized only if the energy of
the system has no re�ection symmetry. In conventional JJs this condition
is not ful�lled, therefore for a long time a Josephson phase ratchet based
on a single JJ was missing. The advent of ϕ JJ allows to �ll this gap. In
fact, in a ϕ JJ, the symmetry of the energy potential can be broken if an
external magnetic �eld is applied. In our work, we theoretically describe
and experimentally demonstrate the recti�cation operation of a SIFS ϕ JJ,
and show its tunability with H. Furthermore, we estimate its e�ciency
by opposing the recti�cation with a counterforce. Our sample was not
optimized for such an application � one could think of a better design
with a stronger asymmetry between the 0 and π facets of the junction �
nevertheless it appears rather e�cient with ηmax = 48%.

In the second part of my thesis we searched for evidence of macro-
scopic quantum tunneling (MQT) in a ϕ JJ. This study was carried out
on a junction fabricated with a new technology, involving no ferromagnetic
layer. The junction is realized with a conventional Nb|AlOx|Nb trilayer
and the 0-π phase discontinuity is arti�cially induced by a pair of current
injectors connected to one of the electrodes [59]. A new setup was nec-
essary for investigations in the quantum limit, since the SIFS junctions
show an unaccessible low thermal-to-quantum crossover temperature T ?

of only few mK. As shown in the thesis, the insertion of an additional
thin superconducting interlayer in the stack, giving rise to SIsFS JJs, was
not enough to reach higher T ? (i.e. larger jc).

In our measurements on the injector JJs, the �ngerprint of MQT is evi-
dent in the saturation of the width σ± of the switching current distribution
P (Ic±) for T < T ∗ ≈ 260 mK. Stronger proofs of quantum tunneling are
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given by �tting the experimental escape rate with theoretical predictions.
The formula for the thermal escape rate does not match the data below
the crossover temperature, while the quantum formula perfectly �ts them.

In the future, it is our intention to continue experimenting with these
types of SIS junctions to prove energy level quantization in the wells. To
this purpose we are going to excite the junction with a microwave signal
and then measure the P (I) distribution by varying the power at �xed
microwave frequencies. If tunneling from excited levels occurs, two or
more peaks appear in P (I).
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A ϕ JJ is an ideal tool for the investigation of macroscopic quantum e�ects
(MQE), since it naturally has two degenerate ground states, hence it can
be pictured as a quantum-mechanical two-level system. In particular, it
would be ideal to have a junction in which the energy barrier U0 separating
the local minima at ±ϕ can be ramped up and down. In this way, one
can study not only quantum coherence between the quantized energy level
in the single wells, but also between the ±ϕ states. As mentioned in my
manuscript in preparation, this tunability of the Josephson energy can be
achieved in JJ equipped with a single injector pair. However, this kind
of setup it is not ideal. First, the energy barrier U0 can be varied only
by physically changing the position of the injectors along the junction,
therefore the ramping up/down process is not feasible in the same junction.
Second, the control over the barrier is very poor, because for very small

Figure 9.1: (a) Optical image in false colors of a JJ with multi-injectors. The
arrows indicate how the bias current I and the injector currents Iinj1, Iinj2 and
Iinj3 �ow. The junction area is colored in green. (b) Simulated Josephson energy
potential U(ψ) for a JJ with three current injector pairs with normalized length
l = L/λJ = 2 and normalized injector size and spacing winj = wd = 0.2. The
�rst pair, positioned symmetrically along the junction, creates the κ1 ∼ π phase
discontinuity. The additional pairs, with κ2 = −κ3, together with the magnetic
�ux Φ tune electronically the energy pro�le.
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values of U0, i.e. U0 < 10−5EJ, the energy barrier height is extremely
sensitive to the amplitude of the applied injector current and to geometrical
dimensions.

A more �exible device can be obtained if we introduce additional in-
jector pairs along the junction, as shown in Fig. 9.1(a). Simulations of
the dynamics of the JJ using the sine-Gordon equation reveal that a JJ
with electronically tunable energy pro�le is realized with three pairs of
injectors. The pair located in the center of the JJ is to be used to produce
the κ1 ∼ π phase discontinuity, while the other two serve to control the
Josephson potential. The ramping up/down process is performed by lock-
ing the values of the secondary injector current, with κ2 = −κ3, with the
externally magnetic �ux Φ, as shown in Fig. 9.1(b).
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Figure 9.2: Calibration of the secondary injectors (blue curve), �tted by numer-
ical simulations (orange curve), at T = 4.2 K.

I have already started some basic measurements with such devices as
the characterization of the junction and of the injectors. The JJ under
investigation has a length L = 40µm = 2.5λJ and injectors size and spac-
ing Winj = Wd = 1.5µm. The modulation of the critical current with
the injector pair 1 is similar to the one shown in Fig. 7.4(a), while the
modulation with the injectors pair 2 and 3 is displayed in Fig. 9.2. The
curves di�er from each other, due to the dissimilar position of the injectors
along the junction. As these depart from the center of the JJ, the depth of
the modulation diminishes and the minimum becomes smoother, following
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the predictions of Ref. [59]. The plots show also �ts with numerical sim-
ulations. The mismatch between the theory and the experiment can be
explained considering that the theory describes the injectors and the junc-
tion as one-dimensional objects, while in reality we have three-dimensional
devices and the currents can �ow in a di�erent way. Additionally, in sim-
ulations we consider the injectors to have all the same geometrical dimen-
sion. This is however an ideal assumption, since technological variations
may cause slightly di�erent width and spacing of the injector leads.

In Fig. 9.3, I show the preliminary calibration of the secondary injectors
with the magnetic �eld H, that is applied through a coil with Icoil =
H/η and η = 5µT/mA. Here, Iinj1 = 3.67 mA, that creates the κ1 ∼ π
discontinuity. The Ic(Icoil) dependence is measured for di�erent values of
κ2 = −κ3. In this way, I can understand which values of the coil current
(i.e. the magnetic �eld) Isym

coil I have to apply to get a symmetric potential
for a given κ2(κ3). This corresponds to the middle point between the
central minima of the ±Ic(Icoil) curves, where the critical currents are
symmetric, i.e. +Ic± = | − Ic±|. As one can observe in Fig. 9.3(b),
the dependence Isym

coil (κ2) is almost linear at the beginning, then it turns
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Figure 9.3: (a) Calibration of the secondary injectors κ2,3 with the magnetic
�eld H, that is applied by means of a coil with Icoil = H/η and η = 5µT/mA.
By varying κ2,3, the value of coil current at which the Josephson potential is
symmetric changes. This value, labeled Isymcoil , lies in the middle between the two
minima near Icoil = 0. For each κ2,3, I recorded the corresponding Isymcoil and
plotted it vs κ2,3 (b).
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down at κ2 ≈ 0.5π where the energy barrier U0 disappears. I expect the
dependence to be 2π-periodic, thus I suppose that the curve will turn
upwards again around κ2 ∼ π and reach approximatively Isym

coil (κ2 = 0) at
κ2 = 2π. Further measurements are needed to con�rm this assumption.

In the future, these results will be used to perform energy level and
time resolved spectroscopy, and to probe the coherence of the Josephson
phase in the double well potential of the ϕ JJ.
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We investigate experimentally the retrapping of the phase in a ϕ Josephson junction upon return of the junction
to the zero-voltage state. Since the Josephson energy profile U0(ψ) in ϕ JJ is a 2π periodic double-well potential
with minima at ψ = ±ϕ mod 2π , the question is at which of the two minima −ϕ or +ϕ the phase will be trapped
upon return from a finite voltage state during quasistatic decrease of the bias current (tilt of the potential). By
measuring the relative population of two peaks in escape histograms, we determine the probability of phase
trapping in the ±ϕ wells for different temperatures. Our experimental results agree qualitatively with theoretical
predictions. In particular, we observe an onset of the butterfly effect with an oscillating probability of trapping.
Unexpectedly, this probability saturates at a value different from 50% at low temperatures.

DOI: 10.1103/PhysRevB.93.174506

I. INTRODUCTION

The butterfly effect occurs in deterministic nonlinear sys-
tems, and, in essence, it refers to the extreme sensitivity
of the final state of the system to initial conditions [1,2].
The effect puts a clear distinction between determinism and
predictability. A canonical example [3] is the weather, which
cannot be predicted reliably for more than 3–5 days in advance,
although computing power allows us to make simulations
much farther ahead. Deterministic chaotic systems must
exhibit the butterfly effect. However, deterministic continuous
systems (also known as flows in nonlinear physics) with
dimensionality less than 3 cannot exhibit chaos [2], but
they can exhibit the butterfly effect. Below we investigate
experimentally one such system based on a Josephson ϕ

junction.
Josephson ϕ junctions (ϕ JJs) have attracted a lot of

interest in the past few years, both theoretically [4–14] and
experimentally [15–19], due to the peculiar physics and their
properties. In general, a JJ can be thought of as a system in
which a particle with coordinate ψ (Josephson phase) moves
along a one-dimensional (1D) potential U0(ψ). In the ϕ JJ, the
potential U0(ψ) has the form of a 2π periodic double-well
profile with degenerate minima at ψ = ±ϕ + 2πn, where
0 < ϕ < π depends on the parameters and n is an integer.

In the ground state (no current applied), the phase is
trapped in one of two wells of U0(ψ). Upon application of
the bias current I , the potential will be tilted as U (ψ) =
U0(ψ) − ψI�0/(2π ), where �0 ≈ 2.067 fWb is the magnetic
flux quantum. At some critical value of the bias current (tilt),
the phase escapes from the corresponding well and starts

*Present address: Physikalisches Institut, Karlsruher Institut für
Technologie, 76131 Karlsruhe, Germany.

sliding down the potential. Therefore, in an experiment one can
observe two critical currents Ic− and Ic+, each corresponding
to the escape of the phase from different wells [9,18]. In
general, Ic+ �= Ic−. Thus, the measurement of the critical
current (Ic− or Ic+) can be used as a simple way to read out an
unknown state (−ϕ or +ϕ) of the ϕ JJ [18,19].

It is also interesting to understand in which of the two wells
the phase is retrapped when the bias current (tilt) is decreased.
In a previous experiment [18], we noticed that the retrapping
process depends strongly on temperature: for T � 2.4 K, the
destination well (state) is always +ϕ (if the JJ returns to a
zero-voltage state from positive currents and voltages), while
for low temperatures, T ∼ 300 mK, the destination well is
random. Theoretical analysis [13] of a simplified deterministic
model shows that the destination well is indeed +ϕ at large
damping α. However, it changes between +ϕ and −ϕ back and
forth as α decreases. Actually, the intervals of α corresponding
to the trapping in a particular well get shorter and shorter
as α → 0. This, in fact, results in a butterfly effect in the
limit α → 0, i.e., any tiny change (fluctuation) of the bias
current or the damping will change the destination well. In
the presence of noise (electronic or thermal), we expect [13]
that the probability P (α) to be trapped in a particular well
should exhibit smeared oscillations and should saturate at 0.5
for α → 0.

In this work, we present measurements of the probabilities
of phase retrapping in the ±ϕ wells as a function of tem-
perature, and we compare them with theoretical predictions.
We note that the model [13] represents a simplified version
of the real system, resulting from several approximations:
(a) an effective (spatially averaged) model was used, which
works well only for very short JJs and reduces an infinite-
dimensional system to a 2D one (without chaos); (b) only
“slow” (in comparison with the retrapping time) noise was
treated [13]; (c) a linear damping was assumed [13]. Therefore,

2469-9950/2016/93(17)/174506(5) 174506-1 ©2016 American Physical Society
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it is necessary to check the predictions of the model [13]
experimentally.

Our results demonstrate a crossover from the deterministic
behavior of the probability to be trapped in the −ϕ well
P−(T ) = 0 at high temperature T > T ∗ to an oscillating
probability P−(T ) at the onset of the butterfly effect at T < T ∗.
However, at even lower temperatures P−(T ) saturates at about
0.33 instead of 0.5 predicted theoretically. Possible reasons for
this are discussed.

II. EXPERIMENTAL RESULTS

For our investigations, we have used a superconductor-
insulator-ferromagnet-superconductor (SIFS) JJ with a step-
wise thickness of the F layer (see Fig. 1), i.e., a JJ with
one half behaving like a conventional 0 JJ and the other half
behaving like a π JJ (also called 0-π JJ). This JJ is short
in the x direction (the length L is smaller than or of the
order of the Josephson length λJ ) and much smaller in the
y direction (w � L). Treating this JJ as a pointlike device
with the properties averaged along its length L, we obtain a ϕ

JJ with an effective (averaged) Josephson energy profile U0(ψ)
looking like a 2π periodic double well. Here ψ is the average
phase across the device. The sample described here was used
in our previous works before [18,19].

The current-voltage characteristic (IVC) at H = 0 and the
critical current dependence on the applied magnetic field Ic(H )
at T = 0.30 K are shown in Figs. 2(a) and 2(b). Here one can
observe the presence of the two critical currents Ic− and Ic+
in each direction of the bias.1

In our experiment, we measured the probability to trap
the phase in one of the two wells for different values of the
temperature in the range 0.27 < T < 2.30 K. Note that the
damping α is a function of the temperature T in our tunnel-like
ϕ JJ. So we change T to change α. We sweep the bias current
N = 104 times with a constant rate İ = 0.1194 A/s at H = 0
and obtain a histogram such as the one shown in Fig. 2(c). In
general, it consists of two peaks: one situated just below the
fluctuation-free Ic− and another one below Ic+. The probability
P± = N±/N that the phase was trapped and then escapes from

1Another main feature of the ϕ JJ is visible in the Ic(H ) curve
[Fig. 2(b)], which has cusplike minima that are point symmetrically
shifted from H = 0.

FIG. 1. Sketch of the sample under investigation—a (from bottom
to top) Nb|AlO|CuNi|Nb JJ of length L = 200 μm ∼ λJ and width
w = 10 μm � L. The critical temperature of the device Tc ∼ 9 K.
The magnetic field H is applied along the y direction.

FIG. 2. Current-voltage characteristic (a), critical current de-
pendence on the magnetic field (b), and escape histogram (c) at
T = 0.30 K. In (a), different colors correspond to different sweep
sequences of the bias current I . In (b), the magnetic field is applied
in-plane of the junction by means of a coil with μ0H = ηIcoil with the
coil factor η ∼ 5 μ T/mA. The histogram in (c), measured by using
sequence S1 pos, shows two peaks corresponding to the two critical
currents Ic±.

the ±ϕ well is proportional to the number of events N± in the
corresponding peak in the histogram.

We performed the escape measurements using two different
sweep sequences; refer to Fig. 2(a).

174506-2
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S1. In the sequence “S1 pos(neg)” we sweep the current
I from zero (zero voltage) to a maximum positive (negative)
value with V > 0 (V < 0) at the McCumber branch. During
this forward sweep, we read out the value of the critical current
and add this to the statistics to produce a histogram later on.
Then we sweep back to I = 0. During this sweep, the phase
is retrapped in one of the wells, −ϕ or +ϕ, when the voltage
jumps back to V = 0. The value of the phase (−ϕ or +ϕ) will
be read out during the next cycle.

S2. In the sequence “S2 pos(neg)” the sweep starts from
the negative (positive) voltage state at the McCumber branch.
Then the current I is swept to a positive (negative) value up to
the resistive branch. During this sweep, the phase is retrapped
when the current approaches I = 0, but it is still negative
(positive), and then the critical current is read out (and added
to statistics) when the voltage jumps from V = 0 to V > 0
(V < 0). Finally, we sweep I back to the initial value.

Note that the probabilities P± to be trapped in the ±ϕ wells
(populations of histogram peaks) obtained using S1 and S2
are expected to be inverse, provided the potential U0(ψ) is
symmetric, i.e., P S1

± = P S2
∓ , because the trapping during S1

and S2 takes place at opposite values of the bias current (tilt).
Also, the results of “pos” and “neg” sequences are opposite.
Obviously, for any sequence, P− + P+ = 1. Therefore, below,
we discuss only P−(T ) for “S1 pos,” and the other P (T ) that
are supposed to be the same (P S1neg

+ , P
S2pos
+ , and P

S2neg
− ) may

be plotted in addition (see Fig. 3 below).
We have already seen [18] that for high damping, the

retrapping process is deterministic and we can predict the
destination well of the Josephson phase. Namely, at T > 2.3 K
the phase is always trapped in the +ϕ well, i.e., P− = 0.
However, as the damping decreases, the destination well
cannot be predicted and it depends on α and noise (thermal
or electronic) [13]. In our experiment, the damping should
depend on temperature quite strongly as in any tunnel junction.
Therefore, we study P−(T ) instead of the P−(α) in experiment.

FIG. 3. Retrapping probability P− of the phase in the −ϕ of the
Josephson potential U (ψ) for different temperatures T at zero applied
magnetic field H . The two sets of data correspond to two different
sweep sequences of the bias current I .

Also, the noise is most probably dominated by electronic noise
in the setup rather than by the thermal fluctuations in the JJ
itself. Thus, it does not depend strongly on T .

In Fig. 3, we present the experimentally determined
probability P−(T ). The vertical line in the figure indicates
the temperature T ∗ ≈ 2.25 K, where the boundary between
deterministic and nondeterministic retrapping is situated. For
T < T ∗, we observe an increase and several oscillations of
the probability P−(T ), qualitatively similar to the theoretical
prediction [13]. Three peaks at T = 2.15, 1.76, and T =
1.56 K indicate an enhanced probability to be trapped in the
“unnatural” −ϕ well. Those peaks are the smeared traces of
the regions where the phase is trapped in the −ϕ well in the
noiseless case. For T < 1.3 K, the P−(T ) saturates similar to
the theoretical prediction [13]. However, the asymptotic value
of P− in this region is ≈0.33 rather than 0.5 as expected from
the theory.

Retrapping measurements with the other possible sweep
sequences show similar results (“S2 neg” is shown in Fig. 3,
“S1 neg” and “S2 pos” are not shown). The results also do not
depend strongly on the ramp rate İ . Very similar results can
be obtained by just moving the bias point along IVC with an
unknown ramp rate defined by measurement electronics.

III. DISCUSSION

Here we discuss several possible reasons that can lead to
the saturation value of P−(T ) different from 0.5.

A. Asymmetric U0(ψ)

First, one of the possible reasons can be an asymmetry of the
potential U0(ψ). The limit α → 0 implies that the retrapping
current IR → 0. Therefore, in this limit, the potential is
untilted and, in the case of a symmetric potential, one expects
equal probabilities of trapping for both wells. If, however, the
potential is asymmetric, P−(α → 0) �= 0.5.

Of course, the potential U0(ψ) in our ϕ JJ can be somewhat
asymmetric, in particular because of nonuniformities along
the JJ or because of a remnant magnetic field. However,
an asymmetric potential will result in asymmetric critical
currents ±Ic+ and ±Ic−. In our experiment, we can affect the
asymmetry of the potential by applying an external magnetic
field H . We have repeated the measurements shown in Fig. 3
applying a small [|Icoil| < 1 mA; see Fig. 2(b)] magnetic field
such that the measurements always take place at symmetric
critical currents. We have found that such a technique changes
the P−(T ) curve in the vicinity of the peaks, however the
saturation value remains almost unchanged.

One can further argue that the symmetry of the critical
currents does not guarantee the symmetry of the potential, as
the measurements of the critical currents are the measurements
of the maximum slopes of the potential rather than the whole
potential. However, such a coincidence is very improbable.
Nevertheless, we have generalized the deterministic model
[13] to the case of an asymmetric potential and weak noise
(quasideterministic limit), i.e., the noise energy is smaller than
the depth of each potential well, measured relative to the
potential barrier separating the wells. Qualitatively, one can
say that at α → 0, the particle experiences several dephasings
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during the relaxation process and arrives at the decision point
(last pass over the barrier separating the well) with a small,
but random energy (velocity). Then one can conjecture that
P± ∝ Q±—the heat dissipated by the particle starting with
zero velocity at the barrier during the “left and back” (along
−ϕ well) or “right and back” (along +ϕ well) semiperiods.
That is, the more energy that is lost during traveling along a
particular well, the larger is the probability to be trapped in
this well. In the perturbation theory limit [13] (α → 0),

Q± = ±2α

∫ ±ψ(Ubar)

ψ0

√
2[Ubar − U0(ψ)] dψ, (1)

where ψ0 is the phase corresponding to the “small” maximum
of the potential U0(ψ) between the wells, i.e., the barrier,
Ubar = U0(ψ0). The phases ±ψ(Ubar) are the phases at the left
and right slopes of the double-well potential where U0(ψ) =
Ubar. The final normalized expression for the probabilities is

P± = Q±
Q+ + Q−

, (2)

which is independent of α.
To check our conjecture, we have performed direct numeri-

cal simulations of a particle falling into a double-well potential
subject to a weak noise, which confirms the prediction given
by Eq. (2); see the Supplemental Material [20].

Then, we tried different asymmetric potentials, having the
same symmetric ±Ic+ and ±Ic− critical currents, and we
estimated P− using Eq. (2). It turns out that one can find
some asymmetric profiles U0(ψ) that give P− ≈ 0.33; see
the supplemental material [20]. However, for such profiles
the dependence of ±Ic±(H ) is not point symmetric as in
experiment. Of course, one can further argue that the magnetic
field H also has an asymmetric effect on U0(ψ), rather than
just adding an odd function. The reason for this can be the same
as the reason for the asymmetry of U0(ψ) without a magnetic
field. This special asymmetry can make ±Ic±(H ) symmetric,
as in experiment. However, again, such a coincidence is
highly unlikely. Thus, to explain P− ≈ 0.33 with the help
of an asymmetric potential, we have to make two improbable
assumptions.

Finally, the strongest argument in favor of a symmetric
potential is the fact that the dependences P−(T ) obtained using
S1 and P+(T ) obtained using S2 almost coincide; see Fig. 3.

B. Saturation of damping α(T )

Actually, the simplest and most probable reason for our
observation is the saturation of damping α(T ) at low tem-
peratures caused, e.g., by leakage currents in the barrier. If
the damping α(T ) does not decrease further with T → 0, but
saturates below Tsat at the value αsat, then in the P−(α) plot we
are able to go only down to αsat, where P−(α) is not saturated
yet but still performs decaying oscillations. So, what we see
in the limit T → 0 is then just P−(αsat), which happens to be
0.33 in our system.

To check this, we determine α(T ) from IVCs taken at
different temperatures. The pitfall here is that our SIFS JJ
is not RSJ-like, i.e., the resistance is voltage-dependent and,
strictly speaking, α is not defined. However, our task is not
to determine the exact value of α, but rather to see whether

FIG. 4. Plot of α(T ) obtained by means of fitting IVCs as
described in the text.

it saturates or not, and at which T . For this purpose, we have
performed a fitting of the low-voltage part of experimental
IVCs by solving the 1D perturbed sine-Gordon equation for a
0-π JJ with constant (x-independent) damping α; see Fig. 1.
Before doing these fits, we estimated the other key parameters
of our JJ, such as its Josephson length λJ , and critical current
densities jc0 and jcπ of the 0 and the π parts, respectively,
by fitting the numerically obtained Ic(H ) dependence to the
experimentally measured one. The dependence α(T ) is then
obtained from fitting IVCs at different temperatures and is
shown in Fig. 4. One sees that at T < Tsat ≈ 1.2 K, the
damping α(T ) saturates, presumably due to leakage. Self-
heating at T ∼ 1 K is still a minor effect.

Knowing the α(T ) dependence, we have also performed
simulations of the retrapping probability for different values
of T . Since our 0-π JJ is not extremely short, the model of a
pointlike JJ with a biharmonic averaged current-phase relation
is valid only qualitatively. Therefore, for simulations we again
used a 0-π JJ of finite length to be as close as possible to
the experiment. The thermal noise term was taken as ∝ T .
The results show a behavior of P−(T ) qualitatively similar
to the experimental one in Fig. 3, i.e., P−(T ) makes a few
oscillations and saturates at a value different from 0.5 (e.g.,
0.21) as T decreases (not shown). The discrepancy between
the experimentally and numerically obtained saturation value
of P−(T → 0) can be caused by some fine details, such as
nonlinearity of the damping in experiment or x-dependent
damping in the sample (different damping in 0 and π parts).

Nevertheless, we have checked that in our simulations
P− → 0.5 when the damping becomes much smaller than
αsat = 0.057—the saturation value in Fig. 4. During this
simulation, the noise was kept constant and corresponding to
a value T = 300 mK (constant noise amplitude independent
of α). These results support our claim that the saturation of the
damping α(T ) leads to P−(T → 0) �= 0.5.

Finally, we would like to estimate whether the peak width
in the P−(T ) plot in Fig. 3 is in agreement with the noise level.
The noise amplitude in our setup

√〈δI 2〉 ∼ 1 μA. In normal-
ized units,

√〈δγ 2〉 ∼ 0.002. This translates into the “noise”
in α as

√〈δα2〉 = √〈δγ 2〉/I (�0), where [13] I (�0) ∼ 1.
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Using the α(T ) plot in Fig. 4, one can measure that above
1.5 K the slope ∂α/∂T ≈ 1/(60 K). This gives

√
〈δT 2〉 ∼

√
〈δα2〉 ∂T

∂α
∼ 0.002 × 60 K = 0.12 K,

in good agreement with Fig. 3. Note, however, that at T <

1 K, where the α(T ) dependence saturates, the slope ∂α/∂T

vanishes, which leads to
√〈δT 2〉 → ∞. In this sense, a weakly

pronounced maximum at T ∼ 1 K can be yet another stretched
oscillation.

IV. CONCLUSIONS

We have performed measurements of the phase escape and
retrapping from/in two distinct states ±ϕ of a Josephson ϕ

junction in a temperature range from 0.3 to 3 K. We have
seen that retrapping is deterministic above some damping
(temperature) α∗ (T ∗). At α < α∗ (T < T ∗), the probability of
trapping in the unnatural well P−[α(T )] grows and oscillates,

demonstrating the onset of the butterfly effect as predicted
earlier [13]. However, we observe that the probability P−(T )
saturates at a level different from 0.5 most probably because
α(T ) saturates at its minimum value αsat for T < Tsat. Thus,
we were not able to penetrate deep into the region of the
butterfly effect. Further experiments with the ϕ JJs showing
lower damping, e.g., an effective ϕ JJ based on dc SQUID
[21], may help us to move further in this direction.

ACKNOWLEDGMENTS

R.M. gratefully acknowledges support by the Carl
Zeiss Stiftung. This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) via Project No. GO-1106/5,
via project A5 within SFB/TRR-21, and by the EU-FP6-
COST action MP1201. This work is also supported by
the National Science Centre (Poland) under Contract No.
DEC-2014/13/B/ST3/04451 (T.N.) and by the Czech Science
Foundation via Project No. 16-19640S (M.Z.).

[1] A. Scott, Encyclopedia of Nonlinear Science (Taylor & Francis,
New York, 2005).

[2] J. Sprott, Chaos and Time-Series Analysis (Oxford University
Press, Oxford, 2003).

[3] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[4] R. G. Mints, Phys. Rev. B 57, R3221(R) (1998).
[5] A. Buzdin and A. E. Koshelev, Phys. Rev. B 67, 220504(R)

(2003).
[6] Y. Tanaka and S. Kashiwaya, Phys. Rev. B 56, 892 (1997).
[7] A. Gumann and N. Schopohl, Phys. Rev. B 79, 144505 (2009).
[8] N. G. Pugach, E. Goldobin, R. Kleiner, and D. Koelle, Phys.

Rev. B 81, 104513 (2010).
[9] E. Goldobin, D. Koelle, R. Kleiner, and A. Buzdin, Phys. Rev.

B 76, 224523 (2007).
[10] E. Goldobin, D. Koelle, R. Kleiner, and R. G. Mints, Phys. Rev.

Lett. 107, 227001 (2011).
[11] S. V. Bakurskiy, N. V. Klenov, T. Y. Karminskaya, M. Y.

Kupriyanov, and A. A. Golubov, Supercond. Sci. Technol. 26,
015005 (2013).

[12] D. M. Heim, N. G. Pugach, M. Y. Kupriyanov, E. Goldobin, D.
Koelle, and R. Kleiner, J. Phys.: Condens. Matter 25, 215701
(2013).

[13] E. Goldobin, R. Kleiner, D. Koelle, and R. G. Mints, Phys. Rev.
Lett. 111, 057004 (2013).

[14] A. Lipman, R. G. Mints, R. Kleiner, D. Koelle, and E. Goldobin,
Phys. Rev. B 90, 184502 (2014).

[15] E. Il’ichev, M. Grajcar, R. Hlubina, R. P. J. IJsselsteijn,
H. E. Hoenig, H.-G. Meyer, A. Golubov, M. H. S. Amin, A.
M. Zagoskin, A. N. Omelyanchouk, and M. Yu. Kupriyanov,
Phys. Rev. Lett. 86, 5369 (2001).

[16] G. Testa, E. Sarnelli, A. Monaco, E. Esposito, M. Ejrnaes, D.-J.
Kang, S. H. Mennema, E. J. Tarte, and M. G. Blamire, Phys.
Rev. B 71, 134520 (2005).

[17] R. G. Mints, I. Papiashvili, J. R. Kirtley, H. Hilgenkamp,
G. Hammerl, and J. Mannhart, Phys. Rev. Lett. 89, 067004
(2002).

[18] H. Sickinger, A. Lipman, M. Weides, R. G. Mints, H. Kohlstedt,
D. Koelle, R. Kleiner, and E. Goldobin, Phys. Rev. Lett. 109,
107002 (2012).

[19] E. Goldobin, H. Sickinger, M. Weides, N. Ruppelt, H. Kohlstedt,
R. Kleiner, and D. Koelle, Appl. Phys. Lett. 102, 242602
(2013).

[20] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.93.174506 for theoretical analysis of a
particle trapping in an asymmetric double-well potential in the
limit of a small damping and a weak noise.

[21] E. Goldobin, D. Koelle, and R. Kleiner, Phys. Rev. B 91, 214511
(2015).

174506-5





Publication 2





PHYSICAL REVIEW E 94, 032203 (2016)

Model I–V curves and figures of merit of underdamped deterministic Josephson ratchets

E. Goldobin, R. Menditto, D. Koelle, and R. Kleiner
Physikalisches Institut and Center for Quantum Science in LISA+, Universität Tübingen,
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We propose simple models for the current-voltage characteristics of typical Josephson ratchets. We consider
the case of a ratchet working against a constant applied counter force and derive analytical expressions for the
key characteristics of such a ratchet: rectification curve, stopping force, input and output powers, and rectification
efficiency. Optimization of the ratchet performance is discussed.
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I. INTRODUCTION

The discovery of Brownian motion suggests the idea of
extracting useful work out of random motion. As Richard
Feynman et al. demonstrated [1], drawing energy from
equilibrium thermal fluctuations (white noise) is forbidden
by the second law of thermodynamics. The extraction of work
out of nonequilibrium or time-correlated noise (colored noise)
is possible using ratchet systems [2–5]. As an extreme case
of correlated input signal one can consider a deterministic
signal with zero time average, which will be rectified by the
ratchet into a dc output signal. Such deterministic ratchets
find many applications as rectifiers, sorters, etc. Deterministic
and stochastic ratchets have been the focus of attention
during the past two decades in various implementations.
In particular, Josephson systems based on the motion of
Josephson vortices [6–15] or the Josephson phase [16–21]
have been suggested and tested experimentally.

Josephson ratchets have some advantages over other
ratchet systems: (I) directed motion results in an average dc
voltage, which makes ratchet operation easily accessible in
experiment; (II) Josephson junctions are very fast devices,
i.e., they can be operated in a broad frequency range from dc
up to 100 GHz, which allows them to capture a lot of spectral
energy; (III) both underdamped and overdamped systems can
be investigated by proper junction design and the variation of
the bath temperature.

It turns out that regardless of the underlying physics (vortex
motion or Josephson phase motion) the I–V characteristic
(IVC) looks rather universal. Therefore, in this paper, we do
not discuss how such an asymmetric IVC can be obtained.
Instead, we assume some specific typical IVC, parametrize it,
and calculate the most important figures of merit. The model
presented here is an extension of a simpler model presented
earlier [22] in two aspects. First, the present model takes into
account possible hysteresis in the IVC and, therefore, allows
us to analyze underdamped as well as overdamped ratchets.
Second, it includes two specific types of the IVC: the constant
voltage step and the linear voltage branch. Within the frame-
work of this new model we obtain rectification curves, stopping
force, input and output powers, and rectification efficiency.

The paper is organized as follows. In Sec. II we describe
the model IVCs. In Sec. III the expressions for mean voltage,
stopping force, input and output power, and efficiency are
derived. In Sec. IV we discuss the obtained results and the
optimization of the ratchet. Section V concludes this work.

II. MODEL

Since the typical frequencies of the Josephson devices are
very high (from a few GHz up to a few THz) we consider
the most simple case of the quasistatic drive Iac sin(ωt), when
ω � (ωp,ωc). Here ωp is the plasma frequency and ωc is the
characteristic frequency of the Josephson junction. To derive
our results in the most general form from the very beginning,
we assume an additional dc current (counter force) Idc, which
is applied to the ratchet trying to stop it. This allows us to study
the loading capabilities of the ratchet and, thus, to calculate its
output power and efficiency. The total applied driving current
(force) can be written as

I (t) = Idc + Iac sin(ωt). (1)

Taking into account the smallness of ω, the rectified (mean)
voltage can be obtained just by integrating a dc current-voltage
characteristic V (I ) (most frequently measured in experiment)
as

V = 1

T

∫ T

0
V [I (t)] dt, (2)

where T = 2π/ω is the period of the ac drive. Note, that
V (I ) is, in general, a hysteretic (multivalued) function, which
depends on the prehistory of the biasing.

In this work we discuss two types of IVCs shown in
Figs. 1(a) and 1(b). The first is an IVC with a constant voltage
step, see Fig. 1(a), typical for relativistic motion of the phase
or vortex in a Josephson device. The second is an IVC with a
linear branch, see Fig. 1(b), typical for nonrelativistic motion.

The hysteresis is included in the IVC as follows. In the
simplest case of only one hysteretic branch, see Figs. 1(a)
and 1(b), we assume that when the current is increased from
I = 0, the voltage V (I ) = 0 up to I = I+

c , see Fig. 1. Then
the voltage is given by some function V(I ) specified below.
However, if the current is then decreased, the voltage is given
by V(I ) down to the “return current” I+

r � I+
c and V = 0 for

lower currents. If one sweeps the current I in the negative
direction, the corresponding critical and return currents are
−I−

c < 0 and −I−
r < 0, so that 0 � I−

r � I−
c .

An additional bias current (counter force) Idc, if any, shifts
the origin of the ac drive from the point I = 0 to the point
I = Idc. Alternatively, one can also treat this as an ac drive
with the origin at I = 0, but the values of I±

c and I±
r are

2470-0045/2016/94(3)/032203(6) 032203-1 ©2016 American Physical Society
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FIG. 1. Model IVCs for the two studied cases: (a) constant voltage
step, (b) linear branch. The parameters used for plotting are: I+

c = 0.5,
I−
c = 0.8, I+

r = 0.3, I−
r = 0.4, V1 = 1, and Rn = 4.

shifted by Idc to the new values, J±
c and J±

r given by

J+
c = I+

c − Idc, J+
r = I+

r − Idc,

J−
c = I−

c + Idc, J−
r = I−

r + Idc. (3)

For the sake of simplicity, below we assume that I+
c < I−

c .
Then the rectified voltage V � 0 and the counter force Idc < 0.

III. RESULTS

A. Output (rectified) voltage

It is convenient to calculate the average voltage V as a sum
of average voltages over the positive and the negative periods
of the drive, i.e.,

V = V + + V −, (4)

where

V ±(Iac) =
{

0, if Iac < J±
c

V±(Iac), if Iac > J±
c

. (5)

The functions V±(Iac) will be calculated below for a particular
model as follows:

V±
(2)= ω

2π

∫ t±2

t±1

V[Idc + Iac sin(ωt)]dt,

= ± 1

2π

∫ φ±
2

φ±
1

V[Idc + Iac sin(φ)]dφ, (6)

where φ±
1 and φ±

2 define the phases (t±1 and t±2 define times)
when the system switches to and from the voltage state, i.e.,
the instant value of current I (t) exceeds I±

c or falls below I±
r ,

i.e., Iac sin(ωt) exceeds J±
c or falls below J±

r . They are given
by

ωt+1 ≡ φ+
1 = + arcsin(J+

c /Iac), (7a)

ωt+2 ≡ φ+
2 = π − arcsin(J+

r /Iac), (7b)

ωt−1 ≡ φ−
1 = π + arcsin(J−

c /Iac), (7c)

ωt−2 ≡ φ−
2 = 2π − arcsin(J−

r /Iac). (7d)

1. Constant voltage model

For a constant voltage model [22], see Fig. 1(a),

V(I ) = V1 sgn(I ), (8)

relevant for step-like behavior of the IVC, see Fig. 1(a). Here,
V1 is the voltage of the step.

Substituting Eq. (8) into Eq. (6) we obtain

V± = ± V1

2π
(φ±

2 − φ±
1 ), (9)

and using Eqs. (7) we obtain the final explicit expression:

V± = ± V1

2π

[
arccos

(
J±

r

Iac

)
+ arccos

(
J±

c

Iac

)]
. (10)

2. Linear voltage model

For the linear voltage model, see Fig. 1(b),

V(I ) = RnI, (11)

relevant for IVCs obtained from the resistively and capacitively
shunted junction (RCSJ) model with resistance Rn, Fig. 1(b).

Substituting Eq. (11) into Eq. (6) we obtain

V± = Rn

2π
{Idc(φ±

2 − φ±
1 ) + Iac[cos(φ±

1 ) − cos(φ±
2 )]}. (12)

Using Eqs. (7) and taking into account that cos(φ±
1 ) ≷ 0, while

cos(φ±
2 ) ≶ 0 we obtain

V± = ±Rn

2π

⎧⎨
⎩Idc

[
arccos

(
J±

r

Iac

)
+ arccos

(
J±

c

Iac

)]

+ Iac

⎡
⎣

√
1 −

(
J±

c

Iac

)2

+
√

1 −
(

J±
r

Iac

)2
⎤
⎦

⎫⎬
⎭. (13)

Note, that the first term in Eqs. (12) and (13) vanishes for
Idc = 0 (idle ratchet).

B. Input power, output power, and efficiency

Without applied dc bias (counter force) the ratchet rectifies,
but it is idle, i.e., it does not produce any output power.
Therefore, for the analysis of power input, output, and
efficiency we consider the case Idc �= 0, i.e., the ratchet should
work against an applied dc current (counter force) Idc.

A set of rectification curves for several values of Idc � 0 is
shown in Figs. 2(a) and 2(b). The general behavior of V (Iac)
follows from Eqs. (4) and (5). For small values of the drive
Iac < J+

c the value of V = 0. Then, for J+
c < Iac < J−

c , we get
a strong rectification because V + > 0 while V − = 0. Finally,
at Iac > J−

c , both V + > 0 and V − < 0 almost cancel each
other.

The no-rectification regime at Iac < J+
c we shall call a

pinning regime. We define a rectification window as a range
of Iac where rectified voltage is large, i.e., J+

c < Iac < J−
c .

The region Iac > J−
c we shall call a “Sisyphus” regime since

the system makes a lot of useless back and forth motion,
dissipating a lot of power, but not producing any appreciable
mean output. We do not pay much attention to the Sisyphus
region since it is not interesting for applications.

From Fig. 2 we see that the rectification window shrinks as
the absolute value of the counter force Idc < 0 increases. Let
us plot the beginning and the end of the rectification window,
i.e., J±

c (Idc) given by Eq. (3); see Fig. 3. The window shrinks
linearly with Idc. The two lines J+

c (Idc) and J−
c (Idc) cross (and
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FIG. 2. A set of rectification curves V (Iac) (a, b), input power Pin(Iac) (c, d), output power Pout(Iac) (e, f), and efficiency η(Iac) (g, h)
calculated for different values of Idc = 0, − 0.1, − 0.2, − 0.29. The left column of plots, i.e. (a, c, e, g), is calculated using the constant
voltage model with V1 = 1. The right column, i.e. (b, d, f, h), is calculated using the linear voltage model with Rn = 1. The other parameters
are I+

c = 0.2, I−
c = 0.8, I+

r = 0.1, I−
r = 0.3. In (b) the most important regions are marked for the case of a ratchet loaded by Idc = −0.10.

the rectification window closes) at Idc = (I+
c − I−

c )/2. Just
before closing, the rectification takes place only at the single
value of Iac = (I+

c + I−
c )/2, i.e., just in the middle of the idle

(Idc = 0) rectification window.

The stopping force Istop is defined as the dc counter force
Idc that one has to apply at fixed Iac to stop the ratchet.
Since we are ignoring the Sisyphus region, the stopping
force is basically defined by the motion of boundaries of the
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FIG. 3. The size of the rectification window at given Idc. As
an example the arrow shows the size of rectification window at
Idc = −0.1. Simultaneously this plot shows the stopping force Istop

at given drive amplitude Iac.

rectification window, see Fig. 3, i.e., it is determined only by
I±
c and is independent on exact details of V(I ), provided it is

point-symmetric, i.e., V(I ) = −V(−I ). The stopping force is
given by [23]

Istop =

⎧⎪⎨
⎪⎩

0, for Iac < I+
c ;

I+
c − Iac, for I+

c < Iac < (I+
c + I−

c )/2;
Iac − I−

c , for (I+
c + I−

c )/2 < Iac < I−
c ;

0 for Iac > I−
c (Sisyphus)

. (14)

The mean input ac power is given by

P in = 1

2π

∫ 2π

0
V [Idc + Iac sin(φ)]Iac sin(φ) dφ

= P
+
in + P

−
in, (15)

where the power during the positive and negative semiperiods
are given by

P
±
in =

{
0, for Iac < J±

c

P±
in for Iac > J±

c

. (16)

Here,

P±
in = 1

2π

∫ φ±
2

φ±
1

V [Idc + Iac sin(φ)]Iac sin(φ) dφ. (17)

The mean output dc power for constant dc bias current Idc

is given by

P out = 1

2π

∫ 2π

0
V (Idc + Iac sin φ)Idc dφ = V Idc. (18)

Note that for I+
c < I−

c the rectified voltage V � 0, so that
we apply a stopping current Idc < 0. Thus, P out < 0, which
indicates that the power is not consumed but rather given out
to the dc load (dc current source). Equation (18) says that
P out(Idc) does not require any separate calculations and can be
obtained from V (Iac) in a trivial way.

The efficiency is given by

η = −P out/P in. (19)

1. Constant voltage model

For model Eq. (8), after integration of Eq. (17) we have

P±
in = V1Iac

2π

⎡
⎣

√
1 −

(
J±

c

Iac

)2

+
√

1 −
(

J±
r

Iac

)2
⎤
⎦. (20)

The plots Pin(Iac) for different values Idc are shown in Fig. 2(c),
while Pout(Iac) is shown in Fig. 2(e).

The efficiency η(Iac) can be calculated explicitly using
Eq. (19). We do not show this bulky expression here, however,
we plot the result in Fig. 2(g). The efficiency has a maximum
just at the beginning of the rectification window, i.e., at
Iac = min(J+

c ,J−
c ). Assuming that J+

c < J−
c , which is always

the case for the still open rectification window, the maximum
efficiency is reached at Iac = J+

c and is given by

ηmax = −Idc

2

arccos
( J+

r

J+
c

)
√

J+
c

2 − J+
r

2
. (21)

No hysteresis. In the case of no hysteresis (I+
r → I+

c ,
i.e., J+

r → J+
c ) we recover the previous result [22], namely

η → −Idc/J
+
c = −Idc/(I+

c − Idc). This is a monotonically
increasing function of −Idc. However, −Idc cannot be made
arbitrary large. At Idc → (I+

c − I−
c )/2 the rectification win-

dow is about to close, but efficiency approaches its ultimate
value given by

ηult → I−
c − I+

c

I−
c + I+

c

. (22)

Maximum hysteresis. In this case (I+
r = 0) we obtain the

ultimate rectification at Idc → (I+
c − I−

c )/2 (just before the
rectification window closes) given by

ηult → I−
c − I+

c

2
√

I−
c I+

c

arccos

(
I−
c − I+

c

I−
c + I+

c

)
. (23)

Let us make several notes. First, when we speak about
efficiency (and discuss effects of hysteresis), we focus on the
rectification window only. There, only the hysteresis of the
positive branch I+

r matters because the negative branch is not
participating yet. Thus, the value of I−

r is irrelevant, while the
value of I−

c only affects the upper edge of the rectification
window. Second, to make the ratchet more efficient one has
to design it with I+

c → 0, while keeping I−
c constant. In this

limit the hysteresis of the positive part of the IVC (the value
of I+

r ) becomes irrelevant too since I+
r < I+

c , i.e., I+
r = 0.

2. Linear voltage model

For model Eq. (11), after integration of Eq. (17) we have

P±
in = IacRn

4π

⎧⎨
⎩(Jc

±± 2Idc)

√
1−J±

c
2

I 2
ac

+ (J±
r ± 2Idc)

×
√

1−J±
r

2

I 2
ac

+Iac

[
arccos

(
J±

c

Iac

)
+arccos

(
J±

r

Iac

)]⎫⎬
⎭.

(24)
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The efficiency η(Iac) can be calculated explicitly using
Eq. (19). We do not show this bulky expression here, however,
we plot the result in Fig. 2(h). The efficiency has a maximum
at the beginning of the rectification window, i.e., at Iac =
min(J+

c ,J−
c ). Assuming that J+

c < J−
c , which is always the

case for the still open rectification window, the maximum
efficiency is reached at Iac = J+

c and is given by

ηmax =
−2Idc

[
Idc arccos

( J+
r

J+
c

) +
√

J+
c

2 − J+
r

2]
J+

c
2

arccos
(

J+
r

J+
c

) +
√

J+
c

2 − J+
r

2
(J+

r + 2Idc)
. (25)

No hysteresis. Note that in the limit of no hysteresis (J+
r →

J+
c ) we again recover the previous result [22]; see Eq. (22).

This is independent on our model (linear branch or constant
voltage branch) as at the beginning of the rectification window
the branch is not really traced yet (only its first point).

Maximum hysteresis. In this case (I+
r = 0) we obtain the

ultimate rectification at Idc → (I+
c − I−

c )/2 (just before the
rectification window closes) given by

ηult =
−2(I−

c − I+
c )2 arccos

( I−
c −I+

c

I−
c +I+

c

) + 4(I−
c − I+

c )
√

I+
c I−

c

(I+
c + I−

c )2 arccos
(

I−
c −I+

c

I−
c +I+

c

) + 2(I+
c − I−

c )
√

I+
c I−

c

.

(26)

IV. DISCUSSION

The plots of P in(Idc) and P out(Idc) as well as η(Idc) for both
models are shown in Figs. 2(c)–2(h). From Figs. 2(c) and 2(d)
we see that the input power is zero for Iac < J+

c , increases
inside the rectification window, and increases even further in
the Sisyphus regime. As we apply the counter force Idc, the
input power within the rectification window decreases slightly.

The behavior of P out(Iac) is more complicated. First of
all, for the case of the idle and unloaded ratchet (Idc = 0)
P out(Iac) ≡ 0 for any Iac. For the loaded ratchet (Idc < 0),
the power P out(Iac) = 0 in the pinning regime, and P out(Iac)
has its maximum value inside the rectification window. In the
Sisyphus regime the power P out(Iac) becomes small or even
changes sign (power consumption instead of power genera-
tion). Interestingly, the maximum value P out(Iac) is reached
for some Idc in the middle of the interval (I+

c − I−
c )/2 . . . 0.

The efficiency η(Iac) has a more clear behavior. It has a
maximum in the beginning of the rectification window and
grows as the load, i.e., |Idc|, increases.

From a practical point of view we would like to choose
the parameters I±

c , I±
r , V1, or Rn to optimize the following

figures of merit of our Josephson ratchet. (a) The rectification
window should be made as wide as possible and it should
start at the lowest possible Iac. The stopping force and current
Istop is directly related to the rectification window size, so that
a large window automatically leads to a high |Istop|. (b) The
output (rectified) voltage V should be made as high as possible.
(c) The output power Pout should be made as large as possible.
(d) The efficiency η should be made as large as possible.

The parameters V1 and Rn have a direct effect on V and P out

and have no effect on the rectification window and efficiency.
Therefore, to increase V ∝ (V1,Rn) and P out ∝ (V1,Rn), one
should increase V1 or Rn.

To enlarge the rectification window one has to make I+
c and

I−
c as different as possible (maximum possible asymmetry).

In an ideal case, one would like to have I+
c → 0 (which

automatically means I+
r → 0). The values of I±

r are not
relevant for the rectification window size. Simultaneously, a
large rectification window leads to large values of the stopping
force up to (I+

c − I−
c )/2. The efficiency has its maximum value

in the beginning of the rectification window and also grows
with increasing load current |Idc|. However, with increasing
load the rectification window shrinks. At the end one has to find
a compromise between efficiency and rectification window
size for a particular application. If the value of I+

c �= 0 the
value of I+

r does not have a major effect on the rectification
curves—smaller I+

r improves the figures of merit such as V ,
P out, and η somewhat. The value of I−

r is relevant only in the
Sisyphus region, which is not interesting for applications.

V. CONCLUSIONS

We have suggested two simple models of a Josephson
ratchet—the linear voltage branch and the constant voltage
branch—based on few experimentally relevant parameters. We
have derived analytical expressions for the mean voltage V ,
the rectification window size, the stopping force Istop, the input
power P in, the output power P out, and efficiency η. We have
demonstrated the performance of the ratchet for some typical
set of parameters and discussed the optimization of different
figures of merit. These results should be useful for designing
the next generation of Josephson ratchets as well as for fitting
already obtained results.
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We demonstrate experimentally the operation of a deterministic Josephson ratchet with tunable asymmetry.
The ratchet is based on a ϕ Josephson junction with a ferromagnetic barrier operating in the underdamped
regime. The system is probed also under the action of an additional dc current, which acts as a counterforce
trying to stop the ratchet. Under these conditions the ratchet works against the counterforce, thus producing a
nonzero output power. Finally, we estimate the efficiency of the ϕ Josephson junction ratchet.

DOI: 10.1103/PhysRevE.94.042202

I. INTRODUCTION

Ratchets or Brownian motors have attracted a lot of interest
in the last few decades [1–37]. Apart from answering some
fundamental questions, they can be immediately employed
for the extraction of work out of nonequilibrium thermal
fluctuations, for rectification of deterministic signals, or for
particle separation [1–4]. Apart from the ratchets existing
in nature [5], there are many artificial ratchet implementa-
tions, in particular, based on nanostructured superconductors:
Josephson vortex ratchets [6–16], SQUID ratchets [17–23],
and Abrikosov vortex ratchets [24,25].

A huge number of theoretical works [28–37] published
more than a decade ago, were devoted to a paradigmatic
system: a pointlike particle moving in a 1D periodic potential
without reflection symmetry under the action of a deterministic
or random force with zero time average. To create such a
system using a Josephson junction (JJ), one recalls that the
Josephson phase φ can be considered as the coordinate of a
fictitious particle moving in a 2π -periodic Josephson potential
energy profile U (φ). The ratchet’s driving force is the bias
current. However, the Josephson potential U (φ) in most types
of known JJs is reflection symmetric and its shape is hardly
controllable. Thus, for many years there was no possibility
to create a Josephson junction ratchet, which would be as
simple as the paradigmatic examples discussed in the literature
and check experimentally all the predictions. Researchers,
however, were able to demonstrate more complex Josephson
ratchets (with more than one JJ or with extended JJ), such
as asymmetric SQUID ratchets [18–21] or Josephson vortex
ratchets [7,10,14,16]. The physics of such devices is more
complicated and they are not as reliable as the generic ratchet.

Current progress in JJs allows us to solve this long-standing
problem. Recently our group suggested [38] and demon-
strated [39] a ϕ JJ with a magnetic-field-tunable Josephson
energy profile. By definition, ϕ JJ is a JJ having a nonzero and
degenerate phase ψ = ±ϕ �= 0 in the ground state, i.e., when
no current is applied to the JJ. In particular, in the case of a ϕ

JJ made of a short 0-π JJ (two parallel segments with 0 and π

ground state), the Josephson energy can be written in a simple

*gold@uni-tuebingen.de

analytical form as [38,40]

U (ψ) = 1 − cos(ψ) + �0

4
[1 − cos(2ψ)] + �hh sin(ψ), (1)

where ψ = 〈φ(x)〉 is the average Josephson phase across the JJ
(the averaging 〈. . .〉 is over the JJ length L, which is assumed
to be smaller than the Josephson length λJ ). This is the phase
that is measured across the JJ, if it is treated as an element with
two wires or electrodes coming out. The constants �0 < 0 and
�h are related to the geometrical and electrical parameters
of the JJ, and h is the normalized magnetic field [38,40].
For longer JJs, the U (ψ) profile deviates from the analytical
form given by Eq. (1) but can be calculated numerically.
In any case, the following common behavior of the ϕ JJ is
observed: at zero magnetic field h = 0 the Josephson energy
U (ψ) is reflection symmetric (see Fig. 1); at h �= 0 it becomes
asymmetric due to the presence of both cos(2ψ) and sin(ψ)
terms in Eq. (1). Thus, one is able not only to construct a ratchet
closely mimicking the paradigmatic example, but also tune its
asymmetry during experiments by changing h, e.g., switch
it on, off, reverse its sign, etc. This is an extremely useful
feature from a practical point of view as it allows to compare
the transport or rectification with and without asymmetry and
explore and optimize the ratchet performance by tuning the
asymmetry of U (ψ).

The paper is organized as follows. In Sec. II we describe
the sample design and present the experimental results of
the ratchet operation in the underdamped regime. Section III
concludes the paper.

II. EXPERIMENTAL RESULTS

We used superconductor-insulator-ferromagnet-super-
conductor (SIFS) Josephson junctions that are fabricated as
Nb|Al-Al2O3|Ni0.6Cu0.4|Nb multilayers [41,42]. They consist
of two segments: the first is a 0 segment of length L0 with
the thickness of the ferromagnetic layer dF,0 and the critical
current density jc,0 > 0. The second is a π segment of length
Lπ with the thickness of the ferromagnetic layer dF,π and
jc,π < 0. Such a JJ as a whole behaves [38,40] as a ϕ JJ
with the average phase ψ = 〈φ(x)〉 and the Josephson energy
U (ψ) qualitatively similar to the one given by Eq. (1). The
exact U (ψ) profile can be calculated only numerically [39].

2470-0045/2016/94(4)/042202(5) 042202-1 ©2016 American Physical Society
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FIG. 1. Josephson energy U (ψ) tuned by an applied magnetic
field h, normalized in the usual way as h = 2H/Hc1, where Hc1 =
�0/(πμ0	λJ ) is the vortex penetration field and 	 is the effective
magnetic thickness of the JJ. Note that at any h the U (ψ) profile
remains 2π periodic.

In any case it is important that at bias current I = 0 and
magnetic field h = 0, U (ψ) is a reflection symmetric 2π

periodic double well potential with the minima of the wells at
ψ = ±ϕ + 2πn; see Fig. 1. At h = 0 the wells are degenerate,
while for h �= 0 the degeneracy is removed [38–40].

As demonstrated in our previous works [39,43,44] a
typical property of a ϕ JJ is to have two critical current
branches, denoted here as I+

c,L(H ) and I+
c,R(H ), measured

for increasing [45] (superscript “+”) bias current and two
branches denoted as I−

c,L(H ) and I−
c,R(H ) for decreasing [45]

(superscript “−”) bias current; see Fig. 2(a). These two
currents correspond to the escape of the phase out of the
left “L” and the right “R” wells of U (ψ); see Fig. 1. The
smaller (by amplitude) of the two critical currents (at a
given H ) can be observed only for low enough damping.
For higher damping, upon the escape from, e.g., the L well,
the phase can be retrapped in the R well. Consequently
one will observe I+

c,R when the phase will later on escape
from the R well instead of I+

c,L. In general, the damping
in SIFS JJs is strongly temperature dependent and reduces
for lower temperatures [46]. For our samples we estimated
T = 3.60 K as the crossover temperature between the high
and low damping regime (in a sense of observing both Ic,LR).

Our measurements were performed in a 3He cryostat,
equipped with a multilayer magnetic shielding. All electrical
connections (wires) going to/from the sample have been fil-
tered both at room temperature and at cryogenic temperatures.
The magnetic field was applied by a coil with μ0H = η · Icoil

with coil factor η ∼ 5 μT/mA.
The dependence of the critical current Ic on the externally

applied magnetic field H at T = 1.70 K is shown in Fig. 2(a).
The existence of two critical current branches I±

c,L and I±
c,R as

well as the crossing of the branches, typical of a ϕ JJ, is ob-
served. Two Ic are well visible for −37 μT � μ0H � −7 μT
and 18 μT � μ0H � 44 μT. However, for −7 μT � μ0H �
18 μT for this particular JJ and T , the I+

c,L and I−
c,R branches are

semistable (do not always appear), which is indicated by the
dots continuing these branches; see Fig. 2(a). The traceability

FIG. 2. (a) Ic(H ) curve at T = 1.70 K. Vertical lines in (a)
correspond to the values of μ0H , for which different rectification
curves V (Iac) in (b) are measured. The magnetic field is applied in
the plane of the JJ perpendicular to the long side of the JJ.

of the lower (by absolute value) Ic(H ) branches in experiment
also depends on the bias current sweep sequence, i.e., depends
on the well, L or R, in which the phase is trapped initially.
The sweep sequences are rather different for measurements
of Ic(H ) and rectification curves; see Figs. 2(b) and 3(b).
By applying a magnetic field one can change the asymmetry
between the wells of the Josephson potential energy U (ψ) and
create an asymmetric periodic potential required for a ratchet
operation; see Fig. 1.

Here we present the results obtained in the underdamped
regime at T = 1.70 K, where the rectification operation is
strong and the rectification curves V (Iac) appear free from
extra structures due to the presence of (half-integer zero field)
steps on the current-voltage characteristics (IVCs) (see the
steps, e.g., in Fig. 4 of Ref. [39]).

In our experiment we measure the rectification curves
V (Iac), i.e., the average voltage vs. the amplitude of applied
ac current. For this we apply a periodic bias current I (t) =
Iac sin(2πf t) with the frequency f = 10 Hz and the update
rate of 10 000 pts/s (period T = 100 ms, 1000 pts/period) and

042202-2
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FIG. 3. ϕ JJ at T = 1.70 K and μ0H = 12.9 μT. (a) Current-voltage characteristic and (b) rectification curves for different amplitudes of
the counterforce Idc. In (a) I+

c ≈ 389 μA, I+
r ≈ 171 μA and I−

c ≈ 997 μA. The current-voltage characteristic is measured by sweeping the
current from the maximum negative value of the current to the maximum positive value of the current and back. Note that, in contrast to the
situation at H = 0 discussed in Ref. [43], here H �= 0, the potential is asymmetric, and one observes lower positive Ic and higher (by absolute
value) negative Ic; cf. Fig. 2(a).

we measure the voltage 1000 times with the sampling rate
10 000 samples/sec, i.e., exactly during one period, starting at
an arbitrary moment of time defined by delays in hardware and
software. Then the collected samples are averaged to obtain V

at given Iac. The sign of V indicates the direction of motion
of the phase in the Josephson potential. In the following we
discuss the case of V > 0, i.e., I+

c < |I−
c |, where I+

c or I−
c

mean the relevant, L or R, I±
c (H ) branch; see below for details.

The opposite situation (V < 0) is similar.
For small Iac the current is so small, that it does not

exceed I+
c , so that the phase remains pinned in the well

and V = 0. If Iac becomes larger, i.e., I+
c < Iac < |I−

c |, the
voltage becomes V �= 0, because for Iac > I+

c the JJ jumps
to the resistive branch. In the underdamped regime, due
to the hysteresis on the IVC, the voltage V jumps to a
finite value at the beginning of the rectification region. Then
for Iac > |I−

c | the voltage V decreases because the junction
also picks up some negative voltage during the negative
semiperiod. In Fig. 2(b), the V (Iac) curves are shown for
different values of the magnetic field H , i.e., for different
asymmetries of the energy potential U (ψ). First, at μ0H = 0,
the rectification is absent (V = 0), for any amplitude Iac of
the driving current I (t). In the absence of external field the
energy potential is reflection symmetric, and therefore no
rectification is expected. As soon as the field is applied to
the JJ, the reflection symmetry of the potential is broken and
unidirectional motion of the phase occurs; see Fig. 2(b). The
width of the rectification window changes with the applied
magnetic field, reflecting the change in the asymmetry of the
energy potential and, therefore, I±

c . For |μ0H | < 10 μT we see
rather narrow rectification windows due to the small difference
in I+

c,R(H ) and |I−
c,L(H )|. For 10 μT < |μ0H | < 40 μT the I+

c,L

instead of I+
c,R comes into play. As a result the rectification

window increases substantially; see Fig. 2(b). For even larger
|μ0H | � 40 μT the rectification window narrows somewhat
because the difference between |I+

c,L| and |I−
c,L| decreases; see

Fig. 2(a).

Up to now the ratchet shows operation in the idle regime
(Idc = 0). We now apply an additional dc bias current Idc

(counterforce) to the ratchet, which tries to stop the ratchet
or even move the phase in the direction opposite to the
rectification direction. If the ratchet is able to overcome the
counterforce Idc, it produces a mean output power P out =
IdcV < 0 (i.e., the work is done by the ratchet on the current
source). Furthermore one can calculate the efficiency, given
by η = −P out/P in, where P in is the mean input power.

To demonstrate the operation of the ratchet against the
counterforce, we have chosen the value of μ0H = 12.9 μT,
where the rectification window is largest. Fig. 3(a) shows the
IVC of the device for this value of H . Here the relevant I+

c ≡
I+
c,L(H ) and I−

c ≡ I−
c,L(H ) < 0, i.e. the pinning or depinning

game takes place in the L well, which becomes deeper at
H > 0, while the R well becomes more shallow and may even
disappear.

The stopping force Istop(Iac) is defined as the current Idc at
which V (within the rectification window in the idle regime)
vanishes or changes sign at a given Iac. We measured many
rectification curves V (Iac), each time increasing the amplitude
of the dc current. Since we have a positive rectification, V > 0,
the counterforce Idc < 0 should be negative. The results are
shown in Fig. 3(b). Starting from the curve with Idc = 0,
one can see that by increasing the absolute value of Idc the
rectification window narrows, indicating that the additional
bias actually stops the ratchet at the regions where the ratchet
was not strong enough (edges of the idle rectification window).
Note that the shrinkage is symmetric relative to the center
of the rectification window, and this is due to the fact that
the constant bias shifts up all the currents of the IVC.
From these measurements we see that the at I off

dc ≈ −307 μA
the rectification window closes completely and the ratchet
operation stops fully. The theoretical value can be calculated
using our parameters (see the caption of Fig. 3) as [47]
I off

dc = (I+
c − |I−

c |)/2 = −304 μA, which is a rather exact
coincidence with the experimental value. According to the
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theory [47] the full-stop force I off
dc depends only on I+

c and I−
c

but not on the shape of the IVC.
For given Idc, the maximum efficiency is always reached at

Iac = J+
c ≡ I+

c − Idc, i.e., in the beginning of the rectification
window and is given by [47]

ηmax =
−2Idc

[
Idc arccos

( J+
r

J+
c

) +
√

J+
c

2 − J+
r

2]

J+
c

2
arccos

(
J+

r

J+
c

) +
√

J+
c

2 − J+
r

2
(J+

r + 2Idc)
, (2)

where J+
r = I+

r − Idc, with I+
r the return current from the

resistive branch.
Using Eq. (2) and our parameters (see the caption of Fig. 3)

we may plot the dependence ηmax(Idc) given by Eq. (2).
This dependence (not shown) smoothly grows with |Idc|. The
maximum value of |Idc| that makes sense is I off

dc measured and
calculated above. At this Idc the rectification window is about
to close completely, but the ratchet is the most efficient with
ηmax = 48%. This is a fairly good value, which is not much
lower than the maximum efficiency of ηmax = 60% observed in
a specially designed vortex ratchet [16]. We stress here that our
ϕ JJ was not optimized or designed for operation as a ratchet.
It is one of two samples used in the original experimental work
on ϕ JJs [39].

III. CONCLUSIONS

Although there were many theoretical studies on ratchets
where the particle moves in an asymmetric periodic potential,

the practical implementation of a simple paradigmatic system
using a Josephson junction was missing, mainly because
the Josephson energy in conventional junctions is reflection
symmetric. Here we have demonstrated that in ϕ Josephson
junctions this symmetry is broken and one can obtain rectifica-
tion as a result of directed transport of the phase. The advantage
of this system is that the asymmetry is tunable by a magnetic
field H , so that one can clearly see the (dis)appearance of
rectification as a function of H , as well as optimize its
operation. The maximum efficiency that can be obtained with
such a ratchet is rather high, considering that the parameters
of the investigated junction (e.g., the asymmetry of the 0 and
π part) are not optimized for the ratchet operation.

A ϕ JJ is only one example of constructing a system with
desired nontrivial Josepshon energy profile U (ψ). Following
this general approach, one can try to design even more
asymmetric ratchets that will provide a huge rectification
window and, consequently, have higher full-stop current I off

dc
and higher efficiency η.
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The 0–p transition in Superconductor-Insulator-superconductor-Ferromagnet-Superconductor

(SIsFS) Josephson junctions (JJs) was investigated experimentally. As predicted by theory, an

s-layer inserted into a ferromagnetic SIFS junction can enhance the critical current density up to

the value of an SIS tunnel junction. We fabricated Nb0 j AlOx j Nb j Ni60Cu40 j Nb JJs with wedge-

like s (Nb) and F (Ni60Cu40) layers and studied the Josephson effect as a function of the s- and

F-layer thickness, ds and dF, respectively. For ds¼ 11 nm, p-JJs with SIFS-type jcðdFÞ and critical

current densities up to jc
p ¼ 60 A=cm2 were obtained at 4.2 K. Thicker ds led to a drastic increase

of the critical current decay length, accompanied by the unexpected disappearance of the 0–p
transition dip in the jc(dF) dependence. Our results are relevant for superconducting memories,

rapid single flux quantum logic circuits, and solid state qubits. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4905672]

The introduction of a ferromagnet into the barrier of a

Josephson junction (JJ) can lead to a p-JJ.1 Over the last

years, in-depth studies were performed to theoretically and

experimentally analyze the critical current density in

Josephson junctions in dependence on the ferromagnetic (F)

layer properties, e.g., in SFS and SIFS junctions (S: super-

conductor and I: insulator).2–4 Apart from addressing some

fundamental questions, such as pair breaking mechanisms or

the proximity effect at SF interfaces, novel promising appli-

cations are expected.5–9 If properly designed, SF based

Josephson junctions may enhance the design flexibility in

superconducting circuitry and solid state qubits.10–12 In par-

ticular, they offer new perspectives for the important field of

non-volatile superconducting memories.13,14 In general, low

values of critical current density jc and characteristic voltage

Vc ¼ IcRN (Ic: critical current and RN: normal resistance)

limit the switching time s � 1=Vc of rapid single flux quan-

tum logic (RSFQ) elements and lead to a large Josephson

penetration depth15 kJ �
ffiffiffiffiffiffiffiffi
1=jc

p
and short coherence times of

quantum states.13 The all-metallic SFS JJs intrinsically have

a very low Vc although jc can be large.2,16 In SIFS, p-JJs

with significantly larger Vc ¼ 40 lV and jc ¼ 30 A=cm2

have been achieved but both values are still two orders of

magnitude smaller than for SIS JJs.4,17 Recently, it was pro-

posed to use Superconductor-Insulator-superconductor-

Ferromagnet-Superconductor (SIsFS) instead of SIFS JJs.18

The thin s-layer helps to recover superconductivity, which is

suppressed by the I- and F-layers. First experiments com-

pared SIsS and SIsFS junctions and presented similar jc and

V(I) characteristics, which are only slightly modified by the

F-layer.18,19 Theory also predicts an influence of the s-layer

on the 0–p transition.20–22 In this paper, we present a detailed

electric transport study on SIsFS junctions with the focus on

the variation of the s-layer and F-layer thicknesses.

The Nb0jAlOxjNbjNi60Cu40jNb (SIsFS) layer sequence

(from bottom to top) was in-situ deposited on 3� 8 cm2

SijSiO2 wafer stripes in an Oerlikon Univex 450B cluster tool

system by using 4-in. DC magnetron sputter sources. The base

pressure of the system was 4� 10�7 mbar. For the Nb0 bottom

layer, a 3� [Nb(40 nm)jAl(3 nm)j] Nb(40 nm)jAl(7 nm) multi-

layer sequence was sputtered to achieve a low surface rough-

ness.23 Subsequently, the top Al was oxidized in a pure

oxygen atmosphere. A Nb s-layer, a Ni60Cu40 F-layer, and

40 nm Nb completed the sandwich structure. Details on the

fabrication process can be found elsewhere.24 The ferromagnet

Ni60Cu40 was used to obtain SIFS p-JJs comprising large criti-

cal current densities and high normal state resistances.4

To systematically study the SIsFS junction behaviour

depending on the thicknesses of the F-layer dF and the

s-layer ds, the junctions were fabricated in two ways. In a first

set (F-wedge), the samples were composed by a dF wedge

and a constant thickness ds. The latter was varied from run to

run. Vice versa in a second set of samples (s-wedge), dF was

kept constant and ds was deposited as a wedge. To obtain

wedges of the ferromagnet and the superconductor, those

layers were deposited off-centered.4,25 X-ray reflectivity

(XRR) measurements in h–2h configuration were performed

to determine the thickness and hence the deposition rate r for

various calibration points along the radial distance x from

the target center. For the Nb and Ni60Cu40 films, we obtained

a smooth and monotonic thickness gradient along the wafer

stripes, as shown in Fig. 1 for Ni60Cu40. The inset shows

XRR data from two points located 38 mm apart from each

other. The F-wedge samples presented in this paper were

fabricated in the region marked by a dashed line. A similar

approach was applied to calibrate the intermediate Nb layer
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thickness ds. The Nb deposition rate for the s-wedge samples

varied between 0.75 Å/s and 4 Å/s. In the F-wedge JJs, the

I-layer was oxidized by using parameters that lead to SIS

junctions with jc ¼ 7 kA=cm2 at 4.2 K. For the s-wedge JJs,

the I-layer oxidisation parameters were the same as those we

used for the fabrication of SIS reference junctions with

jc ¼ 1:2 kA=cm2.

An electric characterization of individual Josephson junc-

tions was done in a liquid helium dip-stick equipped with a

coil, to produce a homogeneous magnetic field along the junc-

tion width w. Junctions with areas (l�w) 10� 10 lm2 and

50� 10 lm2 were wire bonded in a four point arrangement.

Current–voltage curves V(I) and critical current versus mag-

netic field dependencies Ic(H) were recorded at 4.2 K. A

demagnetization procedure prior to the measurement resulted

in a homogeneous and maximized critical current through the

junction as indicated by a Fraunhofer-like Ic(H) dependence.

Therefore, a damped oscillating magnetic field sweep starting

at a maximum amplitude of 20 mT was applied at a tempera-

ture between 10 K and 15 K. We would like to emphasize that

without this particular magnetic treatment non-reproducible

Ic(H) with reduced jc occurred, especially for large dF

(>7 nm). To account for the influence of remanent magnetiza-

tion of the F-layer on the measurement, the critical current of

a junction and its V(I) were not recorded at zero applied field

but at the maximum of the Ic(H) pattern.

Josephson junctions with various combinations of ds and dF

were studied. Representative V(I) and Ic(H) dependencies for

SIFS structures (Figs. 2(a) and 2(b)) and SIsFS with ds ¼ 30 nm

(Figs. 2(c) and 2(d)) demonstrate a broad variation in the junc-

tion characteristics such as hysteresis and jc caused by variations

in dF and ds. The normal resistance RN was � 0:3 X for all 10

�10 lm2 junctions. The s-layer assisted to maintain SIS-like

V(I) characteristics for JJs with dF � 2 nm (Fig. 2(c)) and,

except for a slight decrease of the subgap resistance, also up to

several nm of Ni60Cu40 (Fig. 2(d)).

The dependence of the critical current density jc on the

thickness of the ferromagnetic interlayer dF (F-wedge) is shown

in Fig. 3 for ds ranging from 0 to 60 nm. For SIFS (ds ¼ 0)

junctions, jcðdFÞ shows a distinct minimum at dF ¼ 5:8 nm

indicating the cross over from the 0 to p ground state. A similar

feature is observed for series of junctions with ds � 11 nm.

They all exhibit a well pronounced cusp-like dip in jc(dF),

which is considered as an unambiguous indicator for a 0–p
transition. For increasing ds, we notice a tendency of the jcðdFÞ
dependence towards the upper right corner of Fig. 3, i.e., the

0–p transition shifts by DdF¼ 1 nm from ds¼ 0 nm to 11 nm

and jc rises overall.

At ds ¼ 13 nm and above the enhancement in jc with

increasing ds persists, however, the 0–p transition disap-

peared or cannot be resolved unambiguously. In addition, the

junction characteristics became sensitive to the history of

magnetic treatment. For ds � 11 nm, the demagnetization

procedure reliably led to a Fraunhofer pattern, a maximum

critical current amplitude and, most likely, to a well defined

magnetic state. Although junctions with thicker ds could also

show a Fraunhofer pattern, the maximum critical current am-

plitude was very sensitive to the magnetic history of the

junction.

For ds¼ 30 nm and 60 nm, the critical current density

was practically independent of dF. Obviously, the AlOx tun-

nel barrier limits the critical current of those junctions to

approximately 7 kA/cm2. For junctions with ds¼ 60 nm, the

V(I) curve and Ic(H) resembled pure SIS characteristics (see

Fig. 2(c)) for all dF under investigation.

FIG. 1. Ni60Cu40 deposition rate r vs. radial distance from the target center

x. F-wedge JJs were fabricated in a region (j- - - -j), which exhibits a quasi-

linear rate gradient. Inset: XRR in h–2h alignment, corresponding to bold

dots in main graph.

FIG. 2. Current–voltage characteristics V(I) and magnetic field dependence

Ic(H) for different layer thicknesses ds and dF (junction area 10� 10 lm2).

Labels (a)–(d) correspond to data points in Fig. 3.
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The jc(dF) dependencies for ds� 11 nm are in good qual-

itative agreement with the theoretical predictions.

Apparently, the thin s-layer in proximity to the F-layer

behaves like a normal metal (n) and shifts the 0–p transition

towards larger dF, while jc is enhanced.22 Furthermore, the

Nb interlayer reduces the suppression of the critical current

density caused by the ferromagnetic layer until for

ds� 30 nm the critical current density reaches the value of

pure SIS junctions with the same tunnel barrier. Calculations

also predict a dF induced 0–p transition up to large values of

ds, where equal critical current densities occur in 0 and p
junctions.20 However, in our experiments no evidence for

such a p-JJ with SIS like jc was found. In fact, the maximum

jc, clearly identified in a p junction, is a factor 100 smaller

than predicted.

In the following, we present results on s-wedge type

junctions, as shown in Fig. 4. For this investigation, the criti-

cal current density of pure SIS reference junctions was set to

1.2 kA/cm2 representing the upper limit for jc. We assume

that, despite the change of the maximum jc, the results of

F-wedge and s-wedge junctions can be compared qualita-

tively. Indeed, the jc(ds) curves in Fig. 4 consistently follow

a trend that can be expected from Fig. 3. For any ds between

4 nm and 14 nm, the value of jc decreases from dF¼ 3.1 nm

down to a minimum at 5.8 nm but rises again at dF¼ 6.3 nm.

With larger ds all jc(ds) converge towards the maximum

value which is defined by the SIS reference junction. The

transition between regions that are dF-dependent and regions

that are dF-independent occurs around ds¼ 15 nm over a

width of about Dds� 3 nm. Our experimental data shown in

Fig. 4 for various dF closely resembles the shape of several

theoretical IcRNðdFÞ curves that vary in the magnitude of the

ferromagnetic exchange energy instead.19

In conclusion, we systematically investigated Nb-based

SIsFS Josephson junctions by using a wedge deposition tech-

nique. The s-layer thickness ds had a significant influence on

the critical current density jc of the junctions without affect-

ing the normal resistance which is mainly defined by the

AlOx tunnel barrier. For a F-layer thickness dF< 9 nm, V (I)
characteristics and critical current densities similar to SIS

tunnel junctions could be realized. In addition, F-layer thick-

ness induced 0–p transitions were observed for ds � 11 nm.

This allowed to realize SIsFS p junctions with jc¼ 60 A/cm2,

i.e., a twofold increase compared to corresponding SIFS

junctions. However, jc in the p junctions is at least two

orders of magnitude lower than in a corresponding SIS junc-

tion and does not show tunnel junction V(I) characteristics.

Methodically, the wedge technology is a suitable approach

to optimize thickness dependent junction parameters with

respect to the specific field of use. SIsFS junctions might be

an interesting element for a number of applications, for

example, as lumped p shifter or memory in superconducting

logic circuits and in self biased solid state qubits.
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