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Summary 

Behavioural traits were assumed to be the most flexible traits in animals (Briffa et al. 2008). 

However, there is now diverse evidence for constant between-individual behavioural differences 

in many species, i.e. animal personality (Réale et al. 2007), resulting in less flexible individual 

behaviour (Evans et al. 2010). Knowledge on animal personality has provided new insights into 

evolutionary biology and animal ecology, as behavioural types - individuals with a specific 

combination of two or more behavioural trait levels (Bell 2007) - have been shown to affect fitness 

(e.g., Dingemanse et al. 2004). Further, those constant behavioural traits (personality traits) form 

behavioural syndromes, which are characterised by correlations between different behaviours 

(Sih et al. 2004a). Mechanisms maintaining these correlations could be constrained due to 

underlying relationships with cognitive traits. There is growing evidence for the non-

independence of animal personality and general cognitive abilities, but so far, studies on the 

direction of the relationship between them revealed contradictory results. Still, it is hypothesised 

that individuals may exhibit consistent learning and decision styles (Sih and Del Giudice 2012). 

Within a cognitive syndrome fast behavioural types - consistently bolder and more active 

individuals - are expected to show also faster learning styles. Slow behavioural types in contrast 

are assumed to learn slower but more accurately (Sih and Del Giudice 2012). This can be caused 

by a speed-accuracy trade-off that individuals face during decision making (Chittka et al. 2009). 

Although, behavioural syndromes were assumed to be stable across time and space, there is 

growing evidence that these correlations between behaviours appear more flexible (Fischer et al. 

2016). Phenotypic correlations can vary between populations of the same species originated from 

different environments, for instance, laboratory and field populations.  

In this thesis, I aim to provide evidence for animal personality in Eurasian harvest mice (Micromys 

minutus). Further, I investigate whether behavioural traits form a behavioural syndrome and how 

spatial cognitive traits are related to personality traits (cognitive syndrome). Harvest mice have 

not been in the focus of animal personality research yet. However, this small rodent species is 

likely to be highly suitable for animal personality and especially spatial cognitive syndrome studies 

for the following reasons: (I) harvest mice are easy to keep and breed in the laboratory, (II) 

behavioural and cognitive tests can easily be established based on tasks done with laboratory mice 

and rats, (III) harvest mice are assumed to be selected for pronounced spatial cognitive traits due 

to their adaptation to three-dimensional habitat structures (Piechocki 2001), and (IV) harvest mice 
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are a widespread species in the Palaearctic but locally endangered (Darinot 2016), so that more 

knowledge about their behavioural ecology might provide helpful insights for their conservation. 

We tested the assumptions for animal personality and found that exploration, activity and 

boldness were repeatable in juvenile and adult harvest mice. Spatial recognition was repeatable 

in adults, as well as spatial learning ability and decision speed. We found no repeatability of 

decision accuracy. Exploration, activity and boldness were consistent before and after maturation, 

as well as before and after first sexual contact. Data on spatial recognition provided little evidence 

for consistency. Harvest mice showed a behavioural syndrome as we observed strong positive 

correlations between personality traits. The speed-accuracy trade-off was not apparent. 

Nevertheless, we found weak evidence for a cognitive syndrome as fast behavioural types learned 

faster than slow types, and shyer harvest mice made decisions quicker than bolder mice. All those 

experiments were dome in a laboratory population of harvest mice. We compared these results 

with personality traits and behavioural correlations in harvest mice with a natural genetic 

background, kept in a semi-natural outdoor enclosure. Exploration, activity and boldness were 

also repeatable in the field population. However, spatial recognition was not repeatable. Harvest 

mice of the field population showed also a behavioural syndrome as we observed positive 

between-individual correlations among personality traits.  

With these results, we provide evidence for animal personality in Eurasian harvest mice. In sum, 

we conclude that harvest mice express repeatable behavioural traits in the laboratory and the 

field population. Exploration, activity and boldness were also consistent between life-history 

stages. Although we observed significant differences in the magnitude of phenotypic correlations 

between the laboratory and the field population, both datasets suggested the same directions of 

correlations within the syndrome. Hence, we conclude that Eurasian harvest mice in general 

exhibit a behavioural syndrome along a fast-slow continuum, and that proximate factors are more 

likely to shape this behavioural syndrome than selection processes. Spatial recognition showed 

low repeatability and was less consistent across life history stages. We found repeatability of 

spatial learning ability and decision speed, but not of decision accuracy. Given the rising interest 

in individual variation in cognitive performance, and in its relationship to animal personality, we 

suggest that it is important to gather more data on the repeatability and consistency of cognitive 

traits. The observed relationships between spatial cognitive and personality traits partly support 

the hypotheses of a cognitive syndrome in harvest mice and will hopefully stimulate more studies 

on the relationship between (spatial) cognition and personality in animals.  
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Zusammenfassung 

Lange Zeit wurde angenommen, dass Verhaltensmuster die flexibelsten Merkmale von Tieren sind 

(Briffa et al. 2008). Mittlerweile gibt es allerdings viele Beweise für konstante 

Verhaltensunterschiede zwischen Individuen einer Population, welche als Tierpersönlichkeit 

definiert wurde (animal personality, Réale et al. 2007). Aus diesen konstanten Verhaltensmustern 

resultiert, dass Tiere in unterschiedlichen Situationen weniger flexibles Verhalten zeigen (Evans et 

al. 2010). Das Wissen über Tierpersönlichkeiten ermöglichte neue Einblicke in Bereiche der 

Evolutionsbiologie und Tierökologie, da unterschiedliche Verhaltenstypen - Individuen mit einer 

bestimmten Kombination aus mehreren spezifischen Verhaltensweisen, behavioural types (Bell 

2007) - einen Einfluss auf deren Fitness haben können (z.B. Dingemanse et al. 2004). Konstante 

Verhaltensweisen (Persönlichkeitsmerkmale) können außerdem sogenannte Verhaltens-

syndrome (behavioural syndromes) bilden, welche durch Korrelationen zwischen den 

verschiedenen Verhaltensweisen charakterisiert sind (Sih et al. 2004a). Solche Korrelationen 

können durch Mechanismen organisiert sein, welche die Beziehungen zwischen Verhaltensweisen 

und kognitiven Fähigkeiten erzwingen. Es gibt immer mehr Hinweise für einen abhängigen 

Zusammenhang zwischen Tierpersönlichkeit und kognitiven Fähigkeiten, jedoch zeigen Studien 

bis jetzt entgegengesetzte Ergebnisse. Unabhängig davon gibt es Hypothesen, die individuell 

konstante Lern- und Entscheidungsstile vorhersagen (Sih and Del Giudice 2012). Innerhalb eines 

solchen kognitiven Syndroms (cognitive syndrome) wird erwartet, dass schnelle Verhaltenstypen 

- konstant mutigere und aktivere Tiere - auch schnellere Lernstile haben. Für langsame 

Verhaltenstypen hingegen wird ein langsameres, jedoch genaueres Lernverhalten erwartet (Sih 

and Del Giudice 2012). Dies beruht auf der Annahme, dass Individuen während der 

Entscheidungsfindung einen Kompromiss zwischen der Geschwindigkeit und der Genauigkeit 

eingehen müssen (speed-accuracy trade-off, Chittka et al. 2009). Auf Grund der durch kognitive, 

physiologische oder genetische Faktoren erzwungenen Zusammenhänge zwischen Verhaltens-

weisen wurde angenommen, dass Verhaltenssyndrome konstant sind. Es gibt allerdings mehr und 

mehr Hinweise, dass diese Korrelationen anpassungsfähig und flexibel sind (Fischer et al. 2016). 

Verhaltenssyndrome können zwischen verschiedenen Populationen der gleichen Art variieren, 

wenn die Populationen aus unterschiedlichen Umwelten kommen, wie zum Beispiel aus Labor- 

und Wildpopulationen.  
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Mit der vorliegenden Doktorarbeit beabsichtige ich, die Existenz von Tierpersönlichkeiten in der 

Eurasischen Zwergmaus (Micromys minutus) zu belegen. Außerdem ist mein Ziel, Zusammen-

hänge zwischen konstanten Verhaltensweisen (Verhaltenssyndrom) sowie zwischen Verhalten 

und räumlich-kognitiven Merkmalen zu finden (kognitives Syndrom). Es gibt bislang keine Studien 

zur Tierpersönlichkeit bei Zwergmäusen. Jedoch eignet sich diese kleine Nagetierart auf Grund 

folgender Eigenschaften sehr gut für Tierpersönlichkeitsstudien. Dies gilt vor allem in Bezug auf 

räumlich-kognitive Syndrome. (I) Zwergmäuse sind einfach im Labor zu halten und zu züchten, (II) 

Verhaltenstests und Tests zu kognitiven Fähigkeiten sind leicht auf der Basis von schon bekannten 

Versuchsaufbauten bei Labormäusen und -ratten zu etablieren, (III) Zwergmäuse haben 

vermutlich sehr gut entwickelte räumlich-kognitive Fähigkeiten auf Grund der Anpassung an ein 

Leben in drei-dimensionalen Lebensräumen (Piechocki 2001) und (IV) Zwergmäuse sind zwar eine 

relativ weit verbreitete Art, jedoch lokal teils gefährdet (Darinot 2016), sodass mehr Wissen über 

ihre Verhaltensökologie neue Erkenntnisse zum verbesserten Schutz dieser Art bringen könnte. 

Es wurden zunächst die Wiederholbarkeit (repeatability) und die Konstanz (consistency) von 

Verhaltensweisen und räumlich-kognitiven Merkmalen untersucht. Dabei zeigte sich, dass 

Exploration, Aktivität und Mut sowohl in Jungtieren als auch in adulten Zwergmäusen 

wiederholbar war. Räumliches Erkennen war hingegen nur in erwachsenen Zwergmäusen 

wiederholbar, außerdem auch die räumliche Lernfähigkeit und die Entscheidungsgeschwindigkeit. 

Die Genauigkeit der Entscheidungen war nicht wiederholbar. Exploration, Aktivität und Mut 

waren konstant vor und nach der Geschlechtsreife, sowie vor und nach dem ersten Sexualkontakt. 

Die Konstanz des räumlichen Erkennens war weniger ausgeprägt. Zwergmäuse zeigten ein 

Verhaltenssyndrom, da die Verhaltensweisen positiv miteinander korrelierten. Es bestand kein 

Konflikt zwischen der Entscheidungsgeschwindigkeit und der Genauigkeit (speed-accuracy trade-

off). Allerdings gab es einige Hinweise für ein kognitives Syndrom, da schnelle Verhaltenstypen 

auch schneller lernten als langsamere Verhaltenstypen. Außerdem machten schüchtere 

Zwergmäuse schnellere Entscheidungen als mutige. All diese Untersuchungen wurden mit 

Zwergmäusen aus einer Labor-Population durchgeführt. Für Zwergmäuse aus einer Gehege-

Population mit einem natürlichen genetischen Hintergrund zeigte sich, dass Exploration, Aktivität 

und Mut auch hier wiederholbar war. Räumliches Erkennen war jedoch nicht wiederholbar. Ein 

Verhaltenssyndrom mit positiven Korrelationen zwischen den Verhaltensweisen war auch in der 

Gehege-Population zu finden.  

Mit dieser Doktorarbeit konnte zum ersten Mal nachgewiesen werden, dass es auch bei 

Eurasischen Zwergmäusen Tierpersönlichkeit gibt. Zusammengefasst lässt sich aus den 
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Ergebnissen schließen, dass Zwergmäuse wiederholbares Verhalten in Labor- und Gehege-

Populationen zeigen. Exploration, Aktivität und Mut waren zudem in der Labor-Population über 

mehrere Lebensabschnitte hinweg konstant. Obwohl Unterschiede in der Stärke der 

Korrelationen der Verhaltensweisen zwischen der Labor- und der Gehege-Population gefunden 

wurden, zeigten beide Verhaltenssyndrome gleiche Richtungen an. Daher lässt sich sagen, dass 

Zwergmäuse generell ein Verhaltenssyndrom entlang eines schnell-langsam-Gradienten 

aufzeigen. Dieses wird vermutlich eher durch proximate Faktoren als durch Selektionsprozesse 

gesteuert. Räumliches Erkennen hatte eine geringe Wiederholbarkeit und war weniger konstant 

über Lebensabschnitte hinweg. Es wurde festgestellt, dass die räumliche Lernfähigkeit und die 

Entscheidungsgeschwindigkeit wiederholbar waren, jedoch nicht die Entscheidungs-genauigkeit. 

Auf Grund des steigenden Forschungsinteresses an individueller Variation in kognitiven 

Fähigkeiten und an dem Zusammenhang mit Tierpersönlichkeit sollten mehr Daten über die 

Wiederholbarkeit und Konstanz von kognitiven Merkmalen gesammelt werden. Die gezeigten 

Korrelationen inzwischen Verhaltensweisen und räumlich-kognitiven Merkmalen zeigen 

zumindest teilweise, dass es ein kognitives Syndrom bei Zwergmäusen geben könnte. Daher 

werden diese Ergebnisse hoffentlich zu weiteren Studien über die Beziehung von (räumlich-) 

kognitiven Merkmalen und Tierpersönlichkeit anregen.  
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Introduction 

The evolution of behaviour has always fascinated biologist. In particular, animal behaviour has 

become a fast growing research area over the last decades, using behaviour as a mechanism to 

observe how animals (phenotypes and genotypes) interact with their environments (Kappeler 

2010). Behavioural ecology thereby aims to understand how and why environmental conditions 

shape animal behaviours (Lantová and Dall 2016). It is expected that natural and sexual selection 

favour optimal behaviours of populations in their specific environments (Wilson et al. 1994; 

Wilson 1998). The individual variation around that optimal mean was assumed to be 

measurement errors (Dall et al. 2004) or individual phenotypic plasticity (Nussey et al. 2007). 

However, there is an unstoppable interest in these individual behavioural variation as it has been 

shown to be an adaptive strategy of individuals to behave constantly different from each other 

(Bell 2005).  

The following introduction consists of two parts: In the beginning, I introduce the research field of 

animal personality, explaining the importance of constant between-individual differences in 

behaviours of animals. An overview about the variety of terminology used in this study field is 

presented. I explain the two assumptions of animal personality (constancy in behaviour and 

correlation between behaviours). Further, I describe evolutionary processes explaining and 

maintaining constant individual behavioural differences and correlations between different 

behaviours in animal populations. In the second part, I introduce the research area of animal 

cognition, with a focus on spatial cognition. I present the recently hypothesised connection 

between constant individual behavioural differences and animal cognition. In the end of the 

introduction, I clarify the aims of this thesis. 

Part 1 - Introduction to Constant Individual Differences in Animal 

Behaviour 

Constant Between-Individual Differences in Animal Behaviour 

Behavioural traits were assumed to be the most flexible traits in animals (Briffa et al. 2008). 

However, Dall and colleagues stated that “from an adaptive perspective, it makes sense for 

individuals to adjust their behaviour according to current conditions (including their internal 

state), and this can result in individual differences in behaviour if there is between-individual 

variance in local conditions” (Dall et al. 2004, page 734). Further, there is now various evidence 
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for constant between-individual behavioural differences resulting in less flexible individual 

behaviour (Evans et al. 2010). Although this was assumed to be improbable because behavioural 

plasticity (the potential of organisms to produce different, relatively fit phenotypes in different 

environmental conditions, DeWitt et al. 1998), rather than behavioural constancy seems to be 

selected for in heterogeneous environments (DeWitt et al. 1998; Dall et al. 2004). Constant 

between-individual differences in behaviour means that individuals constantly differ in how they 

behave. Adaptive constant between-individual differences in behaviour were already recognized 

in, for example, alternative male-mating tactics (Gross 1996). But that animals could generally 

behave constantly different in various situation and contexts, was totally ignored by behavioural 

ecologists for a long time (Sih and Bell 2008). Yet, more recently evolutionary biologists “adopt a 

general set of expectations about adaptive individual differences within single populations that 

can be applied to all traits” (Wilson 1998, page 199). For instance, in a population are individuals 

which are constantly bolder and more aggressive than others. Although this phenomenon has 

been studied in human personality research since 1883 (Galton 1883), studies on the individuality 

of behaviour in animals has only increased in the last decades (see FIGURE 1). Behavioural axes - 

also called behavioural categories - usually studied in animal personality are boldness (risk-taking 

behaviour), exploration, activity, aggression, and sociability (Réale et al. 2007). 

 

FIGURE 1 Number of publications per year between 2000 and 2012, dealing with either animal personality, 
behavioural syndrome or temperament. Graphic is reused from MacKay and Haskell (2015). 

There are two possible explanations – the CONSTRAINT HYPOTHESIS and the ADAPTIVE HYPOTHESIS – for 

constant individual behaviour, and for correlated behavioural traits (see below). The constraint 
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hypothesis assumes that animals behave constantly because maintaining flexible behaviour is 

costly (DeWitt et al. 1998). For instant, being bold in a specific situation but reacting cautiously in 

a different context may be costly. This is because such flexible behaviour may require maintaining 

a sensitive sensory system and a broad range of physiological processes (Bergmüller 2010). The 

different situations could in this way specifically perceived and reactions differently validated 

depending on the situation. Flexibility could also be limited due to fixed coupling of (behavioural) 

traits (DeWitt et al. 1998). Underlying genetic or physiological constraints could thereby result in 

fixed individual behaviours even if these behaviours appear to be maladaptive in certain situations 

or contexts (Carere and Maestripieri 2013). On the other hand, the adaptive hypothesis assumes 

that constant behaving individuals have fitness advantages (Bergmüller 2010). As reviewed by 

Bergmüller (2010), individual constancy in behaviour may result in fitness benefits of specialists 

compared to generalists, and may reduce conflicts between individuals. Further, behavioural 

constancy may also be some kind of commitment because conspecifics can rely on other’s 

previous behavioural pattern (Bergmüller 2010).  

Definitions and Terminology of Animal Personality 

In the literature, there is a confusing variety of terminology all referring to the phenomenon of 

constant between-individual behavioural differences in animal populations (David and Dall 2016). 

The application of (partly) modified expressions used in human personality and psychobiology 

research, as well as the use of synonymous terms makes it even more puzzling to understand 

scientific texts in this research area (MacKay and Haskell 2015). In the past, there have been 

several attempts to provide clear definitions, and conceptual and methodological frameworks in 

animal science (e.g., Koolhaas et al. 1999; Gosling 2001; Sih et al. 2004a; Bell 2007; Réale et al. 

2007). However, we still have no clear picture for the terminology (David and Dall 2016, but see 

Koski 2014). In general, there are two basic approaches: The first assumes constant behavioural 

variation between individuals and individual behavioural traits which are repeatable and 

consistent across time and situations (e.g., temperament and animal personality). The second 

approach considers constant individual variation in more than one behavioural trait or in more 

than one context, whereby assuming correlation between these behaviours within populations 

(e.g., behavioural syndrome and coping style). There are even more terms in the literature 

describing similar patterns of constant between-individual differences in behaviour (e.g., coping 

strategies, behavioural profiles, characters, personality dimensions, predispositions, individuality, 

cf. Uher 2011). However, I will here focus on the following four terms as they are now used most 

commonly: Animal personality, temperament, behavioural syndrome and coping style. 
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ANIMAL PERSONALITY is often used as a synonym of temperament (see below) and it is defined as 

between-individual behavioural differences that are repeatable over time and across situations 

(Réale et al. 2007). Although the term personality arose from studies in humans, it has been used 

in animal studies for many years and there has been a vast increase of animal personality 

publications since the year 2000 (MacKay and Haskell 2015, FIGURE 1). The definition is based on 

behavioural patterns which are non-random, and it can be used to describe the particular aspect 

of behavioural phenotypes which are constant over time and differ constantly between individuals 

within a population (Bergmüller 2010). In animal personality studies, constant individual 

behaviour is investigated with respect to ecological consequences, and it considers how and why 

constant between-individual differences have evolved (David and Dall 2016). Animal personality 

can also be used to describe the more general topic and the research field dealing with constant 

between-individual behavioural differences in animals. Recently, there is also an integration of 

animal personality into research fields like community ecology (Modlmeier et al. 2015; Quinn 

2015) and animal cognition (Sih and Del Giudice 2012; Morton et al. 2013).  

The term TEMPERAMENT originates also from human personality and psychology. As reviewed by 

Réale et al. (2007), there are several definitions, but it seems that even in human research, the 

definitions are not used uniformly (Gosling 2001). Temperament was defined as inherited 

behavioural tendencies occurring in early life and providing the basis of personality later in life 

(Goldsmith et al. 1987). However, temperament is also used as a synonym of (animal) personality 

(Réale et al. 2007) without the restriction to early life-history phases. Thus, temperament can also 

be defined as between-individual behavioural differences that are repeatable over time and 

across situations (Réale et al. 2007). Recently, temperament was found to be mainly used in 

agricultural research, developmental biology, and veterinary sciences (MacKay and Haskell 2015). 

In applied ethology, farm animals are also categorised depending on their individual behaviour. 

Thereby, it is assumed that temperament is preferably used instead of (animal) personality to 

avoided anthropomorphism (Gosling 2001; MacKay and Haskell 2015). Initially, temperament was 

considered to be addressed to the individual level, but it can also be used for populations or 

species (Réale et al. 2007). The use of the term temperament does not restrict to specific species, 

it is widely used in all animal taxa (e.g., Reale et al. 2000; Brydges et al. 2008; Kobler et al. 2009; 

Eccard and Rödel 2011; Zambra et al. 2015). MacKay and Haskell stated recently that 

“temperament occupies a niche which personality and behavioural syndromes cannot fill” 

(MacKay and Haskell 2015, page 468). They argue that temperament refers to a one-context 

behavioural variation and is quantifiable in contrast to personality which cannot be quantified and 

refers to the underlying structure of behavioural variation (MacKay and Haskell 2015). However, 
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their attempt to combine all definitions of temperament, personality and behavioural syndrome 

(see below) seems to lead to even more confusions. 

Sih et al. (2004a) defined BEHAVIOURAL SYNDROMES as suits of correlated behaviours across two or 

more contexts or situations. Context was thereby defined as a behavioural category (e.g., mating 

or feeding context) and situation was defined as “a given set of conditions at one point in time” 

(Sih et al. 2004a, page 243). In a population, different BEHAVIOURAL TYPES occur. They are defined 

by each individual combination of two or more behavioural trait levels (see FIGURE 2, Bell 2007). 

The correlation between the two or more behaviours was further defined as behavioural 

syndrome (see FIGURE 2, Bell 2007). Behavioural types could be identified to be either distributed 

along a shyness-boldness continuum (Wilson et al. 1994), along an avoidance-exploration 

continuum (Réale et al. 2007), or along a fast-slow continuum (Titulaer et al. 2012). Thereby, 

behavioural traits along the different continuums further correlated with other behavioural axes. 

For instance, more exploratory great tits (Parus major) were bolder (Verbeek et al. 1994), more 

aggressive (Carere et al. 2005) and showed more risk-taking behaviours (van Oers et al. 2004b) 

than less explorative birds. Another definition of a behavioural syndrome was identified to follow 

a proactive-reactive continuum (see below). 

 

FIGURE 2 Different behavioural types forming a behavioural syndrome between behaviour X and Y. Each 
dot indicates an individual in a population. With permission (License Number 3879250630192) from Bell 
(2007). 

COPING STYLE was defined as “a coherent set of behavioural and physiological stress responses 

which is consistent over time and which is characteristic to a certain group of individuals” 
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(Koolhaas et al. 1999, page 925) meaning that it also defines a syndrome. The term coping style is 

usually used when physiological parameters (e.g., stress hormones) are investigated in 

combination with behaviours. Traits or correlations between behavioural and physiological traits 

are also assumed to be constant over time and characterise populations not individuals (Koolhaas 

et al. 1999). Within copying styles, two behavioural types (e.g., combination of behavioural trait X 

and physiological trait Y, cf. FIGURE 2) were defined: The proactive and the reactive type (Koolhaas 

et al. 1999). Thereby, proactive individuals are expected to respond actively and aggressively 

towards stress stimuli, while reactive animals behave less active and less aggressive than the 

proactive type (Koolhaas et al. 1999). Furthermore, both types are assumed to differ in their 

neuroendocrine characteristics, such as adrenaline or corticosterone levels (Koolhaas et al. 1999), 

and would be located on the extreme ends of the syndrome (cf. FIGURE 2). Originally, the concept 

of coping styles was established in laboratory house mice (Mus musculus; Benus et al. 1991), but 

was also shown to apply to a number of other species (e.g., pigs (Sus scrofa), tree shrews (Tupaja 

belangeri), and rhesus monkey (Macaca mulatta) as reviewed by Koolhaas et al. 1999). Also 

recently, this concept is widely used, for example in mammals (Monestier et al. 2015), fish (Ferrari 

et al. 2015), and arthropods (Mesquita et al. 2015).  

TABLE 1 Overview of the terminology used in this thesis regarding constant individual behavioural 
differences. Terms and corresponding definitions are shown, detailed explanations and references are 
found in the text. 

TERM DEFINITION 

ANIMAL PERSONALITY 
Individual behavioural differences that are repeatable over time and 

across situations (Réale et al. 2007) 

BEHAVIOURAL TRAIT 
A quantifiable behaviour (e.g., activity, boldness, exploration, 

aggression, docility, sociability) 

PERSONALITY TRAIT 
A behavioural trait which shows constancy (repeatability and/or 

consistency) in individuals of a population 

BEHAVIOURAL TYPE 
An individual with a specific combination of two or more behavioural 

trait levels (Bell 2007) 

REPEATABILITY 

The proportion of total variance assigned to between-individual 

variance from observations within the same contexts or life history 

phases (Dingemanse et al. 2010) 

CONSISTENCY 
The proportion of total variance assigned to between-individual 

variance from observations from different contexts or life history phase 

BEHAVIOURAL SYNDROME 
Suits of correlated behaviours across two or more contexts or situations 

(Sih et al. 2004a) 
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In the following chapters, I refer to animal personality when addressing topics dealing with 

constant between-individual behavioural differences in general. If constancy of behavioural traits 

(repeatability and/or consistency, see page 7) was proven, behavioural traits will further be 

referred to as personality traits. When speaking about correlations between different personality 

traits, I will refer to behavioural syndromes. All definitions used in the following paragraphs are 

summarised in TABLE 1.  

Assumptions of Constant Between-Individual Behavioural Differences 

By definition (of all previously explained terms, see page 3) animal personality is based on the 

following assumptions: First, between-individual behavioural differences are assumed to be 

constant through time and across different situations (Réale et al. 2007). Further, individual 

behaviour is assumed to be constant across context, and phenotypic correlations between 

different behavioural categories are expected, forming a behavioural syndrome (Sih et al. 2004b).  

I - Repeatability and Consistency of Behavioural Traits 

Animal personality assumes stability of behavioural traits (Réale et al. 2007). Several terms are 

used to describe this stability: Test-retest reliability, temporal reliability, repeatability, cross-

context repeatability, or consistency. Sometimes, these terms are used to explain similar 

characteristics of behavioural traits, but sometimes not. Thus, it can be difficult to distinguish 

between their definitions. In the following paragraph, I explain REPEATABILITY and CONSISTENCY in 

more detail as those terms are clearly related to the temporal constancy definition of animal 

personality.  

The first assumption of animal personality is that behaviours are repeatable (Réale et al. 2007). In 

general, the term repeatability is used when assessing the accuracy of specific measurements 

(Nakagawa and Schielzeth 2010). In animal personality research, repeatability specifies the 

proportion of between-individual variance relative to the total phenotypic variance in a 

population for repeated measures of the same behaviour (Dingemanse et al. 2010). It can be 

interpreted as the expected correlation between repeated measurements of a behaviour of the 

same individual. The repeatability of a specific behaviour is usually calculated based on repeated 

observations in the same context and life history phase. When estimating repeatability we assume 

that environmental factors of each replicated measure are constant (Réale et al. 2007). As defined 

in TABLE 1 (page 6), I refer to REPEATABILITY as the proportion of between-individual variance from 

observations within the same life history phase. There have been several estimation methods 

used to quantify the repeatability of behaviour. When two measures of the behaviour of interest 



Introduction - Part 1 - Introduction to Constant Individual Differences in Animal Behaviour 
I - Repeatability and Consistency of Behavioural Traits 

 
8 

have been taken for each individual, rank correlations between the first and the second 

measurement can be used to calculate repeatability (e.g., Herde and Eccard 2013; Bajer et al. 

2015). When two or more measures of a behavioural trait are available for different individuals, 

repeatability can further be obtained by running an analysis of variance (ANOVA) with individuals 

included as a fixed factors (Lessells and Boag 1987). Thereby, the total phenotypic variance is 

separated into between-individual variance and within-individual variance to estimate 

repeatability (Lessells and Boag 1987): 

 

𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑏𝑒𝑡𝑤𝑒𝑒𝑛-𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑤𝑖𝑡ℎ𝑖𝑛-𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑏𝑒𝑡𝑤𝑒𝑒𝑛-𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

 

More recently, Nakagawa and Schielzeth (2010) recommended the use of linear mixed effect 

models (LMMs) for the estimation of those variances. Without including any confounding factors, 

another form of agreement repeatability is calculated (Nakagawa and Schielzeth 2010). However, 

to account for confounding factors, confounding variables through fixed factors and covariates 

should be included in the model. This form of repeatability was termed adjusted repeatability 

(Nakagawa and Schielzeth 2010) and is commonly used in animal personality studies (e.g., Hall et 

al. 2015; Small and Schoech 2015). Furthermore, generalised linear mixed effect models (GLMMs) 

can be applied if models on behavioural traits show non-Gaussian error distributions (Nakagawa 

and Schielzeth 2010). In cases where varying testing conditions contribute to between-individual 

variation, the use of LMMs is particularly useful to avoid an overestimation of repeatability 

(Dingemanse and Dochtermann 2013). Repeatability is calculated as a fraction of total trait 

variance that can be assigned to between-individual variance due to additive and non-additive 

genetic effects, as well as due to the permanent environment effect (Falconer et al. 1996; 

Nakagawa and Schielzeth 2010). Thus, low repeatability for a behavioural trait could be observed 

if, for example, the conditions chosen for the experimental test do not generate phenotypic 

variation (i.e. all individuals behave equally) or by high within-individual variation relative to 

between-individual variation (Réale et al. 2007). The latter could be the case if behavioural 

observations are done with individuals at different ages, and there is an age effect which is larger 

than the between-individual effect. Repeatability is a unit-free standardized measure that can 

readily be compared among populations, species and studies (Réale et al. 2007). However, which 

estimation method was chosen for the calculation of repeatability can have profound effects on 

the conclusions, as illustrated by the following example: In birds, Small and Schoech (2015) 
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showed that the stress-induced corticosterone level was repeatable in adult female Florida scrub-

jays (Aphelocoma coerulescens), but not in males. However, this difference between the sexes 

was only apparent when agreement repeatability was calculated. When the authors applied 

LMMs including effects of the study year and the time of day, the resulting values for adjusted 

repeatability (Nakagawa and Schielzeth 2010) of stress-induced corticosterone level were 

significant in both sexes (Small and Schoech 2015).  

In the vast body of literature of animal personality, repeatable behaviours have been observed in 

all animal taxa (Bell et al. 2009). Within all animal taxa, Bell et al. (2009) estimated an average 

behavioural repeatability of 0.37.  

Repeatability estimates from observations across contexts or life history phases have also been 

reported as ‘repeatability’, but the alternative terms cross-context repeatability (e.g., Laskowski 

and Bell 2013) or consistency (e.g., Wuerz and Krüger 2015) allow us to better specify the different 

information content of these estimates. The proportion of between-individual variance among 

measurements from different contexts or life history phases characterises the stability of 

individual behaviour across different behavioural categories or across a longer time interval 

assuming probable changes in the environment. Rank correlations of individual behaviour across 

contexts can also indicate consistent individual behaviour measured in different situations 

(Brommer and Class 2015). However, while rank correlations report stable or changing rank orders 

of mean individual behavioural performance within a population, they lack information on the 

relative contribution of repeatable individual performances to the total phenotypic variance in a 

population. Given that, I refer to CONSISTENCY of behavioural traits as the proportion of between-

individual variance from observations at different ontogenetic stages (see TABLE 1, page 6). There 

is a large body of literature providing evidence for consistency of behavioural traits in many animal 

species. However, consistency is not necessarily evident for all kinds of behaviours. For instance, 

in common voles (Microtus arvalis) activity, exploration and boldness were repeatable, but only 

activity parameters were also consistent when tested over a longer time interval (Herde and 

Eccard 2013). This might be due to variation in life history parameters, for example, expected life 

span (Herde and Eccard 2013) or seasonality and environmental changes (Eccard and Herde 2013). 

In Siberian dwarf hamsters (Phodopus sungorus), Kanda et al. (2012) showed that the individual 

activity level was consistent between all age classes. However, boldness, reactivity and orientation 

showed less consistency. In great tits (Parus major), exploration was a consistent trait over a time 

period of on average 150 days (Dingemanse et al. 2002). David et al. (2012) showed that zebra 

finches (Taeniopygia guttata) also explored consistently over a seven month interval, which 
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represented about one quarter of the life span of this species. Given our current knowledge, it 

seems difficult to predict which behaviours may show long-term consistency in a specific species.  

Selection for Constant Between-Individual Behavioural Differences 

Measuring selection requires an estimation of fitness parameters for each individual (Morand‐

Ferron et al. 2015). As reviewed by McDougall et al. (2006), strong evidence for selection on 

personality traits in captivity was shown by associations between personality traits and fitness 

(e.g., in cheetahs, Acinonyx jubatus, Wielebnowski 1999; and in black rhinoceroses, Diceros 

bicornis, Carlstead et al. 1999). In wild populations, constant between-behavioural differences 

could also be linked to differences in reproductive success (Reale et al. 2000; Both et al. 2005), 

parental care (Budaev et al. 1999) and survival (Dingemanse et al. 2004; Boon et al. 2007). A meta-

analysis by Smith and Blumstein (2008) on laboratory and wild populations further revealed that 

bolder and more aggressive individuals had on average a higher reproductive success, but more 

exploratory individuals survived longer. 

Different forms of natural selection have been identified to as potential driving forces that can 

maintain constant between-individual behavioural differences in animal populations. Balancing 

selection is assumed to be one mechanism maintaining diverse behavioural types in a population 

(Bergmüller 2010). Thereby, frequency-dependent selection is assumed to lead to the coexistence 

of these behavioural types within a population (Dall et al. 2004). In evolutionary game theory, 

fitness payoffs depending on the frequencies of the competing strategies (here behavioural types) 

are well known (Smith 1982) and this may also explain between-individual behavioural 

differences. Namely, negative frequency-dependent selection could be observed if there are two 

behavioural types occurring in a population and the rare behavioural type has fitness advantages 

compared to the frequent behavioural type. This may then result in a shift of the frequencies: The 

rare behavioural type becomes more and more frequent and the frequent behavioural type 

becomes rarer and thus gains fitness advantages again. It was shown that frequency-dependent 

selection acted on the frequency distribution of explorative behavioural types in breeding pairs of 

great tits (Parus major, Dingemanse et al. 2004; Both et al. 2005). Thus, under negative frequency 

dependent selection, one would expect that a certain combination of intermediate frequencies of 

alternative behavioural types would yield a high average fitness in the population. In three spider 

species of the genus Anelosimus, Lichtenstein and Pruitt (2015) indeed illustrated that a low 

frequency of the aggressive behavioural type within a colony can favour the fitness (measured as 

mass gain) of all behavioural types compared to colonies where aggressive individuals were either 

absent, or more frequent. 
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Spatio-temporal environmental heterogeneity (Roff 1997) was shown to be a factor that favours 

the coexistence of different behavioural types (Carere and Maestripieri 2013). During certain 

environmental conditions one behavioural type has fitness advantages, but when environmental 

condition changes a different behavioural types is favoured, resulting in the coexistence of both 

types (Dingemanse et al. 2004). In this case, the direction of selection is not stable and this 

temporally fluctuating selection has been shown to be an important mechanism maintaining 

individual behavioural differences (e.g., Dingemanse et al. 2004; Boon et al. 2007; Quinn et al. 

2009). One recent example in Siberian chipmunks (Tamias sibiricus) showed that bolder 

individuals had higher annual reproductive success than shy animals but only in years with low 

food availability. When food availability was high, the annual reproductive success was lower in 

bolder chipmunks than in shyer animals (Le Coeur et al. 2015). Furthermore, spatial variation in 

selection was observed in Western bluebirds (Siala mexicana), where more aggressive birds 

survived longer in some populations but not in others (Duckworth 2008). Alternatively, spatial or 

temporal variation of population sizes can cause density-dependent selection (Wilson et al. 1994) 

on behavioural types. In common lizards (Zootoca vivipara), sociable animals survived better in 

high density environments than unsociable individuals, but this was reversed in low density 

environments (Cote et al. 2008). In the same species, Le Galliard et al. (2015) recently concluded 

that density-dependent selection is important in maintaining behavioural types, however, they 

found heterogeneous selection patterns depending on the specific behavioural traits that were 

analysed. Another possible mechanism resulting in variability of behavioural types might be 

disruptive selection (Wilson 1998). When behavioural types show a bi- or multi-modal frequency 

distribution, it is likely that these behavioural types were selected for by disruptive selection 

(Bergmüller 2010). Life history trade-offs (Wolf et al. 2007), as well as sexual selection (Schuett et 

al. 2010) were shown to be further mechanisms acting on the presence and frequency of specific 

behavioural types.  

Heritability of Behavioural Traits 

Only if behavioural traits have a genetic component, we would expect a response to selection on 

that trait and hence, evolution of behavioural types. To identify the genetic architecture of 

personality traits seems to be one of the key goals for the understanding of the origin of animal 

personality, its evolution, and its maintenance (van Oers and Mueller 2010). Thereby, heritability 

is an important estimate to understand, whether evolutionary processes shape personality traits 

(Bergmüller 2010).  
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To calculate the heritability of behaviours, the phenotypic variance (VP) is partitioned into the 

additive genetic variance (VA), variance due to maternal effects (VM), permanent environmental 

variance (VPE), and residual variance (VR) using the following model (Dochtermann et al. 2015): 

 

VP = VA + VM + VPE + VR 

 

The narrow sense heritability (h²) of the behaviour can then be calculated by dividing the additive 

genetic variance by the total phenotypic variance (Falconer et al. 1996): 

 

ℎ2 =  
𝑉𝐴

𝑉𝐴  +  𝑉𝑀 +  𝑉𝑃𝐸  +  𝑉𝑅
 

 

There is growing evidence that the variability of constant individual behaviours has a genetic basis 

(van Oers et al. 2005). Several studies observed heritable variance in behavioural traits. An 

average heritability of 0.14 was estimated across 70 behaviours (Dochtermann et al. 2015). For 

instance, boldness showed significant heritability of 0.27 in dogs (Canis domesticus, Strandberg et 

al. 2005), boldness and docility were significantly heritable (h² > 0.21) in bighorn sheep (Ovis 

canadensis, Réale et al. 2009; Poissant et al. 2013), exploration showed significant heritability in 

great tits (Parus major, Dingemanse 2002; Drent 2003), and also risk-taking behaviour was 

significantly heritable in this species (van Oers et al. 2004b). In rodents, evidence so far suggested 

a moderate heritability of locomotion ability (h² = 0.21) but very low heritability of vigilance (h² = 

0.08) in yellow-bellied marmots (Marmota flaviventris, Blumstein et al. 2010). The heritability of 

behavioural traits was shown to be significantly smaller than the heritability of morphological 

traits (Stirling et al. 2002). These low heritabilities suggest that either strong selection has 

depleted genetic variation (low VA) or the traits are very sensitive to environmental influences 

(high VPE) (Bell 2005). 

Recently, the heritability of personality (h²P) was described by Dochtermann et al. (2015). The 

“heritability of personality refers strictly to the proportion of personality variation attributable to 

additive genetic variance” (Dochtermann et al. 2015, page 2). Mathematically, the additive genetic 

variance (VA) is divided by the variance attributed to the individual (Vind) as shown in the following 

equation (Dochtermann et al. 2015): 
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ℎ2𝑃 =  
𝑉𝐴

𝑉𝑖𝑛𝑑
 , 

where Vind is defined as the sum of the additive genetic variance (VA), the variance due to maternal 

effects (VM) and the permanent environmental variance (VPE). As the heritability of personality can 

also be defined as the heritability of a behavioural trait divided by the repeatability of the same 

behavioural trait, it can be estimated whenever repeatability and heritability is available for the 

same data set (Dochtermann et al. 2015). Given this relationship, the heritability of personality 

traits was shown to be higher even if the behaviour itself was only weakly heritable (Dochtermann 

et al. 2015).  

Evolution of Constant Between-Individual Behavioural Differences 

Given that selection acts on the constancy of between-individual behavioural differences, and that 

individual behaviours are heritable, we expect the possibility of a response to selection, i.e. 

evolution. The response to selection was shown in laboratory experiments using selection lines of 

different behavioural types. Strong responses to the artificial selection were for instance shown 

in laboratory rodents: Van Oortmerssen and Bakker (1981) selected male house mice (Mus 

musculus domesticus) successfully for short and long attack latencies (SAL and LAL lines) over 

eleven generations. These selection lines were continued and showed strong differentiation in the 

selected attack latency response after 36 generations (Benus et al. 1991). Similar selection lines 

(e.g., for the active avoidance in a shuttle box) could be created in laboratory rats (see Benus et 

al. 1987 for review). Studies on wild populations showing a response to selection, however, are 

scarce. Drent et al. (2003) succeeded to breed selection lines of slow and fast explorers from wild-

caught great tits (Parus major). The bi-directional artificial selection experiment showed strong 

effects after four generations, resulting in a mean score change of exploratory behaviour from 

1.78 to -1.31 units per generation (Drent et al. 2003).  

More recently, evidence increased that specific gene regions are involved in the maintenance of 

animal personalities (van Oers and Mueller 2010). Homologues of the dopamine receptor D4 gene 

(DRD4) were for example associated to exploratory behaviour in several species (e.g., great tits, 

Parus major, Fidler et al. 2007; zebra fish, Danio rerio, Boehmler et al. 2007; dog breeds, Canis 

familiaris, ITO et al. 2004). Van Oers and Mueller stated that “it is essential for our understanding 

of the causes and consequences of personality diversity to link phenotypic variation in personality 

traits with polymorphisms in genomic regions that code for this trait variation” (van Oers and 

Mueller 2010, page 3991). This is because phenotypic approaches, which only measure selection 
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on personality traits, cannot reveal the evolutionary trajectories of those traits but evolutionary 

genomics can (van Oers and Mueller 2010). 

II - Behavioural Syndromes: Between-Individual Correlations among Behavioural Traits 

The second assumption in animal personality research is that different behaviours correlate with 

each other. As mentioned before, Sih et al. (2004a) defined behavioural syndromes as suits of 

correlated behaviours across two or more contexts or situations. Contexts were thereby defined 

as behavioural categories and a situation was defined as a specific set of conditions at a given time 

(Sih et al. 2004a). Sih et al. (2004a) specified that behavioural syndromes can involve correlations 

in (a) the same context, but different situations, in (b) different contexts within the same situation, 

or in (c) different contexts in different situations. Phenotypic correlations (behavioural 

correlations) can be partitioned into within-individual and between-individual correlations, and 

the latter actually define a behavioural syndrome (Dingemanse and Réale 2013). It has been 

shown in many (if not all) animal taxa that different behaviours form such behavioural syndromes. 

As already explained before, two main approaches can be found in the animal personality 

literature (FIGURE 3): In rodents, Koolhaas et al. (1999) termed a behavioural syndrome the 

PROACTIVE-REACTIVE SYNDROME, where proactive individuals were more active and more aggressive 

than reactive animals. In birds, the relation between different behavioural traits followed a fast-

slow exploration continuum (FAST-SLOW SYNDROME, Titulaer et al. 2012). More exploratory great tits 

(Parus major) were for example bolder (Verbeek et al. 1994), more aggressive (Carere et al. 2005) 

and showed more risk-taking behaviours (van Oers et al. 2004b) than less explorative birds. Other 

terms such as aggression syndrome, activity syndrome, shyness-boldness syndrome can also been 

found in the literature (reviewed by Sih et al. 2004a). 

Several mechanism may explain such phenotypic correlations. The CONSTRAINT HYPOTHESIS (see 

above) assumes that behavioural syndromes are difficult to break apart because of shared 

mechanisms underlying the different behaviours (Bell 2005). Behavioural traits can be connected 

to morphological traits which are relatively fixed. A common physiological or neuroendocrine 

basis may further result in behavioural correlations (Sih et al. 2004a). In house mice (Mus 

musculus), for instance, different behavioural types (coping styles to respond towards stress) also 

showed differences in their neuroendocrine profiles (Koolhaas et al. 1999). Other proximate 

mechanisms explaining behavioural syndromes are genetic effects. If behavioural traits are 

controlled by common genes, these behaviours cannot evolve independently (see below). Such 

constraints can result from pleiotropy and genetic linkage if behavioural correlations are in fact, 

at least in part, caused by underlying genetic correlations (Bergmüller 2010). Regardless of the 
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proximate mechanism behind the correlations between behaviours, behavioural syndromes can 

result in maladaptive behaviour and conflicts, and they can generate trade-offs (Sih et al. 2004a). 

If prey species, for example, are active and bold, this may result in higher feeding rates compared 

to inactive and shy individuals in the absence of predators. When predators are present, however, 

less active and shy individual should be advantaged compared to active and bold animals because 

the latter face higher predation risks in such situations (Sih et al. 2004a).  

A B 

  

FIGURE 3 Two main approaches of behavioural syndromes in animal species. (A) The FAST-SLOW SYNDROME 
(Titulaer et al. 2012) defined by positive correlations between behaviours. (B) The PROACTIVE-REACTIVE 

SYNDROME (Koolhaas et al. 1999) defined by a positive correlation between activity and boldness, but 
negative correlations between exploration and activity, as well as between exploration and boldness. 

 

Behavioural syndromes further result in restricted behavioural plasticity due to behavioural 

carryovers which induce less than optimal plasticity (Sih et al. 2004a, but see Bell and Stamps 

2004). Limited plasticity is likely to be advantaged in variable environments because animals do 

unavoidable errors due to unpredictable environmental changes, and thus, exhibiting optimal 

plastic behaviour may be too costly compared to less plastic behaviour (Sih et al. 2004a). The 

ADAPTIVE HYPOTHESIS, as mentioned before, assumes that correlational selection favours certain 

combinations of behavioural traits and that behavioural syndromes are adaptive (Sih et al. 2004a; 

Bergmüller 2010). In contrast to the constraint hypothesis which assumes behavioural syndromes 

to be a general characteristic of a specific species due to fixed underlying proximate mechanisms, 

the adaptive hypothesis does not necessarily expect the same syndrome structures across 

different populations of that species (Bell 2005). This is because different behavioural correlations 

might be favoured in individuals of different selective environments (Bell 2005).  

Selection for Behavioural Syndromes 

Due to this adaptive reasoning, it has been argued that “when correlations between behaviours 

exist, they might do so because a particular combination of traits works well together” (Bell 2005, 

page 465). In this context, correlations between behaviours (behavioural syndrome) are 
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hypothesised to be the result of selection, not because of a constraint on it (Bell 2005). 

Correlational selection could be a possible selective mechanism because it favours those certain 

combinations of behavioural traits, acting directly on the correlation between traits (Bergmüller 

2010). That means that specific combinations of two or more behavioural traits covary with fitness 

(Bergmüller 2010). However, only one study could identify correlational selection in a field 

population of garter snakes (Thamnophis ordinoides). In this species, correlational selection acted 

on the relationship between colour morphs and antipredator behaviour (Brodie 1992). In the 

research field of behavioural syndromes, no correlational selection has been identified in animals 

yet (Bergmüller 2010, but see Eaves et al. (1990) for correlational selection detected in human 

personality).  

The PHENOTYPIC SELECTION APPROACH developed by Lande and Arnold (1983) provides a framework 

to study the evolution of complex phenotypes such as personality traits and behavioural 

syndromes by measuring the covariance between fitness proxies and behaviours (Bergmüller 

2010). Using this approach, several forms of selection could be identified as driving forces in the 

maintenance of animal personality traits and behavioural syndromes: directional selection, 

disruptive selection, and stabilizing selection. Empirical evidence, however, showed that 

heterogeneous forms of selection, i.e. balancing selection or antagonistic selection, are most likely 

the key processes maintaining animal personality and behavioural syndromes (Dingemanse and 

Réale 2013). As reviewed by Dingemanse and Réale (2013) temporal and spatial variation in 

selection pressures were detected to act on behaviours in different animal taxa (e.g., mammals, 

birds, and insects). Recently, a study on great tits (Parus major) for instance found, that “temporal 

variation in local density represented the primary factor explaining personality-related variation 

in viability selection” (Nicolaus et al. 2016, page 478). The interplay between fluctuating selection 

and the lack of adaptive behavioural plasticity in personality traits maintained animal personality 

variation in wild populations (Nicolaus et al. 2016). Further, the social environment (e.g., 

population density) was also shown to maintain animal personality and behavioural syndromes 

(Cote et al. 2008). 

Genetically Correlated Behavioural Traits 

As mentioned before, phenotypic correlations (behavioural correlations) can be partitioned into 

within-individual and between-individual correlations, and between-individual correlations are 

themselves affected by genetic and environmental effects (Dingemanse and Dochtermann 2013). 

Selection for behavioural types, however, will only result in the maintenance of these types in the 

population, if the between-individual correlations that underlie the behavioural syndrome are in 
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fact genetic relationships. A genetic correlation (rA) describes how much genetic components (e.g., 

genes) two or more (behavioural) traits share (Roff 1996). If there is a genetic correlation between 

traits (rA > 0), this means that these traits are influenced by common genes. Genetic correlations 

between behavioural traits result in between-individual correlations because of gene pleiotropy 

or linkage disequilibrium, which means that single genes regulate the expression of multiple 

behaviours, or that genes affecting one behaviour are correlated with genes affecting another 

behavioural trait, respectively (Falconer et al. 1996; Han and Dingemanse 2015). Genetic 

correlations are independent of the heritability of each behavioural trait (Plomin et al. 2013). Thus, 

theoretically even if behavioural traits are not heritable, genetic correlations between behavioural 

traits can be observed. The genetic correlations are fundamental to understand the evolution of 

behavioural syndromes, because the evolutionary changes are constrained as selection on one 

trait influences also the response to selection of a genetically correlated trait (van Oers and 

Mueller 2010). Although, the existence of genetic correlations between behavioural traits can be 

a possible factor involved in the occurrence of a behavioural syndrome, evidence for such genetic 

correlations is still scarce in animal species (van Oers and Mueller 2010). Significant genetic 

correlations were, for instance, observed in great tits (Parus major) between risk-taking behaviour 

and exploration (rA = 0.84, van Oers et al. 2004a), in three-spined sticklebacks (Gasterosteus 

aculeatus) between aggression and boldness (rA = 0.84, Bell 2005); and in yellow-bellied marmots 

(Marmota flaviventris) between activity in an open field test and sociability (rA = 0.64, Petelle et 

al. 2015).  

Evolution of Behavioural Syndromes 

An evolutionary consequence of the correlation between behaviours is that behavioural traits 

cannot evolve independently (Sih et al. 2004b). That means that selection favouring one 

behavioural trait, also leads to changes in a different behaviour (Stamps 1991). Given that 

selection acts on correlations between different constant individual behaviours, and that these 

relationships are genetically based, we would expect a response to selection (see above). Thus, 

understanding the evolution of correlated behavioural traits requires to estimate the underlying 

genetic correlations and to reveal the underlying genetic architecture (Karlsson Green et al. 2016). 

But although the genetic architecture of behavioural syndromes has gained more attention 

recently, the evolution of behavioural syndromes has been relatively little investigated in natural 

environments (Karlsson Green et al. 2016).  

Results of empirical studies provided evidence for different evolutionary responses towards 

different selection pressures in different populations and environments. Evidence for the 
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evolution of behavioural syndromes was for instance shown in different population of three-

spined sticklebacks (Gasterosteus aculeatus): Phenotypic and genetic correlations between 

behaviours were found in one population of sticklebacks but not in another (Bell 2005). A 

correlation between aggression and boldness was only found in the population with high 

predation pressure, but this correlation was not present in the population with low predation risk 

(Bell 2005). Similar results were found by Dingemanse et al. (2007), who investigated behavioural 

syndromes in twelve stickleback populations in the United Kingdom. They observed that “the 

often-documented syndrome between aggressiveness, activity and exploratory behaviour existed 

only in large ponds where piscivorous predators were present. In small ponds where predators 

were absent, these behaviours were not (or only weakly) associated.” (Dingemanse et al. 2007, 

page 1128). The authors concluded that behavioural syndromes found in sticklebacks did not act 

as evolutionary constraints, but that rather natural selection favoured the evolution of 

behavioural correlations in certain environments depending on the predation pressure in 

sticklebacks (Bell 2005; Dingemanse et al. 2007). More recently, Fischer et al. (2016) compared 

behavioural syndromes in different populations of Trinidadian guppies (Poecilia reticulate) from 

low- and high-predation environments. They observed that behavioural variance increased when 

fish were reared under non-native environmental conditions compared to fish reared in native 

conditions. Further, behavioural correlations differed between the groups depending on the 

rearing condition and genetic background. The evolvability (i.e. the capacity for adaptive 

evolution) was found to increase under non-native environmental conditions (Fischer et al. 2016). 

The authors concluded that the behavioural syndrome found in Trinidadian guppies is plastic and 

can evolve differently between populations from different environments (Fischer et al. 2016). A 

rapid response to selection was also observed by Karlsson Green et al. (2016) in freshwater 

isopods (Asellus aquaticus). In this species, a novel ecotype has diverged after the colonization of 

a new habitat in Swedish lakes (Karlsson Green et al. 2016). In a common garden experiment, the 

authors found that genetic correlations among behaviours differed between the two ecotypes 

(Karlsson Green et al. 2016). They concluded that “genetic correlations behind behavioural traits 

have become decoupled and differentiated during a very short ecological and evolutionary time 

frame, corresponding to 40-50 isopod generations” (Karlsson Green et al. 2016, page 150). 
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Part 2 - Introduction to Animal Cognition 

In the second part of the introduction, I introduce to animal cognition: What is animal cognition? 

Why are we interested in cognitive abilities of animals? I will further give an overview about spatial 

cognition in animals followed by an introduction to individual differences in cognitive traits. In the 

last paragraph, the theoretical concept of cognitive syndromes will be explained providing a 

connection to the first part of the introduction - animal personality. 

In general, COGNITION can be defined as mechanisms how individuals (humans and animals) 

acquire, process, store, and use information from the environment (Shettleworth 2010). On the 

one hand, cognition includes all physiological and neuronal processes involved in the processing 

and storage of perceived information. This can include mechanisms of perception in the sensory 

cells, the release of neurotransmitters and further processing of information in the brain 

(Shettleworth 2010). On the other hand, the use of information also results in a behavioural 

reaction reflecting these cognitive processes. That means that cognition results in behaviour and 

natural selection acts on cognition indirectly through the medium behaviour (Shettleworth 2010). 

Four domains can be separated within the field of cognition: perception, learning, memory, and 

decision-making (Shettleworth 2010). 

Studying Cognition in Animals 

The research field of ANIMAL COGNITION has not been recognized until the 1970s (Shettleworth 

2010). It is often also referred to as COMPARATIVE COGNITION because human psychologist in the 

beginning usually compared the mental characteristics of humans to those of non-human species 

(Shettleworth 2010). Studying animal cognition implies the one fundamental problem that we 

cannot investigate consciousness in animals. This is because consciousness is a subjective state 

and animals cannot tell us whether they experience something consciously or not (Shettleworth 

2010). Thus, investigation on animal cognitive abilities rely on changes in the behaviour which can 

be interpreted as learning or memory. For instant, if we observe the behaviour of an animal in a 

Y Maze, we would expect that all three arms of this arena are equally visited. However, if we block 

one of the three arms of the Y Maze during the first of two trials, animals usually spend more time 

in that specific arm once it is opened in the second trial. This arm is new to them, as they were 

not able to explore it before. This behavioural reaction of the animals is generally interpreted as 

spatial recognition of an unknown environment (e.g., Dellu et al. 1992). Thus, we measure a 

cognitive trait as the change in the expression of an observable behavioural trait. 
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Spatial Cognition in Animals 

Spatial orientation is a very important cognitive trait for all mobile animals as they face the 

fundamental challenge of not getting lost when they move around to look for food, homes or 

mating partners. SPATIAL COGNITION can be defined as how animals acquire, process, store, and use 

spatial information from the environment (Shettleworth 2010). This means that individuals should 

be able to put their own position in relation to the position of others or of cues in their 

environment. Spatial cognitive processes are assumed to rely on different computational 

requirements than other types of learning (e.g., associative learning, Dyer 1998). Several 

mechanisms were identified to be used by different animal species for spatial orientation. For 

instance, DEAD RECKONING, also known as PATH INTEGRATION, can be defined as an internal sense of 

distance and direction of a known place compared to the own current position (Shettleworth 

2010). In gerbils (Meriones unguiculatus) for example, Mittelstaedt and Mittelstaedt (1980) 

discovered that mother gerbils returned straight to the original location of their nest after 

searching for a hidden pup, even when the position of the nest had been changed while the female 

was picking up her offspring. As the experiment was conducted in darkness, no visual cues were 

available. The authors concluded that females homed by “integrating azimuthal information from 

rotatory accelerometers over an idiothetic variable which is proportional to the progress of the 

animal along its path” (Mittelstaedt and Mittelstaedt 1980, page 566). In golden hamsters 

(Mesocricetus auratus), Etienne and Jeffery (2004) likewise discovered that animals used path 

integration during homing (movement of retouring to their nest/home). Hamsters did hoarding 

excursions while the experimental room was illuminated by infrared light. At food patches they 

filled their pouches and then returned directly to their starting point (Etienne and Jeffery 2004). 

These mechanisms involve egocentric spatial localization which means that objects in the 

environment (e.g., nests or food patches) are localized with respect to the animal itself 

(Shettleworth 2010). It was shown that the vestibular system plays an important role for path 

integration (Wallace et al. 2002). The vestibular system is part of the sensory system in mammals 

and provides information for balance and spatial orientation. It is located in the inner ear of 

mammals. As movements consist of rotations and translations, the vestibular system comprises 

two components: Rotational movements and linear accelerations. This is especially important for 

nocturnal species which cannot as much rely on visual cues as diurnal species do (Shettleworth 

2010). 

The opposite of egocentric spatial localization are allocentric mechanisms which use 

environmental geometry or cues in the environment as references (Shettleworth 2010). Two types 
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of cues can be distinguished - BEACONS and LANDMARKS. Let us clarify the differences of these cue 

types by means of a fundamental cognitive task used in animal cognition. This task is the Morris 

Water Maze (MWM) established by Morris (1981). During the task animals (mostly rats and mice) 

are supposed to learn the location of a platform in a water tank. Animals are released into the 

water and have to swim searching for the platform where they can stand on and rest. Usually 

several trials are conducted until the animal has learned the position of this platform. Spatial 

memory can also be tested by repeating trials with delay of minutes or hours. Very different 

modifications of the MWM have been used (reviewed by D'Hooge and De Deyn 2001). In all 

applications, the platform in the MWM function as a BEACON - also called proximal cue - when it is 

visible for the animal. In this kind of set-up, animals learn that the visible platform is the position 

of the save area in the water, where they can rest from swimming. In contrast, the platform can 

also be under the water surface and usually the water is made opaque so that animals have to 

learn the position of the platform (safe resting area) via symbols attached to the wall of the 

swimming pool. These symbols serve as LANDMARKS - also called distal cues - when the platform is 

not visible for the animals. Landmarks are defined as fixed objects with fixed location (cues) that 

guide animals to their goal position (Shettleworth 2010). Spatial orientation relates on the position 

of the animal in relation to the landmarks in these cases. It was shown that spatial learning based 

on beacons involves a different cognitive processing than spatial learning based on landmarks 

(White and McDonald 2002). The hippocampus is the important brain region of vertebrates 

involved in the processing of spatial information about the environment in general (Yaskin 2011). 

It is a well-defined brain region which is c-shaped in most mammals and located around the 

thalamus (Dukas 2009). Prominent examples in food-storing and non-storing birds showed that 

the hippocampus volume was larger in species which did store food (Biegler et al. 2001). Further, 

lesions of the hippocampus induced the loss of spatial orientation ability and spatial memory 

function in rats (e.g., Stubley-Weatherly et al. 1996). Taken together, this indicates the importance 

of the hippocampus in spatial cognition in animals. 

Between-Individual Differences in Cognitive Traits 

Coming back to the Morris Water Maze described before, the MWM is a famous example and 

commonly used in cognitive, medical, and may also be suitable for behavioural ecology studies. 

The research field of animal cognition deals with central questions on processes that allow animals 

to solve a specific task (e.g., how they find the platform). Medical studies focus on the effects of 

drugs or diseases on the learning or memory capacity by comparing behaviour between treatment 

and control groups (e.g., under drug treatment, the platform is not found anymore). Among 
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behavioural ecologists, however, there is growing interest in the individuality of task performance. 

As reviewed by Thornton and Lukas (2012), individual cognitive variation was observed in many 

animal cognition studies. However, this variation was often ignored or interpreted as noise around 

the mean of a population (Thornton and Lukas 2012). This history is in common with constant 

between-individual behavioural variation described in the first part of the introduction. First 

evidence for individual differences in cognitive traits was explicitly documented in biomedical 

studies which quantified cognitive variation between genetic strains of rodents (e.g., Walker and 

Mason 2011; Sweis et al. 2013). Recently, there is growing evidence for these between-individual 

differences in cognitive traits, and quantifying individual cognitive variation is one of the recent 

challenges in behavioural ecology (Croston et al. 2015). Individual differences in cognitive traits 

were shown, for instance, in birds (e.g., Guillette et al. 2015), mammals (e.g., Matzel et al. 2003; 

Guenther et al. 2014a), and fish (e.g., DePasquale et al. 2014; Mamuneas et al. 2015). Specifically, 

there is also growing evidence for between-individual differences in spatial cognitive traits (e.g., 

Carazo et al. 2014).  

However, only a handful of studies investigated the repeatability or consistency of individual 

cognitive differences (Griffin et al. 2015). For instance, Wang et al. (2015) showed that zebrafish 

(Danio rerio) decided repeatably in a colour discrimination task. In Carib grackles (Quiscalus 

lugubris), birds performed consistently well over two problem-solving tasks (Ducatez et al. 2015). 

Also, black-capped chickadees (Poecile atricapillus) reached a learning criterion consistently fast 

over two different set-ups in a colour association task (Guillette et al. 2015). 

Selection, Heritability and Evolution of Individual Differences in Cognitive Traits 

As the interest in and evidence for individual variation in cognitive traits has just recently increased 

(Thornton and Lukas 2012), there are no theories explaining this variation yet. We may 

hypothesize that mechanisms maintaining the individual variation in cognitive traits are similar to 

the ones explaining between-individual behavioural variation (see Part 1). Cognitive traits can be 

the basis for constant between-individual differences in behaviour (Sih et al. 2004a). This 

connection may result in non-independent evolution of behaviours and related cognitive traits. 

Further, cognitive traits can be connected to morphological or physiological traits which are 

relatively fixed. Larger hippocampus sizes were, for instance, correlated with better spatial 

memory in birds (Pravosudov and Clayton 2002). If this is the case, the constraint hypothesis 

assumes that correlations between those traits and cognitive traits are difficult to break apart (Bell 

2005). Thus, indirect selection may maintain variation in cognitive traits. On the other hand, it was 

assumed that natural selection acts on cognitive traits which produces changes in specific 
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associated brain regions resulting in the evolution of cognitive traits and neuronal structures 

(Croston et al. 2015). However, “direct evidence for the role of natural selection in driving the 

evolution of cognitive traits and their neural mechanisms remains elusive” (Croston et al. 2015, 

page 1447). Nevertheless, the selection mechanisms resulting in variation in cognitive traits may 

be similar to the ones resulting in variation in behavioural traits (selective mechanisms explained 

in details in Part 1).  

Studying natural selection of animal cognition relies on the fundamental condition that cognitive 

trait variation is associated with differences in individual fitness (Dukas 2004). Different fitness 

proxies were recently shown to correlate with individual variation in cognitive traits in wild 

populations (see review by Morand‐Ferron et al. 2015). In grasshoppers (Schistocera americana), 

for example, individuals which learned an association between spatial cues and a food reward, 

had a significant higher growth rate than animals without this learning experience (Dukas and 

Bernays 2000). However, no study has directly related individual cognitive variation to 

“reproductive fitness” (Thornton and Lukas 2012). There are no clear predictions whether or not 

cognition correlates with fitness because cognition is no unitary trait or usually not clearly defined 

(Rowe and Healy 2014). It is not expected to find fitness benefits for “smarter” individuals as there 

is probably more than one way to be smart (Rowe and Healy 2014). Defining the “optimal” or 

“best” cognitive ability for a specific species in specific environmental conditions would be the 

critical prerequisite for further investigations into the effect of cognitive variation on fitness. For 

example, three-spined sticklebacks (Gasterosteus aculeatus) from fast-flowing rivers and ponds 

were trained to locate a hidden reward in a T-maze (Odling-Smee and Braithwaite 2003). Fish from 

the pond populations appeared to rely more on visual landmarks than fish from the river 

populations (Odling-Smee and Braithwaite 2003). The authors concluded that “landmarks may be 

reliable indicators of location only in stable pond habitats. In rivers, turbulence and flow may 

continually disrupt the visual landscape such that river fish may benefit from learning orientation 

routes only if learning is constrained so that unreliable visual cues are ignored.” (Odling-Smee and 

Braithwaite 2003, page 701). Another study showed adaptive variation of problem-solving 

behaviour in great tits (Parus major): Cole and Quinn (2012) observed that problem-solving was 

negatively correlated with the ability to compete over food resources, which may indicate an 

indirect measure of fitness. They hypothesised that poor competitors may compensate their 

disadvantage through better cognitive abilities (e.g., problem-solving) as a different strategy 

(cognitive styles, see below, Cole and Quinn 2012).  



Introduction - Part 2 - Introduction to Animal Cognition 
Cognitive Syndrome 

 
24 

Cognitive traits - like all phenotypic traits- can only evolve if there is genetically based variation in 

traits among individuals, and if traits are heritable (Dukas 2004). General cognitive ability - suits 

of correlated cognitive abilities measured in different cognitive tasks (Plomin 1999) - was shown 

to be highly heritable in humans (Croston et al. 2015). There is also growing evidence for a genetic 

contribution to individual cognitive variation in non-human animals (Dukas 2004). As reviewed by 

Croston et al. (2015), the general learning ability had a heritable component of 40 % and 53 % in 

house mice (Mus musculus) and chimpanzees (Pan trogolodytes), respectively.  

Using artificial selection lines, it was shown in different animal species that selection resulted in 

divergent changes in learning abilities of the different selection lines (e.g., spatial learning in rats, 

reviewed by Dukas 2004), or associative learning in fruit flies (Drosophila melanogaster, Lofdahl 

et al. 1992; Mery and Kawecki 2002). However, examples for evolved cognitive abilities in the wild 

are scarce. One famous example is the difference in spatial memory between food-storing and 

non-storing birds: After, it has been shown that food-storing birds have a larger hippocampus than 

non-food-storing species (Krebs et al. 1989), it was also observed that food-storers (coal tits, Parus 

ater) were able to remember locations longer that non-storers (great tits, Parus major). However, 

these two species did not differ in memory resolution and memory capacity (Biegler et al. 2001). 

Individual differences in spatial memory was found by a within-species comparison among 

different populations of black-capped chickadees (Poecile atricapilla, Pravosudov and Clayton 

2002), giving evidence for different selection responses of the spatial memory function in different 

populations depending on the environmental conditions. 

Recently, Morand‐Ferron et al. (2015) provided a framework to study the evolutionary ecology of 

cognitive traits. They suggested a six-step approach (c.f. Figure 2 in Morand‐Ferron et al. 2015) to 

link cognitive traits of interest to fitness proxies while identifying confounding effects. Thereby, 

multivariate analyses should be used to test for selection. Further, the repeatability and 

heritability of cognitive traits should be assessed. In the end, the overall response to selection, i.e. 

evolution of the cognitive traits, can be identified based on the current selection pressure and 

trait variation (Morand‐Ferron et al. 2015). 

Cognitive Syndrome 

Sih and Del Giudice (2012) introduced the term COGNITIVE SYNDROME based on the hypothesis that 

behavioural types are linked to cognition. They assume that cognitive styles can evolve, if adaptive 

cognitive behaviour can be achieved through different strategies, or if animals face constant 

trade-offs when solving cognitive tasks. A cognitive syndrome is defined as consistent between-
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individual differences in cognitive styles which are related to behavioural types within a 

population (Sih and Del Giudice 2012). COGNITIVE STYLES are thereby defined as strategies how 

individuals acquire, process, store and remember information and which are constant across time 

and contexts (Gruszka et al. 2010). Consistent cognitive styles are for example expected to arise 

due to a speed-accuracy trade-off individuals face during decision-making, which can be involved 

in any cognitive context (e.g., learning and memory). When an individual has to make a decision 

it may face the fundamental problem of speed-accuracy trade-offs (Chittka et al. 2009). Individuals 

can either decide fast at the cost of an accurate decision or take their time and decide more 

accurately (Burns and Rodd 2008). Erroneously, accuracy has been interpreted in the past as a 

limit to the cognitive ability of an individual (Chittka et al. 2009), but recent data showed that both 

cognitive styles (fast vs. accurate) can occur in a population side by side (Wang et al. 2015), 

indicating that both styles might be similar adaptive in specific environmental conditions. Within 

a cognitive syndrome fast behavioural types (consistently bolder, more aggressive and more active 

individuals) are expected to show faster decision or learning styles. Slow behavioural types in 

contrast are assumed to decide or learn less fast but more accurately (Sih and Del Giudice 2012). 

This is due to a risk-reward trade-off, where fast animals take higher risks while being rewarded 

faster and slow animals decide or learn more accurate but less fast and take less risks (FIGURE 4). 

Given this, risk-reward trade-offs are expected to provide one potential link between behavioural 

types and cognitive styles (Sih and Del Giudice 2012, FIGURE 4).  

 

FIGURE 4 The concept of cognitive syndromes proving a possible link between behavioural types and 
cognitive styles through a risk-reward trade-off. With permission (License Number 3845950396542) from 
Sih and Del Giudice (2012). 
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Like behavioural types, cognitive styles are assumed to show temporal repeatability and cross-

context consistency (Sih and Del Giudice 2012). This is because behavioural and cognitive 

syndromes rely on the assumption that individuals constantly differ in their behavioural trait 

expressions. The rank order of individuals is assumed to be stable between situations, even if the 

mean behavioural trait expression might differ between tests (Sih et al. 2004b). Based on this, 

several assumptions should be tested: As for personality traits, constant between-individual 

differences are assumed for cognitive traits (see above). Thus, repeatability and consistency of 

those traits should be investigated. Further, as the cognitive syndrome is expected to arise from 

a risk-reward trade-off (Sih and Del Giudice 2012), cognitive styles could be based on a speed-

accuracy trade-off during decision making. Experimental set-ups should thus test for a speed-

accuracy trade-off within individuals.  

Although, there is growing evidence that behavioural types are related to cognitive styles, studies 

demonstrating the prerequisite of cognitive syndromes - cognitive traits are constant across time 

or contexts - are less evident (Griffin et al. 2015). For instance, Wang et al. (2015) showed that 

zebrafish (Danio rerio) decided repeatably in a colour discrimination task. In Carib grackles 

(Quiscalus lugubris), birds performed consistently over two problem-solving tasks (Ducatez et al. 

2015). Also, black-capped chickadees (Poecile atricapillus) reached a learning criterion 

consistently over two different set-ups in a colour association task (Guillette et al. 2015). 

Furthermore, recent studies so far indicated contradictory results: Experimental work in black-

capped chickadees (Poecile atricapillus) showed a cognitive syndrome, as slow exploring 

individuals showed higher accuracy levels during learning trials (Guillette et al. 2015). Guenther et 

al. (2014a) also showed that boldness, activity and aggressiveness were positively correlated to 

fast association learning in wild cavies (Cavia aperea). On the contrary, Bousquet et al. (2015) 

could not identify any effect of exploration on the accuracy in a spatial learning task in mallards 

(Anas platyrhynchos). Further, Mamuneas et al. (2015) could also not show any differences in the 

accuracy of decision making in shy and bold three-spined sticklebacks (Gasterosteus aculeatus). 

In guppies, bold females learned faster and also more accurately (Trompf and Brown 2014). 

Hence, this species did not seem to underlie a speed-accuracy trade-off.  

Although repeatability and consistency have been studied thoroughly for personality traits (Bell 

et al. 2009; Brommer and Class 2015), so far only few tests for those assumptions of cognitive 

traits have been published. Given the lack of deeper theoretical theories and the lack of available 

data from empirical studies, more investigations are needed to better understand the pattern of 

cognitive syndromes in animal species. Especially, evolutionary studies would be important linking 
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cognitive styles to fitness proxies, and investigating the response to selection, i.e. evolution of the 

cognitive styles (Morand‐Ferron et al. 2015). Thereby, genetic components and heritability of 

cognitive traits should be assessed. 
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Aim of the Thesis 

Objectives of this Thesis 

The aim of my dissertation was to provide evidence for constant between-individual differences 

in behaviour and spatial cognition of Eurasian harvest mice (Micromys minutus; Pallas, 1771). I 

further intended to identify a possible relationship between spatial cognitive abilities and 

personality traits in this species.  

The Eurasian harvest mouse (see FIGURE 5) is a small rodent species occupying a very different 

ecological niche compared to other small rodents in Europe. It lives mainly above the ground in 

high grass vegetation (Piechocki 2001). 

A 

 

B 

 

FIGURE 5 Picture of my study species – the Eurasian harvest mouse – in the laboratory (A) and in the semi-
natural outdoor enclosure of the Eberhard Karls University Tübingen (B). Photos by Andrea C. Schuster  

Harvest mice have not been in the focus of animal personality research yet. However, this small 

rodent species is likely to be highly suitable for animal personality and especially spatial cognitive 

syndrome studies for the following reasons: (I) Harvest mice are easy to keep and breed in the 

laboratory, (II) behavioural and cognitive tests can easily be established based on tasks done with 

laboratory mice and rats, (III) harvest mice are assumed to be selected for pronounced spatial 

cognitive traits due to their adaptation to three-dimensional habitat structures (Piechocki 2001), 
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and (IV) harvest mice are a widespread species in the Palaearctic but locally endangered (Darinot 

2016), so that more knowledge about their behavioural ecology might provide helpful insights for 

their conservation. Therefore, the harvest mouse was a perfect study organism for my research 

questions.  

I tested the two assumptions of animal personality as described before - repeatability and 

consistency, as well as correlations between behavioural traits. Further, I investigated if spatial 

cognitive abilities are part of a cognitive syndrome in harvest mice. Behavioural tests were 

conducted on two study populations: The laboratory population and the field population living in 

a semi-natural outdoor enclosure. Since 2010, harvest mice have been kept in the laboratory at 

the Eberhard Karls University Tübingen. This laboratory population originated from animals that 

were obtained from breeders. Further, I captured wild harvest mice in Potsdam in 2013 and 

released them into a semi-natural outdoor enclosure in Tübingen. The population was able to 

freely reproduce and was exposed to avian predation. I monitored the population between 2013 

and 2016 by regular trapping and nest surveys.  

I applied my research questions in both populations and compared the results. To do so, suitable 

behavioural tests needed to be established for my study species. Behavioural tests thereby should 

fulfil the two following prerequisites: First, it was important to observe as much behavioural 

variation as possible in the tested populations. This was because the estimation of repeatability 

and consistency relies on the within-individual behavioural variance compared to the between-

individual behavioural variance in a population (see page 7). Secondly, behavioural tests should 

be relative fast as it was important to test many individuals to achieve large sample sizes and 

therefore sufficient statistical power. Standard behavioural tests, originally established to test 

emotionality in laboratory strains of mice and rats, were modified and adapted to the smaller 

body size of my study species. I conducted a modified Open Field test (OF, Archer 1973), a Novel 

Object test (NO, Chitty and Shorten 1946), and a Y Maze (YM, Montgomery 1955) to phenotype 

activity, boldness, exploration, and spatial orientation abilities (see page 42 for detailed test 

descriptions).  

As Eurasian harvest mice occupy this very different ecological niche compared to other rodent 

species commonly studied in animal personality, I further established behavioural tests which 

fitted to their ecology. I designed a Novel Environment (NE) test based on the idea of Verbeek et 

al. (1994) who analysed exploration in great tits (Parus major). Harvest mice were able to climb 

within the set-up of the designed Novel Environment test (see test description on page 64) which 

encouraged their behavioural repertoire. The Spatial Orientation Task (SOT) was also established 
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(by Uwe Zimmermann under my supervision of his Bachelor thesis) based on the idea that harvest 

mice prefer climbing instead of walking on plain plastic. To estimate spatial orientation and spatial 

learning abilities of harvest mice, animals were released in an arena with an elevated six arm maze 

and they were supposed to learn the location of a target box in which mice could hide (see test 

description on page 66). 

TABLE 2 Chronology of behavioural experiments conducted in a laboratory and an enclosure population of 
harvest mice. Behavioural test: Y Maze (YM), Open Field (OF), Novel Object (NO), Scare Test (ST), Novel 
Environment (NE), Spatial Orientation Task (SOT). * indicates that behavioural tests were conducted with 
the help of student helpers and Bachelor candidates. Focus of the analysis and referring chapters within 
the thesis are mentioned.  

Month/year Population 
Behavioural 

test 
Analysis Chapter 

06-08/2013 Laboratory YM, OF, NO 
Repeatability, behavioural and cognitive 

syndrome 
2, 3 

06/2013 - 05/2014 
Laboratory

* 
ST 

Repeatability, behavioural and cognitive 

syndrome 
2, 3 

08-10/2013 Enclosure YM, OF, NO 
Repeatability, behavioural and cognitive 

syndrome 
3 

08/2013 - 11/2014 
Laboratory

* 
YM, OF, NO 

Repeatability and consistency, 

behavioural and cognitive syndrome 
1, 2, 3 

03-11/2014 Enclosure YM, OF, NO 
Repeatability, behavioural and cognitive 

syndrome 
3 

04/2014 - 02/2015 
Laboratory

* 
SOT 

Repeatability, behavioural and cognitive 

syndrome 
2 

09-12/2014 
Laboratory

* 
NE 

Repeatability, behavioural and cognitive 

syndrome 
2, 3 

04-10/2015 Enclosure* 
YM, OF, NO, 

NE 

Repeatability, behavioural and cognitive 

syndrome 
3 

 

CHAPTER 1 is based on a manuscript by Andrea C. Schuster, Teresa Carl & Katharina Foerster 

entitled “Repeatability and consistency of individual behaviour in juvenile and adult Eurasian 

harvest mice” (May 2017: published; Andrea C. Schuster, Teresa Carl & Katharina Foerster in The 

Science of Nature (2017) 104:10). ACS designed the experimental set-up and did the statistical 

analyses. ACS and TC conducted the behavioural tests. ACS and KF wrote the manuscript. In 

CHAPTER 1, we aimed to identify repeatable and consistent behavioural and cognitive traits. For 

this purpose, harvest mice were behaviourally phenotyped (using three different behavioural 

tests, see TABLE 2) at four different time points during their life. Two observations were done 
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during the juvenile phase and two behavioural tests were conducted during their adulthood. Thus, 

it was possible to analyse the repeatability of behavioural traits (two observations within one life-

history phase) and the consistency of behavioural traits (two observation among different life-

history phases). We expected to find repeatable behaviour in juveniles, as well as in adult harvest 

mice. Since activity was the most consistent behaviour in other rodents, we expected activity to 

be consistent across life history stages in our study species. In contrast, we expected that boldness 

was not consistent across life history stages. We also expected that exploration was not consistent 

as shown in previous studies of rodent personality. Furthermore, no consistency in spatial 

recognition was assumed, as the motivation for and the experience in spatial orientation was likely 

to change over lifetime. 

CHAPTER 2 is based on a manuscript by Andrea C. Schuster, Uwe Zimmermann, Carina Hauer & 

Katharina Foerster entitled “A behavioural syndrome, but less evidence for a cognitive syndrome 

in a spatial orientation context” (May 2017: published; Andrea C. Schuster, Uwe Zimmermann, 

Carina Hauer & Katharina Foerster in Frontiers in Zoology (2017) 14:19). ACS designed the 

experiments and did the statistical analyses. ACS, UZ and CH conducted the behavioural tests. ACS 

and KF wrote the manuscript. In CHAPTER 2, we investigated if behavioural traits (activity, boldness, 

exploration, spatial recognition, spatial learning ability, decision speed, and decision accuracy) 

tested in adult laboratory harvest mice correlate with each other. As defined by behavioural and 

cognitive syndromes, we expected correlations between the traits measured in six behavioural 

tests (see TABLE 2). Further, we analysed if harvest mice faced a speed-accuracy trade-off as 

assumed in the concept of a cognitive syndrome (see FIGURE 4). We expected that all behavioural 

traits were repeatable in adult harvest mice as we already could show this before (cf. Chapter 1, 

page 33). Further, we hypothesised that boldness, activity and exploration were positively 

correlated and form a fast-slow-behavioural syndrome (Titulaer et al. 2012). We assumed that 

mice with better spatial recognition would learn an orientation task quicker due to improved 

spatial cognitive abilities. We further predicted that spatial recognition and spatial learning ability 

were correlated to personality traits. As our cognitive test design was based on active exploration, 

we assumed a positive relationship between active personality types and spatial learning ability 

(Sih and Del Giudice 2012). Finally, we expected a speed-accuracy trade-off as suggested by Sih 

and Del Giudice (2012) and hypothesised that bolder, more active and more explorative 

individuals decided faster but less accurately in a spatial learning task. 

CHAPTER 3 is based on a manuscript by Andrea C. Schuster, Annika Luczak & Katharina Foerster 

entitled “Constant individual behaviours and phenotypic correlations in the field – Comparison 
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between laboratory and field population of Eurasian harvest mice (Micromys minutus)” (May 

2017: not submitted yet). ACS designed the experimental set-up and did the statistical analyses. 

ACS and AL conducted the behavioural tests. ACS and KF wrote the manuscript. In CHAPTER 3, we 

compared the patterns of constant between-individual differences between a captive and a field 

population of harvest mice. All behavioural test used in Chapter 1 and 2 were also conducted with 

the animals of the field population living in a semi-natural enclosure. We first tested for the 

repeatability of three personality and one cognitive trait in the field population. As we could show 

repeatable and consistent behaviours in harvest mice from the laboratory population before 

(Chapter 1), we expected behavioural traits to be repeatable also in the field individuals. We 

further investigated if tested traits (boldness, activity, exploration and spatial recognition) 

correlated positively with each other forming a behavioural syndrome (Sih et al. 2004b) in the field 

population, and we compared observed correlations to the results of our study previously done 

in the laboratory population of harvest mice (Chapter 2). Thereby, we aimed to confirm positive 

relationships between behaviours in the field population as shown before in the laboratory 

population (Chapter 2), and as assumed in a fast-slow-behavioural syndrome (Titulaer et al. 2012).  
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Chapter 1 

In Chapter 1, we provide evidence concerning the first assumption of animal personality – 

repeatability and consistency of behaviours – tested in Eurasian harvest mice of a laboratory 

population:  

Knowledge on animal personality has provided new insights into evolutionary biology and animal 

ecology, as behavioural types have been shown to affect fitness. Animal personality is 

characterized by repeatable and consistent between-individual behavioural differences 

throughout time and across different situations. Repeatability is often interpreted as a guarantor 

of consistency, and both properties of animal personality are assumed to be independent of sex 

and age. However, recent data has shown that males and females in some species may differ in 

the repeatability of behavioural traits, as well as in their consistency between different life history 

stages. We measured the repeatability and consistency of three behavioural and one cognitive 

traits in juvenile and adult Eurasian harvest mice (Micromys minutus). We found that exploration, 

activity and boldness were repeatable in juveniles and adults. Spatial recognition measured in a Y 

Maze was only repeatable in adult mice. Exploration, activity and boldness were consistent before 

and after maturation, as well as before and after first sexual contact. Data on spatial recognition 

provided little evidence for consistency. Further, we found some evidence for a litter effect on 

behaviours by comparing different linear mixed models. We concluded that harvest mice express 

repeatable and consistent personality traits. The tested cognitive trait showed low repeatability 

and was less consistent across life history stages. Given the rising interest in individual variation 

in cognitive performance, and in its relationship to animal personality, we suggest that it is 

important to gather more data on the repeatability and consistency of cognitive traits. 

Behavioural Repeatability and Consistency in Harvest Mice 

Behavioural Repeatability and Consistency in Harvest Mice 

Over the last decades, the interest in individual variation in behaviour within animal species has 

increased rapidly. Constant between-individual differences in behaviours, known as animal 

personality, coping styles, or behavioural syndromes (Koolhaas et al. 1999; Sih et al. 2004a; Réale 

et al. 2007), have been analysed in all main animal taxa until today. This is due to the relevance of 

animal personality as an important component of animal ecology, and its effects on fitness 

(Thomas et al. 2016). In wild populations, animal personality could be linked to differences in 
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reproductive success (Réale et al. 2000; Both et al. 2005), parental care (Budaev et al. 1999), 

survival (Dingemanse et al. 2004; Boon et al. 2007), and even to different life history strategies 

(e.g., Vetter et al. 2016). Animal personality is specified as constant between-individual 

behavioural differences throughout time and across situations (Réale et al. 2007). In many species, 

individuals behave repeatably when tested in the same behavioural test more than once 

(reviewed by Bell et al. 2009).  

Repeatability and Consistency of Animal Behaviours 

In general, the term repeatability is used when assessing the accuracy of specific measurements 

(Nakagawa and Schielzeth 2010). In animal personality research, repeatability specifies the 

proportion of between-individual variance relative to the total phenotypic variance in a 

population for repeated measures of the same behaviour (Dingemanse et al. 2010). It can be 

interpreted as the expected correlation between repeated measurements of a behaviour of the 

same individual. The repeatability of a specific behaviour is usually calculated based on repeated 

observations in the same context and life history phase. Repeatability estimates from 

observations across contexts or life history-phases have also been reported as ‘repeatability’, but 

the alternative terms cross-context repeatability (e.g., Laskowski and Bell 2013) or consistency 

(e.g., Wuerz and Krüger 2015) allow us to better specify the different information content of these 

estimates. The proportion of between-individual variance among measurements from different 

contexts or life history phases characterises the stability of individual behaviour across a longer 

time interval or across changes in the environment. Rank correlations of individual behaviour 

across contexts can further indicate consistent individual behaviour measured in different 

situations (Brommer and Class 2015). However, while rank correlations report stable or changing 

rank orders of mean individual behavioural performance within a population, they lack 

information on the relative contribution of repeatable individual performances to the total 

population phenotypic variance. We here restrict the use of the term repeatability to estimates 

of the proportion of between-individual variance from observations within the same life history 

phase. We define consistency of behavioural traits as the proportion of between-individual 

variance from observations at different ontogenetic stages. We use the term personality trait for 

behavioural traits that are repeatable and consistent and can hence contribute to animal 

personality. Behavioural types are characterized by each individual combination of several 

behavioural trait levels (Bell 2007). 

There is growing evidence that repeatable personality traits and behavioural syndromes can be 

less stable across lifetimes than previously assumed (Wuerz and Krüger 2015; Fischer et al. 2016, 
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but see Gyuris et al. 2012). Developmental changes could reveal underlying mechanisms of animal 

personalities (Stamps and Groothuis 2010b; Trillmich and Hudson 2011) as different experiences 

during development can shape behavioural types. Also, the hormonal constitution undergoes 

considerable change during the phase of vertebrate maturation, and this is likely to influence 

individual behavioural consistency (Stamps and Groothuis 2010a). Bell et al. (2009) already 

suggested to analyse repeatable behaviours between different age classes within species to 

investigate the potential impact of age and individual (sexual) experience on the repeatability and 

consistency of behavioural traits. Although their meta-analysis could not detect any differences in 

the repeatability of behaviours between juveniles and adults (Bell et al. 2009), a recent review by 

Brommer and Class (2015) reported evidence for lower behavioural repeatability in juveniles. 

Changes in behavioural repeatability and consistency across the life history do not contradict the 

existence of a behavioural syndrome. They rather highlight the necessity to investigate personality 

traits across different life history phases, to fully understand when and how animal personality 

arises and how long it persists. Recently, experiments have in fact shown that animal personality 

(based on repeatable behaviours) can arise during ontogeny (Polverino et al. 2016), but that it can 

also undergo a senescent decline in the wild (Class and Brommer 2016). Thus, understanding how 

repeatability (within life history stages) and consistency (between life history stages) differ 

between different developmental stages within a species is an important first step towards the 

definition and investigation of a behavioural syndrome.  

Behavioural traits usually investigated in personality research are boldness (the tendency of an 

individual to take risks), activity (the general activity level of an individual), and exploration (an 

individual’s reaction to a new situation, for instance, novel objects or novel environments; see 

also Réale et al. 2007). Exploration was a consistent trait over a significant part of an individual’s 

lifetime in great tits (Parus major, Dingemanse et al. 2002) and zebra finches (Taeniopygia guttata, 

David et al. 2012). But while boldness, exploration and activity were repeatable behavioural traits 

over short periods of time in small rodents (e.g., Koolhaas et al. 1999; Boon et al. 2007; Lantová 

et al. 2011; Petelle et al. 2013), only activity seemed to be consistent across life history stages in 

that group (e.g., Kanda et al. 2012; Herde and Eccard 2013, but see Guenther et al. 2014). 

Behavioural repeatability within, but no consistency across life history phases can arise from 

developmental changes (see above). However, a simulation study showed that life history trade-

offs can promote the evolution of behavioural types that are specific to particular life history 

phases (Wolf et al. 2007). Empirical data provided evidence that the level of boldness can vary 

between individuals depending on expected future reproductive success: In grey mouse lemurs 
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(Microcebus murinus), young males had low current but high expected future reproductive 

success, while the opposite was true in older males (Dammhahn 2012). Hence, the trade-off 

between the investment into current and future reproduction differed between age classes. 

Dammhahn (2012) found that young male mouse lemurs were shyer than older males. She 

hypothesized that selection favoured young mouse lemurs that exhibited less risky behaviour 

because of the expected future fitness payoff, while older mouse lemurs benefitted most from 

(also risky) investments into the current reproductive effort. A trade-off between reproductive 

states may thus maintain animal personality variation in this species (Dammhahn 2012).  

Sex Differences and Life History Trade-Offs 

The repeatability and consistency of behavioural traits can also differ between the sexes (Schuett 

et al. 2010). In the above mentioned grey mouse lemurs, males were on average bolder than 

females and boldness was more repeatable in males than in females (Dammhahn 2012). Schuett 

et al. (2010) suggested that females prefer males that express consistent behavioural traits as 

reliable signals of quality. If so, the higher repeatability of boldness in male mouse lemurs could 

have resulted from sexual selection through female choice (Dammhahn 2012). Sex-specific natural 

selection can also cause sex differences in behavioural consistency. Male adult field crickets 

(Gryllus integer) behaved more shyly than juvenile males, while females showed consistent 

boldness across life history stages (Hedrick and Kortet 2012). Due to courtship callings male 

crickets face a higher predation risk after metamorphosis than females (Hedrick and Kortet 2012). 

The sex difference in behavioural consistency seemed to result from differences in costs and 

benefits of risk-taking behaviour between young and adult individuals (Hedrick and Kortet 2012). 

Overall, males tended to show more repeatable behaviours than females in a meta-analysis 

including a variety of behaviours in many different animal species, but this conclusion may be 

biased due to the generally low repeatability of mate preference behaviours in females (Bell et al. 

2009).  

Different Estimation Methods 

As already reviewed by Bell et al. (2009) several statistical methods have been used to estimate 

repeatability and consistency of individual behaviour. Reported repeatability measurements of 

various species appeared to be quite variable and this might not only be due to differences 

between the species, but rather due to the diverse estimation methods used in those studies (Bell 

et al. 2009). Some estimations were based on rank correlations between the first and the second 

measurement of each animal. Other studies applied the comparison of within-individual variance 
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with the variance among individuals (Lessells and Boag 1987), based on ANOVA. More recently, 

Nakagawa and Schielzeth (2010) recommended the use of linear mixed effect models (LMMs) to 

account for confounding variables through fixed factors and covariates in the model. Furthermore, 

generalised linear mixed effect models (GLMMs) can be applied if behavioural traits show non-

Gaussian error distributions (Nakagawa and Schielzeth 2010). In cases where varying testing 

conditions contribute to between-individual variation, the use of LMMs is particularly useful to 

avoid an overestimation of repeatability (Dingemanse and Dochtermann 2013). Which estimation 

method was chosen for the calculation of repeatability can have profound effects on the 

conclusions, as illustrated by the following example: In birds, Small and Schoech (2015) showed 

that the stress-induced corticosterone level was repeatable in adult female Florida scrub-jays 

(Aphelocoma coerulescens), but not in males. However, this difference between the sexes was 

only apparent when agreement repeatability was calculated: A measure of repeatability that 

ignores any confounding factors (Nakagawa and Schielzeth 2010). When the authors applied 

LMMs including effects of the study year and the time of day, the resulting values for adjusted 

repeatability (Nakagawa and Schielzeth 2010) of stress-induced corticosterone level were 

significant in both sexes (Small and Schoech 2015). 

Study Objectives and Hypotheses 

We investigated the repeatability and consistency of three behavioural traits and one cognitive 

trait in the Eurasian harvest mouse (Micromys minutus; Pallas, 1771), in males and in females, as 

well as in various life history phases. We measured the standard personality traits activity, 

boldness and exploration, as we expected them to differ constantly between individuals in our 

study organism like in other rodent species. Being a small prey species, levels of activity, boldness 

and exploration are likely to affect the survival of harvest mice critically and may show different 

adaptive optima depending on the constitution of an individual and on its specific environment. 

Thus, constant between-individual differences in these behaviours may be expected in harvest 

mice. We calculated the repeatability of these traits within juveniles and within adults to 

investigate if individuals already differ constantly before maturation, or if constant between-

individual behavioural differences arise later in life. Given the general theoretical prediction of a 

relationship between animal personality and cognition (Sih and Del Giudice 2012), we also 

investigated the repeatability of a spatial cognition trait. Spatial cognition can be defined as how 

animals acquire, process, store, and use spatial information from the environment (Shettleworth 

2010). This type of information can have a direct impact on the individual expression of the 

personality traits activity and exploration. As a first step towards the exploration of a potential 
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link between personality and spatial cognition, we investigated constant between-individual 

differences in spatial cognition in harvest mice. We assumed that spatial cognition is an important 

cognitive ability in this species, as harvest mice, in their natural habitat, use a dense three-

dimensional grid of various tussock and reeds. Within this compact vegetation, each individual 

uses several sleeping and breeding nests spread across different heights, and these nests are 

rebuilt repeatedly at new locations. Harvest mice thus have to acquire and store precise 

information about the location of their nests, and this information has to be updated frequently. 

The size of the hippocampus, a brain region involved in processing spatial information about the 

environment (Yaskin 2011), suggests indeed that the brain structure of harvest mice is specifically 

adapted to spatial orientation: It occupies 16.2 % of the telencephalon, this is 4.6 % more than in 

laboratory house mice (Mus musculus, 11.6 % hippocampal volume of the telencephalon, West 

1990). We chose to measure object based spatial recognition of a novel arm in a Y Maze and 

investigated the repeatability of this cognitive trait. Furthermore, we analysed the consistency of 

all studied traits across life history stages (before and after maturation, as well as before and after 

the first sexual contact). We considered it likely that developmental processes (e.g., hormonal 

changes during maturation), or in a natural environment expected changes (e.g., population 

density) differentially affect behaviours of harvest mice at different life history stages and may 

thus affect the consistency of individual behaviour.  

We applied ANOVA and linear mixed effect models (LMM, following Nakagawa and Schielzeth 

2010) to estimate the repeatability and consistency of the behaviours. We thereby chose two 

approaches for the LMM based estimations: One approach included an additional random factor 

for the litter identity, the other approach was without this factor in the LMMs. Personality may or 

may not have a genetic basis, but is probably always also (and in some cases entirely) shaped by 

environmental influences (e.g., Nicolaus et al. 2016). Theory (e.g., Stamps and Groothuis 2010a; 

Stamps and Groothuis 2010b; Trillmich and Hudson 2011) and recent experimental evidence (e.g., 

Polverino et al. 2016) show that personality can arise during ontogeny. Therefore, genetic effects, 

maternal effects, common environmental effects and interactions between siblings all play a 

contributing role in shaping personality in adult animals. Repeatable behaviour is a basic 

prerequisite for animal personality, and it can also arise from both, genetic and environmental 

effects on behaviour expression. This means animals can behave repeatedly because their alleles 

affect behaviour to a significant extent, or because their past experience within their environment 

causes a certain behavioural expression. The comparison between models accounting for a litter 

effect and models without that litter effect allowed us to obtain a first indication on whether 

genetic or maternal effects contribute to behavioural repeatability. 
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We expected to find repeatable behaviour in juveniles, as well as in adult Eurasian harvest mice. 

Since activity was the most consistent behaviour in other rodents, we expected activity to be 

consistent across life history stages in our study species. We hypothesized that the expected 

future reproductive success differs between individuals that have not yet had sexual contact, and 

those that already experienced sexual contact, given the very short lifespan of harvest mice under 

natural conditions. Thus, risky behaviour may be less adaptive before the first mating than after 

the first mating. And we expected that boldness would not be consistent across life history stages. 

We also expected that exploration would not be consistent as shown in previous studies of rodent 

personality. Dispersal patterns are not well understood in harvest mice, but we presumed 

differences in the dispersal probability at different life history stages. Furthermore, we assumed 

no consistency in spatial recognition, as the motivation for, and the experience in spatial 

orientation are likely to change over lifetime. We further predicted that juvenile harvest mice are 

shyer than adult harvest mice due to high predation risk for all ages, but higher expected future 

reproductive success in young harvest mice. Little is known about mate choice in harvest mice, 

however, assuming that females are the choosy sex in harvest mice and prefer males that express 

consistent behavioural traits as reliable signals of quality (Schuett et al. 2010), we expected less 

repeatable behaviour in female adult mice compared to males. We expected no repeatability 

differences between the sexes in juveniles. We had no predictions for the difference estimation 

models and for the random litter effect, as there is no information so far on genetic or maternal 

effects on behaviour in Eurasian harvest mice. Nevertheless, if we observe reduced estimates of 

repeatability with a litter effect in the model, compared to a model without that effect, this would 

mean that the observed repeatability is (partly) due to either genetic effects, direct maternal 

effects or other environmental effects that are common to litter mates. 

Methods – Repeatability and Consistency in Harvest Mice 

Study Animals and Housing Conditions 

The Eurasian harvest mouse is one of the smallest rodents in Europe with an average body mass 

of 7 grams (Piechocki 2001). Both sexes show home range overlap (Padilla 1999), but can exhibit 

fierce aggressive behaviours upon encounter, in particular females with dependent pups (Frank 

1957; Piechocki 2001). Females are larger than males (Bohme 1969). The species is widely 

distributed in Europe and Asia, mostly between 100 and 300 meters above sea level, but harvest 

mice also occur in montane regions above 1200 meters (Krystufek and Kovacic 1984; 

Spitzenberger 1986). Harvest mice inhabit wetland areas with reed and sedge zones. In some 

regions they also successfully populate grain fields and ruderal areas (Spitzenberger 1986; 
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Feldmann 1997). Feldmann (1984) stated that high grass vegetation and meadows of tall forbs are 

essential parameters of suitable habitats for harvest mice. Within the Muridae, Micromys minutus 

is quite special as it is an excellent climber and lives mainly above the ground, where it feeds on 

seeds and insects (Piechocki 2001; Okutsu et al. 2012). The small body size and a long tail that can 

firmly cling to the vegetation are morphological adaptations to its preferred habitat (Frank 1957). 

Males and females build several spherical sleeping nests, mainly above ground in dense vegetation 

(Piechocki 2001). Females raise young alone in a breeding nest. Harvest mice live in unstable 

environmental conditions caused by seasonal changes of abiotic and biotic factors: Rain, wind and 

drought affect the grassy habitat structure and food availability, and as in other rodent species, 

population sizes increase during the summer and show high peaks in autumn, followed by a strong 

population decline over winter (Piechocki 2001). Breeding occurs mainly during August and 

September with three to six offspring per litter (Trout 1978b). In good conditions, the inter-litter 

interval can be as short as 17 days (Trout 1978a; Feldmann 1997). The age of sexual maturation 

depends on environmental conditions (Frank 1957), but has been recorded between the age of 

40 to 50 days (Kubik 1952; Braun and Dieterlen 2005). There is no reliable data on the life span of 

harvest mice in the wild. Estimates for the average life expectancy range from two to 18 months 

(Kubik 1952; Piechocki 2001). While harvest mice can live up to 25 months in captivity (Schuster, 

personal observations), the maximum life span observed in natural or semi-natural populations 

was 11 and 14 months, respectively (Padilla 1999; Schuster, personal observations).  

In total, we tested 41 male and 42 female harvest mice from 34 litters (one to six offspring per 

litter). All animals stemmed from our laboratory population whose founding individuals (N = 26) 

originated from four different zoo populations. The mean inbreeding coefficient of the observed 

individuals was 0.15 (range: 0 to 0.31). 

Mice were housed in polycarbonate cages of 60 cm length, 40 cm width and 58 cm height (see 

FIGURE 6). Individuals were either kept separately or in pairs of equal sex with water and food (hay, 

grain seeds, fresh fruit and vegetables) ad libitum. The back wall of the cage was covered by a 

coco coir mat for climbing. For environmental enrichment, cages were additionally equipped with 

an artificial nest, a running wheel, a paper tube, a wooden branch and a sheaf of wheat, oat and 

spelt. All mice were kept at constant temperature (22°C, range: 21.0°C to 23.5°C) and light-dark 

cycle (LD 12:12 h). Animal husbandry and behavioural tests (see below) were permitted by the 

Regierungspräsidium Tübingen – Referat 35, reference number ZO 2/11. 
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FIGURE 6 Polycarbonate cage in which harvest mice were housed in (separately or in pairs of equal sex). 
Artificial nest, running wheel, paper tube, wooden branch and sheaf of grain for environmental 
enrichment. Photo by Andrea C. Schuster 

Experimental Set-up 

We tested harvest mice in four different age classes (see TABLE 3) in three different behavioural 

tests. The number of tested animals differed between tests due to some exclusions (see 

behavioural test descriptions). In total, 83 animals were tested at the age of 6 weeks (mean age = 

44.5 days). 39 of these animals were tested at the age of 7 weeks (mean age = 51.7 days). We 

assumed that in these two age classes, animals were not fully mature yet, but developmental and 

hormonal changes may have already occurred due to starting maturation. For the third age class, 

we tested 52 of the initial 83 mice at the age of 12 weeks (mean age = 86.2 days). At this point all 

animals were assumed to be mature, but none of them has experienced sexual contact yet. Finally, 

47 individuals were tested at the age of 24 weeks (mean age = 174.9 days). Some of these (N = 16) 

were allowed to have sexual contact between week 12 and week 24. We measured the 

repeatability of behaviours in juvenile harvest mice before maturation using the data obtained in 

weeks 6 and 7 (subset repeatability, TABLE 3), and the repeatability of behaviours in adult mice 

after maturation using the data from weeks 12 and 24. Hereby, we analysed individuals which had 

no sexual experience (subset repeatability, TABLE 3). To test if sexual experience influences the 

consistency of the behavioural traits in adult harvest mice, we analysed the consistency of adult 
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individuals (subset consistency, week 12 vs. week 24, see TABLE 3), which had sexual experience 

between tests. During the sexual experience phase, one female and one male spent two weeks 

together in a home cage giving them the opportunity to mate before being separated again. To 

measure consistency across different life stages (before and after maturation), we compared the 

age classes week 6 and week 12 (subset consistency, TABLE 3). Additionally, we compared mean 

levels of behaviours between males and females in young harvest mice (6 weeks), and in adults 

(12 weeks). Furthermore, we compared mean levels of behavioural traits between juvenile and 

adult harvest mice (week 6 vs. week 12). 

TABLE 3 The number of tested animals in each of the three behavioural tests for four different age 
classes (week 6, 7, 12 and 24) 

 

 

Behavioural Tests 

Standard behavioural tests, originally established to test emotionality in laboratory strains of mice 

and rats, were modified and adapted to our study species. It was not possible to record data blind 

because our study involved focal animal observations, however we accounted for potential 

confounding factors due to an observer bias (see Data Analysis). 

Open Field (OF) 

We used a modified OF test (Archer 1973) to measure activity and boldness. In the OF test, rodents 

are expected to spend more time next to the wall of the arena due to their predisposition to avoid 

open space and the risk of avian predation (Archer 1973). The OF test is hence supposed to be a 

suitable set-up to measure boldness in rodents (Herde and Eccard 2013). Mice were released in 

the middle of a round arena (see FIGURE 7). We used a standard mortar bucket (diameter 51 cm), 

which we painted with white colour for efficient tracking results. Using automated video tracking 

(EthoVisionXT, Version 5, Noldus) we measured the total distance moved (in cm) during 4.5 
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minutes and the time (in seconds) spent at the inner part of the arena (unsafe area, diameter 31 

cm) as parameters for activity and boldness, respectively. Tracking started when the animal 

reached the outer zone of the arena next to the wall for the first time (safe area, 10 cm wide). We 

excluded one record from the analysis (see TABLE 3, week 7), because one mouse did not move 

during the OF experiment and spent the whole time in the middle of the arena.  

 

FIGURE 7 Open Field arena (diameter 51 cm) used to quantify activity and boldness of harvest mice. 
Mortar bucket painted with white colour for efficient automated video tracking results. Photo by 
Andrea C. Schuster 

Novel Object (NO) 

To quantify exploratory behaviour we used a NO test (Chitty and Shorten 1946). This was 

conducted directly after the OF test to reduce further stress as animals were already habituated 

to the arena setting. We used different objects for each trial: A small plant pot, a plastic box, a 

glass bowl and LEGO duplo bricks (FIGURE 8). Each object was about the same size of the mice and 

animals were able to explore it from all sides and also from the top by climbing on it. We recorded 

exploratory behaviour manually for 5 minutes after the first contact with the novel object as the 

time (in seconds) the animal spent in physical contact with the novel object (touching the object 

with its head, sniffing at the object from a maximal distance of 1 cm, or climbing onto the object). 

Accidental contacts, e.g. with the tail, were not quantified as exploration. Since this test was 
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initiated only after all other tests had been established, only 77 animals ran through the NO test 

at the age of 6 weeks (see TABLE 3). 

    

FIGURE 8 Items that served as novel objects during Novel Object tests to quantify exploration behaviour of 
harvest mice. Objects were about the same size of the animals. Photos by Andrea C. Schuster 

Y Maze (YM) 

We quantified spatial recognition in an adapted YM arena (Montgomery 1955). This test relies on 

the assumption that rodents explore novel environments more than already known environments 

(Hughes 1968). Thereby, known environments can be recognized through object cues. In our set-

up spatial recognition was only based on objects placed around the arena. The YM was made of 

transparent plastic, each of the three arms was 29 cm long, 3.5 cm wide and 10 cm high (see FIGURE 

9). We used a set of extra maze cues which the animals knew from their home cages: Small plant 

pots, stands of a running wheel, paper tubes, wooden sticks, clothes-pegs, small glass bowls, 

pieces of coco coir mat, and stems of straw. Each arm of the YM was surrounded by plain 

cardboard such that the animal could only see the object cues placed around the arm it was in. 

Visual cues were randomized between arms and animals, as was the position of the start arm. The 

YM test consisted of two trials. During the first trial, one of the arms was locked (unknown arm) 

and the animal could explore only two arms (start and known arm) for 15 minutes. After one hour 

the mouse was released again into the YM at the same start arm. In this second trial all three arms 

were accessible. In the cognition literature, the behaviour of spending more time in the unknown 

arm of a Y Maze in the second trial is commonly defined as spatial recognition in the sense that 

an animal recognized that there is an unknown environment (e.g., Dellu et al. 1992). We video 

tracked animals using EthoVisionXT software and measured the total distance moved (in cm) 

during the first five minutes of the second trial as parameter for activity. The time (in seconds) 

spent in the unknown arm during the first five minutes of the second trial was recorded as 

parameter for spatial recognition. Two mice sat motionless in the start arm during the entire trial, 

and one animal ran straight to the end of the known arm and sat there motionless during the 

entire trial. These observations confer no information about whether the animal recognised the 

new arm, and were deleted from the YM dataset (see TABLE 3). 
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FIGURE 9 Y Maze used to quantify spatial recognition and activity in harvest mice. Each arm surrounded by 
plain cardboard such that animals could only see object cues placed around the arm it was in. Photo by 
Andrea C. Schuster 

Data Analyses 

We performed all statistical analyses using R software, version 3.0.1 (R Core Team 2013). The 

dependent variables were the measured behaviours: Distance moved in OF and YM (activity), time 

spent in unsafe area of OF (boldness), time exploring NO (exploration), and time spent in unknown 

arm of the YM (spatial recognition). We tested for confounding factors of the experimental set-up 

and of individual characteristics on the measured behaviours by fitting linear mixed models using 

the “nlme” package (Pinheiro and Bates 1996) in R. For each behavioural trait we included the 

following confounding factors into the full model: Individual ID as random factor; sex, trial number 

(the number of test trials of each mouse) and housing condition (whether the mouse was kept 

individually or in a group of two in the home cage) as fixed factors; body mass, test date and test 

time as fixed covariates. As males and females might differ in their activity rhythms, we included 

the interaction sex*test time. Further, females harvest mice are larger than males (Piechocki 

2001) and this dimorphism might influence individual behaviours of sexes differently. We 

therefore also included the interaction sex*body mass in the full model. As the NO test was 

recorded manually by one of two observers, we also included the ID of the observer to linear 

models fitting exploratory behaviour. We applied backward stepwise reduction of the full models 
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by excluding non-significant interactions first, followed by non-significant fixed effects if p > 0.05. 

The random factor of the individual ID remained in all models to account for repeated measures 

of individuals. All deleted confounding factors were added to the final (reduced) model again one 

by one, to avoid that a significant effect was missed due to the order in which factors were deleted 

from the model. However, none of the deleted confounding factors had a significant effect if 

added again to the final model. We conducted this analysis separately for the four subsets of the 

data, as those subsets were then used to calculate repeatability or consistency (see Experimental 

Set-up, TABLE 3). All dependent variables and all covariates were centred and scaled to ensure 

model convergence. We checked all models for normal distribution of model residuals. We 

present final models with the remaining significant effects, which we retained for subsequent 

repeatability analyses. As we were interested in behaviour differences between males and 

females, and between juvenile and adult mice, we compared mean behaviours between those 

groups. The respective effect sizes from the confounding factors sex and trial number provided 

information on significant differences. We present group means ± standard errors of behavioural 

traits in the text (untransformed values). 

The repeatability of behavioural traits was analysed using the package “rptR” (Nakagawa and 

Schielzeth 2010) in R. We estimated adjusted repeatability and we included significant 

confounding factors as identified from LMMs before (see above). We used untransformed 

dependent variables for these estimations. We estimated LMM based repeatability without litter 

ID in the model applying non-parametric bootstrapping. We display asymptotic 95% confidence 

intervals (CIs) for parameter estimates based on 1000 bootstrapping runs and 1000 permutations. 

We used Bonferroni correction to account for multiple comparisons. Our significance threshold 

was then p ≤ 0.008, as we calculated six different repeatability values per behavioural trait (two 

age classes times three estimation methods) and six different consistency measurements per 

behavioural trait (two experimental groups times three estimation methods). When using LMM 

based repeatability estimation, the package “rptR” uses algorisms that do not converge, if R is 

close to zero or negative. In this case, CIs and p values are shown as NA, and we concluded that R 

is zero. We display results of two further estimation methods: ANOVA based repeatability (Lessells 

and Boag 1987) implemented in “rpt.aov” function in R using 1000 permutations, and LMM based 

repeatability with litter ID as a random factor. As tested individuals originated from 34 different 

litters (one to six offspring per litter), this allowed us to investigate whether differences between 

litters due to genetic variation and/or direct maternal effects contributed to the repeatability 

estimation of the tested behaviours. To evaluate how the variance within and between different 

litters might influence repeatability estimates of behavioural traits, we compared the outcome of 
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LMMs with, and without the litter ID in the random model, using 84% CIs. Non-overlapping 84% 

CIs indicated significant differences between repeatability estimates (Small and Schoech 2015). 

All CIs are given in squared brackets. 

Results – Repeatability and Consistency in Harvest Mice 

Effects of Confounding Factors 

Univariate LMMs revealed some significant fixed effects (TABLE 4) which we then included in the 

repeatability and consistency estimations (see below). The trial number had an effect on activity 

and on boldness in juvenile harvest mice (TABLE 4). In the second trial (week 7) juveniles were less 

active in the OF and in the YM and they were bolder in the OF, than in the first trial (week 6).  

TABLE 4 Results of final LMMs with confounding effects on personality traits. SE = standard error 

 

 personality trait significant effect estimate ± SE p 

juveniles 
(week 6 vs. 7) 

activity OF 
trial number -0.30±0.15 0.049 

test date +0.34±0.11 0.005 

boldness trial number +0.53±0.15 < 0.001 

activity YM trial number -0.46±0.18 0.017 

recognition none   

exploration observer +0.51±0.20 0.016 

adults 
(week 12 vs. 24) 

activity OF 

housing condition +0.99±0.22 < 0.001 

sex -0.55±0.22 0.021 

trial number -0.47±0.15 0.005 

boldness sex +0.85±0.21 < 0.001 

activity YM none   

recognition none   

exploration none   

before and after maturation 
(week 6 vs. 12) 

activity OF 

date +0.33±0.12 0.008 

sex -0.38±0.18 0.042 

trial number -0.27±0.12 0.025 

Boldness trial number +0.76±0.13 < 0.001 

Activity YM trial number -0.31±0.14 0.032 

Recognition none   

Exploration none   

before and after sexual contact 
(week 12 vs. 24) 

activity OF none   

boldness 
sex +0.69±0.25 0.01 

trial number -0.50±0.21 0.03 

activity YM none   

recognition none   

exploration none   
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There was an effect of the observer identity on juvenile behaviour in the NO test, and the housing 

condition affected the behaviour of adult mice in that test: mice kept in pairs were more 

explorative than individually housed animals (see TABLE 4). We found no significant confounding 

effects on spatial recognition. 

Effects of Sex and Age on the Mean Expression of Behaviours 

In juvenile harvest mice, males and females did not differ in their behaviour. Among adult harvest 

mice, females were bolder (x ̅= 77.3 ± 6.0 s) and less active in the OF (x ̅= 3506.9 ± 295.5 cm) than 

males (boldness: x ̅= 45.6 ± 4.4 s, activity: x ̅= 4374.5 ± 369.2 cm). This sex difference in boldness 

was also significant in adult mice tested before and after their first sexual contact (females: x ̅= 

64.6 ± 7.0 s, males: x ̅= 42.2 ± 5.2 s). Furthermore, mice were significantly bolder before their first 

sexual contact than after (x ̅= 56.0 ± 5.2 s and 42.2 ± 8.6 s, respectively). We also found that the 

level of boldness was lower in juveniles that were tested before maturation (week 6) than in adult 

mice tested after maturation (week 12; x ̅= 30.4 ± 2.8 s and 56.0 ± 5.2 s, respectively). However, 

juveniles were more active in the OF and YM than adults (OF juveniles: x ̅= 4115.5 ± 247.6 cm and 

OF adults: x ̅= 4172.6 ± 318.1 cm; YM juveniles: x ̅= 1765.8 ± 91.4 cm and YM adults: x ̅= 1540.1 ± 

143.2 cm). We did not find any differences between juveniles and adults in their exploratory 

behaviour or in spatial recognition. 

Repeatability of Behavioural Traits in Harvest Mice 

Eurasian harvest mice showed repeatable behaviours in both age classes (TABLE 5, LMM without 

litter effect). Activity in the OF test was highly repeatable in juveniles and adults (R = 0.54 ± 0.10 

and R = 0.49 ± 0.13, respectively). Activity in the YM was repeatable in both age classes, adult 

behaviour was more repeatable than juvenile behaviour, shown by non-overlapping 84% CIs (R = 

0.69 ± 0.09 [0.57, 0.80] and R = 0.16 ± 0.14 [0, 0.37], respectively). Boldness was also repeatable 

in juvenile and adult harvest mice (R = 0.57 ± 0.11 and R = 0.20 ± 0.16, respectively). The higher R 

value for juvenile mice did not differ significantly from the lower value for adults (84% CIs: [0.41, 

0.70] and [0, 0.42], respectively). Similarly, exploration seemed more repeatable in juvenile mice 

than in adults, but the difference was not significant (R = 0.40 ± 0.12 [0.26, 0.59] and R = 0.18 ± 

0.15 [0, 0.42], respectively). Recognition of the novel arm in the YM was not repeatable in juveniles 

(R = 0.00), but adult mice behaved repeatably in this test (LMM without litter effect: R = 0.20 ± 

0.15, p = 0.004). In juveniles, the activity in the YM was only repeatable in males, not in females 

(R = 0.64 ± 0.13 and R = 0.00, respectively; data not shown). Secondly, in adult harvest mice, 
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boldness was only repeatable in females, not in males (R = 0.58 ± 0.19 and R = 0.00, respectively; 

data not shown). Other repeatability estimates did not differ between the sexes. 

Consistency of Behavioural Traits in Harvest Mice 

Eurasian harvest mice behaved consistently before and after maturation, as well as before and 

after their first sexual contact (TABLE 5, LMM without litter effect). Harvest mice tested before 

(week 6) and after (week 12) maturation were consistently active, bold and explorative (all R > 

0.39, see TABLE 6). Only the recognition of the novel arm in the YM was not significantly consistent 

after Bonferroni correction (R = 0.11 ± 0.11, p = 0.010). Adult harvest mice also behaved highly 

consistently before (week 12) and after (week 24) their first sexual experience (TABLE 6, LMM 

without litter effect). Activity in the OF and YM, as well as boldness were highly consistent (all R > 

0.53). Exploration was also significantly consistent between the tests, although this R value was 

smaller (R = 0.18 ± 0.19). The only clearly inconsistent behaviour shown before and after first 

sexual contact was the recognition of the novel arm in the YM (R = 0.00 ± 0.15). None of the 

consistency estimates differed between the sexes (data not shown). 

Estimation Methods / Reliability 

When we included a random effect for the litter, we observed, in most cases, reduced values for 

repeatability and consistency (see TABLE 5 and TABLE 6). The most pronounced reduction in R 

occurred in the models for activity in the YM. For this trait, the repeatability estimate in adults 

and both consistency estimates differed between the LMMs without and with the litter effect 

(84% CIs: repeatability in adults [0.57, 0.80] and [0, 0.27], consistency before and after maturation 

[0.26, 0.59] and [0, 0.23], consistency before and after sexual contact [0.43, 0.82] and [0, 0.13], 

respectively). Other 84% CIs did not differ significantly between LMMs. However, with litter as 

random effect (and thus partly excluding potential genetic effects and non-genetic maternal 

effects from the estimation of R), activity in the OF was repeatable and consistent, boldness was 

consistent but its repeatability estimates did not reach significance, and exploration was 

repeatable only in juvenile mice.  

In the ANOVA analyses, we ignored the confounding factors trial number, sex, test date and 

housing condition. Depending on the personality trait, this led to a more or less pronounced 

reduction in the estimated values for repeatability and consistency (see TABLE 5 and TABLE 6). This 

reduction was not consistent within personality traits across tests of different life history stages. 

It rather appeared to depend on the particular data composition within each model. Overall, out 

of 16 ANOVA analyses (we exclude the models on recognition here, as they mostly displayed R 
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values close to zero), seven suggested (partly considerably) lower R values than the corresponding 

LMMs without the litter effect. In some more cases, R values resembled those obtained from 

LMMs, but more conservative p values did not warrant the same conclusions as from the LMM 

analyses (see TABLE 5 and TABLE 6). In one case (repeatability of boldness in adult mice), the R value 

increased compared to LMM method when using the ANOVA calculation. According to the ANOVA 

analyses, only activity in the OF was a repeatable and consistent behaviour, and exploration 

tended to be repeatable in juvenile mice and was performed consistently before and after 

maturation. 
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TABLE 5 Results of repeatability analyses showing R values calculated for each personality trait per experimental group (juveniles and adults). Sample sizes are given: first 
trial/second trial. Bold p values were significant after Bonferroni correction (p < 0.008). OF: Open Field test, YM: Y Maze test. NA: model did not converge because of too 
small/negative value of R 

 

 LMM without litter effect  LMM with random litter effect  ANOVA 

experimental 
group 

personality 
trait 

fixed effects in 
LMM 

N R±SE 95% CI p 
 

R±SE 95% CI p 
 

R±SE 95% CI p 

juveniles  
(week 6 vs. 7) 

activity OF 
trial number + 

test date 
83/38 0.54±0.10 [0.35, 0.73] < 0.001 

 
0.45±0.13 [0.20, 0.70] < 0.001 

 
0.54±0.11 [0.33, 0.76] 0.001 

boldness trial number 83/38 0.57±0.11 [0.32, 0.73] < 0.001  0.27±0.13 [0, 0.53] 0.038  0.42±0.13 [0.16, 0.68] 0.013 

activity YM trial number 81/39 0.16±0.14 [0, 0.47] < 0.001  0.05±0.11 [0, 0.37] 0.359  0.06±0.18 [-0.31, 0.42] 0.409 

recognition  81/39 0.00 NA NA  0.00 NA NA  -0.50±0.22 [-0.94, 0.07] 0.970 

exploration observer 77/39 0.40±0.12 [0.19, 0.66] < 0.001  0.39±0.14 [0.17, 0.56] 0.004  0.39±0.14 [0.12, 0.66] 0.015 

adults  
(week 12 vs. 24) 

activity OF 
trial number + 
sex + housing 

condition 
52/31 0.49±0.13 [0.21, 0.72] < 0.001 

 
0.49±0.17 [0.01, 0.69] 0.006 

 
0.53±0.12 [0.26, 0.78] 0.002 

boldness sex 52/31 0.20±0.16 [0, 0.53] < 0.001  0.20±0.15 [0, 0.49] 0.161  0.40±0.15 [0.10, 0.70] 0.030 

activity YM  51/31 0.69±0.09 [0.49, 0.82] < 0.001  0.11±0.10 [0, 0.34] 0.101  0.69±0.09 [0.51, 0.87] 0.001 

recognition  51/31 0.20±0.15 [0, 0.53] 0.004  0.00 NA NA  0.16±0.19 [-0.21, 0.53] 0.228 

exploration  52/31 0.18±0.15 [0, 0.49] 0.006  0.00±0.11 [0, 0.36] 1.000  0.15±0.19 [-0.23, 0.53] 0.259 
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TABLE 6 Results of consistency analyses showing R values calculated for each personality trait per experimental group (before and after maturation, before and after sexual 
contact). Sample sizes are given: first trial/second trial. Bold p values were significant after Bonferroni correction (p < 0.008). OF: Open Field test, YM: Y Maze test. NA: 
model did not converge because of too small/negative value of R 

 

    LMM without litter effect  LMM with random litter effect  ANOVA 

experimental 
group 

personality trait 
fixed effects in 

LMM 
N R±SE 95% CI p  R±SE 95% CI p  R±SE 95% CI p 

before and after 
maturation 

(week 6 vs. 12) 

activity OF 
trial number + 
sex + test date 

83/52 0.64±0.07 [0.49, 0.77] < 0.001  0.47±0.11 [0.27, 0.70] < 0.001  0.67±0.07 [0.53, 0.82] 0.001 

boldness trial number 83/52 0.39±0.11 [0.17, 0.59] < 0.001  0.36±0.13 [0.10, 0.58] 0.002  0.17±0.14 [-0.11, 0.46] 0.163 

activity YM trial number 81/51 0.42±0.11 [0.22, 0.63] < 0.001  0.07±0.09 [0, 0.31] 0.237  0.40±0.12 [0.17, 0.64] 0.006 

recognition  81/51 0.11±0.11 [0, 0.36] 0.010  0.00 NA NA  0.04±0.16 [-0.27, 0.35] 0.399 

exploration  77/52 0.41±0.12 [0.13, 0.59] < 0.001  0.13±0.11 [0, 0.39] 0.180  0.46±0.11 [0.24, 0.68] 0.002 

before and after 
sexual contact 

(week 12 vs. 24) 

activity OF  52/16 0.84±0.06 [0.70, 0.92] < 0.001  0.77±0.12 [0.46, 0.92] < 0.001  0.84±0.06 [0.71, 0.96] 0.001 

boldness 
sex + trial 
number 

52/16 0.53±0.15 [0.24, 0.82] < 0.001  0.53±0.18 [0.04, 0.78] 0.008  0.39±0.21 [-0.04, 0.81] 0.164 

activity YM  51/16 0.70±0.15 [0.28, 0.87] < 0.001  0.00±0.06 [0, 0.19] 0.500  0.70±0.12 [0.47, 0.93] 0.018 

recognition  51/16 0.00±0.15 [0, 0.51] 0.009  0.00 NA NA  0.13±0.29 [-0.45, 0.72] 0.403 

exploration  52/16 0.18±0.19 [0, 0.60] 0.006  0.00±0.11 [0, 0.44] 0.500  0.09±0.29 [-0.50, 0.67] 0.393 
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Discussion – Repeatability and Consistency in Harvest Mice 

All tested behavioural traits were repeatable and consistent, with the only exception of spatial 

recognition. Activity, boldness and exploration hence fulfil the assumptions for an animal 

personality trait and could be components of a behavioural syndrome in Eurasian harvest mice, 

as it was also found in other rodents (e.g., Koolhaas et al. 1999; Boon et al. 2007; Boyer et al. 2010; 

Kanda et al. 2012; Herde and Eccard 2013). Spatial recognition was repeatable only in adult mice, 

not in juveniles. Further, we found less evidence that mice recognized the new arm of the Y Maze 

consistently before and after maturation, as well as before and after the first sexual contact. 

Effects of Sex and Age on the Mean Expression of Behaviours 

We found evidence that adult females were less active than males. This difference was significant 

in the OF test, but not in the YM test. In turn, adult males were on average shyer than females. 

We detected no sex differences in exploration or spatial recognition. There is little evidence for 

consistent sex differences in animal personality traits in rodents. In general, sex differences in 

behaviour of rodents are contradictory and depend on species and behavioural trait (common 

voles, Microtus arvalis, Herde and Eccard 2013, but see Lantová et al. 2011; meadow voles, 

Microtus pennsylvanicus, Halliday et al. 2014; wild house mice, Mus domesticus, Auclair et al. 

2013; laboratory house mice, Mus musculus, Montiglio et al. 2010). Frank (1957) described the 

social behaviour of Eurasian harvest mice and found females to be the more aggressive sex. We 

did not measure aggression in this study, and we only rarely observed aggressive encounters, and 

if so, mainly in groups of males (Schuster, personal observations). Given our currently scarce 

knowledge on individual behaviour of our study species, conclusions on the selection pressures 

that may maintain sex differences in activity and boldness remain speculative.  

Wolf et al. (2007) hypothesized that animals with high expected future reproductive success 

should be more risk-averse than individuals with low expected future reproductive success. As a 

consequence, the individual state of an animal in the ongoing trade-off between current and 

future reproductive success is expected to affect the strength of selection for more risk-averse 

behaviour early in life, and for more risky behaviour late in life. In our study, young harvest mice 

were indeed shyer than older mice, but juveniles were more active than older mice. Younger 

individuals have more to lose, as they did not yet have the opportunity to reproduce. A more 

cautious behaviour is likely to increase survival chances in the wild, where terrestrial and aerial 

predators pose a considerable risk to harvest mice. After maturation, selection may favour males 

that invest more in actively finding receptive females, and it may favour females that invest more 
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in finding the best food sources and potential nest sites within their home range. It should be 

noted that juveniles behaved more boldly and were less active in the second trial than in the first 

(week 7 and 6, respectively). This suggests a habituation effect that may have contributed to the 

behaviour differences between juveniles and adults in our experiments. However, in the wild, 

habituation is very likely to contribute to behavioural changes across life history stages as well, as 

individuals get habituated to the specific environment in their home range and as a benefit from 

that, can show more risky behaviour as soon as the exact location of food sources and hiding 

places are known. Thus, the here observed changes in boldness and activity across life stages could 

be the result of life stage specific selection on risk-averse behaviour. However, we also observed 

that harvest mice behaved more shyly after the first sexual contact, and this observation does not 

support our hypothesis.  

Repeatability of Behavioural Traits in Harvest Mice 

As expected, juvenile and adult harvest mouse behaviour was significantly repeatable (TABLE 5). 

Adult mice did not generally behave more repeatably than juveniles. Only activity in the YM, as 

well as spatial recognition (also measured in YM), were more repeatable in adults than in juveniles. 

However, our test for spatial recognition might not be adequate for juvenile harvest mice, as we 

observed that juveniles often climbed the walls of the YM trying to escape. Thus, this climbing 

activity contributed to both measurements taken in the YM: duration in the novel arm (spatial 

recognition) and distanced moved in total YM (activity). And this contribution may depend more 

on the motivation to climb the walls during the test, rather than intrinsic differences in activity 

and spatial recognition. This leads us to a cautious interpretation of the outcome of the spatial 

recognition test in juveniles. It might be preferable to design a test where mice cannot climb as 

much as in the YM. However, as activity in the OF test was highly repeatable in juveniles, we have 

no doubt that activity is a repeatable behaviour also in juvenile harvest mice.  

Our findings confirm the large body of evidence for the repeatable nature of these personality 

traits in many taxa (e.g., rodents: Koolhaas et al. 1999; Montiglio et al. 2012; Herde and Eccard 

2013, birds: Dingemanse et al. 2002; David et al. 2012, reptiles: Carter et al. 2012; Bajer et al. 

2015). Activity, boldness and exploration are particularly well studied animal personality traits, 

and there is growing evidence about potential changes in repeatability across life history stages 

(Brommer and Class 2015). Bajer et al. (2015) showed that juvenile European green lizards 

(Lacerta viridis) behaved significantly more repeatably than adults in risk-taking and exploratory 

behaviour. In our study, the repeatability of boldness and exploration were not influenced by age. 

However, there was an age effect on the repeatability of activity in the YM, but not so in the OF. 
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This is in concordance with findings in zebra finches (Taeniopygia guttata), where activity was 

repeatable in subadults but not in young and mature birds (Wuerz and Krüger 2015). We found 

some differences between the repeatability values of males and females. In adult harvest mice, 

boldness was only repeatable in females. This was in contrast to our expectation, as we assumed 

that males would behave more repeatably due to the sex role of the chosen sex. However, this 

result should be interpreted with care as we have to acknowledge the smaller sample sizes (N 

between 15 and 21 animals per group) compared to other data subsets, which may have 

influenced these results.  

In sum, we found that Eurasian harvest mice already express repeatable behaviours as juveniles. 

Furthermore, all tested personality traits and a spatial cognition trait were repeatable in adults. 

Behavioural repeatability did not seem to change across life history stages, which suggests that 

behavioural types, if existent in this species, may be a stable phenomenon. As this is the first study 

on individual behaviours in this species, more investigations are warranted to fully understand 

which factors maintain the repeatability of behaviours here. 

Consistency of Behavioural Traits in Harvest Mice 

Eurasian harvest mice showed consistency in activity, boldness and exploration (TABLE 6). This was 

in contrast to our expectations. We assumed that differences in the expected future reproductive 

success and in dispersal patterns at different life history stages would result in life-history-specific 

behavioural patterns. However, although the mean behavioural expression changed (adult mice 

were more bold, but less active than juveniles, see above), the behavioural differences between 

individuals remained constant across maturation and across the first sexual experience. During 

maturation and the first sexual contact, the relative magnitude of attained reproductive success 

and expected future reproductive success changes depending on individual experiences. The 

dynamics of this trade-off may result in a change of selection pressures on animal personality 

traits (Bell and Stamps 2004). However, these events did not seem to have an influence on the 

consistency of the studied personality traits in harvest mice. We tested adult mice at the age of 

three and six month, which probably represents the entire mean life span of this species in the 

wild (Kubik 1952; Piechocki 2001). Hence, Eurasian harvest mice - at least under laboratory 

conditions - seem to behave consistently throughout their entire life span, and the short-term 

consistency of these behaviours was independent of maturational effects and sexual experience. 

Although, we acknowledge that the sample size to test for the influence of sexual experience was 

smaller compared to other subsets. 
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Bell and Stamps (2004) stated that individual behavioural consistency can vary across lifetime. In 

particular, they suggested a decline in consistency during sexual maturation, because correlations 

between behavioural traits may be restructured and become instable due to hormonal effects 

during this life history phase. Contradictory to our findings, some case studies support this idea 

through data on inconsistent behaviour across individual maturation. In guinea pigs (Cavia 

aperea), Guenther et al. (2014b) showed that the personality structure changed over different life 

history stages: While fearlessness and boldness were consistent over maturation, exploration was 

not, and correlations between behavioural traits changed during ontogeny. In common voles 

(Microtus arvalis, Herde and Eccard 2013) and Siberian dwarf hamsters (Phodopus sungorus, 

Kanda et al. 2012), activity was a consistent behavioural trait across different life history stages. 

Boldness, exploration, reactivity, and orientation were not consistent. In contrast, activity, 

boldness and exploration were consistent in some studied birds and insects (Dingemanse et al. 

2002; David et al. 2012; Fisher et al. 2015). A study on firebugs (Pyrrhocoris apterus) showed that 

the personality structure can also be consistent across life history stages: Gyuris et al. (2012) found 

that firebugs behaved consistently and showed consistent trait correlations across larval and adult 

stages, even past final ecdysis. Thus, even major changes between life history stages are not 

necessary connected to inconsistent individual behaviour. To date, no comprehensive theory has 

been developed to predict which factors would favour or disfavour consistent behaviour in specific 

species. This is in part due to the fact that consistent behaviours can arise from two sources: 

Natural selection for stable behavioural types, or physiological constraints that prevent flexible 

behaviour. The relative contribution of these to the expression of personality traits is currently 

largely unknown. It could be that in harvest mice, consistently behaving animals were favoured 

by selection. In a frequently changing environment, short lived animals may save energy and avoid 

erroneous reactions if they restrain from fast behavioural changes in response to environmental 

cues. Adopting an individual behavioural tactic that suits best the individual constitution may be 

advantageous. Alternatively, or in addition, physiological constraints may maintain consistent 

behaviours across the short lifespan. 

We also tested if harvest mice behaved repeatably and consistently when they explored a novel 

arm in a Y Maze. This set-up measured an individual’s ability to recognize a new spatial 

environment based on object cues. Unlike in the personality traits discussed above, we observed 

less evidence for consistency in spatial recognition. While the performance in the Y Maze was 

repeatable among adult harvest mice, it was not consistent before and after the first sexual 

contact. Since there was no mean difference in the performance before and after sexual 

experience, we hypothesize that sexual experience affected the ability or the motivation of 
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individual mice for this cognitive task. Spatial orientation and recognition can rely on the spatial 

arrangement of specific cues. We offered object cues in our test trials and excluded olfactory cues. 

In nature, harvest mice can certainly also use olfactory cues, or environmental geometry for 

orientation. Individual harvest mice may also differ in which cues they prefer to rely on, and 

furthermore, specific experiences (like maturation or first sexual contact) may change the 

individual priority of used cues. Thus, if individual cue perception and cue use changes during the 

life of the mice (in our experiment: Between the two test trials), this could have contributed to 

the observed inconsistency in spatial recognition in our test set-up. However, it should be noted 

that the low sample size of adult mice tested after their first sexual experience (N = 16) only 

permits preliminary conclusions.  

For a long time, the main interest in animal cognition research focussed on the comparative 

evaluation of cognitive abilities between species. Therefore, little is known about individual 

variation, repeatability and consistency of cognitive traits within species. We here provided a first 

evidence for the repeatability (in adults) and consistency (over maturation) of spatial recognition 

through object cues in harvest mice. Typical animal personality traits such as activity and 

exploration may correlate with particular cognitive styles (repeatable cognitive behaviour) to form 

a cognitive syndrome (Griffin et al. 2015; Sih and Del Giudice 2012). An assumption to this is 

repeatability and consistency of cognitive traits. Spatial recognition as tested in our set-up meets 

this assumption and may thus be used for a test of correlations between personality and spatial 

cognition in harvest mice. 

Estimation Methods and Effect of the Litter 

Repeatability of a behavioural trait is the fraction of total trait variance that occurs between 

individuals, due to additive and non-additive genetic effects, the permanent environment effect, 

as well as other effects that cause differences between individuals, such as direct maternal effects 

(Falconer et al. 1996; Nakagawa and Schielzeth 2010). When we included the grouping factor litter 

as a random factor in the LMM analyses, the between-individual variance that is due to differences 

between litters was attributed to that random effect and could hence not contribute to the 

estimate of R. Accordingly, all models with the litter effect, except two (OF activity and boldness 

in adults), estimated lower R values than the corresponding models without the litter effect. While 

those R values present a biased estimate, as genetic and early environmental contributions to 

behavioural repeatability are partly excluded, they can give an indication on whether heritability 

or direct maternal effects contribute to the repeatability of a trait. Reduced estimates of 

repeatability (or consistency) with a litter effect in the model, compared to a model without that 
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effect, indicate that the observed R value is (partly) due to either genetic effects, direct maternal 

effects or other environmental effects that are common to litter mates and thus cause differences 

between litters. In this study, we found particular strong evidence for those effects on activity in 

the Y Maze, as R values for this behaviour decreased significantly when the litter effect was 

included. Further investigations using the full pedigree of all tested animals are needed to quantify 

genetic and non-genetic maternal effects on activity in harvest mice.In the ANOVA estimation of 

R, we ignored any confounding effects and thus calculated agreement repeatability (Nakagawa 

and Schielzeth 2010). These R values were generally smaller than those from the original LMM 

analyses (except for boldness in adult mice). Although we expected that the bias here would 

depend on the magnitude of the confounding effects, we did not find congruent reductions of R 

in models of the same dependent trait. We conclude that the bias of R due to un-modelled 

confounding effects is not well predictable, as it seems to depend on the specific data structure 

within each model. As suggested by Nakagawa and Schielzeth (2010) we base our conclusions on 

LMM analysis of adjusted repeatability. 

Conclusion - Repeatability and Consistency in Harvest Mice 

Repeatability and Consistency in Harvest Mice of the Laboratory Population 

In sum, our results show that activity, boldness and exploration were repeatable in juvenile and 

adult Eurasian harvest mice. Furthermore, these behaviours were expressed consistently 

independent of age, maturation and individual sexual experience. Our findings show that 

behaviours in harvest mice meet the two essential assumptions in animal personality research - 

repeatable and consistent between-individual differences (Réale et al. 2007). Further, we tested 

spatial recognition based on object cues in a Y Maze. This trait was repeatable in adult mice, but 

not in juveniles, and it showed little evidence for consistency across life history phases. More 

investigations are needed to better understand the repeatability and consistency of cognitive 

traits as this would be a prerequisite for further studies on cognitive syndromes (Sih and Del 

Giudice 2012).  
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Chapter 2 

In Chapter 2, we provide evidence concerning the second assumption of animal personality – 

correlations between different behaviours – tested in adult Eurasian harvest mice. Further, we 

show how behavioural types are related to cognitive styles in this species:  

Animals show constant between-individual behavioural differences in many species. Further, 

personality traits form behavioural syndromes, characterised by correlations between different 

behaviours. Mechanisms maintaining these correlations could be constrained due to underlying 

relationships with cognitive traits. There is growing evidence for the non-independence of animal 

personality and general cognitive abilities in animals, but so far, studies on the direction of the 

relationship between them revealed contradictory results. Still, it is hypothesised that individuals 

may exhibit consistent learning and decision styles. Within a cognitive syndrome fast behavioural 

types (consistently bolder and more active individuals) are expected to show also faster learning 

styles. Slow behavioural types in contrast are assumed to learn slower but more accurately. This 

can be caused by a speed-accuracy trade-off that individuals face during decision making. We 

measured the repeatability of three personality and four spatial cognitive traits in adult Eurasian 

harvest mice (Micromys minutus). We analysed correlations among personality traits (behavioural 

syndrome) and investigated the relationship between personality and spatial cognitive traits 

(cognitive syndrome). Our results showed that exploration, activity and boldness were repeatable 

in adult mice. Spatial recognition measured in a Y Maze was also significantly repeatable, as well 

as spatial learning ability and decision speed. We found no repeatability of decision accuracy. 

Harvest mice showed a behavioural syndrome as we observed strong positive correlations 

between personality traits. The speed-accuracy trade-off was not apparent within, nor between 

individuals. Nevertheless, we found weak evidence for a cognitive syndrome as fast behavioural 

types learned the Spatial Orientation Task faster than slow types, and shyer harvest mice made 

decisions quicker than bolder mice. Given these relationships, our data partly support the 

hypotheses of a cognitive syndrome in harvest mice and will hopefully stimulate more studies on 

the relationship between cognition and personality in animals. 

Behavioural and Cognitive Syndromes in Laboratory Harvest Mice 

Behavioural and Cognitive Syndromes in Laboratory Harvest Mice 

Constant between-individual differences in behaviour are known as animal personality (Wilson 

1998; Réale et al. 2007). Further, correlations between constant behavioural traits – also called 
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personality traits – are defined as behavioural syndrome (Sih et al. 2004b). In birds, the relation 

between different personality traits followed a fast-slow continuum (Titulaer et al. 2012). For 

instance, more exploratory great tits (Parus major) were bolder (Verbeek et al. 1994), more 

aggressive (Carere et al. 2005) and showed more risk-taking behaviours (van Oers et al. 2004b) 

than less explorative birds. In rodents, Koolhaas et al. (1999) termed a similar behavioural 

syndrome the proactive-reactive syndrome, where proactive individuals were more active and 

more aggressive than reactive mice (Mus musculus). The behaviour pattern that an individual 

expresses was defined as a behavioural type, representing the characteristics of an individual’s 

personality (Bell 2007). Selection for proactive (fast) behavioural types is likely in stable 

environments, where risky behaviours confer advantages in competitive situations. Reactive 

(slow) behavioural types, on the other hand, would have advantages in unstable environments 

which favour behavioural flexibility (Koolhaas et al. 1999).  

The concept of behavioural types can also be applied to cognitive behaviour (Sih and Del Giudice 

2012). If adaptive cognitive behaviour can be achieved through different strategies, or if animals 

face consistent trade-offs when solving cognitive tasks, we would expect to observe cognitive 

styles. Cognitive traits in general provide the basis of any other behaviour as they refer to the 

capacity of individuals to acquire, process, store and remember information (Shettleworth 2010). 

Cognitive styles were defined as strategies how individuals do this, and these strategies are 

expected to be consistent across time and contexts (Sih and Del Giudice 2012). Consistent 

cognitive styles could arise due to constant decision-making behaviour. When an individual has to 

take a decision it faces the fundamental problem of a speed-accuracy trade-off (Chittka et al. 

2009). Individuals can either decide fast at the potential cost of an accurate decision or take their 

time and decide more accurately (Burns and Rodd 2008). Accuracy has been interpreted in the 

past as a limit to the cognitive ability of an individual (Chittka et al. 2009), making strong selection 

for accuracy unlikely. However, recent data showed that both cognitive styles (fast vs. accurate) 

can occur in a population side by side (Wang et al. 2015), indicating that both styles might be 

similar adaptive under specific environmental conditions. 

The Cognitive Syndrome 

Sih and Del Giudice (2012) provided a clear theoretical framework for a link between behavioural 

types and cognitive styles based on a risk-reward trade-off. Within a cognitive syndrome, fast 

behavioural types (consistently bolder, more aggressive and more active individuals) are expected 

to take higher risks while being rewarded faster (fast learning styles). Slow behavioural types in 

contrast are assumed to decide more accurately but less fast, and to take less risks (Sih and Del 
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Giudice 2012). Recent tests of this hypothesis showed contradictory results: Experimental work 

on black-capped chickadees (Poecile atricapillus) confirmed the hypothesis of a cognitive 

syndrome, since slow exploring individuals showed higher accuracy levels than fast exploring birds 

during learning trials of an instrumental discrimination task (Guillette et al. 2015). Bousquet et al. 

(2015) on the contrary could not identify any correlation between exploration and decision 

accuracy in a spatial learning task in mallards (Anas platyrhynchos). Further, Mamuneas et al. 

(2015) did not find any differences in decision making accuracy between shy and bold three-spined 

sticklebacks (Gasterosteus aculeatus). In guppies, bold females learned faster and also more 

accurately (Trompf and Brown 2014). Hence, this species did not seem to underlie a speed-

accuracy trade-off, but still expressed a cognitive syndrome, as the personality trait boldness 

correlated with the cognitive style accuracy. 

As opposed to the relationship between personality and cognitive styles, we currently lack further 

theoretical predictions for the relationship between personality and cognitive ability in animals 

(Sih and Del Giudice 2012; Griffin et al. 2015). Like for fast behavioural types, stable environments 

may also select for cognitive abilities which involve routine formations (Guillette et al. 2011). This 

is because learning a task fast and then form a routine in how to solve it, has more advantages 

when the environmental conditions are constant. Indeed, proactive mice (Mus musculus) formed 

routines and reacted less to changes in a maze structure than reactive animals (Benus et al. 1990). 

Furthermore, in cases where environmental cues can be used for spatial learning, reactive 

individuals should react more to these cues, while proactive individuals should be less sensitive to 

external cues (Benus et al. 1987) and are expected to orientate internally driven (Mamuneas et al. 

2015). This would result in a better ability of reactive individuals to solve learning tasks which rely 

on such environmental cues. Alternatively, since proactive (fast) individuals are more active and 

explore novel environments faster, they might also be able to learn spatial tasks faster. For 

instance, Guenther et al. (2014a) showed that boldness, activity and aggressiveness correlated 

positively with association learning ability in wild cavies (Cavia aperea). In starlings (Sturnus 

vulgaris), fast explorers were also faster in learning to obtain a food reward (Boogert et al. 2006). 

There is a growing interest in the individuality of cognitive abilities within animal species and 

indications for a relationship between personality and general cognitive ability accumulate, 

however, it seems hard to predict the direction of these relationships in specific species (Griffin et 

al. 2015).  
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Stability of Cognitive Styles 

Like behavioural types, cognitive styles are assumed to show temporal repeatability and cross-

context consistency (Sih and Del Giudice 2012). This is because behavioural and cognitive 

syndromes rely on the assumption that individuals constantly differ in their behavioural trait 

expressions. The rank order of individuals is assumed to be stable between situations, even if the 

mean behavioural trait expression might differ between tests (Sih et al. 2004b). These properties 

have been studied thoroughly for personality traits (Bell et al. 2009; Brommer and Class 2015), 

but so far, only few tests for repeatability and consistency of cognitive traits have been published 

(Ducatez et al. 2015; Griffin et al. 2015; Guillette et al. 2015; Wang et al. 2015). 

Spatial Orientation in Cognitive Syndromes 

Spatial orientation skills can be essential for a maximal individual fitness gain and are assumed to 

be favoured differently depending on each species’ ecology (Shettleworth and Hampton 1998). 

Spatial learning refers to processes through which animals can encode information about the 

environment, can navigate through their habitat, and can recall locations of important stimuli 

within space (Floresco 2015). Like any other learning process it can be influenced by constant 

individual behaviour, as new situations are differently encountered, perceived, and assessed by 

different behavioural types, which can result in different learning outcomes (Sih and Del Giudice 

2012). Furthermore, any learning event itself is part of the individual experience, which further 

regulates individuality of behaviour (Stamps and Groothuis 2010a). Therefore, spatial learning is 

one of the suitable candidates for studying cognitive syndromes. 

Study Objectives and Hypotheses 

Here, we investigated spatial cognitive traits in a laboratory population of the Eurasian harvest 

mouse (Micromys minutus; Pallas, 1771). We add to the scarce knowledge about repeatability of 

cognitive traits in animals focusing on spatial orientation abilities. We further present new 

evidence for behavioural and cognitive syndromes in a spatial orientation context.  

The Eurasian harvest mouse lives in high grass vegetation of wetland areas, but may also occur in 

grain fields and ruderal areas (Feldmann 1984; Spitzenberger 1986; Feldmann 1997). It thus 

occupies a very different ecological niche compared to other European rodents (Piechocki 2001). 

We assume that this species is exposed to a high selection pressure on spatial orientation abilities 

due to its complex three-dimensional use of habitats. The hippocampus of mammals is involved 

in the processing of spatial information about the environment (Yaskin 2011). Interestingly, the 

hippocampus of harvest mice occupied 16.2 % of the telencephalon, which is, e.g., 4.6 % more 
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than in laboratory mice (Mus musculus; 11.6 % hippocampal volume of the telencephalon, West 

1990). This may indicate that the brain structure of harvest mice is specifically adapted to spatial 

orientation. We investigated individual differences in spatial recognition, spatial learning ability 

and decision style (speed vs. accuracy) in Eurasian harvest mice.  

We used the previously described personality traits boldness, activity, and exploration (see 

Chapter 1) to test for a behavioural syndrome. We further established three new behavioural tests 

(Novel Environment, Scare Test, and Spatial Orientation Task). All personality and cognitive traits 

were tested for their repeatability in adult harvest mice. We then measured the correlations 

between personality traits, and between personality and spatial cognitive traits to test for a 

relationship between them. As variable environments may favour different behavioural types and 

cognitive styles in populations, it is likely that these also occur in our population because harvest 

mice inhabit unstable environments (Piechocki 2001). We expected that the personality traits 

boldness, activity and exploration correlate positively and form a fast-slow-behavioural syndrome 

(Titulaer et al. 2012). We assumed that mice with better spatial recognition would learn an 

orientation task faster due to improved spatial cognitive abilities. We further predicted that spatial 

recognition and spatial learning ability correlate with personality traits. As our cognitive test 

design was based on active exploration, we assumed a positive relationship between active 

personality types and spatial learning ability (Sih and Del Giudice 2012). Finally, we expected a 

speed-accuracy trade-off as suggested by Sih and Del Giudice (2012) and hypothesised that 

bolder, more active and more explorative individuals decide faster but less accurately in a spatial 

learning task. 

Material and Methods – Behavioural and Cognitive Syndrome 

Study Animals and Housing Conditions 

The harvest mice tested in this study stemmed from our laboratory population whose founding 

individuals (N = 26) originated from four different zoo populations. All individuals were born in 

Tübingen between 2011 and 2014. Mice were housed in polycarbonate cages of 60 cm length, 40 

cm width and 58 cm height. Individuals were either kept separately or in pairs of equal sex with 

water and food (hay, grain seeds, fresh fruit and vegetables) ad libitum. The back wall of the cage 

was covered by a coco coir mat for climbing. For environmental enrichment, cages were 

additionally equipped with an artificial nest, a running wheel, a paper tube, a wooden branch and 

a sheaf of wheat, oat and spelt. All mice were kept at constant temperature (22°C, range: 21.0°C 
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to 23.5°C) and light-dark cycle (LD 12:12 h). Animal husbandry and behavioural tests (see below) 

were permitted by the Regierungspräsidium Tübingen – Referat 35, reference number ZO 2/11. 

Behavioural Tests 

Standard behavioural tests, originally established to test emotionality in laboratory strains of mice 

and rats, were modified and adapted to our study species. It was not possible to record data blind 

because our study involved focal animal observations, however, we included the identity of the 

observer as a confounding factor in the data analyses (see below).  

We tested male and female adult harvest mice (age range: 57 to 743 days). We previously 

presented repeatability and consistency of activity, boldness and exploration in young and adult 

harvest mice of the same population (see Chapter 1). Since young mice expressed less repeatable 

spatial recognition behaviour measured in a Y Maze, we now analysed only the data from adult 

mice. 28 individuals were added to the previous data set and we established three new 

behavioural tests (Novel Environment, Scare Test, and Spatial Orientation Task) to measure more 

traits. 

Open Field (OF) 

We used a modified OF test (Archer 1973) to analyse activity and boldness as previously described 

in Chapter 1. Using automated video tracking (EthoVisionXT, Version 5, Noldus), we measured the 

total distance moved (in cm) during 4.5 min in a round arena and the time (in seconds) individuals 

spent at the inner part of the arena (unsafe area) as parameters for activity and boldness, 

respectively. We tested 96 adult harvest mice once and 90 of them also a second time after 28 to 

101 days (mean = 72.5 days).  

Novel Object (NO) 

To analyse exploratory behaviour we used a NO test (Chitty and Shorten 1946). This test was 

conducted directly after the OF test to reduce further stress as animals were already habituated 

to the arena setting. We recorded exploratory behaviour manually for 5 min after the first contact 

with the novel object. We quantified the time (in seconds) animals spent in physical contact with 

the novel object. For further details see Chapter 1. We tested 69 mice once and 62 of them were 

tested a second time after 85 to 101 days (mean = 89.9 days). 

Novel Environment (NE) 

We established a NE test to quantify spatial exploration in harvest mice. Originally, the NE test 

was used by Verbeek et al. (1994) to analyse exploration in great tits (Parus major). We here 
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simulated a novel environment by using a polycarbonate cage (FIGURE 10). This arena was similar 

to the home cages of the mice with a size of 58.5 cm length, 39.0 cm width and 69.5 cm height. 

An intermediate floor made of opaque polycarbonate was inserted at 36.0 cm height. Bottom and 

intermediate floor were connected by five tubes (4 cm in diameter). Each tube had an entrance 

(2 x 2 cm) at the bottom and was equipped with straws to ensure that mice could climb up and 

down through the tubes (see FIGURE 10). Straws were replaced and all surfaces of the NE were 

cleaned with 70% ethanol after each test. We used two different arrangements of the tubes for 

the two trials. A trial lasted until animals visited all five tubes, but at least 10 min and at maximum 

30 min. Mice were observed directly. We defined that a mouse had visited a tube if it climbed at 

least one body length up or down within a tube. Because during 24 of 119 observations (20.2 %) 

the mouse did not visit all five tubes, we used the latency (in seconds) until any four of the five 

tubes were visited by the mouse as a parameter for exploration. Eight individuals did not visit four 

tubes during 30 min and were scored with 1800 seconds. We tested 60 adult harvest mice once 

and 59 of them were tested a second time after 23 to 35 days (mean = 29.9 days).  

 

FIGURE 10 Test arena of the Novel Environment showing the five tubes connecting bottom and 
intermediate floor which harvest mice could explore by climbing. Photo by Christoph Jäckle 

Scare Test (ST) 

We used the Scare Test (established by da Luz Correia 2013) to analyse the reaction towards 

disturbances in a familiar environment. We used the individual home cages (see FIGURE 6) as 
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testing arenas and animals were observed directly. During an active phase of the mouse (e.g., the 

mouse was moving around in its cage), the observer fully opened the sliding door of the cage and 

closed it again immediately. The animals instantly hid under the hay or behind the coco coir mat 

in the back of the cage. We measured the latency (in seconds) until they returned from their hiding 

places as a parameter for boldness. If a mouse did not return from the hiding place within 15 min, 

we aborted the trial and scored the animal with 900 seconds (N = 9 tests). 56 adult harvest mice 

were tested once and 38 of them were tested a second time after 2 to 218 days (mean = 78.3 

days). 

Y Maze (YM) 

We quantified spatial recognition in an adapted YM arena (Montgomery 1955), which relies on 

the assumption that rodents explore novel environments more than already known environments 

(Hughes 1968). Known environments can be recognised through association with known object 

cues. In the YM arena, objects that were only visible from one arm of the arena enabled the 

animals to recognise whether they had previously visited a specific arm, based on spatial 

association. The YM test consisted of two trials. During the first trial, one of the arms was locked 

(unknown arm), in the second trial all three arms were accessible. For a more detailed description 

of the test see Chapter 1. We video tracked animals using EthoVisionXT software and measured 

the total distance moved (in cm) during the first 5 min of the second trial as a parameter for 

activity. The time (in seconds) spent in the unknown arm during the first 5 min of the second trial 

was recorded as a parameter for spatial recognition. We excluded one animal from further 

analyses as it ran straight into the known arm at the beginning of the trial and did not leave this 

arm again. We tested 96 adult harvest mice once and 89 of them were tested a second time after 

40 to 99 days (mean = 76.1 days). 

Spatial Orientation Task (SOT) 

To evaluate individual spatial learning ability, as well as decision speed and accuracy, we 

established the Spatial Orientation Task (Zimmermann 2014). We used a round arena, 51 cm in 

diameter. An elevated six arm maze was placed inside the arena, 20 cm above the bottom. Mice 

reached the maze by climbing through a centrally placed tube (4 cm in diameter, see FIGURE 11). 

We placed a green plastic box (5 x 5 x 5 cm) filled with hay at the outer end of each arm. Mice 

could enter only the target box via a 2 cm hole in the lid. The other five boxes had closed but 

perforated lids, so that olfactory cues were the same for each box. As boxes were opaque, mice 

could not see the holes in the lid while walking on the arms of the maze. The SOT consisted of 10 

or 20 learning runs (run number) conducted on two consecutive days (test day; run 1-10 on the 
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first day, run 11-20 on the second day). Each learning run ended 1 min after the mouse had 

entered the target box and left again (maximum: 10 min). We did not catch the animals in close 

vicinity to the target box to avoid any negative associations. During the runs mice were supposed 

to learn the location of a target box (FIGURE 11) which offered a hide. If mice did not reach the 

learning criterion (see below) within 10 runs on the first test day, we conducted further runs (11-

20) on the next day. Between the learning runs, all surfaces were cleaned with 70% ethanol to 

remove olfactory cues. Optical cues attached to the wall of the arena (FIGURE 11) served as 

landmarks that the animals could use for orientation, and for association between the position of 

the target box and both cues on either side of the box. The position of the target box was the 

same for all mice tested in the first trial, but we changed cue positions randomly. The animals 

were filmed from above, while the observer recorded individual behaviour on a monitor placed 

out of sight of the mice.  

 

FIGURE 11 Experimental set-up of the Spatial Orientation Task. Six-arm maze elevated 20 cm above the 
ground with target box on the right and optical cues for spatial orientation between the arms. Photo by 
Uwe Zimmermann 

We scored spatial learning ability as the number of learning runs needed to fulfil the learning 

criterion. We defined the learning criterion as less than seven non-target boxes visited in total, 

within four consecutive learning runs. This criterion was defined during a pilot study (Zimmermann 

2014). If an individual did not reach the learning criterion, it was scored with 20 learning runs. 

After the learning criterion was fulfilled, all following runs (six to twenty runs per individual) were 
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used to record decision speed and accuracy. We measured decision speed as the time (in seconds) 

between the moment when the mouse had reached the platform, and when it visited any box (all 

four paws on box/platform), multiplied by -1. If the animal visited the target box first, we scored 

an accurate decision. If any other box was visited first, we scored an inaccurate decision. The 

proportion of accurate first decisions within all learning runs after the learning criterion was 

fulfilled was defined as decision accuracy. During the second trial of the SOT (to estimate 

repeatability of spatial learning ability, decision speed and decision accuracy) we changed the set-

up by changing the test room and the position of the target box within the six-arm maze. Further, 

we used six different optical cues than during the first trial. We tested 57 adult harvest mice once 

and 53 of them were tested a second time after 45 to 491 days (mean = 139.0 days).  

Data Analyses 

We performed all statistical analyses using R software, version 3.0.1 (R Core Team 2013) and 

ASReml, version 4.1 (Gilmour et al. 2014). We measured the effects of potential confounding 

factors due to the experimental set-up, and due to individual characteristics of the mice, by fitting 

linear mixed models (LMM) using the “nlme” package (Pinheiro and Bates 1996) in R. Potential 

confounding factors caused by the experimental set-up, that were regarded in the analyses, were 

the identity of the observer (observer), the date of the test performance (test date), and the time 

of the test performance (test time). Potential confounding individual factors were the sex of the 

mouse (sex), whether the mouse completed a specific test for the first or the second time (trial 

number), the body mass of the mouse measured directly before the test performance (body 

mass), the age in days of the mouse at the test date (age), the lab generation the mouse belonged 

to (our lab population consisted of seven generations), and whether the mouse was housed alone 

or in a pair (housing condition). We thus included the following confounding factors into each full 

model: The mouse identity (ID) as random factor (to account for repeated measures); sex, trial 

number, observer and housing condition as fixed factors; body mass, age, test date, test time and 

generation (quadratic function) as fixed covariates. As males and females might differ in their 

activity rhythms, we included the interaction sex*test time. Further, females harvest mice are 

larger than males (Piechocki 2001) and this dimorphism might influence individual behaviours of 

sexes differently. We therefore included the interaction sex*body mass in the full model. 

Additionally, we included the run number and the test day (one or two) to the linear models fitting 

decision speed and accuracy of the SOT. We used backward stepwise reduction of the full model 

by excluding non-significant interactions first, followed by non-significant main effects (p < 0.05). 

We applied square root (activity in OF and YM, exploration in NO, boldness in OF and spatial 

recognition) or log (boldness in ST, exploration in NE and spatial learning ability) transformations 
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to the dependent variables to ensure a normal distribution of the model residuals. For boldness 

in ST, exploration in NE, and spatial learning ability we multiplied the transformed values by -1 to 

simplify correct interpretations of the directions of correlation coefficients (i.e. larger values 

correspond to a faster exploration, faster learning, and bolder individuals). We present final 

models with the remaining confounding factors in the SUPPLEMENTARY TABLE 1. Confounding factors 

with significant effects were retained in the models for subsequent repeatability and correlation 

analyses. 

Repeatability of Personality and Cognitive Traits 

The narrow sense repeatability of personality and cognitive traits was analysed using the package 

“rptR” (Nakagawa and Schielzeth 2010) in R. We calculated adjusted repeatability (RA) (Nakagawa 

and Schielzeth 2010) by including confounding factors identified from LMMs before (see above). 

We estimated LMM based repeatability, including individual ID as random factor, based on 1000 

bootstrapping runs and 1000 permutations. We display RA values with standard errors and 

asymptotic 95% confidence intervals (CIs), and permutation based p values.  

Correlations between Traits 

We fitted multivariate LMMs using restricted maximum likelihood (REML) in ASReml4 (Gilmour et 

al. 2014) to estimate phenotypic variances for each personality and cognitive trait, as well as the 

phenotypic covariances between those. We partitioned the within-individual variances and 

covariances from the between-individual variances and covariances as recommended by 

Dingemanse and Dochtermann (2013). We then used these variances and covariances to calculate 

phenotypic correlations between the traits within individuals (rW) and between individuals (rB). 

We included all previously defined significant confounding factors in the fixed models. The animal 

ID was included as random factor to all models.  

We fitted the first multivariate model for the six personality traits to test for a behavioural 

syndrome. We used a stepwise approach to build up the final model. First, we applied a diagonal 

variance model, which estimated only variances, but no covariances. Then, we applied an 

unstructured variance model where all between-individual and within-individual covariances 

were first fixed to zero. We then estimated the between-individual and within-individual 

covariances one by one, using estimates from respective bivariate models as starting values. We 

present correlations based on the final six-trait model with a fully unstructured between-

individual variance-covariance matrix. The within-individual covariance matrix was modelled 

between activity in the OF test, activity in the YM, boldness in the OF test, and exploration in the 



Chapter 2 - Results – Behavioural and Cognitive Syndrome 
Repeatability of Personality and Cognitive Traits in Harvest Mice 

 
70 

NO test. For boldness in the ST and exploration in the NE, we were not able to model within-

individual covariances, as those behaviours were measured at different time points.  Thus, our 

modelling approach is a combination of scenario 3 and 4 described in Table 2 by Dingemanse and 

Dochtermann (2013).  

We extended the six-trait model by adding spatial recognition and spatial learning ability to test 

for a relationship between personality and spatial cognitive traits. We also calculated correlations 

based on the final eight-trait model with a fully unstructured between-individual variance-

covariance matrix. Within-individual covariances with spatial learning ability in the SOT could not 

be estimated, as this behaviour was measured at a different time point.  

Finally, we extended the six-trait model by adding decision speed and decision accuracy to test for 

a speed-accuracy trade-off and for a cognitive syndrome. We again calculated correlations based 

on the final eight-trait model with a fully unstructured between-individual variance-covariance 

matrix. The within-individual covariance matrix was modelled between activity in the OF test, 

activity in the YM, boldness in the OF test, and exploration in the NO test. From these eight-trait 

models we only display between-individual correlation coefficients with p < 0.1, the full 

information is given in the Appendix. 

In the above described analyses, our measure for decision accuracy summarized accuracy over all 

learning runs after the learning criterion was fulfilled, because we were not able to conduct 

multivariate generalized LMMs. However, since ASReml4 allows bivariate models with one 

binominal response variate, we conducted an additional test for the speed-accuracy trade-off. In 

this analysis, decision accuracy was scored as a binary response (correct decision or not) for each 

learning run and was modelled with a logit link. We then calculated between- and within-

individual correlations from fully unstructured between- and within-individual variance-

covariance matrices. Potential confounding fixed factors (as described above) were identified 

before by fitting a generalized LMM using the “lme4” package (Bates et al. 2014) in R. The trial 

number (estimate ± SE = -0.242 ± 0.123, p = 0.049) and the test day (-0.282 ± 0.124, p = 0.023) 

significantly influenced the decision accuracy and remained in the generalized LMM.  

Results – Behavioural and Cognitive Syndrome 

Repeatability of Personality and Cognitive Traits in Harvest Mice 

All personality traits were significantly repeatable (TABLE 7). RA values ranged between 0.221 and 

0.598, whereby activity was the behaviour with the highest repeatability. Most cognitive traits 

were also significantly repeatable: Spatial recognition, spatial learning ability, and decision speed 
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showed repeatabilities between 0.127 and 0.263 (TABLE 7). However, decision accuracy was not 

significantly repeatable. The results of the model reductions can be found in the SUPPLEMENTARY 

TABLE 1. Significant confounding factors were retained in the fixed model for all further analyses 

and are listed in TABLE 7. 

In the Spatial Orientation Task most harvest mice were able to learn the position of the target box. 

53.6 % of the animals reached the learning criterion already within the first five runs. However, 

5.5 % of the individuals did not reach the learning criterion within the 20 learning runs.  
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TABLE 7 Repeatability (RA) with 95% confidence interval (CI) for each personality and cognitive trait. Generation was fitted as a quadratic function. Sample sizes (N) are 
given as observations/individuals. Significant repeatability values are marked bold. 

 

personality/cognitive trait behavioural test confounding factors N RA 95% CI p value 
       

activity 
Open Field generation + generation2 186/96 0.404±0.086 [0.226, 0.552] < 0.001 

Y Maze - 184/96 0.598±0.064 [0.456, 0.705] < 0.001 
       

boldness 
Scare Test - 94/56 0.256±0.145 [0.000, 0.534] < 0.001 

Open Field trial number + observer 186/96 0.319±0.097 [0.115, 0.502] < 0.001 
       

exploration 
Novel Object housing condition 131/69 0.328±0.113 [0.097, 0.531] < 0.001 

Novel Environment trial number 119/60 0.221±0.119 [0.000, 0.432] < 0.001 
       

spatial recognition Y Maze - 184/96 0.200±0.104 [0.000, 0.429] 0.002 
       

spatial learning ability Spatial Orientation Task trial number 110/57 0.127±0.116 [0.000, 0.382] 0.042 
       

decision accuracy Spatial Orientation Task - 102/56 0.125±0.122 [0.000, 0.411] 1.000 
       

decision speed Spatial Orientation Task observer + run number 1156/56 0.263±0.027 [0.211, 0.313] < 0.001 

 



Chapter 2 - Results – Behavioural and Cognitive Syndrome 
Correlations between Traits in Harvest Mice 

 
73 

Correlations between Traits in Harvest Mice 

We observed four significant positive between-individual correlations among personality traits, 

three more relationships showed a tendency (p < 0.1) with high positive between-individual 

correlation coefficients (FIGURE 12). The two measures of activity showed a significant positive 

between-individual correlation (rB = 0.541 ± 0.146, p < 0.001). Both activity measures correlated 

significantly with boldness measured in the Scare Test, but not with boldness measured in the 

Open Field test. However, exploration in the Novel Environment correlated significantly with 

boldness in the Open Field test. There were two further relationships between boldness and 

exploration, which tended to correlate positively (see FIGURE 12). Finally, exploration in the Novel 

Environment tended to correlate positively with activity in the Open Field test. The two measures 

of exploration showed no significant between-individual relationship, nor did the two measures 

of boldness.  

 

FIGURE 12 Behavioural syndrome: Between-individual correlations (± standard errors) between 
personality traits calculated from a multivariate mixed model. Solid lines indicate significant between-
individual correlations (p < 0.05), dashed lines indicate tendencies (p < 0.1), and dotted lines indicate non-
significant between-individual correlations. OF: Open Field, YM: Y Maze, NO: Novel Object, NE: Novel 
Environment, ST: Scare Test. 

 

We observed only one significant within-individual correlation between the activity in the Open 

Field test and activity in the Y Maze (rW = 0.257 ± 0.108, p = 0.009). All other modelled within-

individual correlation coefficients were very small and not significant (see TABLE 8). 
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TABLE 8 Behavioural Syndrome: Within-individual correlations between personality traits calculated from 
a multivariate mixed model. Within-individual correlation coefficients (± standard errors) are shown 
above, and p values below the diagonal. Significant correlation is marked in bold. NA: within-individual 
correlation not modelled due to missing data. OF = Open Field, YM = Y Maze, NO = Novel Object, NE = 
Novel Environment, ST = Scare Test. 

 

 activity OF activity YM boldness OF boldness ST exploration NO exploration NE 

       

activity OF  0.257±0.108 -0.006±0.106 NA 0.082±0.126 NA 

activity YM 0.009  -0.040±0.116 NA 0.065±0.125 NA 

boldness OF 0.477 0.364  NA 0.062±0.125 NA 

boldness ST NA NA NA  NA NA 

exploration NO 0.256 0.301 0.311 NA  NA 

exploration NE NA NA NA NA NA  

 

When we extended this six-trait model by spatial recognition and spatial learning ability, our 

conclusions from the between-individual and within-individual correlations among personality 

traits did not change (see SUPPLEMENTARY TABLE 2 and SUPPLEMENTARY TABLE 3). In the eight-trait 

model, we identified a strong and significant between-individual correlation among activity in the 

Open Field and spatial learning ability (rB = 0.793, see FIGURE 13) and a tendency for a strong and 

positive between-individual correlation among spatial learning ability and boldness in the Scare 

Test (rB = 1.696, see FIGURE 13). Further non-significant between-individual and within-individual 

correlation coefficients are not displayed in FIGURE 13, but all results of the multivariate mixed 

model can be found in the SUPPLEMENTARY TABLE 2 and SUPPLEMENTARY TABLE 3. There was no 

significant between-individual correlation, nor any within-individual correlation between spatial 

recognition and any personality trait. The between-individual correlation coefficient between 

spatial learning ability and spatial recognition was large and positive (rB = 0.562 ± 0.594), but not 

significant (p = 0.172).  

When we extended the six-trait model by decision speed and decision accuracy, between-

individual and within-individual correlations among personality traits did also not change 

meaningfully (see SUPPLEMENTARY TABLE 4 and SUPPLEMENTARY TABLE 5). In this eight-trait model, we 

identified a significant negative between-individual correlation between boldness in the Open 

Field and decision speed (rB = -0.412 ± 0.179, see FIGURE 14). Further non-significant between-

individual and within-individual correlation coefficients are not displayed in Figure 5, but all results 

of the multivariate mixed model can be found in the SUPPLEMENTARY TABLE 4 and SUPPLEMENTARY 
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TABLE 5. There was no significant between-individual correlation among decision speed and 

decision accuracy (rB = 0.207 ± 0.425, p = 0.313). 

 

 

FIGURE 13 Relationship between personality and spatial cognition: Between-individual correlations (± 
standard errors) between personality traits and cognitive traits calculated from an eight-trait multivariate 
mixed model, but only five traits are displayed (see explanation in the text). The solid line indicates the 
significant correlation (p < 0.05) between activity in the Open Field (OF) and learning ability in the Spatial 
Orientation Task, the dashed line indicates the tendency (p < 0.1) between boldness in the Scare Test (ST) 
and learning ability in the Spatial Orientation Task, and dotted lines indicate non-significant correlations 
between the other traits.  

 

 

FIGURE 14 Test for a cognitive syndrome based on a speed-accuracy trade-off: Between-individual 
correlations (± standard errors) between personality traits, and decision speed and accuracy calculated 
from an eight-trait multivariate mixed model, but only five traits are displayed (see explanation in the 
text). The solid line indicates the significant correlation (p < 0.05) between activity in the Open Field (OF) 
and decision speed in the Spatial Orientation Task, dotted lines indicate non-significant correlations 
between the other traits. 
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The bivariate generalized LMM with decision accuracy as binary response and decision speed with 

normal distribution resulted in a within-individual correlation coefficient of rW = 0.023 ± 0.020 (p 

= 0.125) and a between-individual correlation coefficient of rB = 0.018 ± 0.248 (p = 0.471). 

Discussion - Behavioural and Cognitive Syndrome 

We found strong evidence for a behavioural syndrome in Eurasian harvest mice. As we expected, 

activity, boldness and exploration showed positive correlations and formed a fast-slow-

behavioural syndrome (Titulaer et al. 2012). Further, we found some indication for a relationship 

between spatial learning ability and personality types. More active harvest mice reached the 

learning criterion in the Spatial Orientation Task earlier than less active individuals. The speed-

accuracy trade-off was not apparent within, nor between individuals. Nevertheless, we found 

weak evidence for a cognitive syndrome as shyer harvest mice made decisions faster than bolder 

mice. Thus, our data partly support the hypothesis that behavioural types correlate with individual 

cognitive ability (Sih and Del Giudice 2012). 

Repeatability of Personality and Cognitive Traits in Harvest Mice 

One basic assumption of animal personality is the repeatability of behaviours (Réale et al. 2007). 

We here confirmed this assumption for all personality traits tested in adult Eurasian harvest mice. 

RA values were between 0.221 and 0.598, which lies within the range of usually observed 

repeatabilities of personality traits (Bell et al. 2009; Garamszegi et al. 2013). We previously 

reported similar repeatabilities for a smaller dataset on juvenile and adult harvest mice from the 

same laboratory population (see Chapter 1).  

Spatial recognition and spatial learning ability were also significantly repeatable in adult harvest 

mice. Lantová et al. (2011) already observed that common voles (Microtus arvalis) performed 

repeatably in an eight-arm radial arm maze. Voles thereby showed repeatable maze-exploring 

tactics and also the maze exploration activity was significantly repeatable (Lantová et al. 2011). 

Currently, there is only scarce evidence for repeatability of spatial recognition and general learning 

ability in animals (Griffin et al. 2015). However, it was shown that individuals behaved consistently 

in different types of learning tasks and solved these tasks consistently well (e.g., Ducatez et al. 

2015; Guillette et al. 2015). Repeatability and consistency of cognitive traits results in less flexible 

behaviour of individuals in situations when cognitive abilities are needed. This may cause a 

constraint to the expression of adaptive behaviour. It should be noted, however, that studies on 

within-species variation in cognitive abilities (including our study) generally focus on few test 

situations for specific cognitive tasks. Individuals with low performance in those tasks may show 
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stronger cognitive abilities in other tasks. It remains to be shown, which trade-offs cause 

repeatable reduced cognitive ability in a specific test.  

Among the two traits that characterise cognitive styles (Sih and Del Giudice 2012), decision speed 

was repeatable in harvest mice, whereas decision accuracy was not. The only other published 

study on repeatability of decision speed and accuracy was conducted on zebrafish (Danio rerio), 

where Wang et al. (2015) showed that both, speed and accuracy, were significantly repeatable in 

a spatial colour discrimination task. Harvest mice may indeed not behave as repeatably during 

decisions as zebrafish did, or we may have failed to measure decision accuracy adequately. Our 

test design was based on the assumption that the mice have a high motivation to inspect the 

target box (their hide in the test arena) as soon as they were released into the arena. However, 

after a few runs, some mice may not have been motivated any more to visit the hide, but rather 

preferred to explore the remainder of the test arena. As there is no other evidence available so 

far, more experimental work is needed to better understand the repeatability of decision accuracy 

and speed in animals in general. If relationships between personality types and cognitive styles 

continue to support the idea of cognitive syndromes (Sih and Del Giudice 2012), the test of the 

basic assumptions of repeatability and consistency of the involved behaviours should become 

routine ingredients to studies in this field. 

Behavioural Syndrome in Harvest Mice 

We found significant positive between-individual correlations or positive tendencies between the 

three studied personality traits. Activity, exploration and boldness thus form a fast-slow-

behavioural syndrome (Titulaer et al. 2012) in our study species. This is in line with a large body 

of personality literature in rodents: Starting with the observations in laboratory house mice 

(Koolhaas et al. 1999), more and more studies reported fast-slow-behavioural syndromes (e.g., in 

Belding’s ground squirrels, Urocitellus beldingi, Dosmann et al. 2015; and in cavies, Cavia aperea, 

Guenther et al. 2014a). However, some behavioural correlations were not stable over ontogeny 

(e.g., Kanda et al. 2012; Guenther et al. 2014b), and in some species, no behavioural syndrome 

was detected (e.g., in yellow-bellied marmots, Marmota flaviventris, Petelle et al. 2013).  

In our study, a number of tested relationships between personality traits showed reasonable 

between-individual correlation coefficients, but large standard errors. This suggests that our 

current sample size (56 to 96 individuals per trait) might be too small to fully describe the 

relationship between all measured behaviours. Alternatively, within-individual covariance might, 

if not estimated, mask or inflate between-individual covariance. Only between-individual 
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covariances are indicative for a behavioural syndrome (Dingemanse and Dochtermann 2013). 

Since we did not measure all traits at the same time point, we were not able to model all within-

individual covariances. However, among those relationships, where we did estimate within-

individual covariance, it was significant only between the two measures of activity. In that case, 

an alternative model excluding within-individual covariances did not lead to different conclusions 

about the relationships between the traits (data not shown). We thus conclude that, in our test 

situation, within-individual covariances did not largely influence phenotypic correlations, and that 

higher sample sizes might allow to estimate correlations with higher accuracy. Further, the lack of 

significant correlations between the two measures of explorative behaviour (Novel Object and 

Novel Environment), and between the two measures of boldness (Scare Test and Open Field) may 

indicate a suboptimal behavioural test selection. These tests may indeed measure different 

behaviours. Open Field and Novel Object tests are frequently used to measure either exploration, 

activity or boldness. Different experimenters thereby apply different methods to quantify the 

measured behaviours (e.g., boldness as the latency to reach novel objects, Guenther et al. 2014a; 

or boldness as the latency to enter the middle of an Open Field, Herde and Eccard 2013). However, 

since behavioural syndromes assume relationships between similar behavioural traits in different 

situations, we would still expect correlations between slightly different measures of boldness and 

exploration. We cannot exclude that larger sample sizes may reveal correlations between these 

measures. Currently, less individuals were tested in the Novel Environment and in the Scare Test, 

compared to the Novel Object and the Open Field, respectively.  

We detected positive correlations between activity, exploration and boldness. These relationships 

could arise from constraints in proximate mechanisms, such as physiological pathways, 

maintaining these behaviours (Sih et al. 2004a). Alternatively, selection for alternative types may 

maintain fast and slow behavioural types in a population. This type of disruptive selection can be 

caused by variation in selective agents in the environment (e.g., fluctuation of food availability in 

great tits, Parus major, Dingemanse et al. 2004), or by alternative behavioural optima during 

different life-history stages (e.g., life-history trade-off between current and future reproduction 

in grey mouse lemurs, Microcebus murinus, Dammhahn 2012). Harvest mice live in a very variable 

environment where it is likely that fitness advantages for different behavioural types change 

during the year. Like in other rodent species, population sizes of harvest mice increase 

dramatically during the summer and show high peaks in autumn, followed by a marked reduction 

in population size over winter (Piechocki 2001). More active, bolder and more explorative 

individuals may have higher fitness in the more competitive situations during high population 

density. Then, the fast behavioural type may gain better access to suitable nest sites, food and 
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mating partners. Slow (reactive) harvest mice on the other hand may have fitness advantages 

during winter and spring, when population density is lower. During this time, the slow behavioural 

type may save energy through lower levels of activity and exploration, and potentially fewer 

interactions with conspecifics. However, selection for behavioural types will only result in the 

maintenance of these types in the population if the correlations that underlie the behavioural 

syndrome are in fact genetic relationships. We here present phenotypic trait correlations, and it 

remains to be tested if these relationships are also genetically based. 

Cognitive Syndrome in Harvest Mice 

In line with our expectation, we found some indication for a relationship between spatial learning 

ability and personality types. Harvest mice that were more active in the Open Field reached the 

learning criterion in the Spatial Orientation Task earlier than less active individuals. Further, a non-

significant tendency suggested a positive relationship between boldness in the Scare Test and 

spatial learning ability. Finally, the between-individual correlation coefficient between spatial 

learning ability and boldness in the Open Field test showed a large correlation coefficient, with 

large standard error (SUPPLEMENTARY TABLE 4).  

We expected that mice which learned the orientation task faster, would also show better spatial 

recognition. Although the between-individual correlation coefficient between spatial recognition 

and learning ability was large and positive, it did not reach significance due to the large standard 

error (SUPPLEMENTARY TABLE 4). This large error variance may occur because individuals differed in 

their motivation to solve the orientation task. If some mice were indeed more interested to 

explore the six arm maze rather than to inspect the target box, we have to assume a large error 

in our measure of learning ability. The challenge remains to design a spatial learning task that 

ensures high task solving motivation in all individuals without restricting the test situation to a 

feeding context.  

We did not observe any of the expected correlations between personality traits and spatial 

recognition in the Y Maze. The time animals spent in the unknown arm of the Y Maze (a measure 

of the association between unknown landmarks and a new environment) was not related to 

activity, exploration or boldness of the individuals, as measured in other behavioural tests. 

Mamuneas et al. (2015) could also not identify any differences in the spatial recognition between 

shy and bold three-spined sticklebacks (Gasterosteus aculeatus) tested in a T Maze where 

landmarks could be associated with food rewards in one of the arms. Even if behavioural types do 

not differ in their spatial recognition, they may still use different, equally successful strategies to 
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recognize known areas or to build associations with specific optical cues. In our test for spatial 

recognition, mice could recognize the unknown arm based on landmarks that we placed around 

the arms. Thereby, the animals’ view was blocked to the side of the Y Maze, but they could have 

used cues above them (e.g., the camera, or structures in the ceiling of the room) to define a known 

position in the room. However, mice may also have recognized the unknown arm based on path 

integration – by keeping track of their own location in relation to a known position in their 

environment (Shettleworth 2010). We were not able to test if mice of different personality types 

employed different orientation strategies. There is indeed evidence for this in common carp 

(Cyprinus carpio) where different personality types solved an orientation task using different types 

of information to get access to a food reward (Mesquita et al. 2015). Reactive (slow) individuals 

followed a light cue that was associated with food, while proactive (fast) animals formed fixed 

movement routines to reach the location of the food reward (Mesquita et al. 2015). 

Taken together, we found some weak indication that mice of different personality types may differ 

in their ability to learn. Some recent studies actually suggested such a relationship: Fast 

behavioural types demonstrated better conditioning learning in Panamanian bishop fish 

(Brachyrhaphis episcopi) and better association learning in cavies (Cavia aperea, DePasquale et al. 

2014; Guenther et al. 2014a). The difference in (spatial) learning ability is assumed to result from 

differences in how individuals assess and attend to the learning situation (Sih and Del Giudice 

2012). However, no such relationship was reported in Eastern water skinks (Eulamprus quoyii) and 

in common carp (Cyprinus carpio), where bold as well as shy animals learned spatial association 

tasks equally successful (Carazo et al. 2014; Mesquita et al. 2015). 

A cognitive syndrome could arise if individuals face a trade-off between fast and accurate 

decisions (Sih and Del Giudice 2012). In this study, we did not observe significant correlations 

between decision speed and decision accuracy. Thus, harvest mice that decided more quickly, did 

not made more or less accurate decisions than slow deciding individuals, indicating that harvest 

mice did not face a speed-accuracy trade-off in the Spatial Orientation Task. We will need to design 

more specific tests for decision speed and accuracy, to measure the correlation between them in 

further contexts. Decision speed and accuracy did not correlate significantly with any personality 

trait, with one exception: Shy harvest mice which spent less time in the unsafe part (middle) of 

the Open Field decided faster in the Spatial Orientation Task. This finding is in contrast to the 

cognitive syndrome hypothesis (Sih and Del Giudice 2012), where slow (and shy) behavioural types 

are expected to make slow, but accurate decisions. In our specific set-up, shy mice (that spent less 

time in the middle of the Open Field) might have preferred to leave the exposed position in the 
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middle of the Spatial Orientation Task arena faster, than bold individuals, and thus expressed a 

faster decision behaviour in that test. Under a speed-accuracy trade-off, this behaviour could 

indeed lead to a lower spatial learning ability due to more frequent inaccurate decisions. Our data 

did not exclude the possibility that less active individuals may actually have decided less 

accurately: The two relevant correlation coefficients between decision accuracy and activity were 

large and positive, albeit not significant due to high variation in the data (reflected in large 

standard errors, see SUPPLEMENTARY TABLE 4). However, overall, we found little support for the 

hypothesis that harvest mice show a relationship between behavioural types and cognitive styles.  

So far, few studies have investigated speed-accuracy trade-offs and cognitive syndromes, and 

results are contradictory. Speed-accuracy trade-offs were identified in wild-caught Carib grackles 

(Quiscalus lugubris), in wild-caught black-capped chickadees (Poecile atricapillus), and in wild 

Florida scrub-jays (Aphelocoma coerulescens, Ducatez et al. 2015; Guillette et al. 2015; Bebus et 

al. 2016). On the other hand, Bousquet et al. (2015) could not identify any effect of exploration 

on the accuracy in a spatial learning task in captive mallards (Anas platyrhynchos). Speed-accuracy 

trade-offs were also not consistently identified in fish (three-spined sticklebacks, Gasterosteus 

aculeatus and guppies, Poecilia reticulata, Trompf and Brown 2014; Mamuneas et al. 2015). While 

Burns and Rodd (2008) observed such a trade-off in guppy populations that were exposed to high 

predation pressure, Trompf and Brown (2014) could not confirm the trade-off in guppies in the 

laboratory, where fish may have habituated to the absence of predators (Trompf and Brown 

2014). This might also be the case in our study. The tested harvest mice originated from laboratory 

populations, which did not experience any natural predation for several generations. It would thus 

be interesting to measure decision speed and accuracy in harvest mice from wild populations. 

Further, the experimental design of the Spatial Orientation Task may not imitate predation risk 

for harvest mice sufficiently, so that they were actually not forced to decide between speed and 

accuracy. If there is no need to hide (escape to the target box) because of missing perceived 

predation risk, mice might have known the position of the target box but may not have been 

motivated to instantly seek shelter. Future experiments may use a simulation of a predator, 

appearing above the Spatial Orientation Task arena, to imitate predation risk and thus motivate 

animals to reach the target box. 

 

 

 



Chapter 2 - Conclusion - Behavioural and Cognitive Syndrome in Harvest Mice 
Behavioural and Cognitive Syndrome in Harvest Mice of the Laboratory Population 

 
82 

Conclusion - Behavioural and Cognitive Syndrome in Harvest Mice 

Behavioural and Cognitive Syndrome in Harvest Mice of the Laboratory Population 

Our results showed that adult Eurasian harvest mice behaved repeatably and that they expressed 

a behavioural syndrome with strong positive correlations between the three personality traits 

activity, exploration, and boldness. Further, we provide new insights into the relationship between 

personality traits and spatial learning abilities. More active and bolder individuals (the fast 

behavioural type) were faster in learning the Spatial Orientation Task than mice expressing the 

slow behavioural type. Thus, we could show that a specific cognitive ability correlated with 

behavioural types, which supports the hypothesis by Sih and Del Giudice (2012). If fast behavioural 

types in general outperform slow individuals in cognitive tasks, we should wonder why both types 

still persist in animal populations. Although slow learning harvest mice may not have any fitness 

advantages, shy and less active harvest mice may indeed be the more adapted behavioural type 

during some parts of the year. Thus, the observed relationship may cause non-independent trait 

evolution and maintain slow learners in the population. Spatial recognition, however, did not 

correlate with any personality trait. In addition, we only found weak indications for a cognitive 

syndrome: Shyer mice decided more quickly in the Spatial Orientation Task, but no other between-

individual correlations among personality traits and decision styles were significant (despite some 

large correlation coefficients). We also found no support for a speed-accuracy trade-off. This may 

indicate that our test situation did not reveal these relationships sufficiently, and that any 

underlying trade-offs would appear more clearly in an improved test situation (e.g., under time 

constraint, or with mice from a population under predator pressure). On the other hand, if harvest 

mice do indeed not express a cognitive syndrome, decision styles and behavioural types could 

evolve independently from each other. As current results (including this study) are contradictory, 

more investigations are needed to further investigate the presence and the evolutionary 

significance of cognitive syndromes in animals. 
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Chapter 3 

In Chapter 3 we tested parts of the described assumptions I and II of animal personality 

(behavioural repeatability and correlations between behavioural traits) in a field population of 

harvest mice. Further, we compared the results with what we have observed in the laboratory 

population of harvest mice (Chapter 1 and 2). 

Animals show constant behavioural types in many species. Further, personality traits form 

behavioural syndromes which means that different behaviours correlate within populations. 

Behavioural syndromes were assumed to be stable across time and space, as the correlations 

between traits can be constrained by hormonal, physiological, or genetic factors. But there is 

growing evidence that these correlations between behaviours appear more flexible. Phenotypic 

correlations can vary between populations of the same species originated from different 

environments, for instance, laboratory and field populations. We described a behavioural 

syndrome in a laboratory population of Eurasian harvest mice (Micromys minutus) in Chapter 1. 

Now, we investigated whether three personality traits, as well as one spatial cognition trait also 

correlate in a population with a natural genetic background, kept in a semi-natural outdoor 

enclosure. We further compared behavioural correlations within the field population with 

observations of harvest mice bred in the laboratory. Our results showed that exploration, activity 

and boldness were repeatable in the field population of harvest mice. However, spatial 

recognition measured in a Y Maze was not repeatable. Harvest mice of the field population 

showed a behavioural syndrome as we observed positive between-individual correlations among 

the three behaviours activity, exploration and boldness. Although we observed significant 

differences in the magnitude of phenotypic correlations between the laboratory and the field 

population, both datasets suggested the same directions of correlations within the syndrome. 

Hence, we conclude that Eurasian harvest mice in general exhibit a behavioural syndrome along 

a fast-slow continuum, and that proximate factors are more likely to shape this behavioural 

syndrome than selection processes.  

Behavioural Syndrome in the Field Population of Harvest Mice 

Animal Personality and Behavioural Syndromes 

Constant between-individual differences in behaviour are known as animal personality, coping 

styles or temperament (Wilson et al. 1994; Koolhaas et al. 1999; Gosling 2001; Réale et al. 2007). 
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Correlations between these constant behavioural traits (personality traits) were defined as 

behavioural syndrome (Sih et al. 2004b). 

Behavioural Syndromes in Laboratory and Field Populations 

Behavioural syndromes were assumed to be stable across time and space (Fischer et al. 2016) as 

the correlations between traits can be constrained by hormonal, physiological, or genetic factors 

(Bergmüller 2010). But there is growing evidence that these correlations between behaviours 

appear more flexible (Fischer et al. 2016). For instance, phenotypic correlations can vary between 

populations of the same species originated from different environments (Bell 2005; Dingemanse 

et al. 2007). Behavioural syndromes can also evolve differently between populations (Fischer et 

al. 2016). This was shown in different populations of Trinidadian guppies (Poecilia reticulate), 

originating from low- and high-predation environments. Behavioural variance increased when fish 

were reared under non-native environmental conditions compared to fish reared in native 

conditions. Further, behavioural correlations differed between the groups depending on the 

rearing condition and genetic background (Fischer et al. 2016). The authors concluded that the 

behavioural syndrome found in Trinidadian guppies is plastic and can evolve differently between 

populations of different environments (Fischer et al. 2016). Different magnitudes of correlations 

or even opposing relationships between personality traits were found within the same species. 

For example, a strong and positive relationship between exploration and aggression was observed 

in several populations of great tits (Parus major, Verbeek et al. 1996; Dingemanse and de Goede 

2004, but not in others Carere et al. 2005). Correlations between activity, exploration, aggression 

and risk-taking behaviour were detected in several populations of three-spined sticklebacks 

(Gasterosteus aculeatus) depending on the predation pressure (Bell 2005; Dingemanse et al. 

2007), but in a study on different stickleback populations, Brydges et al. (2008) did not detect 

these patterns. The structure of the phenotypic correlations between personality traits can also 

change over lifetime as shown by Wuerz and Krüger (2015) in zebra finches (Taeniopygia guttata). 

Ontogenetic changes and developmental aspects could thereby be mechanisms underlying 

behavioural syndromes (Wuerz and Krüger 2015). In basal tarantulas (Brachypelma smithi), for 

example, correlations between behaviours only occurred in spiders which were reared under 

naturalistic conditions and not in animals reared in a restricted housing treatment (Bengston et 

al. 2014). Thus, the environmental conditions during development may be an important factor 

shaping the occurrence of phenotypic correlations later in life.  

There is an enormous body of literature on constant individual behavioural differences in captive 

bred or laboratory animal populations, and also the number of studies on wild populations has 
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increased rapidly in the last decade. Investigations of animal personality in wild populations are 

indispensable to understand fitness consequences of behavioural types and the role of individual 

behaviour in local adaptation (Archard and Braithwaite 2010). In wild populations, constant 

behavioural differences were already linked to differences in reproductive success (Reale et al. 

2000; Both et al. 2005) and survival (Dingemanse et al. 2004; Boon et al. 2007). A meta-analysis 

by Smith and Blumstein (2008) on laboratory and wild populations further revealed that bolder 

and more aggressive individuals had on average a higher reproductive success, but more 

exploratory individuals survived longer. Analyses of animal personality in captive populations have 

many limitations due to the effects of habituation and domestication, and because natural 

selection processes are relaxed in laboratory populations (Archard and Braithwaite 2010). In a 

population that lives under relaxed natural selection over several generations, individual 

behaviour might change, such as might behavioural differences between individuals and 

correlations between behavioural traits (Archard and Braithwaite 2010). For instance, in 

pumpkinseed sunfish (Lepomis gibbosus), wild-caught animals showed individual differences in 

boldness, but these differences disappeared after around 20 days post capture when kept in the 

laboratory under social isolation (Wilson et al. 1993). In old-field mice (Peromyscus polionotus 

subgriseus), McPhee (2003) showed that predator avoidance decreased with generations in 

captivity, because the captive population did no longer experience predation. The variance in 

predator-response behaviour increased with generations in captivity (McPhee 2003). This may 

influence the repeatability of this behaviour which is calculated as the proportion of between-

individual variance relative to the total phenotypic variance in a population (Dingemanse et al. 

2010). In a comparative study by Brust and Guenther (2015), guinea pigs (Cavia porcellus) were 

less aggressive and less bold than their relatives, the wild cavies (Cavia aperea). This domestication 

effects in guinea pigs was also found in a cognitive trait as domesticated guinea pigs learned an 

association task faster than wild cavies (Brust and Guenther 2015). In wild cavies, there were 

significant positive relationships between boldness, aggression and association learning, but these 

correlations did not appear in the domesticated guinea pigs (Brust and Guenther 2015).  

Despite the increasing evidence for the adaptive hypothesis shaping behavioural syndromes 

(indicated by the differences in correlations between behaviours observed in different selective 

environments), there are still contradictory results which may also show that behavioural 

syndromes are difficult to break apart because of proximate mechanisms underlying the different 

behaviours (constraint hypothesis, Bell 2005). Whether behavioural correlations are a general 

characteristic of a species, and ubiquitous across different populations of this species, or whether 

selection might favour the coupling between the behaviours still seems difficult to predict even 
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within taxa. Especially, studies comparing laboratory and field populations of the same species, 

using the same experimental set-ups are scarce. Such comparisons would provide more insights 

into whether or not laboratory populations, and behavioural syndromes observed in those, 

represent what is actually found in natural populations in the field. 

Study Objectives and Hypotheses 

We studied constant between-individual differences in behaviours of Eurasian harvest mice 

(Micromys minutus; Pallas, 1771) in a laboratory population (founded by zoo animals and kept in 

captivity for more than eight generations) and in a population in a semi-natural outdoor enclosure 

(founded from wild-caught animals). We previously analysed personality traits in the laboratory 

population and documented repeatable and consistent behaviour in juveniles and adults, as well 

as a behavioural syndrome in adult laboratory harvest mice (Chapter 1 and 2, respectively). Now, 

we investigated the same personality traits in wild-caught individuals and their offspring born in 

the semi-natural outdoor enclosure (in the following referred to as field population). This allowed 

us two compare patterns of constant between-individual differences in behaviours between 

standardized laboratory conditions and a semi-natural environment within two genetically 

different populations of the same species. We first measured the repeatability of three personality 

traits and one cognitive trait in the field population. We then investigated if the tested traits 

(boldness, activity, and exploration) correlated positively with each other forming a behavioural 

syndrome (Sih et al. 2004b). We expected that behaviours are repeatable and assumed the 

presence of a fast-slow-behavioural syndrome (Titulaer et al. 2012) as this was already found in 

the laboratory population of this species (Chapter 2). We also measured spatial recognition in a Y 

Maze. We tested the repeatability of this trait and its correlations with the personality traits. As 

spatial recognition was quantified from an active exploration behaviour in the Y Maze, we 

assumed a positive relationship between fast personality types and spatial recognition (Sih and 

Del Giudice 2012). 

It is likely that different rearing environments (field enclosure versus laboratory conditions) affect 

individual behaviours and correlations between behavioural traits. We thus compared the mean 

behaviours and the observed correlations between laboratory and field population of harvest 

mice. We assumed a more natural behavioural expression induced by the semi-natural habitat in 

the enclosure. Because of this, and since mice of the field population occupy larger home ranges 

than laboratory mice, we hypothesized that the field population expresses more active and more 

explorative behaviour. However, we expected mice of the field population to be shyer than 

laboratory individuals, because we assumed that laboratory animals were more habituated to 
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laboratory test situations and handling of observers. If the behavioural syndrome is maintained 

by natural selection on specific trait correlations, then it might get lost in populations with a long 

history of relaxed selection pressure (Archard and Braithwaite 2010). Under this scenario, we 

would expect stronger phenotypic relationships between personality traits in the field population, 

than in the laboratory population, as we assumed more relaxed selection in the laboratory than 

in the field. However, if the behavioural syndrome, observed in the laboratory population of 

harvest mice, is caused by genetic, morphological or physiological constraints, we would expect 

similar correlations between behaviours also in the field population of harvest mice.  

Material and Methods – Behavioural Syndrome in the Field Population 

Study Animals and Semi-natural Enclosure 

Harvest mice tested in this study stemmed from our field population whose 29 funding individuals 

were trapped in August 2013 and May 2014 at the field station of the University of Potsdam in 

Potsdam-Bornim, Germany (N 52°26'22", E 13°0'44"). Harvest mice were captured under 

permission of the Landesumweltamt Brandenburg (reference number 24.01.01.18) and released 

into our semi-natural outdoor enclosure (FIGURE 15) in Tübingen, Germany (N 48°32'20", E 

9°01'46").  

 

FIGURE 15 The semi-natural outdoor enclosure of the harvest mouse population located near the Eberhard 
Karls University in Tübingen, Germany. Photo by Andrea C. Schuster 
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The outdoor enclosure was 33 m x 18 m large and surrounded by concrete walls (1.2 to 1.9 m in 

height), which had a metal rail on top and were embedded 0.5 m into the ground (see Figure 15). 

Thus, no terrestrial predators were able to enter the enclosure, but avian predation was possible. 

The area was planted with high grass vegetation mainly consisting of bunch grasses. Species with 

highest abundances were Sorghastrum nutans, Molinia arundinacea, Miscanthus sinensis, 

Panicum virgatum, and Spodiopogon sibiricus. The study population was monitored by regular 

trapping events (see below) and was allowed to reproduce freely. During the winter months, we 

provided additional food by scattering sunflower seeds and oat flakes once per month within the 

enclosure. Additionally, we placed six wooden huts (54.0 x 77.0 x 66.5 cm) filled with hay and 

straw into the enclosure for shelter during winter time. 

Life Trapping and Individual Identification 

Between September 2013 and November 2015 we trapped mice at least once per month except 

for the winter periods (see TABLE 9).  

TABLE 9 Number of harvest mice captured the first time in the outdoor enclosure (unmarked individuals) 
in each month (roman numerals) of the three study years (2013, 2014, 2015). * indicates wild-caught 
animals from Potsdam, which were released to the enclosure. - are months without trapping events. 

 

Year month sum 

 I II III IV V VI VII VIII IX X XI XII  

2013 - - - - - - - 24* - 1 - - 25 

2014 - - 9 6 0 5* 11 0 0 5 - - 36 

2015 - - 0 3 5 5 0 13 8 0 0 - 34 

all years - - 9 9 5 10 11 37 8 6 0 - 95 

 

We used metal life traps (Ugglan special No2, Grahnab, Sweden). Traps were baited with oat 

flakes, peanut flips and apples to provide sufficient food and water resources. Traps were checked 

at least twice a day, around 8 am in the morning and between 6 and 8 pm in the evening. In the 

summer months, we check traps every three hours as young offspring cannot survive without 

maternal care and harvest mice reproduced mostly between May and September. Pregnant and 

lactating females were released directly at the trapping location. All other animals were brought 

to the laboratory for behavioural phenotyping. In 2013 and 2014 mice were individually tagged 

using passive integrated transponders (PIT). Individuals were narcotised by inhalation of isoflurane 

and we subcutaneously implanted a 9.0 mm x 1.4 mm transponder (ISO FDX-B, Planet ID, Essen, 
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Germany) dorsal between the shoulders. In 2015, we marked animals by individual combinations 

of fur cuts and ear marks. Individual marking was always done after the first two phenotyping 

trials (in 2013 after the first trial) and animals spent at least one day in the laboratory after the PIT 

implantation before we released them again into the enclosure. PIT tag injection and ear marking 

were done under permission of the Regierungspräsidium Tübingen (reference numbers: ZO 2/11 

and Anzeige vom 21.7.2014).  

TABLE 10 summarises the number of behavioural observations collected between 2013 and 2015 

in the field population of harvest mice. 

TABLE 10 Number of the behavioural observations on the field population. Mice were tested one to four 
times in each of the five tests. 

behavioural test 
tested 

once 

tested 

twice 

tested 

three times 

tested 

four times 

# total 

observations 

Open Field 11 52 19 9 208 

Novel Object 11 49 23 9 192 

Novel Environment 1 25 10 1 85 

Y Maze 13 47 22 9 209 

Scare Test 16 7 13 0 69 

 

Laboratory Population 

Harvest mice have been housed in our laboratory in Tübingen since November 2010. The harvest 

mice tested in this study stemmed from our laboratory population whose funding individuals (N = 

26) originated from four different zoo populations. We recently showed that individuals from this 

captive population behaved repeatably and consistently (Chapter 1) and that behaviours 

correlated positively in adult harvest mice (Chapter 2). As recommended by Dingemanse and 

Dochtermann (2013) more observations per individual increase the power to statistically detect 

multivariate between- and within-individual correlations. For this reason we decided to reanalyse 

the previously published data while increasing our sample size (number of observations per 

individual) by combining all observations of juvenile and adult mice. We also included three 

further individuals to the data set. All individuals were born in our laboratory between October 

2010 and September 2014, except for the three here added animals which were founding 

individuals that arrived in Tübingen in July 2011. In total, we tested 61 male and 53 female harvest 

mice of the laboratory population up to four times for each behavioural test (TABLE 11).  
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TABLE 11 Number of the behavioural observations of the laboratory population. Mice were tested one to 
four times in each of the five tests 

behavioural test 
tested 

once 

tested 

twice 

tested 

three times 

tested 

four times 

# total 

observations 

Open Field 8 38 33 33 315 

Novel Object 2 9 33 33 251 

Novel Environment 1 59 0 0 119 

Y Maze 7 37 33 33 312 

Scare Test 18 41 0 0 100 

 

Housing Conditions and Behavioural Tests 

Mice of the field population were housed in polycarbonate cages of 60 cm length, 30 cm width 

and 35 cm height. Individuals were kept separately with water and food (hay, grain seeds and 

fresh fruits) ad libitum. The housing room had a natural light cycle and the room temperature 

varied between 16°C and 26°C, depending on the air temperature outside. Housing conditions of 

the laboratory animals were similar to the housing conditions of field population. A detailed 

description of the laboratory housing conditions and behavioural tests on laboratory mice can also 

be found in Chapters 1 and 2. Behavioural tests done on the field population are described below. 

Mice were tested up to four times, sample sizes for each behavioural test are shown in TABLE 10. 

We used standard behavioural tests, originally established to test emotionality in laboratory 

strains of mice and rats. Tests were modified and adapted to our study species. 

Open Field (OF) 

We used a modified OF test (Archer 1973) to analyse activity and boldness as described before 

(Chapter 1). We videotaped field individuals from above using a digital camcorder (Handycam 

HDR-CX730E, SONY). We used the tool FFmpeg (www.ffmpeg.org) to convert and normalise all 

our recorded videos. After normalisation all videos had the same scale and video format, and were 

then used for automated video tracking (EthoVisionXT, Version 5, Noldus). We measured the total 

distance moved (in cm) during 4.5 min in a round arena and the time (in seconds) individuals spent 

at the inner part of the arena (unsafe area) as parameters for activity and boldness, respectively.  

Novel Object (NO) 

To analyse exploratory behaviour we used the NO test (Chitty and Shorten 1946). The NO was 

conducted directly after the OF test to reduce further stress as animals were already habituated 

to the arena setting. We recorded exploratory behaviour manually for five minutes after the first 
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contact with the novel object as the time (in seconds) animals spent in physical contact with the 

novel object. For further details see Chapter 1.  

Novel Environment (NE) 

We used the Novel Environment test to further phenotype exploratory behaviour in harvest mice. 

Originally, the NE test was used by Verbeek et al. (1994) to analyse exploration in great tits (Parus 

major). We here simulated a novel environment by using a polycarbonate cage. An intermediate 

floor made of opaque polycarbonate was inserted. The bottom and intermediate floor were 

connected by five tubes. For a detailed description of the test see Chapter 2. Mice were observed 

directly. The latency (in seconds) until any four of the five tubes had been visited by the mouse 

was used as a parameter for exploration. We scored exploration in the NE only for field animals 

that were tested in 2015. 

Scare Test (ST) 

We used the Scare Test (Da Luz Correia 2013) to analyse the reaction towards disturbances in a 

familiar environment (see Chapter 2 for more details). The test took place in the individual home 

cages. During an active phase of the mouse (e.g., the animal was moving around in its cage), the 

metal lid of the cage was lifted and directly closed again. Animals immediately fled to hide under 

the hay or in the paper tube located at the back end of the cage. We measured the latency (in 

seconds) until mice returned from their hiding places as a parameter for boldness. If a mouse did 

not return from the hiding place within 15 min, we aborted the trial and scored the animal with 

900 seconds (N = 9 observations). 

Y Maze (YM) 

We quantified spatial recognition in an adapted YM arena (Montgomery 1955), which relies on 

the assumption that rodents explore novel environments more than already known environments 

(Hughes 1968). The YM test consisted of two trials. During the first trial, one of the arms was 

locked (unknown arm) and in the second trial all three arms were accessible. For a more detailed 

description of the test see Chapter 1. We videotaped test individuals from above using a digital 

camcorder (Handycam HDR-CX730E, SONY). We used the tool FFmpeg (www.ffmpeg.org) to 

convert and normalise all our recorded videos. After normalisation all videos had the same scale 

and video format and were then used for automated video tracking (EthoVisionXT, Version 5, 

Noldus). We measured the total distance moved (in cm) during the first five minutes of the second 

trial as a parameter for activity. The time (in seconds) spent in the unknown arm during the first 

five minutes of the second trial was recorded as a parameter for spatial recognition. If an animal 
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did not move during the second trial, we excluded individuals from further analyses as these 

observations confer no information about whether the animal recognised the new arm. Thus, we 

excluded eight observations from further analyses as the mouse did not leave the start arm of the 

YM. 

Data Analyses 

We performed all statistical analyses using R software, version 3.0.1 (R Core Team 2013) and 

ASReml, version 4.1 (Gilmour et al. 2014). As described in Chapter 1 and 2 we measured the effects 

of potential confounding factors on behaviours due to the experimental set-up, and due to 

individual characteristics of the mice, by fitting linear mixed models using the “nlme” package 

(Pinheiro and Bates 1996) in R. We applied square root transformations to the dependent 

variables (activity in OF and YM, exploration in NO, boldness in OF and spatial recognition) or log 

(boldness in ST, exploration in NE) to ensure a normal distribution of the model residuals. 

Exploration in NE and boldness in ST were multiplied by -1 for easier interpretation of the 

effect sizes and the correlation coefficients such that larger values correspond to a faster 

exploration and bolder individuals. For the dataset of the field population, we included the 

following confounding factors into each full model: the mouse identity (ID) as random factor (to 

account for repeated measures); sex, trial number, year (cohort: caught first time in 2013, 2014 

or 2015), observer, and birth place (wild-caught in Potsdam or enclosure-born in Tübingen) as 

fixed factors; body mass, test date, and test time as covariates. For the dataset of the laboratory 

mice, we included the mouse identity (ID) as random factor; sex, trial number, year (tested in 

2012, 2013 or 2014), whether the mouse was housed alone or in a pair (housing condition), and 

the observer as fixed factors; body mass, the lab generation the mouse belonged to as quadratic 

function (our lab population consisted of seven generations), test date, and test time as 

covariates. We applied backward stepwise reduction of the full model by successively excluding 

non-significant effects (p < 0.05). When confounding factors had more than two levels (e.g., trial 

number), we applied post-hoc tests (Tukey-test) and give estimates and test statistic for each 

contrast. We present final models with the remaining confounding factors in the SUPPLEMENTARY 

TABLE 6 and SUPPLEMENTARY TABLE 7. Confounding factors with significant effects were retained in 

the models for subsequent repeatability and correlation analyses. 

Repeatability 

Narrow sense repeatability of personality and cognitive traits was analysed using the package 

“rptR” (Nakagawa and Schielzeth 2010) in R. We estimated adjusted repeatability (RA) (Nakagawa 
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and Schielzeth 2010) by including confounding factors that we identified in the LMMs from the 

former analyses (see above). We estimated LMM based repeatability, including individual ID as 

random factor, based on 1000 bootstrapping runs and 1000 permutations. We display RA values 

of untransformed variables with standard errors and asymptotic 95% confidence intervals (CIs), 

and permutation based p values. 

Correlations between Behaviours 

We fitted multivariate LMMs using restricted maximum likelihood (REML) in ASReml4 (Gilmour et 

al. 2014) to estimate phenotypic variances for each personality and cognitive trait, as well as the 

phenotypic covariances between these traits. We partitioned the within-individual variances and 

covariances from the between-individual variances and covariances as recommended by 

Dingemanse and Dochtermann (2013). We then used these variances and covariances to calculate 

phenotypic correlations between the traits within individuals (rW) and between individuals (rB). 

We included all previously defined significant confounding factors in the fixed model. The animal 

ID was included as random factor to all models. As spatial recognition was not repeatable in 

harvest mice of the field population (see results), we did not include this variable here. 

We fitted the first multivariate model for the six personality traits to test for a behavioural 

syndrome in the field population (N = 95 individuals). We used a stepwise approach to build up 

the final model. First, we applied a diagonal variance model, which estimated only variances, but 

no covariances. Then, we applied an unstructured variance model where all between-individual 

and within-individual covariances were first fixed to zero. We then estimated the between-

individual and within-individual covariances one by one, using estimates from respective bivariate 

models as starting values. Since we did not test mice in the NE in 2013 and 2014 and no mice were 

phenotyped in the ST in 2015, we could not model any covariance among these two traits for the 

field population. The between-individual and within-individual covariance among these traits was 

set to zero in the final model. We present between-individual correlations based on the final six-

trait model. Within-individual correlation coefficients can be found in the appendix 

(SUPPLEMENTARY TABLE 8).  

We fitted the second multivariate model for the six personality traits to estimate the correlations 

in the behavioural syndrome in the laboratory population (N = 112 individuals). We used the same 

stepwise approach to build up the final model as for the field data. We here present correlations 

based on the final six-trait model with fully unstructured between-individual variance-covariance 

matrix. The within-individual covariance matrix was modelled between activity in the OF test, 
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activity in the YM, boldness in the OF test, and exploration in the NO test. For boldness in the ST 

and exploration in the NE, we were not able to model within-individual covariances, as those 

behaviours were measured at different time points. We present between-individual correlations 

based on the final six-trait model with described between-individual variance-covariance matrix. 

Within-individual correlations coefficients can be found in the appendix (SUPPLEMENTARY TABLE 9). 

Comparison between the Laboratory and the Field Population 

We compared mean levels of behaviours between the laboratory and the field population using 

the effect sizes of the fixed factor origin (laboratory and field) from linear mixed models. We fitted 

these models by combining the data sets of the laboratory and the field population and included 

the mouse identity (ID) as random factor and confounding factors with significant effects from 

previous models (see above). Further, we tested for homogeneity of variances between the two 

study populations using Levene's tests. 

We calculated Z-tests (unpaired) to test for differences of correlation coefficients between 

laboratory and field population. We used Bonferroni correction to account for multiple 

comparisons. Our significance threshold was then p ≤ 0.01, as each observed behavioural variable 

contributed to five correlation coefficients. 

Results - Behavioural Syndrome in the Field Population of Harvest 

Mice 

Repeatability of Behaviours in the Field Population 

All tested personality traits were significantly repeatable in the field population. RA values ranged 

between 0.038 and 0.517 (see TABLE 12), where the two activity traits measured in the Open Field 

and in the Y Maze had the highest repeatability values. Exploration in the Novel Object test 

showed a modest but significant repeatability (TABLE 12). The cognitive trait spatial recognition 

was not repeatable in this population. 
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TABLE 12 Repeatability (RA) with 95% confidence interval (CI) for personality traits and spatial recognition 
tested in the field population of harvest mice. Sample sizes (N) are given as observations/individuals. 
Significant repeatability values are marked bold. 

 

trait 
behavioural 

test 

confounding 

effects 
N RA 95% CI p value 

activity 
Open Field trial number 208/95 0.517±0.069 [0.370, 0.634] < 0.001 

Y Maze test time 209/94 0.332±0.083 [0.170, 0.498] < 0.001 

boldness 
Scare Test - 69/39 0.214±0.148 [0.000, 0.540] < 0.001 

Open Field trial number 208/95 0.246±0.090 [0.055, 0.414] < 0.001 

exploration 

Novel Object 
trial number + 

year 
192/83 0.038±0.062 [0.000, 0.200] < 0.001 

Novel 

Environment 
trial number 85/37 0.246±0.128 [0.000, 0.508] < 0.001 

spatial 

recognition 
Y Maze - 209/94 0.00 NA NA 

 

Correlations between Behaviours in the Field Population 

We observed three significant positive between-individual correlations among personality traits 

(rB values between 0.421 and 0.807, FIGURE 16). The two activity variables, as well as the two 

boldness variables, correlated significantly. However, the between-individual correlation between 

exploration in the Novel Environment test and in the Novel Object test was not significant. The 

third significant relationship confirmed our expectation of a behavioural syndrome: more active 

harvest mice were bolder in the Open Field test, than less active mice. The relationship between 

activity in the Y Maze and boldness in the Scare Test, as well as boldness in the Open Field was 

also strong and positive, but not significant (p = 0.082 and 0.069, respectively). All other between-

individual correlations were not significant, but mostly positive. Unexpectedly, we observed two 

negative between-individual correlation coefficients. Both of them had large standard errors and 

were not significant (FIGURE 16). 
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FIGURE 16 Behavioural syndrome in the field population of Eurasian harvest mice: Between-individual 
correlations (± standard errors) among personality traits calculated from a multivariate mixed model. 
Solid lines indicate significant correlations (p < 0.05), dashed lines indicate tendencies (p < 0.1), and dotted 
lines indicate non-significant correlations. OF: Open Field, YM: Y Maze, NO: Novel Object, NE: Novel 
Environment, ST: Scare Test. The covariance between exploration NE and boldness ST was not modelled 
due to missing data.  

 

We observed two significant within-individual correlations out of the 14 modelled relationships. 

Activity in the Open Field and exploration in the Novel Environment were positively correlated (rW 

= 0.222 ± 0.131, p = 0.045). The relationship between boldness in the Scare Test and exploration 

in the Novel Object test showed a significant negative within-individual correlation coefficient (rW 

= -0.637 ± 0.127, p < 0.001). Results of the non-significant within-individual correlations can be 

found in the Appendix. 

Correlations between Behaviours in the Laboratory Population 

We observed eight significant positive between-individual correlations among personality traits in 

the laboratory population (rB values between 0.408 and 0.797, FIGURE 17). The two activity 

variables, as well as the two exploration variables, correlated significantly. However, the between-

individual correlation coefficient between boldness in the Scare Test and in the Open Field test 

was small and not significant. The significant relationships between activity in the Open Field and 

exploration in the Novel Environment, as well as between both activity measures and boldness in 

the Scare Test, confirmed our expectation of a behavioural syndrome. Further, we observed 

strong positive between-individual correlations among both exploration and both boldness 

measures (see FIGURE 17). All other between-individual correlations were not significant, but 
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mostly positive. Unexpectedly, we observed two negative between-individual correlation 

coefficients. Both of them had large standard errors and were not significant (FIGURE 17). 

 

FIGURE 17 Behavioural syndrome in the laboratory population of Eurasian harvest mice: Between-
individual correlations (± standard errors) among personality traits calculated from a multivariate mixed 
model. Solid lines indicate significant correlations (p < 0.05), and dotted lines indicate non-significant 
correlations. OF: Open Field, YM: Y Maze, NO: Novel Object, NE: Novel Environment, ST: Scare Test. 

 

We observed two significant within-individual correlations out of the six modelled relationships. 

Both activity measures were positively correlated (rW = 0.239 ± 0.067, p < 0.001). The relationship 

between activity in the Open Field and exploration in the Novel Object test showed also a 

significant positive within-individual correlation coefficient (rW = 0.187 ± 0.075, p = 0.006). Two 

more within-individual correlations tended to be significant: activity in the Y Maze and boldness 

in the Open Field, as well as activity in the Y Maze and exploration in the Novel Object test (p = 

0.090 and 0.089, respectively). Results of the non-significant within-individual correlations can be 

found in the Appendix. 

Comparison between Laboratory and Field Population 

We did observe some mean differences in behaviours between the laboratory and the field 

population: Activity and spatial recognition both tested in the Y Maze differed between 

populations, as well as exploration in the Novel Environment (TABLE 13). Harvest mice of the field 

population were more active in the Y Maze arena and spent more time in the unknown arm of the 

Y Maze compared to laboratory animals. Mice of the laboratory population, however, were more 

explorative in the Novel Environment than mice of the field population. 
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The Levene's test for homogeneity of variance across the two study populations revealed that 

there was less variance in spatial recognition in the Y Maze and exploration in the Novel 

Environment in laboratory animals than in field animals (TABLE 13). However, activity in the Open 

Field and exploration in the Novel Object showed more variance in the mice of the laboratory than 

of the field population (TABLE 13).  
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TABLE 13 Final LMMs with significant confounding factors and the effects of origin (field versus laboratory population) on personality and cognitive traits in harvest mice 
Significant differences between factor levels and contrasts which tended do differ are shown by the results of Tukey post-hoc tests (estimates ± standard error, z values and 
p values). Sample sizes (N) are given as observations/individuals. SE = standard error. Test statistic of Levene`s tests are displayed in the last columns. 

          Levene’s Test 
personality/cognitive trait behavioural test N confounding factors F value p value contrast estimate ± SE z value p value F value p value 

            

activity 

Open Field 523/207 
trial number 8.019 < 0.001 

2 - 1 
3 - 2 

-0.33 ± 0.07 
-0.30 ± 0.09 

-4.606 
-0.333 

< 0.001 
0.006 

  

origin 0.186 0.667  0.05 ± 0.12 0.431 0.667 39.821 < 0.001 
         

Y Maze 521/206 

trial number 2.659 0.048 2 - 1 -0.23 ± 0.08 -2.777 0.027   
test time 12.140 < 0.001  -0.14 ± 0.04 -3.484 < 0.001   

origin 4.912 0.028  -0.29 ± 0.11 -2.581 0.011 3.284 0.071 
         

boldness 

Scare Test 169/98 origin 0.000 0.995  0.00 ± 0.18 0.006 0.995 1.652 0.201 

Open Field 523/207 

trial number 33.633 < 0.001 

 

2 - 1 
3 - 1 
4 - 1 
3 - 2 
4 - 2 
4 - 3 

 

0.67 ± 0.08 
0.41 ± 0.10 
1.04 ± 0.14 
-0.26 ± 0.10 
0.37 ± 0.14 
0.63 ± 0.14 

 

8.677 
4.119 
7.523 
-2.613 
2.687 
4.369 

 

< 0.001 
< 0.001 
< 0.001 
0.042 
0.034 

< 0.001 

  

year 6.665 < 0.001 
2013 - 2012 
2014 - 2012 
2015 - 2012 

-0.63 ± 0.19 
-0.77 ± 0.18 
-0.87 ± 0.24 

-3.326 
-4.221 
-3.606 

0.005 
< 0.001 
0.002 

  

origin 0.321 0.571  -0.08 ± 0.13 -0.567 0.571 1.619 0.204 
         

exploration 

Novel Object 523/207 

trial number 7.979 < 0.001 
2 - 1 
3 - 1 

0.50 ± 0.10 
0.37 ± 0.12 

5.011 
3.219 

< 0.001 
0.007 

  

year 5.778 0.004 
2014 - 2013 
2015 - 2013 

0.41 ± 0.14 
0.60 ± 0.20 

2.959 
3.031 

0.008 
0.007 

  

origin 0.530 0.468  0.10 ± 0.13 0.728 0.468 4.885 0.028 

Novel Environment 204/97 

trial number 10.946 < 0.001 

 

2 - 1 
4 - 1 
4 - 3 

 

0.57 ± 0.11 
2.14 ± 0.83 
1.95 ± 0.86 

 

5.161 
2.563 
2.280 

 

< 0.001 
0.040 
0.082 

  

origin 26.389 < 0.001  0.75 ± 0.15 5.137 < 0.001 24.356 < 0.001 
         

trial number 2.798 0.040 2 - 1 -0.25 ± 0.10 -2.573 0.047   
spatial recognition Y Maze 521/206 origin 34.383 < 0.001  -0.51 ± 0.09 -5.864 < 0.001 18.479 < 0.001 
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We observed significant between-individual and within-individual correlations in both populations 

(see above). But while in the laboratory population eight between-individual correlations were 

significant, only two appeared to be significant in the field population. Only the two activity 

measures correlated significantly in both populations, the other between-individual correlations 

did not correspond in their significance between both populations (see FIGURE 16 and FIGURE 17). 

Further, we observed two significant within-individual correlations in each of the populations. 

However, these significant within-individual correlations differed between laboratory and field 

population (SUPPLEMENTARY TABLE 8 and SUPPLEMENTARY TABLE 9).  

Z-tests showed that 85.7 % (12 out of 14) of the between-individual correlation coefficients 

differed significantly between the two study populations (TABLE 14). Nine of those were larger in 

the field population compared to the laboratory population. Between-individual correlation 

coefficients between activity in the Y Maze and boldness in the Scare Test, as well as between 

boldness in the Open Field and exploration in the Novel Environment did not differ between 

laboratory and field population. However, the p value was 0.021 for the latter comparison (no 

significance after Bonferroni correction). In all cases, where we observed differences between 

correlation coefficients, the correlation was not significantly different from zero in at least one of 

the populations, except for the correlation between activity in the Open Field and in the Y Maze.  

TABLE 14 Comparison of between-individual correlations from the field and the laboratory population. The 
difference between correlation coefficients of the field and the laboratory population (effect size) are 
displayed below the diagonal. Z values are shown above the diagonal and are marked in bold when 
significant after Bonferroni correction. OF = Open Field, YM = Y Maze, NO = Novel Object, NE = Novel 
Environment, ST = Scare Test.  

 activity OF activity YM boldness OF boldness ST exploration NO exploration NE 
       

activity OF  4.41 4.24 6.03 22.09 4.99 

activity YM 0.268  3.57 0.82 41.23 3.51 

boldness OF 0.353 0.312  6.75 10.06 2.04 

boldness ST - 0.669 - 0.082 0.765  21.92 NA 

exploration NO 0.923 1.456 0.223 0.767  6.38 

exploration NE - 0.684 - 0.489 - 0.270 NA 0.392  

 

Discussion - Behavioural Syndrome in the Field Population of Harvest 

Mice 

Behavioural Syndrome in the Field Population of Harvest Mice 
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We could show for the first time that Eurasian harvest mice from a semi-natural field population 

behaved repeatably. Activity, boldness and exploration, quantified in two different behavioural 

tests each, were significantly repeatable in harvest mice of a natural genetic background. We 

observed large and positive between-individual correlation coefficients between behaviours. As 

three correlations between these behaviours were significant, we concluded that harvest mice of 

the field population expressed a fast-slow behavioural syndrome. 

Repeatability of Behaviours in Eurasian Harvest Mice 

All behaviours were significantly repeatable in harvest mice from the field population. The mean 

RA value was 0.27 (range between 0.04 and 0.52) which is within the range of the general average 

for personality traits (Bell et al. 2009). As already shown in laboratory harvest mice (Chapter 1 and 

2), the two activity variables had the highest repeatability estimates. In the meta-analysis by Bell 

et al. (2009), behavioural repeatability was higher in natural populations than in laboratory 

populations. We did not observe such a pattern in harvest mice. Repeatability estimates of same 

behaviours tested in the laboratory population ranged between 0.16 and 0.57 in juvenile harvest 

mice (Chapter 1) and between 0.22 and 0.60 in adults (Chapter 2). We acknowledge that this was 

not true for exploration in the Novel Object test, where we observed a repeatability of 0.33 in the 

laboratory population (Chapter 2), but less evidence for repeatable exploration in the field 

population (RA = 0.04, this study). Harvest mice of the field population may react more 

differentiated and therefore less repeatably towards the different novel objects we used during 

the distinct trials. Nevertheless, we conclude that Eurasian harvest mice with a wild population 

background and kept under semi-natural conditions show equal repeatability of behaviours, as 

laboratory animals. Activity, boldness and exploration thus seem to fulfil an essential assumption 

of a behavioural syndrome in Eurasian harvest mice (in wild and captive populations).  

Spatial orientation is assumed to be a very important trait for harvest mice as they live in a 

complex three-dimensional habitat. We tested spatial recognition in a Y Maze. Before, we 

identified significant repeatability of spatial recognition in adult harvest mice of the laboratory 

population (RA = 0.20 ± 0.10, Chapter 2), but not in juveniles (Chapter 1). Harvest mice of the field 

population did also not perform repeatably in the Y Maze. Laboratory environments are more 

stable than natural conditions (Archard and Braithwaite 2010). Thus, constant spatial recognition 

might be favoured in captive populations but not in wild populations. This might be the case 

because natural environments are too unstable, so that flexible spatial orientation skills are 

probably more adaptive for wild harvest mice than in laboratory populations. This is because in 

such environments orientation based on changing visual cues is not advantageous. Harvest mice 
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may instead use olfactory cues for orientation as they might be more reliable. Another explanation 

for our finding could be the age of the animals from the field population. We could not identify 

the exact age of the individuals in the field population, but as we tested unmarked animals when 

they were caught the first time in the enclosure, the average age of the mice tested may be 

younger compared to the average individual from the laboratory population. We previously found 

that among laboratory animals, young individuals (age = 35 - 53 days) did not show repeatable 

spatial recognition, while adult mice (age = 81 - 181 days) did behave repeatably in the Y Maze 

(Chapter 1). If we tested mainly young mice in the field, this may explain the lack of repeatability 

in this behaviour. 

Behavioural Differences between the Laboratory and the Field Population 

Our hypotheses that individuals from the field are more active, more explorative, but shyer than 

the laboratory individuals were partly confirmed. Harvest mice of the field population were more 

active in the Y Maze arena compared to laboratory animals. But this difference was not found in 

the Open Field. In contrast to our expectations, animal of the laboratory population were more 

explorative in the Novel Environment than mice of the field population. However, this was not the 

case in the Novel Object test. We observed higher levels of spatial recognition in the field 

population than in the laboratory population of harvest mice. Field animals spent on average more 

time in the unknown arm of the Y Maze than laboratory individuals which supports the hypothesis 

that wild populations express better (but not constant) cognitive abilities than captive ones (Brust 

and Guenther 2015). All other behaviours did not differ between laboratory and field animals. 

Compared to the standard laboratory housing of rodents, we provide the harvest mice with a 

more natural habitat through environmental enrichment, to facilitate physical activity, explorative 

behaviour, and natural climbing behaviour. The same applied to the captive populations where 

we received the founder individuals from. This may have contributed to the maintenance of a 

natural behavioural expression even after many generations in captivity.  

However, we did observe differences in the variance of behavioural expression between 

laboratory animals and the field population. Interestingly, harvest mice from the laboratory 

showed less variance in spatial recognition in the Y Maze and exploration in the Novel 

Environment, than mice from the field population. Those were the two behavioural test, which 

mostly involved spatial orientation skills. Thus, as mentioned before, flexible and more variable 

spatial orientation skills may be more adaptive for field harvest mice than for laboratory animals. 

In contrast, activity in the Open Field and exploration in the Novel Object test showed more 

variance in the laboratory than in the field population.  
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Correlations between Behaviours in Eurasian Harvest Mice 

We identified strong positive relationships between behaviours in the field population, but only 

three between-individual correlations were statistically significant. Standard errors were relatively 

large for most correlations, which may be due to the limited sample size. In a previous study we 

also observed strong positive correlations between behaviours in adult harvest mice of the 

laboratory population (Chapter 2), and these results were confirmed by the analyses of the 

enlarged laboratory data set in this study. We had more observations from the laboratory than 

from the field (100 - 315 per trait, and 69 - 209 per trait, respectively). The larger sample size might 

be the reason for the fact that we observed more significant between-individual correlations in 

the laboratory population. Small sample sizes can lead to large standard errors and may result in 

unrepresentative conclusions. They may also cause some of the commonly observed differences 

between laboratory and wild population of the same species. In a meta-analysis, the mean effect 

size of phenotypic correlations between personality traits was 0.198 which was statistically 

different from zero (Garamszegi et al. 2012). Applying a power analysis, Garamszegi et al. (2012) 

estimated that at least 198 individuals were required to statistically confirm phenotypic 

relationships of such an effect size (Garamszegi et al. 2012). However, the mean sample size in 

the studies used in their meta-analysis was only 45 individuals (Garamszegi et al. 2012), and only 

one of the studies had access to the supposedly required sample sizes: The work by Cote et al. 

(2010) on mosquitofish (Gambusia affinis). Thus, erroneous conclusions about the lack of 

phenotypic correlations may be widespread. Still, in some cases, strong significant correlations 

between behaviours were observed despite low sample sizes (e.g., N = 21 in wild cavies, Guenther 

et al. 2014a; Brust and Guenther 2015). In our analysis of the field population, we calculated all 

correlations with data from less than 200 individuals, and we assume that, with larger sample 

sizes, some of the observed large correlation coefficients would indeed prove to be significantly 

different from zero. 

As we used the same experimental set-ups for the field and the laboratory population, the results 

can be directly compared. We observed that the correlation coefficients differed in 85.7 % 

between the laboratory and the field population. However, these comparisons might be 

influenced by the different sample sizes. Nine correlation coefficients were larger in the field 

population compared to the laboratory population. Three correlation coefficients were larger in 

the laboratory population compared to the field population. This was in line with our expectations, 

as we assumed stronger relationships between behaviours due to stronger selection pressure in 
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the field population. We observed differences in the sign of the between-individual correlations, 

but none of the three negative correlation coefficients was significantly smaller than zero. As all 

other between-individual correlations indicated the same direction of relationship between 

behaviours in laboratory and in field harvest mice, we conclude that Eurasian harvest mice in 

general exhibit a fast-slow behavioural syndrome (Titulaer et al. 2012). 

Recently, Fischer et al. (2016) showed that behavioural syndromes can be plastic. Correlations 

between behaviours differed among populations of Trinidadian guppies (Poecilia reticulate) 

depending on their genetic background and rearing environment (Fischer et al. 2016). In spiders 

differences in the emergence of phenotypic correlations were observed: For example, between 

restricted compared to environmental enriched rearing conditions (Bengston et al. 2014), or 

between field-rear compared to laboratory reared (Sweeney et al. 2013). In contrast, the different 

environmental conditions in our two study populations did not seem to influence the occurrence 

of the behavioural syndrome in harvest mice. The housing conditions of our laboratory population 

might reflect near natural conditions and thus helped to maintain a natural behavioural 

expression. However, selection is relaxed in the laboratory, thus our finding of strong correlations 

in the laboratory population is also a sign for the fact that the observed behavioural syndrome 

may not be actively maintained by natural selection in harvest mice. The syndrome might rather 

be fixed through proximate mechanisms (e.g., genetic correlations or physiological trade-offs). 

There is also evidence from other species that behavioural correlations can be stable over time 

and under different selective environments: In rock pool prawns (Palaemon elegans), for example, 

it was shown that the behavioural syndrome structure was consistent over a period of 2 weeks 

(Chapman et al. 2013). This was also observed by Gyuris et al. (2012) for a longer time span, as 

the correlation structure among personality traits in firebugs (Pyrrhocoris apterus) remained 

constant across ontogeny. In mustard leaf beetles (Phaedon cochleariae), it was shown that the 

clustering of behaviours was stable throughout the entire lifetime (Müller and Müller 2015). In 

damselflies (Lestes congener), it was found that “larval behaviour in one environment may carry 

over metamorphosis into adult behaviour in a completely different environment” (Brodin 2009, 

page 35). Hermit crabs (Pagurus bernhardus) exhibited a consistent behavioural syndrome 

structure between two different ecological conditions (low versus high predation risk situations, 

Mowles et al. 2012). Stable behavioural correlations were also found in fish species (e.g., wild 

brown trout, Salmo trutta, Adriaenssens and Johnsson 2013; and sheepshead swordtails, 

Xiphophorus birchmanni, Boulton et al. 2014). And in the fast-slow selections lines of wild great 

tits (Parus major) and laboratory house mice (Mus musculus), behavioural correlations were still 

apparent after many generations (Koolhaas et al. 1999; Carere et al. 2005). 
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Given the inconsistent results among studies of behavioural syndromes, with stable behavioural 

correlations on the one hand, but flexible behavioural syndrome structures on the other hand (see 

above), it seems still had to predict why and when traits are expected to correlate and what 

mechanisms are maintaining the behavioural syndromes (Favati et al. 2016). In our study species, 

a fixed behavioural syndrome, constrained by a proximate basis, may lead to maladaptive 

behaviour in some environments. In competitive environments (e.g., high population density) 

more active and explorative individuals may have advantages if they are also bold. However, this 

behavioural type may be less advantageous under high predation risks, because bolder individuals 

may face higher predation than shy individuals. In such a situation, more active mice should also 

be shy to express more caution towards their predators. However, a flexible behavioural 

syndrome (i.e. different relationships between behaviours in different environments) may be 

prevented by the constraints maintaining it, even if flexible relationships would be advantageous. 

This might be because evolution cannot attain the maintenance: For instance, a more flexible 

behavioural syndrome might require a change in the proximate mechanism underlying the 

behavioural correlations. However, that change is not likely to emerge, because the evolution of 

a more flexible behavioural syndrome might be “prevented by crossing of an adaptive valley of 

the fitness landscape” (Carere and Maestripieri 2013, page 263). To further understand the 

architecture of behavioural correlations in harvest mice, more investigations are needed to reveal 

whether the observed behavioural syndrome is adaptive or not in different selective 

environments, and what kind of proximate mechanisms maintain those relationships between 

behaviours. 

Conclusion - Animal Personality in Eurasian Harvest Mice 

Animal Personality in Eurasian Harvest Mice 

In sum, we conclude that Eurasian harvest mice showed constant between-individual differences 

in behaviours, i.e. animal personality. We identified behavioural correlations in the laboratory and 

in a field population of harvest mice along a fast-slow continuum. As different selective 

environments (laboratory versus field) did not result in different behavioural syndromes in the 

two study populations, our data suggest that the fast-slow behavioural syndrome in Eurasian 

harvest mice seems to be evolutionarily stable and fixed by underlying proximate mechanisms 

(constraint hypothesis). We suggest further investigations of those mechanisms underlying the 

behavioural syndrome, using for example pedigree information to analyse whether similar genetic 

correlations form the behavioural syndromes found in the laboratory and in the field population 

of harvest mice.  
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Discussion 

Our results provide strong evidence for the existence of constant between-individual differences 

in behavioural traits in Eurasian harvest mice (Micromys minutus).  

As harvest mice have not been subjects in animal personality research yet, this was the first time 

that constant between-individual behavioural differences were identified in this species. 

Moreover, this thesis provides initial evidence for constant between-individual differences in 

spatial cognitive traits, and for a relationship between personality and spatial cognition in Eurasian 

harvest mice.  

Behavioural Repeatability and Consistency in Eurasian Harvest Mice 

Activity, boldness and exploration were repeatable in juvenile and adult harvest mice of the 

laboratory population (Chapter 1 and 2). Furthermore, those behaviours were expressed 

consistently independent of age, maturation and individual sexual experience (Chapter 1). Harvest 

mice of the field population behaved also repeatably (Chapter 3).  

Further, we tested spatial recognition based on object cues in a Y Maze. This trait was repeatable 

in adult mice, but not in juveniles, and it showed little evidence for consistency across life history 

phases (Chapter 1). Spatial recognition was repeatable in adult harvest mice of the laboratory 

population (Chapter 1 and 3), but not in individuals of the field population (Chapter 3). Spatial 

learning ability and decision speed were additional spatial cognitive traits showing repeatability in 

adult harvest mice, but we found no repeatability of decision accuracy (Chapter 2).  

Behavioural Repeatability in Eurasian Harvest Mice  

Behavioural repeatability estimates in the laboratory population ranged between 0.16 and 0.57 in 

juvenile harvest mice (Chapter 1) and between 0.18 and 0.69 in adults (Chapter 1 and 2). In the 

field population the behavioural repeatability ranged between 0.04 and 0.52 (Chapter 3). 

Repeatability estimates (mean RA value = 0.35) thus were within the range of usually observed 

repeatabilities of personality traits (Bell et al. 2009; Garamszegi et al. 2013).  

In a meta-analysis by Bell et al. (2009), behavioural repeatability was higher in wild populations 

than in laboratory populations. Such a pattern was not observed in harvest mice (despite for 

exploration in the Novel Object test). As behavioural repeatabilities were similar in different 
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selective environments (laboratory and field population), it is likely that proximate constraints 

rather than selection maintain personality traits in harvest mice (see below). 

Although the meta-analysis by Bell et al. (2009) could not detect any differences in the 

repeatability of behaviours between juveniles and adults, a recent review by Brommer and Class 

(2015) reported evidence for lower behavioural repeatability in juveniles. We did not observe this 

differences between juveniles and adults. Eurasian harvest mice already expressed repeatable 

behaviours as juveniles (Chapter 1). Likewise, behavioural repeatability did not seem to change 

across life history stages, which further suggests that behavioural types in this species may be a 

stable phenomenon which is maintained by proximate mechanisms.  

Repeatability of spatial cognitive traits ranged between 0.13 and 0.26. However, decision speed 

in the Spatial Orientation Task was not repeatable (Chapter 2). Another published study on 

repeatability of decision speed and accuracy was conducted on zebrafish (Danio rerio), where 

Wang et al. (2015) showed that both traits were significantly repeatable in a spatial colour 

discrimination task. However, there is currently only scarce evidence for repeatability of spatial 

recognition and general learning ability in animals (Griffin et al. 2015).  

We found that spatial recognition in the Y Maze was repeatable in adult harvest mice of the 

laboratory population, but not in individuals of the field population (Chapter 3). This might be due 

to different selective processes in the two environments rather than constraints (in contrast to 

personality traits). However, more data is needed to investigate if constant between-individual 

differences in spatial cognitive traits of harvest mice are maintained by selection.  

Behavioural Consistency in Eurasian Harvest Mice 

Behavioural consistency estimates in the laboratory population ranged between 0.18 and 0.84 in 

harvest mice (Chapter 1). Activity, boldness and exploration were consistent over maturation, and 

when mice were tested before and after their first sexual experience. This shows that even major 

changes between life-history stages (e.g., maturation or first sexual contact) are not necessarily 

connected to inconsistent individual behaviours. During maturation and the first sexual contact, 

the relative magnitude of attained reproductive success and expected future reproductive success 

changes depending on individual experiences. The dynamics of this trade-off may result in a 

change of selection pressures on animal personality traits (Bell and Stamps 2004). However, these 

events did not seem to have an influence on the consistency of the studied personality traits in 

harvest mice. 



Discussion - Behavioural and Cognitive Syndrome in Eurasian Harvest Mice 
Behavioural Syndrome in Eurasian Harvest Mice 

 
109 

We tested adult mice at the age of three and six month, which probably represents the entire 

mean life span of this species in the wild (Kubik 1952; Piechocki 2001). Hence, Eurasian harvest 

mice - at least under laboratory conditions - seem to behave consistently throughout their entire 

life span, and the short-term consistency of these behaviours was independent of maturational 

effects and sexual experience. Our results are in line with previous findings in animal personality 

research: Exploration was a consistent trait over a significant part of an individual’s lifetime in 

great tits (Parus major, Dingemanse et al. 2002) and zebra finches (Taeniopygia guttata, David et 

al. 2012). In small rodents, the three commonly tested personality traits boldness, exploration and 

activity were repeatable over short periods of time (e.g., Koolhaas et al. 1999; Boon et al. 2007; 

Lantová et al. 2011; Petelle et al. 2013). However, only activity seemed to be consistent across life 

history stages in that group (e.g., Kanda et al. 2012; Herde and Eccard 2013, but see Guenther et 

al. 2014).  

To date, no comprehensive theory has been developed to predict which factors would favour or 

disfavour consistent behaviour in specific species. This is in part due to the fact that consistent 

behaviours can arise from two sources: Natural selection for stable behavioural types, or 

physiological constraints that prevent flexible behaviour. More investigations (e.g., consistency 

analyses in different selective environments) are needed to reveal which factors maintain 

behavioural consistency in harvest mice.  

Behavioural and Cognitive Syndrome in Eurasian Harvest Mice 

We found that harvest mice of the laboratory population expressed a behavioural syndrome along 

a fast-slow continuum (Chapter 2 and 3), and those behavioural relationships were also found in 

the field population (Chapter 3).  

Our results further indicated weak evidence for a cognitive syndrome as fast behavioural types 

learned the spatial orientation task faster than slow types, and shyer harvest mice made decisions 

quicker than bolder mice (Chapter 2). 

Behavioural Syndrome in Eurasian Harvest Mice  

Based on our results from the laboratory and the field population, we conclude that Eurasian 

harvest mice in general exhibit a behavioural syndrome along a fast-slow continuum (Titulaer et 

al. 2012). Significant correlation coefficients ranged between 0.41 and 0.88 (Chapter 2 and 3). 

Such a fast-slow syndrome is in line with a large body of personality literature in rodents: Starting 

with the observations on laboratory house mice (Koolhaas et al. 1999), further studies reported 
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fast-slow-behavioural syndromes in recent years, for instance, in Belding’s ground squirrels 

(Urocitellus beldingi, Dosmann et al. 2015), and in cavies (Cavia aperea, Guenther et al. 2014a). 

However, studies comparing laboratory and field populations of the same species, and using the 

same experimental set-up are still scarce. But those comparisons can provide more insights into 

whether or not laboratory populations, and behavioural syndromes observed in those, represent 

what is actually found in natural populations in the field. In harvest mice, nine of twelve 

correlation coefficients were larger in the field population compared to the laboratory population. 

Only three correlation coefficients were larger in the laboratory population than in the field 

population. This corresponded to our expectations, as we assumed stronger relationships 

between behaviours due to stronger selection pressure in the field population.  

As selection is relaxed in the laboratory, our finding of strong correlations in the laboratory 

population of harvest mice is a sign for the fact that the observed behavioural syndrome may not 

be actively maintained by natural selection in harvest mice. The behavioural syndrome in harvest 

mice might rather be evolutionarily stable and fixed by underlying proximate mechanisms 

(constraint hypothesis). However, whether behavioural syndromes are based on proximate 

constraints or maintained by selection still remains not predictable for different animal species. 

Studies found evidence for both mechanisms in different taxa (Yuen et al. 2016). We suggest 

further investigations of the mechanisms underlying the behavioural syndrome in harvest mice 

(e.g., cognitive or genetic constraints, see below). A fixed behavioural syndrome, constrained by 

a proximate basis, may lead to maladaptive behaviour of behavioural types in some environments. 

In competitive environments (e.g., high population density) more active and explorative harvest 

mice may have advantages if they are also bold. But those individuals may be less advantaged 

under high predation risk, because bolder mice may face higher predation than shy animals. In 

such a situation, more active individuals should also be shy to express more caution towards their 

predators. But regardless of the mechanism behind the behavioural syndrome in harvest mice, 

selection for behavioural types will only result in the maintenance of these types in the population 

if the correlations that underlie the behavioural syndrome are in fact genetic relationships. This 

has not been investigated in harvest mice yet, but will give more insights to the understanding of 

behavioural syndromes in this species (see below). 

Cognitive Syndrome in Eurasian Harvest Mice  

We found initial indications for a relationship between spatial learning ability and personality 

types in harvest mice. More active individuals reached the learning criterion in the Spatial 
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Orientation Task earlier than less active animals (rB = 0.79 ± 0.45). Further, a non-significant 

tendency suggested a positive relationship between boldness in the Scare Test and spatial learning 

ability. Finally, the between-individual correlation coefficient between spatial learning ability and 

boldness in the Open Field test showed a large correlation coefficient, with large standard error. 

The speed-accuracy trade-off was not apparent within, nor between individuals. Nevertheless, we 

found weak evidence for a cognitive syndrome as shyer harvest mice made decisions faster than 

bolder mice (rB = -0.41 ± 0.18). Thus, our data partly support the hypothesis that behavioural types 

correlate with individual cognitive ability (Sih and Del Giudice 2012), and our results are to some 

extent in line with findings in other animal species (e.g., in starlings, Sturnus vulgaris, Boogert et 

al. 2006; and in cavies, Cavia aperea, Guenther et al. 2014a).  

Spatial cognition is assumed to be a possible key target of evolutionary cognition studies, as the 

hippocampus provides “a credible neurobiological target for selection” (Morand‐Ferron et al. 

2015, page 370). Our established spatial learning test was suitable to cover between-individual 

variation in spatial learning ability in harvest mice However, if fast behavioural types would in 

general outperform slow harvest mice in spatial cognitive tasks, we should wonder why both types 

still persist in populations. Although slow learning harvest mice may not have any fitness 

advantages, shy and less active harvest mice may indeed be the more adapted behavioural type 

during some parts of the year (e.g., in low population density, see above). Thus, the observed 

relationship may cause non-independent trait evolution and maintain slow learners in the 

population. However, we have to acknowledge that we only used one spatial learning task. To test 

if harvest mice really show constant cognitive styles in several situations requires more tasks. Fast 

cognitive spatial learning styles should solve various tasks equally well (cf. Sih and Del Giudice 

2012). This was shown, for example, in Carib grackles (Quiscalus lugubris) and in black-capped 

chickadees (Poecile atricapillus). In these species, birds performed consistently well over two 

different tasks (Ducatez et al. 2015; Guillette et al. 2015). To investigate such relationships 

between different tasks, we recommend to establish further spatial learning tests for harvest mice 

(see below). 

Evolution of Constant Between-Individual Differences 

Evolution of Constant Between-Individual Differences in Eurasian Harvest Mice 

Our findings showed for the first time that behaviours in Eurasian harvest mice met an essential 

assumption in animal personality research - repeatable and consistent between-individual 

differences (Réale et al. 2007). However, as this is the first study on constant between-individual 
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behavioural differences in this species, more investigations are warranted to fully understand 

which factors maintain the repeatability and consistency of behaviours. It could be that in harvest 

mice, repeatably and consistently behaving animals are favoured by selection. Alternatively, or in 

addition, physiological constraints may maintain consistent behaviours across the short lifespan. 

Based on our data, we currently would rather assume that proximate constraints maintain the 

constant between-individual differences in harvest mice, because of the similar observed 

repeatability values in the laboratory and field population. 

We identified behavioural correlations in the laboratory and the field population of harvest mice 

along a fast-slow continuum (see above). As different selective environments (laboratory versus 

field) did not result in different behavioural syndromes in the two study populations, our data 

suggest that the fast-slow behavioural syndrome in Eurasian harvest mice seems to be 

evolutionarily stable, fixed by underlying proximate mechanisms (constraint hypothesis). This 

further would suggest that the behavioural syndrome is not easily to decouple by natural selection 

in harvest mice. Fischer et al. (2016) showed that behavioural syndromes can be plastic, as 

correlations between behaviours differed among populations of Trinidadian guppies (Poecilia 

reticulate) depending on their genetic background and rearing environment. On the other hand, 

there were several stable behavioural syndrome structures observed (e.g., in firebugs, Pyrrhocoris 

apterus, Gyuris et al. 2012; or in mustard leaf beetles, Phaedon cochleariae, Müller and Müller 

2015). Whether behavioural syndromes are based on proximate constraints or maintained by 

selection still remains not predictable for different animal species. We suggest further 

investigations of those mechanisms underlying the behavioural syndrome, using for example 

pedigree information to analyse whether similar genetic correlations form the behavioural 

syndromes found in the laboratory and in the field population of harvest mice.  

Analyses of selection on personality or cognitive traits require large sample sizes. Dingemanse and 

Réale (2005) suggested that observations of at least 100 individuals are necessary to sufficient 

analyse selection and trustfully exclude Type 2 errors. We had such large sample sizes, however, 

personality and spatial cognitive traits now need to be correlated to fitness proxies to investigate 

whether selection favours specific behavioural types or cognitive styles in the semi-natural 

enclosure. As I took tissue samples of all individuals of the field population, parentage analysis 

could reveal the pedigree structure and the number of offspring each individual sired in the field 

population (see below, Future Directions, page 115). Harvest mice were regularly life-trapped in 

the enclosure, this data may be a good measure of individual life span, providing another fitness 

proxy. Lifetime reproductive success is assumed to be the best estimate for fitness in relation to 
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cognitive abilities, as cost and benefits of cognitive traits may differ between life history phases 

(Mery and Kawecki 2003). Thus, our data may also reveal if spatial cognitive trait variation is 

correlated to fitness in harvest mice. Selection on cognitive traits was so far only estimated in a 

wild population of great tits (Parus major, Cole et al. 2012; Morand‐Ferron et al. 2015). More 

investigation on fitness differences between behavioural types and cognitive styles would hence 

provide a deeper understanding of the evolutionary mechanisms that maintain behavioural and 

cognitive syndromes in animals.  

For this kind of analysis, genetic data would also be necessary. Only if behavioural or (spatial) 

cognitive traits have a genetic component, we would expect a response to selection on that trait 

and hence, evolution of constant between-individual differences in those traits. Further, if 

selection acts on correlations between different constant individual behaviours and/or cognitive 

traits, and if these relationships are genetically based, we would expect a response to selection 

on trait correlations. Thus, understanding the evolution of correlated traits (i.e. behavioural types 

and cognitive styles) requires to estimate the underlying genetic correlations and to reveal the 

underlying genetic architecture (Karlsson Green et al. 2016). Significant genetic correlations 

between behaviours were, for instance, observed in great tits (Parus major, van Oers et al. 2004a; 

in three-spined sticklebacks, Gasterosteus aculeatus, Bell 2005; and in yellow-bellied marmots, 

Marmota flaviventris, Petelle et al. 2015). The potential presence of genetic correlations within a 

cognitive syndrome has not been investigated yet, but would deepen our understanding about 

the evolutionary mechanisms that maintain relationships between personality and cognitive 

traits.  

 



Discussion - Evolution of Constant Between-Individual Differences 
Evolution of Constant Between-Individual Differences in Eurasian Harvest Mice 

 
114 

  



Conclusion and Outlook - Constant Between-Individual Differences in Eurasian Harvest Mice 
Future Directions 

 
115 

Conclusion and Outlook 

This thesis provides strong evidence for the existence of constant between-individual differences 

in behaviours and spatial cognitive traits, and some initial evidence for a relationship between 

personality and spatial cognitive traits in Eurasian harvest mice (Micromys minutus). 

We were able to establish the following behavioural test settings for our study species: The Open 

Field test, the Novel Object test, the Scare Test, the Novel Environment test, the Y Maze, and the 

Spatial Orientation Task. These tests were used to measure activity, boldness, exploration, spatial 

recognition, spatial learning ability, decision speed, and decision accuracy. The tests fulfil the two 

prerequisites to investigate animal personality in harvest mice: First, they captured sufficient 

behavioural variance (within-individual variance and between-individual variance) in test 

performance, which was necessary for the estimation of repeatability and consistency. 

Importantly, this variance was also present during second, third and fourth trials, so that repeated 

observations are possible using these tests. Secondly, the tests were relatively fast so that we 

were able achieve large sample sizes (N total = 1860 behavioural observations in 207 individuals) 

and therefore sufficient statistical power for our analyses. This was also possible for the spatial 

cognitive tasks. 

Constant Between-Individual Differences in Eurasian Harvest Mice 

Using those behavioural and spatial cognitive tests, we found that Eurasian harvest mice behaved 

constantly and that personality traits formed a behavioural syndrome in the laboratory and the 

field population. We also showed that there might be a relationship between personality and 

spatial cognitive traits in harvest mice forming a cognitive syndrome. Nevertheless, several open 

questions remain and further investigations will contribute to a deeper understanding in how 

animal personality and constant individual spatial cognitive traits have evolved and are 

maintained in harvest mice. 

Future Directions 

Future investigation should, for instance, address the following questions: (I) Are personality and 

spatial cognitive traits heritable in harvest mice? (II) Are the behavioural syndromes found in the 

laboratory and the field population only based on phenotypic relationships, or are they based on 

genetic correlations? (III) How stable are the behavioural and cognitive syndromes over ontogeny 

in harvest mice? (IV) Do males and females express the same behavioural and cognitive syndrome 
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structures in harvest mice? (V) Do harvest mice exhibit spatial cognitive styles (in laboratory and 

field populations)? (VI) What mechanisms maintain constant between-individual differences of 

behaviours and spatial cognitive traits, as well as the relationships between them in harvest mice? 

If behavioural or (spatial) cognitive traits have a heritable component, we could expect a response 

to selection on those traits. To investigate the heritability of behavioural and (spatial) cognitive 

traits in harvest mice would require pedigree information of the tested individuals. This data is 

actually already available: As the laboratory population of harvest mice is bred under controlled 

conditions, the whole pedigree structure of the laboratory population is known. First preliminary 

results may indicate evidence for genetic variance in some of the tested traits (data not shown). 

Further, I took tissue sample of all animals from the field population (data not shown). A parentage 

analysis will reveal the pedigree structure of the field population, and this can be used for the 

heritability analysis of personality and spatial cognitive traits in harvest mice.  

Selection for behavioural syndromes will only result in the maintenance of these behavioural types 

in the population, if the between-individual correlations that underlie the behavioural syndromes 

are in fact genetic relationships. Thus, using the pedigree information will further reveal whether 

or not behavioural and cognitive syndromes are genetically based in harvest mice.  

So far, we do not know which mechanisms actually maintain behavioural and cognitive syndromes 

in harvest mice. Further insides could be given by analyses about the stability of the syndromes 

over ontogeny. In other rodents, behavioural correlations appeared to be unstable over ontogeny 

(e.g., Kanda et al. 2012; Guenther et al. 2014b). To investigate and compare behavioural and 

cognitive syndromes in juveniles and adults, may reveal how developmental changes influence 

those syndromes in harvest mice. This would lead to more knowledge about the maintenance and 

evolution of behavioural and cognitive syndromes in this species. 

Further, sexual selection may play a role in the maintenance of animal personality and behavioural 

syndromes. Different selection pressures and life history trajectories can lead to behavioural 

divergence between males and females in many animal species (Michelangeli et al. 2016). 

However, both sexes are rarely analysed within on study, ignoring the very strong possibility that 

key components of personality may vary between males and females (Michelangeli et al. 2016). 

Thus, investigating sex differences in the behavioural (and cognitive) syndrome structures might 

be another important step towards a better understanding of the maintenance of constant 

between-individual differences in harvest mice.  
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Measuring individual variation in cognitive traits appears more difficult than assumed because 

cognitive trait variability should be carefully interpreted (Rowe and Healy 2014). To confirm the 

existence of a cognitive syndrome in harvest mice will require further spatial cognitive tests which 

also capture the within-individual and the between-individual variances. This is, because within 

the concept of a cognitive syndrome, animals should consistently show the same (spatial) 

cognitive style, and individuals should solve various tasks equally well (Sih and Del Giudice 2012). 

If harvest mice of the field population also show within-individual and between-individual variance 

in spatial learning ability is currently not known. Own unpublished observations indicate that 

harvest mice of the field population show similar trait variability but solve the Spatial Orientation 

Task on average faster than mice of the laboratory population (data not shown). We recommend 

further investigations of cognitive syndromes in harvest mice, especially in populations from a 

natural genetic background, to investigate whether the observed cognitive syndrome of the 

laboratory population reflects what can also be found in natural populations. 

Finally, to better understand what factors influence constant between-individual differences of 

behaviours and spatial cognitive traits, as well as the relationships between them in harvest mice, 

more populations should be compared. In comparison to the predator mediated behavioural 

syndromes in sticklebacks (syndrome structure was only found under high predation, Bell 2005), 

behavioural repeatability and consistency, as well as behavioural and cognitive syndromes might 

be influenced by predation risk, or by populations density (and thus intraspecific competition) in 

harvest mice. The influences of those environmental factors on constant between-individual 

differences can be investigated in experimentally manipulated captive populations under semi-

natural conditions. Alternatively, this question can be tackled by a study across several wild 

populations that inhabit areas with varying vegetation structure, or varying predation pressure.  
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Appendix 

SUPPLEMENTARY TABLE 1 Final LMMs with significant confounding factors on personality and cognitive traits in harvest mice. Sample sizes (N) are given as 

observations/individuals. Generation was fitted as a quadratic function. SE = standard error. 

 

personality/cognitive trait behavioural test N confounding factors estimate ± SE p value 

      

activity 
Open Field 186/96 

generation 

generation² 

- 0.848±0.247 

+0.118±0.032 

< 0.001 

< 0.001 

Y Maze 184/96 -   

      

boldness 

Scare Test 94/56 -   

Open Field 186/96 
trial number 

observer 

+0.327±0.117 

- 0.377±0.149 

0.006 

0.013 

      

exploration 
Novel Object 131/69 housing condition +0.544±0.182 0.004 

Novel Environment 119/60 trial number +0.584±0.148 < 0.001 

      

spatial recognition Y Maze 184/96 -   

      

spatial learning ability Spatial Orientation Task 110/57 trial number - 0.378±0.175 0.035 

      

decision accuracy Spatial Orientation Task 102/56 -   

      

decision speed Spatial Orientation Task 1156/56 
observer 

run number 

- 0.117±0.015 

+0.025±0.005 

< 0.001 

< 0.001 
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We observed that the trial number had a significant effect on three variables. Boldness increased in the second trial of the Open Field, and exploration also 

increased in the second trial of the Novel Environment as mice visited four tubes faster than in the first trial. These effects were likely caused by a habituation 

of the mice to the test arenas. Spatial learning ability decreased in the second trial (mice reached the learning criterion on average later than during the first 

trial). Here, mice might have been less motivated to reach the target box during the second trial, as they recognized the general test set-up. With increasing 

run numbers during the Spatial Orientation Task, mice decided faster, which may indicate learning and memory of the target box position. The observer had 

a significant effect on boldness in the Open Field and on decision speed in the Spatial Orientation Task, which could be due to differences in handling of the 

animals. Harvest mice housed in pairs were further more explorative in the Novel Object test. We discussed confounding factors in more detail in Chapter 1.  

  



Andrea C. Schuster 
Individual Differences in Behaviour and Cognition of Eurasian Harvest Mice 

 
XV 

SUPPLEMENTARY TABLE 2 Between-individual correlations among personality and cognitive traits (spatial recognition and spatial learning ability) in harvest mice, calculated 

from a multivariate mixed model. Between-individual correlation coefficients (± standard errors) are shown above, and p values below the diagonal. Significant 

correlations are marked in bold, tendencies are printed in italics. OF = Open Field, YM = Y Maze, NO = Novel Object, NE = Novel Environment, ST = Scare Test. 

 

  activity OF activity YM boldness OF boldness ST exploration NO exploration NE spatial recognition learning ability 

         

activity OF  0.514±0.149 -0.019±0.212 0.884±0.400  0.028±0.319 0.371±0.257  0.024±0.313  0.793±0.447 

activity YM 0.000   0.175±0.182 0.590±0.353 -0.230±0.280 0.148±0.227 -0.066±0.279 -0.216±0.326 

boldness OF 0.465 0.168  0.201±0.345  0.437±0.325 0.453±0.263 -0.102±0.322  0.508±0.407 

boldness ST 0.014 0.047 0.280  -0.209±0.619 1.106±0.689  0.208±0.504  1.696±1.138 

exploration NO 0.465 0.206 0.089 0.368  0.359±0.335 -0.183±0.526  0.265±0.475 

exploration NE 0.074 0.257 0.042 0.054 0.142   0.280±0.394 -0.030±0.412 

spatial recognition 0.470 0.407 0.376 0.340 0.364 0.239   0.562±0.594 

learning ability 0.038 0.254 0.106 0.068 0.288 0.471 0.172  
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SUPPLEMENTARY TABLE 3 Within-individual correlations between personality and cognitive traits (spatial recognition and spatial learning ability) in harvest mice, calculated 

from a multivariate mixed model. Within-individual correlation coefficients (± standard errors) are shown above, and p values below the diagonal. The significant 

correlation is marked in bold. NA: within-individual correlation not modelled due to missing data. OF = Open Field, YM = Y Maze, NO = Novel Object, NE = Novel 

Environment, ST = Scare Test. 

 

  activity OF activity YM boldness OF boldness ST exploration NO exploration NE spatial recognition learning ability 

         

activity OF  0.264±0.107 -0.007±0.106 NA 0.084±0.126 NA  0.092±0.109 NA 

activity YM 0.007  -0.045±0.116 NA 0.073±0.125 NA  0.041±0.106 NA 

boldness OF 0.474 0.348  NA 0.059±0.125 NA -0.086±0.111 NA 

boldness ST NA NA NA 
 

NA NA NA NA 

exploration NO 0.251 0.278 0.319 NA  NA  0.094±0.119 NA 

exploration NE NA NA NA NA NA 
 

NA NA 

spatial recognition 0.198 0.348 0.218 NA 0.215 NA  NA 

learning ability NA NA NA NA NA NA NA  
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SUPPLEMENTARY TABLE 4 Test for a cognitive syndrome caused by a speed-accuracy trade-off in harvest mice: Between-individual correlations among personality traits and 

decision styles (decision speed and accuracy) calculated from a multivariate mixed model. Between-individual correlation coefficients (± standard errors) are shown 

above, and p values below the diagonal. Significant correlations are marked in bold, tendencies are printed in italics. OF = Open Field, YM = Y Maze, NO = Novel Object, 

NE = Novel Environment, ST = Scare Test 

 

  activity OF activity YM boldness OF boldness ST exploration NO exploration NE decision speed decision accuracy 

         

activity OF  0.546±0.145 0.016±0.212 0.877±0.351  0.023±0.316 0.408±0.254  0.179±0.190  0.606±0.672 

activity YM 0.000  0.177±0.182 0.593±0.318 -0.220±0.278 0.140±0.227  0.164±0.173  1.136±0.999 

boldness OF 0.470 0.166  0.159±0.325  0.412±0.324 0.469±0.262 -0.412±0.179  0.166±0.517 

boldness ST 0.006 0.031 0.312  -0.402±0.592 0.928±0.593 -0.393±0.385  0.190±1.167 

exploration NO 0.472 0.214 0.102 0.248  0.342±0.333  0.093±0.243 -0.357±0.680 

exploration NE 0.054 0.270 0.037 0.059 0.152  -0.134±0.222 -0.079±0.557 

decision speed 0.173 0.172 0.011 0.154 0.351 0.274   0.207±0.425 

decision accuracy 0.184 0.128 0.374 0.435 0.300 0.443 0.313  
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SUPPLEMENTARY TABLE 5 Test for a cognitive syndrome caused by a speed-accuracy trade-off in harvest mice: Within-individual correlations between personality traits and 

decision styles (decision speed and accuracy) calculated from a multivariate mixed model. Within-individual correlation coefficients (± standard errors) are shown above, 

and p values below the diagonal. The significant correlation is marked in bold. NA: within-individual correlation not modelled due to missing data. OF = Open Field, YM = 

Y Maze, NO = Novel Object, NE = Novel Environment, ST = Scare Test. 

 

  activity OF activity YM boldness OF boldness ST exploration NO exploration NE decision speed decision accuracy 

         

activity OF  0.258±0.108 -0.011±0.106 NA 0.067±0.125 NA NA NA 

activity YM 0.008  -0.041±0.116 NA 0.083±0.126 NA NA NA 

boldness OF 0.461 0.364  NA 0.061±0.125 NA NA NA 

boldness ST NA NA NA  NA NA NA NA 

exploration NO 0.296 0.255 0.313 NA  NA NA NA 

exploration NE NA NA NA NA NA  NA NA 

decision speed NA NA NA NA NA NA  NA 

decision accuracy NA NA NA NA NA NA NA  

 

  



Andrea C. Schuster 
Individual Differences in Behaviour and Cognition of Eurasian Harvest Mice 

 
XIX 

SUPPLEMENTARY TABLE 6 Final LMMs with significant confounding factors (indicated by F values and corresponding p values) on personality and cognitive traits in harvest 
mice of the field population. Significant differences between factor levels and contrasts which tended do differ are shown by the results of Tukey post-hoc tests (estimates 
± standard error, z values and p values). Sample sizes (N) are given as observations/individuals. SE = standard error. 

 

personality/cognitive trait behavioural test N confounding factors F value p value contrast estimate ± SE z value p value 

          

activity 
Open Field 208/95 trial number 5.393 0.002 

2 - 1 

3 - 2 

-0.32 ± 0.11 

0.62 ± 0.17 

-2.831 

3.645 

0.022 

0.001 

Y Maze 209/94 test time 10.889 0.001  -0.21 ± 0.06 -3.300 0.001 

          

boldness 

Scare Test 69/36 none       

Open Field 208/95 trial number 18.482 < 0.001 

2 - 1 

4 - 1 

3 - 2 

0.83 ± 0.11 

0.81 ± 0.28 

-0.54 ± 0.17 

7.230 

2.903 

-3.164 

< 0.001 

0.017 

0.007 

          

exploration 

Novel Object 192/83 

trial number 

 

year 

7.763 

 

4.928 

< 0.001 

 

0.001 

2 - 1 

3 - 2 

2014 - 2013 

2015 - 2013 

0.78 ± 0-15 

-0.44 ± 0.19 

0.66 ± 0.26 

0.82 ± 0.26 

5.181 

-2.304 

2.543 

3.138 

< 0.001 

0.089 

0.028 

0.004 

Novel Environment 85/37 trial number 5.301 0.003 
2 - 1 

4 - 1 

0.66 ± 0.20 

2.21 ± 0.91 

3.376 

2.428 

0.004 

0.060 

          

spatial recognition Y Maze 209/94 none       
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We observed that the trial number had a significant effect on four behavioural variables. Activity in the Open Field decreased from the first to the second 

observation, but increased again significantly to the third observation. Boldness increased in the second trial of the Open Field (animals spent more time in 

the middle of the arena), but decreased again to the third observation. Exploration increased in the second trial of the Novel Object test, as well as of the 

Novel Environment test, where mice visited four tubes faster than in the first trial. These effects were likely caused by a habituation of the mice to the test 

arenas and to handling situations. The year had a significant effect on exploration in the Novel Object test. Animal explored the novel objects more in 2014 

and 2015 compared to 2013. This could be due to the fact that mice tested in 2013 were wild-caught animals and individuals tested in 2014 and 2015 were 

born in the enclosure. The test time had a significant effect on activity in the Y Maze, where activity decreased later during the day. This could be due to 

different activity phases of the animals during the day. We discussed confounding factors in more detail in Chapter 1 and 2.  
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SUPPLEMENTARY TABLE 7 Final LMMs with significant confounding factors (indicated by F values and corresponding p values) on personality and cognitive traits in harvest 
mice of the laboratory population. Significant differences between factor levels and contrasts which tended do differ are shown by the results of Tukey post-hoc tests 
(estimates ± standard error, z values and p values). Sample sizes (N) are given as observations/individuals. SE = standard error. 

personality/cognitive trait behavioural test N confounding factors F value p value contrast estimate ± SE z value p value 

          

activity 

Open Field 315/112 

trial number 4.867 0.003 
2 - 1 

4 - 1 

-0.36 ± 0.09 

-0.34 ± 0.15 

-3.794 

-2.319 

< 0.001 

0.090 

generation 

generation² 

2.984 

15.052 

0.087 

< 0.001 
 

-0.61 ± 0.18 

0.09 ± 0.02 

-3.386 

3.880 

0.001 

< 0.001 

Y Maze 312/112 

trial number 6.705 < 0.001 
2 - 1 

3 - 1 

-0.41 ± 0.10 

-0.46 ± 0.12 

-3.991 

-3.777 

< 0.001 

< 0.001 

generation 

generation² 

4.467 

8.835 

0.004 

< 0.001 
 

-0.44 ± 0.18 

0.07 ± 0.02 

-2.412 

2.972 

0.018 

0.004 

          

boldness 

Scare Test 100/59 none       

Open Field 315/112 

trial number 17.248 < 0.001 

2 - 1 

3 - 1 

4 - 1 

4 - 2 

4 - 3 

0.53 ± 0.10 

0.44 ± 0.12 

1.09 ± 0.16 

0.57 ± 0.16 

0.66 ± 0.17 

5.169 

3.622 

6.879 

3.544 

3.972 

< 0.001 

0.002 

< 0.001 

0.002 

< 0.001 

year 10.531 < 0.001 
2013 - 2012 

2014 - 2012 

-0.67 ± 0.20 

-0.84 ± 0.18 

-3.445 

-4.553 

0.002 

< 0.001 

          

exploration 
Novel Object 251/83 observer 13.618 < 0.001  0.50 ± 0.13 3.690 < 0.001 

Novel Environment 119/60 trial number 15.498 < 0.001  0.58 ± 0.15 3.937 < 0.001 

          

spatial recognition Y Maze 312/112 trial number 3.102 0.028 4 - 2 0.51 ± 0.20 2.612 0.043 
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In the data set of the laboratory population we also observed that the trial number had a significant effect on five behavioural variables. Activity in the Open 

Field decreased from the first to the second observation, and decreased from the first to the fourth observation. Boldness in the Open Field increased with 

the trial number (animals spent more time in the middle of the arena). Exploration in the Novel Environment test increased in the second trial, where mice 

visited four tubes faster than in the first trial. Animal also spent more time in the novel arm of the Y Maze during the fourth observation compared to the 

second. These effects were likely caused by a habituation of the mice to the test arenas and to handling situations. The year had a significant effect on 

boldness in the Open Field. Animal were bolder in 2012 compared to 2013 and 2014. The observer had an effect on exploration in the Novel Object test. This 

could be related to the year effect as one observer did all of the observations in 2012. We cannot disentangle those effects in this data set, however, we 

recommend to account for an observer effect when animal are recorded manually due to different handling and individual perception patterns which may 

influence behaviour of animals or measurements. We discussed confounding factors in more detail in Chapter 1 and 2. The individuals of the laboratory 

population were from seven generations. The quadratic function of the generation had an effect on activity in the Open Field and in the Y Maze. Laboratory 

conditions may influence natural behaviour. Especially, if behaviours are heritable, the effect of the generation animals spent in the laboratory may have an 

effect on behavioural expressions due to inbreeding. However, further conclusions are not possible, as so far heritability of tested behavioural traits in our 

study species is not known.  

In sum, a habituation effect shown by the confounding factor trial number occurred in the laboratory and the field population of harvest mice. Effect sizes 

were in general in a similar range and the effect was mostly in the same direction. Thus, repeated observations seem to effect harvest mice similarly, 

independent of the genetic background of the population or the housing condition (laboratory versus field enclosure). 
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SUPPLEMENTARY TABLE 8 Within-individual correlations among personality traits in harvest mice of the field population, calculated from a multivariate mixed model. Within-
individual correlation coefficients (± standard errors) are shown above, and p values below the diagonal. Significant correlations are marked in bold, tendencies are 
printed in italics. NA: within-individual correlation not modelled due to missing data. OF = Open Field, YM = Y Maze, NO = Novel Object, NE = Novel Environment, ST = 
Scare Test. 

  activity OF activity YM boldness OF boldness ST exploration NO exploration NE 
       

activity OF  0.087±0.098 -0.013±0.095  0.185±0.166 -0.123±0.096  0.222±0.131 

activity YM 0.186  -0.118±0.096 -0.029±0.161 -0.015±0.094  0.030±0.137 

boldness OF 0.444 0.110  -0.021±0.163 -0.128±0.095 -0.039±0.156 

boldness ST 0.133 0.429 0.450  -0.637±0.127 NA 

exploration NO 0.099 0.438 0.089 0.000  -0.084±0.135 

exploration NE 0.045 0.415 0.401 NA 0.268  

 

SUPPLEMENTARY TABLE 9 Within-individual correlations between personality traits in harvest mice of the laboratory population, calculated from a multivariate mixed model. 
Within-individual correlation coefficients (± standard errors) are shown above, and p values below the diagonal. Significant correlations are marked in bold, tendencies 
are printed in italics. NA: within-individual correlation not modelled due to missing data. OF = Open Field, YM = Y Maze, NO = Novel Object, NE = Novel Environment, ST 
= Scare Test. 

  activity OF activity YM boldness OF boldness ST exploration NO exploration NE 
       

activity OF  0.239±0.067 0.049±0.070 NA 0.187±0.075 NA 

activity YM 0.000  0.094±0.070 NA 0.103±0.076 NA 

boldness OF 0.241 0.090  NA 0.044±0.078 NA 

boldness ST NA NA NA 
 

NA NA 

exploration NO 0.006 0.089 0.288 NA  NA 

exploration NE NA NA NA NA NA 
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