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1 Summary 

Soil CO2 emissions are of important significance for the global carbon cycle and, thus, 

for climate change. Soils function as main source of atmospheric CO2 from terrestrial 

ecosystems. Even small changes in soil CO2 emissions can accelerate global warming. 

Reciprocally, climate change influences soil CO2 emissions. Against this background, 

it is highly essential to quantify potential soil CO2 emissions in order to be able to 

project future developments of global warming. 

In this context, the permafrost region of the Qinghai-Tibet Plateau is a key region for 

soil CO2 emissions. Permafrost soils are considered as a CO2 source with high 

potential. In consequence of thawing processes, large quantities of carbon stored in 

these soils become subject to microbial decomposition and are emitted as CO2. 

Because of its large area (1.050 × 106 km2) and high sensitivity to climate together with 

increasing permafrost degradation, the Qinghai-Tibet Plateau attains global 

significance. 

The spatially and temporally extremely varying soil CO2 emissions originating from 

different sources can be quantified by process-based models. These models generally 

incorporate various of the interacting, numerous controlling factors of soil CO2 

emissions. Limitations occur especially for large areas due to higher requirements with 

regard to input data and a general restricted knowledge of the key trigger mechanisms 

of soil CO2 emissions. Therefore, empirical models still represent the commonly used 

type of model, being highly advantageous especially for large and remote areas with a 

high data scarcity as e.g. the Qinghai-Tibetan Plateau. Due to the large area difficult 

to access, field measurements are very costly and time consuming. Thus, they are 

strongly limited on the Qinghai-Tibetan Plateau. Consequently, area-explicit data sets 

mainly exhibit a low spatial resolution, are not comprehensive or freely accessible. 

However, freely available global datasets of a high resolution (~1 km) enable an 

application of empirical models to predict soil CO2 emissions on the Qinghai-Tibet 

Plateau area-explicitly.  

This thesis provides an approach to quantify CO2 emissions from permafrost soils 

efficiently. Belowground biomass on the Qinghai-Tibet Plateau was calculated using 

empirical models since it represents a not yet area-explicitly quanitifed key input factor 

in empirical models for soil CO2 emissions on the Qinghai-Tibet Plateau. Based on a 
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comparison of different regression models for quantifying current soil CO2 emissions 

on the Qinghai-Tibet Plateau, the one closest representing field measurements 

throughout various vegetation zones was identified. Applying this model, which 

incorporates mean annual precipitation as input factor, future soil CO2 emissions were 

predicted. Consequently, scenarios of climate change for mean annual precipitation 

underlie the predictions of potential soil CO2 emissions for 2050 and 2070. To account 

for the high importance of permafrost in the study area, thawing-induced CO2 

emissions from those soils were calculated additionally using experimental data on 

carbon losses from permafrost soils that were taken from the literature. To quantify 

those CO2 emissions, area-explicit carbon stocks were calculated for the Qinghai-Tibet 

Plateau. 

This thesis highlights the quantitative dimension of CO2 from permafrost soils on the 

Qinghai-Tibet Plateau for global warming, with 0.15 Pg C year-1 fitting the order of 

magnitude of results of comparable studies. The thesis further demonstrates the 

impact of climate change especially on thawing-induced CO2 emissions from 

permafrost soils. Their order of magnitude, approximately 4% of the annual average 

atmospheric increase of CO2-C, justifies strategies for climate protection in particular.  

By comparing the modeled results to data from field measurements, this thesis further 

indicates that empirical models represent suitable tools to adequately model and 

predict belowground biomass and soil CO2 emissions. Using exclusively freely 

accessible data sets, this thesis further exemplifies a highly efficient quantification of 

complex phenomena on a regional scale at a high resolution. Data-scarce areas of 

global relevance potentially profit most. 
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2 Zusammenfassung 

CO2-Emissionen aus Böden stellen als wesentlicher Faktor im Kohlenstoffkreislauf 

eine besonders relevante Einflussgröße des Klimawandels dar. Böden bilden die 

Hauptquelle atmosphärischen CO2s hinsichtlich terrestrischer Ökosysteme. Kleinste 

Veränderungen der Boden-CO2-Emissionen können zu einer Verstärkung der globalen 

Erwärmung führen. Demgegenüber steht der Einfluss des Klimawandels auf den 

Ausstoß von CO2 aus Böden. Vor dem Hintergrund dieser Wechselwirkung ist es von 

großer Bedeutung potentielle CO2-Emissionen aus Böden zu quantifizieren, um 

zukünftige Entwicklungen abschätzen zu können.  

Hierbei stellt das Permafrostareal des Qinghai-Tibet Plateaus eine bedeutende 

Untersuchungsregion dar. Im Zusammenhang mit der globalen Erwärmung gelten 

Permafrostböden als besonders große potentielle CO2-Quelle. Der dort in 

außergewöhnlich hohen Mengen gespeicherte Kohlenstoff wird im Zuge von 

Auftauprozessen mikrobieller Zersetzung zugänglich und als CO2 emittiert. Seine 

enorme Fläche (1.050 × 106 km2) und ausgeprägte Klimasensibilität einhergehend mit 

zunehmender Permafrostdegradation verleihen dem Qinghai-Tibet Plateau globale 

Bedeutung.  

Die außerordentlich stark räumlich und zeitlich variienden Boden-CO2-Emissionen, die 

eine Vielzahl an wechselwirkenden Einflussfaktoren sowie unterschiedliche Quellen 

aufweisen, können durch prozessbasierte Modelle quantifiziert werden. Diese 

berücksichtigen grundsätzlich zahlreiche Einflussfaktoren. Ihre Anwendung ist vor 

allem für großflächige Gebiete eingeschränkt aufgrund von hierfür höheren 

Anforderungen an die Eingangsdaten. Empirische Modelle für Boden-CO2-

Emissionen, die sich auf wesentliche Einflussfaktoren konzentrieren, sind generell weit 

verbreitet und bieten insbesondere für ausgedehnte und entlegene Regionen, die wie 

z. B. das Qinghai-Tibet Plateau eine starke Datenknappheit aufweisen, große Vorteile. 

Aufgrund des schwer zugänglichen und ausgedehnten Gebietes sind Feldmessungen 

dort stark eingeschränkt. Infolgedessen ist die Erstellung von Datensätzen mit hohem 

Zeit- und Kostenaufwand verbunden. Des Weiteren sind diese meist räumlich schwach 

aufgelöst, räumlich unzusammenhängend oder nicht frei zugänglich. Diesen 

Datensätzen stehen frei zugängliche globale Datensätze mit hoher (~1 km) Auflösung 

gegenüber, die die Anwendung von empirischen Modellen zur Berechnung von 

flächendeckenden CO2-Emissionen des Qinghai-Tibet Plateaus erlauben.  
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Diese Arbeit zeigt eine effiziente Quantifizierung von CO2-Emissionen aus den 

Permafrostböden des Qinghai-Tibet Plateaus. Unter Anwendung von empirischen 

Modellen wurde die unterirdische Biomasse als ein bislang nicht flächendeckend 

quantifizierter wesentlicher Eingangsfaktor für empirische Modelle zu Boden-CO2-

Emissionen des Qinghai-Tibet Plateaus berechnet. Ein Modellvergleich zeigte, 

welches empirische Regressionsmodell am besten im Feld gemessene CO2-

Emissionen auf dem Qinghai-Tibet Plateau repräsentiert. Mit diesem 

Regressionsmodell, das auf dem mittleren Jahresniederschlag basiert, wurden 

aktuelle Boden-CO2-Emissionen des Qinghai-Tibet Plateau berechnet. Darüber hinaus 

wurden basierend auf Klimawandelszenarien der mittleren Jahresniederschläge für 

2050 und 2070 die potentiellen Boden-CO2-Emissionen dieser Jahre quantifiziert. 

Aufgrund der besonderen Bedeutung des Permafrosts und seinem Auftauen im 

Untersuchungsgebiet, wurden die entsprechenden CO2-Emissionen basierend auf 

experimentellen Daten zu Kohlenstoffverlusten aus Permafrostböden aus der Literatur 

zusätzlich ermittelt. Um diese durch das Auftauen des Permafrosts induzierten Boden-

CO2-Emissionen zu quantifizieren, wurden flächendeckend Kohlenstoffvorräte für das 

Qinghai-Tibet Plateau berechnet.  

Die vorliegende Arbeit zeigt das quantitative Ausmaß von CO2-Emissionen aus den 

Permafrostböden des Qinghai-Tibet Plateaus für die globale Erwärmung, das sich mit 

0.15 Pg C year-1 in der Größenordnung von Berechnungen vergleichbarer Studien 

bewegt. Die Arbeit weist darüber hinaus darauf hin, dass sich der Klimawandel 

insbesondere auf die CO2-Emissionen quantitativ auswirkt, die durch das Auftauen des 

Permafrostes induziert werden. Hierbei wird mit annähernd 4% des mittleren, 

jährlichen atmosphärischen CO2-C-Anstiegs eine Größenordnung erreicht, die 

Klimaschutzstrategien in besonderem Maße rechtfertigen.  

Empirische Modelle zeigen sich im Hinblick auf die Berechnung sowohl der 

unterirdischen Biomasse als auch der Boden-CO2-Emissionen als mit Feldmessungen 

vergleichbare, geeignete Methoden für flächendeckende Vorhersagen. Mit der 

Konzentration auf ausschließlich frei zugängliche Datensätze exemplifiziert die Arbeit 

eine hocheffiziente Quantifizierung komplexer Größen in feiner Auflösung auf der 

Regionalskala. Dies ist insbesondere für Gebiete mit grundsätzlich schwacher 

Datengrundlage und globaler Relevanz von großer Bedeutung 
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4 Introduction and State of the Art 

4.1 Soil CO2 Emissions as Integral to Global Carbon Cycling and Climate 

Change 

Soil CO2 emissions constitute a highly relevant component of climate change (Wang 

et al., 2008; Chen et al., 2010; Powlson et al., 2011; IPCC, 2013; Schuur et al., 2015). 

These greenhouse gas releases from soils account for approximately 25% of the 

carbon dioxide (CO2) exchange globally (Cui, 2014), representing one of the largest 

carbon (C) flows within the global C cycle (Schlesinger and Andrews, 2000). Within 

terrestrial ecosystems, soils emit most CO2, contributing approximately 

98 ±12 Petagramm (Pg) C year-1 to the global C budget (Schlesinger and Andrews, 

2000; Valentini et al., 2000; Bond-Lamberty and Thomson, 2010a). Soils further 

contain the largest amount of C in terrestrial ecosystems with more than 3,150 Pg C 

(Sabine et al., 2003), which is more than four times the atmospheric CO2-C pool (750 

Pg C) (Jia et al., 2006). Of the atmospheric CO2, ~10% passes through soil annually 

on a global scale (Bond-Lamberty and Thomson, 2010b). Therefore, a small increase 

in the amount of soil CO2 efflux, especially across wide-spread areas such as the 

Qinghai-Tibet Plateau, can considerably influence atmospheric CO2 concentrations, 

potentially exacerbating the greenhouse gas-driven climate change (Schlesinger and 

Andrews, 2000; Rodeghiero and Cescatti, 2005; Davidson and Janssens, 2006; Qiu, 

2008; Rodeghiero et al., 2013; Ding et al., 2016). An increase of 1% of global soil CO2 

emissions (amounting to 67.7 Pg C year-1) would be equivalent to annual CO2 

emissions from fossil fuels increasing by 14% (Schlesinger et al., 2000). This potential 

C-cycle feedbacks from soils to climate warming as global challenge of vital importance 

made this a focal research topic over the last two decades to be continued in future 

(Bahn et al., 2010; IPCC, 2013; Wu et al., 2014). The acceleration of global warming 

due to soil CO2 emissions especially from permafrost soils (PFS) is regarded as highly 

relevant to future climate change (Melillo et al., 2002; Wang et al., 2008; Schuur et al., 

2009). If it is to predict global warming successfully and in order to take adequate 

action, not only qualitative aspects are important to consider, a quantification of future 

soil CO2 emissions becomes inevitable (Fang and Moncrieff, 2001).  
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4.2 Characterization of Soil CO2 Emissions 

4.2.1 Differentiation of Soil CO2 Emissions by Sources 

Generally, soil CO2 emissions originate from two major sources: (i) soil respiration (SR) 

as biogenic source incorporating soil organic C and (ii) soil CO2 production by 

carbonatic reactions of soil inorganic C (Ramnarine et al., 2012). SR is often 

subdivided into two components: autotrophic respiration consisting of root and root-

associated (e.g., mycorrhizae) respiration, and heterotrophic respiration, constituted 

by microbial respiration in the course of soil organic matter decomposition (Joo et al., 

2012). In contrast, Kuzyankov (2006) distinghuishes five components of SR. However, 

definitions and terms used vary in general especially with regard to the understanding 

of autotrophic respiration including or excluding root-associated respiration (Six et al., 

2002; Kuzyankov, 2006). A significant difference between these components represent 

their turnover rates, ranging from a few minutes to thousands of years (Kuzyankov, 

2006). The variation of these components with environmental changes such as e.g. 

climate change is not entirely congruent (Boone et al., 1998; Chen et al., 2010). To 

date, however, no fully convincing method to determine the corresponding indiviual 

contribution of the respective sources to total soil CO2 emissions has been developed 

yet (Kuzyankov, 2006).  

In general, both quantitatively and qualitatively, SR inheres distinctly higher 

significance for total soil CO2 emissions than abiotic soil CO2 emissions. The global 

pool of inorganic C comprises the minor part of the global C pool with only 700 to 

900 Pg (Adams and Post, 1999). This as well as the higher biogenic production of soil 

CO2 account for the fact that total soil CO2 emissions mainly originate from SR (Raich 

and Schlesinger, 1992; Lou and Zhou, 2006). Further, SR is of greater importance than 

abiotic soil CO2 emissions as SR is regarded as a main controlling factor for abiotic 

soil CO2 emissions (Rovira and Vallejo 2008; Ramnarine et al., 2012). Limitations in 

measurement techniques lead to the fact that measured SR generally comprises total 

soil CO2 emissions and the term ‘SR’ used in literature typically refers to total soil CO2 

emissions (Kuzyankov, 2006). 

4.2.2 Controlling Factors of Soil CO2 Emissions 

In general, there is quite a number of biotic and abiotic factors controlling soil CO2 

emissions. Abiotic soil CO2 emissions are mainly determined by SR, which is mostly 

regulated by soil temperature and soil water content (e.g. Raich and Tufekcioglu, 2000; 
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Singh and Gupta, 1977; Ramnarine et al., 2012). Water solubilizes organic matter, 

supports its availability, controls O2 diffusion for the microbial activity and further 

directly influences physiological processes of soil biota (Harris, 1981; Linn and Doran 

1984; Koizumi et al., 1999). In general, soil CO2 emissions are lower at dry conditions 

(Liu et al., 2002). However, a soil water content usually above field capacity, results in 

anaerobic conditions reducing microbial activity and therefore soil CO2 emissions. 

Near field capacity, soil CO2 emissions are generally highest (Lou and Zhou, 2006). 

Temperature, in contrast, directly impacts metabolic activities (Koizumi et al., 1999). 

Soil CO2 emissions generally increase with increasing temperature (Raich and 

Schlesinger 1992; Raich and Potter 1995; Kirschbaum 1995). They are highest at a 

temperature of 45 to 50 °C, however, their exact temperature sensitivity depend on 

their source (Atkin et al., 2000; Lou and Zhou, 2006). Soil moisture also influences the 

response of soil CO2 emissions to temperature variation (Wisemann and Seiler, 2004). 

Other factors affecting soil CO2 emissions include characteristics of vegetation (Raich 

and Tufekcioglu, 2000), especially ecosystem type (Saiz et al., 2006), net primary 

productivity (Raich and Potter, 1995), rates of plant photosynthesis (Högberg et al., 

2001), litterfall supply (Davidson and Janssens, 2006), relative allocation of net primary 

production above- and belowground (Boone et al., 1998), root biomass and density 

(e.g., Ben-Asher et al., 1994; Geng et al. 2012), root nitrogen content (Ryan et al., 

1996), population characteristics of the flora and fauna above- and belowground 

(Raich and Schlesinger 1992), microbial biomass (Ryan et al., 1996), grazing (Cao et 

al., 2004), and land-use regimes (Ewel et al., 1987). Soil characteristics, pronouncedly 

substrate quality (Raich and Schlesinger, 1992), soil organic matter quality and 

quantity (Taylor et al., 1989), soil physical and chemical features (e.g., Boudot et al., 

1986) such as soil acidity (Raich and Schlesinger 1992), soil texture (Raich and 

Schlesinger 1992), decomposition dynamics (Jackson et al., 1998), quality and amount 

of organic C (Raich and Schlesinger, 1992), availability of soil nutrients (Raich and 

Tufekcioglu, 2000), and soil type (Koizumi et al., 1999) have further shown to exert 

influence on soil CO2 emissions. Regarding soil types, sandy soil generally exhibits 

faster decompositon due to a higher pore space (Puttaso et al., 2011). In contrast, in 

clay and loam soils mineralization rates are retarded due to more frequent anaerobic 

conditions and both reposition and sequestration of soil organic matter in clay minerals 

and sesquioxides (Blume et al., 2010; Puttaso et al., 2011). Precipitation also controls 

soil CO2 emissions (Rey et al., 2002) and is often considered being an important 
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predictor for soil CO2 emissions on a regional scale (Lou and Zhou, 2006). Topographic 

characteristics (Fang et al., 1998) such as exposition (Kang et al., 2003) and the 

location on a slope (Hanson et al., 1993) regulate soil CO2 emissions as well as altitude 

does (Nakane, 1975). 

The dominance of an influencing factor differs among ecosystem types. For example, 

tundra is less influenced by its vegetation type than by climatic factors (Grogan and 

Chapin, 1999). Soil moisture is the prevalent influencing factor for deserts (Lou and 

Zhou, 2006). In general, warmer and more humid regions show higher rates of soil 

CO2 emissions (Lou and Zhou, 2006). 

4.2.3 Variability of Soil CO2 Emissions 

Variability of soil CO2 emissions occurs in temporal and spatial dimensions (Davidson 

et al., 2006; Bond-Lamberty and Thomson, 2010b). For both dimensions, different 

scales evoke a dominance of different controlling factors (Lou and Zhou, 2006).  

As to temporal scales, on a diurnal scale, soil temperature is prevalent except for 

forests due to their shading (Davidson et al., 2000) and arid soils with a higher relative 

humidity at night (Medina and Zelwer, 1972). Weekly variation of soil CO2 emissions 

can be initiated by changing synoptic weather events (Subke et al., 2003). Seasonal 

patterns generally follow the respective limiting factor, which is temperature or 

moisture, depending on the climate and ecosystem type (Lou and Zhou, 2006). For 

example, in arid and semiarid regions, dynamics of soil moisture determine the amount 

of soil CO2 emissions (Davidson et al., 2000). Interannual differences in soil CO2 

emissions are mainly related to climatic variables (Epron, 2004). Decadal and 

centennial variation is basically related to succesional sequences but may be 

overridden by general environmental changes (Luo and Zhou, 2006).   

As to spatial scales, high variability characterizes soil CO2 emissions as well (Bond-

Lamberty and Thomson, 2010b). Even at the stand level with comparatively 

homogenous soils, studies have shown that soil CO2 emssions rates from 150 samples 

within a plot size of 3.6 m2 vary for about six times within two days (Griffin et al., 1996). 

Landscapes as spatially diverse areas in general, exibit a high, spatial variability of soil 

CO2 emissions by nature, resulting from their heterogenity in climate, topography, soil, 

vegetation, landscape forms and anthropogenic disturbance (Lou and Zhou, 2006). 

High spatial variability is regarded inevitably inherent to soil CO2 emissions on a 

regional scale depending on the ecosystem (Lou and Zhou, 2006). According to Raich 
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and Schlesinger´s global analysis (1992), average annual rates of soil CO2 emissions 

are generally higher in forests than in grasslands. However, grasslands exhibit about 

20% higher soil CO2 emission rates than forests according to Raich and Tufekcioglu 

(2000). Tundra ecosystems release less soil CO2 than grasslands and forests (Grogan 

and Chapin 1999). In deserts, plant production and consequently soil CO2 emissions 

appear to be the lowest under the ecosystems, resulting from extreme environmental 

conditions (Raich and Schlesinger, 1992). Soil CO2 emissions of wetlands vary 

strongly from lowest to highest rates under the ecosystem types (Melling et al., 2005). 

4.3 Quantifying Soil CO2 Emissions 

As a multifactorial process with complex interactions and extreme variability across 

time and space (Section 4.2), soil CO2 emissions have always been a challenge to 

measure and no procedure or model has been commonly accepted to quantify soil 

CO2 emissions as a standard (Luo and Zhou, 2006).  

Widely used methods for field measurements of soil CO2 emissions are chamber 

systems and eddy-covariance systems (Morén and Lindroth, 2000). However, high 

efforts of time and costs required for classical soil data collection and mapping, 

especially for soil CO2 emissions in large and remote areas such as the Qinghai-Tibet 

Plateau, necessitate cost-efficient methods (Scull et al., 2003; Behrens and Scholten, 

2006; Behrens et al., 2010). With global change being one of the major challenges 

facing the world at present, quantifying soil CO2 emissions is no longer a purely 

academic exercise, further highlighting this demand for efficient methods (Lou and 

Zhou, 2006). Models therefore largely contribute to capturing and predicting the 

amount of soil CO2 emissions especially for large areas (Raich and Potter, 1995).  

4.3.1 Models of Soil CO2 Emissions 

Basically, there are two types of models used to predict soil CO2 emissions: (i) 

empirical models and (ii) process-based models.  

Process-based models refer to the trigger mechanisms of soil CO2 emissions (Luo and 

Zhou, 2006). They are capable of explaining spatial variation across regions and 

ecosystems (Lou and Zhou, 2006). Limitations occur according to the understanding 

of the basic mechanisms and especially for large areas due to higher requirements 

with regard to input data (Reichstein et al., 2003; Lou and Zhou, 2006).  
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An empirical model (e.g. by Raich and Schlesinger, 1992; Luo et al., 2005) usually 

focuses on a strongly reduced number of controlling factors of soil CO2 emissions 

lowering the requirements for input data (Luo and Zhou, 2006).  

4.3.2 Empirical Models 

Various empirical regression models for soil CO2 emissions have been developed 

based on field measured soil CO2 emissions as a function of different biotic and abiotic 

variables (Table 1, Appendix). Biotic variables incorporated in empirical models are 

belowground biomass (BGB), vegetation (number of types, area), soil organic matter, 

leaf area index, litter, net primary production, organic layer thickness, gross primary 

production (annual), NDVI, and photosynthesis. Abiotic variables in empirical models 

include climatic varibles such as temperature [air temperature (annual, monthly, 

weekly, daily), ambient air temperature, soil temperature (matudinal, daily), litter 

temperature, moss temperature, chamber temperature], temperature sensitivity of soil 

CO2 emission rate, maximum depth of respiration, precipitation (annual, monthly, daily, 

rainfall event), soil moisture, and depth of soil water table. Further abiotic variables 

used in empirical models are soil water matrix potential, coarse fraction in the soil, soil 

C (total, labile, refractory), pH value, soil CO2 concentration, time, age, geographical 

position, nitrogen, ambient CO2 concentration and thawed soil thickness. Because of 

their lower requirements concerning input data, they are highly advantageous for 

predictions in remote and large areas such as the Qinghai-Tibet Plateau. To date, the 

majority of studies on soil CO2 emissions relies on empirical models (e.g. Subke et al., 

2006). 

4.4 Influence of Climate Change on Soil CO2 Emissions 

Climate change is presumed to be the main reason for the increasing global soil CO2 

emissions to the atmosphere (Jones et al., 2003). However, the climate sensitivity of 

soil CO2 emissions is still a matter of debate (Wang et al., 2014a) and has been widely 

investigated in field studies and laboratory experiments and when modeling 

ecosystems (Davidson and Janssens, 2006; Tian et al., 2015). 

4.4.1 Effect of Temperature Increase 

Soil CO2 emissions generally respond strongly to temperature with emission rates 

typically increasing with higher temperatures (Raich and Schlesinger 1992; Raich and 

Potter 1995; Kirschbaum 1995). Hence, in natural ecosystems subjected to 

experimental warming, soil CO2 emissions rise in general (Rustad and Fernandez, 
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1998; Melillo et al., 2002). Given this sensitivity, most biogeochemical models such as 

the IMAGE model by Rotmans and den Elzen (1993), project a loss of soil C to the 

atmosphere as consequence of climate change (Schimel et al., 1994; McGuire et al., 

1995; Cox et al., 2000). However, the sensitivity of soil CO2 emissions to warming 

varies spatially (Luo and Zhou, 2006). Colder ecosystems are more responsive than 

warm regions (Kirschbaum, 1995). Especially in tundra and boreal ecosystems, soils 

have lost large amounts of C due to climate warming (Oechel et al., 1995; Goulden et 

al., 1998). Generally, the response to warming fades at higher temperatures (Luo and 

Zhou, 2006). The acclimatization, strongly controlled by clay and soil water content, is 

attributed to changes in the microbial community, alterations in enzymatic reactions 

(Luo et al., 2001), and faster decomposition that may result in a depleted labile pool of 

soil C (Kirschbaum, 2004).  

4.4.1.1 Response of Heterotrophic Soil CO2 Emissions 

In response to global warming, heterotrophic respiration generally increases due to the 

stimulation of microbes that decompose exudates and the C-input of roots 

(Kirschbaum, 1995; Wang et al., 2014a). The increase results from higher biomass 

and stronger plant growth as consequence of climate warming (Kirschbaum, 1995; 

Wang et al., 2014a). Particularly in PFS, heterotrophic soil CO2 emissions strongly 

increase due to global warming (Schuur et al., 2009). Permafrost (PF) is commonly 

defined as ground (soil or rock and included ice or organic material) at or below 0 °C 

for at least two consecutive years. As consequence of cold, water-logged soil 

conditions, organic matter tends to accumulate in PFS (Harden et al., 1992; Trumbore 

and Harden, 1997). Thus, warmer temperatures and thawing of PF with the associated 

lowering of the water table, expose large amounts of soil organic C to microbial 

breakdown that has been frozen before (Schuur et al., 2009). Although radiocarbon 

measurements indicate reduced turnover, almost the entire organic matter is part of 

the labile fractions that decompose fastest under global warming (Chapman and 

Thurlow, 1998; Lindroth et al., 1998). Consequently, large quantities of soil CO2 

emissions are released from these soils (Schuur et al., 2009). This is confirmed by the 

results of Oechel et al. (1995), indicating high amounts of soil organic matter lost in 

tundra soils in consequence of recent climate change in Alaska. Likewise, Goulden et 

al. (1998) revealed strong soil C losses in a boreal ecosystem in Manitoba (Canada) 

due to PF thawing in previous warmer years. As much as warming reduces soil 

moisture, however, microbial activity and thus heterotrophic soil CO2 emissions 
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decrease, weakening the positive effect of higher temperatures on heterotrophic soil 

CO2 emissions (Harte et al., 1995; Rustad and Fernandez, 1998). 

4.4.1.2 Response of Autotrophic Soil CO2 Emissions 

In general, autotrophic soil respiration mostly increases through warming, likely caused 

by the alteration of various processes (Shaver et al., 2000). Climate warming 

potentially increases BGB, which in turn increases autotrophic respiration 

(Kirschbaum, 1995; Wang et al., 2014a). Longer growing seasons (Norby et al., 2003), 

changes in plant phenology (Dunne et al., 2003), higher plant growth (Wan et al., 

2005), changes of species (Saleska et al., 2002), and raising mineralization rates and 

nitrogen availability in soils (Rustad et al., 2001; Mellilo et al., 2002) are further results 

of higher temperatures, resulting in higher soil CO2 emissions. Through warming 

reduced soil moisture, however, decreases the activity of roots and thus autotrophic 

soil CO2 emissions, counterbalancing the positive effect of higher temperatures on 

autotrophic soil CO2 emissions (Harte et al., 1995; Rustad and Fernandez, 1998). 

4.4.1.3 Feedback Effects of Climate Warming-Induced Soil CO2 Emissions  

Understanding the different responses of autotrophic and heterotrophic respiration to 

global warming in PFS is particularly important with regard to their potential impact on 

climate change (Hicks Pries et al., 2013). In general, with respect to the CO2-induced 

global warming, only CO2 derived from soil organic matter contributes to alterations of 

the CO2 concentration in the atmosphere (Kuzyankov, 2006). 

Autotrophic Respiration 

Especially higher C loss through augmented autotrophic respiration is expected to be 

neutralized in terms of atmospheric CO2 concentration through an elevated rate of 

photosynthesis (Schuur et al., 2015). This compensation mainly results from a higher 

plant uptake of C and its sequestration (Schuur et al., 2015). Higher temperatures, 

extended growing seasons and a higher concentration of atmospheric CO2 potentially 

intensify plant growth (Shaver et al., 2000). Uptaken C can be sequestered in larger 

above- and belowground biomass (Sistla et al., 2013). 

Heterotrophic Respiration 

In contrast, higher soil CO2 emissions resulting from thawing PF are, if at all, only partly 

offset by this negative feedback to global warming through enhanced soil CO2 

emissions (Schuur et al., 2015). As a result, high quantities of C may be released to 

the atmosphere (Dutta et al., 2006). Schlesinger and Andrews (2000) conclude that 
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under the influence of climatic change, soil C loss will be highest in boreal and tundra 

ecosystems, storing most labile organic matter and being exposed to the strongest 

predicted warming. Although the rate of CO2 emissions is highly uncertain, for 

predictions of the magnitude and temporal occurrence of the effect, it is a crucial 

question (Schuur et al., 2009). Further, the rate of PFS CO2 emissions is important for 

revealing its significance for climate change in the upcoming decades and beyond 

(Schuur et al., 2009). In fact, there is high confidence about PFS generating more CO2 

under warming (IPCC, 2013). Lately, PFS were estimated to contain more than 1,600 

Pg C (Schuur et al., 2008), which is twice the atmospheric CO2-C pool (Jia et al., 2006). 

Considering the remarkable C stock of PFS, their considerable climate change-

induced degradation (Schaefer et al., 2011) and their original function as C sinks (Hicks 

Pries et al., 2012), the quantification of future CO2 emissions from PFS gains high 

relevance for more comprehensive scenarios on the effect of climate change (Schuur 

et al., 2009). In fact, the thawing of PF with the decomposition of its C is regarded to 

bear the highest potential for a positive climate feedback under the influence of climate 

change from terrestrial ecosystems (Schuur et al., 2009).  

4.4.2 Effect of Changes in Precipitation Patterns 

Climate change does not only induce higher temperatures but also changes in 

precipitation patterns (IPCC, 2013). With precipitation as an important controlling 

factor, especially in xeric ecosystems (Lou and Zhou, 2006), soil CO2 emissions are 

affected by global change also through alterations in the characteristics of precipitation 

(i.e., amount, temporal variability, spatial patterns) (Brevik, 2012). Generally, less 

precipitation decreases soil CO2 emissions as reducing soil moisture resulting in lower 

microbial and root activity (e.g. Harper et al., 2005). Soil CO2 emissions further react 

differently to temperature changes depending on precipitation, which is traced back to 

interactions between soil moisture and temperature (Lou and Zhou, 2006). Higher 

precipitation resulted in lower temperature sensitivity and vice versa as revealed in a 

study in Germany by Dörr and Münnich (1987). Through complex interactions, 

precipitation further influences several controlling factors of soil CO2 emissions such 

as vegetation and grazing. As much as precipitation patterns change, also in 

combination to temperature, biomass productivity is affected (Fan et al., 2010). 

Consequently, as predicted, more frequent droughts reduce biomass productivity 

which increases grazing pressure and thus leads to altered soil CO2 emissions (Cao 

et al., 2004; Fan et al., 2010). Grazing further influences PF thawing as decreasing 
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vegetation cover reduces the insulating effect of vegetation, resulting in quicker PF 

thaw on the Qinghai-Tibet Plateau (Hu et al., 2009) and consequently leading to higher 

CO2 emissions induced by PF thaw.  

4.4.3 Effect of Elevated CO2 Concentrations 

Soil CO2 emissions generally increase with elevated atmospheric CO2 concentrations 

due to a higher rate of photosynthesis and stimulated plant growth (King et al., 2004). 

The increased C supply belowground results in higher heterotrophic respiration as 

decomposition by microbial activity raises (Higgins et al., 2002). Further, as plant 

transpiration decreases with elevated CO2, soil moisture increases, resulting in higher 

soil CO2 emissions (Davidson et al., 1990).  

4.5 Soil CO2 Emissions on the Qinghai-Tibet Plateau 

4.5.1 The Qinghai-Tibet Plateau as Key Region for Soil CO2 Emissions 

The Qinghai-Tibet Plateau is a key region for studies on soil CO2 emissions under the 

influence of climate change (Geng et al., 2012).  Due to its important role in the global 

C cycle generally, ecological sensitivity and large PF area (Cheng, 2005; Fan et al., 

2010; Geng et al., 2012), it may release large quantities of soil CO2 to the atmosphere 

under the influence of climate change, thus potentially amplifying global warming (Qiu, 

2008; Ding et al., 2016).  

4.5.1.1 Relevance to the Global Carbon Cycle  

The Qinghai-Tibet Plateau influences the global C cycle as remarkably contributing to 

the global C budget (Geng et al., 2012). In its grasslands soils, 33.5 Pg organic C is 

stored, of which 37% (12.3 Pg C) is contained in the PFS (Luo et al., 2000; Genxu et 

al., 2002). The PF C pool thus accounts for nearly 1% of the global pool according to 

Ni (2002). With large amounts of soil CO2 emissions released from these soils under 

climate change with no corresponding compensation regarding the atmospheric CO2 

concentration, the Qinghai-Tibet Plateau inheres the potential to accerlerate global 

warming (Qiu, 2008; Schuur et al., 2009; Ding et al., 2016).  

4.5.1.2 Climate Sensitivity  

The Qinghai-Tibet Plateau, where human impact is relatively low in general, appears 

to be highly ecologically sensitive to changes in its environments (Liu and Chen, 2000; 

Yang et al., 2009; Fan et al., 2010). Therefore, climate warming influences the Qinghai-

Tibet Plateau in particular (Zhang et al., 2010). This is mainly due to its extreme 

elevation, qualifiying it to one of the regions most sensitive to global warming (Luo et 



11 
 

al., 2002; Zhong et al., 2010). In the future, the annual temperature of the plateau is 

expected to increase far above the global average with about 0.1 °C per decade as 

opposed to 0.3 °C per decade (Liu and Chen, 2000; Christensen et al., 2007; Qiu, 

2008; Wang et al., 2008). The cryosphere, commonly considered the most sensitive 

indicator to climate change, undergoes rapid changes on the Qinghai-Tibet Plateau 

(Kang et al., 2010). Its PF increasingly degrades (Böhner and Lehmkuhl, 2005; Qiu, 

2008; Baumann et al., 2009; IPCC, 2013). This process has been advancing even 

more than in other high-latitude, low-altitude PF regions over the last few decades 

(Yang et al., 2004), revealing the high climate sensitivity of the Qinghai-Tibet Plateau.  

4.5.1.3 Prominence of Thawing Permafrost 

The Qinghai-Tibet Plateau exhibits the largest high-altitude and low-latitude PF zone 

on earth with more than half of its total area influenced by PF (Cheng et al., 2005). 

Given the climate sensitivity of the plateau, the further strong degradation of Tibetan 

PF (Böhner and Lehmkuhl, 2005) will highly influence its soils mainly by changes in 

their temperature and moisture patterns (Zhang et al., 2003; Doerfer et al., 2013). 

Thus, global warming affects PF stability and distribution as well as vegetation and soil 

characteristics that intensively interact with soil CO2 emissions through complex 

processes (Chapin et al., 2005). Large quantities of soil CO2 emissions are expected 

to be released from thawed PF (Schuur et al., 2009; see Section 4.4.1.1). The 

degradation of PF on the Qinghai-Tibet Plateau on a large scale is generally expected 

to potentially exacerbate climate warming by its CO2 emissions (Qiu, 2008; Ding et al., 

2016). 

4.5.2 Key Controlling Factors of Soil CO2 Emissions  

For the Qinghai-Tibet Plateau, almost two-thirds of which is covered by grassland 

(Wang et al., 2006; Yang et al., 2008), BGB has been shown to most strongly influence 

soil CO2 emissions in grassland ecosystems at a regional scale due to the high root 

biomass density (Geng et al., 2012). In general, temperature and precipitation are 

widely considered as most effectively representing soil CO2 emission variation in time 

and space (Bond-Lamberty and Thomson, 2010a; Hashimoto et al., 2015). For arid 

and semiarid areas that are characteristic for the PF-affected part of the plateau 

(Chapter 5), precipitation represents the most important predictor (Lou and Zhou, 

2006). For regional scales, precipitation also serves as an important predictor (Lou and 

Zhou, 2006). BGB, the most important controlling factor for soil CO2 emissions, is 

particularly related to elevation on the Qinghai-Tibet Plateau (Ohtsuka et al., 2008). 
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Precipitation and temperature are also assumed to predict the amount of root biomass 

for the Qinghai-Tibet Plateau well (Luo et al., 2005). Generally, however, little 

knowledge exists about biotic and abiotic factors that influence BGB (Vogt et al., 1996; 

Cairns et al., 1997), and there are no process-based models yet for its prediction. A 

very common approach to calculate BGB is using root:shoot ratios (e.g. Schroeder and 

Winjum, 1995, Eamus et al., 2002, Mokany et al., 2006). However, Cairns et al. (1997) 

concluded from their analysis of forests worldwide that the amount of root biomass is 

better estimated directly without the application of root:shoot ratios. Empirical models 

are, however, also based on aboveground biomass but further on diameter at breast 

height, inside and outside bark basal diameter, basal diameter in combination with the 

total height, aboveground biomass combined with the annual leaf growth rate, annual 

stem growth rate and annual root growth rate. Other regression models involve climatic 

variables as input parameter such as mean annual temperature (MAT), mean annual 

precipitation (MAP), January mean temperature and July mean temperature. Elevation 

as abiotic input factor is also used as base of a regression model (Table 2, Appendix).  

4.5.3 Data Relevant to Quantifying Soil CO2 Emissions  

Data on soil CO2 emissions collected in field measurements generally require high 

efforts of time and cost (Lou and Zhou, 2006). An area-explicit coverage of data 

sampling is unfeasible in view of the Qinghai-Tibet Plateau´s area (Sections 6.1.1 and 

6.1.6). Even the identification and sampling of representative sites remain an 

expensive and tedious endeavor still tainted with concomitant uncertainties due to 

deficient regionalization and/or upscaling techniques. The input parameters of models 

require highly resoluted, area covering data sets, why an indirect quantification of soil 

CO2 emissions can likewise result in high cost efforts. Generally, data for that region 

at a required spatial resolution are scarce due to the inaccessible and complex terrain 

(Liu and Chen, 2000; Wang et al., 2006). Various data sets lack of a fine (about 1 km2) 

resolution that captures spatial environmental variability appropriately (e.g. ERA-

Interim (Dee et al., 2014); APHRODITE (Yatagai et al., 2012)). Others are not spatially 

comprehensive, existent, available or highly cost-intensive (Sanchez et al., 2009; 

Hertel et al., 2010). On the other hand, several freely available global databases exist 

for selected environmental variables. They are often highly (about 1 km2) resoluted 

and developed through the harmonization of different data sets with elaborated 

methods (e.g. WISE30sec data set (Batjes, 2015)). These data sets enable 

calculations on a regional scale as e.g. for the Qinghai-Tibet Plateau and allow for 
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reasonable interpretations of results from empirical models. Above all, as saving time 

and costs, they contribute to a high efficiency when answering research questions. 

This is particularly important if those research topics are connected to issues of 

worldwide, societal concern requiring action in a timely manner as e.g. climate change 

(IPCC, 2013).  For area-explicit calculations on a regional scale as for the Qinghai-

Tibet Plateau, they are, therefore, highly advantageous.      
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5 Objectives 

This thesis aims at a quantification of soil CO2 emissions under the influence of climate 

change on the Qinghai-Tibet Plateau. 

Since quantifying soil CO2 emissions, particularly on the Qinghai-Tibet Plateau, 

requires high efforts of time and costs as opposed to results needed in a timely manner 

(Section 4.5.3), this thesis further attempts to demonstrate an efficient approach to 

reasonably quantify soil CO2 emissions on a regional scale. Hence, exclusively freely 

available data are used.  

BGB represents a key influencing factor of soil CO2 emissions on the Qinghai-Tibet 

Plateau (Section 4.5.2). To date however, no area-covering data set yet exists (Section 

4.5.3). Therefore, in a first step, BGB is area-explicitly estimated by investigating the 

optimal empirical model for the quantification of this important C source (Manuscript 1).  

To apply the most adequate regression model when projecting future scenarios of 

general soil CO2 emissions, this thesis further aims at the identification of the ‘best-fit’ 

model to quantify soil CO2 emissions on the Qinghai-Tibet Plateau under current 

climatic conditions (Manuscript 2).   

The main objective is to assess potential soil CO2 emissions from the Qinghai-Tibet 

Plateau. In order to consider the influence of future climate change, two scenarios of 

global warming are applied to project future soil CO2 emissions. These scenarios are 

calculated for 2050 and 2070 as commonly used scenarios (e.g. in the IPCC, 2013) 

and for comparability to other studies that focus on the current century (Chapter 7). 

Moreover, soil CO2 emissions potentially providing a positive climate feedback, are 

assumed to be felt over decades to centuries (Schuur et al., 2015). Since the large 

area of PFS inheres the highest potential for soil CO2 emissions to increase 

atmospheric CO2 concentrations without a corresponding compensation (Section 

4.4.1.3), the study area comprises PF areas, focusing on continuous and extensive 

discontinuous PF as areas spatially dominated by PF.  

The prominence of PF on the Qinghai-Tibet Plateau and its high importance for soil 

CO2 emissions influenced by global warming (Sections 4.4.1.1 and 4.5.1.3), 

necessiate an additional calculation of soil CO2 emissions induced by PF thaw owing 

to a lack of region-specific models. Hence, soil CO2 emissions specifically induced by 

thawing PF and general soil CO2 emissions are quantified separately (Manuscript 3). 
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Prerequisite of a calculation of thawing-induced soil CO2 emissions is the estimation 

of C stocks on the Qinghai-Tibet Plateau (Manuscript 3). 

 

In quantifying soil CO2 emissions for the Qinghai-Tibet Plateau under the influence of 

climate change, this thesis addresses the following objectives: 

 

(i) Identification of the most suitable, respectively, ‘best-fit’ regression model to 

quantify BGB as region-specific, important input factor to calculate soil CO2 

emissions (Manuscript 1), 

(ii) Identification of the most suitable, respectively, ‘best-fit’ regression model to 

quantify general soil CO2 emissions (Manuscript 2), 

(iii) Estimation of soil organic C stocks to quantify thawing-induced soil CO2 

emissions (Manuscript 3), 

(iv) Quantification of potential soil CO2 emissions induced by the thawing of PF 

due to global warming for 2050 and 2070 (Manuscript 3), and 

(v) Quantification of potential general and total soil CO2 emissions under 

scenarios of climate change in 2050 and 2070 (Manuscript 3). 

(vi) Finally, the present thesis aims at providing information on an areawide 

future soil C loss under climate change scenarios. Moreover, the results are 

supposed to further support in identifying potential sources and sinks of C 

and in an enhanced understanding of the role of the PF C on the Qinghai-

Tibet Plateau in the global C cycle in view of and under the influence of 

climate change. 
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6 Material and Methods 

6.1 Study area 

6.1.1 Geographical Position 

The study area is on the Qinghai-Tibet Plateau, located in southwestern China. The 

plateau extends from 26°00′12" N to 39°46′50" N and from 73°18′52" E to 104°46′59" E 

with a maximum E-W distance of approximately 2,945 km and a maximum S-N 

distance of approximately 1,532 km. The altitude of the highest and youngest plateau 

worldwide amounts to 4,380 m on average. Its area extends to about 2.6 ×106 km2 

(Zhang et al., 2002).  

6.1.2 Geomorphology and its Effects on Climate 

The Qinghai-Tibetan Plateau strongly influences the Asian Monsoon, representing an 

origin of a temperature anomaly for the mid-troposphere (Smith and Shi, 1995). 

Mountain ranges from east to west prevent moist air from the tropical Indian monsoonal 

system to reach the plateau (Domrös and Peng, 1988). In the north, the Kunlun Shan 

borders the plateau, continuing in the east as Bayan Har Shan from northwest to 

southeast (Hövermann and Lehmkuhl, 1994). The eastern part of the plateau is 

geomorphologically characterized by pronounced valleys of e.g. the Yangtze River 

(Weischet and Endlicher, 2000). Dividing the plateau in cold, arid northwestern 

highlands and a warm, moist southeast, the Transhimalaja is of climatic importance. 

Warm, moist airmasses from the subtropical East Asian monsoonal systems reach the 

plateau through the lowlands in the east (Weischet and Endlicher, 2000).  

6.1.3 Climate 

The unique geographical position of the Qinghai-Tibet Plateau prevails an azonal, 

plateau climate  (Zhong et al., 2010; Zhuang et al., 2010) with strong solar radiation, 

low air temperature, large daily temperature variations and low differences between 

average annual temperatures (Zhong et al., 2010). Generally, a decrease both in 

temperature and in precipitation from the south-eastern to the north-western part of the 

plateau is apparent (Immerzeel et al., 2005), indicating the decreasing intensity of the 

East Asian monsoon (Harris, 2006). For the plateau, the average temperature of July, 

as warmest month, varies from 7 °C to 15 °C and from -1 °C to  -7 °C in January, as 

coldest month. Average annual temperature is 1.6 °C (Yang et al., 2009). Precipitation 

amounts to about 413.6 mm a year (Yang et al., 2009), with more than 60 to 90% falling 
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in the wet and humid summer months (June to September) and 10% at maximum in 

the cool, arid winters (November to February) (Xu et al., 2008).  

6.1.4 Vegetation 

The topographic setting as well as atmospheric conditions determine the sequence of 

alpine meadows, steppes and deserts from southeast to northwest (Zheng, 1996; Pei 

et al., 2009). Alpine steppes and meadows dominate the undisturbed vegetation, with 

Stipa species respectively Kobresia meadows as major vegetation types. Kobresia 

meadows are the most wide-spread vegetation with mostly Kobresia pygmea and K. 

tibetica as perennial tussock grasses (Chang, 1981; Zhou et al., 2005). Most prevalent 

are Stipa purpurea and Stipa subsessiliflora as short and dense tussock grasses in the 

alpine steppe (Chang, 1981). Wetlands are dominated by Kobresia littledalei, Carex 

lanceolata and Carex muliensis (Chang, 1981). According to the long freezing periods, 

relatively short growing seasons characterize the plateau`s climate (Yu et al., 2010). 

Its vegetation is regarded as relatively natural (Schroeder and Winjum, 1995).  

6.1.5 Soils 

Complex pedogenetic processes on the Qinghai-Tibet Plateau, mainly solifluction, soil 

erosion and sedimentation of aeolian material, typically result in young and highly 

diverse soils with distinct degradation characteristics, exhibiting a strong influence by 

PF regimes (Baumann et al., 2014). Fluvial erosion and alluviums as degradation 

features particularly occur during the summer in the east due to high precipitation 

(Baumann et al., 2014). Soils affected by the dry winter monsoon with scarce 

vegetation are characterized by aeolian erosion and deposition (Xue et al., 2009; 

Dietze et al., 2012) and hence buried, relict, mainly humic horizons (Lehmkuhl, 1997). 

Leptosols, Leptic Cambisols, Haplic Regosols and Mollic Cryosols as poorly developed 

soils dominate steeply sloping areas. Gleysols and Gleyic Fluvisols mostly occur close 

to open waterbodies and in geomorphological depressions (Kaiser et al., 2007). In 

continuous PF, Gelic Gleysols, Gelic Cambisols, Cambic Cryosols and 

Permagelic/Gelic Histosols prevail. In discontinuous and sporadic PF areas, 

Cambisols are present (IUSS Working Group WRB, 2006). Felty topsoils typically 

dominate cold alpine meadows (Kaiser et al., 2008). 
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6.1.6 Permafrost 

On this plateau, earth´s largest high-altitude and low-latitude PF zone is located 

(Cheng, 2005). Covering about 1.050 × 106 km2, the PF zone is mainly part of the 

southwestern and central plateau (Figure 1). 

 

Fig. 1. Spatial extension of continuous and extensive discontinuous permafrost on the Qinghai-Tibet 
Plateau. The spatial resolution of the grids is 1,000 m x 1,000 m. 

 

Overall, more than half of its area is influenced by PF (Cheng, 2005). Continuous PF 

mostly occurs in the interior and western Qinghai-Tibet Plateau, extending to the south 

of the Kunlun Mountains. Boundaries of the PF zone in the south are the Tanggula 

Mountains, merely dividing the plateau in half, and the 94 ° longitude in the east 

(Hövermann and Lehmkuhl, 1994; Cheng et al., 2013). In this central- western part, 

the PF is ice-poor (Jin et al., 2000), reflecting the fading impact of both monsoons. 

Continuous PF southernly occurs exclusively in mountainous regions higher than 

4,600 – 4,700 m a.s.l. (Hövermann and Lehmkuhl, 1994). Thermokarst forming with 

water accumulation results from the degradation of PF (Niu et al., 2011). Discontinuous 

PF can be found in the northern, southern, and eastern regions on the Qinghai-Tibet 
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Plateau with more pronounced terrain. Here, the ground seasonally freezes and shows 

sporadic PF with taliks (Figure 2) (Jin et al., 2000; Cheng et al., 2013). 

 

Fig. 2. Cross-sectional area of transition between continuous and discontinuous permafrost (Pidwirny, 
2006).  

 

Along the Qinghai-Tibet Highway, the PF zones stretches with a length of 550 km from 

north to south (Wang et al., 2006). On average, the active layer thickness amounts 

from 1 to 2 m in the zone of continuous PF, generally increasing along a north to south 

gradient and with elevation (Cheng and Wu, 2007).  Daily freeze-thaw cycles frequently 

occur due to high temperature differences between days and nights from 25 to 40 °C 

(Ping et al., 2004).  

6.2 Geodatabase and Processing 

In this thesis, different freely available data sets were used, which were selected in 

terms of a fine spatial resolution (about 1,000 m x 1,000 m), area coverage, importance 

of the variable for the phenomenon to be modeled, and the existence of a 

corresponding model. All data sets were projected into the Universal Transverse 

Mercator coordinate system WGS 1984, Zone 45 N and exhibit a resolution of 

1,000 m x 1,000 m.  

Considering Manuscript 1 [objective (i)], the required data sets for recent MAP, MAT, 

July mean temperature, January mean temperature were obtained from the WorldClim 

data sets (Hijmans et al., 2005). They were compiled from a considerable number of 

various sources, such as the Global Historical Climate Network, World Meteorological 

Organization and the Food and Agricultural Organization, representing the current 

climate conditions from circa 1950 to 2000. Data from more than 71,000 climate 

stations worldwide recording for precipitation, and more than 45,000 climate stations 
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recording for temperature are integrated, with the Qinghai-Tibet Plateau as area with 

less densely distributed measurement points. Latitude, longitude and altitude served 

as independent variables (for more detailed information see Hijmans et al., 2005).  

Elevation data were used from the Shuttle Radar Topography Mission, obtained from 

the WorldClim data sets (Hijmans et al., 2005).  

To estimate recent soil CO2 emissions [objective (ii)], the data sets for MAP and MAT 

from the WorldClim data sets were used. According to the results of Manuscript 1, the 

BGB data set based on MAT was used as input parameter.  

To estimate organic C stocks [objective (iii)], the data sets for organic C content, gravel 

content and bulk density were obtained from the WISE30sec data set (Batjes, 2015) 

with a spatial resolution of 1,000 m x 1,000 m up to a soil depth of 2 m. This was 

compiled from different sources, such as the Harmonized World Soil Database, version 

1.21 with marginal corrections, a climate zones map (Köppen-Geiger) used as co-

variate and soil property estimations based on the ISRIC-WISE soil profile database. 

Soil properties were estimated based on statistical analyses of about 21,000 soil 

profiles. This was undertaken using an elaborate system of taxonomy-based transfer 

rules combined with expert-rules, which assess the consistency of the predictions 

within the pedons. WISE30sec is generally regarded as being appropriate for 

exploratory assessments at a resolution of 1,000 m x 1,000 m (for more detailed 

information see Batjes, 2015).   

Considering objective (iv), the data sets for MAP in 2050 and 2070 under different 

scenarios of climate change originate from the WorldClim data sets as well. For 2050 

and 2070, representing the average of modeled climate conditions from 2041 – 2060 

and 2061 – 2080, respectively, there are four climate scenarios. The projections from 

‘Community Climate System Model Version 4’ as one of the most common and current 

global climate models that is employed in the Fifth Assessment IPCC report as well, 

are used. The model, developed in international collaboration, is a coupled model 

combining four separate models that simulate the sea-ice, the atmosphere, oceans 

and land surface of the earth, and a fifth component that allows for an exchange of 

fluxes between these models. It is regarded to provide realistic simulations of the 

earth´s climate system at a resolution of 1,000 m x 1,000 m with reasonable fidelity (for 

more details see Gent et al., 2011). The four scenarios are projected by the global 

climate model for four different representative concentration pathways (RCPs) with a 
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spatial resolution of 1,000 m x 1,000 m (van Vuuren et al., 2011). The RCPs each 

describe different climate scenarios that are regarded being possible depending on 

future amounts of greenhouse gas emissions, land use change and air pollutants, 

covering a wide range of scenarios presented in the existing literature. They 

incorporate various different technological, political, social and economic futures 

influencing climate change. Each RCP has been developed under the usage of a 

different model. For RCP2.6, greenhouse gas emissions are assumed to be very low, 

for RCP4.5 medium-low, for RCP6.0 medium, and RCP8.5 is seen as high emission 

scenario. Air pollution is assumed to be medium-low for RCP2.6, medium for RCP4.5 

and RCP6.0, and medium-high for RCP8.5. Data were harmonized, downscaled or 

converted using e. g. a carbon-cycle climate model or atmospheric chemistry model 

for emission data to be transformed into concentration data (for more details see van 

Vuuren et al., 2011 and for basic statistics on current MAP and MAP in 2050 and 2070 

under the different scenarios see Table 3). 

Table 3. Statistics on input data sets on MAP (mm) based on WorldClim data sets (Hijmans et   
al., 2005). 

Year 
Scenario 

2015  
 

2050 
RCP2.6 

2050 
RCP4.5 

2050 
RCP6.0 

2050 
RCP8.5 

2070 
RCP2.6 

2070 
RCP4.5 

2070 
RCP6.0 

2070 
RCP8.5 

    [mm]     

Mean 222.05 232.49 235.13 233.69 241.79 231.78 234.98 235.36 243.44 

Min 32.36 35.36 34.58 35.08 35.44 34.40 33.36 35.40 36.40 

Max 1237.18 1291.94 1287.11 1261.01 1243.34 1295.14 
 

1338.14 1247.18 1303.71 

Range 1204.82 1256.58 1252.53 1225.93 1207.9 1260.74 234.98 1211.78 1267.31 

SD 

 
137.67 

 
143.70 

 
145.73 

 
144.207 

 
148.66 

 
143.81 

 
147.32 

 
145.33 

 
151.12 

 

Data for determining the extension of the PF zone of the Qinghai-Tibet Plateau were 

obtained from the Global PF Zonation Index Map (Gruber, 2012). The model underlying 

this map is based on established relationships between air temperature and occurring 

PF, which have been transformed into this model. Its parametrization has been 

undertaken based on published approximations. Air temperature and elevation 

represent the input parameters for the model. The input data to derive the modeled 

spatial PF extension are based on various climatic and physical-geographic data sets 

such as NCEP30 and SRTM30. PF extension classes used in the data are: continuous 

PF (90–100%), extensive discontinuous PF (50–90%), sporadic discontinuous PF (10–

50%) and isolated patches (smaller than 10%) (for more details see Gruber, 2012).  
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6.3 Belowground Biomass Calculation and Model Evaluation 

BGB was calculated using six empirical regression models developed by Luo et al. 

(2005) (Table 4). In the BGB samples, living and dead roots are included. 

Table 4. Regression models to approximate belowground biomass by Luo et al. (2005) from Tibet. 

Regression 
based on 

Equation Parameters 

January mean 
temperature x 

 𝑦 = 200/(1 + exp(−0.1434𝑥 + 1.0789)) y = root biomass density (Mg/ha),  
  x = January mean temperature (°C) 

July mean 
temperature x 

𝑦 = 200/(1 + exp(−0.2245𝑥 + 4.6125)) y = root biomass density (Mg/ha),     
x = July mean temperature (°C) 

Annual mean 
temperature x 

𝑦 = 200/(1 + exp(−0.1750𝑥 + 2.5543)) y = root biomass density (Mg/ha),     
x = annual mean temperature (°C) 

Annual 
precipitation x 

𝑦 = 200/(1 + exp(−2.14𝐸 − 06𝑥2 −  0.00575𝑥 + 4.78)) y = root biomass density (Mg/ha),     
x = annual precipitation (mm) 

Annual mean 
temperature 
and annual 
precipitation x 

𝑦 = 200/(1 + exp(−0.0001594𝑥 + 2.5869)) y = root biomass density (Mg/ha),     
x = annual mean temperature x 
annual precipitation (°C x mm) 

Altitude x 𝑦 = −0.0209𝑥 + 104.89 y = root biomass density (Mg/ha),     
x = altitude (m) 

 

The ability of the models to predict BGB was investigated by a validation of the results 

with field measured results from other studies. The samples were taken by Luo et al. 

(2005), Yan et al. (2005), Wang et al. (2008), Yang et al. (2009), Li et al. (2011), Wu 

et al. (2011) and Geng et al. (2012) and are located in nine different vegetation types: 

Alpine steppe, alpine shrubs and meadows, desert grassland, dry valley forests, 

subtropical forests, alpine mixed forests, alpine spruce forests, timberline zone, and 

alpine desert covering altitudes from 1,900 m to 5,105 m a.s.l. (Figure 3). Not displayed 

in Figure 3 are the sites of Yan et al. (2005), who sampled in the central and northern 

central part, and Wu et al. (2011) (northeastern part). 
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Fig. 3. Vegetation map of the Qinghai-Tibet Plateau based on data sets for Land Cover in Tibet with 
belowground biomass sampling localities of Luo et al. (2005), Wang et al. (2008), Yang et al. 
(2009), Li et al. (2011), and Geng et al. (2012) (Tibetan and Himalayan Library, 2002).   

 

To account for the strong influence of vegetation type on BGB,  ranges were compared 

for each vegetation zone. The ranges for the vegetation zones comprise those 

calculated grid pixel values that correspond to the precise geographical coordinates 

from the sampling sites of the literature data in the respective vegetation zone. Due to 

a lack of precise spatial information on the sites of Yan et al. (2005) and Wu et al. 

(2011), only the minima and maxima for the respective vegetation types could be 

considered. For the overall range of all field measured BGB values from all studies, all 

area-wide calculated BGB values for the whole plateau are compared to all field 

measured values, demonstrating variation. To allow for a direct point-to-point 

comparison, mean relative errors were calculated.  
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6.4 Calculation of Recent General Soil CO2 Emissions and Model 

Evaluation 

Soil CO2 emissions were calculated using six different regression models (Table 5). 

Table 5. Regression models based on MAT, MAP and BGB to approximate soil CO2 emissions by Raich  
and Schlesinger (1992), Chimner (2004) and Behera et al. (1990). 

Type of 
regression 

Region, 
vegetation 
type 

Equation Parameters Author(s) r2 

Regression 
based on 
MAT T  

    

Global 
𝑆𝑅 = 25.6𝑇 + 300 

SR = annual SR rate (g 
C/m2/yr), T = MAT (°C),  

Raich and 
Schlesinger 
(1992)  
(MAT I) 

0.42 

    Micronesia 
and Hawaii, 
peatlands 

𝑌 = 265.9 + (27.7 ∗ 𝑀𝐴𝑇) 
Y = annual SR rate (g C 

m-2 yr-1), MAT = MAT 
(°C) 

Chimner 
(2004) 
(MAT II) 

0.46 

Regression 
based on 
MAP P 

Global 
𝑆𝑅 = 0.391𝑃 + 155 

SR = annual SR rate 
(gC/m2/yr), P = MAP 

(mm)   

Raich and 
Schlesinger 
(1992) 

0.34 

Regression 
based on 
MAT T, 
MAP P 

Global 
𝑆𝑅 = (9.26𝑇) + (0.0127𝑇𝑃)

+ 289 

SR = annual SR rate 
(gC/m2/yr), T = MAT 
(°C), P = MAP (mm)   

Raich and 
Schlesinger 
(1992) 
(MATP I) 

0.50 

 Global 
𝑆𝑅
= (9.88𝑇) + (0.0344𝑃)
+ (0.0112𝑇𝑃) + 268 

SR = annual SR rate 
(gC/m2/yr), T = MAT 
(°C), P = MAP (mm)   

Raich and 
Schlesinger 
(1992) 
(MATP II) 

0.50 

Regression 
based on 
root 
biomass 

India, 
tropical 
forest soil  

𝑦 = 0.32𝑥 + 176.6 
y = SR (mg CO2 m-2 h-1), 

x = total root biomass 
(g m-2) 

Behera et al. 
(1990) 

0.89 

 

To evaluate the power of the regression models applied in this study, the calculated 

values were compared to those reported by Cao et al. (2004), Zhang et al. (2005), Li 

et al. (2011), Zhang et al. (2009), Geng et al. (2012), Chen et al. (2014) and Wang et 

al. (2014b) (Tab. 2). The observation sites are located in three different vegetation 

types: alpine steppe, alpine meadows, and forest on altitudes from 3,000 m to 5,105 

m a.s.l.. The sampling sites in the study from Chen et al. (2014), located in the eastern 

part of the plateau, are not displayed in Figure 4. 
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Fig. 4. Vegetation map of the Qinghai-Tibet Plateau based on data sets for land cover in Tibet with soil 
CO2 emissions sampling localities of Cao et al. (2004), Zhang et al. (2005), Li et al. (2011), Zhang 
et al. (2009), Geng et al. (2012), and Wang et al. (2014b) (Tibetan and Himalayan Library, 2002). 

 

All samples except the ones from the studies of Chen et al. (2014) and Wang et al. 

(2014b) were collected in the peak season of soil CO2 emissions from June to August. 

Daily means were calculated based on several measurements per day in each study. 

To compare annual data calculated by the regression models, daily means were 

summed up to give annual soil CO2 emissions values. However, this leads to a 

systematic overestimation of annual soil CO2 emissions, because the daily means 

were estimated based on measurements during peak season months. A seasonality 

correction factor was therefore developed and implemented to account for this. This 

seasonality correction factor is based on calculations by Cao et al. (2004). The annual 

total sum of daily average soil CO2 emission values is about 1.99 times higher than the 

estimation of annual soil CO2 emission values where seasonal variation of soil CO2 

emissions is considered. Accordingly, all cumulative annual soil CO2 emission values 

were corrected by a factor of 0.33 exept for the evaluation data from Chen et al. (2014) 

and Wang et al. (2014b) as provided as annual values a priori. The data of Chen et al. 

(2014) are based on measurements every ten days throughout an entire year after 
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having conducted extra measurements to find the optimal measurement time 

representing daily means. Wang et al. (2014b) summed daily means based on hourly 

measurements throughout four years to calculate annual estimates, which were 

averaged to one annual average value.  

Ranges of the model-based soil CO2 emission values of each vegetation zone are 

based on grid pixels according to the geographical coordinates from the field sampling 

sites of the literature data. Since information on precise georeferences was not given 

in Chen et al. (2014), personal communication with Ji Luo (2015) served as an 

additional source of information on the exact geographical position. The range of all 

field measurements throughout the different vegetation zones was compared to all 

calculated values of the whole plateau for each model. Moreover, the average of all 

field data to the average of all calculated soil CO2 emission values for the whole plateau 

was compared for each model.   

6.5 Calculation of Future Soil CO2 Emissions  

The calculation of future soil CO2 emissions under the influence of climate change 

consists of two parts: (i) General soil CO2 emission rates for the Qinghai-Tibet Plateau 

and (ii) specific soil CO2 emission rates, that focus on the additional source of C made 

available by PF thaw on the Qinghai-Tibet Plateau in consequence of global warming. 

To obtain total future soil CO2 emissions both parts were summed up.  

General soil CO2 emissions as one part were calculated using the regression model 

by Raich and Schlesinger (1992) based on MAP for each scenario in 2050 and 2070.  

The second part of the total soil CO2 emissions, the thawing-induced soil CO2 

emissions, are based on estimates from a synthesis of laboratory experiments. As 

there is no formulated regression model yet, results of incubation experiments with soil 

samples from the arctic region by Schaedel et al. (2014) were transferred to the study 

area in structural analogy to regression models. On average, 23.1% of the organic C 

can potentially be lost within 50 incubation years through PF thawing at a temperature 

of 5 °C, which corresponds to approximately 0.012‰  per day on average (Schaedel 

et al., 2014). As average from 1960 to 2000, 166 frost-free days per year occur on the 

Qinghai-Tibet Plateau and additional 3.1 days per further decade because of global 

warming (Zhang et al., 2014). Thus, the potential organic C loss from 2015 to 2050 

amounts to 7.78% and to 12.45% until 2070 of the organic C stock in 2015. On 

average, the potential C loss from 2015 to 2050 is hence 0.222% per year and from 
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2015 to 2070 0.226% per year as result of thawing PF. The respecitve amounts of the 

CO2 equivalents of the C loss were calculated based on the mass fraction of C present 

in CO2.  

C stocks for the estimation of thawing-induced soil CO2 emissions for k layers were 

estimated as follows: 

𝑇𝑑 =  ∑ 𝜌𝑖𝑃𝑖𝐷𝑖(1 − 𝑆𝑖)
𝑘
𝑖=1 ,                         (1) 

where Td is the total amount of organic C (Mg m-2) over depth d, ρi is bulk density (Mg 

m-3) of the layer i, Pi equals the proportion of organic C in layer i (g C g-1), Di is the 

thickness of this layer (m), and Si is the volume of coarse fragments (> 2 mm) (Batjes, 

1996). The proportion of thawing-induced CO2 emissions to total CO2 emissions was 

obtained as ratio for each year. To calculate this, means of total CO2 emissions of all 

scenarios were averaged for each year.  



27 
 

7 Results 

7.1 Total Soil CO2 Emissions 

7.1.1 Total Soil CO2 Emissions in 2015 and 2050 

Total soil CO2 emissions from PFS of the Qinghai-Tibet Plateau generally increase by 

2050 compared to 2015 (see Table 6 and Figure 6). Mean total CO2 emissions in 2050 

add up to 1,420.22 – 1,433.46 g CO2 m-2 year-1 (RCP2.6 and RCP8.5, respectively) as 

opposed to 1,415.59 g CO2 m-2 in 2015. The difference between the lowest and highest 

mean CO2 emission rates of the four scenarios is hence less than 1%. Differences in 

the minima and maxima of the different scenarios are likewise small as ranging from 

737.90 g CO2 m-2 year-1 (RCP4.5) to 739.13 g CO2 m-2 year-1 (RCP8.5) (minima) and 

between 4,188.95 g CO2 m-2 year-1 (RCP2.6) and 4,224.77 g CO2 m-2 year-1 (RCP8.5) 

(maxima). In all scenarios, more values exceed the respective averages as reflected 

by the median values from 1,254.03 g CO2 m-2 year-1 (RCP6.0) to 1,267.53 g CO2 m-

2 year-1 (RCP8.5). The mean of the thawing-induced CO2 emissions adds up to 36.47% 

of the averaged means of the total CO2 emissions.  

Table 6: Statistics of total soil CO2 emissions in 2015 and 2050 in g CO2 m-2 year-1. 

Year  
(Scenario) 

2015  
(Bosch et al. 

(2016)) 

2050  
(RCP2.6) 

2050  
(RCP4.5) 

2050  
(RCP6.0) 

2050  
(RCP8.5) 

 g CO2 m-2 year-1  

Mean 1,415.59 1,420.22 1,423.87 1,421.76 1,433.46 

Min   737.08   739.02   737.90   738.62   739.13 

Max 
 
Median 

4,224.34 
 

1,246.86 

4,188.95 
 

1,255.98 

4,190.54 
 

1,260.37 

4,195.69 
 

1,254.03 

4,244.77 
 

1,267.53 
      

 

Highest decreases in total CO2 emissions compared to the total CO2 emissions in 2015 

are located in the central part of the plateau (Figure 5). 
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Fig. 5. Spatial distribution of absolute differences in total potential CO2 emissions from permafrost areas 
on the Qinghai-Tibet Plateau between 2015 and 2050 and between 2015 and 2070 according to 
the RCP2.6 scenarios. Unit of changes in total CO2 emissions is g CO2 m-2 year-1. The spatial 
resolution of the grids is 1000 m x 1000 m. 

 

For all scenarios, about 70% of the CO2 values amount to less than 1,000 g CO2 m-2 

(Table 7). In the highest class (>3664.21 g CO2 m-2 y-1), only 1 ‰ of the values appears, 

which corresponds to an area of 976–979 m2. Differences between the scenarios with 

regard to the abundance of CO2 values show to be less than 1% but can amount to an 

additional release of soil CO2 of about 40,000,000 g CO2 for an area of about 8,000 m2.  

Table 7: Abundance of CO2 emission values per class of CO2 emissions for the Qinghai-Tibet Plateau. 
CO2 emission classes represent very low (>0 – 250 g C m-2 year-1 / >0 – 916.05 g CO2 m-2 year-1), low 
(>250 – 500 g C m-2 year-1 / >916.05 – 1832.10 g CO2 m-2 year-1 ), medium (>1832.10 g CO2 m-2 year-1 
– 3664.21 g CO2 m-2 year-1 / >500 – 1000 g C m-2 year-1), high (>3664.21 g CO2 m-2 year-1 / >1000 g C 
m-2 year-1) and no (≤0 g CO2 m-2 year-1 / ≤0 g C m-2 year-1) CO2 emissions. Italicized values specify the 
area on the Qinghai-Tibet Plateau assigned to the respective CO2 emission class. 

Classes Scenario RCP2.6 RCP4.5 RCP6.0  RCP8.5  

Year 2050 2070 2050 2070 2050 2070 2050 2070 

%  
m-2 

Very low  13.27 
135 902 

13.50 
138 276 

13.29 
136 118 

13.50 
138 286 

12.72  
130 224 

13.06 
133 737 

12.21 
125 037 

12.99 
132 997 

Low  69.25 
708 955 

69.18 
708 160 

69.13 
707 685 

69.00 
709 400 

69.74  
713 895 

69.57 
712 163 

69.90  
715 538 

69.33 
709 707 

Medium  17.36 
177 789 

17.24 
176 273 

17.49      
178 843 

17.11  
175 058 

17.44 
178 528 

17.27 
176 802 

17.78 
182 068 

17.83 
182 560 

High  0.09 
976 

0.08 
912 

0.09 
976 

0.08 
878 

0.09 
977 

0.08 
920 

0.09  
979 

0.09  
969 

No  0.00 
 0 

0.00  
0 

0.00  
0 

0.00  
0 

0.00  
0 

0.00  
0 

0.00 
 0 

0.00 
 0 
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7.1.2 Total Soil CO2 Emissions in 2070 

By 2070, mean CO2 emissions of all scenarios for 2070 range from 

1,409.73 g CO2 m-2 year-1 (RCP2.6) (Table 8) to 1,426.25 g CO2 m-2 year-1 (RCP8.5). 

The strongest difference between two scenarios therefore appears to be 1.15%. Like 

for the scenarios in 2050, minima (733.97 – 738.32 g CO2 m-2 year-1) and maxima 

(4,129.10 – 4,158.69 g CO2 m-2 year-1) are very close. Median values lie about 

150 g CO2 m-2 below averages (1,245.85 – 1,263.96 g CO2 m-2 year-1). For RCP2.6 

(Figure 6) as well as for all scenarios, CO2 emissions appear to be less than the CO2 

emissions of 2050. The mean of the thawing-induced CO2 emissions adds up to 

36.03% of the averaged means of the total CO2 emissions. Like for 2050, the medians 

of the thawing-induced values amount to less than half of the mean and also like for 

2050, strongest decreases in total CO2 emissions compared to the total CO2 emissions 

in 2015 are located in the central part of the plateau (Figure 5). 

 

Table 8: Statistics of total soil CO2 emissions in 2015 and 2070 in g CO2 m-2 year-1. 

Year  
(Scenario) 

2015  
(Bosch et al. 

(2016)) 

2070  
(RCP2.6) 

2070 
(RCP4.5) 

2070  
(RCP6.0) 

2070  
(RCP8.5) 

 g CO2 m-2 year-1  

Mean 1,415.59 1,409.73 1,414.14 1,414.88 1,426.25 

Min   737.08   735.46         733.97   736.89   738.32 

Max 
 
Median 

4,224.34 
 

1,246.86 

4,149.22 
 

1,245.85 

4,143.43 
 

1,249.51 

4,129.10 
 

1,251.36 

4,158.69 
 

1,263.96 
      

 

Basic patterns of the abundance of total CO2 emissions of 2050 and 2070 resemble 

each other strongly (Table 7). Again, the difference between the scenarios appears to 

be about 1%.  
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Fig. 6. Spatial distribution of total potential CO2 emissions from permafrost areas on the Qinghai-Tibet 
Plateau in 2050 and 2070 according to the RCP2.6 scenarios. Unit of CO2 emissions is 
g CO2 m-2 year-1. The spatial resolution of the grids is 1,000 m x 1,000 m. 

 

7.2 General Soil CO2 Emissions 

7.2.1 Models for Belowground Biomass   

To estimate BGB, the model with MAT exhibited closest agreements to the field 

measured data in general (Table 9). It overall performs best or second-best for most 

and largest vegetation zones. For the vegetation zones of alpine steppe, alpine mixed 

forests, and alpine spruce fir forests, the regression model based on MAP was 

distinctly preferable. When the model based on January mean temperature shows 

better results for a certain vegetation zone, the regression model based on MAT closes 

up very narrowly to it. Based on the comparison of ranges, minimum, maximum, and 

relative mean error for six models with regard to the samples of nine vegetation zones, 

the regression model based on MAT is the preferred model to calculate BGB on the 

Qinghai-Tibet Plateau. 
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Table 9: Range of belowground biomass for different vegetation types on the Qinghai-Tibet Plateau measured by Luo et al. (2005), Yan et al. (2005), Wang et al. 
(2008), Yang et al., (2009), Li et al. (2011), Wu et al. (2011), Geng et al. (2012) and calculated based on regression models. 

Vegetation 

type 
 Luo et al. 

(2005)  
(nAS =3;  

nAM = 5;  

nDF = 2;  

nSF = 2;  

nAMF = 3; nASF 

= 4; nT = 3) 

Yan et 

al. 

(2005) 
(nAS =1; 

nAM = 2) 

Wang 

et al. 

(2008b) 
(nAM = 

12) 

Yang 

et al. 

(2009) 
(nAS = 

73; 

 nAM = 

35) 

Li et al. 

(2011) 
(nAS = 17;  

nAM = 7; 

nDG = 8; 

nAD = 5) 

Wu et 

al.  

(2011) 

Geng et 

al. (2012)  
(nAS = 18; 

nAM = 20) 

All field 

samples 

 
Regression model based on 

(nAM = 

30) 
January 

mean 

temperature  

July mean 

temperature  

MAT 

 

MAP  

 

MAT 

and 

MAP  

Elevation  

 [Mg ha-1] 

Alpine 

steppe (AS) 

Range 

 
(Mean rel. 
error [%]) 

6- 

10 

8.86 - 0.44-

18.34 

12.12-

16.13 

- 2.01-

10.83 

0.44-

18.34 

4.22- 

19.48 
(343.92) 

4.01- 

52.99 
(515.99) 

3.76- 

28.84 
(375.99) 

2.77- 

19.55 
(231.80) 

9.43-

18.11 
(562.67) 

-14.15- 

50.86 
(219.98) 

Alpine 

meadows 
(AM) 

Range 

 
(Mean rel. 
error [%]) 

9- 

32 

24.90-

100.48 

17.97-

145.67 

0.82-

27.84 

26.67-

49.30 

13.40-

24.74 

5.43-

93.93 

0.82-

145.67 

4.36- 

28.81 
(91.71) 

4.12- 

47.34 
(111.75) 

3.76- 

31.90 
(97.46) 

4.54 -

49.39 
(110.08) 

9.96-

20.48 
(124.87) 

-16.51- 

47.78 
(142.51) 

Desert 

grasslands 
(DG) 

Range 

 
(Mean rel. 

error [%]) 

- - - - 5.97-

12.41 

- - 5.97-

12.41 

8.73-  

13.12 

- 

12.22- 

21.00 

- 

 

8.79-

14.43 

- 

3.47- 

5.93 

- 

12.90-

14.00 

- 

5.32- 

12.46 

- 

Dry  

Valley 

forests (DF) 

Range 

 
(Mean rel. 

error [%]) 

18- 

52 

- - - - - - 18-52 14.38- 

48.06 
(14.16) 

11.22-

52.99 
(25.34) 

12.19-

51.19 
(17.13) 

10.13- 

23.07 
(49.65) 

13.22-

29.69 
(34.85) 

3.92- 

39.10 
(51.68) 

Subtropical 

forests 
(SF) 

Range 

 
(Mean rel. 

error [%]) 

67- 

95 

- - - - - - 67-95 50.84- 

58.11 
(30.18) 

 

53.15-

65.92 
(23.19) 

48.06-

58.55 
(31.32) 

41.85-

43.12 
(46.30) 

39.44-

45.99 
(45.17) 

48.59-

54.78 
(33.84) 

Alpine 

mixed 

forests 
(AMF) 

Range 

 
(Mean rel. 

error [%]) 

23- 

36 

- - - - - - 23-36 45.82- 

50.74 
(74.11) 

45.21- 

52.51 
(71.78) 

44.02-

53.86 
(72.41) 

24.31-

44.09 
(14.71) 

29.26-

37.05 
(13.06) 

38.64-

45.21 
(44.17) 
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Alpine 

spruce fir 

forests (ASF) 

Range 

 
(Mean rel. 

error [%]) 

21- 

49 

- - - - - - 21-49 34.22- 

38.86 
(44.61) 

28.58- 

34.78 
(32.08) 

31.09-

39.35 
(42.81) 

19.14-

45.41 
(47.27) 

20.98-

34.19 
(26.63) 

26.14-

40.77 
(39.66) 

Timberline 
(T) 

Range 

 
(Mean rel. 
error [%]) 

7- 

27 

- - - - - - 7-27 21.69- 

25.21 
(85.93) 

15.49-

18.97 
(56.63) 

18.85-

21.53 
(80.60) 

15.39-

49.39 
(224.25) 

15.78-

20.48 
(84.22) 

13.57-

25.19 
(110.00) 

Alpine 

desert (AD) 

 

All 

 

Range 

(Mean rel. 
error [%]) 

 

Range 

(Mean rel. 

error [%]) 

- - - - 3.11-

4.83 

- - 3.11- 

4.83 

 

0.44-

145.67 

 

2.90- 

10.01  

- 

 

0.53- 

159.11 

- 

2.52- 

29.56 

- 

 

0.13- 

173.93 

- 

2.29-

13.27 

- 

 

0.43-

167.66 

- 

2.49- 

13.88 

- 

 

0.00-

57.09 

- 

8.91-

13.85 

- 

 

2.04-

199.99 

- 

-23.35- 

36.87 

- 

 

-63.75- 

103.23 

- 
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7.2.2 Models for General Soil CO2 Emissions 

The model based on MAP was the preferred model to calculate general soil CO2 

emissions for the study area as closest matching field measured data (Table 10). It 

typically best represents most and largest vegetation zones with regard to mean, 

relative error of the mean, minimum, maximum, and range of soil CO2 emissions. Mean 

and mean relative error of alpine meadows and the vegetation types altogether 

constituted two exceptions with the BGB-based model providing more persuading 

results. However, the BGB-based model underperformed in general with an extremely 

high mean relative error. Even more disqualifying is the model´s particularly small 

range, covering less than 1% of the range of the field data throughout all vegetation 

zones. Additionally, for the alpine steppe vegetation zone, the MAT II-based model 

performed better than the MAP-based model. Nevertheless, the model with MAP as 

input parameter decidedly yielded most convincing results for alpine meadows, forests, 

and the range of the whole plateau. Thus, it is the preferred model to calculate general 

soil CO2 emissions on the Qinghai-Tibet Plateau. Their spatial distribution is shown in 

Figure 7. 
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Table 10: Range of soil CO2 emissions for different vegetation types on the Qinghai-Tibet Plateau measured by Cao et al. (2004), Zhang et al. (2005), Li et al. 
(2011), Zhang et al. (2009), Geng et al. (2012), Chen et al. (2014), Wang et al. (2014) and calculated based on regression models.  

Vegetation 

type 

 

 

 Cao et 

al. 

(2004) 
 (n = 1) 

 

Zhang 

et al. 

(2005) 
 (n = 1) 

Li et 

al. 

(2011) 
 (n = 1) 

Zhang 

et al. 

(2009) 
 (n = 60) 

Geng et 

al. 

(2012)  
(nAS = 18; 

nAM = 20) 

Chen et 

al. 

(2014) 
 (n = 2) 

Wang 

et al. 

(2014) 
 (n = 1) 

All 

field 

samples  
 (n = 104) 

 

Regression model based on 

 

MAT I 
 

MAT II  

 

MAP 

 

MAT and 

MAP I 

MAT and 

MAP II 
 

BGB 

 

                                                                                                                                            [g C m-2 year-1] 
 

Alpine 

steppe (AS) 

 

 

 

Range 

 
Mean 

Median 

(Mean rel. 
error [%]) 
 

- 

 

- 

- 

- 

 

143.53 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

50.47-

522.87 

- 

- 

- 

- 

 

- 

- 

- 

 

- 

 

- 

- 

- 

50.47-

522.87 
254.6 

245.9 

- 

 

150.04-

360.57 
262.86 

274.39 

 (48.70) 

103.64-

331.44 
225.71 

238.19 

(41.32) 

221.65-

339.65 
283.17 

279.87 

 (63.14) 

214.76-

318.44 
270.64 

274.54 

(57.22) 

201.74-

310.82 
260.60 

263.33 

(56.03) 

422.52-

422.64 
422.57 

422.57 

(135.34) 

Alpine 

meadow 
(AM) 

Range 

 
Mean 
Median 

(Mean rel. 

error [%]) 
 

555.37 

 

- 

- 

- 

- 

 

- 

- 

- 

 

714.17 

 

- 

- 

- 

326.15-

1876.63 

- 

- 

- 

144.95-

1666.97 

- 

- 

- 

- 

 

- 

- 

- 

696 

 

- 

- 

- 

144.95-

1876.63 
828.77 
795.95 

- 

146.39-

376.79 
293.36 
311.39 

(60.87) 

99.69-

349.00 
258.87 
278.23 

(64.59) 

266.95-

561.55 
333.22 
333.48 

(55.37) 

205.75-

345.41 
285.82 
295.7 

(61.26) 

197.37-

357.82 
280.66 
290.37 

(60.31) 

422.52-

422.66 
422.59 
422.6 

(46.88) 

Forest (F) Range 

 
Mean 

Median 
(Mean rel. 

error [%]) 
 

- 

 

- 

- 

- 

 

- 

 

- 

- 

- 

 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

643.76-

908.84 

- 

- 

- 

- 

 

- 

- 

- 

643.76- 

908.84 
776.3 

- 

- 

467.88-

474.34 
471.11 

- 
(37.56) 

447.55-

454.54 
451.04 

- 
(41.89) 

529.54-

532.1 
530.82 

- 
(31.62) 

430.05-

434.91 
432.48 

- 
(44.28) 

436.8-

441.3 
439.05 

- 

(43.44) 

422.78-

422.79 
422.78 

- 
(45.53)  

All Range 
 

Mean 

Median 
(Mean rel. 

error [%]) 

- 
 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

50.47-

1876.63 
722.86 
713.00        
- 

-223.07-

914.4     

257.13          

237.06  
(64.42) 

-300.08-

930.7    

219.52    

197.80 

(69.63) 

161.64-

1762.17  

299.18   
251.57 

(58.61) 

15.83-

1641.16  

281.14            

214.61    

(61.10) 

7.98-

1639.56 

270.89         

200.61  

(62.52) 

422.48-

423.76    

422.60             

422.52 

(41.53) 
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Fig. 7. Spatial distribution of general soil CO2 emissions on the Qinghai-Tibet Plateau based on mean 
annual precipitation according to Raich and Schlesinger (1992). General soil CO2 emissions, 
referred to as soil respiration, are in SI unit (g C m-2 year-1). The spatial resolution of the grids is 
1,000 m x 1,000 m. 

 

7.2.3 General Soil CO2 Emissions in 2015 and 2050 

In 2050, general soil CO2 emissions increase throughout all four climate change 

scenarios compared to general soil CO2 emissions in 2015. The soil efflux raises by 

18.80 g CO2 m-2 year-1 on average (2.11%). Variation in mean general soil CO2 

emissions between the four RCPs ranging from 901.02 to 914.34 g CO2 m-2 year-1 

appears as 1.47% of their average (Table 11). Lowest general soil CO2 emissions 

amount from 617.49 g CO2 m-2 year-1 (RCP4.5) to 622.36 g CO2 m-2 year-1 (RCP8.5). 

Maxima vary from 2,349.27 g CO2 m-2 year-1 (RCP8.5) to 2,418.95 g CO2 m-2 year-1 

(RCP2.6). The statistical means of the general soil CO2 emissions follow the same 

patterns as the ones of the total soil CO2 emissions in 2050. 
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Table 11: Statistics of general soil CO2 emissions in 2015 and 2050 in g CO2 m-2 year-1.  

Year  
(Scenario) 

2015  
(Bosch et al. 

(2016)) 

2050  
(RCP2.6) 

2050  
(RCP4.5) 

2050 
(RCP6.0) 

2050  
(RCP8.5) 

 g CO2 m-2 year-1  

Mean 886.92 901.02 904.80 902.75 914.34 

Min 614.32 618.59 617.49 618.18 622.36 

Max 
 
Median 

2,340.46 
 

863.83 

2,418.89 
 

855.15 

2,412.00 
 

860.21 

2,374.59 
 

855.26 

2,349.27 
 

859.62 
      

 

7.2.4 General Soil CO2 Emissions in 2070  

Results show higher general soil CO2 emissions for 2070 than for 2015, which applies 

to all RCPs. Mean annual soil CO2 emissions range from 900.00 g CO2 m-2 year-1 

(RCP2.6) to 916.78 g CO2 m-2 year-1 (RCP8.5) compared to 886.92 g CO2 m-2 year-1 in 

2015 (Table 12). Compared to the general soil CO2 emissions of 2050, differences 

between effluxes of a RCP in both years are very small with the biggest difference 

amounting to 2.44 g CO2 m-2 year-1 (RCP8.5). Minimum values vary between 

615.73 g CO2 m-2 year-1 (RCP4.5) and 620.09 g CO2 m-2 year-1. Maximum general soil 

CO2 emissions in 2070 differ more distinctly from those of 2050 (on average: 1.50%) 

compared to the differences between minima of 2050 and 2070 (on average: 0.19%). 

A greater difference between general soil CO2 emissions of 2050 and 2070 occurs for 

median values ranging from 755.63 g CO2 m-2 year-1 (RCP2.6) to 765.63 g CO2 m-2 

year-1 (RCP8.5) in 2070 (2050: 855.15 g CO2 m-2 year-1 – 860.21 g CO2 m-2 year-1). 

The statistical means of the general soil CO2 emissions follow, again, the same 

patterns as the ones of the total soil CO2 emissions in 2070. 

Table 12: Statistics of general soil CO2 emissions in 2015 and 2070 in g CO2 m-2 year-1.  

Year  
(Scenario) 

2015  
(Bosch et al. 

(2016)) 

2070  
(RCP2.6) 

2070  
(RCP4.5) 

2070  
(RCP6.0) 

2070  
(RCP8.5) 

 g CO2 m-2 year-1  

Mean 886.92 900.00 904.62 905.13 916.78 

Min 614.32 617.23 615.73 618.66 620.09 

Max 
 
Median 

2,340.46 
 

863.83 

2,423.50 
 

755.63 

2,485.10 
 

757.06 

2,354.76 
 

757.06 

2,435.97 
 

765.63 
      



36 
 

7.3 Heterotrophic Soil CO2 Emissions Induced by Permafrost Thaw 

7.3.1 Carbon Stocks 

In total, 68.59 Pg C are stored in the PFS of the Qinghai-Tibet Plateau in 2015 

according to our estimations based on the WISE30sec data sets. For 2050, C stocks 

sum up to 63.25 Pg C and to 60.05 Pg in 2070. On average, the PFS contains 67.00 

kg C m-2 in 2015. Less C is stored in 2050 and 2070 with mean values of 61.79 kg C 

m-2 and 58.66 kg C m-2, respectively. Figure 8 shows the spatial distribution of C stocks 

on the Qinghai-Tibet Plateau. The amount of C ranges from 6.72 to 387.13 kg m-2 in 

2015, from 6.20 to 356.98 kg C m-2 in 2050 and from 5.88 to 338.92 kg C m-2 in 2070.  

 

Fig. 8. Spatial distribution of C stocks of the permafrost areas on the Qinghai-Tibet Plateau for 2015, 
2050 and 2070. C stocks are in SI unit (kg m-2). The spatial resolution of the grids is 
1,000 m x 1,000 m. 

 

Strongest decreases of C stocks from 2015 to 2050 and from 2015 to 2070 are 

concentrated in the central part of the plateau for both periods (Figure 9). 
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Fig. 9. Spatial distribution of absolute differences in C stocks of the permafrost areas on the Qinghai-
Tibet Plateau between 2015 and 2050 and between 2015 and 2070. Absolute differences in C 
stocks are in SI unit (kg m-2). The spatial resolution of the grids is 1,000 m x 1,000 m. 

 

7.3.2 CO2 Emissions 

On the entire Qinghai-Tibet Plateau, every year 0.54 Pg CO2 (0.15 Pg C) is released 

by the thaw of PF on average starting from 2015. From thawing PFS, annual soil CO2 

emissions decrease from mean 529.91 g CO2 m-2 year-1 in 2015 to 

519.75 g CO2 m-2 year-1 and in 2050 to 510.13 g CO2 m-2 year-1 in 2070 (Table 13). 

Mean CO2 emissions decrease by 3.7% on average between 2015 and 2070. For 

2015, least CO2 emissions originating from PFS C amount to 53.20 g CO2 m-2 year-1, 

for 2050 to 52.18 g CO2 m-2 year-1 and to 51.23 g CO2 m-2 year-1 for 2070. Maximum 

fluxes of soil CO2 vary between 2,948.25 g CO2 m-2 year-1 (2070) and 3,134.91 g CO2 

m-2 year-1 (2015). 50% of the values, however, remain below 236.19 g CO2 m-2 year-1 

(2015). The results further show median values at 231.69 g CO2 m-2 year-1 for 2050 

and 227.47 g CO2 m-2 year-1 for 2070, thereby amounting to less than half of the mean. 

For all scenarios and years, the range of the thawing-induced values of the entire 

Qinghai-Tibet Plateau appears to be broader than the range of the general soil CO2 

emissions. 

Table 13: Statistics of PF soil CO2 emissions in 2015, 2050 and 2070 in g CO2 m-2 year-1. 

Year  2015  2050 2070  

g CO2 m-2 year-1 

Mean 529.91 519.75 510.30 

Min 53.20 52.18 51.23 

Max 
 
Median 

3,134.91 
 

236.19 

3,002.82 
 

231.69 

2,948.25 
 

227.47 
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8 Discussion 

8.1 Total Soil CO2 Emissions 

The calculation and analysis of total soil CO2 emissions for 2015, 2050 and 2070 reveal 

that under all scenarios, the soil CO2 emissions remain within the same order of 

magnitude (Tables 6 and 8). The average does not even alter more than 

17.87 g CO2 m-2 year-1 (1.26% of mean total soil CO2 emissions in 2015).  

Thawing-induced soil CO2 emissions in 2015, 2050 and 2070 account for 36.3% of 

total soil CO2 emissions on average (Tables 6, 8 and 13). This closely lines up to the 

field measured results of Peng et al. (2015) with the amount of C additionally released 

due to warming and thawing PF reaching 18 to 29% in an alpine meadow on the 

plateau. In that study, there is no differentiation between altered soil CO2 emissions 

induced by PF thaw and altered general soil CO2 emissions due to a general higher 

plant and microbial metabolic activity as consequence of higher temperatures. 

However, it is to assume that most of the increase is related to the additional available 

PF C as Hicks Pries et al. (2013) obtained similar results when focusing on soil CO2 

emissions originating from PF C. In that study, old soil heterotrophic soil CO2 emissions 

comprised up to approximately 18% of the remaining parts of soil CO2 emissions under 

thawing PF.  

Compared to direct CO2 emission measurements on the Qinghai-Tibet Plateau, the 

range of total soil CO2 emissions for all years and scenarios (733.97 – 

4,224.77 g CO2 m-2 year-1) lies within the order of magnitude of field measurements 

(2,321.60 – 3,277.56 g CO2 m-2 year-1) as reported by Chen et al. (2014). Those field 

data have been measured in forests why representing higher sectors of this range of 

values. As not including PF-specific soil CO2 emissions, the maximum value remains 

below the highest values with about 22.42%, roughly corresponding to the range of the 

ratio of PF-specific soil CO2 emissions to total soil CO2 emissions as reported by Peng 

et al. (2015) and discussed in this section. Wang et al. (2014b) measured a four-year 

average of 2,550.29 g CO2 m-2 year-1 in alpine meadows, which are characterized by 

a short growing season. Again, due to no PF at the measurement sites, these values 

would be higher under the influence of PF, then closely lining up to a typical soil CO2 

emission value for alpine meadows in a PF area. Less CO2 emissions in 2070 mainly 

result from the decrease of thawing-induced soil CO2 emissions over time, reflecting 
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the close relationship of soil CO2 emissions to a decrease of C stocks in PF in the 

calculations. 

The differences between the scenarios of total soil CO2 emissions fully result from the 

differences between the general soil respiration rates for each scenario as the potential 

thawing-induced CO2 emissions are represented by only one value per year due to the 

different calculation. Accordingly, values of mean, minimum, maximum and median 

share proportionally the same trends for total CO2 emissions and general soil 

respiration. Differences between the scenarios of general soil CO2 emissions appear 

to be about 1% what reflects the small differences between the scenarios of MAP as 

fully accounting for this. For all scenarios of 2070, CO2 emissions appear to be less 

than the CO2 emissions of 2050. This results mostly from the thawing-induced CO2 

loss, which is calculated as percentage of the respective C-stock, consequently 

decreasing with temporal progression. 

Regarding the abundance of values in 2050, except for the entire lowest class and the 

medium class for the RCP8.5 scenario, more values of CO2 emissions can generally 

be found in all scenarios of 2050. This corresponds to the result of general higher total 

CO2 emissions in 2050, resulting from decreasing carbon stocks in the end. 

As total soil CO2 emissions have been obtained by adding up general soil CO2 

emissions and PF-specific CO2 emissions, both, uncertainties and implications 

originate from their respective calculations as discussed below (Sections 8.2, 8.3). 

Further, the results of total soil CO2 emissions are not fully accurate with exclusively 

adding up general and PF-specific CO2 emissions, which, additionally, may partly 

overlap. These compartments do not include further region-specific phenomena (i.e., 

grazing) relevant to soil CO2 emissions on the Qinghai-Tibet Plateau that can possibly 

change with global warming. Although the mechanisms of the relations have in general 

not been sufficiently clarified yet, changes in soil CO2 emissions by grazing are 

relatively high with a decrease by about 50% when doubling grazing intensity on the 

Qinghai-Tibet Plateau (Cao et al., 2004). Moderate grazing reduces the C uptake in 

Kobresia turfs (Babel et al., 2014) indicating decreasing CO2 emissions. Also, grazing 

influences PF thawing as decreasing vegetation cover reduces the insulating effect of 

vegetation, resulting in quicker PF thaw on the Qinghai-Tibet Plateau (Hu et al., 2009) 

and consequently leading to higher CO2 emissions induced by PF thaw. Studies by 

Wen et al. (2013) and Cao et al. (2004) found vegetation degradation and grazing 
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effects comprising about 35% of the Qinghai-Tibet Plateau. Johnson and Matchett 

(2001) concluded that grazing resulted in a decrease of soil CO2 emissions compared 

to an ungrazed tallgrass prairie, however, grazed prairie exhibited more soil CO2 

emissions than ungrazed prairie (Frank et al., 2002). Thus, although important, grazing 

effects do not exceed the order of magnitude of the remaining soil CO2 emissions (Cao 

et al., 2004). 

8.2 General Soil CO2 Emissions  

As projected by all four scenarios, the average increase of general soil CO2 emissions 

from 2015 to 2050 with 2.1% lies in the order of magnitude of the results of the study 

of Melillo et al. (2002). They predict a long-term warming-induced C-loss in a PF-free 

area in the first six years amounting to averaged 28%, followed by 5% in the 

subsequent three years, and declining to no C-loss for the 10th year. Acclimatization 

accounts for the weakening of general soil CO2 emissions, which initially increased due 

to global warming (Luo et al., 2001). This decrease in temperature sensitivity can occur 

because of reduced root respiration and microbial activity as consequence of drier soils 

(Peterjohn et al., 1994), and limited substrate availability (Rustad and Fernandez, 

1998). Although even decreasing, changes in general soil CO2 emissions to 2070 

likewise resemble this weak response of general soil CO2 emissions to global warming.  

The results further directly reflect the spatial and temporal variability of precipitation 

patterns as calculated by a linear regression model based on MAP, declining from 

northwest to southeast (Figure 7). Although with low mean relative error for two zones, 

BGB-based estimates of soil CO2 emissions are most unrealistic with a range of only 

1.28 g C m-2 year-1. This narrow range results from the regression model used by 

Behera et al. (1990), since calculated BGB data based on MAT show reasonable 

results when compared to field measured data (Table 9). Indicated by its coefficient of 

determination (r2 = 0.66), the model is a priori not capable to fully explain all variation. 

It is, moreover, developed for a very specific climate and vegetation zone (tropical 

forest soils in India), why the fully different climatic and environmental conditions lead 

to deviations due to limited transferablilty. Since the results of the BGB-based model 

still reflect basic patterns such as the main quantitative differences between the 

vegetation zones, the temporal resolution of the input data of the model development 

accounts for this. In this model, soil CO2 emission rates are resoluted to hourly values, 

why upscaling to years is particularly sensitive to rounding errors and coefficients. 



41 
 

The fact that the best regression model for the calculation of soil CO2 emissions 

incorporates MAP as key parameter reflects the particularly high sensitivity of the 

Qinghai-Tibet Plateau as arid and semiarid region to precipitation patterns (Rey et al., 

2002). Generally, precipitation may override temperature as main controlling factor in 

such areas (Curiel Yuste et al., 2003). For the entire Qinghai-Tibet Plateau, 

precipitation is further regarded as the principle controlling factor for vegetation cover 

(Sun et al., 2013), indicating its importance for soil CO2 emissions as a phenomenon 

that is generally closely connected to biomass (Section 4.2.2). Nevertheless, as much 

as precipitation does not occur linearly, as much does the influence of precipitation on 

soil CO2 emissions proceed in a linear manner especially with regard to its regulation 

of soil moisture (Birch, 1958; Davidson et al., 2000; Lee et al., 2002; Liu et al., 2002; 

Lou and Zhou, 2006). Under low soil moisture conditions, soil CO2 emissions are 

generally low, because bacteria act only on a basic metabolism and reduce their 

respiratory activity (Lou and Zhou, 2006). Medium soil moisture conditions lead to 

highest soil CO2 emissions while high soil moisture has a reducing effect because 

anaerobic conditions shrink aerobic microbial activity (Lou and Zhou, 2006). The fact, 

that MAP does not naturally follow static patterns as depending on complex influencing 

factors is partly considered in the RCPs. The differences between the scenarios, 

amounting to about 1% reflect the small differences between the scenarios of MAP 

(Table 3) as fully accounting for this. With the mean CO2 emission rate of RCP6.0 

being lower than the one of the RCP4.5 in 2050, it is reflected that there is no linear 

correlation in general to radiative forcing values.  

 

However, important uncertainties of the predicted values are generally associated with 

the regression model as not developed for this region and kind of application (Raich 

and Schlesinger, 1992). Since soil CO2 emissions are the result of a number of 

complex processes altering over time and space with multiple influencing factors, the 

variability of soil CO2 emissions may not be represented as accurate as e.g. by 

process-based models including more input variables (Reichstein and Beer, 2008). For 

instance, the influence of precipitation on soil CO2 emissions depends on temperature 

(Schindlbacher et al., 2012). Nevertheless, the inclusion of more variables does not 

necessarily improve the accuracy of results in general as indicated by the lower 

performance of the regression models including MAP and MAT as input parameter 

(Table 10). However, it is to conclude that the results indicate highly complex 



42 
 

interactions between soil CO2 emissions and various controlling factors besides MAP 

overall. Reflected by its coefficient of determination (r2 = 0.34), the model, generally,  

is a priori not capable to fully explain the data variability. Moreover, the model does 

due to its formulated constant not realize values below 567.95 g CO2 m-2 year-1 that do 

exist on the Qinghai-Tibet Plateau (e.g. Geng et al., 2012). An upper limit of soil CO2 

emissions under high precipitation (Luo and Zhou, 2006) is not represented as well. 

Furthermore, the regression model is not developed for or with regard to future 

conditions where the sensitivity of soil CO2 emissions to precipitation may differ. 

Additionally, inter-annual variability occurring due to hysteresis effects from droughts 

and impacts of rewetting (Birch, 1958; Davidson et al., 2000; Lee et al., 2002; Rey et 

al., 2002) can, by nature, not be represented by a linear regression model using MAP 

as only input factor.   

Further uncertainties may arise from the difference between the spatial scales of the 

development and the application of the regression model. Raich and Schlesinger 

(1992) developed the regression model with regard to the global scale why region-

specific characteristics may not be represented adequately. Even though the study 

area is a heterogeneous region also in terms of relevant influencing factors, the 

importance of influencing factors generally varies across spatial scales. This issue 

generally leads to the fact that results from different scales may even be contradictory 

(Reichstein and Beer, 2008). Therefore, in view of this multifactorial process and the 

input parameter, the regression model may not be as representative for the Qinghai-

Tibet Plateau as for the globe (Section 4.2.3). For arid regions, only few measurements 

have been taken (Raich and Schlesinger, 1992), leading to a deficiency in applying the 

model for the study area. Nevertheless, in view of the high consistency of calculated 

values to field measurements (Table 10), this difference presumably does not lead to 

basic discrepancies. In general, incorporating other regression models for specific 

vegetation zones, however, might increase the accuracy of the calculation of the 

general soil CO2 emissions.  

Other important restrictions of the estimations result  from limitations of the input data. 

For instance, the WorldClim data sets generally show lower precision for poorly 

sampled regions such as the Qinghai-Tibet Plateau and areas with complex 

topography (Hijmans et al., 2005; Böhner, 2006; Maussion et al., 2011). Further, the 

projections of the global climate model ‘Community Climate System Model, Version 4’ 

show uncertainties in predictions of precipitation on the Qinghai-Tibetan Plateau up to 
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10 mm per day when comparing to reference models (Gent et al., 2011), indicating the 

limitations of the model. The RCP projections generally inhere deficiencies resulting 

from the process of harmonizing different scenarios and models underlying the RCPs 

(Van Vuuren et al., 2011). As the years 2050 and 2070 represent an average from 

2041 to 60 and from 2061 to 80 respectively, likely variation is not represented. 

Assumptions are too general or static such as a general stronger and stronger 

regulation of air pollution. They also may not only occur model-specifically but are 

important for other RCPs such as reforestation policies included in RCP4.5 but 

potentially also relevant to RCP2.6. Further uncertainties arise from the transfer of 

emissions to concentrations and radiative forcing. The RCPs do not represent those 

various possible translations. Moreover, the respective socio-economic scenario for 

each RCP is not representing the variety of possible developments (van Vuuren et al., 

2011).  

Furthermore, the high small-scale variability of soil CO2 emissions especially in alpine 

meadows is generally not captured by the data resolution of 1,000 m x 1,000 m of all 

input data. The comparatively high values in alpine meadows, particularly of Kobresia 

tibetica plant communities, were not predicted by any regression model. This strong 

difference in soil CO2 emission rates between these communities and other alpine 

meadow plant communities results in large differences of soil CO2 emissions over short 

distances, which can only be represented with a higher spatial resolution. 

The evaluation data (Table 10) used to decide on the best regression model to 

calculate general soil CO2 emissions on the Qinghai-Tibet Plateau account for other 

restrictions. Firstly, they do not allow for deeper analysis as e.g. not covering all 

vegetation types. Moreover, although all studies use chamber-based methods for their 

measurements, there are differences between the various chamber methods that may 

cause further inaccuracies of the values. In addition, daily averages were calculated 

based on a different number and different times of measurements. For some of those 

studies, additional measurements were taken to determine the optimal number and 

time of measurements for the daily mean, however, discrepancies among the results 

remain. Also, the annual soil CO2 emission values for forests have been estimated 

based on continuous measurements throughout one whole year in contrast to the 

values of all other studies where seasonality was not considered a major factor. 
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The estimation of annual values based on daily means of field measurements poses 

other constraints. The higher the temporal resolution of data, the higher the variability 

of the cumulative values. This tendency increases with larger differences in the target 

temporal resolution, which eventually ranges from seconds to a year. This may result 

in ranges of values that are too large. Further, the seasonality correction factor derived 

from the estimations by Cao et al. (2004) for alpine meadows might vary for other 

vegetation types such as forests with the cumulative soil CO2 emissions in the peak 

month accounting for only about 20% of the total annual soil CO2 emissions (Chen et 

al., 2014). The values provided by Cao et al. (2004) are estimations based on (i) data 

obtained from chamber method measurements, which have inherent limitations, and 

on (ii) equations based on soil temperature with an r2 = 0.82.  

It should be further noted that approximations for soil CO2 emissions obtained from 

annual values in general are not as accurate as calculations from periodic or 

continuous data (Bahn et al., 2010).  

Furthermore, the temperature change under global warming additionally alters soil CO2 

emissions compared to the results calculated based on the regression model with  

MAP as input parameter (Tables 6, 8, 11 and 12). This is due to the fact that the 

warming influences the impact of precipitation (Harte et al., 1995), which weakens the 

prediction capability of the model. Also, variation due to vegetation changes because 

of rapide desertification on the Qinghai-Tibet Plateau is not considered in this thesis 

(Xue et al., 2009). Until 2070, there is a predicted decrease in soil CO2 emissions for 

the scenarios RCP2.6 and RCP4.5, while the emissions according to the RCP6.5 and 

RCP8.5 scenarios increase compared to 2050 (Tables 11, 12). Thereby it is revealed 

that precipitation patterns do not evolve linearly with further climate change (Table 3) 

but exhibit more complex patterns over time and space.  

8.3 Heterotrophic Soil CO2 Emissions Induced by Permafrost Thaw 

The analysis of quantified soil CO2 emissions from PF reflects distinctly higher pool 

sizes of C available to microbial decomposition due to the thaw of PF. Under the 

influence of climate warming, the PF C on the Qinghai-Tibet Plateau contributes 3.7% 

to the annual average atmospheric increase of CO2-C (IPCC, 2013). This is 1.9% of 

the total global anthropogenic CO2 emissions from fossil fuels (IPCC, 2013). With 0.15 

Pg C year-1, the thawing-induced CO2 emissions from the Qinghai-Tibet Plateau 
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contribute approximately 0.2% to the annual global soil CO2 emissions (91 Pg C) 

(Hashimoto et al., 2015).  

With about 0.54 Pg CO2 year-1, the thawing-induced soil CO2 emissions of the entire 

study area are, although in the same order of magnitude, about three times higher than 

what would be supposed based on the results of Schuur et al. (2009) and assuming 

an estimated area of global PF with about 22 * 106 km2 according to Gruber (2012). 

Schuur et al. (2009) estimate 1 Pg C year-1 (3.66 Pg CO2 year-1) as global C flux. 

Likewise, a model-based estimation, projecting emissions from PFS to a depth of 3 m 

to 7 - 17 Pg CO2 until 2100 (Zhuang et al., 2006), is also lower than the results of this 

thesis (7.3.2). These and comparable estimates by Harden et al. (2012) are even 

considered being overestimated (Schädel et al., 2014). However, the results of Schuur 

et al. (2009) are highly uncertain since they are based on measurements on only one 

site. A recent, model-based study by Schuur et al. (2015) approximated 37 – 174 Pg C 

to lose from the global PF zone by 2100 under the RCP8.5 scenario. This corresponds 

to 0.09 Pg C year-1 from the plateau on average, which is distinctly closer to an average 

of 0.15 Pg C year-1 (Section 7.3.2). Generally, global annual soil CO2 emissions are 

approximated to 63 – 120 Pg C (Raich and Schlesinger, 1992; Raich and Potter, 1995; 

Reichstein and Beer, 2008). This gives rise to the assumption that the calculated 

heterotrophic soil CO2 emissions induced by PF thaw (Table 13) are as a whole to be 

revised upwards after further research.  

Differences between the years 2050 and 2070 in thawing-induced CO2 emissions 

reflect their linear calculation and decreasing C-stocks. As natural process, thawing of 

PF does, however, not progress strict linearily. Nevertheless, the relative high 

independence of temperature (Schädel et al., 2014) does not require further 

differentiations of different temperature scenarios. 

The spatial distribution of CO2 emissions with a concentration of high values in the 

central part of the plateau (Figure 6) resembles the spatial distribution of the C:N ratio 

in the study area. There, the C:N ratio ranges from 0 – 25 (Batjes, 2015). Highest C 

losses occur in this area (Figure 9), confirming the results of Schädel et al., (2014) that 

present the C:N ratio as most reliable predictor of C loss compared to either C or N 

concentration. The PF conditions, conserving fragmentary decomposed organic 

matter, may account for this positive relationship, which reflects the stabile presence 

of N in the system (Schädel et al., 2014). 
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The calculated C stocks (Figure 8), reflecting the decrease caused by the raised C 

decomposition as steadily declining from 2015 to 2070, appear to be reasonable in 

view of other studies on C stocks. They fit the order of magnitude of field measured 

data with about 10 kg C m-2 in PFS of alpine grasslands of the Qinghai-Tibet Plateau 

to a depth of less than 1 m (Wang et al., 2008; Doerfer et al., 2013) or 56.5 kg C m-2 in 

meadows (Mu et al., 2015) as examples. The global C stock estimates by Batjes (2015) 

clearly show the same patterns of the spatial distribution of C stocks on the Qinghai-

Tibet Plateau overall with highest C stocks on the Qinghai-Tibet Plateau reaching 

global maxima. Carvalhais et al. (2014) approximates the global maximum for soil C 

stocks to 243 kg C m-2, which is comparable to the maxima in this study. Compared to 

450 Pg C (Zimov et al., 2006) in the Siberian loess PF (1 x 106 km2), the C stock 

estimated in this study appears to be much lower, resulting from the fact that it covers 

only a depth to 2 m in contrast to 25 m as reported in Zimov et al. (2006). They also 

include roots and partly organic matter in their less spatially differentiated 

approximations as not considering coarse fragments in their calculations and using 

only one standard value for organic C content and bulk density which accounts for 

much higher values. Their uncertainty is further assessed as possibly deviating by 

several hundred Pg (McGuire et al., 2010). Moreover, an extreme spatial variability of 

soil organic C stocks on the Qinghai-Tibet Plateau has been reported (Mu et al., 2015), 

leading generally to a wide range in area-wide estimations. C stocks for the PF region 

on the Qinghai-Tibet Plateau were calculated with about 160 Pg C up to 25 m in a 

similar order of magnitude by Mu et al. (2015) compared to the estimates for the 

Siberian loess PF. However, the strong methodological differences to this study are to 

a large extent very similar next to a broader definition of the PF area. Genxu et al. 

(2002) estimate the C stock of the plateau´s grasslands to 33.5 Pg. However, they only 

consider the first 70 cm of the soil. The estimation of Mu et al. (2015) for the first two 

meters amount to about 27.9 Pg C for the PFS on the Qinghai-Tibet Plateau indicating 

that estimates in this study (Section 7.3.1) are reasonable. Since the calculations by 

Mu et al. (2015) are based on literature data from different studies, they expect 

deviations of several 10%  regarding the C contents as base for their calculations due 

to different methodological approaches.  

However, there are various sources of uncertainty relevant to the results of PF thaw-

induced soil CO2 emissions presented in this thesis. First of all, the amount of C stock 
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as basis for the estimation of PF-induced soil CO2 emissions bears deficiencies arising 

from the input data.  

The input data sets from the WISE30sec data inhere deficiencies that arise from 

processing simplifications resulting in prediction accuracies from 23 - 51% (point-

based). Potential biases occur especially for soil characteristics “not observed” as the 

volumetric gravel content that was calculated using taxotransfer rules. The pragmatic 

combination of soil profile data from different sources led in the process of harmonizing 

and reclassification to generalizations (Batjes et al., 2015). With different soil analytical 

methods in nearly each country, even possibly varying between laboratories, 

comparability remains critical. To some extend these differences result from the fact 

that the analytical procedures depend on the soil type. However, no straightforward 

method of harmonization of the data exists (Batjes, 1999), why the synthesis of the 

data has proceeded pragmatically as in studies before at this scale (Batjes, 2002). 

Also, soil geographic as well as taxonomic gaps do exist. Generally, the soil profiles 

are spatially irregularly distributed. Further uncertainties originating from the spatial 

data and processes of aggregation, are not yet possible to be quantified at present. 

(Batjes et al., 2015). Moreover, the PF of the Qinghai-Tibet Plateau may reach a depth 

up to more than 130 m (Wang and French, 1995) and soil C stocks at least several 

10 m (Mu et al., 2015). Consequently, the C stocks must be higher than the 

WISE30sec data set captures with a depth of 2 m. Thus, the thawing-induced CO2 

emissions in the field are higher, however, it is to assume that the PF thawing process 

does not reach this depth within the addressed years (Pang et al., 2012). Despite their 

limitations, however, the WISE30sec data sets provide the most recent, appropriate, 

area-explicit information on soil properties for the Qinghai-Tibet Plateau needed to 

calculate C stocks at a resolution of 1,000 m x 1,000 m to a depth of 2 m in order to 

assess potential soil CO2 emissions on the Qinghai-Tibet Plateau. 

In the Global PF Zonation Index Map, main uncertainties also occur for less studied 

areas such as the Qinghai-Tibet Plateau (Gruber, 2012), potentially affecting the 

extend of PF on the Qinghai-Tibet Plateau in this thesis. Generally, the high spatial 

variability of PF is not captured by the resolution at hand. The occurrence of permafrost 

is a result of the interaction of various influencing factors. The Global Permafrost 

Zonation Index Map, however, solely determines the existence of permafrost based on 

mean annual air temperature leading to deficiencies. Excluding topographic effects 

such as the exposition of hills to sun or temperature effects of snow warming the 
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underground are not represented. Likewise is deep permafrost not considered with its 

influence on near-surface conditions. The model on which the map is based on, further 

does not reproduce effects of valleys and depressions where inversions and the 

drainage of cold air often impact ground temperature. Vegetation effects and thermal 

characteristics of the ground are further not considered. Sub-grid variability may differ 

between grids which is also not reproduced by the map as well as transient effects 

(Gruber et al., 2012). Given the variety of definitions of PF, differences in the 

determination of the area covered by PF may occur (Gruber, 2012), resulting in 

deviations of the amount of calculated soil CO2 emissions in this thesis. Further 

inaccuracies are assigned to limitations of the input data sets for the derivation of the 

spatial PF extension. Next to these uncertainties, areas with less than 50% coverage 

of PF were not included in this thesis, indicating that estimates for the PFS CO2 

emissions on the Qinghai-Tibet Plateau are possibly biased low. However, their 

inclusion would potentially have caused a stronger bias. Further uncertainties of the 

estimations of thawing-induced soil CO2 emissions arise because the soils in the 

defined PF area are both horizontallly and vertically not continuously frozen. Hence, 

the amount of soil organic C made available for decomposition through thawing is less 

because an active layer exists and discontinuous PF areas are included. 

 

The results of PF CO2 emissions further do not represent the variation due to the non-

linear character of the amount of frost-free days in a year. Indicated by the results by 

Zhang et al. (2014) using data from 73 meteorological stations on the plateau for the 

observation period from 1960 to 2010, the trend of the lengthening of the frost-free 

season does not follow linear patterns. They further report a dependence of the frost-

free season lengthening on elevation since there are less additional frost-free days in 

areas higher than 3,000 m a.s.l. (3.1 days/decade) compared to areas below 3,000 m 

a.s.l. (4.7 days/decade) (Zhang et al., 2014), which leads to deviations in the presented 

results here. 

Another limitation of the potential thawing-induced CO2 emissions in the presented 

results  (Section 7.3.2, Table 13) arise from the transfer of the incubation experiments 

as base for the calculations. The soil samples of the experiments originate from the 

northern circumpolar PF zone with different climatic and environmental conditions. As 

the soil samples, further, are taken from different studies, their sampling methods are 

not fully consistent inhering another potential source of uncertainty. Moreover, the 
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thawing experiments are executed under laboratory conditions that may deviate from 

the process in natural environments due to strong simplifications. Fresh litter 

additionally incorporated into the soil is not regarded as well as it is assumed that 

abiotic factors do not change in contrast to a natural environment (Schädel et al., 

2014). Of special importance are drainage conditions altering thawing-induced C loss 

by 9 – 75% (Elberling et al., 2013) that the calculated results do not reproduce. The 

estimations of this study further do not consider the C quality. As parts of the C have 

undergone microbial decomposition before their inclusion in PF, C quality differs 

among pools (Schuur et al., 2008). The amount of C loss strongly depends on C quality 

as determining its turnover time (Shaver et al., 2000; Schädel et al., 2014), therefore 

leading to uncertainties in the calculated results. Uncertainty further arises from the 

extrapolation of the results up to 50 years, disregarding potential variation over time. It 

is further to expect that the linear developement of C loss over time assumed for the 

calculations presented here does not correspond to the natural course as climate 

change is characterized by a high complexity. Moreover, variation due to soil types is 

methodologically not considered in the calculation. According to Schädel et al. (2014), 

potential C loss is about four times higher in organic soils than in mineral soils. With 

organic soils hardly occuring in the study area (less than 0.1% on the entire Qinghai-

Tibet Plateau)  (FAO, 2012), soil CO2 emissions are, however, accordingly only 

marginally lower than the results of this thesis suggest.  

Overall, the quantification of soil CO2 emissions on the Qinghai-Tibet Plateau under 

the influence of climate change is challenging, yet the results obtained based on freely 

accessible data appear to be reasonable when comparing to other studies. In general, 

using these freely accessible data inheres several limitations and uncertainties in 

general that have partly not even been quantified yet. Therefore, estimations based on 

them have to be used with caution in view of their deficiencies. In combining the 

different data sets with their respective limitations in data quality, the deficiencies 

become even more complex and less quantified. Also, the order of magnitude of 

potential deviations may change and results may not be as comparable e.g. absolute 

changes of general soil CO2 emissions over time may range in a different order of 

magnitude than the changes over time of the thawing-induced soil CO2 emissions in 

absolute numbers. In adding them up to total soil CO2 emissions, this difference is less 

obvious and the results need to be interpreted carefully. However, on a regional scale 

as well as for exploratory investigations, the individual data sets are considered both 
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appropriate and advantageous as highly efficient suppliers of area-explicit data at a 

high resolution. As the combination of these freely accessible data sets even increases 

the inaccuracies of the results, they, as a matter of principle, cannot reach the precision 

of using a fully consistent data set. This approach obtains its appropriateness in view 

of the early stage of this research area together with its relevance to the vital problem 

of climate change necessitating results in a timely manner, and other approaches still 

being highly uncertain as well. Thereby, the high potential of freely accessible data to 

answer questions alike is strongly indicated. Although in terms of spatial resolution and 

standardization of methods they remain deficient, freely available data constitute a 

highly promising source especially for the addressing of problems needing a fast, 

facile, and low-cost estimate. Fields of research at an early stage, remote study areas 

with a high data scarcity or pilot schemes are naturally predestinated to operate with 

freely accessible databases. 

However, the discussion shows that the results do not reflect the complexity of the 

phenomenon soil CO2 emissions with high variability over space and time. It is further 

revealed that the results are, although reasonable, still highly uncertain. 

The application of empirical regression models, has once more proven to be generally 

capable to deliver reasonable results, also for soil CO2 emissions. Although soil CO2 

emission is a complex phenomenon, numerous studies, especially for large scales, 

have used very simple, many times solely climate-driven models to estimate soil CO2 

emissions (Raich and Schlesinger 1992; Raich et al., 2002). The simplification of this 

process inheres, however, a number of uncertainties, why these models have to be 

used with caution. Moreover, the transferability to other regions from the one the model 

has been developed for, inheres particular difficulties as climate and environment and 

the various factors involved typically differ. Nevertheless, with accepting a lower 

degree of precision, concentrating on the main patterns, empirical models still can be 

applied for other regions than the one it was developed for. Especially in combination 

of a data-scarce area where high precision is an unfeasible goal, empirical regression 

models are a method of choice. Also, for an efficient general or preliminary estimate, 

empirical models are in a diagnostic sense highly useful and the most suitable 

instruments at present as indicating basic patterns. 

In general, the results show the high influence of climate change on soil CO2 

emissions. Especially for the PF areas, the amount of CO2 being released to the 
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atmosphere reaches dimensions that clearly direct all efforts of mitigating climate 

change to strengthen. The amount of CO2 releases from the PFS of the Qinghai-Tibet 

Plateau due to thawing is about 1.92% of the global anthropogenic emissions 

[7.8 Pg C year-1 (IPCC, 2013)], pointing to the importance of PF areas on earth. Even 

though parts of the increased CO2 emissions are supposed to be neutralized by a 

higher plant uptake, it is still important to consider that those soil CO2 emissions are 

affected by climate change as well. This is important when measuring soil CO2 

emissions and interpreting the results as only parts of those emissions are being 

expected to be compensated inherent to the system and naturally within human 

timescales. Further, even if total soil CO2 emissions do not alter strongly, depending 

on the share of its components, as e.g. PF thaw-induced CO2 emissions, the impact 

on climate change might still be huge.  

The Qinghai-Tibet Plateau is further well known as climate-sensitive region, which is 

confirmed by the results of this thesis. The thawing of PFS releases large quantities of 

CO2 potentially accelerating climate change in turn. The large PF region on the Plateau 

together with its high sensitivity to global warming contribute to a remarkable extend to 

the atmospheric CO2 budget. 

To sum up, these potential soil CO2 emissions from PFS on the Qinghai likely do not 

meet the degree of precision to be expected after further research and improved 

methodology. However, they indicate the large quantities of soil CO2 emissions from 

the PF on the Qinghai-Tibet Plateau that could be transferred to the atmosphere and 

seriously impact global change.
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9 Conclusions and Outlook  

CO2 emissions from soils on the Qinghai-Tibet Plateau potentially increase 

atmospheric CO2 concentration, thus accelerating climate change. Although the 

estimates of this thesis are subject to several constraints, potential CO2 emissions from 

those PFS range within an order of magnitude that appeals for strategies to reduce 

those CO2 emissions. However, the main increase of soil CO2 emissions on the 

Qinghai-Tibet Plateau results from global warming itself, indicating the importance of 

both national and international political solutions to manage anthropogenic CO2 

emissions in order to mitigate global warming. Regarding general CO2 emissions from 

soils, altered land management practices support their reduction. Zero tillage, 

augmenting perennial grasses, preferring more manure from plant residues, crop 

rotations and especially changed grazing patterns (i.e., grazing in short rotation) 

decrease soil CO2 emissions (Smith et al., 1997; Falloon et al., 2002; Mangalassery et 

al., 2014). In order to implement these strategies tightly focused, further research is 

needed to enhance the knowledge about the strength and time scales of those effects 

that are likely to vary spatially.  

While this thesis confirms the meaning of the Qinghai-Tibetan Plateau for soil CO2 

emissions, there is still a lack of more precise knowledge about the amount of soil CO2 

emissions as least understood part in the global C cycle. Further research therefore 

should mainly target on improving models to reduce the limitations of estimates. 

Empirical models best are developed region-specific to address their particular 

characteristics as e.g. a prominence of PF. Further, models should be developed on 

different timescales to account for the variation of the controlling factors and their 

respective varying impact across scales of time. Differentiating between vegetation 

and ecosystem types would be of high importance for models especially when targeting 

the regional scale as naturally heterogenous area. With soil properties largely 

influencing soil CO2 emissions, soil-specific models would increase the accuracy of 

approximations. According to the impact of topographic features, models could further 

increase their predictability if developed differentiated according to e.g. exposition.  

This thesis confirms the influence of global warming on soil CO2 emissions, however, 

this complex influence is not yet sufficiently understood. Contradicting results from 

different studies indicate the need to investigate the controlling factors of the sensitivity 

of general soil CO2 emissions to climate change. With regard to the influence changing 
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over time, investigations should be carried out across different scales of time. Further, 

as the response to climate warming varies spatially, areas should be targeted 

specifically e.g. according to their degree of humidity and temperature. 

Soil CO2 emissions induced by the thaw of PF are quantitatively the most important 

part of soil CO2 emissions relevant to climate change. Thus, the decomposition of PF 

C responding to future climate warming should be explicitly incorporated into current 

models predicting future global warming. Moreover, further research on this 

phenomenon is needed as, to date, only a small amount of data and experiments on 

the PF C release induced by warming exist. Modeling this process differentiated e.g. 

according to soil type respectively to the content of organic and mineral compartments 

could provide more accurate insights about the amount released. 

Present freely accessible data are a useful, highly efficient resource in order to 

calculate a large-scale phenomenon with plausible results in a fine resolution. 

However, the databases still lack of a general higher spatial precision and a 

homogenous data basis. Especially poorly sampled regions require more data 

acquisition efforts to enhance the accuracy of the data sets and increase the spatial 

resolution. Objects of research that have not been well-investigated yet or still lack of 

the development of elaborated methods with high requirements for input data may 

benefit most from those data with regard to time and cost. 

Empirical regression models provide a high potential to reasonably estimate complex 

processes even when applied not region-specific as this thesis indicates. Especially in 

view of the limitations of process-based models, empirical regression models are 

highly promising. 

To sum up, as exemplified in this thesis, highly unknown, complex and under-

investigated, yet highly relevant large-scale phenomena can be both efficiently and 

reasonably quantified by means of simple regression models and freely accessible 

data. Especially when targeting on preliminary results, this approach inheres strong 

advantages in terms of efficiency. 

Finally, the results of this thesis provide information on an areawide future soil C loss 

under climate change scenarios on the Qinghai-Tibet Plateau. The results further 

support in identifying potential sources and sinks of C and in an enhanced 
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understanding of the role of the PF C on the Qinghai-Tibet Plateau in the global C cycle 

in view of and under the influence of climate change. 
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Abstract 

Ecosystems in alpine permafrost regions like the Qinghai-Tibet Plateau are highly 

sensitive to global warming. Climate change potentially triggers large carbon loss from 

this ecosystem and thus exerts a relevant positive feedback to the climate warming. 

However, quantifying soil carbon dynamics in these remote areas is a challenge, 

because data on belowground biomass (BGB) as important carbon supplier for soils 

are scarce. Our current study aims at the approximation of BGB for the Qinghai-Tibet 

Plateau. We compared six regression models based on January mean temperature, 

July mean temperature, mean annual temperature (MAT), mean annual precipitation 

(MAP) and elevation on their ability to predict BGB for the entire plateau. We used the 
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WorldClim and Shuttle Radar Topography Mission data sets to estimate BGB area-

wide on a regional scale. Our predicted results (max. 199.99 Mg ha-1) compared to 

directly measured BGB samples at field plots in different vegetation zones on the 

Qinghai-Tibet Plateau (max. 145.67 Mg ha-1) appear to be reasonable. The basic 

difference in BGB between grasslands and forests is reflected by all regression 

models. The model based on MAT overall performs best for most and largest 

vegetation zones. Alpine steppe, alpine mixed forests and alpine spruce fir forests are 

distinctly better estimated by the MAP-based regression. For desert grasslands and 

the alpine desert, the MAT-based model is only negligibly outperformed by other 

models. With this quantification, a more accurate basis for the calculation of BGB at a 

large scale as input for an area-specific assessment of soil respiration is provided. 

 

Keywords 

Belowground biomass, regression model, Qinghai-Tibet Plateau 

 

1 Introduction1 

Soil respiration, as second largest flux of CO2 to the atmosphere (Schlesinger and 

Andrews, 2000; Bond-Lamberty et al., 2010), crucially influences the global carbon 

cycle (Chen et al., 2010). With more than 1500 Pg C, soil contains most C in terrestrial 

ecosystems (Raich and Schlesinger, 1992; Amundson, 2001). Small raises in the 

amount of soil respiration can therefore impact atmospheric CO2 concentrations, 

potentially increasing global warming (Rodeghiero and Cescatti, 2005; Davidson and 

Janssens, 2006; Rodeghiero et al., 2013; Wang et al., 2014).  

Since more than two-thirds of terrestrial carbon is contained belowground (Klopatek, 

2002) and thus, roots as well as microbes respire a considerable part of the CO2 to the 

atmosphere that is assimilated in by plants, BGB is of key importance for soil 

respiration rates (Luo and Zhou, 2006; Moyano et al., 2009). Following Luo et al. 

(2005), in this study, BGB comprises in general the whole root biomass including living 

and dead roots. Living roots respire up to more than half of plant photosynthates a day 

                                            

1 Abbreviations: belowground biomass (BGB), carbon (C), carbon dioxide (CO2), mean annual temperature (MAT), mean 

annual precipitation (MAP). 
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(Lambers et al., 1996). Autotrophic respiration may contribute 10 to more than 90% of 

total in situ soil respiration mainly influenced by vegetation type and season (Hanson 

et al., 2000). The decomposition of dead roots is also part of soil respiration as 

heterotrophic component with no reliable quantification yet (Kuzyakov, 2006). Roots 

contain a significant part of the total carbon of ecosystems (Kurz et al., 1996) and 

mostly contribute a large amount to the total biomass of the ecosystem (Cannell, 1982; 

Jackson et al., 1996). Potentially, in most ecosystems, soil organic C preponderantly 

originates from roots (Rasse et al., 2005). Rasse et al. (2005) further provide 

multitudinous evidence for root C being the dominant contributor to soil C and doing 

so all the more with increasing soil depth. 

The ecologically fragile Qinghai-Tibet Plateau is a key region for examining ecosystem 

compartments due to its strong sensitivity and comparably low human impact (Liu and 

Chen, 2000; Yang et al., 2009; Fan et al., 2010). The highest and most spatially 

extensive plateau on earth is influenced by global warming (Zhang et al., 2010) and is 

highly susceptible, primarily due to its extreme elevation (Luo et al., 2002; Zhong et al., 

2010). Its temperature is expected to increase far above average in the future (Liu and 

Chen, 2000; Christensen et al., 2007; Wang et al., 2008a). Climate change is even 

presumed to be the main reason for the increasing global loss of soil carbon to the 

atmosphere (Jones et al., 2003). BGB is the factor that spatial variation of soil 

respiration in grassland ecosystems on the Qinghai-Tibet Plateau mostly depends on 

at a regional scale due to a high root biomass density (Geng et al., 2012). Almost two 

thirds of the Qinghai-Tibet Plateau is covered by grassland (Wang et al., 2006; Yang 

et al., 2008). Therefore, an accurate basis for the area-specific quantification of BGB 

strongly supports the assessment and highly necessary understanding of soil 

respiration rates on the Qinghai-Tibet Plateau (Geng et al., 2012). 

Quantifying root biomass by means of direct field measurements, commonly described 

as the most basic, direct and authentic method, is, however, strongly limited (Fang and 

Moncrieff, 2001) for cost and time reasons. Existing methodological difficulties further 

aggravate the quantification of BGB (Titlyanova et al., 1999). The various methods to 

sample roots have not been standardized yet, especially with respect to depth (Luo et 

al., 2005). Information about the definition of size classes, drying methods, as well as 

the inclusion of dead and live roots is likewise deficient (Cairns et al., 1997). For large 

areas, one possible solution is to apply predictive tools in order to quantify BGB. 
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However, little knowledge exists about biotic and abiotic factors that influence BGB 

(Vogt et al., 1996; Cairns et al., 1997) although some studies on grazing effects on 

BGB on the Qinghai-Tibetan Plateau have been conducted (Hafner et al., 2012; 

Unterregelsbacher et al., 2012; Shi et al., 2013; Babel et al., 2014). For example, only 

little knowledge exists about the stability of BGB, as it is for the aboveground biomass 

when short-term changes through human impact like grazing are primarily to be 

considered (Fan et al., 2010; Ingrisch et al., 2015). Additionally, phenological 

phenomena relevant to the amount of biomass like foliation, are issues of aboveground 

biomass (Fitter, 1996). Overgrazing has been shown to affect root biomass, even 

though much less than aboveground biomass (Unterregelsbacher et al., 2012). 

Further, while grazing exclusion can decrease of the total amount of BGB and stored 

C (Hafner et al., 2012; Shi et al., 2013), grazing-induced changes of vegetation can 

also decrease C storage in BGB (Babel et al., 2014). Nevertheless, as there is more 

directly measured and indirectly obtained data on aboveground biomass (Yang et al., 

2009), a very common method to calculate BGB is using root:shoot ratios (e.g. 

Schroeder and Winjum, 1995; Eamus et al., 2002; Mokany et al., 2006). However, 

Cairns et al. (1997) conclude from their analysis from the world´s forests that the 

amount of root biomass is better estimated directly without the application of root:shoot 

ratios.  

There are studies on quantified relationships between climate and BGB (Schulze et 

al., 1996). According to Gill et al. (2002) global literature synthesis, MAP and/or MAT 

can serve as main predictor for BGB in grasslands. Few transect studies show that 

BGB decreases with decreasing precipitation and likewise decreases with increasing 

altitude (Schulze et al., 1996). The most important limiting factors for the amount of 

root biomass of undisturbed vegetation comprise temperature and precipitation in 

general (Luo et al., 2005). Regression models of Luo et al. (2005) involve climatic 

variables as input parameter such as MAT, MAP, January mean temperature and July 

mean temperature and also elevation (Luo et al., 2005). However, high requirements 

for the input parameters of many more of such regression models are still opposed to 

a small number of sufficient data sets in case of the Qinghai-Tibet Plateau. Data for 

that region at a sufficient spatial resolution are scarce due to the inaccessible and 

complex terrain causing that lack of data. Various data sets lack of a fine (about 1 km2) 

resolution that captures spatial environmental variability appropriately. Others are not 

spatially comprehensive, available or existent. 
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For the Qinghai-Tibet Plateau, Ohtsuka et al. (2008) showed BGB is closely related to 

elevation. Precipitation and temperature are also likely to well predict the amount of 

root biomass for the Qinghai-Tibet Plateau (Luo et al., 2005) as its vegetation is 

regarded as comparatively natural (Yang et al., 2009). However, parts in the humid 

southeast underlie human-induced changes where Kobresia pygmaea grows instead 

of forests and grasslands as presumed natural vegetation (Miehe et al., 2014). 

Facing these issues, we aim at finding the most optimum available regression model 

for BGB on the Qinghai-Tibet Plateau in this study. The algorithm should allow to (1) 

calculate BGB on a large scale (2) reflect variation of BGB correspondingly to major 

vegetation types. 

2 Material and Methods 

2.1 Study area 

Our study area, the Qinghai-Tibet Plateau, is located in southwestern China. With an 

area of about 2.6 ×106 km2, it fully covers Tibet and Qinghai provinces and partially 

Xinjiang, Gansu, Sichuan, and Yunnan provinces. As largest plateau on earth, the 

Qinghai-Tibet Plateau extends from 26°00′12" N to 39°46′50" N and from 73°18′52" E 

to 104°46′59" E with a maximum length of approximately 2 945 km from east to west 

and approximately 1 532 km from south to north. The altitude of the highest and 

youngest plateau amounts to 4 380 m on average (Zhang et al., 2002). Surface 

elevation sharply declines at the plateau´s border, particularly at the southern one. 

Overall, eastern and western regions highly differ with regard to geomorphology, 

vegetation and climatic characteristics (Smith and Shi, 1995). The unique geographical 

position of the Qinghai-Tibet Plateau prevails an azonal, plateau monsoon climate from 

subtropical parts to a temperate mountain climate (Zhuang et al., 2010; Zhong et al., 

2010) with strong solar radiation, low air temperature, large daily temperature 

variations and limited differences between annual mean temperatures (Zhong et al., 

2010). The mean temperature of July, the warmest month, varies from 7 °C to 15 °C 

and the coldest month, January, ranges from -1 °C to -7 °C, with the average annual 

temperature being 1.6 °C (Yang et al., 2009). Precipitation amounts to about 413.6 mm 

a year (Yang et al., 2009), with more than 60 - 90% falling in the wet and humid 

summers (June-September) and 10% at maximum in the cool, arid winters (November-

February) (Xu et al., 2008). Generally, a decrease both in temperature and in 

precipitation from the south-eastern to the north-western part of the plateau is apparent 
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(Immerzeel et al., 2005). The topographic setting as well as atmospheric conditions 

determine the sequence of alpine forests, meadows, steppes and deserts from 

southeast to northwest (Fig. 1) following a climatic gradient from warm and humid to 

cold and arid according to the influence of the South Asian monsoon (Zheng, 1996; 

Pei et al., 2009).  

 

Fig. 1. Vegetation map of the Qinghai-Tibet Plateau based on data sets for Land Cover in Tibet with 
sampling localities of Luo et al. (2005), Wang et al. (2008b), Yang et al. (2009), Li et al. (2011), 
Geng et al. (2012) (Tibetan and Himalayan Library, 2002). 

 

Alpine steppes and meadows dominate the vegetation, with Kobresia meadow as 

major vegetation type. Alpine grasslands bestride more than 60% of the study area 

(Wang et al., 2006). According to the long freezing periods, relatively short growing 

seasons characterize the plateau`s climate (Yu et al., 2010). Continuous, complex 

pedogenetic processes on the Qinghai-Tibet Plateau typically result in young and 

highly diverse soils with distinct degradation characteristics, exhibiting a strong 

influence by permafrost regimes (Baumann et al., 2014). 
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2.2 Geodatabase and processing  

For the approximation of BGB from temperature, precipitation and elevation data, five 

data sets were used in this case study. All data sets were projected into the Universal 

Transverse Mercator coordinate system WGS 1984, Zone 45 N. The data were 

obtained from the WorldClim data set available at http://worldclim.com. This was 

compiled from a considerable number of various sources, such as the Global Historical 

Climate Network, World Meteorological Organization and the Food and Agricultural 

Organization, with a resolution of 1 x 1 km and representing the current climate 

conditions from ca. 1950 to 2000. Data from more than 71 000 climate stations 

worldwide (for precipitation), and more than 45 000 climate stations (for temperature) 

are integrated with the Qinghai-Tibet Plateau as area with less densely distributed 

measurement points. These were, however, interpolated using a thin-plate smoothing 

spline algorithm. Latitude, longitude and altitude served as independent variables. 

Elevation data were used from the Shuttle Radar Topography Mission with a spatial 

resolution of 1 x 1 km (for more detailed information see Hijmans et al., 2005). For our 

estimations, we used the following data sets: January mean temperature, July mean 

temperature, annual mean temperature, annual precipitation and altitude.  

2.3 BGB calculation and evaluation 

The data sets of WorldClim form the respective input parameters of the regression 

models, one combining MAT and MAP, for the calculations of BGB which were 

developed by Luo et al. (2005) (Table 1). In the BGB samples, living and dead roots 

are included. 

 

 

Table 1. Regression models to approximate belowground biomass by Luo et al. (2005) from Tibet 

Regression 

based on 

Equation Parameters 

January mean 

temperature x 
 𝑦 = 200/(1 + exp(−0.1434𝑥 + 1.0789)) y = root biomass density (Mg/ha),          

x = January mean temperature (°C) 

July mean 

temperature x 

𝑦 = 200/(1 + exp(−0.2245𝑥 + 4.6125)) y = root biomass density (Mg/ha),         

x = July mean temperature (°C) 

Annual mean 

temperature x 

𝑦 = 200/(1 + exp(−0.1750𝑥 + 2.5543)) y = root biomass density (Mg/ha),         

x = annual mean temperature (°C) 

Annual 

precipitation x 
𝑦 = 200/(1 + exp(−2.14𝐸 − 06𝑥2 −  0.00575𝑥 + 4.78)) y = root biomass density (Mg/ha),         

x = annual precipitation (mm) 
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Annual mean 

temperature and 

annual 

precipitation x 

𝑦 = 200/(1 + exp(−0.0001594𝑥 + 2.5869)) y = root biomass density (Mg/ha),         

x = annual mean temperature x 

annual precipitation (°C x mm) 

Altitude x 𝑦 = −0.0209𝑥 + 104.89 y = root biomass density (Mg/ha),         

x = altitude (m) 

After the application of the regression models, we tested their ability to predict BGB by 

a validation of our results with field measured results of other studies (Table 2). The 

samples were taken by Luo et al. (2005), Yan et al. (2005), Wang et al. (2008b), Yang 

et al. (2009), Li et al. (2011), Wu et al. (2011) and Geng et al. (2012) located in nine 

different vegetation types: Alpine steppe, alpine shrubs and meadows, desert 

grassland, dry valley forests, subtropical forests, alpine mixed forests, alpine spruce 

forests, timberline zone and alpine desert. The respective vegetation type of the 

samples has been identified by each study. The validation sites altogether cover not 

only a broad range of the major vegetation types on the Qinghai-Tibet Plateau but also 

a variety of climatic conditions and altitudes (1900 m – 5105 m a.s.l.) spread out almost 

over the entire Qinghai-Tibet Plateau (Fig. 1). Not displayed in Fig. 1 are the sites of 

Yan et al. (2005), who sampled in the central and northern central part, and Wu et al. 

(2011) (northeastern part). Due to the rather unsystematic and scarce evaluation data 

set, we mainly compared ranges of the estimated BGB values. To account for the 

strong influence of vegetation type on BGB, this was performed for each vegetation 

zone. The ranges for the vegetation zones comprise those grid points´ values that 

correspond to the precise geographical coordinates from the sampling sites of the 

literature data in the respective vegetation zone. Due to a lack of precise spatial 

information on the sites of Yan et al. (2005) and Wu et al. (2011), only the minima and 

maxima for the respective vegetation types could be considered. For the overall range 

of all field measured values of all studies, all area-wide calculated values for the whole 

plateau are compared to all field measured values, demonstrating their variation. We 

further calculated the mean relative errors to allow for a direct point-to-point 

comparison.  

3 Results  

3.1 Variation of BGB with vegetation  

The resulting BGB estimates of the tested regression models vary strongly with 

different vegetation types (Table 2, Fig. 2). 
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Table 2. Range of belowground biomass for different vegetation types on the Qinghai-Tibet Plateau measured by Luo et al. (2005), Yan et al. (2005), Wang et 
al. (2008b), Yang et al., (2009), Li et al. (2011), Wu et al. (2011), Geng et al. (2012) and calculated based on regression models. 

 

Vegetation 

type 
 Luo et al. 

(2005)  
(nAS =3;  

nAM = 5;  

nDF = 2;  

nSF = 2;  

nAMF = 3; nASF 

= 4; nT = 3) 

Yan et 

al. 

(2005) 
(nAS =1; 

nAM = 2) 

Wang 

et al. 

(2008b) 
(nAM = 

12) 

Yang 

et al. 

(2009) 
(nAS = 

73; 

 nAM = 

35) 

Li et al. 

(2011) 
(nAS = 17;  

nAM = 7; 

nDG = 8; 

nAD = 5) 

Wu et 

al.  

(2011) 

Geng et 

al. (2012)  
(nAS = 18; 

nAM = 20) 

All field 

samples 

 
Regression model based on 

(nAM = 

30) 
January 

mean 

temperature  

July mean 

temperature  

MAT 

 

MAP  

 

MAT 

and 

MAP  

Elevation  

 [Mg ha-1] 

Alpine 

steppe (AS) 

Range 

 
(Mean rel. 

error [%]) 

6- 

10 

8.86 - 0.44-

18.34 

12.12-

16.13 

- 2.01-

10.83 

0.44-

18.34 

4.22- 

19.48 
(343.92) 

4.01- 

52.99 
(515.99) 

3.76- 

28.84 
(375.99) 

2.77- 

19.55 
(231.80) 

9.43-

18.11 
(562.67) 

-14.15- 

50.86 
(219.98) 

Alpine 

meadows 
(AM) 

Range 

 
(Mean rel. 
error [%]) 

9- 

32 

24.90-

100.48 

17.97-

145.67 

0.82-

27.84 

26.67-

49.30 

13.40-

24.74 

5.43-

93.93 

0.82-

145.67 

4.36- 

28.81 
(91.71) 

4.12- 

47.34 
(111.75) 

3.76- 

31.90 
(97.46) 

4.54 -

49.39 
(110.08) 

9.96-

20.48 
(124.87) 

-16.51- 

47.78 
(142.51) 

Desert 

grasslands 
(DG) 

Range 

 
(Mean rel. 
error [%]) 

- - - - 5.97-

12.41 

- - 5.97-

12.41 

8.73-  

13.12 

- 

12.22- 

21.00 

- 

 

8.79-

14.43 

- 

3.47- 

5.93 

- 

12.90-

14.00 

- 

5.32- 

12.46 

- 

Dry  

Valley 

forests (DF) 

Range 

 
(Mean rel. 

error [%]) 

18- 

52 

- - - - - - 18-52 14.38- 

48.06 
(14.16) 

11.22-

52.99 
(25.34) 

12.19-

51.19 
(17.13) 

10.13- 

23.07 
(49.65) 

13.22-

29.69 
(34.85) 

3.92- 

39.10 
(51.68) 

Subtropical 

forests 
(SF) 

Range 

 
(Mean rel. 

error [%]) 

67- 

95 

- - - - - - 67-95 50.84- 

58.11 
(30.18) 

 

53.15-

65.92 
(23.19) 

48.06-

58.55 
(31.32) 

41.85-

43.12 
(46.30) 

39.44-

45.99 
(45.17) 

48.59-

54.78 
(33.84) 

Alpine 

mixed 

forests 
(AMF) 

Range 

 
(Mean rel. 

error [%]) 

23- 

36 

- - - - - - 23-36 45.82- 

50.74 
(74.11) 

45.21- 

52.51 
(71.78) 

44.02-

53.86 
(72.41) 

24.31-

44.09 
(14.71) 

29.26-

37.05 
(13.06) 

38.64-

45.21 
(44.17) 
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Alpine 

spruce fir 

forests (ASF) 

Range 

 
(Mean rel. 

error [%]) 

21- 

49 

- - - - - - 21-49 34.22- 

38.86 
(44.61) 

28.58- 

34.78 
(32.08) 

31.09-

39.35 
(42.81) 

19.14-

45.41 
(47.27) 

20.98-

34.19 
(26.63) 

26.14-

40.77 
(39.66) 

Timberline 
(T) 

Range 

 
(Mean rel. 
error [%]) 

7- 

27 

- - - - - - 7-27 21.69- 

25.21 
(85.93) 

15.49-

18.97 
(56.63) 

18.85-

21.53 
(80.60) 

15.39-

49.39 
(224.25) 

15.78-

20.48 
(84.22) 

13.57-

25.19 
(110.00) 

Alpine 

desert (AD) 

 

All 

 

Range 

(Mean rel. 
error [%]) 

 

Range 

(Mean rel. 

error [%]) 

- - - - 3.11-

4.83 

- - 3.11- 

4.83 

 

0.44-

145.67 

 

2.90- 

10.01  

- 

 

0.53- 

159.11 

- 

2.52- 

29.56 

- 

 

0.13- 

173.93 

- 

2.29-

13.27 

- 

 

0.43-

167.66 

- 

2.49- 

13.88 

- 

 

0.00-

57.09 

- 

8.91-

13.85 

- 

 

2.04-

199.99 

- 

-23.35- 

36.87 

- 

 

-63.75- 

103.23 

- 
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Fig. 2. Range of belowground biomass for different vegetation types on the Qinghai-Tibet Plateau 
measured by Luo et al. (2005), Yan et al. (2005), Wang et al. (2008b), Yang et al., (2009), Li et 
al. (2011), Wu et al. (2011), Geng et al. (2012) and modeled using MAT, MAP and elevation as 
input for regression models. 

 

They amount up to 199.99 Mg ha-1. The field measured values overall vary between 

0.44 and 145.67 Mg ha-1. Pixel values below zero Mg ha-1 arise from the regression 

model based on elevation, representing areas higher than 5015 m. Due to the linearity 

of the elevation-based regression model, this can be regarded as a predicted limit of 

vegetation wherefrom BGB is zero. Ohtsuka et al. (2008) found no vegetation cover 

on the Qinghai-Tibet Plateau for as high as 5300 m and above. Ohtsuka et al. (2008) 

observed a peak of BGB at 4800 - 4950 m at an altitudinal gradient from 4400 – 

5300 m. It is, however, not manifested in the calculations of the regression model 

based on elevation due to its linear character. This likewise holds true for some variety 

in the altitude of the limit of vegetation. For example, BGB was at 29.90 Mg ha-1 at an 

altitude of 5105 m at some sampling site of Geng et al. (2012), which is to regard as 

an exception compared to other values at high altitudes. But again, the regression 

model based on elevation does not represent such variety. However, with providing no 

positive values for the amount of BGB at an elevation higher than 5015 m under the 

assumption this stands for BGB being zero, this regression model still reflects an 

approximated limit of vegetation and amount of BGB related to increasing elevation. 
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3.2 BGB of grasslands 

For the vegetation zone of alpine steppe, the range of BGB values calculated based 

on MAP (2.77 – 19.55 Mg ha-1) best represents the range of all directly measured BGB 

samples (0.44 – 18.34 Mg ha-1). With > 50% of the samples amounting to less than 

4 Mg ha-1, the MAT-based model then most closely lines up to the range of the field 

measurements. The regression with elevation as input parameter tends to 

overestimate BGB a number of times and so does the regression model based on July 

mean temperature, however, not as much as the elevation-based model. The mean 

relative error is lowest for the elevation-based model (219.98%), followed by the model 

based on MAP. The regression model that combines MAT and MAP as input parameter 

shows the lowest range (9.34 – 18.11 Mg ha-1) and smooths spatial variation, but lies 

within the range of directly measured BGB samples.  

In alpine meadows, the directly measured values of all evaluation studies, regardless 

of the respective samplings´ geographic location, number and spatial extension, clearly 

exhibit highest ranges (up to 127.7 Mg ha-1) of the amount of root biomass compared 

to all other vegetation types. This is due to the very high differences in BGB even 

between various meadow plant communities and causes strong small-scale variability 

[Wang et al., 2008b]. All regression models do not predict these high values for special 

plant communities. Further, the high spatial variabilty within the small distances 

between single plant communities differing highly in their BGB cannot be represented 

in a 1 x 1 km resolution. Comparing the ranges of the calculated values, the regression 

based on elevation is closest to what can be assumed as most realistic range of BGB 

values on the Qinghai-Tibet Plateau for alpine meadows. Although the minimum value 

of that regression (-16.51 Mg ha-1), indicating no BGB, does not fit to the respective 

value of comparison (29.90 Mg ha-1), it is still most consistent to the given range of root 

biomass values with 2.73 Mg ha-1 as next lowest, positive value. It does not reflect 

some peak at 4800 - 4950 m, compared to the observations for 4400 - 5300 m by 

Ohtsuka et al. (2008), but the evaluation data sets as well as the other regression 

models likewise do not show some peak values. The models including MAP 

respectively the July mean temperature almost reflect the height of the range of the 

direct measurements as much as the elevation-based regression, with the slightly 

higher minimum values (4.54 Mg ha-1 and 4.12 Mg ha-1 compared to 2.73 Mg ha-1 and 

one further, more appropriate prediction of the MAT-based model with 3.76 Mg ha-1) 
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as main difference. Mean relative errors are lowest for the model based on January 

mean temperature, narrowly followed by the model based on MAT. 

Desert grasslands´ BGB is best calculated using the regression model based on 

elevation with values between 5.32 Mg ha-1 and 12.46 Mg ha-1. These are with regard 

to minimum, maximum and width of range almost equal to Li et al. (2011) field values 

(5.97 - 12.41 Mg ha-1). Almost as accurate are the results of the estimations with the 

models based on January mean temperature and MAT (8.73 - 13.12 Mg ha-1 and 8.79 

- 14.43 Mg ha-1). With a minimum value (12.22 Mg ha-1) almost above the maximum 

of Li et al. (2011) measurements, the regression including July mean temperature 

clearly overestimates BGB, whereas the MAP-based model distinctly underestimates 

root biomass (3.47 – 5.93 Mg ha-1). The regression model based on MAP and MAT 

likewise does not appear suitable for the approximation of BGB due to its typical small 

range (12.90 – 14.00 Mg ha-1). 

3.3 BGB of forests 

In contrast to the alpine grasslands, all forest vegetation types show relatively higher 

amounts of BGB in direct measurements. This holds true for the calculations of all 

regression models.  

For dry valley forests, the minima of all regression models (3.92 – 14.38 Mg ha-1) 

clearly underestimate the minimum of the field BGB (18 Mg ha-1). In contrast, the 

maxima of all temperature-based regressions (48.06 – 52.99 Mg ha-1) arise well in 

accordance to Luo et al.`s (2005) directly measured root biomass (52 Mg ha-1). 

Considering the sampling method of Luo et al. (2005) with a maximum digging depth 

at 1.5 m, it is to assume that the field measurements did not capture all roots. Quercus 

can reach a rooting depth up to more than 10 m under extreme, especially dry, 

conditions (Stone and Kalisz, 1991). As the samples of Luo et al. (2005) were taken in 

a dry river valley, the rooting zone presumeably reaches more depth than 1.5 m. 

Therefore, although underestimating the minimum slightly stronger than the regression 

model based on monthly mean temperatures of January and a higher mean relative 

error, the regression model based on MAT shows best performance for dry valley 

forests with a more accurate maximum value.  

Root biomass in subtropical forests is underestimated by all regression models. Not 

even the range of their maximum values (43.12 – 65.92 Mg ha-1) catches up with the 

minimum of Luo et al.`s (2005) field measurements (67 Mg ha-1). No regression model 
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reflects the range of the direct measurements (28 Mg ha-1). The widest range amounts 

to 12.77 Mg ha-1 (regression based on July mean temperature) and the lowest to 

1.27 Mg ha-1 (MAP-based regression). Here, the complexity of control factors on the 

occurence of strongly differing vegetation types is demonstrated, reflected by the 

uncertainty of all regression models when calculating BGB for the vegetation type of 

subtropical forests. This results partially from the fact that they deterministically give 

expression to only one or two influencing factors on BGB. Mean relative errors are 

close for all regression models (23.19 – 46.30%). 

BGB in alpine mixed forests calculated by regression models is best represented by 

those including MAP as their input parameter. All regressions based only on 

temperature data or elevation data with minimum values ranging from 38.64 – 

45.82 Mg ha-1 overestimate the amount of root biomass compared to field measured 

data (23 – 36 Mg ha-1). The regression model using MAT (44.02 – 53.86 Mg ha-1) as 

input factor does so mostly. The minimum value (38.64 Mg ha-1) of those regression 

models is lower than the maximum value (36 Mg ha-1) of the field measurements. The 

minimum value of the regression model solely based on MAP (29.26 Mg ha-1) 

accurately meets up with the minimum value of the directly measured data (23 Mg ha-1) 

whereas the minimum value of the regression with MAP and MAT as input parameters 

is higher (28.86 Mg ha-1). In contrast, the maximum value of the latter one 

(37.05 Mg ha-1) closely lines up with the maximum of the field data (36 Mg ha-1) 

whereas values of the MAP-based regression are highest at 44.09 Mg ha-1. Even 

though the MAP-based regression model´s deviation of its extreme values in relation 

to the field data´s extreme values is higher (9.39 Mg ha-1) than the one of the regression 

based on MAP and MAT (4.31 Mg ha-1) and the mean relative error is higher (14.71% 

versus 13.06%, respectively), it is regarded to best calculate the amount of root 

biomass in alpine mixed forests. A better performance is concluded with regard to the 

possible rooting depth compared to the digging depth of the field measured BGB 

together with the assumption that even the directly measured field data thus 

understimate actual BGB. 

As to the alpine spruce fir forests, all regression models based on temperature input 

variables underestimate the maximum of the direct measurements (49 Mg ha-1) with 

highest values ranging from 34.19 to 45.41 Mg ha-1. Except for the models including 

MAP, all regression models also overestimate the minimum of the field data 
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(21 Mg ha-1) with lowest values from 26.14 Mg ha-1 to 34.22 Mg ha-1. Both minimum 

and maximum values of directly measured data are best approximated by the 

regression based on MAP (19.14 – 45.41 Mg ha-1). Mean relative errors range from 

26.63 – 47.27% with the MAP and MAT-based model accounting for the lowest. 

Although better than the solely temperature-based regressions, the regression model 

including only MAP as input factor still performs better in terms of the range of BGB 

amounts in alpine spruce fir forests. 

The timberlines BGB data of Luo et al. (2005) are characterized by relatively wide 

ranging values (7 – 27 Mg ha-1). Only the regression model based on MAP also reflects 

that broad range (15.39 – 49.39 Mg ha-1) but generally overestimates root biomass 

values strongly and has the highest mean relative error. Also the fact that that 

regression model calculated the maximum value of all timberline sampling sites for just 

the sampling site with the minimal field measured value, disqualifies it as most optimum 

way to derive estimates of BGB in timberline zones. All other regression models lie 

with their approximations within the range of the field data, but none of them reflects 

the high variation in the amount of BGB. They rather exhibit particularly small ranges. 

Generally wider ranges would, however, be more appropriate for a zone of especially 

high variation in vegetation cover. This is due to the high small-scale variability as 

typical feature of vegetation in a timberline zone, respectively BGB. That character can 

easlily be identified via direct single spot measurements but not by means of pixel-

based calculations with a resolution of 1 x 1 km. The vegetation zone is best 

represented by the calculations of the elevation-based model. However, given all these 

issues, the timberline zone cannot be crucial when deciding which regression-based 

estimate represents most realistic BGB values for the Qinghai-Tibet Plateau. 

3.4 BGB of alpine desert 

For alpine deserts, the regression model based on mean temperatures of January with 

values between 2.90 Mg ha-1 and 10.01 Mg ha-1 most accurately lines up with the direct 

measurements (3.11 – 4.83 Mg ha-1). The regression models based on MAT and MAP 

show similar estimations (2.29 Mg ha-1 – 13.27 Mg ha-1 and 2.49 Mg ha-1 – 

13.88 Mg ha-1, respectively). All other regression models overestimate the field 

samplings even stronger and, moreover, exhibit far wider ranges exept for the 

regression based on both MAP and MAT.  
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Overall, basic patterns such as the difference in the amount of BGB between 

grasslands and forests are clearly reflected by all regression models. Also, subtropical 

forests are next to the timberline zone the vegetation type that shows most 

uncertainties when attempting to accurately calculate BGB based on regression 

models. Generally, for forest vegetation, except the subtropical one and the timberline, 

the MAP-based regression is given preference as the one to approximate closest 

estimates to what has been measured directly in the field. This is true for forest 

vegetation with high amounts of precipitation. It also reflects the high influence of 

precipitation on forest vegetation on the Qinghai-Tibet Plateau, although precipitation 

is not the defining influencing feature in contrast to the alpine desert. A further 

exception among forest vegetation types are dry valley forests. Their BGB is better 

estimated by the MAT-based regression, indicating the importance of the actual 

amount of precipitation next to a general influence of precipitation and vegetation type. 

Nevertheless, the influence of precipitation respectively moisture on ecosystem 

properties is generally complex depending on scales (Baumann et al., 2009) and 

permafrost types (Doerfer et al., 2013) among other factors (Gill et al., 2002). For all 

grassland types, however, it are the regression models based on MAT and mean 

temperatures of January as well as the elevation-based regression that perform clearly 

best in the alpine steppe, alpine meadows, desert grassland and further in the alpine 

desert. As exeption, the alpine steppe, is, second to the elevation-based model, more 

accurately estimated by the MAP-based model with the lowest mean relative error.  

4 Discussion 

With the MAT-based regression as most appropriate model to calculate BGB for the 

entire plateau, temperature as main controlling factor of BGB is reflected. Generally, 

BGB increases with higher temperatures (Faget et al., 2013). However, as the 

temperature increases beyond the species-dependent optimum temperature for 

maximum root growth, the development of roots decreases (Faget et al., 2013). 

Nevertheless, responses of BGB to temperature increases in view of climate change 

remain still unclear and appear to be complex. This is not only due to the fact that the 

temperature change is unlikely to be steady and monotonic but also because the few 

existing studies on that matter e.g. in grasslands highly differ in their results from 

higher, lower to unchanged root biomass (Bai et al., 2010; De Boeck et al., 2008; Fitter 

et al., 1999). The importance of the MAP-model for forests stresses the influence of 
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precipitation on BGB. Altered precipitation patterns due to climate change, however, 

strongly resemble the complexity of temperature changes that are concomitant to 

climate warming. Generally, increased precipitation leads to more BGB (Li et al., 2014), 

however, the increase in biomass will be greater for the aboveground biomass than for 

BGB (Xu and Zhou, 2005). Lower precipitation or droughts do, however, also result in 

an increase of BGB as an adaption to water stress (Li et al., 2014). Nevertheless, 

further influencing factors such as vegetation-specific characteristics or the influence 

of elevated CO2-levels in the atmosphere always have to be taken into account 

additionally for any predictions in general (Li et al., 2014). Increased BGB potentially 

leads to higher soil respiration as root respiration and also the heterotrophic respiration 

increases (Schuur et al., 2015). With regard to its atmospheric C-input, however, this 

is presumably outbalanced by the higher C uptake of increased plant photosynthesis 

and its sequestration (Schuur et al., 2015).  

Calculating BGB by the application of a regression model with an input data set 

resoluted to 1 x 1 km, however, inheres various sources of uncertainties. Main 

uncertainties of the predicted values arise from the background of the regression 

models by Luo et al. (2005). Indicated by their coefficient of determination (r2 = 0.59 - 

0.65), they are not capable to fully explain the data variability reflecting highly complex 

interdependencies between BGB and all its controlling factors. Incorporating data from 

the authors with BGB data mentioned in this study into model development would 

presumably strengthen their explanatory power as e.g. including more vegetation 

zones. Facing the potential degree of precision of this study´s aim, methodological 

differences concerning the sampling would be negligible.  

Further deficiencies in the calculations of all regression models may rise from the 

developement of the WorldClim data sets that show lower precision for poorly sampled 

regions like the Qinghai-Tibet Plateau and montainous areas (Böhner, 2006; Maussion 

et al., 2011; Hijmans et al., 2005). The same holds true for areas on the plateau with a 

complex topography where a 1 x 1 km resolution does not capture all potential variation 

(Hijmans et al., 2005).  

Next to this, high small-scale variability of BGB especially in alpine meadows and the 

timberline zone is not captured by a data resolution of 1 x 1 km. The comparatively 

very high values in alpine meadows of two specific plant communities are not predicted 

by any regression model. Excluding the samples that purely consist of the communities 
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Kobresia tibetica and Kobresia littledalei (7 out of all 115 samples of the alpine 

meadows) with a BGB between 49.55 – 145.67 Mg ha-1, decreases the range of the 

field measured values to about one third (with a maximum of 53.91 Mg ha-1) of the 

range of all samples of the alpine meadows. Predominantly occuring at wet sites, their 

plant physiological characteristics enable them to develop an extensive root system in 

this environment resulting in a distinctly higher BGB (Wang et al., 2006). This contrast 

in BGB between these communities and all other alpine meadow plant communities 

results in wide differences of the BGB within short distances which can only be 

represented by a higher spatial resolution. 

The evalutation data used in this study account for another weakness. All studies 

delivering those evalutation data lack information concerning the inclusion of dead 

roots in their sampling that may alter the amount of the respective BGB. Also, actual 

BGB may be higher as digging depths generally may not fully cover the actual rooting 

depth. 

Moreover, the degradation of vegetation comprising about 35% of the Qinghai-Tibet 

Plateau that has decreasing effects on the BGB (Wang et al., 2009; Wen et al., 2013) 

is not integrated in our estimations and limits these predictions of BGB.  

To sum up, according to the analysis of the results against the background of the 

dependence of BGB on vegetation, it is the MAT-based regression model that is 

generally recommended for area-wide, pixel-based calculations of root biomass on the 

Qinghai-Tibet Plateau (Fig. 3).  
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Fig. 3. Spatial distribution (grid 1 x 1 km) of belowground biomass on the Qinghai-Tibet Plateau based 
on MAT according to a regression model of Luo et al. (2005). Belowground biomass is in SI unit 
(Mg ha-1).  

 

Considering the fact that this regression is most powerful for the alpine meadows 

overall, clearly better performs for dry valley forests than the MAP-based model and is 

close to the best models in the alpine steppe, it is to be given preference over all other 

regression models. Although the regression model based on MAP performs better in 

the alpine steppe, alpine mixed forests and in alpine spruce fir forests, with regard to 

the relatively large area of the Qinghai-Tibet Plateau covered by alpine grasslands in 

contrast to the much smaller areas with forests or no vegetation, the regression model 

based on MAT is regarded being most optimum for an area-wide, pixel-based 

calculation of BGB on the Qinghai-Tibet Plateau. Especially because the MAP-based 

regression model does not reflect the ranges of field measured data in all vegetation 

zones as much as the MAT-based regression model does. In general, estimations 

executed with this methodology, may for many cases primarily deliver an approximate 

magnitude and reveal spatial distribution.
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4 Conclusions 

Estimates of BGB are fundamental to understanding carbon dynamics and soil 

respiration of terrestrial ecosystems. As data collection on root biomass requires 

extremely high time and cost efforts, data at a sufficient spatial resolution for large 

areas, especially for the Qinghai-Tibet Plateau, are generally scarce.  

To overcome this restriction of limited data, we tested regression models which can be 

run with climate and elevation data and thus being advantageous for an area-wide 

calculation of scenarios. 

Results of various studies indicate the important role of temperature, precipitation and 

elevation with regard to the amount of BGB. We conclude that the regression model 

based on MAT achieves best performance to calculate BGB according to our 

evalutation data sets. It can be run with limited data and accounts for the most 

important and spread-out vegetation zones on the Qinghai-Tibet Plateau, considering 

that for special vegetation types an incorporation of other regressions would enhance 

the accuracy of the approximation. Our approach of estimating BGB with scarce data 

is well within the same range of directly measured field data from other studies on the 

Qinghai-Tibet Plateau used for evaluation. It further fulfills our requirement to 

overcome the necessity of aboveground biomass data. The spatially distinct BGB 

calculation allows for assessing an area-specific soil respiration potential on the 

Qinghai-Tibet Plateau.  
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Abstract 

Alpine ecosystems like the Qinghai-Tibet Plateau strongly respond to global warming. 

Their soils, containing large carbon stocks, release more carbon dioxide as a possible 

consequence. Reciprocally, this may intensify climate warming. The Qinghai-Tibet 

plateau´s large and almost inaccessible terrain results in a general data scarcity for 

this area making the quantification of soil carbon dynamics challenging. The current 

study provides an area-wide estimation of soil respiration for the Qinghai-Tibet Plateau, 

which is a key region for climate change studies due to its size and sensitivity. We 

compared the ability of six regression models to predict soil respiration that were 

developed within different studies and are based on mean annual air temperature, 

mean annual precipitation and belowground biomass. We used the WorldClim data 

sets to approximate annual soil respiration on a regional scale. Compared to field 

measurements of soil respiration at single spots in different vegetation zones on the 
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Qinghai-Tibet Plateau (max. 1876.63 g C m-2 y-1), our predicted results (max. 

1765.13 g C m-2 y-1) appear to be consistent. The basic difference between grasslands 

and forests in soil respiration is indicated by all regression models, however, a more 

precise differentiation between vegetation types is only exhibited by the regression 

model based on mean annual precipitation. Overall, this model performs best for most 

and the largest vegetation zones. Nevertheless, the approximations of the model 

based on mean annual temperature by Raich and Schlesinger (1992) with a lower 

constant better represent the vegetation zone of the alpine steppe. With this spatial 

estimation of soil respiration at a regional scale, a basis for assessing an area-specific 

potential of greenhouse gas emissions on the Qinghai-Tibet Plateau is provided. 

Moreover, we quantify a complex soil ecological process for this data-scarce area.  

 

1 Introduction2 

Soil respiration (SR), defined as the carbon dioxide (CO2) efflux to the atmosphere, 

fundamentally impacts the global carbon cycle (Chen et al., 2010). Apart from oceans, 

soil emits the most carbon dioxide contributing approximately 98 ±12 Pg C year-1 to the 

global carbon budget (Bond-Lamberty and Thomson, 2010a; Schlesinger and 

Andrews, 2000; Valentini et al., 2000). With more than 1500 Pg C, soils hold the largest 

amount of carbon in terrestrial ecosystems (Amundson, 2001; Raich and Schlesinger, 

1992) roughly double that of the atmospheric CO2-C pool (Jia et al., 2006). On a global 

scale, ~ 10% of the atmospheric CO2 passes through soil annually (Bond-Lamberty 

and Thomson, 2010b). Therefore, a small increase in the amount of soil CO2 efflux, 

especially across wide-spread areas, can considerably influence atmospheric CO2 

concentrations, potentially increasing global warming (Rodeghiero and Cescatti, 2005, 

2013; Davidson and Janssens, 2006; Schlesinger and Andrews, 2000).  

The ecologically fragile Qinghai-Tibet Plateau is a key region for examining ecosystem 

processes due to its sensitivity and comparatively low human impact (Fan et al., 2010; 

Yang et al., 2009; Liu and Chen, 2000). Moreover, the plateau is of high significance 

for studies on soil respiration (SR) (Geng et al., 2012) because of its important role in 

the global carbon cycle and remarkable contribution to the global carbon budget. As 

                                            

2 Abbreviations: soil respiration (SR), carbon (C), carbon dioxide (CO2), mean annual temperature (MAT), mean annual 

precipitation (MAP), belowground biomass (BGB) 
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the highest and spatially most extended plateau on earth, the Qinghai-Tibet Plateau 

influences both regional and global climates significantly (Zhong et al., 2010; Wang et 

al., 2006). It has also been called the ‘driving force’ or ‘amplifier’ of global warming 

(Kang et al., 2010) due to its large size and high altitude but also because of its effects 

by means of thermal and mechanical forces (Kutzbach et al., 2008; Duan and Wu, 

2005; Manabe and Terpstra, 1974). However, climate change likewise influences the 

Qinghai-Tibet Plateau (Zhang et al., 2010). It is one of the regions of highest sensitivity 

to global warming mainly due to its extreme elevation (Zhong et al., 2010; Zhang et al., 

2007; Luo et al., 2002). The plateau´s temperature is expected to increase far above 

average in the future (Wang et al., 2008; Christensen et al., 2007; Liu and Chen, 2000). 

The cryosphere, commonly considered as the most sensitive indicator to climate 

change, undergoes rapid changes on the Qinghai-Tibet Plateau (Kang et al., 2010). 

There, earth´s largest high-altitude and low-latitude permafrost zone, with more than 

half of its total area influenced by permafrost (Cheng, 2005), shows increasing 

permafrost degradation (Böhner and Lehmkuhl, 2005; Baumann et al., 2009). This 

process has been advancing even more than in other high-latitude, low-altitude 

permafrost regions over the last few decades (Yang et al., 2004). As expected, the 

further degradation of Tibetan permafrost (Böhner and Lehmkuhl, 2005; Wang et al., 

2000) will highly influence its soils mainly by changes in their temperature and moisture 

patterns (Doerfer et al., 2013; Zhang et al., 2003). Thus, global warming impacts 

permafrost stability and distribution as well as vegetation and soil characteristics that 

intensively interact with SR through complex processes (Chapin et al., 2005). Climate 

warming is even presumed to be the main reason for the increasing global loss of soil 

carbon to the atmosphere (Jones et al., 2003). This calls attention to the need of a 

deep understanding of the quantity of SR on the Qinghai-Tibet Plateau (Geng et al., 

2012). 

Various complex processes characterize SR, representing the activity of soil biota 

(Reth et al., 2005). Basically, SR is diveded into two components: autotrophic 

respiration, consisting of root and root-associated (e.g., mycorrhizae) respiration, and 

heterotrophic respiration, constituted by microbial respiration in the course of soil 

organic matter decomposition (Joo et al., 2012). Although not entirely congruent 

(Boone et al., 1998), both of these parts of SR vary with environmental changes (Chen 

et al., 2010). The variability of SR occurs in temporal and spatial dimensions, both 

vertically and horizontally (Davidson and Trumbore, 1995). Generally, there is quite a 
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number of biotic and abiotic factors influencing soil CO2 efflux. Soil respiration is mostly 

regulated by soil temperature and soil water content (e.g. Raich and Tufekcioglu, 2000; 

Singh and Gupta, 1977). Water solubilizes organic matter and supports its availability, 

whereas temperature directly impacts metabolic activities (Koizumi et al., 1999). Soil 

moisture also controls the response of SR to temperature variation (Wisemann et al., 

2004). Other factors affecting soil CO2 emissions include vegetation (Raich and 

Tufekcioglu, 2000), soil characteristics, precipitation (Rey et al., 2002), topography 

(Fang et al., 1998), and land-use regimes (Ewel et al., 1987). 

As a multifactorial process with complex interactions and high variability across time 

and space, SR has always been a challenge to measure and no procedure or model 

has been commonly accepted as a standard yet (Luo et al., 2006). Widely used 

methods for field measurements, however, are chamber systems and eddy-covariance 

systems (Morén and Lindroth, 2000) although they are, in general,  highly time and 

cost intensive (Luo et al., 2006). One possible solution for SR measurement is to apply 

predictive tools especially for large areas. Due to a lack of data and knowledge of 

fundamental process components, mechanistic or process-based modelling remains 

likewise challenging and is still unable to  represent SR fully reliable (Luo et al., 2006).  

Empirical models have been widely applied for the estimation of likewise complex 

processes such as soil erosion, which is estimated most commonly with the Universal 

Soil Loss Equation (Da Silva, 2004). Various regression models for SR have been 

developed based on field measured SR as a function of different biotic and abiotic 

variables. These models usually focus on a strongly reduced number of controlling 

factors of SR (Luo et al., 2006) and thus, potentially overcome the restrictions of limited 

data, which is especially relevant to large-scale predictions in remote areas. Those 

empirical models include such climatic variables as  mean annual temperature (MAT) 

and mean annual precipitation (MAP) as input parameters as well as biotic variables 

such as belowground biomass (BGB). These climatic and biotic variables will be 

compared in this study.  

For the Qinghai-Tibet Plateau, almost two-thirds of which is covered by grassland 

(Yang et al., 2008; Wang et al., 2006), BGB has been shown to most strongly influence 

grassland ecosystem SR at a regional scale due to high root biomass density (Geng 

et al., 2012).  In general, temperature and precipitation are widely considered as most 

effectively representing SR variation in time and space (Bond-Lamberty and Thomson, 
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2010a; Hashimoto et al., 2015) while MAT and MAP are important candidates as 

predictors for annual SR. We assume the Qinghai-Tibetan Plateau to represent a 

global-scale ecosystem given it has both highly heterogenic climate and vegetation. 

Nevertheless, data for the Qinghai-Tibet Plateau at a sufficient spatial and temporal 

resolution are generally scarce. Even though the Plateau’s unique role in climate 

change studies due to its ecological sensibility, the inaccessible and complex terrain 

complicates research activities resulting in this lack of data. Despite their limitations, 

empirical models are therefore highly advantageous for predicting SR of the Qinghai-

Tibetan Plateau due to its size and specific data acquisition requirements. The need 

for quantifying highly complex soil ecological processes more accurately for sparsely 

sampled areas, especially in light of climate change, is captured by such an approach 

and exemplarily executed for the Qinghai-Tibet Plateau.  

Mindful of these challenges, we aim at determining the best regression model for 

estimating SR on the Qinghai-Tibet Plateau in this study. The ideal algorithm should 

allow for (1) the calculation of SR on a large scale and (2) for variation with major 

vegetation types.  

2 Material and Methods 

2.1 Study area 

Our study area, the Qinghai-Tibet Plateau, is located in southwestern China. With an 

area of about 2.6 ×106 km2, it fully covers Tibet and Qinghai provinces, and partially 

Xinjiang, Gansu, Sichuan, and Yunnan provinces. As the largest plateau on earth, the 

Qinghai-Tibet Plateau extends from 26°00′12" N to 39°46′50" N and from 73°18′52" E 

to 104°46′59" E with a maximum length of approx. 2 945 km from east to west and 

approx. 1 532 km from south to north. The average altitude of the plateau is 4380 m 

(Zhang et al., 2002). Surface elevation sharply declines at its border, particularly at the 

southern end. Overall, eastern and western regions differ markedly with regard to 

geomorphology, vegetation and climatic characteristics (Smith and Shi, 1995). The 

unique geographical position of the Qinghai-Tibet Plateau results in an azonal, plateau 

monsoon climate from a subtropical to a temperate mountain climate (Zhuang et al., 

2010; Zhong et al., 2010) with strong solar radiation, low air temperature, large daily 

temperature variations yet low differences between annual mean temperatures (Zhong 

et al., 2010). The mean temperature in July, the warmest month, varies from 7 °C to 

15 °C and from -1 °C to -7 °C in January, the coldest month. Average annual 
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temperature is 1.6 °C (Yang et al., 2009). Precipitation amounts to about 413.6 mm 

per year (Yang et al., 2009), with more than 60-90% falling in the wet and humid 

summers (June-September) and 10% at maximum in the cool, arid winters (November-

February) (Xu et al., 2008). Summer precipitation can be less than 50 mm in the 

northwest (Xu et al., 2008). Generally, a decrease both in temperature and in 

precipitation from the south-eastern to the north-western part of the plateau is apparent 

(Immerzeel et al., 2005). The topographic setting as well as atmospheric conditions 

determine the sequence of alpine forests, meadows, steppes and deserts from 

southeast to northwest (Fig. 1), which follows a climatic gradient from warm and humid 

to cold and arid according to the influence of the South Asian monsoon (Pei et al., 

2009; Zheng, D., 1996).  

 

Fig. 1. Vegetation map of the Qinghai-Tibet Plateau based on data sets for land cover in Tibet with 
sampling localities of Cao et al. (2004), Zhang et al. (2005), Li et al. (2011), Zhang et al. (2009), 
Geng et al. (2012), Wang et al. (2014) (Tibetan and Himalayan Library, 2002). 

 

Alpine steppes and meadows dominate the undisturbed vegetation with Stipa species 

and Kobresia meadows as major vegetation types. Alpine grasslands cover more than 

60% of the study area (Yang et al., 2008; Wang et al., 2006). Long freezing periods 
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and thus, relatively short growing seasons characterize the plateau`s climate (Yu et 

al., 2010). Its vegetation is regarded as comparatively natural (Schroeder et al. 1995), 

although parts of the plateau in the humid Southeast have undergone human-induced 

changes with Kobresia pygmaea growing instead of forests and grasslands (Miehe et 

al., 2014). Continuous, complex pedogenetic processes on the Qinghai-Tibet Plateau 

typically result in young and highly diverse soils with distinct degradation 

characteristics, exhibiting a strong influence by permafrost regimes (Baumann et al., 

2014). 

2.2 Geodatabase and processing 

In this case study, three data sets were used to estimate SR from temperature, 

precipitation and belowground biomass data. All data sets were projected into the 

Universal Transverse Mercator coordinate system WGS 1984, Zone 45 N. The data 

sets for MAT and MAP were obtained from the WorldClim data set available at 

http://worldclim.com. This latter database was compiled from a considerable number 

of various sources, such as the Global Historical Climate Network, World 

Meteorological Organization and the Food and Agricultural Organization, with a 

resolution of 1 x 1 km and representing the current climate conditions from ca. 1950 to 

2000. Data from climate stations were interpolated with latitude, longitude and altitude 

as independent variables (for more detailed information see Hijmans et al., 2005). BGB 

data with a spatial resolution of 1 x 1 km have been generated by the application of an 

exponential regression model developed by Luo et al. (2005). When modeling, they 

incorporated various climate and vegetation data of the Qinghai-Tibet Plateau and 

presented the different resulting models based on various input parameters. When 

these models were compared, the model with MAT as an input parameter excels when 

applied to the Qinghai-Tibet Plateau (Bosch et al., unpublished results). We therefore 

use the data set generated with this MAT-dependent model in the present study. The 

input MAT data set of this calculated BGB data set also originate from WorldClim data 

(Bosch et al., unpublished results).  

2.3 Soil Respiration Calculation and Evaluation 

SR was calculated based on MAT, MAP and BGB using six different regression models 

(Tab. 1).  
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Table 1. Regression models to approximate soil respiration. 

Type of 

regression 

Region, 

Vegetation 

Type 

Equation Parameters Author(s) r2 

Regression 

based on 

mean annual 

temperature T  

    

Global 
𝑆𝑅 = 25.6𝑇 + 300 

SR = annual soil respiration 

rate (g C/m2/yr), T = 

mean annual temperature 

(°C),  

Raich and 

Schlesinger 

(1992)  

(MAT I) 

0.42 

    Micronesia 

and 

Hawaii, 

peatlands 

𝑌 = 265.9 + (27.7 ∗ 𝑀𝐴𝑇) 
Y = annual soil respiration 

rate (g C m-2 yr-1), MAT = 

mean annual temperature 

(°C) 

Chimner 

(2004) 

(MAT II) 

0.46 

Regression 

based on 

mean annual 

precipitation 

P 

Global 
𝑆𝑅 = 0.391𝑃 + 155 

SR = annual soil respiration 

rate (gC/m2/yr), P = mean 

annual precipitation (mm)   

Raich and 

Schlesinger 

(1992) 

0.34 

Regression 

based on 

mean annual 

temperature 

T, mean 

annual 

precipitation 

P 

Global 
𝑆𝑅 = (9.26𝑇) + (0.0127𝑇𝑃)

+ 289 

SR = annual soil respiration 

rate (gC/m2/yr), T = mean 

annual temperature (°C), 

P = mean annual 

precipitation (mm)   

Raich and 

Schlesinger 

(1992) 

(MATP I) 

0.50 

 Global 
𝑆𝑅 = (9.88𝑇) + (0.0344𝑃)

+ (0.0112𝑇𝑃)
+ 268 

SR = annual soil respiration 

rate (gC/m2/yr), T = mean 

annual temperature (°C), 

P = mean annual 

precipitation (mm)   

Raich and 

Schlesinger 

(1992) 

(MATP II) 

0.50 

Regression 

based on root 

biomass 

India, 

tropical 

forest soil  

𝑦 = 0.32𝑥 + 176.6 
y = soil respiration (mg CO2 

m-2 h-1), x = total root 

biomass (g m-2) 

Behera et 

al. (1990) 

0.89 

 

 

Due to a scarce spatial data resolution for deriving the amount of SR on the Qinghai-

Tibet Plateau, we made use of field observations of SR from other studies (Tab. 2). To 

evaluate the power of the regression models applied in this study, we compared our 

results with those reported by Cao et al. (2004), Zhang et al. (2005), Li et al. (2011), 

Zhang et al. (2009), Geng et al. (2012), Chen et al. (2014) and Wang et al. (2014). The 

observation sites are located in three different vegetation types: alpine steppe, alpine 

meadows and forest. These vegetation types were identified in each of the studies we 

used for comparison. Thus, the evaluation sites comprise the widest-spread vegetation 

types and the majority of vegetation cover on the plateau (Fig. 1). The sites also cover 

various climatic conditions and altitudes (3000 m – 5105 m a.s.l.). The sampling sites 

of Chen et al. (2004) located in the eastern part of the plateau are not displayed in 

Figure 1. 
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All samples except the ones from the studies of Chen et al. (2004) and Wang et al. 

(2014) were collected in the peak season of soil respiration from June to August. Daily 

means were calculated based on several measurements per day in each study. To 

compare annual data calculated by the regression models, we summed up daily means 

to give annual SR values. However, this leads to a systematic overestimation of annual 

SR, because the daily means were estimated based on measurements during peak 

season months. We therefore developed and implemented a seasonality correction 

factor to account for this. This seasonality correction factor is based on calculations by 

Cao et al. (2004). The annual total sum of  daily average SR values is about 1.99 times 

higher than the estimation of annual SR values where seasonal variation of SR is 

considered. We accordingly corrected all cumulative SR annual values by a factor of 

0.33 exept for the evaluation data from Chen et al. (2004) and Wang et al. (2014). The 

data of Chen et al. (2004) are  based on measurements every 10 days throughout an 

entire year after having conducted extra measurements to find the optimal 

measurement time representing daily means. Wang et al. (2014) summed daily means 

based on hourly measurements throughout four years to calculate annual estimates, 

which we averaged to one mean annual value.  

Ranges of the model-based SR values of each vegetation zone are based on grid 

points according to the geographical coordinates from the field sampling sites of the 

literature data. Since information on precise georeferences was not given in Chen et 

al. (2014), personal communication with Ji Luo (2015) served as an additional source 

of information. The range of all field measurements throughout the different vegetation 

zones is compared to all calculated values of the whole plateau for each model. 

Moreover, we compared the mean of all field data to the mean of all calculated SR 

values for the whole plateau for each model.   

3 Results and Discussion 

The resulting SR estimates of the applied regression models ranged from a low 

of -300.08 to a maximum of 1762.17 g C m-2 y-1. All estimates generally fit the order of 

magnitude of the data measured in the field (Tab. 2).  
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Table 2. Range of soil respiration for different vegetation types on the Qinghai-Tibet Plateau measured by Cao et al. (2004), Zhang et al. (2005), Li et al. (2011), 
Zhang et al. (2009), Geng et al. (2012), Chen et al. (2014), Wang et al. (2014) and calculated based on regression models. 

 

Vegetation 

type 

 

 

 Cao et 

al. 

(2004) 
 (n = 1) 

 

Zhang 

et al. 

(2005) 
 (n = 1) 

Li et 

al. 

(2011) 
 (n = 1) 

Zhang 

et al. 

(2009) 
 (n = 60) 

Geng et 

al. 

(2012)  
(nAS = 18; 

nAM = 20) 

Chen et 

al. 

(2014) 
 (n = 2) 

Wang 

et al. 

(2014) 
 (n = 1) 

All 

field 

samples  
 (n = 104) 

 

Regression model based on 

 

MAT I 
 

MAT II  

 

MAP 

 

MAT and 

MAP I 

MAT and 

MAP II 
 

BGB 

 

                                                                                                                                            [g C m-2 y-1] 
 

Alpine 

steppe (AS) 

 

 

 

Range 

 
Mean 

Median 

(Mean rel. 
error [%]) 
 

- 

 

- 

- 

- 

 

143.53 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

50.47-

522.87 

- 

- 

- 

- 

 

- 

- 

- 

 

- 

 

- 

- 

- 

50.47-

522.87 
254.6 

245.9 

- 

 

150.04-

360.57 
262.86 

274.39 

 (48.70) 

103.64-

331.44 
225.71 

238.19 

(41.32) 

221.65-

339.65 
283.17 

279.87 

 (63.14) 

214.76-

318.44 
270.64 

274.54 

(57.22) 

201.74-

310.82 
260.60 

263.33 

(56.03) 

422.52-

422.64 
422.57 

422.57 

(135.34) 

Alpine 

meadow 
(AM) 

Range 

 
Mean 

Median 
(Mean rel. 

error [%]) 
 

555.37 

 

- 

- 

- 

- 

 

- 

- 

- 

 

714.17 

 

- 

- 

- 

326.15-

1876.63 

- 

- 

- 

144.95-

1666.97 

- 

- 

- 

- 

 

- 

- 

- 

696 

 

- 

- 

- 

144.95-

1876.63 
828.77 

795.95 
- 

146.39-

376.79 
293.36 

311.39 
(60.87) 

99.69-

349.00 
258.87 

278.23 
(64.59) 

266.95-

561.55 
333.22 

333.48 
(55.37) 

205.75-

345.41 
285.82 

295.7 
(61.26) 

197.37-

357.82 
280.66 

290.37 
(60.31) 

422.52-

422.66 
422.59 

422.6 
(46.88) 

Forest (F) Range 

 
Mean 

Median 

(Mean rel. 
error [%]) 
 

- 

 

- 

- 

- 

 

- 

 

- 

- 

- 

 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

643.76-

908.84 

- 

- 

- 

- 

 

- 

- 

- 

643.76- 

908.84 
776.3 

- 

- 

467.88-

474.34 
471.11 

- 

(37.56) 

447.55-

454.54 
451.04 

- 

(41.89) 

529.54-

532.1 
530.82 

- 

(31.62) 

430.05-

434.91 
432.48 

- 

(44.28) 

436.8-

441.3 
439.05 

- 

(43.44) 

422.78-

422.79 
422.78 

- 

(45.53)  

All Range 
 
Mean 

Median 

(Mean rel. 
error [%]) 

- 
 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

50.47-

1876.63 
722.86 
713.00        
- 

-223.07-

914.4     

257.13          

237.06  
(64.42) 

-300.08-

930.7    

219.52    

197.80 

(69.63) 

161.64-

1762.17  

299.18   
251.57 

(58.61) 

15.83-

1641.16  

281.14            

214.61    

(61.10) 

7.98-

1639.56 

270.89         

200.61  

(62.52) 

422.48-

423.76    

422.60             

422.52 

(41.53) 
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Negative pixel values arose from the regression models involving MAT as input 

parameter, representing areas where  the  model MAT is -9.59 °C and below as for the 

case of Chimner (2004). The linear regression models did not adequately describe the 

shape of the true temperature-SR relation for very low temperatures. We, therefore, 

showed negative results as zero by assuming that negligible metabolic activity occurs 

below a certain threshold. In Chimner´s (2004) model this threshold was -9.59 °C. An 

approximate limit of respiratory processes related to a minimum temperature was 

thereby reflected. The variation of SR with vegetation types was resembled by all 

regression models, however, to a different extent (Tab. 2, Fig. 2). 

 

Fig. 2. Range of soil respiration for different vegetation types on the Qinghai-Tibet Plateau measured 
by Cao et al. (2004), Zhang et al. (2005), Li et al. (2011), Zhang et al. (2009), Geng et al. (2012), 
Chen et al. (2014) and calculated based on the mean annual precipitation-based, mean annual 
temperature I-based and mean annual temperature II-based regression models. 

 

3.1 SR of grasslands  

The ranges of all regression models were within the range of the directly measured SR 

samples (50.47 - 522.87 g C m-2 y-1) for the vegetation zone of alpine steppe. The 

range of the calculations of the model based on MAT by Raich and Schlesinger (1992) 

(MAT II) (103.64 – 331.44 g C m-2 y-1) most closely matched the range of the field 

measured samples followed by the MAT I-based model and MAP-based model (150.04 
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- 360.57 g C m-2 y-1 and 221.65 - 339.65 g C m-2 y-1, respectively). Also, the relative 

error was lowest for the MAT II-based model (Tab. 2, Fig. 3).  

 

Fig. 3. Mean relative error of regression model estimates for the sampling sites of the respecitve 
vegetation zones. 

 

Ranges, absolute minimum and maximum SRs estimated by the regression models 

that combine MAT and MAP as input parameters (with the higher constant: MATP I; 

with the lower constant: MATP II) were very similar (MATP I: 214.76-318.44 g C m-2 y-1; 

MATP II: 201.74 – 310.82 g C m-2 y-1) but were less congruent with the directly 

measured values than particularly the MAT-based regression models. The result of the 

MAT II-based model with regard to its absolute minimum value estimation was closest 

to the field measured data, although it was the maximum SR of the BGB-based model 

(422.64 g C m-2 y-1) that corresponded best to the absolute maximum of the field data. 

However, the range of SR values predicted by the BGB-based model was a large 

number of times smaller than the range of the directly measured values. Moreover, the 

relative error of BGB-based model SR estimates was the highest. Thus, the MAT II-

based regression model most closely represented the field measurements for the 

vegetation of alpine steppe. 

The alpine meadows field values generally exhibited a wider range and higher 

minimum and maximum values (144.95 - 1876.63 g C m-2 y-1) than the field data for 
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the alpine steppe. Generally, this comparatively wide range resulted from large 

differences in SR even between plant communities causing extremely high small-scale 

variability (Zhang et al., 2009) that cannot be reflected in the 1 x 1 km resolution at 

hand. Excluding samples that purely consisted of Kobresia tibetica with SR values of 

565.58 to 1876.63 g C m-2 y-1 (Zhang et al., 2009; n = 20) and from 594.05 to 

1666.97 g C m-2 y-1 for the three samples of Geng et al. (2012), the maximum value 

would have been distinctly lower (1410.71 g C m-2 y-1). With 7 exceptions out of a total 

of 76 samples, all SR samples would be below 1000 g C m-2 y-1, which clearly shows 

that the range of the vast majority was lower and about one third to one half smaller 

(144.95 to below 1000 g C m-2 y-1). Predominantly occuring at wet sites, the plant 

physiological characteristics of Kobresia tibetica communities enable them to develop 

an extensive root system in this environment resulting in a much higher BGB (Wang et 

al., 2008) and consequently in strongly increased SR (Geng et al., 2012; Zhang et al., 

2009). None of the regression models predicted such extraordinarily high values for 

these special plant communities. The spatial variability within the small distances 

between single plant communities that differed highly in their SR cannot be 

represented by a 1 x 1 km resolution as well. Of all regression models, however, the 

MAP-based one best concurred with the direct measurements except for the minimum. 

The minimum values of the models including MAT as the input parameter align more 

closely with smaller relative errors of only up to 0.01% in the minima  for the MAT I-

based model. It was nevertheless the MAP-based regression model which prooved to 

be the most appropriate for the alpine meadows as its mean relative error was lowest 

(55.37%) except from the model based on BGB (46.88%). The latter, however, is not 

adequate due its extremly small range (422.52 – 422.66 g C m-2 y-1). The recognition 

that the MAP-based model as most appropriate one was further confirmed by the fact 

that this model was the only one to clearly distinguish between alpine steppe and alpine 

meadows. 

3.2 SR of forests  

Compared to the average field measurement value of grasslands excluding Kobresia 

tibetica samples (622.05 g C m-2 y-1) and compared to the model-based values for 

grasslands, higher SR values generally occurred in forests which was also reflected 

by the calculations of all models. The models that included MAT as an input parameter 

performed very similarly; however, their estimates (430.05 - 474.34 g C m-2 y-1) are not 

as close to the field measured values (643.76 - 908.84 g C m-2 y-1) as the 
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approximations calculated by the MAP-based regression model 

(529.54 - 532.1 g C m-2 y-1). Throughout all vegetation zones, the BGB-based results 

exhibited a small range within the range of MAT-based estimates. The MAP-based 

model had one of the lowest one (31.62%) relative mean errors compared to all other 

models (37.56 – 45.53%). The regression model based on MAP showed the closest 

approximations to field measurements and thus, performed best for the forest 

vegetation zone. 

For the Qinghai-Tibetan Plateau as a whole, the regression models involving MAP as 

the input parameter were closest to all field measurement data of grassland types and 

forests with respect to the mean SR, the relative error of the mean, the minimum, the 

maximum and range. However, two exceptions were noted for the BGB-based model. 

These were the mean and the mean relative error for all data that arose from the 

comparatively static character of the values from the BGB-based model throughout the 

vegetation zones. This model was generally most inadequate with the highest mean 

relative error. It also underperformed with a particularly small range representing less 

than 1% of the field data range which appeared to be characteristic for this model 

throughout all vegetation zones. The model solely based on MAP, was the best model 

also in comparison to the regression models that included MAP as an input parameter. 

This was true especially for the mean value and its relative error (299.18 g C m-2 y-1; 

58.61%), indicating the peculiar importance of precipitation for SR in rather arid regions 

(Curiel Yuste et al., 2003).  

Overall, the estimates of all regression models  were within the order of magnitude of 

the values based on field measurements. All model-based estimates indicated the 

basic difference in SR between grasslands and forests. For the alpine steppe 

vegetation zone, the MAT II-based regression model was preferable as it most closely 

approximated direct field measurements.  On the other hand, the regression model 

with MAP as an input parameter decidedly performed best for alpine meadows, forests 

and the range of the whole plateau. Generally, although developed for very different 

regions, both MAT-based models behave similarly across all vegetation types. 

However, important uncertainties of the predicted values are associated with the 

regression models. Indicated by their coefficient of determination (r2 = 0.34 – 0.88), the 

models cannot fully explain the data variability. This reflects highly complex 

interdependencies between SR and all its controlling factors. Moreover, discrepancies 
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would be expected since none of the regression models have been developed for the 

Qinghai-Tibet Plateau or for this certain kind of application. 

Further deficiencies in the calculations of all regression models may arise from the 

development of the WorldClim data sets that show lower precision for poorly sampled 

regions like the Qinghai-Tibet Plateau (Maussion et al., 2011; Böhner, 2006; Hijmans 

et al., 2005). The same holds true for areas on the plateau with complex topography 

where a 1 x 1 km resolution does not capture all potential variation (Hijmans et al., 

2005). Additionally, the input data set with BGB data exhibits limitations especially for 

forests and extraordinary high values (Bosch et al., unpublished results). 

Furthermore, high small-scale variability of SR especially in alpine meadows is not 

captured by a data resolution of 1 x 1 km. The comparatively high values in alpine 

meadows, particularly of Kobresia tibetica plant communities, were not predicted by 

any regression model. This strong difference in SR rates between these communities 

and other alpine meadow plant communities results in large differences of SR over 

short distances, which can only be represented with higher spatial resolution. 

Moreover, vegetation degradation and grazing effects comprising about 35% of the 

Qinghai-Tibet Plateau and their decreasing influence on SR (Wen et al., 2013; Cao et 

al., 2004) were not integrated in our estimations and constraints these predictions of 

SR. 

The evaluation data used in this study account for another weakness. Although all 

studies use chamber-based methods for their measurements, there are differences 

between the various chamber methods that may cause further inaccuracies of the 

values. In addition, daily means were calculated based on a different number of daily 

measurements and measurement times. Although for some of the studies, extra 

measurements were taken to determine the optimal number and time of measurement 

for  the daily mean, discrepancies among the results remain. Also, the annual SR 

values for forests have been estimated based on continuous measurements 

throughout one whole year in contrast to the values of all other studies where 

seasonality was not considered a major factor. 

The estimation of annual values based on daily means of field measurements poses 

other constraints. The higher the temporal resolution of data, the higher the variability 

of the cumulative values. This tendency increases with larger differences in the target 

temporal resolution, which eventually ranges from seconds to a year. This may result 
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in ranges of values that are too large. The seasonality correction factor derived from 

the estimations by Cao et al. (2004) for alpine meadows might vary for other vegetation 

types such as  forests as the cumulative SR in the peak month accounts for only about 

20% of the total annual SR (Chen et al., 2014). The larger difference in SR between 

forests and grasslands compared to the difference between alpine steppes and alpine 

meadows can be explained as forests  can often adjust better to environmental (e.g. 

temperature) variation. Furthermore, the values provided by Cao et al. (2004) are 

themselves estimations based on (1) data obtained from chamber method 

measurements, which have inherent limitations, and on  (2) equations based on soil 

temperature with an r2 = 0.82. It should be noted that approximations for SR obtained 

from annual values in general are inevitably not as accurate as calculations from 

periodic or continuous data. However, a recent study (Wang et al., 2014b) provides 

hourly data throughout four years. We developed a seasonality correction factor of 

*0.55 based on their results, which corresponded to the one we used based on Cao et 

al.´s (2004) results. The relative error of the annual total of SR based on cumulative 

daily means is hence lower than for Cao et al.´s (2004). In Wang et al.´s (2014) study, 

however, the daily mean refers to the whole growing season in contrast to the daily 

means of all other evaluation data studies including Cao et al. (2004), which refer to 

the peak months in the growing season. Therefore, the seasonality correction factor 

based on the results of Cao et al. (2004) still achieved more accurate results.   

In conclusion, we recommend the MAP-based regression model for area-wide, pixel-

based  calculations of SR on the Qinghai-Tibet Plateau (Fig. 4) given our analysis of 

the results in view of the dependence of SR on vegetation.  
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Fig. 4. Spatial distribution of soil respiration on the Qinghai-Tibet Plateau based on mean annual 
precipitation according to Raich and Schlesinger (1992). Soil respiration is in SI unit (Mg ha-1). 
The spatial resolution of the grids is 1 x 1 km. 

 

Considering the fact that this regression model only performs worse than the models 

including MAT as an input parameter for the minimum value in the alpine steppe and, 

first and foremost, clearly excels for alpine meadows and forests, it is to be given 

preference over all regression models. More importantly, the MAP-based regression 

model is the only one that shows a clear difference between the vegetation types alpine 

steppe and alpine meadows. We, therefore, consider it as the superior model for a 

pixel-based calculation of SR on the Qinghai-Tibet Plateau. Our study provides an 

area-wide quantification of a multifactorial soil ecological process assessed by a 

comparison of different regression models against the background of strong data 

limitations.
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4 Conclusion 

Estimates of SR are crucial in understanding soil carbon dynamics of terrestrial 

ecosystems. Since SR data collection requires significant time and cost, data at a 

sufficient spatial resolution for large areas, especially for the Qinghai-Tibet Plateau, 

are generally scarce.  

To overcome this restriction of limited data, we tested regression models which can be 

run with climate and BGB data, which is advantageous for an area-wide calculation of 

scenarios. 

Results of various studies indicate the important role of temperature, precipitation and 

BGB with regard to SR. We conclude from our study that the regression model based 

on MAP performs best in  calculating SR for the Qinghai-Tibet Plateau  according to 

the comparision with our evaluation data sets and other regression models. The MAP-

based model can be run with limited data and best represents the most important and 

spread-out vegetation zones on the Qinghai-Tibet Plateau. The incorporation of other 

regression models would, however, improve the accuracy of SR approximations for 

special vegetation types. Our approach of estimating SR with scarce data is well within 

the same range of directly measured field data from other studies on the Qinghai-Tibet 

Plateau. The spatially distinct SR calculation at a comparatively high spatial resolution 

allows for assessing potential area-specific greenhouse gas emission on the Qinghai-

Tibet Plateau.  
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Supplementary material 

Appendix I. Abundance of soil respiration values of the regression models per class 

of soil respiration flux for the Qinghai-Tibet Plateau. Soil respiration flux classes 

represent low (>0 – 625 g C m-2 y-1), medium (>625 – 1250 g C m-2 y-1), high (> 1250 

g C m-2 y-1) and no (≤0 g C m-2 y-1) soil respiration.  

 

 

 

 

 

 

 

 

 

 

Appendix II. Area on the Qinghai-Tibet Plateau assigned to a soil respiration flux class. 

Soil respiration flux classes represent low (>0 – 625 g C m-2 y-1), medium (>625 – 1250 

g C m-2 y-1), high (> 1250 g C m-2 y-1) and no (≤0 g C m-2 y-1) soil respiration.  
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97.95 96.5 97.85 98.12 98.09 100 

medium 1.69 1.95 1.79 1.59 1.62 0 

high 0 0 0.34 0.27 0.27 0 

no 0.34 1.53 0 0 0 0 
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MAT I MAT II  

 

MAP 

 

MAT and 

MAP I 

MAT and 

MAP II 

BGB 

 

  [km2]    

low 

 

 

2,605,965 2,567,346 2,603,333 2,610,528 2,609,621 2,660,303 

medium 45,063 52,064 47,662 42,404 43,264 0 

high 0 0 9,308 7,371 7,418 0 

no 9,275 40,893 0 0 0 0 
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Abstract 

Permafrost soils store enormous quantities of organic carbon. Especially on the alpine 

Qinghai-Tibet Plateau, global warming induces strong permafrost thawing, which 

strengthens the microbial decomposition of organic carbon and the emission of the 

greenhouse gas carbon dioxide (CO2). Enhanced respiration rates may intensify 

climate warming in turn, but the magnitude of future CO2 emissions from this data-

scarce region in a changing climate remains highly uncertain. Here, we aim at an area-

wide estimation of future potential CO2 emissions for the permafrost region on the 

Qinghai-Tibet Plateau as key region for climate change studies due to its size and 

sensitiveness. We calculated four potential soil respiration scenarios for 2050 and 

2070 each. Using a regression model, results from laboratory experiments and C stock 

estimations from other studies, we provide an approximation of total potential soil CO2 
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emissions on a regional scale ranging from 

737.90 g CO2 m-2 y-1 - 4224.77 g CO2 m-2 y-1. Our calculations as first estimate of 

thawing-induced CO2 emissions (51.23 g CO2 m-2 y-1 – 3002.82 g CO2 m-2 y-1) from 

permafrost soils of the Qinghai-Tibet Plateau under global warming appear to be 

consistent to measurements of C loss from thawing permafrost soils measured within 

other studies. Thawing-induced soil CO2 emissions from permafrost soils with a 

organic C content ranging from 2.42 g C kg-1 to 425.23 g C kg-1 increase general soil 

respiration by at least about one third on average at a temperature of 5 °C. Differences 

between scenarios remain <1% and thawing-induced CO2 emissions generally 

decrease over time comparing 2015, 2050 and 2070. With this spatial approximation 

at a regional scale, a first area-wide estimate of potential CO2 emissions for 2050 and 

2070 from permafrost soils of the Qinghai-Tibet Plateau is provided. This offers support 

of assessing potential area-specific greenhouse gas emissions and more differentiated 

climate change models. 

 

Keywords 

Permafrost soil, Carbon, Carbon dioxide, Soil respiration, Qinghai-Tibet Plateau, 

Climate change scenarios  

 

1. Introduction3 

Carbon dioxide (CO2) emissions from soils to the atmosphere substantially affect the 

global carbon (C) cycle (Chen et al., 2010). For the global carbon budget, this soil efflux 

represents the main source of C, second to oceans´ releases, by approximated 

98 ±12 Pg C per year (Bond-Lamberty and Thomson, 2010a; Schlesinger and 

Andrews, 2000; Valentini et al., 2000). Further, soils store most carbon in terrestrial 

ecosystems (Amundson, 2001) and their respiration amounts to ~10% of the 

atmospheric CO2 cycle budget (Bond-Lamberty and Thomson, 2010b). Hence, slight 

increases in soil CO2 emissions can seriously impact atmospheric CO2 concentrations, 

possibly amplifying global warming (Rodeghiero and Cescatti, 2005, 2013; Davidson 

                                            

3 Abbreviations: soil respiration (SR), carbon (C), carbon dioxide (CO2), mean annual precipitation (MAP), representative 

concentration pathway (RCP), belowground biomass (BGB). 
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and Janssens, 2006; Schlesinger and Andrews, 2000). However, climate warming 

itself presumably accounts for the rising global loss of soil carbon to the atmosphere 

in the main (Jones et al., 2003). It potentially increases belowground biomass (BGB), 

which in turn increases autotrophic respiration and probably also stimulates 

microorganisms which accordingly leads to a higher heterotrophic respiration 

supported by more exudates and C-input of roots (Kirschbaum, 1995; Wang et al., 

2014). However, especially higher C loss through augmented autotrophic respiration 

as consequence of an elevated rate of photosynthesis is expected to be neutralized by 

a higher plant uptake of C and its sequestration (Schuur et al., 2015). Higher 

temperatures, extended growing seasons and a higher concentration of atmospheric 

CO2 potentially intensify plant growth (Shaver et al., 2000). Uptaken C can be 

sequestered in larger above- and belowground biomass (Sistla et al., 2013).  

Understanding the different responses of autotrophic and heterotrophic respiration to 

global warming in permafrost soils is particularly important (Hicks Pries et al., 2013). 

Higher soil CO2 emissions resulting from thawing permafrost are, if at all, only partly 

offset by this negative feedback to global warming through enhanced soil respiration 

(Schuur et al., 2015). Permafrost is commonly defined as ground (soil or rock and 

included ice or organic material) at or below 0 °C for at least two consecutive years. 

Temperatures at or below 0 °C in permafrost soils shrink microbial activity and inhibits 

active microbial decomposition of the soil´s accumulated organic matter (Harden et al., 

1992). Consequently, warmer temperatures and concomitant thawing of permafrost 

resulting from climate change will expose a large amount of soil organic C to microbial 

breakdown that has been frozen before (Xue et al., 2016; Schuur et al., 2009). As a 

result, high quantities of C may be released to the atmosphere (Dutta et al., 2006). 

Lately, permafrost was estimated to contain more than 1600 Pg soil organic C (Schuur 

et al., 2008), which is twice the atmospheric CO2-C pool (Jia et al., 2006). Considering 

the remarkable C stock of permafrost and its wide-spread climate change induced 

degradation, its soil CO2 emissions are of global importance in view of the greenhouse 

gas-driven climate change (Schaefer et al., 2011; Ding et al., 2016). Hence, the 

quantification of future CO2 emissions from permafrost soil gains high relevance for 

more comprehensive scenarios of climate change. This importance further results from 

the fact that permafrost soils have functioned as C sinks so far (Hicks Pries et al., 

2012).  
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A key region for examining such processes due to its sensitivity and comparably low 

human impact is seen in the ecologically fragile Qinghai-Tibet Plateau with its 

extensive and sensitive permafrost area (Fan et al., 2010; Yang et al., 2009; Liu and 

Chen, 2000). Also because of its important role in the global carbon cycle and 

remarkable contribution to the global carbon budget, the plateau is generally of high 

significance for studies on CO2 emissions (Geng et al., 2012). As highest and spatially 

most extended plateau on earth, the Qinghai-Tibet Plateau influences both regional 

and global climates significantly (Zhong et al., 2010; Wang et al., 2006). Also its effects 

by means of thermal and mechanical forces (Kutzbach et al., 2008; Duan and Wu, 

2005; Manabe and Terpstra, 1974) earns him the reputation of being a ‘driving force’ 

or an ‘amplifier’ of global warming (Kang et al., 2010). However, global climate change 

likewise influences the Qinghai-Tibet Plateau (Zhang et al., 2010). It is a region of high 

sensitiveness to global warming mainly due to its extreme elevation (Zhong et al., 

2010; Zhang et al., 2007; Luo et al., 2002). The plateau´s temperature is expected to 

increase far above average in the future (Wang et al., 2008; Christensen et al., 2007; 

Liu and Chen, 2000). The cryosphere, commonly considered as the most sensitive 

indicator to climate change, undergoes rapid changes on the Qinghai-Tibet Plateau 

(Kang et al., 2010), where earth´s largest high-altitude and low-latitude permafrost 

zone, with more than half of its total area influenced by permafrost (Cheng, 2005), 

shows increasing permafrost degradation (Böhner and Lehmkuhl, 2005; Baumann et 

al., 2009). This process has been advancing even stronger than in other high-latitude, 

low-altitude permafrost regions over the last few decades (Yang et al., 2004). As 

expected, the further degradation of Tibetan permafrost (Böhner and Lehmkuhl, 2005; 

Wang et al., 2000) will highly influence soils mainly reflected by their changes in 

temperature and moisture (Doerfer et al., 2013; Zhang et al., 2003). Global warming 

so impacts permafrost stability and distribution as well as vegetation and soil 

characteristics that intensively interact with CO2 emissions through complex processes 

(Chapin et al., 2005). The thaw of permafrost resulting from global warming will release 

organic C frozen till then and potentially provide a positive feedback to climate change 

through higher respiration rates (Koven et al., 2011). This calls attention to the need of 

a deep understanding of the quantity of potential CO2 emission rates with future climate 

change with special regard to the heterotrophic component in thawing permafrost soils 

on the Qinghai-Tibet Plateau (Geng et al., 2012). This is especially difficult to quantify 

because of high uncertainties and only few laboratory experiments that have been 
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conducted so far concerning thawing-induced CO2 emissions from permafrost. Widely 

varying approximations have not been overcome yet (Lawrence et al., 2015). Empirical 

regression models for predicting soil respiration on the Qinghai-Tibet Plateau have 

already been applied effectively (Bosch et al., 2016), with process-based models 

generally being limited in their applicability to large regions due to more difficulties 

when parametrizing. This approach has been successful when applied for likewise 

complex processes such as rainfall erosivity in other regions of China (e.g. Schönbrodt-

Stitt et al., 2013). For thawing-induced CO2 emissions, no formulated regression 

models exist, why results of laboratory experiments are transferred to the study area 

in structural analogy to regression models. Further, as to the difficulty of quantifying 

soil CO2 emissions on the Qinghai-Tibet Plateau, limitations in data availability is 

particularly challenging. Despite its unique role in climate change studies due to its 

ecological sensibility, the inaccessible and complex terrain of the plateau additionally 

aggravates research activities and causes a general data scarcity due to enormous 

time and cost efforts required for data collection. Various data sets lack of a fine (about 

1 km2) resolution that captures spatial environmental variability appropriately. Others 

are not spatially comprehensive, existent, available or highly cost-intensive. On the 

other hand, several freely available global databases exist for selected environmental 

variables. They are have often acceptable or useful resolution to reasonably interpret 

empirical model results (about 1 km2) and are developed through the harmonization of 

different data sets with elaborated methods. For area-explicit, efficient calculations for 

the Qinghai-Tibet Plateau on a regional scale, they are, therefore, advantageous.  

Facing these issues, we aim at a first, efficient estimate of potential CO2 emissions 

from permafrost soils on the Qinghai-Tibet Plateau in future based on freely accessible 

data. Against the background of different scenarios of climate change, the potential 

CO2 release is approximated with special regard to the higher heterotrophic respiration 

induced by the increased microbial decomposition of soil organic C resulting from 

thawing permafrost.   

2. Material and methods 

2.1. Study area 

Our study area, the permafrost soils on the Qinghai-Tibet Plateau, is located in 

southwestern China. The Qinghai-Tibet Plateau extends from 26°00′12" N to 

39°46′50" N and from 73°18′52" E to 104°46′59" E with a maximum length of approx. 
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2945 km from east to west and approx. 1532 km from south to north. The altitude of 

the highest and youngest plateau amounts to 4380 m on average (Baumann et al., 

2009; Zhang et al., 2002). On this plateau, earth´s largest high-altitude and low-latitude 

permafrost zone is located, with more than half of its total area influenced by 

permafrost (Cheng, 2005). Covering about 1.050 × 106 km2, the permafrost zone is 

mainly part of the southwestern and central plateau (Fig. 1).  

 

Fig. 1. Spatial extension of continuous and extensive discontinuous permafrost on the Qinghai-Tibet 
Plateau. The spatial resolution of the grids is 1000 x 1000 m. 

 

Continuous permafrost mostly occurs in the interior and western Qinghai-Tibet 

Plateau, extending to the south of the Kunlun Mountains. Boundaries of the permafrost 

zone in the south are the Tanggula Mountains and the 94 ° longitude in the east. 

Discontinuous permafrost can be found in the northern and southern regions on the 

Qinghai-Tibet Plateau with more pronounced relief characterized by ground that 
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seasonally freezes and shows sporadic permafrost (Cheng and Jin, 2013). Along the 

Qinghai-Tibet highway, the permafrost zones stretches with a length of 550 km from 

north to south (Wang et al., 2006). The unique geographical position of the Qinghai-

Tibet Plateau prevails an azonal plateau climate (Zhuang et al., 2010; Zhong et al., 

2010) with strong solar radiation, low air temperature, large daily temperature 

variations and low differences between annual mean temperatures (Zhong et al., 

2010). Generally, a decrease both in temperature and in precipitation from the south-

eastern to the north-western part of the plateau is apparent (Immerzeel et al., 2005).  

For the plateau, the mean temperature of July, as warmest month, varies from 7 °C to 

15 °C and from -1 °C to -7 °C in January, as coldest month. Average annual 

temperature is 1.6 °C (Yang et al., 2009). Precipitation amounts to about 413.6 mm a 

year (Yang et al., 2009), with more than 60-90% falling in the wet and humid summers 

(June-September) and 10% at maximum in the cool, arid winters (November-February) 

(Xu et al., 2008). The topographic setting as well as atmospheric conditions determine 

the sequence of alpine meadows, steppes and deserts from southeast to northwest 

(Pei et al., 2009; Zheng, D., 1996). Alpine steppes and meadows dominate the 

undisturbed vegetation, with Stipa species respectively Kobresia meadows as major 

vegetation types. According to the long freezing periods, relatively short growing 

seasons characterize the plateau`s climate (Yu et al., 2010). Its vegetation is regarded 

as comparatively natural (Schroeder and Winjum, 1995). Continuous, complex 

pedogenetic processes on the Qinghai-Tibet Plateau typically result in young and 

highly diverse soils with distinct degradation characteristics, exhibiting a strong 

influence by permafrost regimes (Baumann et al., 2014). 

2.2. Geodatabase and processing 

For the estimation of potential CO2 emissions, different data sets were used in this 

case study. All data sets were projected into the Universal Transverse Mercator 

coordinate system WGS 1984, Zone 45 N. The data set for current MAP was obtained 

from the WorldClim data set available at http://worldclim.com (for basic statistics on 

current MAP see Table 1). This was compiled from a considerable number of various 

sources, such as the Global Historical Climate Network, World Meteorological 

Organization and the Food and Agricultural Organization, with a resolution of 1 x 1 km 

and representing the current climate conditions from circa 1950 to 2000. Data from 

more than 71,000 climate stations worldwide recording for precipitation, and more than 
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45,000 climate stations recording for temperature are integrated, with the Qinghai-

Tibet Plateau as area with less densely distributed measurement points. These were, 

however, interpolated using a thin-plate smoothing spline algorithm. Latitude, longitude 

and altitude served as independent variables. Elevation data were used from the 

Shuttle Radar Topography Mission with a spatial resolution of 1 x 1 km (for more 

detailed information see Hijmans et al., 2005). 

The data sets for MAP in 2050 and 2070 under different scenarios of climate change 

originate from the WorldClim data sets as well (for basic statistics on MAP in 2050 and 

2070 under different scenarios see Table 1).  

Table 1. Statistics on input data sets on MAP [mm] based on WorldClim data sets (Hijmans et al., 2005). 

Year 

Scenario 

2015  

 

2050 

RCP2.6 

2050 

RCP4.5 

2050 

RCP6.0 

2050 

RCP8.5 

2070 

RCP2.6 

2070 

RCP4.5 

2070 

RCP6.0 

2070 

RCP8.5 

    [mm]     

Mean 222.05 232.49 235.13 233.69 241.79 231.78 234.98 235.36 243.44 

Min 32.36 35.36 34.58 35.08 35.44 34.40 33.36 35.40 36.40 

Max 1237.18 1291.94 1287.11 1261.01 1243.34 1295.14 

 

1338.14 1247.18 1303.71 

Range 1204.82 1256.58 1252.53 1225.93 1207.9 1260.74 234.98 1211.78 1267.31 

SD 

 

137.67 

 

143.70 

 

145.73 

 

144.207 

 

148.66 

 

143.81 

 

147.32 

 

145.33 

 

151.12 

 

For 2050 and 2070, representing the average of modeled climate conditions from 2041 

to 2060 and 2061 – 2080, respectively, there are four climate scenarios. We used the 

projections of the global climate model ‘Community Climate System Model Version 4’ 

as one of the most common and current one that is employed in the Fifth Assessment 

IPCC report as well and has been developed in international collaboration (Gent et al., 

2011). The model is a coupled model combining four separate models that simulate 

the sea-ice, the atmosphere, oceans and land surface of the earth, and a fifth 

component that allows for an exchange of fluxes between these models. It is regarded 

to provide realistic simulations of the earth´s climate system at a resolution of 1 x 1 km 

with reasonable fidelity. WorldClim 1.4 served as reference for the downscaling and 

calibration of this model results (for more details see Gent et al., 2011; 

http://worldclim.com). The four scenarios are projected by the global climate model for 

four different representative concentration pathways (RCP) with a spatial resolution of 

1 x 1 km (van Vuuren et al., 2011). The RCP each describe different climate scenarios 

that are regarded being possible depending on future amounts of greenhouse gas 
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emissions, land use change and air pollutants, covering a wide range of scenarios 

presented in the existing literature. They incorporate various different technological, 

political, social and economic futures influencing climate change. Each RCP has been 

developed under the usage of a different model. For RCP2.6, greenhouse gas 

emissions are assumed to be very low, for RCP4.5 medium-low, for RCP6.0 medium, 

and RCP8.5 is seen as high emission scenario. Air pollution is assumed to be medium-

low for RCP2.6, medium for RCP4.5 and RCP6.0, and medium-high for RCP8.5. Data 

were harmonized, downscaled or converted using e. g. a carbon-cycle climate model 

or atmospheric chemistry model for emission data to be transformed into concentration 

data (for more details see van Vuuren et al., 2011).  

The data sets for organic C content, gravel content and bulk density were obtained 

from the WISE30sec data set available at http://isric.org with a spatial resolution of 

1 x 1 km up to a depth of 2 m (for basic statistics on the soil properties see Table 2). 

 

Table 2. Statistics of organic carbon content [g C kg-1], bulk density [kg dm-3] and coarse fragments 
(> 2 mm) [vol. %] of the continuous and extensive discontinuous permafrost area on the Qinghai-
Tibet Plateau based on WISE30sec data sets (Batjes, 2015). 

Soil property Organic carbon content    
[g C kg-1] 

Bulk density 
[kg dm-3] 

Coarse fragments (> 2 mm) 
[vol. %] 

Mean 31.03 1.25 14.34 

Min 2.42 0.14 1 

Max 425.23 1.62 46 

 

Range 422.81 1.48 45 

SD 

 

42.26 

 

0.19 

 

6.88 

 

The WISE30sec data set was compiled from different sources, such as the 

Harmonized World Soil Database, version 1.21 with marginal corrections, a climate 

zones map (Köppen-Geiger) used as co-variate and soil property estimations based 

on the ISRIC-WISE soil profile database. Soil properties were estimated based on 

statistical analyses of about 21 000 soil profiles. This was undertaken using an 

elaborate system of taxonomy-based transfer rules combined with expert-rules, which 

assess the consistency of the predictions within the pedons. These rules implemented 

in the derivations were marked to support in indicating the possible confidence in the 

estimated data regarding their lineage. WISE30sec is generally regarded as being 

appropriate for exploratory assessments at a resolution of 1 x 1 km (for more detailed 

information see Batjes, 2015).  
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The data to determine the spatial extension of the permafrost zone of the Qinghai-Tibet 

Plateau were obtained from the Global Permafrost Zonation Index Map available at 

http://www.geo.uzh.ch with a spatial resolution of 1 x 1 km. The model underlying this 

map is based on established relationships between air temperature and occurring 

permafrost, which have been transformed into this model. Its parametrization has been 

undertaken based on published approximations. Air temperature and elevation 

represent the input parameters for the model. The input data to derive the modeled 

spatial permafrost extension are based on various climatic and physical-geographic 

data sets such as the CRU TS 2.0, NCEP30 and SRTM30. Permafrost extension 

classes used in the data are: continuous permafrost (90–100%), extensive 

discontinuous permafrost (50–90%), sporadic discontinuous permafrost (10–50%) and 

isolated patches (smaller than 10%) (for more details see Gruber et al., 2012). In our 

study, continuous and extensive discontinuous permafrost are considered. 

2.3.  Calculation of potential CO2 emissions  

The calculation of potential CO2 emissions consists of two compartments: (i) General 

CO2 emission rates for the Qinghai-Tibet Plateau as rather general soil respiration and 

(ii) specific CO2 emission rates, i.e. thawing-induced CO2 emissions, that focus on the 

additional source of C made available by climate change through permafrost thaw on 

the Qinghai-Tibet Plateau.  

General CO2 emission rates (i) as general soil respiration were calculated based on 

MAP for each scenario in 2050 and 2070 and the current situation using the regression 

model by Raich and Schlesinger (1992):  

𝑆𝑅 = 0.391𝑃 + 155                           (1) 

where SR is the annual soil respiration rate (g C/m2/yr) and P represents MAP (mm). 

This regression model performs best for estimating soil respiration on the Qinghai-

Tibet Plateau according to a comparison of different regression models by Bosch et al. 

(2016).  

As global model, however, this regression model does not consider the situation of the 

Qinghai-Tibet Plateau specifically concerning thawing permafrost under global 

warming, inhering a further source of CO2 evolving from the soil. We therefore 

estimated these particular thawing-induced CO2 emissions (ii) additionally based on 

estimates from a synthesis of incubation experiments with soil samples from the arctic 
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region by Schädel et al. (2014). On average, 23.1% of the organic C can potentially be 

lost within 50 incubation years through permafrost thawing (Schädel et al., 2014), 

which corresponds to approximately 0.012‰ per day on average. With 166 frost-free 

days per year on the Qinghai-Tibet Plateau as average from 1960 to 2000 and 

approximately additional 3 days per further decade because of global warming (Zhang 

et al., 2014), the potential C loss from thawing permafrost C stocks is hence 0.222% 

on average per year from 2015 to 2050 and from 2015 to 2070 on average 0.226% per 

year. Accordingly, the potential organic C loss from 2015 to 2050 amounts to 7.78% 

and to 12.45% until 2070 of the organic C stock in 2015. As the amount of released 

CO2 in the process of permafrost thaw is rather independent from the exact 

temperature (Schädel et al., 2014), a further differentiation according to the RCPs used 

in this study would not yield deeper insights. 

C stocks for k layers as prerequsite for a calculation of thawing-induced soil CO2 

emissions were estimated as follows: 

𝑇𝑑 =  ∑ 𝜌𝑖𝑃𝑖𝐷𝑖(1 − 𝑆𝑖)
𝑘
𝑖=1 ,                               (2)  

where Td represents the total amount of organic carbon (Mg m-2) over depth d, ρi is 

bulk density (Mg m-3) of the layer i, Pi equals the proportion of organic carbon in layer 

i (g C g-1), Di is the thickness of this layer (m), and Si is the volume of coarse fragments 

(> 2 mm) (Batjes, 1996).  

With the potential C loss from current C stocks, the amount of the CO2 equivalent as 

potential greenhouse gas emissions from the process of permafrost thaw for 2050 and 

2070 can be calculated. This potential CO2 emission rate is added to the CO2 emission 

rates that were calculated for each scenario of 2050 and 2070 based on MAP for 

obtaining total CO2 emissions. The proportion of thawing-induced CO2 emissions to 

total CO2 emissions was obtained as ratio for each year. To calculate this, means of 

total CO2 emissions of all scenarios were averaged for each year.  

3. Results  

3.1. CO2 emission scenarios for 2050 

The four scenarios for 2050 project total CO2 emissions ranging from lowest 

1420.22 g CO2 m-2 y-1 (RCP2.6) to highest 1433.46 g CO2 m-2 y-1 on average (RCP8.5) 

(see Table 3). 
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Table 3. Statistics of potential CO2 emissions: total CO2 emissions, consisting of general soil respiration (I) and thawing-induced CO2 emission (II) in 
g CO2 m-2 y-1 [g C m-2 y-1]. 

Year Scenario Type of  

CO2 emission 

Mean Min Max Median Range 

2050 

 

 

 

 

 

RCP2.6 Total 

I 

 

1420.22 [387.59] 

901.02 [245.90] 

739.02 [201.68] 

618.59 [168.82] 

4188.95 [1143.20] 

2418.89 [660.14] 

1255.98 [342.77] 

855.15 [233.38] 

3449.92 [941.51] 

1800.30 [491.32] 

RCP4.5 Total 

I 

 

1423.87 [388.58] 

904.80 [246.93] 

737.90 [201.38] 

617.49 [168.52] 

4190.54 [1143.64] 

2412.00 [658.26] 

1260.37 [343.96] 

860.21 [234.76] 

3452.64 [942.26] 

1794.51 [489.74] 

RCP6.0 Total 

I 

 

1421.76 [388.01] 

902.75 [246.37] 

738.62 [201.57] 

618.18 [168.71] 

4195.69 [1145.04] 

2374.59 [648.05] 

1254.03 [342.23] 

855.26 [233.41] 

3457.06 [943.46] 

1756.40 [479.34] 

RCP8.5 Total 

I 

 

1433.46 [391.20] 

914.34 [249.54] 

739.13 [201.71] 

622.36 [169.85]  

4224.77 [1152.98] 

2349.27 [641.14] 

 

1267.53 [345.92] 

859.62 [236.60] 

 

3485.63 [951.26] 

1726.91 [471.29] 

2070 

 

 

 

 

 

RCP2.6 Total 

I 

 

1409.73 [384.73] 

900.00 [245.62] 

735.46 [200.71] 

617.23 [168.45] 

 

4149.22 [1132.36] 

2423.50 [661.40] 

 

1245.85 [340.00] 

755.633 [206.22] 

3413.76 [931.65] 

1806.27 [492.95] 

 

RCP4.5 Total 

I 

 

1414.14 [385.93] 

904.62 [246.88] 

733.97 [200.30] 

615.73 [168.04] 

4143.43 [1130.78] 

2485.10 [678.21] 

1249.51 [341.00] 

757.06 [206.61] 

 

3409.45 [930.47] 

1869.37 [510.17] 

RCP6.0 Total 

I 

 

1414.88 [386.13] 

905.13 [247.02] 

736.89 [201.10] 

618.66 [168.84] 

4129.10 [1126.87] 

2354.76 [642.64] 

1251.36 [341.51] 

757.06 [206.61] 

3392.20 [925.76] 

1736.10 [473.8] 

RCP8.5 Total 

I 

 

1426.25 [389.24] 

916.78 [250.18] 

 

 

738.32 [201.49] 

620.09 [169.23] 

4158.69 [1134.95] 

2435.97 [664.75] 

1263.96 [344.94] 

765.63 [208.95] 

 

3420.37 [933.45] 

1815.68 [495.52] 

2015 Schädel et al. 

(2014) 

Schädel et al. 

(2014) 

Schädel et al. 

(2014) 

 

II 529.91 [144.62] 53.20 [14.52] 3134.91 [855.55] 236.19 [64.46] 3008.31 [821.03] 

2050 

2070 

II 

 

II 

519.75 [141.84] 

510.30 [139.26] 

52.18 [14.24] 

51.23 [13.98] 

3002.82 [819.49] 

2948.25 [804.60] 

231.69 [63.23] 

227.47 [62.08] 

2950.63 [805.25] 

2897.01 [790.62] 

2015 Bosch et al. 

(2016) 

Total 

I 

 

1415.59 [386.33] 

886.92 [242.05] 

737.08 [201.15] 

614.32 [167.73] 

4224.34 [1152.86] 

2340.46 [638.73] 

1246.86 [340.28] 

863.83 [235.75] 

3487.25 [951.70] 

1726.14 [471.08] 
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The difference between the lowest and highest mean CO2 emission rate is hence 

9.23‰. Differences in the minima and maxima of the different scenarios are likewise 

similar ranging from 737.90 g CO2 m-2 y-1 (RCP4.5) to 739.13 g CO2 m-2 y-1 (RCP8.5) 

(minima) and between 4188.95 g CO2 m-2 y-1 (RCP2.6) and 4224.77 g CO2 m-2  y-1 

(RCP8.5) (maxima). The mean of the thawing-induced CO2 emissions adds up to 

36.47% of the averaged means of the total CO2 emissions. In all scenarios, more 

values exceed the respective averages as reflected by the median values from 

1254.03 g CO2 m-2 y-1 (RCP6.0) to 1267.53 y-1 (RCP8.5). The frequency distribution of 

all thawing induced values differs strongly from those of the total CO2 emissions, that 

is to say their medians amount to less than half of the mean. Highest decreases in total 

CO2 emissions compared to the total CO2 emissions in 2015 are located in the central 

part of the plateau (Fig. 3). With regard to the abundance of CO2 emission values for 

CO2 emission classes, most values (69.13% - 69.90%) occur in the low class (>0 – 

916.05 g CO2 m-2 y-1)  throughout all scenarios (see Table 4).  

 

Table 4. Abundance of CO2 emission values of per class of CO2 emissions for the Qinghai-Tibet Plateau. 
CO2 emission classes represent very low (>0 – 250 g C m-2 y-1 / >0 – 916.05 g CO2 m-2 y-1), low 
(>250 – 500 g C m-2 y-1 / >916.05 – 1832.10 g CO2 m-2 y-1 ), medium (>1832.10 g CO2 m-2 y-1 – 
3664.21 g CO2 m-2 y-1 / >500 – 1000 g C m-2 y-1), high (>3664.21 g CO2 m-2 y-1 / >1000 g C m-2 y-1) 
and no (≤0 g CO2 m-2 y-1 / ≤0 g C m-2 y-1] CO2 emissions. Italicized values specify the area on the 
Qinghai-Tibet Plateau assigned to the respective CO2 emission class. 

Classes Scenario RCP2.6 RCP4.5 RCP6.0  RCP8.5  

Year 2050 2070 2050 2070 2050 2070 2050 2070 

% [m-2] 

Very low  13.27 
135,902 

13.50 
138,276 

13.29 
136,118 

13.50 
138,286 

12.72  
130,224 

13.06 
133,737 

12.21 
125,037 

12.99 
132,997 

Low  69.25 
708,955 

69.18 
708,160 

69.13 
707,685 

69.00 
709,400 

69.74  
713,895 

69.57 
712,163 

69.90  
715,538 

69.33 
709,707 

Medium  17.36 
177,789 

17.24 
176,273 

17.49      
178,843 

17.11  
175,058 

17.44 
178,528 

17.27 
176,802 

17.78 
182,068 

17.83 
182,560 

High  0.09 
976 

0.08 
912 

0.09 
976 

0.08 
878 

0.09 
977 

0.08 
920 

0.09  
979 

0.09  
969 

No  0.00 

 0 

0.00  
0 

0.00  
0 

0.00  
0 

0.00  
0 

0.00  
0 

0.00 
 0 

0.00 
 0 

          

 

In the highest class (>3664.21 g CO2 m-2 y-1), only <1‰ of the values appears, which 

corresponds to an area of 976 – 979 m2. Differences between the scenarios show to 
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be small (Fig. 2) amounting to less than <1% for all scenarios in all CO2 emission 

classes.  

 

Fig. 2. Spatial distribution of total potential CO2 emissions from permafrost-affected areas on the 
Qinghai-Tibet Plateau in 2050 and 2070 according to the RCP2.6 scenarios. Unit of CO2 
emissions is g CO2 m-2 y-1. The spatial resolution of the grids is 1000 x 1000 m. 

 

It has to be considered, however, in terms of area, that the difference between RCP2.6 

and RCP8.5 is up to 10865 m2 in the lowest class and up to 7853 m2 in the low class 

as examples. In this case, the CO2 input to the atmosphere from more than 10 000 m2 

of the permafrost soils of the Qinghai-Tibet Plateau would be instead of 0 – 

916.05 g CO2 m-2  at least >916.05 – 1832.10 g CO2 m-2 or even >1832.10 – 3664.21 

g CO2 m-2 within one year, which is two to four times more.  

3.2. CO2 emission scenarios for 2070 

Mean CO2 emissions of all scenarios for 2070 range from lowest 1409.73 g CO2 m-2 y-1 

(RCP2.6) to 1426.25 g CO2 m-2 y-1 (RCP8.5). The strongest difference between two 

scenarios therefore remains 1.15%. Like for the scenarios in 2050, minima (733.97 – 

738.32 g CO2 m-2 y-1) and maxima (4129.10 – 4158.69 g CO2 m-2 y-1) are also very 
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close. Median values lie about 150 g CO2 m-2 y-1 below averages (1245.85 – 

1263.96 g CO2 m-2 y-1). For all scenarios, CO2 emissions appear to be less than the 

CO2 emissions of 2050. Again, as for the projections of 2050, the statistical means of 

the general soil respiration follows the same patterns corresponding to the one´s of the 

total CO2 emissions. The mean of the thawing-induced CO2 emissions adds up to 

36.03% of the averaged means of the total CO2 emissions. Like for 2050, the medians 

of the thawing-induced values amount to less than half of the mean. For all scenarios, 

the range of the thawing-induced values appears to be broader than the range of the 

general soil respiration, which is also true for the projections of 2050. Like for 2050, 

strongest decreases in total CO2 emissions compared to the total CO2 emissions in 

2015 are located in the central part of the plateau (Fig. 3). 

 

Fig. 3. Spatial distribution of absolute differences in total potential CO2 emissions from permafrost-
affected areas on the Qinghai-Tibet Plateau between 2015 and 2050 and between 2015 and 2070 
according to the RCP2.6 scenarios. Unit of changes in total CO2 emissions is g CO2 m-2 y-1. The 
spatial resolution of the grids is 1000 x 1000 m. 

 

Basic patterns of the abundance of total CO2 emissions of 2050 and 2070 in their 

respective classes resemble each other strongly. Most values occur in the low class 

(69.00 – 69.33%) and in the class for high CO2 emission rates, again <1‰ is found. 

Differences between the scenarios follow the structures of the values´ distribution for 

2050. Except for the entire lowest class and the medium class for the RCP8.5 scenario, 

more value of CO2 emissions can generally be found in all scenarios of 2050. This 

corresponds to the result of general higher total CO2 emissions in 2050. The highest 
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difference between years and scenarios within one class amounts to 1.29% at the 

most. 

3.3. C stocks 

In the permafrost soils of the Qinghai-Tibet Plateau, on average, 67.00 kg C m-2 for 

2015, 61.79 kg C m-2 and 58.66 kg C m-2 for 2050 and 2070 are stored according to 

our estimations based on the WISE30sec data set (see Table 5).  

Table 5. Statistics of the soil C stocks of the Qinghai-Tibet Plateau in 2015, 2050 and 2070 in kg C m-2 

up to a depth of 2 m.  

Year Mean Min Max Median Range Sum [Pg C] Sum of thawing-

induced C loss 

since 2015 [Pg C] 

kg C m-2   

2015 67.00 6.72 387.13 29.87 380.40 68.59 - 

2050 61.79     6.20 356.98 27.54    350.78        63.25              5.34 

2070 58.66 5.88 338.92 26.15 333.03 60.05 8.54 

        

 

Minima range from 5.88 kg C m-2 (2070) to 6.72 kg C m-2 (2015) and maxima from 

338.92 kg C m-2 (2070) to 387.13 kg C m-2 (2015). Highest C stocks occur in the central 

part of the plateau (Fig. 4).  

 

Fig. 4. Spatial distribution of C stocks of the permafrost-affected areas on the Qinghai-Tibet Plateau for 
2015, 2050 and 2070. C stocks are in SI unit (kg m-2). The spatial resolution of the grids is 
1000 x 1000 m. 
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For the permafrost-affected area of the Qinghai-Tibet Plateau, C stocks in 2015 add 

up to 68.59  Pg and to 63.25 Pg and 60.05 Pg for 2050 and 2070 respectively. The 

climate change-induced increase of microbial activity releases 5.42 Pg C from these 

permafrost soils between 2015 and 2050 and 8.54 Pg C between 2015 and 2070. The 

consequent decrease of C stocks is highest on the central part of the plateau for both 

2050 and 2070 (Fig. 5). 

 

Fig. 5. Spatial distribution of absolute differences in C stocks of the permafrost-affected areas on the 
Qinghai-Tibet Plateau between 2015 and 2050 and between 2015 and 2070. Absolute differences 
in C stocks are in SI unit (kg m-2). The spatial resolution of the grids is 1000 x 1000 m. 

 

4. Discussion 

Overall, total CO2 emissions for both 2050 and 2070 remain within the same order of 

magnitude of  soil respiration generally measured on the Qinghai-Tibetan Plateau 

(2550.29 g CO2 m-2 y-1
 as average of four years) (Wang et al., 2014) and further show 

a proportion of general soil respiration and thawing-induced CO2 emissions 

comparably to the results of Peng et al. (2015) and Hicks Pries et al. (2013). The field 

measured results of Peng et al. (2015) with the amount of C additionally released due 

to warming and thawing permafrost, reach 18 to 29% in an alpine meadow on the 

plateau. In that study, there is no differentiation between altered soil CO2 emissions 

induced by permafrost thaw and altered general soil CO2 emissions due to a general 

higher plant and microbial metabolic activity as consequence of higher temperatures. 

However, it is to assume that most of the increase is related to the additional available 

permafrost C as Hicks Pries et al. (2013) obtained similar results when focusing on soil 

CO2 emissions originating from permafrost C. In that study, old soil heterotrophic soil 
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CO2 emissions comprised up to approximately 18% of the remaining parts of soil CO2 

emissions under thawing permafrost.  

The differences between the scenarios of total soil CO2 emissions fully result from the 

differences between the general soil respiration rates for each scenario as the potential 

thawing-induced CO2 emissions are represented by only one value per year due to 

their different calculation. Accordingly, values of mean, minimum, maximum and 

median share proportionally the same trends for total CO2 emissions and general soil 

respiration. Differences between the scenarios of general soil CO2 emissions appear 

to be about 1% what reflects the small differences between the scenarios of MAP as 

fully accounting for this. 

The variability of the general soil respiration results from the variation in MAP, naturally 

not following static patterns as depending on complex influencing factors as partly 

considered in the RCPs. As the mean CO2 emission rate of the RCP6.0 is lower than 

the one of the RCP4.5 in 2050, the CO2 emission rate reflects that there is no general 

linear correlation to the radiative forcing values. For all scenarios of 2070, CO2 

emissions appear to be less than the CO2 emissions of 2050. This results mostly from 

the thawing-induced CO2 loss, which is calculated as percentage of the respective C-

stock, consequently decreasing with temporal progression. Differences between the 

years 2050 and 2070 in thawing-induced CO2 emissions reflect their linear calculation 

and decreasing C-stocks. As natural process, thawing of permafrost does, however, 

not progress strict linearily. Nevertheless, the relative high independence of 

temperature (Schädel et al., 2014) does not require further differentiations of different 

temperature scenarios. 

Regarding the abundance of values in 2050, except for the entire lowest class and the 

medium class for the RCP8.5 scenario, more value of CO2 emissions can generally be 

found in all scenarios of 2050. This corresponds to the result of general higher total 

CO2 emissions in 2050, resulting from decreasing carbon stocks in the end. 

With regard to the C stored in the permafrost soils of the Qinghai-Tibet Plateau, the 

decrease from 2015 to 2070 (Table 5) generally reflects the steady decrease caused 

by the raised C decomposition. The C stocks in general appear to be reasonable in 

view of other studies on C stocks. They fit the order of magnitude of field measured 

data with about 10 kg C m-2 in permafrost soils of alpine grasslands of the Qinghai-

Tibet Plateau to a depth of <1 m (Genxu et al., 2008; Doerfer et al., 2013) or 56.5 kg 
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C m-2 in meadows (Mu et al., 2015) as examples. The global C stock estimates by 

Batjes (2015) clearly show the same patterns of the spatial distribution of C stocks on 

the Qinghai-Tibet Plateau overall with highest C stocks on the Qinghai-Tibet Plateau 

reaching global maxima. Carvalhais et al. (2014) approximates the global maximum 

for soil C stocks to 243 kg C m-2, which is comparable to the maxima in this study. 

Compared to 450 Pg C (Zimov et al., 2006) in the Siberian loess permafrost 

(1 x 106 km2), the C stock estimated in this study appears to be much lower, resulting 

from the fact that it covers only a depth to 2 m in contrast to 25 m as reported in Zimov 

et al. (2006). They also include roots and partly organic matter in their less spatially 

differentiated approximations as not considering coarse fragments in their calculations 

and using only one standard value for organic C content and bulk density which 

accounts for much higher values. Their uncertainty is further assessed as possibly 

deviating by several hundred Pg (McGuire et al., 2010). Moreover, an extreme spatial 

variability of soil organic C stocks on the Qinghai-Tibet Plateau has been reported (Mu 

et al., 2015), leading generally to a wide range in area-wide estimations. C stocks for 

the permafrost region on the Qinghai-Tibet Plateau were calculated with about 

160 Pg C up to 25 m in a similar order of magnitude by Mu et al. (2015) compared to 

the estimates for the Siberian loess permafrost. However, the strong methodological 

differences to this study are to a large extent very similar next to a broader definition 

of the permafrost area. Wang et al. (2002) estimate the C stock of the plateau´s 

grasslands to 33.5 Pg. However, they only consider the first 70 cm of the soil. The 

estimation of Mu et al. (2015) for the first two meters amount to about 27.9 Pg C for 

the permafrost soils on the Qinghai-Tibet Plateau indicating that estimates in this study 

are reasonable. Since the calculations by Mu et al. (2015) are based on literature data 

from different studies, they expect deviations of several 10% regarding the C contents 

as base for their calculations due to different methodological approaches.  

With about 0.54 Pg CO2 year-1, the thawing-induced soil CO2 emissions of the entire 

study area are, although in the same order of magnitude, about three times higher than 

what would be supposed based on the results of Schuur et al. (2009). They estimate 

1 Pg C year-1 (3.66 Pg CO2 year-1) as global C flux assuming an estimated area of 

global permafrost with about 22 * 106 km2 according to Gruber (2012). Also, the 

estimates of Koven et al. (2011), who projected emissions from permafrost soils to a 

depth of 3 m to 7 - 17 Pg CO2 until 2100, are lower than the results of this thesis (7.3.2). 

These and comparable estimates by Harden et al. (2012) are even considered being 
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overestimated (Schädel et al., 2014). However, the results of Schuur et al. (2009) are 

highly uncertain since they are based on measurements on only one site. A recent, 

model-based study by Schuur et al. (2015) approximated 37 – 174 Pg C to lose from 

the global permafrost zone by 2100 under the RCP8.5 scenario. This corresponds to 

0.09 Pg C year-1 from the plateau on average, which is distinctly closer to an average 

of 0.15 Pg C year-1 (Section 7.3.2). Generally, global annual soil CO2 emissions are 

approximated to 63 – 120 Pg C (Raich and Schlesinger, 1992; Raich and Potter, 1995; 

Reichstein and Beer, 2008). This gives rise to the assumption that the calculated 

heterotrophic soil CO2 emissions induced by permafrost thaw are as a whole to be 

revised upwards after further research.  

The spatial distribution of CO2 emissions with a concentration of highest values in the 

central part of the plateau (Fig. 2) resembles the spatial distribution of the C:N ratio in 

the study area. There, the C:N ratio ranges from 0 – 25 (Batjes 2015). Highest C losses 

occur in this area (Fig. 5), confirming the results of Schädel et al., (2014) that present 

the C:N ratio as most reliable predictor of C loss compared to either C or N 

concentration. The permafrost conditions, conserving fragmentary decomposed 

organic matter, may account for this positive relationship, which reflects the stabile 

presence of N in the system (Schädel et al., 2014). 

Uncertainties of the presented potential CO2 emissions result from various sources. 

Input data limitations restrict the estimations´ reliability in all cases. The WorldClim data 

sets generally show lower precision for poorly sampled regions like the Qinghai-Tibet 

Plateau (Maussion et al., 2011; Böhner, 2006; Hijmans et al., 2005). The same holds 

true for areas on the plateau with complex topography where a 1 x 1 km resolution 

does not capture all potential variation (Hijmans et al., 2005).  

The projections of the global climate model Community Climate System Model 

Version 4 show uncertainties for precipitation on the Qinghai-Tibetan Plateau up to 10 

mm per day compared to reference models. The RCP projections generally inhere 

deficiencies resulting from the process of harmonizing different scenarios and models 

underlying the RCPs (Van Vuuren et al., 2011). As the years 2050 and 2070 represent 

an average from 2041 to 60 and 2061 to 80 respectively, likely variation is not 

represented. Assumptions are too general or static such as a general stronger and 

stronger regulation of air pollution (Van Vuuren et al., 2011). They also may not only 

occur model-specifically but are important for other RCP such as reforestation policies 
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included in RCP 4.5 but potentially also relevant to RCP 2.6. Further uncertainties arise 

from the transfer of emissions to concentrations and radiative forcing (Van Vuuren et 

al., 2011). The RCP do not represent those various possible translations (Van Vuuren 

et al., 2011). Moreover, the respective socio-economic scenario for each RCP is not 

representing the variety of possible developments (Van Vuuren et al., 2011). 

The data input sets from the WISE30sec data inhere deficiencies that arise from 

processing simplifications resulting in prediction accuracies from 23 to 51% (point-

based). Potential biases occur especially for soil characteristics “not observed” as the 

volumetric gravel content that was calculated using taxotransfer rules. The pragmatic 

combination of soil profile data from different sources led in the process of harmonizing 

and reclassification to generalizations (Batjes et al., 2015). With different soil analytical 

methods in nearly each country, even possibly varying between laboratories, 

comparability remains critical. To some extend these differences result from the fact 

that the analytical procedures depend on the soil type. However, no straightforward 

method of harmonization of the data exists (Batjes, 1999), why the synthesis of the 

data has proceeded pragmatically as in studies before at this scale (Batjes, 2002). 

Also, soil geographic as well as taxonomic gaps do exist. Generally, the soil profiles 

are spatially irregularly distributed. Further uncertainties originating from the spatial 

data and processes of aggregation, are not yet possible to be quantified at present 

(Batjes et al., 2015). Despite their limitations, however, the WISE30sec data sets 

provide the most recent, appropriate, area-explicit information on soil properties for the 

Qinghai-Tibet Plateau needed to calculate C stocks at a resolution of 1 x 1 km to a 

depth of 2 m in order to assess potential soil CO2 emissions on the Qinghai-Tibet 

Plateau.  

In the Global Permafrost Zonation Index Map, main uncertainties also occur for less 

weakly researched areas like the Qinghai-Tibet Plateau (Gruber et al., 2012). 

Generally, the high spatial variability of permafrost is not captured by the resolution at 

hand. The occurrence of permafrost is a result of the interaction of various influencing 

factors. The Global Permafrost Zonation Index Map, however, solely determines the 

existence of permafrost based on mean annual air temperature leading to deficiencies. 

Excluding topographic effects such as the exposition of hills to sun or temperature 

effects of snow warming the underground are not represented. Likewise is deep 

permafrost not considered with its influence on near-surface conditions. The model on 
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which the map is based on, further does not reproduce effects of valleys and 

depressions where inversions and the drainage of cold air often impact ground 

temperature. Vegetation effects and thermal characteristics of the ground are further 

not considered. Sub-grid variability may differ between grids which is also not 

reproduced by the map as well as transient effects (Gruber et al., 2012). Given the 

variety of definitions of permafrost, differences in the determination of the area covered 

by permafrost may occur (Gruber et al., 2012). 

To sum up, using these freely accessible data inheres several limitations and 

uncertainties in general that have partly not even been quantified yet. Therefore, 

estimations based on them have to be used with caution in view of their deficiencies. 

In combining the different data sets with their respective limitations in data quality, the 

deficiencies become even more complex and less quantified. Also, the order of 

magnitude of potential deviations may change and results may not be as comparable 

e.g. absolute changes of general soil CO2 emissions over time may range in a different 

order of magnitude than the changes over time of the thawing-induced soil CO2 

emissions in absolute numbers. In adding them up to total soil CO2 emissions, this 

difference is less obvious and the results need to be interpreted carefully. However, on 

a regional scale as well as for exploratory investigations, the individual data sets are 

considered both appropriate and advantageous as highly efficient suppliers of area-

explicit data at a high resolution. Their combination increases the inaccuracies of the 

results, why they as a matter of principle cannot reach the precision of using a fully 

consistent data set. This approach obtains its appropriateness in view of the early 

stage of this research area together with its relevance to the vital problem of climate 

change necessitating results in a timely manner, and other approaches still being 

highly uncertain as well. 

With regard to the computation of the general soil respiration, limitations arise from the 

background of the regression model by Raich and Schlesinger (1992). Indicated by its 

coefficient of determination (r2 = 0.34), it is not capable to fully explain the data 

variability reflecting highly complex interdependencies between soil respiration and all 

its controlling factors. 

Next to this, high small-scale variability of CO2 emission rates especially in alpine 

meadows is not captured by a data resolution of 1 x 1 km. The comparatively very high 

values in alpine meadows of especially the Kobresia tibetica plant communities cannot 
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not be predicted with this spatial resolution. This strong difference in CO2 emission 

rates between this communities and other alpine meadow plant communities results in 

wide differences of CO2 emissions within short distances which can only be 

represented by a higher spatial resolution. 

Moreover, the degradation of vegetation and grazing effects comprising about 35% of 

the Qinghai-Tibet Plateau with decreasing influence on soil respiration (Wen et al., 

2013; Cao et al., 2004) is not integrated in our estimations and constraints these 

predictions of CO2 emissions. Grazing influences permafrost thawing as decreasing 

vegetation cover reduces the insulating effect of vegetation, resulting in quicker 

permafrost thaw on the Qinghai-Tibet Plateau (Hu et al., 2009) and consequently to 

higher CO2 emissions induced by permafrost thaw. Although the mechanisms of the 

relations have in general not been sufficiently clarified yet, changes in soil CO2 

emissions by grazing are relatively high with a decrease by about 50% when doubling 

grazing intensity on the Qinghai-Tibet Plateau (Cao et al., 2004). Moderate grazing 

reduces the C uptake in Kobresia turfs (Babel et al., 2014) indicating decreasing CO2 

emissions. Johnson and Matchett (2001) concluded that grazing resulted in a decrease 

of soil CO2 emissions compared to an ungrazed tallgrass prairie, however, grazed 

prairie exhibited more soil CO2 emissions than ungrazed prairie (Frank et al., 2002). 

Thus, although important, grazing effects do not exceed the order of magnitude of the 

remaining soil CO2 emissions (Cao et al., 2004). 

Another limitation of the potential thawing-induced CO2 emissions in the presented 

results arise from the transfer of the incubation experiments as base for the 

calculations. The soil samples of the experiments originate from the Arctic with different 

climatic and environmental conditions. As the soil samples are taken from different 

studies, their sampling methods are not fully consistent inhering a potential source of 

uncertainty. Further, the thawing experiments are executed under laboratory 

conditions that may deviate from the process in natural environment due to strong 

simplifications. Fresh litter additionally incorporated into the soil is not regarded as well 

as it is assumed that abiotic factors do not change in contrast to a natural environment 

(Schädel et al., 2014). Of special importance are drainage conditions altering thawing-

induced C loss by 9 – 75% (Elberling et al., 2013). Uncertainty further arises from the 

extrapolation of the results up to 50 years, disregarding potential variation over time. It 

is further to expect that the linear developement of C loss over time assumed for the 
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calculations presented here does not correspond to the natural course as climate 

change is characterized by a high complexity. 

Next to that limitation, we did not include areas with permafrost soils covering <50% of 

the area indicating that our estimates are possibly biased low. However, their inclusion 

would potentially have caused a stronger bias. 

Moreover, the permafrost of the Qinghai-Tibet Plateau may reach a depth up to more 

than 130 m (Wang and French, 1995) and soil C stocks at least several 10 m (Mu et 

al., 2015). Consequently, the C stocks must be higher than the WISE30sec data set 

captures with a depth of 2 m. Thus, the thawing-induced CO2 emissions in the field are 

higher, however, it is to assume that the permafrost thawing process does not reach 

this depth within the addressed years (Pang et al., 2012).  

5. Conclusion 

Estimates of potential CO2 emissions from permafrost soils are crucial to 

understanding feedback mechanisms of global warming to project future scenarios of 

climate change. The magnitude of future CO2 emissions is challenging to predict 

because of existing high uncertainties about quantity and velocity of the release of 

organic C from permafrost. Especially for the Qinghai-Tibet Plateau as key region, 

uncertainties in area-wide data are high as data collection requires extremely high time 

and cost efforts. Data at a sufficient spatial resolution for large areas, especially for the 

Qinghai-Tibet Plateau, are generally scarce.  

Using different scenarios, a regression model that can be run with climate data, results 

from laboratory experiments with soil samples from the northern circumpolar 

permafrost zone, and C stock estimations, we provide an area-wide, highly resoluted, 

first estimate of potential CO2 emissions for 2050 and 2070 from permafrost soils of 

the Qinghai-Tibet Plateau, thus being advantageous for an area-wide calculation of 

stronger differentiated climate change scenarios. 

From our estimates, we conclude that thawing-induced soil CO2 emissions from 

permafrost soils on the Qinghai-Tibet Plateau increase general soil respiration by at 

least about one third, considering that an incorporation of deep permafrost carbon 

would further distinctly raise CO2 emissions. Differences between scenarios remain 

<1% and thawing-induced CO2 emissions generally decrease comparing 2015, 2050 

and 2070. Our approach of aiming at a first estimate of CO2 emissions of permafrost 
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soils of the Qinghai-Tibet Plateau under climate change conditions is consistent to 

measurements of C loss from thawing permafrost soils measured within other studies. 

The spatially distinct CO2 emissions calculation at a comparably high spatial resolution 

allows for assessing both an area-specific future permafrost carbon feedback to 

climate change from the highly vulnerable permafrost carbon of the Qinghai-Tibet 

Plateau and spatially distinct future potential greenhouse gas emissions.  
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Table 1 

Table 1. Regression models to approximate soil respiration. 

Type of 
regression 

Region, 
vegetation 
type 

Equation Parameters Author(s) 

Regression 
based on 
temperature 

 
𝑅𝑠 =  𝑎 ∗ 𝑒𝑏𝑇 

Rs = soil respiration (n/a),       
T = temperature (n/a),         
a, b = empirical regression 
coefficient  

Luo and 
Zhou 
(2006) 
from van´t 
Hoff (1894) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎 + 𝑏𝑇 

with: 

a = -76.91; -56.34 

b = 16.59; 9.52   

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), a, b = parameters 

Jia et al. 
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 

with: 

a = -47.51; -66.98 

b = 12.79; -7.18 

c = 0.11; 0.50  

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), a, b, c  = parameters 

Jia et al. 
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎𝑇𝑏 

with: 

a = 22.70; 1.43 

b = 0.71; 1.46 

 (ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), a, b = parameters 

Jia et al. 
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 

steppe 

𝐹 = 𝑎(𝑇 + 10)𝑏 

with: 

a = 0.07; 0.02 

b = 2.31; 2.56  

 (ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), a, b = parameters 

Jia et al. 
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 

steppe 

𝐹 = 𝑎(𝑇 − 𝑇𝑚𝑖𝑛)𝑏 

with: 

a = 4.22 * 10-4; 3.21 * 10-26 

b = 3.48; 12.98 

 Tmin = -22.02; -112.61  

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), a, b = parameters 

Jia et al. 
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎𝑒𝑏𝑇 

with: 

a = 29.94; 14.75 

b = 0.09; 0.10  

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), a, b = parameters 

Jia et al. 
(2006) 
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 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎 ∗ exp (𝑏𝑇 + 𝑐𝑇2) 

with: 

a = 18.17;  14.01 

b = 0.16; 0.11 

c = -0.002; -0.0002  

 (ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), a, b, c = parameters 

Jia et al. 
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎 ∗ exp (−𝐸/𝑅(𝑇 + 273.2)) 

with: 

a = 2.91*1013; 

E = 6.31*104; 

R = 8.31 J mol-1 K-1  

F = soil respiration rate 
(m-2 h-1), T = temperature 
(°C), E = gas constant 
(J mol-1 K-1), a, R = 
parameters 

Jia et al. 
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎 ∗ exp (−𝐸0/(𝑇 + 273.2 − 𝑇0)) 

with: 

a = 5.99*104; 1.96*1011 

E0 = 444.02; 4610.03 

T0= 219.78; 75.50  

 (ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), a, E0, T0 = parameters 

Jia et al. 
(2006) 

  

𝑅 =  𝑅𝑐𝑒
𝐸

𝑇−𝑇𝑐  

R = respiration rate,                
T = absolute temperature 
(K), Rc= fitted parameter,     
E = fitted parameter,            
Tc = fitted parameter 

Lloyd and 
Taylor 
(1994) 
(“Lloyd and 
Taylor 
equation”) 

 Lab in-
cubations 𝑌 = 𝑎𝑒𝑥𝑝(

𝐸

𝑅(𝑇 + 273.2)

𝑇 − 10

283.2
 

with: 

a = 0.06648; 0.02992 

E = 6.141*104; 8.361 * 104 

(farmland soil; forest soil) 

Y = soil respiration 
(mg CO2 m-2 s-1),                  
T = temperature (°C),           
a, E = parameters, R = (n/a) 

Fang and 
Moncrieff 
(2001) 
(“Arrhenius 
type 
equation”) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎𝑒
(−

𝐸
𝑅(𝑇+273.2)

)
 

with: 

a = 6.14 * 10-6; 3.06 * 10-7 

b = 0.15; 0.14 

E = 3.34 *104; 3.87 *104 

R = 8.31 J mol-1 K-1; 8.31 J mol-
1K-1 

(ungrazed; grazed) 

F = soil respiration rate 

(mg m-2 h-1),                          
T = temperature, E = gas 
constant (J mol-1 K-1),             
a, b, R = parameters 

Jia et al.  
(2006) 

 Bacteria 
√𝑟 = 𝑏 (𝑇 − 𝑇0) 

r = growth rate constant,          
b = regression coefficient,      
T = temperature (K),             
T0 = conceptual temperature 
of no metabolic significance 

Ratkowsky 
et al. (1982) 

 Utah, 
Atriplex-
conferti-
folia 

𝑅𝑇 = 𝑅10 +  6.187 ∗ 10−3(𝑇 − 10)2 
RT = respiration (μmolkg-1 s-1), 

T = temperature (°C),         
R10 = seasonally adjusted 
respiration rate at 10 °C  

Holthausen 
and 
Caldwell 
(1980) 

 Ten-
nessee 

𝑅𝑠 = 𝑓 ∗ 𝑇 
Rs = soil respiration 

(μmol m-2 s-1),                        
Chen et al. 
(2010) 
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T = temperature (°C),                  
f = coefficient 

 Qinghai-
Tibet 
Plateau, 
Kobresia 
meadow 

𝐹 = 𝑅0exp (𝑘𝑇) 

with: 

𝑅0 = 0.273  

F = CO2 emission rate 
(μmol CO2 m-2 s-1), R0 = CO2 
emission rate at 0 °C 
(μmol CO2 m-2 s-1),                
k = activation energy (°C-1),                       
T = temperature (°C) 

Kato et al. 
(2005) 

 Japan, 
agri-
cultural 
field 

𝑆𝑅 = 𝑎𝑒𝑥𝑝(𝑏𝑥) 
SR = soil respiration rate 

(mg CO2 m-2 s-1),                    
x = temperature at different 
heights (°C),                        
a, b = coefficient 

Nakadai 
et al. (2002) 

 China, 
desert 𝑅𝑠 = 𝑎𝑒𝑏𝑇𝑎 

with: 

a = 0.322; 0.21; 0.142; 0.222 

b = 0.03; 0.034; 0.042; 0.034 

(Haloxylonammodendron; Anabasis 
aphylla; Halostachyscaspica, all) 

Rs= soil respiration 
(μmol CO2 m-2 s-1), Ta = air 
temperature (°C),                 
a, b = fitted parameter  

Zhang et al. 
(2010) 

 China, 
desert 𝑅𝑠 = 𝑎𝑒(−𝐸/𝑅(𝑇𝑎+273.2) 

with: 

a = 3796.515; 2248.805; 
74042.548; 6416.267 

E = 21200.55; 20817.8; 29932.56; 
23193.9  

(Haloxylonammodendron; Anabasis 
aphylla; Halostachyscaspica, all) 

Rs= soil respiration 
(μmol CO2 m-2 s-1), Ta = air 
temperature (°C),                
a, E = fitted parameter,        
R = universal gas constant 
(kJ mol-1 k-1) 

Zhang et al. 
(2010) 

 China, 
desert 𝑦 = 0.322𝑒0.0305𝑥 

y = soil respiration at 
Haloxylonammodendronsite 
(μmol CO2 m-2 s-1), x = air 
temperature (°C)  

Zhang et al. 
(2010) 

 China, 
desert 𝑦 = 0.2103𝑒0.0366𝑥 

y = soil respiration at Anabasis 
aphylla site 
(μmol CO2 m-2 s-1), y = air 
temperature (°C)  

Zhang et al. 
(2010) 

 China, 
desert 𝑦 = 0.1424𝑒0.0422𝑥 

y = soil respiration at 
Halostachyscaspica site 
(μmol CO2 m-2 s-1), x = air 

temperature (°C)  

Zhang et al. 
(2010) 

 China, 
desert 𝑦 = 0.222𝑒0.0339𝑥 

y = soil respiration at 
Haloxylonammodendron, 
Anabasis aphylla and  
Halostachyscaspica site 
(μmol CO2 m-2 s-1), x = air 
temperature (°C)  

Zhang et al. 
(2010) 

  

𝑅𝑠 = 𝑅0𝑄10

𝑇−𝑇0
10  

Rs =soil respiration (n/a),        
R0 = respiration at 
temperature T0,                  
Q10 = representing the 
relative increase R/R0 as 
temperature increases by 
10°C 

Luo and 
Zhou (2006) 
from van´t 
Hoff (1894) 
(“Q10mo-
del”) 

  

𝑅 = 𝐴 𝑒
−

𝐸0
𝑅0𝑇 

with: 

R0 = 8.314 

R = respiration rate,                 
T = absolute temperature 
(K), A = Arrhenius 
coefficient, E0 = activation 
energy for the chemical 
reaction, R0 = gas constant 

(JK-1mol-1) 

Qi et al. 
(2002) 
(“Arrhenius 
equation”) 
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 Oregon, 
citrus 
seedlings 

𝑟 = 1.11(0.0739𝑇) 
r = root respiration rate 

(nmol CO2 (g DW)-1 s-1),                 
T = temperature (°C) 

Bouma 
et al. (1997) 

 Massa-
chusetts, 
forest 

𝑅𝑚𝑎𝑠𝑠 = −0.0227𝑇 + 0.748 

(organic soils) 

𝑅𝑚𝑎𝑠𝑠 = −0.0179𝑇 + 0.491 

(mineral soils) 

Rmass= rates of microbial 
respiration at 15 °C 
(μg C g microbial 
biomass-1 day-1),                  
T = temperature (°C) 

Bradford 
et al. (2008) 

Regression 
based on 
mean 
annual 
tempera-
ture T 

 
𝑆𝑅 = 25.6𝑇 + 300 

SR = annual soil respiration 
rate (g C/m2/yr), T = mean 
annual temperature (°C),  

Raich and 
Schlesinger 
(1992) 

 Micro-
nesia and 
Hawaii, 
peatlands 

𝑌 = 265.9 + (27.7 ∗ 𝑀𝐴𝑇) 
Y = annual soil respiration rate 

(g C m-2 yr-1), MAT = mean 
annual temperature (°C) 

Chimner 
(2004) 

  
𝑅𝑆 = 36.2 + 3.32 ∗ 𝑇 

Rs = annual global soil 
respiration (g C y-1),              
T = mean annual air 

temperature over land (°C)   

Raich et al. 
(2002) 

Regression 
based on 
mean 
monthly air 
tempera-
ture T 

Analysis 
of 
published 
field 
fluxes of 
CO2 

log 𝑆𝑅 = 0.282 + (0.0271 ∗ 𝑇) 

with: 

𝑆𝑅 = 𝑒𝑙𝑜𝑔𝑆𝑅 − 1.0 

SR = soil CO2 efflux 
(g C m-2 d-1), T = mean 
monthly air temperature (°C) 

Raich and 
Potter 
(1995) 

 Analysis 
of 
published 
field 
fluxes of 
CO2 

𝑆𝑅 = 0.286 + (0.0568 ∗ 𝑇) 
SR = soil CO2 efflux 

(g C m-2 d-1), T = mean 
monthly air temperature (°C) 

Raich and 
Potter 
(1995) 

 Qinghai-
Tibet 
Plateau 

𝐺1(𝑡; 𝑇) = 0.16T(t)+2.24 
G1 (t;T) = mean monthly soil 

release of carbon for 
temperate/boreal needle-
leaved vegetation 
(g C m-2 d-1), T(t) = monthly 
surface air temperature (°C) 

Fung et al. 
(1987) 

 Qinghai-
Tibet 
Plateau 

𝐺2(𝑡; 𝑇) = 0.44 T(t)+2.76 
G2 (t;T) = mean monthly soil 

release of for 
temperate/boreal broad-
leaved vegetation 
(g C m-2 d-1), T(t) = monthly 
surface air temperature (°C) 

Fung et al. 
(1987) 

 Qinghai-
Tibet 
Plateau 

𝐺3(𝑡; 𝑇)/𝐺𝑚𝑎𝑥 = 0.78 T(t)/𝑇𝑚𝑎𝑥+2.76 
G3 (t;T) = mean monthly soil 

release of carbon for 
tropical/subtropical woody 
vegetation (g C m-2 d-1),     
T(t) = monthly surface air 
temperature (°C),             
Gmax = maximum monthly 
soil respiration rate,         
Tmax = local maximum 
monthly air temperature 

Fung et al. 
(1987) 

 Qinghai-
Tibet 
Plateau 

𝐺4(𝑡; 𝑇)/𝐺𝑚𝑎𝑥 = 0.77 T(t)/𝑇𝑚𝑎𝑥+0.03 
G4 (t;T) = mean monthly soil 

release of carbon for 
grasslands (g C m-2 d-1),   
T(t) = monthly surface air 
temperature (°C),             
Gmax = maximum monthly 

soil respiration rate,          

Fung et al. 
(1987) 
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Tmax = local maximum 

monthly air temperature 
Regression 

based on 
mean 
weekly air 
temperature 
wTa 

Colorado, 
crop field 

𝑙𝑛𝐶𝑂2 = 7.8156 + 0.05995𝑤𝑇𝑎 
CO2 = amount of CO2 evolved 

from the soil (g m-2 d-1),    
wTa = mean weekly air 

temperature (°C)  

Buyanovsky 
et al. (1986) 

Regression 
based on 
soil 
temperature 

Great 
Plains of 
USA, tall 
grass 
prairie  

𝑅𝑠 = 𝑎𝑒𝑏𝑇 

with: 

a = 0.267; 0.332; 0.333; 0.430 

b = 0.104; 0.085; 0.086; 0.070 

(unclipped/unwarmed; 
unclipped/warmed; 
clipped/unwarmed; 
clipped/warmed) 

Rs = soil respiration 
(µmol m-2 s-1), T = soil 
temperature (°C),                 
a = intercept of soil 
respiration when 
temperature is zero,             
b = temperature sensitivity 
coefficients 

 
 

Luo (2001) 

 
 𝑅 = 𝑅0𝑒𝛽𝑇 

with: 

𝑒10𝛽 = 𝑄10 =  
𝑅𝑇+10

𝑅
 

R = soil respiration 
(µmol m-2s-1), R0 = basal 
respiration at temperature of 
0°C, T = soil temperature 
over 0-10cm (°C),                  
β = temperature coefficient 

Rey et al. 
(2002) 

 Northeast 
China, 
grass-
lands with 
L. 
chinensis 

𝑌 = 1.282𝑒0.077𝑥 
Y = soil respiration 

(g CO2 m-2d-1), x = soil 
temperature at 10 cm soil 
depth (°C)  

Wang et al. 
(2007) 

 Northeast 
China, 
grass-
lands with 
P. 
tenuiflora 

𝑌 = 0.741𝑒0.086𝑥 
Y = soil respiration 

(g CO2 m-2d-1), x = soil 

temperature at 10 cm soil 
depth (°C)  

Wang et al. 
(2007) 

 Colorado 
Plateau, 
cold 
desert 

𝑦 =  −0.65 + 0.15 (𝑋) 
y = soil respiration 

(µmoles CO2 m-2 s-1), x = soil 
temperature ≤ 15.7 (°C) 

Fernandez 
et al. (2006) 

 Colorado 
Plateau, 
cold 
desert 

𝑦 =  −3.24 + 51.14 (𝑋) 
y = soil respiration 

(µmoles CO2 m-2 s-1), x = soil 
temperature > 15.7 (°C) 

Fernandez 
et al. (2006) 

 Tibetan 
Plateau, 
low 
grazed 
alpine 
meadow 

𝑦 = 115.7𝑒𝑥𝑝0.117𝑥 
y = soil respiration rate 

(mg CO2 m-2 h-1), x = soil 
temperature at 5 cm depth 
(°C) 

Cao et al. 
(2004) 

 Tibetan 
Plateau, 
high 
grazed 
alpine 
meadow 

𝑦 = 90.21𝑒𝑥𝑝0.1016𝑥 
y = soil respiration rate 

(mg CO2 m-2 h-1), x = soil 

temperature at 5 cm depth 
(°C) 

Cao et al. 
(2004) 

 Central 
Massa-
chusetts, 
forest 

𝐹𝑙𝑢𝑥 = 21.13 ∗ 𝑒(0.1371∗𝑡𝑒𝑚𝑝) 
 
Flux = soil respiration 

(mg C/m2/hr), temp = soil 
temperature at 10 cm (°C) 

Davidson 
et al. (1998) 

 Alaska, 
tundra 𝑌 = 89.78 + 1.54𝑋 + 5𝑋2 

Y = daily mean dark CO2 flux 
(mg CO2 m-2 hr-1,  X = daily 
mean soil temperature (°C) 

Peterson 
and Billings 
(1975) 
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 Korea, 
forest 𝑦 = 0.14𝑒0.113𝑥 

y = soil respiration 
(g CO2 m-2 h-1), x = soil 
temperature (°C) 

Kang et al. 
(2003) 

 Min-
nesota, 
forest 

𝐶𝑂2 =  𝑒𝐶+𝐵1𝑇+𝐵2𝑀𝐼 

with: 

C = -2.63; -2.07; -2.06 

B1 = 0.11; 0.07; 0.08 

B2 = 0.04; 0.03; 0.04 

(oak forest; marginal fen; cedar 
swamp) 

CO2 = CO2 evolution rate 
(gm CO2/m2/hr),                   
C = constant, B1 = coefficient 
for soil temperature,            
B2 = coefficient for moisture 
index, T = soil temperature 
(°C), MI = moisture index 

Reiners 
(1968) 

 Great 
Plains 𝑆𝑜𝑖𝑙 𝑓𝑙𝑢𝑥 = ((𝐴1,𝐴2, 𝐴3)𝑧)

∗ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑢𝑥 

with: 

A1 = (Tmax-T)/(Tmax-Topt), 

A2 = (T-Tmin)/(Topt-Tmin), 

A3 = (Topt-Tmin)/(Tmax – Topt), 

z = 1.5, 

maximum flux rate = 8.4 g CO2-C 
m-2 d-1 

Soil flux = soil CO2 flux 
(g CO2-C m-2 d-1),                  
T = measured soil 
temperature (°C),              
Tmax = maximum soil 
temperature, Tmin= minimum 
soil temperature,                
Topt = optimum soil 
temperature for soil CO2 flux 

Frank  et al. 
(2002) 

 Finland, 
agri-
cultural 
eco-
system 
with peat 
soil 

𝑆𝑅 = 122.65 exp (0.0718𝑆𝑇) 
SR = soil respiration 

(mg CO2 m-2 h-1), ST = soil 
temperature at 2.0 cm depth 
(°C) 

Koizumi 
et al. (1999) 

 Finland, 
agri-
cultural 
eco-
system 
with clay 
soil 

𝑆𝑅 = 16.07𝑆𝑇 + 91.95) 
SR = soil respiration 

(mg CO2 m-2 h-1), ST = soil 
temperature at 2.0 cm depth 
(°C) 

Koizumi 
et al. (1999) 

 Australia, 
Eu-
calyptus 
pauciflora 
forest 

ln(𝑟𝑒𝑠𝑝) = 4.83 + 0.092 ∗ (𝑠𝑡𝑒𝑚𝑝) 

for:  

< 10 °C 

ln(𝑟𝑒𝑠𝑝) = 5.45 + 0.041 ∗ (𝑠𝑡𝑒𝑚𝑝) 

for: 

>10 °C 

resp = soil CO2 efflux 
(mg CO2 m-2 hr-1),            
temp = soil temperature at 
10 cm (°C) 

Keith et al. 
(1997) 

 Arctic  

𝑅𝑠 =  𝑅10𝑒
308.56(

1
36.02

−
1

𝑇𝑠−227.13
)
 

Rs = soil respiration 
(μmol m-2 s-1), R10 = soil 
respiration rate at 10°C 
(μmol m-2 s-1), Ts = soil 
temperature (°C) 

Lloyd 
(2001) 

 Canada, 
agri-
cultural 
fields 

𝑅𝑠𝑜𝑖𝑙 =  −0.74 + 0.2 𝑇𝑠𝑜𝑖𝑙 

(volumetric soil moisture content 10 
– 35%) 

Rsoil = soil respiration 
(μmolCO2m-2 s-1), Tsoil = soil 

temperature (°C) 

Rochette 
et al. (1991) 

 Missouri, 
tallgrass 
prairie 

ln 𝑌 = 𝑎 + 𝑏 ln(𝑋 + 10) 
Y = CO2 evolution rate 

(mg CO2 m-2 hr-1),                  
a = constant,                        
b = temperature coefficient, 
X = soil temperature (°C) 

Kucera and 
Kirkham 
(1971) 
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 Sweden, 
forest 

𝑅 = 0.041 exp(0.1559𝑇𝑠) 
R = soil respiration 

(mg m-2 s-1), Ts = soil 
temperature at 5 cm (°C) 

Morén and 
Lindroth 
(2000) 

 California, 
grass 
savanna 

𝑅𝑠 = −0.12 + 0.029𝑇𝑠 
Ts = soil respiration of an open 

area in June (μmol m-2 s-1), 
Ts = soil temperature at 8 cm 
depth (°C) 

Tang et al. 
(2005) 

 California, 
grass 
savanna 

𝑅𝑠 = −0.37 + 0.024𝑇𝑠 
Ts = soil respiration of an open 

area in July (μmol m-2 s-1),  
Ts = soil temperature at 8 cm 
depth (°C) 

Tang et al. 
(2005) 

 California, 
grass 
savanna 

𝑅𝑠 = −0.26 + 0.017𝑇𝑠 
Ts = soil respiration of an open 

area in September 
(μmol m-2 s-1),Ts = soil 
temperature at 8 cm depth 
(°C) 

Tang et al. 
(2005) 

 California, 
grass 
savanna 

𝑅𝑠 = 5.33 + 0.040𝑇𝑠 
Ts = soil respiration under a 

tree in June (μmol m-2 s-1),  
Ts = soil temperature at 8 cm 
depth (°C) 

Tang et al. 
(2005) 

 California, 
grass 
savanna 

𝑅𝑠 = 5.15 − 0.028𝑇𝑠 
Ts = soil respiration under a 

tree in July (μmol m-2 s-1),   
Ts = soil temperature at 8 cm 
depth (°C) 

Tang et al. 
(2005) 

 California, 
grass 
savanna 

𝑅𝑠 = 1.59 − 0.015𝑇𝑠 
Ts = soil respiration under a 

tree in September 
(μmol m-2 s-1),Ts = soil 
temperature at 8 cm depth 
(°C) 

Tang et al. 
(2005) 

 California, 
forest 𝐹 = 𝛽0𝑒𝛽,𝑇 

F = soil efflux rate 
(μmol m-2 s-1),T = soil 
temperature at a certain 
depth (°C), β0 = constant 
fitted with the least squares 
techniques, β1 = constant 
fitted with the least squares 
techniques  

Xu and Qi  
(2001) 

 China, 
forest 𝑦 =

𝑏1

1 + exp(𝑏2(𝑏3 − 𝑥))
 

y = soil respiration 
(μmol m-2 s-1), x = soil 
temperature at 10 cm depth, 
b1, b2, b3 = regression 
parameter  

Yu et al. 
(2011) 

 Brazil, 
forest 

𝑅𝑠 = 0.29 ∗ exp(0.14 ∗ 𝑇) 
Rs = mean monthly soil 

respiration (μmol m-2 s-1),     
T = soil temperature (°C) 

Zanchi et al. 
(2009) 

 Brazil, 
forest 𝑅𝑠 = 𝑅0 ∗ 𝑒(𝛽0∗𝑇𝑠𝑜𝑖𝑙) 

𝑄10 = 𝑒10∗𝛽0 

with: 

𝑅0 = 0.02; 0.04; 0.18; 0.28 

𝑏0 = 0.25; 0.22; 0.15; 0.14 

𝑄10 = 12.00; 8.80; 4.30; 3.90 

(dry class; intermediate; wet class; 
whole period) 

Rs = soil respiration 
(μmol CO2 m-2 s-1), Tsoil = soil 
temperature at 15 cm depth 
(°C), R0, β0 = fitted 
parameter, Q10 = sensitivity 

parameter of the respiration 
variation with a variation in 
temperature of 10 °C 

Zanchi et al. 
(2009) 

 Wyoming, 
mature 
forest 

𝑌 = 1.406 ∗ 𝑒(0.038∗𝑋) 

 

Y = soil-surface CO2 efflux in 

August (μmol CO2 m-2 s-1),    
X = soil temperature (°C) 

Litton et al. 
(2003) 

 Wyoming, 
mature 
forest 

𝑌 = 1.782 ∗ 𝑒(0.035∗𝑋) 

 

Y = soil-surface CO2 efflux in 

June (μmol CO2 m-2 s-1),      
X = soil temperature (°C) 

Litton et al.  
(2003) 
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 Wyoming, 
young 
forest 

𝑌 = 0.299 ∗ 𝑒(0.064∗𝑋) 

 

Y = soil-surface CO2 efflux in 

August (μmol CO2 m-2 s-1),   
X = soil temperature (°C) 

Litton et al. 
(2003) 

 Wyoming,
young 
forest 

𝑌 = 0.827 ∗ 𝑒(0.061∗𝑋) 

 

Y = soil-surface CO2 efflux in 

June (μmol CO2 m-2 s-1),      
X = soil temperature (°C) 

Litton et al. 
(2003) 

 Brazil, 
forest 𝑅 = 𝑅0𝑒𝑘𝑇 

R = CO2 efflux(μmol m-2 s-1), 
R0= CO2 efflux at average 

soil temperature 
(μmol m-2 s-1), k = CO2 efflux 
exponential response 
coefficient for temperature,  
T = soil temperature at 5 cm 
depth (°C) 

Sotta et al. 
(2004) 

 China, 
moso 
bamboo 
forest 

𝑦 = 0.990𝑒0.078𝑥 
y = soil CO2 efflux 

(μmol m-2 s-1), x = soil 

temperature at 0.05 m depth 
(°C) 

Song et al. 
(2013) 

 China, 
Chinese 
fir forest 

𝑦 = 0.302𝑒0.114𝑥 
y = soil CO2 efflux 

(μmol m-2 s-1), x = soil 

temperature at 0.05 m depth 
(°C) 

Song et al. 
(2013) 

  
𝑆𝑅 = 𝑎/(1 + 𝑏 𝑒𝑥𝑝(−𝑘𝑇)) 

SR = soil respiration rate 
(µmol CO2 m-2s-1), T = soil 

temperature (°C),                 
a = maximum soil respiration 
rate, b = elongation along x 
axis, k = steepness of curve 

at inflection point 

Richards 
(1959) 

 Tibetan 
Plateau, 
alpine 
grassland 

𝑦 = 17.759𝑒0.0475𝑥 
y = soil respiration (mg m-

2 h-1), x = soil temperature at 
0 cm depth (°C) 

Zhang et al. 
(2005) 

 Tibetan 
Plateau, 
alpine 
grassland 

𝑦 = 15.132𝑒0.0819𝑥 
y = soil respiration (mg m-2 h-1), 

x = soil temperature at 5 cm 
depth (°C) 

Zhang et al. 
(2005) 

 Tibet, 
alpine 
meadow 

𝑅𝑠 = 0.808𝑒0.123𝑇 

(growing season) 

𝑅𝑠 = 0.254𝑒0.256𝑇 

(non-growing season) 

Rs = soil respiration rate 
(μmol m-2 s-1), T = soil 
temperature at 5 cm depth 
(°C) 

Li and Sun 
(2011) 

 Colorado, 
crop field 

𝑙𝑛𝐶𝑂2 = 7.0687 + 0.1329𝑇𝑠10

− 0.00197𝑇𝑠10
2 

CO2 = amount of CO2 evolved 

from the soil (g m-2 d-1),    
Ts10 = soil temperature at 
10 cm depth (°C)  

Buyanovsky 
et al. (1986) 

 Colorado, 
crop field 

𝑙𝑛𝐶𝑂2 = 7.579 + 0.061𝑇𝑠10 
CO2 = amount of CO2 evolved 

from the soil (g m-2 d-1),     
Ts10 = soil temperature at 
10 cm depth (°C)  

Buyanovsky 
et al. (1986) 

Regression 
based on 
litter 
tempera-
ture T 

South-
western 
Australia, 
litter of 
Eucalypt 
forest 

𝐴(𝑇) = exp (𝛼 + 𝛽𝑇 + 𝛾𝑇2) 

 

 

 

A = maximum substrate-limited 
respiration rate (mg 
CO2 g-1 litter day-1), T = litter 
temperature (°C),                
α, β, 𝛾 = constants 

O´Connell 
(1990) 

Regression 
based on 
moss 
tempera-
ture Tm 

Sweden, 
forest 

𝑅 = 0.0599 exp(0.1067𝑇𝑚) 
R = soil respiration (mg m-2s-1), 

Tm = moss temperature (°C) 
Morén and 
Lindroth 
(2000) 
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Regression 
based on 
chamber 
tempera-
ture Tch 

Sweden, 
forest 

𝑅 = 0.1092 exp(0.0638𝑇𝑐ℎ) 
R = soil respiration (mg m-2s-1), 

Tch = chamber temperature 
(°C) 

Morén and 
Lindroth 
(2000) 

Regression 
based on 
tempera-
ture T, root 
biomass B 

China, 
spring 
maize 
eco-
system 

𝑆𝑅 = 𝑎𝑒𝑏𝑇𝐵 + 𝑐𝑇 + 𝑑 

with: 

a = 0.1022; 0.0341; 0.0422; 0.0214; 
0.0389 

b = 0.0381; 0.0540; 0.0401; 0.038; 
0.0069 

c = 0.0807; - 0.0379; - 0.0563; - 
0.0170; 0.0165 

d = - 0.3459; 1.8813; 0.829; 
1.0225;  0.4292 
(June 5; June 28; July 28; August 
28; September 22) 
 

SR = soil respiration rate 
(μmol m-2 s-1), B = root 
biomass in the soil collars 
(gm-2), T = temperature (°C), 
a, b, c, d = parameters 

Han et al. 
(2007) 

Regression 
based on 
tempera-
ture T, soil 

organic 
matter SOM 

Various 
eco-
systems 

𝑅𝐶𝑅(𝑡)

= 𝑅𝐶𝑅0[1 + 𝛼(𝑇)𝛥𝑇(𝑡)]
𝑆𝑂𝑀

𝑆𝑂𝑀0
 

RCR = evolution of CO2 from 
soil (mg m-2h-1),                     
T = temperature (°C),            
α (T) = CO2 response to 

temperature T (°C),          
SOM = soil organic matter 
(n/a) 

Schleser 
(1982) 

Regression 
based on 
soil 
tempera-
ture Tsoil, 
NDVI INDVI 

Spain, 
barley 𝐹𝑠𝑜𝑖𝑙 = 0.052(2.684𝑇𝑠𝑜𝑖𝑙 − 0.092𝑇𝑠𝑜𝑖𝑙

2

∗ exp (2.79𝐼𝑁𝐷𝑉𝐼) 

Fsoil = soil CO2 efflux 
(μmol m-2 s-1), Tsoil= soil 
temperature at 10 cm depth 
(°C), INDVI = normalized 
difference vegetation index 

Sánchez 
et al. (2003) 

Regression 
based on 
tempera-
ture T, depth 
z, max. 
depth of 
respiration L 

 
𝑞(𝑧) = 𝑄𝑔𝑇𝑔Ѳ(1 −

𝑧

𝐿
)𝑛 

with: 

n = 1 (soil gas transport) 

n = 0.25 (CO2 transport) 

gT = exp
−𝐸0

𝑇−𝑇𝑜
 

 

q(z)= soil respiration rate 
(kg m-3 s-1), Q = surface soil 
respiration rate (kg m-3 s-1),  
z = depth (m), L = depth to 
which respiration occurs (m), 
n = dimensionless 
attenuation coefficient,         
gT = relationship between soil 
respiration and temperature, 
gϴ = relationship between 
soil respiration and water 
content (ϴ, m3 m-3),             
E0 =308.6 K, T = 
temperature (K), T0= 227.1 K 

Cook et al. 
(1998), 
Lloyd and 
Taylor 
(1994), 
Glinski and 
Stepniewski 
(1985) 

Regression 
based on 
mean 
annual pre-
cipitation P 

 
𝑆𝑅 = 0.391𝑃 + 155 

SR = annual soil respiration 
rate (gC/m2/yr), P = mean 
annual precipitation (mm)   

Raich and 
Schlesinger 
(1992) 

Regression 
based on 
soil moisture 

Colorado 
Plateau, 
cold 
desert 

𝑦 =  −1.00 + 32.56 (𝑋) 
y = soil respiration 

(µmolesCO2m-2s-1), x = soil 
moisture ≤ 9.5 (%) 

Fernandez 
et al. (2006) 

 Colorado 
Plateau, 
cold 
desert 

𝑦 =  0.20 + 0.01 (𝑋) 
y = soil respiration 

(µmoles CO2 m-2 s-1), x = soil 
moisture > 9.5 (%) 

Fernandez 
et al. (2006) 

 Inner 
Mongolia, 
Stipa 

𝑦 = 3.469𝑙𝑜𝑔10𝑥 − 2.053 
y = CO2-release rate 

(g C m-2 d-1), x = soil 
moisture (%) 

Chen et al. 
(1999) 
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grandis 

steppe 
 Inner 

Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎 + 𝑏𝑊 

with: 

a = -250.64; -71.54 

b = 47.91, 18.93 

 (ungrazed; grazed) 

 

F = soil respiration rate 
(mg m-2 h-1), W = soil 
moisture (%),                        
a, b = parameters 

Jia et al.  
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎 + 𝑏𝑊+c𝑊2 

with: 

a = -102.85; -371.08 

b = 20.00; 79.64 

c = 1.17;  -2.80 

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), W = soil water 

content (%),                          
a, b, c = parameters 

Jia et al.  
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 

steppe 

𝐹 = 𝑎 + 𝑏𝑊3 

with: 

a = 87.19; 61.06 

b = 0.10, 0.04 

 (ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1),W = soil water 
content (%),                         
a, b = parameters 

Jia et al.  
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎𝑒𝑏𝑊 

with: 

a = 25.67; 14.34 

b = 0.18; 0.19   

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), W = soil water 
content (%),                          
a, b = parameters 

Jia et al.  
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎 + 𝑏Log 𝑊 

with: 

a = -933.41; -331.64 

b = 1191.04; 458.92  

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), W = soil water 

content (%),                         
a, b = parameters 

Jia et al.  
(2006) 

 Australia, 
Eu-
calyptus 
pauciflora 
forest 

ln(𝑟𝑒𝑠𝑝) = 5.37 − 0.0011 ∗ (𝑠𝑜𝑖𝑙𝑚) 

for:  

< 10 °C 

ln(𝑟𝑒𝑠𝑝) = 5.31 + 0.0193 ∗ (𝑠𝑜𝑖𝑙𝑚) 

for: 

>10 °C 

resp = soil CO2 efflux 
(mg CO2 m-2 hr-1),           
soilm = soil moisture content 
(%) 

Keith et al. 
(1997) 

 Australia, 
Eu-
calyptus 
pauciflora 
forest 

ln(𝑟𝑒𝑠𝑝) = 5.27 − 0.0005
∗ (𝑙𝑖𝑡𝑡𝑒𝑟𝑚) 

for:  

< 10 °C 

ln(𝑟𝑒𝑠𝑝) = 5.76 + 0.0052
∗ (𝑙𝑖𝑡𝑡𝑒𝑟𝑚) 

for: 

>10 °C 

resp = soil CO2 efflux 
(mg CO2 m-2 hr-1),           
litterm = soil moisture 

content (%)  

Keith et al. 
(1997) 
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 Sweden, 
forest 

𝑅 = −0.9024𝛳 + 0.3341 
R = soil respiration (mg m-2s-1), 

ϴ = soil water content at 10 
cm (%) 

Morén and 
Lindroth 
(2000) 

 Okla-
homa, 
field 

𝑅 = 0.664 ∗
(𝑊 − 25)

7.88 + (𝑊 − 25)
 

R = soil CO2 efflux 
(μmol m-2 s-1), W = soil 

moisture (g kg-1) 

Liu et al. 
(2002) 

 Ten-
nessee 

𝑅𝑠 = 𝑔 ∗ 𝑅𝑆𝑊 

 

Rs = soil respiration 
(μmol m-2 s-1),                  
RSW = relative soil water 
content (%), g = coefficient 

Chen et al. 
(2010) 

 Brazil, 
forest 

𝑅𝑠 =  −1.0753 + 17.58 ∗ ln(0)

− 6.299 ∗ 𝑙𝑛2(0) 

Rs = mean monthly soil 
respiration (μmol m-2 s-1),      
T = soil moisture (m3 m-3) 

Zanchi et al. 
(2009) 

 Brazil, 
forest 𝑅𝑠 = 𝑎 + 𝑏 ∗ ln(𝛳) + 𝑐 ∗ 𝑙𝑛2(𝛳) 

with: 

 𝑎0 = 2213; −44.70; 18.00; −12.50 

𝑏0 = 1934; −65.30;  19.80; −30.30 

𝑐0 = 423.80; −19.00; 12.00; −9.60 

(dry class; intermediate; wet class; 
whole period) 

Rs = soil respiration 
(μmol CO2 m-2 s-1),              
ϴ = volumetric soil moisture 
content (m3 m-3), a = soil 
activation energy (n/a),         
b = parameter for the soil 
respiration close to the water 
field capacity, c = soil 

respiration decrease when 
ϴ>0.25m3 m-3 or ϴ<0.15 
m3 m-3 

Zanchi et al. 
(2009) 

 Brazil, 
forest 𝐶𝑂2 =  1.902(𝛳3) + 0.14 

CO2 = CO2 flux (g C m-2 hr-1), 
ϴ = volumetric water content 
(cm3 H2O cm-3) 

Davidson 
et al. (2000) 

 Brazil, 
cattle 
pasture 

𝐶𝑂2 =  3.461(𝛳3) + 0.09 
CO2 = CO2 flux (g C m-2 hr-1), 

ϴ = volumetric water content 
(cm3 H2O cm-3) 

Davidson 
et al. (2000) 

  

𝑃 = {
𝛼𝜃𝑣

𝑓

𝛽(𝜀 − 𝜃𝑣)𝑔
 

P = evolved CO2 (mg 
CO2/g soil), 𝜃v = relative 

water content (n/a),              
α, β, ε, f, g = parameter 

Skopp et al. 
(1990) 

 China, 
grassland 
Lymus 
chinesis 

𝑦 =  126.51𝑥 − 6.5121 
y = CO2 release rate of soil 

respiration (g m-2 d-1),           
x = soil water content at 0-10 
cm depth (%) 

Wang et al. 
(2002) 

 China, 
grassland 
Pucci-
nellia 
tenuiflora 

𝑦 =  60.425𝑥 − 1.7024 
y = CO2 release rate of soil 

respiration (g m-2 d-1),           
x = soil water content at 0-10 
cm depth (%) 

Wang et al. 
(2002) 

Regression 
based on 
water 
potential 

Lab in-
cubations 

𝐴 =  −0.167 ln(−𝜓) + 0.95 
A = microbial activity indexing 

CO2 evolution 
(μl CO2 g-1 h-1), ψ = water 
potential (MPa) 

Orchard 
and Cook 
(1983) 

 Brazil, 
forest 

𝐶𝑂2 =  −0.0431𝐿𝑜𝑔(−𝜓) + 0.16 
CO2 = CO2 flux (g C m-2 hr-1), 

ψ = matric potential (MPa) 
Davidson 
et al. (2000) 

 Brazil, 
cattle 
pasture 

𝐶𝑂2 =  −0.0472𝐿𝑜𝑔(−𝜓) + 0.19 
CO2 = CO2 flux (g C m-2 hr-1), 

ψ = matric potential (MPa) 
Davidson 
et al. (2000) 

Regression 
based on 
mean 
annual 
tempera-
ture T, mean 
annual pre-
cipitation P 

 
𝑆𝑅 = 0.0178𝑇𝑃 + 311 

SR = annual soil respiration 
rate (gC/m2/yr), T = mean 
annual temperature (°C),     
P = mean annual 

precipitation (mm)   

Raich and 
Schlesinger 
(1992) 

  
𝑆𝑅 = (18.6𝑇) + (0.192𝑃) + 175 

SR = annual soil respiration 
rate (gC/m2/yr), T = mean 
annual temperature (°C),     
P = mean annual 

precipitation (mm)   

Raich and 
Schlesinger 
(1992) 
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𝑆𝑅 = (9.26𝑇) + (0.0127𝑇𝑃) + 289 

SR = annual soil respiration 
rate (gC/m2/yr), T = mean 
annual temperature (°C),     
P = mean annual 
precipitation (mm)   

Raich and 
Schlesinger 
(1992) 

  
𝑆𝑅 = (9.88𝑇) + (0.0344𝑃)

+ (0.0112𝑇𝑃)
+ 268 

SR = annual soil respiration 
rate (gC/m2/yr), T = mean 
annual temperature (°C),     
P = mean annual 

precipitation (mm)   

Raich and 
Schlesinger 
(1992) 

Regression 
based on 
mean 
monthly air 
temperature, 
mean 
monthly 
precipitation  

 
𝑅𝑆 = 1.250 ∗ 𝑒(0.05452∗𝑇𝑎) ∗ [𝑃/(4.259

+ 𝑃)] 

Rs = mean monthly soil-CO2 
efflux (gCm-2d-1), Ta = mean 
monthly air temperature (°C), 
P = mean monthly 
precipitation (cm)   

Raich et al. 
(2002) 

 China  

𝑅′𝑠 = 𝑓 ∗ 𝑒𝑏𝑥∗𝑇𝑎) ∗ [
𝑃

𝑘 + 𝑃
] 

with:  

𝑏𝑥 = 𝐿𝑛𝑄10(𝑥)/10 

𝑓 = 1.250 

𝑘 = 4.259 

R’s = mean monthly soil 
respiration (g C/m2*d),        
bx = estimated temperature 

sensitivity at spatial grid x,   
Ta = mean monthly air 
temperature (°C),                 
P = monthly precipitation 
(cm), f, k = constant 

Zhou et al. 
(2009) 

 Analysis 
of 
published 
field 
fluxes of 
CO2 

𝑅𝑆 = 𝐹 ∗ 𝑒(𝑄∗𝑇𝑎) ∗ [𝑃/(𝐾 + 𝑃)] 
Rs = mean monthly soil-CO2 

efflux (g C m-2 d-1),              
Ta = mean monthly air 
temperature (°C), P = mean 
monthly precipitation (cm),    
F = soil respiration rate when 
mean monthly air 
temperature = 0°C, Q = rate 
of change of soil respiration 
rate with respect to 
temperature (°C-1), K = half-
saturation constant of the 
hyperbolic relationship 
between soil respiration with 
monthly precipitation 
(mm mo-1)   

Raich and 
Potter 
(1995) 

 Global 
𝑚𝑜𝑅𝑠

= 𝐹 ∗ 𝑒(𝑎𝑇−𝑏𝑇2)

∗
𝛼𝑃 + (1 − 𝛼)𝑃𝑚−1

𝐾 + 𝛼𝑃 + (1 − 𝛼)𝑃𝑚−1
 

moRs = mean monthly soil 
respiration (g C m-2 d-1),       
F = parameter (g C m-2 d-1), 
K = parameter (cm mol-1),    
a = parameter for the 
temperature function (°C-1),   
b = parameter for the 
temperature function (°C-2),  
α = parameter for the 
precipitation function,        
Pm-1 = precipitation of the 
previous month (cm) 

Hashimoto 
et al. (2015) 

Regression 
based on 
temperature, 
precipitation 

n.a., 
forest 𝐶𝑂2̂ = 0.715 + 0.210𝑇𝑎 + 0.285𝑃3−1

+ 0.083𝑃7−4 

C^O2 = evolution of CO2 
(g CO2 m-2 d-1), Ta = ambient 
air temperature (°C),                
P3-1= rainfall within the 3 

days preceding sampling 
(cm), P7-4 = rainfall from day 
7 to day 4 preceding 
sampling (cm) 

Reinke 
et al. (1981) 

Regression 
based on 
temperature, 

northern 
Great 

𝐷𝑎𝑖𝑙𝑦 𝑓𝑙𝑢𝑥 =  −4.20 + (0.33𝑇𝑠)
+ (8.47𝑆𝑊𝐶) 

Daily flux = daily soil flux 
(g CO2-C m-2d-1), Ts = soil 

Frank et al. 
(2002) 
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soil water 
content 

Plains, 
prairie 

temperature, SWC = soil 

water content 
 North-

eastern 
France, 
young 
beech 
forest 

𝑦 = 𝐴𝛳𝑣𝑒𝐵𝑇 

with: 

A = 1.13 

B = 0.136 

ϴv = soil volumetric water 
content at -10 cm, T = soil 
temperature at -10 cm,        
A, B = fitting parameter  

Epron et al. 
(1999) 

 Japan, 
forest 𝐹𝑥 = 0.000197𝑒0.045𝑡 ∗ (𝜃𝑣 − 21.42)

∗ (58.54 − 𝜃𝑣)4.46 

Fx = soil CO2 flux 
(mg CO2 m-2 h-1), t = soil 
temperature (°C), θν = soil 
water content (%) 

Lee et al. 
(2002) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎 + 𝑏𝑇𝑊 

with: 

a = -109.17, -31.84 

b = 1.68; 0.80  

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), W = soil water content 
(%), a, b = parameters 

Jia et al.  
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensiss
teppe 

𝐹 = 𝑎 + 𝑏𝑇 + 𝑐𝑊 

with: 

a = -381.83; -148.50 

b = 8.85; 6.40 

c = 43.63; 15.01  

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), W = soil water content 
(%), a, b, c  = parameters 

Jia et al.  
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎 + 𝑏𝑇 + 𝑐𝑊 + 𝑑𝑇𝑊 

with: 

a = 75.80; 100.11 

b = -13.40; -8.27 

c = -7.54; -13.20 

d = 2.42;  1.60  

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), W = soil water content 
(%), a, b, c, d  = parameters 

Jia et al.  
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

Ln𝐹 = 𝑎 + 𝑏𝑇 + 𝑐𝑊 

with: 

a = 2.33; 1.81 

b = 0.06; 0.07 

c = 0.15; 0.14  

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), W = soil water content 
(%), a, b, c  = parameters 

Jia et al.  
(2006) 

 Inner 
Mongolia, 
Leymus 
chinensis 

steppe 

Ln𝐹 = 𝑎 + 𝑏𝑇 + 𝑐𝑊 + 𝑑𝑇𝑊 

with: 

a = 2.79; 1.96 

b = 0.04; 0.06 

c = 0.10; 0.13 

d = 0.002; 0.001 

(ungrazed; grazed) 

F = soil respiration rate 
(mg m-2 h-1), T = temperature 
(°C), W = soil water content 
(%), a, b, c, d  = parameters 

Jia et al.  
(2006) 

 Inner 
Mongolia, 
Leymus 

𝐹 = 𝑎𝑒𝑏𝑇𝑊𝑐 

with: 

F = soil respiration rate 
(mg m-2 h-1),                         
T = temperature, W = soil 

Jia et al.  
(2006) 
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chinensis 

steppe 
a = 1.19; 0.94 

b = 0.06; 0.07 

c = 1.65; 1.52   

(ungrazed; grazed) 

water content (%),                
a, b, c = parameters 

 Inner 
Mongolia, 
Leymus 
chinensis 
steppe 

𝐹 = 𝑎𝑒𝑏𝑇(𝑊 − 𝑐)(𝑑 − 𝑊)𝑓 

with: 

a = 1.63 * 105; 2.39 * 1039 

b = 0.06; 0.07 

c = -1.89* 104; 1.99 

d = 45.16; 603.18 

f = -5.06; -13.99  

(ungrazed; grazed) 

F = soil respiration rate (mg m-

2 h-1), T = temperature,        
W = soil water content (%), 
a, b, c, d, f = parameters 

Jia et al.  
(2006) 

 Korea 
Seoul, 
oak forest 

𝑅𝑠𝑜𝑖𝑙 = 124.3 exp(0.097𝑇𝑠)

− 55.3(𝑀𝑠)2

+ 2931.9(𝑀𝑠)
− 38516 

for: 

Rsoil(T)> 0 °C, Ts ≥ 0 °C 

Rsoil = total soil CO2 efflux     
(mg CO2 m-2h-1), Ts = soil 

temperature at 5 cm depth 
(°C), Ms = soil moisture 
content (%) 

Joo et al. 
(2012) 

 Texas 
𝑓𝑙𝑢𝑥 = (6.42 ∗  𝑒0.087∗𝑡𝑒𝑚𝑝) ∗ (2.12

∗ ((𝛳𝑣 − 0.10)

∗ (0.7 − 𝛳𝑣)1.46) 

flux = CO2-C flux (g CO2-
C m-2d-1), temp = soil 
temperature (°C),               
ϴv = volumetric water 
content (m3 m-3) 

Mielnick 
and Dugas 
(2000) 

 Alaska, 
forest 𝑓𝑙𝑢𝑥 =  𝛼𝑒(𝛽𝑇) ∗ 𝜒𝑀 

flux = CO2 flux 
(g CO2-C m-2d-1), α = flux 
rate at 0 °C (g CO2-C m-2d-1), 
β = temperature response 
coefficient, T = soil 
temperature (°C), M = soil 
moisture (g H2O/g dry soil),  
χ = moisture response 

constant 

Gulledge 
and Schimel 
(2000) 

 Alaska, 
forest 𝑓𝑙𝑢𝑥 =  𝛼𝑒(𝛽𝑇) − (𝑀 − 𝛿)2 

flux = CO2 flux 
(g CO2-C m-2d-1), α = flux 
rate at 0 °C (g CO2-C m-2d-1), 
β = temperature response 
coefficient, T = soil 
temperature (°C), M = soil 
moisture (g H2O/g dry soil),  
δ = moisture response 
constant 

Gulledge 
and Schimel 
(2000) 

 Alaska, 
forest 𝑓𝑙𝑢𝑥 =  𝛼𝑒(𝛽𝑇) ∗ (𝑀/(𝑀 + 𝜀)) 

flux = CO2 flux 
(g CO2-C m-2d-1), α = flux 

rate at 0 °C (g CO2-C m-2d-1), 
β = temperature response 
coefficient, T = soil 
temperature (°C), M = soil 

moisture (g H2O/g dry soil),  
ε = moisture response 
constant 

Gulledge 
and Schimel 
(2000) 

 Washing-
ton, arid 
grassland 

𝑦 = (0.88 ± 0.15 ) + (0.013
± 0.002)(𝑤) ∗ (𝑡) 

y = rate of carbon dioxide 

evolution (g C (m2)-1 d-1),     
w = soil water (%), t = soil 
temperature (°C) 

Wildung 
et al. (1975) 

 California, 
forest 𝐹 = 0.33𝑊0.69𝑒0.042𝑇 

(W < 19%) 

F = soil CO2 efflux 
(μmol m-2 s-1), T = soil 

temperature at 10 cm depth 

Xu and Qi 
(2001) 
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𝐹 = 26.17𝑊−0.82𝑒0.047𝑇 

(W > 19%) 

(°C), W = soil water content 

(%) 

 Alaska, 
tundra 𝑅𝑠 = 𝐶 ∗ 𝑒

(−
𝐸

𝑅∗𝑇𝑘
)

∗ 𝑒(𝑆𝑤𝑡) 

with: 

𝑆𝑤𝑡 = 𝐴 ∗ 𝑊𝑡/(𝑊𝑡 +  𝐵) 

Rs = rate of CO2 efflux 
(μmol m-2 s-1), C = constant 
(m-2 s-1), R = gas constant 
(8.31 J mol-1°K-1), Tk = soil 
temperature at 1 cm depth 
(°K), E = apparent activation 

energy (J mol-1),                 
Swt = function of soil water 
table, Wt = depth to water 
table below soil surface (cm), 
A, B = regression coefficient 

Oberbauer 
et al. (1992) 

 California, 
forest 𝑅 = 0.2439𝑀0.4199𝑇0.5581 

R = soil CO2 efflux (μmol m-2 
s-1), T = soil temperature 
(°C), M = soil moisture 
(m3/m3 %) 

Qi et al. 
(2002) 

 Lab 

𝜌(𝑇, 𝑀) =
𝑀

116 + 𝑀
∗

2.820

2.820 + 𝑀

∗ 232 ∗ 3.74(
𝑇−10

𝑇
)
 

ρ(T,M) = rate of microbial 
respiration (μl CO2 g-1 h-1),  
M = moisture content (% dry 
weight), T = temperature 

(°C) 

Bunnell et 
al. (1977) 

 Australia, 
forest 𝐹𝑅𝐸𝑆𝑃 =  

𝑀

𝑎1 + 𝑀

𝑀

𝑎2 + 𝑀
𝑎3𝐴4

𝑇−10
10  

with: 

𝐴4 =
1

𝑎6 + 𝑎4
𝑀−10 + 𝑎5 

𝑎6 =
1

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑓𝑜𝑟 𝑄10
− 𝑎5 

𝑎1 = 17.8 

𝑎2 = 17.8 

𝑎3 = 29.3 

𝑎4 = 1.55 

𝑎5 = 0.54 

𝑎6 = 0.75 

FRESP = respiration rate 
(g CO2 m-2 h-1),                     
T = temperature (°C),           
M = moisture (% dry weight), 
a1 = moisture content at half 
field capacity (%),               
a2 = moisture content at half 

saturation (%),                     
a3 = theoretically maximum 
respiration rate at 10 °C 
when moisture is non-
limiting, a4 = parameter 
linking Q10 to substrate 
moisture content, a5 = lower 
limit for the Q10 quotient,       
a6 = coefficient,  A4 = Q10 
quotient depending on soil 
moisture content 

Carlyle and 
Than (1988) 

 Colorado, 
wheat/ 
fallow field 
and 
Wyoming, 
sub-alpine 
meadow 

𝑅𝐻 = 𝐹(𝑇𝑠𝑜𝑖𝑙) ∗ 𝐹(𝑅𝑊𝐶) 

𝐹(𝑇𝑠𝑜𝑖𝑙)
= 0.56 + (1.46

∗
arctan(𝜋 ∗ 0.0309) ∗ (𝑇𝑠𝑜𝑖𝑙 − 15.7)

𝜋
) 

𝐹(𝑅𝑆𝑊)
= 5 ∗ (0.287

+
arctan(𝜋 ∗ 0.009 ∗ (𝑅𝑊𝐶 − 17.47))

𝜋
) 

RH = heterotrophic respiration 
(kg CO2C ha-1 d-1),         
RWC = measured relative 
soil water content (%),      
Tsoil= soil temperature (°C) 

del Grosso 
et al. (2005) 

 Wis-
consin, 
forest 

ln(𝑅𝑠)

= 𝑏0 + 𝑏1(𝑠𝑜𝑖𝑙𝑇) + 𝑏2(𝑠𝑜𝑖𝑙𝑇2)
+ 𝑏3(𝑆𝑊𝐶) + 𝑏4(𝑆𝑊𝐶2)
+ 𝑏5(𝑠𝑜𝑖𝑙𝑇 ∗ 𝑆𝑊𝐶)
+ 𝑏6(𝑠𝑖𝑡𝑒 𝑐𝑜𝑑𝑒 𝑜𝑟 𝑠𝑖𝑡𝑒
/𝑠𝑜𝑖𝑙 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠) 

Rs = soil respiration 
(μmol CO2 m-2 sec-1),       
soilT = soil temperature (°C, 
at 10 cm), SWC = soil 
moisture (volumetric soil 
water content, 
g water 100 soil-1, at 15 cm), 
b = coefficient,                   
site code = nominal term to 
designate site 

Martin and 
Bolstad 
(2005) 
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 East 
Coast of 
USA, 
forest 

𝑅

= {𝐴𝑒𝑥𝑝 [
−338.2°𝐾

𝑇 − 329.2°𝐾
]} + [40.7

− 58.9(𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒)] 

 

R = soil respiration 
(mg C m-2 hr-1), T = soil 
temperature at 10 cm soil 
depth (°K), A = site-specific 
factor, soil moisture = soil 

moisture (cm3 H2O cm-3 soil) 

Savage and 
Davidson 
(2001) 

 China, 
desert 

𝑅𝑠 = −2.180 + 0.261𝑊𝑠 − 0.006𝑊𝑠 
y = soil respiration at 

Halostachyscaspica site 
(μmol CO2 m-2 s-1), y  = air 
temperature (°C), Ws = soil 
water content (%) 

Zhang et al. 
(2010) 

 China, 
desert 

𝑅𝑠 = 𝑎 + 𝑏(𝑇𝑊) 

with:  

a  = 0.061; 0.207; 0.109; 0.576 

b = 0.004; 0.001; 0.002; 1.112* 10-
6 

(Haloxylonammodendron; Anabasis 
aphylla; Halostachyscaspica, all) 

Rs = soil respiration 
(μmol CO2 m-2 s-1), T = air 
temperature (°C), W = soil 
water content (%),               
a, b = regression parameter 

Zhang et al. 
(2010) 

 China, 
desert 

𝑅𝑠 = 𝑎 + 𝑏𝑇 + 𝑐𝑊 

with:  

a  = -0.362; -0.077; -0.257; 0.241 

b = 0.026; 0.014; 0.018; 0.017 

c = 0.061; 0.014; 0.012; -0.008 

(Haloxylonammodendron; Anabasis 
aphylla; Halostachyscaspica, all) 

Rs = soil respiration 
(μmol CO2 m-2 s-1), T = air 
temperature (°C), W = soil 

water content (%),               
a, b, c = regression 
parameter 

Zhang et al. 
(2010) 

 China, 
desert 𝑅𝑠 = 𝑎𝑇𝑏𝑊𝑐 

with:  

a  = 0.005; 0.019; 0.002; 0.082 

b = 1.036; 0.644; 1.078; 0.714 

c = 0.819; 0.448; 0.640; -0.156 

(Haloxylonammodendron; Anabasis 
aphylla; Halostachyscaspica, all) 

Rs = soil respiration 
(μmol CO2 m-2 s-1), T = air 
temperature (°C), W = soil 
water content (%),               
a, b, c = regression 
parameter 

Zhang et al. 
(2010) 

 China, 
desert 𝑅𝑠 = 𝑎𝑒𝑏𝑇𝑊𝑐 

with: 

a  = 0.037; 0.064; 0.021; 0.361 

b = 0.045; 0.029; 0.045; 0.030 

c = 0.919; 0.475; 0.633; -0.146 

(Haloxylonammodendron; Anabasis 
aphylla; Halostachyscaspica, all) 

Rs = soil respiration 
(μmol CO2 m-2 s-1), T = air 
temperature (°C), W = soil 

water content (%),               
a, b, c = regression 
parameter 

Zhang et al. 
(2010) 

 China, 
desert 

𝑅𝑠 = 𝑎 + 𝑏𝑇 + 𝑐𝑊 + 𝑑𝑇𝑊 

with: 

a  = 0.408; 0.011; -0.141; 0.156 

b = -0.011; 0.011; 0.012; 0.020 

c = -0.054; 0.008; 0.004; 0.0005 

d = 0.006; 0.0002; 0.001; 0.0003 

(Haloxylonammodendron; Anabasis 
aphylla; Halostachyscaspica, all) 

Rs = soil respiration 
(μmol CO2 m-2 s-1), T = air 
temperature (°C), W = soil 
water content (%),               
a, b, c, d = regression 
parameter 

Zhang et al. 
(2010) 



188 
 
 

 Brazil, 
forest 𝑅𝑠 = 𝑅0 ∗ 𝑒(𝛽0∗𝑇𝑠𝑜𝑖𝑙) 

𝑄10 = 𝑒10∗𝛽0 

with: 

𝑅0 = 0.02; 0.04; 0.18; 0.28 

𝑏0 = 0.25; 0.22; 0.15; 0.14 

𝑄10 = 12.00; 8.80; 4.30; 3.90 

(dry class; intermediate; wet class; 
whole period) 

Rs = soil respiration (μmol CO2 
m-2 s-1), Tsoil = soil 
temperature at 15 cm depth 
(°C), R0, β0 = fitted 
parameter, Q10 = sensitivity 

parameter of the respiration 
variation with a variation in 
temperature of 10 °C 

Zanchi et al. 
(2009) 

 Brazil, 
forest 

𝑅𝑠 = 𝑅𝑅𝑒𝑓 ∗ 𝑓(𝑇𝑠𝑜𝑖𝑙,𝑅𝑆𝑊𝐶) ∗ 𝑔(𝑅𝑆𝑊𝐶) 

with: 

𝑓 (𝑇𝑠𝑜𝑖𝑙 , 𝑅𝑆𝑊𝐶)

=  𝑒𝐸0(𝑅𝑆𝑊𝐶)(
1

𝑇𝑟𝑒𝑓 − 𝑇0

1

𝑇𝑠𝑜𝑖𝑙 − 𝑇0
) 

𝑔(𝑅𝑆𝑊𝐶) =
𝑅𝑆𝑊𝐶

𝑅𝑆𝑊𝐶1
2⁄

+ 𝑅𝑆𝑊𝐶 

𝐸0(𝑅𝑆𝑊𝐶) = 𝑎𝑅𝐸𝑊 + 𝑏𝑅𝐸𝑊
∗ 𝑅𝑆𝑊𝐶 

𝑅𝑆𝑊𝐶 =
𝑆𝑊𝐶

𝑆𝑊𝐶1
2⁄

 

with: 𝑅𝑟𝑒𝑓 =

10.50; 12.08; 8.15; 10.84 

𝑅𝑆𝑊𝐶 = 0.41; 0.52; 1.24; 0.63 

𝐸0 = 1045.80; 851.30; 

598.80;316.80 

(dry class; intermediate; wet class; 
whole period) 

Rs = soil respiration 
(μmol CO2 m-2 s-1), Rref = soil 
respiration at the reference 
temperature Tref = 25 °C,     
E0 = activation energy (K-1), 
T0 = lower temperature limit 
for the soil respiration 
(-46 °C), Tsoil = soil 
temperature at 15 cm depth 
(°C), RSWC = water content 
relative to the soil water 
content at field capacity 
(n/a), RSWC1/2 = soil water 

content with half-maximal 
respiration at a given 
temperature, a = n/a, b = n/a, 
REW = n/a  

Zanchi et al. 
(2009) 

 Ten-
nessee 

𝑅𝑠 = 𝑖 ∗ 𝑇 + 𝑗 ∗ 𝑅𝑆𝑊 
Rs = soil respiration 

(μmol m-2 s-1),                       
T = temperature (°C),       
RSW = relative soil water 
content (%), I, j = coefficients 

Chen et al. 
(2010) 

 Ten-
nessee 𝑅𝑠 =  𝜆𝑒𝑘∗𝑡+𝑙∗𝑤 

Rs = soil respiration 
(μmol m-2 s-1), 𝜆 = soil 

respiration at temperature of 
0 °C (μmol CO2 m-2s-1),         
t = temperature (°C),        
RSW = relative soil water 
content (%),                          
k, l = coefficients 

Chen et al. 
(2010) 

 France, 
forest 𝑦 = 1.13𝛳𝑣𝑒0.136𝑇 

y = soil CO2 efflux 
(μmol m-2 s-1),                      
ϴv = volumetric water 

content (n/a),                        
T = temperature (°C) 

Epron et al. 
(1999) 

 Iowa, crop 
fields, 
riperian 
grass 
buffers 

ln(𝑆𝑅) = 0.0865𝑇 + 0.0246𝑀
− 0.264 

SR = soil respiration rate 
(g C m-2 d-1),T = morning 

surface-soil (0-5 cm depth) 
temperature (°C),                
M = surface-soil (0-5 cm 
depth) gravimetric moisture 
content (% H2O)  

Tufekcioglu 
et al. (2001) 

 Belgium, 
forest 𝑆𝑅 =  𝑆𝑅10𝑄10

(𝑇−10)/10
 

with: 

SR = predicted soil respiration 
(μmol m-2 s-1),                   
SR10 = simulated SR at 

Curiel Yuste 
et al. (2003) 
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𝑄10 = 1.93, 

𝑆𝑅10 = 1.06  (whole year), 

𝑄10 = 2.74, 

𝑆𝑅10 = 1.02  (winter), 

𝑄10 = 1.24, 

𝑆𝑅10 = 1.38  (growing season), 

𝑄10 = 3.21 , 

𝑆𝑅10 = 1.15  (fall), 

𝑆𝑅 = 𝑓(𝑇) ∗ 𝑓(𝑆𝑊𝐶) (SWC below 

WHC) 

with: 𝑓(𝑆𝑊𝐶) = 5.2𝑆𝑊𝐶 − 0.05 

10 °C (μmol m-2 s-1),          
Q10 = respiratory flux at one 
temperature over the flux at 
a temperature 10 °C lower 
(μmol m-2 s-1), T = soil 

temperature at 2 cm depth 
(°C), f (T) = Q10 function, 
SWC = soil water content 
(m3 m-3), WHC = water 

holding capacity (m3 m-3) 

 Alaska, 
forest 

𝐵𝑅𝐸𝑆𝑃

=  
𝑀

𝑎1 + 𝑀
∗

𝑎2

𝑎2 + 𝑀
∗ 𝑎3

∗ ((
1

𝑎6 + 𝑎4
(

𝑇−10
10

)
) + 𝑎5) 

with: 

a1 = 76.5; 158.0; 135.0 

a2 = 355.9; 167.6; 109.9 

a3 = 1.60; 3.56; 3.63 

a4 = 11.07; 14.12; 9.24 

a5 = 0.25; 0.25; 0.25 

a6 = 2.0; 2.0; 2.0 

(aspen; birch; white spruce) 

BRESP = soil respiration 
(g CO2 m-2 h-1), T = soil 
temperature at 15 cm depth 
(°C), M = percent soil 
moisture dry weight basis 
(%), a1, a2 = coefficient,      
a3 = scaling factor, a4 = Q10 
related parameter, a5 = lower 
limit of CO2 evolution,           
a6 = a5 + 1/a6 

Schlentner 
and van 
Cleve 
(1984) 

 Germany, 
agroeco-
systems 

𝐴 = 𝐴𝑅 + 𝐴𝐹 + 𝐴𝑆 

with: 

𝐴𝑅 = 𝐴𝑅
0 𝜂𝑓(𝑇), 

𝐴𝐹 = 𝑘𝐹𝐶𝐹𝑓(𝛳)𝑓(𝑇), 

𝐴𝑆 = 𝑘𝑆𝐶𝑆𝑓(𝛳)𝑓(𝑇), 

𝑓(𝛳) =
exp [(

𝛳

𝛳𝑐
−1)]𝛼

[
𝛳−𝛳𝑐

𝛽
+1]𝛼

, 

𝑓(𝑇) = [exp (𝑎𝑇 − 𝑏)]𝑐, 

c = cT+cDR, 

𝑐𝑇 =
𝑚−∑ (𝑇)𝑡−1

𝑡−30

𝑛
, 

𝑐𝐷𝑅
𝑡 =𝑐𝐷𝑅

𝑡−1 + 𝜔 − 𝑟𝑐𝐷𝑅
𝑡−1, 

ω = 0 if ϴt-1< ϴcand ϴt - ϴt-1 
≥0.25* ϴc, 

 ϴc= 60% of FC, 

a = 6.10; 5.13 

b = 0.85; 0.96 

m = 1479; 1180 

n = 1248; 1210 

A= daily mean soil respiration 
(mg CO2 m-2 h-1), AR = root 
and rhizosphere respiration 
(mg CO2 m-2 h-1),                
AF = respiration of fast 
organic matter fraction 
(mg CO2 m-2 h-1),                
AS = respiration of slow 

organic matter fraction 
(mg CO2 m-2 h-1),            

   𝐴𝑅
0 = maximum root and 

rhizosphere respiration 
(mg CO2 m-2 h-1),                   
η = representing root growth 
(>0, <1), T = temperature 
(°C), ϴ = actual soil water 
content at 10 cm depth 
(%),CF = concentration 
(kg C ha-1),                          
CS = concentration 
(kg C ha-1), kF = rate 
constant (d-1), kS= rate 
constant (d-1),                      
ϴc = maximum water content 
at 10 cm depth = 1,             
α,  β = empirical fitting 
parameter (% field capacity 
FC-2), a, n  = fitted parameter 
(°C-1), b = fitted parameter, 

Kutsch and 
Kappen 
(1997) 
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ω = 0.3; 0.25 

r = 12; 34 

𝑘𝐹
−1= 965; 576 

𝑘𝑆
−1= 24950; 21533 

𝑘𝐹𝑆
−1=510; 319 

α = 0.25; 0.36 

β = 1000, 1000 

(maize monoculture; crop rotation) 

m= fitted parameter (°C),                     
r = empirically determined 
recovery coefficient,              
c = parameter for sensitivity 
of the system to short-term 
temperature variations,         
cT = running 30-day T-sum, 
cDR = drying and rewetting 

Regression 
based on 
mean 
weekly air 
tempera-
ture wTa, 
soil     
moisture M20 

Colorado, 
crop field 

𝐶𝑂2 = −3193 + 392𝑤𝑇𝑎 + 175𝑀20 
CO2 = amount of CO2 evolved 

from the soil (g m-2 d-1),     
wTa = mean weekly air 
temperature (°C), M20 = soil 
moisture at 20-30 cm (n/a)  

Buyanovsky 
et al. (1986) 

 Colorado, 
crop field 

𝐶𝑂2 = −10860 + 509𝑤𝑇𝑎 + 419𝑀20 
CO2 = amount of CO2 evolved 

from the soil (g m-2 d-1),    
wTa = mean weekly air 
temperature (°C), M20 = soil 
moisture at 20-30 cm (n/a)  

Buyanovsky 
et al. (1986) 

Regression 
based on air 
tempera-
ture Ta, soil 
tempera-
ture Ts, soil 

water 
content 
SWC 

Northern 
Great 
Plains of 
USA, 
grazed 
prairie 

𝐷𝑎𝑖𝑙𝑦 𝑓𝑙𝑢𝑥 =  −0.57 − (0.12 𝑇𝑎)
+ (0.36 𝑇𝑠)
+ (4.70𝑆𝑊𝐶) 

Daily flux = daily soil flux 
(g CO2-C m-2 d-1), Ts = soil 
temperature, Ta = air 
temperature, SWC = soil 
water content 

Frank et al. 
(2002) 

 North-
eastern 
Great 
Plains of 
USA, 
western 
wheat-
grass 

𝐷𝑎𝑖𝑙𝑦 𝑓𝑙𝑢𝑥 =  −2.45 + (0.26 𝑇𝑠) +
(7.06𝑆𝑊𝐶) 

Daily flux = daily soil flux 
(g CO2-C m-2 d-1), Ts = soil 
temperature, SWC = soil 
water content 

Frank et al. 
(2002) 

Regression 
based on 
tempera-
ture T, soil 
water 
content W, 

pre-
cipitation R 

India, 
tropical 
grassland 

𝑌^ = 61.17+7.78T+7.17W-0.54R 
Y^ = CO2 output (mg 

CO2 m-2 h-1), T = temperature 
(°C), W = soil water (%),      
R = rainfall (mm) 

Gupta and 
Singh 
(1981) 

Regression 
based on 
soil 
temperature, 
soil moisture  

Colorado, 
crop field 

𝑙𝑛𝐶𝑂2 = 5.025 + 0.7312𝑇𝑠10

+ 0.7308𝑙𝑛𝑀20 

CO2 = amount of CO2 evolved 
from the soil (g m-2 d-1),    
Ts10 = soil temperature at 
10-20 cm depth, M20 = soil 
moisture at 20-30 cm (n/a)  

Buyanovsky 
et al. (1986) 

 Colorado, 
crop field 

𝐶𝑂2 = 17190 − 801𝑇𝑠10

+ 35.8 𝑇𝑠10
2

− 354𝑀10 

CO2 = amount of CO2 evolved 

from the soil (g m-2 d-1),    
Ts10 = soil temperature at 
10-20 cm depth, M10 = soil 
moisture at 20-30 cm (n/a)  

Buyanovsky 
et al. (1986) 

 Colorado, 
crop field 

𝑙𝑛𝐶𝑂2 = 2.306 + 0.087𝑇𝑠10

+ 1.51𝑙𝑛𝑀20 

CO2 = amount of CO2 evolved 
from the soil (g m-2 d-1),    
Ts10 = soil temperature at 
10-20 cm depth, M20 = soil 

moisture at 20-30 cm (n/a)  

Buyanovsky 
et al. (1986) 
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Regression 
based on 
daily mean 
tempera-
ture T, daily 

pre-
cipitation P 

Qinghai-
Tibet 
Plateau, 
alpine 
Steppe 

𝐸𝑐𝑎𝑟𝑏𝑜𝑛 = 0.22(exp(0.09𝑇)
+ ln(0.31𝑃 + 1)) 

Ecarbon = soil respiration 
(g/m2 per day), T = daily 
mean temperature (°C),       
P = total daily precipitation 
(mm), 

Pei et al. 
(2009) 

Regression 
based on 
soil 
tempera-
ture T, water 
matrix 
potential ψ 

East Cost, 
forest 𝑅 = {𝐴𝑒𝑥𝑝 [

−350.6°𝐾

𝑇 − 231.2°𝐾
]} − [7.044

+ 0.103(𝜓)] 

(ψ ≤ - 150kPa) 

𝑅 = {𝐴𝑒𝑥𝑝 [
−350.6°𝐾

𝑇 − 231.2°𝐾
]} 

(ψ  > - 150kPa) 

R = soil respiration 
(mg C m-2 hr-1), T = soil 

temperature at 10 cm soil 
depth (°K), A = site-specific 
factor, ψ = water matrix 
potential (kPa) 

Savage and 
Davidson 
(2001) 

Regression 
based on 
soil 
tempera-
ture Ts, soil 
water 
potential ψ 

Canada, 
forest 𝑟̂𝑠 = (𝑐𝑒𝑑𝜓𝑠)𝑒𝑏(𝑇𝑠−10) 

̂rs = soil respiration 
(μmol m-2 s-1), Ts = soil 
temperature at 5 cm depth 
(°C), a, b, c, d = regression 
coefficient, ψs = soil water 
potential (MPa)  

Lavigne 
et al. (2004) 

Regression 
based on 
soil 
tempera-
ture Ts, soil 
water 
content Ws, 
coarse 
fraction in 
the soil Cf 

Ten-
nessee, 
forest 

𝐹𝐹𝑐𝑒𝑟 = (𝑅𝑏𝑄
(

𝑇𝑠
10

)
) (1 −

𝐶𝑓

100
) 

with: 

𝑅𝑏 = (𝑘𝑊𝑠𝑅max)/((𝑘𝑊𝑠) + 𝑅𝑚𝑎𝑥) 

FFcer = efflux of CO2 from 

forest floor (μmol m-2 s-1), 
Rb= effect of soil water 
content on FFcer,, Q = rate of 
change in FFcer for a 10 °C 
increase in soil temperature, 
Ts = soil temperature (°C), 
Cf= coarse fraction in the soil 
(%), Ws= soil water  content 
(vol%), k = constant 

determining rate of change 
of Rb with respect to Ws, 
Rmax = maximum value of Rb 
when Ws= 100% 

Hanson 
et al. (1993) 

Regression 
based on 
soil 
temperature, 
soil water 
content, leaf 
area index 

Europe 
and North 
America, 
forest and 
shrubland 

𝑅 = 𝑅𝑟𝑒𝑓(𝐿𝐴𝐼𝑚𝑎𝑥) ∗ 𝑓(𝑇𝑠𝑜𝑖𝑙 , 𝑅𝑆𝑊𝐶)

∗ 𝑔(𝑅𝑆𝑊𝐶) 

with: 

𝑅𝑟𝑒𝑓(𝐿𝐴𝐼𝑚𝑎𝑥) = 𝑎𝐿𝐴𝐼 + 𝑏𝐿𝐴𝐼 ∗ 𝐿𝐴𝐼𝑚𝑎𝑥 

𝑓(𝑇𝑠𝑜𝑖𝑙 , 𝑅𝑆𝑊𝐶)

=  𝑒
𝐸0(𝑅𝑆𝑊𝐶)∗(

1
𝑇𝑟𝑒𝑓−𝑇0

−
1

𝑇𝑠𝑜𝑖𝑙−𝑇𝑜
)
 

𝑔(𝑅𝑆𝑊𝐶) =
𝑅𝑆𝑊𝐶

𝑅𝑆𝑊𝐶1
2⁄ + 𝑅𝑆𝑊𝐶

 

𝐸0(𝑅𝑆𝑊𝐶) = 𝑎𝐸0 + 𝑏𝐸0 ∗ 𝑅𝑆𝑊𝐶 

𝑅𝑆𝑊𝐶 =
𝑆𝑊𝐶

𝑆𝑊𝐶𝐹𝐶
 

R = soil respiration 
(μmol m-2 s-1), Tsoil = soil 
temperature (°C),          
RSWC = relative soil water 
content (n/a), SWC = actual 
soil water content (m3 m-3), 
SWCFC = soil water content 
at field capacity (n/a),        
Rref = soil respiration rate 
under standard conditions 
(Tref = 18 °C, non-limiting 
water) (μmol m-2 s-1),         
Rref (LAImax) = site-specific 
soil respiration rates 
corrected for soil moisture 
and soil temperature 
depending on maximum site 
leaf area index 
(μmol m-2 s-1),               
LAImax= maximum site leaf 

area index (m2 m-2),           
Tref = reference temperature 
(°C), T0 = lower temperature 
limit for the soil respiration R, 
RSWC1/2= soil water content 
at half-maximal respiration at 
a given temperature 
(fraction), E0 = activation-

Reichstein 
et al. (2003) 
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energy-type parameter of 
Lloyd and Taylor (1994) 
(K-1), aLAI , bLAI  = regression 
parameter (μmol m-2 s-1),   
aE0, bE0 = regression 

parameter (K-1) 
Regression 

based on 
soil 
temperature, 
soil water 
content, soil 
carbon 

Italian 
Alps, 
forest 

𝑆𝑅 = (𝑐 + 𝑑𝑆𝐶 + 𝑤𝑆𝑅𝑊)/(1 +
𝑏𝑇𝑀exp (−(𝑚 + 𝑛𝑇𝐼𝑄𝑅)𝑇𝑖)) 

SR = mean soil CO2 efflux 
(μmol CO2  m-2 s-1),TM = soil 
mean annual temperature at 
soil depth of 10 cm (°C),    
SC = average site soil carbon 
(kg m-2), 

SRW = relative soil water 

content at depth of 6 cm 
(n/a), c, d, m, n  w = fitting 
parameter , TIQR = soil 
temperature interquartile 
range (°C), Ti = (n/a) 

Rodeghiero 
and 
Cescatti 
(2005) 

Regression 
based on 
soil 
temperature, 
soil water 
content, 
litter 

Belgium, 
forest 𝑅𝑠 =  𝑅𝑠10𝑄10

(𝑇−10)/10
 

with: 

𝑄10 = 5.65, 

𝑅𝑠10 = 1.67  (2001), 

𝑄10 = 5.9, 

𝑅𝑠10 = 1.66  (2003), 

𝑅𝑠(𝑛𝑜𝑛 − 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑) = 𝑓(𝑇) ∗ 𝑓(𝐼𝑠) 

(SWC below WHC) 

𝑅𝑠(𝑑𝑟𝑜𝑢𝑔ℎ𝑡) = 𝑓(𝑇) ∗ 𝑓(𝑆𝑊𝐶) ∗
𝑓(𝐼𝑠) (SWC below WHC) 

 

𝑅𝑠(𝑟𝑒𝑤𝑒𝑡𝑡𝑖𝑛𝑔) = 1.1 ∗ (𝑓(𝑇) ∗
𝑓(𝐼𝑠)) (SWC below WHC) 

with: 

 𝐼𝑠 = 𝑑 ∗ ln(𝐿 + 𝑒) 

with: 

 𝑓(𝑆𝑊𝐶) = 𝑎 ∗ 𝑆𝑊𝐶 + 𝑏 

with: 

a = 6.9701; 6.3533 

b = -0.2423; -0.1922   

(2001; 2003) 

d = 0.60071 

e = 3.789 

Rs = predicted soil respiration 
(μmol m-2 s-1),                  
Rs10 = simulated Rs at 10 °C 

(μmol m-2 s-1),                   
Q10 = respiratory flux at one 
temperature over the flux at 
a temperature 10 °C lower 
(μmol m-2 s-1), T = soil 

temperature at 2 cm depth 
(°C), f (T) = Q10 function, 
SWC = soil water content 
(m3 m-3), WHC = water 

holding capacity (m3 m-3),     
Is = index of seasonality, 
Rs(non-stressed) = soil CO2 
efflux with 
SWC > 0.16 m3 m-3 

(μmol m-2 s-1),        
Rs(drought) = soil CO2 efflux 
with SWC < 0.16 m3 m-3 and 
Iw< -0.7(μmol m-2 s-1), 
Rs(rewetting) = soil CO2 
efflux with SWC below 
0.16 m3 m-3 and 
Iw> -0.7 (μmol m-2 s-1),          
L = cumulative aboveground 
fine litter during the year 
(ton C ha-1) 

Curiel Yuste 
et al. (2005) 

Regression 
based on 
temperature, 
soil 
moisture, 
root 
biomass, net 
primary 
production 

China, 
spring 
maize 
eco-
system 

𝑆𝑅 = (𝑎𝑊 + 𝑏)𝑒𝑐𝑇𝐵 + (𝑑𝑁𝑃𝑃 + 𝑒)𝑇
+ 𝑓 

with: 

a = 0.1022; 0.0341; 0.0422; 0.0214; 
0.0389 

b = 0.0381; 0.0540; 0.0401; 0.038; 
0.0069 

c = 0.0807; - 0.0379; - 0.0563; - 
0.0170; 0.0165 

SR = soil respiration rate 
(μmol m-2 s-1), B = root 
biomass in the soil collars 
(gm-2), T = temperature (°C), 
W = soil moisture (%),      
NPP = net primary 
production (n/a.),                 
a, b, c, d, e, f = parameters 
to be determined 

Han et al.  
(2007) 
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d = - 0.3459; 1.8813; 0.829; 
1.0225; 0.4292     
(June 5; June 28; July 28; August 
28; September 22) 

Regression 
based on 
soil 
temperature, 
monthly 
mean soil 
water 
content, 
monthly 
precipitation, 
leaf area 
index 

 
𝑅𝑚𝑜𝑛𝑡ℎ

= (𝑅𝐿𝐴𝐼=0 + 𝑆𝐿𝐴𝐼

∗ 𝐿𝐴𝐼)𝑒𝑄𝑇𝑎
𝑃 + 𝑃0

𝐾 + 𝑃 + 𝑃0
 

Rmonth = monthly mean soil 

respiration (g C m-2 mo-1), 
RLAI=0 = soil respiration at   
LAI = 0 and at 0 °C without 
moisture limitation 
(g C m-2 mo-1),                      
Q = temperature sensitivity 
parameter to determine the 
exponential relationship 
between soil respiration and 
temperature (°C-1),              
Ta = monthly average soil 
temperature (°C), K = half-

saturation constant of the 
hyperbolic relationship of soil 
respiration with monthly 
precipitation, P = monthly 

precipitation sum (cm),       
SLAI = basal rates of soil 
respiration (n/a), LAI = site 
peak leaf area index,           
P0 = related to soil 

respiration in months without 
rains (n/a) 

Luo and 
Zhou (2006) 
(in-
corporating 
LAI in 
equation of 
Raich and 
Potter 
(1995) 

Regression 
based on 
soil 
temperature, 
soil water 
content, 
monthly 
precipitation, 
soil matric 
water 
potential, 
leaf area 
index 

Ten-
nessee 

𝑅𝑠 = 𝑎 ∗ 𝑅ℎ + 𝑅𝑎 

with: 

𝑅𝑎 = 𝑏 ∗ 𝑟𝑚 + 𝑐 ∗ 𝑟𝑔 

𝑟𝑚 = (0.058𝑁 + 0.622𝑀)𝑒0.098𝑇 

𝑅ℎ = 𝑑 ∗ 𝑀 ∗ 𝐹(𝑡) ∗ 𝐹(𝑤) 

𝐹(𝑡)
= 0.56 + (1.46

∗
arctan(𝜋 ∗ 0.0309) ∗ (𝑡 − 15.7)

𝜋
) 

𝐹(𝑤)
= 5 ∗ (0.287

+
arctan(𝜋 ∗ 0.009 ∗ (𝑤 − 17.47))

𝜋
) 

Rs = soil respiration 
(μmol m-2 s-1),                      
Rh = heterotrophic 
respiration (μmol m-2 s-1),     
Ra = autotrophic respiration 
(μmol m-2 s-1), a = coefficient, 
rm = root maintenance 
respiration(μmol m-2 s-1),      
rg = root growth respiration 
(μmol m-2 s-1),                      
b, c, d = coefficient, N = root 
nitrogen concentration 
(g kg-1), M = soil matric water 
potential (MPa), T = soil 

temperature at 15 cm depth 
(°C), M = maximal soil 
respiration for different 
biomes according to Del 
Grosso et al. (2005) 
(μmol m-2 s-1),                        
F (t) = temperature limitation 
function, f (w) = water 
limitation function,                 
t = temperature (°C),             
w = relative soil water 
content (%), 

Chen et al. 
(2010) 

Regression 
based on 
root mass, 
soil 
temperature, 
soil water 
content, pH 
value 

Germany 
𝑅𝑠𝑜𝑖𝑙 = 𝑅𝑟𝑒𝑓 ∗ 𝐹(𝑇𝑠𝑜𝑖𝑙) ∗ 𝑔(𝑅𝑆𝑊𝐶)

∗ ℎ(𝑝𝐻) 

𝑅𝑟𝑒𝑓 =  ℎ𝑟𝑒𝑠𝑝 + 𝑎𝑟𝑒𝑠𝑝 

𝑎𝑟𝑒𝑠𝑝 = 𝑅𝑅𝑀 ∗ 𝑟𝑓 

𝑓(𝑇𝑠𝑜𝑖𝑙) = exp (𝐸0 ∗ (
1

𝑇𝑟𝑒𝑓−𝑇0
−

1

𝑇𝑠𝑜𝑖𝑙−𝑇0
)) 

Rsoil = soil CO2 efflux 
(μmol CO2  m-2 s-1),           
Rref = emission under 
standard conditions        
(μmol CO2 m-2 s-1),            
hresp = heterotrophic 
respiration (μmol 
CO2 m-2 s-1),                      
aresp = autotrophic respiration 

(μmol CO2  m-2 s-1),           
RRM = root mass per dry soil 

Reth et al. 
(2005) 
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𝑔(𝑅𝑆𝑊𝐶)

=
𝑅𝑆𝑊𝐶 − 𝑅𝑆𝑊𝐶0

(𝑅𝑆𝑊𝐶1
2⁄ − 𝑅𝑆𝑊𝐶0) + (𝑅𝑆𝑊𝐶 − 𝑅𝑆𝑊𝐶0)

 

ℎ(𝑝𝐻) = exp (− (
𝑝𝐻 − 𝑝ℎ𝑂𝑝𝑡

𝑝𝐻𝑆𝑒𝑛𝑠
)

2

) 

with:  ℎ𝑟𝑒𝑠𝑝 = 9.11 

𝐸0 = 247.78 

𝑅𝑊𝑆𝐶0 = 9 

𝑅𝑊𝑆𝐶1/2 = 1 

𝑝ℎ𝑂𝑝𝑡 = 9.35 

𝑝ℎ𝑆𝑒𝑛𝑠 = −4.87 

𝑟𝑓 = 19.91 

mass (%), rf = parameter,     
E0 = free parameter 
analogue to the activation 
energy in the standard 
Arrhenius model (K),          
Tre f = reference soil 
temperature (°C),T0 = lower 
temperature limit for Rsoil 
(°C), RSWC = relative soil 

water content,           
RSWC1/2 = RSWC at half-
maximum soil CO2 efflux 
(%), RSWC0 = residual soil 

water content, below which 
efflux ceases (%), pH = pH 
value, pHOpt = parameter 
for optimal pH value, 
pHSens = parameter for 
sensivity of soil CO2 efflux to 
deviation from the optimal 
value 

Regression 
based on 
temperature, 
moisture, 
time, 
organic 
carbon 

Lab, 
heavy 
clay soil  

𝐶𝑓𝑙𝑢𝑥

=  ∑ 𝐶𝑡𝑜𝑡𝛼𝑖𝑘𝑖𝑓(𝑇, 𝑤)exp (−𝑘𝑖𝑓 (𝑇, 𝑤)𝑡) 

with: 

∑ 𝛼𝑖 = 1 

Cflux = measured CO2 evolution 
rate (mg kg-1 soil-1), t = time 
(days), Ctot = total initial 
amount of carbon 
(mg g soil-1), αi = fraction of 

each of the assumed organic 
carbon pools (% of initial 
amount), i = indices referring 
labile (l) and refractory (r) 

organic C pools, added straw 
(TS) or roots (TR),               
ki = corresponding 
decomposition rate constant 
(% day-1), f (T, w) = response 
function representing the 
modification of the rate 
constants for the effects of 
temperature (T) (°C) and  
moisture (w) (% H2O) 

Lomander 
et al. (1998) 

Regression 
based on 
temperature, 
moisture, 
age, geo-
graphical 
position, 
mineral 
coarse 
fragment 
mass  

Virginia, 
forest 

𝐸𝑓𝑓𝑙𝑢𝑥
=  −0.05195 + 0.44652(𝑡𝑒𝑚𝑝)
− 0.73176(𝑙𝑛𝑡𝑒𝑚𝑝)

− 0.00625(𝑡𝑒𝑚𝑝2)
−  0.01739(𝑡𝑒𝑚𝑝 ∗ 𝑝𝑜𝑠)
+ 0.00037936(𝑡𝑒𝑚𝑝 ∗ 𝑚𝑜𝑖𝑠𝑡 ∗ 𝑎𝑔𝑒)
− 0.00133(𝑚𝑜𝑖𝑠𝑡 ∗ 𝑎𝑔𝑒 ∗ 𝑝𝑜𝑠)
− 0.0000077(𝑡𝑒𝑚𝑝 ∗ 𝑚𝑜𝑖𝑠𝑡
∗ 𝑐𝑓𝑟𝑎𝑔𝑠) 

with: 

temp = 0.446520 

lntemp = -0.731760 

(temp)2 = -0.006250 

temp*pos = -0.017390 

temp*moist*age = 0.000379 

moist*age*pos = -0.001330 

temp*moist*cfrags = -0.000008 

Efflux = mean annual soil CO2 
efflux (μmol m-2 s-1),         
temp = parameter,         
lntemp = parameter,      
temp2 = parameter, 
temp*pos = parameter, 
temp*moist*age = 
parameter,         
moist*age*pos = parameter, 
temp*moist*cfrags = 

parameter, 

Wiseman 
and Seiler 
(2004) 

Regression 
based on 

India, 
tropical 
forest soil 

𝑦 = 0.37𝑥 + 178.03 
y = soil respiration 

(mg CO2 m-2 h-1), x = large 
root biomass (g m-2) 

Behera 
et al. (1990) 
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root 
biomass  

 India, 
tropical 
forest soil 

𝑦 = 2.40𝑥 + 163.6 
y = soil respiration 

(mg CO2 m-2 h-1), x = fine root 
biomass (g m-2) 

Behera 
et al. (1990) 

 India, 
tropical 
forest soil  

𝑦 = 0.32𝑥 + 176.6 
y = soil respiration 

(mg CO2 m-2 h-1), x = total 
root biomass (g m-2) 

Behera 
et al. (1990) 

 Japan, 
mixed 
grassland 

𝑌 = 4.19𝑥 + 3.3 

(6 am) 

Y = soil respiration 
(μmol m-2 s-1), x = root 
biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 3.69𝑥 + 4.5 

(8 am) 

Y = soil respiration 
(μmol m-2 s-1), x = root 
biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 4.42𝑥 + 5.16 

(10 am) 

Y = soil respiration 
(μmol m-2 s-1), x = root 
biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 5.12𝑥 + 5.34 

(12 am) 

Y = soil respiration 
(μmol m-2 s-1), x = root 
biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 4.19𝑥 + 5.84 

(2 pm) 

Y = soil respiration 
(μmol m-2 s-1), x = root 

biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 4.41𝑥 + 4.08 

(4 pm) 

Y = soil respiration 
(μmol m-2 s-1), x = root 

biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 3.66𝑥 + 3.2 

(6 pm) 

Y = soil respiration 
(μmol m-2 s-1), x = root 
biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 5.14𝑥 + 3.79 

(May 26) 

Y = soil respiration 
(μmol m-2 s-1), x = root 
biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 8.03𝑥 + 5.71 

(Aug. 8) 

Y = soil respiration 
(μmol m-2 s-1), x = root 
biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 2.05𝑥 + 3.7 

(Oct. 29) 

Y = soil respiration 
(μmol m-2 s-1), x = root 
biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 2.95𝑥 + 2.59 

(Apr. 15) 

Y = soil respiration 
(μmol m-2 s-1), x = root 

biomass (kg m-2) 

Wang et al. 
(2005) 

 Japan, 
mixed 
grassland 

𝑌 = 2.83𝑥 + 3.37 

(May 10) 

Y = soil respiration 
(μmol m-2 s-1), x = root 

biomass (kg m-2) 

Wang et al. 
(2005) 

 
 

Japan, 
mixed 
grassland 

𝑌 = 5.12𝑥 + 5.33 

(Jun. 5) 

Y = soil respiration 
(μmol m-2 s-1), x = root 
biomass (kg m-2) 

Wang et al. 
(2005) 

 Northern 
hemi-
sphere, 
temperate 
eco-
systems 

𝑦 = 382 + 1.13𝑥 
y = soil respiration (g C m-2y-1), 

x = fine roots (g C m-2) 
Hibbard 
et al. (2005) 

 China, 
spring 
maize 
eco-
system 

𝑆𝑅 =  𝛼𝐵 + 𝛽 

with: 

α = 0.0885; 0.0866; 0.0909; 0.1000; 
0.1025; 0.0983; 0.1160; 0.1195; 
0.1268; 0.1282; 0.1281; 0.1322; 
0.1294 

 β = -0.4839;  - 0.3298; - 0.2549; - 
0.2324; - 0.3072; - 0.0728; - 

SR = soil respiration rate 
(μmol m-2 s-1), B = root 

biomass in the soil collars 
(gm-2), α, β = parameters 

Han et al. 
(2007) 
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0.4122; - 0.3742; - 0.7169; - 
0.8339; - 0.8156; - 1.0059; - 0.8742            

(6 am; 7 am; 8 am; 9 am; 10 am; 11 
am; 12 am; 1 pm; 2 pm; 3 pm; 4 
pm; 5 pm; 6 pm) 

 Qinghai-
Tibet 
Plateau, 
Kobresia 

meadow 

𝑦 = 0.00 𝑥 + 2.78 
y = soil respiration 

(μmol CO2 m-2 s-1),                
x = belowground biomass of 
Kobresia pygmaea 

(g D. W. m-2)  

Zhang et al. 
(2009) 

 Qinghai-
Tibet 
Plateau, 
Kobresia 
meadow 

𝑦 = 0.00 𝑥 + 6.00 
y = soil respiration 

(μmol CO2 m-2 s-1),               
x = belowground biomass of 
Kobresia humilis 
(g D. W. m-2)  

Zhang et al. 
(2009) 

 Qinghai-
Tibet 
Plateau, 
Kobresia 
meadow 

𝑦 = 0.00 𝑥 + 7.56 
y = soil respiration 

(μmol CO2 m-2 s-1),                          
x = belowground biomass of 
Kobresia tibetica (g D. 
W. m-2)  

Zhang et al. 
(2009) 

 China, 
rape field 

𝑅𝑠 = 𝑎𝐵 + 𝑏 

with: 

a =1.29; 0.75; 0.33; 0.35; 0.41; 0.43 

b = 129.90; 70.67; 99.28; 103.14; 
183.77; 176.20  

(Nov.; Dec.; Jan., Feb., Mar.; Apr.) 

Rs = soil respiration rate 
(mg CO2/m2/h), B = root 
biomass in the soil collars 
(g/m2), a, b = parameter 

Hao and 
Jiang 
(2014) 

Regression 
based on 
carbon x 

Colorado 
Plateau, 
cold 
desert 

𝑦 =  0.21 + 0.30 (𝑋) 
y = soil respiration 

(µmoles CO2 m-2 s-1),             
x = carbon ≤ 0.196 (%) 

Fernandez 
et al. (2006) 

 Colorado 
Plateau, 
cold 
desert 

𝑦 = 0.35 + 0.29 (𝑋) 
y = soil respiration 

(µmoles CO2 m-2 s-1),             
x = carbon > 0.196 (%) 

Fernandez 
et al. (2006) 

Regression 
based on 
nitrogen x 

Colorado 
Plateau, 
cold 
desert 

𝑦 =  0.25 − 18.77 (𝑋) 
y = soil respiration 

(µmoles CO2 m-2 s-1),            
x = nitrogen ≤ 0.005 (%) 

Fernandez 
et al. (2006) 

 Colorado 
Plateau, 
cold 
desert  

𝑦 = 0.24 − 1.61 (𝑋) 
y = soil respiration 

(µmoles CO2 m-2 s-1),            
x = nitrogen > 0.005 (%) 

Fernandez 
et al. (2006) 

  
 

  

Regression 
based on 
organic 
layer thick-
ness OL 

Central 
Ireland, 
Sitka 
Spruce 

𝑆𝑅 = 24.46 + 47.33 𝑂𝐿 

(10 years old) 

SR = soil respiration 
(mg C m-2 h-1), OL = organic 
layer thickness 

Saiz et al. 
(2006) 

 Central 
Ireland, 
Sitka 
Spruce  

𝑆𝑅 = 40.60 + 15.47 𝑂𝐿 

(15 years old) 

SR = soil respiration 
(mg C m-2 h-1), OL = organic 
layer thickness 

Saiz et al. 
(2006) 

 Central 
Ireland, 
Sitka 
Spruce  

𝑆𝑅 = 19.44 + 23.85 𝑂𝐿 

(31 years old) 

SR = soil respiration 
(mg C m-2 h-1), OL = organic 
layer thickness 

Saiz et al. 
(2006) 

 Central 
Ireland, 
Sitka 
Spruce  

𝑆𝑅 = −9.89 + 38.97 𝑂𝐿 

(47 years old) 

SR = soil respiration 
(mg C m-2 h-1), OL = organic 
layer thickness 

Saiz et al. 
(2006) 
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 Central 
Ireland, 
Sitka 
Spruce  

𝑆𝑅 = 21.85 + 25.59 𝑂𝐿 

(all stand ages) 

SR = soil respiration 
(mg C m-2 h-1), OL = organic 
layer thickness 

Saiz et al. 
(2006) 

Regression 
based on 
Leaf Area 
Index x 

Northern 
hemi-
sphere, 
temperate 
eco-
systems 

𝑦 = 419 + 77𝑥 
y = soil respiration (g C m-2y-1), 

x = Leaf Area Index (m2 m-2) 
Hibbard 
et al. (2005) 

Regression 
based on 
NDVI 

Tibet, 
alpine 
grass-
lands 

𝑅𝑠

= 0.9805

∗ 𝑒2.5763∗(0.9655∗𝑁𝐷𝑉𝐼_𝑀𝑂𝐷𝐼𝑆+0.0166) 

Rs = diurnal soil respiration 
(g C m-2 d-1),        
NDVI_MODIS = normalized 

difference vegetation index 
calculated from Moderate-
resolution Imaging 
Spectroradiometer 

Huang and 
Zheng 
(2013) 

Regression 
based on 
mean 
annual 
gross 
primary pro-
ductivity Pg 

Europe, 
forests 𝑅𝑠 =  −552 + 0.913𝑃𝑔 

Rs = mean annual soil 
respiration (g C m-2 s-1),      
Pg = mean annual gross 
primary productivity 
(g C m-2 s-1) 

Janssens 
et al. (2001) 
 

Regression 
based on 
ambient 
CO2 con-
centration x  

Japan, 
agri-
cultural 
field 

𝑆𝑅 = 𝑎 + 𝑏𝑥 
SR = soil respiration rate 

(mg CO2 m-2 s-1),                  
x = ambient CO2 
concentration (μl l-1),            
a, b = coefficient 

Nakadai 
et al. (2002) 

 Belgium, 
forest 

𝐹𝑐 = 𝐹𝑠 =
𝑣𝑧 ∗ 𝐶 − 𝐷 ∗

𝛿𝐶
𝛿𝑧

𝑉𝑚𝑜𝑙
 

Fc = Fs = soil CO2 efflux  
(μmol m-2 s-1), vz = air 
vertical velocity (m s-1),        
C = air CO2 concentration 
(μmol mol-1), D = molecular 

diffusion coefficient of CO2 in 
the air (m2 s-1),                 
δC/δz = vertical gradient of 
the air CO2 concentration 
(μmol mol-1 m-1),               
Vmol = molecular volume 
(m3 mol-1) 

Longdoz 
et al. (2000) 

Regression 
based on 
photo-
synthesis Ps 

California, 
grass 
savanna 

𝑅𝑠 = 6.19 − 0.031𝑃𝑠 
Ts = soil respiration under a 

tree in June (μmol m-2 s-1), 
Ps= photosynthesis 
(μmol m-2 s-1) 

Tang et al. 
(2005) 

 California, 
grass 
savanna 

𝑅𝑠 = 4.30 − 0.062𝑃𝑠 
Ts = soil respiration under a 

tree in July (μmol m-2 s-1),    
Ps = photosynthesis 
(μmol m-2 s-1) 

Tang et al. 
(2005) 

 California, 
grass 
savanna 

𝑅𝑠 = 1.22 − 0.044𝑇𝑠 
Ts = soil respiration under a 

tree in September 
(μmol m-2 s-1),                      
Ps = photosynthesis 
(μmol m-2 s-1) 

Tang et al. 
(2005) 

Regression 
based on 
thawed soil 
thickness H 

Qinghai-
Tibet 
Plateau 

𝐹 = 1.84𝑒0.023𝐻 + 5.06 
F = soil CO2 efflux (mgm-2 d-1), 

H = thawed soil thickness 
(cm) 

Wang and 
Wu. (2013) 

Regression 
based on 
time t 

Belgium, 
forest 𝑄𝐶𝑂2

= 𝑎𝑡 + 𝐵(1 − 𝑒𝑘𝑡) 
QCO2 = amount of CO2 evolved 

at time t (g m-2 h-1), t = time, 
a = constant representing 
the zero order rate,              
B = constant representing 

the flash of mineralization 
resulting from disturbance of 
the soil sample, k = time 

Thierron 
and 
Laudelout 
(1996) 
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constant of the transient 
phase before zero-order 
kinetics begin 

 Okla-
homa, 
field 

𝑌 = 𝑌0 + 𝑎𝑡𝑒−𝑏𝑡 
Y = soil CO2 efflux 

(μmol m-2 s-1), Y0 =soil CO2 

efflux before water 
treatment, t = time (h),         
a, b = coefficient 

Liu et al. 
(2002) 

 Ten-
nessee 𝑅𝑠 = 𝜆𝑒𝛽𝑡 

𝜆 = 0.9506 μmol CO2 m-2s-1 

 

Rs= soil respiration 

(μmol m-2 s-1), 𝜆 = soil 

respiration at temperature of 
0 °C (μmol CO2 m-2s-1),        
β = coefficient, t = 
temperature (°C) 

Chen et al. 
(2010) 

Regression 
based on 
gas con-
centration, 
depth, max. 
depth of 
respiration 

 
𝑑(

𝐷𝑑𝐶

𝑑𝑧
)

𝑑𝑧
 = -q 

𝑞(𝑧) = 𝑄[1 − (
𝑧

𝐿
)𝑘] 

with: 

k = 1 (soil gas transport) 

k = 0.25 (CO2 transport) 

D = diffusion coefficient of CO2 

in the gas-filled pore space 
(m2 s-1), z = depth (m),         
C = concentration of the gas 
in the gas-filled pore space 
(kg m-3), q(z)= soil 
respiration rate (kg m-3 s-1), 
Q = surface soil respiration 
rate (kg m-3 s-1), L = depth to 

which respiration occurs (m), 
k = dimensionless 
attenuation coefficient 

Cook et al. 
(1998), 
Glinski and 
Stepniewski 
(1985) 

Regression 
based on 
CO2 con-
centration, 
weight of 
root sample 

Oregon, 
forest 𝑘 =  

𝛥𝐶𝑂2

100

1

𝑂𝐷𝑊

1

𝐼𝑃
∗ 𝑉 ∗ 41.0339

∗ 12 

k = respiration rate of 

decomposing root (μg C per 
gram dry-root per hour), 
ΔCO2 = net percentage 
increase of CO2 
concentration during 
incubation (%),                
ODW = oven-dry weight of 
root sample (g),                    
IP = incubation period (h),   
V = net volume of 
headspace 

Chen et al. 
(2000) 

Regression 
based on 
total area of 
vegetation, 
number of 
vegetation 
types 

Qinghai-
Tibet 
Plateau, 
grassland 

𝐸𝑐1 =  ∑ 𝛽𝑗𝐹𝑗(1 − 𝜆𝑗)

𝑚

𝑗=1

 

Ec1 = carbon emission from 

soil-associated respiration 
(Mg C year-1), βj = total 
respiration rate measured 
below ground (Mg C year-1), 
Fj = total area of vegetation 
(ha), m = number of 
vegetation types,                  
λj = percentage of plant root 

respiration to total below-
ground respiration (%),          
j = 1, 2, …, m 

Genxu et al. 
(2002) 
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Table 2 

Table 2. Regression functions to approximate belowground biomass 

Type of 
regression 

Region, 
vegetation 
type 

Equation Parameters Author(s) 

Regression 
based on 
above-
ground 
biomass  

 

 

World-
wide, 
different 
grassland 
sites 

𝐵𝑁𝑃𝑃 = 𝐵𝐺𝐵
Live𝐵𝐺𝐵

𝐵𝐺𝐵
𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 

 

with: 

𝐵𝐺𝐵 = 0.79 (𝐴𝐺𝐵𝐼𝑂)
− 33.3 (𝑀𝐴𝑇
+ 10) + 1289; 

𝐿𝑖𝑣𝑒𝐵𝐺𝐵 = 0.6 𝐵𝐺𝐵; 

𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 = 0.2884𝑒0.046 𝑀𝐴𝑇 

BNPP = belowground netto 

primary production,        
BGB = belowground 
biomass (g m-2),           
AGBIO = peak aboveground 

live biomass (g m-2),         
MAT = mean annual 
temperature (°C) 

Gill et al. 
(2002) 

 USA 𝐵𝐺𝐵𝐷 = exp [−1.085 + 0.9256
∗ ln(𝐴𝐺𝐵𝐷)] 

BGBG = belowground 
biomass density (Mg/ha), 
AGBD = aboveground 
biomass density (Mg/ha) 

Jenkins 
et al. (2001) 

 USA, 
smooth 
cordgrass 

ln(𝐿𝑖𝑣𝑒𝐵𝑒𝑙𝑜𝑤)
= 0.713 ln(𝑇𝑜𝑡𝑎𝑙𝐴𝑏𝑜𝑣𝑒) +  2.235 

Live Below = live 
belowground biomass (g), 
Total Above = live and 
dead aboveground 
biomasse (g) 

Gross et al. 
(1991) 

 World-
wide, 
forest and 
woodland  

𝑦 =  0.489𝑥0.890 

 

y = root biomass, x = shoot 
biomass 

Mokany 
et al. (2006) 

 World´s 
upland 
forests  

𝑌 = 𝑒𝑥𝑝[−1.0850 +  0.9256(𝑙𝑛𝐴)] Y = root biomass density 
(Mg/ha), A = aboveground 
biomass density (Mg/ha) 

Cairns et al. 
(1997) 

 World´s 
upland 
forests  

𝑌 = exp[−1.3267 + 0.8877(𝑙𝑛𝐴)
+ 0.1045 (𝑙𝑛𝐵) 

Y = root biomass density 
(Mg/ha), A = aboveground 
biomass density (Mg/ha),  
B = age (year) 

Cairns et al. 
(1997) 

 World´s 
tropical 
forests  

𝑌 = exp[−1.0587 + 0.8836(𝑙𝑛𝐴)
+ 0.2840 (𝑙𝑛𝐶)
+ 0.1874 (𝑙𝑛𝐷) 

with: 

𝐶 = 0;  

𝐷 =  0 

Y = root biomass density 
(Mg/ha), A = aboveground 
biomass density (Mg/ha),  
B = age (year),                   
c and d = parameters for 
the latitudinal zone 

Cairns et al. 
(1997) 

 World´s 
temperate 
forests  

𝑌 = exp[−1.0587 + 0.8836(𝑙𝑛𝐴)
+ 0.2840 (𝑙𝑛𝐶)
+ 0.1874 (𝑙𝑛𝐷) 

Y = root biomass density 
(Mg/ha), A = aboveground 
biomass density (Mg/ha),  
B = age (year),                   

Cairns et al. 
(1997) 
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with: 

𝐶 = 1;  

𝐷 =  0 

c and d = parameters for 

the latitudinal zone 

 World´s 
boreal 
forests  

𝑌 = exp[−1.0587 + 0.8836(𝑙𝑛𝐴)
+ 0.2840 (𝑙𝑛𝐶)
+ 0.1874 (𝑙𝑛𝐷) 

with: 

𝐶 = 0;  

𝐷 = 1 

Y = root biomass density 
(Mg/ha), A = aboveground 
biomass density (Mg/ha),  
B = age (year),                   
c and d = parameters for 

the latitudinal zone 

Cairns et al. 
(1997) 

 Non-
woody 
plants 

𝑀𝐵 =  
𝛽2

(𝛽2 + 1)𝛽3
𝑀𝐴 =  𝛽4𝑀𝐴 

MB = belowground biomass, 
MA =aboveground biomass, 
β2 = allometric           
constant = annual leaf 
growth rate, β3 = allometric 

constant = annual stem 
growth rate, β4 = allometric 
constant = annual root 
growth rate 

Niklas 
(2005) 

Regression 
based on 
softwood 
root 
biomass 
RBs and 
hardwood 
root bio-
mass RBh 

Canada, 
forest 

𝑅𝐵 = 𝑅𝐵𝑠 + 𝑅𝐵ℎ 

with: 

𝑅𝐵𝑠 = 0.222𝐴𝐵𝑠; 

𝑅𝐵ℎ = 1.576𝐴𝐵𝑠
0.615 

RB = total root biomass 
(Mg ha-1), RBs = softwood 
root biomass (Mg ha-1),   
RBh = hardwood root 

biomass (Mg ha-1),         
ABs = softwood 
aboveground biomass 
(Mg ha-1), ABh = hardwood 

aboveground biomass 
(Mg ha-1) 

Li et al. 
(2003)  

 Canada, 
forest 

𝑅𝐵 = 𝑅𝐵𝑠 + 𝑅𝐵ℎ 

with: 

𝑅𝐵𝑠 = 0.2317𝐴𝐵𝑠; 

𝑅𝐵ℎ =  𝑒0.359𝐴𝐵ℎ
0.639 

RB = total root biomass 
(Mg ha-1), RBs = softwood 

root biomass (Mg ha-1),   
RBh = hardwood root 
biomass (Mg ha-1),         
ABs = softwood 

aboveground biomass 
(Mg ha-1), ABh= hardwood 
aboveground biomass 
(Mg ha-1) 

Kurz et al. 
(1996) 

Regression 
based on 
diameter at 
breast 
height  

Central 
Highlands 
of 
Vietnam, 
evergreen 
broad 
leaved 
forest 

𝐵𝐺𝐵 =  𝑒𝑥𝑝(−4.91842+2.41957ln (𝐷𝐵𝐻) BGB = belowground biomass 
(kg), DBH = diameter at 
breast height (cm) 

Huy et al. 
(2012) 

 Taiwan, 
Mahogany 

𝑊𝑏𝑒𝑙𝑜𝑤 = 61.65 𝐷𝐵𝐻2.19 Wbelow = Belowground 

biomass (g),                  
DBH = diameter at breast 
height (cm) 

Tsai et al. 
(2012) 



201 
 
 

 Western 
Kenya, 
trees in 
agricultural 
land-
scapes  

𝐵𝐺𝐵 = 0.048 𝑑𝑏ℎ2.303 

 

BGB = below-ground 

biomass (Mg tree -1),      
dbh = diameter at breast 
height (cm) 

Kuyah et al. 
(2012) 

 Australia, 
open 
woodland 

𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑟𝑜𝑜𝑡𝑏𝑖𝑜𝑚𝑎𝑠𝑠
= 0.62 𝐷𝐵𝐻
− 19.72 

Total measured root biomass 
= total belowground 
biomass (kg m-2 ground 
area), DBH = diameter at 
breast height (cm) 

Macinnis-
Ng et al. 
(2010) 

 Finland, 
birch 

ln(𝑦𝑘𝑖) =  𝑏0 +  𝑏1

𝑑𝑆𝑘𝑖

(𝑑𝑆𝑘𝑖 + 26)
+  𝑏2 ln(ℎ𝑘𝑖)
+  𝑢9𝑘 +  𝑒9𝑘𝑖 

yk i= biomass component or 
total biomass of tree i in 
stand k (kg), dki = tree 
diameter at breast height of 
tree i in stand k (cm),       
dSki = 2 + 1.25 d (cm), hki = 
tree height of tree i in stand 
k (m), u = vector of random 
effects, e = vector of 
random errors 

Repola 
(2008) 

Regression 
based on 
inside/   
outside bark 
basal 
diameter X 

Wyoming, 
13-year-
old Pinus 
contorta 
var. 
latifolia 

𝑌 = 𝑎𝑋𝑏 

with: 

𝑎 = 6.563;       

𝑏 = 2.205 

(outside bark basal diameter) 

and with: 

𝑎 = 7.691;       

𝑏 = 2.289 

(inside bark basal diameter) 

Y = total coarse root biomass 
(g d.m.), X = inside/outside 
bark basal diameter (cm), 
a, b = constants 

Litton et al. 
(2003) 

Regression 
based on 
basal 
diameter D 

Chile, 
notho-
fagus 
pumilio 

𝑌 = 0.001185459 𝐷1.762𝐻0.588 Y = belowground biomass 
(kg), D = basal diameter 
(cm), H = total height (cm) 

Schmidt 
et al. (2009) 

Regression 
based on 
January 
mean 
tempera-
ture x 

Tibet  𝑦 = 200/(1 + exp(−0.1434𝑥
+ 1.0789)) 

y = root biomass density 
(Mg/ha), x = january mean 
temperature (°C) 

Luo et al. 
(2005) 

Regression 
based on 
July mean 
tempera-
ture x 

Tibet 𝑦 = 200/(1 + exp(−0.2245𝑥
+ 4.6125)) 

y = root biomass density 
(Mg/ha), x = july mean 
temperature (°C) 

Luo et al. 
(2005) 
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Regression 
based on 
annual 
mean 
tempera-
ture x 

Tibet 𝑦 = 200/(1 + exp(−0.1750𝑥
+ 2.5543)) 

y = root biomass density 
(Mg/ha), x = annual mean 
temperature (°C) 

Luo et al. 
(2005) 

Regression 
based on 
annual 
precipitation x 

Tibet 𝑦 = 200/(1 + exp(−2.14𝐸 − 06𝑥2

−  0.00575𝑥
+ 4.78)) 

y = root biomass density 
(Mg/ha), x = annual 
precipitation (mm) 

Luo et al. 
(2005) 

Regression 
based on 
annual mean 
temperature 
and annual 
precipitation x 

Tibet 𝑦 = 200/(1 + exp(−0.0001594𝑥
+ 2.5869)) 

y = root biomass density 
(Mg/ha), x = annual mean 
temperature x annual 
precipitation (°C x mm) 

Luo et al. 
(2005) 

Regression 
based on 
altitude x 

Tibet 𝑦 = −0.0209𝑥 + 104.89 y = root biomass density 
(Mg/ha), x = altitude (m) 

Luo et al. 
(2005) 
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