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Preface

“Do not follow where the path may lead.

Go instead where there is no path

and leave a trail.”

Ralph Waldo Emerson

Research is a journey into the unknown. To discover new scientific insights,

the traveler must go off the beaten path and into the rough terrain that holds

the promise of new discovery. The path is certainly nonlinear, often paved with

obstacles, occasionally lengthy, and always challenging. Yet sometimes, when the

wayfarer has finally cut a swath through the thicket, all he finds is a hint indicating

where to go next. The rough terrain I try to negotiate in this work is the long-run risk

asset pricing model, which has a complex, nonlinear structure, and is inaccessible

by means of standard econometric methods. My path passes through the maze of

model equations, leads past previous econometric approaches, constantly tries to

keep a safe distance from the model’s precipice, and finally leads to the discovery of

viable estimation strategies. I hope to leave a small trail for future travelers that can

serve as a beginning of new journeys through the fascinating world of consumption-

based asset pricing.

My thesis could not have been completed without the support of many. I would

like to take this opportunity to express my gratitude to all of them. First of all, I am
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grateful to my supervisor Joachim Grammig for his guidance and constant support.

Working on a joint research project with him was a great experience that helped
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for constructive discussions and his interest in my research. I would like to thank

him for kindly agreeing to be the second referee of my thesis.

This work has greatly benefited from helpful comments and suggestions of semi-
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I would like to acknowledge valuable comments by Ron Gallant, Roxana Halbleib,

Enrique Sentana, and George Tauchen.
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Chapter 1

Introduction

Research in financial economics has endeavored to explain asset pricing puzzles for

decades. Most efforts are dedicated to the equity premium puzzle, a term coined

by Mehra and Prescott (1985) for the lack of a theoretical explanation for the ex-

traordinarily high risk premium paid by risky assets in the postwar U.S. financial

market. A popular theoretical approach that promises to resolve this and other

asset pricing puzzles is the long-run risk (LRR) asset pricing model proposed by

Bansal and Yaron (2004), a model that is intricate in nature and thus challenging to

analyze with econometric techniques. This study is concerned with the econometric

analysis of the LRR model, encompassing obstacles to the estimation, identification

issues, and an empirical evaluation. For that purpose, different econometric methods

are applied to the theoretical model, including the generalized method of moments

(GMM), the simulated method of moments (SMM), indirect inference estimation,

and maximum likelihood (ML) estimation that relies on filtering techniques.

This study is based on three separate working papers concerned with the esti-

mation of the long-run risk asset pricing model. In the first paper, entitled “Give me

strong moments and time: Combining GMM and SMM to estimate the long-run risk
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INTRODUCTION

asset pricing model,” Joachim Grammig and myself suggest a two-step GMM/SMM

approach to estimate the LRR model (cf. Grammig and Küchlin, 2016a). The second

paper, “Estimating the long-run risk asset pricing model with a two-step indirect

inference approach,” also joint work with Joachim Grammig, presents an indirect

inference estimation strategy that is more parsimonious and allows to estimate the

model parameters at a frequency higher than that of the data (cf. Grammig and

Küchlin, 2016b). In a third paper, “Filtering methods for the estimation of the

long-run risk asset pricing model,” I suggest a maximum likelihood estimation ap-

proach that promises efficiency gains and finally allows to estimate the full set of

LRR model parameters (cf. Küchlin, 2016). This thesis presents all studies in a

unified manner. Derivations and additional results collected in Web appendices to

the aforementioned papers are included to provide further details.

Chapter 2 reviews the related literature and describes the LRR model in detail.

First, the macroeconomic part of the model is introduced, which is driven by two

latent variables that emerge as the key sources of risk in the economy; subsequently,

the asset pricing implications resulting from the macroeconomic variables are exam-

ined, thereby highlighting the recursive LRR model structure. The solvability of the

model for its endogenous parameters is addressed, and a calibration provides intu-

ition for the role of each parameter in the model. Appendix A collects the analytical

derivations of various LRR model components.

In Chapter 3, identification issues implied by the LRR model are revealed by

scrutinizing estimation strategies presented in the literature. The insights gained

from this analysis warrant the conclusion that the estimation strategy should be

consistent with the recursive model structure, implying a two-step approach that

reflects the dependencies between the economic processes. In light of these findings,

we suggest a moment-based two-step estimation strategy that exploits analytical
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INTRODUCTION

moments where possible and simulated moments where necessary. The availability of

analytical moment expressions permits the use of GMM in the first estimation step,

whereas the model endogeneity precludes closed-form expressions for the moments

of the financial variables, thus calling for the use of simulated moments. The two-

step GMM/SMM estimation strategy thus combines the advantages of both methods

regarding computational cost and feasibility. A Monte Carlo study and an empirical

study using quarterly U.S. data illustrate the validity and precision, as well as the

limits, of the estimation approach. A key finding of this study is that the precise

estimation of the long-run risk component in the LRR model requires the inclusion of

a large number of auto-moments in the estimation. This is an issue for any empirical

application that relies on a rather limited data set.

A more parsimonious estimation approach is developed in Chapter 4. Adher-

ing to the concept of two-step estimation, an indirect inference estimation strategy

is suggested: in each step, tailor-made auxiliary models are used to consecutively

estimate the parameters that determine the macroeconomy and the financial mar-

ket, where the auxiliary models are designed to capture the salient features of the

respective model part. In contrast to the estimation strategy of Chapter 3, the

two-step indirect inference approach is entirely simulation-based and thus allows for

more flexibility regarding the frequencies of the model and the data. As a result,

the model can be estimated on a monthly basis from quarterly data in the empirical

application, which allows to emulate an economically plausible decision frequency of

the representative investor. Both the Monte Carlo study and the empirical applica-

tion to quarterly U.S. data corroborate that the estimation precision is low, given

the currently available scope of data.

Compared to moment-based estimation methods, maximum likelihood estima-

tion is typically more efficient, as it takes the complete distribution of the model
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INTRODUCTION

variables into account, as opposed to focusing only on isolated properties of the

distribution, such as moments. Chapter 5 introduces a maximum likelihood-based

estimation approach that aims to improve estimation precision. The use of filtering

methods permits the application of maximum likelihood, despite the presence of

latent variables. The proposed three-step method allows estimation of the full set

of LRR model parameters and thus overcomes the lack of identification of the pa-

rameters that characterize the fluctuating economic uncertainty, an issue that could

not be resolved by either of the estimation strategies presented in Chapters 3 and 4.

A Monte Carlo study demonstrates the efficiency gains and establishes the viability

of the suggested method. Subsequently, an empirical application is conducted on

monthly U.S. data, which provides evidence for a rather risk-averse investor, even

though long-run risk is accounted for.

The main results of all studies are reviewed and summarized in Chapter 6.
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Chapter 2

Asset pricing with long-run risk

2.1 Literature review

The beginnings of consumption-based asset pricing are founded on the Capital As-

set Pricing model (CAPM) (cf. Sharpe, 1964; Lintner, 1965; Mossin, 1966), and in

particular on the idea of the Intertemporal Capital Asset Pricing Model (ICAPM)

by Merton (1973), which states that the expected return of an asset is determined

by its covariance with the market portfolio and a set of state variables that de-

scribe the investment opportunity set. Rubinstein (1976) presents a discrete-time

approach that is consistent with Merton’s ICAPM, while Breeden (1979) generalizes

the ICAPM concept in continuous time by replacing the multiple betas of Merton’s

(1973) model by a single beta that relates to the return’s covariance with aggre-

gate consumption. The discrete-time model published by Rubinstein (1976) and

the continuous-time model by Breeden (1979) establish the consumption-based as-

set pricing paradigm. An exposition of the consumption-based model is provided in

the textbook by Cochrane (2005).
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LITERATURE REVIEW ASSET PRICING WITH LONG-RUN RISK

Although theoretically appealing, the consumption-based asset pricing model

(CBM) was soon found to be incompatible with empirical data. Numerous studies

produced disappointing empirical results, giving rise to several asset pricing puz-

zles, among others the equity premium puzzle (cf. Mehra and Prescott, 1985), and

the risk-free rate puzzle (cf. Weil, 1989). A comprehensive overview of the empiri-

cal developments in the consumption-based asset pricing literature can be found in

Campbell (2003) and Breeden, Litzenberger, and Jia (2014). Empirical estimations

and tests of the CBM turned out to yield implausible values for the investor’s pref-

erence parameters, in particular for the risk aversion parameter (cf. Cochrane, 1996,

who reports relative risk aversion estimates above 100). Campbell and Cochrane

(2000) explain the empirical failure of the CBM with the crucial role of condition-

ing information, which is unavailable for empirical applications. The subsequent

attempts to resurrect the consumption-based asset pricing paradigm are numerous.

One main strand of literature focuses on data-related issues, such as the suit-

ability of the commonly used U.S. consumption data, measurement problems, the

unavailability of the investor’s information set, or rare disasters that could have

occurred, but are not realized in the data. Building on the findings of Campbell

and Cochrane (2000), Lettau and Ludvigson (2001) achieve a better empirical per-

formance by performing a conditional estimation of the linear CBM, thereby al-

lowing for time-varying risk premia. As a conditioning variable, they propose the

log consumption-wealth ratio, which allegedly captures the investor’s information

set in a more comprehensive way than the previously suggested conditioning vari-

ables, namely the dividend-price ratio or the term spread. Parker and Julliard

(2005) find that while contemporaneous consumption risk can only explain a small

fraction of cross-sectional variation in asset prices, their measure of the so-called

“ultimate risk to consumption” considerably improves the empirical performance of

14



ASSET PRICING WITH LONG-RUN RISK LITERATURE REVIEW

the consumption-based model. By aggregating consumption growth over several

periods, they also mitigate typical shortcomings of consumption data, such as mea-

surement error and adjustment costs. In the same vein, Yogo (2006) also focuses

on consumption data issues and suggests a model that separates consumption of

durable and non-durable goods. In the broader sense, also the rare disasters litera-

ture founded by Rietz (1988) and Barro (2006, 2009) explains the equity premium

puzzle with data-related issues. They argue that rare, but disastrous contractions

of consumption are anticipated by consumers and thus incorporated in asset prices,

even though no such disaster may have realized in the observed sample. Jagan-

nathan and Wang (2007) discover that a consumption measure computed between

the fourth quarters of each year substantially improves the empirical performance

of the linear CBM, indicating that consumers might adjust their decisions rather

infrequently at the end of each calendar year. Savov (2011) shows that consump-

tion data from the National Income and Product Accounts (NIPA) are too smooth

to justify large risk premia and argues that using data on garbage growth, which

exhibits more variation and is more strongly related to stock returns, can solve the

equity premium puzzle.

The other main stream of literature comprises structural asset pricing models

that extend the CBM to larger model frameworks and thereby try to explain the

notorious asset pricing puzzles. In particular, the external habit model of Campbell

and Cochrane (1999) and the long-run risk model proposed by Bansal and Yaron

(2004) constitute the principal competing approaches in this area. Both models al-

low to match asset market phenomena by using a larger number of parameters than

previous models. Campbell and Cochrane (1999) include persistent habits into the

model, which imply slow-moving countercyclical risk premia, a feature that serves

to improve the empirical performance substantially. Drawing on the psychologi-
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LITERATURE REVIEW ASSET PRICING WITH LONG-RUN RISK

cal concept that well-being is typically evaluated in comparison to a reference level

instead of in absolute values, this countercyclical effect is achieved by the follow-

ing mechanism: an economic downturn causes consumption to shrink towards the

investor’s habit level, which in turn increases relative risk aversion, and thereby ex-

pected risk premia. In contrast, the long-run risk model by Bansal and Yaron (BY,

2004) focuses on the macroeconomic sources of risk that the representative investor

must face. In particular, changes in growth expectations of consumption (long-run

consumption risk) and in the fluctuating economic uncertainty (volatility risk) drive

the decisions of the representative investor and thereby serve to explain asset pricing

puzzles, such as the large equity premium. As opposed to the habit model, in which

the time-varying risk premia are obtained by a variation in risk aversion, the long-

run risk model involves time-varying risk. Combined with short-run consumption

risk as an additional risk factor, long-run consumption risk and volatility risk are

the main ingredients of the stochastic discount factor that prices all assets in the

LRR model. Due to its far-reaching impact on model dynamics, the first source of

risk provides the name for the long-run risk asset pricing model.

In their seminal paper, BY perform a calibration that demonstrates the ability of

the LRR model to explain the equity premium. The LRR approach is theoretically

appealing because the calibrated model matches numerous features of financial mar-

kets with a plausible theoretical framework based on macroeconomic risk. Therefore,

the model has been extraordinarily popular and its properties have been studied in

several articles. In response to a comment by Bui (2007), Bansal, Kiku, and Yaron

(2007b) present a slightly modified version of the model with an alternative cali-

bration to improve the model’s forecasting implications, in particular to reduce the

implausibly high predictability of consumption growth. The majority of the fol-

lowing studies, however, did not adopt this modification, but continued to use the
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ASSET PRICING WITH LONG-RUN RISK LITERATURE REVIEW

original model as proposed in 2004. Drechsler and Yaron (2011) perform another

calibration of a generalized LRR model including jumps to explain the variance pre-

mium and its relationship to investor preferences. Bansal and Shaliastovich (2013)

advocate the LRR approach as a solution to the bond return predictability puzzle.

Bansal, Kiku, and Yaron (2012a) and Beeler and Campbell (2012) disagree on the

consistency of LRR model calibrations with empirical data. The discussion includes

different opinions on the slope of the yield curve, which is negative in BY’s cali-

bration but too large in absolute value according to Beeler and Campbell (2012);

moreover, opinions differ with respect to predictability issues, and, in particular,

regarding the size of the intertemporal elasticity of substitution (IES) parameter.

While Bansal et al. (2012a) argue that the IES must be larger than 1, Beeler and

Campbell (2012) point out the discrepancy between the weak response of consump-

tion growth to changes in the risk-free rate, implying an IES clearly smaller than

1, and the strong negative effect of increasing consumption volatility on stock re-

turns, implying an IES larger than 1. Ferson, Nallareddy, and Xie (2013) evaluate

out-of-sample forecasts of a cointegrated version of the LRR model and find the

performance to be superior to the stationary model.

Calibrations can provide helpful insights into the ability of the LRR model to

replicate certain features of the data, however, they involve a confirmation bias.

A critical appraisal of the model can only be obtained by econometric analysis.

Empirical tests of the LRR model are impeded by its complex model structure, which

precludes the use of standard econometric techniques. A comprehensive econometric

analysis and a profound empirical evaluation is therefore the goal of the present

thesis.

This research contributes to a literature that empirically assesses the LRR model.

Bansal, Gallant, and Tauchen (2007a) conduct the first econometric analysis of the
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LITERATURE REVIEW ASSET PRICING WITH LONG-RUN RISK

LRR model, in which they also compare its empirical performance to that of Camp-

bell and Cochrane’s (1999) habit model. While they find that in many aspects both

models are similarly suited to explain and replicate the stylized facts of the data,

their analysis of the models’ dynamics over longer horizons speaks in favor of the

LRR model. For their estimation, Bansal et al. (2007a) use the efficient method

of moments (EMM) to estimate a cointegrated LRR model variant. However, even

using EMM, some important structural LRR model parameters, among them the

intertemporal elasticity of substitution, could not be estimated and had to be cali-

brated instead. This notable result indicates some unresolved identification issues.

Interestingly, some subsequent empirical studies that rely on less sophisticated es-

timation techniques do report estimates of all LRR model parameters, sometimes

with remarkable precision.

Aldrich and Gallant (2011) present the first Bayesian estimation of the LRR

model. Hasseltoft (2012) includes inflation in the LRR framework to model stock and

bond markets jointly. He uses the simulated method of moments for the estimation

of all parameters, except the subjective discount factor, which is calibrated to a

value very close to 1. Constantinides and Ghosh (2011) show how to express the

latent model variables as functions of observables, which in turn permits the use of

the generalized method of moments. The same analytical inversion is exploited by

Bansal, Kiku, and Yaron (2012b), who derive analytical expressions to aggregate

the moments used in their GMM estimation, permitting an estimation of the model

dynamics at a monthly frequency. In a recent paper, Calvet and Czellar (2015)

estimate a simplified version of the LRR model using an exactly identifying auxiliary

model within an indirect inference estimation approach. They also report estimates

of all LRR model parameters, but their simplification, which greatly facilitates the

model simulation, is not benign and comes at the cost of a built-in inconsistency.
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The out-of-sample analysis by Ferson et al. (2013) focuses on forecasting, for which

it suffices to estimate the model in a reduced form without identifying all of the

structural parameters.

The empirical analysis of the LRR model is impeded by methodological and

numerical intricacies. Such obstacles have not been explicitly debated in previous

literature, which is surprising, because it is well known that the model structure is

inherently fragile: for certain economically plausible parameter values, the model

becomes unsolvable, and the estimation procedure must account for that problem.

Moreover, dividends and consumption in the LRR framework are driven by a small,

but persistent latent growth component and stochastic volatility (SV), which exac-

erbates the estimation of the structural parameters, especially when the data series

are short. The estimation of SV models has preoccupied econometric research for

some time, see e.g. Ruiz (1994), Gallant, Hsieh, and Tauchen (1997), Sandmann and

Koopman (1998), Kim, Shepard, and Chib (1998), Andersen, Chung, and Sørensen

(1999), and Jacquier, Polson, and Rossi (2002). In the LRR model, the SV process

is just one component of a complex system.

The econometric analysis of the LRR model is challenging, as identification prob-

lems are not obvious in the highly nonlinear structure of the model. Those issues can

easily be overlooked when an optimization algorithm converges to one of many local

minima on a rugged objective function surface. In the following chapters, identifica-

tion matters are discussed in depth, using as examples different estimation methods

that have previously been applied to the LRR model. The recurrent theme of this

thesis will be the necessity to adhere to the recursive model structure in the esti-

mation process, which implies multi-step estimation strategies. In the subsequent

section, the LRR model will be described in detail.
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2.2 LRR model anatomy

To review the LRR model in its original formulation by BY, the recursive model

structure is described in two consecutive sections: the first delineates the macroe-

conomic dynamics; the second details the asset pricing implications of the model.

Having introduced the elementary components of the model, the issue of model solv-

ability is discussed, which is of vital importance for a successful estimation of the

representative investor’s preference parameters. The presentation of the model high-

lights the intricacies of the model structure, which complicate generating simulated

data, and thus the estimation by simulation-based methods. Detailed derivations of

various model equations are collected in Appendices A.1–A.5.

2.2.1 Time series macro dynamics

The LRR macroeconomy is described by a nonlinear vector-autoregression with two

observable variables, log consumption growth gt and log dividend growth gd,t, as well

as two latent variables, a small and persistent growth component xt and a stochastic

variance σ2
t :

gt+1 = µc + xt + σtηt+1, (2.1)

xt+1 = ρxt + ϕeσtet+1, (2.2)

gd,t+1 = µd + φxt + ϕdσtut+1, (2.3)

σ2
t+1 = σ2 + ν1(σ2

t − σ2) + σwwt+1. (2.4)

The i.i.d. innovations ηt, et, ut, and wt are standard normally distributed, contem-

poraneously uncorrelated random variables. The latent processes are assumed to

be highly persistent, such that ρ and ν1 are chosen to be close to 1 in calibration
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exercises. The parameters that describe the macro dynamics of the LRR model are

collected in the vector ξM = (µc, µd, ρ, σ, ϕe, φ, ϕd, ν1, σw)′.

It is important to observe that the LRR model is inherently recursive: The

variables on the left-hand sides of Equations (2.1)-(2.4) are elementary components

for all other (financial) model variables. When LRR model-implied data are required

for simulation-based estimation, it is necessary to generate time series of gt, xt, gd,t,

and σ2
t , before simulating financial variables such as asset returns and price-dividend

ratios.

2.2.2 Asset pricing relations

The representative LRR investor who faces the macro dynamics in Equations (2.1)-

(2.4) is assumed to have recursive preferences (cf. Epstein and Zin, 1989), as ex-

pressed by the utility function

Ut =

[
(1− δ)C

1−γ
θ

t + δ
(
Et
(
U

(1−γ)
t+1

)) 1
θ

] θ
1−γ

, (2.5)

where Ct is aggregate consumption, and θ = (1−γ)

(1− 1
ψ )

. The three preference param-

eters, collected in the vector ξP = (δ, γ, ψ)′, denote the subjective discount factor,

relative risk aversion (RRA), and intertemporal elasticity of substitution, respec-

tively. The representative investor has aggregate wealth W and maximizes utility

under the budget constraint Wt+1 = (Wt−Ct)Ra,t+1. The gross return of the aggre-

gate wealth portfolio, Ra, constitutes a claim to aggregate consumption. From the

first order condition of this optimization problem, we obtain the pricing equation

for a gross asset return Ri,

Et [Mt+1Ri,t+1 − 1] = 0, (2.6)
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where

Mt+1 = δθG
− θ
ψ

t+1R
−(1−θ)
a,t+1 (2.7)

is the stochastic discount factor (SDF), and G denotes gross consumption growth.

Drawing on the linear approximations suggested by Campbell and Shiller (1988),

BY use the following expressions for ra, the log return of the aggregate wealth

portfolio, and rm, the log return of the market portfolio, which constitutes a claim

to the dividend stream:

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1, (2.8)

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1, (2.9)

where z is the log price-consumption ratio of the latent wealth portfolio, and zm is

the log price-dividend ratio of the observable market portfolio. Furthermore,

κ1 =
exp(z̄)

1 + exp(z̄)
, κ1,m=

exp(z̄m)

1 + exp(z̄m)
, (2.10)

κ0 = ln(1 + exp(z̄))− κ1z̄, and κ0,m= ln(1 + exp(z̄m))− κ1z̄m, (2.11)

where z̄ and z̄m denote the means of z and zm. The derivations of Equations (2.8)–

(2.11) can be found in Appendix A.1. The latent log P/C ratio z and the observable

log P/D ratio zm are assumed to evolve as:

zt = A0 + A1xt + A2σ
2
t , (2.12)

zm,t = A0,m + A1,mxt + A2,mσ
2
t . (2.13)
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The A-coefficients in Equations (2.12) and (2.13) must be determined by an analyt-

ical solution of the model. Pricing the gross return of the aggregate wealth portfolio

using Equation (2.6), as outlined in Appendix A.2, leads to the expressions

A1 =
1− 1

ψ

1− κ1ρ
, (2.14)

A2 =
1

2

(
θ − θ

ψ

)2

+ (θA1κ1ϕe)
2

θ[1− κ1ν1]
, and (2.15)

A0 =
1

1− κ1

[
ln δ +

(
1− 1

ψ

)
µc + κ0 + κ1A2σ

2(1− ν1) +
θ

2
(κ1A2σw)2

]
. (2.16)

Subsequently pricing the gross return to the market portfolio, as shown in Ap-

pendix A.3, yields

A1,m =
φ− 1

ψ

1− κ1,mρ
, (2.17)

A2,m =
(1− θ)(1− κ1ν1)A2 + 1

2
[λ2
m,η + (βm,e − λm,e)2 + ϕ2

d]

(1− κ1,mν1)
, and (2.18)

A0,m =
1

(1− κ1,m)

[
θ ln δ − θ

ψ
µc + (θ − 1)

[
κ0 + κ1A0 + κ1A2(1− ν1)σ2

− A0 + µc

]
+ κ0,m + κ1,mA2,mσ

2(1− ν1) + µd

+
1

2
[(θ − 1)κ1A2 + κ1,mA2,m]2 σ2

w

]
. (2.19)

To obtain the LRR model-implied expression for the log risk-free rate, rf , the same

procedure is applied. Pricing the risk-free return using Equation (2.6) yields

rf,t = −θ ln(δ) +
θ

ψ
[µc + xt] + (1− θ)Et(ra,t+1)− 1

2
Vart(mt+1), (2.20)
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where mt is the logarithm of the stochastic discount factor Mt, and

Et(ra,t+1) = κ0 + κ1

[
A0 + A1ρxt + A2(σ2 + ν1(σ2

t − σ2))
]

(2.21)

− A0 − A1xt − A2σ
2
t + µc + xt, and

Vart (mt+1) =

(
θ

ψ
+ 1− θ

)2

σ2
t + [(1− θ)κ1A1ϕe]

2 σ2
t (2.22)

+ [(1− θ)κ1A2]2 σ2
w.

The detailed derivation is provided in Appendix A.4.

2.2.3 Model solvability

The analytical solution of the model yields expressions for the A-coefficients that

depend on the model parameters in ξM and ξP (cf. Equations (2.14)–(2.19)), but

also on the κ-parameters in Equations (2.10) and (2.11), which in turn depend on

z̄ and z̄m. As a consequence, the κ-parameters, and thus the A-coefficients, are

endogenously determined.

To estimate the LRR model by simulation-based methods, model-implied series

of z, zm, ra, and rm must be generated. For that purpose, a numerical solution of the

model is required. To that end, we determine z̄ and z̄m such that Equations (2.10)–

(2.19) are fulfilled. This can be achieved by numerically solving for the means of z

and zm, such that the squared differences between the hypothesized means and the

resulting model-implied means are equal to 0. The endogenous parameters are thus

implied by the roots of two functions f1 and f2:

f1(z̄, ξM , ξP ) =
[
z̄ − A0(z̄, ξM , ξP )− A2(z̄, ξM , ξP )σ2

]2
, (2.23)

f2(z̄, z̄m, ξ
M , ξP ) =

[
z̄m − A0,m(z̄, z̄m, ξ

M , ξP )− A2,m(z̄, z̄m, ξ
M , ξP )σ2

]2
. (2.24)
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The upper panels of Figure 2.1 show a plot of f1(z̄) and f2(z̄m) and their roots

using the LRR parameter values calibrated by BY (see Table 2.1). The lower panels

show that changing these parameters within a plausible range can easily yield an

unsolvable model. Whether the model is solvable or not, and thus whether LRR

model-implied data can be generated in the first place, entirely depends on the

values of the structural parameters in ξM and ξP . This fragility of the LRR model

poses a challenge for any econometric analysis, for which—for both theoretical and

numerical reasons—one must rely on a certain regularity of the admissible parameter

space.

2.2.4 Simulation of LRR model-implied data

Simulation of LRR model-implied data is frequently performed throughout all chap-

ters of this study, as it is required for calibration, simulation-based estimation, Monte

Carlo assessment of the estimation strategies, and for bootstrap inference. For a

given set of structural parameter values for ξM and ξP , the first step is to simulate

data for the latent macro variables σ2
t and xt and the observable macro variables g

and gd; then, in a second step, time series of the financial variables z, ra, zm, rm,

and rf can be obtained.

For a desired sample size S, the simulation of the macro variables involves draw-

ing 4 independent series of standard normally distributed random variables of length

(S + L) to obtain series of realizations of the i.i.d. innovations ηt, et, ut, and wt in

Equations (2.1)–(2.4). L is the number of observations of a “burn-in” period, which

is discarded to mitigate the impact of the choice of starting values on the autore-

gressive processes. For all simulations, L = 100 is used.

When generating data for the latent processes σ2
t and xt, the unconditional ex-

pectations are used as starting values for the forward-iteration of Equations (2.4)
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and (2.2), i.e. σ2
0 = σ2 and x0 = 0. Incidental negative values of σ2

t are replaced

by 0. Subsequently, the series for g and gd can be simulated using Equations (2.1)

and (2.3).

Based on the simulated macro series, we can simulate data for the financial

variables. For that purpose, the LRR model must be solved for the endogenous

means z̄ and z̄m, such that Equations (2.10)–(2.19) are fulfilled. The means z̄ and

z̄m can then be used to obtain the values of the κ- and A-parameters.

Numerically solving the equation f1(z̄, ξM , ξP ) = 0 for the mean of the log P/C

ratio (z̄) yields values for κ1 and κ0, as well as A1, A2, and A0, which are computed in

this order. The observations for z and ra are then obtained by using Equations (2.12)

and (2.8). Using the results from the solution for z̄, the second part of the model

solution f2(z̄, z̄m, ξ
M , ξP ) = 0 can be performed at this point to obtain the mean of

the log P/D ratio (z̄m), and thereby the values for the endogenous parameters κ1,m

and κ0,m, as well as A1,m, A2,m, and A0,m. Having solved the entire model, the time

series of zm and rm can be computed using Equations (2.13) and (2.9). Finally, a

series of LRR model-implied log risk-free rates rf is obtained from Equation (2.20).

2.3 LRR model calibration and implications

The first calibration of the LRR model in its original form, as presented in Sec-

tion 2.2, was performed by BY. Their choice of parameter values is listed in Ta-

ble 2.1. They calibrate the model on a monthly basis, thereby assuming a monthly

decision frequency of the representative investor. Before an econometric analysis

can be attempted, it is instructive to gain insights into the LRR model structure

and the role of each parameter in the system, as the parameter values determine the

model’s ability to reproduce the stylized facts of financial market data.
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The unconditional means of log consumption and dividend growth are speci-

fied by µc=µd=0.0015 on a monthly level, implying annual growth rates of 1.8%.

The growth expectations for consumption and dividends are governed by the la-

tent growth component xt, which enters the time-t conditional expectation of con-

sumption growth, µc + xt, and dividend growth, µd + φxt, respectively. Since its

autoregressive parameter is calibrated to ρ=0.979, the latent growth component is

assumed to be highly persistent, implying persistent growth expectations for the

macroeconomy. The time-t conditional variances of the growth processes and the

latent growth component are uniformly driven by the stochastic variance process

σ2
t , which has an unconditional mean of σ2=0.00782, an autoregressive parameter

ν1=0.987, and a volatility parameter σw=2.3e-06. Thus, the fluctuating economic

uncertainty represented by this process is assumed to be highly persistent with a

rather low volatility. Consequently, the economy tends to remain in its current state

of volatility, whether it is high in a crisis period or low in moderate economic con-

ditions. By scaling the size of the innovations to the latent growth component by

ϕe=0.044, while scaling the innovations to consumption and dividend growth by a

factor of 1 and ϕd=4.5, respectively, the predictable part of consumption and div-

idend growth is kept small. The discrepancy between the scaling parameters for

shocks to consumption and to dividend growth implies a considerably more volatile

growth process for dividends as compared to consumption. In the same vein, the

leverage parameter φ=3 translates positive (negative) growth expectations for con-

sumption to even larger (worse) growth expectations for dividends. For illustration

purposes, a simulated set of macro data is displayed in Figure 2.2. The parameters

correspond to the BY calibration and the sample size equals S=103.

The LRR investor prefers present to future consumption by a subjective discount

factor of δ=0.998. Risk aversion and intertemporal elasticity of substitution are
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disentangled by using the utility function suggested by Epstein and Zin (1989) in

Equation (2.5). Since the risk aversion parameter is chosen to be γ=10 and the

IES parameter is calibrated to ψ=1.5, the utility is clearly distinct from a time-

separable power utility function, which would imply equality of the risk aversion

and the reciprocal of the IES parameter (for a detailed discussion of the relationship

between risk aversion and intertemporal elasticity of substitution in asset pricing,

see e.g. Campbell, 1993). Figure 2.3 shows a simulated set of financial data resulting

from the BY calibration and from the macro series in Figure 2.2.

To simulate the financial data series, the model is numerically solved for its en-

dogenous parameters. The BY calibration implies the following model solution: the

mean of the log price-consumption ratio is given by z̄ = 6.24, which entails (in the or-

der of computability) κ1=0.9981, κ0=0.0141, A1=14.55, A2=-470.27, and A0=6.27.

The endogenous mean of the log price-dividend ratio is obtained as z̄m = 5.49, which

implies κ1,m=0.9959, κ0,m=0.0267, A1,m=93.22, A2,m=-2397.8, and A0,m=5.63. The

signs of the A-coefficients have important implications for the relationships between

sources of risk and risk premia.

Expected returns conditional on time-t information in the LRR model are in-

versely related to the asset return’s conditional covariance with the stochastic dis-

count factor, or equivalently, with the SDF’s innovations in excess of its time-t con-

ditional expectation. As derived in Appendix A.5, the time-t expected risk premium

for asset i is given by

−Covt [mt+1 − Et(mt+1), ri,t+1 − Et(ri,t+1)]− 1

2
Vart(ri,t+1). (2.25)
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Leaving aside the asset-specific variance term, the components of the covariance

reveal three macroeconomic sources of risk that are priced in the LRR model. They

can be deduced from the expression of the log SDF innovations

mt+1 − Et(mt+1) = λm,ησtηt+1 − λm,eσtet+1 − λm,wσwwt+1, (2.26)

as derived in Equation (A-14): long-run consumption risk represented by et+1, short-

run consumption risk due to ηt+1, and volatility risk related to wt+1. Given the cal-

ibration and the model solution, we can infer the signs of the coefficients associated

with the sources of risk.

As λm,η and λm,w are negative and λm,e is positive, while the stochastic volatil-

ity σt can safely be assumed to be positive, a positive covariance with shocks to

consumption growth or long-run growth expectations (ηt+1 or et+1) bears a posi-

tive risk premium, while assets with a positive covariance with volatility risk wt+1

carry a negative risk premium. Thus, the BY calibration has plausible implications

regarding the risk compensation scheme: assets that tend to have low returns in

states of the economy in which growth or growth expectations are low, or in which

the volatility is high, must pay a higher risk premium than assets with opposite

properties.

BY emphasize the importance of the IES parameter ψ being larger than 1. Since

there is an ongoing debate on this issue in the literature, this matter is worth to

be assessed in depth. Important implications of the LRR model are determined

by the relationship between the values of ψ and γ captured by θ. BY calibrate

the risk aversion and the IES such that the resulting θ is negative. This choice

ensures a plausible pricing scheme (cf. SDF in Equation (2.7)) because it establishes

a negative relationship between the marginal rate of substitution and the return to
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the aggregate wealth portfolio. For that matter, it is not necessary to have θ < 0,

but θ < 1 is sufficient to maintain sensible implications of the SDF. This condition,

however, is crucial for the economic implications of the model.1 If γ does not exceed

1/ψ, the requirement θ < 1 is met. Given γ = 10, it would therefore be sufficient to

restrict ψ to values larger than 0.1 to prevent an implausible SDF.

An IES larger than 1 entails that the substitution effect dominates the wealth ef-

fect. Considering Equation (2.14) shows that ψ > 1 is required for A1 to be positive,

as both ρ and κ1 are close to but smaller than 1. A value smaller than 1 would imply

a negative relationship between growth expectations and the log price-consumption

ratio. Thus, a rise in growth expectations would prompt the representative agent

to invest less into the aggregate wealth portfolio, thereby causing its price to fall.

Furthermore, Equation (2.15) implies that θ < 0, and thus ψ > 1, ensures that

the coefficient A2 takes negative values.2 BY assert that this is necessary to match

the negative correlation between consumption volatility and the log price-dividend

ratio, a feature of the data. It should be mentioned, however, that a negative A2 is

rather required to obtain a negative correlation between economic uncertainty and

the log price-consumption ratio. For the price-dividend ratio, it is the sign of A2,m

that matters. Equation (2.18) shows that the sign cannot be easily determined by

analytical considerations. Numerical analysis demonstrates that for the BY calibra-

tion, the IES can be lowered as far as ψ = 0.36 before the sign flips from negative

to positive.

1Consider an asset that covaries positively with the SDF and thus should bear a negative risk
premium. If θ was larger than 1, the SDF would be positively correlated with the return to the
aggregate wealth portfolio. In turn, this would imply that we should expect assets that exhibit
a positive covariance with the aggregate wealth portfolio to have a negative risk premium. This
contradicts the economic basics of risk compensation, as an asset with pro-cyclical payoffs should
carry a positive risk premium.

2A negative θ is obtained by choosing ψ > 1, given that γ > 1, i.e. that the investor’s risk aver-
sion is not extraordinarily small, which will be assumed throughout the following considerations.

30



ASSET PRICING WITH LONG-RUN RISK CALIBRATION

The analytical considerations show that an IES larger than 1 is required for a

negative correlation between economic uncertainty and the log price-consumption

ratio and for a powerful substitution effect that dominates the wealth effect. For

economic plausibility of the SDF, however, it is sufficient to ensure that γ < 1/ψ,

which does not necessarily imply that the IES must be larger than 1. Neither is

ψ > 1 necessary to attain a negative correlation between consumption volatility and

the log price-dividend ratio.

The importance of an intertemporal elasticity of substitution larger than 1 can

be better understood when subjecting the BY calibration to a univariate variation

in the IES parameter. However, the complex nonlinear expressions involved in the

model solution preclude an analytical assessment of signs, let alone magnitudes im-

plied by a variation in ψ. A simulation exercise with T=105 can help to reveal

the resulting effects. Due to the model structure, a change in ψ leaves the macro

variables unaffected. As the most important goal of the LRR model is to match

the features of the data on the equity premium and the risk-free rate, Figure 2.4

illustrates the role of the IES in the annualized magnitudes of the equity premium,

the risk-free rate, and the volatilities of the market portfolio and the riskless asset.

Panel (a) shows that to obtain a sizeable equity premium, a large IES is required,

which is partly due to the impact of ψ on the risk-free rate, as illustrated in Panel (b).

Also, the desired low variation in the risk-free rate crucially hinges on ψ > 1 accord-

ing to Panel (d), while the value of ψ = 1.5 is shown in Panel (c) to imply a market

volatility similar to that observed in the data. This analysis shows that, given the

remainder of the calibrated parameters, an IES larger than 1 is indispensable for the

ability of the LRR model to resolve the equity premium and risk-free rate puzzle.
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Table 2.1: LRR model parameter values calibrated by Bansal and Yaron (2004)

µc µd ρ ϕe ν1 σw σ φ ϕd δ γ ψ

0.0015 0.0015 0.979 0.044 0.987 2.3e-06 0.0078 3 4.5 0.998 10 1.5

Figure 2.1: Existence of the solution for the endogenous LRR model parame-
ters
The figure displays the functions f1(z̄) and f2(z̄m) in Equations (2.23) and (2.24). Solving for the
endogenous parameters amounts to finding the roots of f1 and f2. If those functions do not both
have a root, the LRR model cannot be solved. The upper panels show a plot of f1(z̄) and f2(z̄m)
based on the LRR parameter values chosen by Bansal and Yaron (2004) for their calibration of
the LRR model (see Table 2.1). The lower panels show that a change of these parameters within a
plausible range may yield an unsolvable model: Changing the value of the risk aversion parameter
from γ = 10 to γ = 4 and the mean of dividend growth from µd = 0.0015 to µd = 0.0035, leaving
all other parameters unchanged, implies that one of the two functions does not have a root.

(a) root exists for γ = 10, µd = 0.0015 (b) root exists for γ = 10, µd = 0.0015

(c) root exists for γ = 4, µd = 0.0035 (d) no root exists for γ = 4, µd = 0.0035
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Figure 2.2: Simulated macro data series
The figure displays a set of simulated macro data series obtained from the BY calibration
using a sample size of T=103.

(a) log consumption growth gt (b) log dividend growth gd,t

(c) latent growth component xt (d) latent stochastic variance σ2
t
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Figure 2.3: Simulated financial data series
The figure displays a set of simulated financial data series obtained from the BY calibration
using a sample size of T=103.

(a) log aggregate wealth return ra,t (b) log market return rm,t

(c) log price-consumption ratio zt (d) log price-dividend ratio zm,t

(e) stochastic discount factor Mt (f) log risk-free rate rf,t
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Figure 2.4: Variation in ψ
The figure displays the variation in the key stylized facts of financial market data produced
by the BY calibration for different values of the IES. The sample moments are computed
from a simulated data set of size of T=105. Model solvability is not an issue throughout
the resulting parameter sets.

(a) Ê(Rm,t −Rf,t) (b) Ê(rf,t)

(c) σ̂(rm,t) (d) σ̂(rf,t)
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Chapter 3

A two-step GMM/SMM

estimation of the long-run risk

model

3.1 Introduction

The long-run risk model outlined in Chapter 2 resolves prominent puzzles of financial

economics by accounting for long-run consumption risk and long-run volatility risk:

shocks to growth expectations or macroeconomic uncertainty are assumed to have

long-lasting effects on the economy, thus causing the investor to demand considerable

compensation for holding risky assets. Empirical tests of the LRR approach are

complicated by various features of the model, such as latent variables and endogenous

parameters, which preclude the use of standard econometric techniques.

With this study, we show that any empirical analysis of the LRR model must

overcome theoretical and econometric caveats related to model solvability and iden-

tification. To reveal the roots of the identification issues, we implement two moment-
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based approaches suggested in the literature. We discuss the GMM approach sug-

gested by Constantinides and Ghosh (2011), which relies on an analytical model

inversion, and the SMM approach used by Hasseltoft (2012). A moment sensi-

tivity analysis helps to illustrate shortcomings of the extant moment-based LRR

model estimation strategies. We propose a two-step, generalized/simulated method

of moments estimation strategy that exploits the recursive LRR model structure

to disentangle the moment conditions associated with the macroeconomic and fi-

nancial system variables. In each step, we motivate theory-based moment matches

derived from the equilibrium conditions for the market return and risk-free rate and

the LRR model-implied time series properties of consumption and dividend growth.

With a Monte Carlo study and an empirical application, we explore the feasibility

and estimation precision of a reliable econometric analysis of the long-run risk asset

pricing model.

We argue that estimating the LRR parameters in one step by using an ad hoc

choice of first and second moment matches does not constitute a sound econometric

analysis of the LRR model. Identification problems are not obvious in the highly

nonlinear model structure, and it might go unnoticed that even sophisticated opti-

mizers converge to a local minimum on the rugged objective function surface. We

provide evidence that the identification of the deep LRR model parameters, and

thus the ability to produce reliable estimation results, hinges on carefully thought-

out moment matches that must reflect the recursive LRR model structure. We

advocate a two-step estimation approach, in which we estimate the parameters as-

sociated with the macroeconomic environment of the LRR model separately from the

representative investor’s preference parameters. The first step consists of a GMM

estimation that uses moment conditions derived from the LRR macro dynamics;

the second step is an SMM estimation that exploits the asset pricing and predictive
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relationships implied by the LRR model. We show that the precision of the macro

parameter estimates is of crucial importance for the successful estimation of the pref-

erence parameters. An exhaustive Monte Carlo study documents the performance

of our proposed two-step estimation strategy, which is then applied to empirical

data. Our findings constitute a call for econometric due diligence, reality checks,

and some degree of modesty when estimating a complex dynamic asset pricing model

like the LRR model. The available low-frequency macro time series are short, such

that the estimation precision for some model parameters will inevitably be limited,

emphasizing even more the need for informative moment matches.

One of the advantages of our theory-based identification strategy is that we can

contrast the empirical results with the theoretical implications of the LRR model,

and thereby assess their validity. We find that Andrews’ (1999) moment selection

criterion indicates the usefulness of precisely those moment matches that should be

informative from a theoretical perspective, which can be regarded as implicit support

for the LRR model. Moreover, the economically plausible and precise second-step

estimate of the subjective discount factor indicates that the LRR model can help

to resolve the interest rate puzzle. The second-step estimate of the intertemporal

elasticity of substitution (IES) is greater than 1, which corroborates the long-run

risk perspective on asset pricing. However, we also estimate a large coefficient of

relative risk aversion, which suggests that Campbell and Cochrane’s (1999) caveat

that high risk aversion may be unavoidable in the class of identical-agent models

also applies to the LRR model.

The remainder of the chapter is organized as follows: Section 3.2 details our

two-step methodology. In Section 3.3, we present the results of a Monte Carlo study

that assesses the suitability of our approach, before discussing the empirical results

in Section 3.4. We conclude in Section 3.5.
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3.2 Econometric methodology

3.2.1 Matching moments for GMM/SMM estimation of

the LRR model

The presence of two latent processes, the highly nonlinear expressions for the equi-

librium conditions for asset prices, along with the need to solve the model whenever

evaluated at structural parameter values chosen from a fragmentary admissible pa-

rameter space preclude the use of standard econometric methods to analyze the LRR

model. Singleton (2006) advocates the simulated method of moments, arguing that

it is well suited for dealing with the complexity-driving features of the LRR model.

Adopting Singleton’s (2006) notation, we define an m-dimensional observation

function g(qt; ξ), where the p-dimensional vector ξ =
(
ξM

′
, ξP

′
)′

collects the model

parameters, and where qt contains macroeconomic and financial model variables. In

the present application, the observation function can consist of powers of consump-

tion and dividend growth, market equity premium, risk-free rate, model-implied

pricing errors, and so on. Matching sample moments of the observed series g∗t ≡

g(qt; ξ0), where ξ0 denotes the true parameter vector, with population moments

yields:

GT (ξ) = ET (g∗t )− E [g(qt; ξ)] . (3.1)

We use Hansen’s (1982) notation, ET (·) ≡ 1
T

∑T
1 (·), where T denotes the sample

size. We resort to SMM if the population moments cannot be expressed analytically

as functions of ξ, yet can be simulated. Then,

GT (ξ) = ET (g∗t )−
1

T (T )

T (T )∑
s=1

g (qs; ξ) , (3.2)
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where T (T ) denotes the size of the simulated sample after discarding an initial

portion that is left out to mitigate the transient effects of the initial conditions. To

obtain qs for s = 1, . . . , T (T ), we simulate LRR model-implied data following the

blueprint outlined in Section 2.2.4. Then, GMM estimates, using Equation (3.1), or

SMM estimates, using Equation (3.2), are obtained from

ξ̂T = argmin
ξ∈Θ

GT (ξ)′W T GT (ξ) ≡ argmin
ξ∈Θ

QT (ξ), (3.3)

where W T is a symmetric and positive semi-definite distance matrix and Θ ⊂ Rp

denotes the admissible parameter space.

3.2.2 Caveats

GMM and SMM are versatile tools. The theoretical conditions for consistency and

asymptotic normality have been rigorously researched,1 the range of applications

is wide, and simulation-based moment matching facilitates an empirical analysis

when standard econometric methods fail. Yet the key question in any application is,

“Which moments should be matched?” It might seem appealing to try to estimate the

LRR model parameters by matching some moments of macro and financial system

variables ad hoc, but it is not obvious that these moment matches would support

the identification of the structural parameters. As Hall (2005) notes, failures in

identification may become apparent only when the estimation is attempted.

1 Canonical references include Hansen (1982) for GMM and Duffie and Singleton (1993) for
SMM; in addition, excellent synopses are provided by Hall (2005) and Singleton (2006). Briefly,
consistency requires that a uniform law of large numbers (ULLN) applies to ET (g(qt; ξ)), such
that it converges uniformly over Θ to E [g(qt; ξ)]. This demand ensures that QT (ξ) converges
uniformly to the limit function Q0(ξ) = [E(g∗t )− E (g(qt; ξ)]

′
W [E(g∗t )− E (g(qt; ξ)], where W

is the probability limit of W T . Intuitively, we assume that the data are not too fat-tailed to
justify the assumption that a ULLN applies. The criterion for global identification is that Q0 is
uniquely minimized (i.e., is equal to 0) at ξ0. A necessary but not sufficient condition for global

identification is that the rank of E
[
∂g(qt;ξ0)

∂ξ′

]
is equal to p (local identification criterion).
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We take heed of Hall’s warning and conduct an experiment using simulated LRR

model-implied data, and attempt to estimate the p=12 LRR parameters in ξM and

ξP . We use two sets of moment matches, adapted from studies by Constantinides

and Ghosh (2011) and Hasseltoft (2012), respectively. The latter uses ten first

and second moments of the observable macro and financial LRR model variables,

along with two auto-moments, and two moments based on an empirically motivated

prediction relationship between the log price-dividend ratio and the squared future

shocks to consumption growth (see Panel A of Table 3.1). Constantinides and Ghosh

(2011) instead use nine macro moments along with six unconditional asset pricing

moments associated with the market portfolio return, the risk-free rate, and four

managed portfolios (see Panel B of Table 3.1).

Estimation problems may arise due to a small and uninformative sample, but

their persistence in a very large sample indicates identification failure. We therefore

perform the estimations on simulated data with T=100k observations. These data

are generated from an LRR model, for which we use the parameter values of Bansal

and Yaron’s (2004) calibration (see Table 2.1) as true values. We initially use the

identity matrix for W T and T (T )=106, after dropping the first 100 values.

Previous studies hint at optimization problems with the estimation of the LRR

model, which is indicated by the use of sophisticated optimization algorithms.2

We therefore also employ an advanced optimization technique, the covariance ma-

trix adaptation evolution strategy (CMAES) developed by Hansen and Ostermeier

(2001), which is specifically designed to deal with difficult objective functions. We

start each optimization of the objective function in Equation (3.3) at three different,

but not very dissimilar initial values. The starting value vector ξs1 corresponds to

2 Hasseltoft (2012) uses simulated annealing, whereas Constantinides and Ghosh (2011) apply
the differential evolution algorithm. These algorithms promise to find the global minimum of
a rugged objective function much better than the gradient-based methods usually employed for
econometric analysis.
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the true parameter vector ξ0, which we only slightly change for ξs2 . The starting

value vector ξs3 is somewhat further away from ξ0 but still perfectly reasonable.

Panels A and B of Table 3.2 show that when started from these different initial

values, the CMAES either converges to different parameter values or cannot meet

the convergence criteria within a reasonable time (3 million function evaluations).

The same problem occurs using other optimization algorithms—inter alia simulated

annealing, genetic algorithm, and pattern search—available in Matlab’s global

optimization toolbox. An alternative distance matrix, such as an estimate of the

efficient weighting matrix, does not resolve the problem either. These results raise

doubts about whether the moment matches in Table 3.1 can identify all structural

model parameters. Recall that Bansal et al. (2007a), who use EMM, refrain from

estimating all LRR parameters and instead resort to calibrating some key model

parameters, such as the IES.

3.2.3 Moment sensitivity

The LRR model structure precludes analytic identification checks, but we can pro-

vide numerical evidence. The local identification criterion requires that the rank of

the sensitivity matrix E
[
∂g(qt;ξ0)

∂ξ′

]
must be equal to p. It is not possible to calculate

all of these population moments analytically, but they can be simulated. Using a

simulated sample size of T (T )=107 and the parameter values calibrated by Bansal

and Yaron (2004) for ξ0, we find the rank condition fulfilled for both sets of moment

conditions in Table 3.2.

Local identification is necessary (albeit not sufficient) to ensure global identifi-

cation, but the analysis of moment sensitivity is instructive beyond checking the

rank condition. It reveals which moments are useful to identify which parameter.

Intuitively, if none of the moments responds to a change of a model parameter, then
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the selected moment matches cannot be useful to identify that parameter. In ap-

plications, the moment sensitivity may not be zero but rather might be very small,

in which case the rank condition may be met, but the identifying information pro-

vided by the moment matches is weak. In contrast, if a moment responds to many

parameters, it is not clear which, if any, model parameter can be identified by it.

Table 3.3 displays the percentage change of some of the macro and financial mo-

ments in Table 3.1, along with some higher-order (cross) auto-moments, in response

to a 50% c.p. decrease of one of the LRR model parameters. The computation is

performed at the true parameter values, for which we draw on Bansal and Yaron’s

calibration.

Due to the recursive LRR model structure, the macro moments must be in-

sensitive to changes in the preference parameters. Accordingly, only the financial

moment matches can help to identify the subjective discount factor δ, the RRA

coefficient γ, and the IES ψ. Among the macro moments, only the fourth moments

of consumption and dividend growth respond to a change in the SV parameters ν1

and σw, but the sensitivity is weak. The financial moments also are insensitive to a

change in these parameters. The largest response to a 50% decrease of ν1 (σw) is a

4% (3%) decrease in the expected market excess return. These are small responses

by a moment that is very sensitive to almost every other model parameter. These

findings raise doubts whether the SV parameters can be identified by matching the

moments in Table 3.3. Estimation attempts based on the moments in Table 3.1

could not identify all LRR model parameters in one step.3

We also observe that the financial moments are quite sensitive to the preference

parameters, which only financial moments can identify. However, Table 3.3 also

3 Parameter estimation using the moments in Table 3.1 is not only hampered by the presence of
stochastic volatility, though. Repeating the estimation procedure without SV in the data generating
process (i.e. setting ν1 = 0 and σw = 0) delivers the same result. Reliable optimization is thus
infeasible, even when using sophisticated algorithms.

43



ECONOMETRIC METHODOLOGY GMM/SMM

shows that the financial moments respond strongly to changes in the macro parame-

ters (except the SV parameters ν1 and σw). When minimizing the objective function

in Equation (3.3), it is inevitable that financial moment matches interfere with the

estimation of the macro parameters. We conjecture that the stark sensitivity of

financial moments to the macro parameters may hamper their ability to identify the

preference parameters, thus causing the aforementioned estimation problems. It is

not obvious that the financial moment matches should have the additional task of

promoting the identification of the macro parameters.

In the next sections, we describe a way to achieve reliable results. The key

insights are that the moment matches must reflect the recursive structure of the

LRR model, and the LRR model characteristics must be incorporated in informative

moment matches. Our conclusion from the moment sensitivity analysis is that we

should be much more considerate in choosing which moment match to use to identify

which model parameter.

3.2.4 Disentangling moment matches

The recursive structure of the LRR model implies moment matches that involve the

variables g and gd only and that therefore only depend on ξM . We denote those

macro moment matches by GM
T (ξM). Other moment matches involve financial vari-

ables (e.g. market return, risk-free rate); by the LRR model design, they depend

on both ξM and ξP . We denote those moment matches by GP
T (ξM , ξP ). The opti-

mization problem in Equation (3.3) entails setting linear combinations of GM
T and

GP
T to 0. Using GT (ξ) =

(
GM ′

T ,GP ′

T

)′
and properly partitioning the distance ma-
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trix W T , we can write the first order conditions for the optimization problem in

Equation (3.3) as:


∂GM

T (
ˆξ
M

)
′

∂ξM
∂GP

T (
ˆξ
M

,
ˆξ
P

)
′

∂ξM

0
∂GP

T (
ˆξ
M

,
ˆξ
P

)
′

∂ξP


︸ ︷︷ ︸

∂GT (ξ̂)
′

∂ξ

×

W
M
T W 12

T

W 21
T W P

T


︸ ︷︷ ︸

W T

×

 GM
T (ξ̂

M
)

GP
T (ξ̂

M
, ξ̂

P
)


︸ ︷︷ ︸

GT (ξ̂)

=0. (3.4)

Equation (3.4) reveals how the estimation procedure intertwines the financial and

macro moment matches, in particular that the financial moment matches GP
T in-

terfere with the estimation of the macro parameters ξM . Using a distance matrix

with non-zero elements off its main diagonal generates the most complex mix of

moment matches, but macro and financial moment matches remain entangled even

when using W T = I. In this case, Equation (3.4) becomes:

∂GM
T (ξ̂

M
)
′

∂ξM
GM
T (ξ̂

M
) +

∂GP
T (ξ̂

M
, ξ̂

P
)
′

∂ξM
GP
T (ξ̂

M
, ξ̂

P
) = 0, (3.5)

∂GP
T (ξ̂

M
, ξ̂

P
)
′

∂ξP
GP
T (ξ̂

M
, ξ̂

P
) = 0. (3.6)

The analysis of moment sensitivity suggests that the entanglement of macro and

financial moment matches might be the reason for the aforementioned estimation

problems. Due to the recursive nature of the LRR model, only the financial moment

matchesGP
T can be useful to identify the preference parameters. Yet Equations (3.4)

and (3.5) show that by minimizing the GMM objective function in Equation (3.3),

the financial moment matches cannot help but interfere in the estimation of the

macro parameters.

These considerations lead us to conclude that macro and financial moment

matches should be disentangled. By disentangling, we mean that only linear com-
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binations of the macro moment matches GM
T should be set to 0 when estimating

ξM , such that the term
∂GP

′
T

∂ξM
GP
T should not be present in Equation (3.5). How-

ever, no positive semi-definite and symmetric matrix W T can accomplish this task.

Disentangling macro and financial moment matches is not possible when parameter

estimates result from a minimization of the GMM/SMM objective function in Equa-

tion (3.3). As a consequence, the restrictions implied by this estimation procedure

must be lifted.

We formalize these considerations by conceiving of the estimation procedure as

a generic GMM problem. By generic GMM, we mean that the parameter esti-

mates are obtained by setting linear combinations of the moment matches to 0, i.e.

aT (ξ)GT (ξ)
!

= 0, but not necessarily aT (ξ) = ∂GT (ξ)
′

∂ξ
W T , as in Equation (3.4). The

desired disentangling of moment matches can be achieved by estimating ξM and ξP

by solving:


∂GM

T (ξM )
′

∂ξM
WM

T 0

0
∂GP

T (ξM ,ξP )
′

∂ξP
W P

T


︸ ︷︷ ︸

aT (ξ)

×

 GM
T (ξM)

GP
T (ξM , ξP )

 !
= 0, (3.7)

where WM
T and W P

T are symmetric and positive semi-definite matrices. The result-

ing estimates ξ̂
M

thus obey:

∂GM
T (ξ̂

M
)
′

∂ξM
WM

T GM
T (ξ̂

M
) = 0, (3.8)

which corresponds to the first order conditions of the problem:

ξ̂
M

= argmin
ξM∈ΘM

GM
T (ξM)′WM

T GM
T (ξM), (3.9)
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where ΘM denotes the admissible parameter space of the macro parameters. Equa-

tion (3.7) also implies that:

∂GP
T (ξ̂

M
, ξ̂

P
)
′

∂ξP
W P

T G
P
T (ξ̂

M
, ξ̂

P
) = 0, (3.10)

which corresponds to the first order conditions of the problem:

ξ̂
P

= argmin
ξP∈ΘP

GP
T (ξ̂

M
, ξP )′W P

T G
P
T (ξ̂

M
, ξP ), (3.11)

where ΘP denotes the admissible parameter space for ξP .

LRR parameter estimates that are based on disentangled macro and financial

moment matches can thus be obtained by a two-step estimation procedure. Because

the procedure is equivalent to the generic GMM problem in Equation (3.7), asymp-

totic inference on GT (ξ̂) and ξ̂ applies (cf. Hansen, 1982, Theorem 3.1 and Lemma

4.1). Alternatively, we can exploit the parametric nature of the LRR model to obtain

inference through a parametric bootstrap simulation. We employ a simulation-based

estimation method, so the necessary ingredients are readily available. We explain

the bootstrap procedure in detail in Section 3.4.

3.2.5 Macro moment matches: motivation

The consequence of the idea of disentangling macro and financial moments is that

the estimation of the macro parameters must rely exclusively on moment matches

that involve the two observable time series, consumption growth g and dividend

growth gd. The upside, besides providing stability, is that the moments of these

variables can be represented analytically as a function of ξM , which allows for the

use of GMM instead of simulation-based estimation methods. In particular, we can
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write the five moment matches that involve the first two moments and the cross

moment of g and gd as

GM1
T (ξM∗) =



ET (gt)−E(gt; ξ
M∗ )

ET (gd,t)−E(gd,t; ξ
M∗ )

ET (g2t )−E(g2t ; ξM∗ )

ET (g2d,t)−E(g2d,t; ξ
M∗ )

ET (gd,t·gt)−E(gd,t·gt; ξM∗ )


=



ET (gt)−µc

ET (gd,t)−µd

ET (g2t )−µ2c−
ϕ2eσ

2

1−ρ2
−σ2

ET (g2d,t)−µ
2
d−φ

2 ϕ
2
eσ

2

1−ρ2
−ϕ2

dσ
2

ET (gd,t·gt)−µcµd−φ
ϕ2eσ

2

1−ρ2


, (3.12)

where ξM∗ = (µc, µd, ρ, σ, ϕe, φ, ϕd)
′. Moreover, we can use the following moment

matches that involve auto-moments and cross auto-moments,

GM2
T (ξM∗) =



ET−1(gt+1·gt)−E(gt+1·gt; ξM∗ )

...

ET−L1
(gt+L1

·gt)−E(gt+L1
·gt; ξM∗ )

ET−1(gd,t+1·gd,t)−E(gd,t+1·gd,t; ξM∗ )

...

ET−L2
(gd,t+L2

·gd,t)−E(gd,t+L2
·gd,t; ξM∗ )

ET−1(gd,t+1·gt)−E(gd,t+1·gt; ξM∗ )

...

ET−L3
(gd,t+L3

·gt)−E(gd,t+L3
·gt; ξM∗ )



=



ET−1(gt+1·gt)−µ2c−ρ
ϕ2eσ

2

1−ρ2

...
ET−L1

(gt+L1
·gt)−µ2c−ρL1

ϕ2eσ
2

1−ρ2

ET−1(gd,t+1·gd,t)−µ2d−φ
2ρ
ϕ2eσ

2

1−ρ2

...
ET−L2

(gd,t+L2
·gd,t)−µ2d−φ

2ρL2
ϕ2eσ

2

1−ρ2

ET−1(gd,t+1·gt)−µcµd−φρ
ϕ2eσ

2

1−ρ2

...
ET−L3

(gd,t+L3
·gt)−µcµd−φρL3

ϕ2eσ
2

1−ρ2



,

(3.13)

where L1, L2, and L3 denote the maximum lag orders for the respective (cross)

auto-moments.

The moments in Equations (3.12) and (3.13) do not depend on the SV parameters

ν1 and σw and thus cannot be used to identify those parameters. However, this fact

also implies that the estimation of the macro parameters in ξM∗ can be performed
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without having to account for SV. Moment matches that depend on ν1 and σw

instead must involve fourth moments of consumption and dividend growth,

GM3
T (ξM) =

 ET (g4
t )− E

(
g4
t ; ξ

M
)

ET (g4
d,t)− E

(
g4
d,t; ξ

M
)
 . (3.14)

The detailed expressions for the fourth moments of g and gd, provided in Equa-

tions (3.27) and (3.28) in Appendix 3.A, show that the moments in Equation (3.14)

depend on all the macro parameters. Accordingly, the LRR model features another

layer of recursiveness in terms of moments. In the spirit of disentangling moments,

it would be possible to estimate the parameters in ξM∗ upfront—using the moment

matches in Equations (3.12) and (3.13)—and then focus on estimating ν1 and σw,

by matching exactly the moments in Equation (3.14).

3.2.6 Macro moment matches: sensitivity analysis

Are the moment matches in Equations (3.12) and (3.13) informative for the identifi-

cation of the macro parameters in ξM∗? The analysis of moment sensitivity in Table

3.3 provides some guidance for answering this question. First, it is obvious that

matching the first moments of consumption and dividend growth helps to identify

µc and µd. The conspicuous sensitivity of the second moment of consumption growth

to the unconditional volatility σ (and little else) indicates that the corresponding

moment match will be helpful to identify σ. Moreover, the second moment of divi-

dend growth is very responsive to ϕd and also sensitive to σ, which is arguably well

identified. Therefore, the moment match invoking g2
d should ensure the identification

of ϕd.
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The moment sensitivity analysis indicates that the identification of the remaining

three parameters, ρ, ϕe, and φ is more intricate, because both the cross moment of

g and gd and their (cross) auto-moments respond very strongly to at least two of

these parameters. The three parameters are closely linked to the latent process xt,

so their identification is challenging. Consider first the autoregressive parameter ρ,

which induces small, highly persistent serial correlations in both consumption and

dividend growth (see Figure 3.1 for an illustration). Intuitively, the identification of

ρ should be facilitated by the auto-moments of consumption and dividend growth,

which constitute informative moment matches over long lags.

Table 3.3 shows that the auto-moments of consumption and dividend growth

are quite responsive to ρ. We also observe that the auto-moment sensitivity to-

ward ρ depends on the lag, which in turn should allow to identify this parameter.

Furthermore, it requires lags of a relatively high order before the sensitivity of the

auto-moments of consumption growth toward ρ changes notably. The sensitivity

of the first and second auto-moments is virtually the same, which corroborates the

notion that the information to identify ρ must come from moment matches that

involve higher-order auto-moments.

The identification of ϕe and φ is supported by the fact that the sensitivity pat-

terns of the (cross) auto-moments to these parameters are somewhat dissimilar:

First, the auto-moments of consumption growth are unrelated to φ. Second, the

sensitivities towards ρ, ϕe, and φ of the auto-moments of dividend growth on the

one hand and the cross auto-moments on the other hand differ from one another.

Ultimately, these diverging responses contribute to the identification of ϕe and φ.
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3.2.7 Financial moment matches: motivation

The observable financial variables in the LRR model are the market return Rm, the

risk-free rate Rf , and the log price-dividend ratio zm. These variables represent

candidates for financial moment matches. To motivate the first moment match, we

use Equation (2.6) to price the risk-free rate, which yields

Et (Mt+1) =
1

Rf,t+1

. (3.15)

Applying the law of total expectation (LTE) leads to the unconditional moment

condition

E (Mt) = µM = E
(

1

Rf,t

)
. (3.16)

Because E(Mt) cannot be expressed analytically as a function of the parameters, we

match the mean of the simulated SDF with the sample mean of the inverse gross

risk-free rate, that is:

GP1
T (ξM , ξP ) =

 ET
[

1
Rf,t

]
− µM

µM − 1
T (T )

∑T (T )
s=1 Ms(ξ

M , ξP )

 . (3.17)

Another moment match results from pricing the market excess return (Rm −

Rf ) using Equation (2.6), applying the LTE, and rearranging terms to obtain the

following moment condition:

E (Rm,t −Rf,t) = −E [(Mt − µM) (Rm,t −Rf,t)]

µM
. (3.18)
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Thus, we can use the following match of sample and simulated moments:

GP2
T (ξM , ξP ) = ET (Rm,t −Rf,t) (3.19)

+

1
T (T )

∑T (T )
s=1

[
Rm,s(ξ

M , ξP )−Rf,s(ξ
M , ξP )

] [
Ms(ξ

M , ξP )− µM
]

µM
.

For a third moment match, we consider the unconditional Sharpe ratio of the

market portfolio, which is a key statistic for the risk-return trade-off implied by

the LRR model. The means of the market excess return and the risk-free rate are

implicitly accounted for in Equations (3.17) and (3.19), so the remaining moment

to be matched is the expected value of the squared market excess return:

GP3
T (ξM , ξP ) = ET (Rm,t −Rf,t)

2 (3.20)

− 1

T (T )

T (T )∑
s=1

(
Rm,s(ξ

M , ξP )−Rf,s(ξ
M , ξP )

)2
.

Our final financial moment matches are derived from a prediction relation pointed

out by Campbell and Shiller (1988), who argue that the linear approximations in

Equations (2.8) and (2.9) imply that the log price-dividend ratio predicts future

discount rates.4 We use this predictive relationship to match the slope parameter of

4 A simulation experiment reveals that the predictive power of zm,t for Rf,t+1 is quite strong:
The R2 of a one-step predictive regression is 95%. The simulation is based on the parameter values
given in Table 2.1 and a simulated sample size of 106 observations.
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a regression of the risk-free rate on past values of the log price-dividend ratio, which

also entails matching the first and second moments of zm,t:

GP4
T (ξM , ξP ) =



ET−1[(Rf,t+1−ET−1Rf,t+1)zm,t]
ET (zm,t−ET zm,t)

2

−
1

T (T )−1

∑T (T )−1
s=1 [zm,s(ξM,ξP )−µzm ]Rf,s+1(ξ

M,ξP )

µ′zm−µ
2
zm

ET (zm,t)−µzm

ET (z2m,t)−µ′zm

µzm− 1
T (T )

∑T (T )
s=1 zm,s(ξ

M ,ξP )

µ′zm−
1
T (T )

∑T (T )
s=1 z2m,s(ξ

M ,ξP )


. (3.21)

The stacked financial moment matches GP
T =

(
GP1
T

′
,GP2

T ,G
P3
T ,G

P4
T

′
)′

are then used

for the SMM objective function in Equation (3.11). As pointed out by Parker and

Julliard (2005), the auxiliary parameters µM , µzm , and µ′zm in Equations (3.17) and

(3.21) must be exactly matched.

3.2.8 Financial moment matches: sensitivity analysis

The moment sensitivities in Table 3.4 indicate which of the financial moment matches

provides information about which preference parameter. All financial moments re-

spond strongly to a 10% change in the subjective discount factor δ. For both the

RRA coefficient γ and the IES ψ, one of the moments responds sizeably to a spe-

cific parameter change, whereas the sensitivity of the other moments is low. Most

information about γ is contained in the LRR model’s pricing implication for the

market excess return, which is reflected in the 10% decrease in the simulated mo-

ment in Equation (3.19) in response to a 10% decrease in γ. The other moments

are not particularly sensitive to γ. The identification of ψ mainly results from the

slope parameter of the predictive regression of Rf,t+1 on zm,t. The corresponding

simulated moment responds to a 10% decrease in ψ with a 14% increase; the other
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moments change by 4% or less. The prediction moment is not sensitive to a change

in γ, which thus helps to disentangle risk aversion and the intertemporal elasticity

of substitution.

3.2.9 Treatment of stochastic volatility

The estimation of stochastic volatility models is a topic of substantial econometric

discussion. The methodological challenges are aggravated in the present context,

because SV is just one ingredient of a complex dynamic asset pricing model. The

analysis in Section 3.2.3 shows that there is no sensitivity of the macro moments

in Table 3.1 to the SV parameters ν1 and σw, and we have seen that the analytical

moment matches presented in Section 3.2.5 can be used to identify the unconditional

variance σ2 but not ν1 or σw. Moreover, the financial moment matches in Table 3.3

are also unresponsive to the SV parameters, and the theory-based moment matches

presented in the previous section cannot be expected to do a better job: They are

based on unconditional moments, whereas stochastic volatility pertains to changing

conditional variances.

As mentioned previously, we could consider using the fourth moments of dividend

and consumption growth to identify ν1 and σw. However, the moment sensitivity

is too weak to claim that a reliable estimation would be possible based on fourth

moment matches. We draw this conclusion from a simulation experiment, in which

we attempt to estimate the SV parameters ν1 and σw, assuming the true values

of all other macro parameters are known, using a very large simulated sample,

and Bansal and Yaron’s (2004) calibrated parameters. The estimation procedure,

which amounts to exactly matching the fourth moments of g and gd, yields wildly

fluctuating estimates of ν1 and σw across different simulated samples. This result
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indicates that the fourth moments are not sufficiently informative to identify the SV

parameters.5

Instead of looking for more sophisticated ways to estimate the SV parameters,

we propose a simplification. If the primary goal is not the estimation of the SV

parameters and the evolution of the conditional risk premium, but rather the esti-

mation of the preference parameters and determining whether plausible estimates

can explain the unconditional equity premium, an alternative estimation strategy

is to concentrate out the SV parameters. By concentrating out, we mean that in

a model simulation in the course of the SMM estimation, we replace the stochastic

volatility σ2
t with its unconditional expected value, E(σ2

t ) = σ2. The estimation

of the macro parameters ξM∗ is thus performed by using GM
T =

(
GM1
T

′
,GM2

T

′
)′

in

the GMM objective function in Equation (3.9), which yields an estimate of the un-

conditional stochastic volatility σ. We conjecture that the unconditional simulated

moments of the financial variables are not greatly affected when σ2
t is replaced by σ2.

Concentrating out SV may reduce efficiency, yet it also could enhance robustness,

because the SV parameters may be poorly identified by weak moment conditions

and/or a small sample size.

3.3 Monte Carlo study

3.3.1 Design

We test the two-step estimation approach with an extensive Monte Carlo study. For

that purpose, we generate LRR model-implied series of g, gd, rm, rf , and zm using

5 Relaxing the rule to disentangle moment matches, we also used financial moment matches,
such as the auto-moments of the squared market return or the fourth moments of returns, to
obtain estimates of ν1 and σw. However, the results did not improve. As indicated by the moment
sensitivity analysis in Table 3.3, the financial moments are not very sensitive to the SV parameters
either.
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as true LRR parameter values those calibrated by BY. We consider lengths of the

simulated series of T=1k, 5k, and 100k. The T=100k case provides a reality check

whether the two-step strategy works and that the moment conditions can identify

the structural model parameters. Assuming a monthly sampling frequency, T=1k

represents a large but not unreasonable sample size for a real-world application.

Using T=5k illustrates the behavior of the estimates for a growing sample size.

We restrict the estimates ϕ̂e, φ̂, and ϕ̂d to positive values, whereas ρ̂, µ̂c, and

µ̂d must take values between 0 and 1. For that purpose, we use exponential and

logit transforms of the unrestricted auxiliary parameters. To attain a high level of

accuracy of the simulated moments, we use T (T ) = 106. We use the Nelder-Mead

simplex (NM) algorithm to minimize the objective functions in each step. The NM

method is less sophisticated than the optimizers used in Section 3.2.2 and previous

literature. However, as we shall see, the two-step estimation procedure does not

require an elaborate optimization algorithm.

To assess the estimation precision, we generate 400 replications for each sam-

ple size. In Section 2 we pointed out the fragility of the LRR model, which may

become unsolvable when certain parameter combinations are probed during SMM

estimation. A practical solution would be a penalty term that moves the optimizer

away from unfavorable parameter combinations. To economize computation time in

the simulation study, we chose not to use a penalty term but instead to drop the

replications for which the optimizer terminated with an unsolvable model.

In Section 3.2.2 we emphasized the hazard of reporting overly optimistic esti-

mates that result from a false convergence to a point near the plausibly chosen

starting values. Prior to engaging in a large-scale Monte Carlo study, we therefore

carefully pre-tested the two-step estimation procedure and started the optimizations

from different parameter values, using a variety of test data to ensure that the NM
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algorithm converges to the same values. Panel C in Table 3.2 shows the results

obtained using a particular set of moment matches specified in detail below. Using

the same data as for the failed estimation attempts in Panels A and B, the two-step

procedure yields identical estimates, irrespective of the initial values chosen.

3.3.2 Monte Carlo results: first-step estimates

We focus on four different sets of moment matches to estimate the seven macro pa-

rameters in ξM∗ , as described in Section 3.2.5. Table 3.5 shows that the number of

moments m used for the GMM estimation ranges from exact identification (m=7) to

ample over-identification (m=185).6 All four setups include the five moment matches

of Equation (3.12), and then add increasing numbers of auto-moments selected from

Equation (3.13). The maximum lag order is L1=L2=L3=60 (m=185), meaning that

we use auto-moments up to five years, assuming a monthly frequency. The interme-

diate cases use L1=L2=L3=10 (m=35) and L1=L2=L3=36 (m=113). We obtain the

first-stage GMM macro estimates by using WM
T = Im in Equation (3.9). To check

whether an asymptotically efficient weighting scheme is beneficial in smaller samples,

we also compute second-stage GMM estimates, based on the distance matrix

WM
T =

[
VarT

(
gM∗t − E[gM(qt; ξ̂

M∗(1)
)]
)]−1

, (3.22)

where ξ̂
M∗(1)

is the first-stage GMM estimate, gM is the observation function pertain-

ing to the respective macro moment match, and VarT (·) denotes a sample variance-

covariance matrix. Asymptotically efficient GMM estimation should use a distance

matrixW T = Ŝ
−1
−→
p
S−1 in Equation (3.3), where S = limT→∞Var(T−1/2GT (ξ0)).

We experimented with alternative estimators of S that account for serial correla-

6 To produce the results in Panel C of Table 3.2, we use the m=185 variant for the first-step
estimation and the theory-based financial moment matches GP

T for the second-step estimation.
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tion in gM∗t , but the estimate in Equation (3.22) delivered the best results in finite

samples.

We intentionally choose starting values located at some distance from the true

parameters.7 Poor initial values make the problem harder for the optimization

algorithm, and the Monte Carlo study more time-consuming, but they also prevent

the threat of overly optimistic results. In light of the aforementioned results, we

seek to avoid this fallacy at all costs. Any replications for which the optimization

algorithm failed or that produced implausible estimates are excluded from Table 3.6

and Figure 3.2.8 The number of successful estimations, which we report in Panel H of

Table 3.6, is itself an interesting statistic, because it indicates how well the respective

moment matches define the optimization problem. Table 3.6 contains the means and

standard deviations of the macro parameter estimates computed across successful

replications, and Figure 3.2 illustrates the results.

The T=100k results show that the GMM estimation strategy works, and that

the macro moment matches can identify the macro parameters in ξM∗ . The bias in

the estimates vanishes, and the standard deviation shrinks; estimation failure is a

rare event. There is a notable exception though: The bias and standard deviation

of ρ̂ and ϕ̂e remain considerably large for m=7; the bias of φ̂ is small, but the stan-

dard deviation is not. The moment sensitivity analysis in Section 3.2.6 already has

suggested that these three parameters, associated with the latent growth compo-

nent xt, may prove difficult to estimate. Note that the four sets of moment matches

only differ with respect to the number of auto-moments. The m=7 variant uses

7 The starting values are µc=0.018, µd=0.018, ρ=0.881, σ=0.082,ϕe=0.003, φ=7.389, and
ϕd=7.389.

8 An estimation result is considered implausible if one of the parameter values to which the
NM algorithm converges differs from the true parameter by a factor of 10 or more. In an empirical
application, a treatment of problematic data could use different starting values and optimization
algorithms, and tune the algorithm’s parameters. However, such a clinical approach is impractical
in a large-scale simulation study.
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just the first two auto-moments of consumption growth, and the simulation results

indicate that this is not enough: auto-moment matches that involve higher lags of

auto-moments are required to identify ρ, ϕe, and φ.

The T=5k results corroborate the benefits of exploiting the information con-

tained in higher-order auto-moments, but now sampling error takes effect. As might

be expected from the 100k results, the parameters associated with xt prove hard to

estimate, but the results can be improved using higher auto-moment matches. The

improvement is most striking for the autoregressive parameter ρ. A comparison of

the m=7 and m=35 results on the one hand, and the m=113 and m=185 results

on the other hand, shows that estimation precision increases with the use of higher

auto-moments. Figure 3.2 also illustrates the substantial advancement from m=7

and m=35 to m=113, whereas a further enhancement due to the use of m=185

is more marginal. Asymptotically efficient weighting is particularly useful to hone

the estimation results for ϕe, though only in combination with higher auto-moment

matches. Generally, using an asymptotically efficient distance matrix cannot replace

the use of higher auto-moments.

The estimation precision is good for µc, σ, and ϕd, confirming the conjecture

that the moment matches in Equation (3.12) should identify these parameters quite

well. The mean of dividend growth µd proves hard to estimate, because the dividend

growth series is volatile. Using auto-moments is no remedy here.

The T=1k results confirm these conclusions, although sampling error becomes

more of an issue, as does the increasing number of failed estimations. Estimation

precision is reduced in particular for the critical parameters ρ, ϕe, and φ. However,

the usage of higher auto-moments again can mitigate these problems. Estimation

precision improves when moving from m=7 to m=113, and the number of failed

replications decreases. A comparison of m=35 with m=113 shows a substantial
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improvement. The effect of increasing the number of auto-moments further, e.g.

from m=113 to m=185, is less pronounced.

The T=1k results indicate that the favorably small asymptotic standard errors

reported in the empirical estimations of LRR models should be taken with a grain

of salt. These applications use much smaller sample sizes. The simulation results

show that estimation precision with the currently available sample size must be

limited. Using the information contained in higher auto-moments is beneficial, but

time is a constraining factor. The available consumption and dividend time series

are relatively short, creating the familiar trade-off between efficiency (allowing for

a high lag order) and robustness. The improvement of estimation quality from

m=35 (max. lag: <1 year) to m=113 (max. lag: 3 years) is considerable, but the

incremental benefits of using m=185 (max. lag: 5 years) may be offset by picking

up noise from the data.

3.3.3 Monte Carlo results: second-step estimates

Second-step SMM estimation of the preference parameters δ, γ, and ψ is based on

the six theory-based financial moment matches in GP1
T , GP2

T , GP3
T , and GP4

T , along

with W P
T = I in the SMM objective function in Equation (3.11). For comparison,

we also use the six ad hoc financial moment matches in Panel A-2 of Table 3.1. The

input from the first step is the vector of macro parameter estimates resulting from

m=185. In each replication, we perform an initial grid search over reasonable ranges

of the three preference parameters, and use the parameter combination that yields

the smallest SMM objective function as starting values for the optimization.

We also investigate the hypothetical case in which the true macro parameters

are available, which enables us to assess the quality of the financial moment matches

independently of the effect of the potentially imprecise first-step macro estimates.
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For that purpose, we assume either that all macro parameters in ξM are known or,

alternatively, that only the subset ξM∗ is known. In the first case, we can compute

σ2
t when simulating the financial moments in the second step. If we know only

ξM∗ , we instead use the unconditional mean σ2 to simulate moments. A comparison

of the resulting estimates then allows us to gauge the efficiency loss implied by

concentrating out SV.

Panel A of Table 3.7 displays the means and standard deviations of the SMM

estimates for the preference parameters that use the true macro parameters for the

simulation of moments. The first column reports the results based on the ad hoc

financial moment matches, and the second contains the results using the theory-

based moment matches—both are obtained by concentrating out SV. The third

column of Panel A shows the results for theory-based moment matches if we were to

assume that all macro parameters were known. Figure 3.3 illustrates and compares

the estimation precision using kernel density estimates.

The estimation quality delivered by SMM is very good. The bias and standard

deviation of the preference parameter estimates are small; the density estimates

center around the true parameters. The subjective discount factor δ can be esti-

mated most precisely, but the estimates of the relative risk aversion parameter γ are

also quite accurate. The estimation quality delivered by the theory-based moment

matches outperforms the ad hoc moment matches, most prominently for the esti-

mate of the IES coefficient, ψ̂. The theory-based moment matches are thus particu-

larly useful for disentangling risk aversion and intertemporal substitution elasticity.

Comparing the second and third columns of Panel A in Table 3.7, we find that the

estimation quality of the preference parameters is barely affected by concentrating

out SV.
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Panel B of Table 3.7 in turn displays the means and standard deviations of the

SMM preference parameter estimates that use the first-stage GMM macro param-

eter estimates for the simulation of the financial moments. We observe that the

theory-based moments again outperform the ad hoc moment matches. Moreover,

the estimation precision for the subjective discount factor is not greatly impaired;

the parameter standard deviations and bias remain small for T=1k too. Estimating

the relative risk aversion γ and the IES ψ based on the estimated macro parameters

poses a greater challenge. Compared with the estimates that use the true macro

parameters, bias and standard deviation increase considerably. The kernel densities

in Figure 3.4 retain their modes at the true values, but there are probability masses

allocated in the right tails, which indicates that some large estimates of γ and ψ

are responsible for the increase in the standard deviation and bias. These results

emphasize the importance of using precise macro parameter estimates for the SMM

estimation of the preference parameters.

To improve the quality of the first-step input, we consider two strategies. First,

we use the second-stage instead of first-stage GMM macro estimates. Second, we

raise the bar for the quality of the first-step estimates and discard those that do not

fulfill these requirements. We summarize the effects of both strategies in Table 3.8

and Figure 3.4.

A comparison of Panel A of Table 3.8 with Panel B of Table 3.7 shows the benefits

of using the second-stage GMM macro estimates. Estimation precision improves

particularly for T=1k. The kernel plots in Figure 3.4 show that the likelihood

of severe overestimation of γ and ψ also decreases. Note, however, that the major

improvement of the macro parameter estimates results from using a sufficient number

of auto-moment matches, rather than from applying an efficient weighting scheme.
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Using an estimate of the optimal weighting matrix thus cannot cannot replace a

careful choice of moment matches.

Panel B of Table 3.8 and Figure 3.4 illustrate the effect of raising the bar for

the quality of first-step macro estimates before entering the second estimation step.

Raising the bar means that we discard a replication if one of the macro parameter

estimates is more than twice its true value. As a consequence, the quality of the

second-step preference parameter estimates improves further. Figure 3.4 shows that

the likelihood of outlier estimates diminishes and the kernel densities center more

closely around the true parameters. Of course, this procedure is only applicable in

a simulation experiment. An empirical application demands a judgment call, based

on the quality of the first-step macro estimates: If the macro parameter estimates

are implausible or too imprecise, then the researcher should refrain from moving on

to the second estimation step.

3.4 Empirical application

3.4.1 Data

We use the data collected by Beeler and Campbell (2012) to conduct an empirical

application of the two-step estimation strategy. Their data contain time series of U.S.

consumption growth, the return of a market portfolio proxy with the corresponding

P/D ratio and dividend growth, as well as a risk-free rate proxy. The data comprise

T=247 observations at a quarterly frequency, spanning the time period 1947Q2–

2008Q4. Figure 3.5 displays and describes the data.

Two issues should be taken into account when attempting to estimate the LRR

model on these data. First, the calibrated LRR model parameters in our previous

analyses correspond to a monthly decision frequency. However, empirical analy-
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sis often must rely on data sampled at a quarterly (or lower) frequency. Second,

dividend payments occur irregularly in time. The quarterly dividend growth series

depicted in Panel (b) of Figure 3.5 is therefore quite erratic. It exhibits a strong,

negative first-order autocorrelation that is not allowed for in Equation (2.3). Divi-

dend growth is less volatile at an annual frequency, but in that case the number of

observations is quite small. We therefore perform our analysis using the quarterly

Beeler and Campbell (2012) data, and we follow Hasseltoft (2012) in taking the

average of the current period’s log dividend growth and that of the previous three

quarters to obtain the smoothed dividend growth series in Panel (c) of Figure 3.5.

3.4.2 First-step estimation results

In Section 3.3.2 we found that the use of higher auto-moment matches is important

to ensure good first-step macro parameter estimates. This conclusion is based on

simulated data, but if the LRR model is a valid description of real-world data gen-

erating processes, we should expect that it holds true for the empirical data too. To

investigate this question, we rely on the GMM Bayes-Schwarz information criterion

(GMM-BIC) introduced by Andrews (1999):

GMM-BIC = JT − (m− p) lnT. (3.23)

The GMM-BIC is based on the J-statistic, which for the first-step estimation of the

macro parameters reads

JT = T GT (ξ̂
M∗

)
[
Âvar(GT (ξ̂

M∗
))
]+

GT (ξ̂
M∗

), (3.24)

where + denotes the Moore-Penrose inverse. The use of more moments increases

JT , because matching the sample moments with theoretical moments becomes more
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difficult. This increase is counterbalanced by subtracting a term whose value rises

with the sample size and the degree of overidentification. When choosing between

alternative sets of moment matches, the one that yields the smallest GMM-BIC is

preferable.

In Panel A of Table 3.9 we report the first-step macro parameter estimates that

result from using various sets of moment matches for GMM. The entries in the table

are sorted in ascending order of GMM-BIC values. All variants use the five first and

second moment matches in Equation (3.12), combined with the (cross) auto-moment

matches in Equation (3.13) for various maximum lag lengths L1, L2, and L3. The

GMM-BIC points to L1=L2=L3=12, implying that auto-moment matches for up to

3 years are informative, in implicit support of the LRR model. The Monte Carlo

results thus emphasize the necessity to exploit higher-order auto-moment matches to

identify parameters that pertain to the latent component xt; the GMM-BIC prompts

us to do precisely that.

For the preferred set of moment matches, we also report the second-stage GMM

estimates and the standard errors based on asymptotic GMM inference, as well as

the bootstrap standard errors.9 The parametric bootstrap simulation consists of

generating LRR model-implied data, with the point estimates as true parameter

values. The simulated samples contain the same number of observations as the

empirical data. The GMM estimation then can be performed on the simulated

series, and the sample drawing and estimation is repeated 250 times. Bootstrap

standard errors result from computing the standard deviation across the successful

bootstrap replications.10

9 Asymptotic standard errors are computed assuming no serial correlation of the GMM residuals,
g∗t − E [g(qt; ξ0)].

10 Applying the same criteria as in the Monte Carlo study, replications in which the optimization
fails are discarded.
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The point estimates for the moment matches preferred by the GMM-BIC are

plausible (cf. Panel A of Table 3.9). The bootstrap standard errors for some param-

eters are close to the asymptotic standard errors, whereas for others, they are larger.

Therefore, the finite sample approximation applied to asymptotic theory may pro-

duce somewhat overoptimistic results. The estimation precision varies across macro

parameters, similar to the way it does for the simulated data. Moreover, second-

stage GMM improves the estimation precision also in a small sample. The findings

using simulated LRR model data thus arise as well when we use empirical data, a

result that lends support to the LRR paradigm.

3.4.3 Second-step estimation results

We use the second-stage GMM parameter estimates of the GMM-BIC-preferred

specification to estimate the preference parameters δ, γ, and ψ in the second (SMM)

step. The SMM estimation relies on six theory-based moment matches, as motivated

in Section 3.2.7.

It turns out that the minimization of the SMM objective function using empirical

data is more challenging than the benign first-step GMM problem. In the Monte

Carlo study, the known true parameter values provided a reference point for choosing

starting values for the optimization, as well as a gauge of the plausibility of the

estimates. The empirical analysis has no such anchor. We therefore employ a

computer-intensive procedure to find the minimum of the SMM objective function.

The minimization starts from a grid of 100 different parameter combinations, and

then selects the parameters that pertain to the smallest of the 100 minima.11

11 Numerical issues, and model solvability in particular, cannot be expected to be mitigated
when using empirical instead of simulated data, especially when the sample size is small. However,
the numerical problems discussed here should not be confounded with the identification problem
investigated in Section 3.2.2. Estimation failure on a large sample of LRR model-generated data
indicates identification problems, which can be resolved by using well-thought-out moment matches,
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The optimization algorithms that we employ (NM and CMAES) converge from

many different initial values to the same overall minimum, but not from all 100

grid points. We therefore caution against taking the “global optimizer” qualifier,

as attributed to algorithms like CMAES and simulated annealing, literally. The

optimization-from-grid strategy increases the reliability of the reported estimates,

but it has a price. With limited computer resources, researchers would likely have to

wait a considerable amount of time until they could obtain the final estimates. The

benefit though is that they could be more confident that they have indeed found the

overall minimum of the SMM objective function.

Standard errors for the preference parameter estimates result from extending

the previously described bootstrap approach. To that end, we simulate LRR model-

implied macro and financial series using the first- and second-step parameter esti-

mates. The SMM estimation then can be performed on the simulated data, and the

simulation/estimation steps are repeated 250 times. Standard errors are obtained by

computing the standard deviation across the bootstrap estimates. Although com-

putationally burdensome, we again recommend performing the optimization in each

bootstrap replication from a grid of initial values, to prevent spurious convergence

that would distort the bootstrap standard errors. The bootstrap simulation can rely

on “pseudo-true” parameters—that is, the empirical estimates—to help reduce the

number of grid points.

Panel B of Table 3.9 reports the SMM preference parameter point estimates

and the bootstrap standard errors. The estimates of δ, ψ, and γ are, from an

economic point of view, arguably the most interesting. There is an ongoing debate

about whether the large U.S. market equity premium and small T-bill rate can be

reconciled with reasonable investor time and risk preferences. Generating model-

as shown in the Monte Carlo study. In the empirical application, in contrast, we deal with numerical
problems that occur due the small sample size.
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implied data assuming plausible parameter values and comparing selected simulated

and sample moments, i.e. calibration, is one way to confront the model with empirical

facts. Econometric analysis instead seeks to test empirically and potentially refute

a model, instead of seeking confirmatory evidence. Moreover, it gives an idea about

how informative the data are, that is, which range of parameter values is compatible

with the data.

When interpreting the second-step estimation results, we find it instructive to

contrast them with those reported by Yogo (2006), who also relies on recursive

preferences in a consumption-based asset pricing framework. Whereas the LRR

model focuses on the long-run properties of aggregate consumption growth, Yogo’s

(2006) idea is to disentangle durable and non-durable consumption.

Assuming expected utility maximization and a power utility function often re-

quires an implausible, negative rate of time preference (δ>1) to explain both the

small average T-bill rate and the large market equity premium simultaneously. In

contrast, the estimate of the subjective discount factor reported in Panel B of Ta-

ble 3.9, δ̂ = 0.985, is perfectly reasonable and also quite precise (s.e.(δ̂)=0.0017).

Yogo (2006), who also reports estimates of δ smaller than 1, interprets this result

as evidence that the recursive utility specification, which is an integral part of the

LRR framework, helps resolve the risk-free rate puzzle.

Bansal and Yaron (2004) emphasize that the ability of the LRR model to resolve

the equity premium puzzle hinges on an IES that is greater than 1. Only then does

an intertemporal substitution effect dominate the income effect, and the LRR story

unfolds. The point estimate reported in Panel B of Table 3.9, ψ̂=1.11, is therefore

in accord with the LRR paradigm. In contrast, Yogo (2006) reports very small IES

estimates, such as ψ̂ between 0.023 and 0.024, and s.e.(ψ̂) of 0.002–0.009. It should

be noted though that the range of the IES values supported by the data also includes
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values of ψ that are less than 1 (s.e.(ψ̂)=0.88). However, we already knew from the

Monte Carlo study that the estimation precision must be limited in a small sample.

The estimate of the RRA coefficient reported in Panel B of Table 3.9 is large

(γ̂ = 218.5) and comparable, in terms of size and precision, to the estimates reported

by Yogo (2006).12 Previous attempts at an econometric estimation of the LRR model

have reported considerably smaller RRA estimates, but as we have seen, these one-

step estimation results need to be taken with a grain of salt. Our results suggest

instead that Campbell and Cochrane’s (1999, p. 243) caveat applies to the LRR

model too: “High risk aversion is inescapable (or at least has not yet been escaped)

in the class of identical-agent models that are consistent with the equity premium

facts.”

3.5 Conclusion

Econometric analyses and empirical tests of the long-run risk asset pricing model

are difficult. It is a demanding task to estimate a model that features two latent

processes as fundamental economic drivers, a pricing kernel that depends on un-

observable variables, and that must be solved every time it is computed for new

parameter values. As an estimation technique, SMM is designed to cope with such

methodological challenges, but some important questions have not been addressed

in prior literature, and our study seeks to close that gap: Are the moments selected

for matching informative enough to identify the structural model parameters that

describe the dynamics of latent processes and investor preferences? Identification

problems are not obvious in such a complex model structure. And even if theory-

12 The estimates of γ range from 174.5 to 205.9 (see Table II on p. 552 in Yogo (2006)). The
standard errors for γ̂ reported by Yogo (2006) range from 11.8–49.9, which is also comparable with
our estimate, s.e.(γ̂)=12.0.
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based, and practically useable moment conditions can be found, what sample size

is required to deliver precise estimates? The number of observations available for

empirical analysis is relatively small.

We tackle these issues by proposing a two-step estimation strategy, in which we

elicit moment matches that reflect the key features of the LRR model. Most impor-

tantly, we argue that the recursive LRR model structure must be reflected in the

estimation strategy, meaning that macro and financial moment matches need to be

disentangled. We therefore first estimate the parameters that drive the macroeco-

nomic dynamics, and then exploit asset pricing and predictive relations implied by

the LRR framework for the estimation of the preference parameters. The moments

that we use in the first estimation step can be analytically expressed as functions of

the macro parameters, such that GMM estimation becomes feasible. The properties

of the latent persistent growth component, the defining feature of the LRR model,

are captured by including higher-order auto-moments of consumption and dividend

growth. Considering the notorious difficulty associated with estimating stochastic

volatility processes, and doubtful identification, we propose to concentrate out the

SV parameters in the second estimation step. We do not preclude the potential

prevalence of SV in the data, but we replace time-varying stochastic volatility with

the first-step unconditional volatility estimate when computing the simulated mo-

ments in the second step, in which we estimate the investor preference parameters

by SMM. Using theory-based financial moment matches, SMM delivers precise esti-

mates for the subjective discount factor, relative risk aversion, and the intertemporal

elasticity of substitution, even for smaller samples, if the first-step input is of high

quality. Considering the complexity of the LRR asset pricing equations, this result

is encouraging.
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The empirical application of our two-step GMM/SMM estimation method pro-

vides support for the LRR asset pricing paradigm, but it also challenges some previ-

ously reported results. In particular, the estimate of the subjective discount factor is

both plausible and precise, which indicates that the LRR model can help to resolve

the interest rate puzzle. The estimate of the intertemporal elasticity of substitution

is less precise, but the point estimate is greater than 1. An IES greater than 1 is the

cornerstone of the LRR paradigm. Previous empirical studies have either reported

very small IES estimates or the IES has not been estimated at all, and instead fixed

to a convenient value. Finally, our estimate of the coefficient of relative risk aversion

indicates that the conclusion that consumption-based asset pricing models with a

representative agent require a high level of risk aversion also holds true for the LRR

model.

For an accurate estimation of the preference parameters, the estimates of the

macro parameters used for the second estimation step must be of good quality.

Therefore, both informative first-step moment matches and a relatively large sam-

ple size are required. To estimate a complex dynamic asset pricing model like the

LRR model, informative and strong moment matches are indispensable. If the esti-

mation quality of the macroeconomic parameters is poor, researchers cannot expect

much from the second-step estimation of the preference parameters. Our two-step

approach thus constitutes a reality check for applied work.

Fruitful extensions in subsequent research could seek to increase the quality of

the macro parameter estimates. Time must pass before the confidence bounds can

narrow, but strong and well-thought-out moment matches will help applied research

in the meantime.
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3.A Appendix

SV parameter estimation has been attempted by using higher-order moments. Con-

stantinides and Ghosh (2011) suggest the use of the variances of g2
t+1 and g2

d,t+1:

Var
(
g2
t+1

)
=

3ϕ4
eσ

2
w(1 + ν1ρ

2)

(1− ρ4)(1− ν2
1)(1− ν1ρ2)
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[
2ϕ4
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4ρ2ϕ4
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4

1− ρ2
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These expressions are error-corrected versions of the formulas reported in Constan-

tinides and Ghosh (2011). The fourth moments of g and gd are then given by:

E
(
g4
t+1

)
= Var

(
g2
t+1

)
+
(
E(g2

t+1)
)2

= Var
(
g2
t+1

)
+

(
µ2
c +

ϕ2
eσ

2

1− ρ2
+ σ2

)2

, (3.27)
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Table 3.1: Moments used for SMM and GMM estimations of the LRR model.
The table lists the moments for two approaches to estimating the parameters of the LRR model.
The moments in Panel A are used for an SMM estimation approach, adapted from Hasseltoft
(2012). The moments in Panel B are used for the GMM estimation approach by Constantinides
and Ghosh (2011). Panel 1 lists the moments related to macroeconomic LRR variables, Panel 2
contains moments related to financial LRR variables, and Panel 3 lists two moments that result
from an empirically motivated prediction relationship. Finally, ζt+1 is the residual of an AR(1)
process for log consumption growth, obtained by regressing gt+1 on gt.

Panel A: SMM approach Panel B: GMM approach

following Hasseltoft (2012) following Constantinides and Ghosh (2011)

Panel 1: Macro moments

E(gt) E(gt)

E(gd,t) E(gd,t)

E(g2t ) E(g2t )

E(g2d,t) E(g2d,t)

E(gt+1 · gt) E(gt+1 · gt)
E(gt+2 · gt) E(gd,t+1 · gd,t)

E(gt · gd,t)
E(g4t )

E(g4
d,t

)

Panel 2: Financial moments

E(rm,t − rf,t) E(Mt+1 ·Rm,t+1)

E(rf,t) E(Mt+1 ·Rf,t+1)

E(zm,t) E(Mt+1 ·Rm,t+1 · rf,t)
E[(rm,t − rf,t)2] E(Mt+1 ·Rm,t+1 · zm,t)

E[r2f,t] E(Mt+1 ·Rf,t+1 · rf,t)
E[z2m,t] E(Mt+1 ·Rf,t+1 · zm,t)

Panel 3: Prediction moments

E(ζ2t+1)

E(ζ2t+1 · zm,t)
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Table 3.3: Moment sensitivity.
The table shows the sensitivity of various moments from Table 3.1 and selected higher-order (cross)
auto-moments to changes in the LRR model parameters. The moments are simulated on the basis
of a sample size of 108 observations, using Bansal and Yaron’s calibrated values from Table 2.1.
The moment sensitivity is computed as the percentage change of a moment when a given parameter
is decreased by 50% c.p. The columns of the table show the sensitivity of all moments to a change
of the parameter in the column header.

µc µd ρ ϕe σ φ ϕd ν1 σw δ γ ψ

Panel A: Macro moments

E(g) -50 0 0 0 0 0 0 0 0 0 0 0

E(gd) 0 -50 0 0 0 0 0 0 0 0 0 0

E(g2) -3 0 -4 -3 -67 0 0 0 0 0 0 0

E(g2d) 0 0 -2 -2 -69 -2 -73 0 0 0 0 0

E(gt+1 · gt) -34 0 -54 -41 -38 0 0 0 0 0 0 0

E(gt+2 · gt) -34 0 -54 -41 -38 0 0 0 0 0 0 0

E(gt+12 · gt) -38 0 -49 -37 -34 0 0 0 0 0 0 0

E(gt+36 · gt) -47 0 -37 -28 -26 0 0 0 0 0 0 0

E(gd,t+1 · gd,t) 0 -6 -89 -69 -64 -69 0 0 0 0 0 0

E(gd,t+2 · gd,t) 0 -6 -90 -69 -64 -69 0 0 0 0 0 0

E(gd,t+12 · gd,t) 0 -8 -90 -67 -62 -67 0 0 0 0 0 0

E(gd,t+36 · gd,t) 0 -12 -84 -63 -58 -63 0 0 0 0 0 0

E(g · gd) -10 -10 -75 -59 -55 -39 0 0 0 0 0 0

E(gt+1 · gd,t) -11 -11 -76 -59 -55 -39 0 0 0 0 0 0

E(gt+2 · gd,t) -11 -11 -78 -59 -54 -39 0 0 0 0 0 0

E(gt+12 · gd,t) -13 -13 -75 -56 -52 -37 0 0 0 0 0 0

E(gt+36 · gd,t) -18 -18 -64 -48 -44 -32 0 0 0 0 0 0

E(g4) -5 0 -8 -6 -87 0 0 -5 -4 0 0 0

E(g4d) 0 0 -4 -3 -88 -3 -93 -5 -4 0 0 0

Panel B: Financial moments

E(rm − rf ) 1 -3 -118 -86 -66 -69 12 -4 -3 -118 -69 -38

E(rf ) -23 0 17 13 27 0 0 1 1 > 104 21 70

E(zm) 2 -3 43 20 10 16 -2 1 0 -100 12 -1

E((rm − rf )2) 2 -2 -45 -32 -66 -39 -42 -1 -1 -46 6 -23

E(r2f ) -32 0 8 5 32 0 0 1 0 > 106 36 212

E(z2m) 4 -5 106 43 21 34 -4 1 1 -100 25 -2

Panel C: Prediction moments

E(ξ2) 0 0 -4 -3 -70 0 0 0 0 0 0 0

E(ξ2t+1 · zm,t) 2 -3 38 16 -67 16 -2 1 1 -100 12 -1
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Table 3.4: Moment sensitivity to parameters for theory-based moments.
The table displays the sensitivity of the theory-based financial moments to changes in the preference
parameters using the simulated part of the moment match. The moments are computed from
a simulated sample of size of 106 observations, based on the parameters from Table 2.1. The
moment sensitivity in this table is computed as the percentage change of a moment when one
given parameter c.p. decreases by 10%. Each column of the table displays the sensitivity of all
moments to a change of that size in the parameter given in the column header.

δ γ ψ

E(M) -10 0 0

−Cov(Rm−Rf ,M)
E(M) -97 -10 -4

E
[
(Rm −Rf )2

]
-32 1 -3

Cov(Rf,t+1,zm,t)
Var(zm) 428 -1 14

E(zm) -60 2 0

E(z2m) -84 4 0

Table 3.5: Moment matches used for GMM estimation of macro parameters.
For GMM estimation of ξM∗ , the basic set of first and second moment matches in Equation (3.12)
is always included. The maximum lag lengths of the (cross) auto-moments in Equation (3.13) vary
according to the scheme below.

moment set L1 L2 L3

m = 7 2 0 0

m = 35 10 10 10

m = 113 36 36 36

m = 185 60 60 60
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Table 3.6: Means and standard deviations of first-step GMM estimates.
The table reports the means and the standard deviations of the GMM macro parameter estimates.
For each sample size T , 400 data sets were simulated, and the estimation was performed using
different moment sets, ranging from 7 to 185 moment conditions (cf. Table 3.5).

First-stage GMM estimation Second-stage GMM estimation

m = 7 m = 35 m = 113 m = 185 m = 35 m = 113 m = 185

Panel A: µc = 0.0015

T=1k 0.0016 0.0015 0.0016 0.0016 0.0016 0.0015 0.0014
(0.0005) (0.0006) (0.0005) (0.0005) (0.0006) (0.0005) (0.0006)

T=5k 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

T=100k 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Panel B: µd = 0.0015

T=1k 0.0021 0.0020 0.0020 0.0020 0.0021 0.0020 0.0019
(0.0014) (0.0016) (0.0015) (0.0015) (0.0016) (0.0015) (0.0015)

T=5k 0.0016 0.0016 0.0016 0.0016 0.0016 0.0015 0.0016
(0.0008) (0.0008) (0.0008) (0.0008) (0.0009) (0.0009) (0.0009)

T=100k 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Panel C: ρ = 0.979

T=1k 0.809 0.803 0.927 0.914 0.834 0.940 0.927
(0.294) (0.293) (0.151) (0.171) (0.292) (0.134) (0.172)

T=5k 0.891 0.934 0.973 0.973 0.968 0.976 0.977
(0.155) (0.121) (0.047) (0.028) (0.082) (0.041) (0.009)

T=100k 0.932 0.978 0.979 0.979 0.980 0.979 0.979
(0.099) (0.015) (0.004) (0.003) (0.009) (0.002) (0.002)

Panel D: ϕe = 0.044

T=1k 0.0752 0.0689 0.0529 0.0562 0.0568 0.0516 0.0582
(0.0994) (0.0817) (0.0545) (0.0473) (0.0717) (0.0558) (0.0498)

T=5k 0.0807 0.0556 0.0433 0.0474 0.0368 0.0426 0.0456
(0.0813) (0.0532) (0.0349) (0.0290) (0.0393) (0.0233) (0.0109)

T=100k 0.0625 0.0417 0.0437 0.0442 0.0402 0.0441 0.0442
(0.0528) (0.0204) (0.0055) (0.0040) (0.0150) (0.0022) (0.0019)

Panel E: σ = 0.0078

T=1k 0.0078 0.0078 0.0078 0.0078 0.0076 0.0072 0.0069
(0.0004) (0.0005) (0.0005) (0.0004) (0.0004) (0.0004) (0.0004)

T=5k 0.0078 0.0078 0.0078 0.0078 0.0078 0.0077 0.0076
(0.0002) (0.0004) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

T=100k 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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Table 3.6 – continued

first-stage GMM estimation Second-stage GMM estimation

m = 7 m = 35 m = 113 m = 185 m = 35 m = 113 m = 185

Panel F: φ = 3.0

T=1k 4.08 5.06 3.88 4.12 4.15 3.45 3.28
(5.33) (5.23) (3.46) (3.98) (4.34) (2.95) (2.52)

T=5k 2.98 3.37 3.10 3.11 3.02 2.99 2.96
(2.58) (1.65) (0.83) (0.76) (0.63) (0.57) (0.60)

T=100k 2.97 3.01 3.01 3.01 3.00 3.01 3.00
(1.62) (0.19) (0.14) (0.14) (0.12) (0.11) (0.18)

Panel G: ϕd = 4.5

T=1k 4.44 4.49 4.50 4.49 4.53 4.64 4.75
(0.27) (0.30) (0.25) (0.17) (0.18) (0.20) (0.22)

T=5k 4.50 4.56 4.49 4.50 4.51 4.53 4.55
(0.12) (1.21) (0.07) (0.07) (0.07) (0.07) (0.07)

T=100k 4.51 4.50 4.50 4.50 4.50 4.50 4.50
(0.04) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Panel H: Successful estimations

T=1k 248 281 326 321 290 321 326

T=5k 375 369 393 389 380 399 393

T=100k 397 399 399 400 398 400 399
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Table 3.7: Means and standard deviations of the second-step SMM estimates.
Panel A reports the means and standard deviations of the SMM preference parameter estimates
that use the true macro parameters for the moment simulation. The first column of Panel A
reports the results based on the ad hoc moment matches in Panel A-2 of Table 3.1, and the second

column reports the results for the theory-based moment matches GP
T = (GP1

T

′
,GP2

T ,GP3

T ,GP4

T

′
)
′
.

In both cases, SMM estimates are obtained by concentrating out stochastic volatility, that is, using
σ2 = E(σ2

t ) for σ2
t . The third column of Panel A contains the SMM estimation results using the

theory-based financial moment matches and assuming the complete vector of macro parameters is
known, and thus using σ2

t when simulating the theory-based financial moments. Panel B reports the
means and standard deviations of the SMM preference parameter estimates that use the estimated
macro parameters for the simulation of moments.

Panel A Panel B

True macro parameters Estimated macro parameters

ad hoc theory-based + SV known ad hoc theory-based

δ = 0.998

T=1k 0.9981 0.9980 0.9981 0.9955 0.9965

(0.0008) (0.0006) (0.0006) (0.0047) (0.0021)

T=5k 0.9979 0.9980 0.9980 0.9979 0.9978

(0.0004) (0.0003) (0.0003) (0.0011) (0.0007)

T=100k 0.9979 0.9980 0.9980 0.9980 0.9980

(0.0002) (0.0001) (0.0001) (0.0005) (0.0002)

γ = 10

T=1k 10.5 10.3 10.1 34.5 26.5

(1.4) (1.1) (1.0) (82.5) (28.5)

T=5k 10.3 10.3 10.0 11.7 12.8

(0.7) (0.5) (0.5) (6.9) (5.7)

T=100k 10.1 10.3 10.0 10.3 10.4

(0.3) (0.1) (0.1) (0.6) (0.7)

ψ = 1.5

T=1k 1.84 1.52 1.49 4.01 3.19

(1.80) (0.05) (0.06) (9.53) (3.61)

T=5k 1.76 1.52 1.50 3.28 1.95

(1.38) (0.04) (0.04) (7.46) (1.52)

T=100k 1.80 1.51 1.50 1.76 1.53

(2.21) (0.00) (0.00) (0.92) (0.15)

79



TABLES AND FIGURES GMM/SMM

Table 3.8: Means and standard deviations of the preference parameter esti-
mates based on second-stage GMM macro parameter estimates.
Panel A shows the SMM estimation results for the preference parameters, based on the second-
stage GMM macro parameter estimates. Panel B reveals the incremental effect of raising the bar
for the quality of the first-step estimates before entering the second step. For that purpose, we
discard any replication for which one of the macro parameter estimates is more than twice its true
value.

Panel A Panel B

Second-stage GMM Second-stage GMM + select.

δ = 0.998

T=1k 0.9970 0.9971

(0.0024) (0.0016)

T=5k 0.9978 0.9978

(0.0007) (0.0006)

T=100k 0.9980 0.9980

(0.0001) (0.0001)

γ = 10

T=1k 19.8 15.3

(24.0) (9.7)

T=5k 12.0 12.0

(4.7) (4.5)

T=100k 10.4 10.4

(0.7) (0.7)

ψ = 1.5

T=1k 2.88 2.10

(2.98) (1.19)

T=5k 1.73 1.71

(0.60) (0.47)

T=100k 1.52 1.52

(0.10) (0.10)
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Figure 3.1: Autocorrelograms of consumption and dividend growth.
The figure shows the small but persistent autocorrelations of consumption growth (Panel a) and
dividend growth (Panel b) as implied by the LRR model. The graphs display the autocorrelations
from lag 1 to 120 based on the LRR parameter values calibrated by Bansal and Yaron (2004), as
listed in Table 2.1. These values correspond to a monthly decision frequency of the agent, such
that the abscissa spans 10 years.

(a) log consumption growth (b) log dividend growth
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Figure 3.3: Kernel densities: δ̂, γ̂, and ψ̂ (true macro parameters).
Panels (a)–(f) display kernel densities for preference parameter estimates that result from using
theory-based (solid) and ad hoc (dashes) financial moment matches. SMM estimation is based on
the knowledge of the true macro parameters; SV is concentrated out when simulating moments.
The vertical lines indicate the positions of the true parameters. A Gaussian kernel with bandwidth
as proposed by Silverman (1986) is used.

(a) T=1k, δ̂ (b) T=5k, δ̂

(c) T=1k, γ̂ (d) T=5k, γ̂

(e) T=1k, ψ̂ (f) T=5k, ψ̂
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Figure 3.4: Kernel densities: δ̂, γ̂, and ψ̂ (estimated macro parameters).
Panels (a)–(f) display three kernel densities for preference parameter estimates that result from
using estimated macro parameters and theory-based financial moment matches. The first (dashes-
dots) uses first-step macro GMM estimates based on the m=185 moment set and an identity
weighting matrix for GMM (1st stage GMM). The second (dashes) instead uses an estimate of
the efficient GMM weighting matrix (eff. GMM) when estimating the macro parameters. The
third (solid line) also uses efficient weighting but applies a more restrictive selection criterion: the
second-step SMM estimation of the preference parameters is not performed if one of the first-step
macro estimates is more than twice as large as the true parameter value (eff. GMM/select). The
vertical lines indicate the positions of the true parameters. A Gaussian kernel with the bandwidth
proposed by Silverman (1986) is used.

(a) T=1k, δ̂ (b) T=5k, δ̂

(c) T=1k, γ̂ (d) T=5k, γ̂

(e) T=1k, ψ̂ (f) T=5k, ψ̂85
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Figure 3.5: Data used for the empirical application.
Panels (a)-(f) display the time series used for the empirical application. The data come from Beeler
and Campbell (2012), and they span the time period 1947Q2 to 2008Q4. Consumption growth is
computed on the basis of U.S. real consumption of non-durable goods and services. The market
portfolio return, dividend growth, and the price-dividend ratio are calculated for the CRSP value-
weighted market portfolio. Conversions into real terms are performed using the consumer price
index. The proxy for the ex ante risk-free rate is obtained from a forecast of the ex post real rate
of three-month Treasury bills.

(a) log consumption growth (b) log dividend growth

(c) log dividend growth 4 quarters avg. (d) log risk-free rate

(e) log return market portfolio (f) log P/D ratio
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Chapter 4

Indirect inference estimation of

the long-run risk model

4.1 Introduction

Allowing for long-run consumption risk in the pricing kernel holds the promise to

resolve prominent asset pricing puzzles and helps restore the nexus of real economy

and financial markets. Numerical calibrations show that by taking long-run risk into

account, the considerable U.S. postwar equity premium can indeed be explained by

a consumption-based asset pricing model that assumes plausible values for the rep-

resentative agent’s time preference, risk aversion, and propensity for intertemporal

substitution.

The long-run risk approach, as described in Chapter 2, is theoretically appealing

and the calibration results are encouraging. However, the estimation of the struc-

tural model parameters, the assessment of the estimation precision, as well as model

specification tests, i.e. econometric analysis beyond calibration, are quite challeng-

ing. We propose a two-step indirect inference strategy for the estimation of the LRR

87



INTRODUCTION INDIRECT INFERENCE

asset pricing model that avoids the drawbacks of previous approaches analyzed in

detail in Chapter 3. Due to its flexibility, the indirect inference methodology allows

for a more parsimonious estimation approach compared to the two-step GMM/SMM

estimation strategy presented in the previous chapter. Since indirect inference esti-

mation is a simulation-based approach, the model dynamics can be estimated at an

arbitrary frequency, irrespective of the frequency of the data. The two-step approach

even allows for different frequencies of macroeconomic and financial data.

Calvet and Czellar (2015) also use an indirect inference approach to estimate a

version of the LRR model, in which the endogeneity is removed, such that a model

solution in the course of the estimation is no longer required. Instead, the means

of zt and zm,t, which should be endogenously determined, are set to fixed values z̄∗

and z̄∗m. Although this choice reduces computation time in the estimation process,

the simplification comes at the cost of a non-negligible built-in inconsistency. When

simulating the LRR model using z̄∗ and z̄∗m, the means of the simulated zt and

zm,t series will be different from the fixed values.1 The exactly identifying auxiliary

model used by Calvet and Czellar (2015) is complex and global optimization is both

computationally expensive and difficult to ensure. Bearing in mind the identification

issues encountered in one-step estimations of the LRR model, we suggest a two-step

approach instead, for which the auxiliary models are rapidly and reliably estimated.

Recognizing the inherent recursive structure of the LRR model, the two steps

separate the estimation of the macroeconomic dynamics from that of the investor

preference parameters, which is the key to obtain reliable estimates of the structural

model parameters. Instead of working with a single auxiliary model, which would

have the difficult task to capture all important model features, each estimation step

1 For example, using the LRR model parameter values calibrated by BY, and z̄∗ = 6.96 and
z̄∗m = 5.95, as chosen by Calvet and Czellar (2015), to simulate LRR model-implied data series
with T=100k, we obtain a sample mean of the log P/C ratio equal to 5.87 and a sample mean of
the log P/D ratio equal to 5.19. These differences are large in economic terms.

88



INDIRECT INFERENCE INTRODUCTION

uses a specific auxiliary model tailored to account for the time series properties and

asset pricing implications of the LRR model, respectively. The two-step indirect in-

ference approach allows for different frequencies of the macroeconomic and financial

data, which do not have to coincide with the LRR model-implied decision frequency

of the representative investor. For the auxiliary model in the first estimation step,

we adopt the heterogeneous autoregressive (HAR) specification proposed by Corsi

(2009). The HAR approach allows for the use of past information over long hori-

zons in a parsimonious way. This favorable feature avoids using a large number

of higher-order autocovariances of consumption and dividend growth to extract the

information about the small predictable growth component. The representative in-

vestor’s preference parameters are estimated in the second step, for which we exploit

the asset pricing implications of the LRR model. The two-step estimation strategy

implies that standard theory of asymptotic inference is not applicable, such that we

rely on a bootstrap method that makes use of the parametric nature of the LRR

model instead. A Monte Carlo study documents the feasibility of the two-step indi-

rect inference estimation strategy and reveals the estimation precision that can be

expected using a sample size as is currently available for empirical analysis. The

results emphasize that the quality of the macro parameter estimates is crucial to

deliver precise preference parameter estimates. In an empirical application, we ob-

tain estimates of the macro parameters that support the notion of a small persistent

growth component, which is a crucial ingredient of the LRR asset pricing approach.

The point estimates of the parameters that describe the investor’s subjective time

preference and risk aversion are economically plausible, while the estimate of the

intertemporal elasticity of substitution (IES) is less than 1. However, the data are

also compatible with an IES>1, which is a necessary condition for the ability of

the LRR model to account for the prominent asset pricing puzzles. The confidence
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intervals indicate that the estimation precision will inevitably be limited by the rel-

atively short low-frequency macroeconomic data series. The empirical evidence in

favor of the LRR model is therefore less conclusive than suggested by some previous

studies.

The remainder of the chapter is organized as follows. Section 4.2 explains the

two-step indirect inference estimation strategy. Section 4.3 provides the results of a

Monte Carlo study. Section 4.4 describes the data. Section 4.5 presents empirical

results. Section 4.6 contains concluding remarks.

4.2 Econometric methodology

4.2.1 Motivation and notation

This section outlines a two-step indirect inference estimation strategy that separates

the estimation of the macro parameters ξM from that of the preference parame-

ters ξP . The approach allows for different sampling frequencies in each estimation

step, which may also differ from the LRR model-implied decision frequency of the

representative agent. To formalize the exposition, we use a notation that draws on

the seminal papers by Gourieroux, Monfort, and Renault (1993) and Smith (1993).

The LRR model as presented in Section 2.2 implies a vector stochastic pro-

cess for consumption and dividend growth y
(d)
M (ξM) ≡ {y(d)

M,s(ξ
M), s ≥ 1}, where

y
(d)
M,s =

(
g

(d)
s , g

(d)
d,s

)′
. The superscript (d) indicates that the sampling frequency of

the process corresponds to the decision frequency. Moreover, the LRR model implies

a vector stochastic process for the return of the market portfolio, risk-free rate, and

P/D ratio, y
(d)
P (ξM , ξP ) ≡ {y(d)

P,s(ξ
M , ξP ), s ≥ 1}, where y

(d)
P,s =

(
r

(d)
m,s, r

(d)
f,s , z

(d)
m,s

)′
.

Both processes are assumed to be stationary and ergodic for any ξM ∈ ΘM ⊂ R9

and ξP ∈ ΘP ⊂ R3, respectively. It may be necessary to consider a time aggre-
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gation of the two model-implied processes to a lower frequency corresponding to

that of the observed data. The correct time aggregation is crucial and non-trivial;

the appropriate formulas provided by Calvet and Czellar (2015) are given in Ap-

pendix 4.A.1. We denote the model-implied processes that are time-aggregated to

the base frequency (b) of the observed data as y
(b)
M (ξM) and y

(b)
P (ξM , ξP ).

The indirect inference estimation strategy requires to generate numerically finite

realizations {y(b)
M,s(ξ

M)}Ss=1 and {y(b)
P,s(ξ

M , ξP )}Ss=1 given ξM and ξP . Section 2.2.4

describes how to simulate such LRR model-implied data. The frequency of the

simulated time series is determined by the decision interval of the LRR investor,

which BY assume to be one month; subsequent aggregation allows to transform

the simulated data to a lower frequency, e.g. to match the frequency of the empir-

ical data. Corresponding to the simulated, model-implied processes there are the

observed vector processes w
(b)
M ≡ {w(b)

M,t, t ≥ 1}, where w
(b)
M,t =

(
g

(b)
t , g

(b)
d,t

)′
, and

w
(b)
P ≡ {w

(b)
P,t, t ≥ 1}, where w

(b)
P,t =

(
r

(b)
m,t, r

(b)
f,t , z

(b)
m,t

)′
. Of these processes, which are

also assumed to be stationary and ergodic, we observe finite realizations {w(b)
M,t}Tt=1

and {w(b)
P,t}Tt=1. Indirect inference estimation is based on the assumption that there

exists a unique set of parameters ξM0 ∈ ΘM and ξP0 ∈ ΘP such that the realizations

of w
(b)
M and w

(b)
P on the one hand, and the realizations of y

(b)
M (ξM0 ) and y

(b)
P (ξM0 , ξ

P
0 )

on the other hand, are drawn from the same distribution.

The philosophy of indirect inference estimation and the inherently recursive LRR

model structure suggests to perform the estimation of the macro parameters ξM and

the estimation of the preference parameters ξP in two consecutive steps. The reasons

are twofold. First, the separate indirect inference estimation of the macro parame-

ters benefits from a simpler data simulation, because the solution for the endogenous

model parameters is only required to simulate {y(b)
P,s(ξ

M , ξP )}Ss=1. It is not needed

to obtain {y(b)
M,s(ξ

M)}Ss=1. Second, and more importantly, the auxiliary models to be
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employed in each step can be tailored such that the diverse properties of the LRR

model can be accounted for. Consider the macro dynamics in Equations (2.1)-(2.4),

which only depend on ξM , and in which the presence of two latent processes poses

a challenge for the auxiliary model. It should be tractable, but also capture the

intricate time series properties induced by these latent processes. The estimation of

the investor preference parameters imposes different requirements on the auxiliary

model. For that purpose, the LRR model-implied distributional properties of the

market portfolio return and the risk-free rate should be reflected by the auxiliary

model. Entangling the information about these diverse aspects—time series dynam-

ics, asset pricing relations, and preferences—does not seem prudent: Monte Carlo

experiments revealed that the joint estimation of all LRR model parameters yields

unstable results. The advantage of a two-step indirect inference strategy that sep-

arates the estimation of ξM and ξP is that we can use specialized and customized

auxiliary models in each step that are only required to capture the properties of

y
(b)
M,s or y

(b)
P,s but not both.

4.2.2 First step: macro parameter estimation

The first indirect inference estimation step thus only deals with the estimation of the

macro parameters ξM . For that purpose, we must specify an auxiliary model that

captures the properties of the LRR model-implied macro process y
(b)
M (ξM). Let us

collect the first-step auxiliary model parameters in the vector θM ∈ ΞM ⊂ RkM ,

where kM is at least as large as the number of macro parameters, and presume

that auxiliary parameter estimates θ̂
M

can be obtained by maximizing the criterion

function QM
T ({w(b)

M,t}Tt=1,θ
M).

The challenge for the first-step auxiliary model is to account for the predictable

growth component xt, which induces small but very persistent serial correlations in
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the growth series. These deviations from i.i.d. growth let the asset pricing implica-

tions of the LRR model unfold. A parsimonious way to capture the autocorrelation

structure of a persistent process is the HAR specification proposed by Corsi (2009).

It is used in the realized volatility literature to capture the long-memory properties

of squared and absolute returns by accounting for different sampling frequencies in

an autoregressive model. To set up the first-step auxiliary model, we therefore use

the following HAR specification for log consumption and dividend growth observed

at the base frequency:2

g(b)
t

g
(b)
d,t

 =

c1

c2

+
τ∑
ι=1

ΦιL
ι

g(b)
t

g
(b)
d,t

+Φτ+1

g(f(h1))
t−1

g
(f(h1))
d,t−1

+Φτ+2

g(f(h2))
t−1

g
(f(h2))
d,t−1

+

ζ1,t

ζ2,t

 , (4.1)

where Φι are parameter matrices and ζt = (ζ1,t, ζ2,t)
′ are orthogonal Gaussian white

noise innovations. In an empirical application, the base frequency (b) could be

quarterly (as in Hasseltoft, 2012) or annual (as in Constantinides and Ghosh, 2011).

f(h1) and f(h2) denote lower frequencies that result from a time aggregation of the

base frequency data over hi periods. With a quarterly base frequency, we would use

h1 = 4 and h2 = 12 to obtain annual and triannual data. The time aggregation of

consumption and dividend growth is based on the formulas given in Appendix 4.A.1.

Compared with a standard vector-autoregressive process, the HAR specification can

account for the long-run impact of shocks to consumption and dividend growth in a

parsimonious way, as the large required number of lagged growth rates gets replaced

by few aggregates. The auxiliary parameters that result from the HAR specification

are collected in the vector

θHAR = (c1, c2, vec(Φ1)′, . . . , vec(Φτ+2)′, vec(Σζ)
′)
′
, (4.2)

2 We are grateful to George Tauchen for suggesting the use of the HAR specification as an
auxiliary model.
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where Σζ is the covariance matrix of ζt. The flexibility of the first-step auxiliary

model is enhanced by extending the auxiliary parameter vector to include the means

and standard deviations of the two growth processes and their time-aggregates,

gt =
(
g

(b)
t , g

(b)
d,t , g

(f(h1))
t , g

(f(h1))
d,t , g

(f(h2))
t , g

(f(h2))
d,t

)′
, (4.3)

which we collect in the vectors µg and σg. The complete vector of first-step auxiliary

parameters is then given by θM =
(
θHAR

′
,µg

′,σg
′
)′

. OLS regressions yield the

estimates of θHAR, and sample moments are used to estimate µg and σg. Assuming

for the auxiliary model that w
(b)
M is a Gaussian process (a natural assumption as

the innovations in Equations (2.1)-(2.4) are i.i.d. N (0, 1)), the elements of θ̂
M

T can

be interpreted as pseudo-maximum likelihood estimates, and the criterion QM
T as a

pseudo-likelihood function.

The number of auxiliary parameters exceeds the number of macro parameters,

so that we use the following first-step indirect inference estimator of ξM :

ξ̂
M

T = argmin
ξM ∈ ΘM

∆M(ξM)′WM
T ∆M(ξM), (4.4)

where ∆M(ξM) = θ̂
M

T − θ̃
M

S (ξM). θ̃
M

S (ξM) denotes the estimate of θM that is

obtained when the auxiliary parameters are estimated on simulated LRR model-

implied data of sample size S, where S is chosen as a fixed multiple H of T . WM
T is

a symmetric and positive definite weighting matrix, WM
T →

p
WM , a non-stochastic

positive definite matrix. The weighting matrix WM
T can be used to enforce precise

matches of elements of θ̂
M

T and θ̃
M

S .

Under the assumptions stated by Gourieroux et al. (1993), the first-step indirect

inference estimator in Equation (4.4) is a consistent estimator of ξM0 . In addition to
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stationarity and ergodicity of the data generating processes, we have to assume that

the criterion function QM
T ({w(b)

M,t}Tt=1,θ
M) converges uniformly and almost surely to

a non-stochastic limit function QM
∞(F0, ξ

M
0 ,θ

M), where F0 denotes the true distri-

bution function of the fundamental innovations in Equations (2.1)-(2.4). Moreover,

we have to assume that the limit function is continuous in θM and has θM0 as the

unique maximum. Defining

b(F, ξM) = argmax
θM∈ΞM

QM
∞(F, ξM ,θM), (4.5)

we have θM0 = b(F0, ξ
M). Consistency requires that the binding function

b(F0, ·) : ξM → b(F0, ξ
M) (4.6)

is injective and that ∂b(F0,ξ
M
0 )

∂ξM ′
is of full column rank.

While the rank condition is fulfilled, as can be assessed by simulation, the injec-

tivity condition cannot be formally checked since the binding function is not available

in closed form. Connections between auxiliary and structural parameters are obvi-

ous, though. The autoregressive parameter matrices Φ should provide information

about the persistence parameter ρ and the leverage ratio on expected consumption

growth φ. The parameters c1, c2, and µg are linked to the unconditional expected

values of log consumption and dividend growth, µc and µd, while the second mo-

ments in Σζ and σg should contribute to the identification of the variance-scaling

parameters ϕe and ϕd and the parameters of the stochastic volatility process. To

assess the feasibility of the estimation approach and to provide simulation-based evi-

dence on the injectivity of the binding function, we conduct a Monte Carlo study and

check whether the indirect inference strategy can reliably recover the true structural

parameters ξM0 when a large sample size is available (see Section 4.3.2).
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Under the regularity conditions and assumptions stated by Smith (1993) and

Gourieroux et al. (1993), the first-step indirect inference estimator ξ̂
M

T in Equa-

tion (4.4) is asymptotically normal. As an alternative to using the large sample

formulas, we rely on bootstrap-based inference, which we describe in Section 4.2.5.

4.2.3 Second step: preference parameter estimation

The second estimation step focuses on the preference parameters ξP , taking ξ̂
M

T

as given, and uses an auxiliary model that aims to capture the asset pricing im-

plications of the LRR model. The second-step auxiliary parameters are collected

in the vector θP ∈ ΞP ⊂ RkP , where kP > 3 (we use an over-identified auxiliary

model), and estimates θ̂
P

can be obtained by maximizing the criterion function

QP
T ({w(b)

P,t}Tt=1,θ
P ).

The LRR model-implied equations for the risk-free rate and the market equity

premium (see Equations (2.20) and (A-16)) guide our selection of the second-step

auxiliary parameters. The mean of the log risk-free rate E(rf ) = µrf should convey

information about the subjective time preference δ, the propensity for intertemporal

substitution ψ, and also precautionary savings due to risk aversion γ. The equity

premium µrem = E(rm − rf )—albeit a function of all three preference parameters—

should primarily reflect relative risk aversion. To disentangle risk aversion from in-

tertemporal substitution, we exploit that the contemporaneous relationship between

the log P/D ratio and the log risk-free rate implied by the LRR model is predomi-

nantly determined by the IES but largely unaffected by the RRA coefficient, which

should promote the identification of ψ.3

3 Section 4.A.3 in the Appendix shows that the analytical expression of the covariance between
rf and zm is dominated by ψ.

96



INDIRECT INFERENCE METHODOLOGY

Moreover, Equation (2.13) implies that E(zm) = µzm depends on all preference

parameters, while the standard deviation of zm (σzm) only depends on γ and ψ, so

using µzm and σzm as auxiliary parameters provides separate information about risk

aversion and time preference. Including the standard deviations of the market excess

return (σrem) and the log risk-free rate (σrf ) among the set of auxiliary parameters

lends further flexibility to the second-step auxiliary model. The complete vector of

auxiliary model parameters then reads:

θP =
(
β, α, µrem , µrf , µzm , σrem , σrf , σzm

)′
, (4.7)

where β and α are the parameters of an orthogonal projection of zm on rf and

a constant. The second-step auxiliary model parameters are estimated by sample

moments and a linear regression of zm on rf . Specifying the auxiliary model such

that y
(b)
P (ξM , ξP ) is a Gaussian process, the sample moments and OLS estimates of

the auxiliary parameters can then be conceived of as pseudo-maximum likelihood

estimates.

The second-step indirect inference estimator is then given by:

ξ̂
P

T = argmin
ξP ∈ ΘP

∆P (ξ̂
M

T , ξ
P )′W P

T ∆P (ξ̂
M

T , ξ
P ), (4.8)

where ∆P (ξ̂
M

T , ξ
P ) = θ̂

P

T − θ̃
P

S (ξ̂
M

T , ξ
P ). θ̂

P

T denotes the estimate of the auxiliary

model parameters θP based on empirical data with T time series observations.

θ̃
P

S (ξ̂
M

T , ξ
P ) are the corresponding estimates obtained when the auxiliary parameters

are estimated on simulated LRR model-implied data with sample size S = HT . This

simulation takes ξ̂
M

as given and leaves it unchanged during optimization. W P
T is a
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symmetric and positive definite weighting matrix that can depend on the observed

sample. W P
T →

p
W P , a non-stochastic positive definite matrix.

Generating LRR model-implied data during the second estimation step entails

solving for the endogenous parameters in Equations (2.8) through (2.13). As pointed

out in Section 2.2.3, the solution may not exist, which would cause the estimation

to break down if the optimization algorithm probes inadmissible parameter com-

binations. Unfortunately, constrained indirect inference estimation as proposed by

Calzorari, Fiorentini, and Sentana (2004) cannot be employed, because the con-

straint would not have to be imposed on the auxiliary model parameters but on the

structural model parameters. Moreover, it is impossible to formulate explicit con-

straints that would ensure that only eligible (structural) parameter combinations

are used. Our solution is to use a large penalty (we use 103) that is added to the

value of the objective function whenever the optimization algorithm tries structural

parameter values that would imply an unsolvable model.

Under the assumptions stated by Gourieroux et al. (1993), and using the con-

sistent first-step estimator ξ̂
M

T instead of ξMT when generating LRR model-implied

data, the second-step indirect inference estimator in Equation (4.8) is a consistent

estimator of ξP0 . The second-step binding function cannot be expressed in closed

form, so an analytical check of the injectivity condition is not possible. To assess the

feasibility of the second estimation step, we therefore extend the Monte Carlo study

and check whether it is possible to reliably recover the true structural parameters

ξP0 when a large sample is available.

Inference about the second-step estimator ξ̂
P

T cannot rely on the standard asymp-

totic theory of indirect inference estimation. Section 4.2.5 explains how to obtain

bootstrap inference on the parameters instead.
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4.2.4 An alternative representation

The two-step indirect inference approach presented in the previous sections is equiv-

alent to obtaining ξ̂
M

T and ξ̂
P

T as the solution of the following system of equations:


∂∆M (

ˆξ
M

)
′

∂ξM
0

0
∂∆P (

ˆξ
M

,
ˆξ
P

)
′

∂ξP


WM

T 0

0 W P
T


 ∆M(ξ̂

M
)

∆P (ξ̂
M
, ξ̂

P
)

 = 0. (4.9)

Note that this is not equivalent to stacking both auxiliary parameter vectors into

one,

∆(ξM , ξP ) =

 ∆M(ξM)

∆P (ξM , ξP )

 , (4.10)

and using the indirect inference estimator

ξ̂MT
ξ̂
P

T

 = argmin
ξM ,ξP

∆(ξM , ξP )′W T ∆(ξM , ξP ), (4.11)

which implies the first-order conditions


∂∆M (

ˆξ
M

)
′

∂ξM
∂∆P (

ˆξ
M

,
ˆξ
P

)
′

∂ξM

0
∂∆P (

ˆξ
M

,
ˆξ
P

)
′

∂ξP


WM

T W 12
T

W 21
T W P

T


 ∆M(ξ̂

M
)

∆P (ξ̂
M
, ξ̂

P
)

 = 0. (4.12)

Both Equation (4.9) and Equation (4.12) set linear combinations of auxiliary

parameter matches to zero. Yet, while the weights of the linear combinations in

Equation (4.12) lead to an inevitable interference of the auxiliary parameter matches

∆P (ξM , ξP ) with the estimation of the macro parameters ξM , even if we use a block-

diagonal weighting matrix such that W 21
T = W 12

T = 0, the weights in Equation (4.9)

prevent the second-step auxiliary model from interfering with the estimation of the
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macro parameters. The two-step indirect inference approach thus takes into account

the findings presented in Chapter 3, which imply that the entanglement of macro

and financial moment matches in a one-step GMM or SMM estimation of the LRR

model should be avoided as it yields unreliable parameter estimates. Our experiences

with alternative one-step indirect inference estimation strategies lead to the same

conclusion.

4.2.5 Bootstrap inference

The two-step indirect inference approach implies that standard theory of asymptotic

inference is not applicable. However, the LRR model structure permits the use

of a bootstrap simulation to obtain parameter standard errors and to construct

confidence intervals. The procedure can be characterized as a parametric residual

bootstrap that works as follows.

After performing the two-step estimation on the empirical data, which yields

the estimates ξ̂
M

and ξ̂
P

, we independently draw 4 × (T ∗ + L) standard normally

distributed random variables to obtain realizations of the i.i.d. innovations {ηt}T
∗+L

t=1 ,

{et}T
∗+L

t=1 , {ut}T
∗+L

t=1 , and {wt}T
∗+L

t=1 in Equations (2.1)–(2.4). The appropriate time

series length T ∗ is determined by the number of observations and sampling fre-

quency of the empirical data, as well as the assumed decision frequency of the

investor. For example, the data used for our empirical application comprise T=271

quarterly observations. We assume a monthly decision frequency, such that T ∗=813.

The simulated innovations are used to generate time series of length T ∗+L of LRR

model-implied macro and financial variables, as described in Section 2.2.4. For that

purpose, ξ̂
M

and ξ̂
P

serve as “true” parameters. The first L observations are dis-

carded to mitigate the effect of the choice of starting values. We use L = 100 as

a default. If the empirical data frequency is lower than the decision frequency, the
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simulated time series are time-aggregated, using the formulas in Appendix 4.A.1, to

match the empirical data frequency.

The two indirect inference estimation steps are then performed on the bootstrap

sample. Data simulation and estimation are repeated R independent times, with

new i.i.d. draws of standard normally distributed innovations, simulation of the LRR

model variables, and two-step estimation performed on the simulated samples. The

resulting sets of estimates {ξ̂
M

(r)}Rr=1 and {ξ̂
P

(r)}Rr=1 are used to compute parameter

standard errors and to construct confidence intervals. The latter are obtained by

the percentile method, which amounts to using the appropriate quantiles of the

bootstrap distribution as upper and lower bounds (cf. Efron and Tibshirani, 1993).

The bootstrap simulation is computationally intensive, such that fast and reliable

auxiliary model estimation is even more important.

To assess its validity, we have to check the conditions under which the bootstrap

is consistent, meaning that the bootstrap estimator of the distribution function

(cdf) of the statistic of interest (here: one of the parameter estimates in ξ̂
M

or ξ̂
P

)

is uniformly close to the statistic’s asymptotic cdf for large T . The formal definition

and the conditions for consistency of the bootstrap are stated by Horowitz (2001).4

Briefly, consistency requires that the cdf of the probability distribution from which

the data are sampled and its bootstrap estimator are uniformly close to each other

when T is large, and that suitable continuity conditions regarding the asymptotic

cdf of the statistic of interest hold.

While the conditions for consistency cannot be formally checked in the present

application, we argue that the proposed procedure is not subject to those issues that

are known to provoke a failure of the bootstrap. As Horowitz (2001) notes, failures

of the bootstrap are associated with heavy-tailed or dependent data, or true param-

4 See Horowitz’s (2001) Definition 2.1 and Theorem 2.1, originally formulated by Beran and
Ducharme (1991).
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eters that lie on the boundary of the parameter space. However, the i.i.d. draws of

innovations from the standard normal distribution along with economically plausi-

ble LRR model parameters preclude generating heavy-tailed data. Moreover, the

parametric residual bootstrap avoids drawing directly from the macro and financial

data series, which may exhibit considerable serial dependence. Provided that the

parameter estimates are consistent, the bootstrap estimate should therefore consti-

tute a good approximation of the true cdf of the data for large T . Violations of

the continuity assumption regarding the asymptotic cdfs of the parameter estimates

are also not indicated. In particular, the aforementioned intricate parameter space

should not affect the validity of the bootstrap. We do have to assume, however,

that the LRR model is solvable in the neighborhood of the true parameters; in other

words, we have to rule out that the true parameters lie on the boundaries of the ad-

missible parameter space. It should also be noted that in the present application the

bootstrap does not provide asymptotic refinement, as the statistics of interest—the

elements of ξ̂
M

and ξ̂
P

—are not pivotal.

4.3 Monte Carlo study

4.3.1 Design

The Monte Carlo study is designed to check the feasibility of the two-step indirect

inference estimation strategy and to assess the estimation precision that can be

expected when using empirically available sample sizes. For that purpose we generate

400 independent LRR model-implied data series of g, gd, rm, rf , and zm using as

true parameter values the calibration by BY reported in Table 2.1, and perform the

two-step indirect inference estimation on the simulated data. The calibrated values

correspond to a monthly decision frequency. We assume that data and decision

102



INDIRECT INFERENCE MONTE CARLO STUDY

frequency are identical, such that time aggregation is not required. The lengths of

the simulated data series are T=275, 1k, and 100k, respectively.

As mentioned previously, an analytical validation of the assumptions for consis-

tency, in particular of the injectivity of the binding functions, is not possible. The

T=100k study should provide a substitute check whether the estimation strategy

is viable such that it can recover the true parameters when using a large sample.

Assuming a monthly sampling frequency, T=1k represents a large but not implau-

sible sample size for an empirical application that relies on monthly data, while

T=275 corresponds to the number of observations currently available at a quarterly

frequency.

In the simulated economy, growth expectations are very persistent, ρ=0.979,

which is pivotal for the asset pricing implications of the LRR model. On the other

hand, the predictable growth component xt is small, as a result of scaling consump-

tion volatility σt by ϕe=0.044. Consumption growth expectations are leveraged into

dividend growth expectations by φ=3. The expected values of consumption and

dividend growth are identical, µc=µd=0.0015. However, dividend growth volatility

is considerably larger than the volatility of consumption growth as ϕd = 4.5. More-

over, while the stochastic variance process is highly persistent, it is not very volatile

due to the fact that σw is small. The LRR investor has positive time preferences

as δ is close to but smaller than one. The risk aversion parameter γ=10 lies at the

upper bound of economic plausibility.5 The intertemporal elasticity of substitution

is larger than one (ψ=1.5), which is a crucial factor for the ability of the LRR model

to resolve the equity premium and risk-free rate puzzle, as shown in Section 2.3.

The estimates of ρ, µc, and µd are restricted to values between 0 and 1 by means

of a logit transform and the estimates for σ, φ, ϕe, and ϕd are restricted to positive

5 The canonical reference is Mehra and Prescott (1985), who consider a range for γ between 1
and 10 to be plausible.
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values by an exponential transform of the unrestricted parameters. We use H=10

for T=100k and T=1k, following Smith (1993) who recommends using S = 10T as

the lower bound for which the inflation of the variance covariance matrix induced by

simulation error becomes sufficiently small. For the T=275 study we use H=100, as

initial estimations indicated that the stability of the numerical optimization benefits

from a larger simulated sample size. To ensure robust, yet fast optimization of the

indirect inference objective functions, we use the Nelder-Mead (1965) algorithm.

To provide a safeguard against false convergence close to favorably chosen starting

values, optimizations are started from initial values distant from the known true

parameters.6

4.3.2 Monte Carlo results: macro parameters

As an initial feasibility check we tried to estimate all macro parameters ξM using

the first-step auxiliary model described in Section 4.2.2 based on simulated samples

with T=100k. These experiments revealed that the subset of the macro parameters

ξM∗ = (µc, µd, ρ, ϕe, σ, φ, ϕd)
′ could be reliably recovered by maximizing the first-step

objective function (4.4) but not the SV parameters ν1 and σw, for which we obtain

vastly different estimates ν̂1 and σ̂w when using different initial values. This result

raises the concern that the first-step auxiliary model may be unable to identify ν1

and σw. Extending the auxiliary model in various directions does not alleviate the

6 This is a safety measure to prevent reporting overly optimistic results, but it makes the
optimization more difficult. As a result, the optimization could not be successfully accomplished
for some replications, in particular for small T . The optimization algorithm either exceeded the
maximum number of iterations, or converged to implausible values (more than ten times larger
than the true value in absolute terms). We consider these cases as failed estimation attempts and
exclude them in the tables and plots that summarize the simulation study results. In the second
estimation step, an estimation is also classified as failed if the LRR model is not solvable at the
parameter values to which the optimization converges. In an empirical study, such problematic
data could receive special treatment, by increasing the maximum number of iterations, or by using
alternative optimization algorithms. Such an expensive handling is not tenable in a Monte Carlo
study.
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problem. Including a heterogeneous autoregressive conditional heteroscedasticity

model, as discussed in Appendix 4.A.4, does not allow to identify ν1 and σw either.

Figure 4.1 suggests a possible explanation. It shows that in BY’s calibrated LRR

economy the volatility of volatility is indeed very small, which suggests that the

signal-to-noise ratio may be too low to estimate ν1 and σw.

These findings suggest an alternative estimation strategy, in which the condi-

tional variance σ2
t is predicted by its unconditional expectation, E(σ2

t ) = σ2. Es-

timating σ2 within the first-step indirect inference estimation procedure entails re-

placing σ2
t by σ2 when generating LRR model-implied data. While ν1 and σw are not

estimated in the first step, the true data-generating process still exhibits stochastic

volatility: we do not change the model, but deliver an alternative estimate of σ2
t .

The Monte Carlo study investigates the consequences for the quality of the other

parameter estimates.

In each replication we therefore estimate the reduced set of macro parameters ξM∗

by minimizing the indirect inference objective function in Equation (4.4). The aux-

iliary parameter vector θM is constructed as described in Section 4.2.2, and with the

following customization. In the HAR specification in Equation (4.1) we account for

consumption and dividend growth on the annual and the triannual level by choosing

h1 = 12 and h2 = 36. The first few monthly lags should be particularly informative

for the estimation of the persistence parameter ρ, so we set τ = 6. Initial estimations

indicated that a precise match of the means and standard deviations of consumption

and dividend growth can enhance the precision of the estimates of µc and µd and

that of the variance-scaling parameters ϕe and ϕd, which prove difficult to estimate.

This match is accomplished by using a diagonal weighting matrix WM
T with values

of 1 on the main diagonal, except for the entries that correspond to the first two

elements of µg and σg, which receive a large weight (104).
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As a benchmark, we also perform a GMM estimation that relies on moment

matches inspired by the studies of Hasseltoft (2012) and Constantinides and Ghosh

(2011). For that purpose we exploit that the population moments of log consumption

and dividend growth implied by the LRR model can be expressed as functions of

the parameter vector ξM . The GMM strategy is based on exact identification using

the seven moments given in Appendix 4.A.2.

Table 4.1 reports the medians and root mean squared errors (RMSEs) of the

first-step indirect inference estimates (Panels A and B) and the GMM estimates

(Panel C). Figure 4.2 illustrates the indirect inference results using kernel estimates.

In addition, Appendix 4.A.5 provides a comparison of the two estimation approaches

regarding the precision of model-implied moment matches. The T=100k results

show that the proposed indirect inference estimation strategy is feasible and works

well. Biases and the RMSEs shrink, there are no estimation failures, and the bell-

shaped kernel estimates center closely around the true parameter values. Using σ2

instead of σ2
t when simulating LRR model-implied data does not affect the quality

of the other parameter estimates. Panel B of Table 4.1 shows the results assuming

that ν1 and σw are known. These results do not differ qualitatively from those in

Panel A, which reports the results when σ2
t is predicted by σ2. This conclusion

holds for all simulated sample sizes. The estimation precision is different across

macro parameters. Not surprisingly, the estimates of the parameter ϕe, which scales

the variance of the latent expected growth component xt, and φ, the parameter that

leverages the effect of xt on expected dividend growth, are less precise. However,

compared with the GMM results reported in Panel C, the indirect inference RMSEs

are much smaller. A considerably smaller RMSE is also obtained for the persistence

parameter ρ. Figure 4.3 shows that the distribution of the indirect inference estimate

ρ̂ is much more closely centered around the true value than the GMM counterpart.
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Precise estimation becomes more difficult using smaller sample sizes, as indicated

by the increase in the RMSE and the wider distribution of the estimates around the

true parameters. Efficiency varies across parameters in a similar way as in the

large sample. As could be expected from the 100k results, the critical parameters

ϕe and φ prove most difficult to estimate precisely. However, we do assert that the

optimization of the indirect inference objective function yields reliable results in that

the algorithm converges to the same minimum, independent of the starting values.7

We conclude that the indirect inference strategy is reliable. Using the currently

available sample sizes one should not expect a high estimation precision for some

of the structural parameters, though. We believe that the simulation study draws

a realistic picture of the estimation precision that can be expected in an empirical

study.

4.3.3 Monte Carlo results: preference parameters

Preference parameter estimates ξ̂
P

are obtained by minimizing the objective func-

tion in Equation (4.8) using the second-step auxiliary parameter vector θP in Equa-

tion (4.7) with W P
T = I8.8 To evaluate the performance of the second estimation

step independently of the precision of the first-step input, we first perform the es-

timation of ξP assuming that all macro parameters ξM are known. Panel B in

Table 4.2 reports median, RMSE, and 95% confidence bounds of the resulting pref-

erence parameter estimates. The T=100k study again serves as a check of the

validity of the estimation strategy, which is corroborated by shrinking RMSEs, tight

7 The GMM estimation strategy does not provide such robustness. Varying the starting values
yields different results for smaller samples. Hence we refrain from reporting the GMM results for
the smaller sample sizes.

8 Starting values for the optimization are found by an initial grid search to mimic the rec-
ommended procedure in an empirical application. Again we purposefully avoid starting from the
known true values to prevent the danger of false convergence to a point conveniently near the true
parameters.
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confidence bounds around the true parameters, and the absence of estimation fail-

ures.

It is a noteworthy result that the preference parameters can be efficiently esti-

mated also for the smaller sample sizes. Although the second-step auxiliary model

is simple and easy to estimate, and despite the more complicated data simulation

procedure that requires a model solution, the indirect inference strategy delivers

precise preference parameter estimates.

Moreover, Panel A of Table 4.2 shows that predicting the conditional volatility

σ2
t by its unconditional expectation σ2 does not impair the estimation of ξP . If

the interest lies in estimating the preference parameters, it therefore suffices to

focus on estimating the unconditional volatility σ2. This conclusion is based on

BY’s calibrated model economy but it should also extend beyond it. We are using

unconditional moments of the equity premium and the risk-free rate to estimate the

investor’s subjective time preference, risk aversion, and IES. It is plausible that the

knowledge of the dynamics of conditional volatility does not substantially improve

the precision of the preference parameter estimation.

To assess the efficiency that can be expected when ξM is unknown, we also

estimate ξP based on the first-step estimates of ξM∗ . The results are reported in

Panel C of Table 4.2. The T=100k results corroborate our conjecture that the two-

step estimation strategy is able to recover the true parameters as RMSEs decrease

and confidence bounds narrow, while Figure 4.4 shows that the bell-shaped kernel

estimates center closely around the true values. Compared to the case in which

the macro parameters are known, the (asymptotic) efficiency is inevitably reduced.

For the smaller sample sizes, the subjective discount factor can still be estimated

accurately, whereas the RRA and IES estimates become less precise. Table 4.2

shows that the RMSEs are influenced by some large estimates that produce the
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right-skewed kernel estimates for γ̂ and ψ̂ depicted in Figure 4.4. The mass of the

distributions remains centered around the true values, though.

Overall, the Monte Carlo study shows that the second-step auxiliary model is

suitable for estimating the preference parameters. Yet, the results also emphasize

the importance of precise macro parameter estimates as an input for the second

estimation step.

4.4 Data

The empirical application of the two-step estimation strategy is based on quar-

terly U.S. data from 1947Q2 to 2014Q4. The construction of the data base follows

closely Beeler and Campbell (2012). Consumption growth is computed from real

personal consumption per capita of non-durable goods and services obtained from

the Bureau of Economic Analysis. The market portfolio return, dividend growth,

and the price-dividend ratio are calculated for the CRSP value-weighted market

portfolio. Conversions into real terms are performed using the consumer price index

obtained from the Bureau of Labor Statistics. For the calculation of the risk-free

rate proxy, we use the three-month nominal T-bill yield from the CRSP database.

Following Beeler and Campbell (2012), we approximate the ex-ante risk-free rate

by using a forecast for the ex-post real rate, where the predictors are the quarterly

T-bill yield and the average of quarterly log inflation across the past year. Figure 4.5

shows time series plots of the data.

Dividend payments occur irregularly, such that the quarterly dividend growth

series depicted in Panel (b) of Figure 4.5 is quite erratic.9 The time series exhibits

9 Dividend growth is less volatile at the annual frequency, but in that case the number of
observations is small. For example, Constantinides and Ghosh (2011) base their econometric
analyses of the LRR model on 79 annual observations.
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a strong, negative first-order autocorrelation that cannot be accounted for by the

dividend growth process in Equation (2.3). We deal with this problem by following

Hasseltoft (2012) in taking the average of the current period’s log dividend growth

and that of the previous three quarters to obtain the smoothed dividend growth

series in Panel (d) of Figure 4.5. Descriptive statistics of the variables used in the

empirical application are provided in Table 4.3.

4.5 Empirical Results

To apply the two-step indirect inference estimation strategy to these data we fol-

low BY and assume a monthly decision frequency. Time aggregation of the simu-

lated monthly data to the quarterly frequency of the empirical data is performed

as described in Section 4.2.1 and the auxiliary models are set up as described in

Sections 4.2.2 and 4.2.3. As supported by the results of the Monte Carlo study, we

replace σ2
t by σ2 = E(σ2

t ) when generating LRR model-implied data. We include

annual and triannual aggregates in the HAR model in Equation (4.1) by setting

h1=4 and h2=12, and we use S=100k to mitigate simulation inaccuracy. Apart

from that, the specification of the auxiliary models is the same as in the simulation

study. Table 4.4 reports the parameter point estimates along with the bounds of

the 95% bootstrap confidence intervals.10

Table 4.4 shows that the estimates of the macro parameters are consistent with

the LRR paradigm in that they corroborate the existence of a small persistent

growth component. The lower bound of the 95% confidence interval for ϕ̂e is dis-

tinctly greater than zero (ϕe = 0 would imply i.i.d. growth processes), and the 95%

confidence interval for the difference ρ̂ − ϕ̂e does not include zero (ϕe = ρ would

10 The selection criteria for successful bootstrap replications that are included in the calculation
of the confidence bounds are the same as for the simulation study.
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imply an AR(1) consumption growth process). The estimate ρ̂ = 0.991 indicates

a strong persistence of growth expectations. With an estimated base volatility of

ϕ̂e · σ̂ ·
√

12=0.053%, the growth component is indeed small when compared to the

estimated base volatility of consumption growth innovations, σ̂ ·
√

12=0.83%, and

when compared to the estimated base volatility of dividend growth innovations,

ϕ̂d · σ̂ ·
√

12=2.54%.

Moreover, the estimate φ̂ = 5.14 indicates that the effect of expected consump-

tion growth on dividend growth is leveraged, as conjectured. The estimates µ̂c and

µ̂d imply plausible mean growth rates of 2.0% p.a. and 2.3% p.a. for consumption

and dividends, respectively. We assert that these estimates are robust in that we

obtain the same values and the same minimum of the first-step indirect inference

objective function for very different starting values. The first-stage estimation prob-

lem is well-defined and we are confident that the reported estimates represent the

global minimum of the objective function. The same result holds for the estimates

from each bootstrap replication.

The estimation precision reflected in the bootstrap confidence intervals and its

variation across parameters corresponds to the Monte Carlo results. While the 95%

confidence bands contain plausible parameter values, one may consider the intervals

to be rather wide. However, we believe that they provide a realistic view on the

estimation precision, given the small sample size and the intricate properties of the

estimated stochastic processes. Shephard and Harvey (1990) note that it is very dif-

ficult to distinguish between a purely i.i.d. process and one that incorporates a small

persistent component. Bansal, Gallant, and Tauchen (2007a, henceforth BGT), who

estimate the LRR model by EMM, discuss identification issues that entail the neces-

sity to calibrate several time series parameters. In the light of these results, it is quite

remarkable that some econometric studies have reported very precise estimates of all
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LRR macro parameters. These papers propose LRR model extensions that contain

even more structural parameters, yet they employ estimation methods that are less

sophisticated than the EMM estimation strategy applied by BGT. Identification of

such nonlinear models is difficult to ascertain, and convergence to a local optimum

of the objective function can easily be overlooked. The asymptotic inference that is

often applied requires that the neighborhood of the estimates is well-defined, which

may well be the case at a local optimum, and which consequently yields favorably

small parameter standard errors.

The estimation precision for the macro parameters is unlikely to be improved

by exploiting the LRR model’s asset pricing implications. Consumption and divi-

dend growth are exogenous processes that are independent of investor preferences.

Accordingly, only the model-implied asset pricing relations should help to estimate

the investor preference parameters, the first-step auxiliary model is not useful for

that purpose. The second-step auxiliary model must accomplish the difficult task

of disentangling risk aversion from intertemporal substitution and it does not seem

prudent to burden it with the additional task of identifying parameters of an intri-

cate vector stochastic process. Asset pricing relationships inevitably interfere with

the estimation of the macro parameters in any one-step estimation strategy, and

there is evidence that such an entanglement hampers the econometric analysis of

the LRR model.

The second-step estimate for the subjective discount factor results in positive

time preferences (δ̂ = 0.99998), and the estimate of the RRA coefficient implies

reasonable risk preferences (γ̂ = 11.8). These point estimates are comparable to the

calibrated values in Table 2.1 and the estimation precision corresponds to what could

be expected from the Monte Carlo study. The 95% confidence interval is narrow for

δ̂ and wide for γ̂. As can be seen from Table 4.5, the estimates are also comparable to
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those obtained by BGT, who report a narrower confidence band for the risk aversion

coefficient. However, BGT resort to calibrating the third preference parameter,

the intertemporal elasticity of substitution, because of identification problems. In

particular, they report that the EMM objective function is flat in ψ, and therefore,

instead of estimating the IES, they calibrate ψ = 2, which is a crucial choice. As

noted by BY, the ability of the LRR model to account for the large equity premium

and relatively small risk-free rate hinges on an IES larger than 1.

Table 4.4 shows that our IES point estimate is smaller than 1 (ψ̂ = 0.29), al-

though the 95% confidence interval includes values larger than 1 as well. Our IES

estimate is comparable to that reported by Calvet and Czellar (2015) who also

estimate all three preference parameters of the LRR model (see Table 4.5).11

While there is an ongoing debate about whether a plausible IES should be smaller

or larger than 1, empirical estimates tend to be quite small (cf. the results by Yogo

(2006) reported in Table 4.5). As noted by Beeler and Campbell (2012), an estimate

of the IES can be obtained from the slope of a regression of log consumption growth

on the log risk-free rate and a constant. Using our empirical data, the OLS estimate

amounts to ψ̂OLS = 0.23, which is comparable to the indirect inference estimate

but considerably smaller than the calibrated IES. To provide evidence that the OLS

approach yields a reasonable IES estimate, we run the regression on simulated LRR

model data, for which we use BY’s calibration as true parameter values. Based on

a sample size of T=100k, we obtain ψ̂OLS = 1.446 on a monthly level, and ψ̂OLS =

1.443 for quarterly aggregates. Both estimates are close to the true parameter value

ψ = 1.5.

11 We note that some of the estimation results reported by Calvet and Czellar (2015) are not
unanimously favorable for the LRR model. Besides some implausible macro parameter estimates
like negative expected dividend growth, Table 4.5 shows that their estimates imply negative time
preferences and a very high risk aversion.
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While the point estimates of the macro parameters support the LRR paradigm,

as we find that consumption growth indeed features a small, highly persistent com-

ponent, the evidence regarding the asset pricing implications of the LRR model

is less conclusive. Even though our estimated confidence band for ψ̂ includes also

values greater than 1, our point estimate is rather small. With ψ < 1, the LRR

model no longer produces the desired asset pricing implications. As Table 4.5 shows,

some results reported in previous literature are more favorable for the LRR model

paradigm in that the reported IES are greater than 1. However, some of those val-

ues are conveniently calibrated, whereas others result from one-step GMM or SMM

estimation attempts that should be considered with caution, as argued previously.

It is unlikely that the identification problems addressed by BGT can be resolved by

replacing efficient moment matches by ad hoc choices.

In line with the results obtained in the simulation study, our estimates have

rather wide confidence bounds. The low estimation precision is likewise reflected

by the implications of the estimates regarding the essential moments characterizing

the LRR model variables. Table 4.6 compares the means and standard deviations of

the empirical data to their counterparts implied by the point estimates reported in

Table 4.4. To illustrate the precision of the moments, the related LRR model-implied

distributions of the means and standard deviations resulting from the bootstrap

distributions are also included. While the moments of the growth rates g and gd

are matched precisely, certain moments of the financial data differ notably from the

LRR model implications entailed by the point estimates. This discrepancy must be

attributed to the two-step estimation, in which the first-step parameter estimates

for the macro dynamics pre-determine key features of the financial variables due to

the LRR model structure. The wide range of quantiles of the LRR model-implied

moments fits into the general picture in that any econometric analysis must be
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based on a relatively small number of time series observations, which inevitably

limits estimation precision. The 95% confidence interval for the RRA estimate γ̂

ranges from 2.2 to 110.3, the confidence interval for ψ̂ encompasses values between

0.22 and 1.20. Table 4.5 shows that the EMM approach by BGT enhances the

estimation precision for the RRA coefficient, however, the advantage comes at the

cost of having to calibrate the IES. We conclude that both our Monte Carlo study

and our empirical application draw a realistic picture of the efficiency that can be

attained when estimating the parameters of the LRR model based on the currently

available data.

4.6 Conclusion

Asset pricing with long-run consumption risk has become an important paradigm

in financial economics, but the estimation of the parameters of the LRR model is

challenging due to its intricate macroeconomic growth processes and asset pricing

properties. LRR model-implied data can be simulated, so that provided an appro-

priate auxiliary model is available, indirect inference estimation presents itself as an

obvious econometric strategy. However, the attempt to simultaneously estimate the

parameters that govern the model’s consumption and dividend growth processes and

those that describe investor preferences entails problems. BGT resort to calibrating

several model parameters, among them the all-important intertemporal elasticity of

substitution, as a result of identification problems.

This chapter proposes a two-step indirect inference estimation strategy that em-

ploys two separate, customized auxiliary models. It exploits the recursive nature

of the LRR model, in which dividend and consumption growth processes determine

the model-implied asset pricing relations but not vice versa. The first-step auxil-
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iary model therefore focuses on estimating the parameters that describe the time

series properties of the observable and latent macroeconomic growth processes. The

second-step auxiliary model is designed to identify the three dimensions of investor

preferences: subjective time preference, propensity for intertemporal substitution,

and risk aversion, taking the first-step estimates as given. A bootstrap procedure is

used to assess the estimation precision.

The discussion provided by BGT indicates that identification issues should be a

major concern for any econometric analysis of the LRR model. Formal checks of the

conditions for consistency are unavailable and Monte Carlo studies that explore the

validity and efficiency of the various estimation strategies are scarce. However, such

an analysis is an important reality check. Some recent contributions that rely on

GMM or SMM report remarkably precise estimates of the complete set of LRR model

parameters. Given the unresolved identification problems, this is a counterintuitive

result, in particular since BGT employ the efficient method of moments that should

be superior to any GMM/SMM estimation strategy.

Our Monte Carlo study ascertains that the two-step indirect inference approach

yields reliable results and it documents the efficiency that can be expected using

empirically available sample sizes. Moreover, it shows that using an auxiliary model

that captures the LRR model’s asset pricing implications, the investor preference

parameters can be efficiently estimated, provided that accurate estimates of the

macro parameters are available. The parameters of the stochastic volatility process

prove difficult to estimate, and instead of relying on estimates of weakly identified

SV parameters, we propose to estimate the conditional volatility σ2
t by its uncondi-

tional expected value. The simulation study shows that concentrating out stochastic

volatility in this way does not hamper the estimation of the other model parameters.
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The empirical application contributes to literature that investigates whether mea-

surement or specification of consumption growth is responsible for the apparent em-

pirical failure of the consumption-based asset pricing paradigm (prominent examples

are Parker and Julliard, 2005; Yogo, 2006; Savov, 2011). In that vein, the LRR ap-

proach assumes that consumption growth is not an i.i.d. process, but that there

exists a small persistent growth component that matters for long-horizon investors.

Calibrations show that when accounting for such a predictable growth component,

the data generated from a suitably parametrized LRR model can replicate some key

properties of the data. Our econometric analysis investigates what model parameter

values are compatible with the empirical data, recognizing limits of identification

and the information content of a small sample.

In our empirical application, we do find support of the LRR paradigm, in par-

ticular there is evidence for the existence of a small persistent growth component,

a plausible and precisely estimated subjective time preference parameter, and a

reasonable point estimate of the risk aversion coefficient. A point estimate of the

intertemporal elasticity of substitution below unity is a less favorable result, though.

The IES is usually calibrated to values greater than 1, as the ability of the LRR

model to explain the prominent asset pricing puzzles requires that the substitution

effect dominates the income effect, which in turn requires a large IES. The estima-

tion precision is in line with the Monte Carlo study results. The available data series

are relatively short, which entails wide confidence bounds. The confidence interval

for the IES does include values greater than 1, so the LRR paradigm can still be

considered as compatible with the data. The evidence in favor of the LRR approach

is, however, not as conclusive as implicated by some previous studies.

Our Monte Carlo study shows that when high-quality macro parameter input is

available, the preference parameters can be efficiently estimated, even for smaller
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samples. It is rather the first estimation step, in particular the estimation of the

parameters of the latent growth process, for which it would be desirable to enhance

estimation precision, which should in turn increase the efficiency of the preference

parameter estimation. We thus conclude that efforts to improve the accuracy of the

preference parameter estimates—which are, from an economic point of view, the

most interesting ones—should focus on increasing the estimation precision of the

macroeconomic parameters of the LRR model.
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4.A Appendix

4.A.1 Time aggregation of LRR processes

The formulas for the time aggregation of the LRR model variables over h periods

provided by Calvet and Czellar (2015) are as follows:

g
(f(h))
t = ln

∑th
i=(t−1)h+1 exp

[∑i
j=(t−1)h+1 g

(b)
j

]
1 +

∑(t−1)h
i=(t−2)h+2 exp

[
−
∑(t−1)h

j=i g
(b)
j

] , (4.13)

g
(f(h))
d,t = ln

∑th
i=(t−1)h+1 exp

[∑i
j=(t−1)h+1 g

(b)
d,j

]
1 +

∑(t−1)h
i=(t−2)h+2 exp

[
−
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(b)
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 i∑
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g
(b)
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 , (4.15)

r
(f(h))
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th∑
i=(t−1)h+1

r
(b)
m,i, (4.16)

r
(f(h))
f,t =

th∑
i=(t−1)h+1

r
(b)
f,i . (4.17)

4.A.2 Theoretical moments of log consumption and

dividend growth

The LRR model implies the following theoretical moments, which are matched with

their empirical counterparts to obtain GMM estimates of ξM∗ as an alternative to

the first-step indirect inference estimation:

E(gt) = µc, (4.18)

E(gd,t) = µd, (4.19)
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E(g2
t ) = µ2

c +
ϕ2
eσ

2

1− ρ2
+ σ2, (4.20)

E(g2
d,t) = µ2

d + φ2 ϕ
2
eσ

2

1− ρ2
+ ϕ2

dσ
2, (4.21)

E(gd,tgt) = µcµd + φ
ϕ2
eσ

2

1− ρ2
, (4.22)

E(gt+1gt) = µ2
c + ρ

ϕ2
eσ

2

1− ρ2
, (4.23)

E(gt+2gt) = µ2
c + ρ2 ϕ

2
eσ

2

1− ρ2
. (4.24)

4.A.3 Identification of the IES in the second-step

auxiliary model

The expression for the log risk-free rate in Equation (2.20) can be written as:

rf,t = A0,f + A1,fxt + A2,fσ
2
t , (4.25)

where A0,f collects all terms of the right-hand side of Equation (2.20) that do not

depend on either of the two state variables, A1,f collects all terms related to xt, and

A2,f collects all terms of Equation (2.20) that depend on σ2
t . It can be shown that

A0,f and A2,f depend on all three preference parameters, while A1,f depends only

on ψ:

A1,f =

[
1− θ +

θ

ψ
− (1− θ)A1(1− κ1ρ)

]
=

[
1− θ +

θ

ψ
− (1− θ)(1− 1

ψ
)

]
=

1

ψ
.

(4.26)

Using the expression for zm,t in Equation (2.13), the contemporaneous covariance of

zm,t and rf,t is given by:

Cov(zm,t, rf,t) = A1,mA1,fVar(xt) + A2,mA2,fVar(σ2
t ), (4.27)
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where A1,m is given in Equation (2.18), and A2,m is given in Equation (2.19). Equa-

tion (2.18) shows that of the three preference parameters only ψ affects A1,m.

For economically plausible parameter values, such as the BY calibration, the

expression for Var(xt) is several orders of magnitude larger than Var(σ2
t ). Hence,

the covariance of zm,t and rf,t is dominated by the term A1,mA1,fVar(xt), which only

depends on ψ but not on δ and γ. The influence of the subjective discount factor and

the RRA coefficient on the covariance of zm,t and rf,t is negligible. The identification

of the IES is thus facilitated by the slope parameter of a contemporaneous regression

of zm,t on rf,t, which is thus included in the second-step auxiliary parameter vector.

4.A.4 A HARCH approach for SV estimation: Discussion

It is obvious that the persistence ν1 and the volatility σw of the stochastic variance

process are not well represented by the HAR model specified in Section 4.2.2. The

properties of the SV process could be better accounted for by a separate autoregres-

sive model that captures those features of the SV process. We try to estimate the

SV parameters together with the remainder of the macro parameters by extending

the macro auxiliary model by an ARCH-type model that captures the autoregressive

pattern in the squared residuals ζ2
t of the HAR model in Equation (4.1).

In the spirit of the HAR model, we construct a heterogeneous autoregressive

conditional heteroscedasticity (HARCH) model, in which the squared residuals of

the HAR regression are modeled as functions of their own lags and their aggregates

in order to capture the persistence in the squared residuals in a parsimonious way:

ζ2
1,t

ζ2
2,t

 =

a1

a2

+
τ∑
ι=1

ΨιL
ι

ζ2(b)
1,t

ζ
2(b)
1,t

+ Ψτ+1

ζ2(f(h1))
1,t−1

ζ
2(f(h1))
1,t−1

+ Ψτ+2

ζ2(f(h2))
1,t−1

ζ
2(f(h2))
1,t−1

+

ε1,t
ε2,t

 .
(4.28)
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For the identification of the volatility of volatility parameter σw, we complement

the parameters of the HARCH model by the covariance matrix Σε of the HARCH

model residuals εt = (ε1,t, ε2,t)
′. These additional parameters are then, jointly with

the means and standard deviations of the aggregates, added to the auxiliary model

parameter vector for the macro parameter estimation. The full macro auxiliary

model parameter vector thus reads:

θM = (c1, c2, vec(Φ1)′, . . . , vec(Φτ+2)′, vec(Σζ)
′,µg

′,σg
′,

a1, a2, vec(Ψ1)′, . . . , vec(Ψτ+2)′, vec(Σε)
′,µζ2

′,σζ2
′)′. (4.29)

We use a large sample size, T=10k, to find out whether this extended auxiliary

model can identify all macro parameters ξM=(µc, µd, ρ, ϕe, ν1, σw, σ, φ, ϕd)
′. How-

ever, we observe a strong starting value-dependence in the parameter estimates for

ν1 and, in particular, for σw. Including these parameters in the estimation process,

using the extended auxiliary model, even renders impossible a reliable estimation

of the other parameters. This leads us to the conclusion that the additional infor-

mation that is supposed to identify the SV parameters rather introduces noise into

the auxiliary model, which not only leads to starting value-dependent results for the

newly added parameters ν1 and σw but also for the other parameters.

It is intuitively clear that the coefficients of the lagged squared residuals should

contain information about ν1 and that the covariance matrix of the resulting resid-

uals should contain information about σw. However, our results suggest that the

information in the squared residuals is dominated by the unobserved shocks to con-

sumption and dividend growth ηt+1 and ut+1, which are much larger than σt. Put

differently, the signal-to-noise ratio in the conditional volatility is too low and there-

fore we cannot extract sufficient information about the SV parameters from the
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HAR model residuals. We used several variations of the auxiliary model, excluding

the aggregates, excluding their means and standard deviations, however, this did

not change the results.

Therefore, we rely on the approach of estimating the time-varying σ2
t by its

unconditional mean E(σ2
t ) = σ2. The results in Tables 4.1 and 4.2 show that this

replacement hardly changes the estimation results for the remainder of the LRR

model parameters, both in the macro parameter estimation and in the preference

parameter estimation.

4.A.5 Moment matches for GMM and indirect inference

estimation

We use GMM estimation as a benchmark for our HAR model approach, because

moment-based estimation is a standard method applied in other empirical studies,

e.g. by Constantinides and Ghosh (2011), Bansal et al. (2012b), and, with simulated

moments, by Hasseltoft (2012). The difference in the quality of the parameter

estimates is assessed and illustrated in Table 4.1 and Figure 4.3. In addition, we

compare the stylized facts of the data to the model-implied stylized facts.

To conduct this comparison for the Monte Carlo study, we compare the true

moment vector implied by the true parameter values (as calibrated by Bansal and

Yaron, 2004) to the distributions of moments implied by the 400 estimated parameter

sets obtained from the GMM approach and the indirect inference estimation in

the Monte Carlo study. Panel A of Table 4.7 shows the comparison between the

true moment vector and the distribution of the moments (2.5%, 50%, and 97.5%

quantiles) implied by the GMM estimates, whereas in Panel B the true moment

vector is compared to the distribution of moments according to the HAR-based
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indirect inference estimation. As a goodness-of-fit measure, we additionally compute

the RMSE between the estimated moments and the true moment values.

The results clearly reflect the properties of the different estimation approaches.

In the GMM approach, 7 moments (E(g), E(gd), E(g2), E(g2
d), E(g · gd), E(gt · gt−1),

E(gt · gt−2)) are exactly matched to estimate 7 parameters. Given that the sample

size used is T=10k, we should expect the data moments to be reasonably close to

the theoretical values. Therefore, the estimates from this approach should imply

values very close to the moment values resulting from the true parameters for the 7

moments used in the GMM estimation. As a consequence, it is not surprising that

for the first 5 moments in Table 4.7—which are among the 7 moments used in the

GMM approach—the GMM estimation results imply a closer moment match (both

in terms of median and extreme quantiles) than the indirect inference estimation.

By contrast, the GMM estimation procedure does not account well for the slow-

moving long-run risk component. The autocorrelation structure of consumption and

dividend growth is much better accounted for in the indirect inference estimation,

in which the auxiliary model is designed to capture the persistence of the latent

growth process. This is reflected in the closer match between the auto-moments

of consumption and dividend growth implied by the true parameters and the HAR

model, whereas the values of the auto-moments in the GMM approach are too small

with wide upper and lower bounds. To obtain precise estimates of the parameters

that determine the defining feature of the LRR model, the indirect inference ap-

proach based on a HAR auxiliary model is thus more suitable than the standard

GMM benchmark.

Comparing the RMSEs, we find that the HAR model performs relatively similar

to the GMM estimation regarding the first and second moments, where the GMM

approach yields slightly smaller RMSEs. However, for the autocorrelation structure,
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in particular for dividend growth, the moments implied by the indirect inference

estimates have a clearly better fit compared to the GMM approach. This is mainly

due to the difference in estimation quality of ρ and φ, which is pronounced, as can

be seen from Table 4.1.
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Table 4.1: Monte Carlo results: first-step estimates.
The table reports the medians (in italics) and the RMSE (normal font) of the first-step macro
parameter estimates obtained in the Monte Carlo study. The last column contains the number of
successfully estimated replications R̃.

µc µd ρ ϕe σ φ ϕd R̃

true values 0.0015 0.0015 0.979 0.044 0.0078 3 4.5

Panel A: Indirect inference, σ2
t predicted by σ2

T=275 0.0016 0.0023 0.946 0.0745 0.0075 3.38 4.57 245

0.0013 0.0034 0.265 0.1198 0.0013 3.07 1.95

T=1k 0.0015 0.0018 0.965 0.0555 0.0080 2.97 4.36 348

0.0006 0.0017 0.218 0.0642 0.0005 1.85 0.24

T=100k 0.0015 0.0015 0.980 0.0430 0.0078 2.95 4.50 400

0.0001 0.0002 0.004 0.0046 0.0000 0.17 0.02

Panel B: Indirect inference, ν1 and σw known

T=275 0.0016 0.0023 0.938 0.0736 0.0076 3.45 4.54 252

0.0012 0.0034 0.328 0.1176 0.0015 3.69 1.06

T=1k 0.0015 0.0017 0.967 0.0496 0.0079 3.00 4.33 347

0.0006 0.0016 0.274 0.0696 0.0005 2.48 0.27

T=100k 0.0015 0.0015 0.981 0.0429 0.0078 2.94 4.50 400

0.0001 0.0002 0.004 0.0046 0.0000 0.17 0.02

Panel C: GMM

T=100k 0.0015 0.0015 0.958 0.0620 0.0078 2.83 4.51 397

0.0001 0.0002 0.110 0.0559 0.0000 1.62 0.04
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Table 4.2: Monte Carlo results: second-step estimates.
The table reports medians (in italics) and RMSE (normal font) along with the 95% confidence
bounds (in brackets), of the second-step indirect inference parameter estimates obtained in the
Monte Carlo study. R̃ denotes the number of successfully estimated replications.

Panel A Panel B Panel C

ξM∗ known ξM known ξM∗ estimated

δ=0.998

T=275 0.9979 0.0005 0.9979 0.0005 0.9973 0.0017
[0.9969 0.9987] [0.9969 0.9987] [0.9938 1.0004]

T=1k 0.9980 0.0002 0.9980 0.0002 0.9975 0.0015
[0.9975 0.9984] [0.9976 0.9985] [0.9945 0.9998]

T=100k 0.9980 0.0000 0.9980 0.0000 0.9980 0.0002
[0.9979 0.9980] [0.9980 0.9980] [0.9977 0.9984]

γ=10

T=275 9.7 2.0 9.5 1.9 13.4 19.8
[5.6 13.7] [5.6 12.9] [3.5 72.9]

T=1k 10.5 1.2 10.2 1.0 12.8 14.5
[8.3 12.6] [8.2 11.9] [5.7 55.4]

T=100k 10.3 0.3 10.0 0.1 10.0 1.1
[10.1 10.6] [9.8 10.2] [8.3 12.5]

ψ=1.5

T=275 1.50 0.02 1.50 0.02 2.18 3.71
[1.46 1.55] [1.46 1.55] [0.42 11.36]

T=1k 1.51 0.02 1.51 0.02 2.12 2.68
[1.48 1.54] [1.48 1.54] [0.86 10.65]

T=100k 1.51 0.01 1.51 0.01 1.48 0.16
[1.51 1.51] [1.51 1.51] [1.20 1.85]

R̃

T=275 400 400 169

T=1k 400 400 284

T=100k 400 400 400
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Table 4.3: Data descriptives.
The table reports descriptives of the empirical data. The data are sampled at a quarterly frequency
and range from 1947Q2 to 2014Q4. AC(1) is the first-order autocorrelation. A four-quarter moving
average of the raw log dividend growth time series is used to obtain gd.

mean std. dev. AC(1)

log consumption growth g 0.0048 0.0051 0.3116

log dividend growth gd 0.0066 0.0247 0.4443

log market return rm 0.0176 0.0825 0.0840

log risk-free rate rf 0.0017 0.0045 0.9138

log price-dividend ratio zm 3.4979 0.4217 0.9804

Table 4.4: Estimation results from the empirical application.
The table reports two-step indirect inference estimates obtained from the empirical data along with
upper and lower bootstrap 95% confidence bounds obtained by the percentile method.

µc µd ρ ϕe σ φ ϕd δ γ ψ

estimate 0.0017 0.0019 0.991 0.0643 0.0024 5.14 3.06 0.99998 11.8 0.29

lower b. 0.0011 0.0000 0.757 0.0220 0.0002 2.72 1.68 0.98399 2.2 0.22

upper b. 0.0033 0.0088 1.000 0.2687 0.0029 8.96 16.29 1.00036 110.3 1.20
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Table 4.5: Comparison of preference parameter estimates.
The table reports point estimates of the preference parameters and the bounds of the 95% confi-
dence intervals (in brackets). The two-step indirect inference results are compared with the results
reported in the studies by Yogo (2006), Bansal, Gallant, and Tauchen (2007a) (BGT), Constan-
tinides and Ghosh (2011) (CG), Hasseltoft (2012), Bansal, Kiku, and Yaron (2012b) (BKY), Calvet
and Czellar (2015) (CC), and with the calibrated values chosen by Bansal and Yaron (2004) (BY).
Calibrated parameters are indicated by (c). The confidence bounds for the other studies are com-
puted using the reported standard errors. Sample size and data frequency are given in the last
column.

δ̂ γ̂ ψ̂ T/Freq.

Two-step ind. inference 0.99998 11.8 0.29 271/Q

[0.98399 1.00036] [2.2 110.3] [0.22 1.20]

Yogo (2006) 0.9000 191.4 0.024 204/Q

[0.7922 1.0078] [93.7 289.2] [0.006 0.042]

BGT (2007) 0.9996 7.1 2 73/Y

[0.9989 1.0002] [-0.3 14.6] (c)

CG (2011) 0.968 9.3 1.41 79/Y

[0.8563 1.0797] [-0.1 18.8] [-4.35 7.17]

Hasseltoft (2012) 0.9992 6.8 2.51 223/Q

(c) [3.6 9.9] [1.06 3.96]

BKY (2012) 0.9989 7.4 2.05 80/Y

[0.9969 1.0009] [4.4 10.5] [0.40 3.70]

CC (2015) 1.0081 27.1 0.20 247/Q

[1.0034 1.0129] n.a. [0.04 0.36]

BY (2004) 0.9980 10 1.5 70/Y

(c) (c) (c)
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Table 4.6: Implications of the empirical parameter estimates and their distri-
butions.
The table reports means and standard deviations of the observable LRR model variables g, gd,
zm, rm, and rf implied by the point estimates obtained in the empirical application and the cor-
responding bootstrap distribution. The first column contains the means and standard deviations
of the empirical data for comparison. All quantities computed relate to a quarterly frequency.
Since the time-aggregation of the moments of interest is non-trivial, the parameter estimates are
used to simulate LRR model-implied data for 106 months that are subsequently aggregated to the
quarterly level before computing estimates of the respective moments.

data model model-implied quantiles

0.005 0.025 0.5 0.975 0.995

E(g) 0.0048 0.0050 0.0003 0.0043 0.0071 0.0186 0.0266

E(gd) 0.0066 0.0056 0.0000 0.0000 0.0097 0.0436 0.0810

E(zm) 3.4979 3.6305 2.2770 2.8461 3.3585 3.6370 5.3209

E(rm) 0.0176 0.0322 0.0283 0.0363 0.0451 0.0927 0.1184

E(rf ) 0.0017 0.0262 0.0243 0.0296 0.0395 0.0890 0.1156

σ(g) 0.0051 0.0049 0.0008 0.0036 0.0056 0.0101 0.0145

σ(gd) 0.0247 0.0208 0.0159 0.0175 0.0234 0.0382 0.0553

σ(zm) 0.4217 0.1153 0.0105 0.0202 0.1061 0.2303 1.2759

σ(rm) 0.0825 0.0315 0.0164 0.0177 0.0283 0.0473 0.1146

σ(rf ) 0.0045 0.0120 0.0000 0.0022 0.0142 0.0308 0.0456
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Table 4.7: Comparison between macro moments for GMM and HAR estimates.
The table compares the moments implied by the true parameters to the distribution of the moments
implied by the simulation study results for T=10k. Panel A contains the moments for the GMM
results, Panel B uses the results from the indirect inference estimation based on the HAR model.
The first column holds the moment values implied by the true parameters. The subsequent columns
hold the 2.5%, the 50%, and the 97.5% quantiles of the same moments obtained from the parameter
estimates, respectively. The last column holds the RMSE for all moments. All values are scaled
by a factor of 103.

true moment quantiles RMSE

2.5% 50% 97.5%

Panel A: GMM

E(g) 1.5000 1.1831 1.5016 1.8224 0.1670

E(gd) 1.5000 0.3731 1.5781 2.6515 0.5893

E(g2) 0.0659 0.0625 0.0661 0.0702 0.0020

E(g2d) 1.2598 1.1830 1.2611 1.3370 0.0381

E(g · gd) 0.0108 0.0046 0.0109 0.0176 0.0033

E(gt · gt−12) 0.0044 0.0017 0.0038 0.0060 0.0014

E(gt · gt−24) 0.0040 0.0016 0.0032 0.0060 0.0014

E(gt · gt−36) 0.0036 0.0016 0.0029 0.0060 0.0014

E(gt · gt−48) 0.0033 0.0015 0.0028 0.0060 0.0014

E(gt · gt−60) 0.0030 0.0015 0.0028 0.0060 0.0014

E(gd,t · gd,t−12) 0.0220 0.0009 0.0116 0.0667 0.0425

E(gd,t · gd,t−24) 0.0176 0.0007 0.0076 0.0667 0.0415

E(gd,t · gd,t−36) 0.0141 0.0005 0.0059 0.0667 0.0405

E(gd,t · gd,t−48) 0.0115 0.0005 0.0051 0.0667 0.0396

E(gd,t · gd,t−60) 0.0094 0.0004 0.0045 0.0667 0.0388

Panel B: Indirect inference with HAR

E(g) 1.5000 1.2037 1.5296 1.8640 0.1751

E(gd) 1.5000 0.4378 1.6900 2.8173 0.6183

E(g2) 0.0659 0.0626 0.0663 0.0705 0.0020

E(g2d) 1.2598 1.1794 1.2581 1.3337 0.0382

E(g · gd) 0.0108 0.0074 0.0114 0.0175 0.0076

E(gt · gt−12) 0.0044 0.0022 0.0047 0.0064 0.0010

E(gt · gt−24) 0.0040 0.0020 0.0042 0.0060 0.0010

E(gt · gt−36) 0.0036 0.0019 0.0038 0.0058 0.0010

E(gt · gt−48) 0.0033 0.0018 0.0035 0.0056 0.0010

E(gt · gt−60) 0.0030 0.0017 0.0033 0.0055 0.0010

E(gd,t · gd,t−12) 0.0220 0.0042 0.0224 0.0326 0.0067

E(gd,t · gd,t−24) 0.0176 0.0017 0.0179 0.0274 0.0061

E(gd,t · gd,t−36) 0.0141 0.0014 0.0150 0.0247 0.0056

E(gd,t · gd,t−48) 0.0115 0.0012 0.0126 0.0224 0.0053

E(gd,t · gd,t−60) 0.0094 0.0011 0.0105 0.0207 0.0051
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Figure 4.1: Consumption growth and stochastic volatility.
The figure displays simulated data of length T=1k for log consumption growth gt and stochastic
volatility σt using the parameter values given in Table 2.1. The figure also depicts the unconditional
volatility σ =

√
E(σ2

t ).
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Figure 4.2: Monte Carlo results: distribution of first-step indirect inference
estimates.
The figure shows kernel estimates across different simulated sample sizes. The beta kernel proposed
by Chen (1999) is used with the bandwidth selector by Silverman (1986) adjusted for variable
kernels. Vertical lines indicate the positions of the true parameters.
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Figure 4.3: Monte Carlo results: asymptotic efficiency of indirect inference vs.
GMM.
The figure shows kernel estimates of the LRR parameter estimate ρ̂ implied by the indirect inference
estimation strategy and GMM. The sample size is T =100k. The beta kernel proposed by Chen
(1999) is used with the bandwidth selector by Silverman (1986) adjusted for variable kernels. The
vertical line indicates the position of the true parameter.
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Figure 4.4: Monte Carlo results: distribution of second-step indirect inference
estimates.
The figure displays kernel estimates for δ̂, γ̂, and ψ̂ obtained in the second estimation step. The
first-step indirect inference estimates of ξM∗ are taken as given. Vertical lines indicate the positions
of the true parameters.
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Figure 4.5: Empirical data series.
The figure displays the time series used in the empirical application. The sample period is 1947Q2
to 2014Q4.

(a) log consumption growth gt (b) log dividend growth (raw)

(c) log market return rm,t (d) log dividend growth moving avg. gd,t

(e) log risk-free rate rf,t (f) log price-dividend ratio zm,t
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Chapter 5

Filtering-based maximum

likelihood estimation of the

long-run risk model

5.1 Introduction

Previous attempts to estimate the long-run risk model revealed serious methodolog-

ical issues and low estimation precision of the existing econometric approaches, as

discussed in Chapters 3 and 4. The estimation of the stochastic volatility parameters

of the model has proven to be difficult or even impossible. The imprecise estimates

of the representative investor’s preference parameters have been attributed to the

lack of efficiency in the parameter estimates for the macro sub-model. The three-

step estimation strategy suggested in this chapter increases efficiency of the macro

parameter estimates by resorting to asymptotically efficient maximum likelihood es-

timation, a novel approach among the existing econometric analyses of the LRR

model. Despite the presence of latent variables, ML estimation is possible through
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the application of filtering methods. An extensive Monte Carlo study demonstrates

the ability of the estimation approach to identify all structural parameters of the

LRR model, and it illustrates the estimation precision that can be expected in an

empirical application with the presently available sample size. Using monthly U.S.

data from 1947 to 2014, the LRR model is finally estimated for empirical data.

As mentioned in Chapter 2, Bansal and Yaron calibrated the LRR model in

their seminal paper to demonstrate that it can reproduce the stylized facts of post-

war U.S. data, and thereby provides a solution for the notorious asset pricing puzzles

(cf. Mehra and Prescott, 1985; Weil, 1989). Since then, multiple studies have en-

deavored to come up with an estimation strategy that can identify some or all LRR

model parameters. Bansal et al. (2007a) provide the first estimation results for a

cointegrated LRR model variant using the efficient method of moments. However,

key parameters like the intertemporal elasticity of substitution are calibrated. As

detailed in Chapter 2, a number of other studies apply moment-based approaches,

using either analytical or simulated moments (cf. Constantinides and Ghosh, 2011;

Bansal et al., 2012b; Hasseltoft, 2012), while Calvet and Czellar (2015) suggest

an indirect inference estimation approach. Schorfheide, Song, and Yaron (2014)

conduct a Bayesian estimation of an extended LRR model that also uses filtering

methods. They estimate the model at a monthly frequency, but several parameters

are set to fixed values and their choices of prior distributions are somewhat narrow

for important parameters, such as the investor’s risk aversion.

The above estimation approaches employ a wide range of econometric techniques,

yet all attempt to estimate the model in one step. However, the previous chap-

ters have shown that the recursive model structure, consisting of an independent

macroeconomic basis and a representative investor, whose choices are influenced by

the macroeconomy but not vice versa, should be accounted for also in the estimation
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process. A one-step estimation entangles macro data and preference parameter es-

timates, adapting the macroeconomic dynamics such that they best fit the financial

data and the investor’s preferences, instead of keeping the macroeconomy indepen-

dent of the representative agent’s decision making process, as implied by the LRR

model.

The three-step estimation approach follows the idea to adhere to the model

structure also in the estimation process. In a first step, the parameters that deter-

mine the dynamics of the macroeconomy are estimated by a maximum likelihood

approach. The latent variables required for the ML estimation are obtained by

applying a Kalman filter. For that purpose, the LRR macro dynamics are cast in

state-space form. Due to nonlinearities in the innovations, the SV parameters cannot

be identified by a Kalman filter-based approach, which constitutes an optimal linear

filtering method. However, this does not affect the estimation of the remainder of

the parameters, since the use of the Kalman filter does not imply any assumptions

about the stochastic volatility parameters. In the second step, the SV parameters

are estimated by using a particle filter-based maximum likelihood approach. Un-

like the Kalman filter, which is limited to forecasting and updating the conditional

mean only, the particle filter yields an estimate of the conditional distribution of the

filtered process at each point in time. This feature allows to estimate the parame-

ters of the stochastic variance process, which scales the conditional volatility of the

macroeconomy. In the third step, the preference parameters are estimated using the

indirect inference approach suggested in Chapter 4, as a closed-form likelihood func-

tion is not available for the asset pricing model of the LRR model. This approach has

been shown to perform well, given high-quality macro parameter estimates. Overall,

using the Kalman filter within a maximum likelihood approach yields more precise

estimates for the macro parameters than previous comparable moment-based ap-
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proaches. In particular, the use of the particle filter in the second-step estimation

results in excellent estimates for the SV parameters, which have been found to be

difficult to identify in previous studies. For larger samples, the estimation precision

of the preference parameters is also good, while for small samples, the estimates of

the preference parameters have rather wide confidence bounds. In the empirical ap-

plication, the point estimate of the subjective discount factor is close to but below 1,

the IES estimate is greater than 1, and the estimate for the risk aversion lies well

above 10—the upper bound of plausible values, according to Mehra and Prescott

(1985).

The remainder of the chapter is structured as follows. Section 5.2 presents the

LRR macro sub-model in state-space form. In Section 5.3, the three-step estima-

tion approach is explained in detail. Section 5.4 provides evidence of the validity

and feasibility of the estimation strategy by means of a Monte Carlo study. Sec-

tion 5.5 describes the data used in the empirical application, the results of which

are presented in Section 5.6. Section 5.7 concludes.

5.2 LRR macro model in state-space form

The LRR model structure is described in detail in Chapter 2. To apply a maximum

likelihood estimation to the macro sub-model, it is convenient to cast the dynamics

presented in Section 2.2.1 in a state-space representation. The equations of the

financial variables given in Section 2.2.2 remain unchanged.

The LRR macro dynamics comprise two observable growth processes, the con-

ditional means and variances of which are driven by two latent processes. Since

the estimation strategy involves the use of the Kalman filter, it is convenient to

cast the macro sub-model of BY’s LRR model in state-space form. The observation
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vector yt+1 contains log consumption growth gt+1 and log dividend growth gd,t+1,

de-meaned by their respective unconditional means µc and µd, and it is driven by

the state vector αt from the previous period and a contemporaneous vector of inno-

vations ut+1

yt+1 = Hαt + ut+1, (5.1)[
gt+1 − µc
gd,t+1 − µd

]
=

[
1 0

φ 0

][
xt

σ2
t − σ2

]
+

[
σtηt+1

ϕdσtut+1

]
, (5.2)

where ηt+1 and ut+1 are i.i.d. ∼ N(0, 1), respectively, and where

ut+1|t ∼ N(0,Rt+1) with Rt+1 =

[
σ2
t 0

0 ϕ2
dσ

2
t

]
. (5.3)

The latent state vector αt comprises the small, latent growth component, which

constitutes the predictable fraction of consumption and dividend growth, and the

unobserved stochastic variance process σ2
t , de-meaned by its unconditional mean σ2.

The state vector follows an autoregressive process with a vector of contemporaneous

shocks vt

αt = Fαt−1 + vt, (5.4)[
xt

σ2
t − σ2

]
=

[
ρ 0

0 ν1

][
xt−1

σt−1 − σ2

]
+

[
ϕeσt−1et
σwwt

]
, (5.5)

where et and wt are both i.i.d. ∼ N(0, 1), and where

vt|t−1 ∼ N(0,Qt) with Qt =

[
ϕ2
eσ

2
t−1 0

0 σ2
w

]
. (5.6)

This representation permits a compact notation of the Kalman filter equations for

the estimation of the macro parameters in the following section.
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5.3 Econometric methodology

5.3.1 Kalman filtering within a maximum likelihood

framework

The recursive model structure is reflected in the three-step estimation strategy. The

first estimation step focuses on the macroeconomic basis of the LRR model. Es-

timating the macro sub-model with a maximum likelihood approach is supposed

to overcome the previously encountered lack of efficiency in the macro parameter

estimates. However, the LRR macro dynamics are driven by two latent variables,

which precludes the application of standard ML estimation. To estimate the macro

parameters ξM , a technique to extract the latent variables from the observables is

required. The Kalman filter (cf. Kalman, 1960), which provides a minimum mean

squared error estimator for linear Gaussian systems, constitutes such a technique.

The macro sub-model, as presented in Section 5.2, is a Gaussian system and there-

fore in principle permits the application of the Kalman filter. However, the system

is not entirely linear in the parameters due to the multiplicative term in the innova-

tions, where the stochastic volatility is multiplied with the i.i.d. normal shocks and

their volatility-scaling parameters. Using the Kalman filter is nevertheless possible

for this particular model, as derived in Appendix 5.A. The use of the Kalman filter

inevitably entails a loss of information related to the nonlinearity in the LRR model,

of which the repercussions for parameter estimation will be discussed in more detail

in Section 5.3.2.

To allow for a parsimonious notation of the Kalman filter equations, Section 5.2

casts the LRR macro dynamics in state-space representation, consisting of the state

equation that describes the dynamics of the latent variables and the observation

equation that specifies the relationship between the state and the observed vari-
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ables. The Kalman filter algorithm performs sequential linear projections of the

state variables that are subsequently updated using the observations of the follow-

ing period. The prediction step of the Kalman filter for the LRR macro model is

performed by computing

α̂t|t = Fα̂t−1|t (5.7)

Pt|t = FPt−1|tF
′ + Qt (5.8)

ỹt+1 = yt+1 − ŷt+1|t = yt+1 −Hα̂t|t (5.9)

ft+1|t = H Pt|tH
′ + Rt+1,

where yt+1− ŷt+1|t is the mean-zero forecast error committed in the prediction step,

and ft+1|t is its variance.1 The subsequent updating step is given by

α̂t|t+1 = α̂t|t + Kt+1

(
yt+1 − ŷt+1|t

)
(5.10)

Kt+1 = Pt|tH
′ f−1
t+1|t (5.11)

Pt|t+1 = Pt|t −Kt+1H Pt|t. (5.12)

The Kalman filter is initialized with the unconditional mean of the state vector,

α̂0 = (0, 0)′, and the unconditional covariance of the state, P0 = diag
(
ϕ2
e·σ2

1−ρ2 ,
σ2
w

1−ν21

)
.

The joint density of the observations y1,y2, . . . ,yT is given by

p(y1,y2, . . . ,yT ) = p (y1)
T∏
t=2

p (yt|Yt−1) , (5.13)

1 Due to the specific time structure of the LRR model, in which the state enters the observation
equation with a lag of one period, and not contemporaneously, the timing of the usual Kalman
filter equations is also shifted by one period.
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where Yt =
(
y′t,y

′
t−1, . . . ,y

′
1

)
, which implies the conditional density of the forecast

errors ỹt+1 = yt+1 − ŷt+1|t as

p(ỹ2, . . . , ỹT |ỹ1) =
T∏
t=2

p (ỹt|Yt−1) . (5.14)

Consequently, the conditional log likelihood function is obtained as

lnL
(
ξM
)

= −(T − 1) ln(2π)− 1

2

T−1∑
t=1

ln
∣∣ft+1|t

∣∣
− 1

2

T−1∑
t=1

(yt+1 − ŷt+1|t)
′f−1
t+1|t(yt+1 − ŷt+1|t). (5.15)

The parameter estimates are obtained by maximizing the log likelihood function with

respect to the parameters. Compared to the computationally intensive simulation-

based estimation methods that are frequently applied to the LRR model, this is a

rather elegant and both computationally and econometrically efficient way of ob-

taining parameter estimates of the macro sub-model.

5.3.2 Non-linearity and the Kalman filter

A successful application of the Kalman filter requires the observability of the system

to obtain reliable estimates of all latent states. As described by Southall, Buxton,

and Marchant (1998), the dynamic system is observable if a finite number k of

observations between two points in time t1 and tk suffices to recover the initial

condition of the state at t0. Formally, observability is established if the row rank of

the observability matrix O = (H′,F′H′)′ corresponds to the number of states in the

system (cf. e.g. Tangirala, 2014). However, due to the structure of the LRR model,

rk(O) = 1, and thus the system is not observable. The latent stochastic variance

process is an unobservable state, as the observation equation does not permit any

144



MAXIMUM LIKELIHOOD ECONOMETRIC METHODOLOGY

conclusions regarding the second state. Since the matrix (F′ − λI,H′)′ is of full

rank for |λ|≥ 1, the system is asymptotically observable and hence the necessary

condition for a consistent estimation of the unobserved state is fulfilled (cf. Sontag,

2013).

The result of the Kalman filtering process described in Section 5.3.1 is indepen-

dent of the parameter values for the SV parameters ν1 and σw, as both the forecast

error and the Kalman gain are unaffected by those parameters. The forecast error

vector ỹt+1 is given by

ỹt+1 =

[
gt+1 − µc − x̂t|t
gd,t+1 − µd − φx̂t|t

]
, (5.16)

where x̂t|t denotes the Kalman-filtered value for xt given Yt, which reveals that the

forecast error ỹt+1 does not depend on the SV parameters. The Kalman gain Kt+1

corresponds to the product of the diagonal matrix Pt|t, H′, and f−1
t+1|t. Since H′ has

a zero lower row, the result of Pt|tH
′, and thereby the Kalman gain, also has a zero

lower row by construction, irrespective of the nature of f−1
t+1|t. Consequently, the

only non-zero entry of Kt+1H Pt|t in Equation (5.12) is the top-left element.

In the updating step, there is no information to be gained from the new ob-

servation yt+1 regarding the second state: updating the filtered value of the state

vector from α̂t|t to α̂t|t+1 according to Equation (5.10) does not involve any change

in the second state, and the update of the covariance matrix of the state from Pt|t

to Pt|t+1 according to Equation (5.12) only affects the top-left element of the covari-

ance matrix. As a consequence, the Kalman filter’s optimal forecast for the second

state inevitably is the unconditional mean of zero. If the Kalman filter is not initial-

ized with the unconditional mean of the state vector, the filtered series for σ2
t − σ2

converges nevertheless to its unconditional mean of zero over time since |ν1|< 1.
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As the structure of the matrix H eliminates the impact of the parameters ν1

and σw in the Kalman filter recursion, the ML estimation does not allow for the

identification of the stochastic volatility parameters ν1 and σw that are notoriously

difficult to estimate.

5.3.3 Maximum likelihood estimation of the SV

parameters

A maximum likelihood estimation of the parameters that define the persistence

and the volatility of the stochastic variance process requires a filter that models

the entire conditional distribution of the state and the observation vectors at every

point in time, since the parameters in question affect the conditional variance of

the observation but not the conditional mean. Sequential Monte Carlo methods,

so-called particle filters, introduced to economics and econometrics research by the

contributions of Kim et al. (1998) and Pitt and Shephard (1999), provide such a series

of conditional distributions. Arulampalam, Maskell, Gordon, and Clapp (2002)

review different versions of the generic particle filter, among them the Sampling

Importance Resampling (SIR) filter, which will be used in this study.

Similar to the Kalman filter, the generic particle filter can also be considered as

a repeated forecasting and updating procedure. Unlike the Kalman filter, particle

filters do not operate on the conditional mean only, but estimate a point-mass rep-

resentation of the conditional distribution. The forecasting step of the particle filter

consists of a draw of N particles from the conditional distribution p(αt|αt−1,Yt).

Since the latent state follows an autoregressive process of order 1, this is equivalent

to drawing from p(αt|αt−1), which is straightforward as the density is known. In

the subsequent resampling step—the analogon to the updating step in the Kalman
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filter—the current observation yt+1 must be incorporated to obtain a particle rep-

resentation of p(αt|Yt+1),

p(αt|Yt+1) ≈
N∑
j=1

w̃jt δ(αt −α
j
t), (5.17)

where δ(·) denotes the Kronecker delta, j is the particle index and w̃jt stands for the

weight of particle j at time t, which is yet to be determined.

The updating step is more involved, as p(α|Yt+1) is unknown. Thus, it is impos-

sible to sample directly from p(αt|Yt+1). However, the idea of importance sampling

allows for a solution. If a function π(αt|Yt+1) ∝ p(αt|Yt+1) can be evaluated and if

it is possible to draw from an importance density q(αt|Yt+1), we can determine the

non-normalized weight wjt ∝
p(αt|Yt+1)
q(αt|Yt+1)

for each particle j = 1, . . . , N as

wjt ∝
π(αt|Yt+1)

q(αt|Yt+1)
. (5.18)

As filtering is a recursive process, it is convenient to rewrite the weight wjt as a

function of wjt−1:

wjt ∝ wjt−1

p(yt+1|αt)p(αt|αt−1)

q(αt|αt−1,Yt+1)
, (5.19)

which is derived in Appendix 5.A.2. Choosing p(αt|αt−1) for q(αt|αt−1,Yt+1) in the

importance density, we arrive at

wjt ∝ wjt−1 p(yt+1|αt). (5.20)

Equation (5.20) allows to determine the weights up to proportionality. The exact

weights w̃jt are obtained by normalizing wjt by
∑N

k=1w
k
t such that

∑N
j=1 w̃

j
t = 1.
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The resulting weights are used to resample the particles, where the probability

to draw particle j at time t corresponds to w̃jt . This is achieved by drawing uniform

random numbers ũj and choosing the corresponding particle i, such that

i−1∑
k=1

w̃jt < ũj ≤
i∑

k=1

w̃jt . (5.21)

The resulting sample of N particles is a point-mass representation of p(αt|Yt+1).

The SIR particle filter is implemented following the pseudo-code of Arulampalam

et al. (2002). The detailed scheme is given in Appendix 5.A.3. A stratified sampling

approach, as suggested by Flury and Shephard (2011), further improves the quality

of the point-mass representation of the density p(αt|Yt+1) without increasing the

number of particles. For that purpose, the draws uj from the uniform distribution

U(0, 1) are evenly redistributed over the interval [0; 1] by using the transformation

ũj =
uj

N
+
j − 1

N
. (5.22)

Since the importance weights are incorporated in the selection of particles after

resampling, the weights for all particles are reset to wjt−1 = w̃jt−1 = 1
N

after moving

on to the next period t. Therefore, the weights at time t are immediately obtained

from

wjt = p(yt+1|αjt). (5.23)

The likelihood function is given by

L(ξM) =
T∏
t=1

p(yt) =
T∏
t=1

(∫
p(yt+1|αt)p(αt)dαt

)
, (5.24)
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which can be approximated by the particle filter estimator

L̂(ξM) =
T−1∏
t=1

(
N∑
j=1

p(yt+1|αjt)p(α
j
t)

)
=

T−1∏
t=1

(
1

N

N∑
j=1

wjt

)
, (5.25)

and the corresponding particle filter estimator of the log likelihood

l̂nL(ξM) =
T−1∑
t=1

ln

(
1

N

N∑
j=1

wjt

)
. (5.26)

5.3.4 A three-step estimation approach

As extensively discussed in Chapters 3 and 4, the estimation of the macro parameters

ξM and the preference parameters ξP should be disentangled to avoid an interfer-

ence of the equilibrium asset pricing implications with the estimation of the macro

parameters, which is inevitable in a one-step estimation. Such an interference would

be at odds with the LRR model structure and, what is more, using the time series

dynamics of gt and gd,t should be more appropriate for the estimation of the param-

eters that drive the macro dynamics. Moreover, the information on the financial

market equilibrium is required for the identification of the preference parameters, in

particular for the intricate disentanglement of the risk aversion γ and the intertem-

poral elasticity of substitution ψ.

Using the Kalman filter-based log likelihood function in Equation (5.15), only a

subset of the macro parameters ξM , ξM∗ = (µc, µd, ρ, ϕe, σ, φ, ϕd)
′, can be estimated,

due to the non-observability of the system, as discussed in Section 5.3.2. Both the

Kalman-filtered series and the likelihood function in Equation (5.15) are independent

of the values of ν1 and σw if the Kalman filter is initialized with the unconditional

means. Thus, ν1 and σw can be set to arbitrary values in the estimation process

since all information regarding the values of these parameters is eliminated in the
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filtering process. This will be verified in the Monte Carlo study in the following

section.

To estimate the SV parameters, a filtering technique based on conditional means

is not sufficient, as ν1 and σw only affect the conditional variance of the observation

vector yt. The particle filter instead provides an estimate of the conditional density

at each point in time t and thereby allows for the identification of the SV parameters.

The second-step estimation of ν1 and σw is hence performed by maximizing the

log likelihood function estimate in Equation (5.26), in which the macro parameter

estimates from the first-step estimation are taken as given.

The challenge in estimating the preference parameters ξP lies in the joint identi-

fication and disentanglement of γ and ψ. The indirect inference estimation described

in Section 4.2.3 yields reliable and precise results given the availability of good macro

parameter estimates. It consists in matching auxiliary model parameters estimated

from simulated financial variables rm, rf , and zm with their empirical counterparts,

where the key auxiliary model parameters for the disentanglement of γ and ψ result

from a regression of zm,t on rf,t and a constant. Beyond that, the auxiliary model is

complemented by means and standard deviations of the aforementioned observable

financial variables of the LRR model.2 This approach will be used for the third-step

estimation of ξP , taking the estimates of ξM obtained from the first and second

estimation step as given.

2 The auxiliary model for the indirect inference estimation of the preference parameters ξP is
described in detail in Section 4.2.3.
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5.4 Monte Carlo study

5.4.1 Monte Carlo setup

To illustrate the performance and the validity of the three-step estimation approach,

LRR model-implied data series of various sample sizes are simulated using BY’s

calibrated parameter values given in Table 2.1. The samples comprise different

numbers of observations T=650, T=1k, 5k, and 10k, ranging from the currently

available sample size to a very large sample to illustrate the asymptotic properties

of the estimation strategy. For each sample size, a set of 400 independent data

series of the observable variables g, gd, rm, rf , and zm is generated. Applying

the estimation approach described in Section 5.3 to the simulated data yields the

approximate distribution of the parameter estimates for the respective sample size.

The calibrated parameter values—and thus also the simulated data—correspond to a

monthly frequency of the representative investor’s investment decision. The smallest

sample of T=650 months, corresponding to 54 years of empirical data, can serve to

gauge the estimation quality of an empirical application: with monthly consumption

data being available from 1959, the results for this sample size can be considered as

a lower bound for the precision that is to be expected for an estimation on empirical

data, assuming that the model describes the true data generating processes well.

When simulating LRR model-implied data, the starting values of the autore-

gressive processes are set to their unconditional means. A burn-in sample of 100

observations is dropped to avoid any starting value dependence of the simulated

series. It is necessary to ensure the non-negativity of the observations for σ2
t , which

is not necessarily the case (cf. Equation (5.4)). This is achieved by setting any

negative values to zero. To simulate data for the financial variables rm, rf , and zm,

the endogenous means z̄ and z̄m are solved for numerically.

151



MONTE CARLO STUDY MAXIMUM LIKELIHOOD

For the estimation, the parameter estimates for µc, µd, ρ, and ν1 are restricted

to lie between 0 and 1, the parameter estimates of ϕe, φ, ϕd, σw are restricted to

positive values. When filtering the unobserved stochastic variance by the Kalman

filter, a constraint to non-negative values is not required since the filtered value for σ2
t

corresponds to the unconditional mean σ2 for all t. For the particle filter, however,

a similar constraint as in the data simulation process is applied: if the filtered value

for the stochastic variance is negative, it is set to a small positive value of 1e−20.

It cannot be set to zero, however, since this would impede the evaluation of the

density p(yt+1|αt) due to a conditional variance of zero for both elements in yt+1.

In the application of the particle filter, the number of particles used corresponds to

N=100k throughout the simulation study.

In the third-step indirect inference estimation, the simulated sample size corre-

sponds to 10T for all T . Model solvability is ensured by a penalty term of size 103 in

the third estimation step, which is added to the objective function value in the case

of an unsolvable model. For the first two estimation steps, a model solution is not

required, since the financial variables that depend on the endogenous parameters

are not involved in the estimation.

5.4.2 Monte Carlo results: macro parameter estimates

In the first estimation step, the macro parameters ξM∗ are estimated for all sim-

ulated samples. For various reasons, it is challenging to estimate the parameters

that determine the macro dynamics. In the BY calibration, g and in particular

gd are rather volatile; therefore, the unconditional means of consumption and div-

idend growth µc and µd cannot be precisely determined when the sample size is

small. The parameter ρ sets the persistence of the latent, autoregressive process xt,

which constitutes the predictable fraction of consumption and dividend growth; it
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is calibrated close to 1 (ρ = 0.979), such that the simulated data for xt are on the

verge of non-stationarity, which exacerbates the estimation. Since the variation in

dividend growth is typically larger than the variation in consumption growth, the

parameter φ that leverages the impact of the latent growth component xt on divi-

dend growth gd,t+1 is set to φ = 3. For the same reason, also the volatility-scaling

parameters ϕe and ϕd are vastly different in size. While ϕe = 0.044, the volatility of

the dividend growth process is inflated by ϕd = 4.5. Since both parameters co-occur

multiplicatively with the lagged stochastic volatility, their values are often challeng-

ing to estimate. In the first-step estimation, the latent process xt is approximated

by the Kalman filtered series, which complicates the estimation of the parameters

that determine xt and its impact on the observable variables gt+1 and gd,t+1.

The estimation results for the macro parameters ξM∗ are reported in Table 5.1.

Panel A displays the medians and root mean squared errors (RMSE) of ξ̂
M∗

result-

ing from the Kalman filter-based ML estimation with ν1 = 0 and σw = 0, while

Panel B displays medians and RMSE for ξ̂
M∗

resulting from the same estimation

approach, except that ν1 and σw are set to their true values. As indicated in Sec-

tion 5.3.4, the results are by construction numerically identical. The last column in

both panels displays the number of successful estimations out of 400 simulated data

sets.3 Overall, the medians are remarkably close to the true values even for a sample

size of T=650, and increasingly so for T=1k, 5k and 10k. For µc ρ, σ, and ϕd the

estimation precision is good for all sample sizes, for µd, ϕe, and φ precise estimates

can only be obtained for the larger samples. The distributions of the parameter

estimates can be analyzed in more detail by means of the kernel density plots in

Figure 5.1. In the case of φ, the rather large RMSE for the small samples are due to

3 Estimations are deemed unsuccessful if the Nelder and Mead (1965) algorithm does not con-
verge, or if one of the parameter estimates deviates by more than a factor of 10 from the true
value.
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only weakly bell-shaped density estimates with additional outliers on the right-hand

side, whereas for a sample size of T=5k or T=10k the kernel density is clearly more

concentrated, and more closely centered around the true value. For ϕe the kernel

densities for T=650 and T=1k are somewhat right-skewed, but also become increas-

ingly precise and symmetric for larger T . The lack of precision of µd is reflected

in an almost flat kernel density for the smallest sample, whereas for larger samples

the distribution becomes more bell-shaped and symmetric. The graph shows that

the estimation approach works in principle, but the high volatility in the dividend

growth series severely exacerbates the estimation for small samples.

Comparing the estimation results in Table 5.1 to results previously obtained

from moment-based approaches or indirect inference estimation reveals considerable

efficiency gains. Comparing medians and RMSE for T=1k to the results from Chap-

ter 4 shows that the ML estimation outperforms the indirect inference approach for

all parameters except φ. The medians of the ML estimates are closer to the true

values, and the deviations are smaller on average. The differences in RMSE are par-

ticularly pronounced for ρ (reduction by 66%), ϕe (38%), and ϕd (38%). Moreover,

the number of successful estimations is clearly higher for the ML approach (397 vs.

348 out of 400), such that the sample selection effect should rather work in favor of

the indirect inference results.

Instead of matching selected moments or auxiliary model parameters, which rep-

resent isolated properties of the joint distribution of the observed series for g and gd,

the Kalman filter-based maximum likelihood approach uses the entire distribution

and allows to take the latent growth process xt into account explicitly. Consequently,

the efficiency gains are particularly high for those parameters that determine the

conditional distribution of xt. Overall, maximizing the log likelihood function from
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Equation (5.15) clearly provides more efficient results than matching a collection of

selected properties of the observed series, in particular for small samples.

5.4.3 Monte Carlo results: SV parameter estimates

In a second step, estimates for the SV parameters can be obtained by maximizing the

log likelihood function estimate in Equation (5.26) using the generic particle filter

according to the implementation scheme in Appendix 5.A.3. The role of the stochas-

tic variance σ2
t in the LRR model is to introduce fluctuating economic uncertainty,

which allows to model higher risk premia in times of high economic uncertainty

and lower risk premia in more moderate periods. The parameter ν1 determines the

persistence of σ2
t , while σw scales its volatility. Similar to ρ, also ν1 is calibrated to

a value close to 1 (ν1 = 0.987), which implies that not only the latent growth pro-

cess xt, but also the latent stochastic variance process σ2
t is close to non-stationarity,

which exacerbates the estimation of the autoregressive parameter ν1. The calibrated

value for the conditional volatility σw is very small (σw=2.3e-06), which implies a

rather slow-moving pattern of σ2
t , given the high persistence implied by the choice of

ν1. The values chosen by BY imply that the economy tends to remain in its present

state of volatility, meaning that the LRR model can emulate prolonged crisis periods

as well as lasting quiet periods of the economy.

Both SV parameters have proven rather difficult to estimate in previous estima-

tion attempts. As shown in an extensive moment sensitivity study in Chapter 3,

few available moments of observable series are related to ν1 and σw at all. The first

and second (auto-) moments of the observable macro variables do not depend on

the SV parameters by construction. Their fourth moments, used by Constantinides

and Ghosh (2011), only exhibit a very low level of sensitivity to ν1 and σw. Finally,

also the moments of the observable financial variables are rather insensitive to the
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values of the SV parameters, whereas they are highly sensitive to the preference

parameters. Own attempts to develop an estimation strategy for the SV parameters

based on moment matching failed, not only due to a lack of precision but also due a

lack of identification, in particular to identify whether ν1 is close to 1 or close to 0.

Since the particle filter-based likelihood estimate is based on a set of 105 particles,

the maximization of the objective function is rather computationally intensive, in

particular within the framework of a simulation study. Despite the high number

of particles, the estimate of the likelihood function is not perfectly smooth, which

prevents even powerful optimization algorithms from moving freely on the objective

function surface. This issue is resolved by evaluating the objective function along

two consecutive grids of parameter values. Initially, a coarse-meshed grid is used

to locate the area of the objective function’s maximum. Subsequently, around the

associated parameter values a finer grid is set up, for which the second, more precise

maximum and the related parameter values are determined. Finally, the Nelder

and Mead (1965) algorithm is used to find the local maximum. This technique

has been thoroughly scrutinized. Panel A of Figure 5.2 shows an example of the

objective function surface for a coarse grid, and Panel B depicts the surface of the

same objective function for the subsequent finer grid. The graphs illustrate that the

necessity to apply a grid-based method is unrelated to identification issues, as the

objective function is well-behaved with a distinct area of the global optimum. The

different steps in the optimization are rather required to find the local optimum on

a non-smooth surface. This approach ensures the validity and consistency of the

parameter estimates as far as possible with feasible computational effort.

For the estimation of the SV parameters, the estimate of the unconditional mean

σ2 is taken as given from the first-step estimation, as well as the remainder of the

macro parameters in ξM∗ . The log likelihood function estimate in Equation (5.26) is
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maximized with respect to the parameters ν1 and σw. To begin with, the validity of

the particle filter-based likelihood approach is ascertained by conducting the second-

step estimation assuming the true values of the macro parameters ξM∗ are known. If

the estimation strategy works, the estimates should be closely centered around the

true values for all sample sizes, and the estimation precision should increase in T .

After the method is established in this manner, the estimation is conducted based

on the estimated macro parameters ξ̂
M∗

. Proceeding in this way also allows to assess

the importance of the different sources of estimation uncertainty, in particular of the

quality of the underlying macro parameter values.

The results of the second-step estimation are reported in Table 5.2. Panel A

displays the medians and RMSE of the estimated SV parameters based on the true

macro parameter values for ξM∗ , while Panel B displays the medians and RMSE of

the parameter estimates relying on the macro parameter estimates ξ̂
M∗

from the first-

step estimation. In each panel, the last column labeled by R contains the number of

successful estimations out of 400 simulated data sets. Even for the smallest sample

of size T = 650, the medians are very close to the true values. Also the estimation

precision in terms of RMSE is remarkably high. The convergence of the medians

toward the true values, as well as the decrease in RMSE with increasing sample

size, provides evidence for the validity of the particle filter-based ML estimation and

serves as a simulation-based consistency check. Notably, the difference between using

the true and the estimated macro parameters is rather small. While the medians

based on ξ̂
M∗

are slightly further away from the true values for all T , the RMSE are

very similar, in particular for the larger samples.

The kernel density plots in Figure 5.3 confirm that the distribution of the esti-

mates is indeed very similar between Panel A (true macro parameter values) and

Panel B (estimated macro parameters). A comparison of Panels A and B of the ker-
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nel density plots shows that the quality of the macro parameters only plays a minor

role for the estimation precision of ν̂1 and σ̂w compared to the effect of the sample

size. Overall, the quality of the estimates is excellent, relative to the precision of the

macro parameter estimates, and taking into account the difficulty of obtaining any

reliable estimates of the parameters ν1 and σw at all.

5.4.4 Monte Carlo results: preference parameter

estimates

To provide a full set of parameter estimates for the LRR model, the indirect in-

ference estimation strategy described in detail in Section 4.2.3 is employed for the

estimation of the preference parameters ξP . The main challenge in the estimation

of the representative investor’s preference parameters is to disentangle risk aversion

γ and the intertemporal elasticity of substitution ψ, while the estimation of the sub-

jective discount factor δ is usually feasible (cf. Chapter 4). The calibration assumes

the investor to be risk averse with γ=10, and to prefer consumption in the present

month over consumption in the following month by a discount factor of δ=0.998.

The elasticity of substitution is calibrated to ψ=1.5. Hence, the substitution ef-

fect is assumed to dominate the wealth effect, such that the investor is supposed

to be responsive to interest rate changes and to reduce the consumption smoothing

behavior if the interest rate increases.

Table 5.3 contains the medians and RMSE of the estimates obtained from the

third-step indirect inference estimation of ξP . Panel A shows the results of an

estimation that assumes all macro parameters ξM to be known, which serves as a

proof of concept for the estimation strategy. Panel B displays the results based on

the estimated macro parameters ξ̂
M∗

resulting from the first-step estimation and

ν̂1 and σ̂w from the second-step estimation. The median converges toward the true
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parameter values and the RMSE decreases with increasing sample size, which can

be interpreted as simulation-based evidence of consistency. The kernel density plots

in Panel A of Figure 5.4 illustrate that the estimation results are very precise when

the true macro parameter values are known, while for the estimation based on ξ̂
M∗

the variation in the estimates is larger when the sample size is small, as depicted

in Panel B. This applies in particular to γ̂ and ψ̂, for which the estimation quality

suffers from large outliers. For larger samples, the number of outliers is greatly

reduced, which implies considerably lower values for the RMSE.

The preference parameter estimates reported in Section 4.3.3 are produced by

a two-step indirect inference estimation approach, in which the macro parameter

estimates are less efficient, as discussed in Section 5.4.2. Furthermore, the SV pa-

rameters could not be estimated and were therefore set to zero. Both studies use,

among others, the sample size T=1k, for which the results can be compared. The

median values of all parameter estimates are closer to the true values for the three-

step estimation approach: the median value for ψ̂ is 1.85 (vs. 2.12 for the two-step

estimation), the median of γ̂ is 12.0 (vs. 12.8), and for δ̂ the median is 0.9976 (vs.

0.9975). The most pronounced improvement lies in the higher precision of the risk

aversion estimate in terms of RMSE (8.0 vs. 14.5); the RMSE of ψ̂, however, is

somewhat increased by the three-step estimation approach (3.58 vs. 2.68). The

results for δ̂ are almost the same, irrespective of the underlying values for ξM , both

regarding the medians (0.9976 vs. 0.9975) and the RMSE (0.0018 vs. 0.0015).

Overall, the improved precision of the macro parameter estimates in the three-step

estimation, and the accomplishment of being able to obtain reliable estimates of

the SV parameters as well, has a beneficial effect on the results for the preference

parameter estimates.
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Moreover, the results for the two-step estimation are computed from a much

smaller—and probably favorable—subset of estimation results, since the approach

yielded only 284 (out of 400) successfully estimated sets of preference parameters,

whereas in the three-step approach 373 out of 400 estimations could be successfully

completed. This difference is partly due to the higher number of failed estimations

when applying the macro parameter estimation strategy from Section 4.2.2, where

52 macro parameter estimations fail in the first estimation step only, in contrast to

a failure of 3 out of 400 estimations in the first- and second-step estimation of the

present estimation strategy combined.

Overall, the third-step estimation results constitute progress in the estimation

of the LRR preference parameters since the number of successful LRR model esti-

mations is greatly increased. Furthermore, the preference parameter estimation is

based on estimates of all remaining model parameters ξM , including the SV param-

eters. Finally, the estimation results show that the three-step estimation works well

and that it is able to identify all LRR model parameters with good point estimates

and reasonable precision given the available sample size.

5.5 Data

In the literature, the LRR model is typically estimated on quarterly data (cf. Has-

seltoft, 2012; Calvet and Czellar, 2015) or annual data (cf. Bansal et al., 2007a;

Constantinides and Ghosh, 2011; Bansal et al., 2012b). The BY calibration is, how-

ever, based on a monthly frequency, implying a monthly decision interval of the

representative investor, which is typically considered as the most plausible choice

in the literature and also supported by an empirical result of Bansal et al. (2012b).

The latter derive analytical time aggregation formulas for the moments matched in
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their GMM estimation to be able to estimate the model at a monthly frequency

using annual data. Constantinides and Ghosh (2011) implicitly assume an annual

decision frequency as they estimate the LRR model by GMM estimation on annual

data without aggregation. The remainder of the studies mentioned above estimate

the monthly dynamics from lower-frequency data by applying simulation-based esti-

mation techniques that allow for a time-aggregation of the simulated processes. Such

a time aggregation is not feasible for the log likelihood functions in Equations (5.15)

and (5.26). Monthly U.S. data from February 1959 to December 2014—i.e. a total of

671 observations—are used to estimate the model for a realistic decision frequency

of the representative investor. This choice also mitigates the problem of estimating

a large number of parameters of a complex structural model from a very limited set

of data. The annual data sets available, often preferred over quarterly data because

they are considered to be most reliable and not subject to notorious problems like

seasonality in dividend payments, only comprise about 80 observations, which seems

scarce for the estimation of 12 structural parameters.

Consumption data are obtained from the Bureau of Economic Analysis. The

standard choice, real personal consumption in non-durable goods and services, is

only available on a monthly basis from 1999, which would imply a very short data

series. Monthly data of nominal personal consumption expenditures are used instead

to compute log consumption growth, which is converted into real terms by using the

Consumer Price Index (CPI) data from the Bureau of Labor Statistics. The monthly

series for dividend growth, market portfolio return, and the log price-dividend ratio

are obtained from the CRSP value-weighted market portfolio, again the CPI is used

for conversion into real terms. The well-known seasonal pattern in dividend growth is

corrected for by a 12-month trailing average, since the LRR model cannot account for

the strong negative autocorrelation in raw dividend growth data by construction (cf.
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Equation (5.1)). The risk-free rate is approximated on the basis of the one-month

nominal T-bill yield obtained from CRSP. As suggested by Beeler and Campbell

(2012), the ex ante risk-free rate is obtained from a predictive regression of the

monthly ex-post real log yield on the nominal monthly log yield, the monthly log

inflation rate averaged over the past year, and a constant.

Since the first- and second-step estimations are based on the macro data for g and

gd only, whereas the third-step estimation is solely based on financial market data

for rm, rf , zm but not on the macro series, it is possible to use time series of different

lengths for the consecutive estimation steps. As longer time series are available for

the financial market data series than for consumption growth, the sample for the

third-step estimation is extended back to February 1947, which yields an additional

144 observations, such that the third-step estimation is based on 815 observations.

The limiting factor are the seasonally adjusted CPI data, which are available starting

in 1947.

Descriptive statistics of the data are provided in Table 5.4. The mean of monthly

consumption growth corresponds to an annual growth rate of 2.8%, dividend growth

amounts to approximately 2.0% p.a. on average. The dividend growth series is sub-

stantially more volatile than consumption growth; both series have a small negative

autocorrelation. The average return of the market portfolio aggregates to 7.0% p.a.,

while the average annual risk-free rate only equals 0.4%. The market return is

volatile with a rather low autocorrelation, whereas the log price-dividend ratio and

the risk-free rate are highly persistent with first-order autocorrelations of 0.99 and

0.97, respectively. Figure 5.5 illustrates the time series in detail.
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5.6 Empirical application

By using the monthly data described in Section 5.5, the model parameters can be

estimated at a monthly frequency, which allows for an immediate comparison of the

point estimates with the BY calibration. Using the data described in Section 5.5

and applying the estimation strategy outlined in Section 5.3 yields the parameter

estimates shown in Table 5.5.

The point estimates for the unconditional means of consumption and dividend

growth µ̂c=0.0023 and µ̂d=0.0018 are very close to the means of the data series for

g and gd, which is a plausible result. These results amount to annual growth rates

of consumption and dividends of 2.8% and 2.2%, respectively. The data provide

evidence that indeed consumption and dividend growth are not i.i.d., but that there

is a small predictable growth component. In line with the fundamental idea of the

LRR model, the latent growth component is indeed estimated to be highly persistent

with an autoregressive parameter estimate of ρ̂=0.944. Furthermore, also the latent

stochastic variance process, which determines the conditional variance of the macro

processes, is estimated to be comparatively persistent with ν̂1=0.877. Accordingly,

the economic uncertainty in one period largely determines the uncertainty of the next

period, albeit to a clearly lesser extent than in BY’s calibration. The fluctuation in

economic uncertainty is estimated to be notably higher than in BY’s calibration: the

volatility parameter of the stochastic variance process is estimated as σ̂w=6.3e-06,

which is more than twice the calibrated value. The average level of economic un-

certainty is, in contrast, somewhat lower than in the calibration, as the constant

parameter of the stochastic variance process is estimated as σ̂=0.0057. Overall, we

can conclude that for the sample period the estimated stochastic volatility is moder-

ate. In particular, the half-life of a high-volatility period, i.e. a crisis, is considerably

shorter than in the calibration, since the persistence is lower and the volatility is

163



EMPIRICAL APPLICATION MAXIMUM LIKELIHOOD

higher. However, since the fluctuation in volatility is sizeable, high-volatility peri-

ods also occur more frequently. The volatility-scaling parameters of consumption

and dividend growth are both lower than in the BY calibration, with estimates of

ϕ̂e=0.029 and ϕ̂d=1.97, respectively. The leverage parameter that scales the impact

of the small predictable growth component on dividend growth is rather high with

an estimate of φ̂=8.8, which implies that the estimation identifies a considerably

larger persistent component in dividend growth than in consumption growth.

The estimates for the preference parameters exhibit a phenomenon frequently

encountered in the literature: the risk aversion parameter estimate γ̂=54.1 is very

high, exceeding by far the value of 10, the upper bound for plausible values stated

by Mehra and Prescott (1985). Also, the estimate of the intertemporal elasticity

of substitution ψ̂=2.31 is rather large. The subjective discount factor is estimated

as δ̂=0.9815, which implies a plausible extent of preference for present instead of

future consumption. As already indicated in the Monte Carlo study, the estimation

precision for the preference parameter estimates that can be expected for the present

sample size is rather limited, even for data generated by the LRR model. This applies

all the more to empirical data.

The estimation precision of the empirical estimation is assessed by means of a

parametric bootstrap. The bootstrap is conducted as follows. 400 data sets are

simulated, using as true parameter values the point estimates obtained from the

three-step estimation. In three consecutive steps, those 400 sets of simulated data

are then used for parameter estimation, proceeding precisely in the same fashion as

in the estimation on the empirical data. Empirical 2.5% and 97.5% quantiles of the

resulting distribution of parameter estimates are finally used to estimate the lower

and upper bounds of the confidence intervals, respectively.
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The 95% confidence intervals for the empirical parameter estimates are also given

in Table 5.5. The estimation precision is comparatively high for µ̂c, ρ̂, ν̂1, σ̂, ϕ̂d,

and δ̂, whereas the confidence intervals are rather wide for µ̂d, φ̂, γ̂, and ψ̂. This

result is in line with the findings in Section 5.4. As observed in the Monte Carlo

study, the precision of the preference parameter estimates that can be expected for a

sample size comparable to the available set of empirical data is rather limited. The

confidence interval of the subjective discount factor estimate δ̂ lies entirely below 1,

plausibly indicating that we can reject that the investor favors consumption in the

future over consumption in the present on a 5% significance level. Furthermore,

the confidence interval for γ̂ indicates that a low or moderate risk aversion of the

investor can be rejected, since values for γ between 1 and 10 can be rejected on

a 5% significance level. Finally, the confidence interval for ψ̂ is wide, such that it

accommodates both for values of the IES below and above 1.

Table 5.6 illustrates the low estimation precision from a different angle. The

table contains the means and standard deviations of g, gd, zm, rm, and rf implied by

the point estimates from the empirical estimation and compares them to their data

counterparts. Quantiles of the means and standard deviations implied by the estima-

tion are obtained from the bootstrap distribution of the point estimates. The macro

moments are matched rather closely, while the features of the asset pricing model

cannot be matched precisely because of limitations imposed on the financial variables

by the estimation of the macro parameters, which are due to the model structure.

Considering those implications resulting from the model-implied distributions of the

point estimates, the properties of the empirical data on the financial market—such

as the high equity premium—cannot be reproduced by the LRR model.

The high risk aversion parameter estimate can be explained by the low overall

estimated volatility in the macro model and by the estimates of the persistence
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parameters ρ and ν1, which are notably lower than the calibrated values by BY.

Therefore, the macroeconomic risk in the estimated model is considerably less severe

than in the calibration; however, a high level of risk is required to achieve high risk

premia with a moderate risk aversion. Due to the three-step estimation procedure,

which does not allow to adapt the macro parameter values in a way that is convenient

to explain the asset pricing properties of the model, the only way to account for

high risk premia in the presence of low or moderate risk is to adjust the preference

parameter estimates accordingly.

5.7 Conclusion

This study introduces a novel three-step strategy for the estimation of Bansal and

Yarons’s (2004) LRR model that is able to reliably identify all structural parameters,

including precise estimates for the SV parameters that proved difficult to estimate in

previous studies. The method used in the first step relies on a Kalman filter-based

maximum likelihood estimation to obtain the estimates of the parameters that de-

termine the dynamics of consumption and dividend growth, as well as their latent

persistent growth component. In a second step, the application of a particle filter

within a maximum likelihood approach allows for the estimation of the persistence

parameter and the volatility of the stochastic variance process. Finally, in a third

step, the preference parameters are estimated by indirect inference. The estimation

strategy thus adheres to the recursive model structure, which consists of an inde-

pendent set of macroeconomic processes that influence the financial variables and

the decisions of the representative investor but not vice versa. A Monte Carlo study

shows that the use of maximum likelihood for the estimation of the macro model

parameters in the first two steps indeed enhances the precision of the resulting pa-
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rameter estimates, and also the quality of the preference parameter estimates in the

final estimation step.

Applying the estimation strategy to monthly U.S. data provides some support

for the idea of long-run risk in the macroeconomy by identifying a persistent latent

growth component in consumption and dividend growth and a persistent stochastic

variance. However, the estimates of the autoregressive parameters in the growth

expectations and the fluctuating macroeconomic uncertainty are not as close to 1 as

in the BY calibration, implying a considerably less severe degree of macroeconomic

risk. As a consequence, the high observed equity premium leads to a rather large

estimate for the relative risk aversion. Moreover, the estimation yields a plausible

subjective discount factor estimate close to but below 1, and an IES estimate greater

than 1. Bansal and Yaron (2004) calibrate an IES value larger than 1, as this choice

typically allows for a high equity premium and a low risk-free rate at the same time.

Even though an IES value larger than 1 should thus have favorable implications for

the long-run risk paradigm, the empirical results do not yield a close match between

the properties of the empirical data and the model-implied features. In particular,

the parameter estimates implied by the empirical data do not permit to replicate

the features of the observed financial data series, due to the restrictions imposed by

the LRR model. Thus, for the present monthly data set, the LRR model cannot

serve to explain the equity premium puzzle and the risk-free rate puzzle at the same

time.
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5.A Appendix

5.A.1 Kalman filter derivation

State forecast:

α̂t|t = Ê (αt|Yt) = Ê (Fαt−1) = Fα̂t−1|t

where Yt =
(
y′t,y

′
t−1, . . . ,y

′
1

)
Mean squared forecast error:

Pt|t = E
[
(αt − α̂t|t)(αt − α̂t|t)′

]
= E

[(
Fαt−1 + vt − Fα̂t−1|t

) (
Fαt−1 + vt − Fα̂t−1|t

)′]
= FE

[(
αt−1 + α̂t−1|t

) (
αt−1 − α̂t−1|t

)′]
F′ + E [vtv

′
t]

= F Pt−1|tF
′ + Qt

Observation forecast:

ŷt+1|t = Ê (yt+1|Yt) = Ê (Hαt + ut+1|Yt)

= H Ê (αt|Yt) = Hα̂t|t

Observation forecast error:

yt+1 − ŷt+1|t = yt+1 −Hα̂t|t

= Hαt + ut+1 −Hα̂t|t

= H
(
αt − α̂t|t

)
+ ut+1

ft+1|t = E
[
(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)

′]
= E

[
H(αt − α̂t|t)(αt − α̂t|t)′H′

]
+ E

[
ut+1u

′
t+1

]
= H Pt|tH

′ + Rt+1
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Since αt|Yt and ỹt+1 = (yt+1 − ŷt+1|t) are jointly Gaussian, αt|Yt, ỹt+1 ∼ N(µ,Σ)

with:

µ = E(αt|Yt) + Cov(αt, ỹt+1|Yt)Var(ỹt+1|Yt)−1 (ỹt+1 − E(ỹt+1))

Σ = Var(αt|Yt)− Cov(αt, ỹt+1|Yt)Var(ỹt+1|Yt)−1Cov(ỹt+1,αt|Yt).

Upon arrival of time t+ 1 information, the estimate of the unknown state can thus

be updated as:

α̂t|t+1 = Ê (αt|Yt,yt+1)

= Ê (αt|Yt) + Cov(αt, ỹt+1|Yt)Var(ỹt+1|Yt)−1 (ỹt+1 − E(ỹt+1)) .

Since the forecast error has mean zero and variance ft+1|t−1, we have:

α̂t|t+1 = α̂t|t + E
[
(αt − α̂t|t)(yt+1 − ŷt+1|t)

′] f−1
t+1|t

(
yt+1 − ŷt+1|t

)
= α̂t|t + E

[
(αt − α̂t|t)(H

(
αt − α̂t|t

)
+ ut+1)′

]
f−1
t+1|t

(
yt+1 − ŷt+1|t

)
= α̂t|t + Pt|tH

′f−1
t+1|t

(
yt+1 − ŷt+1|t

)
Pt|t+1 = E

[
(αt − α̂t|t+1)(αt − α̂t|t+1)′

]
= E

[
(αt − α̂t|t)(αt − α̂t|t)′

]
− E

[
(αt − α̂t|t)(yt+1 − ŷt+1|t)

′]Var(yt+1 − ŷt+1|t)
−1

E
[
(yt+1 − ŷt+1|t)(αt − α̂t|t)′

]
= Pt|t −Pt|tH

′ f−1
t+1|t H Pt|t.
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5.A.2 Particle filter derivation

Following Arulampalam et al. (2002), the weight wjt ∝
p(αt|Yt+1)
q(αt|Yt+1)

for each particle

j = 1, . . . , N is determined up to proportionality by

wjt ∝
π(αt|Yt+1)

q(αt|Yt+1)
, (5.27)

where π(αt|Yt+1) ∝ p(αt|Yt+1). In a first step, a function π(·) must be derived that

is proportional to p(αt|Yt+1), and that can be evaluated:

p(αt|Yt+1) =
p(αt,Yt+1)

p(Yt+1)
=
p(Yt+1|αt)p(αt)
p(yt+1,Yt)

. (5.28)

With conditional independence of yt+1 and Yt given αt:

=
p(yt+1|αt)p(Yt|αt)p(αt)

p(yt+1|Yt)p(Yt)
(5.29)

=
p(yt+1|αt)p(αt|Yt)

p(yt+1|Yt)
(5.30)

=
p(yt+1|αt)p(αt|αt−1)p(αt−1|Yt)

p(yt+1|Yt)
(5.31)

∝ p(yt+1|αt)p(αt|αt−1)p(αt−1|Yt). (5.32)

Furthermore, choosing the importance density q(αt|Yt+1) as the product

q(αt|αt−1,Yt+1)q(αt−1|Yt) and inserting (5.32) into (5.27) yields:

wjt ∝
p(yt+1|αt)p(αt|αt−1)p(αt−1|Yt)
q(αt|αt−1,Yt+1)q(αt−1|Yt)

(5.33)

∝ wjt−1

p(yt+1|αt)p(αt|αt−1)

q(αt|αt−1,Yt+1)
. (5.34)
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5.A.3 Particle filter implementation

The implementation of the particle filter is equivalent to the Sampling Importance

Resampling (SIR) algorithm described by Arulampalam et al. (2002), which is also

used by Flury and Shephard (2011), where it is referred to as a generic particle filter.

1. Set the initial values for the states to the unconditional expected values, α−1 =

(0, 0)′, and draw N initial particles from p(α0|Y0, ξ
M). Set the initial value of

the log likelihood function estimate l̂nL0 to 0. Set t = 1.

2. Draw αjt for j = 1, . . . , N from the conditional distribution p(αt|αjt−1,Yt, ξM)

3. Compute the weights wjt = p(yt+1|αjt) and normalize w̃jt =
wjt∑N
k=1 w

k
t

for j =

1, . . . , N .

4. Add the log likelihood contribution for t: l̂nLt = l̂nLt−1 + ln
(

1
N

∑N
j=1w

j
t

)
5. Draw N uniform random numbers uj ∼ U(0, 1) and ensure an even distribution

over the interval [0, 1] by transforming to ũj = uj

N
+ j−1

N
for j = 1, . . . , N .

6. To resample the particles, for every j = 1, . . . , N , select particle ij that fulfills

the inequality
∑ij−1

k=1 w̃
k
t < ũj ≤

∑ij

k=1 w̃
k
t .

7. To obtain the filtered series, record the filtered state values α̂t = 1
N

∑N
j=1α

j
t .

8. Set t = t+ 1 and go back to 2. Repeat until t = T − 1.

Due to the temporal structure of the model, the estimate of the likelihood function

is given by lnLT−1. Computing ln
(

1
N

∑N
j=1 w

j
T

)
would require an observation for

yT+1. Therefore, the state vector can only be filtered up to T − 1.
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Table 5.1: Comparison of macro parameter estimates.
The table reports medians (in italics) and RMSE (in normal font) of the macro parameter esti-
mates ξM∗ obtained from the Monte Carlo study using Kalman filter-based likelihood estimation.
For the results reported in Panel A ν1 and σw are both set to 0 in the Kalman filter, while the
results in Panel B are based on ν1=0.987 and σw=2.3e−6, which corresponds to the true values.
The last column contains the number of successful estimations R out of 400 for each sample size.

µc µd ρ ϕe σ φ ϕd R

Panel A: no SV

T=650 0.0015 0.0015 0.969 0.0489 0.0078 3.05 4.49 389

0.0006 0.0018 0.103 0.0442 0.0005 2.72 0.18

T=1k 0.0015 0.0016 0.973 0.0472 0.0078 2.95 4.49 397

0.0005 0.0016 0.075 0.0395 0.0004 2.44 0.15

T=5k 0.0015 0.0016 0.978 0.0453 0.0078 3.01 4.49 400

0.0002 0.0008 0.010 0.0089 0.0002 0.48 0.07

T=10k 0.0015 0.0016 0.978 0.0446 0.0078 3.00 4.50 400

0.0002 0.0006 0.005 0.0055 0.0001 0.33 0.05

Panel B: true SV

T=650 0.0015 0.0015 0.969 0.0489 0.0078 3.05 4.49 389

0.0006 0.0018 0.103 0.0442 0.0005 2.72 0.18

T=1k 0.0015 0.0016 0.973 0.0472 0.0078 2.95 4.49 397

0.0005 0.0016 0.075 0.0395 0.0004 2.44 0.15

T=5k 0.0015 0.0016 0.978 0.0453 0.0078 3.01 4.49 400

0.0002 0.0008 0.010 0.0089 0.0002 0.48 0.07

T=10k 0.0015 0.0016 0.978 0.0446 0.0078 3.00 4.50 400

0.0002 0.0006 0.005 0.0055 0.0001 0.33 0.05
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Table 5.2: SV parameter estimates.
The table reports medians (in italics) and RMSE (in normal font) of the stochastic volatility
parameter estimates ν̂1 and σ̂w obtained from the Monte Carlo study using particle filter-based
likelihood estimation. The results reported in Panel A are based on the true macro parameters

ξM∗ , while the results reported in Panel B are based on the macro parameter estimates ξ̂
M∗

from
the first estimation step. The columns labeled by R contain the numbers of successful estimations
out of 400 for each sample size.

Panel A Panel B

true macro estimated macro

ν1 σw R ν1 σw R

T=650 0.985 2.53e-06 388 0.976 2.87e-06 388

0.066 2.27e-06 0.092 2.64e-06

T=1k 0.985 2.56e-06 396 0.979 2.65e-06 397

0.062 1.50e-06 0.060 1.69e-06

T=5k 0.987 2.32e-06 400 0.986 2.35e-06 400

0.005 4.29e-07 0.006 4.31e-07

T=10k 0.987 2.31e-06 400 0.987 2.31e-06 400

0.004 2.99e-07 0.003 2.86e-07

Table 5.3: Preference parameter estimates.
The table reports medians (in italics) and RMSE (in normal font) of the preference parameter
estimates ξP obtained from the Monte Carlo study using indirect inference estimation. The results
reported in Panel A are based on the true macro parameters ξM , while the results reported in

Panel B are based on the macro parameter estimates ξ̂
M

obtained in the first and second estimation
step. The columns labeled by R contain the numbers of successful estimations out of 400 for each
sample size.

Panel A Panel B

true macro estimated macro

δ γ ψ R δ γ ψ R

T=650 0.9979 9.6 1.50 400 0.9975 12.3 1.86 336

0.0003 1.2 0.02 0.0436 9.1 5.61

T=1k 0.9980 10.1 1.50 400 0.9976 12.0 1.85 373

0.0002 1.0 0.01 0.0018 8.0 3.58

T=5k 0.9980 9.9 1.50 400 0.9979 10.8 1.59 398

0.0001 0.5 0.01 0.0006 3.5 0.79

T=10k 0.9980 9.9 1.50 400 0.9979 10.2 1.53 400

0.0001 0.3 0.00 0.0004 2.2 0.31
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Table 5.4: Descriptive statistics.
The table reports means, standard deviations, and the first-order autocorrelation of the monthly
data used in the empirical application. The three-step estimation strategy allows for different
sample periods for macro and financial data. The time span used for each variable is given in the
last column.

mean std. dev. AC(1) time span

log consumption growth gt 0.0023 0.0057 -0.1281 [1959/02 – 2014/12]

log dividend growth gd,t 0.0017 0.0120 -0.0070 [1959/02 – 2014/12]

log market return rm,t 0.0058 0.0431 0.0852 [1947/02 – 2014/12]

log risk-free rate rf,t 0.0003 0.0015 0.9696 [1947/02 – 2014/12]

log price-dividend ratio zm,t 3.4973 0.4197 0.9943 [1947/02 – 2014/12]

Table 5.5: Empirical application results.
The table reports the point estimates with 95% confidence bounds for the empirical application.
The first row contains the parameter estimates, while the second and third row comprise the lower
and upper bound of the 95% confidence interval, respectively. The confidence bounds are obtained
as 2.5% and 97.5% quantiles of the empirical distribution resulting from a parametric bootstrap.

µc µd ρ ϕe ν1 σw σ φ ϕd δ γ ψ

0.0023 0.0018 0.944 0.0293 0.877 6.3e-06 0.0057 8.80 1.97 0.9815 54.1 2.31

0.0019 0.0000 0.800 0.0059 0.738 3.4e-06 0.0052 3.44 1.80 0.9798 17.2 0.40

0.0029 0.0038 0.977 0.0902 0.945 7.7e-06 0.0061 53.53 2.13 0.9854 73.5 17.73
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Table 5.6: Implications of the empirical parameter estimates and their distri-
butions.
The table reports means and standard deviations of the observable LRR model variables g, gd,
zm, rm, and rf implied by the point estimates obtained in the empirical application and the cor-
responding bootstrap distribution. The first column contains the means and standard deviations
of the empirical data for comparison. All quantities computed relate to a monthly frequency.

data model model-implied quantiles

0.005 0.025 0.5 0.975 0.995

E(g) 0.0023 0.0023 0.0018 0.0019 0.0024 0.0029 0.0030

E(gd) 0.0017 0.0018 0.0000 0.0000 0.0019 0.0038 0.0048

E(zm) 3.4973 3.9763 3.9503 3.9575 3.9864 4.0529 4.0710

E(rm) 0.0058 0.0204 0.0186 0.0188 0.0202 0.0219 0.0222

E(rf ) 0.0003 0.0183 0.0178 0.0181 0.0186 0.0207 0.0210

σ(g) 0.0057 0.0057 0.0051 0.0053 0.0057 0.0062 0.0063

σ(gd) 0.0120 0.0120 0.0107 0.0111 0.0120 0.0130 0.0132

σ(zm) 0.4197 0.0574 0.0102 0.0173 0.0479 0.0954 0.1126

σ(rm) 0.0431 0.0217 0.0133 0.0144 0.0200 0.0261 0.0283

σ(rf ) 0.0015 0.0002 0.0000 0.0000 0.0002 0.0014 0.0019
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Figure 5.1: Monte Carlo results: distribution of first-step maximum likelihood
estimates.
The figure displays kernel estimates of the macro parameters ξM∗ across different simulated sample
sizes. The beta kernel proposed by Chen (1999) is used with the bandwidth selector by Silverman
(1986) adjusted for variable kernels. Vertical lines indicate the positions of the true parameters.
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Figure 5.2: Simulation: second-step objective function.
The figure displays the objective function of the second-step estimation for a simulated sample
of size T=1k based on the true macro parameter values ξM∗ . Panel A illustrates the objective
function surface from two angles for the coarse-meshed grid; Panel B shows the same objective
function for the finer grid.
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Figure 5.3: Monte Carlo results: distribution of second-step maximum likeli-
hood estimates.
The figure displays kernel estimates of the SV parameters ν1 and σw across different simulated
sample sizes. The graphs in Panel A are based on the true values of the macro parameters ξM∗ ,
whereas those in Panel B are based on the first-step macro parameter estimates. The beta kernel
proposed by Chen (1999) is used with the bandwidth selector by Silverman (1986) adjusted for
variable kernels. Vertical lines indicate the positions of the true parameters.

Panel A

Panel B
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Figure 5.4: Monte Carlo results: distribution of third-step maximum likelihood
estimates.
The figure displays kernel estimates of the preference parameters δ, γ, and ψ across different
simulated sample sizes. The parameter estimates illustrated in Panel A are based on the true
macro parameter values, while the kernel estimates in Panel B are based on the first-step macro
parameter estimates and the second-step SV parameter estimates. Vertical lines indicate the
positions of the true parameters.

Panel A Panel B
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Figure 5.5: Empirical data series.
The figure illustrates the time series used in the empirical application. The sample period spans
February 1959 to December 2014 for g and gd and February 1947 to December 2014 for rm, rf ,
and zm.

(a) log consumption growth g (b) log dividend growth gd

(c) log market return rm (d) log risk-free rate rf

(e) log price-dividend ratio zm
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Chapter 6

Conclusion

This thesis analyzes the impact of long-run risk on the decisions of a representative

investor. It provides a methodological and empirical evaluation of the idea that

non-diversifiable fluctuations in long-run expectations of consumption growth and

economic uncertainty explain the considerable risk premia observed in financial mar-

kets in the past 70 years. A theoretical framework—the long-run risk asset pricing

model suggested by Bansal and Yaron (2004)—that accounts for those sources of risk

is subjected to a broad spectrum of econometric methods. Due to the intricate model

structure and the presence of persistent latent variables and endogenous parameters,

the econometric analysis of the LRR model is highly demanding. This work seeks

to overcome identification issues detected in the previous literature and to provide

a realistic picture of the estimation quality that can be expected when estimating

a complex structural asset pricing model based on the limited macro-finance data

that are currently available.

The defining concept behind all estimation strategies is their consistency with

the recursive model structure, meaning that the model is always estimated in mul-

tiple steps. In line with the model, the parameters that determine the shape of the
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macro dynamics are estimated independently of the representative investor’s pref-

erence parameters. For all estimation strategies, identification of the parameters is

ascertained by means of Monte Carlo studies, which demonstrate the validity of each

method.

The two-step GMM/SMM estimation strategy introduced in Chapter 3 exploits

the availability of analytical moments for the macro sub-model. A GMM estimation

is applied in the first step, while SMM is used for the estimation of the preference

parameters in the second step. For the latter task, SMM is ideally suited, since the

necessity to solve for the endogenous parameters calls for simulation-based methods.

The Monte Carlo study shows that long series of auto-moments of consumption and

dividend growth are required to elicit the persistence of the small, latent growth

process, the driving feature of long-run consumption risk. Furthermore, a precise

estimation of the preference parameters is found to be possible, given high-quality

macro parameter estimates. A moment sensitivity analysis helps to carefully select

moment matches that provide meaningful information on the parameters in ques-

tion. This analysis reveals that none of the considered moments, not even the fourth

moments of the growth processes, measurably respond to the persistence and the

volatility of the latent stochastic variance process. This finding substantiates the

serious identification issues related to moment-based estimation of the stochastic

volatility parameters. As a solution, we approximate the time-varying stochastic

variance in the second-step estimation by the unconditional variance estimate from

the first estimation step. This approach does not impair the estimation quality of

the remaining parameters, as documented in the Monte Carlo study. The empirical

results lend some support to the long-run risk paradigm on the one hand, as the

important intertemporal elasticity of substitution is estimated to be larger than 1.

On the other hand, the risk aversion parameter estimate is still very large, despite
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accounting for long-run risk, implying that introducing this additional source of risk

does not suffice to reconcile the large equity premium with plausible preference pa-

rameters within a consumption-based asset pricing model. Moreover, estimating the

LRR model at a quarterly frequency, which is inevitable for this estimation strategy

when using quarterly data, complicates tracing the supposedly high persistence of

the long-run risk component at the monthly frequency. A persistence parameter

very close to 1, however, is key for the model’s ability to produce high risk premia

without inflating the risk aversion parameter. The precision of the preference pa-

rameter estimates is low, due to imprecise macro parameter estimates owing to the

limited amount of data. We conclude that the quality of the macro estimates must

be improved to obtain precise estimates for the preference parameters.

The indirect inference estimation strategy presented in Chapter 4 breaks the

link between model and data frequency, as the method is entirely simulation-based

and thus permits arbitrary aggregation of the simulated data to the frequency of

the empirical data. Most importantly, this feature allows for a reasonable decision

interval of the representative investor, which is typically assumed to be one month.

Taking account of the findings of Chapter 3, indirect inference is also conducted in

two consecutive steps, thereby observing the LRR model structure. In each step, the

auxiliary model used for the estimation is tailored to the key characteristics of the

relevant variables. In particular, the slow-moving long-run risk component can be de-

tected in a more parsimonious way compared to the two-step GMM/SMM approach,

which requires a large number of auto-moment matches. Instead, the persistence in

growth expectations is captured by means of a heterogeneous autoregressive model

designed for long-memory data, which uses past aggregates of the growth rates.

The lack of identification of the stochastic volatility parameters encountered in the

GMM/SMM estimation cannot be resolved, regardless of the broader range of possi-
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bilities afforded by indirect inference estimation. Again, the time-varying stochastic

variance must be approximated by its unconditional expected value. Provided pre-

cise macro parameter estimates are available, the investor’s preference parameters

can be estimated accurately. Estimating the parameters at a monthly frequency

from quarterly empirical data reveals that there is indeed evidence for the existence

of a small predictable component in consumption and dividend growth. Another

favorable result is the comparatively low estimate of the risk aversion parameter,

leaving room for hope that the LRR paradigm can ultimately explain the equity

premium puzzle without large risk aversion of the investor. However, the estimate

of the intertemporal elasticity of substitution is below 1, which rules out large model-

implied equity premia. Furthermore, the precision of the empirical results is rather

limited. All things considered, the implications of this empirical test of the LRR

model are somewhat inconclusive and warrant further investigation.

Given the results of the two-step GMM/SMM estimation and the indirect infer-

ence method, two major methodological issues remain unresolved. In the first place,

the persistence and the volatility of the stochastic variance process, which represents

the fluctuating economic uncertainty, cannot be estimated using the aforementioned

approaches. Furthermore, the precision of the macro estimates is low for small

samples, which in turn hampers a precise estimation of the preference parameters.

Despite the presence of latent variables, filtering methods allow for a maximum like-

lihood estimation strategy, which is introduced in Chapter 5. This approach can

indeed identify all structural parameters, including the stochastic volatility param-

eters. By taking into account the full distribution of the macro variables instead of

isolated moments only, an efficiency gain is realized for the macro parameter esti-

mates. The method disentangles the estimation of the macro parameters and that

of the preference parameters and thus adheres to the LRR model structure. In a

184



CONCLUSION

first step, a Kalman filter-based maximum likelihood estimation is conducted that

identifies the macro parameters except for the stochastic volatility parameters, to

which it is invariant. In contrast to the Kalman filter, which only provides updated

projections of the conditional mean, a particle filter provides estimates of the full

conditional distribution of the latent variance process. Thus, applying a particle

filter within a maximum likelihood estimation in a second step allows to estimate

the persistence and the volatility of the stochastic variance. Finally, in the third

step, the preference parameters are estimated using the indirect inference approach

proven and tested in Chapter 4. Applying the estimation strategy to empirical data

again provides support for the LRR paradigm by detecting a persistent component

in consumption and dividend growth. The intertemporal elasticity of substitution

is estimated to be larger than 1, as postulated by the architects of the long-run risk

concept. However, the risk aversion estimate is large and the estimation precision is

limited.

This comprehensive econometric analysis of the LRR model shows that the esti-

mation of its structural parameters is highly demanding and that seemingly straight-

forward estimation approaches are subject to serious identification issues. A reliable

econometric test of the LRR concept should observe the model structure and be-

ware of turning into a mere goodness-of-fit exercise that introduces links in the

estimation procedure where there are none intended in the model. The insights col-

lected from the application of different estimation strategies lead to the conclusion

that the currently available sample sizes prevent a precise estimation of the LRR

model parameters. However, the estimation strategies presented in this thesis pro-

vide guidance for the estimation of complex structural (asset pricing) models and

draw a realistic picture of what we can expect in terms of precision when estimating

such models from small macro-finance data sets.
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A.1 Linear approximations

To model the dependence between log returns and the log price-dividend ratio,

Bansal and Yaron (2004) resort to a linear approximation suggested by Campbell

and Shiller (1988). The linear relationship between the log return ht and the log

dividend-price ratio δt, as suggested by Campbell and Shiller (1988), can be derived

as follows:

ht = ln (Pt+1 +Dt)− ln(Pt)

= ln (Pt +Dt−1) + ∆ ln (Pt+1 +Dt)− ln(Pt).

We use a first-order Taylor series expansion for ∆ ln (Pt+1 +Dt) at Pt+1 = Pt and

Dt = Dt−1:

∆ ln (Pt+1 +Dt) = ln(Pt+1 +Dt)− ln(Pt +Dt−1) = ln

(
Pt+1 +Dt

Pt +Dt−1

)
≈ ln(1) +

1

Pt +Dt−1

[Pt+1 +Dt − Pt −Dt−1]

=
Pt+1 − Pt
Pt +Dt−1

+
Dt −Dt−1

Pt +Dt−1

.
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Assuming the price is a constant fraction ρ of the price including the dividends,

Pt ≈ ρ (Pt +Dt−1), and hence, Dt−1 ≈ (1− ρ) (Pt +Dt−1), we can approximate:

∆ ln (Pt+1 +Dt) ≈ ρ
Pt+1 − Pt

Pt
+ (1− ρ)

Dt −Dt−1

Dt−1

≈ ρ∆ ln(Pt+1) + (1− ρ)∆ ln(Dt).

Inserting these results into the expression for ht yields:

ht ≈ ln (Pt +Dt−1) + ρ∆ ln(Pt+1) + (1− ρ)∆ ln(Dt)− ln(Pt)

= ln (Pt +Dt−1) + ρ (pt+1 − pt) + (1− ρ) (dt − dt+1)− pt

= ln (Pt +Dt−1) + ρpt+1 + (1− ρ)dt − (1− ρ)(dt−1 − pt)− 2pt

= ln

(
Pt +Dt−1

Pt

)
− (1− ρ)δt + ρpt+1 + (1− ρ)dt − pt

≈ − ln(ρ)− (1− ρ)δt + ρpt+1 + (1− ρ)dt − pt

= k + ρpt+1 + (1− ρ)dt − pt.

Note that Campbell and Shiller (1988) model a log dividend-price ratio δt, whereas

the LRR model refers to the log price-dividend ratio zm,t. Translating this result

into the notation used by Bansal and Yaron (2004) yields:

rm,t = − ln(ρ)− (1− ρ)(dt−1 − pt) + ρpt+1 + (1− ρ)dt − pt

= − ln(ρ) + (1− ρ)(pt − dt−1) + ρ(pt+1 − dt)− (pt − dt−1) + dt − dt−1

= κ0,m + κ1,mzm,t − zm,t−1 + gd,t,
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where κ0,m and κ1,m are given by:

κ0,m = − ln(ρ) + (1− ρ)zm,t−1

κ1,m = ρ.

We can rewrite κ0,m and κ1,m as follows:

κ1,m ≈
Pt

Pt +Dt−1

=
1

Pt+Dt−1

Pt

=
1

1 + 1
exp(zm,t)

=
exp(zm,t)

1 + exp(zm,t)
.

Because ρ and thus κ1,m should be a constant ratio, we use a time average to obtain

a constant value:

κ1,m ≈
exp(z̄m)

1 + exp(z̄m)
.

For κ0,m to be a constant, we also use a time average to obtain a constant value:

κ0,m ≈ − ln(κ1,m) + (1− κ1,m)z̄m = ln

(
1 + exp(z̄m)

exp(z̄m

)
+ z̄m − κ1,mz̄m

= ln (1 + exp(z̄m))− κ1,mz̄m.
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A.2 Return on the aggregate wealth

portfolio

To find the expressions for the coefficients A0, A1, and A2 in Equation (2.12), we

use the basic asset pricing equation with the SDF from Equation (2.7):

Et
[
δθG

− θ
ψ

t+1R
−(1−θ)
a,t+1 Ri,t+1

]
= 1.

Taking the logarithm of Equation (2.7) yields:

mt+1 = ln(Mt+1) = θ ln(δ)− θ

ψ
gt+1 + (θ − 1)ra,t+1,

where gt+1 = ln(Gt+1) and ra,t+1 = ln(Ra,t+1).

It follows that

1 = Et [exp(ln(Mt+1) + ri,t+1)]

= Et
[
exp(θ ln(δ)− θ

ψ
gt+1 + (θ − 1)ra,t+1 + ri,t+1)

]
.

The model must price any return, so the Euler equation also holds for ri,t+1 = ra,t+1:

1 = Et
[
exp

(
θ ln(δ)− θ

ψ
gt+1 + θra,t+1

)]
= exp

(
Et [mt+1 + ra,t+1] +

1

2
Vart [mt+1 + ra,t+1]

)
0 = Et [mt+1 + ra,t+1] +

1

2
Vart [mt+1 + ra,t+1] .
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Inserting the linear approximation for ra,t+1, we obtain:

0 = θ ln δ − θ

ψ
Et(gt+1)

+ θ
[
κ0 + κ1A0 + κ1A1Et(xt+1) + κ1A2Et(σ2

t+1)−A0 −A1xt −A2σ
2
t + Et(gt+1)

]
+

1

2

[(
θ − θ

ψ

)2

Vart(gt+1) + θ2
(
κ2

1A
2
1Vart(xt+1) + κ2

1A
2
2Vart(σ

2
t+1)
) ]

because Covt(gt+1, xt+1) = 0, Covt(gt+1, σ
2
t+1) = 0 and Covt(xt+1, σ

2
t+1) = 0.

It follows that:

(A-1)

0 = θ ln δ− θ

ψ
(µc+xt)+θ

[
κ0 +κ1A0 +κ1A1ρxt+κ1A2(σ2 +ν1(σ2

t −σ2))−A0

−A1xt−A2σ
2
t +µc+xt

]
+

1

2

[(
θ− θ

ψ

)2

σ2
t +θ2

(
κ2

1A
2
1ϕ

2
eσ

2
t +κ2

1A
2
2σ

2
w

)]
.

Equation (A-1) must hold for all values of xt, which means that all terms involving

xt must cancel out:

− θ
ψ
xt + θκ1A1ρxt − θA1xt + θxt

!
= 0

− θ
ψ
xt + θ [κ1A1ρxt − A1xt + xt] = 0. (A-2)

Equation (A-1) also has to hold for all values of σ2
t :

θκ1A2ν1σ
2
t − θA2σ

2
t +

1

2

[(
θ − θ

ψ

)2

σ2
t + θ2A2

1κ
2
1ϕ

2
eσ

2
t

]
!

= 0[
θ (κ1ν1A2 − A2) +

1

2

(
θ − θ

ψ

)2

+
1

2
(θA1κ1ϕe)

2

]
σ2
t = 0. (A-3)

Equation (A-2) leads to the expression for the parameter A1:

− θ
ψ

+ θ [κ1A1ρ− A1 + 1] = 0

A1 =
( θ
ψ
− θ)

θκ1ρ− θ
=

1− 1
ψ

1− κ1ρ
. (A-4)
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Equation (A-3) leads to the expression for the parameter A2:

[
θ (κ1ν1 − 1)A2 +

1

2

(
θ − θ

ψ

)2

+
1

2
(θA1κ1ϕe)

2

]
σ2
t = 0

−1

2

[(
θ − θ

ψ

)2

+ (θA1κ1ϕe)
2

]
= θ(κ1ν1 − 1)A2

A2 =
1

2

(
θ − θ

ψ

)2

+ (θA1κ1ϕe)
2

θ[1− κ1ν1]
. (A-5)

The constant A0 can be obtained by setting the sum of all xt and σ2
t terms in

Equation (A-1) to zero:

0 = θ ln δ − θ

ψ
µc + θ

[
κ0 + κ1A0 + κ1A2(1− ν1)σ2 − A0 + µc

]
+

1

2
θ2
(
κ2

1A
2
2σ

2
w

)
0 = ln δ +

(
1− 1

ψ

)
µc + κ0 + (κ1 − 1)A0 + κ1(1− ν1)σ2A2 +

1

2
θ(κ1A2σw)2

A0 =
1

1− κ1

[
ln δ +

(
1− 1

ψ

)
µc + κ0 + κ1A2σ

2(1− ν1) +
θ

2
(κ1A2σw)2

]
. (A-6)

A.3 Representation of the market return

According to Equation (2.9), combined with Equations (2.1) and (2.13), rm,t+1 is

given by:

rm,t+1 = κ0,m + κ1,m

[
A0,m + A1,mxt+1 + A2,mσ

2
t+1

]
−
[
A0,m + A1,mxt + A2,mσ

2
t

]
+ µd + φxt + ϕdσtut+1.

Applying the basic pricing equation to rm,t, we can derive the expressions for A0,m,

A1,m, and A2,m:

1 = Et [exp(mt+1 + rm,t+1)]
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1 = exp

(
Et [mt+1 + rm,t+1] +

1

2
Vart [mt+1 + rm,t+1]

)

(A-7)

0 = θ ln δ − θ

ψ
(µc + xt) + (θ− 1)

[
κ0 + κ1A0 + κ1A1ρxt + κ1A2(σ2 + ν1(σ2

t − σ2))

− A0 − A1xt − A2σ
2
t + µc + xt

]
+ κ0,m + κ1,mA0,m

+ κ1,mA1,mρxt + κ1,mA2,m(σ2 + ν1(σ2
t − σ2))− A0,m

− A1,mxt − A2,mσ
2
t + µd + φxt +

1

2
Vart(mt+1 + rm,t+1).

Derive the expression for Vart(mt+1 + rm,t+1):

Vart(mt+1 + rm,t+1) = Vart

[
θ ln δ − θ

ψ
gt+1 + (θ − 1)ra,t+1 + rm,t+1

]

= Vart

[
− θ

ψ
gt+1 + (θ − 1)

[
κ0 + κ1(A0 + A1xt+1 + A2σ

2
t+1)

− A0 − A1xt − A2σ
2
t + gt+1

]
+ κ0,m + κ1,mA0,m

+ κ1,mA1,mxt+1 + κ1,mA2,mσ
2
t+1 − A0,m − A1,mxt − A2,mσ

2
t

+ µd + φxt + ϕdσtut+1

]

= Vart

[(
θ − 1− θ

ψ

)
gt+1 + (θ − 1)

[
κ1A1xt+1

+ κ1A2σ
2
t+1

]
+ κ1,mA1,mxt+1 + κ1,mA2,mσ

2
t+1 + ϕdσtut+1

]

= Vart

[(
θ − 1− θ

ψ

)
gt+1 + ((θ − 1)κ1A1 + κ1,mA1,m)xt+1

+ ((θ − 1)κ1A2 + κ1,mA2,m)σ2
t+1 + ϕdσtut+1

]
.

Finally:

Vart(mt+1 + rm,t+1) =

(
θ − 1− θ

ψ

)2

σ2
t +

(
[(θ − 1)κ1A1 + κ1,mA1,m]2 ϕ2

e + ϕ2
d

)
σ2
t

+ [(θ − 1)κ1A2 + κ1,mA2,m]2 σ2
w,

(A-8)
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because Covt(gt+1, xt+1) = 0, Covt(gt+1, σ
2
t+1) = 0 and Covt(xt+1, σ

2
t+1) = 0.

To derive the coefficient A1,m, we insert Equation (A-8) into Equation (A-7) and

collect all terms that involve xt. They are set to zero, because the Euler equation

must hold for all values of the state variables:

− θ
ψ
xt + (θ − 1) [κ1A1ρxt − A1xt + xt] + κ1,mA1,mρxt − A1,mxt + φxt

!
= 0

− θ
ψ

+ (θ − 1) [A1(κ1ρ− 1) + 1] + A1,m(κ1,mρ− 1) + φ = 0

− θ
ψ

+ (θ − 1)

[(
1

ψ
− 1

)
+ 1

]
+ A1,m(κ1,mρ− 1) + φ = 0

A1,m =
− θ
ψ

+ (θ − 1) 1
ψ

+ φ

1− κ1,mρ
=

φ− 1
ψ

1− κ1,mρ
. (A-9)

To derive the coefficient A2,m, we collect all terms involving σ2
t and set them to zero,

because the Euler equation must hold for all values of the state variables:

(θ − 1)(κ1A2ν1 − A2) + κ1,mA2,mν1 − A2,m

+
1

2

[(
θ − 1− φ

ψ

)2

+ (κ1,mA1,mϕe − (1− θ)κ1A1ϕe)
2 + ϕ2

d

]
!
= 0,

with (θ − 1− θ
ψ

) = λm,η, (κ1,mA1,mϕe) = βm,e, and ((1− θ)κ1A1ϕe) = λm,e:

(1− θ)(κ1ν1 − 1)A2 −
1

2

[
λ2
m,η + (βm,e − λm,e)2 + ϕ2

d

]
= A2,m(κ1,mν1 − 1)

A2,m =
(1− θ)(1− κ1ν1)A2 + 1

2
[λ2
m,η + (βm,e − λm,e)2 + ϕ2

d]

(1− κ1,mν1)
. (A-10)
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To derive A0,m, we set the sum of all terms involving xt and σ2
t in Equation (A-7)

to zero:

0 = θ ln δ − θ

ψ
µc + (θ − 1)

[
κ0 + κ1A0 + κ1A2(1− ν1)σ2 − A0 + µc

]
+ κ0,m

+ κ1,mA0,m + κ1,mA2,mσ
2(1− ν1)− A0,m + µd +

1

2
[(θ − 1)κ1A2 + κ1,mA2,m]2 σ2

w

(1− κ1,m)A0,m = θ ln δ − θ

ψ
µc + (θ − 1)

[
κ0 + κ1A0 + κ1A2(1− ν1)σ2 − A0 + µc

]
+ κ0,m + κ1,mA2,mσ

2(1− ν1) + µd +
1

2
[(θ− 1)κ1A2 + κ1,mA2,m]2 σ2

w

A0,m =
1

(1− κ1,m)

[
θ ln δ − θ

ψ
µc + (θ − 1)

[
κ0 + κ1A0 + κ1A2(1− ν1)σ2

− A0 + µc

]
+ κ0,m + κ1,mA2,mσ

2(1− ν1) + µd

+
1

2
[(θ − 1)κ1A2 + κ1,mA2,m]2 σ2

w

]
.

(A-11)

A.4 Representation of the risk-free rate

The formula for the risk-free rate can be derived by substituting rf,t for ri,t+1 into

the basic pricing equation:

1 = Et
[
exp(θ ln(δ)− θ

ψ
gt+1 + (θ − 1)ra,t+1 + rf,t)

]
1 = exp

(
Et
[
θ ln(δ)− θ

ψ
gt+1 + (θ − 1)ra,t+1 + rf,t

]
+

1

2
Vart

[
− θ
ψ
gt+1 + (θ − 1)ra,t+1

])
0 = θ ln(δ)− θ

ψ
Et(gt+1) + (θ − 1)Et(ra,t+1) + rf,t +

1

2
Vart

[
θ

ψ
gt+1 + (1− θ)ra,t+1

]
.

The risk-free rate is thus given by:

rf,t = −θ ln(δ) +
θ

ψ
Et(gt+1) + (1− θ)Et(ra,t+1)− 1

2
Vart(mt+1).
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In addition, Et(ra,t+1) can be obtained from the definition of ra,t+1:

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1

= κ0 + κ1

[
A0 + A1xt+1 + A2σ

2
t+1

]
−
[
A0 + A1xt + A2σ

2
t

]
+ gt+1

Et(ra,t+1) = κ0 + κ1

[
A0 + A1ρxt + A2(σ2 + ν1(σ2

t − σ2))
]
− A0 − A1xt − A2σ

2
t + µc + xt.

Vart (mt+1) is computed as follows:

Vart (mt+1) = Vart

[
θ

ψ
gt+1 + (1− θ)ra,t+1

]
= Vart

[
θ

ψ
gt+1 + (1− θ)(κ1A1xt+1 + κ1A2σ

2
t+1 + gt+1)

]
= Vart

[(
θ

ψ
+ 1− θ

)
gt+1 + (1− θ)κ1A1xt+1 + (1− θ)κ1A2σ

2
t+1

]
.

With Covt(gt+1, xt+1) = 0:

=

(
θ

ψ
+ 1− θ

)2

Vart(gt+1) + (1− θ)2(κ1A1)2Vart(xt+1)

+ (1− θ)2(κ1A2)2Vart(σ
2
t+1)

with (− θ
ψ

+ θ − 1) = λm,η, ((1− θ)κ1A1ϕe) = λm,e, and (1− θ)κ1A2 = λm,w:

= λ2
m,ησ

2
t + λ2

m,eσ
2
t + λ2

m,wσ
2
w.

A.5 Risk premia

The gross risk-free rate is given by:

Rf,t+1 =
1

Et(Mt+1)
.
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The log return on the risk-free asset is given by:

ln(Rf,t+1) = − ln [Et(Mt+1)]

rf,t+1 = − ln [Et (exp(mt+1))]

= − ln

[
exp

(
Et(mt+1) +

1

2
Vart(mt+1)

)]
= −Et(mt+1)− 1

2
Vart(mt+1). (A-12)

To derive the risk premium on the aggregate wealth portfolio, the following Euler

equation can be used to obtain the relation between Et(mt+1) and Et(ra,t+1):

Et [Mt+1Ra,t+1] = 1

Et [exp (mt+1 + ra,t+1)] = 1

exp

(
Et(mt+1 + ra,t+1) +

1

2
Vart(mt+1 + ra,t+1)

)
= 1

Et(mt+1) + Et(ra,t+1) +
1

2
Vart(mt+1 + ra,t+1) = 0.

Finally:

Et(mt+1) = −Et(ra,t+1)− 1

2
[Vart(mt+1) + Vart(ra,t+1) + 2 Covt(mt+1, ra,t+1)] .

(A-13)

196



APPENDIX RISK PREMIA

In a next step, Equation (A-12) can be combined with Equation (A-13) to determine

the risk premium on the aggregate wealth portfolio:

Et [ra,t+1 − rf,t+1] = Et
[
ra,t+1 + Et(mt+1) +

1

2
Vart(mt+1)

]
= Et

[
ra,t+1 − Et(ra,t+1)− 1

2
Vart(mt+1)− 1

2
Vart(ra,t+1)

− Covt(mt+1, ra,t+1) +
1

2
Vart(mt+1)

]
= −Covt [mt+1, ra,t+1]− 1

2
Vart(ra,t+1)

= −Covt [mt+1 − Et(mt+1), ra,t+1 − Et(ra,t+1)]− 1

2
Vart(ra,t+1).

To write the risk premium in detail, the expressions formt+1 − Et(mt+1) and ra,t+1 − Et(ra,t+1)

must be derived explicitly:

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1

= κ0 + κ1

[
A0 + A1xt+1 + A2σ

2
t+1

]
− A0 − A1xt − A2σ

2
t + gt+1

Et(ra,t+1) = κ0 + κ1

[
A0 + A1ρxt + A2(σ2 + ν1(σ2

t − σ2))
]
− A0 − A1xt − A2σ

2
t

+ µc + xt

ra,t+1 − Et(ra,t+1) = κ1A1 [xt+1 − ρxt] + κ1A2

[
σ2
t+1 − σ2 − ν1(σ2

t − σ2)
]

+ [gt+1 − µc − xt]

= κ1A1ϕeσtet+1 + κ1A2σwwt+1 + σtηt+1
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mt+1 = θ ln δ − θ

ψ
gt+1 + (θ − 1)ra,t+1

Et(mt+1) = θ ln δ − θ

ψ
[µc + xt] + (θ − 1)Et(ra,t+1)

mt+1 − Et(mt+1) = − θ
ψ

[σtηt+1] + (θ − 1) [σtηt+1 + κ1A1ϕeσtet+1 + κ1A2σwwt+1]

=

[
θ − 1− θ

ψ

]
σtηt+1 − (1− θ)κ1A1ϕeσtet+1 − (1− θ)κ1A2σwwt+1

= λm,ησtηt+1 − λm,eσtet+1 − λm,wσwwt+1. (A-14)

The risk premium on the aggregate wealth portfolio is given by:

Et [ra,t+1 − rf,t+1] = − Covt [mt+1 − Et(mt+1), ra,t+1 − Et(ra,t+1)]− 1

2
Vart(ra,t+1)

= − Et
[

(λm,ησtηt+1 − λm,eσtet+1 − λm,wσwwt+1)

(σtηt+1 + κ1A1ϕeσtet+1 + κ1A2σwwt+1)
]

− 1

2

(
Et
[
σ2
t η

2
t+1

]
+ Et

[
(κ1A1ϕe)

2σ2
t e

2
t+1

]
+ Et

[
κ2

1A
2
2σ

2
ww

2
t+1

])
= − λm,ησ2

t + λm,e(κ1A1ϕe)σ
2
t + κ1A2λm,wσ

2
w

− 1

2

(
(1 + (κ1A1ϕe)

2)σ2
t + (κ1A2)2σ2

w

)
.

To derive the risk premium on the market portfolio, the following Euler equation is

used to obtain the relation between Et(mt+1) and Et(rm,t+1):

Et [Mt+1Rm,t+1] = 1

Et [exp (mt+1 + rm,t+1)] = 1

exp

(
Et(mt+1 + rm,t+1) +

1

2
Vart(mt+1 + rm,t+1)

)
= 1

Et(mt+1) + Et(rm,t+1) +
1

2
Vart(mt+1 + rm,t+1) = 0.
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Finally:

Et(mt+1) = −Et(rm,t+1)− 1

2
[Vart(mt+1) + Vart(rm,t+1) + 2 Cov(mt+1, rm,t+1)] .

(A-15)

Equations (A-12) and (A-15) can then be used to determine the risk premium:

Et [rm,t+1 − rf,t+1] = Et
[
rm,t+1 + Et(mt+1) +

1

2
Vart(mt+1)

]
= Et

[
rm,t+1 − Et(rm,t+1)− 1

2
Vart(mt+1)− 1

2
Vart(rm,t+1)

− Covt(mt+1, rm,t+1) +
1

2
Vart(mt+1)

]
= −Covt [mt+1, rm,t+1]− 1

2
Vart(rm,t+1)

= −Covt [mt+1 − Et(mt+1), rm,t+1 − Et(rm,t+1)]− 1

2
Vart(rm,t+1).

To write the risk premium in detail, first derive the expression for rm,t+1−Et(rm,t+1):

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1

= κ0,m + κ1,m

[
A0,m + A1,mxt+1 + A2,mσ

2
t+1

]
− A0,m − A1,mxt − A2,mσ

2
t

+ µd + φxt + ϕdσtut+1

Et(rm,t+1) = κ0,m + κ1,mA0,m + κ1,mA1,mρxt + κ1,mA2,m(σ2 + ν1(σ2
t − σ2))

− A0,m − A1,mxt − A2,mσ
2
t + µd + φxt

rm,t+1 − Et(rm,t+1) = κ1,mA1,m [xt+1 − ρxt] + κ1,mA2,m(σ2
t+1 − σ2 − ν1(σ2

t − σ2)) + ϕdσtut+1

= κ1,mA1,mϕeσtet+1 + κ1,mA2,mσwwt+1 + ϕdσtut+1.
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The risk premium on the market portfolio is given by:

Et [rm,t+1 − rf,t+1] = − Covt [mt+1 − Et(mt+1), rm,t+1 − Et(rm,t+1)]− 1

2
Vart(rm,t+1)

= − Et
[
(λm,ησtηt+1 − λm,eσtet+1 − λm,wσwwt+1)

(ϕdσtut+1 + κ1,mA1,mϕeσtet+1 + κ1,mA2,mσwwt+1)
]

− 1

2
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