Efficient Visual SLAM for Autonomous
Aerial Vehicles

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultit
der Eberhard Karls Universitit Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Sebastian A. Scherer

aus Waiblingen

Tiibingen
2016

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultdt der
Eberhard Karls Universitit Tiibingen.

Tag der miindlichen Qualifikation: 12. Dezember 2016

Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Andreas Zell
2. Berichterstatter: Prof. Dr. Andreas Schilling

3. Berichterstatter: Prof. Dr. Horst-Michael Grof3

To my parents, Eberhard and Elenore

Abstract

The general interest in autonomous or semi-autonomous micro aerial vehicles (MAVs) is
strongly increasing. There are already several commercial applications for autonomous
micro aerial vehicles and many more being investigated by both research institutes and
multiple financially strong companies. Most commercially available applications, how-
ever, are rather limited in their autonomy: They rely either on a human operator or
reliable reception of global positioning system (GPS) signals for navigation.

Truly autonomous micro aerial vehicles that can also fly in GPS-denied environments
such as indoors, in forests, or in urban scenarios, where the GPS signal may be blocked
by tall buildings, clearly require more on-board sensing and computation potential. In
this dissertation, we explore autonomous micro aerial vehicles that rely on a so-called
RGBD camera as their main sensor for simultaneous localization and mapping (SLAM).
Several aspects of efficient visual SLAM with RGBD cameras aimed at micro aerial
vehicles are studied in detail within this dissertation:

We first propose a novel principle of integrating depth measurements within visual
SLAM systems by combining both 2D image position and depth measurements. We
modify a widely-used visual odometry system accordingly, such that it can serve as a
robust and accurate odometry system for RGBD cameras.

Based on this principle we go on and implement a full RGBD SLAM system that
can close loops and perform global pose graph optimization and runs in real-time on the
computationally constrained onboard computer of our MAV.

We investigate the feasibility of explicitly detecting loops using depth images as op-
posed to intensity images with a state of the art hierarchical bag of words (BoW) ap-
proach using depth image features.

Since an MAV flying indoors can often see a clearly distinguishable ground plane, we
develop a novel efficient and accurate ground plane detection method and show how to
use this to suppress drift in height and attitude.

Finally, we create a full SLAM system combining the earlier ideas that enables our
MAV to fly autonomously in previously unknown environments while creating a map of
its surroundings.

Kurzfassung

Das allgemeine Interesse an autonomen oder halb-autonomen kleinen unbemannten Flug-
zeugen, auch als Micro Aerial Vehicles (MAV) bekannt, wichst stetig. Es gibt bereits
mehrere kommerzielle Anwendungen solcher autonomer Flugobjekte und viele weite-
re sind aktuell in der Entwicklung: Nicht nur in Forschungsinstituten, sondern auch bei
einigen finanzstarken Firmen. Die meisten bereits existierenden Losungen sind in ih-
rer Autonomie allerdings noch immer stark eingeschrinkt: Sie erfordern entweder einen
menschlichen Piloten am Boden oder den zuverldssigen Empfang eines GPS-Signals zur
sicheren Navigation.

Wirklich autonome unbemannte Flugobjekte, die auch in Umgebungen ohne GPS-
Empfang fliegen konnen, also im Inneren von Hiusern, in Wildern, oder auch in Stadt-
gebieten mit hohen Gebiuden, die das GPS-Signal abschirmen konnen, benétigen mehr
Sensorik und damit auch mehr Rechenleistung an Bord. Diese Dissertation beschiftigt
sich mit unbemannten Flugobjekten, die eine sogenannte RGBD-Kamera als Hauptsen-
sor zur visuellen Selbstlokalisierung bei gleichzeitiger Kartierung (Simultaneous Loca-
lization and Mapping, SLAM) besitzen. Weiterhin untersuchen wir diverse Aspekte ef-
fizienter visueller SLAM-Algorithmen fiir RGBD Kameras im Hinblick auf den Einsatz
auf kleinen unbemannten Flugobjekte:

Zunichst stellen wir eine neuartige Methode vor, um Tiefenmessungen in visuellem
SLAM zu beriicksichtigen, indem 2D-Bildpositionen und Tiefenwerte fusioniert wer-
den. Wir passen ein weit verbreitetes Verfahren fiir visuelle Odometrie entsprechend an,
damit es als ein robustes und genaues Odometriesystem auch fiir RGBD-Kameras ein-
gesetzt werden kann. Basierend auf dieser Idee implementieren wir ein vollstindiges
RGBD-SLAM-System, welches auch den globalen Posengraphen in Echtzeit auf dem
Bordcomputer des MAVs optimieren kann. Wir untersuchen die Machbarkeit explizi-
ter Schleifenerkennung unter Verwendung von Tiefen- statt Intensitédtsbildern mit einem
aktuellen hierarchischen Bag-of-Words-Ansatz mit Tiefenfeatures. Da bei Fliigen im In-
nenbereich oft eine klar erkennbare Bodenebene zu sehen ist, prisentieren wir eine neu-
artige Methode, um diese schnell und exakt zu schitzen, um damit den Drift in Hohe und
Orientierung zu verringern. Zuletzt entwickeln wir schlieBlich ein vollstindiges SLAM-
System, das die zuvor genannten individuellen Beitrige kombiniert und es dem MAV
ermoglicht, in unbekannten Umgebungen autonom zu fliegen und zugleich eine Karte
seiner Umgebung zu erzeugen.

vi

Acknowledgments

I thank Prof. Andreas Zell for supervising and funding this dissertation project. I greatly
appreciate the excellent working conditions and trust I enjoyed that let me relatively
freely choose my topics of interests and pursue my research throughout the years .

I am extraordinarily grateful to my colleagues who created a cordial and helpful work
environment. I would like to thank especially Shaowu Yang, Konstantin Schauwecker,
Daniel Dube, Artur Koch and Lixing Jiang for their always fruitful discussions and help,
which led to several interesting joint projects and publications.

I thank my long-time office-roommates turned friends Artur Koch, Lixing Jiang, and
Vo Duc My for all the friendly and entertaining coffee breaks.

I am deeply indebted to my wife Tinatin and my daughter Nino for their support and
understanding, especially whenever there was an important deadline approaching: You
kept me sane.

Finally, I would never have made it without the constant support and encouragement
from my parents Eberhard and Elenore. I am heartbroken by the fact that neither lives to
see my graduation. I thank you both with all my heart.

vii

Acknowledgments

viii

Contents

(L Introduction|

1.2 ntribution hinef
(1.3 Experimental Plattorm|

2__Cameras|

4.4 Parallel Tracking and Mapping|
4.5 Porting and Extending Parallel Tracking and Mapping|.
4.6 System-Inherent Limitations of Monocular SLAM|

[S Using Depth in Visual Simultaneous Localization and Mapping|

2 Rel Workl

[5.4 Integrating Depth Information|
[5.5 Parallel Tracking and Mapping using Depth Measurements|
[5.6 Measurement Uncertainty Models|

[5.7 Experiments and Results|
5.8 Relationto Stereo Vision|,
nclusion| L

6.1 Related Work: RGBD-SILAM for MAVs

N W = e

37
37
37
38
39
47
48

49
49
49
51
51
54
55
59
62
62

63
63

X

Contents

6.2 Motivation|. 64
6.3 Software Architecturel oL Lo 64
[6.4 Expertmentsand Results| 71
6.5 Conclusionsl 76

(7 Loop Closure Detection Using Depth Images| 77
1_TLocalFeatures|. 78

(7.2 Bagof (Visual) Words| 80
(/.3 Loop Closure Detection|. 81
(7.4 Implementation| 82
[/.S Benchmark Datasetl 82
[/.6 Experiments and Results|, 84
(.7 _Conclusionsl e 90
[8_Drift-Corrected Visual SLAM| 95
BI _Motivationl.« o oo 95
(8.2 Ground Plane Detectionl. 95
8.3 DrnftCorrection| 99
[8.4 Experiments and Results| 00 .. 101
8.5 Conclusionl 102

[9 A full SLAM Back-End for Parallel Tracking and Mapping 103
9.1 PTAM as a Visual Odometry SLAM Front-End| 103
9.2 SIAMBack-Endl 104
9.3 Experiments and Results| 107
9.4 Conclusion| 112
(10_Conclusions| 115
(10.1 Summary| 115
(102 Future Work| 116
[Abbreviations| 117
Bibliography 119

Chapter 1

Introduction

1.1 Motivation

Micro Aerial Vehicles (MAVs) are small, light-weight, and often inexpensive flying ma-
chines that can easily get to places difficult to access for humans. Their popularity is
steadily growing, for example in agricultural applications monitoring the growth of crops
as described in Herbst (2010), in military reconnaissance for example for the German
Bundeswehr (see Bundeswehr| (2013)), for firefighters measuring the pollutant concen-
tration in the air (see Bandemann| (2010))), and in search and rescue or disaster relief
scenarios as in Fukushima (see Honig| (2011)). There are also several industrial applica-
tions for MAVs already, mostly focusing on aerial photography, surveying and geomatics
(e.g. Schallibaum AG|(2014)), and most recently even product delivery: Within one year,
several big companies announced they were backing ambitious projects to allow auto-
matic delivery based on MAVs. Amazon started in December 2013 by announcing their
plans for a future delivery service Amazon Prime Air at a rather early stage (see Ama-
zon.com, Inc.| (2013))). Within the same month, DHL showcased an MAV that was used
to deliver medication across the river Rhine (see Lang (2013)), which was in the mean-
time extended to deliver medication to a pharmacy on the island Juist, 12 km off the
north sea coast of Germany (see /Hern/(2014))). In the meantime, Google announced their
own delivery system called Project Wing, that was able to deliver first aid kits, among
other things, to farmers in Australia (see Rushe (2014))). The latest company to join the
delivery efforts was France’s La Poste, which announced that it is now also developing
a Hexacopter to deliver medication to destinations as far as 19 km away (see [Samuel
(2014)).

Even though some examples above seem quite advanced already, they are still severely
limited in their on-board sensing and intelligence capabilities: They are either remotely
controlled by a skilled operator or rely on absolute position estimates obtained via GPS,
which is only reliable in the open, away from buildings or trees. One important research
topic in robotics is thus the development of truly autonomous micro aerial vehicles that
can also operate in GPS-denied environments. While most of the MAV's mentioned above
use only inertial sensors and GPS, truly autonomous M AV require more on-board sens-
ing and processing capabilities: They are required to be able to actually perceive their

Chapter 1 Introduction

environment.

Early research relied on mounting light-weight laser range finders on MAVs. This was
a logical first step, since laser range finders are known to enable robust autonomous navi-
gation of wheeled mobile robots in unknown roughly planar (i.e. 2D) environments. The
most important examples of this approach can be found in |Grzonka et al. (2009), which
describes the first MAV navigating autonomously indoors using a laser range finder as-
suming a 2D environment, Bachrach et al.|(2011]), where a similarly-equipped MAV was
able to autonomously fly through openings resembling windows, and in |Bry et al.|(2012),
where an autonomous fixed-wing aircraft was demonstrated flying aggressive maneuvers
and localizing itself using a combination of laser range finder and inertial sensors within
a previously mapped indoor environment.

Laser range finders are often heavy, expensive, and only provide range measurements
within a 2D planeﬂ An alternative paradigm that became more and more popular during
the recent years is relying on cameras for autonomous navigation. Compared to laser
range finders, cameras are smaller, lighter, cheaper, and provide richer information about
the environment. The downside is that image processing requires more computational
power, which in turn necessitates stronger and thus often heavier on-board computers.
Early experiments with MAVs capable of camera-based navigation relied on artificial
markers such as infrared LEDs as in [Wenzel and Zell (2009) or ARTags as in [Meier
et al.| (2011). If MAVs should be able to navigate using natural landmarks alone, they
need to employ methods of visual odometry or SLAM. The combination of a monocular
visual SLAM system with inertial measurements to allow autonomous navigation was
described in Weiss et al.| (2011). A basic obstacle-avoidance and exploration scheme
using stereo cameras was shown in |Fraundorfer ef al.| (2012), and the first MAV using an
RGBD camera for localization in Huang et al.| (2011).

'Note that 3D laser range finders do exist, of course, but the models currently available are too heavy to
be of much practical use for MAV research.

1.2 Contributions & Outline

1.2 Contributions & Outline

This dissertation is focused on various aspects of efficient visual SLAM using RGBD
cameras for use on micro aerial vehicles. The first chapters up to chapter 5| cover impor-
tant foundations required for a proper understanding of the later technical chapters. The
main contributions are split up into chapters in the following way:

The first chapters[2]and 3] recapitulate foundational knowledge about cameras and their
mathematical models (chapter [2) and the foundations of simultaneous localization and
mapping and its relation to maximum likelihood estimation and least squares (chapter 3)),
which is recommended for a proper understanding of the subsequent chapters.

Chapter 4| describes in detail the monocular visual SLAM system Parallel Tracking
and Mapping (PTAM) presented in Klein and Murray (2007) and how it was adjusted to
be used on our robots. This is the foundation for the later work especially in chapters [3]
and[9] In conjunction with a very efficient sign-detection algorithm described in[Scherer]
et al.|(2011)), this also contributed to the following co-authored publications:

e Yang, S., Scherer, S. A., and Zell, A. (2013a). An Onboard Monocular Vision
System for Autonomous Takeoff, Hovering and Landing of a Micro Aerial Vehicle.
Journal of Intelligent & Robotic Systems, 69(1-4), 499-515

e Yang, S., Scherer, S. A., Schauwecker, K., and Zell, A. (2014a). Autonomous
Landing of MAVs on Arbitrarily Textured Landing Sites using Onboard Monocu-
lar Vision. Journal of Intelligent & Robotic Systems, 74(1-2), 2743

In chapter [5] we present a novel method of integrating depth measurements in visual
SLAM. The major findings in this chapter were previously published in the following
conference paper:

e Scherer, S. A., Dube, D., and Zell, A. (2012). Using depth in visual simultane-
ous localisation and mapping. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pages 5216-5221, St. Paul, Minnesota, USA

Since this method obviously lends itself to being applied to depth values inferred from
stereo matching, the following co-authored paper is also partially based on this work:

e Schauwecker, K., Ke, N. R., Scherer, S. A., and Zell, A. (2012a). Markerless Vi-
sual Control of a Quad-Rotor Micro Aerial Vehicle by Means of On-Board Stereo
Processing. In 22nd Conference on Autonomous Mobile Systems (AMS), pages
11-20, Stuttgart, Germany. Springer

Chapter|[6]describes the implementation of a full visual SLAM system that can serve as
areplacement for PTAM using RGBD cameras. Its advantage over PTAM is the fact that
it can detect and close loops in real-time on the computationally constrained on-board
computer of our MAV. This system was previously published in the following conference

paper:

Chapter 1 Introduction

e Scherer, S. A. and Zell, A. (2013). Efficient Onboard RGBD-SLAM for Fully
Autonomous MAVs. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, pages 1062—1068, Tokyo Big Sight, Japan

In chapter 7| we investigate whether loop closure detection using depth images instead
of grayscale intensity images is feasible. We compare the performance of various feature
detection and description methods with regards to loop closure detection in comparison
to the state of the art method for grayscale images. This work was previously published
in the following conference paper:

e Scherer, S. A., Kloss, A., and Zell, A. (2013). Loop Closure Detection using Depth
Images. In Mobile Robots (ECMR), 2013 European Conference on, pages 100 —
106, Barcelona, Catalonia, Spain

Chapter [§] describes an efficient ground plane detection algorithm for depth images
that is based on a novel inlier/outlier/worse-outlier model and how this can be used for
correcting drift in visual odometry and SLAM. This was also published in the following
conference paper:

e Scherer, S. A., Yang, S., and Zell, A. (2015). DCTAM: Drift-corrected tracking
and mapping for autonomous micro aerial vehicles. In Unmanned Aircraft Systems
(ICUAS), 2015 International Conference on, pages 1094—1101, Denver, CO, USA

Chapter[9|combines the individual benefits from chapters 5 to 8 and unites the tracking
performance of PTAM with the advantages of a full SLAM back-end with loop closing
and optionally integrating ground plane measurements to enable autonomous naviga-
tion of an MAV in GPS-denied environments. This is also described in the conference
paper above. The methods described in this chapter, specifically improving PTAM by
adding loop closure and pose graph optimization, further contributed to the following
co-authored paper:

e Yang, S., Scherer, S. A., and Zell, A. (2014b). Robust onboard visual SLAM for
autonomous MAVs. In 2014 International Conference on Intelligent Autonomous
Systems (IAS-13), Padova, Italy

Finally, chapter |10| concludes this dissertation with a short summary and outlook to-
wards future work.

1.3 Experimental Platform

Figure 1.1: The initial version of our MAV.

1.3 Experimental Platform

1.3.1 Hardware

All MAV-related experiments throughout this work were performed with the same ex-
perimental platform that underwent several incremental updates during the course of this
PhD project: A small quadrotor helicopter built to resemble the Pixhawk Cheetah open
source MAV described in Meier et al.| (2011), which in essence is a Mikrokopter MK-
Quadmﬂ quadrotor helicopter with a lighter frame, different onboard electronics, and an
additional powerful on-board computer.

Our initial setup used the motors, brushless motor controllers (BLMC), propellers, and
landing gear from the Mikrokopter Project. In order to save some weight, the Pixhawk
project used their own frame consisting of a single piece of CFK sandwich plate. Since
the original Mikrokopter FlightCtrl does not allow autonomous controlE| the Pixhawk
project replaced the original flight control unit (FCU) Mikrokopter FlightCtrl with an
alternative FCU called pxIMU and added a custom-made COM express base board called
pxCOMex that can host a very light-weight industrial computer-on-module (COM), in
our case a Kontron microETXexpress®-PC SL9400, which includes an Intel Core 2
Duo CPU clocked at 1.86 GHz, and used 2 GB of RAM and a light-weight SSD. Both
pxIMU and pxCOMex were developed by Christian Dobler as his master thesis (see
Dobler (2009)).

For the scope of this dissertation, we rely on an RGBD camera as the main sensor. We

Thttp://wiki.mikrokopter.de/MK-Quadro
3The code running on the FlightCtrl can be replaced by custom code that allows automatic control. This
approach was chosen for the Telekyb system described in|Grabe et al.|(2013).

http://wiki.mikrokopter.de/MK-Quadro

Chapter 1 Introduction

Figure 1.2: The latest version of our MAV.

also built other variants using one monocular camera as used in Masselli et al.| (2014),
two monocular cameras as used in |Yang ef al. (2014c) and two stereo cameras as used in
Schauwecker and Zell (2014).

The initial version of our MAV is shown in figure [I.1] It is almost identical to the
Pixhawk Cheetah quadrotor, except it uses a Microsoft Kinect RGBD camera that was
stripped from its large encasing as its main sensor. The latest version of the MAV is
shown in figure[T.2] It uses the more robust and cheaper but slightly heavier Mikrokopter
frame. The Microsoft Kinect sensor was replaced by an ASUS Xtion Pro Live, which
provides almost identical RGBD images at a much smaller size and lower weight.

1.3.2 Software

The on-board software that controls the MAV is divided into time-critical tasks that have
to run in hard real time and are performed on the microcontroller on the one hand, and
computationally more expensive tasks with no or only soft real-time constraints that are
performed on the on-board computer.

The time-critical tasks include attitude estimation from measurements of the inertial
measurement unit (IMU), position estimation from possibly noisy position estimates,
position control, and attitude control.

All other computations are performed on the on-board computer. The most important
ones are localization (in our case by means of visual SLAM) and waypoint navigation,

1.3 Experimental Platform

i.e. determining the next desired position towards which the MAV should fly.

Autopilot On-board computer
: [inertial state | : . | navigation
H ' ! waypoint.-
t|sensors| ™| est. | ; yP I
i pose, | ROS |[4~° |
position [:"waypoint:| bridge W .pose
' + attitude | : ' Ose f :
5 control | ; POSE™1 localization 5
b eeeeat e | W
- motor]
Yy commands ‘images
ESCs camera

Figure 1.3: Illustration of the different hardware and software modules controlling the
MAV.

The overall system is illustrated in figure On the left hand side one can see the au-
topilot (which corresponds to the pxIMU flight control unit in our case) which is respon-
sible for state estimation based on measurements of the inertial sensors (accelerometer,
gyroscope and magnetometer) and control of the MAV by commanding motor veloci-
ties for the electronic speed controls (ESCs, i.e. the motor controllers). This part was
implemented by the Pixhawk team already and we only performed minor modifications.

The on-board computer depicted on the right hand side communicates with the au-
topilot via a serial link connection using the so-called MAVLINK (see Meier (2009))
protocol. All software modules running on the on-board computer are implemented as
nodes and nodelets for the robot operating system (ROS, see |Quigley et al. (2009)),
which among others allows convenient hardware abstraction, easy inter process commu-
nication, and easily reusing modules among different robot systems running ROS. There
are always at least four nodes or nodelets running:

e The ROS bridge converts between ROS and MAVLINK messages. We imple-
mented this ROS node to easily access and log all incoming messages from the
autopilot and so we can provide the required pose estimates and waypoints as ROS
instead of MAVLINK messages in the other modules.

e The navigation module decides about where the robot should fly. In the simplest
case, it might always provide a constant position, which would lead to the MAV
hovering in place. For waypoint-based path following, it also needs to know the
current pose of the MAV.

Chapter 1 Introduction

e The camera driver receives the stream of images from the camera and makes it
available through the ROS message infrastructure.

e Finally, the localization module is responsible for estimating the MAV pose, which
is required for autonomous flight. This module might either use artificial markers
for absolute localization with respect to these or natural landmarks for relative
localization by means of visual odometry or SLAM.

The main focus of this dissertation is on this localization module above. It describes
various alternatives and improvements to localization by means of visual SLAM. The
formal limitations of this thesis unfortunately do not allow us to go into much detail about
the physical properties and questions of estimation and control of the MAV required for
an understanding of the inner workings of an autopilot. We have to treat it largely as a
black box and refer the interested reader to the recent textbook |Beard and McLain| (2012)
and the seminal survey paper Mahony ef al. (2012)) for more details.

Chapter 2

Cameras

2.1 Camera Models

Camera models describe the geometry of how objects in 3D space are projected into
2D images when captured by a camera. This task is so essential for computer vision
that there is a chapter dedicated to it in almost every computer vision textbook (see e.g.
Trucco and Verri (1998)), Faugeras et al.| (2001), Ma et al. (2003), Hartley and Zisserman
(2004)), and |Szeliski| (2010)).

In the following definitions, we slightly depart from the most popular notation using
homogeneous coordinates in all steps in order to facilitate the computation of Jacobians
required later (e.g. section#.4.4).

2.1.1 Pinhole Camera Model

The simplest camera consists of a light-proof box with only one tiny opening (“pinhole”).
The fact that light shining through the opening will project a mirrored image of the
outside world onto an image plane was described as early as in ca. 330 BC by Aristotle
and exploited in a description of Alhazen around 1020 AD. A brief history of the pinhole
camera can be found in the first chapter of Renner (1995).

If we assume the pinhole to be infinitesimally small, all light rays entering the camera
need to pass through the same focal point O. A point in 3D space p = (p;, Py, pz)T will
be projected through O onto the 2D point u = (uy, uy)T on the image plane such that:

Dz
u Pz
u= (ux) =—f (ﬁ_f,) 2.1
Y Pz
Note the negative sign in equation [(2.1) The projected image captured by a pinhole
camera is reflected in o. This is illustrated in figure

Chapter 2 Cameras

Figure 2.1: Illustration of the basic pinhole camera model. The actual object is shown
on the right, the focal point is in 0 = (0,0,0)”, and the image plane on the left at focal
length f away from the focal point. Note how the projection of the object appears upside
down (mirrored).

2.1.2 Idealised Camera Model

In a physical camera, the image plane obviously has to be behind the focal point. If we
could place the image plane such that it is exactly 1 unit of length in front of the focal
point, which is equivalent to setting f in eq.|(2.1)|to f = —1, the projection above would

be even easier:
o B
n=|{_"1]= n(p)=| b (2.2)
) Pz

This is a perspective projection without any parameter. Point coordinates n projected
according to eq)(2.2)|are often called normalized image coordinates. They are especially
useful when inverting the projection using known depth values, since:

Pz Ny
p=|py|=1ny|d (2.3)
Dz 1

Where d = p, is the depth of point p. The homogeneous version n’ = (nz,n,,1) of n
coincides with the direction of its corresponding ray. It means that any point on the line
(s-n') in 3D space is projected onto the same 2D point n.

10

2.1 Camera Models

2.1.3 Linear Camera Model

When using images captured using digital cameras, we need to work with pixel coor-
dinates to access intensities at certain image locations. In pixel coordinates, x > 0 and
y > 0 denote the column and row of the cell within its pixel grid.

The most common transformation between normalized coordinates n and pixel coor-
dinates wu is the following affine transformation:

u—u(n)_<0 fy).nJrC—(fy-ny—l—gy) (2.4)

The parameters f;, fy,7,c; and ¢, are called intrinsic camera calibration parameters:
They completely describe the linear camera model. The parameters f, = £ and f, = %

are the ratios of focal length and pixel size s, and s, in = and y dimension, ¢ = (¢, cy)T
is the position of the principal point, i.e. the projection of the focal point o onto the image
plane, and - is a skew coefficient which depends on the angle between pixel columns and
rows, but is typically 0.

This model is called the linear camera model even though equation [(2.4)] is in fact
not linear but affine. But it can be expressed as a linear equation using homogeneous
coordinates and a camera matrix K which contains all intrinsic parameters:

Uy f z 7 Cz Ny
uy | =10 fy cy|-|ny 2.5)
1 0 0 1 1
—_——
K

2.1.4 Non-Linear Distortions

Real lenses often exhibit non-linear distortions which cannot be described using a linear
model alone. These distortions are especially prominent for lenses with wide field of
view or short focal length. An example of this effect is shown in figure 2.2] The linear
camera model dictates that projections of straight lines also have to be straight. This is
obviously not the case in this example where straight walls of buildings appear bent in
the camera image.

The linear camera model shown above is usually extended to accommodate non-linear
distortions by applying a non-linear distortion function to the normalized image coor-
dinates before they are transformed by the affine transformation of the linear model in
equation|(2.5)] Various distortion models exist, but we will only describe the two that are
most relevant for this work.

11

Chapter 2 Cameras

Figure 2.2: Example image taken with a camera exhibiting considerable lens distortion.
Photograph used with permission by Norbert Morgenstern.

FOV or ATAN Model

The FOV (field of view) camera model by Devernay and Faugeras| (2001), sometimes
also called ATAN camera model, can model strong radial distortion typically found in
fish-eye lenses. It computes the distorted normalized coordinates d using the following

formula:
- o dac _Td (g
a=im= (i) =2 (1) o

Where r,, = /n2 + n% is the undistorted radius. The distorted radius 4 is computed as:

1
rq = — arctan (2ru -tan c_u) 2.7)

w 2
Here w is the single distortion parameter and represents the field of view of a corre-
sponding ideal fish-eye lense. This distortion model can also easily be inverted, which is
required for undistorting an image.

t .
- an (w-rq)

2.
2tan % 2:3)

The FOV model is the one originally used in [Klein and Murray| (2007), likely because it
requires only one additional parameter, is suitable for fish-eye lenses with a wide field of

12

2.1 Camera Models

Figure 2.3: An undistorted version of the example image from figure

view, is easily inverted, and because the derivatives are easy to compute analytically.

Polynomial Model

The most widely-adopted distortion model for regular lenses is the polynomial distortion
model.

d=d(n)— (da") (2.9)
dy
_ 2 4 6\ (M 2p1ngny + p2(r? +2n2)
o (1 + klru + kZTu + k3ru) (ny> + (pl (7,,2 + 2715) + 2p2nxny (210)
ra?irial tang‘e;tial

With the undistorted radius r, defined as before. It consists of both a radial and tan-
gential distortion component with a total of 5 parameters (k1, k2, k3, p1,p2), but the first
two parameters of the radial component dominate all others for most lenses, such that
ks, p1,p2 can often be assumed to be 0.

One problem when using the polynomial model is the fact that there is no analytical
inverse of equation[(2.10)] It can be approximated using iterative numerical optimization,
which is too slow for real-time operation. A common solution to this problem is building
a lookup-table for the inverse function once in a preprocessing step.

13

Chapter 2 Cameras

2.1.5 Combining all Parts for the Full Model

Using the building blocks described so far, the full projection model i from a 3D position
in space to a 2D pixel position of a digital camera can now be described by a combina-
tion of ideal projection n to normalized coordinates, distortion d to distorted normalized
coordinates, and finally the affine transformation u to actual pixel coordinates:

u=h(p) =u(d(n(p))) (2.11)

We can also rearrange these function blocks in order to produce an undistorted version of
a distorted image. For each pixel position in the undistorted image u,, we can compute
its corresponding position in the distorted image uy and vice versa:

wu,=u(d " (u (uq))) (2.12)
ug=u(d(u ' (uy))) (2.13)

The image in figure [2.3|for example was produced using equation For each pixel
in the new undistorted image, we can compute its location in the original image. Intensity
values of pixels within the undistorted image can then be computed by interpolating the
intensity at its corresponding location within the original distorted image.

2.2 Depth Cameras

Depth cameras produce images which contain depth instead of intensity values for each
pixel location. An example is shown in figure[2.4a} Low depth values are colored in blue,
high values in red. Knowing the exact depth at each pixel location in conjunction with
the camera calibration (i.e. the normalized image coorindates of each pixel) allows con-
venient reconstruction of a full point cloud using only one scalar-vector multiplication
per pixel using equation [(2.3)|

Depth images thus provide rich information about the geometry of a scene, which
can clearly be seen by the level of detail of the point cloud in figure which was
reconstructed from the depth image in figure [2.4a

2.2.1 Early Depth Cameras
Stereo Cameras

Stereo cameras may be considered the first depth cameras. Automatically inferring depth
by matching areas between a pair of stereo images, i.e. two images of the same scene
taken from slightly different viewpoints, has been studied since the seventies (see Han-
nah| (1974)). A good survey of the earliest efforts in automatic stereo vision can be
found in [Barnard and Fischler| (1982). Stereo vision remains an active field of research

14

2.2 Depth Cameras

(a) Depth image (b) Reconstructed point cloud

Figure 2.4: Depth image and reconstructed point cloud of an example scene.

until today, with the current work focusing either on optimizing accuracy, ideally on
established benchmark datasets like the middlebury dataset described in |Scharstein and
or the KITTY dataset described in|Geiger et al.| (2013)), or optimizing the
computation time required for specific applications as inSchauwecker ez al.| (2012b).

Problems when using stereo cameras are the still relatively high computational cost
when computing dense depth images and its reliance on texture: Any stereo algorithm
will inevitably fail for texture-less images.

Time-of-Flight Cameras

As opposed to stereo cameras, time-of-flight cameras are active sensors: They contain an
emitter, typically an array of diodes, that emits infrared light invisible to the human eye,
which is reflected by the scene and captured by the camera. Using special techniques
to measure the time delay at which the signal arrives, it can infer the distance to visible
objects.

According to (2000), there are mainly two competing methods to measure this
time delay:

e Pulsed modulation is the obvious approach: Light is emitted in short precisely
timed pulses.

e With continuous modulation the emitted light is modulated by a known frequency
much lower than the one of light itself. The time of flight can then be inferred from
the phase shift between the emitted and received signal.

But continuous modulation seems to be becoming more and more popular in current

sensors (e.g. |(Gokturk ef al.|(2004), [Foix et al.|(2011), and Mutto ef al.| (2012)).

15

Chapter 2 Cameras

Structured-Light Systems

Instead of modulating emitted light in the time domain as done by time-of-flight cameras,
a scene can also be scanned using light modulated in the space domain. This idea is often
attributed to|Scharstein and Szeliski| (2003]), but it is in fact much older than that and was
already described in Besl (1988)). An easy-to-build and thus popular structured-light
setup consists of a regular computer projector that projects several especially coded light
patterns consisting of black and white stripes into the scene, which is picked up by a
digital camera. This actively provides reliable dense stereo correspondences between
camera and projector without the need for any natural texture.

The downside is that a single scan requires recording a multitude of different pro-
jected patterns, which makes this setup time-consuming and infeasible in dynamic envi-
ronments.

2.2.2 Primesensor-Based Depth Cameras

Depth cameras finally had their breakthrough with the launch of Microsoft’s Kinect sen-
sor in November 2010, since this not only had a relatively high resolution for that time,
but it was also really inexpensive. The depth sensing technique of the Kinect was de-
veloped by and licensed from Primesense, a small company bought by Apple in 2013.
The original reference design by Primesense was called Primesensor and made available
as a proof-of-concept sensor to prospective licensees and selected researchers only. Mi-
crosoft’s Kinect was the first Primesensor-based RGBD camera available to the general
public and was followed by several similar systems such as the Asus Xtion Pro (depth
only) and Asus Xtion Pro Live (RGB and D).

Even though the exact depth sensing method employed by Primesense was never pub-
lished in a scientific paper, the governing principle is described in full detail in the related
patent application in|Zalevsky et al.|(2010):

The sensor projects a random but constant infrared laser speckle pattern into the scene
which can be captured by an infrared camera. An example picture of this pattern is
shown in figure An infrared camera mounted next to the sensor at a known distance
(baseline) sees this pattern from a slightly different viewpoint. All parts of the pattern
will thus be displaced depending on the relative scene depth at the location where they
are reflected.

There is some confusion in the literature about the “true” resolution of the depth im-
age. We know from Andreas Reichinger’s reconstruction (see figure [2.5b) that the binary
speckle pattern is of resolution 633 x 495. Primesense in the patent application (see Za-
levsky et al.|(2010)) suggests that the resolution of the infrared sensor should be chosen
such that each speckle corresponds to roughly 2 x 2 pixels. We also know that at least
the RGB camera employs a sensor with resolution 1280 x 96(ﬂ It is thus likely that the

Iseehttp://msdn.microsoft.com/en-us/library/jj131033.aspx

16

http://msdn.microsoft.com/en-us/library/jj131033.aspx

2.3 RGBD Sensors

(a) Pattern as captured by a photo camera (b) Reconstruction of the binary pattern,

that does not block the infrared spectrum. see Reichinger| (2011).
Photograph used with permission by Karl Picture used with permission by Andreas
E. Wenzel. Reichinger.

Figure 2.5: Speckle pattern emitted by the infrared projector of Primesensor-based
RGBD cameras.

sensor used in the infrared camera is the same. The chip on the sensor employs (accel-
erated) dense block matching over a certain matching window to estimate the optimal
displacement and depth from the infrared image. The maximum resolution of the depth
image actually returned by Primesensor-based depth cameras is VGA (640 x 480). One
has to keep in mind, however, that each speckle and its displacement contribute to depth
estimates of a whole region of neighboring depth estimates. Depth values of pixels close
to each other are thus highly correlated and the information content of a depth image is
thus lower than what the VGA resolution may suggest.

2.3 RGBD Sensors

Depth cameras alone already provide rich information about the environment, which in
its nature is orthogonal to the data provided by traditional intensity- or color cameras. It
is therefore only reasonable to try and combine both to build so-called RGBD cameras.

An ideal RGBD camera is a camera which can be described using the model intro-
duced in sect. 2.1} For each pixel, however, it provides both color (RGB) and depth
values. Even though such cameras typically provide two separate images for RGB and
depth, we may think of depth as a fourth channel in one combined RGBD image.

2.3.1 Advantages of RGBD Images

The advantages of this representation are obvious: Given an RGBD image pair and the
calibration parameters of the camera, we can very efficiently reconstruct a colored 3D

17

Chapter 2 Cameras

(b) Colored point cloud reconstructed from RGBD image
and known intrinsic camera calibration.

(a) Example RGBD image pair

Figure 2.6: Example RGBD image pair and reconstructed colored point cloud.

point cloud, again relying on equation [2.3)] Even if we are only interested in col-
ored point clouds from RGBD cameras, storing the original RGBD images requires less
space than storing the full point cloud (one depth value instead of three coordinates per
point): RGBD images are thus a more compact representation of point clouds obtained
by RGBD cameras.

But even if we are not interested in reconstructing the full point cloud, we can directly
access the depth value for any pixel in the RGB image, e.g. at locations of interest points,
and compute the 3D position of the object to which this pixel belongs.

2.3.2 Obtaining RGBD Images from Real Data

In most cases, what we call an RGBD camera in fact consists of an RGB and a separate
depth camera and their measurements need to be combined in order to compute a reg-
istered RGBD image. Two separate cameras cannot share the same origin but must be
mounted next to each other with a relative pose “R¢BT;. , # I, that contains at least some
translational displacement. Once this relative pose is known by calibrating both sensors
with respect to each other (e.g. as described in [Zhang and Pless| (2004)), points of the
original depth image can be warped to the RGB image’s point of view and calibration.

uraB = UraB(draB(N(PRGB))) (2.14)
PrGB = TP T, -dp' (up' (up)) (2.15)

We may now extend the measurement model of a regular camera defined in equa-
tion|(2.11)[to the one of an RGBD camera, in which any point p € R3 within the camera

18

2.3 RGBD Sensors

coordinate system is projected to pixel location « and might lead to a depth measurement

d:
u=h(p) = u(d(n(p)))
d=d(p) = (p)- (216

2.3.3 History of RGBD Cameras

Stereo cameras in combination with dense matching for depth estimation may be con-
sidered the first RGBD cameras. They are, however, usually not referred to as that. This
is likely for several reasons: Since depth estimates from stereo vision heavily rely on
texture, they are not as reliable compared to active depth cameras. The two measurement
modalities of RGB and depth are not orthogonal but instead highly correlated in this case.
Finally, dense stereo matching is computationally expensive, whereas so-called RGBD
cameras typically provide the registered RGB and depth images without requiring any
additional computations, with the depth image warped according to equation in
hardware already.

There were already some efforts to combine color-and depth cameras before the re-
lease of Primesensor-based RGBD cameras. These early approaches relied on early time-
of-flight cameras, whose sensors were of very limited resolution. Fusing low-resolution
depth images with high-resolution RGB images was thus an important research topic
(see e.g. Huhle et al.|(2007)).

In contrast to these early RGBD cameras mentioned above, modern RGBD cameras
provide relatively high-resolution RGB and depth images and can warp the depth image
to be aligned with its RGB image in hardware already. This frees up the CPU for other
tasks.

19

Chapter 2 Cameras

20

Chapter 3

Mathematical Foundations of
Simultaneous Localization and
Mapping

3.1 Maximum Likelihood Estimation

A constantly recurring pattern in robotics is finding parameters of a model that agree best
with noisy measurements of various sensors. Prominent examples are state estimation
using Kalman Filters described in |Kalman (1960), which can be considered a recursive
maximum likelihood estimator of the system state (see Thacker and Lacey|(1996)), oc-
cupancy grid mapping using forward sensor models as proposed in Thrun| (2003), which
tries to find the best assignment of either free or occupied attributes to grid cells such
that it maximizes the joint likelihood of all measurements, and finally simultaneous lo-
calization and mapping, whose relation to maximum likelihood estimation will become
clear later within this section.

3.1.1 Elementary Maximum Likelihood Estimation

A sensor in general reports multiple measurements y = (y1,...1,)” € R™ which can de-
pend on a wide range of factors: Its location, environment and possibly many more. We
usually try to describe and include the most relevant dependencies in terms of a measure-
ment function, also called the measurement model. One example of such a measurement
model is equation |(2.11), which describes how a distinct point in 3D space is measured
in pixel location by a digital camera. A model may contain various unknown or uncer-
tain parameters = (z1,...x,,) € R™, e.g. the 3D position of a point seen in the image,
or the camera pose. Also, since measurements are in general subject to noise, we usu-
ally try to model the full probability distribution of sensor measurements given perfect
knowledge of all model parameters:

p(y|z) (3.1)

21

Chapter 3 Mathematical Foundations of Simultaneous Localization and Mapping

For many sensors, this is a joint probability of multiple individual measurements which
are not directly correlated:

N

p(yle) =] [plvile) (32)

i=1

The term above is a conditional probability distribution over y, but the actually measured
values y; are known and thus constant, whereas @ is unknown. We can consider the above
as a function of « and call it the likelihood function L, (x):

N

Ly(z) = p(yl@) = [[p(yil®) (3.3)

i=1

The term likelihood here stems from the fact that it is a conditional probability condi-
tioned on the variable as in the likelihood term of Bayes’ rule:

likelihood prior

—— =
_ plylz) -ple)

plzly) (3.4)
~—— p(y)
posterior ~~~

normalization

In robotics, “likelihood” is a slightly ambiguous term often used informally for identities
that are similar to probabilities but do not agree with their strict definition (e.g. in the
case above with the fact that probabilities need to be normalized). Examples can be
found, among others, in ch. 6.4 of Thrun et al. (2005) and Olson| (2009). The maximum
likelihood estimate ;. is the set of values for x that maximizes the above likelihood
function:

N

Tple = argmax Ly (x) = argmapr(yi\m) (3.5)

3.1.2 MLE with Normal Distributions: Least Squares Minimization

If we assume each measurement to follow a normal distribution, we can write down the
actual formula of p(y;|x):

o 1 (yi — fi(x))?
p(yZ’w)_\/ﬂ.geXp(_T> (3.6)

The mean f;(x) is the expected measurement according to an ideal deterministic model
given the true parameters . We can equivalently minimize the logarithm of the likeli-

22

3.1 Maximum Likelihood Estimation

hood, which leads to much simpler terms:

X ple = argminlog Ly (x) (3.7)
Z
N
= argminlog | [p(yilx) (3.8)
i=1
N
. 1 (yi —fi(fv))2)
=a lo exp [————5—— 3.9
rgn]dlin g[g\/2ﬂ'.0 p(202 ()
| X
— argngn%; i — fi(z)] (3.10)
_ SR A
—argménrsr 3.11)

Which corresponds to least squares minimization of the measurement errors. In the last
row, we combined all individual measurement errors in one residual vector r. If the
model f;(x) is linear in , there is a matrix A € R"*" such that:

flx)=A-z (3.12)
The residual vector is then:
m
r=y—A-x with ri:yi—ZAij:cj (3.13)
j=1

At the minimum of equation|(3.11)} the gradient of S = rTr = S 72 needs to be zero:

i=1"1

dS

== 3.14
0= 2o (3.14)
:gzna_rf (3.15)

= 22 (ZAZk:ck> Ayj) (3.16)

=1

By rearranging terms it follows that:

ZAijZ ZZAZ]AZIC'IK (3.17)

=1 k=1

23

Chapter 3 Mathematical Foundations of Simultaneous Localization and Mapping

If written in matrix-form this leads to the so-called normal equations:
(ATA> z— ATy (3.18)

This can be solved for 2 most efficiently by using the Cholesky decomposition if AT A
is well-conditioned and positive definite or alternatively using the computationally more
expensive singular value decomposition, even if it does not have full rank. (See Theorem
1.2.10 in Bjorck! (1996))

3.1.3 Heteroskedasticity and Weighted Least Squares

In the previous section, we assumed all measurements to be normally distributed with
equal variance 0. The covariance matrix of the vector of all measurements combined
was a trivial diagonal matrix.

X =01 (3.19)

When combining multiple measurements, possibly obtained from different sensors, this
is often not the case. In practice, the variance might depend on many factors and can be
different for each measurement, i.e. measurements are heteroscedastic.

X =diag(o?,...02) (3.20)

The maximum likelihood estimate has to be computed as:

1= [y~ filz)]
Tople = Arg rr;in 3 Zl [%} (3.21)
1=
= arg min r'Wr (3.22)
T \“/_/

S

Notice the additional weight matrix W in the equation above, which combines informa-
tion about all standard deviations ¢;. By comparing equations[(3.21)} [(3.22)], and [(3.10)]
[3.1T)] we can see that the weight matrix has to be diagonal with:

1 1
g

1 On

This weighted least squares system can be optimized by solving the following modified
normal equations:

<ATWA> = ATWy (3.24)

24

3.1 Maximum Likelihood Estimation

A more detailed introduction to weighted least squares can be found in chapter 5.5 of
Montgomery et al.| (2012).

3.1.4 Robust Least Squares

In real-world applications, using least squares as described before can lead to serious
problems because it relies on all measurement noise to be Gaussian, which is rarely the
case: The probability of measuring a value 6 standard deviations off the mean should be
ca. 1 in one billion (1 : 10?) assuming Gaussian noise. Practical experience tells us that
completely unexpected values are much more likely than that, be it because of sensor
failure, completely unexpected and thus not modeled effects, or sensor noise just not
following a Gaussian distribution at all. According to Huber in [Huber (1972) after all,
“one never has a very accurate knowledge of the true underlying distribution”.

The problem with the assumption of Gaussian noise is that one such theoretically
very unlikely measurement will have huge a influence proportional to the square of its
Mahalanobis distance and is enough to completely distort the result of least squares esti-
mation. One common technique to overcome this problem are M-Estimators, introduced
by Huber and first described in|Huber (1964).

The main idea is to generalize least squares estimation: Instead of minimizing the

2

square of the residuals z¢:1 i, we can minimize a different function of the residuals

N

S=> p(ri) (3.25)

i=1

where p should be symmetric, positive-definite with a unique minimum at zero (see
/hang et al.|(1997)). The minimum of this new objective function can be found in the
same way as before:

0= g—i (3.26)
oy
= glp(ﬁ) . g—; (3.28)
= zn:w(ﬁ) ng_;; (3.29)

With the influence function ¢ (z) = 8%—(;) and the weight function w(z) = @

If we compare equation [(3.29)] to [(3.15)}, it becomes clear that they are equivalent ex-

25

Chapter 3 Mathematical Foundations of Simultaneous Localization and Mapping

cept for a new individual scaling factor for each summand. We can minimize the general
objective function |(3.25)by solving the following weighted least squares problem:

N N
arg mainS = arg H;Jinz;p(m) = argmwinz; w(r;)r? (3.30)
1= 1=

There are various popular choices for p and the corresponding weight function w(r;).
Many choices of p turn robust least squares into maximum likelihood estimation as-
suming a non-Gaussian error distribution. Other choices do not correspond to any real
distribution, but are very robust to outliers. Good overviews over popular options for p
can be found in|Zhang et al.|(1997) and Hartley and Zisserman (2004) (A6.8, p.617). We
illustrate some relevant examples in figure 3.1}

The most obvious choice is, of course, p(x) = %, which again results in regular least
squares, i.e. maximum likelihood estimation for normally distributed errors. Another
interesting choice is p(x) = |z|. This corresponds to least absolute difference minimiza-
tion, which i1s a maximum likelihood estimator for errors following a Laplace distribu-
tion. We can see that p grows linearly with the error instead of quadratically, which
corresponds to a probability distribution with heavier tails compared to the normal dis-
tribution. The Cauchy estimator is a maximum likelihood estimator assuming the errors
follow a Cauchy distribution. Note that mean and variance of a Cauchy distribution are
undefined. Its scale parameter in figure [3.1{was chosen to make it comparable to the other
distributions. Our final example is the Tukey estimator, since it limits p to the constant
value of an upper bound for measurements far away from the expected value: This effec-
tively suppresses outliers, since w(x) = 0 for |z| > ¢. Because of this behavior, however,
there is no corresponding probability distribution: Its probability density would have to
converge to a certain value po, > 0 for z — +00, which means it cannot be normalized.

Iteratively Reweighted Robust Least Squares Algorithm

The problem with robust least squares is that we need an initial estimate of the model
already, before we can compute errors and by extension weights w, which are in turn used
to estimate the model. As opposed to normal least squares, we thus need to compute the
maximum likelihood estimate in an iterative scheme:

Example Problem

An example in which we apply robust least squares to a toy problem is shown in fig-
ure We want to fit a line model y = mz + b to noisy measurements y; at known
locations x;. The measurement noise of y; in this case is not Gaussian but sampled
from a Cauchy distribution, which is why we see more distant errors than expected with
Gaussian noise.

26

3.1 Maximum Likelihood Estimation

Weight p(x)

5 I I I I 7 I
— Least Squares
1T — Least Absolute []
———\
3 L — Tukey 1
Cauchy
2 |- _|
1 = _
0 | | ~ | |
Corresponding Probability Density Function
0ss T T T T T
0.7 _|
0.6 | _|
0.5 _|
0.4 | _|
0.3 _|
0.2 | _|
0.1 | J \¥ _
0.0 I l |
Corresponding Cumulative Density Function
1.0 T T T I
0.8 _|
0.6 | _|
0.4 | _|
0.2 | _|
0.0 | l l l
—4 —2 0 2 4
(x — /o

Figure 3.1: Comparison of different p-functions and their corresponding distributions.

27

Chapter 3 Mathematical Foundations of Simultaneous Localization and Mapping

Algorithm 1 Robust Least Squares

input: measurements y;
T, = initial estimate or least squares solution
while not converged do
compute weights w; based on y and x,,,;.
compute z,,;. by solving weighted normal equations
end while
output: robust estimate x,,.

We try to fit the best line using least squares (MLE assuming Gaussian noise), using
reweighted least squares using Cauchy’s weight function, and reweighted least squares
with Tukey’s biweight function.

We can clearly see from the top of figure [3.2] that the result of least squares is not a
good estimate in this case and far from the true underlying model. Both robust estimates
are much closer, with Tukey’s weight function performing even better even though the
result cannot be interpreted as a maximum likelihood estimate. We initialize both robust
methods with all weights set to w; =1 Vi, which is identical to the least squares estimate.
The bottom of figure[3.2]shows how the Tukey estimate converges towards the true model
with each iteration.

3.1.5 Non-Linear Least Squares

Thus far, we sustained the assumption that measurement models are linear, i.e. there was
a matrix A such that y = Ax. In Robotics, this assumption is rarely valid and almost all
practical models are non-linear, i.e. y = f(x) for a non-linear function f : R — R". We
can still apply large parts of the methods described earlier after linearizing the non-linear
model and residual at the latest estimate, which will lead to methods called non-linear
least squares. (See Madsen et al.| (2004) and Nocedal and Wright| (2006) for thorough
introductions.) The first-order Taylor series approximation of the residual vector r (see
equation [(3.13)) close to point « is:

r(x+h)=r(x)+J(x)h+O0(||h|? (3.31)
~I(h)=r(x)+J(x)h (3.32)

The linearization I of r is a function of the deviation h instead of x, since the lat-
ter remains fixed in this case. The last summand of equation can be consid-
ered irrelevant for small h and is discarded for a first-order approximation. The matrix
J(x) € R™™ is the Jacobian matrix of r(x), i.e. the matrix consisting of first partial
derivatives the vector result of residual r with respect to the model parameters x:

28

3.1 Maximum Likelihood Estimation

12

10

12

10

True Model
e o Measurements B
Least Squares Estimate
Tukey Estimate

— Cauchy Estimate ||

True Model
e o Measurements
e ° . o — Tukeyi=1 R
e Tukey i = 2
— Tukeyi=3 [
R — Tukey i=4 L
]]]]
2 4 6 8 10

Figure 3.2: Line Fitting using Least Squares and Robust Least Squares

29

Chapter 3 Mathematical Foundations of Simultaneous Localization and Mapping

(I (@), = 32() (3:33)

As before, we want to minimize the squared residual, but our latest estimate x is now
fixed, since this is the linearization point, and we are instead looking for the optimal step
h away from x:

L(h) = %<x+m r(@+h) (3.34)
z%“hfum (3.35)
; Tr 4+ nTgTer4 = hTJTJh (3.36)

From equation|(3.36)|on, we implicitly assume » = r(x) and J = J (x) unless a different
argument is explicitly provided. For L to be minimal its gradient L’(h) has to be O:

oL

T T
= h= 37
9h =J'r+J°J 0 (3.37)

L'(h) =

This leads to the normal equations for non-linear least squares. They are almost identical
to the linear case in equation [(3.18)|but instead of the data matrix A rely on the Jacobian
J, which may be considered the data matrix of the linearized model:

(JTI)h=—-JTr (3.38)

This is the core of each iteration of the Gauss-Newton Method for Non-Linear Least
Squares:

Algorithm 2 Gauss-Newton Method for Non-Linear Least Squares

1: input: measurements y

2: x := initial estimate

3: while not converged do

4: compute Jacobian J (x) = g’“ evaluated at current estimate x
5: compute step h by solving (JTJ)h = —JT'r
6 r:=x+h
7: end while
8: output: estimate x

30

3.1 Maximum Likelihood Estimation

Levenberg-Marquardt Method

The Gauss-Newton Method converges quickly if initialized close to the optimum but
convergence may suffer and even fail completely if initialized far away (see |Madsen
et al. (2004)). Levenberg| (1944) and [Marquardt (1963)) suggested modifying the Gauss-
Newton method by adding a damping term to its normal equations:

(JTT+M\Dhyy, = —JTr (3.39)

The damping parameter A > 0 is chosen heuristically to balance between pure Gauss-
Newton optimization for small values of A and small steps towards the direction of
steepest descent for large values of A. It also enforces the positive definiteness of the
system, which is required when applying the Cholesky decomposition.

More in-depth treatments of Levenberg-Marquardt and other algorithms can be found
in several textbooks (e.g. Nocedal and Wright (2006), Madsen et al.| (2004), or |Press
et al.|(2007)).

3.1.6 Non-Linear Optimization on Manifolds

In previous descriptions, we assumed the model parameters « to be elements of an m-
dimensional vector space, i.e. € R™. This is unfortunately not the case for almost any
problem in robotics and computer vision, since they often include orientations, which
are elements of the special orthogonal Lie groups SO(2) or SO(3) (see Hall (2003)).

There are various means of representing elements of Lie groups as real vectors. Ele-
ments of SO(3) are e.g. often represented using all entries of the corresponding rotation
matrix, Euler angles, normalized quaternions, or rotation axis and angle. Optimizing on
their vector representation directly, however, is a bad idea since they are not globally
Euclidean, which leads to several problems outlined in Blanco| (2010): Analytical Ja-
cobians might not exist, there are singularities (such as the so-called "Gimbal Lock™),
and non-minimal representations offer extra degrees of freedom, which can lead to the
optimization getting stuck moving along redundant solutions.

It is much more elegant and convenient to optimize “on the manifold”, i.e. store ele-
ments using any non-minimal but accurate representation and approximate the manifold
by the Euclidean space it resembles locally, close to a reasonable reference point (e.g.
its latest estimate) for correction steps. Optimizing on the manifold has been rediscov-
ered for robotics applications in recent years (e.g. in Hertzberg (2008), Grisetti et al.
(2010a), Hertzberg et al.| (2013)), even though it had been known for much longer (see
Gabay| (1982), Smith| (1993), Taylor ef al. (1994)) and was already applied extensively
in Bundle Adjustment and several visual SLAM systems (e.g. [Triggs et al.|(2000) Klein
and Murray (2007) Eade (2008))) before.

31

Chapter 3 Mathematical Foundations of Simultaneous Localization and Mapping

Lie Groups

Lie groups are mathematical groups and differentiable manifolds (see|Lee|(2003)). They
are not globally Euclidean but resemble Euclidean space in the local neighborhood of
each element. Lie groups typically encountered in robotics and computer vision are
rotations in n-dimensional space (the special orthogonal group SO(n)) and rigid body
transforms consisting of both rotations and translations in n dimensions (the special eu-
clidean group SE(n)). Both are matrix groups, i.e. they can be represented using real
matrices M € R”*™ and their group operation corresponds to matrix multiplication.
Even though elements of Lie groups are represented using real matrices in R"**™, their
degrees of freedom k are in general & < m? due to additional constraints. For rotation
matrices, e.g., these are M - M” = I and det(M) = 1 VM € SO((n)))

Lie Algebra

Each Lie group G with k degrees of freedom has an associated Lie algebra g, which is the
k-dimensional tangent space of G around the identity. Its canonical basis (G1,--- Gy)
is called the set of £ generators of g. If the Lie group is a matrix group, then elements
of the Lie algebra e € g can also be represented as matrices € R™*"., It is often more
convenient, however, to represent elements of g using a linear combination of the k
generators:

k
e = ch-Gi (3.40)
1=1

We will assume that elements of a Lie algebra are represented by their linear combination
of generators ¢ = (cq,- - ck)T € R¥ from now on, unless otherwise stated.

Exponential Map

A Lie group and its Lie algebra are connected by the exponential map which takes ele-
ments from the Lie algebra to the group: exp : g — (. For matrix Lie groups, i.e. all
groups we encounter in this work, this is the matrix exponential:

expr = Zﬁx (3.41)
i=0 "

32

3.2 Simultaneous Localization and Mapping

Optimization on the Manifold

We can now use a generalized addition operator B : G x R¥ — G as proposed in Hertzberg
(2008) and adopted in Blanco (2010) for corrections to Lie groups on the manifold:

r=xBHe<—= x=cxp(e) -z (3.42)

The state = might in fact be a product of mixed elements of Lie groups and real vector
spaces. For factors that are not elements of Lie groups, HH should fall back to the basic
addition operator. In order to find the optimal incremental update, we want the following
slightly different Jacobian to be O:

J(x) = % . (3.43)

The main difference is that we do not compute the Jacobian with respect to the state
which depends on its representation. Instead we compute the Jacobian with respect to
the correction step € on the manifold, i.e. the tangent space at .

The slightly modified optimization method is described in algorithm 3]

Algorithm 3 Levenberg-Marquardt optimization “on the manifold”

: input: measurements y
: @ := initial estimate
: while not converged do

Or(xHe)
Oe

compute Jacobian J (x) = evaluated at current estimate x

x:=xHh
- end while

1
2
3
4
5: compute step h by solving the normal equations (J”J 4+ AI)hy, = —J 'r
6
7
8: output: estimate x

3.2 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is the combination of two of the most
essential tasks in mobile robotics at the same time: Localization, i.e. estimating the
pose (position and orientation) of a mobile robot given noisy sensor readings and a prior
map of the environment, and Mapping, i.e. using noisy sensor readings to build a map
of the environment given known robot poses. The simultaneous combination of both
is similar to the chicken-egg problem: Localization requires some knowledge about the
environment (i.e. a map), and mapping requires successful localization.

We can only briefly outline the history of he most important and relevant aspects here
and refer the interested reader to several good existing overviews in Thrun et al.| (2005)),

33

Chapter 3 Mathematical Foundations of Simultaneous Localization and Mapping

Thrun and Leonard (2008), |Bailey and Durrant-Whyte (2006), and |Durrant-Whyte and
Bailey| (2006).

3.2.1 History

Durrant-Whyte and Bailey| (2006) date the beginning of SLAM research to 1986, when
the robotics and artificial intelligence communities started looking into probabilistic
methods. First significant steps towards the goal of SLAM were achieved in Smith and
Cheeseman (1986), which describes a method to estimate the probabilistic relationship
between any two coordinate frames, given several chains of uncertain relative transfor-
mations affecting both, and Leonard and Durrant-Whyte| (1991), which identifies and
describes the problem of not only representing but also reducing uncertainty for simul-
taneous localization and mapping using sonar range sensors. The name and acronym
SLAM, however, was only coined in the survey Durrant-Whyte et al.| (1996).

We now briefly describe the two competing solutions to the SLAM problem: SLAM
using probabilistic filtering and graph-based SLAM.

3.2.2 SLAM using Probabilistic Filters

Probabilistic filters and predominantly Extended Kalman Filters (EKF, see [Thrun et al.
(2005) for an accesible description) have been ubiquitous in robotics applications for
state estimation in general and specifically mobile robot localization from early on. It
was therefore only straightforward to try and pose the SLAM problem as a recursive state
estimation problem: If the map is modeled as a number of landmarks and their position
estimates, we can augment the state to include both the robot pose as in localization,
followed by all landmark positions. This is described in full detail in Smith et al.| (1990).
The major problem of this approach is the fact that the computational complexity of
EKEF is quadratic in the dimension of the state and thus the number of landmarks. One
way of alleviating this limitation is based on a factored representation that decomposes
the problem of estimating robot pose and landmark positions into estimating the pos-
terior over the robot path and estimating the locations of landmarks conditioned on the
path estimate, thich is called FastSLAM and described in Montemerlo et al.| (2002). Fast-
SLAM estimates the path posterior using a modified particle filter, where each particle
in turn contains one Kalman filter per landmark to estimate its location. In conjunction
with a tree-based representation lookup structure for all Kalman filters of each particle,
the authors claim a computational complexity logarithmic in the number of landmarks.

3.2.3 Graph-Based SLAM

An alternative to representing the SLAM problem as a dynamic Bayesian network is a
graph-based representation: Robot poses x; at certain times ¢ and landmark positions
are nodes in the SLAM graph, landmark measurements or relative pose measurements

34

3.2 Simultaneous Localization and Mapping

are edges connecting and constraining the corresponding nodes. Solving the SLAM
problem then corresponds to finding the best parameters for the nodes such that they
are maximally consistent with their edges (i.e. the actual measurements are close to the
expected measurements). If measurements can be considered functions of parameters
of their related nodes with added Gaussian or similar (see sect. [3.1.4)) noise, this opti-
mization problem can be formulated as a least squares problem and optimized using the
techniques described in sect. This idea was first mentioned in a robotics-related pub-
licatiorﬂ inLu and Milios (1997), where the authors describe how to build and optimize a
network of relative pose constraints derived from pairwise registration of 2D laser scans.
It took some time for Graph-based SLAM to become accepted, but it is today consid-
ered the state-of-the-art method of choice in many applications. A good introduction to
graph-based SLAM can be found in Grisetti et al.| (2010b).

!The idea of optimizing a graph built from measurements was not new at all: Bundle Adjustment, i.e.
the optimization of a graph consisting of camera poses and landmark positions, was well-known in
computer vision years before already, see e.g. |Granshaw|(1980).

35

Chapter 3 Mathematical Foundations of Simultaneous Localization and Mapping

36

Chapter 4

Monocular Visual Simultaneous
Localization and Mapping

4.1 Problem Overview

The term monocular visual Simultaneous Localization and Mapping (visual SLAM) de-
scribes SLAM using only one single camera (greek monos: one, lat. oculus: eye, monoc-
ular: ”with one eye”). Relying on a single camera alone is especially intriguing for small
flying robots because of the simple sensor setup that allows to build very light-weight
systems. The downside of relying on a monocular camera alone, however, is the sys-
tematic limitation of not being able to observe metric scale: Since a monocular system
observes its environment only through images obtained by perspective projection, it can-
not tell the difference between an object of size s at distance d or the same object of size
t- s at distance ¢ - d. This problem of scale ambiguity and some methods to cope with it
are described in more detail in section

4.2 Related Fields

Monocular visual SLAM is closely related to the subfield of multiple view geometry in
computer vision, whose history in turn can be traced back to the early beginnings of
photogrammetry, which is mainly concerned with “obtaining reliable information about
physical objects and the environment through [...] images [...] and other phenomena”
(see Slama et al. (1980)). Research areas of photogrammetry include, among others,
rectification, stereoscopy and aerotriangulation. Methods developed in photogrammetry
are often tools to be used by a trained photogrammetrist and do not have to operate fully
autonomously without any interaction.

Computer vision, on the other hand, is concerned with automatically extracting infor-
mation from digital images. The subfield of multiple view geometry studies methods
to infer the geometry of a scene that was captured in a number of digital images. It is
by now a rather mature field with several comprehensive textbooks available to the inter-
ested reader (e.g. Faugeras et al.|(2001), Hartley and Zisserman| (2004), Szeliski (2010)).

37

Chapter 4 Monocular Visual Simultaneous Localization and Mapping

Notable examples are systems that can automatically build accurate and visually pleasing
3D reconstructions from a number of digital photographs, e.g. photo tourism (Snavely
et al.| (2006)). We will later see that many methods, especially bundle adjustment, are
also applicable to SLAM (see section 4.4.4).

There is one main difference between photogrammetry or multiple view geometry on
the one hand and visual SLAM on the other hand, however: SLAM processes sensor
streams, i.e. timestamped sequences of images provided at a high frame rate, instead of
a sparse number of views captured with a wide baseline. The map of a visual SLAM
system is typically similar to the result of applying multiple view geometry algorithms:
It almost always consists of a set of keyframes and map points that were seen in multiple
keyframes. But a SLAM system is expected to produce pose estimates for each image in
the sensor stream.

There is also the term structure from motion (SfM) in computer vision, which is also
concerned with reconstructing a 3D model from a stream of images (mapping), for which
camera poses (localization) are an implicit byproduct. Structure from motion algorithms,
however, are “fundamentally offline in nature, analyzing a complete image sequence”
Davison| (2003), whereas SLAM is typically required to run and produce its results on-
line and in real-time.

4.3 Related Work

Almost all approaches to solving the monocular visual SLAM problem can be divided
into two categories: They are either based on probabilistic filtering or incremental opti-
mization. The former was originally more popular among robotics-related groups since
it allows the direct application of methods well-known in robotics, e.g. Kalman filtering,
whereas the latter stems from multiple view geometry and was thus preferred among
people with a background in computer vision. Differences and similarities as well as
their respective advantages and drawbacks are described in great detail in Strasdat et al.
(2010).

We will now only briefly describe the most prominent example of filtering. A more
detailed description of the most prominent example of optimization for visual SLAM
follows in section 4.4} since this is the path chosen for the rest of this work.

MonoSLAM

MonoSLAM |Davison et al.|(2007) is an open-sourceﬂ monocular visual SLAM system.
It is best described as the application of EKF-SLAM (see e.g. Thrun et al.| (2005))
to a system with a monocular camera that can observe visual landmarks. Its original
version was described in |Davison (2003) with subsequent improvements using wide-

I'The source code is published at http: //www.doc.ic.ac.uk/~ajd/Scene/

38

http://www.doc.ic.ac.uk/~ajd/Scene/

4.4 Parallel Tracking and Mapping

angle lenses (Davison ef al.| (2004)) and representing landmarks using locally planar 3D
patches instead of 2D image templates (Molton et al.|(2004)).

MonoSLAM allowed performing monocular visual SLAM in real-time on a desktop
computer in 2003 already, a great achievement for the time. It has some severe limita-
tions, however: Due to the computational complexity of EKF-SLAM, it can only con-
sider a very limited number of visual landmarks at the same time. The original author in
Davison et al.|(2007)) proposes “a number in the region of 12” in order not to overburden
the processor. Visual landmarks thus regularly have to be dropped from the EKF state,
at which point they are considered neither for localization nor for mapping any further.

4.4 Parallel Tracking and Mapping

Parallel Tracking and Mapping (PTAM) as described in |Klein and Murray| (2007) is a
keyframe- and optimization-based monocular visual SLAM system implemented Georg
Klein. It was originally intended for augmented reality applications in small environ-
ments (e.g. an office desk), which could serve as a virtual playing field.

Since PTAM allows accurate real-time localization at camera rate (typically 30Hz)
even when running on constrained computers, it quickly drew the attention of robotics
researchers, especially those working on micro aerial vehicles.

4.4.1 Architecture

PTAM uses a key-frame based map, i.e. it models the world as a collection of keyframes
(images plus derived data, e.g. the pose at which it was recorded) and map points (dis-
tinctive image points that were measured in multiple keyframes and triangulated). The
main purpose of the map in PTAM is to allow camera localization: It is concerned neither
with occupancy nor traversability.

PTAM uses two threads for two separate tasks: The tracking thread is responsible for
estimating the camera pose (i.e. localization) at a high rate with respect to the map. At
the same time, the mapping thread builds a keyframe-based map and optimizes keyframe
poses and map point positions to minimize the overall reprojection error.

This separation in two threads, combined with very efficient implementations of many
state-of-the-art methods, made PTAM a remarkable piece of software that is widely used
in robotics applications.

4.4.2 Tracking

The tracking thread iteratively tries to estimate the current camera pose by finding map
points in each captured image. For efficiency reasons, it internally estimates the inverse
camera pose, i.e. the transform “* T}y describing the relative pose of a fixed world-frame
W with respect to the camera frame C; at time ¢. Tracking involves the following steps:

39

Chapter 4 Monocular Visual Simultaneous Localization and Mapping

Prediction Based on Motion Model

PTAM uses a constant decaying velocity motion model for predicting the movement of
the camera. This means that for the a priori velocity v; it assumes the camera to move
at the same velocity v;_1 as before , except for a decaying factor o < 1 slowing it down.

Bi—a-v; 1 —a-log (Ct—zTW - Ct—lTV;l) AL @.1)

The a priori pose estimate CTWt is then computed as:
CtTW = exXp (515 : At) : Ct*lTW (4~2)

This is a suitable motion model for smooth motions, which do not contain abrupt changes.

Efficient Second-Order Minimization for Fast Rotations

Using the basic motion model described above, PTAM computes a reasonable a priori
pose estimate in most cases. Abrupt movements, however, are not covered by the model.
Fast rotations, especially, cause large changes in the 2D image and thus pose a difficult
challenge for tracking features.

This is tackled in PTAM by applying efficient second-order minimization (ESM, see
Benhimane and Malis (2004)) to downsampled versions of successive camera images in
order to estimate the 2D transformation Ty, € SE(2) between both which minimizes
the zero mean sum of squared differences (ZMSSD) error. It then tries to find the 3D
camera rotation Rpgys € SE(3) that explains the image motion Trgys best. If ESM-
tracking is enabled, it overwrites the predicted rotation according to Rggyy.

Finding Map Points

The main step in tracking is finding map points within the current image. PTAM first
finds interest points, in this case FAST-10 corners as defined in Rosten and Drummond
(2006), on multiple levels of the image pyramid (see [Tanimoto and Pavlidis| (1975))) of
the current image. Out of all map points visible according to the a priori pose estimate
and camera calibration, it selects a limited number of candidates and warps their source
patch by an affine transformation to account for a change in viewpoint. Finally, it per-
forms guided matching of map points to locations of interest points: For each map point
candidate, it considers interest points in a circular search window around its expected im-
age position and compares the ZMSSD between warped source patch and image patches
centered at the interest points. If the lowest ZMSSD is below a threshold value, it is con-
sidered a match and the image location is further refined by the inverse compositional
approach from Baker and Matthews| (2001]).

40

4.4 Parallel Tracking and Mapping

Nonlinear Optimization

Given several map points that were successfully found in the current camera image at
pixel location u; and their corresponding 3D position in map coordinates "V p,, PTAM
estimates the optimal inverse camera pose “*Tyy relative to the map such that it mini-
mizes the total 2D reprojection errors in a robust least squares sense:

CtTW/ = arg Cmin Zp (ﬂ) 4.3)
T o

Where p is a robust loss function as described in section [3.1.4] and e; is the 2D pro-
jection error in of measurement ¢ in pixel coordinates, using the notation introduced in
section 2.1k

ei=ui—h (T Vp,) (44)

If we consider a correction p € se(3) applied to the inverse camera pose along its tangent
space, this turns into:

ei(w) =ui—h ((“TweEp) - Vp;) (4.5
= u;—h (exp(p)- “T - p,) (4.6)
Since this optimization is performed by robust nonlinear least-squares optimization on

the manifold SE(3) (see section 3.1.6)), the reprojection error considering actual iterative
minimization procedure is computed as:

p' < argmin g p <ei(“)) “4.7)

no oj
1€S

Ty exp(p)- Ty = Ty B 4/ (4.8)

Iterative application of the equations above corresponds to algorithm [3} Equation
is computed by solving the normal equations, which requires the Jacobian of e; which
is derived later in section PTAM uses the Tukey biweight function as the robust
objective function Obj by default.

Map Initialization

In original PTAM, the user has to intervene to interactively initialize the map by point-
ing the camera at a first frame, hitting a key, slowly moving the camera sideways, and
hitting another key. This provides PTAM with the two first keyframes. Correspondences
are determined by tracking some corners from frame to frame using sparse optical flow

41

Chapter 4 Monocular Visual Simultaneous Localization and Mapping

(hence requiring slow motions) and used to triangulate a set of initial map points. Once
this initialization is done, regular tracking as described above begins. Since the distance
of the translation between the first two keyframes is unknown, it is assumed to be 1.
Monocular SLAM alone cannot recover the correct metric scale, so reconstructed map
points and pose estimates are scaled by an unknown scale factor that depends on the
translation between the first pair of keyframes.

4.4.3 Mapping

The mapping thread is responsible for adding new keyframes, deciding on and triangu-
lating new map points and, most importantly, local and global optimization of the map,
i.e. the SLAM graph.

Deciding About New Keyframes

A new keyframe is added whenever tracking succeeded and the camera is more than a
certain threshold way from the closest keyframe. This threshold is chosen as a ratio of the
mean scene depth to enforce a minimum baseline between keyframes, which is required
for successful triangulation.

Adding New Keyframes

If a new keyframe should be added, PTAM will first try to find some additional map
points, since the tracking thread limits the maximum number of candidates considered
due to its strict real-time constraint.

After that it tries to create new map points from interest points in the new keyframe
by triangulation with the one old keyframe closest to the new one. Since the depth of
new map points is initially unknown, it tries to find these within the old keyframe by
checking interest points close to their corresponding epipolar line within the one old
keyframe. Comparison is performed using ZMSSD without affine warping. The search
length along the epipolar line can be limited by only considering possible depth values
that are likely to be found given the distribution of depths of existing map points found
in the new keyframe.

If a good enough match is found, an initial 3D position estimate of the map point is
computed by initialization.

Local and Global Map Optimization

Keyframe pose estimates obtained from tracking and map point position estimates ob-
tained by triangulation are quickly computed but in general not optimal in accuracy, since
they only rely on a limited amount of information: Ideally, we should optimize the full
SLAM graph for optimal keyframe pose and map point position estimates.

42

4.4 Parallel Tracking and Mapping

O
0
O

Figure 4.1: Example of a bipartite Bundle Adjustment graph

In monocular visual SLAM, optimizing the full SLAM graph is also called bundle
adjustment, which is so important that we describe it in more detail in sect.[4.4.4l PTAM
applies bundle adjustment in a first local step optimizing a local window (i.e. submap)
consisting of the latest keyframe and its n closest neighbors, and a second global step
optimizing the full SLAM graph. The idea behind using two steps is that global opti-
mization is computationally expensive but substantial changes are expected mainly close
to the most recent keyframes. Local optimization can thus quickly improve inaccuracies
within the latest parts of the map while global optimization spends much computational
power for the expensive steps towards optimal accuracy.

If keyframes are added at a rate that does not allow global adjustment between succes-
sive keyframes to finish, at least local bundle adjustment is likely to succeed and already
significantly improve map accuracy already.

Map Maintenance

Whenever the mapping thread is done with both local and global bundle adjustment, it
will spend some time on map maintenance, i.e. trying to identify and remove outlier
measurements and finding map points in more old keyframes.

4.4.4 Bundle Adjustment

Bundle Adjustment (BA) is the problem of finding optimal estimates of both camera
poses and landmark positions given several measurements of landmarks in camera im-
ages. Itis a well-studied problem with a long history in computer vision and photogram-
metry. A good survey of the most relevant literature can be found in [Triggs et al.| (2000).
The problem can be represented as a bipartite SLAM graph with camera pose nodes
on one side, landmark nodes on the opposite side, and measurement edges connecting
related cameras and landmarks: A camera pose node c; and landmark node /; are con-
nected by a measurement m; ; if and only if landmark /; was seen by camera ¢;. A toy
example of such a graph is illustrated in Fig. @.1|

43

Chapter 4 Monocular Visual Simultaneous Localization and Mapping

Optimal estimates of camera poses a and landmark positions b should generally min-

imize a cost function
N e i(a;,b;)
HWEEY (49)

o
i=1j€S; bl

Where e; j = m,; j — 'n/%\j is the reprojection error of measurement 1m; ;, @(ai, b;) is

the expected measurement given the current estimates of camera pose a; and landmark

position b;, 0; ; is the uncertainty (i.e. assumed standard deviation) of the measurement
according to our probabilistic measurement model and p is a robust loss function.

This is a robust non-linear least squares optimization problem and can be solved using
the methods described in sect In PTAM, this optimization is performed using a
variant of the Levenberg-Marquardt algorithm that applies a slightly different augmen-
tation using the damping parameter also mentioned in [Hartley and Zisserman (2004,
which replaces the matrix (J Ty4pur) in the normal equations by the matrix J7J with
its diagonal multiplied by (1 +).

(JTJ Y- diag(JTJ)> by — —JT f (4.10)

Parameter Partition

The normal equations are a linear system of size n x n with n being the total parameter
size or n = 6n. + 3nyxr with n,. cameras and n, points. Solving this system naively
quickly becomes infeasible for real-time application. Major speedups can be achieved
by considering the sparsity of the Jacobian and pseudo-Hessian and the fact that they
are block matrices with a specific structure. This structure is illustrated for the example
graph of Fig. in Fig. 4.2} Each measurement adds two rows to .J, which are only
non-zero in columns corresponding to the camera pose at which it was measured and the
position of the related landmark. It can also be partitioned into two parts:

J=(A B) 4.11)

Where A is the Jacobian of the error vector f with respect to camera poses and B with
respect to landmark positions. It follows that the matrix J7 J also exhibits a partitioned

structure: T T
A'A A'B Uu W
TN = (BTA BTB> - <WT V) (“412)

The normal equations |(4.10)|can thus also be written as:
U W)\ (hy\ [fa
(WT V*) (hb> - (fb (413)

44

4.4 Parallel Tracking and Mapping

Figure 4.2: Block structure of Jacobian J (top) and Pseudo-Hessian J*.J (bottom) for
the example graph shown in figure 4.1}

Where U* and V* correspond to the matrices U, V' with their diagonals multiplied by
(1+). Multiplying the previous equation by the following matrix

I —-w (v
<0 .) (4.14)
from the left-hand side yields:
U —w (V)W 0 (ha _ (fa=W (V) S, @.15)
wT V) \h fo '

Solving eq. [(4.15) now involves consecutively solving two much smaller systems com-
pared to eq.[(4.13)] which is in general much faster.

Measurement Jacobians

The actual numbers for each entry in the Jacobian J could be computed automatically us-
ing numerical differentiation, which is too slow for real-time optimization, or automatic
differentiation [Griewank! (1989). Since analytical derivatives do exist and can be com-
puted, however, using analytical Jacobians is preferable for both fast convergence and

45

Chapter 4 Monocular Visual Simultaneous Localization and Mapping

computation. The Jacobians are not derived in Klein and Murray| (2007)) so we derive
these here for future reference.

When considering only one measurement m; ; and its related camera pose c; and land-
mark position p;, its reprojection error in 2D pixel coordinates is:

@J:WJ_@J:“M_hGﬁ%”WW> (4.16)

The relevant non-zero blocks of its Jacobian A; ; with respect to change in camera
pose C; and B; ; with respect to landmark position p; are:

Am:_@hﬁeg?@pﬁ) (4.17)
_ oh(p') 0@ Ci®p; (4.18)
8p' p,:Ci@pj Oe
h /
__onp) (I —[Ciop,l,) (4.19)
op p'=C;®Dp;
B —— oh (Cﬁ’zp@ pj)) (4.20)
j
ap/ p'=C; ®p; 3pj
/
:_%@) ‘R, (4.22)
op p'=C;®p;

We have shown in section that the camera projection h can be modeled as an
idealized perspective projection, distortion, and finally a linear projection (cf. equa-

tion [(2.1T)):
h(p) =u(d(n(p))) (4.23)

In order to compute the Jacobian of ~ missing above, we can thus apply the chain rule
and substitute C; © p; = q:

(4.24)

46

4.5 Porting and Extending Parallel Tracking and Mapping

With the Jacobian of the idealized perspective projection:

on / 1 0 _1
a(’f |- (‘6 K) (4.25)
P lp=q qz q
And the Jacobian of the linear projection:
U
Juld) = ({f ;) (4.26)
0’ a—an(a)) Ty

The Jacobian matrix of the distortion depends on the desired distortion model. For the
ATAN model, it can easily be computed and is still rather compact:

1 ([n? ’

- 2
Ty \NazNy N3 orl,

ad(n’)
on’

n'=n T =ry

Where r, = 4 /n% + ng is the undistorted radius, r, is the distorted radius, and the re-

maining derivative above can be computed from the definition of the distorted radius in
section [2.1.4:

Orq(ru) 2tan(g)
Ory w(4r2tan®(%)) (4.28)

4.5 Porting and Extending Parallel Tracking and
Mapping

Our first steps towards being able to use PTAM on our robots involved porting it to
the Robot Operating Syste (ROS, see Quigley et al.| (2009)), a robotics framework
and middleware currently used in almost all robotics research laboratories worldwide.
We implemented a ROS-wrapper around PTAM to allow using camera images provided
via ROS messages instead of accessing the camera directly. This allows using PTAM
with any camera supported by a driver for ROS, with data recorded on any robot using
the rosbag functionality for logging, and even when streaming camera images over the
network.

Since software on robots often needs to run in a headless mode without being able to
use any GUI, we also implemented an alternative visualization using ROS visualization
messages so we can stream and visualize the current state of keyframes and map points
together with other properties of a robot on a separate ground station computer.

This enabled autonomous navigation of a micro aerial vehicle with only a monocular
camera which led to multiple interesting projects which are only tangentially related to

Thttp://www.ros.org

47

http://www.ros.org

Chapter 4 Monocular Visual Simultaneous Localization and Mapping

the scope of this dissertation. |Yang et al.|(2012), Yang et al.|(2013a)),|Yang et al.|(2013b)),
Yang et al.| (2014a), |Yang et al. (2014c), |Yang et al. (2014b)

4.6 System-Inherent Limitations of Monocular SLAM

As mentioned before, a monocular camera alone cannot observe the global metric scale
of its motion and its environment: There will always be a scale ambiguity. This am-
biguity, however, has to be resolved in order to provide useful information, e.g. pose
estimates, to a mobile robot.

In the case of a flying robot, we might safely assume that it has at least some prior
information about the location where it takes off, e.g. a helicopter landing pad of known
size. As long as the camera sees this known landing pad, the relative pose of the camera
including the full metric scale can be inferred. Using a modified version of our object
detection method originally intended to detect number signs on wheeled robots described
in|Scherer et al.|(2011), we were able to initialize PTAM metrically correct by relying on
the relative pose to the landing pad for the two first keyframes. This enabled autonomous
takeoff, navigation, and landing of a small MAV using a monocular camera as its main
sensor in Yang et al.|(2012) and |Yang et al. (2013al).

Another way to cope with this scale ambiguity is mounting a complementary metric
sensor an the MAV. A cheap, light-weight and thus popular choice for MAVs is the
combination of a downward-looking monocular camera combined with an ultrasonic
sensor that can measure the distance to the ground. It has been shown multiple times that
this allows to get metric visual odometry measurements, e.g. in |Grabe ef al.|(2012). In
a similar vain, depth or stereo cameras also provide metric measurements of the scene
geometry, which is described in[Scherer ez al|(2012) or in chapter [5|in more detail.

Finally, an inertial measurement unit (IMU) can be used to infer the otherwise am-
biguous scale factor. |Weiss et al.| (2012) demonstrate that the scale ambiguity can be
resolved by using pose estimates with unknown scale obtained from a monocular odom-
etry system within an extended Kalman Filter that estimates among others the current
scale factor within its state.

48

Chapter 5

Using Depth in Visual Simultaneous
Localization and Mapping

In this chapter, we propose a novel combination of 2D information from color or intensity
images with depth measurements as obtained by depth cameras for visual simultaneous
localization and mapping. We described and published most aspects of this chapter in a
more compact form in|Scherer et al.| (2012) for the first time.

5.1 Motivation

RGBD cameras, which are cheap, lightweight, easy to use with open-source drivers, and
provide rich information about the environment at high rates, are justifiably considered
outstandingly suitable sensors for solving the simultaneous localization and mapping
task on mobile robots.

For us, the major goals for SLAM using RGBD cameras were high efficiency, to al-
low real-time operation on computationally constrained hardware, accuracy of localiza-
tion and mapping, and robustness with respect to failures in measuring depth, which is
explained in more detail in section[5.3]

5.2 Related Work

Related approaches to SLAM with RGBD cameras in general belong to one of two cat-
egories: They can be based on feature matching or dense registration. Some approaches
even combine both.

5.2.1 Feature Matching

The first category works by matching sparse image features between RGB (i.e. inten-
sity) images. If there are valid depth measurements at the relevant pixel locations in
both depth images, the 3D positions of both image features can be reconstructed, which
leads to a set of 3D to 3D point correspondences. The relative pose of two RGBD

49

Chapter 5 Using Depth in Visual Simultaneous Localization and Mapping

frames can be computed from at least three such 3D to 3D point correspondences us-
ing one of the closed-form solutions described in Eggert et al.| (1997), ideally within a
RANSAC scheme to weed out possible outliers. In computer vision, estimating the rel-
ative transformation between 3D to 3D point correspondences is a well-known problem
called absolute orientation (see [Horn| (1987)).

The first such approach to RGBD-SLAM was demonstrated by Henry et al. (2010).
After successful initial registration as described above, they refine the relative transfor-
mation using iterative closest point registration (ICP, see Besl and McKay| (1992)) (Chen
and Medioni|(1992)) of the full point clouds reconstructed from both depth images. They
also employ the same registration technique for registering frame upon detected loops
and optimize the map using pose graph optimization. An open-source implementation
of this approach is described in Engelhard et al.| (2011), which the authors call RGBD-
SLAM.

5.2.2 Dense Methods

We call the second category of RGBD-SLAM approaches dense methods, since they
consider the whole RGBD image instead of only a sparse set of interest points. If we
assume to obtain reliable depth measurements for the full image, we can warp the current
RGBD image by applying a rigid body transform in SE(3) to all of its 3D points until it
is as close as possible to a second reference depth image.

In the simplest case, this registration may be performed on point clouds reconstructed
from depth images, for which well-known algorithms like iterative closest point (ICP,
see |Besl and McKay| (1992)), its more modern variant generalized ICP (see Segal et al.
(2009)), and the normal distributions transform (Biber and Stral3er| (2003))) exist.

When using RGBD images, it is more efficient to minimize error measures defined
on the RGBD images directly, since this is a much more compact representation than a
colored point cloud. Steinbrucker et al.|(2011) proposed to maximize photoconsistency,
1.e. to minimize the squared intensity error between warped current and reference image
for odometry estimation. Whelan et al.| (2013)) showed a real-time implementation of
this method on a GPU. A robust variant that can deal with outliers was described in [Kerl
et al.[(2013a) and a SLAM system built around this in Kerl et al.| (2013b)).

Compared to sparse methods, dense methods have both advantages and drawbacks:
Since they make use of more information contained in the full RGBD image they can be
more accurate than sparse methods. This obviously comes at the expense of computation
time. Even initialy implementations required a GPU for camera rate tracking (Whelan
et al. (2013))), current implementations as in Kerl ez al.|(2013a)) allow close to camera rate
tracking on a powerful CPU at reduced resolutions (QVGA) already. Moore’s law pre-
dicts that the difference in computation time will likely become negligible in the future.
But until then, sparse methods still have their right to exist, especially on computationally
constrained systems such as MAVs.

50

5.3 Main Idea

5.3 Main Idea

All of the methods mentioned in section [5.2] require reliable dense depth images mea-
sured by the depth camera. Early on in our experiments with RGBD cameras on mobile
robots, however, we noticed image pairs similar to the one shown in figure [5.1} Large
parts of the environment are missing from the depth image (shown in black) due to depths
above the maximum measurement range, challenging material (reflective floor, glass cab-
inets), and even sunlight. Not considering large parts of such an RGBD image pair at all
because of missing depth values would throw away useful information, since the RGB
channel (i.e. texture) alone still tells something about the environment: At least as much
as we could infer using monocular visual SLAM alone.

Figure 5.1: RGBD image pair taken on the corridor in our department.

So why not base our work on mononcular visual SLAM, which can be implemented
efficiently as seen in chapter[d] and improve it using depth measurements whenever avail-
able? We would expect this to be at least as accurate and reliable as using monocular vi-
sual SLAM alone. Adding a number of depth measurements should improve its accuracy
considerably and solve its systemic limitations described in section [4.6]

5.4 Integrating Depth Information

All measurements as used for both tracking and mapping in original PTAM are always
the 2D pixel locations at which map points were found. For combining both 2D and
depth information, we considered two options: Minimizing 3D reprojection errors or 2D
plus depth reprojection errors.

51

Chapter 5 Using Depth in Visual Simultaneous Localization and Mapping

5.4.1 3D Reprojection Errors

If there is valid depth information available for a measured 2D position, we can recon-
struct the full 3D point p; and compute the error between expected and measured position
of a map point in 3D camera coordinates:

e;=p;— Ty -Vp, (5.1)

Compared to the 2D reprojection error (equation [(4.4)), this is much easier, since the
error term in this case does not depend on the camera projection model but only on
the camera pose. This is the reprojection error minimized by Henry et al. (2010) and
Engelhard ef al.|(2011) and in iterative closest point (ICP) registration of two point clouds
in general. Several closed-form solutions for the regular least-squares optimum can be
found in Eggert et al.|(1997).

Error Jacobians

If we were to use 3D reprojection errors in efficient non-linear least squares optimization
of the camera pose Ct Ty, we would need the non-zero blocks of its Jacobian A; j with
respect to change in camera pose C; along the manifold, which can be computed as:

8 (66 . CtTW . Wpi)
Oe

Aj=—

(5.2)

For bundle adjustment, we also need the Jacobian B; ; of the 3D reprojection error with
respect to the landmark position p;, which is:

0(“Tw - "'p;)
oW p;
——(“rw) (5.5)

B, =— 5.4)

Note that A; and B; in this case correspond to equations [(4.19)| and [(4.19)] without the
factor due to the full camera projection.

Problems

There are two problems with this approach, however: First, we obviously cannot use
the 3D reprojection error above for measurements without valid depth information. For
these measurements, we are still stuck with 2D reprojection errors, i.e. we would need
to mix 2D and 3D errors. Second, we need to estimate the measurement uncertainty
of all reprojection errors in order to combine these using heteroskedastic least squares

52

5.4 Integrating Depth Information

as described in section Doing this accurately for 3D errors is difficult, since 3D
positions are not measured directly but can only be inferred by transforming two other
measurements (2D and depth) by applying a nonlinear function. The distribution of 3D
errors is thus even more likely to violate the Gaussian noise assumption and any estimate
of the covariance matrix of 3D positions, e.g. obtained by propagating measurement
covariances through a linearized model, is bound to be inaccurate. This leads us towards
the following second option for integrating depth measurements.

5.4.2 Combining 2D and Depth Reprojection Errors

We have already established that we need to keep using 2D reprojection errors when
there is no depth available. It is only consistent to just always use 2D reprojection errors
and add depth reprojection errors whenever depth is available. This depth reprojection
error is simply:

ei=d;— (“Tw-"p;) (5.6)

Where (p) . denominates the z coordinate of point p. Depth, after all, is defined as the z
coordinate of a point in 3D.
Error Jacobians

We again need the Jacobian matrix of the depth reprojection error e; with respect to small
change €€ in camera pose T}y along its tangential manifold:

0 (e YTy - "py),

A =— (5.7)

Oe
:_@3_pmn%mk (5.8)
= — (0 0 1 (Ctpi)y _(Ctpi)z 0) (59)

Which is identical to the last row of equation [(5.3)] The Jacobian of depth error with
respect to its map point’s position, similarly, is identical to the last row of equation

o(“Tw-"p;),
=gy, (5.10)

. (CtRw)z (5.11)

Error Uncertainty and Normalization

2D and depth reprojection errors are in completely unrelated dimensions: 2D positions
are measured in pixels, depth in meters. They can still be combined using heteroskedas-

53

Chapter 5 Using Depth in Visual Simultaneous Localization and Mapping

tic least squares if an estimate of their measurement uncertainty is known. Section [5.6)
describes our probabilistic measurement models and how we determined the model pa-
rameters.

5.5 Parallel Tracking and Mapping using Depth
Measurements

We extended our fork of PTAM running on ROS first mentioned in section 4.5|to enable
use of RGBD image pairs. It relies mainly on the RGB part (i.e. the intensity image) and
queries the depth image for depth values at the location of interest points (FAST corners)
within the intensity image. We extract and store depth values for all FAST corners, which
only introduces a negligible overhead in computational load and memory consumption.
After that, the depth image may be discarded. We usually still keep it in memory for
image pairs that are promoted to keyframes and added to the map for further processing
by other tasks.

5.5.1 Map Initialization

With RGB and depth information available, the map can be initialized from a single
RGBD frame: Out of all interest points after non-maximum suppression with valid depth
values in the initial RGBD frame, we only consider these with a Shi-Tomasi score above
a fixed threshold. The best (according to their Shi-Tomasi score) n per pyramid level
are promoted to map points if there was no map point at almost the same location on a
higher level already.

Since we have depth measurements for all such map points, we can compute their
3D position estimates from the first RGBD frame alone using equation and start
tracking this map.

5.5.2 Pose Tracking

Pose tracking does not explicitly require depth measurements for metrically correct pose
estimates as long as map points are correctly triangulated. Three 3D to 2D correspon-
dences are enough in the minimal case, after all, to recover the camera pose as described
in Fischler and Bolles|(1981) or DeMenthon and Davis| (1992)). For ideal accuracy, how-
ever, we want to use all information available: Both 2D and depth measurements.

We thus optimize an augmented version of the objective function in equation [(4.3)]
which combines both 2D and depth measurements in the set .S:

/ . €;
= § — 5.12
pr = argmin p(a‘) (5.12)

(3

54

5.6 Measurement Uncertainty Models

Here, e; may either be a 2D reprojection error in pixels e; € R? or depth e; € R in
meters. The uncertainty estimate o; is then chosen according to the model described in
section 5.6

5.5.3 Triangulation when adding Keyfames

New map points are added whenever a keyframe is created. Since PTAM represents map
points using their position with respect to a fixed global 3D coordinate frame, they need
to be properly triangulated before they can be added to the map.

The original version of PTAM creates new map points from a new keyframe in the
following way: Interest points are computed for tracking already, but some were asso-
ciated with previously existing map points. Thus only interest points that are not too
close to the projections of existing map points are considered as candidates for new map
points. PTAM then tries to find these map point candidates within the closest previous
keyframe by guided matching along its corresponding epipolar line and computes a first
estimate of its 3D position by stereo triangulation. In consequence, a map point can
only be triangulated and therefore used for tracking after it was measured in at least two
keyframes.

When using depth images, we choose new map points in the same way, but we prefer
to rely on depth measurements instead of triangulation: If there is a valid depth mea-
surement for a map point candidate, we do not try to find it in a previous keyframe but
compute its 3D position estimate using the measured depth value. If there is no valid
depth measurement, we fall back to triangulation instead.

5.6 Measurement Uncertainty Models

Heteroskedastic least squares (see section [3.1.3)) allows us to combine measurements
from various sensors with different measurement uncertainties. In addition to the val-
ues actually measured, it also requires an uncertainty estimate for each measurement.
Finding an appropriate model for these uncertainty estimates is thus an important issue.

5.6.1 2D Uncertainty

2D pixel position measurements in PTAM are obtained by finding a map point on a cer-
tain image pyramid level 7 of an image. The pixel location within the pyramid level is
then represented with respect to the original image to allow using the same camera cal-

!Using a different representation, e.g. a camera-fixed representation with inverse depth coordinates as
proposed in Montiel et al.| (2006), it would be possible to initialize a map point from a single 2D
measurement as a ray with infinite depth uncertainty.

55

Chapter 5 Using Depth in Visual Simultaneous Localization and Mapping

ibration for all measurementsE] We can expect the 2D pixel accuracy to be proportional
to the size of a pixel on pyramid level 7 with respect to pixels of the original image s;

O'Z':k}-si (513)

with a common proportionality constant k. This is implemented in the original version
of PTAM already. Since it originally only uses 2D measurements, the actual value of k
18 irrelevantE] however, and thus set to & = 1.

When combining 2D and different measurements with uncertainty estimates, the ac-
tual value of £ does matter, since the other measurements might not depend on k, and
choosing the value of k arbitrarily changes the influence of 2D measurements over the
others.

We determined a rough estimate for £ experimentally in Scherer ef al.| (2012) by run-
ning PTAM using only 2D measurements and determining the standard deviation of final
reprojection errors after optimization for each pyramid level individually. The constant
k can then be determined from each pyramid level ¢ via:

J;

k=— (5.14)

Si

Averaging over all pyramid levels lead us to an estimate of £ = 0.987.

5.6.2 Depth Uncertainty
Theoretical Model

Depth measurements in Primesense-based RGBD cameras are obtained internally by
measuring the displacement of an infrered dot pattern projected into the scene (see sec-
tion[2.2.2). The underlying geometry is identical to stereo vision, where disparity p and
depth d are known to be connected by focal length f and base line B (see e.g. Szeliski
(2010), p. 539):

i » (5.15)

It is safe to assume that the disparity p can be measured with a fixed uncertainty o, which
is limited by the template matching accuracy. We can now use the rules of error propa-
gation to compute an approximation of the uncertainty in depth 4. In the 1-dimensional

ZMeasurements of 2D pixel positions could instead also considered with respect to their actual pyramid
level. This would require using different intrinsic camera calibration parameters (principal point and
focal length) for each pyramid level, which is rather inconvenient.

3Changing the value of k is identical to modifying the weight of all 2D measurements by the same global
factor, which does not affect the outcome of least squares optimization.

56

5.6 Measurement Uncertainty Models

case, this 1s simply (see Taylor (1997), p. 65):

Jq=|—|0x (5.16)
dx
This leads us to:

ad(p)

04 = a—p‘-ap (517)
fB d?

:’—p—2 'Up:f—Buo'p (5.18)
oq(d) = kq - d? (5.19)

Where we replaced the unknown disparity p by depth d since this is the value actually
provided by the depth camera. This means the uncertainty of depth measurements is
expected to grow proportionally to the square of the actual depth value. As shown above,
we can combine all calibration parameters f, B, and o, of the model in a single constant
Ky, which can be determined in a calibration experiment.

Parameter Identification

The unknown parameter k; above may be different for each depth camera. It has to be
identified in a calibration step. We did this with the following experimental setup: We
placed the RGBD camera directly facing a single large planar wall at various distances
from the wall ranging from 5 x 10" m to 3.5m and captured calibration images. We
then used the LO-RANSAC algorithm described in (Chum et al.| (2004) to robustly fit a
plane to each recorded depth image. With knowledge of the plane parameters, we could
compute both depth and depth error for a large number of points on these calibration
planes.

57

Chapter 5 Using Depth in Visual Simultaneous Localization and Mapping

Noise of the Kinect sensor
0.040 , , , I I

0.035 H — estimated noise model —

0.030 H °o sampled standard deviations -
0.025 |-

0.020 |~
0.015 |-
0.010
0.005 |~

0.000

0.5 1.0 1.5 2.0 2.5 3.0 3.5
depth [m]

Figure 5.2: Experimentally determined standard deviations of the Microsoft Kinect depth
camera over actual depth.

In a second step we sorted all points by their actual depth and collected samples of
similar depth in bins of 10cm width. This allowed us to estimate the standard deviation oy,
for each bin, which is illustrated by the dots in figure[5.2] In order to find the parameter
k4, we finally fit the model equation to our measurements by minimizing the
relative error with respect to the standard deviations estimated from the sampled bins:

. od(ds)

g
b b

Which led us to a value of k; = 3.331 x 103 m ™.

Later Experiments

Rauscher et al. (2014) evaluated multiple depth and range sensors including the Mi-
crosoft Kinect depth camera in more detailed experiments. They chose to fit a slightly
different model, though:

o4(d) = a+bd + cd?

Where a and b do not have a theoretical foundation but seem to slightly improve the
model accuracy. The corresponding model parameters for the Kinect depth camera are
determined to be @ = 7.152 x 102 m, b = —6.750 x 1072, and ¢ = 3.296 x 103 m~".
The values of a and b become more and more irrelevant with growing depth values and
c is actually very close to the value of k;, obtained as described above, which shows that
the two models almost agree.

58

5.7 Experiments and Results

Figure 5.3: Metralabs SCITOS G5 robot with Microsoft Kinect and Sick S300 laser
rangefinder used for accuracy evaluation.

5.7 Experiments and Results

Since we initially did not ave access to an external tracking system which could provide
us with ground truth camera poses, we mounted a Microsoft Kinect RGBD camera on
a Metralabs SCITOS G5 wheeled mobile robot with a differential drive mechanism and
a SICK S300 laser rangefinder depicted in figure [5.3] Laser scans and odometry infor-
mation allowed us to accurately localize the robot within a previously built 2D map of
the environment using monte carlo localization (see [Fox ef al.| (1999)) and thus provide
ground truth pose estimates.

We manually controlled the robot to drive ca. 106 m through a long corridor and a
visually challenging museum room with several glass cabinets. Long, weakly textured
walls, reflecting surfaces, and a mixture of artificial light and sunlight shining through
windows made this a challenging environment. We recorded all data available for further
offline processing and evaluation.

Accuracy Evaluation

We use the dataset mentioned above to evaluate and compare localization accuracy using
the different improvements introduced by our method.
For the first experiment, we applied the original monocular version of PTAM, but we

59

Chapter 5 Using Depth in Visual Simultaneous Localization and Mapping

Estimated Trajectories

35 , , i i
‘s 30 H — ground truth _
w925 b monocular case _
5 20 W — 3D initialization]
1
» BA with depth ‘
o 15 H —
o
o 10 | —
o
E 5 —
.g B
S o - _
_5 L1 | | | |

0 20 40 60 80

position on z-axis [m)]

Figure 5.4: Estimated trajectories and ground truth data.

use depth information at the very first keyframe to correctly initialize metric scale of the
map at the beginning. Monocular SLAM always requires some additional information
if metric position estimates are desired. Initializing the map at the beginning is often
feasible, e.g. because we often have some information about the environment close to
the start position of a robot (e.g. a landing pad as in |Yang et al.|(2013a)). Without any
further metric measurements, however, we have to expect the scale of position estimates
and the map will drift over time. This effect is clearly in visible figure[5.4] where we can
see how scale is severely underestimated towards the end of the trajectory.

The easiest measure of fighting scale drift with depth measurements is using depth
information to initialize new map points. This results in the blue trajectory shown in fig-
ure[5.4} It is slightly better, but still suffers from noticeable drift in scale. This is because
depth is not used in bundle adjustment: Even though many map points are initialized
with their correct scale, bundle adjustment can still arbitrarily change the global scale
without any effects on 2D reprojection errors. During optimization, metric scale is still a
free variable.

If we also use our proposed combination of 2D and depth measurements in bundle
adjustment, we finally arrive at a much more accurate result shown in green in figure 5.4}
There is no visible scale drift and the position estimates are very close to ground truth.

The final error at the end of the run using either method is also shown in table
Using the combination of techniques described in this chapter, we managed to bring
the position error down from 16.78 m to 2.13 m, which is equivalent to 2.01 % drift in
translation.

60

5.7 Experiments and Results

| | position error [m] | orientation error [°] |

monocular case 16.78 2.61
3D initialization 9.64 2.28
depth constraints 2.13 3.30

Table 5.1: Localization error at the end of each run.

Figure 5.5: One part of the environment (museum room) passed by the wheeled mobile
robot during our experiments. Top: Full point cloud reconstructed from registered RGBD
images. Bottom: Sparse map from the same perspective, only actual map points used for
localization are shown.

61

Chapter 5 Using Depth in Visual Simultaneous Localization and Mapping

5.8 Relation to Stereo Vision

Stereo cameras in conjunction with a stereo matching algorithm are very similar to
RGBD sensors: They also provide depth estimates for a subset of image pixels and un-
certainty of depth estimates theoretically also grows proportionally to the squared depth.
Since they do not rely on an active projector but require natural features visible in both
camera images for successful matching, however, matching results are often not as accu-
rate as with structured light often used in depth cameras.

Using our modified version of PTAM with dense stereo data is straighforward, since
it can be considered equivalent to RGBD data with a slightly higher depth uncertainty
factor. Since we rely on depth estimates only at sparse locations of interest points any-
way, however, it is enough to compute sparse stereo matches, which can conveniently
be performed in real-time without the help of a GPU Schauwecker et al.| (2012b). The
combination of efficient sparse stereo matching and the method described in this chap-
ter enabled autonomous flight of a quadrotor helicopter relying on stereo cameras as its
main sensor as demonstrated in |[Schauwecker ef al.| (2012a) and Schauwecker and Zell
(2014).

5.9 Conclusion

In this chapter we presented a novel method of utilizing RGBD data for visual SLAM.
It 1s based on augmenting monocular visual SLAM by utilizing depth measurements
of map points whenever they are available. We implemented our proposed solution
by extending the widely-used monocular visual SLAM Parallel Tracking and Mapping
(PTAM) and demonstrated that our modifications allow accurate localization and map-
ping.

Some limitations inherent to PTAM still remain: Its mapping thread tries to run local
and global bundle adjustment alternately, but for maps as big as the ones shown in our
experiments, the global bundle adjustment step will not be able to finish in any amount
of time reasonable for real-time operation, which is why we just disabled it.

This means that PTAM cannot close loops when revisiting places for a second time,
since this would require optimizing the full SLAM graph. The authors of PTAM were
well aware of this fact but did not care since their intended application was augmented
reality in small workspaces and thus they did not even bother to detect loops. PTAM as a
software system is thus somewhere in between SLAM and visual odometry: It does not
solve the full SLAM system including detecting and closing loops, but it does more than
just visual odometry since existing map point positions are improved indeed if they are
detected again.

These limitations, among others, lead to our further work described in chapters [6| and
finally [9] which do present full SLAM systems.

62

Chapter 6

Efficient Onboard RGBD-SLAM for
Autonomous MAVs

In this chapter we describe a computationally inexpensive RGBD-SLAM solution tay-
lored to the application on autonomous micro aerial vehicles (MAVs). It should enable
our exprimental quadrotor MAV to fly in previously unknown environments and create
maps of its surroundings completely autonomously, with all computations running on its
onboard computer.

We achieve this by implementing efficient methods for both tracking its current loca-
tion with respect to a heavily preprocessed previously seen RGBD image (keyframe) and
efficient relative registration of a set of keyframes using bundle adjustment with depth
constraints as a front-end for pose graph optimization. We prove the accuracy and ef-
ficiency of our system based on a public benchmark dataset and demonstrate that the
proposed method enables our MAV to fly autonomously. The methods and experiments
described in this chapter were previously published in |Scherer and Zell| (2013)).

6.1 Related Work: RGBD-SLLAM for MAVs

We provided a survey of SLAM methods using RGBD cameras in general in section
already. Here, we focus on the application of RGBD-SLAM to Micro Aerial Vehicles
(MAV5) for autonomous navigation.

Notable cases of autonomous MAVs using RGBD cameras include Huang et al. (2011),
in which a MAV uses its RGBD camera to compute visual odometry onboard and map-
ping is done on an external computer using an extension of the system described in Henry
et al.|(2010). While this is impressive work, it is not a fully autonomous MAV according
to our previous definition.

An RGBD camera mounted on a quadrotor MAV is used for indoor exploration in
Shen et al.|(2011]), which is an interesting topic on its own. Pose estimates, however, are
in this case provided using a laser range finder also mounted in the MAV.

63

Chapter 6 Efficient Onboard RGBD-SLAM for Autonomous MAVs

6.2 Motivation

We wanted to implement an RGBD-SLAM system that should enable a fully autonomous
MAV. By fully autonomous we mean that the SLAM system needs to compute pose es-
timates that are accurate and fast enough to enable autonomous flight while all computa-
tions have to be performed on its onboard computer with limited processing power. For
a full SLAM system, this also includes detecting and handling closed loops, which is not
possible with PTAM alone, as we saw in chapter [3

We also wanted to try an alternative tracking method that does not rely on finding
interest points in every camera image as is the case for PTAM. This reliance on interest
points in every camera image can lead to problems due to few interest points found in
images with weakly textured regions and motion blur.

6.3 Software Architecture

We implemented from scratch a keyframe-based RGBD-SLAM system mainly focused
to be used on autonomous MAVs. Its main requirements are being able to generate pose
estimates at camera rate that are accurate enough to enable autonomous flight, and a
scalable mapping process that should be able to map environments not as limited in size
as is the case for PTAM.

We adopt one of the major ideas of PTAM, namely separating the two tasks of tracking
(localization) and mapping in two individual threads: The time-critical tracking thread is
responsible for computing pose estimates wheras the mapping thread builds and refines
the map in parallel, which is not as time-critical. As opposed to PTAM, however, we rely
on a relative representation of the map, which is detailed as follows.

6.3.1 Map

The most straight-forward map representation for applying bundle adjustment involves
storing keyframe poses and map point positions both with respect to a fixed reference
frame (see[d.4.4).

In this case, however, we use a relative map representation inspired by [Sibley et al.
(2009) and|S1ibley et al.|(2010). This means that every map point belongs to one keyframe,
in our case the one in which it was seen first, which we will call its source keyframe. Map
point positions are then stored relative to its source keyframe pose instead of the fixed
reference frame.

Even though this relative representation is slightly more complicated, it allows the
easy combination of bundle adjustment, i.e. optimizing the full SLAM graph and pose
graph optimization, which does not directly affect map points positions.

The map is essentially stored as a set of keyframes that contain both a number of own
map points and measurements of map points belonging to other keyframes. In addition

64

6.3 Software Architecture

to keyframes and map points, we also store a number of pose graph edges connecting
pairs of keyframes.

6.3.2 Localization: Tracking Thread

The tracking thread is responsible for processing incoming RGBD image pairs and pro-
ducing pose estimates at camera rate. For each new RGBD pair, it will compute a prior
pose estimate based on a motion model of the camera, decide on the most promising
keyframe within the map for tracking, project all map points of this best keyframe ac-
cording to the pose estimate predicted by the motion model, find the map points close
to their predicted location within the current image, and finally estimate the camera pose
relative to the reference keyframe using robust nonlinear least squares optimization. If
localization is successful, it also needs to decide whether it is time to add the current
RGBD pair as a new keyframe to the map.

Motion Model

We implemented a modified version of the decaying-velocity motion model used in Klein
and Murray|(2007). It assumes the camera to keep moving at a nearly constant but slowly
decaying velocity. Given a 6D velocity estimate v; € se(3) and the previous inverse
camera pose “~1Ty € SE(3) where C;_1 is the camera frame and R a fixed reference
frame, it predicts the inverse camera pose at time ¢ as:

T = exp(v; - At) - 9-1Tx 6.1)

Where exp : SE(3) — se(3) is the exponential map between the lie group SE(3) and its
lie algebra se(3) with log : se(3) — SE(3) its inverse. It follows from equation |(6.1)| that
the velocity estimate should ideally be:

v, = log (CtTR - Ct—1T§1> JAt = log (CtTCH) At (6.2)

Of course we cannot use “*Tg, since this is what we want to predict. We can only use
relative poses thlTCt_2 and older to approximate this velocity:

v =g [ag log (Cﬁ_lTCt_2> JAt+ (1 — 042)1)15_1} (6.3)

With g, € (0,1), this is a basic exponentially weighted moving average filter with
an additional decay factor o such that it tends to underestimate velocities, which is
preferrable to sometimes overestimating velocities.

With relative tracking, the reference frame R is not a fixed world frame but the refer-
ence keyframe used for tracking. Its pose itself might be changed by the mapping thread

65

Chapter 6 Efficient Onboard RGBD-SLAM for Autonomous MAVs

or we might switch to using a different reference keyframe between two successive im-
ages. In short, 2 depends on the time ¢ and is not constant. The prediction step when
using relative tracking is thus:

CtTp, = exp(v; - At)-C-1Tg, | -F-1Tp, (6.4)

The relative transform CltTOtf1 between two successive camera poses required for esti-
mating the camera velocity in equations|(6.2)[or|(6.3)|is now:

CtTCt_1 — CtTRt . RtTRt_1 . Ct—lTlgtl_l (65)

The relative transform between both references has to be recomputed at the moment it is
needed based on the latest pose estimates of both:

Bipg, | =%y Fort (6.6)

t—1

Reference Keyframe Selection

Since we use only one out of all map keyframes for tracking the camera pose, it is impor-
tant to use the most promising one. In our case, we want to select the reference keyframe
which could lead to the most map points measured within the current image. We com-
pute this by projecting all map points of a candidate keyframe into the current image
according to the prior pose estimate determined using the motion model and counting
the number of points which would lie within the image boundary. This is computation-
ally expensive when testing a large number of keyframes so we only consider candidates
within a certain distance to the prior pose estimate in both translation and orientation.

Finding Map Points

After prediction and keyframe selection, can project all map points of the reference
keyframe into the current image and need to find their actual location, which is most
likely close to where we would expect it.

PTAM does this by considering FAST corners in the neighborhood of the expected po-
sition of a map point and computing the zero-mean sum of squared differences (ZMSSD)
between image patches around both. This is a trade-off between speed and risking inac-
curate or missed matches: Detecting FAST corners is computationally inexpensive and
the number of ZMSSD computations required is low, but the actual map point position
might not produce a FAST corner in the current image, e.g. due to motion blur, unfortu-
nate lighting or low contrast.

We instead rely on sparse optical flow using the Lucas-Kanade method (see |Lucas
and Kanade| (1981))) using the implementation in OpenCV Bouguet| (2001])) as it requires
finding interest points in keyframes only and can cope with at least limited motion blur in
images in between. Sparse optical flow will always succeed to find a local minimum and

66

6.3 Software Architecture

Figure 6.1: Illustration of tracking using sparse optical flow: Green and blue lines are
disparities predicted based on the motion model, red lines are corrections from sparse
optical flow. Tracks classified as inliers are marked in green, outliers in blue.

can thus in general not be applied to wide-baseline matching. When properly initialized
using a motion model as described above, the distances between expected and actual
image position of map points are typically very small and wrong matches being found
rather unlikely. An example result of this tracking method is shown in figure[6.1] We can
clearly see that the correction steps of predicted positions obtained using sparse optical
flow (shown in red) for inliers (shown in green) are rather small. The few longer steps
belong to measurements later classified as outliers (shown in blue).

Relative Pose Estimation

With the methods described so far, we get a collection of map points with their 3D
position known relative to a reference keyframe seen at 2D image positions determined
by tracking. Determining the pose of the camera relative to the reference keyframe in
this case corresponds to the Perspective-n-Point (PnP) problem as described in
(2003).

Tracking using sparse optical flow, similar to other methods, in general yields a small
number of wrong matches. We identify and exclude outliers using a preemptive RANSAC
scheme (see Nistér{ (2005))) with Gao’s solution to the P3P problem (see/Gao e al.|(2003)))
to generate candidate hypotheses. Having removed all gross outliers and estimated a hy-
pothesis for the solution with a large consensus set, we employ robust nonlinear least
squares optimization to further refine the best hypothesis. In addition to 2D image coor-

67

Chapter 6 Efficient Onboard RGBD-SLAM for Autonomous MAVs

dinates only, as used for PnP, we also consider depth measurements at the corresponding
image locations, if available, for the final refinement. This optimization is described in
more detail in section

Deciding About New Keyframes

From time to time, the tracking thread should decide to add a new keyframe. We would
like the map to consist of enough keyframes such that there is always a possible reference
keyframe with a good amount of map points visible in the current frame. We achieve this
by adding keyframes whenever the distance to the closest keyframe is too high, when the
mean distance in 2D of tracked map points is too high, or when the number of visible
map points of the best keyframe is too low.

6.3.3 Mapping

The mapping thread is responsible for combining all incoming keyframes to an accurate
and consistent map. It creates keyframes from RGBD pairs, refines pose estimates be-
tween new keyframes and their reference keyframe, tries to match new keyframes with
more old keyframes, and finally runs pose graph optimization to keep the whole map
consistent.

Keyframe Creation

The most important aspect of keyframe creation is selecting map points. We use FAST
Rosten and Drummond (2006) corners on multiple pyramid levels. As also noted in
Schauwecker et al.| (2012b), FAST corners tend to flock to image regions with high
contrast whereas there might be some lower-contrast areas with no corners at all due to
the global threshold. For reliable tracking, we want map points to be evenly distributed
among all parts of the image of a keyframe. This is achieved by dividing the image into
a grid of n X n cells. We intentionally set the FAST threshold too low to compute too
many interest point and keep the best m within each grid cell according to their Harris
score. This process is illustrated in figure [6.2]

Relative Pose Refinement

When adding an RGBD image pair as new keyframe to the map, we already have a
pose estimate relative to its reference keyframe from tracking. This pose estimate from
tracking is derived from forward matches only, i.e. map points of the reference keyframe
found in the latest keyframe. After keyframe creation, we also use backward tracking,
i.e. try to find map points of the new keyframe in its reference keyframe, as described
in section [6.3.2] to find more correspondences. With this higher number of matches, we
apply bundle adjustment with depth constraints to further refine the relative pose between

68

6.3 Software Architecture

Figure 6.2: Keyframe creation illustrated: FAST corners on various pyramid levels are
depicted as green circles. White lines separate grid cells for map point selection. Red
dots mark FAST corners actually used as map points.

both keyframes. This optimization is described in detail in section [6.3.4] After bundle
adjustment is done, we update positions of map points involved in the optimization and
add the relative pose as an edge between both keyframes to the pose graph.

Finding and Utilizing More Reference Keyframes

The pose graph constructed by adding edges to reference keyframes is only a (spanning)
tree. For accurate mapping results, we need to be able to add more edges, ideally also
closing long loops. We do this by trying to localize the latest keyframe also with respect
to the n,..y > 1 best other keyframes (according to the measure proposed in section@),
excluding its reference.

Extra care has to be taken to prevent bad edges from being added to the pose graph,
since pose graph optimization in general is not robust to outlier edges. Even though there
is some work on applying robust methods to pose graph optimization (e.g.
land Protzel| (2012)), there often simply are not enough inlier edges to correct for a single
outlier edge. We apply both forward and backward tracking for each candidate keyframe.
If the two keyframes are k; and k;, this yields two relative pose estimates ’T] and /T,
An additional pose graph edge is only added if both forward and backward tracking
consent, i.e. ’TJ ~J TZ._1 after further refinement using bundle adjustment as described
in section

69

Chapter 6 Efficient Onboard RGBD-SLAM for Autonomous MAVs

Global Map Optimization

We use HOG-MAN (see |Grisetti ef al.| (2010a))) to optimize the pose graph consisting
of keyframes and edges between keyframes from their mutual registration. Pose graph
optimization is performed after each newly added keyframe, unless the mapping thread
is interrupted before.

6.3.4 Optimization with Depth Constraints

We integrate depth measurements as introduced in [Scherer et al.| (2012) and already
mentioned in chapter 5| For both refining the solution to a modified perspective-n-point
problem with depth in tracking and for registering two keyframes, using relative bundle
adjustment with depth.

Perpsective-n-Point Problem with Depth

We use the same combination of 2D and depth reprojection errors for solving the PnP
Problem as described in section except map point positions are now represented
relative to their reference keyframe pose. The reprojection errors are thus:

exp;=nh (CTRRP> —Cu, (6.7)
C R C e C
o (Ty p) —%d; if%d; >0
Cdi = { 0 else 6.3)

Where “u; is the measured image location in pixels at which the map point was found
and Cdi is the depth value measured at this location, which is 0 if no depth could be
determined by the sensor. For this work, we implemented the optimization using the
ceres solve an open source c++ library for robust nonlinear least squares problems
described in Agarwal et al.| (2014).

Both errors are measured in different unrelated units and exhibit different standard
deviations as shown in section [5.4.2] We also expect to measure at least some outliers,
especially in depth measurements which are not removed using RANSAC, which is why
we apply a robustifier kernel p. We chose the Huber loss function for this. The objective
function minimized by ceres to find the optimal T}, is thus:

€2D,i €d.i
>o() o (Gt

2
2D

'https://code.google.com/p/ceres-solver/

70

https://code.google.com/p/ceres-solver/

6.4 Experiments and Results

Relative Bundle Adjustment with Depth

For relative bundle adjustment we also use depth measurements as described in sect.
The reprojection errors look slightly different due to the relative representation, however.
When refining the relative pose of two keyframes, we only consider relevant map points
pi, 1.e. map points of both keyframes that were also measured in the other keyframe.
When considering only two keyframes, each map point p; can lead to up to 4 different
reprojection errors:

e We always measure its 2D position both in its source keyframe at pixel location
Sw; and in the other at ©u;, which leads to the measurements €src,2D,i» €oth,2D,i
below,

e we might measure its depth in its source keyframe °d; which leads to depth error
€src,d,i below,

e we might measure depth in the other keyframe Od; which leads to Coth,d,i DElOW.

esrcan.i = h(°p;) — “u; (6.10)
eotn2ni = h(CTw Ty Op;) — Cu; (6.11)
S S e S
o (pi)g— d; if”d; >0
€sre,di — { 0 else (612)
0] Sp—18 0] 0O
Tw?T. ; —Yd;, if%d; >0
€oth.di ={ (“Tw > Ty Op Z))3 ’ else ¢ (6.13)

The overall objective function minimized using ceres is:
€src,2Di €oth,2Di €sre,d,i €oth,d,i
)) _|_p() 7)+ (77>_|_p(77) (6-14)
zi:p(02D) 02D P\oa(5d;) 04(9d;)

6.4 Experiments and Results

6.4.1 Evaluation: Benchmark Dataset

We first evaluate the described system on the file fr3long_office_houshold from the bench-
mark dataset described in |Siinderhauf and Protzel (2012)) and available online The two
main objectives are computational efficiency and accuracy of pose estimates, so we eval-
uate both at the same time.

“http://vision.in.tum.de/data/datasets/rgbd-dataset

71

http://vision.in.tum.de/data/datasets/rgbd-dataset

Chapter 6 Efficient Onboard RGBD-SLAM for Autonomous MAVs

Figure 6.3: Visualization of the map obtained by applying our proposed system on the
freiburg3 dataset: Keyframe poses (red), edges between keyframes (golden), and map
points (in their original color).

Computational Efficiency

We measured the time required for each individual step on two different computers: A
laptop computer with an Intel Core 2 Duo P9400 CPU running at 2.40 GHz and the
on-board single-board computer used on our MAV with an Intel Core 2 Duo SL9400
Low Voltage running at 1.86 GHz. Measured mean times and standard errors of steps
performed within the tracking thread for each camera image are shown in table[6.1] steps
performed for each new keyframe by the mapping thread are shown in table[6.2] We
can see that tracking is clearly fast enough to process frames faster than 30 Hz or 33 ms,
even on the slightly slower on-board computer. The mapping thread has to perform some
longer and more complex computations, which does not pose a problem, since they are
only required for new keyframes. The mapping thread can be interrupted early if a new
keyframe is dropped, theoretically as soon as the first step of keyframe creation is done,
which is so fast that it should never have to be interrupted by a new keyframe.

In our experiments, however, we only interrupted the mapping thread after refinement
using bundle adjustment was done, but before checking for and adding additional pose
graph edges.

72

6.4 Experiments and Results

task laptop [ms] SBC [ms]
sparse optical flow 6.38 £ 1.06 | 8.38 £1.23
preemptive RANSAC || 3.80+0.46 | 5.23 +0.28
robust optimization 1.90+093 | 244 +1.18
total 12.08 £ 1.46 | 16.05 £ 1.62

Table 6.1: Computation times required for localization (tracking thread).

task laptop [ms] SBC [ms]

keyframe creation 1254+ 2.02 | 15.60+ 2.20
reverse tracking 13.05+ 4.16 | 1641+ 1.32
refinement (BA) 32.96 +15.20 | 43.62+£19.27
additional edge accepted || 51.95 £12.50 | 67.46 £ 15.74
additional edge rejected || 22.11+ 2.08 | 30.03 £ 2.63
pose graph optimization || 16.20+ 9.61 | 21.70 4+ 12.66

Table 6.2: Computation times required for processing a new keyframe (mapping thread).

Localization Accuracy

We used the same dataset for accuracy evaluation with the tool included in the bench-
mark dataset. It reports an absolute position root mean square error (RMSE) of 13.6 cm
comparing the full estimated trajectory to ground truth. Since we perform both track-
ing and refinement relative to reference keyframes, we are mainly interested in position
and orientation errors relative to the corresponding reference keyframe. This is shown
in table [6.3] Note that errors for tracking and mapping are not directly comparable since
transforms estimated in refinement typically consist of slightly bigger translations and
rotations compared to the relatively small transforms estimated in tracking. A visual-
ization of the resulting map with keyframes, edges of the pose graph, and map points
obtained by running our SLAM system on the benchmark dataset is shown in figure[6.3]

method tracking | refinement (BA)
position RMSE 1.8 cm 1.4 cm
position MAE 1.2cm 1.1cm
orientation RMSE 0.95° 0.85°
orientation MAE 0.67° 0.60°

Table 6.3: Mean absolute errors (MAE) and root mean square errors (RMSE) of pose
estimates relative to reference keyframe on the freiburg3 dataset.

73

Chapter 6 Efficient Onboard RGBD-SLAM for Autonomous MAVs

Figure 6.4: The MAV used for this work

The camera trajectory starts at the keyframe at the bottom and ends where the colored
pose marker is. It is interesting to see that our system is accurate enough to implicitly
close the loop in this case, without explicit loop closure detection.

6.4.2 Evaluation: Autonomous Flight
Experimental Setup

We used the same system running in real-time on the on-board computer of our MAV
shown in figure[6.4] while it was flying autonomously in our laboratory. We commanded it
to follow a path consisting of predefined way-points on a rectangular pattern. Navigation
was performed by the nested PD controller implemented on the pxIMU autopilot. We
commanded the MAV to fly autonomously and compared the pose estimates with ground
truth data captured by an external tracking system.

Accuracy

We used an Optitrack external tracking system (ETS) by Naturalpoint consisting of 7
V100:R2 cameras, which provides pose estimates at a rate of 100 Hz and used this as
ground truth to again compute relative errors in position and orientation for both tracking
and refinement. The resulting errors are shown in table[6.4] They are slightly higher than
before, which is to be expected due to the more difficult image sequence with abrupt mo-
tions especially during takeoff and landing, which also introduces considerable motion
blur. The map built during this flight is illustrated in figure [6.5a]

74

6.4 Experiments and Results

Ny o s ~_ P L 7 — /

(a) Map and pose graph built during autonomous flight.

(b) Dense point cloud and trajectory reconstructed from recorded data in off-
line processing after the flight.

Figure 6.5: Mapping result obtained from autonomous flight.

75

Chapter 6 Efficient Onboard RGBD-SLAM for Autonomous MAVs

method tracking | refinement (BA)
position RMSE 1.7cm 2.5cm
position MAE 1.5cm 2.3cm
orientation RMSE 1.71° 1.00°
orientation MAE 1.30° 0.79°

Table 6.4: Errors on the autonomous MAV dataset.

6.5 Conclusions

In this chapter we presented a computationally very efficient RGBD-SLAM system
which is able to run in real-time on the on-board computer of our autonomous MAV.
This is achieved by a combination of fast tracking and localization relative to a single
keyframe and bundle adjustment with depth constraints as SLAM front-end, generating
keyframe-to-keyframe constraints for pose graph optimization, performed by a SLAM
back-end.

By the time of the original publication in Scherer and Zell (2013), this was the first
time a MAV was shown to perform RGBD-SLAM with global pose graph optimization
on its on-board computer. As we will see later (in table 0.1)), the accuracy of pairwise
keyframe registration as visual odometry is not as accurate as using local bundle ad-
justment as in chapter [5| This work can still be considered an important stepping stone
towards the final SLAM system described in chapter 0]

76

Chapter 7

Loop Closure Detection Using Depth
Images

The work in this chapter explores the use of depth alone. The general idea is that all
variants of RGBD-SLAM trade off reliance on RGB (or intensity) on one hand and depth
information on the other hand. Our own work presented in chapters[5|and[6] for example,
relies mostly on intensity images and requires only few depth measurements for correct
scale and improved accuracy. Dense methods as briefly described in section on
the other hand, mostly rely on depth information and optionally RGB (or intensity).
Methods relying on depth images alone, however, usually lack a method of explicitly
detecting closed loops, which is essential for a full SLAM system capable of large-scale
mapping.

There are, however, a plethora of attempts to visually detect closed loops based on
regular (intensity) camera images (e.g. |(Cummins and Newman! (2008), Konolige and
Agrawal (2008)), Zhang| (2011)). The general consensus about the approach chosen for
visual loop closure detection seems to contain first finding the previous images that are
most similar to the current image (based on a content-based image retrieval scheme)
and afterwards discarding those that cannot be loops due to heuristics or geometry con-
sistency checks. The currently most commonly used image retrieval scheme is Bag of
Visual Words (see |Sivic and Zisserman| (2003)).

There are some competing approaches to Bag of Words for loop closure detection that
rely on using raw image descriptors (e.g. Zhang| (2011)) or locality-sensitive hashing
(LSH, e.g. Shahbazi and Zhang|(2011))). In both cases, the authors report to obtain much
better results using alternative approaches than using Bag of Words. We are not so sure
how representative that comparison is, however, due to very small datasets used and the
fact that Bag of Words was used with very small vocabulary sizes: at most 2500 words
were used in Shahbazi and Zhang (2011) and at most 8000 in Zhang| (2011)), as opposed
to 1 million in e.g. Nister and Stewenius| (2006).

The work described in this paper started as a bachelor’s thesis (Kloss|(2012)) and was
subsequently extended and published in Scherer et al. (2013).

77

Chapter 7 Loop Closure Detection Using Depth Images

7.1 Local Features

We evaluate various interest point detectors and local descriptors for depth images. Some
algorithms contain both interest point detection and local descriptor extraction, e.g. Nor-
mal Aligned Radial Features (NARF, see Steder ef al.| (2011)) or the Scale-Invariant
Feature Transform (SIFT, see Lowe (2004)). In general, there are two classes of algo-
rithms: Those which were developed for depth images exclusively and those which are
adaptations of known algorithms for intensity images.

7.1.1 Interest Points

Interest points or keypoints are image locations in regions that contain a relatively high
amount of information (i.e. texture in intensity images). They are usually desired to be
distinctly located, which is typically the case for local extrema or corners, repeatable, and
robust to changes of perspective. We here review three promising keypoint detectors for
depth images: The Harris corner detector, FAST features, and the NARF interest point
detector.

Harris

The Harris corner detector (Harris and Stephens| (1988)) is a well-known interest point
detector for intensity images. It considers the variance of the intensity values around
each pixel. For a corner and therefore a stable interest point, intensity variation in both x
and y direction needs to be relatively high, which corresponds to both eigenvalues of the
so called Harris matrix H of the patch having large positive values. The response C' is
usually computed without explicitly determining the eigenvalues of H:

/\2 —

- [L ff] .
LI, I

C =|H|—k-trace(H) (7.2)

Here I, denotes the x-component of the intensity gradient and ~ is a shorthand for the
weighted sum over a certain influence window. C' above is the so-called Harris response.
An alternative response measure is the Shi and Tomasi response: C' = min(\q, A2), where
A; are the eigenvalues of H. When using depth images instead of intensity images,
the image gradients are roughly proportional to the x and y components of the surface
normals.

Keypoints detected by the Harris detector tend to lie directly on the boundaries of
objects. This works fine in continuous 2D images but can easily become a problem with
depth images, since the border regions are often unstable with regard to both surface
normal estimation and depth measurement.

78

7.1 Local Features

FAST

Similar to Harris, the FAST keypoint detector (Rosten and Drummond (2006))) was orig-
inally developed for intensity images. Its main idea is to compare intensities of pixels
on a Bresenham circle of 16 pixels diameter around each keypoint candidate p to the
intensity of p itself. If the patch around p contains a corner, there should be at least
n = 12 consecutive pixels on that circle that are either all darker or all brighter than p
by some threshold ¢. The order of pixel tests is optimized such that non-corners can be
eliminated as soon as possible. Instead of using FAST on intensity values, we can also
easily abuse” it and apply it to depth values.

NARF

NAREF (see Steder et al. (2011)) interest point detection begins with border detection,
where borders are defined as “non-continuous traversals from foreground to background”.
If a point has a border in its neighbourhood it is assigned the direction of the border as
its dominant direction of surface change, otherwise the first principal component of the
curvature is used. The interest value of a point is then influenced by two aspects:

e The interest value of a point is decreased if there are points with strong surface
changes nearby, in order to encourage keypoints on stable surfaces.

e Points with pairs of neighbors with different directions of surface have their interest
values increased.

As aresult, NARF interest points can be found close to object boundaries but not directly
on these boundaries, which is usually good for depth images or point clouds.

7.1.2 Local Descriptors

Local descriptors are designed to describe an image patch (usually located around an
interest point) in a compact but distinctive way. Similar to the location of interest points,
a point’s descriptor is usually desired to be invariant to changes in scale and perspective.

NARF

The main idea of the NARF descriptor is similar to 2D algorithms like SIFT: For each
keypoint, a normal aligned range value patch is computed that is orthogonal to the surface
normal of the point. Changes in depth values are computed along 36 directions around
the keypoint and weighted by their distance to it. A unique orientation is obtained by
computing a direction histogram over the descriptor values. The bin with the maximum
value is selected as the dominant orientation and the descriptor can be made rotational
invariant by rotating (shifting) the histogram by this orientation. It should be noted that
the algorithm will compute multiple descriptors at a single keypoint if there is more than

79

Chapter 7 Loop Closure Detection Using Depth Images

one bin within the histogram with values exceeding 80% of the maximum. Because
of this, NARF will often produce more descriptors than there are keypoints for a given
image.

Kernel Descriptors

Bo et al. (2010) introduce a kernel view of SIFT and Histograms of Oriented Gradients
(HOG, see |Dalal and Triggs (2005)) features and demonstrate that comparing HOG de-
scriptors can be interpreted as computing a linear match kernel that combines two sub-
kernels comparing gradient orientation and magnitude of all pixel pair combinations.
They propose a slightly different orientation kernel and add a Gaussian position kernel
to arrive at what they call gradient kernels. The problem of these kernel features is the
fact that they are generally infinite-dimensional. Bo et al. propose sampling basis vectors
over a fine grid to obtain finite-dimensional features. These are still too high-dimensional
to be of any use, so a kernel PCA is used to compact features to a 200-dimensional fea-
ture space. They show that this notion of kernel descriptors can also be applied to come
up with completely new descriptors, e.g. color or shape kernels and kernel descriptors
can successfully be applied to depth images.

BRIEF

Binary Robust Independent Elementary Features (BRIEF, see Calonder et al.| (2012)))
are very simple descriptors in the form of a binary string. BRIEF was developed for
intensity images to allow for fast computation, efficient storage and also fast comparison
by using the Hamming distance instead of the common Lo norm. In order to obtain the
descriptor, the intensity values of several point pairs in the neighborhood of a keypoint
are compared after smoothing the patch to reduce noise. Each descriptor entry is then
either 1 or 0, depending on which one of the two points had the higher intensity. One
would think that the performance heavily depends on how well the comparison pattern is
chosen. As the experiments in|Calonder et al. (2012)) showed, however, truly random (but
of course constant) patterns outperformed both symmetric and manually chosen regular
comparison patterns.

7.2 Bag of (Visual) Words

Bag of Visual Words (BoW), also referred to as Bag of Keypoints (Csurka ez al.|(2004)),
is a technique widely used in computer vision to compute a single global descriptor of
an image, given an arbitrary number of descriptors of local features found within this
image. The general idea is rooted in document processing, where documents of arbitrary
length can be represented using a global descriptor by counting occurrences of a finite
number of n keywords (i.e. the vocabulary). The resulting histograms, which we will

80

7.3 Loop Closure Detection

call BoW vectors from now on, can be interpreted as an n-dimensional global descriptor
of a document and efficiently compared using any vector norm.

In computer vision, representative feature descriptors are used as visual words. A
visual vocabulary, i.e. a set of representative feature descriptors, can be computed from
a large set of example features by clustering, typically k-means clustering. Computing
the BoW vector of a given image consists of extracting all local features, determining the
corresponding visual word for each feature (e.g. using fast linear approximate nearest
neighbour search), and finally counting the occurrence of each visual word.

The utility of Bag of Visual Words heavily depends on the vocabulary size. Nister and
Stewenius| (2006) propose vocabularies that contain on the order of millions of visual
words and claim that using such large vocabularies, image retrieval works accurately
even without considering the geometric layout of visual words. In order to cope with
vocabulay sizes this large, they suggest hierarchical vocabulary trees: During vocabulary
creation, k-means clustering is performed recursively on multiple levels up to a maxi-
mum tree depth, clustering the set of all sample features that belong to one cluster in
the previous level in turn. Looking up the corresponding visual word for a given feature
involves traversing the vocabulary tree down to a leaf node, finding the closest represen-
tative descriptor on each level.

7.3 Loop Closure Detection

Since the main focus of this work is evaluating different features with respect to their
application for loop closure detection, we employ only a very basic loop closure detection
method. For each image, it will do the following steps:

1. Query the database of previous images to find and return the most similar ones
using Bag of Words as described in section[7.2]

2. Disregard all resulting candidates that belong to the 10 latest keyframes in order to
prevent detecting loops already when the robot is still at the same location.

3. Compute the similarity s of the current image with each resulting candidate based
on their BoW vectors vy, v2 and disregard those whose similarity is below a user-
chosen threshold «r. We use the similarity measure described in|Galvez-Lopez and
Tardos| (2012)), which is based on the L norm:

1
s(v1,v2) =1— 3

U1 U2

lvil1 |ve2ls

1

4. Return the up to k images with the highest similarity as loop closure candidates,
where £ can be chosen by user. The choice of £ will depend on how many can-
didates can be further verified by checking the geometric consistency within a
reasonable amount of time.

81

Chapter 7 Loop Closure Detection Using Depth Images

5. Finally, the current image is added to the database so it can later be found as a loop
closure candidate.

One could think of many more heuristics to filter out more false positives in loop
closure detection. Galvez-Lopez and Tardos in|Galvez-Lopez and Tardos| (201 1) propose
many more heuristics, e.g. enforcing temporal consistency, i.e. requiring detection of the
same loop multiple times in a row before it is actually reported.

The final step within a real SLAM system, however, should always be a geometric con-
sistency check. This could involve trying to register loop closure candidates (e.g. using
ICP) and determining their goodness of fit, or matching local features within a RANSAC
scheme and counting the number of inliers. Also evaluating registration methods, how-
ever, would go beyond the scope of this work, so we evaluate the performance of the
returned loop closure detection candidates without checking their geometric consistency.

7.4 Implementation

We implemented a highly modular (polymorphic) and easily configurable loop closure
detector in C++. The user can choose among any of the interest point detectors and local
descriptors mentioned in sect.|/.1|and arbitrarily set all of their parameters. Adding more
interest point detectors or local descriptors is easy and only involves writing one more
derived wrapper class, which will register with the corresponding object factories.

We use the DBoW?2 library described in Galvez-Lopez and Tardos| (2012), a very
efficient open-source implementation of the hierarchical vocabulary tree approach men-
tioned in sect.

For SIFT, FAST, and BRIEF, we rely on their implementations found in OpenCVﬂ
For Harris and NAREF, their implementations found in PCI_E] are used. As the C-Version
of Kernel Descriptorﬂ only allows the computation of dense kernel descriptors, i.e. sam-
pled over a grid of overlapping patches, we modified the source code to allow computa-
tion of sparse kernel descriptors at given keypoint locations.

7.5 Benchmark Dataset

In order to evaluate the performance of loop detection algorithms, we need sequences of
depth images with ground truth pose information in environments as diverse as possible.
To our knowledge, there is currently only one applicable dataset publicly available, pub-
lished in Sturm et al.| (2012), which features sequences of RGBD images with ground
truth 6D pose information obtained by an external tracking system. The number of loops

Thttp://opencv.org/
Zhttp://pointclouds.org/
3http://www.cs.washington.edu/ai/Mobile_Robotics/projects/kdes/

82

7.5 Benchmark Dataset

Figure 7.1: Examples of different scenes encountered by the robot.

in this dataset, however, is not high enough for a proper evaluation of loop closure detec-
tion, so we additionally recorded our own data.

We used a Scitos G5 robot by Metralabs with a forward-looking Microsoft Kinect
mounted on its top. Its 2D pose is obtained by localizing it within a previously built
map using odometry and its laser range finder. We manually drove this robot on multiple
loops through various environments available in our building. Our final set of sequences

83

Chapter 7 Loop Closure Detection Using Depth Images

consists of:
e 5 runs within our robots laboratory and on the corridor just outside of it,
e 4 runs within our department’s library,
e one run in which the robot enters different offices several times
e one run within our department’s computer museum,
e one run within our kitchen,
e and 4 runs containing loops taken from the Freiburg dataseﬂ

Examples of the various views encountered by the robot are illustrated in figure
Instead of keeping full sequences of all these runs, we significantly reduce the number of
images to a subset of keyframes, as it is usually sufficient to find loops for new keyframes
only in keyframe-based SLAM.

7.6 Experiments and Results

7.6.1 Evaluation
Determining True Loops

In order to evaluate the performance of the loop closure detection the ground truth must
be established first. Depending on the dataset, poses with three or six degrees of freedom
were given for each image. We determined whether two images were taken at the same
place by considering the euclidean distance of the translation and the angle between the
orientations of both poses: Two images are counted as a loop if their translation is less
than 2 m and their angle is less than 30°.

As we allow a distance of up to 2m between two images belonging to a loop, it must
be ensured that the images were not taken on the same visit to this place. Therefore, there
must be at least 10 keyframes between two images in order for them to be considered a
loop.

Evaluating Classification Performance

At first glance, loop closure detection is a binary classification problem: Given a place
described by an image and a database of images, decide whether the place has been vis-
ited before. Therefore it seems natural to evaluate the performance in terms of sensitivity

4We used the logfiles named “freiburgl_360”, “freiburgl_room”, “freiburg2_large_with_loop”, and
“freiburg3_long_office_household”

84

7.6 Experiments and Results

(SE) and specificity (SP) and e.g. calculate a ROC curve (receiver operating character-
istic). The problem at hand, however, is not only to decide whether a place has been
visited before, but also to identify the place correctly by retrieving a matching image
from the database. This makes the definition of true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN) more difficult: If a place has been visited
before and no image from the database is retrieved, it is a clear false negative. If a correct
image is found it is obviously a true positive. But if a wrong image is retrieved for a pre-
viously visited place this could be counted as false positive (the retrieved image was not
taken at the current position) as well as false negative (as the loop was not detected cor-
rectly). We called these cases wrong positives (WP) and decided to count these towards
the false negatives, as we consider an undetected loop a graver mistake than a false loop
candidate. The reason for this is simply that false loop candidates could be filtered out
by further checks as discussed in section whereas a missed loop is final. A diagram
of the definitions can be seen in Fig. Based on these numbers, we can compute the
sensitivity (SE) and specificity (SP) in the following way:

TP
| —
S TP+ FN*

TN
P=—
S FP+TN

Where we apply the sum of both, false negatives and wrong positives, instead of the
classical false negative count:

FN*=FN+WP

ground truth: is a loop

_ correct .
loop detection: image . h no\image

evaluation: TP FN WP FP TN

Figure 7.2: Classification of loop candidates into categories for evaluation.

85

Chapter 7 Loop Closure Detection Using Depth Images

7.6.2 Parameter Optimization

The performance of each of the algorithms employed in loop closure detection (i.e. in-
terest point detectors, local descriptors, bag of words, and the actual decision about loop
closure detection) heavily depends on a certain number of parameters. Finding univer-
sally good values for these parameters is often impossible as the optimal values depend
on the problem, the input data provided to the algorithm, and how its output is further
processed. To allow a fair comparison, however, we need to find the best parameter val-
ues for the problem at hand, i.e. test the full system including vocabulary creation and
loop closure detection for various parameter values.

Vocabulary creation involves k-means clustering, which is usually implemented using
a randomized algorithm. In order to get meaningful results, we run it at least five times
with the same parameters and compute the mean over all runs.

This means we need to evaluate our loop detection system on the benchmark dataset
thousands of times, when a single run can take up to a few hours for computationally
expensive local features. We utilized grid computing on a cluster of 8 nodes with 16
CPU cores each to run up to 128 evaluations in parallel.

Conceptually, the task of loop closure detection using bag of words consists of two
major steps. The first step involves using local features and bag of words to suggest loop
closure candidates. In this first step, our main objective is a high sensitivity: If there is
a loop, we want it to be among the suggested candidates. In a second step, the actual
loop closure detection is performed based on the candidates obtained in the first step.
Here, we want to obtain a good trade-off between specificity and sensitivity by tuning
the receiver operator characteristic (ROC) curve.

Vocabulary size

We first try to determine a good vocabulary size using default parameter values of various
methods used. The optimal vocabulary parameters of NARF and FAST interest points
with kernel descriptors were a branching factor (i.e. the number of clusters during each
clustering step) of b = 20 and level (i.e. the maximum tree depth of the resulting vo-
cabulary tree) of [= 3, which corresponds to an efficient vocabulary size of 20% = 8000.
Using FAST with BRIEF descriptors, the optimal vocabulary size is smaller with b = 5
and [= 5, whereas the optimal vocabulary size of SIFT is orders of magnitude bigger
with b = 20 and [= 4. Since we, however, wanted to focus on depth features and use a
consistent vocabulary size, we decided to use b = 20 and [= 3 for further experiments,
which seems to work well for all methods.

Reference: SIFT on Intensity Images

Since our benchmark dataset consists of RGBD image pairs with both color and depth
images, we first try to detect loops using SIFT features computed on the intensity images
as a reference.

86

7.6 Experiments and Results

We tested various values for the parameters:
e contrast threshold ct € {0.01,0.02,0.04,0.08}
e edge threshold et € {2,5,10,15}
e sigmao € {1.2,1.4,1.6,2.0,2.5}

and found that ¢t = 0.01, et = 10 and o = 2.5 obtained the best sensitivity of 94.6%.

FAST & BRIEF

FAST has only one parameter (its threshold) and we decided to keep BRIEF’s amount
of bytes constant at 32 bytes. We thus only had to vary one parameter: The best FAST
threshold ¢ € {6,8,10,12,14,16,18,20,22} turned out to be ¢ = 6, which resulted in the
best sensitivity of 87.5%. The choice of the lowest value for the threshold ¢ does not
come as a surprise, since this basically means it will consider a rather high number of
interest points.

NARF

NAREF features require the user to choose a large number of features, which makes large-
scale search on the full high-dimensional grid computationally intractable due to the
combinatorial explosion of the number of possible combinations. We decided to always
enable rotation invariance and fix the angular resolution ar = 0.3, as this appeared to be
the highest resolution for which we can still compute NARF features within a reasonable
amount of time. We evaluated various values for the the following parameters:

e support size: ss € {0.1,0.2,0.4}

e minimum keypoint distance: mkd € {0.125,0.25,0.5}
e optimal surface distances: osd € {0.125,0.25,0.5}

e minimum interest values: miv = {0.225,0.45,0.9}

e minimum surface changes: msc = {0.1,0.2,0.4}

e optimal patch size: ops = {51020}

The grid search lead to the optimal values ss = 0.1, mkd = 0.125, osd = 0.125, miv =
0.225, msc = 0.10, ops = 5, with which we obtained a maximum sensitivity of SE =
76.1%.

87

Chapter 7 Loop Closure Detection Using Depth Images

Harris Interest Points

We evaluated Harris interest points combined with various descriptors from other meth-
ods with their respective best parameters, optimizing the following parameters:

e radius r € {0.1,0.05,0.025,0.01}
o threshold ¢ € {0.025,0.01,0.005,0.0025}
e method m € { Harris, Curvature, Tomasi, Noble}

Using BRIEF descriptors, the best sensitivity 88.1% was achieved for » = 0.01, t =
0.0025 and m = T'omasi. In combination with NARF descriptors, the best sensitivity
79.8% was also obtained for the same values r = 0.0025, t = 0.01 and m = Tomas:.

Sparse Kernel Descriptors

Since kernel descriptors do not provide their own interest point locations, we need to
combine these with an interest point detector. Unfortunately, the source code of Kernel
Descriptors does not include the functionality to train new kernel descriptors, so we only
used the pre-trained ones that come bundled with the source code. They use a fixed
patch size of 16 x 16 pixels. The only parameter we can modify directly is low contrast:
The gradient magnitude for each image patch is normalized by dividing it by its L2-
norm or low contrast if it is below low contrast. This protects from noise artifacts being
amplified too much when there is not much structure. The original source code of kernel
descriptors computes these descriptors on heavily downscaled versions of input images.
We therefore introduced a new parameter scale factor by which images (and keypoints)
are scaled before computing kernel descriptors.

We evaluated the performance of kernel descriptors (KDES) in combination with
FAST, Harris, and NARF interest points using their respective optimal parameters as
determined before. We checked all combinations of the following parameter values:

e lce{0.75,0.9,1.0,1.1,1.25}
e rf €{0.5,0.25,0.125,0.1,0.05}

In all three cases, the same parameters [c = 0.9 and r f = 0.25 turned out as optimal,
resulting in sensitivities of 89.6% for FAST and Harris interest points and 92.0% using
NAREF interest points.

Varying the Loop Closure Detection Parameter

Since we are typically not only interested in a high sensitivity but also a high speci-
ficity, we evaluated the loop closure detection method described in sect.[7.3|using various

88

7.6 Experiments and Results

Interest Points

Descriptor | Best Sensitivity ‘

FAST BRIEF 87.5 %
HARRIS BRIEF 88.1 %
NARF NARF 76.1 %
HARRIS NARF 79.8 %
FAST KDES 89.6 %
HARRIS KDES 89.6 %
NARF KDES 92.0 %
SIFT SIFT 94.6 %

Table 7.1: Best sensitivities obtained for k£ = 3 loop detection candidates using different

interest points and descriptors

values for a. This leads to one receiver operating characteristic (ROC) curve for each
interest point detector/descriptor pair, which are drawn in Fig.[7.3]

Receiver Operating Characteristic

o
4]
o
(0]
=
%
(@)
[a
] ;
E X .
=l L7 % FAST/BRIEF
e s Harris/BRIEF
037"/ s,
i o — © — NARF
) —0— Harris/NARF
e O FAST/KDES
| [—a- i
1' ; Harris/KDES
01 o ~ 2 — NARF/KDES
/ —+— SIFT (Intensity)
O | | | | | T T J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

False Positive Rate

Figure 7.3: Receiver operating characteristic.

89

Chapter 7 Loop Closure Detection Using Depth Images

Varying the Number of Considered Loop Closure Candidates

In the previous experiments, we considered £ = 3 loop candidates for each image. If
a correct loop is among these k, it counts as detected. The choice of k = 3 was made
by us rather arbitrarily. In practise this parameter should be chosen depending on a
combination of the desired sensitivity and how computationally expensive it is to verify
a loop candidate geometrically (e.g. using iterative closest point or based on feature
matches). The influence of £ on the sensitivity is shown in Fig. For this experiment,
we ran each method 10 times instead of 5 times to obtain more meaningful estimates of
the standard deviation, which is shown using error bars.

Sensitivity over considered candidates

0.95
09}
0.85]
0.8
>
=
= 075}
c
[
wn
0.7F F
S < FAST/BRIEF
0.65] 2 Harris/BRIEF
)/ ~ © — NARF
06 / — O~ Harris/NARF
: 3 O FAST/KDES
—U~ Harris’TKDES
0.55 NARF/KDES
—+— SIFT (Intensity)
05 1 1 1 1 1 1 T T T J
0 1 2 3 4 5 6 7 8 9 10

Numbers of guesses considered

Figure 7.4: Sensitivity and its standard deviation vs. the number of considered loop
closure candidates.

7.7 Conclusions

7.7.1 Discussion

The results show that the performance of loop closure detection using depth images with
any kind of depth features is always worse than when using intensity of color images.
This should not come as a surprise, since intensity images typically contain more infor-

90

7.7 Conclusions

mation useful for loop closure detection: When the camera is pointed towards a planar
wall on a corridor for example, we cannot expect to reliably detect any loop using depth
images alone. The intensity image in this case, however, might capture distinct fexture
information, e.g. of a unique poster on the wall, which makes detecting this loop much
easier. One such example of this scenario from our dataset is shown in Fig. [7.5]

Figure 7.5: RGB and depth image pair from the dataset. The RGB image clearly contains
much more relevant information since the highly textured poster is not “visible” to the
depth camera.

Considering this drawback, the results also show that loop closure detection using
depth images works surprisingly well. Even if we only consider the single most similar
image obtained using the best combination of all methods tried, we can find close to
85% of all loops using NARF interest points with kernel descriptors or roughly 73%
using the computationally very inexpensive combination of FAST interest points with
BRIEF descriptors. This should be more than enough for a typical SLAM setting: When
arobot enters a room for the second time, we can expect it to detect one of usually several
possible loops eventually.

Considering the performance of the various individual methods tested, we can make
the following interesting observations:

The choice of interest points is not as important as the choice of the descriptor

This is especially obvious from Fig. [7.4] where we find the curves of different interest
points in combination with the same descriptor to be nearly identical. This is in parts due
to how we posed our optimization problem in section[7.6.2} Since we try to find the best
sensitivity and do not care about the number of interest points, we usually end up with
low thresholds and thus high numbers of interest points. Comparing results using a fixed
number of interest points might have been more fair, but enforcing a fixed limit is also
not trivial. Also, we usually do not care so much about the number of interest points as
long as this does not make it computationally prohibitively expensive.

91

Chapter 7 Loop Closure Detection Using Depth Images

“Abusing” 2D methods originally intended for intensity images works surprisingly
well compared to proper 3D features

The performance of the computationally least expensive combination of FAST interest
points and BRIEF descriptors is only surpassed by kernel descriptors with different in-
terest points, but works better than NARF. It appears that for loop closure detection, we
do not need the additional information encoded in 3D features like NARF. This can be
explained by the fact that true loops in our dataset consist of a pair of images that are
captured by roughly the same pose. This means there is usually no considerable change
in scale, orientation, or perspective in general. Additionally, regions with invalid depth
measurements are usually reproducible, i.e. invalid depth measurements also contain
useful information (see Fig. [7.6), whereas 3D features that rely on 3D points to recover
surface normals will disregard these regions completely. Finally, 3D methods like Harris
and NARF might work rather badly in our dataset because they suffer from many high
depth values for which there is considerable depth inaccuracy.

(a) RGB image (b) Depth image

Figure 7.6: Example image pair from our dataset: Borders between valid and invalid
depth values contain useful information about the scene.

7.7.2 Summary

We evaluated several methods of interest point detection and descriptor extraction for
the task of loop closure detection using bag of words based on depth images. As ex-
pected, the achieved sensitivity is lower than what can be obtained on intensity images,
but still high enough that it should be usable for SLAM based on depth images alone.
It turns out that basic 2D features known from intensity images work surprisingly well
for loop closure detection, which might be mainly due to a combination of important
information being contained in invalid depth readings and no big changes in scale, orien-
tation or perspective in general for real loops. The combination of two computationally

92

7.7 Conclusions

very efficient methods FAST and BRIEF obtains surprisingly good results. It might be
possible to combine fast depth registration techniques with loop closure detection to a
computationally inexpensive full SLAM system using depth images alone.

93

Chapter 7 Loop Closure Detection Using Depth Images

94

Chapter 8
Drift-Corrected Visual SLAM

8.1 Motivation

In the preceding sections, we relied solely on camera images and indirectly estimated
their relative poses by means of SLAM. Using these relative pose estimates alone, a
robot can estimate its pose only relative to previous poses and the images it recorded
there: Be it by directly registering the current image to one previous keyframe as shown
in chapter[6|or indirectly by estimating the current pose relative to a set of 3D map points,
whose location was in turn triangulated based on a number of previous keyframes as done
in PTAM, described in chapter A

The absolute pose can only be approximated by providing the relative pose estimate
with respect to one previous (e.g. the initial) pose, which is to be assumed fixed. Any
absolute pose estimate derived in this way has to inevitably drift over longer trajectories,
similar to pose estimates inferred based on dead reckoning using odometry measure-
ments from wheel encoders.

Drift can be fatal: It is typically low within a local neighborhood and in SLAM typi-
cally consistent with the drift exhibited by the map. For aerial robots, however, drift-free
correct attitude and altitude estimation is essential to autonomous flight over longer tra-
jectories.

When navigating an MAV in GPS-denied environments, which is typically either in-
doors or outdoors but close to the ground, the MAV can often see the floor, most of the
time as a prominent ground plane. A sample view is illustrated in Fig. The main
idea of this chapter is to estimate and utilize this ground plane information for long-term
drift correction to allow for longer autonomous flight.

8.2 Ground Plane Detection

During a typical indoor flight, the ground plane can be clearly identified in most RGBD
point clouds and thus also depth images seen by the on-board camera, which is demon-
strated in Fig. 8.1l We propose a ground plane detection method that consists of the
following three steps: Sub-sampling the dense point cloud to use a much smaller num-
ber of sparsely reconstructed 3D points, detecting inliers and outliers using a custom

95

Chapter 8 Drift-Corrected Visual SLAM

(b) Depth image

<4

(c) RGBD point cloud (d) Ground plane visualization

Figure 8.1: Typical view of an onboard RGBD camera while navigating in an indoor
scenario: (a) RGB image, (b) Depth image, (c) RGBD point cloud and (d) visualization
of detected ground plane.

RANSAC scheme, and finally robust refinement of the most promising hypothesis based
on inliers.

8.2.1 Sampling 3D Points

We sample the depth image at few sparse locations to significantly reduce the number
of depth measurements that need to be considered. We obtain good results even when
considering only one depth value out of a 10 x 10 grid. For a typical non-aggressive
flight near hovering with a forward-looking camera, we can usually also disregard the
upper half of the image, since the ground plane can be expected in the lower half of the
image. Only if there are very few valid depth measurements in the lower half, which
might be the case because the MAV is flying very close to the ground, we fall back to
considering the full depth image. Using the intrinsic camera calibration, depth pixels are
then reprojected to 3D points.

96

8.2 Ground Plane Detection

8.2.2 Inlier/Outlier Detection

Out of the still large number of all 3D points determined by sub-sampling, only a minor
fraction might actually lie on the ground plane. To make matters worse, there might be
multiple prominently visible planes (walls, furniture, tables) that should not be confused
with the ground plane. In order to reliably extract the ground plane, we employ a pre-
emptive RANSAC scheme (Nistér (2005)) based on a custom inlier/outlier/even worse
outlier model to quickly arrive at a well-supported hypothesis for the actual ground plane.

Inlier/Outlier/Worse Outlier Model

RANSAC (RANdom SAmple Consensus) as originally introduced in Fischler and Bolles
(1981)) tries to find a hypothesis which maximizes the size of its consensus set. The
consensus set here is the set of measurements whose values agree with (i.e. are close
enough to) the measurement values as predicted by the hypothesis. The fact that each
measurement can either count as an inlier our outlier is also called the inlier/outlier model
in |Nistér (2005), since it only considers the binary decision whether a measurement is to
be considered an inlier or outlier.

Early on in our experiments, however, we found that RANSAC using the basic binary
inlier/outlier model often fails in ground plane detection when facing a vertical wall or
in front of a wide obstacle. A simplified 2D sketch of such a failure case is shown in
Fig. Both hypotheses lead to exactly the same numbers of inliers (7) and outliers
(2), so it is impossible to identify a better solution by counting inliers and outliers alone.

®)
®)

Figure 8.2: (a) A typical failure case of the basic inlier/outlier model for RANSAC in
ground plane detection and (b) the desired estimate obtained using our proposed in-
lier/outlier/worse outlier model.

When trying to find ground planes, however, there are two very different kinds of
outliers which are very easy to distinguish: Points above the ground plane are ubiquitous,
since the camera sees walls and obstacles protruding from the ground all the time. Points
below the ground plane, however, should be very rare: During indoor flight on a single
floor of a building, we expect to see none except for some completely random sensor
failures.

We thus introduce a novel ternary inlier/outlier/even worse outlier model, which modi-
fies the score of a hypothesis according to the following rules: +1 if the observation is an
inlier, 4-0 if the observation is a ”good” (i.e. expected) outlier above the ground plane,

97

Chapter 8 Drift-Corrected Visual SLAM

and —cpq 1f it is a bad (i.e. unexpected) outlier below the ground plane. We choose
cpag = 10, which worked well in all of our experiments. In the toy example above, hy-
pothesis (a) would lead to the score s, = —3 and (b) s, = 7. This means our proposed
ternary model correctly solves this problem.

8.2.3 Robust Refinement

RANSAC will return a hypothesis which is best with regards to its scoring function,
which in turn only depends on the number of inliers and (in our case different kinds
of) outliers, but it does not necessarily find the most accurate hypothesis. If accuracy is
desired, it is required to further refine this hypothesis using its inliers alone. One popular
method of fitting planes to 3D point clouds is using the principal component analysis
(PCA) method Weingarten et al.| (2004).

Given N points p; = (24,9, %) , the PCA method assumes the plane to pass through
their arithmetic mean:

1 N
o= Ni;pi (8.1)
1=

The normal of the plane should correspond to the smallest Eigenvalue of the so-called
scatter matrix, which corresponds to the sample covariance matrix:

A= Zi]il(pi —) (pi —)"

N1 (8.2)

The decision whether a measurement is to be considered an inlier or outlier is made by
comparing the measurement error to a pre-defined threshold. This threshold cannot be
chosen arbitrarily low since even inlier measurements are subject to measurement noise.
There will thus always be some points erroneously classified as inliers that do not belong
to the ground plane but to the lower parts of obstacles close to the ground. It is thus
advisable to use a robust or robustified method for this refinement instead of basic least
squares.

We propose to use a robustified Campbell (1980) version of the PCA method for plane
fitting to refine the rough ground plane estimate obtained using RANSAC based on its
inliers. The robustified versions of the mean in equation [(8.1)]is:

p==l ' (8.3)

98

8.3 Drift Correction

And the robustified version of equation |(8.2);

A i wi i) (i)" 8.4)

N
(Zi:l wiz) -1
Here, w; are individual weights calculated for each point. The basic PCA method for

plane fitting can be considered a special case of the robustified version that treats all
points equally, i.e.

wi=1 Vi (8.5)

In this case, equations [(8.1) and [(8.2)] are equivalent to equations|[(8.3)|and [(8.4)]

A robust estimator of mean and covariance is described in|Campbell| (1980), however,
computes the weights w; based on the Mahalanobis distance of point p; from the current
hypothesis:

(8.6)

Where d; is the Mahalanobis distance between p; and the current estimate of the mean
and w is an influence function:

d if d < dy
— 2
w(d) = dpexp (—M> else 8.7)

b

Once the ground plane is found and refined, we can represent it using its normal vector
pointing up in the current camera frame ¢ up and the camera height A with respect to the
plane.

8.3 Drift Correction

Given visual odometry pose estimates that drift over time and occasional ground plane
detections, we want to combine both of them to a drift-corrected pose estimate such that

e corrected pose estimates are consistent with the latest ground plane estimate, and

e correcting visual odometry pose estimates introduces as few disturbances as possi-
ble, i.e. the correction transformation applied to to visual odometry pose estimates
should be minimal in translation and rotation.

Using visual odometry alone, we can only estimate the camera pose with respect to a
fixed reference frame by incrementally combining all sequential relative pose estimates

99

Chapter 8 Drift-Corrected Visual SLAM

in a chain (dead reckoning):
Ve, ="Tg, - OTg, --- 1T, (8.8)

Ground plane measurements, on the other hand, put constraints on parts of the absolute
pose W T, and are shortcuts in the chain above.

Our proposed method of combining both for drift-corrected pose estimates W T, con-
sists of two steps:

e Prediction using the relative pose estimate inferred from visual odometry:

WTp =WTg, | -C'Ty, (8.9)

e Correcting the predicted pose estimate by applying a minimal correction transform
such that the resulting pose estimate is more consistent with the measured ground
plane:

WTC- = WTC‘ “Teorr (8.10)

Correction Transform Computation

The drift-correction transform 7., consists of rotation component R, and translation
tcorr- The rotation part should bring the measured up vector in camera coordinates G up
parallel to the up direction expected based on the current camera pose:

_ o
"Re, - Reorr“'up =" up @8.11)

. ! >—
ReorrCup =" R} - Wup (8.12)

There is a closed-form solution to compute the shortest rotation R, given two unit
vectors a,b such that R, j, - b = a, which can be derived from the fact that R, ; should
rotate around an axis orthogonal to a and b by the angle between both vectors.

Ra,b:I3+S+$Z'S‘S (8.13)

Where S = [a x b],, is the cross-product matrix of the cross product and d = (a,b)

is the dot product of a and b. To compute R, above, we choose a = Ciup and
b= WR(_J: Wup

The translation component on the other hand, should be a small translation along the

plane normal ., = 5- Ci'u,p that brings the corrected camera pose to the measured

100

8.4 Experiments and Results

height i above the ground plane:

ns (e, = (VT T) (8.14)
3.4 3,4
L (wnp, . w
- RCZ' teorr+ 7 to ; (8.15)
L (WRCZ. ~Ciup+Wtc> (8.16)
z

Which can easily be solved for s.

Correction Filtering

Even though ground plane estimates are immune to long term drift, they still suffer from
high-frequency measurement errors. Applying the full correction would introduce these
errors into the corrected pose estimates. We instead limit the influence of a single attitude
measurement by scaling it with a gain factor o < 1:

Toorr = €xp (a log [(RO tl) D (8.17)

8.4 Experiments and Results

We evaluate the system described above and its individual building blocks using the
TUM RGBD benchmark dataset described in Sturm et al.| (2012), which contains several
log files of image streams captured with an RGBD camera, including its ground truth
pose estimates obtained from an external tracking system. We choose four logs that
correspond to a handheld-slam (all) scenario and ideally contain clearly visible ground
planes.

8.4.1 Ground Plane Detection

We first compare the accuracy of the various ground plane detection techniques described
in Sect. [8.2]based on the ground truth data included in the file fr3_long_office_household.
The results can be seen in table where RANSAC denotes the common preemp-
tive RANSAC method using an inlier-outlier scheme, I/O/W RANSAC is preemptive
RANSAC using our Inlier/Outlier/Worse Outlier Model, I/O/W + PCA is the above fol-
lowed up with a refinement step using the PCA method and I/O/W + robust PCA uses our
robust refinement method. We compute height error Ah and attitude error Acv, which is
the angle between actual and expected up direction. We can clearly see that each exten-
sion successively improves the result. Plane estimates using basic RANSAC are more
than one order of magnitude worse compared to all other methods because it often de-
tects other planar surfaces (e.g. the surface of a desk) instead of the actual ground plane.

101

Chapter 8 Drift-Corrected Visual SLAM

Ao in [°] Ah in [em]
MAE RMSE MAE RMSE
RANSAC 2525 3322 3335 3538
I/O/W RANSAC 1.23 1.53 2.60 3.38
I/O/W + PCA 0.60 0.71 091 1.12
I/O/W + robust PCA | 0.58 0.68 0.56 0.73

Table 8.1: Ground plane accuracy of the methods described in Sect.

This problem is solved in successive methods by punishing outliers below the ground
plane with the inlier/outlier/worse outlier model.

8.4.2 Drift-Corrected Odometry

We also explicitly investigate drift in height and attitude using visual odometry (VO) and
drift-corrected visual odometry (DC-VO) by considering the final error in attitude and
height, as can be seen in table [8.2l Even though VO alone is rather accurate already,
DC-VO offers a significant improvement in both drift in height and attitude.

VO DC-VO
Ah[em] Aal®] Ah[em] Aol
fr2_desk 458 3.96 245 1.66
fr3_office 7.71 1.18 0.82 0.13

Table 8.2: Final error in height and orientation.

8.5 Conclusion

In this chapter we presented a computationally efficient, accurate, and robust ground-
plane detection algorithm. The main contribution is a novel inlier/outlier/worse-outlier
model that can be used both within RANSAC and for robust refinement. We showed that
this significantly improves the accuracy of visual odometry estimates by correcting the
inevitable drift in height and attitude.

102

Chapter 9

A full SLAM Back-End for Parallel
Tracking and Mapping

The previous chapters each focused on one aspect of a visual SLAM system: In chap-
ter [5| we showed how to combine 2D and depth measurements, which is the foundation
of this dissertation. In chapter [6l we implemented an alternative SLAM system with im-
plicit loop closure detection. Chapter [/|is about explicit loop closure detection, and the
previous chapter [§] showed how to use ground plane measurements for drift correction.

In this chapter we describe the combination of most aspects of the previous chapters
within a full SLAM system. We achieve this by treating our modified version of PTAM
as a SLAM front-end and implementing a suitable SLAM back-end.

9.1 PTAM as a Visual Odometry SLAM Front-End

We use our heavily modified fork of PTAM (see Klein and Murray| (2007)) as a visual
odometry system. Our previous modifications include porting PTAM to ROS and using
depth measurements (if available) in addition to 2D measurements for map points initial-
ization, tracking, and bundle adjustment as described in chapter [5] and in Scherer er al.
(2012). We remove old keyframes and corresponding map points and only keep the most
recent keyframes for tracking and local bundle adjustment as described in |Schauwecker
et al. (2012a). When tracking fails for a few frames, we blindly predict the pose based
on the last known velocity before giving up on the current map and reinitializing it.

Limiting the number of map points per keyframe is necessary since their number and
thus the time required for tracking may vary uncontrollably for different environments.
We solve this problem by disregarding all but the n best map points per image pyramid
level, ordered according to their Shi-Tomasi score (see Shi and Tomasi (1994)).

As mentioned above, we remove keyframes from PTAM in order to limit its compu-
tational complexity. Just deleting these keyframes forever, however, disregards possibly
useful information. Instead of deleting, we now publish all keyframes with all their in-
formation before they are deleted so they can be picked up by a SLAM back-end.

103

Chapter 9 A full SLAM Back-End for Parallel Tracking and Mapping

9.2 SLAM Back-End

The SLAM back-end is in charge of building maps given keyframes that were deleted
by the visual odometry front-end (i.e. PTAM), which includes detecting and closing
loops to counter long-term drift and to keep the map consistent. Fig. shows the
general principle of our SLAM back-end working in parallel with and extending PTAM:
PTAM’s tracking thread is operating at camera rate, computing a pose estimate for each
incoming image. Its mapping thread becomes active whenever there is a new keyframe
and will optimize the relatively small local map of the few latest keyframes using bundle
adjustment.

PTAM Node SLAM Node

o Tracking Thread Mapping Thread SLAM Thread

jo))

®©

E == Apply motion Add new keyframe. Add keyframe

% model.

2 Add new map Compute descriptors
Find map points in points.
current image. Implicit loop closure

Remove old detection, registration

Estimate corrected keyframe
pose by NLLSQ and associated Explicit loop closure
optimization. map points. detection, registration
Need new Run local bundle Pose graph optimization
Keyframe? adjustment (BA) for (PGO)

map optimization.

Figure 9.1: Functional overview of PTAM front-end and SLAM back-end

The SLAM back-end waits for keyframes to be removed from PTAM and adds these
to its own map. Whereas PTAM and the camera driver are run at camera rate as nodelets
(modules with separate threads, but within the same process) to minimize overhead when
transferring images, the SLAM back-end runs in its own process at a lower priority so it
does not slow down tracking and only irregularly becomes active whenever a keyframe is
removed from PTAM and transferred to the back-end. For each such incoming keyframe
it will try to perform the following steps:

9.2.1 Keyframe Conversion

The back-end uses a keyframe representation similar to PTAM: A keyframe consists
of a scale-space image pyramid with FAST corners computed on every level. What is
changed is that map points are now stored within their source keyframe and that we rely
on local descriptors instead of small image patches for matching.

PTAM uses a global representation for map points: All map point positions are stored
in a global reference frame. This is impractical for pose graph optimization, so we instead
store map points relative to their source keyframe, i.e. in which they were observed for
the first time. This means that map point positions will be adjusted implicitly during pose
graph optimization.

104

9.2 SLAM Back-End

Finding map points within an image in PTAM relies on comparing warped templates
and minimizing their zero-mean sum of squared differences (ZMSSD). This is feasible
for tracking as in PTAM, where the image region in which a map point is searched for
is small, but not for wide-baseline matching as required when closing loops. We thus
compute BRIEF descriptors (see Calonder et al.| (2010)) for all corners and map points.
We chose BRIEF because it is fast and we rely on neither explicit scale invariance (which
is implicitly obtained using a scale-space pyramid) nor rotation invariance (since we are
using a forward-looking camera, flying close to hovering at all times) in a descriptor.

9.2.2 Retry Registration for Tracking Failures

Visual tracking in PTAM can sometimes fail and completely loose track for various rea-
sons, which leads to rather inaccurate pose estimates that are computed solely based on
the prediction obtained from applying the motion model alone until tracking can resume.
If this is the case, we handle these likely inaccurate relative pose estimates by adding
a so-called motion model edge between two affected keyframes. We also try to register
these keyframes again using the descriptor-based matching and registration described in
section The reason behind this is that there might be short very difficult periods
when the camera temporarily does not see any visual features, e.g. because its view is
blocked by a textureless obstacle or because of fast motion leading to blurred images. As
soon as the obstacle is out of the way or the motion has stabilized, we might be able to
register the two keyframes created before and after this period.

9.2.3 Implicit and Explicit Loop Closure Detection

A trivial method of finding promising loop closure candidates is considering old keyframes
whose pose estimates are so close to the current keyframe that there should be consid-
erable overlap between the geometry visible in both views, which we call implicit loop
closure detection. We ignore keyframes that are either too close in time to the current
keyframe (since we expect drift in odometry to be negligible in this case) or geometrically
too far way (since matching is unlikely to succeed). Among the remaining keyframes, we
find the one with the most map points visible within the image of the current keyframe
by projecting map points according to current pose estimates. If we can successfully
register both keyframes (see Sect.[9.2.4)), we add a loop closure edge to the pose graph.

After longer loops, too much drift might have accumulated to find loops based on
geometrical closeness of keyframe pose estimates. This is why we also consider loop
closure candidates based on appearance or similarity of keyframes alone instead, which
we call explicit loop closure detection.

We use a hierarchical bag-of-words approach described in (Galvez-Lopez and Tardos
(2012)) to retrieve the previous keyframe which is most similar to the current one and
try to register this and the latest keyframe. Again, if we succeed in registering both
keyframes, we add a loop closure edge.

105

Chapter 9 A full SLAM Back-End for Parallel Tracking and Mapping

9.2.4 Keyframe-to-Keyframe Registration

Attempts to register a pair of keyframes (A, B) start by matching map points of keyframe
B to corners of A. Using these matches, we can compute a pose estimate by solving the
PnP problem. We do this by applying Gao’s solution to the P3P problem described in
Gao et al. (2003) within a preemptive RANSAC scheme (see [Nistér (2005)) to identify
inliers and arrive at a rough estimate for the relative pose 475. In a second step, we
estimate the inverse relative pose T4 by matching map points of A to corners of B.
If there were enough inliers in both cases and both relative poses agree, we refine the
relative pose using nonlinear optimization, minimizing the 2D reprojection error of all
map point/corner pairs that were inliers, and insert an edge between both keyframes into
the pose graph.

In the beginning, we also considered matching all corners to corners and running full
bundle adjustment on all matches. This proved to be much slower than the method
described above, though, for several reasons: It requires matching many more feature
descriptors since there are typically more than ten times as many corners as map points,
which due to its square run-time complexity leads to matching time increased by the fac-
tor of 100. Registering 2D to 2D corners requires the application of slower algorithms
than P3P within a RANSAC scheme: Ideally, this would be a five-point algorithm, which
requires many more model hypothesis to be created than using only 3 points. Finally, it
would require optimizing both relative keyframe pose and map point positions. We do
not want to add new map points or change their relative positions once they are trans-
ferred to the back-end, so this increased effort would not be of much use.

9.2.5 Pose Graph Optimization
Keyframe-Keyframe Edges

The final pose graph consists of several binary edges between keyframes that were either
computed by visual odometry, by blindly applying the motion model if visual odometry
failed, or by keyframe-keyframe registration within the backend. We assign the same
constant weights to both visual odometry and keyframe-to-keyframe edges, and a much
lower weight to motion model edges, since their relative poses are rather uncertain.

Ground Plane Edges
If we found a ground plane in the original image that was made a keyframe by PTAM,

this is an incomplete absolute pose measurement we should also use in pose graph opti-
mization. We utilize this information by adding special unary edges with the following

106

9.3 Experiments and Results

two reprojection errors for height and attitude:

T
C; %% C;
€att = aCOS ((RW : up) : upmeas)

€h = hmeas - hea:p

The first element is on the angle between measured and expected up direction, the second
element is the error in height. Both the expected up direction ““up and height origin heap
can be found in the third row of the homogeneous transformation matrix that corresponds
to the current pose estimate of the keyframe pose.

(WTCi)?’ = <CiupT hexp)

Implementation

The actual optimization of our pose graph is implemented using g2o (see Kiimmerle
et al. (2011))), which supports deriving custom SLAM edges and thus allows us to eas-
ily integrate different measurement types, namely relative pose edges and ground plane
edges.

9.3 Experiments and Results

9.3.1 Accuracy Evaluation on Benchmark Dataset

We again evaluate the accuracy of this SLAM system using the TUM RGBD benchmark
dataset described in[Sturm et al|(2012). The results are shown in table

visual odometry drift-corrected VO SLAM
ATE RPE | ATE RPE ATE
[ecm] [ecm/s] | [cm] [cm/s] [cm]
fr1 _room 12.67 448 n/a n/a 8.16
fr2_desk 7.69 1.83 | 7.58 1.62 8.44
fr3_office 4.18 1.17 | 3.88 1.46 2.10
fr3_office(v) | 2.51 1.01 | 3.29 1.19 3.19

Table 9.1: Visual odometry accuracy on several datasets in terms of absolute tracking
error (ATE) and relative position error (RPE) as determined by the RGBD benchmark
tool.

We can see that the results of our SLAM system are consistently better than using
visual odometry alone, which is due to the closed loops. The visualization of the result of

107

Chapter 9 A full SLAM Back-End for Parallel Tracking and Mapping

(b) Point cloud reconstructed from the map

Figure 9.2: Results from applying the proposed SLAM system to the fr3_office dataset.

108

9.3 Experiments and Results

our method on the fr3_office dataset is shown in figure 0.2} Keyframe poses (i.e. nodes
in the pose graph) are depicted by small red coordinate frames. If there is a ground
plane measurement for a keyframe, this is illustrated by the shortest line connecting
the keyframe position to the ground plane drawn in orange. Visual odometry edges
connecting consecutive keyframes are shown in green whereas loop closure edges are
shown in blue. Figure 0.2a shows only the sparse set of map points, i.e. points that are
actually used for localization. Map points currently used by PTAM in the front-end are
shown in red, map points that were moved to the back-end are shown in gray. Figure[9.2b]
on the other hand, shows a more dense colored point cloud reconstructed using RGBD
image pairs and the keyframe poses determined by our SLAM back-end.

9.3.2 Autonomous Flight of our MAV

We first demonstrate that the proposed system enables our MAV to fly completely au-
tonomously when following a set of predefined waypoints. We do this by commanding
the MAV to fly the same rectangle three times in a row within our laboratory, all the time
looking in the same absolute direction. A screenshot of the visualization containing a
part of the built map can be seen in Fig.[9.3] The current pose estimate is depicted using

Figure 9.3: Visualization while our MAV is flying fully autonomously by repeatedly
following a predefined path within our robot laboratory.

the simple quadrotor model. The red arrow is the currently active waypoint, whereas the

109

Chapter 9 A full SLAM Back-End for Parallel Tracking and Mapping

big coordinate frame is the currently active set point for position control. We also show
keyframes (small red frames), visual odometry edges (green), loop closure edges (blue)
and ground plane edges (orange). Within the dense point cloud reconstruction, one can
see a few very small red points, which are the map points currently used by PTAM for
localization.

Even though the visual odometry estimate alone drifts over time, the large number of
closed loops ensures that the path of the MAV does not drift much overall.

9.3.3 Semi-Autonomous Flight

We also show a semi-autonomous flight in order to demonstrate that we can also map
slightly larger environments using on-board processing alone. We rely on semi-autonomous
operation in this case, which means that the operator can modify the set point of the posi-
tion controller of the MAV by pushing different buttons for moving the set point forward
or backward, left or right, up or down, or rotating it left or right. A visualization of the
map built by the MAV in flight and the final map of the room is shown in Fig.[0.4] We
commanded the MAV to explore the room a little more such that it can better map the
whole room in this case.

If one zooms into the visualization, one can see that visual odometry was rather in-
correct when the MAV was turning around its axis and facing the right hand side of the
room. This is due to the repetitive structure of the heating elements and different light-
ing conditions when directly facing the windows. The resulting map is still consistent
because of successful loop closures after the MAV turned back to its original position.

9.3.4 Evaluation: Processing Time

We evaluate the processing time required for individual steps of both tracking and the
SLAM back-end while our MAV is flying semi-automatically through our laboratory.
The measured times are shown in Table [9.2] During this ca. 5 minutes long flight, it
created a map consisting of 307 keyframes in total. Fast tracking is imperative to enable
autonomous flight, especially when using only a basic PD controller. It is obvious that
our combination of ground plane detection and tracking using PTAM can conveniently
be computed onboard at camera rate (30 Hz), even though there are now three major
threads competing for two cores of the CPU. Image preparation includes converting the
original RGB image to grayscale, which is still required.

9.3.5 Application to Other Mobile Robots

Even though this work is mainly aimed at enabling aerial robots to fly autonomously,
it can also directly be applied to ground mobile robots without any modifications. An
example of a bigger map with more loops, reconstructed from data logged from a Mi-

110

9.3 Experiments and Results

Figure 9.4: Visualization while our MAV is flying fully autonomously by following a
predefined path within our robot laboratory (top) and reconstruction of the room at the
end of the flight (bottom).

111

Chapter 9 A full SLAM Back-End for Parallel Tracking and Mapping

step time [ms] step time [ms]
image prep. 1.55 £ 0.84 KF conversion | 20.34 + 8.96
ground plane | 096 £+ 0.75 loop detection | 48.71 + 27.42
tracking 2217 £+ 1342 registration 59.68 £+ 26.16
total 2479 £+ 13.85 PGO iteration | 5.62 £+ 4.16

Table 9.2: Computation times required by steps for tracking (left) and the SLAM back-
end (right).

crosoft Kinect camera mounted on a mobile robot driving through our library is shown

in Fig.[9.3]

Figure 9.5: Full point cloud reconstructed from data gathered by a mobile robot driving
through our library.

9.4 Conclusion

In this chapter, we developed a SLAM back-end to complement our modified PTAM ver-
sion to a full visual SLAM system that integrates depth measurements whenever avail-
able as described in chapter[5] is a full SLAM system that can handle closed loops due to
a SLAM back-end responsible for pose graph optimization similar to the sytem described
in chapter [6] contains explicit loop closure detection using a hierarchical bag-of-words

112

9.4 Conclusion

approach as investigated in chapter [/ and can integrate incomplete absolute pose mea-
surements from ground planes detected using the method described in chapter |8l We
demonstrated its accuracy and performance both on public benchmark datasets and in
actual autonomous flight experiments.

113

Chapter 9 A full SLAM Back-End for Parallel Tracking and Mapping

114

Chapter 10

Conclusions

10.1 Summary

In this dissertation, we developed a full visual SLAM system that allows autonomous
navigation of an MAV equipped with an RGBD camera. We observed problems with un-
reliable depth measurements early on in our experiments, which is reflected in the general
idea behind our approach: Starting from monocular visual SLAM and additionally in-
tegrating depth measurements whenever they are available. This idea, its mathematical
model, and its implementation by means of extending the popular visual SLAM system
PTAM is shown in chapter [5

Due to some major limitations of PTAM, namely the inability to detect and handle
closed loops, we decided to implement an alternative SLAM system with a SLAM back-
end that performs pose graph optimization instead of global bundle adjustment, which is
described in chapter[6] This was to our knowledge the first SLAM system with full pose
graph optimization being performed in real time on a micro aerial vehicle.

We investigated the feasibility of detecting closed loops using depth instead of inten-
sity images in chapter[7} We found the results using depth images alone not as good but
surprisingly close to a reference implementation using SIFT features on intensity images,
which seemed promising for future work on real-time SLAM using depth images alone.

In order to cope with long-term drift in visual odometry, we developed a novel ground
plane detection algorithm in chapter (8, which is based on a novel inlier/outlier/worse-
outlier model for RANSAC and robust least squares. We showed that this method is
robust, accurate, and computationally efficient and can be used to correct inevitable drift
in height and attitude of visual odometry.

We finally combined the main ideas from all technical chapters in one full SLAM
system as described in chapter[9} By using our modified version of PTAM with integrated
depth measurements and drift-correction as a SLAM front-end and complementing it
with a SLAM back-end responsible for detecting closed loops and global pose graph
optimization, we managed to create a full SLAM system capable of allowing our MAV
to fly fully autonomously while mapping a previously unknown environment.

While originally aimed at being used with RGBD cameras, several ideas of this dis-
sertation could easily be transferred to applications with different cameras. The most

115

Chapter 10 Conclusions

notable examples are our method of combining 2D and depth images from chapter [5]
which can directly be transferred to stereo odometry and SLAM as demonstrated in
Schauwecker et al.| (2012a)), and the extension of PTAM to a full SLAM system with
loop closure detection and pose graph optimization for monocular cameras as described
in|Yang et al.| (2014b).

10.2 Future Work

We have successfully demonstrated that our SLAM system allows the MAV to localize
itself and autonomously navigate in previously unknown environments. In all of our
experiments, however, we either controlled the MAV in a semi-autonomous manner or
let it follow a pre-defined path of waypoints. The next big step towards true autonomy
would be robust autonomous exploration with obstacle avoidance.

The methods and algorithms required for that are theoretically available and straight-
forward: Keyframe-based maps produced by graph-based SLAM can be converted to
an octree-based occupancy grid map (see Wurm et al| (2010)), which can in turn be
used for planning paths through free space to frontiers that should be explored next (see
Yamauchi|(1997))), while avoiding obstacles. Constructing one occupancy grid map from
a keyframe-based map with a large number of keyframes is computationally expensive,
and the naive approach would require this after every closed loop and the following
global optimization. This effect can be mitigated by applying hybrid metric-topological
maps as proposed for the 2D case in Konolige ef al.| (2011)) or in 3D in Schmuck et al.
(2016).

The major hurdle preventing this so far was the availability of enough computational
power at a weight low enough to allow it being carried by an MAV. Depending on the
desired accuracy and the accordingly chosen parameters, the systems described in this
dissertation can easily use two CPU cores to their full capacity. With more powerful
onboard computers hosting more and more CPU cores becoming available, however,
this is about to change.

But also the localization result of the methods described in this dissertation and their
robustness might be improved. One interesting idea would be mounting multiple RGBD
cameras on one MAV to mitigate the effect of the rather small viewing angle of current
RGBD cameras similar to the method described in|Yang et al.| (2014c).

There are also two alternative methods that deserve to be watched closely: EKF-
SLAM based visual odometry is experiencing a revival (see e.g. L1 and Mourikis|(2013)),
since it makes some things easier, e.g. integrating inertial measurements and coping with
rolling shutters. Also, dense methods Kerl ef al. (2013a) will become more and more im-
portant with more computing power available on MAVs.

116

Abbreviations

BA
BOW
BRIEF
EKF
ESC
ESM
ETS
GPS
FOV
HOG
ICP
IMU
IRLS
KDES
LSH
LSQ
MAE
MAP
MAV
ML
NARF
PCA
PGO
PTAM
RANSAC
RGB(D)
RMSE
ROS
SE(3)

se(3)
StM
SIFT
SLAM

Bundle Adjustment

Bag Of Words

Binary Robust Independent Elementary Features
Extended Kalman Filter

Electric Speed Controller

Efficient Second-order Minimization
External Tracking System

Glopal Positioning System

Field of View

Histogram of Oriented Gradients
Iterative Closest Points

Inertial Measurement Unit

Iteratively Reweighted Least Squares (estimation)
Kernel DEScriptors

Locality-Sensitive Hashing

Least SQuares (estimation)

Mean Absolute Error

Maximum a Posteriori (estimation)
Micro Aerial Vehicle

Maximum Likelihood (estimation)
Normal Aligned Radial Features
Principal Component Analysis

Pose Graph Optimization

Parallel Tracking and Mapping
RANdom SAmple Consensus

Red, Green, Blue (Depth)

Root Mean Square Error

Robot Operating System

Special Euclidean group in 3 dimensions, i.e. the Lie group of 3D
rigid body transformations

Lie algebra corresponding to SE(3)
Structure from Motion

Scale-Invariant Feature Transform
Simultaneous Localization and Mapping

117

Abbreviations

SO(3) Special Orthogonal group in 3 dimensions, i.e. the group of 3D
rotations

50(3) Lie algebra corresponding to SO(3)

ZMSSD Zero-Mean Sum of Squared Differences

118

Bibliography

Agarwal, S., Mierle, K., and Others (2014). Ceres solver. https://code.google.com/
p/ceres-solver/. Accessed: 2014.03.17.

Amazon.com, Inc. (2013). Amazon prime air. http://www.amazon.com/b?ref_
=tsm_1_yt_s_amzn_mx3eqp&node=8037720011. Accessed: 02.12.2013.

Bachrach, A., Prentice, S., He, R., and Roy, N. (2011). Range—robust autonomous navi-
gation in gps-denied environments. Journal of Field Robotics, 28(5), 644—666.

Bailey, T. and Durrant-Whyte, H. (2006). Simultaneous localization and mapping (slam):
Part ii. IEEE Robotics & Automation Magazine, 13(3), 108-117.

Baker, S. and Matthews, 1. (2001). Equivalence and efficiency of image alignment algo-
rithms. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on, volume 1, pages I-1090. IEEE.

Bandemann, P. (2010). Schadstoffe aufspiiren - Feuerwehr setzt auf Flugro-
boter. http://www.ruhrnachrichten.de/staedte/dortmund/Schadstoffe-
aufspueren-Feuerwehr-setzt-auf-Flugroboter;art930, 1126338 Accessed:
12.12.2014.

Barnard, S. T. and Fischler, M. A. (1982). Computational stereo. ACM Computing
Surveys (CSUR), 14(4), 553-572.

Beard, R. W. and McLain, T. W. (2012). Small unmanned aircraft: Theory and practice.
Princeton University Press.

Benhimane, S. and Malis, E. (2004). Real-time image-based tracking of planes using
efficient second-order minimization. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 1, pages
943-948. IEEE.

Besl, P. J. (1988). Active, optical range imaging sensors. Machine vision and applica-
tions, 1(2), 127-152.

Besl, P. J. and McKay, N. D. (1992). Method for registration of 3-d shapes. In Robotics-
DL tentative, pages 586—-606. International Society for Optics and Photonics.

119

https://code.google.com/p/ceres-solver/
https://code.google.com/p/ceres-solver/
http://www.amazon.com/b?ref_=tsm_1_yt_s_amzn_mx3eqp&node=8037720011
http://www.amazon.com/b?ref_=tsm_1_yt_s_amzn_mx3eqp&node=8037720011
http://www.ruhrnachrichten.de/staedte/dortmund/Schadstoffe-aufspueren-Feuerwehr-setzt-auf-Flugroboter;art930,1126338
http://www.ruhrnachrichten.de/staedte/dortmund/Schadstoffe-aufspueren-Feuerwehr-setzt-auf-Flugroboter;art930,1126338

Bibliography

Biber, P. and Straer, W. (2003). The normal distributions transform: A new approach
to laser scan matching. In Intelligent Robots and Systems, 2003.(IROS 2003). Pro-
ceedings. 2003 IEEE/RSJ International Conference on, volume 3, pages 2743-2748.
IEEE.

Bjorck, A. (1996). Numerical methods for least squares problems. Siam.

Blanco, J.-L. (2010). A tutorial on se(3) transformation parameterizations and on-
manifold optimization. Technical report, University of Malaga.

Bo, L., Ren, X., and Fox, D. (2010). Kernel Descriptors for Visual Recognition. In
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23, pages 244-252.

Bouguet, J.-Y. (2001). Pyramidal implementation of the lucas kanade feature tracker:
Description of the algorithm. Technical report.

Bry, A., Bachrach, A., and Roy, N. (2012). State estimation for aggressive flight in
gps-denied environments using onboard sensing. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 1-8. IEEE.

Bundeswehr (2013). Mikado - das kleine auge des heeres.
http://www.deutschesheer.de/portal/a/heer/!ut/p/c4/04_
SB8K8xLLMOMSSzPy8xBz9CP3I6EyrpHKO JNTUIr2510SMvMxsvZzStBKO3MzsxJRS_
YJsROUALOkjaQ!!/ Accessed: 30.11.2014.

Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). Brief: Binary robust indepen-
dent elementary features. In Computer Vision—-ECCV 2010, pages 778—792. Springer.

Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., and Fua, P. (2012).
BRIEF: Computing a Local Binary Descriptor Very Fast. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 34(7), 1281-1298.

Campbell, N. (1980). Robust procedures in multivariate analysis i: Robust covariance
estimation. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29,
231-237.

Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiple range
images. Image and vision computing, 10(3), 145-155.

Chum, O., Matas, J., and ObdrZalek, S. (2004). Enhancing ransac by generalized model
optimization. In Proc. of the Asian Conference on Computer Vision (ACCV), volume 2,
pages 812-817, Seoul, Korea South. Asian Federation of Computer Vision Societies.

120

http://www.deutschesheer.de/portal/a/heer/!ut/p/c4/04_SB8K8xLLM9MSSzPy8xBz9CP3I5EyrpHK9jNTUIr2S1OSMvMxsvZzStBK93MzsxJR8_YJsR0UALOkjaQ!!/
http://www.deutschesheer.de/portal/a/heer/!ut/p/c4/04_SB8K8xLLM9MSSzPy8xBz9CP3I5EyrpHK9jNTUIr2S1OSMvMxsvZzStBK93MzsxJR8_YJsR0UALOkjaQ!!/
http://www.deutschesheer.de/portal/a/heer/!ut/p/c4/04_SB8K8xLLM9MSSzPy8xBz9CP3I5EyrpHK9jNTUIr2S1OSMvMxsvZzStBK93MzsxJR8_YJsR0UALOkjaQ!!/

Bibliography

Csurka, G., Dance, C. R., Fan, L., Willamowski, J., and Bray, C. (2004). Visual catego-
rization with bags of keypoints. In In Workshop on Statistical Learning in Computer
Vision, ECCV, pages 1-22.

Cummins, M. and Newman, P. (2008). FAB-MAP: Probabilistic Localization and Map-
ping in the Space of Appearance. The International Journal of Robotics Research,
27(6), 647-665.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 886—893. IEEE.

Davison, A. (2003). Real-time simultaneous localisation and mapping with a single
camera. In Proc. International Conference on Computer Vision, Nice.

Davison, A., Cid, Y. G., and Kita, N. (2004). Real-time 3D SLAM with wide-angle
vision. In Proc. IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon.

Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). Monoslam: Real-time
single camera slam. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 29(6), 1052-1067.

DeMenthon, D. and Davis, L. S. (1992). Exact and approximate solutions of the
perspective-three-point problem. /IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(11), 1100-1105.

Devernay, F. and Faugeras, O. (2001). Straight lines have to be straight. Machine vision
and applications, 13(1), 14-24.

Dobler, C. (2009). Development of Flight Hardware for a Next Generation Autonomous
Micro Air Vehicle. Master’s thesis, ETH Ziirich.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: part
i. Robotics & Automation Magazine, IEEE, 13(2), 99-110.

Durrant-Whyte, H., Rye, D., and Nebot, E. (1996). Localization of autonomous guided
vehicles. In Robotics Research, pages 613—625. Springer.

Eade, E. (2008). Monocular Simultaneous Localisation and Mapping. Ph.D. thesis,
University of Cambridge.

Eggert, D. W., Lorusso, A., and Fisher, R. B. (1997). Estimating 3-d rigid body transfor-
mations: a comparison of four major algorithms. Mach. Vision Appl., 9, 272-290.

Engelhard, N., Endres, F., Hess, J., Sturm, J., and Burgard, W. (2011). Real-time 3d vi-
sual slam with a hand-held camera. In Proc. of the RGB-D Workshop on 3D Perception
in Robotics at the European Robotics Forum, Vasteras, Sweden.

121

Bibliography

Faugeras, O., Luong, Q.-T., and Papadopoulou, T. (2001). The Geometry of Multiple

Images: The Laws That Govern The Formation of Images of A Scene and Some of
Their Applications. MIT Press, Cambridge, MA, USA.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. Com-
munications of the ACM, 24(6), 381-395.

Foix, S., Alenya, G., and Torras, C. (2011). Lock-in time-of-flight (tof) cameras: a
survey. Sensors Journal, IEEE, 11(9), 1917-1926.

Fox, D., Burgard, W., Dellaert, F., and Thrun, S. (1999). Monte carlo localization:
Efficient position estimation for mobile robots. AAAI/IAAI, 1999, 343-349.

Fraundorfer, F., Heng, L., Honegger, D., Lee, G. H., Meier, L., Tanskanen, P., and Polle-
feys, M. (2012). Vision-based autonomous mapping and exploration using a quadrotor
mav. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Confer-
ence on, pages 4557-4564. IEEE.

Gabay, D. (1982). Minimizing a differentiable function over a differential manifold.
Journal of Optimization Theory and Applications, 37(2), 177-219.

Galvez-Lopez, D. and Tardos, J. D. (2011). Real-time loop detection with bags of bi-
nary words. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, pages 51 —58.

Galvez-Lopez, D. and Tardos, J. D. (2012). Bags of binary words for fast place recogni-
tion in image sequences. IEEE Transactions on Robotics, 28(5), 1188-1197.

Gao, X.-S., Hou, X.-R., Tang, J., and Cheng, H.-F. (2003). Complete solution classifica-
tion for the perspective-three-point problem. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25(8), 930-943.

Geiger, A., Lenz, P, Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The kitti
dataset. International Journal of Robotics Research (IJRR).

Gokturk, S. B., Yalcin, H., and Bamji, C. (2004). A time-of-flight depth sensor-system
description, issues and solutions. In Computer Vision and Pattern Recognition Work-
shop, 2004. CVPRW’04. Conference on, pages 35-35. IEEE.

Grabe, V., Biilthoff, H. H., and Robuffo Giordano, P. (2012). On-board velocity esti-

mation and closed-loop control of a quadrotor uav based on optical flow. In IEEE
International Conference on Robotics and Automation.

122

Bibliography

Grabe, V., Riedel, M., Biilthoff, H., Robuffo Giordano, P., and Franchi, A. (2013). The
telekyb framework for a modular and extendible ros-based quadrotor control. pages
19-25, Piscataway, NJ, USA. IEEE.

Granshaw, S. (1980). Bundle adjustment methods in engineering photogrammetry. The
Photogrammetric Record, 10(56), 181-207.

Griewank, A. (1989). On automatic differentiation. In Mathematical Programming:
Recent Developments and Applications, pages 83—108, Amsterdam.

Grisetti, G., Kiimmerle, R., Stachniss, C., Frese, U., and Hertzberg, C. (2010a). Hierar-
chical optimization on manifolds for online 2d and 3d mapping. In Proceedings of the
IEEE International Conference on Robotics and Automation, Anchorage, AK, USA.

Grisetti, G., Kummerle, R., Stachniss, C., and Burgard, W. (2010b). A tutorial on graph-
based slam. Intelligent Transportation Systems Magazine, IEEE, 2(4), 31-43.

Grzonka, S., Grisetti, G., and Burgard, W. (2009). Towards a navigation system for
autonomous indoor flying. In Robotics and Automation, 2009. ICRA’09. IEEE Inter-
national Conference on, pages 2878-2883. IEEE.

Hall, B. (2003). Lie groups, Lie algebras, and representations: an elementary introduc-
tion, volume 222. Springer.

Hannah, M. J. (1974). Computer Matching of Areas in Stereo Images. Ph.D. thesis,
Stanford, CA, USA. AAI7427032.

Harris, C. and Stephens, M. J. (1988). A combined corner and edge detector. In Proc. of
Fourth Alvey Vision Conference, pages 147-151.

Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition.

Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2010). RGB-D mapping:
Using depth cameras for dense 3d modeling of indoor environments. In the 12th
International Symposium on Experimental Robotics (ISER), volume 20, pages 22-25.

Herbst, R. (2010). Unbemannte Flugobjekte ,Spione* fiir eine nachhaltige
Landwirtschaft. https://www.dbu.de/123artikel29597_335.html Accessed:
29.12.2014.

Hern, A. (2014). DHL launches first commercial drone ’parcelcopter’ de-
livery service. http://www.theguardian.com/technology/2014/sep/25/
german-dhl-launches-first-commercial-drone-delivery-service. Ac-
cessed: 27.12.2014.

123

https://www.dbu.de/123artikel29597_335.html
http://www.theguardian.com/technology/2014/sep/25/german-dhl-launches-first-commercial-drone-delivery-service
http://www.theguardian.com/technology/2014/sep/25/german-dhl-launches-first-commercial-drone-delivery-service

Bibliography

Hertzberg, C. (2008). A Framework for Sparse, Non-Linear Least Squares Problems on
Manifolds. Master’s thesis, Universitit Bremen.

Hertzberg, C., Wagner, R., Frese, U., and Schroder, L. (2013). Integrating generic sen-
sor fusion algorithms with sound state representations through encapsulation of mani-
folds. Information Fusion, 14(1), 57-77.

Honig, Z. (2011). T-Hawk UAV enters Fukushima danger zone, returns
with video. http://www.engadget.com/2011/04/21/t-hawk-uav-enters-
fukushima-danger-zone-returns-with-video/| Accessed: 28.12.2014.

Horn, B. K. (1987). Closed-form solution of absolute orientation using unit quaternions.
JOSA A, 4(4), 629-642.

Huang, A. S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., and Roy, N.
(2011). Visual odometry and mapping for autonomous flight using an rgb-d camera.
In Int. Symposium on Robotics Research (ISRR),(Flagstaff, Arizona, USA).

Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathemat-
ical Statistics, 35(1), 73-101.

Huber, P. J. (1972). The 1972 wald lecture robust statistics: A review. The Annals of
Mathematical Statistics, pages 1041-1067.

Huhle, B., Fleck, S., and Schilling, A. (2007). Integrating 3d time-of-flight camera data
and high resolution images for 3dtv applications. In 3DTV Conference, 2007, pages
1-4. IEEE.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Jour-
nal of basic Engineering, 82(1), 35-45.

Kerl, C., Sturm, J., and Cremers, D. (2013a). Dense visual slam for rgb-d cameras. In
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on,
pages 2100-2106. IEEE.

Kerl, C., Sturm, J., and Cremers, D. (2013b). Robust odometry estimation for rgb-d
cameras. In Robotics and Automation (ICRA), 2013 IEEE International Conference
on, pages 3748-3754. IEEE.

Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR’07), Nara, Japan.

Kloss, A. (2012). Wiedererkennung bekannter Orte durch Tiefenbilder. Bachelor’s the-
sis, University of Tuebingen, WSI-KS.

124

http://www.engadget.com/2011/04/21/t-hawk-uav-enters-fukushima-danger-zone-returns-with-video/
http://www.engadget.com/2011/04/21/t-hawk-uav-enters-fukushima-danger-zone-returns-with-video/

Bibliography

Konolige, K. and Agrawal, M. (2008). FrameSLAM: From Bundle Adjustment to Real-
Time Visual Mapping. IEEE Trans. Robotics, 24(5), 1066—-1077.

Konolige, K., Marder-Eppstein, E., and Marthi, B. (2011). Navigation in hybrid metric-
topological maps. In Robotics and Automation (ICRA), 2011 IEEFE International Con-
ference on, pages 3041-3047. 1EEE.

Kiimmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). g20: A
general framework for graph optimization. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), Shanghai, China.

Lang, M. (2013). Drohnen-Auslieferung: DHL fiihrt Paketkopter vor.
http://www.heise.de/newsticker/meldung/Drohnen-Auslieferung-DHL-
fuehrt-Paketkopter-vor-2063059.html. Accessed: 27.12.2014.

Lange, R. (2000). 3d time-of-flight distance measurement with custom solid-state image
sensors in cmos/ccd-technology.

Lee, J. M. (2003). Smooth manifolds. Springer.

Leonard, J. J. and Durrant-Whyte, H. F. (1991). Simultaneous map building and local-
ization for an autonomous mobile robot. In Intelligent Robots and Systems’ 91.’Intelli-
gence for Mechanical Systems, Proceedings IROS’91. IEEE/RSJ International Work-
shop on, pages 1442-1447. leee.

Levenberg, K. (1944). A method for the solution of certain problems in least squares.
Quarterly of applied mathematics, 2, 164—168.

Li, M. and Mourikis, A. 1. (2013). High-precision, consistent ekf-based visual-inertial
odometry. The International Journal of Robotics Research, 32(6), 690-711.

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. Int. J.
Comput. Vision, 60(2), 91-110.

Lu, F. and Milios, E. (1997). Globally consistent range scan alignment for environment
mapping. Autonomous robots, 4(4), 333-349.

Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with an
application to stereo vision. In Proceedings of the 7th international joint conference
on Artificial intelligence, pages 674—679.

Ma, Y., Soatto, S., Kosecka, J., and Sastry, S. S. (2003). An Invitation to 3-D Vision:
From Images to Geometric Models. SpringerVerlag.

Madsen, K., Nielsen, H. B., and Tingleff, O. (2004). Methods for non-linear least squares
problems (2nd ed.).

125

http://www.heise.de/newsticker/meldung/Drohnen-Auslieferung-DHL-fuehrt-Paketkopter-vor-2063059.html
http://www.heise.de/newsticker/meldung/Drohnen-Auslieferung-DHL-fuehrt-Paketkopter-vor-2063059.html

Bibliography

Mahony, R., Kumar, V., and Corke, P. (2012). Multirotor aerial vehicles: Modeling,
estimation, and control of quadrotor. Robotics & Automation Magazine, IEEE, 19(3),
20-32.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear param-
eters. Journal of the Society for Industrial & Applied Mathematics, 11(2), 431-441.

Masselli, A., Hanten, R., and Zell, A. (2014). Localization of unmanned aerial vehicles
using terrain classification from aerial images. In 2014 International Conference on
Intelligent Autonomous Systems (IAS-13), Padova, Italy.

Meier, L. (2009). Mavlink micro air vehicle communication protocol. http://
qgroundcontrol.org/mavlink/start Accessed: 10.12.2014.

Meier, L., Tanskanen, P., Fraundorfer, F., and Pollefeys, M. (2011). PIXHAWK: A
system for autonomous flight using onboard computer vision. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 2992-2997.

Molton, N. D., Davison, A. J., and Reid, I. D. (2004). Locally planar patch features for
real-time structure from motion. In Proc. British Machine Vision Conference. BMVC.
(To appear).

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al. (2002). Fastslam: A factored
solution to the simultaneous localization and mapping problem. In AAAI/IAAI, pages
593-598.

Montgomery, D. C., Peck, E. A., and Vining, G. G. (2012). Introduction to linear regres-
sion analysis, volume 821. John Wiley & Sons.

Montiel, J., Civera, J., and Davison, A. J. (2006). Unified inverse depth parametrization
for monocular slam. analysis, 9, 1.

Mutto, C. D., Zanuttigh, P., and Cortelazzo, G. M. (2012). Time-of-Flight Cameras and
Microsoft Kinect(TM). Springer Publishing Company, Incorporated.

Nistér, D. (2005). Preemptive RANSAC for live structure and motion estimation. Ma-
chine Vision and Applications, 16(5), 321-329.

Nister, D. and Stewenius, H. (2006). Scalable Recognition with a Vocabulary Tree. In
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference
on, volume 2, pages 2161-2168.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization, Second Edition. Springer,
New York, 2nd edition.

126

http://qgroundcontrol.org/mavlink/start
http://qgroundcontrol.org/mavlink/start

Bibliography

Olson, E. B. (2009). Real-time correlative scan matching. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pages 4387-4393. IEEE.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical
Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press,
New York, NY, USA, 3 edition.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng,
A.Y. (2009). Ros: an open-source robot operating system. In ICRA workshop on open
source software, volume 3, page 5.

Rauscher, G., Dube, D., and Zell, A. (2014). A comparison of 3d sensors for wheeled
mobile robots. In 2014 International Conference on Intelligent Autonomous Systems
(IAS-13), Padova, Italy.

Reichinger, A. (2011). https://azttm.wordpress.com/2011/04/03/kinect-
pattern-uncovered/ Accessed: 24.3.2014.

Renner, E. (1995). Pinhole photography: rediscovering a historic technique. Focal
Press.

Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection.
In Computer Vision—ECCV 2006, pages 430-443. Springer.

Rushe, D. (2014). Google reveals home delivery drone program project wing. The
Guardian. http://www.theguardian.com/technology/2014/aug/29/google—
joins-amazon-in-testing-home-delivery-drones. Accessed: 27.12.2014.

Samuel, H. (2014). France’s la poste develops drone to deliver parcels. The Telegraph.
Accessed: 27.12.2104.

Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. International journal of computer vision, 47(1-3),
7-42.

Scharstein, D. and Szeliski, R. (2003). High-accuracy stereo depth maps using structured
light. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, volume 1, pages 1-195. IEEE.

Schauwecker, K. and Zell, A. (2014). On-Board Dual-Stereo-Vision for the Navigation
of an Autonomous MAV. Journal of Intelligent & Robotic Systems, 74(1-2), 1-16.

Schauwecker, K., Ke, N. R., Scherer, S. A., and Zell, A. (2012a). Markerless Visual Con-
trol of a Quad-Rotor Micro Aerial Vehicle by Means of On-Board Stereo Processing.
In 22nd Conference on Autonomous Mobile Systems (AMS), pages 11-20, Stuttgart,
Germany. Springer.

127

https://azttm.wordpress.com/2011/04/03/kinect-pattern-uncovered/
https://azttm.wordpress.com/2011/04/03/kinect-pattern-uncovered/
http://www.theguardian.com/technology/2014/aug/29/google-joins-amazon-in-testing-home-delivery-drones
http://www.theguardian.com/technology/2014/aug/29/google-joins-amazon-in-testing-home-delivery-drones

Bibliography

Schauwecker, K., Klette, R., and Zell, A. (2012b). A new feature detector and stereo
matching method for accurate high-performance sparse stereo matching. In /IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 5171-5176,
Vilamoura, Algarve, Portugal. IEEE.

Scherer, S. A. and Zell, A. (2013). Efficient Onboard RGBD-SLAM for Fully Au-
tonomous MAVs. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Inter-
national Conference on, pages 1062—1068, Tokyo Big Sight, Japan.

Scherer, S. A., Dube, D., Komma, P., Masselli, A., and Zell, A. (2011). Robust Real-
Time Number Sign Detection on a Mobile Outdoor Robot. In Proceedings of the 6th
European Conference on Mobile Robots (ECMR 2011), Orebro, Sweden.

Scherer, S. A., Dube, D., and Zell, A. (2012). Using depth in visual simultaneous local-
isation and mapping. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 52165221, St. Paul, Minnesota, USA.

Scherer, S. A., Kloss, A., and Zell, A. (2013). Loop Closure Detection using Depth
Images. In Mobile Robots (ECMR), 2013 European Conference on, pages 100 — 106,
Barcelona, Catalonia, Spain.

Scherer, S. A., Yang, S., and Zell, A. (2015). DCTAM: Drift-corrected tracking and map-
ping for autonomous micro aerial vehicles. In Unmanned Aircraft Systems (ICUAS),
2015 International Conference on, pages 1094—1101, Denver, CO, USA.

Schmuck, P., Scherer, S. A., and Zell, A. (2016). Hybrid metric-topological 3d occu-
pancy grid maps for large-scale mapping. IFAC-PapersOnLine, 49(15), 230 — 235.

Schillibaum AG (2014). vAlRmessung - Drohnenvermessung. http://www.
schaellibaum.ch/geomatik/vairmessung-drohnenvermessung/. Accessed
27.12.2014.

Segal, A., Haehnel, D., and Thrun, S. (2009). Generalized-icp. In Robotics: Science and
Systems, volume 2.

Shahbazi, H. and Zhang, H. (2011). Application of Locality Sensitive Hashing to real-
time loop closure detection. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pages 1228-1233.

Shen, S., Michael, N., and Kumar, V. (2011). Autonomous multi-floor indoor navigation
with a computationally constrained mav. In Robotics and automation (ICRA), 2011
IEEE international conference on, pages 20-25. IEEE.

Shi, J. and Tomasi, C. (1994). Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR "94., 1994 IEEE Computer Society Conference
on, pages 593-600.

128

http://www.schaellibaum.ch/geomatik/vairmessung-drohnenvermessung/
http://www.schaellibaum.ch/geomatik/vairmessung-drohnenvermessung/

Bibliography

Sibley, G., Mei, C., Reid, I., and Newman, P. (2009). Adaptive relative bundle adjust-
ment. In Robotics Science and Systems Conference, pages 1-8.

Sibley, G., Mei, C., Reid, 1., and Newman, P. (2010). Vast-scale outdoor navigation using
adaptive relative bundle adjustment. The International Journal of Robotics Research,
29(8), 958-980.

Sivic, J. and Zisserman, A. (2003). Video google: A text retrieval approach to object
matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on, pages 1470-1477. IEEE.

Slama, C. C., Theurer, C., and Henriksen, S. W., editors (1980). Manual of Photogram-
metry. American Society of Photogrammetry.

Smith, R., Self, M., and Cheeseman, P. (1990). Estimating uncertain spatial relationships
in robotics. In Autonomous robot vehicles, pages 167-193. Springer.

Smith, R. C. and Cheeseman, P. (1986). On the representation and estimation of spatial
uncertainty. The international journal of Robotics Research, 5(4), 56—68.

Smith, S. T. (1993). Geometric Optimization Methods for Adaptive Filtering. Ph.D.
thesis, Cambridge, MA, USA. UMI Order No. GAX93-31032.

Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism: exploring photo col-
lections in 3d. ACM transactions on graphics (TOG), 25(3), 835-846.

Steder, B., Rusu, R., Konolige, K., and Burgard, W. (2011). Point feature extraction on
3D range scans taking into account object boundaries. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 2601-2608.

Steinbrucker, F., Sturm, J., and Cremers, D. (2011). Real-time visual odometry from
dense rgb-d images. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Conference on, pages 719-722. IEEE.

Strasdat, H., Montiel, J. M. M., and Davison, A. J. (2010). Real-time monocular slam:
Why filter? In ICRA, pages 2657-2664. IEEE.

Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. (2012). A Benchmark
for the Evaluation of RGB-D SLAM Systems. In Proc. of the International Conference
on Intelligent Robot Systems (IROS).

Stinderhauf, N. and Protzel, P. (2012). Towards a robust back-end for pose graph SLAM.
In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 1254-1261. IEEE.

129

Bibliography

Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer-Verlag
New York, Inc., New York, NY, USA, 1st edition.

Tanimoto, S. and Pavlidis, T. (1975). A hierarchical data structure for picture processing.
Computer Graphics and Image Processing, 4(2), 104 — 119.

Taylor, C. J., Taylor, C. J., Kriegman, D. J., and Kriegman, D. J. (1994). Minimization
on the lie group so(3) and related manifolds. Technical report.

Taylor, J. (1997). An Introduction to Error Analysis: The Study of Uncertainties in
Physical Measurements. A series of books in physics. University Science Books.

Thacker, N. and Lacey, A. (1996). Tutorial: The likelihood interpretation of the kalman
filter. TINA Memos: Advanced Applied Statistics, 2.

Thrun, S. (2003). Learning occupancy grid maps with forward sensor models. Au-
tonomous robots, 15(2), 111-127.

Thrun, S. and Leonard, J. J. (2008). Springer Handbook of Robotics, chapter Simultane-
ous Localization and Mapping, pages 871-889. Springer.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press.

Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle adjustment
— a modern synthesis. In B. Triggs, A. Zisserman, and R. Szeliski, editors, Vision
Algorithms: Theory and Practice, volume 1883 of Lecture Notes in Computer Science,
pages 298-372. Springer-Verlag.

Trucco, E. and Verri, A. (1998). Introductory Techniques for 3-D Computer Vision.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

Weingarten, J. W., Gruener, G., and Siegwart, R. (2004). Probabilistic plane fitting
in 3d and an application to robotic mapping. In Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on, pages 927-932.

Weiss, S., Scaramuzza, D., and Siegwart, R. (2011). Monocular-slam-based naviga-
tion for autonomous micro helicopters in gps-denied environments. Journal of Field
Robotics, 28(6), 854-874.

Weiss, S., Achtelik, M. W., Lynen, S., Chli, M., and Siegwart, R. (2012). Real-time
onboard visual-inertial state estimation and self-calibration of mavs in unknown envi-
ronments. In Robotics and Automation (ICRA), 2012 IEEE International Conference
on, pages 957-964. IEEE.

130

Bibliography

Wenzel, K. E. and Zell, A. (2009). Automatic Take Off, Hovering and Landing Control
for Miniature Helicopters with Low-Cost Onboard Hardware. In Autonome Mobile
Systeme 2009, pages 73—80, Karlsruhe, Germany. KIT.

Whelan, T., Johannsson, H., Kaess, M., Leonard, J. J., and McDonald, J. (2013). Ro-
bust real-time visual odometry for dense rgb-d mapping. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 5724-5731. IEEE.

Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., and Burgard, W. (2010).
Octomap: A probabilistic, flexible, and compact 3d map representation for robotic
systems. In Proc. of the ICRA 2010 workshop on best practice in 3D perception and
modeling for mobile manipulation, volume 2.

Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. In Compu-
tational Intelligence in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997
IEEE International Symposium on, pages 146—151. IEEE.

Yang, S., Scherer, S. A., and Zell, A. (2012). An Onboard Monocular Vision System
for Autonomous Takeoff, Hovering and Landing of a Micro Aerial Vehicle. In 2012
International Conference on Unmanned Aircraft Systems (ICUAS’12), Philadelphia,
PA, USA.

Yang, S., Scherer, S. A., and Zell, A. (2013a). An Onboard Monocular Vision System
for Autonomous Takeoff, Hovering and Landing of a Micro Aerial Vehicle. Journal
of Intelligent & Robotic Systems, 69(1-4), 499-515.

Yang, S., Scherer, S. A., Schauwecker, K., and Zell, A. (2013b). Onboard Monocular
Vision for Landing of an MAV on a Landing Site Specified by a Single Reference
Image. In 2013 International Conference on Unmanned Aircraft Systems (ICUAS’13),
pages 317-324, Atlanta, GA, USA.

Yang, S., Scherer, S. A., Schauwecker, K., and Zell, A. (2014a). Autonomous Landing
of MAVs on Arbitrarily Textured Landing Sites using Onboard Monocular Vision.
Journal of Intelligent & Robotic Systems, T4(1-2), 27-43.

Yang, S., Scherer, S. A., and Zell, A. (2014b). Robust onboard visual SLAM for au-
tonomous MAVs. In 2014 International Conference on Intelligent Autonomous Sys-
tems (IAS-13), Padova, Italy.

Yang, S., Scherer, S. A., and Zell, A. (2014c). Visual SLAM for Autonomous MAVs
with Dual Cameras. In 2014 International Conference on Robotics and Automation
(ICRA’14), Hongkong, China.

Zalevsky, Z., Shpunt, A., Maizels, A., and Garcia, J. (2010). Method and system for
object reconstruction. US Patent App. 11/991,994.

131

Bibliography

Zhang, H. (2011). BoRF: Loop-closure detection with scale invariant visual features.
In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages
3125-3130.

Zhang, Q. and Pless, R. (2004). Extrinsic calibration of a camera and laser range finder
(improves camera calibration). In Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, pages 2301—
2306. IEEE.

Zhang, Z., Zhang, Z., Robotique, P., and Robotvis, P. (1997). Parameter estimation

techniques: A tutorial with application to conic fitting. Image and Vision Computing,
15, 59-76.

132

	1 Introduction
	1.1 Motivation
	1.2 Contributions & Outline
	1.3 Experimental Platform

	2 Cameras
	2.1 Camera Models
	2.2 Depth Cameras
	2.3 RGBD Sensors

	3 Mathematical Foundations of Simultaneous Localization and Mapping
	3.1 Maximum Likelihood Estimation
	3.2 Simultaneous Localization and Mapping

	4 Monocular Visual Simultaneous Localization and Mapping
	4.1 Problem Overview
	4.2 Related Fields
	4.3 Related Work
	4.4 Parallel Tracking and Mapping
	4.5 Porting and Extending Parallel Tracking and Mapping
	4.6 System-Inherent Limitations of Monocular SLAM

	5 Using Depth in Visual Simultaneous Localization and Mapping
	5.1 Motivation
	5.2 Related Work
	5.3 Main Idea
	5.4 Integrating Depth Information
	5.5 Parallel Tracking and Mapping using Depth Measurements
	5.6 Measurement Uncertainty Models
	5.7 Experiments and Results
	5.8 Relation to Stereo Vision
	5.9 Conclusion

	6 Efficient Onboard RGBD-SLAM for Autonomous MAVs
	6.1 Related Work: RGBD-SLAM for MAVs
	6.2 Motivation
	6.3 Software Architecture
	6.4 Experiments and Results
	6.5 Conclusions

	7 Loop Closure Detection Using Depth Images
	7.1 Local Features
	7.2 Bag of (Visual) Words
	7.3 Loop Closure Detection
	7.4 Implementation
	7.5 Benchmark Dataset
	7.6 Experiments and Results
	7.7 Conclusions

	8 Drift-Corrected Visual SLAM
	8.1 Motivation
	8.2 Ground Plane Detection
	8.3 Drift Correction
	8.4 Experiments and Results
	8.5 Conclusion

	9 A full SLAM Back-End for Parallel Tracking and Mapping
	9.1 PTAM as a Visual Odometry SLAM Front-End
	9.2 SLAM Back-End
	9.3 Experiments and Results
	9.4 Conclusion

	10 Conclusions
	10.1 Summary
	10.2 Future Work

	Abbreviations
	Bibliography

