Automatisiertes Western Blotting im Hochdurchsatz: Charakterisierung des Differenzierungszustandes von zonierten Hepatozyten

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

> vorgelegt von Simon Kling aus Villingen-Schwenningen

> > Tübingen 2017

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: Dekan:

1. Berichterstatter:

2. Berichterstatter:

25.04.2017 Prof. Dr. Wolfgang Rosenstiel Prof. Dr. Ulrich Rothbauer Prof. Dr. Dieter Stoll

Betreuer an der Eberhard Karls Universität Tübingen

Prof. Dr. Ulrich Rothbauer

Externer Betreuer an der Hochschule Albstadt-Sigmaringen

Prof. Dr. Dieter Stoll

Betreuer am Naturwissenschaftlichen und Medizinischen Institut

an der Universität Tübingen

Dr. Markus F. Templin

Danksagung

Die vorliegende Dissertation wurde am Naturwissenschaftlichen und Medizinischen Institut an der Universität Tübingen in der Abteilung Protein-Profiling/Assayentwicklung angefertigt.

Für die Möglichkeit und die dafür bereitgestellten Mittel danke ich dem Institut und allen voran meinem Betreuer Dr. Markus Templin, der mich durch seine hervorragende Sachkenntnis und unsere ausgiebigen Diskussionen auf meinem Weg des eigenverantwortlichen Arbeitens optimal unterstützt hat.

Prof. Dr. Ulrich Rothbauer danke ich herzlich für die Annahme als Doktorand und die lebhaften Diskussionen bei den Präsentationen der Zwischenberichte in den halbjährlich stattfindenden Doktorandenseminaren.

Mein besonderer Dank geht an Prof. Dr. Dieter Stoll, der mich nicht nur während meiner Master-Thesis hervorragend unterstützt hat, sondern auch in der Zeit der dreijährigen Doktorarbeit immer ein offenes Ohr für diverse Fragestellungen hatte.

Ein großer Dank gilt Prof. Dr. Michael Schwarz und Silvia Vetter aus der Abteilung Toxikologie an der Universität Tübingen für die Bereitstellung der biologischen Proben und der damit verbundenen Möglichkeit der Bearbeitung eines hoch interessanten Themenbereichs. Vielen Dank auch für den ständigen Dialog während der Analyse der Ergebnisse.

Vielmals möchte ich auch Benedikt Lang und Helen Hammer danken. Sie haben mich durch ihr umfassendes Wissen bestens bei den massenspektrometrischen Analysen begleitet.

Besonders möchte ich mich bei meinen aktuellen und ehemaligen Kollegen der Abteilung Protein-Profiling und Assayentwicklung bedanken. Fridolin Treindl und Ute Metzger für ihre sehr gute Unterstützung bei meiner Einarbeitungszeit und auch darüber hinaus. Außerdem möchte ich mich bei Yvonne Beiter, Ragna Häußler, Ewa Breitinger, Anette Döttinger und Anne Heine für Ihre Unterstützung in sämtlichen Belangen des Laboralltags bedanken.

Weiterhin möchte ich allen Kollegen der Abteilung Biochemie Danke sagen für die sehr gute Zusammenarbeit, die Hilfsbereitschaft und die vielen spannenden sowie witzigen Momente.

Zuletzt gilt ein großes Dankeschön meiner Freundin Jennifer Burkhardt, meinen Eltern Regina und Claus Kling, meiner Schwester Katrin und meiner Oma Rosa. Vielen Dank für eure Unterstützung in allen Lebenslagen.

Abstract

The liver is the vital metabolic organ in all vertebrates and it is composed of repeating liver lobules, the functional units of the liver. In the lobules blood flows from the periportal (PP) to the pericentral (PC) zone, where nutrients get metabolized by hepatocytes during passage of the blood. Although, hepatocytes are morphologically undistinguishable, their expression pattern of enzymes and thus their functions differs along the porto-central axis and therefore the concept of metabolic zonation was devised. The validity of this model could be demonstrated by RNA expression profiling of hepatocytes from the different areas of the lobule. To define functional differences on the protein level an extensive proteome study comparing PP and PC hepatocytes was set up in this work; it included the analysis of post-translational modifications to identify central regulatory mechanisms active in cells isolated from the different regions.

To obtain a broad coverage (i) a full mass spectrometric (MS) approach, (ii) MS-based immunoaffinity analyses and (iii) the antibody based high throughput western blot system DigiWest were combined. The last technique was further improved during this work and thereby developed into a novel technology called (iv) Liquiwest. It uses the principles of the DigiWest technology but is highly automated, leading to a significantly reduced hands on time while reproducibility and throughput is increased substantially.

By analysing PP und PC hepatocytes over 2000 proteins and their modifications could be identified, of which 120 showed differential expression over the porto-central axis. Metabolic pathways like oxidoreductase processes, gluconeogenesis, amino acid degradation but also regulatory signalling cascades like the MAP-kinase and TGF-beta pathway showed a periportal location. Glycolysis, citric acid cycle, purine metabolism and xenobiotic metabolism as well as the Wnt-signaling pathway are predominantly active in the pericentral area of the lobules.

Beyond the characterization of different hepatocytes, cell culture experiments with subsequent protein analysis were accomplished. For this, a new technique for isolating highly vital hepatocytes was employed. The separation technique exploits the characteristic expression of the glutamine synthetase (GS) only present in PC hepatocytes. With the help of a genetically modified mouse with appropriate reporter genes GS positive (GS+) or GS negative (GS-) hepatocytes were enriched for cultivation. Cells were cultured and by treating them with Wnt-agonists an *in vivo* like situation was obtained. Despite the adapted culturing conditions dedifferentiation emerged during three days of cultivation, which was monitored by analysing over 100 proteins of central signalling cascades and in metabolic pathways.

Kurzzusammenfassung

Die Leber ist das zentrale Stoffwechselorgan aller Wirbeltiere. Die kleinste funktionelle Einheit der Leber stellt das von periportaler (PP) nach perizentraler (PZ) Seite blutdurchflossene Leberläppchen (Lobulus) mit seinen metabolisch aktiven Hepatozyten dar. Obwohl die Hepatozyten morphologisch nicht unterscheidbar sind, sind ihre Enzymausstattungen und damit ihre Aufgaben entlang der Porto-Zentral-Achse divergent, weshalb der Begriff der metabolischen Zonierung geprägt wurde. Systematische Studien zur Untersuchung der Zonierung beruhten bis dato lediglich auf RNA-Expressionsanalysen der verschiedenen Bereiche des Leberläppchens. Um detaillierte Unterschiede in den funktionellen Eigenschaften der Hepatozyten zu erfassen, wurde in dieser Arbeit eine weitreichende Analyse des Proteoms von PZ und PP Hepatozyten durchgeführt. Diese beinhaltete die Analyse von posttanslationalen Modifikationen wodurch zentrale regulatorische Mechanismen in der Zellen abgebildet werden konnten.

Um diese breite Abdeckung zu erreichen wurde neben der (1) Massenspektrometrie (MS) in einem Full-MS Ansatz sowie einer (2) MS-basierten Immunoaffintätsanalyse (3) das antikörperbasierte hochdurchsatz Western Blot System DigiWest eingesetzt. Eine Weiterentwicklung stellt die in dieser Arbeit etablierte und als (4) LiquiWest bezeichnete Technologie dar. Sie beruht auf dem DigiWest, besitzt jedoch durch zahlreiche Optimierungen sowie Automatisierungslösungen bei gleichbleibender Datenqualität und signifikant reduzierter Eingriffszeit eine erhöhte Reproduzierbarkeit sowie einen 5-fach höheren Durchsatz.

Mit Hilfe der genannten Technologien konnten zonierte Hepatozyten auf ihre Proteinexpression hin detailliert analysiert werden. Von den insgesamt über 2000 detektierten Proteinen sowie deren Modifikationen wurden 120 als differenziell exprimiert detektiert. Dabei zeigten Stoffwechselvorgänge wie oxidoreduktive Prozesse, die Gluconeogenese, der Aminosäureabbau aber auch regulatorische Prozesse wie der MAP-Kinase- und der TGF-beta Signalweg eine signifikant periportale Zonierung. Dahingegen waren die Glycolyse, der Citratzyklus, der Purin- und Fremdstoffmetabolismus und vor allem der Wnt-Signalweg perizentral ausgeprägt.

Um den Einfluss der Kultivierung auf den Differenzierungszustand von Hepatozyten zu beleuchten, wurde eine neue, schonende und gleichzeitig spezifische Trennmethode eingesetzt. Die Trennung nutzte die charakteristische Expression der Glutaminsynthetase (GS) in PZ Hepatozyten und erlaubte in einer gentechnisch veränderten Maus durch Reportergenexpression die Anreicherung von GS positiven (GS+) oder GS negativen (GS-) Zellen. Durch kontrollierte Zugabe von Wnt-Agonisten wurde ein *in vivo* naher Zustand in der Kultur eingestellt. Bei der Analyse von über 100 Proteinen aus verschiedenen Signalwegen zeigte sich trotz dieser Kulturbedingungen eine Dedifferenzierung über mehrere Tage hinweg.

Inhaltsverzeichnis

Abstract		I
Kurzzus	ammenfassung	
Inhaltsve	erzeichnis	
Tabeller	verzeichnis	V
Abbildur	gsverzeichnis	VII
Abkürzu	ngsverzeichnis	IX
1 T	heoretische Grundlagen	1
1.1	Die Leber	1
1.1.1	Leberfunktionen und Aufbau	1
1.1.2	Zonierung und Feinbau der Leber	2
1.1.3	Separierung zonierter Hepatozyten	5
1.1.4	Kultivierung von Hepatozyten	6
12	Assavtechnologien zur Aufklärung des Zellstatus	8
121	Der DigiWest	10
• •		
2 2	iei der Arbeit	12
3 N	laterialien und Methoden	13
3.1	Materialien	13
3.1.1	Geräte	13
3.1.2	Verbrauchsmaterialien	15
3.1.3	Puffer und Reagenzien	16
3.1.4	Chemikalien und Ausgangslösungen	20
3.1.5	Programme	22
3.1.6	Datenbanken	22
3.1.7	Primärantikörper	23
3.1.8	Detektionsantikörper	23
3.2	Methoden	24
3.2.1		
-	Tierhaltung	24
3.2.2	Tierhaltung Lyse von Teilen einer Gesamtleber	24 24
3.2.2 3.2.3	Tierhaltung Lyse von Teilen einer Gesamtleber Gewinnung von zonierten Hepatozyten durch PZ und PP Leberperfusion	24 24 25
3.2.2 3.2.3 3.2.4	Tierhaltung Lyse von Teilen einer Gesamtleber Gewinnung von zonierten Hepatozyten durch PZ und PP Leberperfusion Gewinnung von zonierten Hepatozyten durch Zellsortierung	24 24 25 25
3.2.2 3.2.3 3.2.4 3.2.5	Tierhaltung Lyse von Teilen einer Gesamtleber Gewinnung von zonierten Hepatozyten durch PZ und PP Leberperfusion Gewinnung von zonierten Hepatozyten durch Zellsortierung Kultivierung zonierter Hepatozyten	24 24 25 25 27
3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	Tierhaltung Lyse von Teilen einer Gesamtleber Gewinnung von zonierten Hepatozyten durch PZ und PP Leberperfusion Gewinnung von zonierten Hepatozyten durch Zellsortierung Kultivierung zonierter Hepatozyten Methoden der Proteinkonzentrationsbestimmung	24 25 25 27 29
3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	Tierhaltung Lyse von Teilen einer Gesamtleber Gewinnung von zonierten Hepatozyten durch PZ und PP Leberperfusion Gewinnung von zonierten Hepatozyten durch Zellsortierung Kultivierung zonierter Hepatozyten Methoden der Proteinkonzentrationsbestimmung SDS-PAGE	24 25 25 27 29 29 30
3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8	Tierhaltung Lyse von Teilen einer Gesamtleber Gewinnung von zonierten Hepatozyten durch PZ und PP Leberperfusion Gewinnung von zonierten Hepatozyten durch Zellsortierung Kultivierung zonierter Hepatozyten Methoden der Proteinkonzentrationsbestimmung SDS-PAGE Western Blot	24 25 25 27 29 30 31

3.2.10	Immundetektion für Western Blot	
3.2.11	DigiWest	
3.2.12	Assaypuffer-Optimierung mittels statistischer Versuchsplanung (DoE)	41
3.2.13	Automatisierter DigiWest: der LiquiWest	
3.2.14	2D-Gelelektrophorese	
3.2.15	Massenspektrometrische Analysen von PZ und PP Hepatozyten	52
4	Ergebnisse	60
4.1	Einführung	60
4.2	Proteinanalyse isolierter PZ und PP Hepatozyten	61
4.2.1	Full MS Analyse isolierter PZ und PP Hepatozyten	61
4.2.2	TXP CYP- und Transporter-Assay isolierter PZ und PP Hepatozyten	
4.2.3	DigiWest-Analyse isolierter PZ und PP Hepatozyten	70
4.3	Automatisierter DigiWest: der LiquiWest	76
4.3.1	Etablierung des LiquiWests	76
4.3.2	Assaypuffer-Optimierung mittels statistischer Versuchsplanung (DoE)	79
4.3.3	Vergleich des LiquiWests mit dem DigiWest	82
4.3.4	LiquiWest-Assay isolierter PZ und PP Hepatozyten	
4.4	Proteinanalyse FACS sortierter GS+ und GS- Hepatozyten	85
4.4.1	DigiWest Analyse von GS+ und GS- Hepatozyten	
4.4.2	DigiWest Analyse kultivierter und behandelter GS+ und GS- Hepatozyten	
5	Diskussion	98
5.1	Technische Entwicklungen	98
5.1.1	Etablierung des LiquiWest	
5.1.2	Automatisierungslösungen	103
5.1.3	Antikörpervalidierung und Aufbau einer Datenbank	104
5.1.4	Kreuzreaktivitäten von Antikörpern	105
5.2	Biologische Analysen isolierter Hepatozyten	107
5.2.1	Protein-Expressionsunterschiede PZ und PP Hepatozyten	107
5.2.2	FACS sortierte und kultivierte GS+ und GS- Hepatozyten	115
6	Zusammenfassung und Ausblick	120
7	Quellenverzeichnis	124
8	Anhang	138
9	Lebenslauf	185
9.1	Veröffentlichungen	186

Tabellenverzeichnis

Tabelle 1: Detektionsantikörper für DigiWest.	23
Tabelle 2: Detektionsantikörper für Western Blot.	23
Tabelle 3: Reagenzien für die Kopplung von Neutravidin an Caboxylierte Luminex	
MagPlex Mikrosphären	32
Tabelle 4: Bedingungen für den vollfaktoriellen Versuchsplan der	
Assaypufferoptimierung	41
Tabelle 5: Parameter, programmierte Einstellungen sowie Spannungsverlauf am	
Isoelektrischen Fokussierungssystem IPGphor.	48
Tabelle 6: Parameter für Chromatographie bei Full MS Analyse der verdauten Gel	
Spots	50
Tabelle 7: Einstellungen der Full MS und dd-MS/MS Analyse der verdauten Gel Spots	51
Tabelle 8: Suchparameter für Mascot (Version 2.3.02) bei Full MS Analyse der PZ und	
PP Hepatozyten	51
Tabelle 9: Suchparameter f Suchparameter f Tabelle 9: Suchparameter f	
PZ und PP Hepatozyten	52
Tabelle 10: Verlauf der ZipTip C18 Aufreinigung nach tryptischem Protein-Verdau	54
Tabelle 11: Parameter für die Chromatographie bei der Full MS Analyse der PP und	
PZ Hepatozyten.	54
Tabelle 12: Einstellungen der Full MS und dd-MS/MS Analyse der PP und PZ	
Hepatozyten	55
Tabelle 13: Übersicht der verwendeten TXP-Antikörper zur gruppenspezifischen	
Anreicherung von CYPs und Transportern.	56
Tabelle 14: Parameter f Chromatographie vor Targeted MS Analyse.	57
Tabelle 15: Einstellungen der t-SIM und dd-MS/MS Analyse.	58
Tabelle 16: Suchparameter f	58
Tabelle 17: Suchparameter f ür SEQUEST (Version 28.0.0.0) bei targeted MS Analyse	59
Tabelle 18: Analyseparameter f Finpoint 1.3 bei targeted MS Analyse	59
Tabelle 19: Vergleich der TXP-MS-Ergebnisse mit der Full-MS Analyse.	69
Tabelle 20: Vergleich der DigiWest-Ergebnisse der Analysen von GS+ und GS- bzw.	
PZ und PP Hepatozyten	86
Tabelle 21: Grafische Übersicht der Ergebnisse der getrennten Kultivierung von GS+	
und GS- Hepatozyten	97
Tabelle 22: Auflistung aller in dieser Arbeit eingesetzten Western Blot Antikörper	.138

Abbildungsverzeichnis

Abbildung 1: Aufbau der Leberläppchen mit zonierten Proteinen	3
Abbildung 2: Grafische Darstellung der Analyseresultate der zu separierenden GS+	
und GS- Hepatozyten im FACS Gerät	27
Abbildung 3: Gesamtübersicht aller in dieser Arbeit gewonnenen und analysierten	
Proben	28
Abbildung 4: Schematische Darstellung des Programmcodes sowie des	
instrumentellen Aufbaus für das vollautomatisierte Poolen der Mikrosphären im	
Biomek NXp nach der Beladung	36
Abbildung 5: DigiWest Verlaufsschema	38
Abbildung 6: (a) Aufbau der Gelfree 8100 (gel-eluted liquid fraction entrapment	
electrophoresis) Elektrophorese-Anlage sowie (b) Aufsicht der Kartuschen, die die	
eingegossenen Polyacrylamid-Gele enthalten	44
Abbildung 7: Schematische Darstellung des Programmcodes sowie des	
instrumentellen Aufbaus für das vollautomatisierte Fraktionieren mittels Gelfree	
8100 und Biomek FXp Roboter	45
Abbildung 8: Übersicht aller massenspektrometrischen Analysen in dieser Arbeit	53
Abbildung 9: Auswertung mit Hilfe des Programms Progenesis am Beispiel des	
Proteins Ornithine aminotransferase nach erfolgter massenspektrometrischer	
Vermessung.	62
Abbildung 10: Volcano Plot der Ergebnisse aus der Full-MS Analyse der PZ und PP	
Hepatozyten	63
Abbildung 11: Panther Analyse aller identifizierten Proteine in PZ und PP	
Hepatozyten nach der Full-MS Messung	65
Abbildung 12: Panther-Analyse Ergebnisse nach Full-MS der um > Faktor 2	
differenziell exprimierten Proteine von PP bzw. PZ Seite des Lebersinusoids	66
Abbildung 13: Darstellung der Full-MS Analyse in Signalwegen der (a) oxidativen	
Phosphorylierung und (b) des CYP-Metabolismus.	68
Abbildung 14: Volcano Plot der Ergebnisse aus der DigiWest Analyse der PZ und PP	
Hepatozyten	71
Abbildung 15: Vergleich der Fold Changes spezifischer Proteine nach Messung	
derselben Proben im DigiWest (schwarz) und im Massenspektrometer (grau)	72
Abbildung 16: Panther-Analyse der differenziell exprimierten Proteine aus DigiWest	
und Full-MS	73
Abbildung 17: Vorgehen zur Identifikation der Nebenbande des PTCH2 Antikörpers	75
Abbildung 18: Optimierung des Biotinylierungsgrades der Proteine für den LiquiWest	77

Abbildung 19: Auftrennungsvermögen verschiedener Kartuschen für die Gelfree 810078
Abbildung 20: LiquiWest Verlaufsschema
Abbildung 21: Assaypuffer-Optimierung: Haupteffekte Plot der aufsummierten
Fluoreszenzintensitäten (AFIs) nach DoE80
Abbildung 22: Assaypuffer-Optimierung: Haupteffekte Plot der Signal-zu-Rausch-
Verhältnisse nach DoE81
Abbildung 23: Korrelation zwischen DigiWest und LiquiWest
Abbildung 24: Vergleich der Signale ausgewählter Antikörper aus LiquiWest und
DigiWest
Abbildung 25: Korrelation der Fold Changes von PP und PZ zwischen LiquiWest und
DigiWest
Abbildung 26: Mikroskopische Aufnahmen von GS+ und GS- Hepatozyten während
der Kultivierungszeit
Abbildung 27: Geclusterte Heatmaps der GS+ (links) und GS- (rechts) Hepatozyten
mit Analyten, die sich während der Kultivierung in ihrer Expression signifikant
veränderten
Abbildung 28: Expressionsverlauf verschiedener Proteine unterschiedlicher
Signalwege in GS+ und GS- Hepatozyten während der 72-stündigen Kultivierung91
Abbildung 29: Expressionsverlauf verschiedener Proteine aus Stoffwechselvorgängen
in GS+ und GS- Hepatozyten während der 72-stündigen Kultivierung
Abbildung 30: Expressionsverlauf verschiedener Proteine unterschiedlicher zellulärer
Prozesse in GS+ und GS- Hepatozyten während der 72-stündigen Kultivierung95
Abbildung 31: Expressionsverlauf verschiedener Proteine assoziiert mit Adhäsion und
Cytoskelett in GS+ und GS- Hepatozyten während der 72-stündigen Kultivierung96
Abbildung 32: Vergleich der Signale ausgewählter Antikörper aus LiquiWest und
DigiWest101
Abbildung 33: Aufbau eines Leberläppchens mit den in dieser Arbeit als zoniert
identifizierten metabolischen Vorgängen sowie zonierten Signalwegen114
Abbildung 34: Darstellung der Full-MS Analyse im Signalweg der Glykolyse und
Gluconeogenese, des Citratzyklus, Purinmetabolismus, Gallensäuresynthese
sowie des Fettsäureabbaus165
Abbildung 35: Panther-Analyse Ergebnisse nach DigiWest der um Faktor > 2
differenziell exprimierten Proteine von PP bzw. PZ Seite des Lebersinusoids171
Abbildung 36: Hierarchische Clusteranalyse der Ergebnisse der kultivierten GS+ und
GS - Hepatozyten184

Abkürzungsverzeichnis

Abkürzung	Ausgeschriebene Form / Erklärung	
2-DE	2D Gelelektrophorese	
ABC	Ammoniumhydrogencarbonat	
AFI	aufsummierte Fluoreszenzintensität bei DigiWest	
BSA	Bovines Serumalbumin	
CHAPS	3-[(3-cholamidopropyl)dimethylammonio]-1- propansulfonat	
Су	Cyanin-Farbstoff	
СҮР	Cytochrom P450	
DIGE	Differenzielle Gelelektrophorese	
DigiWest	Digitalisierter Western Blot	
DMEM	Dulbecco's Modified Eagle Medium	
DMSO	Dimethylsulfoxid	
DNA	engl. deoxyribonucleic acid, Desoxyribonukleinsäure	
DTT	Dithiothreitol	
EC	engl. Enzyme Commission number	
ECM	Extrazelluläre Matrix	
EDC	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid	
ELISA	engl. Enzyme Linked Immunosorbent Assay	
FA	engl. <i>formic acid</i> , Ameisensäure	
FACS	engl. Fluorescence-activated cell sorting	
FDG	Fluorescein di-β-D-galactopyranosid	
FITC	Fluoresceinisothiocyanat	
fmol	Femtomol	
FSC	engl. Forward Scatter, Vorwärtsstreulicht	
g	Erdbeschleunigung, ~ 9,81 m/s ²	
gelfree	gel-eluted liquid fraction entrapment electrophoresis	
GO	Gene Ontology	
GS	Glutaminsynthetase	
gt	engl. <i>goat,</i> Ziege	
<u>h</u>	Stunde	
H ₂ O _{dd}	doppelt destilliertes Wasser	
HPLC	Hochleistungs-Flüssigkeitschromatographie	
HRP	engl. horseradish peroxidase, Meerrettichperoxidase	
ID	Identifikator, hier um 400 verschiedene Mikrosphärenpopulationen	
	unterscheiden zu konnen	
IP	immunprazipitation	

Abkürzung	Ausgeschriebene Form / Erklärung
IPG	immobilisierter pH-Gradient
kDa	Kilodalton
KEGG	Kyoto Encyclopedia of Genes and Genomes
kVh	Kilovoltstunden
LC	engl. Liquid Chromatography, Flüssigchromatographie
LDS	Lithiumdodecylsulfat
mA	Milliampere
MES	2-(N-Morpholino)ethansulfonsäure
MeV	MultiExperiment Viewer
MFI	Median der Fluoreszenzintensität
Mr	Relative molekulare Masse
ms	Maus
MS	Massenspektrometrie
MW	engl. molecular weight, molekulare Masse
NC	Nitrocellulose
NL	nicht linear
nm	Nanometer
NHS	N-Hydroxysulfosuccinimid
NMI	Naturwissenschaftliches und Medizinisches Institut an Universität
	Tübingen
ρ	Dichte in kg/m ³
PBS	engl. phosphate buffered saline, phosphatgepufferte Salzlösung
PCR	engl. <i>polymerase chain reaction</i> , Polymerase-Kettenreaktion
PE	Phycoerythrin, Fluoreszenzfarbstoff
PET	Positronen-Emissions-Tomographie
pl	isoelektrischer Punkt
PP	periportal
РТМ	posttranslationale Modifikation
PVA	Polyvinylalkohol
PVDF	Polyvinylidendifluorid
PVP	Polyvinylpyrrolidon
PVXC	Puffer mit PVP + PVA mit Casein
PZ	perizentral (auch perivenös)
RNA	engl. ribonucleic acid, Ribonukleinsäure
rpm	engl. revolutions per minute, Umdrehungen pro Minute
RPPA	engl. Reverse Phase Protein Arrays
rt	Ratte
RT	Raumtemperatur
RT-PCR	Quantitative Echtzeit-Polymerase-Kettenreaktion

Abkürzung	Ausgeschriebene Form / Erklärung		
S	Sekunde		
SDS-PAGE	engl. <i>sodium dodecyl sulfate polyacrylamide gel electrophoresis</i> Natriumdodecylsulfat-Polyacrylamidgelelektrophorese		
sh	Schaf		
S/N	engl. signal-to-noise ratio, Signal-Rausch-Verhältnis		
SSC	engl. Side Scatter, Seitwärtsstreulicht		
t	Zeitpunkt t in Stunden [h]		
TBS	engl. Tris-buffered Saline, Trisgepufferte Salzlösung		
tSIM	engl. targeted selected ion monitoring		
ТХР	triple X proteomics		
V	Volt		
Vh	Voltstunden		
VS.	versus, im Vergleich zu		
Gebräuchliche	Abkürzungen der eingesetzten Chemikalien sind direkt unter 3.1.4		

"Chemikalien und Ausgangslösungen, zu finden.

1 Theoretische Grundlagen

1.1 Die Leber

1.1.1 Leberfunktionen und Aufbau

Die Leber (griechisch *hepar*) ist die größte Drüse des Körpers und kommt in allen Wirbeltieren (Vertebraten) vor. Speziell bei Säugetieren (Mammalia), eine Unterklasse der Vertebraten zu denen auch der Mensch und die Maus gehören, gleicht sich die innere Struktur des Stoffwechselorgans sehr (Romer & Parsons, 1977), (Baratta, Ngo, et al., 2009). Die Leber besitzt vielfältige Aufgaben und ist das Hauptorgan für den Metabolismus körpereigener und körperfremder (Xenobiotika) Stoffe. So ist die Leber durch ihre anabolischen als auch katabolischen Prozesse maßgeblich an einer metabolischen Homöostase beteiligt. Sie ist zuständig für die Speicherung von Glucose in Form von Glycogen und reguliert damit den Glucose-Spiegel im Blut; weiterhin speichert sie Fette, Vitamine und das Blut selbst. Weitere Aufgaben sind die Detoxifikation von Ammonium durch die Produktion von Harnstoff sowie die Synthese von Proteinen des Blutes wie Albumin, Akute-Phase-Proteine und Gerinnungsfaktoren. Die Leber produziert Gallensaft, welcher für die Fettverdauung (Emulgierung) notwendig ist. Zudem synthetisiert sie spezielle Proteine, sogenannte Cytochrom P450 Enzyme (CYPs), die lipophile Stoffe durch Oxidationsreaktionen wasserlöslich machen, damit sie leichter aus dem Körper ausgeschieden werden können (Boyer, Manns, et al., 2012).

Die Leber wird durch zwei Gefäße mit Blut versorgt. Durch die Leberarterie (*Arteria hepatica propria*) gelangt sauerstoffreiches, aus dem Lungenkreislauf stammendes Blut vom Herzen in die Leber. Über die Pfortader (*Vena portae*) wird die Leber mit nährstoffreichem Blut aus dem Magen-Darm-Trakt sowie mit Hormonen der Bauchspeicheldrüse versorgt. Das Blut der Leberarterie macht dabei etwa 25 %, das der Pfortader etwa 75 % des Gesamtvolumens aus (Colnot & Perret, 2011). Bei der Passage des Blutes werden die darin enthaltenen Nährstoffe und Xenobiotika metabolisiert, sodass sie vom Körper aufgenommen und verwertet oder ausgeschieden werden können. Diese Aufgabe der Metabolisierung übernehmen die parenchymalen Zellen der Leber, die Hepatozyten, welche etwa 70 % aller Leberzellen ausmachen. Weitere nicht-parenchmale Zellen, melche in Summe etwa 30 % der Gesamtzellmasse der Leber umfassen, sind Sternzellen, Endothelzellen, Kupfferzellen und Gallengangepithelzellen (Cholangiozyten) (Abbildung 1). Sternzellen dienen der Speicherung von Fetten und Vitamin A sowie der Produktion von extrazellulärer Matrix; Kupfferzellen sind spezialisierte Makrophagen, welche der zellulären Immunantwort dienen (Bouwens, Baekeland, et al., 1986), (Kmieć, 2001). Die Endothelzellen kleiden die verästelten, die Leber

durchdringenden Blugefäße (Sinusoide) in einer diskontinuierlichen Form aus und werden häufig als sinusoidale Endothelzellen bezeichnet. Sie besitzen große Poren mit Durchmessern von 0,1 - 0,3 µm, sodass die im Blut enthaltenen niedermolekularen Stoffe die Endothelbarriere leicht durchdringen und somit zu den für die Metabolisierung zuständigen Hepatozyten gelangen können.

1.1.2 Zonierung und Feinbau der Leber

Die Leberzellen, Gallengänge und Sinusoide der Leber sind in einer sich hunderttausendfach wiederholenden hexagonalen Struktur, dem sogenannten Leberläppchen (Leber-Lobulus), aufgebaut (Abbildung 1 a und b). Ein Leberläppchen hat einen Durchmesser von etwa einem Millimeter und eine Dicke von zirka zwei Millimetern. An den Eckpunkten der Leberläppchen befindet sich jeweils eine Glisson Triade, bestehend aus (1) einem Ast der Leberarterie (Arteria interlobularis), (2) einem Ast der Pfortader (Vena interlobularis) und (3) einem Gallengang (Ductus biliferus). In der Mitte des Leberläppchens liegt die efferente Zentralvene. Das Blut durchfließt das Leberläppchen durch die endothel-umkleideten Sinusoide von den Triaden in Richtung Zentralvene. Hierbei tangiert der Blutfluss die Hepatozyten, welche wie an einer Perlenschnur in ca. 12 bis 14 Lagen sternförmig parallel zu den Sinusoiden angeordnet sind. Der Bereich nahe der Triade wird als "periportal" (Zone 1, ca. 5 - 7 Hepatozytenlagen), jener nahe der Zentralvene als "perizentral" (Zone 3, ca. 2 - 4 Hepatozytenlagen) und der Bereich dazwischen als "midzonal" (Zone 2, mit variabler Hepatoytenanzahl) bezeichnet. Benachbarte Hepatozyten sind an den apikalen Seiten durch Tight Junctions verbunden. An den basolateralen Seiten der Hepatozyten befinden sich Mikrovilli, über die der Stoffaustausch erfolgen kann. Hierzu tritt das Blutplasma aus dem Sinusoid in den sogenannten Disse'schen Raum (10 - 15 µm breiter Raum zwischen Sinusoiden und Hepatozyten) ein und wird von den Leberzellen über Desmosomen sowie Gap Junctions aufgenommen und metabolisiert (Kuntz & Kuntz, 1998), (Lüllmann-Rauch, 2006).

Obwohl die Hepatozyten entlang der Porto-Zentral-Achse histologisch nicht unterscheidbar sind, entdeckte bereits Ende der 1970er Jahre die Gruppe um K. Jungermann, dass bestimmte Enzyme präferenziell entweder auf der periportalen oder auf der perizentralen Seite des Leberläppchens exprimiert werden (Katz, Teutsch, et al., 1977). In den darauffolgenden Jahren wurden immer mehr differenziell exprimierte Proteine mit Hilfe von histologischen Färbungen in Leberschnitten gefunden. Weiterhin wurde gezeigt, dass sich durch eine Umkehr des Blutflusses die Expression bestimmter Enzyme teilweise ebenfalls umkehrte (Thurman & Kauffman, 1985). Aufgrund dieser hohen Heterogenität und funktionellen Plastizität wurde der Begriff der "metabolischen Zonierung" geprägt (Jungermann & Katz, 1982).

a)

Abbildung 1: Aufbau der Leberläppchen mit zonierten Proteinen. (a) Die funktionellen und sich hunderttausendfach wiederholenden Strukturen der Leber sind die Leberläppchen. Jedes Leberläppchen besteht aus einer Zentralvene, von welcher radial Hepatozyten Richtung Glisson-Triade ausgehen. Die Triade besteht aus der Pfortader (nährstoffreiches Blut), der Leberarterie (sauerstoffreiches Blut) und dem Gallengang. (b) Das Blut fließt in kleinen Blutgefäßen, den Sinusoiden, von der Triade (periportale Seite des Leberläppchens) zur Zentralvene (perizentrale Seite), wobei die im Blut enthaltenen Stoffe durch die Hepatozyten metabolisiert werden. Die Fließrichtung der Gallenflüssigkeit ist retrograd zu der des Blutes. Sternzellen, auch Ito-Zellen genannt, befinden sich im Disse'schen Raum, in welchem der Stoffaustausch zwischen Blut und Hepatozyten stattfindet. Spezialisierte Makrophagen (Kupfferzellen) befinden sich im Sinusoid und stellen einen wichtigen Beitrag zur zellulären Immunantwort dar. Hepatozyten produzieren unter anderem Gallensalze, welche in die Gallenkapillaren abgegeben werden und über den Gallengang, welcher mit speziellen Epithelzellen (Cholangiozyten) ausgekleidet ist, zur Gallenblase abfließen. (c) Das Expressionsmuster spezifischer Enzyme verschiedener Stoffwechselvorgänge unterscheidet sich zwischen periportaler und perizentraler Seite des Leberläppchens. Neben Enzymen des Ammonium- und Glutaminmetabolismus liegen vor allem Proteine des Energie- und Fremdstoffmetabolismus entlang der Porto-Zentral-Achse zoniert vor. Modifiziert nach (Monga, 2011), (Gordillo, Evans, et al., 2015).

Durch den technischen Fortschritt und den Einsatz der Immuncytometrie sowie der RNA und DNA basierten *in-situ*-Hybridisierung konnten ganze Stoffwechselvorgänge bestimmten Bereichen im Leberläppchen zugeordnet werden (Abbildung 1 c). So war Anfang der 1990er bekannt, dass die Gluconeogenese hauptsächlich periportal und die Glycolyse hauptsächlich perizentral erfolgt (Meijer, Lamers, et al., 1990). Weitere zonierte Stoffwechselvorgänge sind der Ammonium- und Glutaminmetabolismus sowie der Fremdstoffmetabolismus (Gebhardt & Mecke, 1983), (Lindros, 1997). Die Zonierung stellt jedoch nicht immer ein starres Gerüst dar. So ist die Lokalisation beispielsweise der Glutaminsynthetase (GS) zwar streng perizentral, die Expression vieler Enzyme kann sich jedoch abhängig der Nährstoffzufuhr und des circadianen Rhythmus entlang der Porto-Zentral-Achse verschieben (Katz, 1992).

Die Grundlage der Zonierung ist noch nicht vollständig geklärt. Es existieren jedoch einige Hypothesen.

Die sogenannte Entwicklungshypothese besagt, dass periportale und perizentrale Hepatozyten unterschiedliche Vorläuferzellen besitzen. Dagegen spricht jedoch, dass die Zonierung bei Säugetieren erst einige Wochen nach der Geburt ausgebildet wird (Notenboom, Moorman, et al., 1997).

Ein weiteres Modell ist die "strömende Leber" (Streaming Liver) Theorie. Perizentrale Hepatozyten besitzen einen höheren Differenzierungszustand, weshalb man davon ausgeht, dass periportale Hepatozyten im Laufe der Zeit entlang der Porto-Zentral-Achse wandern und sich immer weiter differenzieren. Zell-Verfolgungsexperimente (Cell Tracing bzw. lineage tracing experiments), bei welchen die Nachkommen einer bestimmten Zelle identifiziert werden können, konnten diese Theorie jedoch nicht bestätigen. Der Turnover der Zellerneuerung, ausgehend von nur einer Seite des Leberläppchens, ist zu gering. Es deutet darauf hin, dass eine Erneuerung von beiden Seiten bzw. aus bereits bestehenden, differenzierten Hepatozyten geschieht (Bralet, Branchereau, et al., 1994), (Malato, Naqvi, et al., 2011). Darauf deutet auch das sehr ausgeprägte Regenerationspotential der Leber hin. Bei einer teilweisen operativen Entfernung der Leber (partielle Hepatektomie) kann sich diese innerhalb weniger Wochen wieder vollständig erholen, indem sich alle Hepatozyten teilen und damit das verlorengegangene Volumen wieder auffüllen (Alison & Lin, 2016).

Eine dritte Theorie beruht auf der Zusammensetzung und Fließrichtung des Blutes innerhalb eines Leberläppchens. Bei Eintritt des Blutes in den Lebersinusoid ist dieses nährstoff- und sauerstoffreich. Die Sauerstoffkonzentration beispielsweise liegt bei Eintritt bei zirka 13 % (v/v), wobei sie bei Austritt nur noch zirka 4 % (v/v) beträgt (Jungermann & Keitzmann, 1996), (Allen & Bhatia, 2003). Damit kommt es entlang des Lebersinusoids zu unterschiedlichen Mikro-Umgebungen, die die Hepatozyten in ihrer Proteinexpression beeinflussen. Es ist auch bekannt, dass die Expression bestimmter Gene abhängig des Sauerstoffpartialdrucks erfolgt. Dies geschieht durch sauerstoffsensitive Transkriptionsfaktoren wie NRE (Negative regulatory element) und HIFs (Hypoxie-induzierende Faktoren) (Kietzmann, Dimova, et al., 2006). Gegen diese dritte Hypothese spricht jedoch, dass sich bei einem umgekehrten Blutfluss die Glycolyse und Gluconeogense zwar umkehrt, die Ammoniak-Metabolisierung jedoch periportal verbleibt (Jungermann & Keitzmann, 1996).

Neben den postulierten Theorien, welche Einfluss auf die differenzielle Proteinexpression der Hepatozyten nehmen können, sind auch Signale benachbarter Zellen (parakrine Signale) von großer Bedeutung. So ist erst seit wenigen Jahren bekannt, dass Endothelzellen auf der perizentralen Seite Agonisten des Wnt-Signalwegs wie Wnt3a und R-Spondin 3 aussenden und somit den Charakter der dortigen Hepatozyten mitprägen (Benhamouche, Decaens, et al., 2006), (Rocha, Vidal, et al., 2015). Über eine Aktivierung des MAP-Kinase-Signalwegs (mitogen-activated protein) durch parakrine Faktoren wie EGF (Epidermale Wachstumsfaktor) und eine damit einhergehende Aufrechterhaltung des periportalen Zellstatus wird ebenfalls diskutiert (Braeuning, Ittrich, et al., 2007). Aber auch eine unterschiedliche Zusammensetzung der extrazellulären Matrix (Rodés, Benhamou, et al., 2007) auf beiden Seiten des Leberläppchens sowie eine divergente Verteilung und Größe von Kupffer und Sternzellen im Leberläppchen können Einflussfaktoren der Leberzonierung sein (Bouwens, De Bleser, et al., 1992).

1.1.3 Separierung zonierter Hepatozyten

Die differenzielle Betrachtung der unterschiedlichen Hepatozytenpopulationen beruhte in den 1980er bis in die 90er Jahren hauptsächlich auf immunhistochemischen Färbungen von Lebergewebeschnitten. Bei dieser Methode bleibt die räumliche Zonierung physikalisch erhalten, ein hoher Durchsatz, d. h. die gleichzeitige Betrachtung dutzender Analyten, ist damit jedoch nicht möglich. Trotzdem konnten einige differenziell exprimierte Enzyme identifiziert werden.

Weitere Einblicke in den Metabolismus der Leber konnte durch die Perfusion von Rattenlebern gewonnen werden. Durch die anterograde und retrograde Perfusion der Leber und die anschließende Messung der Metabolite nach Durchfluss konnten erste Rückschlüsse auf den zonierten Ammoniummetabolismus gezogen werden (Haeusinger, 1983). Um die Proteinexpressionsmuster sowohl der periportalen als auch der perizentralen Hepatozyten isoliert voneinander zu betrachten, wurde bereits Mitte der 1980er Jahre damit begonnen Hepatozyten aufgrund unterschiedlicher physikochemischer und biologischer Eigenschaften voneinander zu trennen. Eine Möglichkeit bestand in der Verwendung der Dichtegradientenzentrifugation, bei welcher zwischen Größe bzw. Dichte der Zellen unterschieden werden kann. Hierbei wurden jedoch lediglich die Hepatozyten von den anderen in der Leber vorkommenden Zellen abgetrennt, was einen Vergleich zwischen periportalen und perizentralen Hepatozyten erschwerte (Botham, Fresnedo, et al., 1998).

Erste reproduzierbare Ergebnisse einer differenziellen Betrachtung beider Seiten des Leberläppchens konnten in der Mitte der 1985er Jahre durch den Einsatz einer Digitonin-Kollagenase-Leberperfusion erzielt werden. Dabei werden die Zellen der einen Seite (PP oder PZ) gezielt mittels Digitonin abgetötet, um die Hepatozyten der entsprechend anderen Seite anschließend mittels Kollagenase aus dem Zellverbund zu lösen (Quistorff, 1985), (Lindros & Penttilä, 1985). Dem Arbeitsprotokoll geschuldet, können deshalb aus einem Versuchstier (in der Regel Maus oder Ratte) nur die periportalen oder die perizentralen Hepatozyten angereichert werden. Für eine bessere Vergleichbarkeit wurde Mitte der 1990er Jahre eine abgewandelte Methode der Digitonin-Kollagenase-Leberperfusion entwickelt. Diese ermöglichte es beide Hepatozytenarten aus einem Tier zu isolieren. Die Zellausbeute war dabei jedoch so gering, dass sie bei Ratten wenig und bei Mäusen gar nicht zum Einsatz kam (Tordjmann, Berthon, et al., 1997). Eine weitere Methode stellt die Laser-Mikrodissektion dar (Munshaw, Hwang, et al., 2012). Hierbei werden mit Hilfe eines Lasers die gewünschten Bereiche aus einem in der Regel Formalin-fixierten Gewebeschnitt mit kurzen Energie-Impulsen herausgestanzt. Für eine ausreichende Probenmenge müssen hunderte solcher Mikrodissektionen durchgeführt werden, was diese Methode zwar sehr genau aber auch sehr arbeitsintensiv macht. Zudem ist sie zur Gewinnung von lebenden Hepatozyten beispielsweise für eine spätere Kultivierung der Zellen nicht geeignet.

Eine neue und in dieser Arbeit das erste Mal verwendete Methode zur Separierung der zwei Hepatozytenpopulationen findet unter Verwendung einer gentechnisch veränderten Maus statt. Bei der sogenannten Glutaminsynthetase (GS) Reporter-Maus steht der Reporter β -Galctosidase (LacZ) unter der Kontrolle des Wildtyp GS-Promoters (Taconic Artemis, 2012). Da die GS ausschließlich auf der perizentralen Seite des Leberläppchens exprimiert wird, geschieht dasselbe mit dem Reporter. Nach Herauslösung der Hepatozyten aus dem Zellverbund werden die Leberzellen mit Hilfe eines β -Galactosidase-Substrates (FDG, Fluorescein di- β -D-galactopyranoside) behandelt. Das Resultat ist, dass nur die perizentralen Hepatozyten eine Fluoreszenzmarkierung erhalten. Diese Markierung kann anschließend mittels Durchflusszytometrie detektiert und die GS positiven (GS+) von den GS negativen (GS-) Hepatozyten separiert werden. Es resultieren vitale Zellen, die entweder direkt analysiert oder für Kultvierungsexperimente herangezogen werden können.

1.1.4 Kultivierung von Hepatozyten

Für präklinische Studien bei der Entwicklung von neuen Wirkstoffen in der Pharmaindustrie sind Lebertoxizitätstests unabdingbar. Der Großteil solcher Tests wird bis heute an *in vivo* Systemen wie der Maus durchgeführt, da Messergebnisse etablierter *in vitro* Systeme häufig nicht auf den lebenden Organismus übertragen werden können. Repräsentative *in vitro* Systeme in Form von Zellkulturen zur Testung der Hepatotoxizität sind jedoch notwendig, um die Anzahl von Tierversuchen zu reduzieren. Hinzu kommt die Herausforderung von Interspezies-Unterschieden. Denn häufig korrelieren gemessene Effekte aus der Maus nicht mit jenen des Menschen (Lewis, Ioannides, et al., 1998), (O'Brien, Chan, et al., 2004). Unabhängig jedoch dieser Tatsache ist es bis heute nicht möglich den Differenzierungs-

zustand primärer Hepatozyten dauerhaft aufrecht zu erhalten. Aus diesem Grund ist es notwendig Kultivierungsbedingungen zu optimieren und mögliche Veränderungen in Form von differenziellen RNA- oder Proteinexpressionsmustern während einer Kultivierung genauestens zu überwachen.

Die gebräuchlichste Kultivierungsart von Hepatozyten stellt die 2D Kultur dar, bei der Leberzellen auf mit extrazellulärer Matrix (ECM) beschichteten Platten kultiviert werden (Lake, Price, et al., 2009). Diese Methodik ist sehr gebräuchlich für Kurzzeit-Toxizitätstests, solange die Hepatozyten noch ihre lebertypischen Enzyme exprimieren. Denn bereits nach wenigen Tagen verlieren die kultivierten Zellen ihre Morphologie (Decaens & Cassio, 2001), bekommen eine flache, sternförmige Struktur und stellen unter anderem die Produktion von Plasmaproteinen und CYPs ein (Enat, Jefferson, et al., 1984). Bei der verbesserten und seit Anfang der 1990er Jahre eingesetzten 2D Sandwich Kultur (Dunn, Tompkins, et al., 1991) kann der beschriebene Dedifferenzierungseffekt verlangsamt werden (Berthiaume, Moghe, et al., 1996). Durch die Überschichtung der Hepatozyten mit einer zweiten Lage ECM (in der Regel Kollagen I), können die Zellen für eine gewisse Zeit ihre zelltypische Form mit basolateraler und apikaler Seite erhalten (Abu-Absi, Friend, et al., 2002). Generell hat der Einsatz von ECM-Komponenten einen positiven Einfluss auf die Aufrechterhaltung des Differenzierungsstatus von Leberzellen (Schuppan, Ruehl, et al., 2001). Bei steigender Steifheit der ECM beginnen Hepatozyten in einer 2D Kultur jedoch zu dedifferenzieren und zu proliferieren (Wells, 2008). Auch die Wahl der passenden Matrixkomponenten besitzt einen großen Einfluss auf das (De-)Differenzierung-Vermögen von Zellen. So wurde an hepatischen Vorläuferzellen gezeigt, dass sie bei einer Kultivierung auf Kollagen I begannen zu differenzieren, bei einer Kultivierung auf Laminin hingegen ihren undifferenzierten Charakter beibehielten (McClelland, Wauthier, et al., 2008).

Durch Zugabe von Fibroblasten und nicht-parenchymalen Zellen in einer Hepatozyten Ko-Kultur kann der Differenzierungszustand der Hepatozyten und die damit verbundene Produktion von fremdstoffmetabolisierender Enzyme noch länger aufrechterhalten werden (Pfeiffer, Kegel, et al., 2015). Durch dieses Vorgehen kann das komplexe Geflecht aus Zell-Zell-Interaktionen als auch parakrinen Signalen zwischen den Zellen in einer vereinfachten Variante weiterhin bestehen.

Das zuletzt beschriebene System wurde durch die Etablierung von 3D Kulturen noch erweitert, denn die Komplexität eines Organs bzw. Gewebes kann in einer 2D Kultur nur bedingt widergespiegelt werden (Buxboim, Ivanovska, et al., 2010), (Asthana & Kisaalita, 2013). Durch die Einbettung von Hepatozyten und nicht-parenchymalen Zellen in Hydrogele oder Scaffolds kann das *in vivo* System sehr gut nachgeahmt werden und leberspezifische Funktionen für lange Zeit aufrechterhalten werden. Die Leberzellen exprimieren hierbei weiterhin zelltypische Transporter, betreiben Zell-Zell-Interaktionen über Tight- und Gap-Junctions und formen Gallenkapillaren aus (Lau, Lee, et al., 2012), (Godoy, Hewitt, et al., 2013). Nachteil dieser Methode ist jedoch, dass durch die fehlende Vaskularisierung die Versorgung mit Sauerstoff und Nährstoffen erschwert werden kann und zudem kein Abtransport der verstoffwechselten Xenobiotika erfolgt (Gottwald, Giselbrecht, et al., 2007), (Altmann, Giselbrecht, et al., 2008).

Aus den genannten Gründen wurden 3D Mikrofluidiksysteme entwickelt, bei welchen – ähnlich des *in vivo* Systems – die Blut-Perfusion aufrecht erhalten werden kann (Powers, Janigian, et al., 2002). Diese Systeme sind jedoch technisch äußerst aufwändig, sehr kostenintensiv, in ihrem Durchsatz stark limitiert und haben deshalb in der Routine von präklinischen Studien noch keinen Einzug gehalten (Soldatow, Lecluyse, et al., 2013), (Gómez-Lechón, Tolosa, et al., 2014). Unabhängig des eingesetzten Systems ist es notwendig den nativen Grundzustand der Zellen vor der Kultivierung zu kennen. Nur durch das Verständnis der RNA- und Proteinexpression können valide Ergebnisse bei möglichen veränderten Parametern während der Kultivierung gewonnen werden. Erst in einem stabilen System ist es sinnvoll Toxizitätsmessungen durchzuführen.

1.2 Assaytechnologien zur Aufklärung des Zellstatus

Biologische Systeme sind komplex und damit schwer in der Gesamtheit zu erfassen. Aus diesem Grund wurden in den letzten Jahren verschiedene Hochdurchsatz-Assayplattformen entwickelt, die heute unter dem Begriff "-omiks" zusammengefasst werden. Die ersten "-omiks"-Ansätze waren die Genomik (Bonetta, 2006) und die Transkriptomik (Wang, Gerstein, et al., 2009), bei welchen DNA bzw. RNA analysiert werden. Mit heutigen Hochdurchsatz-methoden ist es bereits möglich komplette Genome und Transkriptome in nur wenigen Tagen vollständig zu sequenzieren (Shendure & Ji, 2008), (Ozsolak & Milos, 2011).

Die biologischen Vermittler innerhalb der Zelle stellen jedoch meistens Proteine dar. Sie bestehen nicht wie die RNA und DNA aus nur vier Bausteinen (Nukleobasen), sondern aus 20 unterschiedlichen proteinogenen Aminosäuren. Diese können wiederum auf verschiedene Arten posttranslational modifiziert werden. Die Komplexität als auch die Funktionalität steigen somit von DNA über RNA bis hin zu den Proteinen nahezu exponentiell an. Das menschliche Genom beispielsweise besteht aus zirka 20.000 - 25.000 Genen (Human Genome Sequencing Consortium, 2004), aus welchen durch Splice-Vorgänge, mRNA Editierungen oder alternative Promotoren etwa 100.000 Transkripte (mRNAs) erzeugt werden können (Ayoubi & Van De Ven, 1996). Aus diesen ist es den unterschiedlichen Zellen möglich weit über eine Millionen posttranslational modifizierte Proteine zu generieren (Nørregaard, 2004). Die am häufigsten vorkommenden Modifikationen sind die Phosphorylierung, Glykosylierung und Ubiquitinierung, aber auch die Methylierung und Acetylierung nehmen einen wichtigen Stellenwert ein (Khoury, Baliban, et al., 2011). Generell können posttranslationale Modifikationen (PTMs) sehr dynamisch sein. Dadurch ist gewährleistet, dass die Zelle auf diverse Veränderungen gezielt

und schnell reagieren kann (Prabakaran, Lippens, et al., 2012). Die Proteomik, welche versucht die Gesamtheit aller Proteine inklusive ihrer Modifikationen in einem Lebewesen zu erfassen, stellt somit eine große Chance, aber auch eine enorme Herausforderung dar.

Für den spezifischen Nachweis von Proteinen und deren Modifikationen stehen in der heutigen Zeit hauptsächlich zwei verschiedene Methodenarten zu Verfügung. Bei der einen handelt es sich um massenspektrometrische (MS) Ansätze, im anderen Fall um antikörperbasierte (immunologische) Herangehensweisen. Im ersten Fall werden Hochleistungs-Flüssigchromatographie (HPLC) Anlagen oder 2D-Gele verwendet um Protein- oder Peptidgemische nach gewünschten physikochemischen Eigenschaften aufzutrennen und anschließend mittels Massenspektrometern zu detektieren. Mit Hilfe eines MS Ansatzes ist es möglich tausende Proteine aus einer Probe zu identifizieren und zu guantifizieren. Eine Quantifizierung kann dabei absolut, d. h. durch die Zugabe markierter Proteine oder Peptide oder auch relativ, auf eine Referenzprobe bezogen, erfolgen (Ong & Mann, 2005), (Wong & Cagney, 2010). Durch die hohe Genauigkeit eines Massenspektrometers ist es mit dieser Technologie zudem möglich PTMs zu identifizieren. Aufgrund der niedrigen Abundanz vieler PTMs ist es jedoch vor der Analyse notwendig teilweise aufwändige Anreicherungsschritte – beispielsweise durch Titandioxid-Säulen für Phosphoproteine – durchzuführen (Mertins, Qiao, et al., 2013). Die Sensitivität einer massenspektrometrischen Methode liegt in Konzentrationsbereichen von Nanogramm bis wenigen Pikogramm pro Milliliter.

Die zweite gebräuchliche Methode Proteine spezifisch identifizieren zu können, sind immunologische Assayformate. Zu dieser Methodenart zählen beispielsweise Enzyme Linked Immunosorbent Assays (ELISAs), Western Blots oder auch immunologische Färbungen von Zellen und Gewebeschnitten. Die Sensitivität eines Immunoassays ist auch ohne Anreicherung je nach eingesetztem Antikörper um bis zu Faktor 1000 höher als bei einem MS Ansatz und kann Nachweisgrenzen von wenigen Femtogramm pro Mililiter erreichen (Oberoi, Suschak, et al., 2016). Mit spezifischen Antikörpern können ebenfalls niedrig abundante PTMs detektiert werden. Durch die Verwendung eines zweiten Antikörpers im ELISA sowie durch eine Größentrennung der Proteine im Western Blot kann die Sensitivität weiter gesteigert werden. Der Nachteil der genannten immunologischen Methoden ist jedoch der geringe Durchsatz, denn ohne einen enormen Mehraufwand können nur wenige Proteine parallel analysiert werden.

Die Herausforderung der aufwändigen Parallelisierung wurde teilweise durch die Etablierung von Reverse Phase Protein Arrays (RPPA) gelöst (Paweletz, Charboneau, et al., 2001), (Pierobon, VanMeter, et al., 2012). Bei dieser Technik werden wenige Femtoliter des zu analysierende Proteinlysats auf Träger gedruckt (Spotting) und anschließend mit dutzenden Antikörpern separat und parallel inkubiert. Da sich das komplette Proteinlysat ohne Auftrennung jeweils auf einem Punkt befindet, kann jedoch nicht zwischen spezifischem Signal und möglichen Kreuzreaktivitäten des eingesetzten Antikörpers unterschieden werden.

Dieses Problem besteht im Western Blot nur bedingt, denn durch eine Größenauftrennung des zu analysierenden Proteinlysats kann zwischen spezifischem Signal und Nebenbanden, die bei falscher molekularer Masse auftauchen, unterschieden werden.

1.2.1 Der DigiWest

Um diese Herausforderungen zu überwinden, wurde am NMI eine Assaytechnologie namens DigiWest etabliert (Treindl, Ruprecht, et al., 2016). Sie kombiniert die oben beschriebenen Vorteile einer Größenauftrennung mit einem Hochdurchsatz-Ausleseverfahren. Im Assayverlauf wird das zu untersuchende Proteinlysat wie im herkömmlichen Western Blot nach molekularer Masse aufgetrennt und anschließend auf eine Membran übertragen. Jede aufgetrennte Proteinspur wird daraufhin in 96 Streifen geschnitten, wobei jeder Streifen Proteine eines gewissen Molekulargewichtbereichs aufweist. Die Proteine werden anschließend in getrennten Wells von den Streifen eluiert und auf 96 unterschiedliche, farbkodierte und damit unterscheidbare Mikrosphären (Luminex) immobilisiert.

Die Mikrosphären sind über die Mischung von drei Farbstoffen in unterschiedlichen Konzentrationen kodiert. Dieser Farbcode, auch Identifikator (ID) genannt, kann von einer Luminex Flexmap Anlage, welche einem Durchflusszytometer gleicht, ausgelesen werden. Mit diesem Gerät ist es möglich 500 verschiedene IDs zu unterscheiden.

Nach Beladung der 96 Mikrosphären IDs mit den eluierten Proteinen, repräsentiert jede ID einen gewissen Molekulargewichtsbereich, entsprechend der geschnittenen Streifen. Aufgrund des Farbcodes können alle beladenen Mikrosphären wieder in einem Gefäß vereint werden und stehen anschließend - ähnlich eines gewöhnlichen Western Blots - für Antikörperinkubationen zur Verfügung. Der Vorteil des DigiWests gegenüber eines herkömmlichen Western Blots liegt darin, dass aus dem vereinten Mikrosphären-Pool hunderte Antikörperinkubationen generiert werden können, da jeweils nur ein kleiner, repräsentativer Anteil (< 0,5 %) der Mikrosphärensuspension pro Assay verwendet wird. Die Detektion des primären Antikörpers erfolgt mit Hilfe eines sekundären fluoreszenzmarkierten Antikörpers, dessen Signal mittels eines zweiten im Flexmap Gerät befindlichen Lasers ausgelesen werden kann. Das Resultat nach dem Auslesen hunderter Assayansätze ist jeweils ein spezifisches Signal (entsprechend der Anwesenheit des entpsrechenden Proteins) auf ein paar wenigen benachbarten Mikrosphären ID Populationen, hervorgerufen durch die jeweilige Antikörper-Antigen Interaktion, wohingegen die anderen IDs kein Signal zeigen. Das spezifische Signal wird daraufhin in einem (dimensionslosen) Fluoreszenz-Zahlenwert ausgegeben und integriert. Dieses Signal dient anschließend dazu einen semiquantitativen Vergleich mit anderen Proben durchzuführen, die genau auf dieselbe Art und Weise im DigiWest prozessiert und mit denselben Antikörpern inkubiert wurden.

Das Potenzial der DigiWest-Technologie wurde durch eine Förderung des Bundesministeriums für Bildung und Forschung (BMBF) in einem VIP-Projekt (Validierung des technologischen und gesellschaftlichen Innovationspotenzials wissenschaftlicher Forschung) bestätigt und führte zum Aufbau eines Servicelabors in Berlin. Für immer weiter in ihrer Anzahl steigende Projektaufträge sind sowohl der Durchsatz als auch die Automatisierung noch nicht ausreichend gut gelöst. Aus diesem Grund wurden in dieser Arbeit wichtige technische Aspekte adressiert, um die Technologie robuster, reproduzierbarer und zukunftssicherer zu gestalten.

2 Ziel der Arbeit

Primäre Hepatozyten stellen bei toxikologischen Studien in der Pharmaindustrie als auch in der Grundlagenforschung ein wichtiges Werkzeug dar. So ist es möglich innerhalb von pharmakokinetischen Analysen Transportvorgänge, den generellen Metabolismus aber auch die Toxizität von neuen Wirkstoffen *in vitro* zu untersuchen. Für valide toxikologische Resultate *ex vivo* ist es jedoch notwendig den nativen unveränderten Grundzustand in Form von RNA-und Proteinexpressionsmustern des verwendeten Systems exakt zu kennen.

Bisherige Hochdurchsatz-Analysen von primären Hepatozyten beruhen heute weitestgehend auf RNA-Sequenzierungsdaten. Damit war es möglich differenzielle Expressionsmuster entlang der Porto-Zentral-Achse zu identifizieren und einige davon auf Proteinebene zu validieren.

In dieser Arbeit sollen mit Hilfe eines massenspektrometrischen Proteomansatzes in Kombination mit dem neu entwickelten Hochdurchsatz-Western Blot System DigiWest die differenziellen Proteinexpressionen, aber auch die funktionellen Unterschiede in Form von posttranslationalen Modifikationen auf perizentraler und periportaler Seite des Leberläppchens identifiziert werden. Dabei stehen Hepatozytenpopulationen zur Verfügung, welche mittels Digitonin-Kollagenase-Perfusion (PP und PZ) als auch mit Hilfe einer FACS-Sortierung (GS+ und GS-) gewonnen werden. Die Hepatozyten sollen sowohl direkt nach der Isolation als auch nach einer dreitägigen Kultivierung und Behandlung mit Wnt3a und R-Spondin 3 näher auf Proteinebene untersucht werden. Die getrennte Kultivierung und die sich anschließende ganzheitliche proteomische Analyse der schonend isolierten GS+ und GS- Hepatozyten stellt dabei ein Novum dar.

Da der Durchsatz des DigiWests limitiert ist, soll in dieser Arbeit die Etablierung eines semiautomatisierten DigiWests, dem sogenannten LiquiWest, erfolgen. Dieser soll es in Zukunft ermöglichen den Arbeitsaufwand des DigiWest Systems bei vergleichbaren Resultaten signifikant zu reduzieren. Zudem sollen diverse Voll-Automatisierungslösungen für beide Technologien in den Arbeitsablauf integriert werden, sodass zukünftige Messungen schneller, effizienter und bei einer gleichzeitigen Verbesserung der Reproduzierbarkeit durchgeführt werden können.

3 Materialien und Methoden

3.1 Materialien

3.1.1 Geräte

Benennung	Produkt	Lieferant
Brutschrank	Kendro BB 6220 Incubator	Heraeus, Hanau
Chromatographiesäulen	Acclaim PepMap RSLC C18, 2 μm, 100 Å, 75 μm i.d. x 15 cm, nanoViper (Targeted MS und Full MS bei in Gel Verdau)	Thermo Fisher Scientific, Waltham, MA, USA
	Acclaim PepMap RSLC C18, 2 μm, 100 Å, 75 μm i.d. x 50 cm, nanoViper (Full MS)	Thermo Fisher Scientific, Waltham, MA, USA
Delumentation	ODYSSEY Infrared	LI-COR Biosciences,
Dokumentation	Imaging System	
SDS-Gel und western biot	ImageQuant LAS 4000 mini	Chalfont St Giles, UK
Durchflusszytometer (FACS)	FACSAria Cell Sorter	Becton Dickinson (BD), Franklin Lakes, NJ, USA
Flüssigchromatographieanlage	UltiMate 3000 RSLCnano	Thermo Fisher Scientific,
vor Massenspektrometer	System	Waltham, MA, USA
Gelelektrophorese-Systeme	XCell SureLock Mini-Cell	Life Technologies, Carlsbad, CA, USA
(SDS-PAGE und Gelfree)	Gelfree 8100	Expedeon, Inc., San Diego, CA, USA
lsoelektrisches Fokussierungssystem	Ettan IPGphor	Pharmacia Biotech, Uppsala, SWE
IEF System für das Auflegen	Ettan IPGphor Manifold	GE Healthcare, Chalfont
der IPG Streifen	Light	St Giles, UK
IEF Strip Holder zur Rehydrierung der IPG Streifen	IPG4 Strip Holder 18 cm	Hoefer Pharmacia Bio, San Francisco, USA
	PickPen 8-M	Bio-Nobile, Turku, FIN
Magnete und	QuicPick™ multiEight 8-	Bio-Nobile,
Magnetseparatoren	magnet tool	Turku, FIN
	DynaMag™-Spin Magnet	Life Technologies, Carlsbad, CA, USA

Benennung	Produkt	Lieferant
	Magnetic Plate Separator	Luminex, Austin, TX, USA
Magnete und Magnetseparatoren	KingFisher 96 PCR head	Thermo Fisher Scientific, Waltham, MA, USA
	Neodymmagnete	MagnetShop, Lohr am Main
Massenspektrometer	Orbitrap Q Exactive Plus	Thermo Fisher Scientific, Waltham, MA, USA
Kugelmühle	Mikrodismembrator U	Sartorius Stedim Biotech, Göttingen
Mikrosphären-Auslesegerät	Flexmap 3D	Luminex, Austin, TX, USA
Mikrosphärenprozessoren	KingFisher 96 / KingFisher Flex	Thermo Fisher Scientific, Waltham, MA, USA
pH-Meter	pH-Meter 766	Knick, Berlin
Pinzetten (für DigiWest)	Dumoxel 5	EMS, Hatfield, PA, USA
Dipattiarrabatar	Biomek FXp Roboter	Beckman Coulter
Fipettienobotei	Biomek NXp Roboter	Brea, CA, USA
Plattenauslesegerät	FLUOstar OPTIMA	BMG LABTECH, Offenburg
Plattenschüttler	Thermomixer comfort	Eppendorf, Hamburg
Flattenschuttler	TiMix 5 (16 Platten)	Edmund Bühler, Hechingen
Plattformschüttler	Polymax 2040	Heidolph, Schwabach
Reinstwasseranlage	arium 61316	Sartorius Stedim Biotech, Göttingen
RT-PCR Anlage	LightCycler 1.5	Roche Diagnostics, Mannheim
Schneideplotter	Silhouette SD Digital Craft Cutter	Silhouette America, Orem, UT, USA
Spannungsquelle	Power Ease 500	Life Technologies, Carlsbad, CA, USA
Taumelroller	RM5	Assistent, Sondheim
Vortexer	Vortex-Genie 2	Scientific Industries, Bohemia, NY, USA
Ultraschallbad	Ultraschallbad Sonorex	Bandelin electronic, Berlin
Vakuumiergerät	V.200	Lava, Bad Saulgau
Vakuumkonzentrator	BaVaco M Mini 30	Bachofer, Reutlingen
Waage	Explorer E12140	OHAUS, Pine Brook, NJ, USA

Benennung	Produkt	Lieferant
Western Blot-System	XCell II Blot Module	Life Technologies, Carlsbad, CA, USA
	Zentrifuge 5415D	Eppendorf, Hamburg
Zentrifugen	Zentrifuge 5417R	Eppendorf, Hamburg
	Plattenzentrifuge Universal 30 F	Hettich, Tuttlingen

3.1.2 Verbrauchsmaterialien

Benennung	Produkt	Lieferant
Autosampler Gefäß	Vial short thread, 1,5 ml, amber glass + label	VWR, Darmstadt
Autosampler Insert	Micro-Insert, 0,1 ml, clear glass 15mm, top	VWR, Darmstadt
Blotmembranen	Immobilon-P PVDF (Polyvinylidendifluorid) Membran Nitrocellulose (NC) Membranen Proretan 0.2 um	Millipore Corporation, Billerica, MA, USA Whatman GmbH, Dassel
Filterpapier	Whatman chromatography paper 3 mm	GE Healthcare, Chalfont St Giles, UK
Folien	X-Pierce Sealing Films	EXCELscientific, Victorville, CA, USA
	Axygen AxySeal	Corning Incorporated, Corning, NY, USA
Gelfree Gelkassette	5 % und 8 % Tris Acetate - Cartridge	Expedeon, Inc., San Diego, CA, USA
IPG-Streifen	Immobiline DryStrip Gels, pH 3-11 NL, 7 cm	GE Healthcare Bio-Sc., Uppsala, SWE
Mikrosphären	MagPlex Microspheres	Luminex, Austin, TX, USA
	Dynabeads Protein G	Thermo Fisher Scientific, Waltham, MA, USA
Mikrotiterplatten	Mikrotiterplatte 96 Well, Flachboden	Greiner BioOne, Frickenhausen
	Mikrotiterplatte 96 Well, V-Boden	Greiner BioOne, Frickenhausen
	CLS3600 - Corning 96 Well (Half Area Platte)	Corning Incorporated, New York, USA

Benennung	Produkt	Lieferant
Mikrotiterplatten	AcroPrep 96 Well Ultrazentrifugations-Filterplatte Omega 10K MWCO, 350 μl	Pall Corporation Port Washington, NY, USA
	Masterblock, 96 Well, 2 ml V-Boden, Deep Well	Greiner, Frickenhausen
Mikroreaktionsgefäße	PCR Strips 0.2 ml	Eppendorf, Hamburg
	1,5 ml und 2,0 ml LoBind Reaktionsgefäße	Eppendorf, Hamburg
	Eppendorf Tubes 3810X, 1,5 ml	Eppendorf, Hamburg
PCR-Kämme	KingFisher 96 Spitzenkämme	Thermo Fisher Scientific, Waltham, MA, USA
Polyacrylamid-Gele	NuPAGE Novex 4 - 12 % Bis-Tris Gels 1,0 mm 12,15 und 2-D Well	Life Technologies, Carlsbad, CA, USA
Roboterpipettierspitzen	Biomek AP96 P250 Tips, Non-sterile	Beckman Coulter, Brea, CA, USA
Silikonspitzen für Pickpen	QuickPick tips	Bio-Nobile, Turku, FIN
Verdauaufreinigung	ZipTip C ₁₈	Millipore Corporation, Billerica, MA, USA
Vorsäule der Chro- matographieanlage	μ-Precolumn 300μm, 5 mm C18 PepMap 100, 5 μm, 100 Å	Thermo Fisher Scientific, Waltham, MA, USA
Zentrifugenröhrchen	15 ml Röhrchen, konischer Boden	Greiner, Frickenhausen
	50 ml Röhrchen, konischer Boden	Greiner, Frickenhausen

3.1.3 Puffer und Reagenzien

Benennung	Produkt / Zusammensetzung	Lieferant
2-D Clean-Up Kit	Präzipitant Co-Präzipitant Waschpuffer Waschzusatz	GE Healthcare, Chalfont St Giles, UK
Alkylierungslösung	1X LDS Puffer 125 mM lodacetamid	Life Technologies, Carlsbad, CA, USA
Antioxidanz	NuPAGE Antioxidant	Life Technologies, Carlsbad, CA, USA
Aktivierungspuffer	100 mM NaH₂PO₄, pH 6,2 mit 0,01 % Triton X-100	siehe Chemikalien
Benennung	Produkt / Zusammensetzung	Lieferant
---------------------------------	--	---
Assaypuffer I	Roche Puffer mit 0,2 % Milchpulver, 0,05 % Natriumazid, 0,05 % Tween-20	Roche Diagnostics, Mannheim und siehe Chemikalien
Assaypuffer II (PVXC)	0,8 % PVP, 0,5 % PVA , 0,05 % Tween-20, 0,1 % Casein in PBS	siehe Chemikalien
BCA Reagenzien	BCA Reagent A, BCA Reagent B (4 % Kupfersulfat)	Thermo Fisher Scientific, Waltham, MA, USA
	Blocker Casein in PBS	Thermo Fisher Scientific, Waltham, MA, USA
Blockierungspuffer für	Protein-Free (PBS) Blocking Buffer	Thermo Fisher Scientific, Waltham, MA, USA
DoE Experimente	StartingBlock (PBS) Blocking Buffer	Thermo Fisher Scientific, Waltham, MA, USA
	SuperBlock (PBS) Blocking Buffer	Thermo Fisher Scientific, Waltham, MA, USA
Mikrosphären Beladungspuffer	5 % BSA in PBST	siehe Chemikalien
Carboxy Block Store (CBS)	1 % BSA in PBS	siehe Chemikalien
CBST	CBS + 0,05 % Tween-20	siehe Chemikalien
Biotinylierungsreagenz	EZ-Link NHS-PEG12-Biotin	Thermo Fisher Scientific, Waltham, MA, USA
Bradford Reagenzien	Pierce Coomassie Assay Reagent	Thermo Fisher Scientific, Waltham, MA, USA
Elutionspuffer DigiWest	1 % (v/v) Triton X-100, 8 M Harnstoff in 100 mMTris/HCL pH 9,5	siehe Chemikalien
FACS Puffer	10 mM HEPES, 2 % FKS, 1 % Penicillin-Streptomycin in PBS, pH 7,2	siehe Chemikalien
Gelfärbung (Coomasie)	InstantBlue	Expedeon, Inc., San Diego, CA, USA
Gelfree Probenpuffer	Tris Acetate Sample Buffer	Expedeon, Inc., San Diego, CA, USA
Gelfree Laufpuffer	HEPES Running Buffer	Expedeon, Inc., San Diego, CA, USA

Benennung	Produkt / Zusammensetzung	Lieferant
Kopplungspuffer	50 mM MES pH 5,0 mit 0,01 % Triton X-100	siehe Chemikalien
Ladepuffer Chromatographie vor MS	2 % ACN 0,05 % TFA in H₂Odd MS Güte	siehe Chemikalien
Laufpuffer	0,1 % FA in H ₂ O _{dd} MS Güte (Mobile Phase A)	siehe Chemikalien
Chromatographie vor MS	80 % ACN, 0,1 % FA in H ₂ O _{dd} MS Güte (Mobile Phase B)	siehe Chemikalien
Kultivierungsmedium	2 % FKS, 1 % Penicillin-Streptomycin In DMEM/F12	siehe Chemikalien
LDS-Probenpuffer	NuPAGE LDS Sample Buffer	Life Technologies, Carlsbad, CA, USA
Lysepuffer I (Clb1) zur Isoelektrischen Fokussierung	 7 M Harnstoff, 2 M Thioharnstoff, 4,0 % (w/v) CHAPS, 2,0 % (v/v) Trägerampholyte, 1,0 % DTT, 4mM Spermidin in H₂O_{dd} 	siehe Chemikalien bzw. Puffer und Reagenzien
Lysepuffer II zur Biotinylierung vor LiquiWest	30 mM HEPES, pH 8,2, 7 M Harnstoff, 2 M Thioharnstoff, 4 % CHAPS, in H ₂ O _{dd}	siehe Chemikalien bzw. Puffer und Reagenzien
Lysepuffer III für FACS sortierte sowie kultivierte Hepatozyten	2X NuPAGE LDS Probenpuffer, 2X NuPAGE Proben- Reduzierungsreagenz in H ₂ O _{dd}	Life Technologies, Carlsbad, CA, USA
MES Laufpuffer	NuPAGE MES SDS Running Buffer (20X)	Life Technologies, Carlsbad, CA, USA
Mineralöl	Immobiline DryStrip Cover Fluid	GE Healthcare Bio-Sc., Uppsala, SWE
PBS	PBS (10X)	Thermo Fisher Scientific, Waltham, MA, USA
PBSC	0,03 % (v/v) CHAPS in 1x PBS, pH 7,4	siehe Chemikalien
PBST	0,05 % (v/v) Tween-20 in 1X PBS, pH 7,4	siehe Chemikalien
Perfusionspuffer	Krebs- Henseleit Puffer	Sigma-Aldrich, St. Louis, MO, USA

Benennung	Produkt / Zusammensetzung	Lieferant
Ponceau S-Lösung	0,1 % (w/v) Ponceau S in 5 % Essigsäure in H ₂ O _{dd}	siehe Chemikalien
Protein-Größenstandard	SeeBlue Plus2 Pre-Stained Standard	Life Technologies, Carlsbad, CA, USA
Reduktionsmittel (PAGE)	NuPAGE Sample Reducing Agent	Life Technologies, Carlsbad, CA, USA
Rehydrierungslösung für IPG-Streifen	DeStreak Rehydration Solution	GE Healthcare Bio- Sciences, Uppsala, SW
Roche Puffer	Blocking Reagent For ELISA	Roche Diagnostics, Mannheim
Systemflüssigkeit Flexmap 3D	LiquiChip System Fluid (10X)	Qiagen, Venlo, NLD
TBS	10 mM Tris, 150 mM NaCl in H ₂ O _{dd} pH 7,4	siehe Chemikalien
TBST	0,1 % (v/v)Tween-20 in TBS	siehe Chemikalien
Trägerampholyte	IPG Buffer pH 3-11 NL	GE Healthcare BioSc., Uppsala, SWE
Transferpuffer	NuPAGE Transfer Buffer	Life Technologies, Carlsbad, CA, USA
Trypsin	Sequencing Grade Modified Trypsin (mit 50 mM Essisgsäure als Resupendierungspuffer)	Promega Corporation, Fitchburg, WI, USA
Verdaureagenzien für Verdau in Lösung	Stammlösungen: (1) 50 mM TEA (Puffer) (2) 1 M TCEP (Reduktion) (3) 1 M IAA (Alkylierung) (4) 1 μg/μl Trypsin (Verdau) (5) 200 mM PMSF (Stopp)	siehe Chemikalien
Verdaureagenzien für In- Gel Verdau	 (1) 100 mM Ammonium- hydrogencarbonat (Puffer) (2) 13 ng/µl Trypsin in 10 mM ABC und 10 % Acetonitril (3) 5% Ameisensäure (Extraktion) (4) ACN (Dehydratisierung) 	siehe Chemikalien
Waschpuffer Leberperfusion	107 mM NaCl, 4 mM KCl, 1 mM MgSO ₄ x 7H ₂ O, 1 mM KH ₂ PO ₄ , 21 mM NaHCO ₃ , 15 mM HEPES, 8 mM Glucose in H ₂ O _{dd}	siehe Chemikalien
ZipTip Reagenzien	 (1) ACN (Waschlösung 1) 0,1 % TFA (Äquilibrierlösung) (2) 5% MeOH + 0,1 %TFA (Waschlösung 2) (3) 50 % ACN + 0,5% FA (Elutionslösung) 	siehe Chemikalien

3.1.4 Chemikalien und Ausgangslösungen

Produkt	Abk.	Lieferant
Acetonitril MS Güte	ACN	LGC Promochem, Wesel
Δποίςοηςäμεο	FA	Thermo Fisher Scientific, Waltham, MA,
Ameisensaure		USA
Ammoniumhydrogencarbonat	ABC	Sigma-Aldrich, St. Louis, MO, USA
BSA Albumin Fraktion V	BSA	Carl Both, Karlsruhe
(Proteasefrei) > 98 %	DON	
Casein		Sigma-Aldrich, St. Louis, MO, USA
3-[(3-Cholamidopropyl)		
dimethylammonio]-1-	CHAPS	Carl Roth, Karlsruhe
propanesulfonate hydrate		
Kollagenase		Sigma-Aldrich, St. Louis, MO, USA
Digitonin		Sigma-Aldrich, St. Louis, MO, USA
Dithiothreitol	DTT	Sigma-Aldrich, St. Louis, MO, USA
Dulbecco's Modified Eagle's	DMEM	Thermo Fisher Scientific, Waltham, MA,
Medium	Dinizini	USA
Dimethylsulfoxid (wasserfrei)	DMSO	Sigma-Aldrich, St. Louis, MO, USA
1-Ethyl-3-(3-	EDC	Thermo Fisher Scientific, Waltham, MA,
dimethylaminopropyl)carbodiimid		USA
Essigsäure	HAc	Carl Roth, Karlsruhe
Ethanol >96 %	EtOH	Carl Roth, Karlsruhe
Fluorescein Di-β-D-	FDG	Thermo Fisher Scientific, Waltham, MA,
Galactopyranoside		USA
fetales Kälberserum	FKS	Thermo Fisher Scientific, Waltham, MA, USA
D(+)-Glucose		Sigma-Aldrich, St. Louis, MO, USA
Glycerol		Sigma-Aldrich, St. Louis, MO, USA
Harnstoff (Urea)		Sigma-Aldrich, St. Louis, MO, USA
2-(4-(2-Hydroxyethyl)-1-		
piperazinyl)-ethansulfonsäure	HEPES	Carl Roth, Karlsruhe
Iodacetamid	IAA	Sigma-Aldrich, St. Louis, MO, USA
Isopropanol	IPA	Carl Roth, Karlsruhe
Kaliumchlorid		Sigma-Aldrich, St. Louis, MO, USA
Kaliumdihydrogenphosphat		Sigma-Aldrich, St. Louis, MO, USA
Magnesiumsulfat Heptahydrat		Sigma-Aldrich, St. Louis, MO, USA

Produkt	Abk.	Lieferant
2-(N-Morpholino)ethansulfonsäure	MES	Sigma-Aldrich, St. Louis, MO, USA
Methanol >99,9 %	MeOH	Carl Roth, Karlsruhe
Milchpulver	MP	Carl Roth, Karlsruhe
Natriumchlorid >99,9 %	NaCl	Carl Roth, Karlsruhe
Natriumazid	NaAc	Merck, Darmstadt
Natriumhydrogencarbonat	Natron	Sigma-Aldrich, St. Louis, MO, USA
Natriumdihydrogenphosphat		Sigma-Aldrich, St. Louis, MO, USA
Natriumhydroxid 1 N	NaOH	Carl Roth, Karlsruhe
Neutravidin		Thermo Fisher Scientific, Waltham, MA,
Penicillin-Streptomycin		Biochrom-Seromed, Belin
Polyvinylalkohol MW 30 – 70 kDa	PVA	Sigma-Aldrich. St. Louis. MO. USA
Polyvinylpyrrolidon MW 360 kDa	PVP	Sigma-Aldrich, St. Louis, MO, USA
Ponceau S		Carl Roth, Karlsruhe
Phenylmethylsulfonylfluorid	PMSF	Roche Diagnostics, Mannheim
R-Spondin 3		R&D Systems, Minneapolis, MN, USA
Salzsäure (32 %)	HCI	Carl Roth, Karlsruhe
Sulfo-(<i>N</i> -Hydroxysulfosuccinimid)	Sulfo- NHS	Thermo Fisher Scientific, Waltham, MA, USA
Thioharnstoff		Thermo Fisher Scientific, Waltham, MA, USA
Trichloressigsäure	TCA	Fisher Scientific, Schwerte
Triethylamin	TEA	Carl Roth, Karlsruhe
Trifluoressigsäure	TFA	LGC Promochem, Wesel
Tris(hydroxymethyl)-aminomethan	Tris	Carl Roth, Karlsruhe
Tris(2-carboxyethyl)phosphin	TCEP	Carl Roth, Karlsruhe
Triton X-100		Sigma-Aldrich, St. Louis, MO, USA
Trypanblau		Merck, Darmstadt
Tween-20		Merck, Darmstadt
Wasser MS Güte	H₂O	Thermo Fisher Scientific, Waltham, MA, USA
Wnt3a		Sigma-Aldrich, St. Louis, MO, USA

3.1.5 Programme

Software	Hersteller
Adobe Illustrator CS5	Adobe Systems, San Jose, DE, USA
Adobe Photoshop CS5	Adobe Systems, San Jose, DE, USA
Biomek Software	Beckman Coulter, Brea, CA, USA
DigiWest Auswertesoftware, v3.8.5.2	NMI Beutlingen
(Excel-basiert)	NWN, Heatingen
DigiWest Viewer (Excel-basiert)	NMI, Reutlingen
Image Studio v3.1	LI-COR Biosciences, Lincoln, NE, USA
InCroMAP	Universität Tübingen
Mendeley	Mendeley Ltd., London, UK
MeV Multi Experiment Viewer v4.9.0	Dana-Farber Cancer In., Boston, MA, USA
Minitab 16	Minitab, Inc., State College, PA, USA
MS Office Word, Excel, PowerPoint 2013	Microsoft, Redmond, WA, USA
Origin 2015	OriginLab Corp., Northampton, MA, USA
Pathview (R Studio Erweiterung)	Bioconductor, Weijun Luo
Pinpoint v1.4	Thermo Scientific, Waltham, MA, USA
Progenesis QI for proteomics v3.0	Nonlinear Dynamics, Durham, NC, USA
Proteome Discoverer v1 3 und v1 4	Thermo Fisher Scientific, Waltham, MA,
	USA
R Studio v0.97.551	RStudio, Inc., Boston, MA, USA
Silhouette Studio	Silhouette America, Lehi, UT, USA
XLfit 5.3.1.3	IDBS, Guildford, UK
xPONENT 4.0.846.0 SP1	Luminex, Austin, TX, USA

3.1.6 Datenbanken

Datenbank	Version/Datum	Betreiber
KEGG Pathway	v79.1	Kyoto Universität, Kyoto, JP
Mascot	v2.3.02	Matrix Science Ltd., London, GB
Panther	v11.0	University of Southern California, CA, USA
SEQUEST	v28.0.0.0	University of Washington, Seattle, WA, USA
UniProtKB	16.02.2017	UniProt Konsortium

3.1.7 Primärantikörper

Die 1198 in dieser Arbeit verwendeten Primärantikörper sind im Anhang (Tabelle 22) aufgelistet.

3.1.8 Detektionsantikörper

Tabelle 1: Detektionsantikörper für DigiWest. gt, Ziege; ms, Maus; rb, Kanninchen; rt, Ratte; dk, Esel; IgG, Immunglobulin G; H und L, schwere und leichte Kette eines Antikörpers; PE, Phycoerythrin (Fluoreszenzfarbstoff)

Antigen	Konjugat	Spezies	Hersteller
gt-IgG (H+L)	PE	dk	Jackson Dianova, Hamburg
ms-IgG(H+L)	PE	dk	Jackson Dianova, Hamburg
rb-lgG (H+L)	PE	dk	Jackson Dianova, Hamburg
rt-IgG (H+L)	PE	gt	Jackson Dianova, Hamburg
Streptavidin	PE	dk	Jackson Dianova, Hamburg

Tabelle 2: Detektionsantikörper für Western Blot. IR, Infrarot

Antigen	Konjugat	Spezies	Hersteller
ms-IgG (H+L)	IRDye 800CW	dk	LI-COR Bioscience, Lincoln, NE, USA
ms-IgG (H+L)	IRDye 680RD	dk	LI-COR Bioscience, Lincoln, NE, USA
rb-IgG (H+L)	IRDye 800CW	dk	LI-COR Bioscience, Lincoln, NE, USA
rb-lgG (H+L)	IRDye 680RD	dk	LI-COR Bioscience, Lincoln, NE, USA

3.2 Methoden

3.2.1 Tierhaltung

Die Haltung und Präparation der in dieser Arbeit verwendeten Mäuse wurden am Institut für Pharmakologie und Toxikologie, Abteilung Toxikologie an der Universität Tübingen von Silvia Vetter durchgeführt. Alle Mäuse waren männlich und wurden im 12 Stunden hell/dunkel Rhythmus gehalten. Wasser und Futter war nach Belieben (*ad libitum*) verfügbar. Die Mäuse wurden mit menschlicher Sorgfalt gehalten und alle hier beschriebenen Protokolle sind in Übereinstimmung mit den institutionellen Richtlinien. Bei Schlachtung waren die Mäuse jeweils 10 Wochen alt und um circadiane Einflüsse zu minimieren fand die Tötung durch Ausblutung nach Betäubung mit Pentobarbital immer zwischen 9 und 11 Uhr morgens statt.

3.2.2 Lyse von Teilen einer Gesamtleber

Damit zur Etablierung der Gelfree Methode (LiquiWest, siehe 3.2.13) genügend repräsentatives Testmaterial zur Verfügung stand, wurden Leber-Gewebestücke einer C3H/HE Maus zerkleinert und lysiert (Proben stammten aus der Toxikologie in Tübingen). Dazu wurde eine hauseigene Standard Operating Procedure (SOP) mit dem Titel "Präparation von Gewebelysaten in Kryovials mit dem Mikrodismembrator" in der Version 6 von 11.05.2009 verwendet. Bei dem Mikrodismembrator handelt es sich um eine Labor-Kugelmühle. Alle Arbeiten wurden, soweit nicht anders angegeben, mit flüssigem Stickstoff zur Kühlung durchgeführt.

Das tiefgefrorene Gewebe wurde zunächst mit Hilfe eines vorgekühlten Pistills in einem Mörser zerkleinert. Die einzelnen Gewebestücke wurden daraufhin in Cryovials überführt, wobei darauf zu achten war, dass die überführte Masse pro Vial aufgrund des später zugegebenen Lysepuffervolumens 80 mg nicht überstieg. Für die Pulverisierung der Gewebestücke wurde pro Cryovial je eine Edelstahlkugel hinzugegeben und die Probe innerhalb des Vials im vorgekühlten Mikrodismembrator 90 Sekunden bei 2000 Umdrehungen pro Minute (revolutions per minute, rpm) pulverisiert. Durch mehrmaliges Klopfen konnte das entstandene Gewebepulver zu Boden gebracht, die Kugel entfernt und der Lysepuffer (Lysepuffer II) hinzugegeben werden. Das Volumen des Lysepuffers war abhängig von der zuvor abgewogenen Gewebemasse und sollte das Achtfache dessen Volumens sein (z. B. 10 mg Gewebe + 80 µl Lysepuffer, bei Annahme, dass beides eine Dichte von $\rho = 1$ kg/m³ besitzt). Die Lyse fand auf einem Taumelroller bei Raumtemperatur (RT) über einen Zeitraum von 30 Minuten statt. Das Lysat wurde anschließend abgenommen, in Reaktionsgefäße überführt, zur Abtrennung von Zelltrümmern 5 Minuten bei 16000 g zentrifugiert, der Überstand abgenommen und bei -80 °C bis zur weiteren Verwendung gelagert.

3.2.3 Gewinnung von zonierten Hepatozyten durch PZ und PP Leberperfusion

Die Gewinnung von periportalen und perizentralen Hepatozyten aus Lebern von C3H/HE Mäusen wurde von Silvia Vetter an der Toxikologie in Tübingen nach einem Protokoll von Taniai (2004) durchgeführt. Nach Freilegung der Leber wurde diese zunächst mit Krebs-Henseleit Puffer (Sigma Aldrich) für 10 Minuten bei 37 °C perfundiert. Um periportale Hepatozyten zu gewinnen, wurde für 10 Sekunden eine 5 mM Digitonin Lösung durch die untere Hohlvene (*Vena Cava inferior*) eingeleitet und somit die perizentralen Hepatozyten abgetötet. Danach wurde sofort wieder in die andere Richtung gespült und dadurch das Digitonin entfernt.

Um perizentrale Hepatozyten zu gewinnen, wurde die Digitoninlösung durch die Pfortader (*Vena portae*) infundiert und die periportalen Hepatozyten abgetötet. Das Ausspülen der Digitoninlösung erfolgte erneut nach 10-sekündiger Einwirkzeit. Durch den jeweiligen Zell-Abtötungsvorgang konnten von einer Maus immer jeweils nur periportale oder perizentrale Hepatozyten gewonnen werden.

Zur Auflösung von Zell-Zell-Kontakten (Extrazelluläre Matrix, ECM) und somit zur Gewinnung von Einzelzellen wurde die Leber für 10 Minuten mit einer Kollagenaselösung perfundiert. Die immer noch in der Leberkapsel befindlichen Zellen wurden in eine Petrischale überführt und 200 ml Waschpuffer (siehe 3.1.3) mit einem Zusatz von 2 % BSA hinzugegeben. Unter der Sterilbank wurde die Leberkapsel geöffnet und die Hepatozytensuspension in 50 ml Zentrifugengefäße überführt. Durch die Zentrifugation bei 50 g sanken die lebenden Hepatozyten ab und die toten verblieben im Überstand. Das Pellet wurde zwei weitere Male mit 5 ml Waschpuffer gewaschen, ein Aliqout von 10 µl entnommen mit mittels Trypanblau eine Vitalitäts- und Zellzahlbestimmung durchgeführt. Die Vitalitätsrate lag in der Regel zwischen 80 – 90 %. Die Effizienz der Separierung wurde mittels Real Time Quantitative Polymerase-Kettenreaktion (RT-PCR) und Glutaminsynthetase (GS) -Primern durchgeführt (GS wird nur in perizentralen Hepatozyten exprimiert). Die jeweiligen Hepatozyten-Pellets von periportal bzw. perizentraler Seite wurden in Lysepuffer I aufgenommen und die Proteinkonzentration bestimmt (3.2.6).

3.2.4 Gewinnung von zonierten Hepatozyten durch Zellsortierung

Eine zweite in dieser Arbeit eingesetzte Mauslinie stammte von Taconic Artemis und wurde als GS-Reporter-Maus bezeichnet (Taconic Artemis, 2012). Sie diente dazu periportale und perizentrale Hepatozyten durch eine Durchflusszytometrie (FACS, fluorescence-activated cell sorting) voneinander zu separieren. Die Maus exprimierte unter Kontrolle des GS-

(Glumaminsynthetase) Promotors neben dem eigentlichen Protein drei Reporter: (1) die β-Galactosidase. LacZ. (2) die Thymidinkinase 1. Tk-1 und (3) die Glühwürmchen Luziferase. FLuc. Da die GS ausschließlich auf der perizentralen Seite des Leberläppchens exprimiert wird (Gebhardt & Mecke, 1983), verhält sich dies in gleichem Maße für die genannten Reporter. Zur Extraktion der gesamten Hepatozytenpopulation wurde die Leber nach Ausblutung direkt, wie oben beschrieben, mit einer Kollagenaselösung behandelt und die vereinzelten Leberzellen abzentrifugiert. Nach der Zellkonzentrationsbestimmung wurden die Leberzellen in einem Puffer bestehend aus 10 mM HEPES, 2 % fetalem Kälberserum (FKS) und 1 % Penicillin-Streptomycin in PBS, pH 7,2 (FACS-Puffer) auf 40000 Zellen/µl eingestellt. Jeweils 100 µl Zellsuspension wurden anschließend mit 100 µl einer 0,5 mM Fluorescein Diβ-D-galactopyranoside (FDG) Lösung versetzt. FDG ist hierbei ein Substrat der β-Galactosidase und beginnt nach Umsetzung zu fluoreszieren. Die Inkubation erfolgte für 10 Minuten bei 37 °C. Abgestoppt wurde die Reaktion durch Zugabe von 3,5 ml auf 4 °C gekühlten FACS-Puffer. Die Zellen wurden erneut abzentrifugiert (50 g, 2 Minuten), der Überstand wurde verworfen, 2 ml eisgekühlter FACS-Puffer hinzugegeben und die Suspension in ein vorgekühltes FACS-Gefäß überführt. Für eine spätere Kontrollprobe dienten ungefärbte Zellen, die die Inkubation bei 37 °C ohne FDG durchliefen und ebenfalls in ein FACS-Gefäß überführt wurden.

3.2.4.1 FACS Sortierung

Für die Separierung der perizentralen fluoreszierenden GS positiven (GS+) Hepatozyten von nicht-fluoreszierenden periportalen GS negativen (GS-) Hepatozyten wurde ein FACS-Gerät der Firma Becton Dickinson (BD) der Hautklinik Tübingen verwendet. Dabei wurden die resuspendierten Hepatozyten zunächst auf Größe und Granularität hin untersucht (Abbildung 2a) und die zu sortierenden intakten Einzelzellen anschließend nach deren Fluoreszenz in zwei Gefäße sortiert. Die Sortierung beruhte unter anderem auch auf dem Wissen, dass GS+ Zellen ca. 7 % der Gesamt-Hepatozytenpopulation in einer Leber ausmachen (Gebhardt & Coffer, 2013), weshalb die Sortierungsfenster P3 (GS-) und P4 (GS+) entsprechend eingestellt wurden (Abbildung 2b). Nach Auszählung der Hepatozyten konnten für alle vier Mäuse jeweils ca. 30.000 GS+ Hepatozyten von ca. 500.000 GS- Hepatozyten separiert werden. Gesammelt wurden die Zellen in 5 ml eines 1X PBS Puffers mit 10 mM HEPES, pH 7,2. Die Zellen wurden anschließend abzentrifugiert, in Lysepuffer III (2X LDS mit 2X Reduzierungsreagenz) aufgenommen und bei 70 °C für 10 Minuten erhitzt.

Abbildung 2: Grafische Darstellung der Analyseresultate der zu separierenden GS+ und GS-Hepatozyten im FACS Gerät. (a) Die intakten mit Fluorescein Di-β-D-galactopyranoside (FDG) behandelten Hepatozyten wurden von Zelltrümmern, anderen Zelltypen und Zellaggregaten über Größe sowie Granularität getrennt (P1, Abbildungsteil a, rot markiert) und bei 530 nm in der Vereinzelungskammer ausgelesen. (b) Dabei waren die meisten Zellen GS- (P3). Zirka 7 % der Hepatozyten trugen ein starkes Fluoreszenzsignal und wurden somit als GS+ eingestuft (P4). FITC, Fluorescein isothiocyanate; FSC, Forward Scatter; GS, Glutaminsynthetase; SSC, Side Scatter.

3.2.5 Kultivierung zonierter Hepatozyten

Für die Untersuchung des Einflusses einer Kultivierung auf den Differenzierungszustand von GS+ und GS- Hepatozyten wurden drei weitere Lebergewebe von GS-Reporter-Mäusen entsprechend Abschnitt 3.2.4 von Silvia Vetter (Toxikologie Tübingen) präpariert. Nach der Zellsortierung wurden die beiden Hepatozytenpopulationen abzentrifugiert, der Überstand abgenommen und mit Kultivierungs-medium (2 % FKS, 1 % DMEM/F12 Penicillin-Streptomycin, in DMEM/F12 Medium) auf 150 Zellen/µl eingestellt. Für eine getrennte Kultivierung wurden jeweils 100 µl jeder Zellsuspensionspopulation (GS+ und GS-) in verschiedene mit Kollagen beschichtete 96 Well Platten gegeben. Dies geschah jeweils mehrfach im Duplikat, da die Hepatozyten unterschiedlich lange kultiviert wurden (t = 18, 24, 48 oder 72 Stunden) und außerdem einen Zusatz von Wnt3a (finale Konzentration 20 ng/ml) und R-Spondin 3 (finale Konzentraton 100 ng/ml) bzw. als Kontrolle nur Kultivierungsmedium erhielten. Die Kultivierung fand bei 37 °C im Brutschrank statt und das Medium wurde nie gewechselt. Lediglich Wnt3a und R-Spondin 3 wurden bei den Zellen, die 72 Stunden inkubiert wurden, bei Zeitpunkt t48 h ein weiteres Mal hinzugegeben. Für die Ernte der Zellen wurde das Medium abgesaugt, zwei Mal mit 1X PBS gewaschen und pro Well jeweils 10 µl Lysepuffer III hinzugegeben. Anschließend wurden die Zellen gründlich resuspendiert, in Mikroreaktionsgefäße überführt und 10 Minuten bei 70 °C erhitzt. Da die Zellen zum Zeitpunkt t0 h noch nicht angewachsen waren, wurden die Zellen für diesen Zeitpunkt direkt mit 100 µl 1X PBS in Mikroreaktionsgefäße überführt, abzentrifugiert, der Überstand abgenommen und Lysepuffer III hinzugegeben.

Durch die zwei beschriebenen Möglichkeiten periportale bzw. GS- Hepatozyten von perizentralen bzw. GS+ Hepatozyten zu separieren (3.2.3 und 3.2.4), aber auch durch die in dieser Arbeit verwendeten Protein-Analysemethoden, ergaben sich die in Abbildung 3 dargestellten Analysen. Für eine eindeutige Abgrenzung der auf verschiedene Weise separierten Hepatozyten werden alle mittels FACS getrennten, von der GS-Reporter-Maus stammenden Zellen als GS+ bzw. GS- und die mittels Perfusion und Digitonin behandelten Zellen als periportal (PP) bzw. perizentral (PZ) bezeichnet.

Abbildung 3: Gesamtübersicht aller in dieser Arbeit gewonnenen und analysierten Proben. Die Behandlung der GS+ bzw. GS- Hepatozyten bestand in einer Zugabe von Wnt3a und R-Spondin 3. In Blau ist eine Analyse der entsprechenden Probe im LiquiWest, in Grün für den DigiWest und in Weiß für eine Untersuchung mittels Massenspektrometrie dargestellt (für MS Messungen siehe auch Abbildung 8). Die Präparation der Mäuse, die Gewinnung der Zellen sowie die Kultivierung der Hepatozyten wurde von Silvia Vetter in der Toxikologie, AG Schwarz, Universität Tübingen durchgeführt.

3.2.6 Methoden der Proteinkonzentrationsbestimmung

3.2.6.1 Bradford-Assay

Zur Bestimmung der Proteinkonzentration der im Lysepuffer vorliegenden Proben, wurde der von Bradford 1976 entwickelte und nach ihm benannte Assay eingesetzt. Er beruht auf der Anlagerung von Farbstoffmolekülen (Coomassie-Brillant-Blau G-250) an unpolare Seitenketten von Proteinen, wodurch sich das Absorptionsspektrum des Farbstoffs von 470 nm auf 595 nm verschiebt. Eine Messung nach Standardprotokoll war jedoch mit den in Harnstoff-Lysepuffern (Lysepuffer I und II jeweils 7 M Harnstoff) vorliegenden Proben nicht möglich, da das Assaysystem für reproduzierbare Ergebnisse eine Harnstoffkonzentration von maximal drei Mol pro Liter toleriert (Thermo Fisher Scientific, 2013b). Aus diesem Grund wurde ein am NMI entwickeltes abgewandeltes Protokoll verwendet.

Die Standardreihe wurde mit PBS, Lysepuffer und einem mit dem Assay-Kit bereitgestellten Rinderalbumin (BSA) -Standard hergestellt. Die Konzentrationsspanne lag im Bereich von 0,025 bis 1,000 μ g/ μ l und bestand aus sieben Standardkonzentrationen sowie einem Blank.

Das Coomassie-Reagenz wurde vorsichtig gemischt und auf Raumtemperatur gebracht. Die zu messenden Lysate wurden falls nötig aufgetaut, kurz gevortext und anschließend eine Minute bei 16.000 g und 4 °C zentrifugiert. Da die zu untersuchenden Proben eine zu erwartende Proteinkonzentration von 2 bis 15 μ g/ μ l aufwiesen, wurden sie vor der Vermessung 1:20 in PBS verdünnt. Daraus resultierten zu erwartende Proteinkonzentrationen im Bereich 0,10 bis 0,75 μ g/ μ l, was innerhalb des Konzentrationsbereichs der generierten Standardreihe lag.

Für das Ansetzen des Assays wurden in einer 96 Well Platte 5 µl der acht Standard-Verdünnungen, als auch 5 µl der jeweils zu vermessenden 1:20 Probenverdünnungen in separate Wells pipettiert. In jedes mit Standard bzw. Probe befüllte Well wurden jeweils 150 µl Coomassie-Reagenz gegeben, kurz gemischt und die Platte 10 Minuten bei Raumtemperatur inkubiert. Das Auslesen der Proben erfolgte bei 595 nm auf dem Plattenreader.

Für die Berechnung der Proteinkonzentration in den Proben wurden die Blank-korrigierten Extinktionswerte des Standards gegen deren jeweilige Konzentrationen aufgetragen. Mit Hilfe dieser Standardkurve und den ebenfalls Blank-korrigierten Extinktionswerten der Proben konnte daraufhin auf die unbekannten Proteinkonzentrationen der Proben unter Berücksichtigung der 1:20 Verdünnung zurückgerechnet werden.

3.2.6.2 In-Gel Proteinbestimmung

Bei den in LDS und DTT haltigem Lysepuffer (Lysepuffer III) vorliegenden Proben konnte wegen Pufferinkompatibilität kein Bradford-Assay angewendet werden. Deshalb wurden jeweils 3 µl dieser Lysate sowie ein Mäuseleberlysat bekannter Konzentration auf ein SDS-Gel aufgetragen (siehe auch Abschnitt 3.2.7). Nach erfolgter Größenseparierung wurde das Gel in eine Färbewanne überführt, kurz in H_2O_{dd} (doppelt desitilliertes Wasser) gewaschen und anschließend mit InstantBlue (Coomassie basiert) für eine Stunde gefärbt. Die Entfärbung mit H_2O_{dd} erfolgte über Nacht, sodass sich ein klarer Hintergrund ergab. Das Gel wurde daraufhin mit Hilfe des ODYSSEY Infrared Scanners bei 700 nm eingelesen und mittels beiliegender Software (Image Studio Version 3.1) ausgewertet. Dazu wurden die Intensitäten (Schwarzwerte) aller Banden einer jeden Spur aufsummiert und miteinander verglichen. Mit Hilfe des Mäuseleberlysates bekannter Proteinkonzentration konnte anschließend auf die Konzentrationen der Proben zurückgerechnet werden.

3.2.7 SDS-PAGE

Für die SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) wurde das von Life Technologies kommerziell erhältliche NuPAGE Gelelektrophoresesystem (XCell SureLock Mini-Cells) verwendet. Es wurden ausschließlich 1 cm dicke Bis-Tris Gele mit einem Polyacrylamidgradienten von 4 - 12 % verwendet, wobei die Anzahl der Probenauftragstaschen je nach Experiment variierte. Die Gele wurden zunächst mit H₂O_{dd} gewaschen, sowohl die Elektrodenschutzfolie als auch der Kamm entfernt und in die Gelelektrophoreseeinheit eingebaut. Die innere und äußere Kammer wurden mit NuPAGE 1X MES SDS Laufpuffer befüllt, wobei in die mittlere Kammer 500 µl NuPAGE Antioxidant hinzugegeben wurde. Als Marker der molekularen Masse wurden 5 µl SeeBlue Plus 2 jeweils in die zwei äußeren Taschen aufgetragen. Die Proben, welche mit 1X NuPAGE LDS und 1X NuPAGE Reduzierungsreagenz versetzt und daraufhin für 10 Minuten bei 70 °C denaturiert wurden, wurden aufgetragen und die Größenseparierung 90 Minuten bei 150 Volt auf Eis durchgeführt. Die in 2X LDS Puffer vorliegenden GS+ und GS- Hepatozyten wurden nach Erhitzen direkt im 2X Puffer aufgetragen. Für ein DigiWest Experiment war darauf zu achten, dass bei Probenauftrag jede zweite Spur leer verblieb, um den späteren Schneidevorgang auf der Membran zu erleichtern.

3.2.8 Western Blot

Für den Transfer der Proteine aus dem Gel auf eine Membran (Blot-Vorgang) wurde ebenfalls das NUPAGE System (siehe Abschnitt 3.2.7) mit den entsprechenden Einsätzen im Nass-Blot-Verfahren verwendet. Als Transferpuffer diente eine Lösung aus 1X NuPAGE Transferpuffer mit 10 % Methanol in H₂O_{dd}. Der Aufbau des Blots war wie folgt: drei mit Transferpuffer gesättigte Schwämme, zwei mit demselben Puffer getränkte Whatman Papiere, gefolgt vom Gel, der befeuchteten Blot-Membran und erneut zwei getränkten Whatman Papieren und drei durchnässten Schwämmen. Der Proteintransfer wurde über einen Zeitraum von 75 Minuten bei 30 Volt und 200 Milliampere (mA) durchgeführt. Für DigiWest Experimente wurden in Methanol eingelegte PVDF (Polyvinylidenfluorid) Membranen, für Western Blots Nitrocellulose Membranen verwendet. Der Grund dafür lag darin, dass sich die PVDF Membranen leichter schneiden lassen und ein Auslesen der Nitrocellulose Membranen aufgrund eines geringeren Hintergrundes am ODYSSEY Infrarot Scanner besser möglich ist.

3.2.9 Ponceau S Färbung

Zur Qualitätskontrolle eines erfolgreichen Proteintransfers auf die Membran wurde nach dem Blotvorgang eine Ponceau S Färbung durchgeführt. Zudem diente die Färbung im Falle des DigiWests dazu die Protein-Laufspuren mittels Bleistift zu markieren, um den später folgenden Schneidevorgang der Membran zu erleichtern. Nitrocellulose Membranen wurden direkt gefärbt, PVDF Membranen zunächst 15 Minuten in PBST gewaschen und anschließend für mindestens 10 Minuten gefärbt. Es folgte ein kurzer Waschvorgang mit H₂O_{dd}, bis die Proteinbanden gut sichtbar waren. Anschließend wurden mit Hilfe der Geldokumentationsanlage ImageQuant LAS 4000 mini Einzelaufnahmen eines jeden Blots gemacht. Nitrocellulose Membranen wurden anschließend für 10 Minuten mit TBST, PVDF Membranen mit PBST über einen Zeitraum von 30 Minuten entfärbt.

3.2.10 Immundetektion für Western Blot

Für die Detektion ausgewählter Proteine mittels spezifischer Antikörper (Immundetektion) wurden die Nitrocellulose-Membranen zunächst eine Stunde in 3 % BSA in TBST blockiert und anschließend je nach Membrangröße in 15 ml oder 50 ml Zentrifugenröhrchen überführt. Daraufhin wurde der primäre Antikörper in der entsprechenden Verdünnung in einem Volumen von 2,5 ml bzw. 4,0 ml in das jeweilige Zentrifugenröhrchen zur Membran gegeben. Die Inkubation bei 4 °C auf einem Taumelroller erfolgte über Nacht. Am nächsten Tag wurde die Membran fünf Mal 5 Minuten in 5 ml bzw. 10 ml TBST gewaschen und der passende sekundäre Anti-Spezies Antikörper (siehe Abschnitt 3.1.8) in einer Verdünnung von 1:10000

in 5 % Milchpulver in TBST hinzugegeben. Die Inkubation erfolgte bei RT im Dunkeln für eine Stunde worauf folgend erneut fünf Mal für 5 Minuten mit TBST gewaschen wurde. Die Membran wurde zwischen zwei Whatman Papieren getrocknet und anschließend auf dem ODYSSEY Infrarot Scanner bei 700 nm oder 800 nm, je nach gewähltem Sekundärantikörper, ausgelesen. Für eine Quantifizierung der Banden wurde die Image Studio Software eingesetzt (siehe auch Abschnitt 3.2.6.2).

3.2.11 DigiWest

3.2.11.1 Kopplung von Neutravidin an MagPlex Mikrosphären

Die Kopplung von Neutravidin an 400 unterschiedlich farbkodierte Luminex MagPlex Mikrosphären (400 verschiedene Mikrosphären IDs) wurde mit Hilfe des KingFisher 96 Mikrosphärenprozessors semiautomatisiert durchgeführt. Der KingFisher war mit einem 96 Well Magnetkamm für Deep Well Platten und passendem 96-Spitzen PCR-Kamm versehen. Pro Durchlauf konnten jeweils 96 Mikrosphären-Populationen parallel mit Neutravidin gekoppelt werden, was fünf Kopplungstage (1 x 16 (Testkopplung) und 4 x 96) ergab. Die 400 zu je 1 ml gelieferten Luminex Mikrosphären (12,5 Millionen Mikrosphären pro ml) wurden zunächst 30 Sekunden gevortext, 10 Sekunden ultrageschallt und anschließend in eine 2 ml 96er Deep Well Platte überführt. Anschließend wurden die für die Kopplung benötigten Puffer und Reagenzien hergestellt und in entsprechende 96er Deep Well Platten pipettiert (Tabelle 3). Aufgrund von lediglich acht Plattenstellplätzen im KingFisher Prozessor wurde die Kopplung auf zwei Programme aufgeteilt. Im ersten Programm wurden die Mikrosphären in Aktivierungspuffer gewaschen und anschließend in eine zweite Aktivierungsplatte überführt. Diese Platte diente dann als Ausgangspunkt für das zweite Programm, in dem die restlichen Platten (Tabelle 3) zum Einsatz kamen.

Tabelle 3: Reagenzien für die Kopplung von Neutravidin an Caboxylierte Luminex MagPlex Mikrosphären. Die Zusammensetzung der Puffer ist in 3.1.3 aufgeführt. EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride; NHS, N-Hydroxysuccinimid.

Anzahl Platten	Inhalt	Volumen [µl]
2	Aktivierungspuffer	500
2	Kopplungspuffer	500
2	CBS	800
1	CBS	500
1	Neutravidin (500 μg/ml) in Kopplungspuffer	300
1	Aktivierungsmix (5 mg/ml EDC, 5 mg/ml Suflo-NHS) in Aktivierungspuffer	300

Die carboxylierten Mikrosphären wurden im Aktivierungsmix aktiviert und anschließend zweimal im Kopplungspuffer gewaschen. Daraufhin folgte die eigentliche Kopplung des Neutravidins über einen Zeitraum von zwei Stunden an die Mikrosphären (Sulfo-NHS aktivierte Carboxylgruppen auf Mikrosphären an primäre Aminogruppen auf Neutravidin). Anschließend wurden die Mikrosphären zweimal in CBS gewaschen und final in die mit 500 µl befüllte CBS Platte überführt. Die Mikrosphären wurden daraufhin manuell in 2 ml Reaktionsgefäße überführt, einmal mit CBS gewaschen und mit 1,25 ml CBS auf eine Konzentration von 10.000 Mikrosphären/µl eingestellt.

3.2.11.2 Qualitätskontrolle der gekoppelten Mikrosphären

Zur Überprüfung eines möglichen Verlusts an Mikrosphären während der Kopplung sowie zur Überprüfung der Kopplungseffizienz wurde eine Qualitätskontrolle einer repräsentativen Menge aller Mikrosphären-Populationen durchgeführt. Dazu wurden je 5 µl einer jeden der 400 gekoppelten Mikrosphären-Population in ein 2 ml Reaktionsgefäß überführt, welches in einem Magnetpilz stand, sodass sich die hinzupipettierten Mikrosphären sofort an der Hinterwand des Gefäßes sammeln konnten. Aus diesem Mikrosphären-Mix wurde eine repräsentative Menge entnommen, an der Luminex Flexmap 3D ausgelesen und auf die Wiederfindungsrate nach der Kopplung für jede Mikrosphären Population zurückgerechnet. Aufgrund dieser Daten konnte daraufhin eine Anpassung der Mikrosphärenkonzentration für jede Mikrosphären-Population erfolgen.

Für die Überprüfung der Effizienz der Neutravidin Beladung wurden 500 µl des gekoppelten Mikrosphären-Mixes mit Hilfe eines Magneten auf 160 µl reduziert, 40 µl einer Biotin-cMyc-Peptid Lösung (1mg/ml) hinzugegeben und zwei Stunden bei Raumtemperatur auf einem Rotator für Mikroreaktionsgefäße inkubiert. Es folgten fünf Waschschritte mit je 500 µl CBS, woraufhin die Mikrosphären in 300 µl CBS aufgenommen wurden. Jeweils 10 µl der mit BiotincMyc-Peptid beladenen Mikrosphären wurden in 15 Wells einer Corning Half Well Assayplatte überführt und 50 µl einer Anti-cMyc Antikörperlösung (CBS + 0,05 % Tween-20, CBST) in vier verschiedenen Konzentrationen (0,008 µg/ml - 1 µg/ml) und einem Blank hinzugegeben (Dreifach-Bestimmung). Die Antikörperinkubation wurde für zwei Stunden bei Raumtemperatur und 750 rpm im Schüttler durchgeführt. Nach drei Waschschritten mit PBST unter Verwendung einer Magnetplatte wurden je 50 µl eines Anti-Maus-Phycoerythrin (PE) markierten Sekundärantikörpers (2,5 µg/ml in CBST) hinzugegeben und für eine Stunde inkubiert. Nach dreimaligem Waschen mit PBST erfolgte das Auslesen an der Flexmap 3D.

3.2.11.3 Zusammenstellung der Mikrosphären-Mixe

Aufgrund der Ergebnisse der Qualitätskontrolle wurden von den 400 gekoppelten Mikrosphären-Populationen die 16 schlechtesten (unzureichenden Auszählergebnis oder schlechte Beladungsdichte des Neutravidins) aussortiert. Die verbliebenen 384 Mikrosphären-Populationen (1,25 ml zu je 10000 Mikrosphären/µl) wurden daraufhin in vier 96er Blöcke aufsteigend nach Mikrosphärennummerierung eingeteilt.

Für die Generierung von Masterplatten (Ausgangsplatten für die Erstellung von DigiWest Arbeitsplatten) wurden jeweils 100 µl einer jeden gut durchmischten Mikrosphärensuspension in eine 96 Well V-Boden Platte überführt und mittels 100 µl CBS auf 5000 Mikrosphären/µl eingestellt. Aus diesen Masterplatten wurden mittels 96er Kopf des Biomex FXp Roboters automatisiert DigiWest Arbeitsplatten generiert, die eine definierte Mikrosphären-Anzahl je Well aufwiesen. Gewöhnlich wurden Arbeitsplatten mit 20000, 40000, 80000 oder 100000 Mikrosphären/Well befüllt. Die Platten wurden daraufhin vakuumiert und bei 4 °C bis zur Verwendung im DigiWest zur Beladung mit biotinylierten Proteinen gelagert.

3.2.11.4 Prozessierung der Membran

Nach erfolgter Ponceau S Färbung (3.2.9), Markierung der Laufspuren und dem sich anschließenden Entfärben der Membran, folgte die Biotinylierung der auf der Membran befindlichen Proteine (Abbildung 5). Das hierfür benötigte NHS-PEG12-Biotin (Aliquots zu je 50 mM in 20 µl DMSO) wurde in einer Konzentration von 50 µM in PBST gelöst und 20 ml dieser Lösung auf die geblottete Membran gegeben. Die Reaktion fand auf einem Wippschüttler (30 rpm, Winkel von 6 °) über einen Zeitraum von einer Stunde bei Raumtemperatur im Dunkeln statt. Der Blot wurde danach drei Mal eine Minute mit PBST gewaschen und zwischen zwei Whatman Papieren getrocknet.

Die getrocknete Membran wurde daraufhin auf eine selbst erstellte Schablone geklebt, die auf ein 120 g/m² Papier gedruckt war. Zudem wurde die Membran mit einem weiteren Stück Papier bedeckt. Die Schablone mit geschützter, aufgeklebter Membran wurde daraufhin auf eine Schneidematte geklebt und in den Schneideplotter Silhouette SD Digital eingelegt. Jede auf der Membran befindliche Proteinlaufspur wurde daraufhin in 96 horizontale Streifen mit jeweils einer Abmessung von 7,0 mm Länge x 0,5 mm Breite geschnitten. Die 96 Streifen einer jeden geschnittenen Spur wurden anschließend mit Hilfe einer Pinzette in geordneter Weise – von hoher molekularer Masse zur niedriger molekularer Masse – in eine 96 Well Platte transferiert. Pro Laufspur resultierte somit jeweils eine Platte mit 96 zu je einem Streifen gefüllten Wells. Um die Proteine von den Membranstreifen zu eluieren, wurden 10 µl des Elutionspuffers (8 M Harnstoff, 1% Triton X-100 in 100 mM Tris-HCl Puffer, pH 9.5) in jedes Well gegeben und die Platten 90 Minuten bei 1200 rpm geschüttelt.

In die Wells wurden anschließend 90 μ l einer 5 % BSA Lösung in PBST mit 0,05 % Natriumazid gegeben, um die denaturierenden Eigenschaften des Elutionspuffer herauszuverdünnen. Nach einem kurzen Mischschritt konnten die mit Neutravidin gekoppelten Mikrosphären hinzugegeben werden. Dazu wurde ein KingFisher 96 Magnetkamm mit passendem Aufsatz (in 5 % BSA in PBST vorgeblockt) verwendet. Die in Arbeitsplatten vorgelegten Mikrosphären (siehe Abschnitt 3.2.11.3) wurden manuell mittels Magnetkamm in die Platten übertragen, in denen die verdünnten, eluierten Proteine vorlagen. Die Beladung der Neutravidin gekoppelten Mikrosphären mit den nach Größe aufgetrennten biotinylierten Proteinen erfolgte über Nacht bei 750 rpm im Dunkeln. Um freie Biotinbindestellen auf den Mikrosphären abzusättigen wurden 5 μ l in TBST abreagiertes NHS-PEG12-Biotin (ca. 200 μ M) in jedes Well gegeben und für eine Stunde bei Raumtemperatur inkubiert.

Mit Hilfe eines achtarmigen händisch bedienten Magneten wurden die Mikrosphären in einem Gesamtmix vereint. Dabei konnten vier Platten, welche 384 verschiedene Mikrosphären-Populationen beinhalteten und damit vier Western Blot Spuren repräsentierten, in einem Mikrozentrifugenröhrchen gesammelt werden. Die Mikrosphären wurden anschließend drei Mal in CBS gewaschen und ihre Konzentration auf 40 Mikrosphären/ID/µl eingestellt.

3.2.11.5 Automatisiertes Poolen von Mikrosphären

Eine Weiterentwicklung des manuellen Mikrosphärenpoolens zu einer Automatisierungslösung war der Einsatz magnetischer Spitzen in Kombination mit einem Pipettierroboter (Biomek NXp). Das Vorgehen ist ein wichtiger Teil der Automatisierungslösung des DigiWests. Zur Herstellung der benötigten Roboter-Spitzen wurden in die herkömmlichen Spitzen des Pickpens (QuickPick tips) Neodym Stabmagnete (15 x 3 mm) eingelassen. Die Prozedur wurde dann mit Hilfe von am verjüngten Ende gekürzten Biomek-Spitzen verschlossen. Durch die verkürzte Biomek-Spitze wurde die Spitze des Pickpens robotergängig und der eingelassene Magnet konnte sich frei, ohne herauszufallen innerhalb des Schafts bewegen, was für das spätere Abwerfen der gesammelten Mikrosphären nötig war. Damit es zu keinem Verkeilen des Stabmagneten innerhalb des Schafts kam, wurde ein schwacher Scheiben-Gegenmagnet im oberen Teil der Konstruktion befestigt, sodass der Stabmagnet weiterhin vertikal frei beweglich war, jedoch immer leicht nach unten Richtung verjüngtem Ende der Pickpen Spitze gedrückt wurde. Für das Poolen wurden acht (der Biomek Roboter besitzt acht Pipettierarme) in Reihe platzierte Spitzen benötigt, wobei die Stabmagneten aus magnetischen Ausrichtungsgründen alternierend, d.h. einmal mit dem Plus- und anschließend mit dem Minus-Pol nach unten ausgerichtet waren. Da die Mikrosphären einen paramagnetischen Charakter aufweisen, stellt die unterschiedliche Ausrichtung der Magnete für den späten Poolvorgang kein Problem dar. Die Mikrosphären richten sich immer nach dem stärksten Magnetfeld – unabhängig seiner Polung – aus.

Das Programm für den vollautomatisierten Poolvorgang wurde für vier, acht, zwölf und sechzehn Platten geschrieben und dauert in der längsten Version – welche im Folgenden dargestellt wird – 2,5 Stunden (Abbildung 4). Zunächst wurden die 16 zu poolenden Platten zu je zusammengehörigen Viererstapeln an den Positionen P4, P7, P10 und P13 händisch platziert. Nach Programmstart verteilte ein im Roboter integrierter Greifer die an Position P4 befindlichen Platten auf die Positionen P3, P6, P9 und P12. Die letzte der vier Platten wurde auf eine weitere Platte gestellt, welche in den Wells der letzten Reihe (Reihe H) acht eingelassene Magnete besaß, die wiederum alternierend gepolt ausgerichtet waren. Nach Aufnahme von acht magnetischen Spitzen aus Position P2 wurden die Mikrosphären der vier Platten von links nach rechts spaltenweise eingesammelt, wobei die Verweildauer der Magnetspitzen in jedem Well ca. drei Sekunden betrug. Bei Erreichen von Reihe H der letzten der vier Platten hoben sich (durch die Gegenmagnete) die Magnete in den Spitzen, wobei die gesammelten Mikrosphären aufgrund ihrer Trägheit dieser Bewegung nicht folgen, sondern von den darunter befindlichen Magneten angezogen und in die Wells transferiert wurden.

Abbildung 4: Schematische Darstellung des Programmcodes sowie des instrumentellen Aufbaus für das vollautomatisierte Poolen der Mikrosphären im Biomek NXp nach der Beladung. Der dargestellte Programmcode (links) ist für 16 Platten ausgelegt und wurde in der Biomek Software erstellt. Für das Sammeln aus vier, acht oder zwölf Platten wurden entsprechend verkürzte Programme angelegt. Um die gesammelten Mikrosphären aus 384 Wells, welche sich nun in acht Wells befanden, in einem Well zu vereinen, wurde die Platte mittels Greifer von Position P12 auf P11 (Standort ohne Boden-Magnete) positioniert, alle Mikrosphären mit Hilfe eines Magneten aufgenommen und in die finale Sammelplatte (P8, Well H1) transferiert. Diese Platte wiederum stand auf einer zweiten, in der sich an der angegebenen Position (und an drei weiteren Stellen für die anderen Mikrosphären Sets zu je 384 Mikrosphären IDs) ein Gegenmagnet befand, der die Mikrosphären von der Spitze in das entsprechende Well zog. Um eine guantitative Wiederfindungsrate der gesammelten Mikrosphären zu erzielen wurde der Sammelvorgang der Mikrosphären zwei weitere Male wiederholt, wobei die Ausgangsplatten zwischen diesen Schritten für eine homogene Mikrosphärenverteilung auf dem integrierten Schüttler durchmischt wurden. Im letzten Schritt wurden die vier Platten zurück an Position P4 gestellt und der Roboter wiederholte den Sammelvorgang für die nächsten vier Platten an Position P7, gefolgt von P10 und P13. In der finalen Sammelplatte resultierten schlussendlich vier Mikrosphärenpools (bestehen aus je einem 384-plex) an den Positionen H1, H3, H5 und H7. Die gepoolten Mikrosphären wurden anschließend in 1,5 ml Reaktionsgefäße überführt, wie beim manuellen Poolen beschrieben gewaschen und ebenfalls auf 40 Mikrosphären/ID/µl eingestellt.

3.2.11.6 DigiWest Assays

Die DigiWest Assays wurden in 96 Well Half Area Corning Platten durchgeführt (Abbildung 5). Die dazu verwendeten Puffer waren Assaypuffer I bestehend aus Blockierungsreagenz für ELISA (Roche) mit 0,2 % Milchpulver, 0,05 % Tween-20 und 0,02 % Natriumazid sowie Assaypuffer II (PVXC) bestehend aus 0,8 % PVP, 0,5 % PVA und 0,1 % Casein in PBS. Assaypuffer I wurde als Standard DigiWest Puffer verwendet. Assaypuffer II kam dann zum Einsatz, wenn die Sensitivität gesteigert werden sollte (Filomena, 2016 und Abschnitt 3.2.12). Bei Verwendung von Assaypuffer II erhöhte sich in der Regel auch der Hintergrund. Der jeweils verwendete Assaypuffer wird im Ergebnisteil dieser Arbeit für jedes Experiment genannt. Primäre als auch sekundäre Antikörper wurden im selben Assay immer im gleichen Assaypuffer verdünnt. Die Primärantikörper wurden in den DigiWest Assays in einer fünffach höheren Konzentration eingesetzt als in konventionellen Western Blots.

Zum Ansetzten eines DigiWest Assays wurden zunächst 50 µl des gewünschten Assaypuffers in die Assayplatte pipettiert und 5 µl (entspricht 200 Mikrosphären/ID/Well) der gut durchmischten DigiWest-Mikrosphärensuspension hinzugegeben. Nach einer kurzen Vorinkubation (einige Minuten) wurde die Assayplatte auf einen Plattenmagneten gestellt und der Assaypuffer abgeschüttet.

Abbildung 5: DigiWest Verlaufsschema. (a) Proteine wurden mit Hilfe einer SDS-PAGE nach molekularer Masse aufgetrennt, (b) anschließend auf eine PVDF-Membran übertragen und biotinyliert. (c) Die Membran wurde in Streifen geschnitten, wobei jeder Streifen Proteine eines gewissen Massenbereichs enthielt. (d) Die Streifen wurden in eindeutig zugeordnete Wells transferiert und die Proteine mit Hilfe eines harnstoffhaltigen Puffers eluiert. (e) Die Proteine jeder eluierten Molekulargewichtsfraktion wurden auf eindeutig farbkodierte und mit Neutravidin besetzte Luminex Mikrosphären-Sets immobilisiert. (f) Die beladenen Mikrosphären-Sets wurden vereint, wobei durch die Farbkodierung der Mikrosphären die Information der Größenfraktionierung erhalten blieb. (g) Mit Hilfe von Aliquots des Mikrosphären-Pools wurden unter Verwendung von Western Blot Antikörpern hunderte Assays angesetzt. Das Auslesen erfolgte an einem Flexmap 3D System nach Detektion des primären Antikörpers mit einem fluoreszenzmarkierten Sekundärantikörper. (h) Zur Auswertung wurden Fluoreszenzsignale (MFI, Median der Fluoreszenzintensität) gegen die verschiedenen Mikrosphärenpopulationen aufgetragen, welche wiederum jeweils einem gewissen Molekulargewichtsbereich zugeordnet wurden. MFI-Intensitäten konnten zudem in Graustufen ausgegeben werden, sodass eine dem klassischen Western Blot vergleichbare Darstellung resultierte. Die Summe eines spezifischen Signals (Integral, in Bildbschnitt (h) dunkel markiert) wurde als aufsummierte Fluoreszenzintensität (AFI) für relative Quantifizierungen bei vergleichenden Analysenverwendet.

Anschließend wurden 30 µl der Antikörperverdünnungen in die jeweiligen Wells zu den Mikrosphären pipettiert, die Platte mit Klebefolie verschlossen und die Inkubation in einem Thermomixer über Nacht bei 750 rpm und 15 °C durchgeführt. Am nächsten Tag wurden die

Mikrosphären in den Wells unter Verwendung des Plattenmagneten zwei Mal mit 100 µl PBST gewaschen und anschließend 30 µl des sekundären PE markierten Anti-Spezies Antikörpers gegeben (siehe 3.1.8). Der Sekundärantikörper war im selben Puffer verdünnt wie der primäre Antikörper und wurde in einer Konzentration von 2,5 µg/ml eingesetzt. Die Inkubation erfolgte für eine Stunde bei 750 rpm und 23 °C. Es folgten zwei weitere Waschschritte und am Schluss die Zugabe von 100 µl PBST in jedes Well. Für das Auslesen der Assayplatte an der Luminex Flexmap 3D Anlage wurden folgende Softwareeinstellung vorgenommen: Der Mikrosphärentyp wurde auf "MagPlex" gestellt, das Gate, in dem eine Mikrosphäre als solche erkannt wird, auf 7000 - 16000 relative Einheiten gesetzt. Die im Assay vorkommenden Mikrosphären IDs wurden angegeben und eine Mindestanzahl von 40 auszulesenden Mikrosphären pro ID eingestellt.

3.2.11.7 Datenauswertung des DigiWest

Für die Auswertung der antikörperspezifischen Signale wurde eine in-House entwickelte Excel basierte Auswertesoftware verwendet. Die Software erlaubte es die ursprüngliche Western Blot Spur zu rekonstruieren und zudem die antikörperspezifischen Signale zu identifizieren und zu quantifizieren.

Die Ausgabedatei der Luminex Flexmap 3D beinhaltete neben der Anzahl der ausgezählten Mikrosphären (mindestens 40 je ID) die für die Auswertung benötigten Median Fluoreszenzintenitäten (MFI). Die MFI ergab sich für jede ausgezählte Mikrosphären ID des Mikrosphärenpools durch Bindung des Phycoerythrin (PE) markierten Sekundärantikörpers an den primären Antikörper. Die Excel-basierte Auswertesoftware ermöglichte es für jede ursprüngliche Western Blot Spur Balkendiagramme zu erstellen, die auf der x-Achse die 96 Mikrosphären IDs (bzw. die rückgerechnete molekulare Masse) und auf der y-Achse die zugehörigen MFI Werte beinhalteten (siehe Abbildung 5 h). Die Rückrechnung der molekularen Masse erfolgte entweder über die Positionsbestimmung eines externen Markers auf der ursprünglichen PVDF-Membran oder über eine interne Kalibrierung durch die Zuordnung antikörperspezifischer Signale einiger Proteine mit bekannter molekularer Masse. Für die Berechnungen der Zwischenwerte durch eine Standardgerade wurde das Excel-addin XLfit verwendet. Die Balkendiagramme waren äquivalent zu Western Blot Spuren und stellten durch ihre unterschiedlichen Balkenhöhen – ähnlich einer Western Blot Bande – antikörperspezifische Signale (Peaks) dar. Für jeden getesteten Antikörper konnten bis zu zwei verschiedene Peaks integriert werden, was speziell bei Antikörpern zum Einsatz kam, welche Isoformen eines Proteins erkannten. Innerhalb der Auswertesoftware war es möglich vier Mikrosphären-Mixe (4 x 96 = 384 plex) und 96 verschiedene Antikörper zu analysieren. Des Weiteren wurde das assayspezifische Hintergrundsignal des Sekundärantikörpers automatisch subtrahiert (Blank Korrektur).

Die integrierten Werte für jeden Antikörper und jede Probe wurden als aufsummierte Fluoreszenzintensität (AFI) bezeichnet und dienten als Ausgangswerte für weitere statistische Analysen. Generell wurden die exportierten DigiWest AFI Daten zum Median der Kontrollgruppe normalisiert und log₂ transformiert. Die eigentlichen Analysen wurden mit der Software Multi Experiment Viewer (MeV) mit integriertem R Statistikpaket durchgeführt (Saeed, Bhagabati, et al., 2006). Das genaue Vorgehen für die jeweilige Auswertung eines Experimentes ist im Ergebnisteil dargestellt.

Eine weitere grafische Darstellung nach statistischer Analyse erfolgte neben Excel mit der Analysesoftware Origin. Eine grafische Darstellung von Signalwegen wurde mit Hilfe der R Erweiterung Pathview (Luo & Brouwer, 2013) vorgenommen. Diese ermöglichte es Unterschiede (fold changes) der Proteinexpressionswerte von periportalen und perizentralen Hepatozyten nach Abgleich mit der KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway-Datenbank automatisiert farblich zu markieren.

Strep-PE Normalisierung

Die Inkubation der beladenen Mikrosphären mit PE markiertem Streptavidin (ohne Primäroder Sekundärantikörper) führte zu einer Bindung aller freien Biotine der immobilisierten Proteine. Diese "Gesamtproteinfärbung" gab nach Integration aller Fluoreszenzen einen direkten Rückschluss auf die Proteinmenge auf den Mikrosphären und konnte als Normalisierungsfaktor gegenüber anderen Proben herangezogen werden. So weit möglich wurde jedoch bereits bei Gelauftrag darauf geachtet, dass sich die Proteinmengen in den verschiedenen Proben nicht unterschieden, sodass eine spätere, unter Umständen verfälschende Normalisierung nicht notwendig wurde.

3.2.12 Assaypuffer-Optimierung mittels statistischer Versuchsplanung (DoE)

Für eine Optimierung des DigiWest-Assaypuffers hinsichtlich einer Verbesserung der Signalstärke bzw. des Signal-Rausch-Verhältnisses (S/N) wurde ein vollfaktorieller Versuchsplan innerhalb eines Design of Experiments (DoE) durchgeführt. Die statistische Vesuchsplanung erfolgte mit Hilfe des Programmes Minitab 16. Der Versuchsplan enthielt fünf Puffertypen und zwei Faktoren, welche je auf 4 Stufen variiert wurden (Tabelle 4).

Daraus ergaben sich $2^4 \times 5 = 80$ Bedingungen wobei die DigiWest Assays mit zwei verschiedenen Antikörpern durchgeführt wurden [MKK4-phS257/T261 (Cell Signaling) und HIF1-alpha (Cell Signaling)], was eine Gesamtanzahl von 160 DigiWest Assays ergab. Die beiden Antikörper wurden ausgewählt, da sie in vorangegangenen Assays nur sehr schwache Signale im DigiWest (Lebergewebe Maus C3H/HE) mit Standard Assaypuffer zeigten. Sowohl Primär- als auch Sekundärantikörper wurden im entsprechenden Puffer verdünnt und der vollfaktorielle DoE Versuchsplan randomisiert durchgeführt (Anhang, Tabelle 27).

Tabelle 4: Bedingungen für den vollfaktoriellen Versuchsplan der Assaypufferoptimierung. Es wurden fünf verschiedene Grundpuffer verwendet, welchen PVP und Milchpulver in jeweils vier verschiedenen Konzentrationen in allen Kombinationsmöglichkeiten zugegeben wurden. Daraus ergaben sich 80 verschiedene Pufferbedingungen.

Variable	Bedingungen
	1) Roche Puffer
Puffortyp	2) SuperBlock (PBS) Blocking Buffer
(nominal)	3) StartingBlock (PBS) Blocking Buffer
(nominal)	4) 0,1 % Casein in PBS
	5) Protein-Free Blocking Buffer in PBS
	1) 0,0 %
PVP-Konzentration	2) 0,5 %
(quantitativ)	3) 1,0 %
	4) 2,0 %
	1) 0,0 %
Milchpulver-Konzentration	2) 0,2 %
(quantitativ)	3) 1,0 %
	4) 2,0 %

3.2.13 Automatisierter DigiWest: der LiquiWest

Der innerhalb dieser Arbeit neu entwickelte LiquiWest beruht in weiten Teilen auf dem oben beschriebenen DigiWest (3.2.11), wurde jedoch zu großen Teilen automatisiert. Der Wunsch einer Automatisierung lag im großen manuellen Arbeitsaufwand der DigiWest-Methode bezogen auf den Blotting-Prozess, dem Schneiden der Membran und vor allem dem manuellen verteilen der geschnittenen Membranstreifen in 96 Well Platten. Unter Verwendung einer Gelfree 8100 Anlage (gel-eluted liquid fraction entrapment electrophoresis, Expedeon) war es möglich acht Proteinlysate parallel in Polyacrylamid-Gelen der Größe nach aufzutrennen und die gesammelten Fraktionen in flüssiger Phase (deshalb der Begriff "LiquiWest") direkt zu den Neutravidin-gekoppelten Mikrosphären zu überführen. Durch die Verbindung des Gelfree-Systems mit einem Biomek FXp Pipettierroboter, wurde die Größenauftrennung des Proteinlysates bis hin zur Beladung der Mikrosphären mit biotinylierten Proteinen vollautomatisiert.

In den folgenden Abschnitten ist die finale Versuchsdurchführung des Liquiwests dargestellt. Da die Etablierung und Optimierung des neuen Assayformats einen großen Teil dieser Arbeit ausmachte, sind die einzelnen Etablierungsschritte im Ergebnisteil (4.3) aufgeführt.

3.2.13.1 Umpuffern der Probe für Biotinylierung vor Gelfree-Auftrennung

Um den LiquiWest durchführen zu können, war es notwendig, die Proteine bereits vor der Größen-Auftrennung zu biotinylieren (3.2.13.2). Eine solche Biotinylierung setzte jedoch bestimmte Puffereigenschaften voraus, die den Biotinylierungsprozess (NHS-Ester Reaktion an primären Aminogruppen) nicht negativ beeinflussen. Solche störenden Substanzen stellen beispielsweise DTT und Trägerampholyte dar, welche in Lysepuffer I vorkamen. Um diese Substanzen zu entfernen, wurden die Proteine gefällt und anschließend in Lysepuffer II aufgenommen. Hierzu wurde das 2-D Clean-Up Kit von GE Healthcare verwendet. Es basiert auf der TCA-Fällung von Proteinen und wurde speziell dafür entwickelt, störende Substanzen wie beispielsweise geladene Detergenzien, Nukleinsäuren und Salze abzutrennen. Für die Fällung wurden jeweils 100 µg einer jeden Probe mit 300 µl Präzipitant des 2-D Clean-Up Kits behandelt und 15 Minuten auf Eis inkubiert. Es folgte die Zugabe des Co-Präzipitants im gleichen Volumen wie das des Präzipitants. Ohne das bei der 10-minütigen Zentrifugation entstandene Pellet zu dispergieren, wurde der Uberstand vorsichtig abgenommen und das Pellet mit Co-Präzipitant überschichtet. Es folgte ein Zentrifugationsschritt (5 Minuten), die Abnahme des Überstandes und die Dispersion des Pellets in H₂O_{dd}. Nach Zugabe von 1 ml auf -20 °C gekühltem Waschpuffer sowie 5 µl Waschzusatz wurde der Ansatz für mindestens 30 Minuten bei -20 °C inkubiert. Nach einem weiteren Zentrifugationsschritt (10 Minuten) und der erneuten Abnahme des Überstandes wurde das Pellet kurz getrocknet und im gewünschten Volumen Lysepuffer II aufgenommen. Eine verbesserte Lösung der Proteine wurde durch eine kurze Ultraschallbad-Behandlung erzielt. Das Lysat konnte anschließend direkt biotinyliert (3.2.13.2) oder bei -80 °C gelagert werden.

3.2.13.2 Biotinylierung des Proteinlysates vor Auftrag auf die Gelfree 8100

Das im Folgenden beschriebene Biotinylierungsprotokoll basiert auf einem Protokoll von A. Görg, die Proteinlysate ebenfalls über eine NHS-Ester Reaktion mittels Cy3 (Cyanin 3) und Cy5 (Cyanin 5) Farbstoffen markierte (Görg, 2004). In der Probenvorbereitung für die Auftrennung in der Gelfree 8100 werden die Farbstoffe durch Biotin ersetzt, die eigentliche Reaktion an primären Aminogruppen bleibt jedoch dieselbe. Zunächst wurden 50 μ g Proteinlysat (in Lysepuffer II) mit 1 μ I NHS-PEG12-Biotin (500 pmol/ μ I) versetzt, gut durchmischt und 30 Minuten im Dunkeln auf Eis inkubiert. Abgestoppt wurde die Reaktion mit 1 μ I einer 10 mM Lysinlösung. Anschließend konnte direkt mit der Probenvorbereitung für den Auftrag auf die Gelfree 8100 (3.2.13.3) fortgefahren werden oder das biotinylierte Lysat bei - 80 °C bis zur weiteren Verwendung gelagert werden.

3.2.13.3 Aufbau Gelfree 8100 sowie Probenvorbereitung vor Auftrennung

Die Gelfree 8100 Anlage ist ein Stand-Alone-Gerät, welches es ermöglicht - wie in einer herkömmlichen SDS-PAGE (3.2.7) – Proteingemische nach molekularer Masse aufzutrennen (Abbildung 6 a). Das Stand-Alone-Gerät besitzt einen eingebauten Touchscreen mit dessen Hilfe gewünschte Spannungsverläufe programmiert werden. Zugehöriges Kernstück der Anlage ist die Einweg-Kartusche, welche jeweils acht Polyacrylamid-Sammel- und Trenngele enthält (Abbildung 6 b). Ober- und unterhalb der Gele befinden sich Probenauftrags- und Probensammelkammern sowie Pufferkammern, in welche Elektrodenkämme (jeweils acht für Anode und Kathode) zur elektrophoretischen Auftrennung der Proteine eingelassen werden. Mit der Gelfree ist es somit möglich acht Proben (oder weniger, je nach Programmierung der Anlage) parallel aufzutrennen. Die Kartuschen sind kommerziell mit verschiedenen Polyacrylamid-Konzentrationen von 5 %, 8 % über 10 % bis hin zu 12 %, je nach gewünschtem Bereich der Proteinauftrennung, zu erwerben. In dieser Arbeit wurden Kartuschen mit 5 % (Auftrennungsvermögen von 3 kDa bis 200 kDa) und 8 % (Auftrennungsvermögen von 3 kDa bis 500 kDa) verwendet. Für die Probenvorbereitung wurden jeweils 40 µg der biotinylierte Probe (3.2.13.2) verwendet, mit 30 µl Acetat Probenpuffer, 16 µl 0,5 M DTT versetzt, mit H₂O_{dd} auf ein Endvolumen von 150 µl aufgefüllt und 10 Minuten bei 50 °C erhitzt. Währenddessen wurden die Kathodenpufferkammern mit 6 ml, die Anodenpufferkammern mit 8 ml und die Proben-sammelkammern mit 150 μl HEPES-Laufpuffer befüllt. Die denaturierten Proben wurden anschließend in die Probenbeladungskammern gefüllt und die Gelfree Anlage mit vordefiniertem Spannungsverlauf (60 Minuten, 50 Volt und 120 Minuten, 100 Volt) gestartet. Nach 15 Minuten wurden 2 ml HEPES Laufpuffer auf der Kathodenpufferseite nachgefüllt und nach weiteren ca. 40 Minuten bei Austritt der Bromphenolblau-Lauffront aus dem Trenngel in die Probensammelkammer die erste Größenfraktion (kleinste Proteine) entnommen. Anschließend wurde neuer HEPES-Puffer in die Elutionskammer gegeben und die nächste Fraktion (mit den nächst größeren Proteinen) konnte eluieren. Nach knapp drei Stunden resultierten 48 Größenfraktionen. Die Entnahme der Fraktionen geschah anfänglich manuell, wurde jedoch durch Einsatz des Biomek FXp Roboter automatisiert (3.2.13.4). Die gesammelten Fraktionen wurden in eine 96 Well Ultrazentrifugationsplatte mit einer Ausschlussgröße von 10 kDa überführt und 12 Minuten bei 1500 g abzentrifugiert. Daraufhin folgte das identische Vorgehen wie beim DigiWest: 90 µl einer 5% BSA Lösung in PBST wurde hinzugegeben, die Neutravidin-gekoppelten Mikrosphären hinzugefügt und die Platte zur Beladung der Mikrosphären mit den biotinylierten Proteinen über Nacht inkubiert. Die Mikrosphären wurden am nächsten Tag manuell oder automatisiert (3.2.11.5) vereinigt und standen anschließend für Antikörper-Inkubationen bereit (siehe Abschnitt 3.2.11.6).

Abbildung 6: (a) Aufbau der Gelfree 8100 (gel-eluted liquid fraction entrapment electrophoresis) Elektrophorese-Anlage sowie (b) Aufsicht der Kartuschen, die die eingegossenen Polyacrylamid-Gele enthalten. Mit Hilfe der Gelfree 8100 war es möglich acht Proteingemische parallel nach molekularer Masse aufzutrennen und die in den Probensammelkammern eluierten Fraktionen (in diesem Fall 48 pro Probe) separat in flüssiger Phase weiter zu prozessieren. Vom Hersteller ist eine manuelle Abnahme der eluierten Fraktionierung über einen Zeitraum von ein bis drei Stunden je nach eingesetzter Kartusche (5 % bis 12 % Polyacrylamidkonzentration) vorgesehen. Durch die Kombination mit einem Biomek FXp Pipettierroboter wurde dieser Vorgang vollautomatisiert.

3.2.13.4 Programmierung des Roboters zur Automatisierung der Gelfree 8100 Auftrennung

Mit Hilfe des Biomek FXp Pipettierroboters wurde das Sammeln der Fraktionen aus der Gelfree 8100 automatisiert (Abbildung 7). Dazu entnahm der Roboter die eluierten Fraktionen zu vordefinierten Zeitpunkten, überführte diese in eine Zielplatte (96 Well Ultrazentrifugationsplatte mit 10 kDa Ausschlussgröße), befüllte die Probensammelkammern der Gelfree 8100 mit neuem Puffer, wartete für eine vordefinierte Zeitperiode und wiederholte den Vorgang. Insgesamt wurden pro Probe 48 Fraktionen vollautomatisiert über einen Zeitraum von drei Stunden gesammelt.

Abbildung 7: Schematische Darstellung des Programmcodes sowie des instrumentellen Aufbaus für das vollautomatisierte Fraktionieren mittels Gelfree 8100 und Biomek FXp Roboter. Der dargestellte Programmcode (links) ist für acht Proben ausgelegt und wurde in der Biomek Software erstellt. Für die Fraktionierung von einer, zwei oder vier Proben wurden modifizierte Programme angelegt.

Der erstellte Programmcode des Biomek FXp Roboters zur automatischen Entnahme der Größenfraktionen aus der Gelfree-Anlage ist im Folgenden mit Erläuterungen dargestellt.

```
Start (Zielplatten = "P10", "P11", "P12", "P13", "P14", "P15")
Definiert mögliche Positionen für Zielplatten.
Instrument Setup
Definition der Positionen für Gelfree 8100, Zielplatten, Pufferreservoir und Spitzenbox
(Abbildung 7, rechts).
```

Variableneingabe

Fraktionsanzahl 1, Pause 1, Fraktionsanzahl 2, Pause 2, ..., Fraktionsanzahl 10, Pause 10, wobei die Fraktionsanzahlen folgende waren: 19, 8, 7, 5, 3, 1, 1, 1, 2, 1 mit den jeweils zugehörigen Pausen (in Sekunden) 55, 75, 90, 280, 70, 1100, 1300, 1500, 0, 0.

```
Set Global "Aktuelle Spalte" to "1"
```

Next Item (Variable = Aktuelle Platte, values = Zielplatten, Break out of the current loop when out of values)

Festlegung, dass zur nächsten leeren Platte gewechselt werden soll, sobald alle 96 Wells der vorherigen Platte befüllt wurden.

```
Span-8 New Tips
```

Aufnahme von acht neuen Spitzen.

```
Loop
  Loop from variable "i" = "1" to "=Fraktionsanzahl 1", incrementing
  by "1".
     Mix (5x) 80 µl and Aspirate 190 µl from Gelfree 8100
     Dispense 190 µl to the labware at "=Aktuelle Platte"
     If "Aktuelle Spalte = 12":
     Then
          set Aktuelle Spalte = 1
          Next Item (Variable "= Aktuelle Platte", values
          "= Zielplatten")
          End
     Else
          Set variable = "Aktuelle Spalte" to value
           "=AktuelleSpalte+1"
          End
  Aspirate 150 µl at Position "Pufferreservoir"
  Dispense 150 µl at Position "Gelfree 8100"
  Pause "Span 8" for "=Pause 1" seconds.
```

End Loop

Mittels acht Spitzen wurden 190 µl (Sicherstellung, dass das komplette Volumen entnommen wird) aus den acht Kammern der Gelfree 8100 entnommen und die erste Spalte der Zielplatte befüllt. Anschließend wurde neuer Puffer in die Gelfree 8100 überführt, für "Pause 1" Sekunden gewartet, die nächste Fraktion entnommen und in die zweite Spalte der ersten

"Zielplatte" befüllt. Der Loop wurde so lange wiederholt wie in "Fraktionsanzahl 1" definiert wurde. Die Platte wurde ab der zwölften Fraktion gewechselt, sodass kein Well doppelt befüllt wurde. Anschließend folgten neun identische Loops mit veränderten Fraktionsanzahlen ("Fraktionsanzahl x") und Pausen ("Pause y") und zwar so lange bis 48 Fraktionen einer jeden Probe gesammelt wurden. Sollen nicht acht, sondern lediglich vier, zwei oder eine Probe fraktioniert werden, standen angepasste Programme zur Verfügung, die sich lediglich in der Plattenanzahl und der Variable "Aktuelle Spalte = x" – wobei x hierbei 24, 48 oder 96 einnehmen musste – unterschieden.

3.2.14 2D-Gelelektrophorese

Für eine nähere Analyse eines unbekannten (Nebenbande bei unerwarteter molekularer Masse, Kreuzreaktivität) jedoch signifikant differenziell exprimierten Proteins, welches sich im DigiWest bei der Analyse der periportalen und perizentralen Hepatozyten nach Inkubation mit dem PTCH2 Antikörper von Cell Signaling (# 2470, Lot 1) ergab, wurden die beiden Hepatozyten-Lysate mittels 2D-Gelelektrophorese (2-DE) und massenspektrometrischem Ansatz näher betrachtet. Hierzu wurden die beiden Lysate jeweils zwei Mal mittels 2-DE aufgetrennt, jeweils eines davon geblottet, mit Ponceau S gefärbt und mit dem oben genannten PTCH2 Antikörper inkubiert (3.2.8 bis 3.2.10). Die anderen beiden Gele wurden nach erfolgter 2-DE direkt mit InstantBlue gefärbt. Durch Abgleich der mit PTCH2 Antikörper inkubierten Western Blots mit den gefärbten analogen Gelen konnten die entsprechenden Spots im Gel ausgestochen (Spot Picking) werden. Die darin enthaltenen Proteine wurden mit Trypsin verdaut und anschließend mittels Massenspektrometrie identifiziert.

3.2.14.1 Isoelektrische Fokussierung

Der erste Schritt der 2-DE stellte die Isoelektrische Fokussierung (IEF) dar, wobei die dazu benötigten immobilisierten pH-Gradienten (IPG)-Streifen zunächst mit der Probe rehydriert werden mussten. Dazu wurde die DeStreak Rehydrierungslösung auf Raumtemperatur und durch Schütteln die ausgefallenen Harnstoffkristalle in Lösung gebracht. Durch Zugabe von IPG-Puffer (Trägerampholyte) zu 3 ml Rehydrierungslösung 15 ul wurde eine Trägerampholyten-Konzentration von 0,5 % (w/v) erreicht, welche für IPG-Streifen im Bereich von pH 3 - 11 vorgeschlagen wird (Görg, 2004). Der Strip Holder, in dem die Rehydrierung durchgeführt wurde, wurde mit Triton X-100 gereinigt, gründlich mit H₂O_{dd} gespült und vollständig getrocknet. Pro 7 cm langem IPG-Streifen wurden 125 µl der Rehydrierungslösung, in der 60 μg des jeweiligen Proteinlysats gelöst wurden, im Strip Holder zwischen den beiden Elektroden verteilt und der getrocknete IPG-Streifen (pH 3 - 11 nicht linear (NL), 7 cm) mit der nach unten gerichteten Gelseite aufgelegt. Um Verdunstungseffekte sowie die daraus resultierende Bildung von Harnstoffkristallen zu vermeiden, wurde der Streifen mit jeweils 800 µl Mineralöl überschichtet und die Kammern mit einem Plastikdeckel verschlossen. Die Rehydrierung wurde über Nacht über einen Zeitraum von mindestens 14 Stunden durchgeführt. Nach erfolgter Rehydrierung und damit der Aufnahme der Proteine in die Polyacrylamid-Matrix der IPG-Streifen, wurden diese in die Kanäle der IPGphor Manifold Apparatur (mit der Gelseite nach oben orientiert) überführt. Diese Apparatur wurde auf dem isoelektrischen Fokussierungssystem Ettan IPGphor platziert und die Gele mit insgesamt 110 ml Mineralöl überschichtet. Um einen Verlust von Wasser und DeStreak Reagenz während der IEF zu verhindern, kamen Filterpapierstreifen (paper wicks) an den Elektroden zum Einsatz. Dazu wurde pro IPG Streifen je ein Filterpapierstreifen mit 150 µl destilliertem Wasser befeuchtet und im anodischen Bereich des IPG-Streifens platziert. Ein zweiter Filterpapierstreifen wurde im basischen, kathodischen Bereich des Streifens platziert, wobei dieser anstelle von Wasser mit 150 µl DeStreak Rehydrierungslösung benetzt wurde. Es folgte die Anbringung des Elektrodenkamms an Anode und Kathode sowie das Anlegen der Spannung (V) über einen Zeitraum von ca. 3 Stunden (h) bis in Summe 6,5 Kilovoltstunden (kVh) erreicht wurden (Tabelle 5).

Tabelle 5: Parameter, programmierte Einstellungen sowie Spannungsverlauf am Isoelektrischen Fokussierungssystem IPGphor. Die Voltstunden (Vh) stellen dabei das Integral der angelegten Spannung (V) über die Zeit (h) dar.

Grundeinstellung am IPGphor	
Apparatur	Manifold
Gel-Orientierung	Gelseite nach oben
Temperatur der Kühlplatte	20 °C
Leistung	5 W
Stromstärke pro IPG-Streifen	50 μΑ
Spannungsverlauf	
Stufe und Halten I	0,5 h bei 300 V
Gradient I	in 0,5 h linear auf 1000 V
Gradient II	in 1h 20 min linear auf 5000 V
Stufe und Halten II	ca. 40 min
Gesamtzeit und Spannungseintrag	ca. 3 h bis ∑ 6,5 kV erreicht

3.2.14.2 Äquilibrierung der IPG Streifen sowie Auftrennung in der zweiten Dimension (SDS-PAGE)

Nach erfolgter IEF der Proben folgte die Äquilibrierung der IPG Streifen. Dazu wurde ein passendes Protokoll von Invitrogen verwendet (Invitrogen, 2010), welches den Einsatz von Puffern vorsieht, die auch bei der Standard-SDS-PAGE (3.2.7, XCell SureLock Mini-Cell) Verwendung fand. Zur Äquilibrierung wurden die Streifen in 5 ml 1X LDS-Puffer, welcher mit Reduktionsmittel (1X) versetzt wurde, für 15 Minuten geschwenkt. Der zweite Inkubationsschritt erfolgte in gleichem Volumen in einer 125 mM Alkylierungslösung in 1X LDS Puffer über einen entsprechenden Zeitraum. Nach dem Dekantieren der Lösung konnte mit der SDS-PAGE und der Auftrennung nach molekularer Masse fortgefahren werden.

Dazu wurden die Streifen jeweils in die dafür vorgesehenen Geltaschen eines 2D-Bis-Tris Gels überführt, das Gel in die Gelapparatur eingebaut und die Kammern mit 1X MES Laufpuffer befüllt. Daraufhin wurden 5 μ l des Proteingrößenstandards in die zweite (kleine) Geltasche eingefüllt und 500 μ l Antioxidanz in die Mitte der Kammer pipettiert. Es folgte die elektrophoretische Größen-Auftrennung der im IPG-Streifen befindlichen Proteine für 1,5 Stunden bei 150 V.

3.2.14.3 Western Blot der 2D-Gele

Nach erfolgter Auftrennung in der zweiten Dimension wurden zwei der vier Gele wie unter Abschnitt 3.2.8 beschrieben geblottet und mit PTCH2 Antikörper inkubiert. Dazu wurde die geblottete Membran zunächst mit Ponceau S gefärbt, sodass das Spot-Muster erkennbar wurde. Diese Färbung diente später für eine erleichterte Zuordnung der auszuschneidenden Spots im entsprechenden Gel. Auf die Ponceau S Färbung folgte die Immundetektion, welche unter Abschnitt 3.2.10 detailliert beschrieben ist. Die Verdünnung des PTCH2 Antikörpers lag bei 1:1.000, die des Detektionsantikörpers (rb-IgG (H+L) IRDye 800CW) bei 1:10.000. Die Membran wurde nach den Waschvorgängen zwischen zwei Whatman Papieren getrocknet und anschließend auf dem ODYSSEY Infrarot Scanner bei 800 nm ausgelesen.

3.2.14.4 In-Gel Verdau

Die beim 2D-Western Blot mittels PTCH2 durch Kreuzreaktivität resultierenden Spots (PTCH2 129 kDa, Nebenbande/Nebenspot bei ca. 48 kDa) in Verbindung mit dem Ponceau S Bild der Membran dienten dazu die entsprechenden Spots in den mit InstantBlue gefärbten Gelen mittels Skalpell auszuschneiden. Für den In-Gel Verdau wurde das Protokoll von Shevchenko et al. (2007) verwendet. Hierbei wurden die ausgeschnittenen Spots in Mikroreaktionsgefäße überführt und mit Hilfe von jeweils 100 µl einer 1:2 Mischung aus 100 mM Ammonium-

hydrogencarbonat und Acetonitril für 30 Minuten entfärbt. Nach Zugabe von 500 µl Acetonitril und weiteren 10 Minuten Inkubation dehydratisierten die Gelstücke weiter, reduzierten dadurch ihr Volumen und wurden weiß. Die Lösung wurde komplett abgenommen und 50 µl einer Trypsin-Lösung (13 ng/µl Trypsin in 10 mM Ammoniumhydrogencarbonat und 10 % Acetonitril) zu den Gelstücken gegeben. Nach 90-minütiger Sättigung der Gelstücke mit Trypsinlösung wurden die Mikroreaktionsgefäße in einen Thermoschüttler bei 37 °C platziert und der Verdau über Nacht für 16 Stunden durchgeführt. Für die Extraktion der Peptide aus dem Gel wurden je 100 µl Extraktionspuffer (1:3 Verdünnung einer 5% Ameisensäurelösung mit Acetonitril) hinzugegeben und bei 37 °C für 15 Minuten inkubiert. Der Überstand mit den darin enthaltenen Peptiden wurde daraufhin in neue Mikroreaktionsgefäße überführt und in Vakuumkonzentrator eingetrocknet. Für die Analyse mittels einem LC-MS/MS (Flüssigchromatographie mit anschließender Tandem Massenspektrometrie) wurde das Pellet in 10 µl einer 0,1 % Trifluoressigsäurelösung aufgenommen, 5 Minuten in ein Ultraschallbad gegeben und anschließend bei 6,7 g abzentrifugiert.

3.2.14.5 Massenspektrometrische Analyse des In-Gel verdauten Proteins

Für die Full MS Analyse der verdauten Gel-Spots wurde ein Orbitrap Q Exactive Plus Massenspektrometer mit vorgeschalteter UltiMate 3000 RSLCnano Chromatographieanlage mit einer 15 cm C18 Säule verwendet (Tabelle 6 und Tabelle 7). Diese Analysen wurden gemeinsam mit Benedikt Lang am NMI durchgeführt. Mit Hilfe der 2-DE in Verbindung mit der Massenspektrometrie war es möglich die Nebenbande des PTCH2 Antikörpers zu identifizieren (4.2.3.1).

Parameter	Full MS 15 cm C18 Säule
Säulenofentemperatur	50 °C
Injektionsvolumen	1 μL
Flussrate auf Vorsäule	120 μl/min
Flussrate auf analytischer Säule	0,6 μl/min
Dauer der Methode	32 min
Dauer des Gradienten	20 min
Gradient	4 - 45 % Mobile Phase B

Tabelle 6: Parameter für Chromatographie bei Full MS Analyse der verdauten Gel Spots.

Tabelle 7: Einstellungen der Full MS und dd-MS/MS Analyse der verdauten Gel Spots. dd, Datenabhängig (data dependent); AGC, Automatic Gain Control; IT, Ionenfalle (Ion Trap); TopN, stärkste N Signale; NCE, normalisierte Kollisionsenergie (Normalized collision energy).

Full MS		dd-MS/MS		dd Einstellung	
Einstellung	Wert	Einstellung	Wert	Einstellung	Wert
Polarität	positiv	Auflösung	17500	Underfill- Verhältnis	0,00%
Mikroscans	1	AGC Ziel	5,00E+05	Intensitäts- grenze	-
Auflösung	70 000	Max. IT	250 ms	Apex trigger	2 bis 8 s
Anzahl Scans	1	Loop Anzahl	5	Ladungszustand Ausschluss	1 und 5 - 8
AGC Ziel	3,00E+06	ТорN	5	Peptidüberein- stimmung	bevorzugt
Max. IT	100 ms	Isolations- fenster	4,0 m/z	Ausschluss von Isotopen	ја
Scanweite	300 bis 2000 m/z	NCE	20	Dynamischer Ausschluss	2,0 s

Der sich anschließende Datenbankabgleich zur Identifizierung der Peptide und damit des Proteins wurde mittels der SEQUEST (Tabelle 8) und Mascot Software (Tabelle 9) durchgeführt.

Tabelle 8: Suchparameter für Mascot (Version 2.3.02) bei Full MS Analyse der PZ und PP Hepatozyten.

Parameter	Spezifikation	
Proteindatenbank	Maus_160316	
Enzymname	Trypsin	
Maximum fehlgeschnittene Stellen	2	
Gerät	ESI-TRAP	
Taxonomie	alle Einträge	
Ionenvorläufer Massentoleranz	5 ppm	
Fragment-Massentoleranz	0,05 Da	
benutzte durchschnittliche Vorläufermasse	nein	
Dynamische Modifikationen	Oxidation (M), Oxidation (HW),	
	Acetyl (K)	
Statische Modifikationen	Carbamidomethyl (C)	

Tabelle 9: Suchparameter für SEQUEST (Version 28.0.0.0) bei Full MS Analyse der PZ und PP Hepatozyten.

Parameter	Spezifikation
Proteindatenbank	Maus_160316
Enzymname	Trypsin
Maximum fehlgeschnittene Stellen	2
Minimale Peptidlänge	6
Maximale Peptidlänge	144
Ionenvorläufer Massentoleranz	5 ppm
Fragment-Massentoleranz	0,05 Da
benutzte durchschnittliche Vorläufermasse	nein
benutzte durchschnittliche Fragmentmasse	nein
Masse a-lonen	0
Masse b-Ionen	1
Masse c-lonen	0
Masse x-lonen	0
Masse y-lonen	1
Masse z-lonen	0
	Oxidation / +15,995 Da (H, M, W)
Dynamische Modifikationen	Acetyl / +42,011 Da (K)
	Phospho / +79,966 Da (S)
Statische Modifikationen	Carbamidomethyl / + 57,021 Da (C)

3.2.15 Massenspektrometrische Analysen von PZ und PP Hepatozyten

Die durch periportale bzw. perizentrale Leberperfusion gewonnenen Hepatozyten wurden neben einer DigiWest Analyse auch mit Hilfe von zwei massenspektrometrischen (MS) Ansätzen auf differenzielle Proteinexpressionsmuster hin untersucht (Abbildung 8). Bei einem Ansatz wurde das gesamte Proteom (Full-MS) betrachtet. Beim anderen Ansatz (Targeted MS) wurden mit Hilfe sequenzmotiv-spezifischer Antikörper (Poetz, Hoeppe, et al., 2009) definierte Klassen der Proteinfamilien der Cytochrom P450 Monooxygenasen (Weiß, 2015) als auch die der Fremdstofftransporter (Hammer, van den Berg, et al., 2014) angereichert und anschließend identifiziert.

Abbildung 8: Übersicht aller massenspektrometrischen Analysen in dieser Arbeit. Die mittels Leberperfusion gewonnen periportalen und perizentralen Hepatozyten wurden in technischen Triplikaten tryptisch verdaut (rechter Ast des Diagramms). Es folgte eine Full-MS Analyse des Gesamtproteoms sowie in einem parallelen Experiment eine spezifische antikörperbasierte Anreicherung von CYPs und Membran-Transportern, gefolgt von einer targeted massenspektrometrischen Analyse (TXP-Assay). In einem weiteren Experiment (3.2.14) diente das Massenspektrometer dazu eine im DigiWest aufgetauchte Nebenbande eindeutig zu identifizieren (linker Ast des Diagramms), wobei die Probe dazu zunächst mittels 2D-Gelelektrophorese (2-DE) aufgetrennt und der entsprechende Protein-Spot ausgeschnitten und anschließend tryptisch verdaut wurde.

3.2.15.1 Verdau der PZ und PP Proben sowie ZipTip C18 Aufreinigung

Der erste Schritt der Probenvorbereitung für die Analyse der periportalen und perizentralen Hepatozyten stellte ein Trypsin-Verdau der Lysate dar. Die Proben, vorliegend in Lysepuffer I, wurden zunächst mittels 50 mM TEA-Puffer auf eine Konzentration von 0,67 μ g/ μ l eingestellt. Für den Trypsin-Verdau wurden je Probe 40 μ g Gesamtprotein verwendet. Dazu wurden 60 μ l jeder Probe entnommen und mit weiteren 570 μ l TEA Puffer verdünnt. Nach Zugabe von 3 μ l einer 1 M TCEP Lösung folgte die Reduzierung der Thiolgruppen über 45 Minuten bei 37 °C. Nach Abkühlen auf Raumtemperatur wurden 6,6 μ l einer 1 M Iodacetamid (IAA) Lösung hinzugegeben und die Alkylierung für 30 Minuten bei RT im Dunkeln durchgeführt. Der Proteinverdau erfolgte anschließend nach Zugabe von 97,5 μ l Trypsin-Lösung (c = 21 ng/ μ l) für 16 Stunden bei 37 °C. Abgestoppt wurde der Verdau bei 99 °C für 5 Minuten sowie durch Zugabe von 3,8 μ l einer 200 mM PMSF-Lösung. Das Gesamtvolumen belief sich nach dem tryptischen Verdau auf rechnerisch 740,9 μ l bei einer Peptidkonzentration von 0,054 μ g/ μ l.

Für eine Aufreinigung sowie Entsalzung der Verdaus wurde vor der MS-Analyse eine ZipTip C18 (Millipore) Aufreinigung durchgeführt. Bei diesem Produkt handelte es sich um eine Pipettenspitze mit hydrophobem C18 Material, an dem Peptide durch hydrophobe Interaktion – vergleichbar einer Reversed Phase Chromatographie – gebunden, gewaschen und wieder eluiert werden (Tabelle 10). Die Peptide, welche in den 4 μl Elutionspuffer enthalten waren, wurden direkt in ein Autosampler-Fläschchen pipettiert und mit 36 μl einer 1 % Ameisensäure (FA) Lösung aufgefüllt. Es folgte die massenspektrometrische Analyse der Proben.

Tabelle 10: Verlauf der ZipTip C18 Aufreinigung nach tryptischem Protein-Verdau.ACN,Acetonitril; TFA, Trifluoressigsäure; MeOH, Methanol; FA, Ameisensäure.

Nr.	Schritt	# Wdh. und Volumen	Lösung
1	Waschen	5 x 10 μl	ACN 100 %
2	Äquilibrieren	5 x 10 μl	0,1 % TFA
3	Bindung Peptide	10 x 10 μl	40 μ l \triangleq 2 μ g Probe
4	Waschen I	5 x 10 μl	5 % MeOH + 0.1% TFA
5	Waschen II	5 x 10 μl	0,1 % TFA
6	Elution	1 x 4 μl	50 % ACN + 0,5 % FA

3.2.15.2 Full MS

Für die Full MS Analyse der verdauten und mittels ZipTip aufgereinigten periportalen und perizentralen Hepatozyten wurde ein Orbitrap Q Exactive Plus Massenspektrometer mit vorgeschalteter UltiMate 3000 RSLCnano Chromatographieanlage mit einer 50 cm C18 Säule verwendet (Tabelle 11 und Tabelle 12). Die Analyse wurde in Zusammenarbeit mit Benedikt Lang durchgeführt.

Tabelle 11: Parameter für die Chromatographie bei der Full MS Analyse der PP und PZ Hepatozyten.

Parameter	Full MS 50 cm C18 Säule
Säulenofentemperatur	50 °C
Injektionsvolumen	18,5 μL
Flussrate auf Vorsäule	10 μl/min
Flussrate auf analytischer Säule	0,25 μl/min
Dauer der Methode	177 min
Dauer des Gradienten	145 min
Gradient	3,2 % - 44,1 % Mobile Phase B

Full MS		dd-MS	6/MS	/MS dd Einstellung	
Einstellung	Wert	Einstellung	Wert	Einstellung	Wert
Polarität	Positiv	Auflösung	17 500	Minimum AGC t	2,00E+4
Mikroscans	1	AGC Ziel	1,00E+05	Intensitäts- grenze	8,0E+4
Auflösung	70000	Max. IT	250 ms	Apex trigger	2 bis 25 s
Anzahl Scans	1	Loop Anzahl	15	Ladungszustand Ausschluss	1 und 5 - 8
AGC Ziel	3,00E+06	ТорN	15	Peptidüberein- stimmung	Ja
Max. IT	120 ms	Isolations- fenster	2,0 m/z	Ausschluss von Isotopen	Ja
Scanweite	300 bis 1500 m/z	NCE	27	Dynamischer Ausschluss	12,0 s

Tabelle 12:	Einstellungen	der Full MS und	dd-MS/MS	Analyse der	PP und PZ	Hepatozyten.

Der Datenabgleich mit der SEQUEST und Mascot Datenbank zur Identifizierung der Peptide und damit des Proteins erfolgte auf dieselbe Weise wie beim In-Gel Verdau (Tabelle 8 und Tabelle 9).

3.2.15.3 Datenauswertung Full MS

Die Auswertung der Full MS Analyse erfolgte mit dem Programm Progenesis QI for proteomics v3.0 von Nonlinear Dynamics. Dabei wurden die verschiedenen Analysen zunächst manuell abgeglichen (Alignement), um Laufzeitunterschiede zwischen den Läufen auszugleichen. Des Weiteren wurden alle Läufe zu einer Probe hin normalisiert, unter der Annahme, dass die meisten der gut 1000 identifizierten Proteine keinen Unterschied zwischen PP und PZ zeigten. Anschließend wurden im experimentellen Versuchsaufbau zwei Gruppen erstellt (PP vs. PZ), um diese anschließend auf eine differenzielle Proteinexpression hin zu untersuchen. Dazu wurden die Mascot und SEQUEST Suchergebnisse importiert und den identifiziert, wenn jeweils mindestens drei Peptide dieses Proteins gefunden wurden. Die drei am häufigsten vorkommenden (abundantesten) Peptide dienten anschließend dazu eine relative Quantifizierung der beiden Probentypen (PP und PZ) für jedes Protein durchzuführen (Silva, Gorenstein, et al., 2006).

3.2.15.4 TXP CYP und Transporter Assay

Immunpräzipitation

Neben der oben beschriebenen Full MS Analyse wurde dasselbe tryptisch verdaute Lysat (3.2.15.1) mittels TXP-Assay auf Transporter und CYPs hin untersucht. Das Prinzip des TXP-Assays beruht auf einer immunologischen Anreicherung definierter Proteine mit den entsprechenden Antikörpern und der anschließenden Identifizierung und absoluten Quantifizierung der gefangenen Proteine. Die Analysen wurden in Zusammenarbeit mit Helen Hammer (Doktorandin) und Felix Schmidt (Masterand) durchgeführt.

Tabelle 13: Übersicht der verwendeten TXP-Antikörper zur gruppenspezifischen Anreicherung von CYPs und Transportern. In den multiplexen Assays (M1 - M5) war es möglich mehrere TXP Antikörper gleichzeitig in einer Immunpräzipitation einzusetzen. In den Singleplexen (S1 und S2) wurde nur ein TXP-Antikörper verwendet. Insgesamt wurden 6 Transporter und 18 CYPs angereichert.

TXP- AK ID	АК [µg]	Peptid	Antigen	spike-in [fmol]
	4	NVTVHVQ GGEK	MRP3	50
ALEK_1	ו ס	NTTGA LTTR	MDR1a	50
ITTR 2	ے 1	NNPGV LTTR	BSEP	50
	I	AAATEDATPA ALEK	NTCP	150
TVEK_1	5	SSISTVEK	SLCO2B1	50
GDLK_2	1	GIYD GDLK	NTCP	50
		TWDPD QPPR	CYP2D40	100
	0	NTWDPD QPPR	CYP2D10	50
	2	TTWDPT QPPR	CYP2D22	100
	5	VQQEIDEVI GQVR	CYP2D9	300
		VQQEIDAVI GQVR	CYP2D10	300
		NVSQSLT NFSK	CYP2D39	50
EATR_1	5	NFNQSLT NFSK	CYP2C38	50
NFSK_1	2	NISQSFT NFSK	CYP2C29	50
		FINLVPSNLPH EATR	CYP2E1	100
		ESLDV TNPR	CYP2C29	100
FSGR_1	2	EALVDHAEA FSGR	CYP2B9	50
LDDK_1	2	EALVGQAEA FSGR	CYP2B10	100
TNPR_2	2	DFNPQHF LDDK	CYP2A2	50
		EALDDLGEE FSGR	CYP2C55	50
	F	GYGVAFS NGER	CYP2A12	50
	5	GYGVTFS NGER	CYP2A22	50
	Б	ECYSV FTNR	CYP3A25	50
FINK_2	5	DCLSVFTNR	CYP3A44	50
	TXP- AK ID ALEK_1 GGEK_1 ITTR_2 TVEK_1 GQVR_1 GQVR_1	TXP- AK AK ID [µg] ALEK_1 1 GGEK_1 2 LTTR_2 1 GQVR_1 5 GQVR_1 2 GQPPR_1 5 NFSK_1 2 FSGR_1 2 NGER_1 5 FTNR_2 5	TXP- AK IDAK [µg]PeptidAK ID[µg]NVTVHVQGGEKALEK_11NTTGALTTRGGEK_12NNPGVLTTRGGEK_12NNPGVLTTRLTTR_21GIYDGDLKTVEK_15SSISTVEKGDLK_21GIYDGDLKGQVR_12TWDPDQPPRGQVR_12TWDPDQPPRGQVR_12TWDPDQPPRGQVR_12NTWDPDQPPRGQVR_12NTWDPDQPPRGQVR_12NSQSLTNFSKGQVR_15NFNQSLTNFSKGQVR_12NISQSFTNFSKGQVR_12NISQSFTNFSKGQVR_12EALVDHAEAFSGRFSGR_12EALVGQAEAFSGRFSGR_12DFNPQHFLDDKTNPR_22DFNPQHFLDDKNGER_15GYGVAFSNGERFTNR_25ECYSVFTNRFTNR_25ECYSVFTNR	TXP- AK IDAK [µg]PeptidAntigenALEK_1 GGEK_11NVTVHVQGGEKMRP3ALEK_1 21NTTGALTTRMDR1aGGEK_1 22NNPGVLTTRBSEPLTTR_21GIYDGULKNTCPTVEK_15SSISTVEKSLC02B1GDLK_21GIYDGDLKNTCPGQVR_1 22TWDPDQPPRCYP2D40GQVR_1 22TTWDPTQPPRCYP2D10GQVR_1 22NTWDPDQPPRCYP2D10GQVR_11 22NVSQSLTNFSKCYP2D9GQVR_11

Der erste Schritt des TXP Assays stellte die Immunpräzipitation (IP) mit Hilfe von gruppenspezifischen Antikörpern dar. Hierbei war es möglich mit fünf unterschiedlichen TXP-Antikörpern sechs verschiedene Transporter und mit weiteren zehn TXP-Antikörpern 18 unterschiedliche CYPs aus dem tryptischen Verdau anzureichern (Tabelle 13). Der Vorgang der Immunpräzipitation wurde semiautomatisiert am KingFisher 96 durchgeführt. Dazu wurden das verdaute Lysat in eine 96 Well Platte überführt und die isotopenmarkierten Standardpeptide (in Roche Puffer) als auch die entsprechenden TXP Antikörper (in PBSC, PBS + 0,03 % CHAPS) hinzugegeben und auf 100 μ I mit PBSC aufgefüllt. Nach einstündiger Inkubation wurden magnetische, mit Protein G gekoppelte Mikrosphären hinzugegeben und damit der TXP-Antikörper-Peptid Komplex gefangen. Nach einer weiteren einstündigen Inkubation wurden die Mikrosphären einmal in PBSC und dreimal in ABCC (ABC + 0,03 % CHAPS) gewaschen. Durch Zugabe von 20 μ I einer 1 % Ameisensäure wurde der Antikörper-Peptid Komplex dissoziiert und die Mikrosphären konnten entfernt werden.

Flüssigchromatographie (LC)

Das Eluat der Immunpräzipitation wurde mittels Flüssigchromatographie aufgetrennt und anschließend massenspektrometrisch analysiert. Dazu wurde das Eluat zunächst mit Ladepuffer (2 % ACN, 0,05 % TFA) versetzt und anschließend auf die Vorsäule der Chromatographieanlage gebracht. Dabei banden die Peptide an die Vorsäule, die Probe wurde entsalzt und die Antikörper von der Probe abgetrennt. Die Peptide wurden auf die C18 Chromatographiesäule (Acclaim PepMap RSLC C18, 15 cm, Thermo Fisher) geladen und anschließend nach Hydrophobizität aufgetrennt (Tabelle 14).

Tabelle 14: Parameter für Chromatographie vor Targeted MS Analyse. tSIM, targeted selected ion monitoring.

Parameter	tSIM (Targeted MS)
Säulenofentemperatur	55 °C
Injektionsvolumen	5 μL
Flussrate auf Vorsäule	20 - 120 μl/min
Flussrate auf analytischer Säule	1 μl/min
Dauer der Methode	10 min
Dauer des Gradienten	2,75 min
Gradient	4 % - 45 % Mobile Phase B

Targeted MS (tSIM) und Datenanalyse

Mit Hilfe der isotopenmarkierten Standardpeptide, welche aufgrund ihrer identischen physikochemischen Eigenschaften mit den endogenen Peptiden der Probe koellulierten, wurde mittels Massenspektrometrie die intrinsische Proteinmenge bestimmt (Tabelle 15).

Tabelle 15: Einstellungen der t-SIM und dd-MS/MS Analyse. SIM, Selected ion monitoring; dd, Datenabhängig (data dependent); AGC, Automatic Gain Control; IT, Ion Trap; MSX, Multiplexed data independent acquisition; TopN, stärksten N Signale; NCE, Normalized collision energy.

SIM		dd-M	S/MS	dd Einstellung	
Einstellung	Wert	Einstellung	Wert	Einstellung	Wert
Auflösung	35000	Auflösung	17500	Underfill Verhältnis	0,60 %
AGC Ziel	5,00E+06	AGC Ziel	2,00E+05	Intensitäts- grenze	2,00E+04
Max. IT	60 ms	Max. IT	60 ms	Apex trigger	-
Loop Anzahl	1 / 2	Loop Anzahl	1	Ladungszustand Ausschluss	-
MSX Anzahl	1 / 2	ТорN	1	Peptidüberein- stimmung	-
Isolations- fenster	3,0 m/z	Erste Masse	-	Ausschluss von Isotopen	-
Scanweite	300 bis 1200 m/z	NCE	20	Dynamischer Ausschluss	2,0 s

Für die Datenanalyse der MS Ergebnisse wurde der Proteome Discoverer 1.3 verwendet. Die Peptide wurden mittels Datenabgleich mit der Mascot und SEQUEST Datenbank identifiziert (Tabelle 16 und Tabelle 17). Das Programm Pinpoint wurde dazu verwendet die Rohdaten der tSIM Messungen zu analysieren (Tabelle 18).

Tabelle 16: Suchparameter für Mascot (Version 2.3.02) bei targeted MS Analyse.

Parameter	Spezifikation
Proteindatenbank	Maus_160316
Enzymname	Trypsin
Maximum fehlgeschnittene Stellen	1
Gerät	ESI-TRAP
Taxonomie	Alle Einträge
Ionenvorläufer Massentoleranz	5 ppm
Fragment-Massentoleranz	0,05 Da
benutzte durchschnittliche Vorläufermasse	nein
Dynamische Modifikationen	Oxidation (M), Oxidation (HW)
Statische Modifikationen	Carbamidomethyl (C)

Tabelle 17: Suchparameter für SEQUEST (Version 28.0.0.0) bei targeted MS Analyse.

Parameter	Spezifikation
Proteindatenbank	Komplettes Proteom (08/2013)
Enzymname	Trypsin
Maximum fehlgeschnittene Stellen	1
Ionenvorläufer Massentoleranz	5 ppm
Fragment-Massentoleranz	0,05 Da
benutzte durchschnittliche Vorläufermasse	nein
benutzte durchschnittliche Fragmentmasse	nein
Masse a-Ionen	0
Masse b-Ionen	1
Masse c-Ionen	0
Masse x-Ionen	0
Masse y-lonen	1
Masse z-Ionen	0
Dynamische Modifikationen	Oxidation / + 15,995 Da (H, M, W)
Statische Modifikationen	Carbamidomethyl / + 57,021 Da (C)

 Tabelle 18: Analyseparameter f
 Finpoint 1.3 bei targeted MS Analyse.

Parameter	Einstellungen
MS1 Genauigkeit	5 - 15 ppm
Scanfilter	SIM oder Full
MS/MS Genauigkeit	1000 ppm
Isolationsmodus	MSMS Isolation innerhalb 0,2 u
Peakweite	0,05 min
Schwelle für minimales Signal	100
Möglicher Alignment Fehler	2
Welches Integral verwendet	Peak innerhalb 50 % der Intensität des
	Basispeaks
Anzahl von Glättungspunkten	5

4 Ergebnisse

4.1 Einführung

Hepatozyten machen den größten Teil der Zellen in der Leber aus und stellen durch ihre umfangreiche Enzymausstattung den Metabolismus von körpereigenen und körperfremden Stoffen aus dem Blut bereit. Die Hepatozyten sind in sogenannten Leberläppchen, der sich tausendfach wiederholenden Grundeinheit der Leber, organisiert und besitzen je nach Lage (perizentral oder periportal) unterschiedliche Aufgaben.

Im Rahmen dieser Arbeit wurden Hepatozyten der periportalen und perizentralen Seite des Leberläppchens auf ihre differenzielle Proteinexpression hin untersucht. Die Isolation der beiden Hepatozytenarten erfolgte dabei auf zwei unterschiedliche Arten.

Bei der Digitonin-Kollagenase Perfusion wurden Hepatozyten jeweils der einen oder anderen Seite des Leberläppchens (PZ oder PP) gezielt abgetötet, um anschließend die vitalen Zellen der anderen Seite zu isolieren. Die nach dieser Art gewonnenen Zellen werden als periportale (PP) bzw. perizentrale (PZ) Hepatozyten bezeichnet.

Die zweite Methode der Hepatozytenisolation beruhte auf der differenziellen Expression des Proteins Glutaminsynthetase (GS), welches lediglich von wenigen Hepatozyten naher der Portalvene exprimiert wird. Durch Verwendung eines gentechnisch veränderten Mausstamms, welcher abwärts des GS-Promotors einen β -Galactosidase Reporter trug, war es möglich GS positive und GS negative Hepatozyten nach Anfärbung (mit Hilfe eines β -Galactosidase Substrats) in einem Zell Sortierungsgerät (FACS) voneinander zu trennen. Die gewonnenen Zellen wurden – für eine bessere Abgrenzung zu den mittels Digitonin-Kollagenase Perfusion gewonnenen Zellen – als GS+ und GS- Hepatozyten bezeichnet. Die Separierung mittels FACS ist schonender als die Digitonin-Separierung, weshalb die GS+ und GS- Hepatozyten zudem für Kultivierungsexperimente herangezogen wurden.

Die Proteinanalysen der Hepatozytenpopulationen erfolgten sowohl massenspektrometrisch (Full MS und immuno-affinitätsangereicherte targeted MS) als auch mit Hilfe des neu etablierten Hochdurchsatz Western Blot Systems namens DigiWest. Im Zuge der Arbeit wurde der DigiWest in diversen Prozessschritten optimiert und für eine verbesserte Reproduzierbarkeit viele Arbeitsschritte automatisiert. Durch die Verwendung einer speziellen Gelelektrophorese-Einheit (Gelfree 8100, Expedeon) und deren Kopplung an einen Pipettierroboter wurde zudem eine Methode namens LiquiWest etabliert. Sie ähnelt jener des DigiWests. Der Prozessablauf ist jedoch nahezu vollständig automatisiert worden.

4.2 Proteinanalyse isolierter PZ und PP Hepatozyten

Durch die Technik der Digitonin-Kollagenase Perfusion wurden perizentrale und periportale Hepatozyten aus C3H/HE Mäusen isoliert und anschließend in Lysepuffer I aufgenommen. Dieses Probenmaterial diente anschließend dazu eine massenspektrometrische Full-MS Proteomanalyse (4.2.1) durchzuführen. Hierbei wurden vorwiegend lebertypische Stoffwechselenzyme identifiziert, wobei knapp 10 % dieser Proteine signifikant differenziell exprimiert in den beiden Hepatozytenarten vorlagen.

Für eine Analyse der an Phase I des Fremdstoffmetabolismus beteiligten CYP Enzyme wurde ein Antikörper-Anreicherungsschritt durchgeführt und anschließend in einem targeted MS Ansatz vermessen (MS basierter TXP-Immunoassay, 4.2.2). Diese Analyse bestätigte und erweiterte die vorangegangene Full-MS Analyse da hierbei auch niedrig abundante Monooxygenasen detektierbar und identifizierbar wurden. Dasselbe periportale und perizentrale Probenmaterial wurde anschließend auch im DigiWest-Immunoassay analysiert (4.2.3). Dabei wurden viele der massenspektrometrisch identifizierten Proteine ebenfalls detektiert, wobei die Ergebnisse beider Assayplattformen vollständig komplementär ausfielen. Durch die hohe Sensitivität des antikörperbasierten Assaysystems war es zudem möglich regulatorische Proteine und deren posttranslationalen Modifikationen auszumachen. Hierbei wurden weitere differenziell exprimierte Proteine identifiziert, wodurch die Ergebnisse der MS-Analyse entscheidend erweitert wurden.

4.2.1 Full MS Analyse isolierter PZ und PP Hepatozyten

Die mit Hilfe einer periportalen bzw. perizentralen Leberperfusion gewonnenen Zellen wurden massenspektrometrisch auf Unterschiede hinsichtlich ihrer Proteinexpression untersucht. Dazu wurden die Lysate nach tryptischem Verdau der Proteine kontinuierlich nach steigender Hydrophobizität chromatographisch an einer C18 Säule aufgetrennt und fortlaufend massenspektrometrisch vermessen. Die Messung der biologischen Duplikate erfolgte in technischen Triplikaten. Nach Abgleich der Messdaten mit der SEQUEST und Mascot Datenbank wurden für jeden Probentyp jeweils 900 Proteine identifiziert. Akkumuliert über alle Proben waren es knapp 1100 unterschiedliche Proteine. Ein Protein galt dann als identifiziert, wenn jeweils mindestens drei unterschiedliche Peptide detektiert wurden. Im Schnitt (Median) wurden für jedes Protein sieben Peptide gefunden. Die drei höchst abundantesten Peptide eines jeden identifizierten Proteins dienten anschließend dazu eine relative Quantifizierung durchzuführen und die Signale von perizentralen sowie periportalen Hepatozyten miteinander zu vergleichen (Abbildung 9).

Abbildung 9: Auswertung mit Hilfe des Programms Progenesis am Beispiel des Proteins Ornithine aminotransferase nach erfolgter massenspektrometrischer Vermessung. Eines der drei höchst abundantesten Peptide für die OAT war IAIAALEVLEEENLAENADK mit einer molekularen Masse von 1078,06299 Da. In der Ionenintensitätsmatrix zeigte sich für dieses Peptid nur für den perizentralen Probentyp ein Signal in Form des Isotopenmusters (**a**). Wurde die relative Abundanz über alle 12 Proben (6 x PZ, 6 x PP) betrachtet, bestätigte sich die fast ausschließliche Expression dieses Peptids (und damit des Proteins OAT) auf der PZ Seite des Leberläppchens (**b**). Nach Auswertung der zwei anderen höchst abundantesten Peptide der OAT (Daten nicht gezeigt) resultierte ein Unterschied von 5,5 in der log₂ Skala und somit ein Expressionsunterschied (Fold Change) von PZ zu PP Seite von Faktor 46. Da in dieser Arbeit der Bezug immer auf den PZ Hepatozyten lag resultierte im Kehrwert 0,022 oder -5,5 auf der log₂ Skala (**c**). Die beschriebene Vorgehensweise wurde mit Hilfe der Progenesis Software für alle 1066 identifizierten Proteine durchgeführt.

Alle 1066 identifizierten Proteine wurden hinsichtlich ihres Expressionsunterschiedes zwischen PP und PZ Seite betrachtet und je Protein ein zugehöriger Quotient (Fold Change) berechnet sowie mit Hilfe einer ANOVA-Analyse ein p-Wert bestimmt. Mit Hilfe eines Volcano Plots war es möglich alle berechneten Datenpunkte mit zugehörigem Protein in einer Grafik darzustellen (Abbildung 10).

Abbildung 10: Volcano Plot der Ergebnisse aus der Full-MS Analyse der PZ und PP Hepatozyten. Die Grafik enthält alle 1066 identifizierten Proteine. Schwarz gefärbt und mit Namen versehen sind alle

Proteine die signifikant differenziell exprimiert vorlagen. Als signifikant unterschiedlich galten Proteine mit einem Expressionsunterschied von Faktor 2 bzw. 0,5 (auf der log₂ Skala 1 bzw. -1) und gleichzeitig einem p-Wert von ≤ 0,05. Auf der PZ Seite lagen 61 Proteine, auf der PP Seite 27 Proteine innerhalb dieser Vorgaben. Eine Auflistung der einzelnen signifikant differenziell exprimierten Proteine mit zugehöriger Uniprot ID ist im Anhang in Tabelle 23 zu finden.

Für alle der 1066 identifizierten Proteine standen spezifische Uniprot IDs zur Verfügung. Für 951 davon konnte eine Gene ID ermittelt werden. Beide Identifikatorarten dienten dazu die detektierten Proteine über die Gene Ontology (GO) Datenbank biologischen Prozessen und biologischen Funktionen zuzuordnen. Dazu wurde die "Panther - Gene List Analysis" Datenbank sowie die "UniProt Knowledgebase" Datenbank verwendet.

Bei der Analyse aller identifizierten Proteine mittels Uniprot Knowledgebase konnten 980 Proteinen Funktionen und Prozesse zugeordnet werden, wobei nach diesen Kriterien dasselbe Protein auch mehrere Funktionen bzw. Prozesse einnehmen konnte. Ein Großteil der Proteine (688) hatten laut Datenbank eine katalytische Funktion (Enzyme) und konnten somit metabolischen Prozessen (777) zugeordnet werden. Unter diese Prozesse fielen, wie bei Lebergewebe zu erwarten, der Protein-, Zucker- sowie Lipidmetabolismus und im Bereich der Kleinmoleküle der Stickstoffmetabolismus.

Wurden nur die 106 um mindestens Faktor 2 (p-Wert in diesem Fall nicht berücksichtigt, siehe Tabelle 23) differenziell exprimierten Proteine betrachtet, konnten 84 % der Proteine eine katalytische Funktion zugeschrieben werden. Die zellulären Prozesse konnten vor allem dem Metabolismus von organischen Säuren (Alkohole, Carbonsäuren) und dem Stickstoffmetabolismus zugeordnet werden.

Bei der separaten Betrachtung der 34 mindestens um Faktor 2 auf PP Seite höher exprimierten Proteine und der 72 auf PZ Seite stärker exprimierten Proteine konnte ein Unterschied bezüglich deren Funktionen festgestellt werden. Auf PZ Seite konnten 86 % der Proteine mit einer katalytischen Funktion in Zusammenhang gebracht werden, wobei davon 50 % eine Oxidoreduktase-Aktivität zugeschrieben werden konnte. Auf PP Seite wurden 80 % der Proteine mit einer katalytischen Funktion verknüpft, aber lediglich 24 % zeigten eine Oxidoreduktase-Aktivität. Des Weiteren waren auf PZ Seite 5 % der Proteine mit einer Lyase Aktivität verknüpft, bei den PP Hepatozyten waren es 32 %. Werden die biologischen Prozesse und hierbei speziell der Metabolismus betrachtet, sind auf PZ Seite 34 % und auf PP Seite 60 % mit dem Stickstoffmetabolismus assoziiert. Wird der Fokus auf die primären metabolischen Prozesse gelegt, zeigten sich weiterhin Unterschiede im Lipidmetabolismus (PZ 62 % vs. PP 25 %) und Aminosäuremetabolismus (PZ 10 % vs. PP 45 %).

Ein sehr ähnliches Eregebnis mit zusätzlich einer guten grafischen Darstellung konnte bei der Analyse mittels "Panther - Gene List Analysis" Datenbank erzeugt werden. Wurden alle 1066 identifizierten Proteine (951 mit Gene ID) betrachtet, konnten 845 einer annotierten Funktion zugewiesen werden (Abbildung 11). Dabei konnten 21 % der Proteine der Kategorie Bindung (selektive, nicht-kovalente Interaktion) zugeordnet werden. Der Großteil der anderen Proteine (60 %) war mit katalytischen Aktivitäten assoziiert, wobei 34 % eine Oxidoreduktase-, 20 % eine Transferase- und ein weiterer großer Anteil (21 %) eine Hydrolase-Aktivität zeigten.

Da viele Proteine mehreren biologischen Prozessen zugeordnet werden konnten, wurden für die 951 identifizierten Genprodukte 1230 Prozesse assoziiert. Von diesen Prozessen waren 29 % mit zellulären Prozessen wie Zell-Zell-Kommunikation (37 %), Zell-Zyklus (31 %) und Bewegung subzellulärer Komponenten (18 %) verbunden. Der Großteil der Proteine (42 %) hatte jedoch einen metabolischen Hintergrund, wobei fast 50 % dem Primärstoffwechsel zugeschrieben werden konnte. Dieser beinhaltete die Prozesse des Proteinmetabolismus (27 %), Lipidmetabolismus (21 %) nukleobase-beinhaltende Prozesse (20 %) sowie den Kohlenhydrat- (15 %) und Aminosäuremetabolismus (15 %).

Abbildung 11: Panther Analyse aller identifizierten Proteine in PZ und PP Hepatozyten nach der Full-MS Messung. Von den 1066 identifizierten Proteinen gingen 951 Proteine, deren Gene ID vorhanden war, in die Panther-Analyse mit ein. Dabei wurden die Proteine molekularen Funktionen (links) und biologischen Prozessen (rechts) zugeordnet.

Wurden die identifizierten Proteine auf PZ und PP Seite differenziell betrachtet, ergab sich das folgende Bild. Innerhalb der molekularen Funktionen konnten in beiden Fällen dem Großteil der Proteine eine katalytische Aktivität zugeschrieben werden (PZ 72 %, PP 62 %, Abbildung 12 a). Dabei zeigte sich auf PZ Seite eine höhere Oxidoreduktase-Aktivität als auf PP Seite (52 % vs. 23 %). In absoluten Zahlen waren weitere Funktionen wie Lyase-, Hydrolase- und Transferaseaktivitäten gleichverteilt (Abbildung 12 b). Einen Unterschied machte die Kategorie "Molekülstruktur-Aktivität", diese war auf PP Seite signifikant höher und beinhaltete Keratine und Aktin-ähnliche Proteine.

Bei den biologischen Prozessen zeigte sich ein Unterschied in der Kategorie "Lokalisation". Moleküle wie Anionentransporter (Q9QXZ6, Q9JJL3) und Proteine des Harnstoffzyklus waren PZ höher exprimiert als PP (Abbildung 12 c). Obwohl sich absolut gesehen die zellulären Prozesse nicht unterscheiden, dominierten perizentral die CYPs und Anionentransporter und periportal die Keratine.

Wurden die metabolisierenden Prozesse näher beleuchtet (Abbildung 12 d), zeigte sich bei den katabolischen Prozessen, dass auf PZ Seite Proteaseaktivitäten und auf PP Seite Aminosäure-katabolisierende (Glycin und Serin) Prozesse hochreguliert waren. Bei den stickstoffmetabolisierenden Prozessen zeigte sich PZ eine Glutaminsynthetase-, PP hingegen eine Glutaminase-Aktivität.

Beim Primärstoffwechsel zeigte sich der größte Unterschied im Lipidmetabolismus (worunter vor allem die CYPs fallen) der PZ deutlich stärker exprimiert vorlagen als PP. Des Weiteren zeigte sich in der Kategorie Kohlenhydratmetabolismus, dass der Pyruvat-Metabolismus PP stärker ausgeprägt vorlag (Abbildung 12 e).

Abbildung 12: Panther-Analyse Ergebnisse nach Full-MS der um > Faktor 2 differenziell exprimierten Proteine von PP bzw. PZ Seite des Lebersinusoids. In die Analyse gingen 72 Proteine für die PZ Seite und 34 Proteine für die PP Seite ein. In (a) und (b) wurden die Proteine molekularen Funktionen zugeordnet, in (c) - (e) wurden sie mit biologischen Prozessen verknüpft. Die jeweils folgenden Grafiken (b, d und e) sind die Detailansichten der Vorkategorie mit den meisten beinhaltenden Proteinen (gelb). Die farbliche Kennzeichnung der Kategorien auf jeder Ebene ist auf PP und PZ Seite identisch.

4.2.1.1 Darstellung der MS-Ergebnisse von PZ und PP Hepatozyten in Protein-Signalwegdiagrammen

Die detektierten Mengenunterschiede verschiedener Proteine zwischen PZ und PP Hepatozyten (Abbildung 10) wurden in Verbindung mit den zugehörigen Uniprot IDs dazu verwendet eine grafische Repräsentation der MS-Ergebnisse in Form von Signalwegen zu erstellen. Hierzu diente das Programm "R" mit dem Plugin "Pathview", welches die Ergebnisse mit der "KEGG Pathway" Datenbank abglich.

Innerhalb der Signalkaskade der Glykolyse und Gluconeogenese waren nahezu alle Enzyme mittels MS identifiziert worden (Anhang, Abbildung 34). Es zeigte sich ein eindeutiger Unterschied der Expression spezifischer Enzyme im PZ bzw. PP Bereich des Leberläppchens. So waren Enzyme wie die Glukose-6-Phosphatase (Enzyme Commission number, EC 3.1.3.9), Aldose 1-Epimerase (EC 5.1.3.3) und Fruktose-1,6-Bisphosphatase (EC 3.1.3.11), die alle für die Glykoneogenese benötigt werden, PP signifikant hochreguliert. Dahingegen waren Enzyme der Glykolyse, wie die Dihydrolipoyl-Dehydrogenase (EC 2.3.1.12), Aldehyd-Dehydrogenase 2 (EC 1.2.1.3), Alkohol Dehydrogenase (EC 1.1.1.1) und Alkohol Dehydrogenase (NADP+) (EC 1.1.1.2) PZ signifikant höher exprimiert als PP. Weiterhin waren Enzyme des Purinmetabolismus (Adenin-Phosphoribosyltransferase Nucleoside-diphosphatase (EC 2.4.2.7), (EC 3.6.1.6), Hypoxanthin-Phosphoribosyl-Transferase 1 (EC 2.4.2.8), Xanthindehydrogenase (EC 1.17.1.4) und Xanthinoxidase (EC 1.17.3.2) perizentral signifikant hochreguliert. Auch im Citratzyklus konnte auf Proteinebene zwischen PZ und PP Hepatozyten unterschieden werden. So waren Enzyme für die Synthese von Citrat und Isocitrat [Citrat-Synthase (EC 2.3.3.1), Dihydrolipoyl-Dehydrogenase (EC 2.3.1.12), Isocitrate dehydrogenase (EC 1.1.1.41 und 42)] PZ hochreguliert, wohingegen Enzyme, die mit dem Succinat-Metabolismus assoziiert waren [a-Ketoglutarat-Dehydrogenase E1 (EC 1.2.4.2), Succinyl-CoA-Synthetasen (EC 6.2.1.4 und EC 6.2.1.5) und Succinat-Dehydrogenase (EC 1.3.5.1)], eine höhere Expression auf der PP Seite zeigten. Außerdem waren fast alle Proteine, welche mit der Gallensäuresynthese assoziiert sind PZ signifikant höher exprimiert als PP. Im Fettsäureabbau konnten keine signifikanten Unterschiede detektiert werden (Anhang, Abbildung 34 a - d). Aufgrund eines erhöhten Sauerstoff-partialdruckes nahe der Leberarterie auf der PP Seite des Sinusods sich eindeutige Unterschiede im biologischen Prozess der oxidativen zeigten Phosphorylierung (Abbildung 13 a). So waren alle vier Protein-Komplexe der mitochondrialen Atmungskette [NADH-Dehydrogenase (Komplex I, EC 1.6.5.3), Succinat-Dehydrogenase (Komplex II, EC 1.3.5.1), Cytochrom-c-Reduktase (Komplex II, EC 1.10.2.2) und Cytochromc-Oxidase (Komplex IV, EC 1.9.3.1)] in PP Hepatozyten, die mit viel Sauerstoff versorgt waren, signifikant höher exprimiert als PZ.

Weitere Stoffwechselvorgänge, die differenziell vorlagen, waren die des Fremstoffmetabolismus durch Cytochrom P450 Oxidoreduktasen (Abbildung 13 b). So zeigten die Enzyme CYP1A2, CYP2C29, CYP2C37, CYP2C50, CYP2C54, CYP2E1 und CYP3A11 eine spezifische PZ Lokalisation. Einzig die Monooxygenase CYP2F2 hatte PP eine höhere Expression.

Abbildung 13: Darstellung der Full-MS Analyse in Signalwegen der (a) oxidativen Phosphorylierung und (b) des CYP-Metabolismus. Eine erhöhte Expression PZ im Vergleich zu PP ist rot dargestellt, im umgekehrten Fall sind die Proteinnamen grün markiert. In der MS-Analyse identifiziert, aber nicht differenziell zwischen PZ und PP exprimiert, sind Proteine die grau hinterlegt sind. Die Enzyme sind mit einem Zahlencode angegeben, der "Enzyme Commission number" (EC), sodass sie eindeutig identifizierbar sind.

4.2.2 TXP CYP- und Transporter-Assay isolierter PZ und PP Hepatozyten

Eine Full-MS Analyse ermöglicht es eine komplette Proteinprobe zu analysieren und somit mehrere hundert Proteine eindeutig zu identifizieren. Aus messtechnischer und statistischer Sicht ist es jedoch häufig nicht möglich niedrig abundante Proteine zu detektieren.

Tabelle 19: Vergleich der TXP-MS-Ergebnisse mit der Full-MS Analyse. Die Tabelle enthält alle in den TXP-Assays angereicherten Proteine mit den dazugehörenden Unterschieden (Fold Change) der beiden Hepatozyten Populationen (PP vs. PZ). Im Vergleich dazu sind die entsprechenden Werte der Full-MS Analyse der identischen Proben aufgelistet. In dunkelgrau sind jene Werte markiert, bei denen das entsprechende Protein weder im TXP-Assay noch in der Full-MS Analyse nachgewiesen werden konnte (n. d., nicht detektierbar). Bei den Proteinen in weiß konnte nur ein Nachweis im TXP-Assay erfolgen. Die hellgrau markierten Proteine konnten in beiden Vorgehensweisen identifiziert und quantifiziert werden. Der Korrelationskoeffizient beider Methoden lag bei R = 0,96.

Analyte	FC TXP	FC Full-MS
Abcb1a	n. d.	n. d.
Abcb11	1,18	1,05
Abcc3	1,07	n. d.
SIc10a1 (ALEK)	1,07	n. d.
SIc10a1 (GDLK)	1,01	n. d.
Slco2b1	0,71	n. d.
CYP2A12 (LDDK)	1,45	1,66
CYP2A12 (NGER)	1,46	1,66
CYP2A22	n. d.	n. d.
CYP2B9	n. d.	n. d.
CYP2B10	1,84	n. d.
CYP2C29 (TNPR)	0,09	0,05
CYP2C29 (NFSK)	0,08	0,05
CYP2C38	n. d.	n. d.
CYP2C39	1,45	n. d.
CYP2C55	0,27	n. d.
CYP2D9	1,03	0,88
CYP2D10 (GQVR)	0,63	0,58
CYP2D10 (QPPR)	0,59	0,58
CYP2D22	0,83	0,66
CYP2D40	0,68	n. d.
CYP2E1	0,12	0,08
CYP3A25	0,99	1,02
CYP3A44	1,42	n. d.

Aus diesem Grund wurde eine Immunaffinitätsanreicherung für definierte Transporterproteine und CYPs durchgeführt und diese anschließend im targeted Verfahren am Massenspektrometer vermessen und quantifiziert (MS-basierter Immunoaffinitäts TXP-CYP und TXP-Transporter Assay, Rohwerte siehe Anhang, Tabelle 24). Als Ausgangsmaterial dienten dieselben Proteinproben, welche auch schon bei der oben dargestellten Full-MS Analyse herangezogen wurden. Insgesamt wurden in den TXP Assays 20 verschiedene Transporter und CYPs angereichert. Davon war es möglich 17 massenspektrometrisch zu detektieren und zu quantifizieren. Verglichen damit war es in der Full-MS Analyse nur möglich 8 dieser 20 Proteine relativ zu quantifizieren (Tabelle 19). Eine Anreicherung, in diesem Fall mit Hilfe einer Immunpräzipitation, erlaubte somit auch die Detektierbarkeit von niedrig abundanten Proteinen. Da je nach Auswahl der TXP-Antikörper nur bestimmte Subgruppen einer bestimmten Proteinfamilie gezielt angereichert werden, gehen andere zur gleichen Familie gehörende Proteine bewusst verloren. Deshalb war es mit der globalen Full-MS Analyse möglich 13 weitere CYPs sowie 16 weitere Transporter relativ zu quantifizieren und in die Auswertung mit einfließen zu lassen (4.2.1 sowie Anhang, Tabelle 25).

4.2.3 DigiWest-Analyse isolierter PZ und PP Hepatozyten

Die DigiWest-Technologie basiert auf den Prinzipien eines Western Blots und generiert bezogen auf sein seit Jahrzehnten etabliertes und aus der Proteinanalytik nicht mehr wegzudenkendes Pendent vollständig vergleichbare Ergebnisse (Treindl, Ruprecht, et al., 2016). Durch den Einsatz von Mikrosphären und dem damit verbundenen multiplexen Charakter des DigiWests bietet er jedoch den Vorteil – bei vergleichbarer Proteinausgangsmenge – gleichzeitig hunderte Proteine auf einer Probe betrachten zu können. Durch den Einsatz spezifischer Antikörper wird es dadurch ermöglicht komplette Signalwege zu analysieren, wobei durch die hohe Sensitivität solcher immunologischer Assays auch regulatorische Vorgänge in Form von PTMs genauer betrachtet werden können. Somit kann die neue Technologie durch ihren erhöhten Durchsatz als Ergänzung, Alternative und Erweiterung von massenspektrometrischen Analysen angesehen werden.

Die mittels Leberperfusion separierten perizentralen und periportalen Hepatozyten, welche bereits mittels Massenspektrometrie detailliert betrachtet wurden, gingen auch in eine große DigiWest-Analyse ein. Dabei wurden die Proben nach Prozessierung mit jeweils 1198 Antikörpern (Tabelle 22) inkubiert und damit knapp 5000 Western Blot Äquivalente erzeugt. Nach Integration aller Peaks (AFIs) wurden für jedes Protein die Mittelwerte der beiden Probentypen gebildet und anschließend der Quotient bestimmt (Fold Change zwischen PP zu PZ). Nach Durchführung eines t-Tests wurden für jeden Analyten der daraus resultierende p-Wert gegen den Fold Change in einem Volcano Blot dargestellt (Abbildung 14).

Ergebnisse

Abbildung 14: Volcano Plot der Ergebnisse aus der DigiWest Analyse der PZ und PP Hepatozyten. Die Grafik enthält alle 495 Proteine/Proteinmodifikationen, die bei der Inkubation mit 1198 Antikörpern ein auswertbares Signal erzeugten. Schwarz gefärbt und mit Namen versehen sind alle Proteine, die signifikant differenziell exprimiert vorlagen. Als signifikant unterschiedlich galten Proteine mit einem Expressionsunterschied von Faktor 2 bzw. 0,5 (auf der log₂ Skala 1 bzw. -1) und gleichzeitig einem p-Wert von \leq 0,05. Auf PZ Seite lagen 20 Proteine, auf PP Seite 38 Proteine innerhalb dieser Vorgaben. Eine Auflistung der einzelnen signifikant differenziell exprimierten Proteine mit zugehöriger Uniprot ID, die Antikörper, mit welchen die Proteine detektiert wurden sowie die Rohwerte der Messungen sind im Anhang in Tabelle 26 zu finden.

Verglichen mit der Full-MS Analyse (siehe Abbildung 10) zeigten sich viele Übereinstimmungen. So wurde mit beiden Methoden eine signifikante Erhöhung der Glutaminsynthetase (GS), der Ornithin aminotransferase (OAT) sowie der CYPs 3A11 und 2E1 perizentral gemessen. Auf periportaler Seite waren im MS-Lauf als auch im DigiWest die Enzyme Glycine Dehydrogenase (GLDC), Glutaminase 2 (GLS2), Serine Dehydratase (SDS), Histidine Ammonialyase (HAL) sowie Formimidoyltransferase-cyclodeaminase (FTCD) hochreguliert.

Abbildung 15: Vergleich der Fold Changes spezifischer Proteine nach Messung derselben Proben im DigiWest (schwarz) und im Massenspektrometer (grau). Bei den 1066 identifizierten Proteinen im Full-MS und den 495 auswertbaren Antikörper-Signalen gab es einen Überlapp von 32 Proteinen, welche in dieser Grafik dargestellt wurden. Die Korrelation der Fold Changes zwischen DigiWest und Full-MS lag bei R = 0,89. Für die eindeutige Zuordnung der Proteine wurde die Uniprot ID in Klammern angegeben.

Diese Proteine sind mit dem Metabolismus assoziiert und in der Leber hochabundant. Neben den genannten differenziell exprimierten Proteinen wurden weitere 24 Proteine (FC < 2) sowohl im DigiWest als auch in der massenspektrometrischen Analyse detektiert bzw. identifiziert. Die Korrelation beider Techniken war mit einem Pearson-Korrelations-Koeffizienten von R = 0.89 sehr gut (Abbildung 15). Ein großer Vorteil des DigiWests lag darin, dass – im Gegensatz zur MS-Analyse – auch niedrig abundante Proteine, wie posttranslational modifizierte Proteine oder Regulatoren von Signalkaskaden, ohne Anreicherung nachgewiesen werden konnten (Abbildung 16).

So konnte beispielsweise auf Ebene des Wnt-Signalwegs neben den Markerproteinen GS und CYP2E1 eine Hochregulierung der Transkriptionsfaktoren Smad4, Brachyury und c-myc auf PP Seite sowie von p53 auf PZ Seite nachgewiesen werden. Des Weiteren waren assoziierte Proteine des MAP-Kinase Signalwegs wie DUSP3, 4 und 6 (Dual-specificity phosphatase), als auch MAPK15 periportal stärker exprimiert als perizentral, wohingegen die MAP Kinase Kinase 7 (MKK7) oder auch Threonin 308 phosphoryliertes AKT perizentral höher exprimiert vorlag. Da regulatorische Proteine viele verschiedene Aufgaben besitzen können, war eine Einteilung mit Hilfe einer Panther-Analyse – wie sie bei der MS-Analyse erfolgte – nur schwer möglich (Anhang, Abbildung 35).

Abbildung 16: Panther-Analyse der differenziell exprimierten Proteine aus DigiWest und Full-MS. Im DigiWest wurden 89 Proteine, in der Full-MS Analyse 106 Proteine als differenziell (PP vs. PZ > 2) exprimiert detektiert. In beiden Fällen wurden einem Großteil der Proteine katalytische Funktionen zugeordnet (oben). Im MS-Ansatz wurden die meisten Proteine lebertypischen metabolischen Prozessen zugeordnet (unten rechts). Durch die große Auswahl sensitiver Antikörper war es im DigiWest möglich auch niedrig abundante Proteine zu detektieren und Expressionsunterschiede in weit mehr biologischen Prozessen nachzuweisen als im MS Ansatz (unten links).

4.2.3.1 Kreuzreaktivität des Anti-PTCH2 Antikörpers

Bereits in einer vorangegangenen Doktorarbeit wurden erste DigiWest Analysen zur Untersuchung der Leberzonierung an Formalin-fixiertem Mäusegewebe durchgeführt (Treindl, 2015). In jener Arbeit wurde eine Aktivierung des Hedgehog Signalweges auf PZ Seite postuliert, was in der Literatur noch nicht beschrieben wurde. Die Daten beruhten auf der signifikanten und differenziellen Expression des zum genannten Signalweg gehörenden Transmembranrezeptor PTCH2 (128 kDa). Da der Hedghehog Signalweg fundamentale Aufgaben während der Embryonalentwicklung einnimmt sowie im adulten Lebewesen in bestimmten Geweben wichtig bei der Regulierung und Proliferation von Stammzellen ist, wurde auch in der vorliegenden Arbeit ein Fokus auf den beschriebenen Hedgehog-Signalweg gelegt (Bhardwaj, Murdoch, et al., 2001), (Ahn & Joyner, 2005).

Bei der DigiWest-Analyse der PP und PZ Hepatozyten (4.2.3) zeigte der Antikörper Anti-PTCH2 (Cell Signaling #2470 lot1) eine Nebenbande bei ca. 45 kDa. Die Expression des unbekannten 45 kDa großen Proteins war eindeutig differenziell und deshalb als möglicher Marker für die PZ Seite des Lebersinusoids interessant (Abbildung 17 a). Um das unbekannte Protein zu identifizieren, wurden mit dem PP als auch mit dem PZ Leberlysat jeweils zwei 2D-Gelelektrophoresen durchgeführt, wobei jeweils eines geblottet und das andere mit InstantBlue (Coomassie basiert) gefärbt wurde. Die 2D-Blots mit PZ bzw. PP Probenmaterial wurden anschließend mit dem PTCH2-Antikörper inkubiert und ausgelesen. Auch hier konnte eine differenzielle Expression des unbekannten Proteins nachgewiesen werden, wobei es in verschiedenen Ladungszuständen vorkam (Abbildung 17 b, rot). Durch den Abgleich des mit Anti-PTCH2-Antikörper inkubierten 2D-Blots mit dem zugehörigen Coomassie gefärbten 2D-Gel konnten die entsprechenden Spots im Gel ausfindig gemacht und ausgeschnitten werden (Abbildung 17 c und d). Die ausgeschnittenen Spots wurden verdaut und anschließend massenspektrometrisch untersucht. Dabei wurde mit einer Seguenzabdeckung von 84 % die mitochondriale Ornithine aminotransferase (OAT, Uniprot ID P29758) identifiziert. Die OAT besitzt eine molekulare Masse von 48 kDa, was mit den Werten aus dem DigiWest übereinstimmte. Der zuvor mit Anti-PTCH2 inkubierte Blot wurde daraufhin mit einem Anti-OAT Antikörper inkubiert und auf einer zweiten Wellenlänge ausgelesen. Die Signale für PTCH2 und OAT waren deckungsgleich (Abbildung 17 e). Dass der PTCH2 Antikörper als Nebenreaktion die OAT erkannte, wurde durch die Inkubation des OAT-Antikörpers mit den PZ und PP DigiWest Proben ein weiteres Mal bestätigt (Abbildung 17 f). Die OAT verrichtet ihre Aufgabe als Dimer. Diese Dimere wurden bei den Verfahren der oben genannten Doktorarbeit von 2015 durch die Formalinbehandlung fixiert. Da die Dimere im SDS-Gel in etwa auf Höhe von PTCH2 liefen und die Kreuzreaktivität des Anti-PTCH2 Antikörpers damals noch unbekannt war, führte dies zu einer Fehlinterpretation der Ergebnisse.

Abbildung 17: Vorgehen zur Identifikation der Nebenbande des PTCH2 Antikörpers. (a) Der Anti-PTCH2 Antikörper zeigte eine Nebenbande bei einer molekularen Masse von ca. 45 kDa, wobei die Expression des unbekannten Proteins fast ausschließlich in perizentralen Hepatozyten erfolgte. (b), (c) Mit Hilfe einer 2D-Gelelektrophorese, einem anschließenden Western Blot mit dem Anti-PTCH2-Antikörper konnte im aufgetrennten PZ und PP Hepatozytenlysat die Lokalisation des unbekannten 45 kDa großen Proteins erfasst und die Spots im entsprechenden Gel ausgeschnitten und tryptisch verdaut werden. (d) Insgesamt wurden vier Spots analysiert, wobei bei allen vieren die OAT mit einer Sequenzabdeckung von >80 % identifiziert (SEQUEST und Mascot) wurde. (e), (f) Durch Einsatz eines Anti-OAT-Antikörpers wurde die Identifikation im 2D-Western Blot und im DigiWest bestätigt. PTCH2, Protein patched homolog 2; IEF, Isoelektrische Fokussierung; Mr, molekulare Masse, OAT, Ornithine aminotransferase.

4.3 Automatisierter DigiWest: der LiquiWest

Bei der Durchführung eines DigiWests ist relativ viel manuelle Arbeit notwendig. Aus diesem Grund wurde in dieser Arbeit eine automatisierte Alternativmethode entwickelt, welche als LiquiWest bezeichnet wurde. Die grundlegenden Arbeitsabläufe zwischen DigiWest und LiquiWest gleichen sich. So wird im DigiWest die Größenauftrennung mit Hilfe eines kommerziellen SDS-PAGE Systems mit anschließendem Transfer der Proteine auf eine Blot Membran bewerkstelligt. Nach dem Schneiden der einzelnen Laufspuren sowie der Elution der Proteine von den Steifen kann die Beladung der Mikrosphären erfolgen (Abbildung 5). Im LiquiWest erfolgt die Größenauftrennung der Proteine mit einer speziellen Apparatur namens Gelfree 8100. Hierbei eluieren die Proteine der molekularen Masse nach geordnet aus dem Gel und die Beladung der Mikrosphären kann direkt beginnen. Durch die Kopplung an einen Pipettierroboter wurde die Auftrennung automatisiert (4.3.1). Weitere für den LiquiWest notwendige Anpassungen waren die Biotinylierung bereits vor der Größenauftrennung durchzuführen sowie eine Optimierung des Assaypuffers für die Inkubation der Antikörper. Für die Optimierung kam die statistische Versuchsplanung (DoE) zum Einsatz (4.3.2). Die etablierte LiquiWest-Technologie zeigte eine sehr gute Korrelation zum DigiWest (4.3.3), weshalb bei der Analyse der periportalen und perizentralen Hepatozyten (0) vergleichbare Ergebnisse wie in Kapitel 4.2 resultierten.

4.3.1 Etablierung des LiquiWests

Der DigiWest bietet gegenüber eines konventionellen Western Blots den Vorteil aus einer Probe hunderte Western Blot Äquivalente zu generieren (Abbildung 5). Als ein zeitlicher Flaschenhals stellte sich jedoch das Schneiden jeder Laufspur in 96 Streifen, das manuelle transferieren der Streifen in 96 Wells einer Platte sowie die darauffolgende Elution der Proteine von den Streifen heraus. Aus diesem Grund wurde in dieser Arbeit ein äquivalentes System etabliert, das es ermöglichte, die Größenauftrennung von acht Proben parallel und automatisiert in drei Stunden durchzuführen und die Beladung der Proteine auf die Mikrosphären direkt nach der Fraktionierung zu beginnen. Dieses Vorgehen machte es notwendig die Proteine bereits vor und nicht wie im DigiWest nach der Auftrennung zu biotinylieren. Für die Biotinylierung der Proteine in flüssiger Phase wurde ein Protokoll adaptiert, welches bei der Differenziellen Gelelektrophorese (DIGE) zum Einsatz kommt, um Proteine mit Cyaninfarbstoffen zu versehen (Görg, 2004). In dieser Arbeit wurden die Cyanine durch Biotin (NHS-PEG12-Biotin) ersetzt und nach Optimierung bei einer Konzentration von 500 pmol/µl verwendet (Abbildung 18).

Abbildung 18: Optimierung des Biotinylierungsgrades der Proteine für den LiquiWest. Es wurden jeweils 50 μg Mäuseleberlysat durch Zugabe von 1 μl Biotinylierungsreagenz in den angegebenen Konzentrationen (50 bis 800 pmol/μl) biotinyliert und im LiquiWest Assay prozessiert. Nach Inkubation der vier Ansätze mit 20 Antikörpern (hier nur RHEP und β-Actin dargestellt) zeigte sich, dass eine Konzentration des Biotinylierungsreagenzes von 500 pmol/μl für diesen experimentellen Ansatz das beste Signal-Rausch-Verhältnis bot.

Für die Größenauftrennung der biotinylierten Proteine wurde das Gelfree 8100 System von Expedeon verwendet. Dieses System beinhaltet eine programmierbare Spannungsquelle zur Einstellung der Spannungsgradienten und Trennzeit, sowie kommerziell erhältliche Kartuschen, die in die Anlage einsetzbar sind. Diese Kartuschen enthalten das Sammel- und Trenngel und waren in unterschiedlichen Polyacrylamidkonzentrationen (5% - 12%) erhältlich. Jede Kartusche hatte somit einen Bereich, in dem sie Proteine einer gewissen Größe optimal auftrennen konnte (Tran & Doucette, 2008). Da im DigiWest als auch in der abgewandelten Methode LiquiWest möglichst alle Molekulargewichtsbereiche betrachtet werden sollen, wurden zur Etablierung der LiquiWest Methode die 5 % und 8 % Kartuschen verwendet. Mit Kartuschen einer Polyacrylamidkonzentration von 5 % ist es laut Hersteller möglich Proteine im Bereich von 4 kDa bis 500 kDa (Optimum zwischen 75 kDa und 500 kDa), mit einer 8 % Kartusche von 4 kDa bis 150 kDa (Optimum zwischen 35 kDa und 150 kDa) aufzutrennen. Weiterhin war es unabhängig der verwendeten Kartusche vom Hersteller vorgesehen die Proteinlysate in jeweils 12 Größenfraktionen aufzutrennen. Dazu standen vorprogrammierte Spannungsgradienten bereit. Da der LiquiWest jedoch sehr nahe an den DigiWest angelehnt werden sollte, wurden die Fraktionszahl und somit auch die Fraktionsintervalle angepasst: von anfänglich 96 (wie beim DigiWest) über 60 bis hin zu den finalen 48 Fraktionen (Abbildung 19 und 3.2.13.3).

Abbildung 19: Auftrennungsvermögen verschiedener Kartuschen für die Gelfree 8100. Nach erfolgter Fraktionierung mittels Gelfree 8100 in 60 Fraktionen wurde ein Aliquot jeder zweiten Fraktion auf analytische SDS-Gele aufgetragen. (a) Die Auftrennung der 5 % Kartusche war im Bereich von 10 kDa bis ca. 250 kDa möglich, wobei eine Separierung des Proteinlysats von 10 kDa bis ca. 40 kDa nicht möglich war. (b) Mittels 8 % Kartusche war es hingegen möglich auch kleine Proteine voneinander zu separieren und die Auftrennung bis zu einer molekularen Masse von 150 kDa zu gewährleisten.

Während bei 96 und 60 gesammelten Fraktionen noch große Überlappe zwischen den verschiedenen Fraktionen vorkamen war mit 48 Fraktionen das für dieses System bestmögliche Trennvermögen erreicht. Da je nach Organismus lediglich ca. 4 % aller Proteine über 150 kDa liegen, wurden für die in dieser Arbeit durchgeführten LiquiWest-Experimente nur noch die 8 % Kartuschen verwendet. Diese ermöglichten es im Gegensatz zu den 5 % Kartuschen auch den Bereich mit der größten Proteinvielfalt (10 kDa bis 70 kDa) bestmöglich aufzutrennen (Tran & Doucette, 2009).

Der Gelelektrophorese Laufpuffer der Gelfree enthielt 0,1 % SDS. Dies machte ein direktes Mischen der gesammelten Fraktionen mit den Neutravidin gekoppelten Mikrosphären aufgrund einer Denaturierung des Neutravidins nicht möglich. Deshalb wurden die Fraktionen in Filterplatten mit einem Molekulargewichts-Cut-off von 10 kDa gesammelt und der SDS-haltige Puffer unter Zurückhaltung (Retentat) der Proteine abzentrifugiert. Die sich anschließenden Arbeitsschritte waren identisch mit denen des DigiWests (Abbildung 20).

Abbildung 20: LiquiWest Verlaufsschema. (a) Die Fraktionierung mit Hilfe der Gelfree 8100 Anlage ermöglichte es nach der Fraktionierung (48 Fraktionen) direkt die (b) Beladung der Neutravidin gekoppelten Mikrosphären durchzuführen. Somit konnte im Vergleich zum DigiWest das Blotten und Schneiden der Membran sowie das Verteilen der Streifen und die Elution der Proteine ausgelassen werden (ausgeblichener Bereich oben rechts). (b) - (e) Nach Beladung der Mikrosphären war der Arbeitsablauf anlog zu dem des DigiWests (Verlaufsschema DigiWest, Abbildung 5).

4.3.2 Assaypuffer-Optimierung mittels statistischer Versuchsplanung (DoE)

Antikörperspezifische Signale im DigiWest (und auch in anderen Immunoassays) schwanken je nach Affinität des eingesetzten Antikörpers oder der Abundanz des zu detektierenden Proteins. Auch im LiquiWest waren anfangs häufig nur sehr schwache Signale detektierbar. Um spezifische Signale zu verstärken und Nebensignale gering zu halten, können dem Assaypuffer generell verschiedene Blockierungsreagenzien wie Milchpulver, Fischgelatine, Albumin, Casein, hochmolekulare Stoffe wie PVP und PVA sowie Detergenzien wie Tween-20 hinzugefügt werden.

In der hier durchgeführten statistischen Versuchsplanung (Design of Experiments, DoE, (Montgomery, 2008) wurden fünf verschiedene Pufferarten ((1) Roche Puffer, (2) SuperBlock in PBS, (3) StartingBlock in PBS, (4) 0,1 % Casein in PBS, (5) Protein-Free Blocking Buffer in PBS, jeweils mit einem Zusatz von 0,05 % Tween-20) in einem vollfaktoriellen Versuchsaufbau mit jeweils vier Konzentrationen PVP und Milchpulver versetzt. Die daraus resultierenden 80 Blockierungspuffer-Kombinationen wurden anschließend für DigiWest Assays mit den Antikörpern MKK4-phS257/T261 und HIF1-alpha herangezogen. Nach Integration der spezifischen Signale (AFI) wurden die Ergebnisse den jeweiligen Pufferkombinationen zugeordnet und mit Hilfe von Minitab 16 in einem Haupteffekte Plot dargestellt (Abbildung 21). Es zeigte sich, dass Puffer 5 das stärkste Signal erzeugte und dass eine hohe PVP-Konzentration (2 %) ohne Zusatz von Milchpulver positive Auswirkungen auf das antikörperspezifische Signal hatten.

Wurde zur Bestimmung eines optimalen Blockierungspuffers nicht die AFI-Werte, sondern das Signal-zu-Rausch Verhältnis (S/N) herangezogen, änderte sich das Ergebnis (Abbildung 22). Hier zeigte sich, dass der Casein- und Rochepuffer Signale über dem Durchschnitt erzeugten und dass eine PVP-Konzentration von 0,5 % sowie eine Milchpulver-Konzentration von 0,2 % sich für diesen Assayaufbau optimal eignen.

Abbildung 21: Assaypuffer-Optimierung: Haupteffekte Plot der aufsummierten Fluoreszenzintensitäten (AFIs) nach DoE. Die Grafik wurde nach Auswertung des DigiWests mit dem Antikörper MKK4-phS257/T261 in Minitab 16 erstellt und beinhaltet die Ergebnisse der statistischen Versuchsplanung zur Pufferoptimierung. Die jeweiligen Datenpunkte ergaben sich aus der Bildung des Mittelwertes aller Experimente, die die jeweilige auf der X-Achse aufgetragene Variable enthielten. Als y-Werte sind die Integrale der spezifischen Signale (AFIs) dargestellt. Die fünf Puffertypen waren (1) Roche Puffer, (2) SuperBlock in PBS, (3) StartingBlock in PBS, (4) 0,1 % Casein in PBS, (5) Protein-Free Blocking Buffer in PBS.

Das dargestellte Ergebnis der Pufferoptimierung stellte sich als positiv für das bereits etablierte DigiWest System heraus, da hier der Assaypuffer I aus Rochepuffer mit 0,2 % Milchpulver und 0,05 % Tween-20 bestand. Ein neuer, alternativer Puffer mit vergleichbarem Signal-zu-Rausch-Verhältnis bestand aus 0,1 % Casein mit 0,5 % PVP und 0,05 % Tween-20 in PBS. Da sich Milchpulver schlecht im caseinhaltigen Puffer löste, wurde dieses durch PVA ersetzt. Nach weiteren Experimenten und Einsatz dieses Puffers in einer anderen Doktorarbeit (Filomena, 2016) resultierte der PVXC Puffer (Assaypuffer II) mit 0,8 % PVP, 0,5 % PVA, 0,1 % Casein und 0,05 % Tween-20 in PBS.

Bei einem direkten Vergleich von Assaypuffer I und II mit 30 Antikörpern auf den PP und PZ Hepatozytenproben bestätigten sich die Ergebnisse des DoE (Anhang, Tabelle 28). Das Signal-zu-Rausch-Verhältnis lag bei Assaypuffer I leicht besser als bei Assaypuffer II (S/N 55 vs. 41), wobei sich herausstellte, dass Assaypuffer II im Mittel ein 1,5-fach höheres Absolutsignal generierte und damit für schwache Antikörper-Signale einen Vorteil bot. Bestätigt wurde durch dieses Experiment außerdem, dass unabhängig des verwendeten Assaypuffers die Verhältnisse zwischen PP zu PZ konstant blieben.

Abbildung 22: Assaypuffer-Optimierung: Haupteffekte Plot der Signal-zu-Rausch-Verhältnisse nach DoE. Die Grafik wurde nach Auswertung des DigiWests mit Antikörper MKK4-phS257/T261 in Minitab 16 erstellt und beinhaltet die Ergebnisse der statistischen Versuchsplanung zur Pufferoptimierung. Die jeweiligen Datenpunkte ergaben sich aus der Bildung des Mittelwertes aller Experimente, die die jeweilige auf der X-Achse aufgetragene Variable enthielten. Als y-Werte sind die Signal-zu-Rausch-Verhältnisse aufgetragen. Die fünf Puffertypen waren (1) Roche Puffer, (2) SuperBlock in PBS, (3) StartingBlock in PBS, (4) 0,1 % Casein in PBS, (5) Protein-Free Blocking Buffer in PBS.

4.3.3 Vergleich des LiquiWests mit dem DigiWest

Für einen direkten Vergleich der DigiWest- mit der LiquiWest-Technologie wurden die vier periportalen und perizentralen Hepatozytenlysate zunächst wie unter Abschnitt 3.2.13.2 beschrieben biotinyliert. Anschließend wurden die Lysate nach beiden Vorgehensweisen prozessiert (3.2.11 und 3.2.13) und auf Mikrosphären immobilisiert. In beiden Fällen wurde das zuvor biotinylierte Probenmaterial verwendet. Um eine doppelte Biotinylierung der Proteine zu verhindern, wurde der Schritt der Biotinylierung auf der Membran im DigiWest übersprungen. Alle Proben wurden daraufhin mit 60 Antikörpern inkubiert (Anhang, Tabelle 22) und die generierten Signale miteinander verglichen (Abbildung 23 und Anhang, Tabelle 29). Da durch Vorexperimente bekannt war, dass der LiquiWest generell niedrigere Signale produziert, wurde in diesem Experiment sowohl für den LiquiWest als auch für den DigiWest Assaypuffer II verwendet.

Abbildung 23: Korrelation zwischen DigiWest und LiquiWest. Die Antikörpersignale der biologischen Replikate beider Methoden wurden gemittelt und logarithmisch gegeneinander aufgetragen. Dabei wurde zwischen (a) periportalen und (b) perizentralen Hepatozyten unterschieden. Der Pearson-Korrelationskoeffizient lag bei den PP Hepatozyten bei R = 0.88 und bei den PZ Hepatozyten bei R = 0.85.

Die beiden Methoden zeigten eine sehr gute Korrelation, wobei der Median aller vermessenen Signale im Falle des DigiWests bei 7060 AFI und im Falle des LiquiWests bei 3660 AFI lag. Der LiquiWest generiert im Mittel somit lediglich knapp über 50 % des Signals eines DigiWests. Diese Gegebenheit hatte zur Folge, dass Antikörper, die im DigiWest schon nur sehr schwache Signale erzeugten, im LiquiWest fast nicht mehr detektierbar waren. Allerdings war auch ein Antikörper bei der Analyse dabei, der lediglich im LiquiWest Signale zeigte (Abbildung 24; Anhang, Tabelle 29).

Abbildung 24: Vergleich der Signale ausgewählter Antikörper aus LiquiWest und DigiWest. Die analysierte Probe war ein periportales, vor der Auftrennung biotinyliertes Hepatozytenlysat. Im LiquiWest (links) resultierten 48, im DigiWest (rechts) 96 Größenfraktionen. (a) In einigen Fällen waren die Signale zwischen LiquiWest und DigiWest in ihrer Intensität vergleichbar, (b), (c) häufig waren jedoch die Signale im LiquiWest um einen Faktor von ca. 2 niedriger. (a), (c) Weiterhin zeigte sich, dass eine Auftrennung von Proteinen eines niedrigen Molekulargewichts (25 kDa und niedriger) bis hin zu einem hohen Molekulargewicht (120 kDa und höher) mit beiden Techniken möglich war. (d) Bei Verwendung eines vom Hersteller nur für ELISAs validierten CYP2C8 Antikörpers, zeigte sich nur im LiquiWest ein Signal.

4.3.4 LiquiWest-Assay isolierter PZ und PP Hepatozyten

Die Korrelationsanalyse zwischen LiquiWest und DigiWest (Abbildung 23) zeigte bereits, dass die Ergebnisse beider Techniken sehr gut miteinander vergleichbar waren. Für einen weiteren Vergleich wurden dieselben Proben, die unter 4.2.3 mit dem DigiWest analysiert wurden, auch mit dem LiquiWest analysiert. Von den knapp 1200 eingesetzten Antikörpern wurden für die LiquiWest-Analyse nur die 89 verwendet, die in ihren Signalen jeweils einen Fold Change ≥ 2 bzw. $\leq 0,5$ zwischen PP und PZ Hepatozyten aufwiesen (Anhang, Tabelle 30). Da der LiquiWest zum einen eine geringe Auflösung besaß und zum anderen nur etwa 50 % der Signalstärke im Vergleich zum DigiWest generierte, konnten 16 Analyten ($\triangleq 18\%$) aufgrund einer zu geringen Signalstärke, zu vielen Nebenbanden oder aufgrund einer zu hohen molekularen Masse (>150 kDa) im LiquiWest nicht detektiert bzw. die Signale nicht valide integriert werden. Die verbliebenen 73 Proteine zeigten – bezogen auf den Fold Change – eine sehr gute Korrelation von R = 0,93 zwischen den beiden Techniken Liqui- und DigiWest (Abbildung 25). Beide Techniken generierten somit vergleichbare Ergebnisse, wobei die Veränderungen (dargestellt in FC) im DigiWest deutlicher ausgeprägt waren.

Abbildung 25: Korrelation der Fold Changes von PP und PZ zwischen LiquiWest und DigiWest. Analyten in Quadrant I (oben rechts) sind periportal höher exprimiert, Analyten in Quadrant III (unten links) PZ höher exprimiert. Zwischen LiquiWest und DigiWest zeigte sich eine sehr gute Korrelation (R = 0,93). Lediglich ein Protein (Brachyury, rot markiert) zeigte im DigiWest eine höhere Expression auf periportaler Seite (FC 2,2), im LiquiWest jedoch nahezu keine Veränderung (FC 0,87). Die Rohwerte für das gezeigte Diagramm sind im Anhang in Tabelle 30 zu finden.

4.4 Proteinanalyse FACS sortierter GS+ und GS-Hepatozyten

Die Isolation von zonierten Hepatozyten über eine Digitonin-Kollagenase-Leberperfusion ist seit vielen Jahren etabliert, benötigt jedoch viel Erfahrung sowie ein hohes Maß an händischem Geschick (Lindros & Penttilä, 1985). Trotz höchster Aufmerksamkeit kann es geschehen, dass die angereicherten Zellen durch das als Detergenz wirkende Digitonin geschädigt werden und dadurch ihr Proteinexpressionsmuster sowie die Aktivierungszustände ihrer Signalkaskaden verändern.

Ein weiterer Probentyp, der den PZ und PP Hepatozyten sehr ähnlich war, waren deshalb die GS+ und GS- Hepatozyten. Diese wurden im Gegensatz zu den PZ und PP Hepatozyten nicht über eine Digitoninbehandlung mit anschließender Kollagenase-Leberperfusion gewonnen, sondern durch eine Leberperfusion mit einem anschließenden FACS (fluorescence-activated cell sorting) Sortierungsschritt. Dieser Sortierungsschritt war möglich, da lediglich jene Hepatozyten eine Fluoreszenzmarkierung trugen, welche die Glutaminsynthetase exprimierten. Dies war nur bei den perizentralen Hepatozyten der Fall. Grundlage für dieses Vorgehen war die GS-Reporter-Maus, welche hinter dem Gen der Glutaminsynthetase (Glul) den Reporter β-Galactosidase (LacZ) trug. Durch eine Koexpression beider Gene in den Hepatozyten, der anschließenden Freisetzung aller Hepatozyten aus dem Gewebeverbund sowie einer Behandlung mit FDG, einem fluoreszierenden Substrat der β-Galactosidase, wurden nur die Zellen gefärbt, die auch die Glutaminsynthetase exprimierten. Dies wiederum war nur bei den Zellen der Fall, welche nahe der Zentralvene lagen. Nach der FACS-Sortierung resultieren somit Proben mit GS+ (GS positiv) Hepatozyten, welche den perizentralen Zellen (PZ) entsprachen sowie GS- (GS negativ) Hepatozyten, welche eine Mischung aus periportalen (PP) und midzonalen Hepatozyten darstellten. Diese beiden Zellpopulationen wurden anschließend mittels DigiWest analysiert (4.4.1).

Für eine weitere DigiWest Analyse wurden weitere GS+ und GS- Hepatozyten isoliert und über einen Zeitraum von 72 Stunden getrennt voneinander kultiviert. Ein Teil dieser Zellen erhielt eine Behandlung mit Wnt3a und R-Spondin 3. Diese Behandlung sollte die *in vivo* Situation simulieren, da bekannt ist, dass der Zellstatus von Hepatozyten unter anderem von parakrinen Signalen benachbarter Endothelzellen abhängig ist (Rocha, Vidal, et al., 2015). Durch die Kultivierung zeigten sich weitreichende Veränderungen in der Proteinexpression und zudem Anzeichen einer Dedifferenzierung unabhängig einer Behandlung (4.4.2).

4.4.1 DigiWest Analyse von GS+ und GS- Hepatozyten

Insgesamt wurden Hepatozyten aus vier GS-Reporter-Mäusen wie oben beschrieben präpariert, woraus vier GS- Probenpools mit jeweils ca. 300.000 Zellen, sowie vier GS+ Probenpools mit jeweils ca. 50.000 Zellen resultierten. Nach einer Proteinkonzentrations-bestimmung im Gel und einer Anpassung der Auftragsmenge an die GS+ Population war es möglich 2 µg einer jeden Probe im DigiWest zu prozessieren. Aus diesem Probenmaterial war es möglich 135 Antikörperinkubationen in Assaypuffer II durchzuführen (Tabelle 22). Unter diesen Antikörpern waren alle 87 Antikörper, die bei der Analyse der PZ und PP Hepatozyten einen Unterschied von ≥ 2 ($\le 0,5$) generierten.

Tabelle 20: Vergleich der DigiWest-Ergebnisse der Analysen von GS+ und GS- bzw. PZ und PP Hepatozyten. Aufgelistet sind jene Proteine, die um mehr als Faktor 2 auf den jeweiligen Seiten des Leberläppchens verändert vorlagen und in beiden Analysen nachgewiesen werden konnten. Für eine vereinfachte Form der Veranschaulichung sind alle Faktoren > 1 dargestellt (oben: PZ bzw. GS+ hochreguliert, unten: PP bzw. GS- hochreguliert). Bei den PP und PZ Hepatozyten war der detektierte Unterschied der differenziellen Proteinexpression stärker ausgeprägt als bei den GS+ und GS-Hepatozyten (letzte Spalte der Tabelle).

Analyt	FC	FC	hoch in	Faktor zw.
	GS-/GS+	PP/PZ	noch m	Techniken
Glutaminsynthetase	26,5	160,3	PZ u. GS+	6,0
OAT	14,6	72,7	PZ u. GS+	5,0
Caveolin-1	12,9	21,6	PZ u. GS+	1,7
Aldh1A1	4,6	4,0	PZ u. GS+	0,9
RGS1	4,3	5,8	PZ u. GS+	1,4
SPRY2	3,7	3,6	PZ u. GS+	1,0
PKA C alpha	3,5	2,2	PZ u. GS+	0,6
HSP 70	3,2	4,9	PZ u. GS+	1,5
DUSP14	3,1	1,1	PZ u. GS+	0,4
Cyp3A4, 3A1, 3A11	2,8	2,3	PZ u. GS+	0,8
DUSP5 (VH3)	2,5	4,3	PZ u. GS+	1,7
Metallothionein	2,4	5,5	PZ u. GS+	2,3
GPR30	2,3	2,2	PZ u. GS+	1,0
TIGAR	2,1	3,3	PZ u. GS+	1,5
DRAK2	2,0	2,2	PZ u. GS+	1,1
SDS	2,7	12,2	PP u. GS-	4,5
HNF-1 alpha	2,2	12,5	PP u. GS-	5,6
Arginase-1	2,1	4,2	PP u. GS-	2,0
DUSP4	2,0	2,4	PP u. GS-	1,2
GLS2	2,0	11,8	PP u. GS-	6,0

Von diesen 87 Antikörpern wiederum waren 21 Antikörper dabei, die selbst bei der zehnfachen Probenmenge (20 µg) bei der DigiWest-Analyse der PZ und PP Hepatozyten ein Signal nur knapp über dem Hintergrundrauschen generierten. Dadurch bedingt zeigten diese 21 und sechs weitere Antikörper im DigiWest-Assay der GS+ und GS- Hepatozyten kein auswertbares Signal (Anhang, Tabelle 30). Zudem waren alle detektierten 108 Antikörper-Signale durch die geringere Proteinauftragsmenge deutlich niedriger als bei den PZ und PP Hepatozyten.

Nach Analyse der GS+ und GS- Hepatozyten lagen 14 Proteine in den GS+ Hepatozyten und fünf in den GS- Hepatozyten höher exprimiert (\geq Faktor 2) vor. Dabei fiel auf, dass die Unterschiede (Fold Changes) zwischen den FACS sortierten Zellen nicht so stark ausfielen als jene der PZ und PP Hepatozyten (Tabelle 20). Da auf die GS+ Zellen hin FACS-sortiert wurde und die GS- Zellen eine Mischung aus periportalen und midzonalen Hepatozyten waren, fiel der Unterschied der differenziell exprimierten Proteine bezogen auf die GS+ Hepatozyten (oberer Teil von Tabelle 20) deutlicher aus als jener, der auf die GS- Hepatozyten (unterer Teil der Tabelle) bezogen war.

4.4.2 DigiWest Analyse kultivierter und behandelter GS+ und GS-Hepatozyten

Primäre Hepatozyten lassen sich nur sehr schwer kultivieren. Sie verlieren in *in vitro* Kulturen sehr schnell ihren Differenzierungszustand (Kim, Lee, et al., 2010). Bei Kultivierungsansätzen, in denen unterschiedliche Hepatozytenpopulationen (periportal, midzonal und perizentral) nach Präparation der Leber häufig gemischt werden, wird jedoch häufig außer Acht gelassen, dass die Leberläppchen zoniert sind und periportal als auch perizentral unterschiedliche physiologische Bedingungen herrschen. Weiterhin sind PP und PZ Hepatozyten, welche mittels Digitoninbehandlung (und einer Kollagenase-Leberperfusion) isoliert und von anderen Arbeitsgruppen bereits für Kultivierungsexperimente herangezogen wurden, durch die Prozedur häufig so sehr geschädigt, dass sie nicht mehr für Kultivierungs- und *in vitro* -Studien herangezogen werden können.

Die beschriebenen Herausforderungen konnten in dieser Arbeit das erste Mal mittels einer GS-Reporter-Maus angegangen werden. Mittels Kollagenase-Leberperfusion (ohne Digitonin) und anschließender Separierung im FACS-Gerät war es möglich die GS+ und GS-Hepatozyten schonend voneinander zu separieren und anschließend getrennt voneinander auf einer Kollagen I-beschichteten Platte zu kultivieren (jeweils 15.000 Zellen pro Well). Hierbei wurde der Fokus auf die GS+, d. h. die perizentrale Population gerichtet und diese mit für die Leberregion typischem Wnt-Signalweg aktivierenden Molekülen wie Wnt3a und R-Spondin 3 behandelt. Als Kontrolle dienten die GS- Hepatozyten, die ebenfalls mit und ohne Signalproteinen über einen Zeitraum von 72 h kultiviert wurden. Über die Kultivierungszeit

zeigten sich bei Hepatozyten vom selben Typ (GS+ oder GS-) zwischen behandelten und unbehandelten Proben keine optischen Unterschiede. Zwischen GS+ und GS- Hepatozyten waren jedoch eindeutige Unterschiede zu erkennen. So hatten zum Zeitpunkt t0 h sowohl in der einen als auch in der anderen Population alle Hepatozyten einen kugeligen Charakter. Durch das Anwachsen an die Kollagenschicht ging diese Form verloren und die Zellen wurden flacher und wuchsen zu den Seiten hin aus. Diese Beobachtung trat vor allem bei den GS+ Zellen auf. Bei den GS- Hepatozyten war dieses Phänomen weniger stark ausgeprägt. Viele dieser Zellen behielten sogar ihren kugeligen Charakter, was darauf hinwies, dass diese sich nur schwer unter den gegebenen Bedingungen - kultivieren ließen (Abbildung 26). In sehr geringem Maße konnte auch – fast ausschließlich bei den GS+ Hepatozyten – eine Teilung einiger weniger Zellen beobachtet werden. Die GS+ und GS- Zellen, jeweils behandelt und unbehandelt, wurden zu den Zeitpunkten t0 h, t18 h, t24 h, t48 h und t72 h geerntet und in Lysepuffer III aufgenommen. Da das Experiment in biologischen Triplikaten (drei GS-Reporter-Mäuse, Zeitpunkt t0 nur unbehandelt) durchgeführt wurde, ergaben sich daraus 48 Proben. Nach einer Proteinkonzentrations-bestimmung im Gel resultierten für die GS+ Zellen Gesamtproteinmengen von ca. 500 ng, für die GS- Zellen von ca. 200 ng. Für den anschließenden DigiWest wurde jeweils das gesamte lysierte Probenmaterial verwendet. Ohne Normierung waren somit die 24 GS+ Proben untereinander und die 24 GS- Proben direkt miteinander vergleichbar.

Abbildung 26: Mikroskopische Aufnahmen von GS+ und GS- Hepatozyten während der Kultivierungszeit. Beide Zelltypen hatten bei der Aussaat, welche direkt nach der FACS Sortierung stattfand, einen globulären Charakter. Während der Kultivierungszeit wurden die Zellen immer flacher und wuchsen weiter aus. Dieses Phänomen war bei den GS+ Zellen deutlich stärker ausgeprägt. Die lichtmikroskopischen Aufnahmen wurden mit 20-facher Vergrößerung aufgenommen. Mikroskopische Aufnahmen von Silvia Vetter, Toxikologie Tübingen.
Das verwendete Probenmaterial reichte aus, um jeweils 92 Antikörper-Inkubationen durchzuführen, wobei bei den GS- Zellen viele Antikörper aufgrund der zu geringen Probenmenge kein auswertbares Signal mehr generieren konnten. Die Antikörper Auswahl beruhte auf den vorangegangenen DigiWest-Ergebnissen und legte den Fokus neben einer Zonierung des jeweiligen Proteins auf den Metabolismus, den Zellzyklus, die Transkriptionsregulation und zu gewissen Teilen auf den MAP-Kinase-, Wnt- und Hedgehogund Hippo-Signalweg (Anahang, Tabelle 22).

kultivierte GS+ Hepatozyten

Abbildung 27: Geclusterte Heatmaps der GS+ (links) und GS- (rechts) Hepatozyten mit Analyten, die sich während der Kultivierung in ihrer Expression signifikant veränderten. Im oberen Teil der Abbildung sind Proteine dargestellt, deren Expression während der Kultivierungszeit abnahmen. Im unteren Bereich der Abbildung sind Proteine dargestellt, die während der Kultivierungszeit verstärkt exprimiert wurden. Der angewandte Cluster-Algorithmus lautete "Cluster Affinity Search Technique" (Li & Horvath, 2009) und wurde mit der Metrik (Abstandsfunktion) der Pearson Korrelation bei einem Schwellenwert von 0,8 durchgeführt. Die hier dargestellten AFIs wurden vor der Cluster-Analyse auf die Kontrollen (t 0) Median-zentriert und log₂ transformiert. Die Anzahl der GS- Proben (rechts) war geringer als jene der GS+ Hepatozyten. Das lag darin begründet, dass die Proteinkonzentration bei den fehlenden Proben unter 100 ng lag, was eine valide Auswertung der Signale für den Großteil der Antikörper unmöglich machte. Die hierarchischen Cluster (Eisen, Spellman, et al., 1998) aller Analyten (ohne Ausschlusskriterien) für beide Probentypen sind im Anhang in Abbildung 36 zu finden. Um zu überprüfen, ob die Behandlung mit Wnt3a und Rspondin-3 einen Effekt auf die Proteinexpression im Zeitverlauf hatte, wurde eine BETR-Analyse (Bayesian Estimation of Temporal Regulation) mit einem Signifikanzniveau α von 0,05 durchgeführt (Aryee, Gutiérrez-Pabello, et al., 2009). Diese Analyse ergab weder bei den GS+ noch bei den GS- Hepatozyten ein signifikantes Resultat. Daraus ist zu schließen, dass die beobachteten Effekte nicht durch die Wnt-Signalweg-Stimulation beeinflusst wurden, sondern der Haupteffekt ein zeitabhängiger im Kulturmedium war (Abbildung 27, Abbildung 36). Aus diesem Grund wurden für die sich anschließenden Betrachtungen die behandelten als auch die unbehandelten Hepatozyten jeder Gruppe (GS+ oder GS-) und jedes Zeitpunktes als gleichwertig und vergleichbar angesehen. Eine Clusteranalyse aller Datenpunkte mit Hilfe des Programms MeV zeigte im Zeitverlauf der Kultivierung bei einigen Proteinen eine klare Expressionssenkung, der Großteil war jedoch in ihrer Expression im Zeitverlauf angestiegen (Abbildung 27).

4.4.2.1 Proteinexpressionsveränderungen in Signalwegen

Trotz der Tatsache, dass ein und dasselbe Protein viele verschiedene Aufgaben in einer Zelle einnehmen und auch in unterschiedlichen Signalwegen auftauchen kann, erfolgte für eine bessere Veranschaulichung der Kultivierungsergebnisse eine Zuordnung der Proteine in spezifische zelluläre Vorgänge. Dabei wurde die Herkunft der Zellen, das Lebergewebe, berücksichtigt, was eine Eingrenzung der möglichen Aufgaben eines spezifischen Proteins ermöglichte und somit eine Zuordnung in spezifische Signalwege erleichterte.

Bei Betrachtung repräsentativer Proteine verschiedener regulatorischer Signalwege zeigte sich bei fortschreitender Kultivierungszeit bei fast allen Proteinen ein Anstieg (Abbildung 28). Dabei verhielten sich GS+ und GS- Hepatozyten nahezu identisch. Im MAP (mitogen-activated protein)-Kinase Signalweg ist der MAPKK Aktivator GADD45B hochreguliert, was wiederum eine Hochregulierung der in der Signalkaskade stromabwärts liegenden ERKs inklusive aktivierender Phosphorylierung zur Folge hat. Die DUSPs, welche als negative Regulatoren der ERK1/2 Kaskade eingestuft sind, bleiben konstant; lediglich DUSP4 zeigt eine Hochregulierung. Im Hippo-Signalweg, welcher für die Regulierung der Organgröße zuständig ist und teilweise mit dem MAPK-Signalweg verknüpft ist, zeigte sich, dass MST2, ein Protein am Anfang der Signalkaskade, mit zunehmender Kultivierung der Zellen anstieg. Die Zunahme der aktivierenden Phosphorylierung an MOB1 sowie die Steigerung von YAP/TAZ, welche am Ende der Signalkaskade liegen und bei Aktivierung in den Nukleus transloziert, deutete ebenfalls auf eine Aktivierung des Hippo-Signalwegs hin.

Abbildung 28: Expressionsverlauf verschiedener Proteine unterschiedlicher Signalwege in GS+ und GS- Hepatozyten während der 72-stündigen Kultivierung. Aufgrund unterschiedlicher DigiWest-Auftragsmengen von GS+ und GS- Hepatozyten resultierten wie erwartet – unabhängig von Expressions-Zonierungseffekten – niedrigere Signale bei den GS- Zellen. Aus diesem Grund und da das Hauptaugenmerk im Expressionsverlauf in Abhängigkeit von der Zeit lag, erfolgte für das jeweilige Analytenpaar (GS+, blau; GS- orange) keine y-Achsenanpassung. Dies erhöhte die Übersichtlichkeit. Die dargestellten Werte (y-Achse) sind Mittelwerte der aufsummierten Antikörpersignale (AFIs) aus den DigiWest-Analysen mit zugehöriger Standardabweichung über die Zeit (x-Achse).

Das Protein Indian Hedgehog (Ihh), welches interessanterweise in dieser Arbeit trotz geringer Gesamtproteinmenge ausschließlich in diesem Experiment detektiert werden konnte, deutete auf eine starke Hochregulierung des Hedgehog Signalweges während der Kultivierungszeit hin. Dieser Signalweg ist im adulten Gewebe für die Aufrechterhaltung und Regeneration des Zellstatus zuständig. Der Wnt-Signalweg, welcher laut auktueller Erkenntnis für die Aufrechterhaltung des perizentralen Hepatozytencharakters zuständig ist (Benhamouche, Decaens, et al., 2006), zeigte eine klare Hochregulierung durch die Kultivierung. Dieser Effekt war unabhängig der Behandlung mit Wnt3a und R-Spondin 3, welche Aktivatoren des Wnt-Signalwegs darstellten.

4.4.2.2 Proteinexpressionsveränderungen in Stoffwechselvorgängen

Wurde der Glucosemetabolismus genauer betrachtet (Abbildung 29), zeigten die Phosphatasen PP1 alpha und PP1 gamma – beide wichtig im Zellzyklus und Glucosestoffwechsel – einen Abfall über die Kultivierungszeit. Diese Beobachtung wurde durch eine Steigerung der inhibierenden Phosphorylierung von PPAR gamma an Serin 112 unterstützt. PPAR gamma ist in seiner aktivierten Form ein intrazellulärer Rezeptor, der den Glucosestoffwechsel erhöht und von PGC-1 alpha coaktiviert wird. Die Aktivität von PGC-1 alpha verringerte sich über die Kultivierungszeit. Auch die inhibierende Phosphorylierung an Serin 9 von GSK3 beta, einem Regulator der Glycogensynthese, deutet auf eine Reduzierung des Glucosestoffwechsels hin. Zugleich steigerte sich die Expression von IGFBP-5, welcher ein (Negativ-)Regulator des Glucosestoffwechsels ist. Die HNF Proteine, welche wichtiger Bestandteil der Gluconeogenese sind, bleiben über die Kultivierungszeit hinweg größtenteils konstant. Ähnlich verhält es sich mit PKAC alpha, einem Schlüsselregulator des Glucosestoffwechsels phosphorylierungen von AMPK alpha, einem Schlüsselenzym der Energie-Homöostase, sank zudem auch während der Kultivierungszeit.

Ein drastischer Abfall des Aminosäure- und Harnstoff-Metabolismus zeigte sich durchweg bei allen untersuchten Enzymen der GS+ Hepatozyten. Ein solch klarer Trend war bei den GS-Hepatozyten nicht zu erkennen, hier blieb das Expressionsniveau des jeweiligen Proteins weitestgehend kontant. Bei den GS+ Hepatozyten ist hervorzuheben, dass die Glutaminsynthetase als perizentraler (GS+) Marker durch die Kultivierung fast vollständig verloren ging. Die analysierten Enzyme des Fremdstoffmetabolismus, welche in den vorangegangen Experimenten mit Ausnahme von UGT1A1 eine perizentrale (GS+) Lokalisation zeigten (4.2.1 und 4.2.3), blieben über die Kultivierungszeit entweder konstant oder stiegen an. Interessanterweise war ein solcher Anstieg auch für CYP3A11, einem GS+ Marker, bei den GS- Zellen zu erkennen.

Abbildung 29: Expressionsverlauf verschiedener Proteine aus Stoffwechselvorgängen in GS+ und GS- Hepatozyten während der 72-stündigen Kultivierung. Die dargestellten Werte sind Mittelwerte der AFIs mit zugehöriger Standardabweichung (GS+, blau; GS-, orange).

4.4.2.3 Proteinexpressionsveränderungen bei zellulären Vorgängen

Ein divergentes Bild zeigte sich bei der Betrachtung der am Zellzyklus beteiligten Proteine (Abbildung 30). Cdc25A ist ein Aktivator der Cyclin-abhängigen Kinasen (CDKs) und stieg bei fortlaufender Kultivierungszeit an. Dem gegenüber sank die Expression von CDK3. PP2A C, ein wichtiges Enzym beim Fortschritt des Zellzyklus, stieg während der Kultivierungszeit bei den GS+ Hepatozyten deutlich an (bei GS- nicht detektierbar), wobei die inhibierende Phosporylierung ab dem zweiten Messpunkt (t18 h) konstant blieb. Weiterhin zeigte sich eine erhöhte Expression des Enzyms CDKN2B, welches mit einem Zellzyklusarrest assoziiert wird. Derselbe Anstieg war auch bei p53 zu erkennen. Dieses Protein ist für einen Zellzyklusarrest oder eine Herbeiführung der Apoptose notwendig (Levine, 1997). Diese Beobachtung steht in Übereinstimmung mit dem Anstieg von Apoptose-assoziierten Proteinen wie GAS2 und Bax, jedoch in Widerspruch mit Akt, welches eine anti-apoptotische Wirkung besitzt. E2F-4, welches ebenfalls anstieg, ist assoziiert mit Proteinen, die an der Suppression der Proliferation beteiligt sind. Auch der Anstieg von Notch 2, welches am Zellzyklusarrest beteiligt ist, unterstützt die vorangegangenen Ausführungen.

Die vier in die Kategorie Proliferation eingeteilten Proteine verhielten sich für die GS+ im Vergleich zu den GS- unterschiedlich, aber innerhalb des Zelltyps ähnlich. So kam es bei den GS+ Hepatozyten zu einem Abfall während der Kultivierungszeit, bei den GS- Zellen blieb das Niveau über die drei Tage hinweg kontant. Das unter anderem für das Zellwachstum zuständige Proteine p70 S6 Kinase zeigte einen leichten Anstieg.

Die an der Replikation beteiligten Proteine zeigten ein konträres Bild. Einerseits stieg die aktivierende Phosporylierung Serin 139 an MCM2, andererseits stieg auch die inaktivierende Phosphorylierung von Src an Tyrosin 527. Die inaktivierende Phosphorylierung an eEF2 (Protein der Translationskontrolle) sank anfänglich ab und verblieb in den letzten zwei Tagen der Kultivierung konstant. Das Protein eIF2 alpha, ein Initiator der Proteinsynthese, stieg über die komplette Zeit der Kultivierung an. Der an der Transkription beteiligte Faktor NF-kappaB zeigte einen Abfall über den Kultivierungszeitraum.

Abbildung 30: Expressionsverlauf verschiedener Proteine unterschiedlicher zellulärer Prozesse in GS+ und GS- Hepatozyten während der 72-stündigen Kultivierung. Die dargestellten Werte sind Mittelwerte der AFIs mit zugehöriger Standardabweichung (GS+, blau; GS-, orange).

Das Enzym ILK1, ein wichtiger Vermittler zwischen der extrazellulären Matrix und dem Actin Cytoskelett, sank nach Beginn der Kultivierung stark ab, stieg jedoch danach wieder kontinuierlich über die restliche Kultivierungszeit an (Abbildung 31). Beta-Actin selbst und auch Cofilin, ein Actin-organisierendes Protein, stiegen kontinuierlich direkt ab Beginn der Kultivierung an. Vor allem bei den GS+ Hepatozyten war dieser Effekt sehr stark ausgeprägt. Die Expression der Metalloproteinase MMP7, wichtig beim Abbau und der Modifizierung von Proteinen der extrazellulären Matrix, sank über den Zeitverlauf kontinuierlich. Die Expression des Proteins ADAM12, welches Zell-Zell Kontakte vermittelt, erholte sich nach anfänglichem Abfall ähnlich wie die Phosporylierungen von ILK wieder.

Abbildung 31: Expressionsverlauf verschiedener Proteine assoziiert mit Adhäsion und Cytoskelett in GS+ und GS- Hepatozyten während der 72-stündigen Kultivierung. Die dargestellten Werte sind Mittelwerte der AFIs mit zugehöriger Standardabweichung (GS+, blau; GS-, orange).

4.4.2.4 Zusammenfassung der Ergebnisse aus der Kultivierung

Die Veränderungen in den zellulären Prozessen durch die Kultivierung waren vielschichtig. Bis auf wenige Ausnahmen hatte die Kultivierung dieselben Effekte auf die GS+ wie auf die GS-Hepatozyten. Alle untersuchten regulatorischen Signalwege schienen durch die Kultivierung aktiviert worden zu sein. Der Fremdstoffmetabolismus zeigte einen leichten Anstieg wohingegen andere metabolische Vorgänge während der Kultivierung deutlich reduziert wurden. Die zellulären Vorgänge wie die Zellteilung, die Replikation, Proliferation und auch die Apoptose sind differenzierter zu betrachten, ein einheitliches Bild wie bei den bereits erwähnten Vorgängen ist nicht zu erkennen (Tabelle 21). Tabelle 21: Grafische Übersicht der Ergebnisse der getrennten Kultivierung von GS+ und GS-Hepatozyten. Eine Hochregulierung des jeweiligen zellulären Vorgangs über die Kultivierungszeit wurde mit einem aufwärts gerichteten Pfeil dargestellt, das Gegenteil durch einen nach unten gerichteten Pfeil. In ihrer Expression gleichbleibende Proteine wurden mit einem waagerechten Pfeil dargestellt.

Zellulärer Vorgang		GS+	GS-
Signalwege	MAP Kinase	仓	\bigtriangledown
	Нірро	仓	仓
	Hedgehog	ن	-
	Wnt	仓	仓
Metabolismus	Glucose und Energie	Û	Û
	Aminosäure und Harnstoff	Û	Σ
	Fremdstoff	A A	\bigtriangledown
zelluläre Prozesse	Zellzyklus	⇒	⇒
	Apoptose	A A	\bigtriangledown
	Proliferation	Ŷ	⇒
	Replikation/ Transkription / Translation	⇔	⇒
	Adhäsion und Cytoskelett	A A	\bigtriangledown

5 Diskussion

5.1 Technische Entwicklungen

Die Grundidee des mikrosphären-basierten multiplexen Western Blot Systems namens DigiWests stammte von der Gruppe um Dr. Markus Templin und wurde ab Anfang 2010 am NMI entwickelt. Seit dieser Zeit wurden zahlreiche Optimierungen etabliert, welche zu großen Teilen in dieser Arbeit dargestellt sind. Neben Automatisierungslösungen zur maschinellen Handhabung der Mikrosphären, über Pufferoptimierungen mit Hilfe statistischer Versuchsplanung (DoE) führte der Weg zu einer nahezu vollautomatisierten DigiWest- Alternative, welche als LiquiWest bezeichnet wird. Die neu entwickelte LiquiWest-Technologie wird durch ihre erhöhte Reproduzierbarkeit sowie ihre signifikant verkürzte Durchlaufzeit in Zukunft benötigt, um die steigende Nachfrage für multiplexe Western Blots auch hinsichtlich des seit 2015 bestehenden Servicelabors der NMI TT GmbH in Berlin bedienen zu können.

5.1.1 Etablierung des LiquiWest

Der DigiWest (Treindl, Ruprecht, et al., 2016) beruht in großen Teilen auf den Prinzipien des seit Jahrzehnten etablierten Western Blots (Towbin, Staehelin, et al., 1979). In beiden Fällen werden Proteine in einem SDS-Gel der Größe nach separiert und anschließend auf eine Membran übertragen. Während beim Western Blot direkt im Anschluss die Antikörper Inkubation beginnen kann, ist es beim DigiWest notwendig in vielen aufwändigen Arbeitsschritten die Membran zu prozessieren und die Proteine auf Mikrosphären zu immobilisieren (siehe Abbildung 5). Bis eine Inkubation der Probe mit einem gewünschten Antikörper erfolgen kann, dauert es zwei Tage länger als bei einem gewöhnlichen Western Blot. Der DigiWest bietet jedoch einen ausschlaggebenden Vorteil. Er ermöglicht es nicht nur eine (oder einige wenige) Antikörper-Inkubationen(en) auf einer aufgetrennten Proteinprobe durchzuführen, sondern bei gleicher Auftragsmenge bis zu 600 Analysen zu realisieren. Dadurch erhöht sich der Durchsatz um das mindestens 300-fache bei gleichzeitig vollständiger Vergleichbarkeit der Ergebnisse beider Techniken. Bei einer größeren Anzahl an Proben (> 50) und wenigen untersuchten Proteinen, ist der Arbeitsaufwand im DigiWest aufgrund der vielen manuellen Schritte allerdings unverhältnismäßig hoch.

Eine Alternative für einen höheren Probendurchsatz können Reverse Phase Protein Arrays (RPPA) sein (Spurrier, Ramalingam, et al., 2008). Auch diese Technik beruht auf einer Immundetektion. Sie hat jedoch den Nachteil, dass im Gegensatz zum DigiWest eine zu hohe Anzahl der zu untersuchenden Proteine den Durchsatz reduziert und überdies keine

Größenauftrennung erfolgt. Die fehlende Proteintrennung kann bei kreuzreaktiven Antikörpern zu falschen Interpretationen der Ergebnisse führen.

Aus den genannten Gründen wurde in dieser Arbeit eine alternative Technik, der LiquiWest, etabliert, welcher es ermöglichte eine größere Anzahl an Proben automatisiert zu prozessieren (Vorteil der RPPA) und gleichzeitig mehrere hundert Analyten auf größenaufgetrennten Proteinproben zu betrachten (Vorteil des DigiWest). Der zeitbestimmende Faktor des DigiWest liegt in den Arbeitsschritten, die mit der manuellen Verarbeitung der Membran verbunden sind. Deshalb wurde während der Etablierung des LiquiWests nach alternativen, möglichst automatisierbaren Methoden gesucht, die eine Proteinauftrennung - bestenfalls nach Größe zuließen und gleichzeitig auf den Blotvorgang verzichten (Daten nicht gezeigt). Die Auftrennung nach Größe ist deshalb wichtig, da es dadurch erlaubt wird spezifische Signale von unspezifischen über die molekulare Masse zu unterscheiden. Eine Möglichkeit der Größenauftrennung, die Größenausschluss-Chromatographie (Size Exclusion Chromatography, SEC), wurde für eine Separierung der Proteine nach Größe zu Beginn der Arbeit getestet. Die eingesetzte SEC-Säule (Superdex 200 5/150 GL, GE) in Verbindung mit einer AKTA FPLC Chromatographie-Anlage mit integriertem Fraktionssammler (Frac-950) erlaubte die Fraktionierung komplexer Proben. Es stellte sich jedoch heraus, dass das Trennungsvermögen der Säule für ein Komplettlysat (Mausleber) nicht ausreicht. Die Proteine eluierten größtenteils in einem einzigen breiten, tailenden Peak. Die sich anschließende Qualitätskontrolle der gesammelten Fraktionen auf einem analytischen SDS-Gel bestätigte die Ko-Elution von Proteinen aus verschiedensten Molekulargewichtsbereichen. Auch der Wechsel an eine HPLC-Anlage (Agilent 1100) unter Verwendung einer TSKgel G3000SWxl SEC Säule resultierte in einer nicht zufriedenstellenden Separierung des Proteinlysates. Eine ausreichend gute Separierung von Proteinen nach molekularer Masse schien nur durch ein Polyacrylamid-Gel gewährleistet zu werden, weshalb für weitere Tests die Mini Prep Cell von Bio-Rad verwendet wurde. Mit dieser Anlage war es möglich das Proteinlysat zu separieren, jedoch war ein automatisiertes Sammeln der aus dem Gel eluierenden Fraktionen mit der zur Verfügung stehenden Ausrüstung nicht möglich. Zudem hätten die SDS-Gele vor jeder Trennung immer frisch gegossen werden müssen. Der Einsatz einer Prep-Cell wäre zudem in ihrem Durchsatz stark limitiert gewesen, da es mit dieser Anlage lediglich möglich ist eine Proteinprobe parallel zu prozessieren.

Erst die zu Beginn der Doktorarbeit neu auf dem Markt erhältliche Gelfree 8100 Fraktionierungsstation (Tran & Doucette, 2008) konnte einen Erfolg hinsichtlich Trennvermögen, Automatisierbarkeit und Parallelisierbarkeit erzielen. Kernstück dieser Anlage sind Kartuschen mit zylindrischen Polyacrylamidgelen (Sammel- und Trenngele, pro Kartusche acht Stück) in denen bei angelegter Spannung eine Auftrennung der Proteine nach molekularer Masse erfolgt, wobei die Proteine nach der Auftrennung aus dem Gel heraus eluieren. Damit wurde es möglich acht Proben parallel zu separieren, die aus dem Gel eluierenden Fraktionen automatisiert zu sammeln und direkt mit der Beladung der Proteine auf die Mikrosphären zu beginnen (3.2.13.4). So konnte der manuelle Arbeitsaufwand signifikant reduziert und der Zeitbedarf des LiquiWest Prozesses um einen Tag im Vergleich zum DigiWest verkürzt werden. Nach Erfahrungswerten der letzten Jahre können im DigiWest pro Woche pro Person 16 Proben auf Mikrosphären immobilisiert werden. Im LiquiWest können automatisiert zwei Läufe zu je acht Proben pro Tag automatisiert durchgeführt werden, was den Durchsatz im Vergleich zum DigiWest um einen Faktor von vier auf 64 Proben pro Woche steigert.

Das Auflösungsvermögen des Gelfree-Systems war von Seiten des Herstellers auf 12 Fraktionen ausgelegt. Durch Anpassungen der Spannungsverläufe sowie einer Optimierung der Sammelzeiten wurde die Anzahl der Größenfraktionen auf 48 erhöht und somit das Trennvermögen des Systems weitestgehend ausgeschöpft. Das Trennvermögen eines Gradientengels, wie es im DigiWest eingesetzt wird, liegt über dem eines Gelfree Gels. Deshalb wird im DigiWest mit 96 Fraktionen gearbeitet, wodurch eine höhere Sensitivität erreicht werden kann. Die Notwendigkeit im LiquiWest mit 48 Fraktionen zu arbeiten hat jedoch auch Vorteile. Auf 384 Mikrosphären IDs können im DigiWest vier Proben (4 x 96) immobilisiert werden, im LiquiWest hingegen acht Proben (8 x 48). Dies verdoppelt sowohl die Anzahl der gleichzeitig analysierbaren Proben als auch die Antikörperinkubationen, die pro Assayplatte gleichzeitig durchgeführt werden können. Das Resultat war ein vierfach höherer Probendurchsatz bezogen auf die Anzahl der möglichen Antikörperinkubationen.

Die Korrelation der Ergebnisse von LiquiWest und DigiWest erwiesen sich als sehr gut (Abbildung 23). Verglichen zum DigiWest generierte der LiquiWest jedoch durchschnittlich ein um 50 % geringeres Signal. Dieser Signalabfall war vor allem bei niedrig affinen Antikörpern (häufig Anti-Phospho spezifische Antikörper) oder bei niedrig abundanten Proteinen ein Problem. Während im DigiWest bei einigen Antikörpern noch ein schwaches Signal identifizierbar und integrierbar war, konnte dies im LiquiWest nicht mehr gefunden werden. Der Anteil solcher Fälle lag bei ca. 10 %. Eine gewisse Verstärkung der Signale konnte durch den mittels statistischer Versuchsplanung (DoE) etablierten PVXC Puffer (Assaypuffer II) erzielt werden. Dieser Puffer nutzte den Effekt des makromolekularen Crowdings aus, erhöhte die relativen Konzentrationen während der Antikörper-Inkubationen und generierte somit stärkere Signale als der etablierte Assaypuffer I (Ellis, Zimmerman, et al., 2001). Eine weitere Möglichkeit der Signalverstärkung, die während der Zeit der Anfertigung dieser Arbeit getestet wurde, war die "Tyramid Signalamplifikation" (Earnshaw & Osbourn, 1999), (Warford, Akbar, et al., 2014). Diese Technik legt den Fokus auf einen verstärkenden Nachweis der Antikörper-Antigen Interaktion. Durch den Einsatz eines Meerrettichperoxidase (HRP) markierten Sekundärantikörpers wird ein Substrat umgesetzt, welches kovalent an unmittelbar benachbarte Tyrosine bindet. Dieses Substrat trägt einen Cy3 Farbstoff, welcher ebenfalls in Luminex Flexmap 3D Anlagen ausgelesen werden konnte. Da die Wellenlänge des Flexmap-Lasers jedoch für den Phycoerythrin (PE) Fluoreszenzfarbstoff ausgelegt war, lag die Quantenausbeute von Cy3 lediglich bei 30 %. Durch den Effekt der enzymatischen Signalverstärkung waren die Signale in ihrer Intensität jedoch vergleichbar mit jenen des PE-Farbstoffs. Der im Vergleich zum PE-Auslesesystem deutlich erhöhte Hintergrund sowie der limitierte dynamische Bereich enzymatischer Reaktionen im Vergleich zu Fluoreszenz basierten Ausleseverfahren ließen eine weitere Verfolgung des TSA-Ansatzes nicht als sinnvoll erscheinen. Unabhängig der Signalintensität, stellte das geringere Trennvermögen der Gelfree im Vergleich zu den Gradientengelen im DigiWest bei der Auswertung mancher Antikörper ein Problem dar (Abbildung 32).

Abbildung 32: Vergleich der Signale ausgewählter Antikörper aus LiquiWest und DigiWest. Das Auflösungsvermögen ist im LiquiWest geringer als im DigiWest, weshalb nahe gelegene Signale nicht mehr voneinander unterschieden werden können (a). Da die Proteine bis zur Immobilisierung auf den Mikrosphären in beiden Techniken unterschiedliche Verfahren durchlaufen, kommt es womöglich zu voneinander abweichenden Faltungsmustern bzw. teilweisen Renaturierungseffekten der Proteine. Dies wiederum könnten die generell – trotz gleicher Beladungsdichte – niedrigeren Signale im Liquiwest erklären sowie den Effekt, dass manche Antikörper in dem einen Assaytyp Nebenbanden zeigen und im anderen Fall nicht oder auch, dass bestimmte Antikörper im einen Fall überhaupt nicht erst funktionieren (b, c). AFI, aufsummierte Fluoreszenzintensität; n. d., nicht definierbar.

So hatte beispielsweise das Protein HLA-G (38 kDa) im DigiWest ein deutliches Nebensignal bei 44 kDa. Im LiquiWest hingegen konnte zwischen diesen beiden um 6 kDa auseinander liegenden Signalen nicht unterschieden werden und somit keine valide Integration des spezifischen Signals erfolgen. Weiterhin zeigten einige Antikörper im DigiWest häufig Nebensignale, die im LiquiWest nicht vorhanden waren (Abbildung 32 b). Den größten Unterschied der getesteten Antikörper wies der Anti-CYP2C8 Antikörper auf. Dieser war laut Herstellerangaben (CYP450-GP) nur für ELISAs validiert worden und zeigte bei deren Western Blot Validierungen - vergleichbar mit dem hier durchgeführten DigiWest - kein Signal. Im LiquiWest hingegen war ein deutliches Signal zu erkennen. Die beiden zuletzt beschriebenen Phänomene (Abbildung 32 b und c) könnten somit die niedrigeren Signal im LiquiWest trotz ähnlicher Beladungsdichte der Mikrosphären (bestimmt durch die Strep-PE Färbung) im Vergleich zum DigiWest erklären. Die Proteine scheinen im DigiWest und im LiquiWest unterschiedliche Denaturierungsmuster aufzuweisen, was eine differenzielle Zugänglichkeit relevanter Epitope nach sich ziehen kann (Baker, 2015). Da ein ELISA-Antikörper wie der hier eingesetzte CYP2C8 im LiquiWest funktioniert, liegen die Proteine bei dieser Assayform wohl in einem "nativeren" Zustand als im DigiWest vor. Da 99 % aller in dieser Arbeit eingesetzten Antikörper seitens Hersteller für Western Blots validiert wurden, erklärt dies, dass die meisten Antikörper deutlich besser im DigiWest als im LiguiWest funktionierten. Aufgrund dieser Phänomene wurden verschiedene Lösungsansätze eruiert. So wurde beispielsweise eine Denaturierung mit 8 M Harnstoff auf den Mikrosphären durchgeführt, nachdem die Proteine mit Formaldehyd auf den Neutravidin beschichteten Mikrosphären kovalent immobilisert wurden. Dies zeigte jedoch keinen Effekt auf das spätere Signal. Des Weiteren wurde die aufgetragene Gesamtproteinmenge im LiquiWest erhöht, was eine höhere Beldungsdichte der Mikrosphären zur Folge hatte. Dieses Vorgehen führte tatsächlich zu höheren Signalen, löste jedoch das Grundproblem der unterschiedlichen Denaturierung nicht. Auch eine Reduzierung und Alkylierung der Proteine direkt nach der Biotinylierung zeigte nur bedingt die gewünschten Effekte auf die Signale des LiquiWests.

Eine weitere Herausforderung bei der Etablierung der LiquiWest Technologie war die Untersuchung von Proteinen mit einer molekularen Masse von größer als 150 kDa bei der Verwendung der Standard-Gelfree-Kartusche (8 %). Denn größere Proteine können nur mit einer 5 % Kartusche aufgetrennt werden, wodurch jedoch die Trennung der niedermolekularen Proteine verloren geht (Abbildung 19). Von den über 1200 am NMI zur Verfügung stehenden Antikörpern erkennen ca. 8 % Proteine mit einer molekularen Masse von mehr als 150 kDa. Diese können somit nicht im LiquiWest in Kombination mit einer 8 % Kartusche betrachtet werden. Es ist zu erwähnen, dass im Western Blot und damit auch im DigiWest ähnliche Probleme bestehen. Proteine mit einer hohen molekularen Masse werden beim Blotvorgang nur unzureichend aus dem Gel auf die Membran transferiert, wodurch ein Signalintensitätsverlust resultiert. Auch hier müssen spezielle Pufferanpassungen erfolgen,

was jedoch häufig negative Auswirkungen auf die Bloteffizienz niedermolekularer Proteine hat (Gershoni & Palade, 1983) (Bolt & Mahoney, 1997). Abhilfe können hierbei blotfreie Systeme wie die Simple Western Geräte bieten (Nguyen, Squaglia, et al., 2011). Diese ermöglichen es eine Größenauftrennung in Kapillaren durchzuführen und direkt ohne Blotvorgang die Primärund Sekundär-Antikörperinkubationen zu starten. Ein Gerät dieser Produktfamilie wurde am Ende der Doktorarbeit erworben und soll zukünftig für die genannten Herausforderungen miteingesetzt werden.

Schlussfolgernd bietet der in dieser Arbeit etablierte LiquiWest viele Vorteile gegenüber dem DigiWest, aber auch neue Herausforderungen, die teilweise noch gelöst werden müssen. Beim Liquiwest handelt sich jedoch bereits zum Abschluss dieser Arbeit um ein autarkes System, welches es ermöglicht dutzende Proben innerhalb kurzer Zeit semi-automatisiert zu bearbeiten, hunderte Antikörperinkubationen durchzuführen und damit tausende Western Blot Äquivalente in nur wenigen Tagen zu generieren.

5.1.2 Automatisierungslösungen

Bei Assayformaten, die mit einem hohen Arbeitsaufwand über mehrere Tage einhergehen, ist es für ein zukünftiges Bestehen unbedingt notwendig so viele Arbeitsschritte wie möglich zu automatisieren. Dadurch kann nicht nur die Reproduzierbarkeit, sondern auch der Durchsatz maßgeblich erhöht werden und der Fokus auf die Auswertung und Interpretation der Ergebnisse gelegt werden.

Durch die Einführung des LiquiWests und der damit verbundenen Automatisierung der Fraktionierung konnte nicht nur der Durchsatz stark erhöht, sondern auch die manuellen Eingriffe deutlich reduziert werden. Die Kopplung der Gelfree Anlage mit einem Biomek FXp Pipettierroboter erlaubte es viele manuelle Eingriffe, welche im DigiWest weiterhin notwendig sind, zu umgehen. Da DigiWest und LiquiWest von nun an gleichzeitig genutzt werden, wurden weitere Automatisierungen etabliert, welche im Arbeitsablauf beider Techniken Einzug fanden.

Als einen großen praktischen Nutzen stellte sich die automatisierte Generierung von Mikrosphären-Arbeitsplatten heraus, in welchen die 384 unterschiedlichen Neutravidin gekoppelten Mikrosphären IDs für die Assays enthalten sind (3.2.11.2). So ist es mit Hilfe des Pipettierroboters und dem erstellten flexiblen Programmcode möglich in nur wenigen Stunden hunderte Arbeitsplatten zu erzeugen. Momentan werden die Masterplatten, aus denen die Arbeitsplatten generiert werden, noch manuell erstellt. Eine direkte Verbindung der ebenfalls automatisierten Neutravidin Kopplungsprozedur (3.2.11.1) mit der beschriebenen Generierung von Arbeitsplatten ist bereits in Planung und technisch gut realisierbar, da beide Robotertypen, der Kingfisher für die Neutravidinkopplung an Mikrosphären und der BiomekFXp für die Verteilung in Arbeitsplatten, für 96 Well Platten ausgelegt sind. Weiterhin wurde der Schritt

des Sammelns der Mikrosphären nach Proteinbeladung vollständig automatisiert (3.2.11.5). Mit Hilfe selbst hergestellter Magnetspitzen in Verbindung mit Gegenmagneten unter den Sammelplatten konnte der manuelle Pool-Vorgang erfolgreich auf einen Biomek NXp Roboter übertragen werden. Das zirka fünfstündige händische Sammeln von Mikrosphären aus 16 Platten wurde durch den Automatisierungsschritt auf die Hälfte der Zeit reduziert und zugleich die manuellen Eingriffe auf null minimiert.

Die beschriebenen aber auch die zukünftigen Automatisierungslösungen sind notwendig, um die DigiWest- als auch die LiquiWest-Technologie weiter zu verbessern. Das im Jahr 2015 aufgebaute Servicelabor der NMI-TT GmbH "DigiWest – High Content Protein Profiling" mit Sitz in Berlin ist hierbei hauptverantwortlich für die Abarbeitung der steigenden Kundenanfragen und muss mit neuen, schnelleren Technologien, die weiterhin am NMI entwickelt werden, versorgt werden.

5.1.3 Antikörpervalidierung und Aufbau einer Datenbank

Das Kernstück eines jeden validen Immunassays und damit auch des DigiWests sowie des LiquiWests sind spezifische und sensitive Antikörper (Voskuil, 2014). Die meisten Antikörper, welche in der Forschung und in klinischen Assays zum Einsatz kommen, werden hierbei für Western Bots und ELISAs verwendet (Freedman, Gibson, et al., 2016). Trotz dutzender wissenschaftlicher Abhandlungen über die Bedeutsamkeit von Antikörpern in der Forschung existieren bis heute keine einheitlich akzeptierten Kriterien für eine Validierung dieser wichtigen Reagenzien (Voskuil, 2014). Ein wesentlicher Schritt in die richtige Richtung war die Etablierung der Antibodypedia-Datenbank im Jahre 2008 durch Wissenschaftler des Royal Institute of Technology in Stockholm (Björling & Uhlén, 2008). Dieses Projekt mit zugehöriger Web-Präsenz ermöglicht es eigene Validierungsdaten der Öffentlichkeit frei zugänglich zu machen und somit das bestehende Wissen über erwerbliche Antikörper zu erweitern. Trotz allem sind in dieser Datenbank nicht alle Antikörper jeden Herstellers aufgelistet und nicht über sämtliche Immunoassay-Formate hinweg validiert. Aus diesem Grund kann die Qualität der Antikörper von Hersteller zu Hersteller variieren, was häufig nach Erwerb eine in-House Validierung für die jeweils gewünschte Anwendung notwendig macht. Die meisten der heute käuflich erwerblichen Antikörper sind polyklonalen Ursprungs und besitzen somit Lot zu Lot Unterschiede. Aus einer Studie von 2008 ging sogar hervor, dass nicht einmal die Hälfte der zirka 6000 am häufigsten verwendeten Antikörper das korrekte Antigen erkennen (Berglund, Bjorling, et al., 2008). Von den 1200 in dieser Arbeit eingesetzten Antikörpern lieferten nur etwa 500 Stück ein auswertbares Signal an der korrekten Stelle. Die anderen zeigten entweder kein Signal oder ausschließlich Kreuzreaktivitäten bei unerwarteter molekularer Masse. Um die Reproduzierbarkeit zwischen verschiedenen Laboren zu erhöhen, fordern einige Wissenschaftler die Antikörperproduktion zu standardisieren (Bordeaux, Welsh, et al., 2010).

Dies kann durch den Einsatz monoklonaler Antikörper oder auch durch rekombinante Technologien geschehen (Muyldermans, Baral, et al., 2009), (Lyon, 2015). Wissenschaftler des "Human Protein Atlas", die es sich zum Ziel gesetzt haben für jedes menschliche Protein mindestens zwei Antikörper zu generieren, fordern zudem – unabhängig der Quelle eines Antikörpers – strikte Regeln für Antikörpervalidierungen einzuhalten (Uhlen, Oksvold, et al., 2010), (Uhlen, Bandrowski, et al., 2016).

Auch im Falle des DigiWests werden sämtliche Antikörper vor einer Verwendung im Assay auf verschiedenen Geweben und kultivierten Zellen validiert (Templin & Couvillon, 2016). Da der DigiWest konsistent vergleichbare Ergebnisse zu einem herkömmlichen Western Blot liefert (Treindl, 2015), werden Validierungen von Western Blot Antikörpern an unserem Institut aufgrund des signifikant gesteigerten Durchsatzes generell mittels DigiWest-Technologie realisiert. Neben verschiedenen humanen und murinen, gesunden und tumorigen Primärgeweben aus verschiedenen Geweben werden auch unterschiedliche Zellkulturen und neuerdings auch Gewebe aus Ratte, Hund, Minischwein und Cynomolgus für die Antikörpervalidierung herangezogen. Dadurch können weitreichende Informationen über die Reaktivität hunderter Antikörper auf unterschiedlichstem Probenmaterial erzeugt werden.

Alle in dieser Arbeit erzielten Ergebnisse finden Eingang in die eigene Antikörper-Validierungs-Datenbank, die offiziellen Kriterien der Antibodypedia-Datenbank folgt (Björling & Uhlén, 2008). Jeder Antikörper wird nach "Vermessung im DigiWest/LiquiWest einer bestimmten Güte in Form eines Scores von 1 - 7 zugeordnet. Dabei wird ein Antikörper mit einer klaren Bande bei korrekter molekularer Masse ohne Nebenbanden einem Score von 1 zugeordnet. Ein Antikörper der Kategorie 7 Antikörper zeigt hingegen viele Nebenbanden und kein Signal bei erwarteter molekularer Masse.

5.1.4 Kreuzreaktivitäten von Antikörpern

Trotz aller Antikörper-Validierungen kann es aufgrund des hohen Durchsatzes eines DigiWest Assays sinnvoll sein unvoreingenommene (unbiased) Analysen durchzuführen. Dies bedeutet, dass – ähnlich eines Full-MS Ansatzes – ohne viel Mehraufwand hunderte Proteine gleichzeitig betrachtet werden und dabei auch schlechter eingestufte (gescorte) Antikörper zum Einsatz kommen. Dadurch können weitreichende Bilder von Stoffwechselwegen und Signalkaskaden generiert werden, die an interessanten Stellen in Folgeexperimenten im Detail auch mit anderen Assayformaten betrachtet werden können. Ein wichtiges Beispiel, welches einen großen Teil dieser Arbeit ausmachte, war die Detektion eines signifikant differenziell exprimierten Proteins bei unerwarteter molekularer Masse nach Inkubation der Leberproben mit dem Anti-PTCH2 Antikörper (4.2.3.1). Das Nebensignal bei ca. 45 kDa war ausschließlich in Hepatozyten perizentralen Ursprungs messbar und sehr stark ausgeprägt. PTCH2 (130 kDa) ist ein Transmembranrezeptor und ein wichtiger Mediator im Hedgehog Signalweg (Ingham & McMahon, 2001). Aktuelle Forschungsergebnisse deuten zudem auf ein Zusammenspiel des perizentral aktiviert vorliegenden Wnt-Signalwegs und dem Hedgehog-Signalweg zur Aufrechterhaltung der Leberzonierung hin (Matz-Soja, Hovhannisyan, et al., 2013). Da der Hedgehog-Signalweg nach aktuellen Forschungsergebnissen hauptsächlich während der Embryonalentwicklung aktiv ist, wäre eine Verbindung der differenziellen PTCH2 Expression mit der Suche von Leberstammzellen (falls diese überhaupt existieren) von großem Interesse gewesen (Yanger, Knigin, et al., 2014) (Schaub, Malato, et al., 2014) (Alison & Lin, 2016). Weiterhin ist bekannt, dass PTCH2 in verschiedenen Splice-Varianten auftreten kann (Zaphiropoulos, 2004), was im DigiWest ein Signal an falscher Stelle erklärt hätte.

Obwohl sich die massenspektrometrischen Proteinanalysen immer weiter entwickeln, sind Immunoassays immer noch deutlich sensitiver. Da beide Methoden Vor- und Nachteile aufzeigen, ist es wichtig dass beide Technologien koexistieren und auch in Verbindung eingesetzt werden. Speziell in dieser Arbeit wäre durch den alleinigen Einsatz des DigiWests ohne die Massenspektrometrie die eindeutige Identifikation des unbekannten Proteins nur schwer möglich gewesen. Nach Detektion des Proteins bei unerwarteter molekularer Masse mit Hilfe des PTCH2 Antikörpers auf einem 2D-Blot und dem Spot-Picking im zugehörigen 2D-Gel konnte mit Hilfe der Massenspektrometrie die Identität des unbekannten Proteins ausfindig gemacht werden. Bei dem Protein handelte es sich nicht um eine verkürzte Variante des PTCH2, sondern um die Ornithine Aminotransferase, welche bereits als differenziell exprimiertes Protein in der Leber identifiziert wurde (Kuo, Darnell, et al., 1991).

Der DigiWest aber auch der neu entwickelte und automatisierte LiquiWest zeigen, dass hoch parallelisierte und gleichzeitig höchst sensitive Immunoassayformate neben der Massenspektrometrie wichtige Grundpfeiler der Proteinanalytik darstellen und in Zukunft auch weiter Einzug halten werden. Durch den hohen Durchsatz der Assaytechnologien können zudem Antikörpervalidierungen schnell und effizient auf diversen Geweben durchgeführt werden und gleichzeitig das neue DigiWest/LiquiWest-System in sich validieren. Dadurch können nicht nur sehr valide Messergebnisse erstellt, sondern auch globale Datensätze generiert werden, die bisher mit Hilfe der Massenspektrometrie zugänglich waren.

5.2 Biologische Analysen isolierter Hepatozyten

Die Leber ist das Hauptorgan des Metabolismus von körpereigenen und körperfremden Stoffen. In ihrem Feinbau besteht die Leber aus tausenden sich wiederholenden Strukturen, den sogenannten Leberläppchen. Diese wiederum sind maßgeblich aus Hepatozyten aufgebaut, welche mit ihrer enzymatischen Ausstattung die eigentlichen Stoffwechselvorgänge durchführen. Die Hepatozyten sind hexagonal um jeweils eine Zentralvene angeordnet, wobei an den Peripherien jeweils eine Glisson-Triade, bestehende aus Pfortader, Gallengang und Leberarterie vorzufinden ist. Nähstoff- und sauerstoffreiches Blut gelangt auf der Seite der Triade, der sogenannten periportalen Region, in das Leberläppchen und fließt entlang des Lebersiunusoids Richtung perizentraler Seite. Dabei findet ein reger Stoffaustausch mit den Hepatozyten statt, wodurch die im Blut befindlichen Stoffe durch die sogenannte Biotransformation wasserlöslich und somit für den Körper ausscheidbar gemacht werden. Hepatozyten entlang der Porto-Zentral-Achse weisen signifikant unterschiedliche Funktionen auf, welche sich in ihrem Proteinexpressionsmuster widerspiegeln (Scanlon, 2010). Durch die getrennte Analyse von perizentralen und periportalen Hepatozyten mit Hilfe der Massenspektrometrie, dem DigiWest als auch dem neu entwickelten LiquiWest war es möglich diese Proteinexpressionsunterschiede in einer großangelegten Studie detailliert zu untersuchen und dabei auch funktionelle Unterschiede in Form von postranslationalen Modifikationen genauer zu betrachten.

5.2.1 Protein-Expressionsunterschiede PZ und PP Hepatozyten

Die massenspektrometrische Analyse der perizentralen und periportalen Hepatozyten identifizierte insgesamt 1066 Proteine. Dabei waren 61 Proteine signifikant (FC > 2 und p-Wert < 0,05) auf perizentraler Seite und 27 signifikant auf periportaler Seite höher exprimiert. Wenn der p-Wert außer Acht gelassen wird, waren es perizentral 72 und periportal 34. Da die jeweils zusammengehörigen Werte sehr nahe beieinander lagen, deutet dies auf eine sehr gute experimentelle als auch biologische Reproduzierbarkeit der Experimente hin.

Auch im DigiWest wurde der differenzielle Charakter beider Hepatozytenarten genauer beleuchtet. Von den zirka 1200 eingesetzten Antikörpern generierten knapp 500 ein auswertbares Signal. Von diesen wiederum waren 39 perizentral und 50 periportal signifikant höher exprimiert. DigiWest und Massenspektrometrie erzielten bei den Analyten, die mit beiden Technologien erfasst wurden, vollständig vergleichbare Ergebnisse und bestätigen somit die Relevanz beider Datensätze. Die hier erzielten Ergebnisse verifizierten und erweiterten die bisher erworbenen Kenntnisse der Leberzonierung das erste Mal im großen Maßstab auf Proteinebene, da bisher größere Analysen der Leberzonierung lediglich auf RNA-Ebene durchgeführt worden sind (Braeuning, Ittrich, et al., 2006). Diese haben zwar einen enormen Durchsatz, eine Korrelation in ihrer Abundanz zwischen RNA und den schlussendlich funktionellen Proteinen ist jedoch selten gegeben (Maier, Güell, et al., 2009), (Vogel & Marcotte, 2012). Zudem ist es nur auf Proteinebene möglich posttranslationale Modifikationen, welche wichtige Funktionen in Aktivierungszuständen von Proteinen einnehmen, zu analysieren (Mann & Jensen, 2003).

In der vorliegenden Arbeit wurde gezeigt, dass mit Hilfe der Massenspektrometrie weitreichende Einblicke in die differenzielle Expression verschiedener Stoffwechselenzyme entlang des Leberläppchens erlangt werden können. Weiterhin konnten durch den Einsatz hunderter hoch spezifischer sowie sensitiver Antikörper im DigiWest und LiquiWest das erste Mal im hohen Durchsatz regulatorische Signalwege betrachtet und deren Aktivierungszustand auf Phosphoprotein-Ebene erfasst werden.

5.2.1.1 Full-MS Analyse isolierter PZ und PP Hepatozyten

Sauerstoffreiches Blut gelangt über die Portalvene in den Lebersinusoid, wodurch die periportalen Hepatozyten einem höheren Sauerstoffpartialdruck ausgesetzt sind als die perizentralen Leberzellen. Dies wurde in einer differenziellen Expression von oxidativen Prozessen deutlich erkennbar. Die mitochondriale Atmungskette mit den Komplexen I - IV war periportal sehr viel stärker aktiviert als perizentral (Abbildung 33). Vor allem die periportale Hochregulation von Komplex II ist in der Literatur bisher wenig diskutiert worden (Gebhardt & Matz-Soja, 2014).

Die unterschiedliche Expression der an der Glycolyse beteiligten Enzyme auf perizentraler Seite sowie die der Gluconeogenese auf periportaler Seite ist seit Jahrzehnten bekannt und deckt sich ohne Widerspruch mit den hier durchgeführten Proteinanalysen (Katz, Teutsch, et al., 1977). Relativ neu und bisher nur auf RNA-Ebene gezeigt, ist der Nachweis einer perizentralen Hochregulation der Alkoholdehydrogenase. Die Expression dieses Enzyms steht unter der Regulation von cytosolischem Beta-Catenin (Liu, Yeh, et al., 2012), welches als wichtiges Molekül des Wnt-Signalwegs für die Etablierung und Aufrechterhaltung des perizentralen Charakters notwendig ist (Benhamouche, Decaens, et al., 2006).

Beta-Catenin wurde in den Analysen nicht als differenziell exprimiertes Protein detektiert. Dies liegt vermutlich daran, dass ein Großteil des Proteins an die Zellmembran gebunden ist, wo es als Strukturprotein Zell-Zell-Kontakte vermittelt (Kemler, 1993). Wie auch in dieser Arbeit wiesen andere Wissenschaftler, die sich mit dem Einfluss des Wnt-Signalwegs auf die Leberzonierung befassten, eine Aktivierung des genannten Signalwegs nur über dessen Zielgene nach. So wurden bei den MS- und DigiWest Messungen isolierter Hepatozyten eine signifikante Hochregulierung der Proteine GS und CYP2E1 nachgewiesen, die eindeutig auf die Aktivierung des Beta-Catenin beinhaltenden Signalwegs hindeuten (Schwarz, Buchmann,

et al., 1989). Zudem konnte von anderen Gruppen in Beta-Catenin Knockout- und Überexpressionsstudien, die Rolle von Beta-Catenin näher beleuchtet werden (Sekine, Lan, et al., 2006), (Birchmeier, 2016). So wurde beobachtet, dass nach einem Knockout von APC (Adenomatous-polyposis-coli), einem negativen Regulator des Wnt-Signalwegs, alle Hepatozyten der Porto-Zentral-Achse einen perizentralen Charakter auswiesen und gleichzeitig den periportalen Charakter unterdrückten (Benhamouche, Decaens, et al., 2006). Der umgekehrte Fall wurde in Mäusen, die mit dem Wnt-Inhibitor Dkk 1 (Dickkopf-related protein 1) behandelt wurden, durchgeführt. Dabei wiesen die Hepatozyten unabhängig ihrer Position im Leberläppchen einen periportalen Charakter auf (Cavard, Colnot, et al., 2008).

Die in dieser Arbeit eingesetzten Methoden DigiWest und Massenspektrometrie konnten in der untersuchten Maus ebenfalls nicht zwischen Membran-gebundenem Beta Catenin und jenem Beta-Catenin, welches als wichtiger Regulator im Wnt-Signalweg auftaucht, unterscheiden. Auch ein spezieller Beta-Catenin-Antikörper, welcher nur die aktivierte, d.h. dephosporylierte Version des Beta-Catenins erkennt, konnte keine erhöhte Menge dieses Proteins auf perizentraler Seite direkt erkennen. Eine Detektion des aktivierten Wnt-Signalwegs gelang wie oben beschrieben nur über dessen Zielgene. So konnte die GS und Cyp2E1 eindeutig PZ differenziell exprimiert nachgewiesen werden. Andere in der Literatur beschriebene Zielgene wie LGR5 und RNF43 (Planas-Paz, Orsini, et al., 2016) konnten aufgrund schwacher Antikörpersignale nicht eindeutig nachgewiesen werden.

Der Wnt-Signalweg stellt auch einen Negativregulator bestimmter Gene dar. So unterdrückt er unter anderem die Expression der Glutaminase 2, Arginase 1 und Carbamoyl-phosphat-Synthase (Cadoret, Ovejero, et al., 2002). Diese Proteine konnten in dieser Arbeit valide der periportalen Seite zugeordnet werden und bestätigten somit die divergente Rolle des Wnt-Signalwegs in beiden Hepatozytentarten.

Ein weiterer mit dem Wnt-Signalweg verknüpfter Vorgang ist der Metabolismus von Fremdstoffen. Über den Beta-Catenin beinhaltenden Signalweg wird die Expression der Monooxygenasen CYP1A1 und CYP2E1 positiv reguliert. (Braeuning, Sanna, et al., 2009). Die damit einhergehende erhöhte Expression der beiden Enzyme konnte sowohl in der MS als auch im Digiwest valide nachgewiesen werden. Durch die MS-Proteinanalyse konnten zudem weitere noch nicht in der Literatur beschriebene Monooxygenasen als differenziell exprimiert beschrieben werden. Darunter waren die Enzyme CYP2C29, CYP2C37, CYP2C50 und CYP2C54, welche alle eine perizentrale Zonierung aufwiesen. Bei den mit dem Fremdsstoffmetabolismus assoziierten Xenobiotikasensoren Ahr (aryl hydrocarbon receptor) und Car (constitutive androstane receptor) konnte keine differenzielle Expression festgestellt werden, obwohl dieser Unterschied auf RNA Ebene nachgewiesen wurde (Hailfinger, Jaworski, et al., 2006). Im MS-Ansatz wurde keines der Proteine detektiert und im DigiWest zeigten die entsprechenden Antikörper entweder nur ein schwaches Signal oder einen hohen Hintergrund.

Der TXP-CYP-Assay (4.2.2), bei welchem eine Immunaffinitätsanreicherung definierter CYP-Enzyme vor der eigentlichen massenspektrometrischen Messung zum Einsatz kam, konnte sechs CYPs (CYP2A2, CYP2B10, CYP2C39, CYP2C55, CYP2D40 und CYP3A44) ausmachen, die mit dem Full-MS Ansatz nicht identifiziert werden konnten. Zwar war in diesem Fall nur eines der Enzyme (CYP2C55) differenziell exprimiert und wurde bereits in einer RNA-Analyse als solches identifiziert; das Experiment zeigte jedoch, dass eine Antikörper-Anreicherung von niedrig abundanten Proteinen vor einer massenspektrometrischen Analyse Vorteile bieten kann (Kaboord, Smith, et al., 2015). Obwohl in einem solchen voreingenommenen (biased) Versuchsaufbau nicht mehr das gesamte Proteom betrachtet werden kann, können durch eine gezielte Anreicherung niedrig abundante Proteine, welche oft wichtige regulatorische Eigenschaften aufweisen, erst dann nachgewiesen werden.

Bei der Analyse der Enzyme des Fettsäureabbaus waren keine Unterschiede zwischen perizentraler und periportaler Seite erkennbar. Die Enzyme Acyl-CoA-Oxidase (EC 1.3.3.6), Acyl-CoA-Dehydrogenase (EC1.3.8.7), Long-chain acyl-CoA Dehydrogenase (EC 1.3.8.8), very-long-chain acyl-CoA Dehydrogenase (EC1.3.8.9), Enoyl-CoA-Hydratase (EC 4.2.1.17), 3-hydroxyacyl-CoA Dehydrogenase (EC 1.1.1.35), Beta-hydroxyacyl-CoA Dehydrogenase (EC 1.1.1.35), Beta-hydroxyacyl-CoA Dehydrogenase (EC 1.1.1.211) und Beta-Ketothiolase (EC 2.3.1.16) waren in beiden Hepatozytenarten gleich verteilt (Abbildung 33). Dies steht in einem Widerspruch zu RNA-Analysen von 2006 und könnte auf eine nicht vorhandene Korrelation zwischen Protein- und RNA- Aufkommen hindeuten (Braeuning, Ittrich, et al., 2006).

Andere Stoffwechselvorgänge wie der Citratzyklus, welcher vorwiegend perizentral ausgeprägt ist (Vasilj, Gentzel, et al., 2012) sowie der Aminosäuremetabolismus, welcher einer höhere Expression periportal zeigt, wurden bereits auf RNA Ebene identifiziert (Braeuning, Ittrich, et al., 2006) und konnten hier auf Proteinebene bestätigt werden.

Es ist bekannt, dass Purine und Pyrimidine, welche für den Aufbau der RNA und DNA benötigt werden, in der Niere und Leber metabolisiert werden (Pritchard, Chavez-Peon, et al., 1970). Durch die MS-Analyse konnte gezeigt werden, dass einige am Purinmetabolismus beteiligten Enzyme in beiden Leberläppchen-Bereichen in gleichem Maße exprimiert werden. Sieben Enzyme [(Adenin-Phosphoribosyltransferase (EC 2.4.2.7), Nucleoside-diphosphatase (EC 3.6.1.6), Hypoxanthin-Phosphoribosyl-Transferase 1 (EC 2.4.2.8), Xanthindehydro-genase (EC 1.17.1.4), Xanthinoxidase (EC 1.17.3.2), Sulfat-Adenylyltransferase (EC 2.7.7.4) und Adenylyl-Aulfat Kinase (EC 2.7.1.25)] zeigten jedoch eine differenzielle Expression zugunsten der perizentralen Seite (Abbildung 33). Die Kombination dieser Beobachtung ist bisher nicht in der Literatur aufgeführt.

5.2.1.2 DigiWest-Analyse isolierter PZ und PP Hepatozyten

Bei der Full-MS Proteinanalyse der zonierten Hepatozyten wurden fast ausschließlich Stoffwechselenzyme identifiziert, welche in der Leber – als wichtigstes Stoffwechselorgan – in hohem Maße exprimiert werden. Um niedrig abundante Proteine aus regulatorischen Signalkaskaden oder auch posttranslationale Modifikationen nachweisen zu können, ist es für massenspektrometrische Ansätze jedoch notwendig Anreicherungsschritte vor der Analyse durchzuführen. Solche Anreicherungen können beispielsweise, wie auch in dieser Arbeit, mit Antikörpern oder im speziellen Fall von Phosphorylierungen mit Titandioxid-Säulen geschehen (Fíla & Honys, 2012).

Durch den Einsatz spezifischer Antiköper, ist es mit Hilfe des DigiWests möglich aus wenig Probenmaterial auch ohne aufwändige und unter Umständen probenverändernde Anreicherungsschritte Phosphoprotein-Analysen durchzuführen und gleichzeitig auch niedrig abundante Proteine aus Signalwegen zu studieren. Zudem kann der hier durchgeführte DigiWest Ansatz mit 1200 Antikörpern – ähnlich des Full-MS-Experiments, bei welchem 1100 Proteine identifiziert wurden – als ein nahezu unvoreingenommener (unbiased) Versuchsansatz angesehen werden. So konnte mit Hilfe des DigiWests das erste Mal eine große Untersuchung zonierter Hepatozyten auf Proteinebene durchgeführt werden, welche zusätzlich den Aktivierungszustand bestimmter Signalwege in Form von Phosphorylierungen näher beleuchtete. Damit war es möglich die MS-Ergebnisse bezogen auf die Stoffwechselenzyme zu bestätigen und auf regulatorischer Ebene zu erweitern. So war beispielsweise AMPK alpha in seiner aktivierten Form (phosphoryliert an Threonin 172) periportal signifikant höher exprimiert. Das Protein ist mit dem Fettsäuremetabolismus und der Gluconeogenese eng verbunden und fügt sich somit in das bestehende Bild der metabolischen Zonierung des Glucosestoffwechsels mit ein (Abbildung 33).

Neben dem bereits in Kapitel 5.2.1.1 näher beleuchteten Beta-Catenin beinhaltenden Wnt-Signalweg wurde im DigiWest auch der MAP-(*mitogen-activated protein*) Kinase Signalweg und die damit interagierenden Signalwege näher betrachtet.

Die Gruppe um M. Schwarz postulierte bereits 2007, dass der MAP-Kinase Signalweg als ein Antagonist des Beta-Catenin-Signalwegs in der Leber angesehen werden kann (Braeuning, Menzel, et al., 2007). Bei der Analyse von Lebertumoren entdeckten sie eine eindeutige Korrelation der RNA Expression zwischen Beta-Catenin mutierten Tumoren und perizentralen Hepatozyten. Außerdem wurde eine etwas schwächere Korrelation der RNA-Expression zwischen Ha-ras mutierten Tumoren und periportalen Hepatozyten gezeigt (Braeuning, Ittrich, et al., 2007). Dabei ist Ha-ras eine GTPase, welche den MAP-Kinase Signalweg aktiviert. Eine solche Aktivierung konnte im DigiWest Experiment nachgewiesen werden und untermauerte die Ergebnisse der zuvor genannten Arbeitsgruppe. Die Signalkaskade von Ras über MEK, ERK1/2 und p70 S6 Kinase bis hin zu der daraus resultierenden Expression der Zielgene VEGF (Vascular Endothelial Growth Factor) und Pai-1 (Plasminogen-Aktivator-Inhibitor) lag periportal in einem aktivierten Zustand vor (Abbildung 33). Außerdem war das MAP-Kinase aktivierende Protein PAK1/2 (aktiviert durch Phosphorylierung) periportal ebenfalls hochreguliert.

Das Enzym MKK4, ebenfalls ein MAPK-Aktivator, war PZ hochreguliert, was sich nicht perfekt in das oben beschriebene Bild einfügt. MKK4 wurde jedoch als ein Schlüssel-Regulator der Leberregeneration identifiziert (Wuestefeld, Pesic, et al., 2013). Es wäre möglich, dass sich die Zellen nach der Leberperfusion versuchen zu regenerieren. Dieser Effekt trat hauptsächlich auf perizentraler Seite auf und könnte drauf hindeuten, dass diese Zellen ein schnelleres Regenerationsvermögen besitzen als das periportale Pendent. Diese These wird unter anderem auch dadurch untermauert, dass die in dieser Arbeit kultivierten GS+ Hepatozyten (4.4.2), welche den perizentralen Leberzellen entsprechen, ein besseres Kultivierungsverhalten zeigten als die GS- Hepatozyten.

Auch die bereits genannten Proteine GS und CYP2E1, welche für den indirekten Nachweis der perizentralen Aktivierung des Wnt-Signalweges dienten, konnten im DigiWest valide nachgewiesen werden. Slug, ein Transkriptionsfaktor am Ende des Wnt-Signalwegs war perizentral erhöht. Slug stellt dabei einen transkriptionellen Repressor der E-Cadherin-Expression dar. Dies könnte erklären warum E-Cadherin nur periportal auftritt und deshalb als periportaler Marker gilt (Doi, Tamura, et al., 2007). Weiterhin lagen DUSP5, ein Inaktivator von ERK1/2 sowie Caveolin-1, ein Inaktivator des MAP-Kinase Signalwegs, perizentral signifikant erhöht vor (Kucharska, Rushworth, et al., 2009). Perizentrale Hepatozyten aktivieren somit nicht nur den Wnt-Signalweg, sondern unterdrücken womöglich aktiv den MAPK-Signalweg. Nicht klar in die beschriebene Vorstellung passt hierbei, dass DUSP4, ebenfalls ein Protein das ERK1/2 dephosphoryliert und damit inaktiviert, auf periportaler Seite verstärkt exprimiert vorlag (E. Zeller, Mock, et al., 2012).

Ein weiterer Signalweg, welcher auf periportaler Seite aktiviert vorlag, war der TGF-Beta-Signalweg mit den darin enthaltenen Smad-Proteinen (Heldin, Miyazono, et al., 1997), (Abbildung 33). Smad 3 und Smad 4 (beide periportal hochreguliert) bilden bei Aktivierung einen Komplex und dienen unter anderem als Transkriptionsfaktor der ebenfalls periportal hochregulierten Proteinen Pai-1 (Plasminogen-Aktivator-Inhibitor) und CTGF (*connective tissue growth factor*) (Lin, Liang, et al., 2003). Die Proteinkinase B, besser bekannt als Akt, kann die Aktivierung der Smads unterbinden (Euler-Taimor & Heger, 2006). Da Akt hauptsächlich in den perizentralen Hepatozyten aktiviert (phosphoryliert an Threonin 308) vorlag, erklärt dies die Unterdrückung der Smad-Aktivierung auf perizentraler Seite (Alessi, Andjelkovic, et al., 1996).

CTGF ist ein wichtiges Extrazellulärmatrix-assoziiertes Protein, welches unter anderem mit Kollagen IV interagiert (Hall-Glenn, De Young, et al., 2012). Kollagen IV wiederum wird vermehrt von periportalen Hepatozyten gebildet (Godoy, Hewitt, et al., 2013). Verglichen mit anderen Organen existiert in der Leber generell wenig extrazelluläre Matrix. Trotzdem ist sie sehr wichtig für den Differenzierungszustand und die Ausrichtung der Hepatozyten zur apikalen und basolateralen Seite (Martinez-Hernandez & Amenta, 1993).

HNF4 alpha (Hepatocyte nuclear factor) zeigte in seiner Gesamtmenge in den DigiWest Messungen eine homogene Verteilung zwischen perizentralen und periportalen Hepatozyten. Diese Beobachtung stimmt mit der Literatur überein, worin HNF4 alpha zwar ein wichtiges regulatorisches Protein in der Leber darstellt aber keinen Einfluss auf die Leberzonierung nimmt (Lindros, Oinonen, et al., 1997). Zudem konnte eine Inaktivierung von HNF4 alpha an der Phosphorylierungsstelle Serin 313 auf periportaler Seite wie in einer anderen Arbeit gezeigt und nicht klar eingeordnet werden konnte, hier nicht bestätigt werden (Treindl, Zabinsky, et al., 2017). Die genannte Phosphorylierung zeigte wie das Gesamtprotein eine homogene Verteilung entlang der Porto-Zentral-Achse. Durch diesen Sachverhalt kann eine Interaktion zwischen den beiden in der Leber wichtigen Ko-Aktivatoren HNF4 alpha und PGC-1 alpha (aktivierende Posphorylierung an Serin 571 periportal hochreguliert) periportal erklärt werden. Die Interaktion der beiden Proteine wird für die Expression der Enzyme Phosphoenolpyruvat-Carboxykinase (PEPCK) und Glucose-6-Phosphatase benötigt, welche wichtige Faktoren der Gluconeogenese darstellen (Lustig, Ruas, et al., 2011). Durch diesen Sachverhalt lässt sich eine Aktivierung der Gluconeogenese periportal erklären (Abbildung 33).

In einer weiteren Studie wurde zudem gezeigt, dass eine Verbindung zwischen HNF4 alpha und dem Wnt-Signalweg besteht (Zeng & Monga, 2009). In dieser wurde bestätigt, dass durch den Knock-Out von Beta-Catenin auch die Expression von HNF4 alpha sinkt. Durch eine Überexpression von Beta-Catenin war das Gegenteil der Fall. Solche Proben wären für eine globale Betrachtung mittels DigiWest und Massenspektrometrie ebenfalls interessant.

Das HNF4 verwandte Protein HNF1 ist ein Transkriptionsfaktor, der an der Regulation des Glucosemetabolismus beteiligt ist. HNF1-alpha lag fast ausschließlich periportal exprimiert vor. Auf RNA-Ebene war bisher von einer gleichmäßigen Verteilung dieses Proteins entlang der Porto-Zentral-Achse ausgegangen worden (Lindros, Oinonen, et al., 1997).

5.2.1.3 Zusammenfassung der Proteinanalysen von PZ und PP Hepatozyten

Die massenspektrometrischen Proteinanalysen konnten einen Großteil der bereits in der Literatur beschriebenen differenziell exprimierten Proteine nachweisen und deren zonierte Expression bestätigen (Abbildung 33). Die Experimente konnten die Erkenntnisse jedoch auch erweitern. So wurde eine differenzielle Expression der am Purinmetabolismus beteiligten Enzyme nachgewiesen, die in der Literatur bisher noch nicht diskutiert wurde.

Abbildung 33: Aufbau eines Leberläppchens mit den in dieser Arbeit als zoniert identifizierten metabolischen Vorgängen sowie zonierten Signalwegen. Abbildung des Leberläppchens modifiziert nach (Birchmeier, 2016).

Des Weiteren wurden einige Proteine detektiert, die in der Literatur auf RNA-Ebene eine abweichende Zonierung zeigten. Die sowohl im DigiWest als auch in der Massenspektrometrie detektierten Proteine zeigten hinsichtlich ihrer Expression eine sehr gute Korrelation zwischen den beiden Techniken (Abbildung 15). So konnten auch im DigiWest ein Großteil der in der Massenspektrometrie detektierten Stoffwechselenzyme detektiert und ihre differenzielle Expression bestätigt werden.

Durch die Verwendung phosphospezifischer Antikörper war es im DigiWest jedoch zusätzlich möglich proteinregulatorische Effekte näher zu betrachten. So konnte durch den Phosphorylierungsstatus entsprechender Proteine eine Aktivierung des MAP-Kinase-Signalwegs und des TGF-beta-Signalwegs periportal nachgewiesen werden (Abbildung 33). Weiterhin wurde die Aktivierung des Wnt-Signalwegs auf perizentraler Seite bestätigt. Diese Sachverhalte stärken die These eines bereits postulierten Feedbackmechanismus zwischen beiden Seiten des Leberläppchens (Braeuning, Menzel, et al., 2007). So wird laut dieser Theorie der perizentrale Bereich durch den Wnt-Signalweg und der periportale Bereich durch den MAPK-Signalweg kontrolliert, wobei die jeweils nicht aktiven Signalwege von der anderen Seite fortwährend unterdrückt werden.

5.2.2 FACS sortierte und kultivierte GS+ und GS- Hepatozyten

Bei der GS-Reporter-Maus befinden sich unterhalb des Gens der Glutaminsynthetase (Glul), Reportergene, welche für die Proteine Thymidinkinase 1, Luziferase sowie die β-Galactosidase kodieren. In einer vorangegangenen Arbeit wurde dieser Mausstamm bereits für Aufnahmen am lebenden System verwendet (Zeller, 2014). So konnten mittels Positronen-Emissions-Tomographie (PET) Echtzeit-Aufnahmen verschiedener Gewebe der GS-Maus nach Umsetzung des Substrates ¹⁸F-FHBG durch die Thymidinkinase 1 erstellt werden. Auch durch die Zugabe von Luziferin in Gewebehomogenate und die damit einhergehende Umsetzung durch die Luziferase konnten indirekt Einblicke in die GS-Aktivität geben. Weiterhin ist es das Ziel einen GS-Expressionsatlas zu erstellen, der zeigt in welchen Geweben und Zellen der Wnt-Signalweg – gezeigt durch die Expression der GS – aktiv vorliegt.

Die oben beschriebene GS-Reporter-Maus wurde in dieser Arbeit das erste Mal für eine Separierung verschiedener Zelltypen verwendet. In diesem Fall waren es GS+ und GS-Hepatozyten. Dabei wurde der β-Galactosidase-Reporter verwendet, der das Substrat FDG umsetzte und damit die entsprechenden Zellen im FACS Gerät durch eine Fluoreszenzmarkierung von den anderen Hepatozyten unterscheidbar machte. Im Gegensatz zu einer Trennung der verschiedenen Hepatozytenpopulationen mittels Laser-Mikrodisektion (Treindl, 2015) oder mit Hilfe der Digitonin-Kollagenase Perfusion sind die zonierten Hepatozyten nach der FACS-Sortierung noch vital (lebend) und nicht durch Tenside (Digitonin) angegriffen. Die Kehrseite der FACS-Sortierung liegt jedoch darin, dass dabei lediglich GS+ Hepatozyten selektiv angereichert werden. Alle GS- Hepatozyten, d. h. die periportalen und auch die midzonalen Zellen werden vereint, da diese im eingesetzten FACS-System keinen spezifischen Marker aufweisen. Es entstehen somit zwei Hepatozytenpopulationen. Einmal eine hochreine GS+ Population, welche den perizentralen Hepatozyten aus der Digitonin-Kollagenase Perfusion entsprechen und die GS- Hepatozyten, die eine Mischung aus den restlichen Hepatozyten darstellen. Dies wiederum bedeutet, dass die Trenneffizienz zwischen den beiden Populationen fließender ist als bei der Digitonin-Trennung. Diese Tatsache spiegelte sich auch bei den DigiWest Ergebnissen wider. Die Unterschiede der detektierten Proteinmengen waren bei den GS+ und GS- Hepatozyten deutlich schwächer ausgeprägt als bei den PP und PZ Hepatozyten, die mittels Digitonin-Kollagenase Perfusion gewonnen wurden (4.4).

Der große Vorteil der neuen Trennmethode liegt jedoch darin, dass die Zellen abgesehen von der Kollagenase keinen vitalitätsschädlichen Stoffen ausgesetzt sind und somit eine Kultivierung *in vitro* begünstigt werden kann. Die Kultivierung von GS+ und GS- Hepatozyten konnte damit getrennt erfolgen und unterschied sich fundamental von bisherigen Experimenten anderer Arbeitsgruppen, die ein Gemisch aus Primärhepatozyten aus dem gesamten Leberläppchen für die Kultivierung verwendeten (Tateno & Yoshizato, 1996), (Bachmann, Moll, et al., 2015).

5.2.2.1 Kultivierte GS+ und GS- Hepatozyten

Wie im vorangegangenen Teil der Diskussion schon beschrieben, gibt laut aktuellen Erkenntnissen der Wnt-Signalweg bei den perizentralen Hepatozyten ein wichtiges, wenn nicht als auschlaggebendes Signal für deren korrekten Differenzierungsstatus (Angelica & Fong, 2008). Diese Theorie wurde bei der Kultivierung der Hepatozyten näher betrachtet, weshalb das Hauptaugenmerk den GS+ Hepatozyten galt. Die Herkunft des Beta-Catenin aktivierenden Signals ist noch weitestgehend unverstanden. Es ist jedoch bekannt, dass durch die Überexpression von DKK1, einem Wnt Antagonisten, das Wnt-Signal unterdrückt wird und damit eine Reihe perizentraler Marker nicht mehr exprimiert werden (Benhamouche, Decaens, et al., 2006). Dies führte zu der Hypothese, dass Zellen nahe der Zentralvene Wnt-Moleküle aussenden, die die umliegenden Hepatozyten stimulieren, sodass diese ihren perizentralen Charakter erwerben (Hailfinger, Jaworski, et al., 2006). Dieser Effekt konnte bereits in vitro in einer Ko-Kultur von Hepatozyten mit Wnt produzierenden Endothelzellen auf RNA-Ebene gezeigt werden (Braeuning & Schwarz, 2010). Weitere Studien zeigten, dass eine Inkubation von Primärhepatozyten mit Wnt3a zu einer erhöhten Expression von verschiedenen CYP-RNAs unter anderem für CYP2E1 führte. Diese Enzyme stehen laut aktuellen Erkenntnissen unter der Kontrolle des Wnt-Signalwegs (Hailfinger, Jaworski, et al., 2006), (Braeuning, Kohle, et al., 2011). Die beschriebenen Effekte konnten in dieser Arbeit bestätigt werden. Bei Kultivierung der beiden Hepatozytenpopulationen wurde eine Aktivierung des Wnt-Signalwegs beobachtet. Der Wnt-Rezeptor Frizzeled-1, das Gesamt-Beta-Catenin als auch die aktivierte Variante von Beta-Catenin (phosphoryliert an Serin 675) stiegen über die Kultivierungszeit an. Das unter Kontrolle des Wnt-Signalwegs stehende CYP2E1 blieb hingegen konstant, CYP3A11 hingegen stieg deutlich an. Dieser Effekt trat sowohl bei den GS+ Hepatozyten als auch den GS- Hepatozyten auf. Unerwarteter Weise war dieser Effekt auch unabhängig einer Behandlung mit den Wnt-Agonisten Wnt3a und R-Spondin 3 zu erkennen. Generell konnte bei keinem der 92 Analyten zwischen Behandlung und Kontrolle unterschieden werden. Ein möglicher Grund hierfür könnte der Einsatz von FKS (Fetales Kälberserum) im Kulturmedium sein. Dieses enthält EGF (Epidermaler Wachstumsfaktor), welcher durch Stimulation des EGF-Rezeptors den MAP-Kinase Signalweg – unter anderem ersichtlich durch einen erhöhten Phosporylierungsgrad von ERK1/2 – aktiviert (Braeuning, 2008). Diese Aktivierung wiederum ist typisch für periportale Hepatozyten. EGF kann somit bezogen auf den Differenzierungsstatus der verschiedenen Hepatozyten als eine Art Gegenspieler der eingesetzten Wnt3a- und R-Spondin 3-Moleküle angesehen werden.

Für ein weiteres Experiment wäre es möglich die FKS-Konzentration zu erniedrigen oder die Wnt-Agonisten in ihrer Konzentration zu erhöhen. Da bis jetzt etwa 19 verschiedene Wnt-Faktoren in der Maus identifiziert wurden, von welchen ein Großteil in der Leber produziert werden, wäre es ebenfalls möglich andere Wnt-Moleküle zu verwenden, um den perizentralen Charakter der GS+ (perizentralen) Hepatozyten aufrecht zu erhalten (Zeng, Awan, et al., 2007).

Weiterhin konnte ein Anstieg der Phosphorylierung von ERK während der Kultivierungszeit gezeigt werden. Aktuelle Erkenntnisse deuten zudem darauf hin, dass eine steigende Phosphorylierung von ERK auch bereits durch den Stress der Hepatozyten-Isolation hervorgerufen werden kann und auf eine Dedifferenzierung der Zellen hindeutet (Godoy, Hengstler, et al., 2009). Mit dem Phänomen der steigenden Phosporylierung geht auch ein Anstieg des Proteins Akt einher, welches generell mit einer Resistenz gegenüber Apoptose durch Aktivierung von p38 verbunden wird. Die untersuchten Apoptosemarker Bax und GAS2 deuten jedoch darauf hin, dass einige Zellen in die Apoptose gingen.

Bei den in dieser Arbeit verwendeten Kultivierungsbedingungen (2D-Kultur auf Kollagen I beschichteten Platten) deutet alles darauf hin, dass die Wnt-Behandlung keinen messbaren Effekt auf die Aufrechterhaltung des Zellstatus zeigt. Die Zellen verhielten sich mit und ohne Behandlung absolut vergleichbar. Metabolismus-spezifische Enzyme sanken über den Kultivierungszeitraum stark ab und der perizentrale Marker GS ging fast komplett verloren.

Die Hepatozyten nahmen auf dem Kollagen eine flache Morphologie ein und bildeten in hohem Maße Actin Stress-Fasern aus (Dunn, Tompkins, et al., 1991). Durch Isolation und *in vitro* Kultur gingen zudem wichtige Kontakte zwischen Zellen und extrazellulärer Matrix als auch Zell-Zell-Kontakte verloren. Damit ist auch ein Verlust von parakrinen Signalen, welche nicht nur die oben beschriebenen Wnt-Signale beinhalten, verbunden. Außerdem ist es den Zellen nicht mehr möglich zwischen basolateraler und apikaler Seite zu unterscheiden und ihre Zellpolung danach auszurichten. Es ist zwar möglich Sandwich-, 3D- und Ko-Kulturen zu etablieren, um die in vivo Situation nachzuahmen, eine Dedifferenzierung scheint jedoch auch unter deutlich verbesserten Kulturbedingungen nur eine Frage der Zeit zu sein (Gómez-Lechón, Jover, et al., 1998) (Rodríguez-Antona, Donato, et al., 2002). Eine der besten momentan zur Verfügung stehenden Techniken, um Hepatozyten möglichst für eine lange Zeit in ihrem hoch spezialisierten, differenzierten Zustand zu behalten, sind Hepatozyten-3D-Kulturen. Dazu werden Hepatozyten mit anderen leberspezifischen Zellen in extrazelluläre Matrix eingebettet und zusätzlich mit einer Perfusion gekoppelt. Dieser Aufbau ähnelt somit sehr einem in vivo System (Takebe, Sekine, et al., 2013), (Bachmann, Moll, et al., 2015), (Huch, Gehart, et al., 2015). Trotz allem sind solche Versuche technisch sehr aufwändig und somit beschränken sich Standard-Kultivierungsmethoden häufig auf 2D- oder einfache 3D-Kulturen. Dies bedingt jedoch häufig eine enorme Veränderung der Genexpressionsmuster. So konnte 2010 in Hepatozyten auf RNA-Ebene gezeigt werden, dass die Expression von 3000 Genen um mindestens Faktor drei bei Kultivierung auf Kollagen verändert wurden (Zellmer, Schmidt-Heck, et al., 2010).

Eine interessante Erkenntnis, welche aus der Kultivierung gewonnen wurde, war die Aktivierung des Hedgehog- und Hippo-Signalwegs (4.4.2.1). Der Hedgehog-Signalweg ist vor allem während der Embryogenese aktiv und zudem wichtig für die Proliferation und Differenzierung von Zellen (Omenetti, Choi, et al., 2011). Häufig wird er auch mit einer Ko-Aktivierung des Wnt-Signalwegs in Verbindung gebracht (Gebhardt & Matz-Soja, 2014). Über eine Expression von Hedgehog-Proteinen in adulten Hepatozyten wird heftig diskutiert. Eine Aktivierung des Signalwegs scheint nur in einer geschädigten Leber und damit unter zellulärem Stress der Fall zu sein (Jung & Diehl, 2010). Einige Forscher gehen auch davon aus, dass Proteine, welche zu diesem Signalweg gehören, lediglich von Sternzellen und Epithelzellen des Gallenganges gebildet werden können (Sicklick, Li, et al., 2005), (Omenetti & Diehl, 2011). Durch die DigiWest-Analyse konnte für das Protein Ihh (Indian Hedgehog) gezeigt werden, dass auch Hepatozyten selbst befähigt sind den Hedgehog-Signalweg zu aktivieren und damit unter Umständen versuchen der Dedifferenzierung entgegen zu arbeiten. Ähnliches konnte bereits in einer vorangegangenen DigiWest Analyse gezeigt werden (Treindl, 2015).

Immer mehr wird in den letzten Jahren über die Rolle des Hippo-Signalwegs in der Leber bekannt. Durch die Kultivierung konnte gezeigt werden, dass alle untersuchten Hippoassoziierten Proteine während der Kultivierung ansteigen. Neu veröffentlichte Studien zeigten, dass das Protein YAP direkten Einfluss auf die Expression der Glutaminsynthetase nimmt (Anastasiou, 2016) (Cox, Hwang, et al., 2016). Dies steht im Kontrast zu der hier gewonnenen Datenlage. Ein Grund hierfür könnte sein, dass die Wissenschaftler in ihren Studien Zebrafische verwendeten, die keine Zonierung in ihren Lebern aufweisen. Weiterhin wurde gezeigt, dass ein Wechselspiel zwischen Hippo- und dem Wnt-Signalweg besteht (Tsai, Hoverter, et al., 2012). So ist das Protein TAZ (Tafazzin), welches einen transkriptionellen Ko-Aktivator darstellt, laut aktuellen Erkenntnissen ein Mediator des Wnt-Signalwegs und steigt bei Akkumulierung von Beta-Catenin und damit bei Aktivierung des Wnt-Signalwegs ebenfalls an (Azzolin, Zanconato, et al., 2012). Zudem zeigte die Gruppe um Rosenbluh, dass eine direkte Interaktion zwischen Beta-Catenin und YAP1 besteht (Rosenbluh, Nijhawan, et al., 2012). Eine solche gleichzeitige Aktivierung des Hippo- und Wnt-Signalwegs konnte bei der Kultivierung der Leberzellen gezeigt werden und somit die aktuellen Forschungsergebnisse anderer Arbeitsgruppen vertiefen.

6 Zusammenfassung und Ausblick

Der qualitative und quantitative Nachweis spezifischer Proteine aus geringen Probenmengen stellt immer noch eine große Herausforderung für die Proteinanalytik und vor allem an das Messsystem selbst dar. Um ein detailliertes Bild von zellulären Vorgängen zu erlangen, reichen Analysen der DNA und RNA, welche mittels Polymerase-Kettenreaktion (PCR) zu amplifizieren und damit vereinfacht nachzuweisen sind, nicht aus. Für Proteine, die für jeden Stoffwechselvorgang die notwendigen molekularen Maschinen der Zellen darstellen, existieren keine Amplifikationstechniken. Ein Nachweis dieser wichtigen Moleküle sowie deren Modifikationen ist deshalb häufig nur mit hoch sensitiven Messsystemen oder mit aufwändigen Anreicherungsschritten möglich. Aus diesem Grund wurde in dieser Arbeit ein umfangreicher Ansatz verschiedener Techniken aus Massenspektrometrie und Immunoassays verwendet.

In einem Full-MS Ansatz war es möglich hoch abundante Stoffwechselenzyme der Leber nachzuweisen. Dabei konnten die Stoffwechselvorgänge wie die Gluconeogenese, der Aminosäureabbau, die Harnstoffproduktion, oxidoreduktive Prozesse aber auch der MAP-Kinase- und TGF-beta-Signalweg der periportalen Seite zugeordnet werden. Dahingegen waren die Gallensäuresynthese, die Glycolyse, der Citratzyklus, der Purin- und Fremdstoffmetabolismus sowie der Wnt-Signalweg vorrangig perizentral aktiv. Durch einen Immunaffinitäts-Anreicherungsschritt mittels TXP-Technologie (Poetz, Hoeppe, et al., 2009) mit anschließender MS-Messung im targeted Modus war es zudem möglich schwach exprimierte CYPs und Transporterproteine anzureichern sowie zu identifizieren und damit die Ergebnisse der Full MS Messung hinsichtlich dieser zwei Proteinklassen zu erweitern.

Eine weitere Methode zur Analyse von Proteinen war der mikrosphärenbasierte multiplexe Western Blot DigiWest (Treindl, Ruprecht, et al., 2016). Auch bei diesem Assayformat kommt durch die Auftrennung nach molekularer Masse eine Anreicherung der Proteine zustande. Die hohe Sensitivität wird jedoch durch hoch spezifische Antikörper erzielt, welche es zudem ermöglichen PTMs in geringsten Probenmengen nachzuweisen. Bei den in dieser Arbeit kultivierten und im DigiWest prozessierten GS+ und GS- Hepatozyen konnten aus lediglich 200 - 500 ng Probenmaterial etwa 100 Analysen durchgeführt werden. Unter der Annahme, dass sich zirka 0,5 ng Gesamtprotein in einer Zelle befinden, wird für einen Assay (eine Antikörperinkubation) lediglich die Proteinmenge von vier bis zehn Zelläquivalenten benötigt.

Obwohl der DigiWest im Vergleich zu einem herkömmlichen Western Blot den Vorteil einer signifikant erhöhten Anzahl an Antikörperinkubationen pro Probe bietet, ist der manuelle Arbeitsaufwand vor allem bei einer großen Probenanzahl nicht zu vernachlässigen. Um den Durchsatz des DigiWests bei gleichbleibender Datenqualität weiter steigern zu können, wurde der LiquiWest entwickelt. Dieser bietet mit seinen diversen Automatisierungslösungen bereits

in seiner jetzigen Form das Potenzial bei gewissen Fragestellungen das bestehende Assayformat zu ersetzen. So kann beispielsweise bei einem hohen Probenaufkommen auf diese Technologie zurückgegriffen werden. Die Absolutsignale sind im Vergleich zum DigiWest – wahrscheinlich aufgrund eines abweichenden Denaturierungszustandes – niedriger; eine gezielte Antikörperauswahl passend zum neu etablierten Assayformat wäre jedoch auch mit den weit über tausend zur Verfügung stehenden Antikörpern sehr gut möglich.

Weitere etablierte Automatisierungslösungen wie die Beladung der Mikrosphären mit Neutravidin, das Verteilen von Arbeitsplatten sowie das magnetische Sammeln der Mikrosphären mittels Roboter sind weitere Schritte um die DigiWest und LiquiWest Technologie durch eine erhöhte Reproduzierbarkeit, einen höheren Probendurchsatz bei gleichzeitig geringerem Arbeitsaufwand bei steigender Auftragslage zukunftssicherer zu gestalten.

Ein weiterer technischer Aspekt dieser Arbeit lag in einer Verbesserung der Signale der DigiWest und LiquiWest Antikörpers-Assays. Hierbei wurde auf die statistische Versuchsplanung (DoE) in einem vollfaktoriellen Versuchsplan mit fünf nominalen (Grundpufferart) sowie zwei guantitativen Faktoren (Pufferzusätze in vier verschiedenen Konzentrationen) zurückgegriffen (Montgomery, 2008). Als Resultat wurde ein neuer auf Casein und langkettigen Polymeren basierender Assaypuffer generiert. Dieser wird bereits in der Routine parallel zum etablierten Assaypuffer eingesetzt. Zwar sind statistische Versuchsplanungen - vor allem, wenn sie vollfaktoriell unter Einbezug vieler Einflussgrößen durchgeführt werden - extrem arbeitsaufwändig, die statistische Aussagekraft ist jedoch enorm hoch. Zudem können unter Umständen vorhandene Interaktionen zwischen verschiedenen Faktoren statistisch fundiert erkannt werden. Hinsichtlich einer Optimierung weiterer Prozessschritte innerhalb der DigiWest und LiquiWest Technologien wäre eine der Beladungsund Inkubationszeiten sowie Proben-Anpassung und Antikörperkonzentrationen in Zukunft sinnvoll und auch in teilfaktoriellen Versuchsplänen mit dutzenden Faktoren gut realisierbar.

Der DigiWest und vor allem der LiquiWest sind noch sehr junge Technologien. Trotzdem bieten sie bereits jetzt einen enormen Mehrwert gegenüber vergleichbaren Assayplattformen. Trotzdem steckt in ihnen noch ein hohes Optimierungspotenzial und im besten Fall sogar eine Kommerzialisierung eines eigenständigen Assaykits.

Hepatozyten, die fremdstoffmetabolisierenden Zellen der Leber, werden in ihrer kultivierten Form immer wichtiger für *in vitro* Toxizitätstests in präklinischen Studien. Für valide Testergebnisse ist es jedoch notwendig die Leber und damit auch ihre metabolische Zonierung bestmöglich nachzuahmen. Aus diesem Grund beschäftigte sich der biologische Teil dieser Arbeit mit der differenziellen Proteinexpression von Hepatozyten stammend aus der perizentralen und periportalen Seite von Leberläppchen von Mäusen. Zur Trennung der verschiedenen Hepatozytenpopulationen kamen zwei Methoden zum Einsatz: (1) die Digitonin-Kollagenase Perfusion resultierend in perizentralen und periportalen Hepatozyten und (2) eine FACS-Sortierung basierend auf dem nur perizentral exprimierten Markerprotein Glutaminsynthetase mit assoziierten Reporterproteinen, was in GS+ und GS- Hepatozyten resultierte.

Die Untersuchung der perizentralen und periportalen Hepatozyten mit zwei unterschiedlichen Techniken der Proteinanalytik, der Massenspektrometrie und dem DigiWest, konnte einen Großteil der in der Literatur als differenziell exprimiert beschriebenen Genprodukte ebenfalls detektieren (Albert Braeuning, Ittrich, et al., 2006). Der Unterschied lag jedoch darin, dass die meisten in der Literatur beschriebenen Analyten bisher lediglich auf RNA-Ebene nachgewiesen wurden. In dieser Arbeit geschah dies im größeren Maßstab das erste Mal auf Proteinebene. Dabei wurden mittels Massenspektrometrie hauptsächlich leberspezifische Enzyme entdeckt, die mit den RNA-Werten der Literatur sehr gut übereinstimmten. Die DigiWest-Analysen bestätigten und erweiterten maßgeblich die massenspektrometrisch gewonnenen Resultate. Denn mit Hilfe dieser Technik konnten auch regulatorische Prozesse – vor allem ersichtlich durch aktivierend bzw. inaktivierend wirkende Phosporylierungen – in verschiedenen Signalwegen nachgewiesen werden. Vor allem eine periportale Aktivierung des MAP-Kinase sowie TGF-beta Signalwegs und eine Aktivierung des Wnt-Signalwegs auf perizentraler Seite konnte gezeigt werden.

Durch den Einsatz der GS-Reporter-Maus resultierten nach der FACS Sortierung im Vergleich zur Digitonin-Kollagenase-Perfusion an der C3H/HE Maus sehr viel vitalere Zellen (GS+ und GS-). Bei dieser neuen Trennmethode, kommen die Zellen niemals mit dem zytotoxisch wirkenden Digitonin in Berührung. Da die ermittelten differenziellen Proteinexpressionmuster beider Techniken sehr gut übereinstimmten, deutete dies auf eine sehr gute Effizienz beider Methoden hin. Da die FACS Sortierung hinsichtlich der Expression der Glumatinsynthetase erfolgte und dadurch hochreine GS+ Hepatozyten isoliert werden konnten, kam es bei den GS- Hepatozyten zu einer Durchmischung von Hepatozyten aus periportalen und midzonalen Bereichen des Leberläppchens. Es wäre in Zukunft denkbar die GS-Reporter-Maus weiter zu modifizieren bzw. einen neuen Mausstamm zu generieren, der Reporter für die periportale Seite besitzt. Mögliche Markerproteine hierfür wären E-Cadherin oder die Serin-Dehydratase (SDS). Damit wäre es möglich gezielt periportale Hepatozyten mittels FACS zu isolieren und noch besser mit den perizentralen (GS+) zu vergleichen.

Die erhöhte Vitalität der FACS sortierten Zellen machte es möglich diese erstmals getrennt voneinander zu kultivieren. Um den *in vivo* Zustand zu Teilen nachahmen zu können, wurden während der Kultivierung Wnt-Agonisten wie Wnt3a und R-Spondin 3 zugegeben. Diese werden im lebenden Organismus von epithelialen Zellen nahe der Zentralvene ausgeschüttet und tragen maßgeblich zum Erhalt des Differenzierungszustandes der perizentralen Hepatozyten bei (Rocha, Vidal, et al., 2015). Durch Gabe dieser Moleküle *in vitro* sollte der

Differenzierungszustand vor allem der GS+ Hepatozyten für einen längeren Zeitraum aufrechterhalten werden. Dies war jedoch nicht der Fall. Die Zellen fingen bereits nach wenigen Stunden an auf den mit Kollagen I beschichteten Platten zu dedifferenzieren. Dies war vor allem durch eine starke Abnahme aller lebertypischen und stoffwechsel-assoziierten Proteine ersichtlich. Interessanterweise zeigte sich in beiden Zelltypen während der Kultivierungszeit neben einer Aktivierung des Wnt-und MAP-Kinase Signalwegs eine Hochregulierung der Hippo- und Hedgehog-Signaltransduktion (Hedgehog nur in GS+). Damit konnte nachgewiesen werden, dass die genannten Signalwege direkt von den Hepatozyten ausgehen und nicht von anderen umliegenden Zellarten. Bisherige Analysen, speziell der Hippo- und Hedgehog-Signalwege, beruhen häufig auf Gesamthomogenaten der Leber und damit einer Durchmischung der Proteine aller Zellen der Leber (Omenetti, Choi, et al., 2011), (Machado & Diehl, 2015), (Anastasiou, 2016).

Die GS-Reporter-Maus als Quelle von zonierten Hepatozyten bleibt somit weiterhin interessant. Optimierte und angepasste Kultivierungsmethoden, beispielsweise in 3D-Zellkulturen, können in Zukunft eine verbesserte Erhaltung des Differenzierungsstatus der isolierten Primärhepatozyten ermöglichen. Dabei können die entsprechenden Kultivierungserfolge mittels Transkriptomanalysen sowie mit Hilfe der Massenspektrometrie als auch durch DigiWest- sowie LiquiWest-Analysen innerhalb von Proteteomstudien in hohem Durchsatz validiert werden.

7 Quellenverzeichnis

- Abu-Absi, S. F., Friend, J. R., Hansen, L. K., & Hu, W.-S. (2002). Structural Polarity and Functional Bile Canaliculi in Rat Hepatocyte Spheroids. *Experimental Cell Research*, 274(1), 56–67. https://doi.org/10.1006/excr.2001.5467
- Ahn, S., & Joyner, A. L. (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. *Nature*, 437(7060), 894–897. https://doi.org/10.1038/nature03994
- Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., & Hemmings, B. A. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. *The EMBO Journal*, *15*(23), 6541–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8978681
- Alison, M. R., & Lin, W. R. (2016). Diverse routes to liver regeneration. *Journal of Pathology*, *238*(3), 371–374. https://doi.org/10.1002/path.4667
- Allen, J. W., & Bhatia, S. N. (2003). Formation of steady-state oxygen gradients in vitro:Application to liver zonation. *Biotechnology and Bioengineering*, 82(3), 253–262. https://doi.org/10.1002/bit.10569
- Altmann, B., Giselbrecht, S., Weibezahn, K.-F., Welle, A., & Gottwald, E. (2008). The threedimensional cultivation of the carcinoma cell line HepG2 in a perfused chip system leads to a more differentiated phenotype of the cells compared to monolayer culture. *Biomedical Materials*, *3*(3), 34120. https://doi.org/10.1088/1748-6041/3/3/034120
- Anastasiou, D. (2016). Hippo's Q for a big liver. *Nature Cell Biology*, *18*(8), 835–837. https://doi.org/10.1038/ncb3391
- Angelica, M. D., & Fong, Y. (2008). The Wnt/β-catenin signaling pathway in liver biology and disease. *October*, *141*(4), 520–529. https://doi.org/10.1016/j.surg.2006.10.010.Use
- Aryee, M. J., Gutiérrez-Pabello, J. A., Kramnik, I., Maiti, T., Quackenbush, J., Kerr, M., ...
 Meigs, T. (2009). An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). *BMC Bioinformatics*, *10*(1), 409. https://doi.org/10.1186/1471-2105-10-409
- Asthana, A., & Kisaalita, W. S. (2013). Biophysical microenvironment and 3D culture physiological relevance. *Drug Discovery Today*, *18*(11–12), 533–540. https://doi.org/10.1016/j.drudis.2012.12.005
- Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene expression by alternative promoters. *FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology*, *10*(4), 453–60. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8647344
- Azzolin, L., Zanconato, F., Bresolin, S., Forcato, M., Basso, G., Bicciato, S., ... Piccolo, S. (2012). Role of TAZ as Mediator of Wnt Signaling. *Cell*, 151(7), 1443–1456. https://doi.org/10.1016/j.cell.2012.11.027
- Bachmann, A., Moll, M., Gottwald, E., Nies, C., Zantl, R., Wagner, H., ... Nussler, A. (2015).
 3D Cultivation Techniques for Primary Human Hepatocytes. *Microarrays*, 4(1), 64–83. https://doi.org/10.3390/microarrays4010064
- Baker, M. (2015). Reproducibility crisis: Blame it on the antibodies. *Nature*, *521*(7552), 274–276. https://doi.org/10.1038/521274a
- Baratta, J. L., Ngo, A., Lopez, B., Kasabwalla, N., Longmuir, K. J., & Robertson, R. T. (2009). Cellular organization of normal mouse liver: A histological, quantitative immunocytochemical, and fine structural analysis. *Histochemistry and Cell Biology*, *131*(6), 713–726. https://doi.org/10.1007/s00418-009-0577-1
- Benhamouche, S., Decaens, T., Godard, C., Chambrey, R., Rickman, D. S., Moinard, C., ... Colnot, S. (2006). Apc Tumor Suppressor Gene Is the "Zonation-Keeper" of Mouse Liver. *Developmental Cell*, *10*(6), 759–770. https://doi.org/10.1016/j.devcel.2006.03.015
- Berglund, L., Bjorling, E., Oksvold, P., Fagerberg, L., Asplund, A., Al-Khalili Szigyarto, C., ... Uhlen, M. (2008). A Genecentric Human Protein Atlas for Expression Profiles Based on Antibodies. *Molecular & Cellular Proteomics*, 7(10), 2019–2027. https://doi.org/10.1074/mcp.R800013-MCP200
- Berthiaume, F., Moghe, P. V, Toner, M., & Yarmush, M. L. (1996). Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. *FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology*, *10*(13), 1471–84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8940293
- Bhardwaj, G., Murdoch, B., Wu, D., Baker, D. P., Williams, K. P., Chadwick, K., ... Bhatia, M. (2001). Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. *Nature Immunology*, 2(2), 172–180. https://doi.org/10.1038/84282
- Birchmeier, W. (2016). Orchestrating Wnt signalling for metabolic liver zonation. *Nature Cell Biology*, *18*(5), 463–465. https://doi.org/10.1038/ncb3349
- Björling, E., & Uhlén, M. (2008). Antibodypedia, a portal for sharing antibody and antigen validation data. *Molecular & Cellular Proteomics : MCP*, 7(10), 2028–37. https://doi.org/10.1074/mcp.M800264-MCP200
- Bolt, M. W., & Mahoney, P. A. (1997). High-Efficiency Blotting of Proteins of Diverse Sizes Following Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis. *Analytical Biochemistry*, 247(2), 185–192. https://doi.org/10.1006/abio.1997.2061
- Bonetta, L. (2006). Genome sequencing in the fast lane. *Nature Methods*, *3*(2), 141–147. https://doi.org/10.1038/nmeth0206-141
- Bordeaux, J., Welsh, A., Agarwal, S., Killiam, E., Baquero, M., Hanna, J., ... Rimm, D. (2010). Antibody validation. *BioTechniques*, *48*(3), 197–209. https://doi.org/10.2144/000113382
- Botham, K. M., Fresnedo, O., Romero, J. R., & Ochoa, B. (1998). Zonal distribution of chylomicron remnant uptake in rat liver parenchymal cells. *General Physiology and Biophysics*, 17(1), 79–94. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9675558
- Bouwens, L., Baekeland, M., De Zanger, R., & Wisse, E. (1986). Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. *Hepatology* (*Baltimore, Md.*), 6(4), 718–22. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3733004
- Bouwens, L., De Bleser, P., Vanderkerken, K., Geerts, B., & Wisse, E. (1992). Liver cell heterogeneity: functions of non-parenchymal cells. *Enzyme*, *46*(1–3), 155–68. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1289080

- Boyer, T. D., Manns, M. P. (Michael P., Sanyal, A. J., & Zakim, D. (2012). *Zakim and Boyer's hepatology : a textbook of liver disease*. Saunders/Elsevier.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, *72*, 248–54.
- Braeuning, A. (2008). β -Catenin and Ha-ras Master Regulators of Zonal Gene Expression in Mouse Liver ? β -Catenin und Ha-ras - Zentrale Signalgeber für die zonale Genexpression in der Mausleber ?
- Braeuning, A., Ittrich, C., Kohle, C., Buchmann, A., & Schwarz, M. (2007). Zonal Gene Expression in Mouse Liver Resembles Expression Patterns of Ha-ras and -Catenin Mutated Hepatomas. *Drug Metabolism and Disposition*, *35*(4), 503–507. https://doi.org/10.1124/dmd.106.013656
- Braeuning, A., Ittrich, C., Köhle, C., Hailfinger, S., Bonin, M., Buchmann, A., & Schwarz, M. (2006). Differential gene expression in periportal and perivenous mouse hepatocytes. *FEBS Journal*, 273, 5051–5061. https://doi.org/10.1111/j.1742-4658.2006.05503.x
- Braeuning, A., Kohle, C., Buchmann, A., & Schwarz, M. (2011). Coordinate Regulation of Cytochrome P450 1A1 Expression in Mouse Liver by the Aryl Hydrocarbon Receptor and the -Catenin Pathway. *Toxicological Sciences*, *122*(1), 16–25. https://doi.org/10.1093/toxsci/kfr080
- Braeuning, A., Menzel, M., Kleinschnitz, E.-M., Harada, N., Tamai, Y., Köhle, C., ... Schwarz, M. (2007). Serum components and activated Ha-ras antagonize expression of perivenous marker genes stimulated by β-catenin signaling in mouse hepatocytes. *FEBS Journal*, *274*(18), 4766–4777. https://doi.org/10.1111/j.1742-4658.2007.06002.x
- Braeuning, A., Sanna, R., Huelsken, J., & Schwarz, M. (2009). Inducibility of Drug-Metabolizing Enzymes by Xenobiotics in Mice with Liver-Specific Knockout of Ctnnb1. *Drug Metabolism and Disposition*, *37*(5), 1138–1145. https://doi.org/10.1124/dmd.108.026179
- Braeuning, A., & Schwarz, M. (2010). β-Catenin as a multilayer modulator of zonal cytochrome P450 expression in mouse liver. *Biological Chemistry*, *391*(2/3). https://doi.org/10.1515/bc.2010.012
- Bralet, M. P., Branchereau, S., Brechot, C., & Ferry, N. (1994). Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. *The American Journal of Pathology*, *144*(5), 896–905. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8178942
- Buxboim, A., Ivanovska, I. L., & Discher, D. E. (2010). Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells "feel" outside and in? *Journal of Cell Science*, *123*(3), 297–308. https://doi.org/10.1242/jcs.041186
- Cadoret, A., Ovejero, C., Terris, B., Souil, E., Lévy, L., Lamers, W. H., … Perret, C. (2002). New targets of β-catenin signaling in the liver are involved in the glutamine metabolism. *Oncogene*, *21*(54), 8293–8301. https://doi.org/10.1038/sj.onc.1206118
- Cavard, C., Colnot, S., Audard, V., Benhamouche, S., Finzi, L., Torre, C., … Perret, C. (2008). Wnt/β-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. *Future Oncology*, *4*(5), 647–660. https://doi.org/10.2217/14796694.4.5.647

- Colnot, S., & Perret, C. (2011). Liver Zonation. In *Molecular Pathology of Liver Diseases* (p. 931). Pittsburg. https://doi.org/10.1053/j.gastro.2011.08.020
- Cox, A. G., Hwang, K. L., Brown, K. K., Evason, K. J., Beltz, S., Tsomides, A., ... Goessling, W. (2016). Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. *Nature Cell Biology*, *18*(8), 886–896. https://doi.org/10.1038/ncb3389
- Decaens, C., & Cassio, D. (2001). Spatiotemporal expression of catenins, ZO-1, and occludin during early polarization of hepatic WIF-B9 cells. *American Journal of Physiology. Cell Physiology*, 280(3), C527-39. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11171572
- Doi, Y., Tamura, S., Nammo, T., Fukui, K., Kiso, S., & Nagafuchi, A. (2007). Development of complementary expression patterns of E- and N-cadherin in the mouse liver. *Hepatology Research : The Official Journal of the Japan Society of Hepatology*, 37(3), 230–7. https://doi.org/10.1111/j.1872-034X.2007.00028.x
- Dunn, J. C. Y., Tompkins, R. G., & Yarmush, M. L. (1991). Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. *Biotechnology Progress*, 7(3), 237– 245. https://doi.org/10.1021/bp00009a007
- Earnshaw, J. C., & Osbourn, J. K. (1999). Signal amplification in flow cytometry using biotin tyramine. *Cytometry*, *35*(2), 176–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10554174
- Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. *Proceedings of the National Academy of Sciences*, 95(25), 14863–14868. https://doi.org/10.1073/pnas.95.25.14863
- Ellis, R. J., Zimmerman, S. B., Minton, A. P., Goodsell, D. S., Zimmerman, S. B., Laurent, T. C., ... Mayer, F. (2001). Macromolecular crowding: obvious but underappreciated. *Trends in Biochemical Sciences*, *26*(10), 597–604. https://doi.org/10.1016/S0968-0004(01)01938-7
- Enat, R., Jefferson, D. M., Ruiz-Opazo, N., Gatmaitan, Z., Leinwand, L. A., & Reid, L. M. (1984). Hepatocyte proliferation in vitro: its dependence on the use of serum-free hormonally defined medium and substrata of extracellular matrix. *Proceedings of the National Academy of Sciences of the United States of America*, *81*(5), 1411–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6584889
- Euler-Taimor, G., & Heger, J. (2006). The complex pattern of SMAD signaling in the cardiovascular system. *Cardiovascular Research*, *69*(1).
- Fíla, J., & Honys, D. (2012). Enrichment techniques employed in phosphoproteomics. *Amino Acids*, *43*(3), 1025–47. https://doi.org/10.1007/s00726-011-1111-z
- Filomena, A. (2016). *Multiplexe serologische Assays zur Analyse der humoralen Immunantwort auf das Hepatitis C Virus Genotyp 4.*
- Freedman, L. P., Gibson, M. C., Bradbury, A. R. M., Buchberg, A. M., Davis, D., Dolled-Filhart, M. P., ... Rimm, D. L. (2016). The need for improved education and training in research antibody usage and validation practices. *BioTechniques*, *61*(1). https://doi.org/10.2144/000114431

- Gebhardt, R., & Coffer, P. J. (2013). Hepatic autophagy is differentially regulated in periportal and pericentral zones a general mechanism relevant for other tissues? *Cell Communication and Signaling : CCS*, *11*(1), 21. https://doi.org/10.1186/1478-811X-11-21
- Gebhardt, R., & Matz-Soja, M. (2014). Liver zonation: Novel aspects of its regulation and its impact on homeostasis. *World Journal of Gastroenterology*, *20*(26), 8491–8504. https://doi.org/10.3748/wjg.v20.i26.8491
- Gebhardt, R., & Mecke, D. (1983). Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. *The EMBO Journal*, *2*(4), 567–70. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6138251
- Gershoni, J. M., & Palade, G. E. (1983). Protein blotting: Principles and applications. *Analytical Biochemistry*, *131*(1), 1–15. https://doi.org/10.1016/0003-2697(83)90128-8
- Godoy, P., Hengstler, J. G., Ilkavets, I., Meyer, C., Bachmann, A., Müller, A., ... Dooley, S. (2009). Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor β-induced apoptosis. *Hepatology*, *49*(6), 2031–2043. https://doi.org/10.1002/hep.22880
- Godoy, P., Hewitt, N. J., Albrecht, U., Andersen, M. E., Ansari, N., Bhattacharya, S., ...
 Hengstler, J. G. (2013). *Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology* (Vol. 87). https://doi.org/10.1007/s00204-013-1078-5
- Gómez-Lechón, M. J., Jover, R., Donato, T., Ponsoda, X., Rodriguez, C., Stenzel, K. G., ... Castell, J. V. (1998). Long-term expression of differentiated functions in hepatocytes cultured in three-dimensional collagen matrix. *Journal of Cellular Physiology*, *177*(4), 553–62. https://doi.org/10.1002/(SICI)1097-4652(199812)177:4<553::AID-JCP6>3.0.CO;2-F
- Gómez-Lechón, M. J., Tolosa, L., Conde, I., & Donato, M. T. (2014). Competency of different cell models to predict human hepatotoxic drugs. *Expert Opinion on Drug Metabolism & Toxicology*, *10*(11), 1553–1568. https://doi.org/10.1517/17425255.2014.967680
- Gordillo, M., Evans, T., & Gouon-Evans, V. (2015). Orchestrating liver development. *Development*, 142(12).
- Görg, A. (2004). *2-D Electrophoresis Principles and Methods*. (A. Görg, Ed.). München: GE Healthcare.
- Gottwald, E., Giselbrecht, S., Augspurger, C., Lahni, B., Dambrowsky, N., Truckenmüller, R.,
 ... Weibezahn, K.-F. (2007). A chip-based platform for the in vitro generation of tissues in three-dimensional organization. *Lab Chip*, 7(6), 777–785. https://doi.org/10.1039/B618488J
- Haeusinger, D. (1983). Hepatocyte Heterogeneity in Glutamine and Ammonia Metabolism and the Role of an Intercellular Glutamine Cycle during Ureogenesis in Perfused Rat Liver. *European Journal of Biochemistry*, *133*(2), 269–275. https://doi.org/10.1111/j.1432-1033.1983.tb07458.x
- Hailfinger, S., Jaworski, M., Braeuning, A., Buchmann, A., & Schwarz, M. (2006). Zonal gene expression in murine liver: Lessons from tumors. *Hepatology*, 43(3), 407–414. https://doi.org/10.1002/hep.21082

- Hall-Glenn, F., De Young, R. A., Huang, B.-L., van Handel, B., Hofmann, J. J., Chen, T. T., ... Lyons, K. M. (2012). CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. *PloS One*, *7*(2), e30562. https://doi.org/10.1371/journal.pone.0030562
- Heldin, C. H., Miyazono, K., & ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. *Nature*, *390*(6659), 465–71. https://doi.org/10.1038/37284
- Helen S Hammer, Bart HJ van den Berg, Frederik Weiss, Hannes Planatscher, Thomas O Joos, O. P. (2014). Quantification of transporters in the liver via Ms-based immunoassays. In NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY (p. 47). Springer Verlag.
- Huch, M., Gehart, H., van Boxtel, R., Hamer, K., Blokzijl, F., Verstegen, M. M. A., ... Clevers, H. (2015). Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver. *Cell*, *160*(1–2), 299–312. https://doi.org/10.1016/j.cell.2014.11.050
- Human Genome Sequencing Consortium, I. (2004). Finishing the euchromatic sequence of the human genome. *Nature*, *431*(7011), 931–945. https://doi.org/10.1038/nature03001
- Ingham, P. W., & McMahon, A. P. (2001). Hedgehog signaling in animal development: paradigms and principles. *Genes & Development*, *15*(23), 3059–87. https://doi.org/10.1101/gad.938601
- Invitrogen. (2010). Novex® Pre-Cast Gel Electrophoresis Guide General information and protocols for using Novex® pre-cast gels (IM-1002). Carlsbad.
- Jung, Y., & Diehl, A. M. (2010). Non-alcoholic steatohepatitis pathogenesis: Role of repair in regulating the disease progression. *Digestive Diseases*, *28*(1), 225–228. https://doi.org/10.1159/000282092
- Jungermann, K., & Katz, N. (1982). Functional hepatocellular heterogeneity. *Hepatology* (*Baltimore, Md.*), *2*(3), 385–95. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7042508
- Jungermann, K., & Keitzmann, T. (1996). Zonation of Parenchymal and Nonparenchymal Metabolism in Liver. *Annual Review of Nutrition*, *16*(1), 179–203. https://doi.org/10.1146/annurev.nu.16.070196.001143
- Kaboord, B., Smith, S., Patel, B., & Meier, S. (2015). Enrichment of Low-Abundant Protein Targets by Immunoprecipitation Upstream of Mass Spectrometry (pp. 135–151). https://doi.org/10.1007/978-1-4939-2550-6_12
- Katz, N. R. (1992). Metabolic heterogeneity of hepatocytes across the liver acinus. *The Journal of Nutrition*, *122*(3 Suppl), 843–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1542056
- Katz, N., Teutsch, H. F., Jungermann, K., & Sasse, D. (1977). Heterogeneous reciprocal localization of fructose-1,6-bisphosphatase and of glucokinase in microdissected periportal and perivenous rat liver tissue. *FEBS Letters*, *83*(2), 272–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/201494
- Kemler, R. (1993). From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. *Trends in Genetics : TIG*, *9*(9), 317–21. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8236461

Khoury, G. A., Baliban, R. C., Floudas, C. A., Apweiler, R., Hermjakob, H., Sharon, N., ... Kitano, H. (2011). Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. *Scientific Reports*, *1*, 4–8. https://doi.org/10.1038/srep00090

Kietzmann, T., Dimova, E. Y., Flügel, D., & Scharf, J.-G. (2006). Oxygen: Modulator of Physiological and Pathophysiological Processes in the Liver. *Zeitschrift Für Gastroenterologie*, 44(1), 67–76. https://doi.org/10.1055/s-2005-858987

Kim, M., Lee, J. Y., Jones, C. N., Revzin, A., & Tae, G. (2010). Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. *Biomaterials*, *31*(13), 3596–603. https://doi.org/10.1016/j.biomaterials.2010.01.068

Kmieć, Z. (2001). Cooperation of liver cells in health and disease. Advances in Anatomy, Embryology, and Cell Biology, 161, III–XIII, 1-151. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11729749

Kucharska, A., Rushworth, L. K., Staples, C., Morrice, N. A., & Keyse, S. M. (2009).
 Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK.
 Cellular Signalling, *21*(12), 1794–1805. https://doi.org/10.1016/j.cellsig.2009.07.015

Kuntz, E., & Kuntz, H.-D. (1998). *Praktische Hepatologie. Historie, Morphologie, Biochemie, Diagnostik, Klinik, Therapie.* Heidelberg: Barth.

Kuo, F. C., Darnell, J. E., & Jr. (1991). Evidence that interaction of hepatocytes with the collecting (hepatic) veins triggers position-specific transcription of the glutamine synthetase and ornithine aminotransferase genes in the mouse liver. *Molecular and Cellular Biology*, *11*(12), 6050–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1682797

- Lake, B. G., Price, R. J., Giddings, A. M., & Walters, D. G. (2009). In vitro assays for induction of drug metabolism. *Methods in Molecular Biology (Clifton, N.J.)*, 481, 47–58. https://doi.org/10.1007/978-1-59745-201-4_5
- Lau, T. T., Lee, L. Q. P., Leong, W., & Wang, D.-A. (2012). Formation of model hepatocellular aggregates in a hydrogel scaffold using degradable genipin crosslinked gelatin microspheres as cell carriers. *Biomedical Materials*, 7(6), 65003. https://doi.org/10.1088/1748-6041/7/6/065003
- Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. *Cell*, *88*(3), 323–31. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9039259
- Lewis, D. F., Ioannides, C., & Parke, D. V. (1998). Cytochromes P450 and species differences in xenobiotic metabolism and activation of carcinogen. *Environmental Health Perspectives*, *106*(10), 633–41. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9755138
- Li, A., & Horvath, S. (2009). Network module detection: Affinity search technique with the multi-node topological overlap measure. *BMC Research Notes*, *2*, 142. https://doi.org/10.1186/1756-0500-2-142
- Lin, X., Liang, M., Liang, Y.-Y., Brunicardi, F. C., Melchior, F., & Feng, X.-H. (2003). Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. *The Journal of Biological Chemistry*, *278*(21), 18714–9. https://doi.org/10.1074/jbc.M302243200

- Lindros, K. O. (1997). Zonation of cytochrome P450 expression, drug metabolism and toxicity in liver. *General Pharmacology: The Vascular System*, *28*(2), 191–196. https://doi.org/10.1016/S0306-3623(96)00183-8
- Lindros, K. O., Oinonen, T., Issakainen, J., Nagy, P., & Thorgeirsson, S. S. (1997). Zonal distribution of transcripts of four hepatic transcription factors in the mature rat liver. *Cell Biology and Toxicology*, *13*(4–5), 257–62. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9298246
- Lindros, K. O., & Penttilä, K. E. (1985). Digitonin-collagenase perfusion for efficient separation of periportal or perivenous hepatocytes. *The Biochemical Journal*, *228*(3), 757–60. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2992454
- Liu, S., Yeh, T.-H., Singh, V. P., Shiva, S., Krauland, L., Li, H., ... Behari, J. (2012). β-Catenin is essential for ethanol metabolism and protection against alcohol-mediated liver steatosis in mice. *Hepatology*, *55*(3), 931–940. https://doi.org/10.1002/hep.24766

Lüllmann-Rauch, R. (2006). Taschenlehrbuch Histologie. Stuttgart: Thieme.

- Luo, W., & Brouwer, C. (2013). Pathview: an R/Bioconductor package for pathway-based data integration and visualization. *Bioinformatics (Oxford, England)*, *29*(14), 1830–1. https://doi.org/10.1093/bioinformatics/btt285
- Lustig, Y., Ruas, J. L., Estall, J. L., Lo, J. C., Devarakonda, S., Laznik, D., ... Spiegelman, B. M. (2011). Separation of the gluconeogenic and mitochondrial functions of PGC-1alpha through S6 kinase. *Genes & Development*, *25*(12), 1232–44. https://doi.org/10.1101/gad.2054711
- Lyon, O. M. F. (2015). Standardize antibodies used in research. *Nature*, *518*, 27–29. https://doi.org/10.2146/ajhp070364
- Machado, M. V., & Diehl, A. M. (2015). Hedgehog signaling in the liver. In *Signaling Pathways in Liver Diseases* (Vol. 54, pp. 262–274). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118663387.ch19
- Maier, T., Güell, M., & Serrano, L. (2009). Correlation of mRNA and protein in complex biological samples. *FEBS Letters*, *583*(24), 3966–3973. https://doi.org/10.1016/j.febslet.2009.10.036
- Malato, Y., Naqvi, S., Schürmann, N., Ng, R., Wang, B., Zape, J., ... Willenbring, H. (2011). Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. *Journal of Clinical Investigation*, *121*(12), 4850–4860. https://doi.org/10.1172/JCI59261
- Mann, M., & Jensen, O. N. (2003). Proteomic analysis of post-translational modifications. *Nature Biotechnology*, *21*(3), 255–261. https://doi.org/10.1038/nbt0303-255
- Martinez-Hernandez, A., & Amenta, P. S. (1993). The hepatic extracellular matrix. I. Components and distribution in normal liver. *Virchows Archiv. A, Pathological Anatomy and Histopathology*, *423*(1), 1–11. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8212529
- Matz-Soja, M., Hovhannisyan, A., & Gebhardt, R. (2013). Hedgehog signalling pathway in adult liver: A major new player in hepatocyte metabolism and zonation? *Medical Hypotheses*, *80*(5), 589–594. https://doi.org/10.1016/j.mehy.2013.01.032
- McClelland, R., Wauthier, E., Uronis, J., & Reid, L. (2008). Gradients in the Liver's Extracellular Matrix Chemistry from Periportal to Pericentral Zones: Influence on Human Hepatic Progenitors. *Tissue Engineering Part A*, *14*(1), 59–70.

- Meijer, A. J., Lamers, W. H., & Chamuleau, R. A. (1990). Nitrogen metabolism and ornithine cycle function. *Physiological Reviews*, *70*(3), 701–48. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2194222
- Mertins, P., Qiao, J. W., Patel, J., Udeshi, N. D., Clauser, K. R., Mani, D. R., ... Carr, S. A. (2013). Integrated proteomic analysis of post-translational modifications by serial enrichment. *Nature Methods*, *10*(7), 634–637. https://doi.org/10.1038/nmeth.2518
- Monga, S. P. S. (Ed.). (2011). *Molecular Pathology of Liver Diseases* (Vol. 5). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-7107-4
- Montgomery, D. C. (2008). Design and analysis of experiments. Wiley.
- Munshaw, S., Hwang, H. S., Torbenson, M., Quinn, J., Hansen, K. D., Astemborski, J., ... Balagopal, A. (2012). Laser captured hepatocytes show association of butyrylcholinesterase gene loss and fibrosis progression in hepatitis C-infected drug users. *Hepatology (Baltimore, Md.)*, *56*(2), 544–54. https://doi.org/10.1002/hep.25655
- Muyldermans, S., Baral, T. N., Retamozzo, V. C., De Baetselier, P., De Genst, E., Kinne, J., ... Saerens, D. (2009). Camelid immunoglobulins and nanobody technology. *Veterinary Immunology and Immunopathology*, *128*(1–3), 178–183. https://doi.org/10.1016/j.vetimm.2008.10.299
- Nguyen, U., Squaglia, N., Boge, A., & Fung, P. A. (2011). The Simple Western: a gel-free, blot-free, hands-free Western blotting reinvention. *Nature Methods*, *8*(11). https://doi.org/10.1038/nmeth.f.353
- Nørregaard, J. O. (2004). Modification-specific proteomics: characterization of posttranslational modifications by mass spectrometry. *Current Opinion in Chemical Biology*, *8*(1), 33–41. https://doi.org/10.1016/j.cbpa.2003.12.009
- Notenboom, R. G. E., Moorman, A. F. M., & Lamers, W. H. (1997). Developmental appearance of ammonia-metabolizing enzymes in prenatal murine liver. *Microscopy Research and Technique*, *39*(5), 413–423. https://doi.org/10.1002/(SICI)1097-0029(19971201)39:5<413::AID-JEMT4>3.0.CO;2-H
- O'Brien, P. J., Chan, K., & Silber, P. M. (2004). Human and animal hepatocytes in vitro with extrapolation in vivo. *Chemico-Biological Interactions*, *150*(1), 97–114. https://doi.org/10.1016/j.cbi.2004.09.003
- Oberoi, P., Suschak, J., Stenglin, M., Aghvanyan, A., Nikolenko, G., Roy, D., ... Wohlstadter, J. N. (2016). True Sensitivity of Immunoassays: Are Concentrations of Low Abundance Analytes Real or Artifacts? *The Journal of Immunology*, *196*(1 Supplement), 138.9-138.9.
- Omenetti, A., Choi, S., Michelotti, G., & Diehl, A. M. (2011). Hedgehog signaling in the liver. *Journal of Hepatology*, *54*(2), 366–73. https://doi.org/10.1016/j.jhep.2010.10.003
- Omenetti, A., & Diehl, A. M. (2011). Hedgehog signaling in cholangiocytes. *Current Opinion in Gastroenterology*, *27*(3), 268–275. https://doi.org/10.1097/MOG.0b013e32834550b4
- Ong, S.-E., & Mann, M. (2005). Mass spectrometry–based proteomics turns quantitative. *Nature Chemical Biology*, *1*(5), 252–262. https://doi.org/10.1038/nchembio736
- Ozsolak, F., & Milos, P. M. (2011). RNA sequencing: advances, challenges and opportunities. *Nature Reviews Genetics*, *12*(2), 87–98. https://doi.org/10.1038/nrg2934

- Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., Gillespie, J. W., ... Liotta, L. A. (2001). Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. *Oncogene*, 20(16), 1981–1989. https://doi.org/10.1038/sj.onc.1204265
- Pfeiffer, E., Kegel, V., Zeilinger, K., Hengstler, J. G., Nussler, A. K., Seehofer, D., & Damm, G. (2015). Isolation, characterization, and cultivation of human hepatocytes and nonparenchymal liver cells. *Experimental Biology and Medicine*, *240*(5), 645–656. https://doi.org/10.1177/1535370214558025
- Pierobon, M., VanMeter, A. J., Moroni, N., Galdi, F., & Petricoin, E. F. (2012). Reverse-Phase Protein Microarrays. In E. Virginia & A. L. Lance (Eds.), *Molecular Profiling* (pp. 215–235). Humana Press. https://doi.org/10.1007/978-1-60327-216-2_14
- Planas-Paz, L., Orsini, V., Boulter, L., Calabrese, D., Pikiolek, M., Nigsch, F., ... Tchorz, J. S. (2016). The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size. *Nat Cell Biol*, *18*(5), 467–479. https://doi.org/10.1038/ncb3337
- Poetz, O., Hoeppe, S., Templin, M. F., Stoll, D., & Joos, T. O. (2009). Proteome wide screening using peptide affinity capture. *PROTEOMICS*, 9(6), 1518–1523. https://doi.org/10.1002/pmic.200800842
- Powers, M. J., Janigian, D. M., Wack, K. E., Baker, C. S., Stolz, D. B., & Griffith, L. G. (2002). Functional Behavior of Primary Rat Liver Cells in a Three-Dimensional Perfused Microarray Bioreactor. *Tissue Engineering*, *8*(3), 499–513. https://doi.org/10.1089/107632702760184745
- Prabakaran, S., Lippens, G., Steen, H., & Gunawardena, J. (2012). Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. *Wiley Interdisciplinary Reviews: Systems Biology and Medicine*, 4(6), 565–583. https://doi.org/10.1002/wsbm.1185
- Pritchard, J., Chavez-Peon, F., & Berlin, R. (1970). Purines: supply by liver to tissues. *American Journal of Physiology -- Legacy Content*, *219*(5).
- Quistorff, B. (1985). Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. *The Biochemical Journal*, *229*(1), 221–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2994630
- Rocha, A. S., Vidal, V., Mertz, M., Kendall, T. J., Charlet, A., Okamoto, H., & Schedl, A. (2015). The Angiocrine Factor Rspondin3 Is a Key Determinant of Liver Zonation. *Cell Reports*, *13*(9), 1757–1764. https://doi.org/10.1016/j.celrep.2015.10.049
- Rodés, J., Benhamou, J.-P., Blei, A., & Reichen, F. (2007). *Textbook of Hepatology*. (J. Rods, J.-P. Benhamou, A. T. Blei, J. Reichen, & M. Rizzetto, Eds.). Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1002/9780470691861
- Rodríguez-Antona, C., Donato, M. T., Boobis, A., Edwards, R. J., Watts, P. S., Castell, J. V., & Gómez-Lechón, M.-J. (2002). Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. *Xenobiotica*, *32*(6), 505–520. https://doi.org/10.1080/00498250210128675

Romer, A. S., & Parsons, T. S. (1977). The vertebrate body. Philadelphia: Saunders.

Rosenbluh, J., Nijhawan, D., Cox, A. G., Li, X., Neal, J. T., Schafer, E. J., ... Hahn, W. C. (2012). β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. *Cell*, *151*(7), 1457–73. https://doi.org/10.1016/j.cell.2012.11.026

Saeed, A. I., Bhagabati, N. K., Braisted, J. C., Liang, W., Sharov, V., Howe, E. A., ... Quackenbush, J. (2006). TM4 microarray software suite. *Methods in Enzymology*, *411*, 134–93. https://doi.org/10.1016/S0076-6879(06)11009-5

Scanlon, V. (2010). Essentials of Anatomy and Physiology (6th Editio). F.A. Davis Company.

Schaub, J. R., Malato, Y., Gormond, C., & Willenbring, H. (2014). Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. *Cell Reports*, 8(4), 933–939. https://doi.org/10.1016/j.celrep.2014.07.003

Schuppan, D., Ruehl, M., Somasundaram, R., & Hahn, E. G. (2001). Matrix as a Modulator of Hepatic Fibrogenesis. *Seminars in Liver Disease*, *21*(3), 351–372. https://doi.org/10.1055/s-2001-17556

- Schwarz, M., Buchmann, A., Schulte, M., Pearson, D., & Kunz, W. (1989). Heterogeneity of enzyme-altered foci in rat liver. *Toxicology Letters*, 49(2), 297–317. https://doi.org/10.1016/0378-4274(89)90039-8
- Sekine, S., Lan, B. Y.-A., Bedolli, M., Feng, S., & Hebrok, M. (2006). Liver-specific loss of βcatenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. *Hepatology*, 43(4), 817–825. https://doi.org/10.1002/hep.21131
- Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. *Nature Biotechnology*, *26*(10), 1135–1145. https://doi.org/10.1038/nbt1486
- Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V, & Mann, M. (2007). In-gel digestion for mass spectrometric characterization of proteins and proteomes. *Nature Protocols*, 1(6), 2856–2860. https://doi.org/10.1038/nprot.2006.468
- Sicklick, J. K., Li, Y.-X., Choi, S. S., Qi, Y., Chen, W., Bustamante, M., ... Diehl, A. M. (2005). Role for Hedgehog signaling in hepatic stellate cell activation and viability. *Laboratory Investigation*, *85*(11), 1368–1380. https://doi.org/10.1038/labinvest.3700349
- Silva, J. C., Gorenstein, M. V, Li, G.-Z., Vissers, J. P. C., & Geromanos, S. J. (2006). Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. *Molecular & Cellular Proteomics : MCP*, 5(1), 144–56. https://doi.org/10.1074/mcp.M500230-MCP200
- Soldatow, V. Y., Lecluyse, E. L., Griffith, L. G., & Rusyn, I. (2013). In vitro models for liver toxicity testing. *Toxicology Research*, *2*(1), 23–39. https://doi.org/10.1039/C2TX20051A
- Spurrier, B., Ramalingam, S., & Nishizuka, S. (2008). Reverse-phase protein lysate microarrays for cell signaling analysis. *Nature Protocols*, *3*(11), 1796–1808. https://doi.org/10.1038/nprot.2008.179
- Taconic Artemis. (2012). TUE001 project goal: Constitutive Knock-In of LacZ with optional conditional Knock-In of FLuc and/or Tk-1 in the Glul gene targeting strategy.
- Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., ... Taniguchi, H. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. *Nature*, 499(7459), 481–484. https://doi.org/10.1038/nature12271

- Taniai, H., Hines, I. N., Bharwani, S., Maloney, R. E., Nimura, Y., Gao, B., ... Aw, T. Y. (2004). Susceptibility of murine periportal hepatocytes to hypoxia-reoxygenation: Role for NO and Kupffer cell-derived oxidants. *Hepatology*, *39*(6), 1544–1552. https://doi.org/10.1002/hep.20217
- Tateno, C., & Yoshizato, K. (1996). Long-term cultivation of adult rat hepatocytes that undergo multiple cell divisions and express normal parenchymal phenotypes. *The American Journal of Pathology*, *148*(2), 383–92. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8579101
- Templin, M. F., & Couvillon, A. (2016). WEBINAR: Cross-validation of Antibodies Using DigiWest. labroots, Cell Signaling.
- Thermo Fisher Scientific. (2013). Coomassie Plus (Bradford) Protein Assay. Retrieved from http://www.piercenet.com/browse.cfm?fldID=02020104
- Thurman, R. G., & Kauffman, F. C. (1985). Sublobular compartmentation of pharmacologic events (SCOPE): metabolic fluxes in periportal and pericentral regions of the liver lobule. *Hepatology*, 5(1), 144–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3967857
- Tordjmann, T., Berthon, B., Lardeux, B., Moreau, A., Jacquemin, E., Combettes, L., ... Claret, M. (1997). An improved digitonin-collagenase perfusion technique for the isolation of periportal and perivenous hepatocytes from a single rat liver: physiological implications for lobular heterogeneity. *Hepatology (Baltimore, Md.)*, *26*(6), 1592–9. https://doi.org/10.1053/jhep.1997.v26.pm0009398003
- Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proceedings of the National Academy of Sciences of the United States of America*, 76(9), 4350–4. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/388439
- Tran, J. C., & Doucette, A. A. (2008). Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation. *Analytical Chemistry*, 80(5), 1568–1573. https://doi.org/10.1021/ac702197w
- Treindl, F. (2015). *DigiWest : a high throughput Western-Blot and its application for comprehensive signaling analysis of microdissected liver tissue*. Universität Tübingen.
- Treindl, F., Ruprecht, B., Beiter, Y., Schultz, S., Döttinger, A., Staebler, A., ... Templin, M. F. (2016). A bead-based western for high-throughput cellular signal transduction analyses. *Nature Communications*, 7, 12852. https://doi.org/10.1038/ncomms12852
- Treindl, F., Zabinsky, E., Kling, S., Schwarz, M., Braeuning, A., & Templin, M. F. (2017). Protein analysis of microdissected tissue reveals zonal differences in cellular signaling and metabolic programs in mouse liver. *Under Consideration*.
- Tsai, B. P., Hoverter, N. P., & Waterman, M. L. (2012). Blending Hippo and WNT: Sharing Messengers and Regulation. *Cell*, *151*(7), 1401–3. https://doi.org/10.1016/j.cell.2012.12.007
- Uhlen, M., Bandrowski, A., Carr, S., Edwards, A., Ellenberg, J., Lundberg, E., ... Yamamoto, T. (2016). A proposal for validation of antibodies. *Nature Methods*, (4). https://doi.org/10.1038/nmeth.3995

- Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., ... Ponten, F. (2010). Towards a knowledge-based Human Protein Atlas. *Nature Biotechnology*, *28*(12), 1248–1250. https://doi.org/10.1038/nbt1210-1248
- Vasilj, A., Gentzel, M., Ueberham, E., Gebhardt, R., & Shevchenko, A. (2012). Tissue Proteomics by One-Dimensional Gel Electrophoresis Combined with Label-Free Protein Quantification. *Journal of Proteome Research*, *11*(7), 3680–3689. https://doi.org/10.1021/pr300147z
- Vogel, C., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. *Nature Reviews Genetics*. https://doi.org/10.1038/nrg3185
- Voskuil, J. (2014). Commercial antibodies and their validation. *F1000Research*, (2). https://doi.org/10.12688/f1000research.4966.2
- Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. *Nature Reviews. Genetics*, 10(1), 57–63. https://doi.org/10.1038/nrg2484
- Warford, A., Akbar, H., & Riberio, D. (2014). Antigen retrieval, blocking, detection and visualisation systems in immunohistochemistry: A review and practical evaluation of tyramide and rolling circle amplification systems. *Methods (San Diego, Calif.)*, 1–6. https://doi.org/10.1016/j.ymeth.2014.03.001
- Weiß, F. (2015). *Etablierung eines Nachweissystems zur Quantifizierung von Cytochrom P450 Enzymen in der menschlichen Leber*. Universität Tübingen.
- Wells, R. G. (2008). The role of matrix stiffness in regulating cell behavior. *Hepatology*, *47*(4), 1394–1400. https://doi.org/10.1002/hep.22193
- Wong, J. W. H., & Cagney, G. (2010). An overview of label-free quantitation methods in proteomics by mass spectrometry. *Methods in Molecular Biology (Clifton, N.J.)*, 604, 273–83. https://doi.org/10.1007/978-1-60761-444-9_18
- Wuestefeld, T., Pesic, M., Rudalska, R., Dauch, D., Longerich, T., Kang, T.-W., ... Zender, L. (2013). A Direct In Vivo RNAi Screen Identifies MKK4 as a Key Regulator of Liver Regeneration. *Cell*, *153*(2), 389–401. https://doi.org/10.1016/j.cell.2013.03.026
- Yanger, K., Knigin, D., Zong, Y., Maggs, L., Gu, G., Akiyama, H., ... Stanger, B. Z. (2014). Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. *Cell Stem Cell*, 15(3), 340–9. https://doi.org/10.1016/j.stem.2014.06.003
- Zaphiropoulos, P. G. (2004). Distinct roles of PTCH2 splice variants in Hedgehog signalling, *334*, 325–334.
- Zeller, E. C. (2014). The Role of Gtl2 in Hepatocarcinogenesis.
- Zeller, E., Mock, K., Horn, M., Colnot, S., Schwarz, M., & Braeuning, A. (2012). Dual-specificity phosphatases are targets of the Wnt/Beta-catenin pathway and candidate mediators of Beta-catenin/Ras signaling interactions. *Biological Chemistry*, 393(10), 1183–1191. https://doi.org/10.1515/hsz-2012-0130
- Zellmer, S., Schmidt-Heck, W., Godoy, P., Weng, H., Meyer, C., Lehmann, T., ... Gebhardt, R. (2010). Transcription factors ETF, E2F, and SP-1 are involved in cytokineindependent proliferation of murine hepatocytes. *Hepatology*, *52*(6), 2127–2136. https://doi.org/10.1002/hep.23930

- Zeng, G., Awan, F., Otruba, W., Muller, P., Apte, U., Tan, X., ... Monga, S. P. S. (2007). Wnt'er in liver: Expression of Wnt and frizzled genes in mouse. *Hepatology*, *45*(1), 195–204. https://doi.org/10.1002/hep.21473
- Zeng, G., & Monga, S. S. (2009). Beta-catenin/TCF complex regulates HNF4-alpha expression in the liver. *FASEB J*, *23*(1_Supplement), 359.2-. Retrieved from http://www.fasebj.org/cgi/content/long/23/1_Supplement/359.2

8 Anhang

Tabelle 22: Auflistung aller in dieser Arbeit eingesetzten Western Blot Antikörper. Mit einem Kreuz in den rechten spalten der Tabelle sind diejenigen Experimente markiert, in welchen der entsprechende Antikörper verwendet wurde. (1) DigiWest mit durch Leberperfusion separierten periportalen und perizentralen Hepatozyten (4.2.3), (2) DigiWest mit FACS sortieren GS+ und GS-Hepatozyten (4.4.1), (3) DigiWest mit FACS sortierten GS+ und GS- Hepatozyten, welche danach kultiviert wurden und mittels Wnt3a und R-Spondin 3 behandelt wurden (4.4.2), (4) LiquiWest mit durch Leberperfusion separierten periportalen und perizentralen Hepatozyten(0), (5) DigiWest mit durch Leberperfusion separierten periportalen und perizentralen Hepatozyten, bei dem die Biotinylierung – wie beim LiquiWest – vor der SDS-PAGE erfolgte (4.3.3). Mod. Stelle, Aminosäure welche eine posttranslationale Modifikation trägt und vom eingesetzten Antikörper erkannt wird; Sp, Spezies in welcher der Antikörper generiert wurde.

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
14-3-3 epsilon		rb	Cell Signaling	9635	2	х				
14-3-3 sigma		gt	R&D	AF4424	ZLC010705	х				
14-3-3 zeta delta		rb	Cell Signaling	9639	1	х				
4E-BP1		rb	Epitomics	1557-1	YC111401	х			X	Х
4E-BP1 - phospho	Ser65	rb	Cell Signaling	9456	5	Х				
4E-BP1 - phospho	Thr37/Thr46	rb	Cell Signaling	9459	6	х				
53BP1		rb	Cell Signaling	4937	2	х				
53BP1 - phospho	Ser25/Ser29	rb	Cell Signaling	2674	2	х				
53BP1 - phospho	Ser1778	rb	Cell Signaling	2675	3	х				
53BP1 - phospho	Thr543	rb	Cell Signaling	3428	1	Х				
53BP1 - phospho	Ser1618	rb	Cell Signaling	6209	1	Х				
ABCG2 (BCRP)		rb	Cell Signaling	4477	3	х				
ABCG2 (BCRP)		ms	Millipore	MAB4155	LV1492897	Х				
ABCG5		rb	abcam	ab69713	GR3322	Х				
ABL2		rb	abcam	ab134134	GR97705-6	Х				
ABL2 - phospho	Tyr412	rb	biorbyt	orb34396	E3551	х				
Acetylated lysine		rb	Cell Signaling	9814	3	х				
Acetyl-CoA carboxylase - phospho	Ser79	rb	Cell Signaling	3661	10	х				
Ack1		rb	abcam	ab137506	GR151008-1	х				
Ack1 - phospho	Tyr284	rb	Cell Signaling	3138	1	х				
Actin		gt	Santa Cruz	sc-1616	H1804	Х				
ADAM12		rb	abcam	ab137468	GR128068-2	х	х	х		
ADAM9		rb	Cell Signaling	4151	1	х				
ADAMTS1		rb	Cell Signaling	12897	1	Х				
Adipophilin		ms	Progen	610102	010230	х				
Afadin - phospho	Ser1718	rb	Cell Signaling	5485	1	х				
AFP		rb	Epitomics	1816-1	YD071906	х				
AHR (aryl hydrocarbon receptor)		rb	biorbyt	orb4234	A1520	х				
AHR (aryl hydrocarbon receptor)		sh	R&D	AF6697	CFAL01110 21	x				
Akt		rb	Cell Signaling	4685	2	х	x	х		
Akt	1	rb	Cell Signaling	9272		х				
Akt - phospho	Thr308	rb	Cell Signaling	2965	3	х	х		X	
Akt - phospho	Thr308	rb	Cell Signaling	9275	18	х	х		X	
Akt - phospho	Ser473	rb	Cell Signaling	4060	5	х	х	Х		
Akt - phospho	Thr308	rb	Cell Signaling	4056	13	х				

Art substrates - phospho Ser/Thr rb Cell Signaling 9611 11 x Akt1 ms Cell Signaling 2967 17 x Image: Cell Signaling 2967 1 x Image: Cell Signaling 3063 4 x x Image: Cell Signaling 3063 4 x x X Image: Cell Signaling 3063 4 x x x x X X X X X Image: Cell Signaling 302211 X X X X X X X X X X X X	11 x x x 17 x x x 3 x x x 3 x x x 4 x x x 1 x x x 3 x x x 1 x x x 3 x x x YE0226012 x x x L085K4878 x x x L085K4878 x x x 1 x x x 302211/2 x x x 1 x x x 1 x x x 1 x x x 1 x x x 3 x x x 13 x x x 2 x x x 4 x x x 1 x x x </th <th>9611 11 2967 17 9018 3 2964 3 3063 4 8599 1 3788 3 2052-1 YE022 A2066 L085K C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2</th> <th>Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling Epitomics Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling</th> <th>rb ms rb rb rb rb rb ms ms rb rb rb rb rb rb rb rb</th> <th>Ser/Thr Ser473 Ser474 Ser474 Ser249 Tyr869/Tyr8 70 Ture70</th> <th>Akt substrates - phospho Akt1 Akt1 - phospho Akt2 Akt2 Akt2 - phospho Akt3 Aldh1A1 alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)</th>	9611 11 2967 17 9018 3 2964 3 3063 4 8599 1 3788 3 2052-1 YE022 A2066 L085K C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2	Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling Epitomics Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	rb ms rb rb rb rb rb ms ms rb rb rb rb rb rb rb rb	Ser/Thr Ser473 Ser474 Ser474 Ser249 Tyr869/Tyr8 70 Ture70	Akt substrates - phospho Akt1 Akt1 - phospho Akt2 Akt2 Akt2 - phospho Akt3 Aldh1A1 alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
priospino Cell Signaling 2967 17 x Akt1 - phospho Ser473 rb Cell Signaling 9018 3 x 1 Akt2 rb Cell Signaling 2964 3 x 1 Akt2 rb Cell Signaling 3063 4 x 1 Akt3 rb Cell Signaling 3788 3 x 1 Akt3 rb Cell Signaling 3788 x x x alpha Toktin rb Cell Signaling 3788 x x x x alpha-Catenin rb Sigma A2066 L085K4878 x x x x alpha-Catenin rb Sigmaling 8229 1 x <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2967 17 9018 3 2964 3 3063 4 8599 1 3788 3 2052-1 YE022 A2066 L085k C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67/ 3202 2	Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling Epitomics Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	ms rb rb rb rb rb rb rb rb rb rb rb rb rb	Ser473 Ser474 Ser474 Ser249 Tyr869/Tyr8 70 Ture70	Akt1 Akt1 - phospho Akt2 Akt2 Akt2 - phospho Akt3 Aldh1A1 alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
Akt1 - phospho Ser473 rb Cell Signaling 2901 17 x 1 Akt2 rb Cell Signaling 2964 3 x 1 Akt2 rb Cell Signaling 3063 4 x 1 Akt2 rb Cell Signaling 3063 4 x 1 Akt3 rb Cell Signaling 3788 3 x 1 Akt3 rb Cell Signaling 3788 3 x 1 Akt1 rb Cell Signaling 2052-1 YE0226012 x x x alpha 1-Actin rb Sigma A2066 L085K4878 x x alpha 1-Actin rb Cell Signaling 802211 302211/2 x x AML1 - phospho Ser249 rb Cell Signaling 3021 x x AMPA receptor (GluR2) rb Cell Signaling 2532 3 x x Androgen	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2307 17 9018 3 2964 3 3063 4 8599 1 3788 3 2052-1 YE022 A2066 L085k C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2	Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling Epitomics Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	rb rb rb rb rb rb rb rb rb rb rb rb rb r	Ser473 Ser474 Ser474 Ser249 Tyr869/Tyr8 70 Ture70	Akt1 - phospho Akt2 Akt2 Akt2 - phospho Akt3 Aldh1A1 alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
Akt2 b Cell Signaling 2064 3 x Akt2 rb Cell Signaling 3063 4 x Akt2 rb Cell Signaling 3063 4 x Akt3 rb Cell Signaling 3788 3 x x Akt3 rb Cell Signaling 3788 3 x x alpha-Catenin rb Sigma A2066 L085K4878 x x alpha-Catenin rb Sigmaling 4327 1 x x AML1 rb Cell Signaling 4327 1 x x AMPA receptor (GluR2) rb Cell Signaling 3921 1 x x AMPA receptor (GluR2) ryr66/ryr6 rb Cell Signaling 3221 1 x x AMPK alpha - phospho Thr72 rb Cell Signaling 3221 1 x x x x x x x <td< th=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>2964 3 2964 3 3063 4 8599 1 3788 3 2052-1 YE022 A2066 L085k C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2</td><td>Cell Signaling Cell Signaling Cell Signaling Cell Signaling Epitomics Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling</td><td>rb rb rb rb rb rb rb ms ms rb rb rb rb rb rb</td><td>Ser474 Ser474 Ser249 Tyr869/Tyr8</td><td>Akt2 Akt2 Akt2 - phospho Akt3 Aldh1A1 alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)</td></td<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2964 3 2964 3 3063 4 8599 1 3788 3 2052-1 YE022 A2066 L085k C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2	Cell Signaling Cell Signaling Cell Signaling Cell Signaling Epitomics Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	rb rb rb rb rb rb rb ms ms rb rb rb rb rb rb	Ser474 Ser474 Ser249 Tyr869/Tyr8	Akt2 Akt2 Akt2 - phospho Akt3 Aldh1A1 alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
Akt2 rb Cell Signaling 3063 4 x x Akt3 rb Cell Signaling 8599 1 x x Akt3 rb Cell Signaling 3788 3 x x alpha 1-Actin rb Cell Signaling 3788 3 x x alpha 1-Actin rb Sigma A2066 L085K4878 x x alpha-Catenin ms USBiological C2069-44H L7022155 x x AML1 rbospho Ser249 rb Cell Signaling 8229 1 x x AMPA receptor (GluR2) rb Cell Signaling 5306 1 x x x AMPA receptor (GluR2) rb Cell Signaling 2535 13 x x x Androgen receptor (AR) rb abcam ab52615 GR67415-5 x x x Androgen receptor (AR) rb Cell Signaling 2532	4 x x x 1 x x x 3 x x x YE0226012 x x x L085K4878 x x x L7022155 x x x 302211/2 x x x 1 x x x 1 x x x 1 x x x 1 x x x 1 x x x 1 x x x 3 x x x 3 x x x 13 x x x 2 x x x 4 x x x 1 x x x	3063 4 3063 4 8599 1 3788 3 2052-1 YE022 A2066 L085k C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2	Cell Signaling Cell Signaling Cell Signaling Epitomics Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	rb rb rb rb rb ms ms rb rb rb rb rb rb rb	Ser474 Ser474 Ser249 Tyr869/Tyr8	Akt2 Akt2 - phospho Akt3 Aldh1A1 alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
Akt2 - phospho Ser474 rb Cell Signaling 8599 1 x x Akt3 rb Cell Signaling 3788 3 x	1 x x x x 3 x x x x YE0226012 x x x x L085K4878 x x x x L7022155 x x x x 302211/2 x x x x 1 x x x x 1 x x x x 1 x x x x 1 x x x x 1 x x x x 3 x x x x 3 x x x x 3 x x x x GR67415-5 x x x x 4 x x x x 1 x x x x	8599 1 3788 3 2052-1 YE022 A2066 L085k C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2	Cell Signaling Cell Signaling Epitomics Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	rb rb rb rb ms ms rb rb rb rb rb rb	Ser474	Akt2 - phospho Akt3 Aldh1A1 alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
Akt3 rb Cell Signaling 3788 3 x	3 x x x x x YE0226012 x x x x x L085K4878 x x x x x L7022155 x x x x x 302211/2 x x x x 1 x x x x 1 x x x x 1 x x x x 1 x x x x 1 x x x x 1 x x x x 3 x x x x 3 x x x x GR67415-5 x x x x 4 x x x x 1 x x x x	3788 3 2052-1 YE022 A2066 L085K C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2	Cell Signaling Epitomics Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	rb rb ms ms rb rb rb rb rb rb	Ser249 Tyr869/Tyr8	Akt3 Aldh1A1 alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
Aldh1A1 rb Epitomics 2052-1 YE0226012 x	YE0226012 x x x x L085K4878 x x x L7022155 x x x 302211/2 x x x 1 x x x 1 x x x 1 x x x 1 x x x 1 x x x 1 x x x 3 x x x 13 x x x QR67415-5 x x x 4 x x x 1 x x x	2052-1 YE022 A2066 L085k C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2	Epitomics Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	rb rb ms rb rb rb rb rb rb	Ser249 Tyr869/Tyr8	Aldh1A1 alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
alpha 1-Actin rb Sigma A2066 L085K4878 x alpha-Catenin ms USBiological C2069-44H L7022155 x i alpha-Tubulin ms Synaptic Sys 302211 302211/2 x i AML1 phospho Ser249 rb Cell Signaling 8229 1 x i AMPA receptor (GluR2) Tyr6809/Tyr8 rb Cell Signaling 3921 1 x i AMPA receptor (GluR2) Tyr6809/Tyr8 rb Cell Signaling 2535 13 x x x x x AMPK alpha - phospho Thr172 rb Cell Signaling 2535 13 x	L085K4878 x x x 1 L7022155 x x x 302211/2 x x x x 1 x x x x 1 x x x x 1 x x x x 1 x x x x 1 x x x x 3 x x x x 13 x x x x 2 x x x x 4 x x x x 1 x x x x	A2066 L085k C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2	Sigma USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	rb ms rb rb rb rb rb	Ser249 Tyr869/Tyr8	alpha 1-Actin alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
alpha-Catenin ms USBiological C2069-44H L7022155 x alpha-Tubulin ms Synaptic Sys 302211 302211/2 x 1 AML1 rb Cell Signaling 8229 1 x 1 AML1-phospho Ser249 rb Cell Signaling 8327 1 x 1 AMPA receptor (GluR2) rb Cell Signaling 3306 1 x 1 AMPA receptor (GluR2) rb Cell Signaling 3921 1 x 1 AMPK alpha rb Cell Signaling 2532 3 x x 1 AMPK alpha rb Cell Signaling 2535 13 x x x Amdrogen receptor (AR) rb abcam ab52615 GR67415-5 x 1 Annexin II ms Trans. Lab. A14020 4 x 1 Apaf-1 rb Cell Signaling 2504 1 x 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2069-44H L7022 302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67- 3202 2	USBiological Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	ms ms rb rb rb rb	Ser249 Tyr869/Tyr8	alpha-Catenin alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
alpha-Tubulin ms Synaptic Sys 302211 302211/2 x AML1 rb Cell Signaling 8229 1 x 1 AML1 - phospho Ser249 rb Cell Signaling 4327 1 x 1 AMPA receptor (GluR2) rb Cell Signaling 5306 1 x 1 AMPA receptor (GluR2) Tyr669/Tyr8 rb Cell Signaling 3921 1 x 1 AMPK alpha rb Cell Signaling 2535 13 x x x AMPK alpha - phospho Thr172 rb Cell Signaling 2535 13 x x x Androgen receptor (AR) rb Cell Signaling 3202 2 x 1 Apaf-1 rb Cell Signaling 8723 1 x 1 APC ms Trans. Lab. A14020 4 x 1 APC rb Cell Signaling 2504 1	302211/2 x x x 1 x x x x 1 x x x x 1 x x x x 1 x x x x 1 x x x x 3 x x x x 13 x x x x 2 x x x x 4 x x x x 1 x x x x	302211 30221 8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67- 3202 2	Synaptic Sys Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	ms rb rb rb rb	Ser249 Tyr869/Tyr8	alpha-Tubulin AML1 AML1 - phospho AMPA receptor (GluB2)
AMI.1 rb Cell Signaling 8229 1 x AML1 - phospho Ser249 rb Cell Signaling 4327 1 x A AMPA receptor (GluR2) rb Cell Signaling 5306 1 x I AMPA receptor (GluR2) Tyr869/Tyr8 rb Cell Signaling 3921 1 x I AMPK alpha rb Cell Signaling 3921 1 x x I AMPK alpha - phospho Thr172 rb Cell Signaling 2532 3 x x X Androgen receptor (AR) rb abcam ab52615 GR67415-5 x I Androgen receptor (AR) rb cell Signaling 3202 2 x I Apc calbiochem OP62 D35600 x I Apc ApC ms Calbiochem OP62 D35600 x I APC rb Abgent AP1816a SH050530c </th <td>1 x </td> <td>8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67- 3202 2</td> <td>Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling</td> <td>rb rb rb rb rb</td> <td>Ser249 Tyr869/Tyr8</td> <td>AML1 AML1 - phospho AMPA receptor (GluR2)</td>	1 x	8229 1 4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67- 3202 2	Cell Signaling Cell Signaling Cell Signaling Cell Signaling Cell Signaling	rb rb rb rb rb	Ser249 Tyr869/Tyr8	AML1 AML1 - phospho AMPA receptor (GluR2)
AMI1 - phospho Ser249 rb Cell Signaling 4327 1 x AMPA receptor (GluR2) rb Cell Signaling 5306 1 x 1 AMPA receptor (GluR2) - phospho Tyr869/Tyr8 rb Cell Signaling 3921 1 x 1 AMPK alpha rb Cell Signaling 2532 3 x x x AMPK alpha rb Cell Signaling 2535 13 x x x Androgen receptor (AR) rb abcam ab52615 GR67415-5 x 1 Annexin II ms Trans. Lab. A14020 4 x 1 Apf-1 rb Cell Signaling 8723 1 x 1 APC rb Cell Signaling 2504 1 x 1 APC rb Cell Signaling 2504 1 x 1 APC rb Cell Signaling 2504 1 x 1	1 x x x 1 x x x x 1 x x x x 3 x x x x 13 x x x x GR67415-5 x x x x 4 x x x x 1 x x x x 1 x x x x	4327 1 5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2	Cell Signaling Cell Signaling Cell Signaling Cell Signaling	rb rb rb rb	Ser249 Tyr869/Tyr8	AML1 - phospho AMPA receptor (GluB2)
AMPA receptor (GluR2) - phospho Tyr869/Tyr8 73/Tyr876 rb Cell Signaling 5306 1 x x AMPA receptor (GluR2) - phospho Tyr869/Tyr8 73/Tyr876 rb Cell Signaling 3921 1 x	1 x x 1 x x 3 x x 13 x x GR67415-5 x x 2 x x 4 x x 1 x x 1 x x	5306 1 3921 1 2532 3 2535 13 ab52615 GR67 3202 2	Cell Signaling Cell Signaling Cell Signaling	rb rb rb	Tyr869/Tyr8	AMPA receptor (GluR2)
AMPA receptor (GluR2) - phospho Tyr869/Tyr8 73/Tyr876 rb Cell Signaling 3921 1 x x x AMPK alpha rb Cell Signaling 2532 3 x	1 x 3 x 13 x x x x GR67415-5 x 2 x 4 x 1 x	3921 1 2532 3 2535 13 ab52615 GR674 3202 2	Cell Signaling Cell Signaling	rb rb	Tyr869/Tyr8	
AMPK alpha rb Cell Signaling 2532 3 x x AMPK alpha - phospho Thr172 rb Cell Signaling 2535 13 x <t< th=""><td>3 x x x 13 x x x x GR67415-5 x x x 2 x x x 4 x x x 1 x x x</td><td>2532 3 2535 13 ab52615 GR67 3202 2</td><td>Cell Signaling</td><td>rb</td><td>73/1yr876</td><td>AMPA receptor (GluR2) - phospho</td></t<>	3 x x x 13 x x x x GR67415-5 x x x 2 x x x 4 x x x 1 x x x	2532 3 2535 13 ab52615 GR67 3202 2	Cell Signaling	rb	73/1yr876	AMPA receptor (GluR2) - phospho
AMPK alpha - phospho Thr172 rb Cell Signaling 2535 13 x x x Androgen receptor (AR) rb abcam ab52615 GR67415-5 x </th <td>13 x x x x GR67415-5 x 2 x 4 x 1 x 1 x </td> <td>2535 13 ab52615 GR67 3202 2</td> <td>Cell Signaling</td> <td></td> <td></td> <td>AMPK alpha</td>	13 x x x x GR67415-5 x 2 x 4 x 1 x 1 x	2535 13 ab52615 GR67 3202 2	Cell Signaling			AMPK alpha
Androgen receptor (AR) rb abcam ab52615 GR67415-5 x Androgen receptor (AR) rb Cell Signaling 3202 2 x X Annexin II ms Trans. Lab. A14020 4 x X Apaf-1 rb Cell Signaling 8723 1 x X APC rb Cell Signaling 2504 1 x X APG12L (ATG12) rb Abgent AP1816a SH050530c x X APG3L rb Abgent AP1807a SH050527B x X APG4B rb Abgent AP1809a SH050527M x X APG5L (176-275) ms Abnova H00009474-	GR67415-5 x 2 x 4 x 1 x 1 x	ab52615 GR674 3202 2	Och Olghanng	rb	Thr172	AMPK alpha - phospho
Androgen receptor (AR) rb Cell Signaling 3202 2 x Annexin II ms Trans. Lab. A14020 4 x 1 Apaf-1 rb Cell Signaling 8723 1 x 1 APC rb Cell Signaling 2504 1 x 1 APC ms Calbicchem OP62 D35600 x 1 APC rb Cell Signaling 2504 1 x 1 APC ms Calbicchem OP62 D35600 x 1 APG12L (ATG12) rb Abgent AP1816a SH050530c x 1 APG3L rb Abgent AP1807a SH050527B x 1 APG4B rb Abgent AP1807a SH050531F x 1 APG4B rb Abgent AP1809a SH050527M x 1 APG5L (176-275) ms Abnova M01 00Aa	2 x 4 x 1 x 1 x	3202 2	abcam	rb		Androgen receptor (AR)
Annexin II ms Trans. Lab. A14020 4 x Apaf-1 rb Cell Signaling 8723 1 x 1 APC rb Cell Signaling 2504 1 x 1 APC ms Calbiochem OP62 D35600 x 1 APC ms Calbiochem OP62 D35600 x 1 APC rb Cell Signaling 2504 1 x 1 APG12L (ATG12) rb Abgent AP1816a SH050530c x 1 APG3L rb Abgent AP18107a SH050527B x 1 APG3L rb Abgent AP1807a SH050527B x 1 APG4B rb Abgent AP1807a SH050531F x 1 APG5L (176-275) ms Abnova H00009474- 6345-3D2- M01 00Aa x 1 APG7L rb Abgent	4 x 1 x 1 x		Cell Signaling	rb		Androgen receptor (AR)
Apat-1 rb Cell Signaling 8723 1 x A APC rb Cell Signaling 2504 1 x X X APC ms Calbiochem OP62 D35600 x X X X APC rb Cell Signaling 2504 1 x X <td>1 X 1 1 X 1</td> <td>A14020 4</td> <td>Trans. Lab.</td> <td>ms</td> <td></td> <td>Annexin II</td>	1 X 1 1 X 1	A14020 4	Trans. Lab.	ms		Annexin II
APC rb Cell Signaling 2504 1 x x APC ms Calbiochem OP62 D35600 x	1 X	8723 1	Cell Signaling	rb		Apaf-1
APC ms Calbiochem OP62 D35600 x APC rb Cell Signaling 2504 1 x x APG12L (ATG12) rb Abgent AP1816a SH050530c x x APG12L (ATG12) rb Zytomed 201-0903 7020174 x x APG3L rb Abgent AP1807a SH050527B x x APG4B rb Abgent AP1807a SH050531F x x APG5L (176-275) ms Abnova H00009474- M01 6345-3D2- VM01 x x APG7L rb Rockland 600-401-487 15789Cr x x APG7L rb Abgent AP1813a SH050527M x x APG3a rb Abgent AP1813a SH05062A x x APG8a rb Abgent AP1801a SH050602A x x A-Raf phospho Ser299		2504 1	Cell Signaling	rb		APC
APC rb Cell Signaling 2504 1 x APG12L (ATG12) rb Abgent AP1816a SH050530c x x APG12L (ATG12) rb Zytomed 201-0903 7020174 x x APG3L rb Abgent AP1807a SH050527B x x APG4B rb Abgent AP1809a SH050531F x x APG5L (176-275) ms Abnova H00009474- M01 6345-3D2- 00Aa x x APG7L rb Rockland 600-401-487 15789Cr x x APG7L rb Abgent AP1813a SH050527M x x APG7L rb Abgent AP1813a SH050602A x x APG8a rb Abgent AP1801a SH050602A x x x APG8a rb Abgent AP1801a SH050602A x x x A-Raf rb Cell Signaling 4432 2 x x x A	D35600 x	OP62 D3560	Calbiochem	ms		APC
APG12L (ATG12) rb Abgent AP1816a SH050530c x APG12L (ATG12) rb Zytomed 201-0903 7020174 x x APG3L rb Abgent AP1807a SH050527B x x x APG4B rb Abgent AP1807a SH050527B x x x APG4B rb Abgent AP1809a SH050531F x x x APG5L (176-275) ms Abnova H00009474- M01 6345-3D2- VM01 x x x APG7L rb Rockland 600-401-487 15789Cr x x x APG7L rb Abgent AP1813a SH050527M x x x APG3a rb Abgent AP1813a SH050527M x x x APG8a rb Abgent AP1801a SH050602A x x x APG8a rb Abgent AP1801a SH050602A x x x A-Raf phospho Ser299 <td>1 X</td> <td>2504 1</td> <td>Cell Signaling</td> <td>rb</td> <td></td> <td></td>	1 X	2504 1	Cell Signaling	rb		
APG12L (ATG12) rb Zytomed 201-0903 7020174 x APG3L rb Abgent AP1807a SH050527B x x APG4B rb Abgent AP1807a SH050527B x x APG4B rb Abgent AP1809a SH050531F x x APG5L (176-275) ms Abnova H00009474- M01 6345-3D2- V00Aa x x APG7L rb Rockland 600-401-487 15789Cr x x x APG7L rb Abgent AP1813a SH050527M x x x APG7L rb Abgent AP1813a SH050527M x x x APG8a rb Abgent AP1801a SH050602A x x x A-Raf rb Santa Cruz sc-30090 J1305 x x x A-Raf phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho Tyr301/Tyr3 02 rb bior	SH050530c x	AP1816a SH050	Abgent	rb		APG12L (ATG12)
APG3L rb Abgent AP180/a SH05052/B x APG4B rb Abgent AP1809a SH050531F x x APG5L (176-275) ms Abnova H00009474- M01 6345-3D2- 00Aa x x APG7L rb Rockland 600-401-487 15789Cr x x APG7L rb Abgent AP1813a SH050527M x x APG7L rb Rockland 600-401-487 15789Cr x x x APG7L rb Abgent AP1813a SH050527M x x x APG8a rb Abgent AP1801a SH050602A x x x apol 1 rb Santa Cruz sc-30090 J1305 x x x A-Raf rb Cell Signaling 4432 2 x x x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho 02 rb biorbyt orb5910	7020174 x	201-0903 /0201	Zytomed	rb		APG12L (ATG12)
APG4B rb Abgent AP11809a SH050531F x APG5L (176-275) ms Abnova H00009474- M01 6345-3D2- M01 x x APG7L rb Rockland 600-401-487 15789Cr x x APG7L rb Abgent AP1813a SH050527M x x APG8a rb Abgent AP1801a SH050602A x x apol 1 rb Santa Cruz sc-30090 J1305 x x A-Raf rb Cell Signaling 4432 2 x x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho Tyr301/Tyr3 02 rb biorbyt orb5910 A3395 x x	SH050527B x	AP180/a SH050	Abgent	rb		APG3L
APG5L (176-275) ms Abnova H00009474- M01 6345-3D2- 00Aa x APG7L rb Rockland 600-401-487 15789Cr x x APG7L rb Abgent AP1813a SH050527M x x APG8a rb Abgent AP1801a SH050602A x x apol 1 rb Santa Cruz sc-30090 J1305 x x A-Raf rb Cell Signaling 4432 2 x x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x A-Raf - phospho Tyr301/Tyr3 02 rb biorbyt orb5910 A3395 x x	SH050531F X	API1809a SH050	Abgent	rD		APG4B
APG7L rb Rockland 600-401-487 15789Cr x APG7L rb Abgent AP1813a SH050527M x x APG8a rb Abgent AP1801a SH050602A x x x apol 1 rb Santa Cruz sc-30090 J1305 x x x A-Raf rb Cell Signaling 4432 2 x x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho Ser299 rb biorbyt orb5910 A3395 x x A-Raf - phospho Tyr301/Tyr3 02 rb biorbyt orb5910 A3395 x x	- 6345-3D2- 00Aa x	M01 00Aa	Abnova	ms		APG5L (176-275)
APG7L rb Abgent AP1813a SH05052/M x APG8a rb Abgent AP1801a SH050602A x x apol 1 rb Santa Cruz sc-30090 J1305 x x A-Raf rb Cell Signaling 4432 2 x x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho Tyr301/Tyr3 02 rb biorbyt orb5910 A3395 x x ARF1 ms Millipore 05-1427 22772153 x x	7 15789Cr x	600-401-487 15789	Rockland	rb		APG7L
APG8a rb Abgent AP1801a SH050602A x apol 1 rb Santa Cruz sc-30090 J1305 x x A-Raf rb Cell Signaling 4432 2 x x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho Ser299 rb biorbyt orb5910 A3395 x x A-Raf - phospho Tyr301/Tyr3 02 rb biorbyt orb5910 A3395 x x ARF1 ms Millipore 05-1427 22772153 x x <td>SH050527M x</td> <td>AP1813a SH050</td> <td>Abgent</td> <td>rb</td> <td></td> <td>APG7L</td>	SH050527M x	AP1813a SH050	Abgent	rb		APG7L
apol 1 rb Santa Cruz sc-30090 J1305 x A-Raf rb Cell Signaling 4432 2 x x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho Tyr301/Tyr3 02 rb biorbyt orb5910 A3395 x x ARF1 ms Millipore 05-1427 22772153 x x	SH050602A x	AP1801a SH050	Abgent	rb		APG8a
A-Raf rb Cell Signaling 4432 2 x A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x x A-Raf - phospho Tyr301/Tyr3 02 rb biorbyt orb5910 A3395 x x ARF1 ms Millipore 05-1427 22772153 x x	J1305 X	SC-30090 J1305	Santa Gruz	rD		
A-Raf - phospho Ser299 rb Cell Signaling 4431 0001 x A-Raf - phospho Tyr301/Tyr3 02 rb biorbyt orb5910 A3395 x I ARF1 ms Millipore 05-1427 22772153 x I Arginage-1 rb Cell Signaling 9910 0001 x x I	2 X	4432 2	Cell Signaling	rD	Sar200	A-Rai
A-Raf - phospho Tyrso rb biorbyt orb5910 A3395 x ARF1 ms Millipore 05-1427 22772153 x Argingse-1 rb Cell Signaling 9810 0001 x x	0001 x	4431 0001	Cell Signaling	aı	Sei299	A-Rai - pilospilo
ARF1 ms Millipore 05-1427 22772153 x Arginase-1 rb Cell Signaling 0910 0001 x x	A3395 x	orb5910 A3395	biorbyt	rb	02	A-Raf - phospho
	22//2153 X	05-142/ 22772		ms		
	UUUI X X X X	9019 UUU1	Cell Signaling	an		Arginase-I
ASC (PTCARD) ITIS BIOZOI LS-01/5123 S2400 X ASCL2/Mash2 sh R&D AF6539 CESJ01101 x x X	CESJ01101 X	AF6539 CESJ	R&D	sh		ASC (PTCARD) ASCL2/Mash2
		01 001	abaam	_اي		46102
ADILO ITO ADCAM AD49333 GH126539-2 X	4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	aD49333 GH12		01 طر		
AGNI ID Cell Signaling 8002 I X		000∠ I 3764 2		rb	Sor967	AGNI ASK1 - phoepho
ASK1 - phospho October ID October Signaling S704 Z X ASK1 - phospho Thr845 rh Cell Signaling 3765 2 v	2 1	3765 2	Cell Signaling	rh	Thr845	ASK1 - phospho
ASK1 - phospho Ser83 rb Cell Signaling 3761 2 v	2 .	3761 2	Cell Signaling	rh	Ser83	ASK1 - phospho
ASL(argininos-uccinate				10		ASL(argininos-uccinate
rb Atlas/Sigma HPA016646 R06318 x x x	3 R06318 x x x x	HPA016646 R0631	Atlas/Sigma	rb		lyase)
ATF3 rb Sigma HPA001562 A70381 x	2 A70381 x	HPA001562 A7038	Sigma	rb		ATF3
ATF4 gt Acris AP15940PU -N E250810 x x x	J E250810 x x x	AP15940PU -N E2508	Acris	gt		ATF4
ATF6 alpha rb Acris AP17892PU SA091224A x	J SA091224A x	AP17892PU SA09 ⁻ -N A	Acris	rb		ATF6 alpha
ATM rb Cell Signaling 2873 3 x	3 x	2873 3	Cell Signaling	rb		ATM
ATM - phospho Ser1981 rb Cell Signaling 5883 1 x	1 x	5883 1	Cell Signaling	rb	Ser1981	ATM - phospho
ATM - phospho Ser1981 ms Millipore MAB3806 2015985 x	2015985 x	MAB3806 20159	Millipore	ms	Ser1981	ATM - phospho
ATM/ATR substrates - phospho Ser/Thr rb Cell Signaling 2851 2B x	2B x	2851 2B	Cell Signaling	rb	Ser/Thr	ATM/ATR substrates - phospho

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
ATP citrate lyase		rb	biorbyt	orb5743	A3892	х				
ATP7b		rb	abcam	ab124973	YI050414	х				
ATR		rb	Cell Signaling	2790	2	х				
ATR - phospho	Ser428	rb	Cell Signaling	2853	5	х				
Aurora A (AIK)		rb	Cell Signaling	4718	3	х				
Aurora A (AIK) -	Thr288	rh	Cell Signaling	3079	3	Y				
phospho	111200	10	oen olghainig	8878	0	Â				
Aurora A/B/C - phospho	Thr288/Thr2 32/Thr198	rb	Cell Signaling	2914	3	х				
Aurora B (AIM1)		rb	Cell Signaling	3094	2	х	Х		Х	
Aven		rb	Cell Signaling	2300	1	х				
Axin1		rb	Cell Signaling	3323	1	х				
Axin2 (Conductin)		rb	Cell Signaling	5863	1	х				
Axin2 (Conductin)		gt	Santa Cruz	sc-8570	B1406	х				
Axin2 (Conductin)		rb	abcam	ab32197	366571	х				
AxI		rb	Cell Signaling	8661	1	х				
Axl - phospho	Tyr702	rb	Cell Signaling	5724	1	х				
Bad		rb	Cell Signaling	9239	1	х				
Bad - phospho	Ser136	rb	Cell Signaling	4366	1	х				
Bad - phospho	Ser112	rb	Cell Signaling	5284	3	х				
Bad - phospho	Ser112	ms	Cell Signaling	9296	7	х				
Bad - phospho	Ser112	rb	Cell Signaling	9291	8	х				
Bak		rb	Cell Signaling	3792	2	х				
Bax		rb	Cell Signaling	2772	6	х	х	Х		
Bcl2		rb	Cell Signaling	2870	2	х				
Bcl2 - phospho	Ser70	rb	Cell Signaling	2827	4	х				
Bcl6		rb	Cell Signaling	4242	1	х				
Bcl-xL		rb	Cell Signaling	2764	4	х			Х	Х
Beclin-1		rb	Cell Signaling	3738	1	х				
Beta-2-microglobulin		rb	Dako	A0072	030 (301)	х			х	Х
beta-Actin		ms	Sigma	A1978	012M4821	х		Х	Х	Х
beta-Actin		ms	Sigma	A 5441		х				
beta-Catenin		rb	Cell Signaling	8480	4	х	х	Х	Х	Х
beta-Catenin		rb	Millipore	06-734	JBS1883073	х				
beta-Catenin		rb	Invitrogen	AHO0462	73268011A	х				
beta-Catenin - acetyl	Lys49	rb	Cell Signaling	9534	1	х				
beta-Catenin - phospho	Ser675	rb	Cell Signaling	9567	1	х	Х	Х		
beta-Catenin - phospho	Thr41/Ser45	rb	Cell Signaling	9565	2	х				
beta-Catenin - phospho	Ser552	rb	Cell Signaling	9566	2	х				
beta-Catenin - phospho	Ser45	rb	Cell Signaling	9564	1	х				
beta-Catenin - phospho	Ser33/Ser37 /Thr41	rb	Cell Signaling	9561	2	x				
beta-Catenin (non-posph		rb	Cell Signaling	8814	3	x	x	х		
beta-Galactosidase		me	MoBiToo	M004 2		v				
BID		me		2006	2	×				
BID - cloaved		rh	Thormo So	PA1 22010	L 11251/67					
Bik		rb	abcam	ab52192	GT/822					
		1D rb	Coll Signaling	4502	014000	X				
Bik phoopho	Throo	10 rb		4092		X				
Bik - pilospilo	111133	rb	Coll Signaling	4592	3DF000330	×				
	Sor60	rb	Cell Signaling	4502	3	×				
Bin - phospho Bin	36109	rb	Cell Signaling	4303	1 0	×				
קופ Bmf		rb		4602	<u>-</u> 1	×				
Bmi1		rb	Cell Signaling	2820	1	×				
Bmi1		rb		6064	- 1					
BMD/		rb		5162 1	VI0204040					
B.Myh (MVRI 2)			Sigma	SAR250016	701/101	×				
		yı	Sigilia	3AD23UU10	101461	×				
phospho	Thr487	rb	Epitomics	2376-1		х				
Bok		rb	Cell Signaling	4521	1	х				
Brachyury		rb	Invitrogen	48-1900	752648A	Х	X		Х	

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
Brachyury		rb	Cell Signaling	12312	1	х				
b-Raf		rb	Upstate	07-583	26953	х				
b-Raf - phospho	Ser445	rb	Cell Signaling	2696	3	Х				
BRCA1		rb	Cell Signaling	9010	2	Х				
BRCA1 - phospho	Ser1524	rb	Cell Signaling	9009	2	х				
BRCA2		rb	Cell Signaling	9012	2	Х				
Bub1b		rb	Cell Signaling	5421	1	Х				
Bub1b		rb	Cell Signaling	4116	1	Х				L
C/EBP alpha	Th: 0000/Th: 00	rb	Cell Signaling	8178	0001	Х				
C/EBP alpha - phospho	1hr222/1hr2 26	rb	Cell Signaling	2844	0002	х				
C/EBP beta	TI 005	rb	Cell Signaling	3087	2	Х				L
C/EBP beta - pnospho	Thr235	rb	Cell Signaling	3084	3	Х				
		rb	Santa Cruz	SC-25599	A2304	X	X		X	
		ms	R&D	MAB1348	704000	X				<u> </u>
Caimodulin		ms	Tranaduation	ab/5207	/24302	X				<u> </u>
Calnexin		ms	Lab.	C45520	2	х				
Calreticulin		rb	Cell Signaling	2891	1	Х				
Calretinin		ms	Transduction Lab.	C69520	1	х				
CaMK IV		ms	Transduction Lab.	C28420	2	х				
Canceroembryogenic antigen (CEA)		ms	Dianova	DIA 800	90203B	х				
CAR 1/2		gt	Santa Cruz	sc-8538		х				
Caseinkinase 1 alpha		rb	Cell Signaling	2655	1	х				
Caseinkinase 1 delta		ms	abcam	ab85320	GR3957	х	X	Х	X	X
Caseinkinase 1 epsilon		rb	Invitrogen	487600	070629237D 1	х				
Caseinkinase 1 epsilon		ms	Nanotools	0172-100	0172S0101	Х				
Caseinkinase 2 alpha		rb	Cell Signaling	2656	1	Х				
CASK		ms	Trans. Lab.	C63120	1	Х				
Caspase 1		rb	GeneTex	GTX62815	GR178374	Х				<u> </u>
Caspase 10		rb	Epitomics	1035-1	G081901	Х				L
		rb	abcam	ab2251	GR16/155-1	Х				
Caspase 3	A == 175	rD	Cell Signaling	9662	12	X				—
Caspase 5 - cleaved	Asp175	rD	Cell Signaling	9661	38	X	X		X	—
		1D rb	Coll Signaling	0760	1 1029-020	X				<u> </u>
	Acn162	rb	Cell Signaling	9762	2	X				
Caspase 7	730102	rb	Cell Signaling	0/02	6	^ V			v	v
Caspase 7 - cleaved	Asn198	rb	ahcam	ah2323	931918	Ŷ			^	<u> </u>
Caspase 8	1.001.00	ms	Cell Signaling	9746	4	x				
Caspase 8 - cleaved	Asp374/Asp 391	rb	Cell Signaling	9496	3	x				
Caspase 9		rb	Cell Signaling	9502	8	х				
Caspase 9		ms	Cell Signaling	9508	2	x				
Caspase 9 - cleaved	Asp330	rb	Cell Signaling	9501	4	х				
Caspase 9 - cleaved	Asp315	rb	Cell Signaling	9505	3	х				
Caspase 9 - cleaved	Asp330	rb	Cell Signaling	7237	1	х				
Caveolin-1		rb	Cell Signaling	3238	3	х	х		x	
СВР		rb	Cell Signaling	7389	1	х				
CBP/p300 - acetyl	Lys1535/Lys 1499	rb	Cell Signaling	4771	3	x				
CCDC43		rb	Atlas	HPA023391	R10700	х				
CD133		rb	Cell Signaling	3663	2	х				
CD3 epsilon		rt	Kremmer	CD3-12		х				
CD36		rb	abcam (Epitomics)	ab133625)	YI081203CS	x			x	x
CD44		rb	Epitomics	1998-1	YG072004C	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
CD44 variant (Exon v6)		ms	Bender MedSystems	BMS125	48778000	х				
CD45		rb	Epitomics	1577-1	YF1126-04C	х				
CD45		ms	Transduction Lab.	C27220	3	х				
CD51 (VNR alpha)		ms	Transduction Lab.	C75120	1	x				
cdc2 (CDK1)		rb	Cell Signaling	9112	5	х				
cdc2 (CDK1) - phospho	Tyr15	rb	Cell Signaling	4539	2	х				
cdc25A		rb	abm	Y021163	0907	х		х		
cdc25A		ms	R&D	MAB1648	XAY016021	х				
cdc25A (M-phase inducer phosphatase 1) - phospho	Ser75	rb	abm	Y011138	207	x				
cdc25B		gt	R&D	AF1649	WJY016011	х				
cdc25C		rb	Epitomics	1302-1	C05251	х				
cdc27		ms	Transduction Lab.	C40920	1	x				
cdc37		rb	Cell Signaling	3604	1	х				
cdc6		rb	Cell Signaling	3387	1	х				
CDK substrates - phospho	Ser	rb	Cell Signaling	2324	2	x				
CDK12		rb	Cell Signaling	11973	1	х				
CDK2		rb	Cell Signaling	2546	4	х				
CDK2 - phospho	Thr160	rb	Cell Signaling	2561	3	х				
CDK3		rb	abcam	ab135805	GR106306-2	х	х	х		
CDK4		ms	Cell Signaling	2906	2	х				
CDK5		rb	Cell Signaling	2506	2	х				
CDK6		ms	Cell Signaling	3136	2	Х				
CDK6 - phospho	Tyr24	rb	biorbyt	orb15014	B7380	х				
CDK6 - phospho	Tyr13	rb	biorbyt	orb15013	B7379	х				
CDKN2A		rb	ProteinTech Group	10883-1-AP	1	х				
CDKN2B (p15 INK4B, CDN2B, MTS2)		rb	Cell Signaling	4822	2	x	x	x	x	x
CENP-A - phospho	Ser7	rb	Cell Signaling	2187	1	х				
Cerberus		gt	Santa Cruz	sc-15132	K1208	х				
c-Fos		rb	Cell Signaling	4384	1	х				
Chk1 - phospho	Ser296	rb	Cell Signaling	2349	7	х				
Chk1 - phospho	Ser345	rb	Cell Signaling	2341	7	х				
Chk2		rb	Cell Signaling	6334	1	х				
Chk2 - phospho	Thr68	rb	Cell Signaling	2661	9	х				
СНОР		rb	Acris	AP06131PU -N	360763	x				
CHOP		ms	Cell Signaling	2895	3	х				
CIP2A		rb	Bethyl	A301-454A	A301454A-1	х		х		
CITED2		rb	Epitomics	3297-1	YH050705C	х				
c-Jun		rb	Cell Signaling	9165	9	х				
c-Jun - phospho	Ser63	ms	Santa Cruz	sc-822	J0604	х				
c-Jun - phospho	Ser63	rb	Cell Signaling	2361	2	х				
c-Jun - phospho	Ser63	rb	Cell Signaling	9261	4	Х				
c-Jun - phospho	Ser73	rb	Cell Signaling	9164	4	Х				
c-Kit		rb	abcam (Epitomics)	ab32363	GR90061-1	х				
Claudin-1		rb	Invitrogen	51-9000	758264A	х				
Claudin-1		rb	Cell Signaling	4933	3	х				
c-Met (HGF/SF receptor)		gt	R&D	af527	CTB036021	х	x		x	
c-Met (HGF/SF receptor)		ms	Cell Signaling	3127	3	х				
c-Met (HGF/SF receptor)		rb	Spring Biosc.	M3444	90709	х				
c-Met (HGF/SF receptor)		rt	R&D	dy527		х				
c-Met (HGF/SF receptor)		ms	Cell Signaling	3148	2	Х				
c-Met (HGF/SF receptor)		rb	Santa Cruz	sc-161	G2904	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
c-Met (HGF/SF receptor) - phospho	Tyr1234/Tyr 1235	rb	Cell Signaling	3126	12	x				
c-Met (HGF/SF receptor) - phospho	Tyr1349	rb	Epitomics	2319-1	YE112102	x				
c-Met (HGF/SF receptor) - phospho	Tyr1349	rb	Cell Signaling	3133	2	x				
c-Met (HGF/SF receptor) - phospho	Tyr1230/Tyr 1234/Tyr123 5	rb	Biosource	44-888G	0802	x				
c-Met (HGF/SF receptor) - phospho	Tyr1234/Tyr 1235	rb	Cell Signaling	3077	6	x				
c-myc		rb	Cell Signaling	9402	3	х	х	х	x	
c-myc - phospho	Thr58/Ser62	rb	abcam	ab32029	GR104962-1	х				
Cofilin	_	rb	Cell Signaling	5175	0001	х		х		
Cofilin - phospho	Ser3	rb	Cell Signaling	3313	4	х				
Collagen I A2		rb	abcam	ab96723	GR8253-14	х		Х		
Collagen I A2		gt	Santa Cruz	SC-8/88	B2406	X				
Connexin 20		mo	Zymed	13-0100	1022231A	X	v			—
Connexin 32		rb		2512	944023A	×	X		X	<u> </u>
Contactin 1		ms	Trans Lab	C50920	1	×				
Cox1		rb	Cell Signaling	9896	1	x				
Cox2		rb	Cell Signaling	4842	2	x				
CPS1		at	Santa Cruz	sc-10516	 J0312	x				
c-Raf		rb	Cell Signaling	9422	2	x				
c-Raf - phospho	Ser259	rb	Cell Signaling	9421	7	х				
c-Raf - phospho	Ser338	rb	Cell Signaling	9427	6	х				
CREB		rb	Cell Signaling	9197	1	х				
CREB - phospho	Ser133	rb	Cell Signaling	9198	10	х				
Crk (p38)		rb	Epitomics	1779-1	YD032001	х				
Crk (p38) - phospho	Tyr221	rb	Epitomics	2132-1	YE060603	х				
CRP1		ms	Trans.Lab.	C73220	1	х				
CTGF		rb	abcam	ab6992	GR2047-16	х	х	х	х	Х
CTR1 (SLC31A1)		rb	Cell Signaling	13086	1	х				
CXCR4		rb	Calbiochem	PC389	D00086510	х				
Cyclin A		rb	abcam	ab53054	332779	х				
Cyclin A2		rb	Epitomics	1547-1	C10191	х				
Cyclin B1	-	rb	abcam	ab32053	GR53191-6	х				
Cyclin B1 - phospho	Ser133	rb	Cell Signaling	4133	1	Х				
		rb	abcam	ab71527	GR119641-1	х				
		ms	Cell Signaling	2926	1	X				
		rb	Cell Signaling	3/41	4	X		X		X
Cyclin E1 - phoepho	Three	rb		4129	<i>i</i>	X				
Cyclin E?	111102	rh	Foitomice	1149-1	C041512	×				
		me	Panvera	P2733	0071012	Ŷ				$\left - \right $
		rh	Schottland Tox	1 2700		Ŷ				$\left - \right $
Cvp2B6		ms	BD Biosciences	458326		x				
Cyp2C8	1	ms	cyp450-ap	Hu-A004	281/P1	x			x	x
Cyp2C8		rb	Puracyp	Hu-A004	RaPh/B#6	x				
Cyp2E1		rb	Acris	AP0032PUN	11114	x	х	х	x	x
Cyp3A4		rb	BD Biosciences	458234		х				
Cyp3A4, 3A1, 3A11		ms	Millipore	MAB10041	PSO182596	х	х	х	x	
Сур3А5		rb	BD Biosciences	458235		х				
Cyp4F2		gt	Santa Cruz	sc-46888		х				
Cyp7A1		rb	biorbyt	orb5022	A2369	х				
Cyp7A1		ms	abcam	ab106060	GR111897	х				
CYR61		rb	Cell Signaling	11952	1	х				
Cytochrome b5		gt	Oxford Biomedical	PR 91		x				
Cytokeratin 16		rb	Epitomics	2142-1	YE062102	х				
Cytokeratin 17		rb	Cell Signaling	4543	1	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
Cytokeratin 18 (DC10)		ms	Cell Signaling	4548	3	х				
Cytokeratin 18 (DC10)		ms	chemicon	mab1600	0603024844	х				
Cytokeratin 19		ms	Cell Signaling	4558	1	Х				
Cytokeratin 5		rb	Spring Bioscience	M3270	100416B	х				
Cytokeratin 6		rb	Epitomics	2302-1	YE112903	х				
Cytokeratin 7		rb	Cell Signaling	3473	1	х				
Cytokeratin 8 - phospho	Ser23	rb	Epitomics	2147-1	YE062501	х				
Cytokeratin 8/18		ms	Cell Signaling	4546	1	х				
Cytokeratin Pan (4, 5, 6, 8, 10, 13, 18)		ms	Cell Signaling	4545	1	x				
Cytokeratin Pan (5, 6, 8, 17, 19)		ms	Dako	M0821	00048696	x				
Cytokeratin Pan (most acidic, all basic)		ms	Ventana	760-2135	671543	x				
Dab2		rb	Cell Signaling	12906	1	х				
DAPK3 (ZIPK)		rb	Cell Signaling	2928	1	х				
DAPK3 (ZIPK) - phospho	Thr265	rb	abcam	ab63395	457529	х				
Decorin		ms	R&D	MAB143	ECI01	х	x		х	
Domotin		-	Transduction	D77000	4	1				
DEPDC7 - DEP domain		ms	Lab.	D77620 H00091614-	1	X				
containing 7		rb	Novus Biological	D01P	09047	x			х	x
Desmin		rb	Cell Signaling	5332	3	Х				
DFF45		ms	Lab.	D76320	1	х				
DGK theta		ms	BD Biosciences	61093	3109819	Х				
Dicer1		ms	Millipore	MABN461	Q2095733	х				
Dihydropyrimidin dehydrogenase (DPYD)		gt	Santa Cruz	Sc-34065	C3007	х				
DKK1		rb	Biorbyt	orb13376	A2202	х				
DKK1		rb	Biorbyt	orb27676	B3637	Х				
DKK2		rb	Cell Signaling	4683	1	х				
DLL1		rb	Cell Signaling	2588	1	х				
DLL3		rb	Cell Signaling	2483	1	Х				
DLL4		rb	Cell Signaling	2589	2	Х				
DNA polymerase beta		rb	abcam	ab175197	YK032504S	х			Х	х
DNA-PK		rb	Cell Signaling	4602	2	х				
DNMT1		rb	Cell Signaling	5032	1	х				
DPP3 (Dipeptidyl- peptidase 3)		rb	abcam (Epitomics)	ab97437	GR6541	х	x		x	
DPP3 (Dipeptidyl-		rb	Epitomics	S1902	39757	x	x		x	
DRAK2		rb	Cell Signaling	2294	1	x	x		x	
DUSP1 (MKP1)		rb	Millipore	07-535	26730	×	~		~	
DUSP1 (MKP1) -	Ser296/Ser3			0.000	_0.00	Â				
phospho	18	rb	abcam	ab78898	708742	х				
DUSP1 (MKP1) -	Ser359	rb	Cell Signaling	2857	2	x				
DUSP10 (MKP-5)		rb	Cell Signaling	3483	1	Y				
DUSP14 (MKP6, MKP-6			ProteinTech	0.00		Â				
MKP-L)		rb	Group	10172-2-AP	1	х	x		x	x
MKP-L)		gt	Santa Cruz	sc-48039	A1707	х				
DUSP16 (MKP-7)		rb	abcam	ab65151	508382	х				
DUSP2 (PAC-1)		gt	Santa Cruz	sc-1622	E2103	Х				
DUSP4		rb	abcam	ab/2593	/13785	х	X	х	Х	
DUSP5 (VH3)		rb	Sigma	D8819	118K2843	Х	X	х	х	
DUSP6 (MKP3, MKP-3, PYST1)		rb	ProteinTech Group	10433-1-AP	1	x	x	x		
DUSP6 (MK P3, MKP-3, PYST1)		rb	Epitomics	2138-1	YE061201C	х				
DUSP7 (PYST2)		gt	Santa Cruz	sc-47667	D0607	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
DUSP9 (MKP4, MKP-4)		rb	ProteinTech Group	14484-1-AP	05-May-09	х				
DUSP9 (MKP4, MKP-4)		rb	abcam	ab70129	557825	х				
Dvl2		rb	Cell Signaling	3224	1	Х				
Dvl3		rb	Cell Signaling	3218	1	х				
E2F-1		rb	Cell Signaling	3742	4	х				
E2F-2		rb	Millipore	DR1095	12247	Х				
E2F-3		ms	Millipore	05-551	NG1911119	Х				
E2F-4		rb	biorbyt	orb10571	A1502	Х	х	Х	Х	Х
EB-1		ms	Cell Signaling	2164	1	х				
E-Cadherin		gt	R&D	AF748	CYG02	Х	Х		Х	
E-Cadherin	0.000/	rb	Cell Signaling	3195	10	х				
E-Cadherin - phospho	Ser838/ Ser840	rb	Epitomics	2239-1	YE100201r	х				
eEF2		rb	Cell Signaling	2332	5	Х				
eEF2 - phospho	Thr56	rb	Cell Signaling	2331	7	Х	Х	Х		
eEF-2K		rb	Epitomics	1718-1	YD-04-24-02	Х				
Eg5	Thucon	ms	Cell Signaling	4203	1	Х				
Eg5 - phospho	1hr927	rb	abcam	ab61104	GR51047-1	х				
EGFR (ErB-1, HER1)		rb	santa cruz	sc-03	1007	Х				
EGFR (ErB-1, HER1)		rb	Cell Signaling	4405	1	Х				
EGFR (ErB-1, HER1)		ms	Dako	M/239	00063390	Х				
EGFR (ErB-1, HER1)		ms	abcam	ab10415-10	52669	Х				
EGFR (ErB-1, HER1)		rb	Cell Signaling	2232	4	Х			<u> </u>	
		rb	Epitomics	1114-1	C011802	Х			<u> </u>	
phospho	Tyr845	rb	Cell Signaling	2231	7	х				
EGFR (ErB-1, HER1) - phospho	Tyr992	rb	Cell Signaling	2235	7	х				
EGFR (ErB-1, HER1) - phospho	Tyr1068	rb	Cell Signaling	2234	13	х				
EGFR (ErB-1, HER1) - phospho	Tyr1173	rb	Cell Signaling	4407	6	х				
EGFR (ErB-1, HER1) - phospho	Tyr1173	rb	abcam (Epitomics)	ab32578	GR55502-2	х				
EGFR (ErB-1, HER1) - phospho	Tyr1045	rb	Cell Signaling	2237	2	x				
EGFR (ErB-1, HER1) - phospho	Tyr1173	rb	Biosource	44-794G	0502	x				
EGFR (ErB-1, HER1) - phospho	Tyr1173	ms	Biomol	54248	x	x				
EGFR (ErB-1, HER1) - phospho	Tyr845	rb	Biosource	44-784G	0305	x				
EGR1		rb	Cell Signaling	4153	3	х				
elF2 alpha		ms	Cell Signaling	2103	3	х	х		х	
elF2 alpha		rb	Cell Signaling	9722	7	х		х		
elF2 alpha - phospho	Ser51	rb	Cell Signaling	3398	2	х				
elF4E		rb	Cell Signaling	2067	1	х			х	X
elF4E - phospho	Ser209	rb	Cell Signaling	9741	4	х				
Elk-1	-	rb	Cell Signaling	9182	3	х				
Elk-1 - phospho	Ser383	rb	Cell Signaling	9181	4	х				
Elk-1 - phospho	Ser383	rb	R&D	PPS021	1112681	Х				
Elk-1 - phospho	Ser383	ms	Cell Signaling	9186	3	Х				
EMSY		rb	abcam	ab32329	GR5593-11	X	X		X	
Endotnelin A receptor		rb	abcam	ab/6259	GR43503-4	х				
Eotaxin		ms rb	abcam	5880 ab133604	2 GR93677-6	x x	X		X	
E 0.111 (00000)			(Epitomics)	0500						
EpCAM (CD326)		rb	Cell Signaling	3599	1	х				
	T	rb	Cell Signaling	6997	1	X				
Epnaz - phospho	Tyr//2	rb	Cell Signaling	8244	1	X				
EpnA2 - pnospho	Tyr594	rb		3970	1	X				
⊏pnaz - pnospno	1 yr588	rb	Cell Signaling	/423	1	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
EphA2 - phospho	Ser897	rb	Cell Signaling	6347	1	х				
EphA4 (Ephrin type-A receptor 4)		rb	biorbyt	orb38212	E7373	x				
EphA4 (Ephrin type-A receptor 4)		rb	biorbyt	orb38210	E7371	x				
EphA4 (Ephrin type-A receptor 4)		rb	biorbyt	orb32000	E0882	x				
EphA4 (Ephrin type-A receptor 4) - phospho	Tyr596	rb	biorbyt	orb126908	A2815	x				
EphB3		rb	biorbyt	orb38240	E7401	х				
EphB3		rb	biorbyt	orb38239	E7400	х				
EphB4		rb	biorbyt	orb38241	E7402	х				
EphB6		rb	biorbyt	orb38244	E7405	х				
EphB6		rb	biorbyt	orb38245	E7406	Х				
EphB6	T 004/	rb	abcam	ab70181	855934	Х				
Ephrin B - phospho	Tyr324/ Tyr329	rb	Cell Signaling	3481	2	x				
ER (estrogen receptor)		rb	Thermo Scientific	RM-9101-S	910151209D	х				
EK alpha		rb	Santa Cruz	sc-7207	1	X				
ER alpha		rb	DIORDYT	orb13402	A215/	X				
ER alpha		ms	Cell Signaling	2512	2	X				$\left - \right $
ER alpha - phospho	Sor119	rt me		2511	FU4U/	X				$\left - \right $
ER alpha - phospho	Seri 18	rhs	Cell Signaling	2011		X				
ER alpha - phospho	Ser104/	rb	Cell Signaling	2517	1	x				
ER alpha - phospho	Ser106 Ser118	rb	Cell Signaling	2515	1	х				
ER alpha - phospho	Ser167	rb	Cell Signaling	2514	1	х				
ER beta		gt	Santa Cruz	sc-6820	K1611	х	х		х	
Erk1 (MAPK p44)		rb	Cell Signaling	4372	1	х				
Erk1/2 (MAPK p44/42)		rb	Cell Signaling	4695	14	х	х	х		
Erk1/2 (MAPK p44/42)		rb	Cell Signaling	9102	18	х				
Erk1/2 (MAPK p44/42) - phospho	Thr202/ Tyr204	rb	Cell Signaling	4370	7	x	x	x	x	x
Erk1/2 (MAPK p44/42) - phospho	Tyr204	ms	Santa Cruz	sc-7383	J1104	x				
Erk2 (MAPK p42)		rb	Cell Signaling	9108	2	х				
Erk3 (MAPK 6)		rb	Epitomics	2030-1	YE012906	х				
Ero1-L alpha		rb	Cell Signaling	3264	2	х				
Evi-1		rb	Cell Signaling	2593	3	х				
EXTL2		rb	abcam	ab95211	GR60686-1	х				
Ezh2		gt	R&D	AF4767	CAUG01090 41	х				
Ezh2		rb	Cell Signaling	5246	5	х				
Ezrin / Radixin / Moesin		rb	Cell Signaling	3142	3	Х				
Ezrin / Radixin / Moesin - phospho	Thr567/Thr5 64/Thr558	rb	Cell Signaling	3149	11	х				
FABP4		rb	Cell Signaling	3544	2	х				
FAK	_	rb	Cell Signaling	3285	9	Х				
FAK - phospho	Tyr397	rb	Cell Signaling	8556	1	Х				
FAK - phospho	Tyr576/ Tyr577	rb	Cell Signaling	3281	8	х				
FAK - phospho	Tyr925	rb	Cell Signaling	3284	4	х				
FAK1		rb	Epitomics	2146-1	YE052404C	х				
FAK1 - phospho	Tyr576/Tyr5 77	rb	Epitomics	2183-1	YE080103C	х				
FAK1 - phospho	Tyr861	rb	Epitomics	2153-1	YE070902	х				
FAK1 - phospho	Tyr397	rb	Invitrogen	44-624ZG	872077A	х				
FAK1 - phospho	Tyr407	rb	Invitrogen	44-650ZG	0400C	х				
FAK1 - phospho	Tyr576	rb	Invitrogen	44-652ZG	776856A	х				
FAK1 - phospho	Tyr577	rb	Invitrogen	44-614ZG	0700B	х				
FAK1 - phospho	Tyr861	rb	Invitrogen	44-626ZG	0306	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
FAS		ms	Calbiochem	AM01	D24189	х				
FAT 10		rb	Upstate	09-413	0611045513	х				
FBXO25		rb	Santa Cruz	sc-87736	A0809	х				
FDPS		rb	Atlas/Sigma	HPA028200	R27252	х				
FGF receptor - phospho	Tyr653/ Tyr654	ms	Cell Signaling	3476	4	x				
FGF receptor 1		rb	Cell Signaling	9740	1	х				
FGF receptor 2		rb	abcam	ab109372	YH082705C	х				
FGF-1		rb	abcam	ab179455	GR146663-2	х				
FGF-10		gt	R&D	AF345	BIX01	х				
Fibronectin		rb	abcam	ab45688	GR5573-3	х				
Fibronectin		ms	Hybridoma Bank	HFN 7.1		х				
FKBP12		ms	abcam	ab58072	785610	х			Х	Х
Folate binding protein		rb	abcam	ab125030	GR78479-11	х				
FoxM1		rb	Cell Signaling	5436	0001	х				
FoxM1		rb	Cell Signaling	3948	0001	х				
FoxO1 (FKHR)		rb	Cell Signaling	9462	2	х				
FoxO1 (FKHR) - phospho	Ser256	rb	Cell Signaling	9461	5	х				
FoxO1/O3a/O4 -	Thr24/Thr32	ule		0500	4					
phospho	/Thr28	rD .		2599	4	X				
FoxO3a - phospho	Ser413	rb	Cell Signaling	81/4	1	Х				
FRA1	0.005	rb	Cell Signaling	5281	1	Х				
FRA1 - phospho	Ser265	rb	Cell Signaling	5841	1	Х				
FRA2		rb	abcam	ab124830	GR82992-2	Х				
Frizzled-1		rb	abcam	ab/1342	GR121802-1	Х	X	Х		
		rb	biorbyt	orb36816	E5977	Х	Х		X	
<u>Fyn</u>	T 500	rb	Cell Signaling	4023	2	Х				
Fyn - phospho	Tyr530	rb	biorbyt	orb99261	A2818	х				
Gabi		rb	Cell Signaling	3232	3	Х				
Gab1	T 007	rb	Epitomics	1626-1	YC122301	х				
Gab1 - phospho	Tyr307	rb	Cell Signaling	3234	2	Х				
Gab1 - phospho	Tyr627	rb	Millipore	07-833	0604027241	Х				
Gab2	T 150	rb	Cell Signaling	3239	2	Х				
Gab2 - phospho	Tyr452	rb	Cell Signaling	3881	3	Х				
Gab2 - phospho	Ser159	rb	Cell Signaling	3884	1	Х				
GADD45 alpha		rb	Cell Signaling	4632	1	Х			X	Х
GADD45B		rb	abcam	ab128920	GR80581-12	Х	Х	Х	X	X
gamma-Catenin		rb	Cell Signaling	2309	1	Х				
GAPDH		rb	abcam	ab9485	GR982162-2	Х			Х	X
GAPDH		ms	Sigma	SAB140848	D8291	Х				
Gast		gt	R&D	AF2644	VFH012051	х				
GAS2		rb	abcam	ab109762	YH053106C	х	Х	Х	X	
	 	rio	Cell Signaling	3305	4 D1 400	X				
GUS-alpha-3		gt	Santa Uruz	SC-34442	B1406	X				
		Q1		383/-1	TH121009C	X		х	х	X
		ins rb	dUCaIII	dU10CCub	GR 1 16493-1	×				
		10	biorbyt	01040195	E9307	X	X		X	
		ID rb		01040195	23337	X	X		X	
		rD	Cell Signaling	2534	3 1100001	X		Х		
GLS2 (Glutaminase 2)		rD	Allas	HPA038608	H89921	х	X		X	
alpha		rb	biorbyt	orb6097	A4007	х				
GLUT-1		rb	Millipore	07-1401	2373314	х				
Glutaminase		rb	Biorbyt	orb101735	A4491	х				
Glutaminsynthetase		rb	Sigma	G2781	061K4811	х	х	х	х	х
Glypican 3		rb	abcam	ab174851	YJ11210CS	х				
GP130		rb	Cell Signaling	3732	3	х				
GPR30		rb	Santa Cruz	sc-48524	1	х	х	х	х	_
Gpr49		rb	Epitomics	2495-1	YF-05-27-10	х	х	х	х	
GPR49 / LGR5		rb	Abcam	ab75732		х			х	
GPR55		rb	abcam	ab174700	GR142033-6	х				
Gremlin1		rb	abcam	ab90670	GR2475-6	х				
	•									

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
GSK3 alpha/beta - phospho	Tyr279/ Tyr216	rb	Epitomics	2309-1	YE112206C	x				
GSK3 alpha/beta -	Ser21/Ser9	rb	Cell Signaling	9331	12	x				
GSK3 beta		rb	Cell Signaling	9315	12	х				
GSK3 beta - phospho	Ser9	rb	Cell Signaling	9336	12	x	х	х		
GSS		rb	Epitomics	5395-1	YI060211CS	х	х		x	
GTF3C6		rb	abcam	ab107804	GR60591-1	х				
HAL		rb	Atlas/Sigma	HPA038547	R35558	х	х	х	х	
Ha-ras		rb	Upstate	05-775	26823	х				
Harmonin		gt	Santa Cruz	sc-26285	C0804	х				
HEF1/NEDD9		ms	Cell Signaling	4044	0001	х				
HELLS		rb	Cell Signaling	7998	1	х				
Her2		rb	Dako	A0485	00048863	Х				
Her2 - phospho	Tyr1248	rb	Biosource	44904	0104	х				
Her2 - phospho	Tyr1221/Tyr 1222	rb	Cell Signaling	2243	8	х				
Her2 - phospho	Tyr1248	rb	Cell Signaling	2247	5	х				
Her2 - phospho	Tyr877	rb	Cell Signaling	2241	2	х				
Her3 (ErbB3)		ms	R&D	MAB3481	GVD030111	х				
Her3 (ErbB3)	-	rb	Santa Cruz	sc-285	F1512	х				
Her3 (ErbB3) - phospho	Tyr1289	rb	Cell Signaling	4791	12	х				
Her3 (ErbB3) - phospho	Tyr1289	rb	Epitomics	2526-1	YF071707	Х				
Her4 (ErbB4)		rb	Santa Cruz	sc-283	K2111	Х				
HES-1		rb	Epitomics	2922-1	YG111205C	Х	Х	Х	X	
HES-4		ms	R&D	MAB3600	22001	Х				
		gt	R&D	AF2207	001025041	Х				
		rb	Cell Signaling	3/16	2	Х				
HIFI Deta (ARNI)		rb	Cell Signaling	3/18	1	X				
Histone deacetylase 1		rb	Cell Signaling	2062	3 VC 12 16 06	X				
Histone deacetylase 2		rb	Epitomics	1590 1	YC120109	X				
Histone deacetylase 6		rb	Millipore	07-732	DAM176496	×				
Histone H2A X -		10	Millipore	07-732	DAMITO430	^				
phospho	Ser139	rb	Cell Signaling	9718	8	х				
Histone H2B		rb	Epitomics	1810-1	YD070303	Х			Х	X
Histone H2B - acetyl	Lys15	rb	Epitomics	2170-1	YE072302	Х				
Histone H2B - acetyl	Lys20	rb	Epitomics	1814-1	YD-08-28-08	х				
Histone H2B - acetyl	Lys5	rb	Millipore	07-382	24242	X				
Histone H3	Luci 4	rD	Cell Signaling	9/15	0000110	X		х	X	X
Histone H2 sectul	Lys14	rb		0640	2020110	X	X		X	×
Histone H2 - acetyl	Lys9	rb	Cell Signaling	9649	9	×			X	X
Histone H3 - acetyl		rb	Calbiochem	382158	D00105640	^ V				
Histone H3 - acetyl	Lys23	rb	Cell Signaling	8848	0001	×				
Histone H3 - acetyl	Lys27	rb	Millipore	07-360	JBC198938	x				
Histone H3 - acetyl/phospho	Lys9/Ser10	rb	Cell Signaling	9711	1	x				
Histone H3 -	Lys4	rb	Cell Signaling	5326	1	x				
Histone H3 - nhoenho	Ser10	rh	Cell Signaling	9701	13	v				
Histone H3 - phospho	Thr11	rb	Cell Signaling	9764	0001	×				
		10	Och Olghaing	0704	NBG184964	Â				
Histone H3 - phospho	Thr3	rb	Millipore	17-10141	1	X				
Histone H2, phospho	Sei∠ð Thr6	rb	iviiiipore	07-145		X				-
	Thr11	rh	Milliporo	17-10120	NRG190704	×				$\left - \right $
Histone H3 - nhoenho	Ser28	rh	Cell Signating	9713	2	×				$\left - \right $
Histone H3 - trimethyl		rh	Millipore	07-522	27750	× ×				$\left - \right $
Histone H3 - trimethyl	Lys9	rh		9756	1	× ×				$\left - \right $
Histone H3 - trimethyl	Lys27	rb		9733	6	×				$\left - \right $
Histone H3 - trimethyl	Ly321	me	Millinore	05-1330	NG1807032	×				$\left - \right $
instone no - unitetriyi	Ly37	1113	iviiiiip0ie	00 1003	1101001002	^				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
Histone H3.3 - phospho	Ser28/Ser31	rb	Epitomics	2230-1	YE100501C	х				
Histone H4		rb	abcam	ab10158-10	659348	х				
Histone H4		rb	Cell Signaling	2592	2	х				
Histone H4 - acetyl	Lys8	rb	Epitomics	1796-1	YD062903	х	Х		х	
Histone H4 - acetyl	Lys8	rb	Cell Signaling	2594	5	х				
Histone H4 - acetyl	Lys5/Lys8/L ys12/Lys16	rb	Calbiochem	382160	D00134371	x				
Histone H4 - acetyl	Lys16	rb	Upstate	06-762	31884	х				
Histone H4 -	Lvs20	ms	Active Motif	39727	29510002	x				
monomethyl	_,	e	Ciamo							
пкрст		a	Sigina	H00080201-	7222-342-	X	X		X	
HKDC1		ms	Abnova	M05	00BBY6	х			x	x
HKDC1		ms	Abnova	H00080201- A02	060614JCS 1	х				
HKDC1		ms	Abnova	H00080201- M13	08134-4E8	х				
HLA-A,B,C		ms	Biotrend/Leinco	H199	012L215	х				
HLA-DMB		ms	Abnova	H00003109- M01	7096-6B3- 00AC5	х				
HLA-DR alpha chain		rb	Epitomics	2741-1	YG-05-15- 05C	x				
HLA-G		ms	Exbio	11-291- C100	1P41103	х			x	x
HMGCR		rb	biorbyt	orb5452	A4575	х				
HMGCS1		rb	biorbyt	orb36826	E5987	х			х	х
HNF-1 alpha (HNF-1A)		rb	abcam	ab96777	GR138377-5	х	х	Х	х	
HNF-1 alpha (HNF-1A)		rb	biorbyt	orb10829	A1508	х				
HNF-4 alpha (HNF-4A)		rb	biorbyt	orb34099	E3254	х				
HNF-4 alpha (HNF-4A)		rb	biorbyt	orb40132	E9294	х				
HNF-4 alpha (HNF-4A) -	Sor204	rh	biorbyt	orb/2228	B7705		v	v	v	v
phospho	361304	10	biologi	01043336	B7703	^	^	^	^	^
phospho	Ser313	rb	biorbyt	orb5454	A3963	х	x	x		
HNF-4 alpha (HNF-4A) - phospho	Ser142	rb	biorbyt	orb34827	E3982	х				
HSF1		rb	Epitomics	2043-1	YE021207	Х				
HSF1 - phospho	Ser326	rb	Epitomics	2092-1	YE041002	Х				
HSF2		rb	Epitomics	2045-1	YE021304C	х				
HSP 27		ms	Cell Signaling	2402	2	х				
HSP 27 - phospho	Ser15	rb	Epitomics	2231-1	YE100801	х				
HSP 27 - phospho	Ser82	rb	Cell Signaling	2401	6	х				
HSP 27 - phospho	Ser78	rb	Cell Signaling	2405	1	х				
HSP 70		ms	Calbiochem	386032	B29073	х	х		х	
HSP 70		rb	Cell Signaling	4876	2	х	х		х	
HSP 90		ms	abcam	ab1429-50	719014	х				
Human IgA2 (Fc)		ms	Abnova	MAB9733	0907227816	х				
IDH1		rb	Cell Signaling	8137	1	х			х	х
IDH2		ms	abcam	ab55271	GR98694-1	х				
IGF1		rb	abcam	ab9572	GR145487-1	х				
IGF1 receptor		rb	Ventana	790-4346	CR07141	х				
IGF1 receptor - phospho	Tyr1161/Tyr 1165/Tyr116 6	rb	Millipore	ABE332	NRG194078 3	x				
IGF1 receptor beta		rb	Cell Signaling	3018	1	х				
IGF1 receptor beta		rb	Cell Signaling	3027	1	х				
IGF1 receptor beta -	Tyr1135/Tyr 1136	rb	Cell Signaling	3024	11	x				
IGF1 receptor/Insulin receptor - phospho	Tyr1162/Tyr 1163	rb	Invitrogen	44804G	1223706A	x				
IGFBP-1		rb	upstate	06-106	27636	х				
IGFBP-1		at	Santa Cruz	sc-6000	G050	х				
IGFBP-2		rb	Cell Signaling	3922	1	x				
	I					1				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
IGFBP-3 (IGF-binding protein 3)		rb	Millipore	09-180	NG1907474	x	x		x	
IGFBP-3 (IGF-binding		rh	Sonto Cruz	0028	1.010	v				
protein 3)		a	Santa Cruz	SC-9028	LUIU	X				
IGFBP-3 (IGF-binding		rb	abcam	ab137370	GR115511-2	x				
protein 3)		-		ah 4055	010400					
IGFBP-5		rb	abcam	ab4255	810489	X	X	X	X	
IGFBP-5		rb	Sigma	17785	059K2818	×	^		^	
IGFBP-5		ms	B&D	MAB875	GVX039021	×				
Ihh		rb	abcam	ab52919	GR6103-15	x	x	x		
IkappaB alpha		rb	Cell Signaling	9242	4	х				
IkappaB alpha - phospho	Ser32	rb	Cell Signaling	9241	7	х				
IKK alpha		rb	Cell Signaling	2682	5	х				
IKK alpha/beta -	Ser176/Ser1	rh	Cell Signaling	2697	13	v				
phospho	80	10	Och Olghainig	2007	10	Ŷ				
IKK beta		rb	Cell Signaling	2370	2	Х				
IKK epsilon	0. 170	rb	Cell Signaling	2905	1	Х				
IKK epsilon - phospho	Ser1/2	rb	Cell Signaling	8/66	1	X				
		rhs	abcam Coll Signaling	a012141	949545	X				
		1D me	Signa	2000 SAB300470	I PM5010901	X				
II K - phospho	Thr173	rh	biorbyt	orb34730	F3885	Ŷ	Y		Y	
ILK - phospho	Ser343	rb	biorbyt	orb34915	E0000	x	x		x	
ILK1	00.010	rb	Millipore	06-592	23451A	x	~		~	
ILK1		rb	Cell Signaling	3862	2	x				
ILK1 - phospho	Ser246	rb	biorbyt	orb6214	A4946	х	х	х	x	х
ILK1 - phospho	Thr173	rb	biorbyt	orb6213	A4945	х		х		
ILK1 - phospho	Ser259	rb	biorbyt	orb6215	A4947	х				
IMP (BRAP, RNF52)		ms	Santa Cruz	sc-166012	F2909	х				
iNOS		rb	Cell Signaling	13120	1	х				
INPP4b		rb	Cell Signaling	8450	1	х				
INSL4		rb	abcam	ab75061	633606	Х	X		X	
Integrin alpha1 subunit		rb	Chemicon	AB1934	060102009	Х				
Integrin alpha5		ms	Trans.Lab.	155220	1	X				
Integrin beta		ms	Trans. Lab.	141720	4	X				
Interleukin 1 beta		rh	Bioss	bc-6319R	080408W/	×				
IPP-2		at	B800	AF4719	70502	Ŷ				
IPP-2 - phospho	Thr72	rb	abcam	ab27850	686457	x	x		x	
IRAK1		rb	Cell Signaling	4359	2	x				
IRAK1 - phospho	Thr387	rb	biorbyt	orb6223	A3166	х				
IRAK3		rb	Novus Biological	NBP1-00891	361052	х				
IRAK4		rb	Cell Signaling	4363	2	х				
IRAK4 - phospho	Thr345/Ser3 46	rb	Cell Signaling	11927	1	х				
IRE1 alpha		rb	Cell Signaling	3294	4	х				
IRS-1 - phospho	Ser636/ Ser639	rb	Cell Signaling	2388	14	x				
IRS-1 - phospho	Tyr1222	rb	Cell Signaling	3066	1	х				
IRS-1 - phospho	Tyr895	rb	Cell Signaling	3070	3	х				
Jagged1		rb	Cell Signaling	2620	3	х				
Jagged1		rb	Cell Signaling	2155	2	х				
Jagged2		rb	Cell Signaling	2210	1	х				
Jak 1		ms	abcam	ab75744	836376	X	X		X	
Jak 1	Tur1000/	rd	Cell Signaling	3344	1	X				
Jak 1 - phospho	Tyr1022/ Tyr1023	rb	Cell Signaling	3331	3	х				
Jak 2	T 4007/	rb	Cell Signaling	3229	6	х				
Jak 2 - phospho	Tyr1007/ Tyr1008	rb	Cell Signaling	3771	6	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
Janusin		ms	Transduction Lab.	J55020	1	x				
JARID1A		rb	Cell Signaling	3876	1	х				
JNK/SAPK		rb	Cell Signaling	9252	12	х			х	Х
JNK/SAPK - phospho	Thr183/ Tyr185	ms	Cell Signaling	9255	10	x				
JNK/SAPK 1/2/3 - phospho	Tyr185/ Tyr223	rb	Epitomics	2155-1	YE060402	x				
JNK/SAPK 1/2/3 -	Thr183/	ms	Santa Cruz	sc-6254	J2004	x				
JNK2	191105	rb	Cell Signaling	9258	2	х				
KDELC2		rb	Abgent	AP5169a	SA100810A Z	х				
Keap1		gt	Santa Cruz	sc-15246		х				
Ki-67		rb	USBiological	K1700-05D	6051204	х				
Ki-67		ms	Dako	M7240	00054762	х				
KLF4		rb	Cell Signaling	12173S	0001	х				
KLF4		ms	abcam	ab75486	GR128857-2	х				
KSR1		rb	abcam	ab52196	791002	х				
KSR1		rb	Epitomics	2234-1	YE100907	х				
KSR1 - phospho	Ser392	rb	Cell Signaling	4951	2	х				
Ku80		rb	Cell Signaling	2180	1	х				
LAMP1		ms	Santa Cruz	sc-18821	L2903	х				
LATS1		rb	Cell Signaling	3477	3	х		Х		
LATS1 - phospho	Thr1079	rb	Cell Signaling	8654	1	х				
LATS1 - phospho	Ser909	rb	Cell Signaling	9157	2	Х				
LATS2		rb	Cell Signaling	5888	1	х				
LC3		ms	MBL	M115-3	020	х				
Lck		rb	Cell Signaling	2752	2	х				
Lck - phospho	Tyr505	rb	Cell Signaling	2751	5	х				
LCN2		rb	Millipore	AB2267	2344675	х	Х		Х	
LDHA		rb	Cell Signaling	2012	2	х			х	Х
LEF1		rb	Cell Signaling	2286	1	Х				
LEF1		rb	Cell Signaling	2230	5	х				
LGR4		rb	Santa Cruz	sc-292344	L0611	Х			х	
LGR4		ms	Santa Cruz	sc-390630	D2216	х			Х	
LGR5		gt	Santa Cruz	sc-68580		Х				
LIMK1		rb	Cell Signaling	3842	4	Х				
LIMK1/LIMK2 - phospho	Thr508/ Thr505	rb	Cell Signaling	3841	6	х				
Lipoprotein lipase		rb	abcam	ab172953	YK030616C	х				
LMO2 (Rhombotin-2)		rb	Epitomics	2668-1		х				
LRP6		rb	Cell Signaling	3395	1	х				
LRP6 - phospho	Ser1490	rb	Cell Signaling	2568	5	х				
LRRK2		rb	Cell Signaling	5559	1	х				
LRRK2 - phospho	Ser910	rb	abcam (Epitomics)	ab133449	GR96173-1	x				
LRRK2 - phospho	Thr1503	rb	abcam	ab154423	YJ101205C	х				
LRRK2 - phospho	Ser935	rb	abcam	ab133450	YJ091311P	х				
LRRK2 - phospho	Thr2483	rb	abcam	ab156577	GR119176-2	х				
LRRK2 - phospho	Thr1410	rb	abcam	ab140107	GR102692-4	х				
LRRK2 - phospho	Thr1491	rb	abcam	ab140106	YJ071013S	х				
LSD1		rb	Cell Signaling	2184	1	х				
MAML1		rb	Cell Signaling	12166	1	х				
MAML2		rb	Cell Signaling	6988	1	х				
MAP2-B		ms	Trans. Lab.	M41420	1	х				
MAP4		ms	Trans.Lab.	M75820	1	х				
MAPK/CDK substrates - phospho	Thr	ms	Cell Signaling	2321	4	x				
MAPK15		rb	abcam	ab137619	GR107884-6	x	x		x	
MAVS		rb	Cell Signaling	3993	1	x				
MBD3		rb	Cell Signaling	3896	1	x				
	1	.~	Sen engridning		•					

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
MBD3		rb	abcam	ab91458	GR174062-1	х				
McI-1		rb	Cell Signaling	5453	1	х				
McI-1 - phospho	Ser159/ Thr163	rb	Cell Signaling	4579	1	x				
MCM2		rb	Cell Signaling	3619	3	х				
MCM2 - phospho	Ser139	rb	Cell Signaling	8861	1	х	х	х		
MDM2		ms	Santa Cruz	sc-965	G0212	х				
MDM2 - phospho	Ser166	rb	Cell Signaling	3521	2	х				
MEK1		rb	Cell Signaling	9124	2	Х				
MEK1 - phospho	Thr292	rb	Epitomics	2233-1	YE100906	х				
MEK1 - phospho	Thr286	rb	Epitomics	2336-1	YE110709	Х				
MEK1/2 - phospho	Ser217/ Ser221	rb	Cell Signaling	9154	3	х			x	x
MEK2		rb	Cell Signaling	9125	1	х				
МЕККЗ		rb	Epitomics	1673-1	YD 030803c	Х				
МЕКК3		ms	Transduction Lab.	M79820	1	х				
MEKK4		rb	Epitomics	1693-1	YG081301C	х				
MERTK		rb	abcam	ab95925	GR121529-1	х				
Metallothionein		rb	Santa Cruz	sc-11377	A3104	х	х		х	
Metallothionein		rb	Acris	BP081	23012852	х			х	Х
MICALL1		rb	Atlas	HPA043480	R39716	х	х		Х	
MKK3/6 - phospho	Ser218/Thr2 22 /Ser207/ Thr211	rb	R&D	AF4930	CATW01	x	x		x	
MKK3/6 - phospho	Ser189/ Ser207	rb	Cell Signaling	9236	1	x				
MKK4 (SEK1)		rb	Epitomics	1658-1	YD021301	х	х		x	
MKK4 (SEK1) - phospho	Ser257/ Thr261	rb	Cell Signaling	9156	2	x				
МКК6		rb	Epitomics	1821-1	YD061507	х				
МКК7		rb	Cell Signaling	4172	3	х	х		х	
MKK7 - phospho	Ser271/ Thr275	rb	Cell Signaling	4171	2	x				
MLK3		rb	Epitomics	2000-1	YE010205	х				
MLK3 - phospho	Thr277/ Ser281	rb	Sigma	M6318	094K0766	x				
MLK3 phospho	Thr277/ Ser281	rb	Cell Signaling	2811	2	x				
MMP13		ms	R&D	MAB511	DHD04	х				
MMP7		rb	NeoMarkers	RB-1530- P1ABX	1530X401	x	x	x	x	x
MMP7		ms	R&D	MAB9071		х				
Mnk1		rb	Cell Signaling	2195	1	х				
Mnk1 - phospho	Thr197/ Thr202	rb	Cell Signaling	2111	3	x				
MOB1		rb	Cell Signaling	3863	2	х				
MOB1 - phospho	Thr35	rb	Cell Signaling	8699	1	х	х	х		
Mre11		rb	Cell Signaling	4847	2	х				
Mre11 - phospho	Ser676	rb	Cell Signaling	4859	1	х				
MRP1 (ABCC1)		rb	Epitomics	S2915		х				
MRP1 (ABCC1)		ms	R&D	MAB19291	IXC015101	х				
MSK1		rb	Cell Signaling	3489	1	х				
MSK1		rb	Acris	AP01343PU	361143	х				
MSK1 - phospho	Ser360	rb	Epitomics	2154-1	YE071202	х				
MSK1 - phospho	Ser212	rb	R&D	AF1036	FKC03	х				
MSK1 - phospho	Ser376	rb	Millipore	04-384	DAM154863	х				
MSK1 - phospho	Ser376	rb	Cell Signaling	9591	2	Х				
Mist1		rb	Cell Signaling	3682	3	X		X		
		rb	Cell Signaling	3952	2	X	X	X		
		10				X		<u> </u>		
		rb	Signaling	000214	1	X		<u> </u>		
		u U	Cen Signaling	2903	1	×				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
mTOR (FRAP)- phospho	Ser2448	rb	Cell Signaling	2971	9	х		х		х
mTOR (FRAP)- phospho	Ser2481	rb	Cell Signaling	2974	3	х				
MUC1 (CD227)		ms	Chemicon	CBL264	2641911LC	х				
MUC1 (CD227)		ms	Cell Signaling	4538	1	х				
MVP (LRP)		ms	Trans.Lab.	L44820	1	х				
MYBBP1A		rb	Santa Cruz	sc-133800		х				
MYBL1		rb	Sigma	SAB210315	QC1516	х				
Na ⁺ /K ⁺ -ATPase beta2		ms	Trans.Lab.	N69920	1	х				
Naked1		rb	Cell Signaling	2262	1	х				
Nanog		ms	Cell Signaling	4893	0004	х				
Napsin A		rb	Ventana	760-4446	5060	х				
N-Cadherin		ms	Invitrogen	18-0224		х				
N-Cadherin	-	ms	Trans. Lab.	610920	77945	х				
NDRG1 - phospho	Thr346	rb	Cell Signaling	3217	2	х	X		Х	
Neo-P-transferase 2		ms	abcam	ab60018		х				
Neuroglycan C		ms	Irans. Lab.	N/3/20	1	х				
NF-кВ p100/p52		rb	Cell Signaling	4882	4	х	X	Х	Х	X
NF-кВ p105/p50		rb	Cell Signaling	3035	3	х				
NF-кВ рб5		rb	Epitomics	2229-1	YE100203	х				
NF-KB p65 - acetyl	Lys310	rb	Cell Signaling	3045	2	X				
NF-KB p65 - phospho	Ser536	rb	Cell Signaling	3033	10	х				
NF-KB p65 - phospho	Ser2/6	rb	Cell Signaling	3037	4	X				
NF-KB p65 - phospho	Ser468	rb	Cell Signaling	3039	4	X				
Kinase)		rb	Cell Signaling	4994	2	х	x		х	
NIK (NF-кB inducing Kinase)		rb	abcam	ab22042	945303	x				
Nitro-tyrosines		rb	Cell Signaling	9691	3	х				
NLRP3 (NALP3)		ms	Biozol	LS-B5028	52974	х				
NNMT		ch	USBiological	N2561-71		х				
NNMT		ms	Abnova	H00004837- M03	7058-2F2- 00AaY6	x				
NOS (pan)		rb	Cell Signaling	2977	3	х				
Notch 1		rb	Cell Signaling	3268	1	х				
Notch 1		rb	Cell Signaling	3439	1	х				
Notch 1		rb	Cell Signaling	4380	2	х				
Notch 1 - cleaved	Val1744	rb	Cell Signaling	4147	1	х				
Notch 2		rb	Cell Signaling	5732	2	х	х	х		
Notch 3		rb	Cell Signaling	5276	2	х				
Noxa		ms	Calbiochem	OP180	D00106228	х				
NPM (Nucleophosmin)		rb	Cell Signaling	3542	3	х				
NR5A2		rb	Epitomics	5450-1		х			Х	х
Nrf2		ms	R&D	MAB3925	CAIQ01	х				
Nrf2		rb	Epitomics	2178-1	YG080308C	х				
Nucleolin		ms	Invitrogen	39-6400	657886A	х				
Nucleolin - phospho	Thr76/Thr84	ms	Acris	AM06020PU	16827	х				
Numb		rb	Cell Signaling	2756	2	х				
OAS2		rb	abcam	ab90045	GR2155	x				
OB-Cadherin		rb	Cell Signaling	4442	1	х				
Oct-4		ms	Cell Signaling	4286	1	х				
Ornithine		rb	Abcam	ab137679		х	x	x	х	
aminotransferase (OAT)										
transcarbamylase)		rb	biorbyt	orb100942	A6954	х	x		x	
p107		ms	abcam	ab168458	GR151108-1	х				
p107 - phospho	Thr369	rb	abcam	ab111348	GR48498-1	х				
p15 (PAF)		rb	Santa Cruz	sc-67279	A3009	х				
p21		rb	Cell Signaling	2947	5	х				
p21		gt	Santa Cruz	sc-397-G		х				
p27 (Kip1, CDKN1B)	-	ms	Cell Signaling	3698	1	x				
p27 - phospho	Ser10	rb	Epitomics	2187-1	YE081401	х				
p27 - phospho	Thr187	rb	SAB	Y011208-AB	5117	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
p300 (EP300)		rb	biorbyt	orb127350	12198	х				
p300 (EP300) - phospho	Ser89	rb	biorbyt	orb34489	E3644	х				
p300 (EP300) - phospho	Ser1834	rb	biorbyt	orb6262	A4843	х				
р38 МАРК		rb	Cell Signaling	9212	16	х				
p38 MAPK - phospho	Thr180/ Tyr182	rb	Cell Signaling	4511	10	x	x	x	x	x
p38 MAPK - phospho	Thr180/ Tyr182	rb	Cell Signaling	9211	11	x				
p53		rb	Cell Signaling	9282	4	х	х	х		
p53		rb	Novocastra	NCLCM1		х				
p53		rb	Cell Signaling	2527	4	х				
p53		gt	R&D	af1355	HRV015111	х	х		х	
p53 - acetyl	Lys382	rb	Cell Signaling	2525	10	Х				
p53 - acetyl	Lys305	rb	abcam	ab109396	GR44067-4	Х				
p53 - phospho	Ser20	rb	Cell Signaling	9287	5	Х				
p53 - phospho	Ser392	rb	Cell Signaling	9281	4	Х				
p53 - phospho	Ser46	rb	Cell Signaling	2521	2	х				
p53 - phospho	Ser6	rb	Cell Signaling	9285	2	х				
p53 - phospho	Ser9	rb	Cell Signaling	9288	1	х				
po3 - pnospho	Ser37	rb	Cell Signaling	9289	3	X				
p53 - pnospno	Ser15	ms	Cell Signaling	9286	4	Х				
p70 S6 kinase		rb	Cell Signaling	2708	1	X				
pro So kinase	Thr401/	D	Diorbyt	01034550	E3705	X				
p70 S6 kinase - phospho	Ser424	rb	biorbyt	orb6615	A5174	x	x	x	x	
p70 S6 kinase - phospho	Thr389	rb	Cell Signaling	9234	0	Х				
p70 S6 kinase - phospho bzw p85 Thr412	Thr389	ms	Cell Signaling	9206	14	x				
p73		ms	Calbiochem	OP109T	D22234	Х	X		Х	
p95 (NBS1) - phospho	Ser343	rb	Cell Signaling	3001	3	Х				
PAI-1		rb	Cell Signaling	11907	1	Х				
PAK 1/2 - phospho	Ser144/Ser1 41	rb	Cell Signaling	2606	2	x	x		x	
PAK 1/2/3		rb	Cell Signaling	2604	1	х				
PAK 1/2/3		rb	Chemicon	AB3845	0704057337	х				
PAK 1/2/3 - phospho	Thr423/Thr4 02/Thr436	rb	R&D	PPS058	1150817	x				
PAK 1/2/3 - phospho	Ser141	rb	Biosource	44-940G	0301	х				
PAK 2		rb	Cell Signaling	2608	3	Х				
PAK 4		rb	Cell Signaling	3242	2	Х				
PAK 4/5/6 - phospho	Ser474/Ser6 02/Ser560	rb	Cell Signaling	3241	5	x	x		x	
PARP		rb	Cell Signaling	9532	5	X				
PARP - cleaved	Asp214	rb	Cell Signaling	9541	6	Х				
Paxillin		rb	abcam (Epitomics)	ab32084	GR23669-8	x				
Pbx1 (PRL)		rb	Cell Signaling	4342	1	х				
PCAF (KAT2B)		rb	Cell Signaling	3378	1	Х				
PCK1		rb	biorbyt	orb38951	E8116	Х				
PCNA		rt	Kremmer			Х				
PDGF receptor beta		rb	Cell Signaling	3169	5	Х				
PDGF receptor beta -	Tyr751	rb	Cell Signaling	3161	5	х				
pnospno										
phospho	Tyr751	rb	Cell Signaling	4549	1	x				
		rb	Cell Signaling	3501	1	X			х	Х
PDK1	0011	rb	Cell Signaling	3062	5	Х				
PUK1 - phospho	Ser241	rb	Cell Signaling	3061	5	X				
PEA 15 (PED)	Contto	rb	Cell Signaling	2780	1	X				
PEA-15 (PED) - phospho	Ser104	CI I		44-836G		X				
PEA-13 (PED) - phospho	Ser104	CI1	Cell Signaling	2776		X				
гедэ		۵ı	apcam	ab99252	GR05154-2	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
PERK		rb	Cell Signaling	3192	1	х				
PERK - phospho	Thr980	rb	Santa Cruz	sc-32577	B1110	х				
PERK - phospho	Thr980	rb	Cell Signaling	3179	10	Х				
PGC-1 alpha	0.574	ms	Calbiochem	KP9803	D00151286	х				
PGC-1 alpha - phospho	Ser5/1	rb	R&D	AF6650	CEBA01111	X	X	Х	X	X
P-Glycoprotein (MDR1)		ms	Calbiochem	51/312	D00061194	X				
		rb	Santa Cruz	SC-133906	E2909	X			X	X
		rD	biorbyt	0fD38847	E9012	X				
PI3RCZA PI2 kinoso dolto		1D rb	Sonto oruz	01029027	D0009	×				
PI3-kinase della		mc	Jona Biossiones	APD 0265	026002	×				
PI3-kinase gamma		rb		ADD-0203	1	×				
Pl3-kinase p110 beta		rb	Millinore	04-400	DAM152410	Ŷ			-	
PI3-kinase p85		rb	Cell Signaling	4292	4	x				
PI3-kinase p85 alpha		rb	Epitomics	1675-1	YE0506-11C	x				
PI3-kinase p85/p55 -	p85 Tvr458/								_	
phospho	p55 Tvr199	rb	Cell Signaling	4228	2	х				
PIP4K2B	. ,	rb	Cell Signaling	9694	1	х				
PIP5K1A		rb	Cell Signaling	9693	1	х				
PKA C alpha		rb	Cell Signaling	4782	1	х	x	х	х	
PKA C			-			1				
alpha/beta/gamma -	Thr197	rb	Cell Signaling	4781	2	х				
phospho										
PKA substrates -	Ser/Thr	rb	Cell Signaling	9621	4	x				
phospho		10	oon olgrialing	0021	•	L ^				
PKC (pan) - phospho	Ser660	rb	Cell Signaling	9371	3	х				
PKC alpha		ms	BD Biosciences	610107	3109825	Х				
PKC alpha/beta II -	Thr638/	rb	Cell Signaling	9375	3	х				
phospho DKO alaba (bata (arawara	Thr641	ula.	Millinere	00.070	04045					
PKC alpha/beta/gamma		di	Nillipore BD Biaggionage	06-870	24945	X				
PKC beta		ms	BD Biosciences	610127	3109826	X				
PKC ensilon		me	BD Biosciences	610085	3109830	×				
PKC iota		me	BD Biosciences	610175	3109824	×				
PKC lambda		ms	BD Biosciences	610207	3109829	x			-	
PKC substrates -		1110	DD Diosoichies	010207	0100020					
phospho	Ser	rb	Cell Signaling	2261	4	х				
PKC theta		rb	Cell Signaling	12206	1	х				
PKC theta		ms	BD Biosciences	610089	3109871	х				
PKC theta - phospho	Thr538	rb	Cell Signaling	9377	3	х				
PKG-1		rb	Cell Signaling	3248	2	х				
PKLR		rb	Abgent	AP7043a	SH030714B	х			х	Х
PKM2		rb	Abgent	AP7044b	SH030714G	х			Х	Х
PKN1		rb	Epitomics	2662-1	YG011411C	х				
PKR		rb	Cell Signaling	2766	2	х				
PKR - phospho	Thr446	rb	abcam	ab47377-10	465022	х				
PLA2G5		rb	Biozol	LS-B1612	52483	х				
PLC gamma I	T (0)5	rb	Cell Signaling	2822	3	х				
PLC gamma I - phospho	Tyr1245	rb	Epitomics	2125-1	YE052104	х				
PLC gamma I - phospho	Tyr/83	۲D	Cell Signaling	2821	3	X				
PLC gamma I - phospho	1 yr / 83	۲D		2104-1	YE041702	X				
PLNI DI K1 - phoophe	Throto	rD rh		4013	4	X				
	1111/2 10	di mo	Santa Cruz	04/2 so_506/6	I	X				
		me	ahoam	ab71004			v		v	$\left - \right $
Pontin/RUVRI 1		rh	Coll Signaling	12200	1	×	×		X	
		rb	Millipore	06-221	1350290	×	v	Y		
PP1 alpha - nhoenho	Thr320	rh	Enitomice	2167-1	VE072208	×	×	×		$\left - \right $
PP1 gamma	111320	rh	Calbiochem	539543	D00114312		Y	Y		$\left - \right $
PP2A C		rb	Cell Signaling	2259	1	Ŷ	x	Ŷ		\vdash
PP2A C - phospho	Tvr307	rh	R&D	AF3989	YZW010702	×	x	x		
PP5	1,1007	rb	Cell Signaling	2289	1	x	^	~		$\left - \right $
	L	.~	See. Signaling		•	1 ^				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
PPAR alpha		rb	Santa Cruz	sc-9000		х				
PPAR alpha		rb	abcam	ab8934		х				
PPAR alpha - phospho	Ser21	rb	abcam	ab3485		х	х	Х		
PPAR alpha - phospho	Ser12	rb	abcam	ab3484		х				
PPAR gamma		rb	biorbyt	orb11291	B2538	х	Х	Х	Х	Х
PPAR gamma		rb	Cell Signaling	2435	3	х				
PPAR gamma - phospho	Ser112	rb	biorbyt	orb5574	A3704	х	х	Х	х	х
PR (Progesteron receptor)		rb	abcam (Epitomics)	ab32085	GR95998-1	x				
PR (Progesteron receptor)		ms	Neomarkers	MS-193- P1ABX	193X002	x				
PR (Progesteron receptor)		ms	Santa Cruz	sc-810	H2813	x				
PRAME		gt	Santa Cruz	sc-19081	B1203	х				
PRAS40 - phospho	Thr246	rb	Invitrogen	44-1100G	799578P	х				
PRK2		rb	Cell Signaling	2612	2	х				
PRL-1 (PTP4A1)		gt	ProSci	46-225		х				
PRL-3 (PRL3, PTP4A3)		ms	R&D	MAB3219	WXH020710	х				
PRL-3 (PRL3, PTP4A3)		gt	Everest	EB05302	S2	х				
PRMT1		rb	Cell Signaling	2449	1	х				
PRMT4 (CARM1)		rb	Cell Signaling	3379	1	х				
PSD-95		ms	Transduction Lab.	P43520	3	x				
PTCH1		rb	Cell Signaling	2468	1	х		х		
PTCH2		rb	Cell Signaling	2470	1	х		х		
PTCH2		rb	Cell Signaling	2464S	0001	х				
PTCH2		rb	Sigma	HPA046839	R43946	х				
PTCH2		rb	Millipore	06-1103	2459491	х				
PTEN		rb	Cell Signaling	9552	3	х				
PTEN - phospho	Ser380	rb	Cell Signaling	9551	6	х				
PTPN7 (LC-PTP, HEPTP)		rb	ProteinTech G	15286-1-AP	1	х	х	х	х	
PTPN7 (LC-PTP, HEPTP)		rb	Atlas	HPA019118	R08192	х				
PTP-PEST (rb	Bethyl	A301-302A	A301-302A	х				
PTP-PEST		ms	Cell Signaling	4864	1	х				
PTPRR (PTP-SL, PTP13)		rb	Sigma	AV45387	QC15349	х	х		х	
Puma		rb	Cell Signaling	4976	1	х				
PXR (NR1I2)		rb	Biorbyt	orb131805	R2214	х				
Pyk2 (FAK2)		rb	Epitomics	1480-1	C06162	х				
Pyk2 (FAK2)		rb	Millipore	06-559	20648	х				
Pyk2 (FAK2) - phospho	Tyr402	rb	Cell Signaling	3291	3	х				
Rab11		rb	Cell Signaling	3539	2	х				
Rab25		rb	Cell Signaling	13048	1	х				
Rac1/cdc42		rb	Cell Signaling	4651	2	х				
Rac1/cdc42 - phospho	Ser71	rb	Cell Signaling	2461	3	х				
RACK1		ms	BD Biosciences	610177	3109832	х				
Rad23B		rb	abcam	ab86781	957974	х				
Rad23B		rb	Abnova	H00005887	09124WUIZ	х				
Rad50		rb	Cell Signaling	3427	1	х				
Rad51		rb	Epitomics	3161-1	YH031704C	х				
Rad52		rb	Cell Signaling	3425	1	х				
Rad54B		rb	Epitomics	S2976	40150	х				
Rad54L		rb	Acris	AP09254PU	15878cr	х				
Raptor		rb	Cell Signaling	2280	10	х				
Raptor - phospho	Ser792	rb	Cell Signaling	2083	4	х				
Ras		rb	Cell Signaling	8955	1	х				
RASGRF1		rb	abcam	ab111830	GR97365-5	х				
RASSF2		gt	R&D	AF5639	CCNF01	х				
Rb		ms	Cell Signaling	9309	4	х				
Rb - phospho	Ser807/ Ser811	rb	Cell Signaling	8516	1	x				
Rb - phospho	Ser608	rb	Cell Signaling	8147	1	х				
Rb2 (p130)		rb	abcam	ab76234	YJ042004C	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
Rb2 (p130) - phospho	Ser952	rb	abcam	ab68136	GR96991-3	Х				
RBPSUH		rb	Cell Signaling	5313	1	х				
RecQL1		rb	Santa Cruz	sc-25547	A0504	х				
RelB		rb	Cell Signaling	4954	3	х				
RelB - phospho	Ser552	rb	Cell Signaling	5025	1	х				
RGS1		rb	Santa Cruz	sc-20758	D0203	х	х	Х	Х	
RGS5		gt	Santa Cruz	sc-28491	L2705	х	Х		Х	
RHEB		rb	abcam	ab92313	YF121707C	х			х	x
Rictor		rb	Cell Signaling	2114	4	х				
Rictor - phospho	Thr1135	rb	Cell Signaling	3806	3	х				
RING1A		rb	Cell Signaling	2820	1	х				
RING1B		rb	Cell Signaling	5694	1	х				
RKIP		rb	Cell Signaling	4742	1	х				
RNA Polymerase II		rt	Kremmer	CTD-12 4F8		х				
RNA Polymerase II		rt	Kremmer	CTD-5 1C7		х				
RNA Polymerase II -	SorE	rt	Krommor			~				
phospho	Selb	п	Kleininei	01D-4 3E0		x				
RNA Polymerase II -	Sor7	rt	Krommor			v				
phospho		11		01D-04E12		[×]				
RNA Polymerase II -	Ser2	rt	Krommer	CTD-7 3E10		v				
phospho	0012	11				^				
RNA Polymerase II -	Thr4	rt	Kremmer	CTD-2 6D7		х				
чиозрио					00-137/8-	-				
RNF43		rb	Biozol	ARP43227	42139	х			х	
ROCK1 - cleaved	Asp1113	ms	Calbiochem	PK1201	D00103175	х				
RPA2 p34		ms	Millipore	04-1481	2018495	х				
RPTP beta		ms	Trans. Lab.	R20720	2	х				
RSK 1 (p90RSK)		rb	Epitomics	2004-1	B102904	х				
RSK 1 (p90RSK)		rb	Upstate	06-668	24840	х				
RSK 1 (p90RSK) - phospho	Thr573	rb	abcam	ab62324	GR72730-3	х	x	x	x	x
RSK 1 (p90RSK) -	Ser380	rb	Cell Signaling	9341	6	x				
RSK 1/2/3		rb	Cell Signaling	9347	0005	х				
RSK 3 - phospho	Thr353/ Thr356	rb	Epitomics	2012-1	C04223	x				
RSK 4		rb	Epitomics	2102-1	YE041203	х				
RSK 4 - phospho	Ser235	rb	Epitomics	2151-1	YE051803	х				
RSPO3 / R-Spondin 3		rb	Invitrogen	PA5-38052	R42236039	х		х	х	
RXR alpha	ſ	ms	R&D	PPK8508-00		х				
S6 ribosomal protein		rb	Cell Signaling	2217	1	х				
S6 ribosomal protein -	Ser235/	rh	Cell Signaling	2211	18	~				
phospho	Ser236	10		<u> </u>	10	<u>^</u>				
S6 ribosomal protein -	Ser240/	rh	Cell Signaling	2215	4	¥				
phospho	Ser244	10	Son Signaling	2210	r	<u>^</u>				
Sav1		rb	Cell Signaling	3507	1	х				
Scribble		rb	Cell Signaling	4475	1	х				
SDS (serine dehydratase)		rb	Atlas/Sigma	HPA039230	R36967	х	x		x	
Serotonin recentor		ms	BD Biosciences	556326		x			x	x
SEBP2		rh	abcam	ab92667	GB51078-2	Ŷ			^	
SEBP2		rb	abcam	ab111874	YH072208C	x				
Shh		rh	Cell Signaling	2207	2	×		x		
SHIP1		rb	Epitomics	1786-1	- YD-061502	x		~		
SHP-2		rb	Epitomics	1609-1	YC121206	×				
SHP-2 - phospho	Tvr542	rb	Cell Signaling	3751	2	x				
SHP-2 - phospho	Tyr582	rb	Epitomics	2165-1		×				
SIK3 (KIAA0999)	1,1002	rb	biorbyt	orb29515	D8277	Ŷ				
SIK3 (KIAA0999)		rh	abcam	ab88495	GR29351-11	×				
Slug		rh	Cell Signaling	9585	3	×	x		x	
Smad1		rh	Cell Signaling	6944	1	Ŷ	^		^	
	1	10	Son Signaling	5011	1	^				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
Smad2		rb	Cell Signaling	5339	4	х				
Smad2 - phospho	Ser465/ Ser467	rb	Cell Signaling	3108	7	x				
Smad2 - phospho	Ser245/Ser2 50/Ser255	rb	Cell Signaling	3104	2	х				
Smad2/3		rb	Cell Signaling	3102	5	х				
Smad3		rb	abcam	ab40854	GR31547-4	х				
Smad3		rb	Cell Signaling	9523	5	х				
Smad3 - phospho	Ser423/ Ser425	rb	Cell Signaling	9520	10	х				
Smad4		rb	Cell Signaling	9515	4	х	X		Х	
Smad5		rb	Cell Signaling	9517	3	Х				<u> </u>
Smad9 (Smad8)		gt	R&D	AF2309	KMN041103 1	x				
SMC1 - phospho	Ser957	ms	Cell Signaling	4805	2	Х				
Snail		rb	Cell Signaling	3879	6	х				
SUCS-1		rb	Cell Signaling	3950	1	х				
SOCS-3		rb	Cell Signaling	2932	1	X				
SOD Cu/Zn		rb	Enzo Life Sc.	ADISOD100	01051541	х			х	X
S0X2		rb	Cell Signaling	35/9	2	х				
50X6		rb	Millipore	AB5805	2290355	х				
Sox9		rb	Sigma	HPA001758	C43344	х				
Sox9		rb	Millipore	AB5535	NG1901550	Х				<u> </u>
SP1		rb	Cell Signaling	9389	1	х				L
Spectrin alpha/beta		ms	AbD Serotec	8365-1004	C990408	Х			Х	X
SPON2		rb	abcam (Epitomics)	ab171955	YK020507C S	х				
SPRED1		rb	abcam	ab77079	705448	Х				<u> </u>
SPRED2		rb	abcam	ab50535	545611	Х			Х	X
SPRY1		rb	Sigma	AV50521	QC20257	х				L
SPRY2		rb	Millipore	07-524	31940	Х	X	Х	Х	<u> </u>
SPRY3		rb	Sigma	AV50519	QC22/3/	Х	X	Х	Х	X
SPR14		rb	Invitrogen	40-9300	633304A	Х				<u> </u>
Src		rb	Cell Signaling	2108	7	Х	X	X		<u> </u>
Src		rb	Cell Signaling	2109	4	X				
Src - phospho	Tyr418	rb	Sciences	TK123-E	08181017	x	x		x	
Src - phospho	fyr527	rb	Cell Signaling	2105	9	х	Х	х		
Src - phospho	Tyr418	rb	abcam	ab4/411	8/48/9	Х				L
Src - phospho	Tyr418	rb	Novus Biological	NB1009263	360513	Х				<u> </u>
Src - phospho	Tyr418	rb	Acris	AP01687P0	360513	X				<u> </u>
Src family - phospho	Tyr416	rb	Cell Signaling	6943	1	X	X		X	
		rb	Bothyl	A200 2474	<u>~</u>	X				
SBC-3		rb		2126	2	×				
SBC-3		rb	Bethyl	2120 2300-3404	<u>~</u> 	×				
SBC-3 - nhoenho	Thr24	rh	Cell Signaling	2979	1	× ×				
SRF	111127	rh	Cell Signaling	5147	· 1	Ŷ				
SSEA3		rt	Acris	AM12114PU	51065	Ŷ				
SSEA4		ms	Cell Signaling	4755	1	×				
STAT 1		rh	Cell Signaling	9175	6	x				<u> </u>
STAT 1 - phospho	Tvr701	rb	Cell Signaling	9167	15	x	x		x	<u> </u>
STAT 2	.,	rb	Epitomics	2120-1	YE051806	x				
STAT 2		rb	Cell Signaling	4594	1	x			_	
STAT 2 - phospho	Tyr690	rb	Cell Signaling	4441	5	x				
STAT 3	,	rb	Cell Signaling	4904	3	x			х	x
STAT 3 - acetvl	Lys685	rb	Cell Signaling	2523	2	x				-
STAT 3 - phospho	Ser727	rb	Cell Signaling	9134	5	x				
STAT 3 - phospho	Tyr705	rb	Cell Signaling	9145	22	x			_	
STAT 3 alpha	,	rb	Cell Signaling	8768	1	x			х	х
STAT 4		rb	Cell Signaling	2653	3	x				
STAT 4 - phospho	Tyr693	rb	Cell Signaling	4134	1	x				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
STAT 5		rb	Cell Signaling	9363	1	х				
STAT 5	-	rb	Cell Signaling	9310	4	х				
STAT 5 - phospho	Tyr694	rb	Cell Signaling	9351	4	х	X		X	
STAT 5 - phospho	Tyr694	rb	Cell Signaling	9354	3	Х				
		rb	abcam	ab32043	GR53410-5	Х				
STAT 6 phoopho	Ture 41	rb	Cell Signaling	9362	2	X				
STAT 6 - phospho	191041	1D rb		930 I		X				
		rb	Coll Signaling	4917	1	X	v		v	
STEP (PTPN5, PTN5)		me		4017	1	×	^		^	
SUEL		rb	Cell Signaling	2520	1	^ v		v		
		rb	Cell Signaling	4930	1	Ŷ		^		
Sumo 2/3		rb	Cell Signaling	4971	3	x				
Superoxiddismutase		rb	StressGen	SOD-100	102411	x				
Survivin		ms	Cell Signaling	2802	4	х				
Survivin - phospho	Thr34	rb	Cell Signaling	8888	1	х				
SUZ12		rb	Cell Signaling	3737	3	х				
TACE		rb	Cell Signaling	6978	1	х				
Tag(CGY)FP		rb	evrogen	AB122	1210131051	х				
TAK1		rb	Cell Signaling	4505	3	х				
TAK1 - phospho	Ser412	rb	Cell Signaling	9339	1	х				
TAK1 - phospho	Thr187	rb	Cell Signaling	4536	2	х				
Tau		ms	Trans. Lab.	T57120	2	х				
TAZ		ms	BD Biosciences	560235	3161559	х				
TAZ		rb	Cell Signaling	2149	2	х				
TBK1 (NAK)		rb	Cell Signaling	3504	2	х				
TBK1 (NAK) - phospho	Ser172	rb	Cell Signaling	5483	1	х				
TBP (TF2D)		rb	Cell Signaling	8515	1	х				
TCF1		rb	Cell Signaling	2206	1	х				
TCF4		rb	Cell Signaling	2565	3	х	X	Х		
		rb	Sigma	AV100775	QC0775	х				
		rb	Cell Signaling	2569	2	X				
		rD	Cell Signaling	3396	4	х				
transcriptase (TERT)		rb	abcam	ab32020	YI021602CR	х				
IGF beta receptor I		rb	abcam	ab31013	GR143404-1	Х				
TGF beta receptor II		rb	Cell Signaling	3/13	3	X				
IGF-beta		rb	Cell Signaling	3711	0007	х	X	X	X	
(ECGF1)		rb	Abnova	D01P	WULZ	х				
Thymidylate synthase		rb	Cell Signaling	3766	1	х				
Thymidylate synthase		ms	abcam	ab990-100	721228	х				
factor 1		rb	abcam	ab76013	GR76790-5	х				
TIGAR		rb	abcam	ab137573	1118801-1	х	X		x	
TIMP-1		rb	Epitomics	2109-1	YE041105	х			X	X
	T L 0	rb	Cell Signaling	4942	1	х				
TOPK phospho	Thr9	rb	Cell Signaling	4941	2	Х				
		rD rb	Santa Gruz	SC-13058	BU/2	X				
Topoisomerase 1		10 mc	NanoToolo	0115 100	011590101	X				
		at	R&D	ΔE5520	CBO001	×				
TBAP220 - phospho	Thr1457	rh	hiorbyt	orb4583	A5200	^ V				
trk B		ms	Trans. Lab.	T16020	2	x				
TSP-1			-							
(Thrombospondin-1)		ms	Trans. Lab.	T70120	1	х				
Tubulin acetylated		ms	Sigma	T6793	070M4755	х				
Twist		rb	Santa Cruz	sc-15393		х	x		x	
Twist		ms	abcam	ab50887	GR63574-11	х				
Tyrosin - phospho	Tyr	ms	Cell Signaling	9411	25	х				
UGT1A1		rb	BD Biosciences	WBUGT1A1	1	х		х		
VASP		rb	Cell Signaling	3132	1	х				

Antigen	Mod. Stelle	Sp	Hersteller/ Lieferant	Produktnr.	Lot	1	2	3	4	5
VASP - phospho	Ser157	rb	Cell Signaling	3111	5	х				
VASP - phospho	Ser239	rb	Cell Signaling	3114	5	х				
VE-Cadherin		rb	Cell Signaling	2500	3	х				
VEGF (121,165,189,206)		ms	Calbiochem	GF25	D00080133	х				
VEGF-A		rb	Calbiochem	PC315	D17280-4	х		х		
VEGF-A		ms	Dako	M7273	37285	х				
VEGFR 2 (3) - phospho	Tyr1054/ Tyr1059	rb	abcam	ab5473	40645	x				
VEGFR 2		rb	Cell Signaling	2479	18	х				
VEGFR 2		rb	Cell Signaling	9698	1	х				
VEGFR 2		rb	Santa Cruz	sc-504	D1807	х				
VEGFR 2 - phospho	Tyr951	rb	Cell Signaling	4991	3	х				
VEGFR 2 - phospho	Tyr996	rb	Cell Signaling	2474	5	х				
VEGFR 2 - phospho	Tyr1059	rb	Cell Signaling	3817	4	х				
VEGFR 2 - phospho	Tyr1175	rb	Cell Signaling	3770	2	х				
Versican		rb	Chemicon	AB1033	25050100	х				
Vimentin		rb	Cell Signaling	5741	1	х				
Vimentin		ms	Dako	M7020	00052231	х				
Vimentin - phospho	Ser56	rb	Cell Signaling	3877	1	х				
Vimentin - phospho	Ser56	rb	Cell Signaling	7391	1	х				
Vimentin - phospho	Ser83	rb	Cell Signaling	12569	1	х				
Vimentin - phospho	Ser83	rb	Cell Signaling	3878	1	х				
WIPI-1 (WIPI-49)		ms	Abnova	H00055062- M02	6321-3C1- 00KvY6	x				
WISP2		ms	abcam	ab129270		х				
Wnt1 (A-20)		gt	Santa Cruz	sc6266	A1309	х				
Wnt2 (H-40)		rb	Santa Cruz	sc50361	K0607	х				
Wnt3A		rb	Millipore	09-162	DAM176451	х	х	Х	X	Х
XBP1 (TREB5)		gt	Acris	AP16787PU	N280609	х				
XLF		rb	Cell Signaling	2854	1	х	х		х	
YAP		rb	Cell Signaling	4912	3	х				
YAP - phospho	Ser127	rb	Cell Signaling	4911	2	х				
YAP/TAZ		rb	Cell Signaling	8418	1	х	х	х		
YB1		rb	Cell Signaling	4202	1	х				
YB1 - phospho	Ser102	rb	Cell Signaling	2900	4	х				
Yes		rb	Cell Signaling	3201	0001	х				
ZFP64		rb	ptglab	17187-1-AP	00008548	х				
ZNRF3 (c-terminus)		rb	Abiocode	R2407-2	4079	х			X	
ZNRF3 (n-terminus)		rb	Abiocode	R2407-1	5104	х			X	
ZO-1		rb	Cell Signaling	8193	1	х				
Tabelle 23: Auflistung aller in der Full-MS Analyse als signifikant differenziell-exprimiert identifizierter Proteine. Im Unterschied zur Abbildung 10 sind in dieser Tabelle auch jene Proteine aufgelistet, die zwar einen Fold Change von ≥ 2 besitzen, aber auch einen p-Wert von < 0,05 aufweisen können. Insgesamt waren nach diesen Spezifikationen 72 Proteine auf PZ Seite höher exprimiert als auf PP Seite. 34 Proteine waren auf PP Seite um Faktor ≥ 2 höher exprimiert als im PZ Hepatozytentyp. Für eine bessere Übersichtlichkeit wurden alle Fold Changes als Werte > 1 dargestellt, sodass sich im oberen Bereich der Tabelle alle Proteine befinden, die PZ stärker exprimiert vorlagen und im unter Tabellenteil jene Proteine, die PP vermehrt vorkamen.

Analyt	Uniprot ID	Gene ID	hoch in	FC	p-Wert ANOVA
Glutamine synthetase	P15105	14645	PZ	76,64	1,0E-07
Fatty aldehyde dehydrogenase	P47740	11671	PZ	75,52	2,5E-08
Ornithine aminotransferase, mitochondrial	P29758	18242	ΡZ	46,01	1,0E-11
Cytochrome P450 2C50	Q91X77	107141	PZ	30,00	1,6E-06
Cytochrome P450 2C54	Q6XVG2	404195	PZ	29,94	1,9E-05
Cytochrome P450 2C37	P56654	13096	PZ	26,57	1,3E-07
Cytochrome P450 2C29	Q64458	13095	PZ	18,75	8,2E-08
Hemoglobin subunit alpha	P01942	-	ΡZ	14,57	1,4E-01
Cysteine sulfinic acid decarboxylase	Q9DBE0	246277	ΡZ	13,36	5,6E-08
Cytochrome P450 2E1	Q05421	13106	PZ	12,36	1,9E-05
Acylcarnitine hydrolase	Q91WG0	234671	ΡZ	12,09	1,6E-03
Hemoglobin subunit beta-1	P02088	100503605	ΡZ	11,16	2,4E-03
CYP2a4 protein	Q91X75	13087	ΡZ	10,61	2,2E-08
Nesprin-2	E9QP46	-	ΡZ	9,12	3,1E-03
L-gulonolactone oxidase	P58710	268756	PZ	7,61	1,3E-10
Cytochrome P450 1A2	P00186	13077	ΡZ	7,13	7,3E-05
Adrenodoxin, mitochondrial	P46656	14148	ΡZ	6,81	2,2E-03
Solute carrier organic anion transporter family member 1B2	Q9JJL3	28253	ΡZ	6,28	3,9E-07
Centrosomal protein of 162 kDa	Q6ZQ06	382090	PZ	6,14	4,4E-03
26S protease regulatory subunit 10B	P62334	67089	PZ	4,86	1,7E-01
Regucalcin	Q64374	19733	PZ	4,84	2,6E-07
Phosphatidylinositol 4,5- bisphosphate 3-kinase catalytic subunit delta isoform	B0QZL5	-	ΡZ	4,72	2,8E-05
Dedicator of cytokinesis protein 7	E9PX48	67299	ΡZ	4,65	1,6E-02
Glutathione S-transferase Mu 6	G5E8M7	-	ΡZ	3,94	4,2E-05
3 beta-hydroxysteroid dehydr. type 7	Q9EQC1	101502	PZ	3,89	2,1E-04
NADPHcytochrome P450 reductase	P37040	18984	ΡZ	3,80	4,1E-05
Glutathione S-transferase Mu 3	P19639	14864	PZ	3,78	5,6E-05
Glutathione S-transferase Mu 2	P15626	14863	ΡZ	3,54	9,7E-06
Delta-aminolevulinic acid dehydratase	P10518	17025	PZ	3,41	4,2E-05
Serum paraoxonase/arylesterase 1	P52430	18979	PZ	3,27	1,2E-03

Analyt	Uniprot ID	Gene ID	hoch in	FC	p-Wert ANOVA
Bifunctional UDP-N- acetylglucosamine 2-epimerase/N- acetylmannosamine kinase	Q91WG8	50798	ΡZ	3,20	1,2E-03
Protein canopy homolog 2	Q9QXT0	56530	PZ	3,17	1,3E-02
Cytochrome b-5, isoform CRA_a	G5E850	-	PZ	3,11	1,9E-03
Retinal dehydrogenase 1	P24549	11668	ΡZ	2,96	1,7E-08
Estradiol 17 beta-dehydrogenase 5	P70694	83702	ΡZ	2,80	7,8E-06
Glutathione S-transferase Mu 1	P10649	14862	ΡZ	2,79	1,3E-04
Major urinary protein 1	Q58EV3	100041658	ΡZ	2,71	3,1E-04
Acetyl-CoA carboxylase 1	Q5SWU9	107476	PZ	2,67	4,3E-04
Aminopeptidase N	P97449	16790	ΡZ	2,64	1,8E-03
Dehydrogenase/reductase SDR family member 1	Q99L04	52585	ΡZ	2,58	3,1E-04
Major urinary proteins 11 and 8	P04938	100039028	PZ	2,58	4,7E-04
26S proteasome non-ATPase regulatory subunit 8	Q9CPS5	57296	ΡZ	2,51	4,0E-03
Glutathione S-transferase A3	P30115	14859	PZ	2,50	1,3E-03
Protein Ugt2b34	Q8K154	100727	PZ	2,49	7,0E-04
26S protease regulatory subunit 4	P62192	19179	PZ	2,46	3,5E-02
Glutathione S-transferase Mu 7	Q80W21	68312	PZ	2,44	1,1E-03
Flavin reductase (NADPH)	Q923D2	233016	PZ	2,40	1,9E-02
Leukotriene-B4 omega-hydroxylase 3	Q9EP75	64385	PZ	2,40	6,9E-02
Sulfotransferase 1 family member D1	Q3UZZ6	53315	PZ	2,40	6,5E-01
Sulfotransferase	Q8BGL3	76971	PZ	2,40	1,1E-03
Dimethylaniline monooxygenase [N- oxide-forming] 1	P50285	14261	PZ	2,38	5,3E-03
Sorbitol dehydrogenase	Q64442	20322	PZ	2,38	3,2E-04
Protein Gm28046	E9Q9P8	-	PZ	2,37	4,0E-07
Proline dehydrogenase 1, mitochondrial	Q9WU79	19125	ΡZ	2,37	2,8E-06
Cytochrome P450 3A11	Q64459	13112	PZ	2,32	3,5E-04
Cytochrome P450, family 2, subfamily c, polypeptide 67	Q569X9	545288	ΡZ	2,32	1,0E-04
Hydroxymethylglutaryl-CoA synthase, cytoplasmic	Q8JZK9	208715	PZ	2,28	1,0E-01
hydroxylase	Q60991	13123	PZ	2,22	1,6E-02
Proteasome subunit beta type-5	O55234	19173	PZ	2,22	1,5E-02
Pyridoxal kinase	Q8K183	216134	PZ	2,18	2,0E-02
Delta(24)-sterol reductase	Q8VCH6	74754	PZ	2,18	2,4E-01
Phytanoyl-CoA dioxygenase, peroxisomal	O35386	16922	ΡZ	2,17	6,8E-05
Probable N-acetyltransferase CML2	Q8CHQ9	93673	PZ	2,15	4,2E-05
Xanthine dehydrogenase/oxidase	Q00519	22436	PZ	2,14	6,8E-01
Aldehyde oxidase 1	G3X8P9	11761	PZ	2,14	3,1E-01
Translocator protein	P50637	12257	PZ	2,12	7,7E-01
Proteasome subunit alpha type	E9PW69	-	PZ	2,11	1,9E-05
Armet protein	Q80ZP8	-	ΡZ	2,11	1,4E-01

Analyt	Uniprot ID	Gene ID	hoch in	FC	p-Wert ANOVA
Gamma-butyrobetaine dioxygenase	Q924Y0	170442	ΡZ	2,08	1,0E-01
Solute carrier organic anion transporter family member 1A1	Q9QXZ6	28248	PZ	2,07	5,7E-03
Alcohol dehydrogenase [NADP(+)]	Q9JII6	58810	PZ	2,02	3,5E-04
Tetratricopeptide repeat protein 36	Q8VBW8	192653	PZ	2,02	4,8E-02
Ethanolamine-phosphate phospho- lyase	E9PYH3	-	PP	69,55	3,6E-03
Glutaminase liver isoform, mitochondrial	Q571F8	216456	PP	19,06	1,5E-04
Histidine ammonia-lyase	P35492	15109	PP	17,34	7,1E-05
Nicotinamide phosphoribosyltransferase	Q99KQ4	59027	PP	15,66	1,9E-02
Aldehyde dehydrogenase X, mitochondrial	Q9CZS1	72535	PP	13,66	1,9E-04
Cytochrome P450 2F2	P33267	13107	PP	12,85	6,7E-06
L-serine dehydratase/L-threonine deaminase	Q8VBT2	231691	PP	12,65	1,4E-05
Major urinary protein 20	Q5FW60	381530	PP	9,77	2,6E-03
Sideroflexin-1	Q99JR1	14057	PP	8,78	1,6E-04
Glycine dehydrogenase (decarboxylating), mitochondrial	Q91W43	104174	PP	6,77	2,3E-04
Keratin, type II cytoskeletal 79	Q8VED5	223917	PP	5,07	1,1E-03
Adenylate kinase 4, mitochondrial	Q9WUR9	11639	PP	4,81	2,4E-08
Carbonic anhydrase 14	Q9WVT6	23831	PP	3,81	4,4E-03
Phosphoenolpyruvate carboxykinase, cytosolic [GTP]	Q9Z2V4	18534	PP	3,67	3,8E-06
Probable imidazolonepropionase	Q9DBA8	71761	PP	3,31	7,8E-04
Urocanate hydratase	Q8VC12	243537	PP	3,09	1,7E-04
Aldehyde oxidase 3	G3X982	71724	PP	2,94	4,9E-04
SPRY domain-containing protein 4	Q91WK1	66701	PP	2,71	7,5E-02
60S ribosomal protein L31	P62900	114641	PP	2,58	8,9E-01
Actin-like protein 9	Q8CG27	69481	PP	2,49	1,1E-01
cvclodeaminase	Q91XD4	14317	PP	2,46	2,3E-02
Keratin, type I cytoskeletal 10	A2A513	16661	PP	2,41	2,2E-02
Endonuclease G, mitochondrial	O08600	13804	PP	2,32	4,4E-02
Propionyl-CoA carboxylase alpha chain, mitochondrial	Q91ZA3	110821	PP	2,27	5,6E-02
Protein QIL1	Q8R404	224904	PP	2,14	2,0E-01
Aspartate aminotransferase, cytoplasmic	P05201	14718	PP	2,12	5,1E-03
UDP-glucuronosyltransferase 1-9	Q62452	394434	PP	2,10	1,1E-02
Protein Krt78	E9Q0F0	332131	PP	2,07	4,0E-02
Palmitoyl-protein thioesterase 1	B1B0P8	-	PP	2,06	3,4E-02
Keratin, type II cytoskeletal 75	Q8BGZ7	109052	PP	2,06	5,4E-02
ATP-citrate synthase	Q91V92	104112	PP	2,04	6,3E-03
Sulfide:quinone oxidoreductase,	Q9R112	59010	PP	2,04	9,8E-02
Beta-ureidopropionase	Q8VC97	103149		2,02	2,0E-02
Quinone oxidoreductlike protein 2	Q3UNZ8	226527	PP	2,00	1,9E-02

c) Purinmetabolismus

Abbildung 34: Darstellung der Full-MS Analyse im Signalweg der Glykolyse und Gluconeogenese, des Citratzyklus, Purinmetabolismus, Gallensäuresynthese sowie des Fettsäureabbaus. Eine erhöhte Expression PZ im Vergleich zu PP ist rot dargestellt, im umgekehrten Fall sind die Proteinnamen grün markiert. In der MS-Analyse identifiziert, aber nicht differenziell zwischen PZ und PP exprimiert, sind Proteine die grau hinterlegt sind. Die Grafik wurde mit Hilfe des R Plugins "Pathview" und einem Abgleich der identifizierten Proteine mit der KEGG-Datenbank erstellt. FC, Fold Change.

	Pr	oteinmenge [fm	nol / µg verdautem Prote	in]
Analyt	PPT1	PPT2	PZT5	PZT6
Abcb1a	<lloq< th=""><th><lloq< th=""><th><lloq< th=""><th><lloq< th=""></lloq<></th></lloq<></th></lloq<></th></lloq<>	<lloq< th=""><th><lloq< th=""><th><lloq< th=""></lloq<></th></lloq<></th></lloq<>	<lloq< th=""><th><lloq< th=""></lloq<></th></lloq<>	<lloq< th=""></lloq<>
Abcb11	2,27	1,92	1,64	1,90
Abcc3	1,04	0,92	0,94	0,90
SIc10a1 (ALEK)	16,08	15,70	14,22	15,38
Slc10a1 (GDLK)	3,40	3,33	3,11	3,58
Slco2b1	0,76	0,67	0,99	1,02
CYP2A2	7,68	6,48	4,23	5,51
CYP2A12	14,12	11,44	7,50	9,97
CYP2A22	<lloq< th=""><th><lloq< th=""><th><lloq< th=""><th><lloq< th=""></lloq<></th></lloq<></th></lloq<></th></lloq<>	<lloq< th=""><th><lloq< th=""><th><lloq< th=""></lloq<></th></lloq<></th></lloq<>	<lloq< th=""><th><lloq< th=""></lloq<></th></lloq<>	<lloq< th=""></lloq<>
CYP2B9	0,03	0,05	<lloq< th=""><th><lloq< th=""></lloq<></th></lloq<>	<lloq< th=""></lloq<>
CYP2B10	0,24	0,22	0,12	0,13
CYP2C29 (TNPR)	5,95	5,61	69,98	64,50
CYP2C29 (NFSK)	4,37	4,06	59,35	52,91
CYP2C38	<lloq< th=""><th><lloq< th=""><th><lloq< th=""><th>0,07</th></lloq<></th></lloq<></th></lloq<>	<lloq< th=""><th><lloq< th=""><th>0,07</th></lloq<></th></lloq<>	<lloq< th=""><th>0,07</th></lloq<>	0,07
CYP2C39	0,02	0,02	0,01	0,02
CYP2C55	0,09	0,15	0,45	0,43
CYP2D9	21,66	24,55	22,99	21,71
CYP2D10 (GQVR)	20,41	19,45	32,36	31,16
CYP2D10 (QPPR)	22,38	20,54	37,00	35,50
CYP2D22	7,47	6,57	8,94	8,06
CYP2D40	0,20	0,19	0,29	0,28
CYP2E1	13,15	15,25	115,26	119,66

2,20

0,08

2,83

0,13

2,11

0,06

Tabelle24: ErgebnissedesTransporter-undCYP-TXP-Assays.MitHilfeeingespikterisotopenmarkierterPeptidewurdeaufdieintrinsischeProteinmengezurückgerechnet.LLOQ, LowerLimitOfQuantification, UnteresLimit derQuantifizierungsgrenze.

CYP3A25

CYP3A44

2,67

0,19

Tabelle 25: CYPs und Transporter, die nur im Full-MS, nicht jedoch im TXP Assay nachgewiesen wurden. Die Identifizierung im TXP-Assay konnte nicht erfolgen, da keine TXP-Antikörper für diese Proteine vorhanden waren. Werte < 1 bedeutet, dass dieses Protein auf PZ Seite höhrer exprimiert vorliegt als PP; Werte > 1 das Gegenteil.

	Analyt	Fold Change
	CYP1A2	0,14
	CYP2A4	0,09
	CYP2C37	0,04
	CYP2C50	0,03
	CYP2C54	0,03
S	CYP2C67	0,43
Ϋ́Ρ	CYP2C70	0,59
0	CYP2D26	1,29
	CYP2F2	12,82
	CYP2J5	1,08
	CYP3A11	0,43
	CYP4A12A	0,77
	CYP4V2	1,26
	Abcc2	0,55
	Mpc1	0,74
	Mpc2	0,71
	Mtch2	1,12
	Slc25a10	1,39
	Slc25a11	1,69
ter	Slc25a12	1,56
por	Slc25a13	0,87
ans	Slc25a15	1,20
Tra	Slc25a20	0,94
	Slc25a22	1,59
	Slc25a3	1,19
	Slc25a45	0,69
	Slc2a2	1,31
	Slco1a1	0,48
	Slco1b2	0,16

Tabelle 26: Differenziell exprimierte Proteine bei Analyse der PZ und PP Hepatozyten mit DigiWest. Im Unterschied zur Abbildung 14 sind in dieser Tabelle auch jene Proteine aufgelistet, die zwar einen Fold Change von \geq 2 besitzen, aber auch einen p-Wert von > 0,05 aufweisen können. Insgesamt waren nach diesen Spezifikationen 38 Proteine auf PZ Seite höher exprimiert als auf PP Seite. 49 Proteine waren auf der PP Seite um Faktor \geq 2 höher exprimiert als im PZ Hepatozytentyp.

Analyt	Hersteller	Prod. Nr.	Uniprot	AFI PP1	AFI PP2	AFI PZ1	AFI PZ2	hoch in	FC	p-Wert (t-Test)
Glutamin- synthetase	Sigma	G2781	P15105	1464	1037	198197	202633	ΡZ	160,2	0,001
Ornithine aminotransf. _(OAT)	Abcam	137679	P29758	125	131	7916	10687	ΡZ	72,67	0,022
Caveolin-1	CST	3238	P49817	42	96	1837	1138	ΡZ	21,56	0,056
CYP2E1	Acris	AP0003	Q05421	115	93	1680	1361	ΡZ	14,62	0,013
RGS1	Santa Cruz	20758	Q9JL25	2365	2605	17581	11311	ΡZ	5,81	0,062
Metallothionein	Santa Cruz	11377	P28184	383	433	2671	1804	ΡZ	5,48	0,052
HSP 70	Calbioch.	386032	Q61696	43	37	271	117	ΡZ	4,85	0,184
DUSP5 (VH3)	Sigma	D8819	Q1HL35	12648	12716	64604	44634	ΡZ	4,31	0,052
Decorin	R&D	MAB143	P28654	600	614	1553	3400	ΡZ	4,08	0,180
Aldh1A1	Epitomics	2052-1	P24549	5658	7390	30356	22478	ΡZ	4,05	0,039
SPRY2	Millipore	07-524	Q9QXV8	5500	5073	22016	16546	ΡZ	3,65	0,036
HSP 70	CST	4876	Q61696	24	15	75	58	ΡZ	3,41	0,039
LCN2	Millipore	AB2267	P11672	2653	2448	7987	9176	ΡZ	3,36	0,010
ER beta	Santa Cruz	sc-6820	P19785	150	150	369	638	ΡZ	3,36	0,119
TIGAR	abcam	137573	Q8BZA9	101	69	311	242	ΡZ	3,25	0,037
p53	R&D	af1355	P02340	160	150	507	488	ΡZ	3,21	0,001
Slug	CST	9585	P97469	44	23	140	75	ΡZ	3,21	0,163
PON3	abcam	ab71994	Q62087	207	152	697	454	ΡZ	3,21	0,086
Akt - ph Thr308	CST	2965	P31750	45	44	179	95	ΡZ	3,08	0,159
Src family – ph Tyr416	CST	6943	P05480	30	11	69	57	ΡZ	3,07	0,063
MKK4 (SEK1)	Epitomics	1658-1	P47809	20	25	55	79	ΡZ	2,98	0,068
DPP3	abcam	ab97437	Q99KK7	102	81	244	279	ΡZ	2,86	0,014
NDRG1 – ph Thr346	CST	3217	Q62433	114	150	437	287	ΡZ	2,74	0,096
IPP-2 - phThr72	abcam	ab27850	Q9DCL8	340	350	635	1225	ΡZ	2,70	0,186
Jak 1	abcam	ab75744	P52332	30	20	66	64	ΡZ	2,60	0,016
STAT 5 - phTyr694	CST	9351	P42230	125	135	227	426	ΡZ	2,51	0,187
DPP3	Epitomics	S1902	Q99KK7	136	102	269	320	ΡZ	2,47	0,029
Akt - ph Thr308	CST	9275	P31750	30	30	76	68	ΡZ	2,40	0,009
PTPN7	ProteinT	15286-1	Q8BUM3	504	480	1143	1174	ΡZ	2,35	0,001
Cyp3A4, 3A1, 3A11	Millipore	10041	Q64459	1265	1353	3455	2687	ΡZ	2,35	0,045
GPR30	Santa Cruz	48524	Q8BMP4	3148	3351	8129	6432	ΡZ	2,24	0,042
DRAK2	CST	2294	Q8BG48	225	264	608	483	ΡZ	2,23	0,044
STAT 1 - phospho Tyr701	CST	9167	P42225	144	114	243	330	ΡZ	2,22	0,076
PKA C alpha	CST	4782	P05132	281	187	522	509	ΡZ	2,20	0,027

Analyt	Hersteller	Prod. Nr.	Uniprot	AFI PP1	AFI PP2	AFI PZ1	AFI PZ2	hoch in	FC	p-Wert (t-Test)
c-Met	R&D	af527	P16056	50	69	132	127	ΡZ	2,18	0,019
PAK 4/5/6 - ph S474/S602/S560	CST	3241	Q8BTW9	32	40	90	60	ΡZ	2,08	0,129
Connexin 32	Zymed	13-8200	P28230	53	66	205	34	ΡZ	2,01	0,557
MKK7	CST	4172	Q8CE90	32	32	66	62	ΡZ	2,00	0,004
EMSY	abcam	ab32329	Q8BMB0	271	291	451	673	ΡZ	2,00	0,128
HNF-1 alpha	abcam	ab96777	Q61221	24911	18631	1733	1763	PP	12,45	0,024
SDS	Sigma	039230	Q8VBT2	66579	61879	2483	8070	PP	12,17	0,004
GLS2	Atlas	038608	Q571F8	8265	7487	506	830	PP	11,79	0,003
GLDC	biorbyt	40195	Q91W43	1289	1325	80	153	PP	11,22	0,001
GLDC	biorbyt	40195	Q91W43	787	1004	76	110	PP	9,63	0,018
PTPRR	Sigma	45387	Q62132	3974	2786	500	400	PP	7,51	0,039
HAL	Sigma	038547	P35492	40446	34132	5829	6241	PP	6,18	0,010
GAS2	abcam	109762	P11862	1694	1481	235	316	PP	5,76	0,007
IGFBP-5	Santa Cruz	13093	Q07079	7884	6735	1387	1180	PP	5,69	0,009
Src - phTyr418	Enzo LF	123-E	P05480	673	727	150	130	PP	5,00	0,003
MICALL1	Sigma	043480	Q8BGT6	487	397	136	50	PP	4,75	0,030
Arginase-1	CST	9819	Q61176	30045	23701	6635	6056	PP	4,23	0,023
IGFBP-5	abcam	4255	Q07079	26972	21293	6231	6557	PP	3,77	0,025
ILK - phSer343	biorbyt	34915	O55222	65	91	28	14	PP	3,71	0,061
MAPK15	abcam	137619	Q80Y86	91	85	24	24	PP	3,67	0,002
eNOS	CST	5880	P70313	180	211	69	40	PP	3,59	0,022
NIK	CST	4994	Q9WUL6	120	126	45	30	PP	3,28	0,009
ASL	Sigma	016646	Q91YI0	46101	45584	16423	12008	PP	3,22	0,005
PGC-1 alpha - phSer571	R&D	AF6650	O70343	26581	41269	13199	8292	PP	3,16	0,096
p73	Calbioch	OP109T	Q9JJP2	977	959	453	174	PP	3,09	0,043
Smad4	CST	CST	P97471	667	879	268	275	PP	2,85	0,042
STEP	CST	4817	P54830	92	55	24	30	PP	2,72	0,131
PAK 1/2 – ph Ser144/Ser141	CST	2606	, 088643 Q8CIN4	399	358	163	118	PP	2,69	0,016
XLF	CST	2854	Q3KNJ2	885	923	360	317	PP	2,67	0,003
Histone H4 - acetyl Lys8	Epitomics	1796-1	P62806	193	143	70	60	PP	2,58	0,056
FTCD	biorbyt	36816	Q91XD4	3823	3179	1506	1217	PP	2,57	0,026
Twist	Santa Cruz	15393	P26687	143	88	50	40	PP	2,57	0,128
DUSP14	ProteinT	10172-2	Q9JLY7	65	60	30	20	PP	2,50	0,022
HES-1	Epitomics	2922-1	P35428	4053	3955	1541	1734	PP	2,45	0,002
DUSP4	abcam	72593	Q8BFV3	1116	1199	521	432	PP	2,43	0,008
p70 S6 kinase - phT421/S424	biorbyt	6615	Q6IQZ7	2071	2373	1130	750	PP	2,36	0,034
Aurora B (AIM1)	CST	3094	O70126	128	130	60	50	PP	2,35	0,005
IGFBP-3	CST	09-180	P47878	151	155	72	59	PP	2,34	0,006
AMPK alpha - phThr172	CST	2535	Q5EG47	1915	1020	866	411	PP	2,30	0,240
HKDC1	Sigma	011956	Q91W97	424	644	276	193	PP	2,28	0,126
Histone H3 - acetyl Lys14	Millipore	1710051	P68433	214	140	82	74	PP	2,27	0,117

Analyt	Hersteller	Prod. Nr.	Uniprot	AFI PP1	AFI PP2	AFI PZ1	AFI PZ2	hoch in	FC	p-Wert (t-Test)
INSL4	abcam	ab75061	-	4036	3719	1535	1895	PP	2,26	0,012
Gpr49	Epitomics	2495-1	Q9Z1P4	573	594	296	232	PP	2,21	0,011
elF2 alpha	CST	2103	Q6ZWX6	15056	15512	7163	6809	PP	2,19	0,001
MKK3/6 - ph Ser218/Thr222 / Ser207/Thr211	R&D	AF4930	O09110, P70236	677	453	280	240	PP	2,17	0,116
Brachyury	Invitrogen	48-1900	P20293	305	352	181	124	PP	2,15	0,041
ILK - phThr173	biorbyt	34730	O55222	140	145	60	73	PP	2,14	0,008
E-Cadherin	R&D	AF748	P09803	130	110	72	41	PP	2,12	0,075
CA IX (CA9)	Santa Cruz	25599	Q8VHB5	349	297	177	132	PP	2,09	0,039
TGF-beta	CST	3711	P04202	1323	1305	711	547	PP	2,09	0,014
отс	biorbyt	100942	P11725	195	241	102	108	PP	2,08	0,040
GSS	Epitomics	5395-1	P51855	854	825	467	347	PP	2,06	0,020
RGS5	Santa Cruz	28491	O08850	788	637	431	263	PP	2,05	0,084
Caspase 3 - cleaved Asp175	CST	9661	P70677	241	220	120	105	PP	2,05	0,012
c-myc	CST	9402	P01108	238	231	121	114	PP	2,00	0,002

Abbildung 35: Panther-Analyse Ergebnisse nach DigiWest der um Faktor > 2 differenziell exprimierten Proteine von PP bzw. PZ Seite des Lebersinusoids. In die Analyse gingen 37 Proteine für die PZ Seite und 49 Proteine für die PP Seite ein. In den Abbildungsteilen (a) und (b) wurden die Proteine molekularen Funktionen zugeordnet, in (c) wurden sie mit biologischen Prozessen verknüpft. Die Farbgebung der Diagramme auf jeweiliger Ebene ist passend.

Tabelle 27: Randomisierter Versuchsplan für Pufferoptimierung. Der Versuchsplan beinhaltete 5 Pufferarten ((1) Roche Puffer, (2) SuperBlock (PBS) Blocking Buffer, (3) StartingBlock (PBS) Blocking Buffer, (4) 0,1 % Casein in PBS, (5) Protein-Free Blocking Buffer in PBS) sowie PVP und Milchpulver in 4 Konzentrationen. Die Ergebnisse nach erfolgten DigiWest Assays sind als AFIs und Signal-Rausch-Verhältnisse für den AK MKK4p S257/T261 aufgelistet. Ein Wert von 1 bedeutet, dass im entsprechenden Puffer kein Signal detektiert werden konnte.

Randomisierte Nr.	Std- Nr.	Pufferart	PVP- Konz. [%]	Milchpulver Konz. [%]	AFI	S/N
4	1	1	0	2	203	102
17	2	2	0	0	1	1
19	3	2	0	1	1	1
51	4	4	0	1	223	74
23	5	2	0,5	1	1	1
36	6	3	0	2	1	1
13	7	1	2	0	5356	42
30	8	2	2	0,2	85	21
66	9	5	0	0,2	694	139
27	10	2	1	1	37	37
8	11	1	0,5	2	318	318
25	12	2	1	0	44	22
65	13	5	0	0	1254	55
40	14	3	0,5	2	1	1
34	15	3	0	0,2	64	21
2	16	1	0	0,2	375	125
38	17	3	0,5	0,2	147	147
16	18	1	2	2	688	115
29	19	2	2	0	79	20
46	20	3	2	0,2	449	13
58	21	4	1	0,2	766	153
28	22	2	1	2	1	1
71	23	5	0,5	1	572	95
55	24	4	0,5	1	275	92
57	25	4	1	0	1572	98
42	26	3	1	0,2	195	98
59	27	4	1	1	417	104
24	28	2	0,5	2	1	1
80	29	5	2	2	1033	69
54	30	4	0,5	0,2	478	159
67	31	5	0	1	393	66
62	32	4	2	0,2	1642	137
50	33	4	0	0,2	275	275
39	34	3	0,5	1	72	72
1	35	1	0	0	670	45
43	36	3	1	1	131	44
3	37	1	0	1	243	243

Randomisierte Nr.	Std- Nr.	Pufferart	PVP- Konz. [%]	Milchpulver Konz. [%]	AFI	S/N
52	38	4	0	2	89	45
26	39	2	1	0,2	1	1
44	40	3	1	2	92	92
21	41	2	0,5	0	1	1
48	42	3	2	2	222	56
69	43	5	0,5	0	2129	67
49	44	4	0	0	825	138
77	45	5	2	0	6928	21
45	46	3	2	0	686	19
33	47	3	0	0	127	127
10	48	1	1	0,2	732	146
56	49	4	0,5	2	195	98
32	50	2	2	2	1	1
53	51	4	0,5	0	935	85
63	52	4	2	1	851	170
18	53	2	0	0,2	1	1
41	54	3	1	0	291	49
78	55	5	2	0,2	2525	81
22	56	2	0,5	0,2	1	1
7	57	1	0,5	1	345	345
79	58	5	2	1	1678	80
15	59	1	2	1	810	135
76	60	5	1	2	577	64
37	61	3	0,5	0	187	187
68	62	5	0	2	238	79
72	63	5	0,5	2	368	123
11	64	1	1	1	481	120
70	65	5	0,5	0,2	782	156
31	66	2	2	1	33	33
64	67	4	2	2	487	244
74	68	5	1	0,2	1010	126
35	69	3	0	1	51	51
9	70	1	1	0	1911	62
73	71	5	1	0	2620	23
5	72	1	0,5	0	1329	133
75	73	5	1	1	877	97
61	74	4	2	0	2649	70
14	75	1	2	0,2	1325	189
47	76	3	2	1	274	39
6	77	1	0,5	0,2	445	445
60	78	4		2	271	271
20	79	2	0	2	1	1
12	80	1	1	2	348	116

Tabelle 28: Vergleich der Signalstärke sowie des Rauschverhaltens von Assaypuffer I und II imDigiWest. Assaypuffer II (AP II, PVXC) generierte ein um Faktor 1,5-fach höheres Signal alsAssaypuffer I (AP I). Das Rauschen stieg um Faktor 2.

	Mä	Mäuseleber Testlysat periportal				iuseleb periz	er Testlysa zentral	at		
	Assayp	uffer I	Assaypu	Iffer II	Assayp	uffer I	Assaypu	ffer II	FC Ko beha	ontrolle/ andelt
Analyt	Sig. [AFI]	Rau. [AFI]	Sig. [AFI]	Rau. [AFI]	Sig. [AFI]	Rau. [AFI]	Sig. [AFI]	Rau. [AFI]	AP I	AP II
CDK6 - ph Tyr13	-	101	-	257	-	80	763	159	-	-
PP1 gamma	14894	464	65568	1142	9298	420	45989	957	1,6	1,4
beta-Actin	104101	17	151526	81	74631	9	116807	70	1,4	1,3
Erk1/2	6635	1	11140	13	7289	4	12070	13	0,9	0,9
Erk1/2 - ph Thr202/Tyr204	470	5	324	16	215	6	165	14	2,2	2,0
CREB - ph Ser133	77	1	86	2	55	2	92	1	1,4	0,9
MEK1/2 - ph Ser217/221	86	3	153	8	84	3	131	9	1,0	1,2
CAR	296	31	604	45	316	30	486	51	0,9	1,2
HNF-4 - ph Ser313	40552	308	39036	1208	39651	225	38718	784	1,0	1,0
ILK1	2522	7	6174	36	2129	7	5138	26	1,2	1,2
Akt	7189	3	9433	6	4746	5	6294	11	1,5	1,5
Cyclin B1	-	42	-	139	-	40	-	150	-	-
PKC alpha/beta/gamma	1010	251	3285	635	975	243	3074	663	1,0	1,1
MSK1 - ph Ser212	956	232	-	144		251	-	175	-	-
beta-Catenin	15944	27	21491	36	12789	19	17451	38	1,2	1,2
beta-Catenin -ph S552	1831	21	1260	81	1110	23	721	57	1,6	1,7
MERTK	2010	389	2153	634	1849	327	2254	569	1,1	1,0
EGFR - ph Tyr1173	-	153	1193	304	-	109	1058	245	-	1,1
C/EBP alpha - ph Thr222/226	99	5	99	2	-	4	-	4	-	-
STEP (PTPN5, PTN5)	206	1	1787	10	163	1	1349	9	1,3	1,3
Histon H4 - acetyl Lys8	-	1462	-	2687	-	1533	-	3167	-	-
PEA-15 - ph Ser116	-	867	-	1470	3924	561	9648	761	-	-
p27 - ph Thr187	-	23	-	50	-	18	184	45	-	-
Caspase 10	-	67	-	140	-	70	-	136	-	-
Src - ph Tyr418	-	287	-	155	-	324	-	161	-	-
PI3-kinase p85 alpha	621	14	483	16	1014	15	865	17	0,6	0,6
RSK 1 (p90RSK)	451	24	858	102	556	24	997	116	0,8	0,9
FAK1	466	12	669	31	454	11	771	34	1,0	0,9
PDGF Receptor beta	146	2	215	4	135	1	180	4	1,1	1,2
Tyr1054/1059	-	290	-	1027	-	197	-	753	-	-
Mittelwert	9551	170	15121	349	8069	152	11531	307	1.2	1.2
Signal-Rausch- Verhältnis	56	6	43		53	3	38		I	

Tabelle 2	9: Mittelwerte	der	Antikörpersignal	e für	die	Korrelation	zwischen	LiquiWest	und
DigiWest	Diese Werte s	ind gr	afisch in Abbildunç	j 23 d	arge	stellt.			

Analyt	Mittelwert LiquiWest PP	Mittelwert LiquiWest PZ	Mittelwert DigiWest PP	Mittelwert DigiWest PZ
4E-BP1	201	236	248	206
Akt2	1736	2255	1642	1619
alpha 1-Actin	128333	136205	65841	51223
alpha-Catenin	3428	3201	5767	5773
alpha-Tubulin	11138	16044	3552	3041
Bcl-xL	1561	2061	437	527
Beta-2-microglobulin	22601	21362	29280	30768
beta-Catenin	156	206	528	554
Caseinkinase 1 delta	-	-	-	-
Caspase 7	4490	4216	2619	2412
CD36	-	-	7540	5390
CDKN2B (p15 INK4B, CDN2B, MTS2)	417	331	26223	15178
CTGF	12913	8053	11438	5961
CYP2C8	163621	299548	-	-
DEPDC7 - DEP domain containing 7	40221	53197	53033	64693
DNA polymerase beta	6113	6377	6227	6193
DUSP14 (MKP6, MKP-6, MKP-L)	-	-	82	157
E2F-4	62396	77736	23013	12296
elF4E	13583	12628	10299	9407
Erk1/2 (MAPK p44/42) - phosphoThr202/Tyr204	3620	6489	9625	9664
FKBP12	3562	1609	11948	10835
GADD45 alpha	398	669	1257	2029
GADD45B	108	127	179	198
GAPDH	23629	15484	36986	27477
GDF3	5685	3964	15932	11211
Histone H2B	1089	3394	5181	2555
Histone H3	78497	116787	227810	112712
Histone H3 - acetylLys9	1556	1937	4990	2503
HKDC1	1360	1207	1096	1343
HLA-G	18227	9981	8877	3762
HMGCS1	1514	1263	2931	2571
HNF-4 alpha (HNF-4A) - phosphoSer304	-	-	7932	6149
IDH1 (Isocitrate dehydrogenase [NADP] cytoplasmic)	49647	56202	61133	71107
ILK1 - phosphoSer246	529498	789187	555033	477258
JNK/SAPK	7613	5975	27539	18615
LDHA	3710	4380	3209	3458
MEK1/2 - phosphoSer217/Ser221	2341	2543	1697	1689
Metallothionein	-	-	17446	12648

Analyt	Mittelwert LiquiWest PP	Mittelwert LiquiWest PZ	Mittelwert DigiWest PP	Mittelwert DigiWest PZ
MMP7	22532	17112	33658	20694
NF-кВ р100/р52	2997	1789	9016	6726
NR5A2	270	210	279	241
p38 MAPK - phosphoThr180/Tyr182	515	626	1239	1449
PDI	379	390	1699	1649
PGC-1 alpha - phosphoSer571	4327	1898	10559	3020
PGRMC1	620	554	509	551
PKLR (Pyruvate kinase L/R)	1636	2240	330	445
PKM2 (Pyruvate kinase M2)	3774	2382	21785	17048
PPAR gamma	24589	24866	77806	57475
PPAR gamma - phosphoSer112	4594	5027	9818	8233
RHEB	2270	3616	2871	1911
RSK 1 (p90RSK) - phosphoThr573	288	247	849	874
Serotonin receptor (5-HT2AR)	406841	382229	272805	291810
SOD Cu/Zn	19564	28425	117695	118763
Spectrin alpha/beta	-	-	-	-
SPRED2	61793	105980	19997	8502
SPRY3 (Spry-3, Sprouty 3)	1931	2033	950	769
STAT 3	1347	1061	1961	1658
STAT 3 alpha	2471	2532	3141	3381
TIMP-1	294	428	3293	3602
Wnt3A	224657	162966	297451	241635

Tabelle 30: Vergleich der Fold Changes von DigiWest und LiquiWest bezogen auf dieselben Proben. Periportale und perizentrale Hepatozyten wurden im DigiWest prozessiert und mit allen primären Antikörpern (Tabelle 22) inkubiert. Nach der Bestimmung der AFIs und der Mittelung der zusammengehörigen Signale vom PP und PZ Probentypen wurde der Quotient und damit der Fold Change bestimmt. Es resultierten 89 Analyten, welche innerhalb der Spezifikationen (FC ≥ 2 bzw. $\leq 0,5$) als differenziell exprimiert galten. Dieselben Proben wurden anschließend mittels LiquiWest prozessiert, die 89 differenziell exprimierten Analyten betrachtet und ebenfalls der FC berechnet. Einzelne eingesetzte Antikörper generierten kein Signal im LiquiWest, was dadurch bedingt war, dass sie selbst im DigiWest kaum Signal zeigten oder das Auflösungsvermögen des LiquiWests nicht ausreichend war um die Signale valide zu integrieren.

Analyt	FC PP/PZ DigiWest	FC PP/PZ LiquiWest	Kommentar
Glutaminsynthetase	0,01	0,001	ok
Ornithine aminotransferase (OAT)	0,01	0,02	ok
Caveolin-1	0,05	0,14	ok
CYP2E1	0,07	0,08	ok
RGS1	0,17	0,49	ok
Metallothionein	0,18	0,23	ok
HSP 70	0,21	0,28	ok
DUSP5 (VH3)	0,23	0,20	ok
Decorin	0,25	0,76	ok
Aldh1A1	0,25	0,22	ok
SPRY2	0,27	0,79	ok
HSP 70	0,29	0,89	ok
LCN2	0,30	0,19	ok
ER beta (estrogen receptor beta)	0,30	-	zu viele Nebenpeaks, Auflösung nicht ausreichend
TIGAR	0,31	0,51	ok
p53	0,31		zu viele Nebenpeaks, Auflösung nicht ausreichend
Slug	0,31	0,48	ok
PON3	0,31	0,46	ok
Akt - phospho Thr308	0,32	0,38	ok
Src family - phospho Tyr416	0,33	-	zu schwaches Signal
MKK4 (SEK1)	0,34	0,63	ok
DPP3 (Dipeptidyl-peptidase 3)	0,35	0,61	ok
NDRG1 - phospho Thr346	0,36	0,54	ok
IPP-2 - phospho Thr72	0,37	-	zu schwaches Signal
Jak 1	0,38		zu schwaches Signal
STAT 5 - phospho Tyr694	0,40	0,52	ok
DPP3 (Dipeptidyl-peptidase 3)	0,40	0,88	ok
Akt - phospho Thr308	0,42	0,73	ok
PTPN7 (LC-PTP, HEPTP)	0,42	0,67	ok
CYP3A4, 3A1, 3A11	0,43	0,30	ok

Analyt	FC PP/PZ DigiWest	FC PP/PZ	Kommentar
GPR30	0,45	0,52	ok
DRAK2	0,45	0,42	ok
STAT 1 - phospho Tyr701	0,45	0,76	ok
PKA C alpha	0,45	0,67	ok
c-Met (HGF/SF receptor)	0,46	-	MW zu hoch
PAK 4/5/6 - phospho	0.48	0.46	ok
Ser474/Ser602/Ser560	0,50	0,79	
EMSY	0,50	0,78	
	0,50	0,17	ok
	2.00	1.27	
	2,00	1,27	
BGS5	2,05	2.26	ok
	2,03	1.36	ok
OTC Ornithine transcarbamylase	2,00	-	zu schwaches Signal
TGF-beta	2,00	2 38	ok
	2,00	1 49	ok
E-Cadherin	2.12	-	zu schwaches Signal
ILK - phospho Thr173	2.14	1.12	ok, schwaches Signal
Brachyury	2,15	0,87	falsche Richtung
MKK3/6 - phospho Ser218/Thr222	0 17	1.46	ok.
(MMK3) / Ser207/Thr211 (MMK6)	2,17	1,40	UK
elF2 alpha	2,19	1,97	ok
Gpr49	2,21	1,74	ok
INSL4	2,26	1,57	ok
Histone H3 - acetyl Lys14	2,27	2,37	OK
HKDC1	2,28	1,42	OK
AMPK alpha - phospho Thr172	2,30	1,99	
Auroro B (AIM1)	2,34	2.00	Zu schwaches Signal
n70 S6 kinase - phospho	2,35	2,90	UK
Thr421/Ser424	2,36	1,32	ok
DUSP4	2,43	1,37	ok
HES-1	2,45	2,64	ok
DUSP14 (MKP6, MKP-6, MKP-L)	2,50	-	zu schwaches Signal
Twist	2,57	3,06	ok
FTCD	2,57	1,36	ok
Histone H4 - acetyl Lys8	2,58	1,26	ok
XLF	2,67	3,28	ok
PAK 1/2 - phospho Ser144/Ser141	2,69	1,74	ok
STEP (PTPN5, PTN5)	2,72	1,04	ok
Smad4	2,85	1,74	ok
p73	3,09	-	zu viel Hintergrund
PGC-1 alpha - phospho Ser571	3,16	2,61	ok
ASL (argininosuccinate lyase)	3,22	1,92	ok

Analyt	FC PP/PZ DigiWest	FC PP/PZ LiquiWest	Kommentar
NIK (NF-κB inducing Kinase)	3,28	-	kein Signal
eNOS	3,59	-	MW zu hoch
MAPK15	3,67	2,33	ok
ILK - phospho Ser343	3,71	1,18	ok, schwaches Signal
IGFBP-5	3,77	2,11	ok
Arginase-1	4,24	2,71	ok
MICALL1	4,75	4,45	ok
Src - phospho Tyr418	5,00	-	hoher Hintergrund
IGFBP-5	5,70	-	Kein Signal
GAS2	5,76	6,46	ok
HAL (histidine ammonia lyase)	6,18	6,30	ok
PTPRR ((PTP-SL, PTP13)	7,51	-	hoher Hintergrund
GLDC	9,63	3,32	ok
GLDC	11,22	4,37	ok
GLS2 (Glutaminase 2)	11,79	6,85	ok
SDS (serine dehydratase)	12,17	15,99	ok
HNF-1 alpha (HNF-1A)	12,45	4,63	ok

Tabelle 31: DigiWest Messwerte (AFIs) der GS+ und GS- FACS sortierten Hepatozyten. DieMessungen der vier biologischen Replikate der GS- Hepatozyten erfolgten jeweils im technischenDuplikat, die der vier biologischen Replikate der GS+ Hepatozyten aufgrund einer geringerenAusgangszellmenge als Einfachmessung für jede Maus.

Analyt	GS- M1	GS- M1	GS- M2	GS- M2	GS- M3	GS- M3	GS- M4	GS- M4	GS+ M1	GS+ M2	GS+ M3	GS+ hoch M4 in	FC
GS	3184	2726	5109	5147	4043	6277	4024	4144	106894	75569	214618	62343 GS+	26,5
ΟΑΤ	5060	4411	9739	5102	6429	11188	4095	7263	68184	55570	205117	59933 GS+	14,5
Caveolin-1	275	444	360	236	-	530	324	353	4227	2860	9286	2234 GS+	12,9
Aldh1A1	1195	1347	668	764	1202	1440	659	565	6071	3985	6128	1759 GS+	4,58
RGS1	231	452	137	131	-	267	-	103	1102	638	1607	418 GS+	4,28
SPRY2	260	692	221	167	156	435	128	200	1312	671	1952	266 GS+	3,72
PKA C alpha	301	517	306	379	471	682	328	483	1016	818	3788	460 GS+	3,51
HSP 70	754	549	235	133	321	668	286	210	2345	901	1498	332 GS+	3,22
DUSP14	-	-	-	-	-	-	-	60	-	-	302	64 GS+	3,05
Cyp3A4, 3A1, 3A11	2461	2546	2981	1994	1645	1837	898	955	5228	3974	9665	2563 GS+	2,80
DUSP5	-	859	-	-	-	-	-	-	2256	1653	3051	1529 GS+	2,47
Metallo- thionein	-	-	-	-	-	86	93	-	244	201	276	127 GS+	2,37
GPR30	294	466	-	188	335	496	186	175	877	561	892	492 GS+	2,31
TIGAR	366	479	419	301	418	922	605	471	972	875	1623	719 GS+	2,10
DRAK2	58	81	-	-	-	-	-	-	162	98	148	- GS+	1,96
DPP3	-	96	128	62	116	117	200	-	154	184	335	175 GS+	1,77
eEF2 - phThr56	862	1351	606	975	1153	1377	465	1122	1561	2157	1969	773 GS+	1,63
PTPN7	330	424	182	148	-	-	353	296	239	356	742	454 GS+	1,55
p38 MAPK phThr180/ Tyr182	235	412	199	299	198	556	105	176	355	473	578	201 GS+	1,47
MICALL1	131	90	-	-	168	142	157	95	-	-	192	- GS+	1,47
STAT 1 - ph Tvr701	-	-	-	-	68	59	-	77	-	72	124	- GS+	1,44
beta- Catenin active	72	75	52	99	97	151	-	83	99	118	156	- GS+	1,38
DPP3	453	543	284	210	279	298	366	316	448	398	646	393 GS+	1,37
RSK 1 - phThr573	88	58	-	58	107	165	-	-	99	103	171	- GS+	1,31
β-Catenin phSer675	917	1061	888	787	884	1022	848	1226	1108	1352	1523	989 GS+	1,30
E-Cad.	53	117	-	96	-	-	105	113	111	-	-	140 GS+	1,30
c-Met (HGF/SF	-	1287	1252	1023	702	1136	-	2078	-	1840	1356	- GS+	1,28
PP2A C - phTyr307	106	71	88	62	68	92	91	73	104	-	-	- GS+	1,28
XLF	66	93	-	-	68	76	-	-	75	55	157	- GS+	1,26
beta- Catenin	980	1258	1141	1026	1036	1278	1035	1779	1142	1621	1805	1291 GS+	1,23
PP2A C	67	101	-	-	95	125	-	-	107	86	155	- GS+	1,20
AMPK a- ph Thr172	83	109	106	153	122	183	86	109	96	146	184	- GS+	1,19
PON3	611	1076	-	-	905	1259	558	599	1094	811	1657	394 GS+	1,18
MCM2 - phSer139	-	-	-	223	167	-	151	170	-	-	233	180 GS+	1,16
ILK – ph Ser343	-	62	-	-	-	-	-	-	58	70	76	- GS+	1,10
Smad4	-	69	52	-	63	60	76	76	-	54	90	- GS+	1,09

Analyt	GS-	GS+	GS+	GS+	GS+ h	noch	FC							
A 1-4	M1	M1	M2	M2	M3	M3	M4	M4	M1	M2	M3	M4		1.00
	933	964	598	1400	1002	1106	1505	670	1070	970	1042	1575 (35+	1,08
0-111yC	10076	1390	12022	0770	10715	16001	1020	2120	10020	15546	17069	16494 (30+	1,07
p/3 n=2	1470	1002	13032	0//9	10/15	10091	20532	21359	10030	15546	1/900	10404 (35+	1,07
икрот	1470	1960	-	-	64	335	-	-	-	-	1017	- (35+	1,06
	196	133	-	-	-	-	157	193	-	-	1/8	- (32+	1,05
phSer218/ Thr222 Ser 207/Thr211	3107	6186	5068	2308	4844	6407	9493	8114	7716	4809	8125	3163 (GS+	1,05
ILK1 - phSer246	26469	30522	30766	24301	30460	36831	33436	39080	38984	28790	34359	27955 (GS+	1,03
CDKN2B	2530	4610	1049	1207	2527	4893	1572	1957	3916	2111	3092	935 (GS+	0,99
NF-кВ p100/p52	8842	9622	10977	9773	8892	9197	11324	9975	8885	11920	7684	10248 (GS+	0,99
Decorin	1429	2340	1538	1038	1074	1194	1700	1764	919	2229	1767	999 (GS+	0,98
MOB1 - phThr35	-	77	-	-	65	72	-	-	51	-	87	- (GS+	0,97
Src - phTyr527	378	373	414	538	376	506	265	284	367	408	499	236 (GS+	0,96
Caseinkina se 1 delta	2810	3142	1847	2963	3467	3873	1745	1962	2643	2961	2207	- (GS+	0,96
MMP7	18567	22301	3724	6818	14844	24973	7734	6873	23488	11074	11241	4694 (GS+	0,95
SDS	12953	14493	3363	5551	16751	23428	7656	7840	7473	4128	2792	2497	GS-	2,72
ER beta	-	1437	-	-	-	-	-	-	-	-	551	-	GS-	2,61
HNF-1A	337	500	78	111	419	559	217	181	222	197	50	69	GS-	2,23
Arginase-1	530	974	90	195	477	793	158	207	427	253	62	69	GS-	2,11
DUSP4	1832	2263	2439	1129	2356	1694	2604	2029	1583	847	789	931	GS-	1,97
GLS2	2623	2963	1550	1403	2258	2476	1856	2184	1450	1051	804	1091	GS-	1,97
HAL	2429	3498	824	1112	3390	3845	1463	1569	1732	1319	906	647	GS-	1,97
IGFBP-5	14544	17455	-	-	11496	11396	-	-	7212	6816	-	-	GS-	1,96
Aurora B	57	140	93	74	135	138	272	159	87	-	53	-	GS-	1,91
elF2 alpha	2130	2975	1510	1650	3536	3502	7893	3998	2039	1500	2135	1481	GS-	1,90
PTPN5	135	190	-	84	283	289	95	67	107	94	62	-	GS-	1,86
PP1	13108	17967	12657	10218	16048	16980	26360	24936	11524	7389	7594	10953	GS-	1.85
gamma	210	265	72	07	266	401	130	132	176	113	60	73	69	1.82
HES_1	4320	1577	1959	/155	1171	3967	5509	/162	2819	27/5	2038	2331	<u>GS-</u>	1.82
FTCD	1/57	11/7	317	5/3	1121	1010	100	503	713	612	2000	2001		1 74
IGEBP-5	11/73	22511		2802	1230	16004		2263	7907	3550	200	200	<u>GS-</u>	1 72
	22304	20515	5054	7579	17569	17201	5972	7414	14818	8476	4159	3170	GS-	1 69
Twist	383	449	456	355	561	722	888	487	325	280	450	269	GS-	1 62
PPAR	000		.00			,			020	200	100	200	0.0	1,02
gamma - phSer112	5984	7020	4382	5432	6927	6908	4580	5113	1932	4519	4981	2870	GS-	1,62
p70 S6 kinase - ph Thr421 /Ser424	9143	8800	9394	11559	10262	8946	12467	11413	6672	5901	7034	7093	GS-	1,54
TGF-beta	11807	12873	5356	5728	10646	12326	8210	10377	8272	6966	5793	4249	GS-	1,53
PPAR gamma	49030	60939	50102	51316	53896	62371	51827	57758	25512	42351	44809	32912	GS-	1,50
CTGF	7356	8692	2727	3331	7259	9269	9015	5791	8104	3967	3631	2441	GS-	1,47
GSS	173	230	62	127	254	286	95	-	141	114	146	76	GS-	1,47
PGC-1 alpha - ph Ser571	370	604	162	236	331	702	232	425	286	367	237	166	GS-	1,45
RGS5	-	595	-	-	203	409	-	-	400	-	156	-	GS-	1,45
HNF-4 alpha	5324	5749	3931	3520	5228	5602	3643	4586	3893	3550	3123	2615	GS-	1,43
	1													

Analyt	GS- M1	GS- M1	GS- M2	GS-	GS-	GS-	GS-	GS-	GS+	GS+	GS+	GS+	hoch in	FC
	3131	4516	4547	3330	3128	1680	6626	4362	3123	2561	4022	2515	69.	1 40
Brachvury	273	220	330	260	332	10/	275	160	1/18	2301	106	1.81	68-	1 40
	2/3	230	070	209	245	667	155	109	206	420	190	240	65-	1,40
GLDC Frk1/2	241	001	212	440	245	007	155	414	200	420	109	240	03-	1,37
(MAPK p44/42)	1271	1396	1166	1535	1422	1865	1041	1509	1147	1118	1386	548	GS-	1,33
Src	1170	1347	1586	1727	1433	1866	1404	1734	1038	1174	1433	1033	GS-	1,31
MAPK15	194	155	225	199	139	203	287	229	130	113	228	153	GS-	1,31
Bax	148	329	-	-	72	156	64	-	178	-	64	-	GS-	1,27
EMSY	237	288	160	157	281	516	212	287	209	171	339	130	GS-	1,26
DUSP6	285	407	73	136	172	170	88	105	227	182	105	57	GS-	1,26
ATF4	33814	43983	13196	18869	28991	54208	13464	36855	34009	35772	15000	12302	GS-	1,25
PP1 alpha	1845	2171	585	1095	1601	2075	910	958	1694	1362	1030	522	GS-	1,22
Connexin 32	230	264	340	313	249	525	740	816	223	350	539	321	GS-	1,21
Erk1/2 phThr202/ Tyr204	2580	3248	-	-	2559	3989	-	-	3154	2154	2469	-	GS-	1,19
GSK3 beta phSer9	-	75	-	93	59	95	-	-	56	-	81	-	GS-	1,18
ADAM12	11970	6278	3775	3339	7533	7035	7730	10480	3720	4608	10794	5741	GS-	1,17
PAK 1/2 - phSer144/ Ser141	3762	3544	2759	2680	3475	4666	2645	3105	2950	3173	3583	1931	GS-	1,14
SPRY3	364	798	469	420	541	734	878	975	526	524	812	423	GS-	1,13
Actin	28366	35947	33923	37506	37739	44051	28320	33887	30616	32987	39542	20495	GS-	1,13
Notch 2	-	121	-	77	67	117	-	-	69	132	87	52	GS-	1,12
HNF-4 a phSer313	4073	3909	3496	3667	4579	4277	4710	5062	3190	4341	4049	3510	GS-	1,12
GAPDH	12897	15311	6508	9156	13530	15347	7923	8385	12334	11720	9253	6532	GS-	1,12
GADD45B	137	272	116	110	184	361	354	457	188	166	418	134	GS-	1,10
Gpr49	68	167	116	129	152	211	145	156	103	150	133	139	GS-	1,09
NIK	107	195	182	168	203	274	173	347	157	197	217	191	GS-	1,08
Wnt3A	16354 6	18730 9	10106 7	12073 2	17317 8	22753 3	95248	17090 5	165930	15491 8	149967	10300 2	GS-	1,08
PAK 4/5/6 - phSer474/ Ser602/Ser 560	88	67	54	-	78	98	-	-	-	67	76	-	GS-	1,08
E2F-4	6586	12577	7508	5496	12850	14402	8363	7698	10209	7825	12133	4917	GS-	1,08
MKK4	-	83	56	71	90	158	-	-	66	120	71	-	GS-	1,07
Caspase 3 - cleaved Asp175	146	399	160	94	206	369	285	338	221	167	351	202	GS-	1,06
Frizzled-1	-	1377	-	-	1226	1529	-	1160	-	1124	1375	-	GS-	1,06
Akt - ph Thr308	-	-	152	-	88	-	-	-	-	-	-	-	-	-
Akt - phSer473	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CAIX	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyp2E1	-	-	-	-	-	-	-	-	59	70	162	-	-	-
eNOS	-	-	52	-	-	54	-	51	-	-	-	-	-	-
Histone H3 - acLys14	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- acLys8	-	50	-	88	-	91	-	61	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	58	55	55	-	-
	59	-	-	-	-	54	-	-	-	-	-	-	-	-
Thr173	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Analyt	GS- M1	GS- M1	GS- M2	GS- M2	GS- M3	GS- M3	GS- M4	GS- M4	GS+ M1	GS+ M2	GS+ M3	GS+ M4	hoch in	FC
INSL4	-	-	-	-	134	-	109	-	-	-	-	-	-	-
INSL4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IPP-2 – ph Thr72	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Jak 1	63	-	-	-	-	-	-	-	-	-	-	-	-	-
LCN2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MKK7	-	-	51	-	79	-	-	-	-	-	-	-	-	-
Mst2	-	-	-	-	-	-	109	-	-	-	-	-	-	-
NDRG1 - ph Thr346	-	-	-	66	53	71	61	-	-	-	-	-	-	-
OTC	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PPAR a - phSer21	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PTPRR	-	-	-	-	-	4957	-	-	-	-	-	-	-	-
Slug	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Src – ph Tyr418	-	-	-	-	-	-	-	-	-	-	36852	32891	-	-
Src family - phTyr416	64	-	-	-	-	-	-	-	-	-	-	-	-	-
STAT 5 - phTyr694	-	-	-	-	-	-	-	-	-	74	68	-	-	-
TCF4	57	106	-	-	-	-	-	-	-	-	-	-	-	-
YAP/TAZ	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Abbildung 36: Hierarchische Clusteranalyse der Ergebnisse der kultivierten GS+ und GS-Hepatozyten. Das Clustering erfolgt mit den auf die jeweiligen Kontrollen (t 0) Median-zentrierten und log₂ transformierten AFIs der Luminex Messungen. Die Metrik des Clusterings war die Pearson Korrelation mit einer Ordnungs-Optimierung hinsichtlich der Analyte. Für schwarz dargestellte Werte konnte kein Messwert ermittelt werden.

9 Lebenslauf

Persönliche Daten

Name	Simon Kling
Geburtsdatum	05.06.1987
Geburtsort	Villingen-Schwenningen

Ausbildung

08/2013 — 04/2017	Promotion am Forschungsinstitut NMI – Naturwissenschaftliche und Medizinisches Institut an der Universität Tübingen, Reutlingen <u>Titel</u> : "Automatisiertes Western Blotting im Hochdurchsatz: Charakterisierung des Differenzierungszustandes von zonierten Hepatozyten"
09/2012 — 06/2013	Masterarbeit am Forschungsinstitut NMI – Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Reutlingen <u>Titel:</u> "Aufbau eines Systems zum Nachweis von Histonmodifikationen und Untersuchung ihrer Veränderungen in Modellsystemen"
10/2011 – 07/2013	Masterstudium an der Hochschule Albstadt-Sigmaringen im Studiengang Biomedical Engineering
03/2011 — 05/2011	Bachelorarbeit bei der Firma Merckle Biotec GmbH (TEVA/ratiopharm), Ulm <u>Titel</u> : "Etablierung eines small scale Modells zur enzymatisch katalysierten Glykopegylierung von XM21 zu XM22 mit Hilfe statistischer Versuchsplanung (DoE)"
03/2008 - 07/2011	Bachelorstudium an der Hochschule Biberach im Studiengang Pharmazeutische Biotechnologie
09/1998 – 07/2007	Abitur mit allgemeiner Hochschulreife am Gymnasium am Deutenberg, Villingen Schwenningen

9.1 Veröffentlichungen

Wissenschaftliche Artikel

Menck, K., Sönmezer, C., Worst, T. S., Schulz, M., Dihazi, G., Streit, F., Erdmann G., <u>Kling, S.</u>, Boutros, M., Binder C., Gross, C. J. (2017). Neutral sphingomyolinases control Extracellular Vesicles budding from the plasma membrane. Journal of Extracellular Vesicles, in revision

Treindl, F., Zabinsky, E., <u>Kling, S.</u>, Schwarz, M., Braeuning, A., & Templin, M. F. (2017). Protein analysis of microdissected tissue reveals zonal differences in cellular signaling and metabolic programs in mouse liver. Gastroenterology, submitted

Shukla, R., Mjoseng, H. K., Thomson, J. P., <u>Kling, S</u>., Sproul, D., Dunican, D. S., Ramsahoye, B., Wongtawan, T., Treindl, F., Templin, M. F., Pennings, S., Meehan, R. R. (2017). MEK and GSK3β inhibition drives mES cells into a naive pluripotent state irrespective of their global methylation status. Cell Stem Cell, in revision

Treindl, F., Ruprecht, B., Beiter, Y., Schultz, S., Döttinger, A., Staebler, A., Joos, T. O., <u>Kling, S.</u>, Poetz, O., Fehm, T., Neubauer, H., Kuster, B., Templin, M. F. (2016). A bead-based western for high-throughput cellular signal transduction analyses. Nature Communications, *7*, 12852.

Vorträge

10th Proteomics Summer School, Brixen, (2016). Vortrag: Western blotting to high throughput – Characterization of defined hepatocyte populations

8th Proteomics Summer School, Brixen, (2014). Poster: Detection of histones and their modifications – a novel immunoassay system for analysing 2D gels in multiplex