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Abstract 

Virus attachment to the host cell surface and subsequent cell entry are key steps in viral 

infection. Neutralizing antibodies therefore often target virus proteins that mediate 

binding to cell receptors.  

Mammalian orthoreoviruses (reoviruses) are useful models for studies of viral 

pathogenesis and host immunity, and they are promising oncolytic agents and vectors for 

vaccines. The reovirus attachment protein σ1 engages junctional adhesion molecule-A 

(JAM-A) and sialylated carbohydrate receptors. During the acid-dependent proteolysis 

from virions to infectious subvirion particles (ISVPs), which accompanies cell entry, the 

σ1 protein is thought to undergo a structural rearrangement.  

In this thesis, the attachment protein σ1 of type 1 (T1) and type 3 (T3) reovirus were 

structurally analyzed in complex with antigen-binding fragments (Fabs) of the serotype-

specific neutralizing antibodies 5C6 and 9BG5, respectively. The crystal structures 

allowed us to determine the complete antibody epitopes and to explain how reovirus 

variants can escape neutralization. Surface-plasmon resonance was used to investigate 

the interplay between JAM-A and antibody binding and to determine affinities of JAM-A 

and the Fabs for σ1. Together with the analysis of hemagglutination inhibition and cell-

binding assays, we were able to propose a mechanism for how the antibodies neutralize 

reovirus infection. We observed strikingly different hemagglutination inhibition properties 

of 9BG5 for virions and ISVPs, a finding that provides additional evidence for a structural 

rearrangement of σ1 during virion-to-ISVP conversion. 

In order to gain insights into the region of σ1 that anchors the protein into the virus 

capsid and to investigate the regions of predicted enhanced flexibility, crystal structures 

of the T1 and T3 σ1 tail domains were solved at high resolution. Both proteins possess a 

heptad repeat pattern of hydrophobic amino acids and form stable trimeric α-helical 

coiled coils. A discontinuity of the heptad repeat is conserved in the serotypes, and with 

our structural investigation we were able to define how the heptad repeat break is 

compensated by the proteins. The structural analysis of a T3 σ1 construct composed of 

the tail and the body domain revealed an unexpectedly seamless transition between the 

two domains. This finding is in contrast to the predicted higher flexibility of σ1 within this 

region and requires a reconsideration of the current model. Sequence analysis indicates 

that the observed interactions that stabilize the tail-body junction of T3 σ1 are conserved 

within the other serotypes. Our investigation of the tail and the tail-body junction of σ1 
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enabled us to formulate a full-length model of the elongated σ1 protein at high-resolution 

and provide a platform for future studies to define the flexibility of this protein. 
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Zusammenfassung 

Die virale Zelladhesion, sowie der darauffolgende Eintritt in die Wirtszelle sind 

Schlüsselschritte einer Virusinfektion, weshalb daran beteiligte virale Proteine häufig Ziel 

neutralisierender Antikörper sind.  

Humane Orthoreoviren (Reoviren) dienen als Modelsysteme zur Erforschung viraler 

Pathogenität, sowie der Wirts-Immunität und sind zudem vielversprechende onkolytische 

Agenzien und Vektoren für Impfstoffe. Das Reovirus-Adhesionsprotein σ1 bindet 

„junctional adhesion molecule-A“ (JAM-A), sowie sialinsäurehaltige Co-Rezeptoren. 

Während des Reovirus-Zelleintritts findet ein säureabhängiger, proteolytischer Abbau zu 

„infektiösen subviralen Partikeln“ (ISVPs) statt. Es wird angenommen, dass das σ1 

Protein dabei eine Strukturänderung durchläuft.  

Diese Arbeit befasst sich mit der strukturellen Analyse von Komplexen zwischen dem σ1 

Protein von Serotyp 1 (T1) bzw. 3 (T3) mit antigen-bindenden Fragmenten (Fabs) der 

serotypspezifischen Antikörper 5C6 bzw. 9BG5. Durch die Strukturaufklärung konnten 

die Epitope bestimmt, und erklärt werden wie Reovirus-Varianten der 

Antikörperneutralisation entgehen können. Mittels Oberflächenplasmon-Resonanz 

Spektroskopie wurde das Bindevermögen von JAM-A gemeinsam mit den Antikörpern 

untersucht, sowie die Affinitäten von JAM-A und Fabs zu σ1 bestimmt. Zusammen mit 

der Analyse von Hämagglutinationshemmtests und Zelladhesionsuntersuchungen 

konnte ein Mechanismus der Antikörper vermittelten Infektionsneutralisierung aufgestellt 

werden. 9BG5 wies deutliche Unterschiede in der Hämagglutinationshemmung zwischen 

Viren und ISVPs auf, was ein weiteres Indiz für die Strukturänderung von σ1 während 

des Übergangs von Viren zu ISVPs darstellt. 

Um Einblicke in die σ1-Region zu erhalten, welche das Protein im Viruskapsid verankert 

und um vorhergesagte Regionen mit erhöhter Flexibilität zu untersuchen, wurden 

Kristallstrukturen mit hoher Auflösung der filamentösen „tail“-Domäne von T1 σ1 und 

T3 σ1 gelöst. Beide Proteine enthalten ein Wiederholungsmuster von hydrophoben 

Aminosäuren und bilden stabile α-helikale Bündel. Eine Diskontinuität im 

Wiederholungsmuster ist bei allen Serotypen konserviert. Anhand der Strukturen konnte 

gezeigt werden wie das σ1 Protein diese kompensiert. 

Die strukturelle Analyse eines T3 σ1 Konstrukts, welches die „tail“- sowie die „body“-

Domäne beinhaltet, zeigt einen unerwartet nahtlosen Übergang der beiden Domänen, 

was im Gegensatz zur vorhergesagten, höheren Flexibilität dieser Proteinregion steht 

und eine Überdenkung des momentanen Models fordert. Sequenzanalysen deuten 
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darauf hin, dass die beobachteten Interaktionen, die den Übergang der „tail“ und der 

„body“-Domäne von T3 σ1 stabilisieren bei den anderen Serotypen ebenfalls konserviert 

sind. Die Untersuchung der „tail“ und der „tail-body“ Konstrukte bieten eine Plattform 

zukünftiger Studien zur  Flexibilitätsuntersuchung des σ1 Proteins und ermöglichten das 

Erstellen eines Modells über die gesamte Proteinlänge.  

 

Contributions of Others 

Hemagglutination inhibition and cell-binding assays that are mentioned in the abstract 

and the discussion section have been performed and are marked as such by Kristen M. 

Ogden. 

The surface plasmon resonance experiment that is shown in figure 4.25B was designed 

and performed together with Kerstin Reiss.  
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Abbreviations 

The commonly used abbreviations for chemical and physical units, amino acids and DNA 

bases are used.   

 

AHTC   Anhydrotetracycline 

Amp   Ampicillin 

APS   Ammonium persulfate 

CAPS   N-cyclohexyl-3-aminopropanesulfonic acid 

cc   Coiled coil 

CD   Circular dichroism 

CDR   Complementarity determining region 

DNA   Deoxyribonucleic acid 

dNTP   2’-deoxynucleotide triphosphate 

dsRNA   Double-stranded ribonucleic acid 

DTT   Dithiothreitol 

DLS   Dynamic light scattering 

E. coli   Escherichia coli 

EDC   1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

EDTA   Ethylenediaminetetraacetic acid 

EM   Electron microscopy 

Fab   Fragment antigen binding 

FRET   Fluorescence resonance energy transfer 

GdmCl   Guanidine hydrochloride 

HA   Hemagglutination  

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

IgG   Immunoglobulin G 

IgSF   Immunoglobulin superfamily 

IPTG   Isopropyl β-D-1-thiogalactopyranoside 

ISVP   Infectious subvirion particle  

JAM-A   Junctional adhesion molecule-A 

Kan   Kanamycin 

LB   Lysogeny Broth 

mAb   Monoclonal antibody 

MALDI   Matrix-assisted laser desorption ionization 

MES   2-(N-morpholino) ethanesulfonic acid 

MOPS   3-(N-morpholino) propanesulfonic acid 

MPD   2-methyl-2,4-pentanediol 

mRNA   Messenger ribonucleic acid 

NCS   Non-crystallographic symmetry 

NgR1   Nogo receptor 

NHS   N-hydroxysuccinimide 

OD600   Optical density at 600 nm 

ORF   Open reading frame 

P20   Polyoxyethylene sorbitan 

PAGE   Polyacrylamide gel electrophoresis 
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PMSF   Phenylmethylsulphonyl fluoride 
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1 Introduction 

1.1 Reoviridae 

The Reoviridae (respiratory enteric orphan viruses) form a family of non-enveloped, 

icosahedral viruses with a segmented double-stranded RNA (dsRNA) genome. Members 

of the group possess 9-12 dsRNA segments within a single or multi-layered capsid that 

measures 60-85 nm in diameter [1,2]. The family name refers to early virus isolates from 

healthy humans with no enteric and respiratory symptoms of disease [3].  

Currently, 15 different genera are classified and subdivided into turreted and non-turreted 

Reoviridae viruses. Prominent representatives of the non-turreted subspecies are 

Rotavirus and Orbivirus. Rotaviruses cause severe gastroenteritis in infants and young 

children (< 5 years of age) and are a major cause of diarrhea-related hospitalization and 

child mortality in low-income countries [4,5]. Bluetongue virus and African horse sickness 

virus belong to the Orbivirus genus and are economically important pathogens of 

livestock [6].   

Within the turreted subfamily, the Orthoreovirus genus includes viruses that infect 

mammals, birds and reptiles. Mammalian orthoreoviruses (herein referred to as 

reoviruses) are geographically widespread and infect virtually all mammals. Three major 

reovirus serotypes have been described, which can be differentiated through 

neutralization and hemagglutination inhibition tests [3,7]. Each serotype is represented 

by a prototype strain isolated from a human host: type 1 Lang (T1L), type 2 Jones (T2J), 

and type 3 Dearing (T3D).  

Reovirus infection is mainly asymptotic in humans and can lead to mild respiratory and 

gastrointestinal disease symptoms in infants. In contrast, newborn mice are highly 

sensitive to reovirus infection, display serotype-specific disease patterns, and serve as 

model systems to study reovirus-host interactions and pathogenesis [8-10]. Reoviruses 

are prototypic members of the Reoviridae and, as they induce cell death and apoptosis 

preferentially in tumor cells, they are currently being tested as oncolytic agents in clinical 

trials [11]. 

 

1.1.1 Mammalian Orthoreovirus Structure and Components 

Reoviruses encapsidate 10 dsRNA segments within a double-layered icosahedral protein 

shell. The ten genome segments are grouped and named according to their 

electrophoretic mobility into large (L1-L3), medium (M1-M3), and small (S1-S4) 
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segments. With exception of the bicistronic S1 gene, each gene segment is monocistronic 

and, thus, a total of eleven proteins (eight structural and three non-structural proteins) 

are encoded by the genome. The viral proteins are designated with the Greek letters λ, 

μ, and σ, in reference to their size class. The structural proteins are additionally 

numbered according to their relative electrophoretic mobility. As the size of the gene 

segments does not strictly correlate with the protein size there are some differences in 

the gene and protein nomenclature (Figure 1.1). 

 

 

Figure 1.1 Reovirus capsid organization. (A) Schematic representation of the reovirus particle. The 

viral capsid proteins are labeled. (B) The genome segments and their corresponding protein products 

are listed. Eight structural and three non-structural proteins (µNS, σNS, and σ1s) are encoded by the 

reovirus genome. The protein components of the inner and outer capsid with the copy number per 

particle are indicated. Adapted from ViralZone (www.expasy.org/viralzone, Swiss Institute of 

Bioinformatics). 

 

The inner core of the virus capsid exhibits icosahedral T=1 symmetry formed by 60 

dimers of λ1. The intersubunit contacts of λ1, reveal a high degree of non-equivalency 

[12]. Four additional viral proteins (σ2, λ2, λ3, and μ2) also contribute to core formation. 

The 150 σ2 monomers bridge the λ1 subunits and stabilize the core from the outside. At 

each five-fold axis, a pentameric λ2 protein, which is the RNA-capping enzyme, forms a 

large turret that also protrudes from the outer capsid. The monomeric RNA-dependent 

RNA polymerase λ3 is located at the inner surface of each five-fold vertex and faces a 

small channel leading through the λ1 shell [13]. Approximately 12-24 copies of μ2, which 

dsRNA 

segment 

Encoded 

protein 

Location 

(capsid) 

Copy 

number 

L1 λ3 Inner 12 

L2 λ2 Inner 

Outer  

60 

L3 λ1 Inner 120 

M1 μ2 Inner 12-24 

M2 μ1 Outer 600 

M3 μNS - - 

S1 σ1 

σ1s 

Outer 

- 

36 

- 

S2 σ2 Inner 150 

S3 σNS - - 

S4 σ3 Outer 600 
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has an influence on the transcriptase and nucleoside triphosphatase activity of the core, 

are present [14].  

The outer capsid is arranged with icosahedral quasi T=13 (laevo) symmetry and is 

primarily composed of 200 heterohexamers of μ1 and σ3. The µ1 protein is the 

membrane-penetration molecule and is protected from the environment by σ3, which 

forms finger-like projections on the virus surface. Most of the µ1 protein is 

autocatalytically cleaved and present as two fragments, µ1N and µ1C. At each five-fold 

axis, the trimeric reovirus attachment protein σ1 anchors into a λ2 pentamer. The σ1 

protein is a filamentous molecule that uses proteinaceous and carbohydrate receptors to 

engage host cell surfaces [15-18]. σ1 of all reovirus serotypes binds to junctional 

adhesion molecule A (JAM-A), an integral component of intercellular tight junctions. σ1 

also binds cell-surface carbohydrates, but the serotypes differ in the location of the 

binding site and carbohydrate specificity [17,19].  

 

1.1.2 Entry Pathway and Replication Cycle 

Reovirus attachment to target cells is thought to occur via a two-step adhesion 

strengthening mechanism. Low-affinity binding to carbohydrate receptors enables the 

virus to diffuse laterally on the cell surface and allows access and high-affinity binding to 

JAM-A [20].  

Reovirus is internalized via receptor-mediated endocytosis, which involves β1-integrin 

binding probably to integrin-recognition sequences (RGD or KGE) in the λ2 protein 

[21,22]. The endocytic vesicles are then transported along microtubules and accumulate 

in late endosomes, where the viral outer-capsid undergoes stepwise, acid-dependent 

proteolysis (Figure 1.2) [23-25]. Reovirus uncoating is catalyzed by cathepsin proteases 

B, L, and S and leads to an initial disassembly intermediate termed infectious subvirion 

particle (ISVP) [26,27]. ISVPs are characterized by the removal of σ3, cleavage of μ1C 

into particle-associated fragments δ and φ, and a conformational change in the σ1 

protein, from a compact to an elongated structure [28,29]. ISVPs also can be generated 

by proteases (chymotrypsin and trypsin) in the intestinal lumen after peroral inoculation, 

and they can be internalized either by endocytosis or by direct penetration of the plasma 

membrane [30-35].  
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Figure 1.2 Reovirus cell entry and replication cycle. Reovirus engages carbohydrate receptors and 

junctional adhesion molecule A (JAM-A) using an adhesion strengthening mechanism. The virions 

enter the cell by receptor-mediated endocytosis (1). Within late endosomes the virions are first 

converted to infectious subvirial particles (ISVP) (2). ISVPs can also be generated by proteases in the 

intestinal lumen and internalize either by endocytosis (A) or by direct penetration of the cell membrane 

(B). ISVPs in the endosomal compartment are processed into ISVP*s by rearranging µ1 fragments to 

expose hydrophobic residues and by the release of σ1 and µ1N (3). The µ1 fragments mediate 

penetration of the endosomal membrane that leads to the release of transcriptionally active core 

particles into the cytoplasm (4). Viral mRNA is synthesized, exported into the cytoplasm and translated 

by ribosomes into viral proteins. Large inclusions (viral factories) develop, where progeny reoviruses 

assemble (5). Mature virions are formed (6) and released upon cell lysis (7). 

 

Endosomal ISVPs are further processed into ISVP*s, the second disassembly 

intermediate. In ISVP*s, the µ1-fragments undergo conformational rearrangements 

exposing hydrophobic residues, and µ1N and the σ1 protein are released from the 

particle [36,37]. Penetration of the endosomal membrane is mediated by the µ1 cleavage 

fragments. This leads to the release of transcriptionally active core particles into the 

cytoplasm (Figure 1.2) [38].  

The core uses ribonucleoside triphosphates and S-adenosyl-L-methionine from the host 

cell to transcribe mRNAs from the (-)RNA of the reovirus genome segments. The newly 

synthesized (+)RNAs lack 3’ polyadenylation, are 5’ capped, and are delivered into the 
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cytoplasm through the central cavity of the λ2 turrets. These viral RNAs are translated by 

ribosomes, and upon encapsidation into core particles they also serve as templates for 

the synthesis of new dsRNA [39].  

Reovirus replication and assembly takes place in cytoplasmic viral inclusions. Their 

formation is mainly regulated by the nonstructural proteins µNS and σNS and the 

structural protein µ2. In these inclusions, viral proteins, RNA, nascent and complete 

particles, and components of the cell cytoskeleton are concentrated [2]. Mature reovirus 

virions are formed by the assembly of the outer capsid around the nascent core particles 

and are released, presumably following reovirus-induced cell death and disruption of the 

host cell membrane [40,41].  

 

1.1.3 Reoviruses as Cancer Therapeutics 

Reoviruses are promising anti-cancer agents as they preferentially target and replicate 

within tumor cells and cause oncolysis. Their effect on certain transformed cell lines was 

first described in 1977 [42,43]. Currently, there are more than 30 completed and ongoing 

clinical trials (including phase I-III studies) focusing on reovirus T3D (Reolysin®, 

Oncolytics Biotech) as a cancer therapeutic.  

Reovirus is well tolerated with low virulence and shows significant anti-cancer efficacy for 

many human tumor types in patients. Reovirus takes advantage of abnormal Ras 

activation in cancer cells, but the role of the Ras pathway for reovirus selective oncolysis 

is poorly understood and requires further investigation [44-46]. Other factors, such as the 

over-expression of reovirus carbohydrate receptors on cancer cells, also may contribute 

to enhanced reovirus infection [47,48]. Reovirus can presumably induce tumor cell death 

through multiple mechanisms, including apoptosis, autophagy, and necrosis [49-51].  

To improve reovirus potency as an anticancer therapeutic, a better understanding of the 

mechanisms underlying its oncolytic activity is crucial. Further attempts seek to 

manipulate host immune responses to selectively reduce reovirus immune-clearance and 

to enhance viral anti-tumor immunity. The efficacy of reovirus oncolysis may also be 

improved by the development of new vectors using the reovirus reverse genetic system 

[52]. 

 

1.2 Reovirus Attachment Protein σ1 

The three reovirus serotypes differ in neutralization and hemagglutination properties and 

invade the central nervous system of newborn mice by different routes and cause 
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serotype-specific patterns of disease. From the murine intestine, T1L spreads 

hematogenously, infects ependymal cells, and causes non-lethal hydrocephalus. In 

contrast, T3D spreads via hematogenous and neural routes, infects neurons, and causes 

lethal encephalitis [8,9,53,54]. Oral inoculation of T2J leads to nonlethal encephalitis, but 

as T2J is difficult to cultivate, the pathogenesis of this reovirus strain is poorly understood 

[55,56]. Studies using reassortant reoviruses indicate that the serotype-dependent 

differences are linked to the S1 gene segment [57,58]. 

The S1 gene possess two open reading frames; the first encodes the attachment protein 

σ1, and the second the small nonstructural protein σ1s. In comparison to the other gene 

segments, which are highly similar among the reovirus serotypes, the S1 genes are more 

divergent [59].  

The σ1 proteins of T1L and T2J are more closely related to each other (with 49% 

sequence identity) than to T3D σ1 (26% and 27% identity, respectively) [60]. Just about 

10% of the amino acids are conserved in the σ1 proteins of all three serotypes. 

Therefore, it is not surprising that the outer-capsid protein σ1 is a major determinant of 

serotype-specific differences in spread and tropism, and it is also a main target of the 

serotype-specific neutralizing antibody response.  

 

1.2.1 Domain Organization and Structure 

The trimeric attachment protein σ1 is a filamentous molecule of about 480 Å in length 

[29,61]. Amino acid sequence analyses predicted that σ1 consists of distinct domains, 

termed tail, body, and head, an organization that is conserved between the different 

serotypes (Figure 1.3) [60]. 

EM reconstructions of reovirus virions and ISVPs indicate that σ1 assumes a more 

compact conformation on virions, while it extends as an elongated structure from ISVPs. 

This observation suggests that σ1 undergoes an extensive structural rearrangement 

during virion-to-ISVP conversion [28,29]. EM images of σ1 isolated from virions show 

higher flexibility at a region near the N-terminus, at the midpoint of the molecule 

coinciding with the junction of the tail and body domains, and a region near the head 

domain [61]. The length and flexibility of the σ1 protein are important for its function [62]. 
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Figure 1.3 Conserved domain organization of the σ1 protein. Model of the secondary structure. 

Three structurally and functionally distinct domains of σ1 termed tail, body, and head are indicated. 

The first 20-25 residues of the N-terminus anchors the protein into the virus particle and harbors a 

short heptad repeat pattern of hydrophobic amino acids that predict an α-helical coiled coil. The small 

coiled coil is separated by a few residues from a predicted longer coiled coil that comprises most of 

the remaining tail. Structural information is available for the body and the head domain [17,19,63]. The 

body domain consists mostly of β-spiral repeats, interrupted by a small coiled coil segment. The C-

terminal part of the molecule forms a globular head domain.  

 

Tail Domain 

The first 20-25 N-terminal amino acids of σ1 anchors the protein into the pentameric 

turrets of λ2 at the icosahedral vertices. The three-fold symmetry of σ1 does not match 

the five-fold symmetry of λ2. Such symmetry mismatches are rare and are found at the 

head-tail junctions of bacteriophages, in polyomavirus VP1/VP2 interactions and 

adenovirus fiber-penton complexes [64-66]. Symmetry mismatches are linked to 

interactions of limited strength or specificity [67]. Furthermore, proteins involved in 

symmetry mismatches often undergo structural changes. The possible weak connection 

between σ1 and λ2 might play a role during reovirus disassembly. σ1 is assumed to 

rearrange its structure during virion-to-ISVP conversion, and it is released from the 

particle during transition from ISVPs to cores. This later step also involves a structural 

rearrangement in λ2 and enables nascent mRNA to exit the particle at the five-fold 

symmetry axis, where σ1 was anchored [28]. 

A small region of the N-terminus and most of the remaining tail domain of σ1 exhibit a 

heptad repeat pattern of hydrophobic amino acids that predict the formation of an α-

helical coiled coil [60,61]. Usually, this structural motif (abcdefg)n possesses hydrophobic 

amino acids at positions a and d, whereas the other positions are occupied by more 

polar residues (Figure 1.4). Within a helical bundle a hydrophobic core is formed. The 

core-flanking residues (g and e) often carry charged amino acids that contribute to the 

stability of the structure via interhelical salt bridges [68].  
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Coiled coils are very common structural motifs and usually consist of two, three, or four 

helices. The oligomeric state of coiled coils is determined by core packing interactions, 

as in different multimers the geometry of side chains at positions a and d systematically 

differs. Two-stranded coiled coils prefer β-branched residues (e.g., Ile, Val) at position a 

and unbranched or γ-branched ones (e.g., Leu) at position d. The reverse case is 

favored by four-stranded helical bundles. Trimeric coiled coils have a more uniform side 

chain geometry at these positions [68].  

Protein sequences that follow the heptad repeat pattern wind into left-handed helical 

bundles. Due to this supercoiling, the number of residues per turns is reduced to 3.5 in 

comparison to undistorted α-helices. This allows the realization of periodically equivalent 

positions along the bundle. Discontinuities in the heptad repeat pattern, such as 

insertions of one (skip), three (stammer), or four (stutter) amino acids, are frequently 

encountered in coiled coil structures. Such discontinuities can be tolerated within a 

continuous coiled coil but account for a local distortion of the geometry [69].  

 

 

Figure 1.4 Helical wheel representation of a three-stranded α-helical coiled coil. (A) The heptad 

repeat pattern (abcdefg)n harbors hydrophobic amino acids (H) at positions a and d that point towards 

the inside of the helical bundle. The remaining positions are usually occupied by polar residues (P). 

The e and g positions often carry charged amino acids that can form electrostatic interactions with the 

adjacent α-helices. (B) A stutter is a four-residue insertion in the heptad repeat, a discontinuity that 

leads to a local distortion of the coiled coil geometry. The insertion raises the local sequence 

periodicity and causes an unwinding of the coiled coil that alters the relative position of the residues. 

This is schematically shown as a rotation of the helices. Typical a and d positions of undistorted coiled 

coils are shown in the upper row. Stutters shift position a residues (dark red) toward the core center 

leading to a so-called x layer. Position d residues (light red) are shifted out of the core and the 

following residues move towards position a, leading to a da layer. Depending on whether the insertion 
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occurs close to a core position or between the core positions, one or two consecutive layers are 

distorted. Adapted from [68]. 

In the repeating pattern of the σ1 tail two discontinuities are predicted; a stutter and a 

skip [60]. Following the stutter, the location of which is conserved in all three serotypes, 

T1L has a 14-residue and T2J a 7-residue insertion relative to T3D σ1. Therefore, it is 

assumed that the long α-helical coiled coil of T1L σ1 consists of 22.5, T2J σ1 of 21.5, 

and T3D σ1 of 21 heptads. In all cases, the skip is predicted at the C-terminal end of the 

coiled coil at the boundary between the tail and body domains [60].  

 

Body Domain 

The body domain consists mostly of triple β-spiral repeats, a fold thus far observed only 

in a small number of viral fiber proteins, including the adenovirus fiber, the avian reovirus 

sigma C protein, and the bacteriophage PRD1 [70-72]. The β-spiral repeat motif is 

characterized by a consensus sequence (a-o) with conserved apolar residues (at 

positions c, e, g, k, m) and either a proline or glycine at position j. Each repeat is 

composed of two short anti-parallel β-strands, which are connected by a four-residue β-

turn with a proline or glycine at the third position. The following repeat is connected with 

a surface-exposed loop.  

For T3D σ1, structural information for the complete body and head domain is available 

[19]. The T3D σ1 body consists of seven triple β-spiral repeats (β1-β7) and a short α-

helical coiled coil segment that is incorporated between β-spiral repeats β4 and β5 

(Figure 1.5). T3D σ1 is sensitive to protease cleavage within the body domain. Trypsin 

cleaves after R245, while chymotrypsin cleaves after L261 and F239 [73]. T3 field 

isolates that exhibit a single polymorphism, T249I, which is located at a d position of the 

short coiled coil of the body domain, are resistant to trypsin cleavage [74]. This indicates 

that an intact heptad repeat is required to resist cleavage at a nearby site. The glycan-

binding site of T3D σ1 is also located in the body domain, between β-spiral repeats β2 

and β3 [19]. 
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Figure 1.5 Crystal structures of T1L σ1 and T3D σ1. (A, B) Ribbon drawing of crystal structures 

that provide the most complete picture of T1L σ1 and T3D σ1 available up to date. The trimeric 

molecules are colored in blue, red and yellow. (A) T3D σ1 body and head domains (residues 170-455, 

PDB ID: 3S6X). The body consists of seven triple β-spiral repeats (β1-β7) and a small coiled coil (cc) 

inserted between β4 and β5. The globular head folds into a β-barrel formed by two Greek-key motifs. 

(B) T1L σ1 structure of the last three β-spiral repeats and the globular head domain (residues 265-

470, PDB ID: 4GU3).  

 

The sequences of T1L and T2J σ1 also possess a small heptad repeat pattern (of two 

full turns) within the body domain. Like T3D σ1, there are an arginine and a glutamate at 

predicted g and e positions that could stabilize the potential coiled coils with electrostatic 

interactions [60]. However, since a proline residue is observed in the consensus 

sequence in both cases, it is uncertain if these proteins also exhibit a small α-helical 

coiled coil at the equivalent position of T3D σ1 [19]. 

Currently, there is no structural information available for T2J σ1. For T1L σ1, the most 

complete X-ray structure (at 3.5 Å) comprises the head and the three most C-terminal β-

spiral repeats (Figure 1.5) [17]. In both T1L and T3D σ1, the transition from the body to 

the head domain contains a flexible region that allows movement between the two 

domains. The observed linker region fits well with the region of higher flexibility near the 

head domain that has been predicted from electron micrographs [63].  

 

Head Domain 

The C-terminal one third of the σ1 molecule folds into two Greek-key motifs (β-strands A-

D and β-strands E-H) that assemble into a β-barrel forming the globular head domain 

[63]. Apart from the D-E-loop, which contains a 310-helix, the other β-strand connecting 

loops are short. The head harbors an unusual aspartic acid cluster that is located at the 
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lower, N-terminal part of the head and stabilizes the trimer. This arrangement may be 

involved in a conformational change upon exposure of the molecule to low pH [75]. 

The σ1 head domain binds to the serotype-independent receptor JAM-A, and in the case 

of T1L σ1, it can additionally bind to glycan receptors. Two serotype-specific neutralizing 

antibodies, 5C6 and 9BG5, which target the σ1 protein of T1 and T3, respectively, also 

engage the head domain. 

 

1.2.2 Receptor Interactions 

The σ1 protein specifically interacts with host cell receptors and is therefore a major 

determinant of virus cell selection, spread, and tropism.  

 

Interactions with JAM-A 

All reovirus serotypes use JAM-A as a cellular receptor [15]. The JAM-A molecule 

belongs to the immunoglobulin superfamily (IgSF) and is localized at tight junctions of 

endothelial and epithelial cells and is also expressed on leukocytes and platelets. JAM-A 

plays a role in the regulation of epithelial cell polarity, leukocyte transmigration, and in 

the stabilization of the blood-brain barrier [76].  

The JAM-A molecule is composed of two extracellular Ig-like domains termed D1 and 

D2, a single transmembrane region, and a short cytoplasmic tail. JAM-A forms 

homodimers via mostly ionic interactions between the membrane-distal, N-terminal D1 

domains [77,78].  

The 3.4 Å resolution structure of the T3D σ1 head domain in complex with human JAM-A 

D1 provided detailed insights into σ1 receptor recognition [79]. The lower part of the σ1 

head binds to JAM-A at the site that is also involved in JAM-A homodimer formation. The 

receptor binding site on σ1 comprises the 310-helix in the D-E-loop and at the head-body 

transition the most C-terminal β-spiral repeat and a short α-helix. Each σ1 monomer of 

the trimeric head is ligated by one JAM-A molecule (Figure 1.6). As the affinity of JAM-A 

for σ1 is higher than the affinity of JAM-A for itself, binding of JAM-A by σ1 leads to the 

separation of the JAM-A homodimer [80].  
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Figure 1.6 Crystal structure of T3D σ1 in complex with human JAM-A D1. Cartoon representation 

of the complex (PDB ID: 3EOY). The σ1 head is colored in blue, red and yellow, and JAM-A D1 is 

colored in green. (A) View along the threefold axis. (B) View perpendicular to the threefold axis. 

Modified from [79].  

 

JAM-A engagement by σ1 is required for reovirus hematogenous dissemination from the 

site of primary replication [81]. Residues involved in JAM-A binding are conserved 

among the reovirus serotypes. Thus, the σ1 molecules of T1L, T3D, and probably T2J 

engage JAM-A in a similar manner and make the recognition of JAM-A unlikely to be 

responsible for differences in pathogenesis [82]. When JAM-A-deficient mice are 

inoculated intracranially, with T1L and T3D, the distinct patterns of tropism in the CNS 

are maintained. Therefore, the serotype-specific differences, which segregate with the 

S1 gene, can be best attributed to σ1 engagement of cell-surface receptors other than 

JAM-A. 

The Nogo receptor (NgR1) serves as a receptor for reovirus infection of neurons [16]. 

Virions but not ISVPs are able to engage NgR1. This finding indicates that either σ3, 

which is lost during virion-to-ISVP conversion, or a specific virus-associated σ1 

conformation mediates NgR1 binding. Both T1 and T3 strains can infect non-neuronal 

cells that express NgR1 [16]. Studies using reassortant viruses show that those viruses 

that differ only in the σ1 proteins have similar binding affinities for NgR1, while T1L 

displays a greater affinity for NgR1 compared to T3D (Dermody, unpublished). Thus, σ3 

is more likely the reovirus ligand for NgR1. These findings suggest a model in which σ1 

facilitates binding to target cells in the CNS by engagement of cell-surface glycans, and 

σ3 then mediates entry into neurons by binding to NgR1. 
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Interactions with Carbohydrate Receptors 

Sialic acid-containing glycans are present on cell surfaces of all vertebrates and some 

invertebrates and are involved in numerous functions, including self-recognition, cell-cell 

adhesion, extrinsic and intrinsic signaling. They moreover serve as receptors for a variety 

of viruses [83].   

Sialic acid is commonly found as a terminal monosaccharide connected by α(2,3)- or 

α(2,6)- linkage to various carbohydrates or by an α(2,8)-linkage to another sialic acid 

[84]. The underlying glycan chains can vary widely in composition and length and can be 

linked to proteins or lipids, creating a large number of diverse sialylated glycan 

structures. Virus-sialic acid interactions are typically of low affinity and are amplified by 

the multivalency of binding sites present on the virus surface [20,85].  

The reovirus serotypes engage sialic acid using different parts of the σ1 molecule and 

have different hemagglutination profiles [17,19,86,87]. T1L specifically binds to both 

terminal carbohydrate portions of the ganglioside GM2 using a small cleft in the σ1 head 

domain [17].  In contrast, T3D binds a range of differently linked sialylated glycans near 

the N-terminal part of the σ1 body domain (Figure 1.7).  

 

 

Figure 1.7 Glycan binding sites of T1L σ1 and T3D σ1. Ribbon drawing of the σ1 trimer colored in 

blue, red, and yellow. Carbohydrates are shown in black. A schematic σ1 molecule is shown in the 

middle and indicates the location of the carbohydrate binding sites on T1L σ1 and T3D σ1, 

respectively. (A) T1L σ1 binds to the glycan moiety of the ganglioside GM2 in the head domain. (PDB 

ID: 4GU3). Both terminal carbohydrates of the GM2 glycan contact σ1. Most interactions are formed 

between sialic acid (black circle) and backbone atoms of the protein. (B) The glycan binding site of 

T3D σ1 is located in the body domain in a loop region connecting β-spiral repeat β2 and β3. The 

terminal sialic acid of α(2,3)-sialyllactose (3’SL) mostly contributes to interactions with σ1. 
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Crystal structures of T3D σ1 in complex with α(2,3)-sialylactose, α(2,6)-sialyllactose, and 

α(2,8)-disialyllactose elucidated the carbohydrate binding site at a loop connecting β-

spiral repeats β2 and β3 [19]. In each complex structure, the terminal sialic acid 

contributes mostly to contacts with σ1. In newborn mice, the neurovirulence of wildtype 

T3D is greater in comparison to a mutant virus that lacks the capacity to bind sialic acid, 

indicating that carbohydrate receptor binding has an influence on reovirus pathogenesis 

[88]. 

 

Target of Neutralizing Antibodies 

The reovirus-induced neutralizing antibody response is mainly directed against the σ1 

protein [89]. Monoclonal antibodies (mAbs) that target σ1 have been used to identify 

distinct functional domains of the σ1 protein [90]. 

The mouse IgG2a mAbs 5C6 and 9BG5 target σ1 of T1 and T3 reovirus, respectively, 

and their neutralization capacity has been demonstrated by classical plaque-reduction 

neutralization experiments [90-93]. Cross-reactivity of both mAbs with the non-cognate 

σ1 protein occurs [94-96]. Both mAbs are highly effective in vivo at protecting neonatal 

mice from reovirus-induced disease [91,94]. 5C6 and 9BG5 inhibit virus-induced 

hemagglutination (HA), although HA inhibition by 9BG5 is not always observed 

[90,91,96,97]. Sequence-analysis of reovirus escape mutants identified specific residues 

in the σ1 head domain that are required for efficient neutralization by 5C6 and 9BG5 

[92,98], but the precise binding epitopes and mechanisms of neutralization by these 

antibodies are unknown. 
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2 Objectives 

The structural investigation of the reovirus attachment protein σ1 and its interaction with 

neutralizing mAbs is the focus of the present thesis. The reovirus σ1 protein binds host 

cell-receptors, is a major target of the neutralizing antibody response, and is assumed to 

undergo a conformational change during the reovirus cell entry process.  

Interactions between σ1 and cell-receptors (glycans and JAM-A) are well understood, 

while less is known about how neutralizing mAbs engage σ1 and inhibit reovirus 

infection. To date, only limited information exists about the conformational change of σ1. 

It is assumed that flexible regions predicted within the molecule are involved in the 

structural rearrangement. At the beginning of this study, structural detail at high 

resolution was available for parts of the σ1 molecule (for the body and the head domain 

of T3 σ1, for small regions of the tail, parts of the body and the head domain of T1 σ1), 

but not for the tail of T3 σ1 or the connection of the tail and the body domain. The major 

objectives of this thesis were to: 

 

 identify the complete epitope of the serotype-specific mAbs 5C6 and 9BG5 

 define the interactions of these mAb with σ1 on a structural basis to obtain 

insights about the mechanism of neutralization 

 identify how reovirus variants escape mAb 5C6 and 9BG5 neutralization 

 determine affinities and kinetics for the binding of σ1 with 5C6 and 9BG5 Fabs 

 determine affinities of σ1 for the serotype-independent receptor JAM-A 

 solve the structure of the σ1 tail domain 

 obtain information about flexible regions within the fibrous part of the σ1 molecule 

to gain insight into the proposed structural change 
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3 Materials and Methods 

3.1 Chemicals 

All chemicals used in this work were of analytical reagent grade and obtained from: 

Roth (Karlsruhe, Germany), Sigma-Aldrich (Deisendorf, Germany), Merk (Darmstadt, 

Germany), GE Healthcare (Uppsala, Sweden) and Hampton research (Aliso Viejo, USA). 

 

3.2 Bacterial Strains 

The Escherichia coli (E. coli) strain XL 10 gold (Stratagene, USA) was used for 

amplifying plasmid-DNA. Proteins were produced in E. coli BL21 (DE3) or Rosetta 2 

(DE3) strains (Novagen, Darmstadt, Germany).  

 

E. coli strain Genotypes 

XL 10 gold TetRΔ(mcrA)183Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 

gyrA96 relA1 lac Hte [F´ proAB lacIqZΔM15 Tn10 (TetR)  (KanR) Amy] 

BL21 (DE3) F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) 

Rosetta 2 (DE3) F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) pRARE2 (CamR) 

 

3.3 Plasmids 

Plasmid Resistence Specifications Origin 

pET15b Amp T7 promotor, N-terminal His6-tag, thrombin 

cleavage site, MCS 

Novagen, 

Germany 

pET16b Amp T7 promotor, N-terminal His6-tag, Factor 

Xa cleavage site, MCS 

Novagen, 

Germany 

pET28b Kan T7 promotor, N-terminal His6-tag, thrombin 

cleavage site, MCS, C-terminal His6-tag 

Novagen, 

Germany 

pE-SUMOpro Amp T7 promotor, N-terminal His6-Smt3-tag, 

UlpI cleavage site 

LifeSensors, 

USA 

pBacPAK Amp T7 promotor Addgene, UK 

pIBA-GCN4tri Amp tet promotor, N-and C-terminal GCN4tri, 

C-terminal His6-tag  

Dirk Linke, 

MPI Tübingen 

 

3.4 Primers 

Primers were bought from biomers.net (Ulm, Germany) or for sequencing from Eurofins 

Genomics (Ebersberg, Germany). 
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Primer Sequence 

Cloning primer  

T1L σ1(2-470)for CAGGTCTCCAGGTGATGCATCTCTCATTACAGAGATACG (BsaI) 

T1L σ1(29-470)for CGCGCGCATATGGAGGAAATCAAGAAACAAGTCC (NdeI) 

CGCGCGCATATGGAGGAAATCAAGAAACAAGTCC (NcoI) 

CAGGTCTCCAGGTGAGGAAATCAAGAAACAAGTCCAG (BsaI) 

T1L σ1 (2/29-470)rev GCGGGATCCTACCTCACATTGCATGGATACATGATCGTC (BamHI) 

GCTCTAGATTACCTCACATTGCATGGATACATGATCGTCC (XbaI) 

T1L σ1(29-159)for CGACCCATGGCAGAGGAAATCAAGAAACAAGTCCAG (NcoI) 

T1L σ1(29-159)rev GGTTACAAGGTTAGATGGTCTAATCAATTAGGATCCCGC (BamHI) 

T3D σ1(28-455)for CATTAGCTAGCCTTGAATCAAGGGTCTCGGCGCTCGAG (NheI) 

T3D σ1(30-455)for ATAATCTCGAGTCAAGGGTCTCGGCGCTCGAGAAGAC (XhoI) 

CATAGCTAGCAGGGTCTCGGCGCTCGAGAAGAC (NheI) 

T3D σ1(28/30-455)rev GATGGATCCTACGTGAAACTACGCGGGTACGAAACG (BamHI) 

GATGCTCGAGCTACGTGAAACTACGCGGGTACGAAAC (XhoI) 

T3D σ1(1-xxx)for 

xxx = 234/ 251/ 291 

CATAGCTAGCATGGATCCTCGCCTACGTGAAGAAG (NheI) 

T3D σ1(25-xxx)for 

xxx = 234/ 251/ 291 

CATAGCTAGCTCAAAAGGGCTTGAATCAAGGGTCTCG (NheI) 

T3D σ1(1/25-234)rev GGCCGAAGCTTCTAGAGAGTCAAGTTATTATTAACTATCTGG (HindIII) 

T3D σ1(1/25-254)rev GCTGAAGCTTCTATTGCTCAGTTGCGCCTATCCTTG (HindIII) 

T3D σ1(1/25-291)rev GCTGAAGCTTCTACGATCTAACAGTTAGCTGTCCACTAG (HindIII) 

  

Mutagenesis primer  

T1L σ1(2-117/stop)for CAGTCTGGATACGTAAACGTCTAATCTC 

T1L σ1(2-117/stop)rev GAGATTAGACGTTTACGTATCCAGACTG 

T1L σ1(2-178/stop)for GGAGACGTCTTAGGTGACGACGG 

T1L σ1(2-178/stop)rev CCGTCGTCACCTAAGACGTCTCC 

T1L σ1(29-249/stop)for GGAGAGATTACATTGGTGAGTTAAATCAATGAATTGCC 

T1L σ1(29-249/stop)rev GGCAATTCATTGATTTAACTCACCAATGTAATCTCTCC 

T1L σ1(29-264/stop)for CACTGGAATCAGCGTAAATCGATTCAGTTTTACC 

T1L σ1(29-264/stop)rev GGTAAAACTGAATCGATTTACGCTGATTCCAGTG 

T1L σ1(29-303/stop)for CTGTCGTTACGGTGACGTTTGACTCTTCCGACATACAGG 

T1L σ1(29-303/stop)rev CCTGTATGTCGGAAGAGTCAAACGTCACCGTAACGACAG 

T3D σ1(N182A)for CTCTCAATCCGTAATGCCCGTATGACCATGG 

T3D σ1(N182A)rev CCATGGTCATACGGGCATTACGGATTGAGAG 

T3D σ1(R161A)for GGATTTCGAATCTGCGATATCCACATTAGAGC 

T3D σ1(R161A)rev GCTCTAATGTGGATATCGCAGATTCGAAATCC 

T3D σ1(Q155V)for CGAGTAACATCCATAGTAGCGGATTTCGAATC 

T3D σ1(Q155V)rev GATTCGAAATCCGCTACTATGGATGTTACTCG 

T3D σ1_ΔVTSIfor GACGTTACGAGTAGCGGATTTCGAATCTAGGATATCCACATTAGAG 

T3D σ1_ΔVTSIrev CCGCTACTCGTAACGTCAGAGTTGATAGCTCGGTGGTCAATG 

T3D σ1(154+QST)for CGAGTAACATCCATACAGAGTACAGTAGCGGATTTCGAATCTAG 

T3D σ1(154+QST)rev CTGTATGGATGTTACTCGTAACGTCAGAGTTGATAGCTCG 

T3D σ1(1-168/stop)for CACATTAGAGCGCACGTAGGTCACTAGCGCG 

T3D σ1(1-168/stop)rev CGCGCTAGTGACCTACGTGCGCTCTAATGTG 

  

Sequencing primer  
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T7 for TAATACGACTCACTATAGGG 

T7 term CTAGTTATTGCTCAGCGGT 

 

3.5 Commercial Crystallization Screens 

Screen Company 

Crystal Screens I, II  Hampton research, Aliso Viejo, USA 

Wizard I, II, III, IV  Emerald BioSystems, Bainbridge Island, USA 

JCSG Molecular Dimensions, Suffolk, UK 

PEG ION Hampton research, Aliso Viejo, USA 

Additive screen Hampton research, Aliso Viejo, USA 

 

3.6 Molecular Biology 

3.6.1 Glycerol Stocks 

E. coli culture glycerol stocks were prepared by mixing 900 µl of a bacterial overnight 

culture with 300 µl sterile glycerol solution (50% v/v). The solutions were flash frozen with 

liquid nitrogen and stored at -80°C. 

 

3.6.2 Purification of Plasmid DNA 

Plasmid DNA from E. coli cultures was isolated using a miniprep kit (Promega, 

Mannheim, Germany) according to the manufacturer’s protocol. The DNA concentration 

was determined via absorbance at a wavelength of 260 nm (NanoDrop ND-1000, 

Thermo Scientific, Waltham, USA). 

 

3.6.3 Polymerase Chain Reaction (PCR)  

Polymerase chain reactions (PCR) were performed to amplify DNA. In each case, 50 µl 

total reaction volume was prepared with 100 ng of template DNA, 200 µM dNTPs, 

200 nM primers and 5 U ReproFast DNA-polymerase (Genaxxon bioscience, Ulm, 

Germany). The annealing temperature (TA) of the reaction was selected to be 10-15°C 

below the primer melting temperature and the time for the elongation step (at 72°C) was 

calculated based on the length of the desired insert (1 min per 1 kb).  
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PCR Program: 

1. 1x 94°C 2-7 min 

2. 30x 94°C 1 min 

  TA°C 45 s 

  72°C 30-90 s 

3. 1x 4°C 1-8 h 

 

3.6.4 Site-directed Mutagenesis 

The GENEART® site-directed mutagenesis kit (Life Technologies, USA) was used to 

introduce base substitutions, insertions of 9, or deletions of 12 nucleotides into DNA 

plasmids following the manufacturers’ protocol. The annealing temperature (TA) of the 

reaction was selected to be 10-15°C below the primer melting temperature and the time 

for the elongation step (at 68°C) was calculated based on the length of the plasmid (30 s 

per 1 kb).  

 

3.6.5 Agarose Gel Electrophoresis 

Agarose gel electrophoresis was used to analyze and purify the PCR reaction products. 

0.3 g agarose was dissolved in 30 ml TAE buffer by heating. Prior to gelation 3 µl 

GelRed (Biotium Inc, Fremont, USA) were added. Marker (O´GeneRuler 1kb DNA 

ladder, Qiagen, Hilden, Germany) and PCR samples mixed with 6x loading dye were 

applied. The electrophoresis was performed for 1 h at 100-120 V, and the gel was 

analyzed using UV light. DNA was extracted from the gel by using the QIAquick gel 

extraction kit (Qiagen, Hilden, Germany) and following the manufacturer’s protocol, or by 

centrifugation through a 0.22 µm filter (Costar® Spin-X centrifuge tube filter).  

 

50x TAE Buffer 

2 M Tris  

50 mM EDTA pH 8 

57% (w/v) acetic acid 

 

3.6.6 Restriction Digestion and Ligation 

Plasmids and PCR products were digested with the respective restriction enzymes (NEB, 

Frankfurt, Germany) following the manufacturer´s protocol. The enzymes were heat-

inactivated at 65°C for 20-30 min and the digested plasmids were purified by agarose gel 
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electrophoresis. The DNA insert was ligated with 100 ng plasmid DNA and a molar 

insert-to-plasmid ratio of 1:1, 3:1 or 5:1.  

10 µl ligation solution using 0.5 µl T4 ligase (3 U/µl, Promega, Mannheim, Germany) and 

the corresponding 5x buffer was prepared and incubated either overnight at 20°C or with 

a temperature gradient of 1°C per 1 h ranging from 25-11°C.  

 

3.6.7 Transformation of Competent Bacteria Cells 

For transformation, 100 ng plasmid DNA or 5 µl ligated plasmid solution was added to 

50 µl competent bacteria cells, and incubated for 20 min on ice. The cells were exposed 

to a heat-shock at 42°C for 30-45 s followed by incubation on ice for 2 min. After adding 

400 µl LB-media, the cells were allowed to grow for 1 h at 37°C and 750 rpm. From the 

suspension 100 µl were plated on LB-agar supplemented with the according antibiotics 

and incubated overnight at 37°C. 

 

Lysogeny Broth (LB) Media  LB-Agar Media 

1% (w/v) tryptone 

0.5% (w/v) yeast extract 

1% (w/v) NaCl 

 

 1% (w/v) tryptone 

0.5% (w/v) yeast extract 

1% (w/v) NaCl 

6% (w/v) agar 

 

 

3.7 Microbiology Methods 

3.7.1 Cultivation of E. coli 

For overnight cultures, 10-15 ml LB-media supplemented with the according antibiotics 

were either inoculated with bacteria from glycerol stocks, a single bacteria colony from 

an agar plate, or with 400 µl transformation solution. 

For test expressions 50-100 ml and for protein purification, 1-4 l LB-media supplemented 

with the according antibiotics were inoculated with overnight bacterial culture (~ 1:500). 

The bacteria were then grown at 37°C and induced at an OD600 of 0.4-0.6 with 0.2-

1.0 mM IPTG or, in case of (GCN4)3-T1L σ1, with 0.2 µg/ml anhydrotetracycline (AHTC). 

The bacteria grew overnight at 20-25°C and 110 rpm, while (GCN4)3-T1L σ1 was 

produced at 37°C and the cells were harvested 5 h after induction. During test 

expressions, samples were collected at various time points, and similar amounts of cells 

were analyzed with SDS-PAGE. 
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3.7.2 Cell Harvesting 

Cells were harvested by centrifugation at 7000 rpm (rotor: SLC-4000, Sorvall) for 10 min 

at 4°C. Cell pellets were either directly used for protein purification, or flash frozen in 

liquid nitrogen and stored at -80°C. 

 

3.8 Protein-Biochemistry 

3.8.1 Discontinuous SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS-PAGE was used to separate protein mixtures according to their molecular weight in 

an electrical field and to analyze the protein purity. SDS-PAGE gels with 12 or 15% 

separation and 4% stacking gels were prepared. Samples were mixed with 4x SDS-

sample buffer and heated to 90°C for 2-5 min. The electrophoresis was performed for 1 h 

at 45 mA. Gels were stained with Coomassie staining solution for 10-15 min on an orbital 

shaker.  

 

4 x SDS gels 4% Stacking gel 12% Separation gel 15% Separation gel 

H2O (ml) 6.1 5 3.5 

1.5 M Tris pH 6.8 (ml) 2.5   

1.5 M Tris pH 8.8 (ml)  3.75 3.75 

10 % (w/v) SDS (µl) 100 150 150 

30% Acrylamide-

bisacrylamide (ml) 

1.3 6 7.5 

TEMED (µl) 10 7.5 7.5 

10% (w/v) APS (µl) 100 150 150 

 

 

4x SDS Sample Buffer  Coomassie Staining Solution 

20 ml 1 M Tris pH 6.8 

10 ml 10% SDS 

 0.25 g Coomassie Brilliant Blue G250 

100 ml ethanol 

1.63 ml 0.5 M EDTA pH 8.0  900 ml H2O 

4 ml β-mercaptoethanol 

20 mg bromophenol blue 

 2.5 ml conc. HCl 
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3.8.2 Cell Lysis 

Per 1 g cells, 4-6 ml lysis buffer was used for resuspension. The solution was 

supplemented with 1 mM PMSF and the cells were lysed by sonication. Lysis tests with 

1 ml volume were conducted with an amplitude of 30% and an overall pulse time of 0.5-

1 min (cycles of 0.5 s pulse on and 5 s off). The solution was centrifuged at 12 000 rpm 

(Eppendorf centrifuge) for 30 min at 4°C.  

Lysis of 20-30 ml cell solutions was done with an amplitude of 40% and an overall pulse 

time of 2-4 min (cycles of 0.5 s pulse on and 0.5 s off), and the lysed cells were 

centrifuged at 17 000 rpm (rotor: SS-34, Sorvall) for 1 h at 4°C. The supernatant was 

sterile filtered through a 0.22 µm filter. 

 

Protein Lysis Buffer 

His6-SUMO-T1L σ1 50 mM Tris pH 7.8 

3 mM EDTA 

T1L σ1(29-470) 40 mM Tris pH 8.5 

T1L σ1(cc-body) 50 mM Tris pH 8.0 

300 mM NaCl 

10 mM imidazole 

(GCN4)3-T1L σ1 20 mM Tris pH 7.4 

40 mM NaCl 

5 mM MgCl2 

T1L σ1(29-159) 40 mM HEPES pH 7.4 

150 mM NaCl 

T3D σ1(cc and cc-body) 50 mM Tris pH 8.0 

300 mM NaCl 

10 mM imidazole 

 

Lysis Test  Buffer Condition 

1 100 mM Tris pH 7.6, 10% glycerol 

2 100 mM Tris pH 7.6, 50 mM LiCl 

3 100 mM HEPES pH 7.0, 100 mM KCl 

4 100 mM Tris pH 8.2, 50 mM NaCl, 10% isopropanol 

5 100 mM HEPES pH 7.0, 1 M MgSO4 

6 100 mM Tris pH 8.2, 50 mM NaCl, 100 mM urea 

7 100 mM KH2PO4, 2.5 mM ZnCl2 pH 4.3 

8 100 mM KH2PO4, 50 mM (NH4)2SO4 pH 6, 1% Triton X-100   

9 100 mM HEPES pH 7.0, 100 mM sodium glutamate, 5 mM DTT 

10 100 mM Triethanolamin, 50 mM LiCl, 5 mM EDTA pH 8.5 
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11 100 mM sodium acetate, 1M MgSO4 pH 5.5 

12 100 mM sodium acetate, 100 mM KCl, 0.1% n-Octyl-β-glucoside pH 5.5 

13 50 mM HEPES pH 8.5, 1 M L-arginine 

14 50 mM HEPES pH 8.5, 0.3 M L-arginine 

15 50 mM HEPES pH 6.5, 1 M L-arginine 

16-18 50 mM MES pH 5.5-6.5, (steps of 0.5), 300 mM NaCl 

19-24 50 mM HEPES pH 7-8.5 (steps of 0.5), 300 mM NaCl 

25 50 mM Bicine pH 9, 150 mM NaCl 

 

 

3.8.3 Refolding of Inclusion Bodies 

The membrane-containing layer of the cell lysate pellet was removed, and the remaining 

pellet was resuspended in wash buffer. The solution was centrifuged at 17’500 rpm 

(rotor: SS-34, Sorvall) for 30 min and the pelleted inclusion bodies were resuspended in 

Tris buffer. This step was repeated three times. The resulting pellet was dissolved in 

denaturing buffer, and the solution was stirred overnight at ~ 25°C. Insoluble particles 

were separated by centrifugation at 15’000 rpm for 20 min (rotor: SS-34, Sorvall). The 

protein in the supernatant was refolded by dialysis against refolding buffer. After 24 h 

and two buffer changes, the protein solution was sterile filtered (0.22 µm) and 

concentrated to ~ 7 mg/ml. The protein was transferred into buffer A by using a PD-10 

desalting column (GE Healthcare) following the manufacturer’s protocol. 

 

Protein Buffer Composition 

(GCN4)3-T1L σ1 Wash buffer 50 mM Tris pH 7.8 

10% Triton X-100 

 Tris buffer 50 mM Tris pH 7.8 

50 mM NaCl 

 Denaturing buffer 20 mM Tris pH 7.8 

6 M GdmCl 

500 mM NaCl 

10% glycerol 

 Refolding buffer 20 mM MOPS pH 7.2 

400 mM NaCl 

10% glycerol 

 Buffer A 20 mM HEPES pH 7.4 

25 mM NaCl 
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3.8.4 Ni-Affinity Chromatography 

Ni-affinity chromatography was used as a first purification step for His6-tagged proteins. 

Single-use spin columns (spin trap columns, GE Healthcare) were utilized for a first 

expression screening of new constructs. From lysis tests 1-3 ml of supernatant were 

applied to the equilibrated spin columns by several centrifugation steps. After washing 

with lysis buffer, the proteins were eluted by several centrifugation steps using buffers 

with increasing imidazole concentrations (15-500 mM). 

 

Protein Buffer A Buffer B 

T1L σ1(cc-body) 

T3D σ1(cc and cc-body)   

 

50 mM Tris pH 8.6  

300 mM NaCl 

10 mM imidazole 

50 mM Tris pH 8.6  

300 mM NaCl 

500 mM imidazole 

 

For large-scale purification, one or two connected 1 ml-columns (HisTrap FF Crude, GE 

Healthcare) were equilibrated with ~ 10 column volumes of buffer A at a flow rate of 

1 ml/min. The filtered supernatant was loaded onto the column with a flow rate of 0.3-

0.5 ml/min. The column was washed with 50-100 ml buffer A.  

T3D σ1(cc and cc-body) constructs were digested on-column with thrombin after a 

washing step with 75 mM imidazole. Then, 100-150 U thrombin was dissolved in 1-2 ml 

buffer A and the solution was applied to the column using a syringe. The protein was 

incubated with thrombin at 20°C overnight, and cleaved T3D σ1 was eluted with 40 ml 

buffer A.  

Tagged proteins were eluted from the column using linear or stepwise gradients of 

buffer B. Fractions were collected and analyzed by SDS-PAGE. The column was 

regenerated with 0.5-1 M imidazole and stored in buffer A or water.  

 

3.8.5 Trypsin Digest in Solution 

To remove the His6-tag from T1L σ1(cc-body) constructs after Ni-affinity 

chromatography, the protein was mixed with a 1 mg/ml trypsin solution and incubated for 

2-4 h at 20°C. The necessary amount of trypsin was estimated based on SDS-PAGE 

bands that correspond to T1L σ1. Approximately, 10-15 µg trypsin was used for a protein 

solution obtained out of 1 l LB-media. A 10-fold amount of trypsin inhibitor was added to 

stop the digestion before size exclusion chromatography was performed. 
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3.8.6 Anion Exchange Chromatography 

Centrifuged and sterile filtered cell lysate was, if necessary diluted in buffer A to obtain a 

salt concentration < 50 mM, and applied to the equilibrated anion exchange 

chromatography column with a flow rate of 1-2 ml/min. In case of (GCN4)3-T1L σ1, the 

protein solution obtained after refolding was applied to the equilibrated column with a 

flow rate of 0.5 ml/min. 

The flow through was collected, and after washing the column with 10 column volumes 

buffer A bound protein was eluted stepwise or with a linear gradient of 20-30 column 

volumes to 50-100% buffer B. Protein-containing fractions were analyzed by SDS-PAGE.  

 

Construct Buffer A Buffer B Column 

T1L σ1(29-470) 40 mM HEPES pH 8.5 40 mM HEPES pH 8.5 

500 mM NaCl 
 

DEAE FF 16/10 

(GCN4)3-T1L σ1 20 mM HEPES pH 7.4 

25 mM NaCl 

20 mM HEPES pH 7.4 

500 mM NaCl 
 

MonoQ 5/50 

T1L σ1(29-159) 20 mM HEPES pH 7.4 20 mM HEPES pH 7.4 

500 mM NaCl 

DEAE FF 16/10 

 

 

3.8.7 Ammonium Sulfate Precipitation  

A saturated ammonium sulfate solution was supplemented with 100 mM Tris base to 

obtain a pH of 8.5. This solution was slowly added to a protein solution that was stirred 

on ice using a burette. When the protein solution started to precipitate, the addition of 

ammonium sulfate was stopped and the solution was kept on ice to complete the 

precipitation. The suspension was centrifuged for 30 min at 10’000 rpm (rotor: SS-34, 

Sorvall) to obtain the precipitated protein. With the supernatant, the procedure was 

repeated. Precipitated protein was recovered after each centrifugation step, dissolved in 

25 mM HEPES pH 8.5, and analyzed by SDS-PAGE.  

 

3.8.8 Cation Exchange Chromatography 

Sterile filtered protein solution was applied to the equilibrated cation exchange 

chromatography column with a flow rate of 1-2 ml/min. The flow through was collected 

and, after washing the column with 50 ml buffer A, bound protein was eluted with a linear 

gradient to 100% buffer B. Protein-containing fractions were analyzed by SDS-PAGE. 
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The column was washed with a 1 M NaCl solution followed by re-equilibration in buffer A. 

For long-term storage, the column was placed on water followed by 20% ethanol. 

 

Construct Buffer A Buffer B Column 

T1L σ1(29-470) 40 mM HEPES pH 8.5 40 mM HEPES pH 8.5 

500 mM NaCl 

HiLoad S Sepharose 

16/10 

 

 

3.8.9 Formation of σ1-Fab Complexes 

The T1L σ1 head (308-470) and the T3D σ1 head (294-455) were expressed and 

purified following established protocols [17,75]. Fab fragments of the σ1-specific IgG2a 

antibodies 5C6 and 9BG5 were obtained from the Vanderbilt Antibody and Protein 

Resource (Nashville, USA).  

Complexes were formed by mixing T1L σ1 with 5C6 Fabs or T3D σ1 with 9BG5 Fabs in 

a molecular ratio of 1 to 4 in each case. The mixtures were incubated at 4°C for 45 min. 

The stable complexes were separated from excess Fabs by using size-exclusion 

chromatography.  

 

3.8.10  Size Exclusion Chromatography 

Size exclusion chromatography (SEC) was used as final protein purification step. The 

chromatography column was equilibrated with SEC buffer at 1 ml/min. Dependent on the 

column dimensions, concentrated and sterile filtered (0.22 µm) protein samples of 

0.5-2 ml volume were applied to the column with a flow rate of 1 ml/min. The absorbance 

at 280 nm was detected to visualize proteins that absorb at this wavelength. Proteins of 

interest with no or few Trp, Tyr, Phe and Cys residues were detected measuring the 

peptide bond absorbance at a wavelength of 215 or 230 nm. 

Fractions were analyzed by SDS-PAGE and the ones containing the desired protein 

were pooled and concentrated. Purified protein was either kept at 4°C or flash frozen and 

stored at -80°C. 
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Protein SEC buffer Column 

T1L σ1(29-470) 40 mM HEPES pH 8.5 

100 mM NaCl 
 

Sephacryl S-300 16/60 

T1L σ1(cc-body) 40 mM Tris pH 8.6 (7.6) 

150 mM NaCl 
 

Superdex 200 16/60 

(GCN4)3-T1L σ1 40 mM HEPES pH 7.4 

100 mM NaCl 
 

Superdex 75 10/300 

T1L σ1(29-159) 40 mM HEPES pH 7.4 

150 mM NaCl 

Superdex 200 16/60 

T3D σ1(cc and cc-body) 

except 25-291 

40 mM Tris pH 8.6 

150 mM NaCl 
 

Superdex 200 16/60 

T3D σ1(25-291) 40 mM HEPES pH 7.4 

150 mM NaCl 

Superdex 200 16/60 

σ1-Fab complexes 20 mM HEPES pH 7.4 

150 mM NaCl 

Superdex 200 10/300 

* SEC buffer is sterile filtered (0.22µm) and degassed, 4°C. 

 

3.8.11  Protein Concentration Determination 

The protein concentration was determined by measuring the absorbance of the protein 

solution at 280 nm using the law of Lambert-Beer with the theoretical extinction 

coefficient of the protein at this wavelength.  

The concentration of proteins that contain few or no Trp, Tyr and Cys residues was not 

determined. Their concentration for crystallization was adjusted by performing a 

precipitation test (3.8.12).  

 

3.8.12  Precipitation Test 

To select an appropriate protein concentration for crystallization trials, a precipitation test 

with dilution series of five ammonium sulfate (1.5-3 M) as well as five PEG4000 (10-30%) 

concentrations was performed at 20°C.  

0.5-1 µl sterile filtered (0.22 µm) protein solution was pipetted onto a glass cover slide 

and an equal volume of the highest precipitant concentration was added. The drop was 

observed using a light microscope. The protein solution was further concentrated if the 

protein did not start to precipitate within ~ 3 min. When light to medium granular 

precipitate was directly observed, the lowest precipitation concentration was tested next. 
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The protein concentration was set when the protein precipitated (as light granular 

precipitate) in an appropriate amount of time (3-5 min) within the highest two to three 

precipitant concentrations but not in the lower ones.  

 

3.8.13 Insertion of Iodide Ions into the σ1 Coiled Coil Core by Refolding  

A concentrated protein solution (~50 µl) was diluted in unfolding buffer to a urea 

concentration of ~ 5 M. For refolding, the protein was transferred into Slide-A-Lyzer MINI 

Dialysis Devices (Pierce Protein Biology Products) and incubated in 500 ml refolding 

buffer. The buffer was exchanged twice and gently stirred at 4°C for 8 h. The protein was 

concentrated to the volume used in the beginning of the procedure. 

 

Construct Unfolding buffer Refolding buffer  

T1L σ1(29-159) 20 mM HEPES pH 7.5 

100 mM NaI 

6 M urea 

20 mM HEPES pH 7.5 

200 mM NaI 

 

 

3.9 Surface Plasmon Resonance (SPR) 

3.9.1 Affinity Determination 

SPR experiments were conducted using a Biacore 2000 instrument (GE Healthcare) at 

25°C. T1L σ1 (56 kDa) or T3D σ1 (53 kDa) were covalently immobilized on the surface of 

a CM5 sensor chip by amine coupling chemistry (NHS/EDC kit, GE Healthcare) with a 

density of 25 to 60 response units (RU). Deactivated flow cells served as references.  

Concentration series of the Fab fragments (47 kDa) or human JAM-A D1D2 (23 kDa, 

amino acids 27-233), which served as analytes, were prepared by twofold dilutions in 

running buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 0.05% P20). For affinity studies of 

JAM-A with σ1, JAM-A was injected onto the biosensor surface for 300 s with a 

dissociation time of 500 s at a flow rate of 50 µl/min.  

For kinetic analysis of the binding of T1L σ1 to 5C6 Fabs, each Fab-concentration was 

randomly injected in duplicate or triplicate for 500 s with a dissociation time of 1300 s and 

a flow rate of 30 µl/min. For T3D σ1-binding experiments with 9BG5 Fabs, each Fab-

concentration was randomly injected in duplicate for 210 s with a dissociation time of 

450-600 s and a flow rate of 50 µl/min. To remove the Fab fragments from the σ1-coated 

surface after each cycle, 5 µl of regeneration solution (3.3 mM glycine, pH 1.7) was 
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injected. Due to the fast dissociation of JAM-A from T1L and T3D σ1, no regeneration 

step was necessary for these measurements.  

Three or four independent experiments were performed in each case. Data from six 

different 5C6 concentrations ranging from 8 to 280 nM, and data from seven different 

9BG5 concentrations ranging from 0.6 to 37.5 nM were double referenced and fitted to a 

1:1 Langmuir binding model (BIAevaluation).  

Ten different JAM-A concentrations, ranging from 0.02 to 10 µM for binding studies with 

T1L σ1, and ranging from 0.04 to 20 µM for binding studies with T3D σ1, were double-

referenced and used for affinity determination with the BIAevaluation software (GE 

Healthcare) and Origin Pro (OriginLab, Northampton, USA).  

 

3.9.2 JAM-A Binding to a σ1-mAb Complex 

To investigate binding of JAM-A to a saturated σ1-mAb complex, a Biacore 2000 system 

was used at 25°C. T3D or T1L σ1 head was covalently coupled (NHS/EDC kit, GE 

Healthcare) to a CM5 sensor chip with an immobilization level of 25 RU and 60 RU, 

respectively.  

In case of T3D σ1, 9BG5 antibodies (301 nM) were applied for 180 s at a flow rate of 

20 µl/min. To ensure saturation of the T3D σ1-surface with the antibody, 9BG5 Fabs 

(8 µM) were coinjected for 120 s. Dissociation of 335 s was followed by an additional 

injection of 9BG5 antibodies (301 nM) for 180 s to achieve surface saturation. 

Afterwards, the soluble ectodomain of JAM-A (8 µM) was coinjected for 120 s. 

Dissociation was followed by regeneration with 3.3 mM glycine, pH 1.7. Subsequently, 

the response of 9BG5 Fabs (8 µM) or JAM-A (8 µM) to the regenerated T3D σ1-surface 

was tested by injection for 120 s. 

In case of T1L σ1, first the response of 5C6 Fabs (4.4 µM) to σ1 alone was tested by an 

injection for 120 s at a flow rate of 20 µl/min. A dissociation step of 222 s was followed by 

regeneration with 3.3 mM glycine, pH 1.7. The response of the JAM-A ectodomain 

(14 µM) to σ1 alone was tested by injection for 120 s. Due to the fast off-rate no 

regeneration was required. 5C6 mAbs (4 µM) were injected for 600 s first and 

additionally for 300 s, to achieve surface saturation. Immediately afterwards 5C6 Fabs 

were injected (4.4 µM, 120 s) to determine whether all accessible binding sites of σ1 

were bound by the mAb. The JAM-A ectodomain (14 µM) was injected for 120 s. 

Dissociation was followed by regeneration with 3.3 mM glycine, pH 1.7. Subsequently, 
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the response of 5C6 Fabs (4.4 µM) or JAM-A (14 µM) to the regenerated T1L σ1-surface 

was tested by injection for 120 s. 

 

3.10 Crystallographic Methods 

3.10.1  Protein Crystallization and Cryoprotection 

Protein crystals are highly ordered three-dimensional arrays formed by non-covalent 

interactions between adjacent molecules. X-ray diffraction of a protein crystal can be 

used to determine the three-dimensional structure of the macromolecule. 

The commonly used sitting or hanging drop vapor diffusion crystallization methods aim to 

crystallize proteins from a supersaturated aqueous solution by slowly increasing 

precipitant and protein concentrations. Precipitants are usually salts, alcohols, or water-

soluble polymers such as polyethylene glycols (PEGs). 

 A drop of purified protein diluted with a crystallization condition is set on a plateau 

(sitting drop) or on a glass cover slide, which is then placed upside down (hanging drop), 

in an air-tight compartment. The compartment contains a reservoir with a larger volume 

of the crystallization condition. Ideally, the protein solution is under-saturated in the 

beginning. Due to lower concentrations of the solutes in the drop in comparison to the 

reservoir, water diffuses from the drop into the reservoir. The protein and precipitant 

concentrations increase in the drop and the solution becomes supersaturated. If the 

supersaturated solution reaches the nucleation zone, spontaneous nuclei can be formed 

and initiate crystal growth. Protein molecules from the solution can accumulate in an 

ordered manner at the nuclei and thereby the concentration of free protein decreases 

until the protein solution reaches the under-saturated zone. Then, crystals can still grow 

at the costs of other crystals. Among parameters that can influence crystallization are the 

initial protein and precipitant concentration, the pH, the presence of salts or organic 

compounds, and the temperature. 

Seeding experiments are alternative approaches to induce nucleation within the 

crystallization trial. Solid material, e.g. small or crushed crystals or crushed spherulites, 

can be used as nucleating agents. The seeds are transferred to the crystallization drop, 

bypassing the nucleation step so that a lower level of supersaturation is required for 

crystal growth.  

Depending on the size of the seeds added to the crystallization drop, the seeding 

technique is classified into macro- or mircoseeding. In macroseeding approaches, 

crystals of typically 5-50 µm in size are transferred to the pre-equilibrated protein solution 
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to continue crystal growth, while in the microseeding approach small nuclei are added to 

solutions of metastable supersaturation. 

In the X-ray diffraction experiment, protein crystals are exposed to high doses of high 

energetic electromagnetic radiation. Incoherent scattering of the X-ray photons causes 

the formation of free reactive radicals, which lead to radiation damage of the crystal. To 

reduce the decay of the crystals during data collection, the crystals are cooled to 

cryogenic temperatures (100 K) that limit the movement of the free radicals. Prior to 

flash-cooling, the crystal is transferred into the crystallization solution containing a 

cryoprotectant agent. Cryoprotection prevents the formation of crystalline ice that would 

harm the crystal structure and lead to strong diffraction of the formed ice crystals.  

Initial crystallization trials were performed in 96-well sitting drop crystallization plates 

(Intelli plate, Art Robbins Instruments, USA) with commercial screens and a reservoir 

volume of 100 µl. Drops were set containing 0.3 µl protein and 0.3 µl reservoir volume. A 

robot (freedom evo, Tecan) was used for pipetting. The plates were incubated at 4 or 

20°C.  

Crystallization hits were first optimized by hanging drop vapor diffusion experiments in 

24-well crystallization plates (VDX plate, Hampton Research). Usually, the pH was varied 

versus the precipitation concentration. A reservoir volume of 500 µl was used, and drop 

sizes ranging from 1-3 µl with equal volumes of protein and reservoir solution. The 

reservoir was overlaid with 150 µl silicon oil to slow vapor diffusion in case of fast 

growing crystals.  

To optimize crystals by microseeding, grown crystals were crushed in 50 µl mother liquor 

by vortexing for 5 min or for 90 s with a Teflon-bead (Seed-bead kit, Hampton research, 

USA). Serial tenfold dilutions were prepared with mother liquor. The microseeds were 

transferred to freshly prepared crystallization drops by either adding 0.2 µl or by dipping 

a cat-whisker first into the seed-containing solution and then striking through the new 

drop.  

Crystal optimization trials using an additive screen (Hampton research, USA) were 

performed in 96-well crystallization plates (Greiner Bio-One, Germany). A crystallization 

condition was selected that previously yielded reproducible crystals. 100 µl of that 

solution was transferred into each reservoir and mixed with 10 µl of one of the 96 

additive screen solutions with a robot (Hydra96, Robbins Scientific). Sitting drops of 

0.3 µl protein solution and 0.3 µl reservoir solution were set by a robot (freedom evo, 

Tecan). For data collection, crystals were transferred to a crystallization solution 

containing MPD as cryoprotectant, if necessary and were flash-frozen in liquid nitrogen. 
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3.10.2  Data Collection and Data Processing 

Background 

X-ray radiation is scattered by the electrons of the molecules in the protein crystal. The 

scattered waves will cancel each other out by destructive interference, unless the path 

difference between two waves is an integer multiple of the wavelength. The constructive 

interference amplifies the intensity and diffraction as discrete and measureable maxima 

can be observed on a detector at a specific distance. 

The high order of a protein crystal, an arrangement of small repeating units (unit cells) 

translated in three dimensions, is indispensable for the method as the conditions for 

constructive interference are fulfilled at corresponding positions between the unit cells, 

which leads to an amplification of the scattering signal. The unit cell that builds up the 

crystal lattice is defined by the length of the axes a, b and c, as well as by the angles α, β 

and γ between them. The unit cell can contain one or more entities that often can be 

transformed into each other by symmetry operations such as translation or rotation. 

Since proteins are chiral molecules, symmetry elements such as inversion centers or 

mirror planes that would change the chirality of the molecules are not possible in protein 

crystals. Symmetry operators that describe the internal symmetry of the unit cell and 

apply to the entire crystal are crystallographic symmetry operators that divide the unit cell 

into smaller fractions, termed asymmetric units. The content of the asymmetric unit can 

have symmetry, but this additional symmetry, termed non-crystallographic symmetry 

(NCS), only applies to the molecules inside the asymmetric unit. The geometry of the unit 

cell and the crystallographic symmetry operators define the space group of a crystal.  

The virtual lattice that can be generated from the recorded diffraction maxima is related 

to the crystal lattice by an inverse relationship and is termed reciprocal lattice. The Miller 

indices h, k and l specify lattice planes in the reciprocal lattice and their direction in the 

three-dimensional crystal. Each diffraction spot can be constructed as the reflection of 

the incident beam on a set of parallel planes with equal distance. Sir W. Lawrence Bragg 

described the conditions under which constructive interference is achieved, causing a 

reflection (h,k,l) on a detector. A reflection can only occur if the path difference of two 

waves that hit crystal lattice planes spaced with the distance d under angle θ is an 

integer multiple of the wavelength (Bragg’s law, equation 3.1). 

 

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛θ           (3.1) 
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A graphical construction of reciprocal lattice points that fulfill Bragg’s law is the Ewald 

sphere (Figure 3.1). A sphere with radius 1/λ is drawn around a crystal. Only the 

reciprocal lattice points (h,k,l) that lie on the surface of the sphere can be observed as 

reflections. The lattice point (0,0,0) is the origin of the reciprocal lattice and defined as 

the position where the incident beam intersects the Ewald sphere. As only a fraction of 

reflections can be observed at a given crystal orientation, the crystal in the center of the 

sphere, and with it the reciprocal lattice, is rotated around its own origin, perpendicular to 

the X-ray beam, during data collection. Different lattice points will then intersect the 

Ewald sphere and will be recorded. To collect all reflections of a crystal, images are 

collected for every 0.1-2° of rotation. The range of degrees that needs to be recorded for 

a complete data set depends on the symmetry of the crystal. 

 

 

Figure 3.1 Bragg’s law and Ewald sphere. (A) Graphical representation of Bragg’s law. For 

constructive interference, the path difference of two waves diffracted at parallel crystal lattice planes 

must be an integer multiple of the wavelength. d: distance between two lattice planes, θ:angle of 

incidence. (B) Ewald sphere. r: radius of the sphere 1/λ, (h,k,l): coordinates of the reflection in 

reciprocal space, d*:1/d. 

 

Every diffraction spot on a detector corresponds to one set of lattice planes and can be 

assigned to the corresponding reciprocal space coordinates (h,k,l) during indexing of the 

data. The obtained information of the spot positions together with the distance of the 

detector and the used wavelength allows the calculation of possible unit cell parameters 

for each lattice type. Depending on the unit cell parameters and how well they fit the 

geometric requirements of a crystal system, the most likely lattice type is chosen. For 

indexing only a subset of the images is typically used.  

While the position of the diffraction spots on the images is dependent on the geometry of 

the crystal and the experiment, the intensity and phase are dependent on the content of 

the unit cell (on the structure of the molecules).  
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During integration, the intensity of each reflection is determined and the unit cell and data 

collection parameters are concurrently refined. The same reflection may have been 

collected at different intensity values during data collection caused by X-ray radiation 

damage or intensity fluctuations of the incident beam. Scaling attempts to make the data 

internally consistent and applies scaling factors to minimize the differences between the 

same reflections. Further, partial reflections that were not fully recorded on a single 

image are added, and symmetry-related reflections are merged.  

The output of scaling contains a list of all unique reflections (h,k,l) with their intensities, 

information about the best determined values for of the unit cell, and data collection 

parameters as well as statistics to assess data quality. 

The data processing R-factors calculate the consistency of repeated measurements and 

thereby quantify the overall quality of the intensity data. The linear merging R-factor, 

Rmerge, measures the ratio between the sum over the deviations of each redundant 

reflection from the mean intensity value for that reflection and the sum over the 

intensities of all redundant reflections (equation 3.2). Rmerge increases with higher 

redundancy, meaning that a low-redundant dataset appears better than a high-redundant 

one, which is counterintuitive as with increasing multiplicity the mean intensity of a 

reflection should be determined with higher accuracy. The redundancy-independent R-

factor Rmeas was therefore introduced and corrects the rise of the R-factor with 

redundancy (equation 3.3) [99]. The R-factors typically increase with higher resolution, 

while the signal to noise ratio, I/σI, decreases as the effect of small irregularities within a 

crystal increases.  

 

𝑅𝑚𝑒𝑟𝑔𝑒 =  
∑ ∑ |𝐼ℎ𝑘𝑙,𝑖− 𝐼ℎ𝑘𝑙,𝑖|𝑛

𝑖ℎ𝑘𝑙

∑ ∑ 𝐼ℎ𝑘𝑙,𝑖
𝑛
𝑖ℎ𝑘𝑙

      (3.2) 

 

𝑅𝑚𝑒𝑎𝑠 =  
∑ √

𝑛

𝑛−1
∑ |𝐼ℎ𝑘𝑙,𝑖− 𝐼ℎ𝑘𝑙,𝑖|𝑛

𝑖ℎ𝑘𝑙

∑ ∑ 𝐼ℎ𝑘𝑙,𝑖
𝑛
𝑖ℎ𝑘𝑙

      (3.3) 

 

A different data quality indicator, the correlation coefficient CC1/2, was introduced recently 

[100]. To obtain CC1/2, the data are divided into two parts, each containing a random half 

of the measurements of each unique reflection, and the Pearson correlation coefficient 

between the average intensities of each subset is determined. CC1/2 is near 1.0 at low 
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resolution and drops to 0 at high resolution. The Student's t-test can indicate where 

statistical significance ends. 

To discard weak data, the inclusion of which might degrade the quality of the resulting 

model, the quality indicators (Rmeas, CC1/2) are widely used to determine the resolution 

cut-off.  

After scaling, the space group is determined. It cannot be derived from the lattice type as 

it depends on symmetry operators within the unit cell. If reflections have been merged 

that are related by crystallographic symmetry operators the merging R-factor is low, while 

merging of reflections that are not truly symmetry related causes high R-factors, even at 

low resolution. 

Plotting the mean intensity against the resolution expressed as sin2θ/λ, yields a 

characteristic curve (Wilson plot) where the intensity decreases with higher resolution. 

Solvent effects cause a minimum at ~ 5 Å, and a maximum at ~ 4-3.5 Å is caused by the 

length of interatomic distances in proteins. At resolutions higher than 3.5 Å the intensity 

falls linearly and the slope of a linear regression of this region determines the Wilson 

B-factor [101]. It represents the decrease of intensity in diffraction due to thermal 

vibration and static crystal disorder. 

 

Experimental Procedure 

The diffraction capabilities of the crystals were tested first at an in house X-ray system 

equipped with the X-ray generator MicroMax-007HF (Rigaku) and a MAR345 dtb image 

plate detector at CuKα-radiation (λ=1.5418 Å). Data sets were collected at the PXIII 

beamline at the Swiss Light Source (Paul Scherrer Institute, Villigen, Switzerland) with a 

PILATUS (Pixel Apparatus for the SLS) detector and a wavelength of 1 Å.  

For phasing of T1L σ1(29-159) via single-wavelength anomalous diffraction (SAD), one 

360°-data set at a wavelength of 1 Å and eight 720°-data sets at a wavelength of 2 Å 

were collected from one iodide-containing crystal. The χ-angle was increased by 5° from 

one dataset to the other to obtain highly redundant and complete diffraction data. Data 

sets were indexed, integrated and scaled using XDS [102]. 
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3.10.3  Structure Determination and Refinement 

Background 

The intensity and the phase of a reflection (h,k,l) are dependent on the electron 

distribution of the unit cell content. Each scattered X-ray beam that leads to a reflection 

(h,k,l) can be described as a structure factor Fhkl containing its amplitude |Fhkl| and phase 

φhkl. The structure factor Fhkl is a complex number and can be expressed as a vector in 

the Gaussian plane (equation 3.4) with the length and angle corresponding to the 

amplitude and phase, respectively.  

 

Fhkl =  |𝐹ℎ𝑘𝑙| ∙ (cos φℎ𝑘𝑙 + i sin φℎ𝑘𝑙) =  |𝐹ℎ𝑘𝑙| exp(iφℎ𝑘𝑙)   (3.4) 

 

The amplitudes and the phases of the scattered beams are linked to the scattering 

matter of the unit cell by a Fourier transformation, with the sum over all atoms n, the 

atomic scattering factor fn of atom n and its position in the dimensions x, y and z. 

 

Fhkl =  ∑ 𝑓𝑛
𝑁
𝑛=1 ∙ exp[2πi(h𝑥𝑛 + k𝑦𝑛 + l𝑧𝑛)]     (3.5) 

 

Both phase and amplitude of each scattered wave contain information about all atoms in 

the unit cell. By determining the amplitude and phase for each Fhkl and applying the 

Fourier transformation one can calculate electron density that allows to determine the 

structure. The structure factor amplitudes can be determined from the diffraction data via 

the intensity Ihkl. The intensity of a reflection is proportional to the square of the structure 

factor amplitude. However, the phases cannot be measured directly from the diffraction 

experiment. To overcome the so called phase problem different indirect methods have 

been developed such as molecular replacement (MR), single or multiple isomorphous 

replacement (SIR/MIR), SAD or multiple-wavelength anomalous dispersion (MAD). In 

this thesis, SAD and MR were used for structure determination.  

 

Molecular Replacement 

If a structurally similar model to the protein of interest is available, molecular replacement 

can be successfully performed. To obtain phases, the search model is first rotated and 

then translated in space to place it in the (new) asymmetric unit so that it fits the target 

structure.  
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The Matthews coefficient VM gives an estimate on how many copies n of the molecule 

are contained in the asymmetric unit and should be placed [103]. Proteins have a 

relatively uniform density, and protein crystals contain usually a high solvent content of 

about ~ 20-70%. Thus, the coefficient VM is usually in the range of 1.75-4.2 Å3/Da and is 

calculated from the volume of the unit cell Vunit cell, the molecular weight of the molecule 

Mw and the number of asymmetric units in the unit cell nASU (equation 3.6). 

 

𝑉𝑀 =
𝑉𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑀𝑤 ∙𝑛𝐴𝑆𝑈∙𝑛
          (3.6) 

 

The rotation and translation of the search model are independently performed in 

Patterson space. The Patterson function is the Fourier transform of |Fhkl|2 and the 

calculated map is equivalent to the convolution of the electron density with itself. The 

Patterson space of N atoms contains all N(N-1) interatomic distance vectors. The vectors 

are independent from the phases of scattered X-rays, can also be calculated from an 

existing atomic model and are very similar between closely-related structures. 

The Patterson function of the experimental data as well as of the search model are 

calculated. The rotation of the search model around all three axes results in a peak 

within the rotation function if the orientation of the Patterson maps correlate. The rotation 

function considers only intramolecular distance vectors as they are independent from 

translation. 

During the translation search, only intermolecular distances (which can be distinguished 

from the intramolecular vectors by their longer length) are taken into consideration and 

the model is translated along the three axes. The translation function features a peak for 

the correct translation vector. 

Initial phases derived from the search model together with the structure factor amplitudes 

from the diffraction experiment can be used to calculate an initial electron density map 

(equation 3.7). The electron density ρ at a position in the unit cell xyz is calculated using 

the unit cell volume V and the structure factors Fhkl.  

 

ρ𝑥𝑦𝑧 =
1

𝑉
 ∑ 𝐹ℎ𝑘𝑙ℎ𝑘𝑙 ∙ exp[−2πi(h𝑥𝑛 + k𝑦𝑛 + l𝑧𝑛)]   (3.7) 
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Single-wavelength Anomalous Diffraction 

A different approach to derive phases exploits the phenomenon of anomalous diffraction 

of heavy atoms that are intrinsically present in the protein or have been added. The 

atomic scattering factor fn is dependent on the electron distribution of an atom and 

contains the normal scattering term f0 (dependent on the Bragg angle) and the 

anomalous scattering factors f’ (dispersive term) and f’’ (absorption term), which are 

dependent on the wavelength (equation 3.8).  

 

f𝑛(θ, λ) = 𝑓0(𝜃) + f′(λ) + if′′(𝜆)       (3.8) 

 

X-ray absorption occurs near an absorption edge when the X-ray energy is sufficiently 

high to promote an inner electron of the atom. Most elements with a Z > 18 have an (K- 

or L-) absorption edge that lies in an X-ray energy range that most synchrotrons can 

provide, or have (at least) an absorption edge above available wavelengths to yield an 

anomalous signal. Anomalous scattering occurs with a phase shift of 90° in term f’’ 

relative to the normal scattering of the atom. This generates anomalous differences 

between the two structure factors of a Friedel pair (and for structure factors of a Bijovoet 

pair) that causes the Friedel law (|Fhkl|=|F-h-k-l|) to break (Figure 3.2). The anomalous 

differences can be obtained and used to locate the positions of the anomalous scatterer. 

 

 

Figure 3.2 Breakdown of Friedel’s law. (A) The anomalous scattering effect causes Friedel’s law to 

break down, meaning |Fhkl|≠|F-h-k-l| or |FPH(+)|≠|FPH(-)|. 
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In a SAD experiment, usually all diffraction data are collected from a single crystal 

containing an anomalous scatterer, and thus nonisomorphism is not a problem in this 

phasing strategy. The measurement is performed at one wavelength (which generates 

the maximum anomalous f’’ signal possible) and only provides the anomalous 

differences (Δano = F± = |FPH(+)| - |FPH(-)|). These differences are used to estimate the 

heavy atom contribution to the scattering, and then direct or Patterson methods are used 

to obtain the positions of the heavy atom substructure. The amplitude and phase of the 

substructure can be calculated, but α phase ambiguity remains in the phase of the 

protein structure factor, and resolving this requires the use of density modification. 

 

Structure Refinement 

Structural refinement is an iterative process in which the atom coordinates and 

temperature factors are improved to obtain a better correlation between the built model 

and the experimental data. The refinement process is monitored by calculating 

crystallographic R-factors with the observed (Fobs) and calculated (Fcalc) structure factor 

amplitudes.  

 

R =  
∑ |𝐹𝑜𝑏𝑠(hkl)− 𝐹𝑐𝑎𝑙𝑐(hkl)|ℎ𝑘𝑙

∑ 𝐹𝑜𝑏𝑠(ℎ𝑘𝑙)ℎ𝑘𝑙
      (3.9) 

 

For a perfect agreement R would be 0 and for a random structure model it is near 0.59. 

As this factor can be made arbitrary low by introducing more adjustable variables 

(overfitting), the unbiased R-factor Rfree was introduced to assess model and refinement 

quality [104]. A small subset of reflections (5-10%) is flagged as “free” and is not used 

during refinement. The larger (“working”) set of reflections is then referred to Rwork. The 

Rfree value is an unbiased estimate of the improvement of the structure model and is 

usually higher than Rwork. 

 

Experimental Procedure 

To obtain phase information via SAD, the program autoSHARP [105] was used in case 

of T1L σ1(29-159). The program Phaser [106] of the CCP4 package [107] was used for 

solving the phase problem via molecular replacement. The used search models are 

listed below:  
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Construct Search model Source  

(GCN4)3-T1L σ1(29-159) - residues 29-76 of  

  (GCN4)3-T1L σ1(29-76)-(GCN4)3 

provided by K. Reiss  

T3D σ1(25-291) - residues 170-265 of T3D σ1(170-455) 

- T1L σ1(29-159)* 

PDB ID: 3S6X  

this work 

T3D σ1(1-168) - residues 27-168 of T3D σ1(25-291) this work 

T1L σ1-5C6Fabs  - residues 308-470 of T1L σ1(265-470) PDB ID 4GU3 

 - Fab of IgG2a(κ) 9BG5 this work 

T3D σ1-9BG5Fabs  - T3D σ1(293-455) 

- IgG1(κ) Fab 

PDB ID 2OJ5 

PDB ID 1FIG 

* modified with the CCP4 program chainsaw using a T1L-T3D σ1 sequence alignment 

 

Alternating model building and refinement cycles were performed. Model building was 

done using Coot, and structural refinement was performed with the programs REFMAC5 

[108], autoBuster [109] or phenix [110]. 
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4 Results 

4.1 T1L σ1 Fragments 

 

Figure 4.1 Overview of T1L σ1 constructs. White boxes of varied length according to the number of 

amino acids and domains that are covered by the σ1 fragments. The three constructs comprising the 

σ1 tail, body, and head domain are discussed in sections 4.1.1 and 4.1.2, the three constructs 

comprising the tail and parts of the body domain are discussed in section 4.1.3, and the two constructs 

comprising only the tail domain are discussed in section 4.1.4. His6-tag is shown as red, SUMO-tag as 

green, and the (GCN4)3-motif as a blue box. Ulp1 and thrombin (Thro) cleavage sites are indicated. 

Constructs that led to a crystal structure are marked with a yellow star. Diffraction data is available for 

constructs marked with a black star, but the structure is currently not solved. 

 

4.1.1 His6-SUMO-T1L σ1(2-470 and 29-470) 

The T1L σ1 constructs comprising amino acids 2-470 and 29-470 were cloned via BsaI 

and XbaI restriction enzyme sites into the pE-SUMOpro vector. Both proteins were 

produced at 20°C and 37°C after IPTG induction, indicated by the appearance of bands 

in an SDS-PAGE gel that correspond to the molecular weights of the proteins (Figure 

4.2). Test Ni-affinity chromatography with single-use spin columns revealed that both 

proteins bind to the column and elute at the highest imidazole concentration used. 
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Figure 4.2 Test expression and spin-trap test. (A) His6-SUMO-T1L σ1(2-470). SDS-PAGE gel of 

the test expression performed at 20 and 37°C. In comparison to the sample taken pre-induction (pre) 

with IPTG, a band appears at ~64 kDa that corresponds to the molecular weight of the target protein. 

(B) His6-SUMO-T1L σ1(2-470). SDS-PAGE gel of the test Ni-affinity chromatography. The soluble (S) 

and the pellet (P) fraction after lysis show a thick band at ~64 kDa. Elution with 15 and 100 mM 

imidazole removed some non-specifically bound proteins. The protein of interest and other proteins 

eluted with 500 mM imidazole. (C) His6-SUMO-T1L σ1(29-470). SDS-PAGE gel of the test expression 

performed at 20 and 37°C. In comparison to the sample taken pre-induction (pre) with IPTG a band 

appears at ~61 kDa that corresponds to the molecular weight of the protein. (D) His6-SUMO-T1L 

σ1(29-470). SDS-PAGE gel of the test Ni-affinity chromatography. Elution with 15 and 100 mM 

imidazole removed some non-specific bound proteins. A band at ~61 kDa is present at elution with 

500 mM imidazole. Most impurities that are present in the eluate with 500 mM imidazole are also 

present at elution with 100 mM imidazole. 

 

4.1.2 T1L σ1(29-470) 

The T1L σ1 construct, comprising amino acids 29-470, was cloned via NcoI and BamHI 

restriction enzyme sites into plasmid pET16b. The protein is untagged and, as revealed 

by lysis tests, soluble in pH 8.5 buffered solutions (Figure 4.3). Anion exchange 

chromatography was used as the first purification step. Impurities bound stronger to the 

column than did T1L σ1. Therefore, the flow through was collected, and the eluate was 

discarded. Three consecutive chromatographic separations were performed.  

Ammonium sulfate precipitation was used next to remove contaminating proteins. T1L σ1 

precipitated at a concentration of ~ 12% ammonium sulfate. The precipitated protein 

pellet was dialyzed into a buffer containing 25 mM HEPES pH 8.5. The protein of interest 

partially bound to a cation exchange chromatography column and could be eluted using 

three different conditions. The first species eluted when the buffer was changed from 

25 mM to 40 mM HEPES, the second species at a concentration of ~ 5 mM NaCl (40 mM 

HEPES), and the third species at ~ 250 mM NaCl (40 mM HEPES). SEC of protein 

samples obtained from the three different elution conditions resulted in single peaks 

corresponding to the void volume of the column.  
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Figure 4.3 Purification of T1L σ1(29-470). SDS-PAGE gels of the different purification steps are 

shown. Bands at ~ 48 kDa correspond to the molecular weight of the protein. Marker (M), soluble 

fraction after lysis (1), collected flowthrough after the third application on an AEC column (2), dissolved 

precipitated protein obtained by addition of 12%-ammonium sulfate (3), flowthrough of the cation 

exchange chromatography (4) elution through buffer change from 25 to 40 mM HEPES pH 8.5 (5,6) 

and elution with 5 mM NaCl (7) in buffer A. Protein after SEC (8). 

 

To determine if the protein was properly folded or aggregated, dynamic light scattering 

(DLS) measurements were performed (Figure 4.4). Several fractions showed a 

monodispersed peak corresponding to a mean hydrodynamic radius of 52 ± 10 nm.  

Electron micrographs that were obtained using a scanning transmission electron 

microscope (performed by York Stierhof, ZMBP Tübingen, Germany) showed that 

samples that had been diluted in PBS during sample preparation are completely 

aggregated, while samples diluted in SEC buffer were more homogenous, with fewer 

aggregates and filamentous structures.  

 

 

Figure 4.4 DLS measurement and electron micrographs of T1L σ1(29-470) after size exclusion 

chromatography. (A) DLS measurement revealed a single monodisperse peak by intensity of a mean 

size of 52 ± 10 nm. This species contributed to the overall mass and intensity to 100%. (B) Electron 

micrograph of purified T1L σ1(29-470) diluted in PBS (pH 7.4) shows an inhomogeneous sample of 

aggregated protein. The black bar corresponds to 50 nm. (C) Electron micrograph of purified T1L 

σ1(29-470) diluted in SEC buffer (pH 8.6) shows a more homogenous sample. The black bar 

corresponds to 50 nm.  
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Crystallization trials were performed, and a few crystallization hits with spherulites, tiny 

needles, or needle clusters were obtained. These crystals could not be optimized for 

structure determination. 

 

4.1.3 Coiled Coil – Body Constructs of T1L σ1 

The T1L σ1 constructs comprising amino acids 29-303, 29-265, and 29-249 were 

generated by introducing a stop codon into pET28b::His6-T1L σ1(29-470) at the 

corresponding C-terminal positions via site-directed mutagenesis.  

All three proteins were produced after induction with 0.2 mM IPTG at 20°C. The proteins 

were eluted from a Ni-affinity chromatography column with 250 mM imidazole after a 

washing step with 75 mM imidazole. Both thrombin and trypsin digestion removed the 

His6-tag from the T1L σ1 proteins. Cleavage with trypsin was preferentially used for tag-

removal in solution. On-column digestion did not result in cleaved protein.  

After buffer optimization, minor aggregation peaks on size exclusion chromatograms 

were observed for T1L σ1 (29-303) and T1L σ1 (29-249) with a SEC buffer at pH 8.6 and 

for T1L σ1 (29-265) with a SEC buffer at pH 7.6 (Figure 4.5). The concentration of the 

proteins was adjusted with a precipitation test after SEC. 

 

Figure 4.5 Purification of T1L σ1(cc-body) constructs. Size exclusion chromatogram with the 

absorbance measured at 230 nm of (A) T1L σ1(29-303), (B) T1L σ1(29-265), and (C) T1L σ1(29-249). 
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SDS-PAGE gels of the concentrated protein samples are included. Bands at ~ 30 kDa (A), ~ 26 kDa 

(B), ~ 24 kDa (C) correspond to the molecular weights of the proteins. 

Crystals were obtained for all three proteins by the vapor diffusion method (Figure 4.6). 

T1L σ1(29-303) yielded thin needles or needle clusters. Fine screening and optimization 

trials using micro seeds or the additive screen did not improve the crystal shape or the 

diffraction properties. 

 

Figure 4.6 Crystallization of T1L σ1(cc-body) constructs. Crystals of (A) T1L σ1(29-303) in 0.1 M 

sodium formate, 12% PEG3350, (B) T1L σ1(29-265) in 25% (v/v) ethylene glycol, and (C) T1L σ1(29-

249) in 20% (w/v) PEG 2000MME, 0.1 M Tris pH 8.5, 0.2 M TMNO (upper left), 2% (v/v) Tascimate pH 

8.0, 0.1 M Tris pH 8.5, 16% PEG3350 (upper right), 0.1 M HEPES pH 7.0, 30% (v/v) Jeffamine ED-

2001 (lower left), 10% isopropanol, 0.1 M MES pH 6.0, 0.2 M calcium acetate (lower right) are shown. 

 

Initial T1L σ1(29-265) crystals grew in 25% ethylene glycol at 20°C. The crystals 

dissolved in higher ethylene glycol concentrations, thus mother liquor was used as 

cryoprotectant, but led to minor ice rings on the detector. The crystals diffracted up to 

2.8 Å resolution at the PXIII beamline (SLS, Villigen, Switzerland) (Table 4.1). No 

pseudo-translation symmetry was detected by Xtriage (Phenix, [110]) or Sfcheck 

(CCP4). Molecular replacement attempts to solve the phase problem are ongoing. 

 

Table 4.1 Data collection statistics of T1L σ1(29-265) 

Data collection T1L σ1(29-265) 

Resolution range [Å] 47.9-2.8 (2.87-2.80) 

Space group R32 

Unit cell dimensions [Å] 101.0, 101.0,  456.5 

Unit cell angles [°] 90 90 120 

Completeness [%] 95.1 (96.4) 

Total reflections 94204 (6478) 

Unique reflections 21626 (1595) 

Rmeas [%] 13.6 (67.5) 

CC1/2 [%] 99.9 (91.2) 

I/σ 7.35 (1.36) 
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Wilson B [Å2] 57.6 

Values in parentheses are for the highest-resolution shell. 

T1L σ1(29-249) crystallized in several different conditions with different sizes and 

shapes. So far, one of those conditions (10% isopropanol, 0.1 M MES pH 6.0, 0.2 M 

calcium acetate) was optimized and the crystals diffracted to a resolution of about 2.0 Å 

at the PXIII beamline (SLS, Villigen, Switzerland). Due to one very long unit cell axis, 

data were collected with a detector resolution of 3-3.5 Å to ensure the separation of the 

diffraction spots. The space group could not be determined with confidence, and the data 

possess a high degree of pseudo-translation symmetry. Molecular replacement (Phaser, 

CCP4) with the structure or fragments of T1L σ1(29-159) has not lead to a reliable 

solution thus far.  

 

4.1.4 Coiled Coil Constructs of T1L σ1  

(GCN4)3-T1L σ1(29-159) – Purification and Crystallization  

The plasmid pIBA-GCN4tri::T1L σ1(29-159) was obtained from Dr. Kerstin Reiss. In this 

construct, the T1L σ1 sequence is in frame with the heptad repeat pattern of (GCN4)3. A 

stop codon is present at the end of the σ1 sequence, so that the produced protein solely 

carries the N-terminal (GCN4)3-motif, while the C-terminal (GCN4)3 and the His6-tag are 

absent.  

The protein was produced at 37°C after induction with 0.2 µg/ml AHTC for 5 h and was 

purified after refolding from inclusion bodies. The protein eluted from an anion exchange 

chromatography column with a concentration of ~ 250 mM NaCl. Size exclusion 

chromatography was used as a last purification step (Figure 4.7), and the protein was 

concentrated to 6-6.5 mg/ml for crystallization.  

Crystals of (GCN4)3-T1L σ1 were obtained with the hanging drop vapor diffusion method 

in 10% PEG8000, 0.1 M imidazole pH 8.0, 0.2 M calcium acetate at 20°C (Figure 4.7). 

Crystals were flash frozen with mother liquor containing 22% MPD as cryoprotectant, 

and X-ray diffraction data extending to 1.8 Å resolution was collected and used for 

structure determination. At this resolution, the R-factors of the structure (Rwork/Rfree: 23.9/ 

27.4%) are relatively high, a consequence of the presence of pseudo-translation 

symmetry that was estimated to be ~ 18% using Xtriage (Phenix, [110]). 
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Figure 4.7 Purification and crystallization of (GCN4)3-T1L σ1. (A) Analytical size exclusion 

chromatogram of (GCN4)3-T1L σ1. The absorbance is shown at 280 nm. The SDS-PAGE gel of the 

concentrated protein is included. A band at ~ 18 kDa corresponds to the molecular weight of a 

monomer. (B) Crystal of (GCN4)3-T1L σ1 in 10% PEG8000, 0.1 M imidazole pH 8.0, 0.2 M calcium 

acetate. 

 

(GCN4)3-T1L σ1(29-159) – Crystal Structure 

The structure was solved in the space group P21 with one σ1 trimer in the asymmetric 

unit (Table 4.2). With the exception of the first N-terminal and the last C-terminal residue 

in chain A, all amino acids of the protein are defined in the electron density. The protein 

forms an uninterrupted parallel α-helical coiled coil of ~ 230 Å in length. Within the 

crystal, the protein is tightly packed with a solvent content of only ~ 34%. Layers of 

slightly shifted coiled coils that point in one direction are surrounded by layers of coiled 

coils pointing in the opposite direction. Crystal contacts include several charge-mediated 

interactions between adjacent α-helical bundles.  

 

Table 4.2 Data collection and refinement statistics of (GCN4)3-T1L σ1 

Data collection (GCN4)3-T1L σ1 

Resolution range [Å] 43.9-1.82 (1.87-1.82) 

Space group P21 

Unit cell dimensions [Å] 65.3 35.6 89.3  

Unit cell angles [°] 90.0 108.4 90.0 

Completeness [%] 97.5 (96.3) 

Total reflections 234707 (16860) 

Unique reflections 34717 (2533) 

Rmeas [%] 8.2 (90.2) 

CC1/2 [%] 100 (84.3) 

I/σ 15.6 (2.6) 

Wilson B [Å2] 30.9 
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Refinement  

Rwork/ Rfree [%] 23.9/ 27.4 

Atoms  

     Protein 3461 

     Waters 161 

     Cl- 2 

     Imidazole 2 

B factors [Å2]  

     Chain A 28.0 

     Chain B 27.7 

     Chain C 26.8 

     Water 30.2 

     Cl- 20.8 

     Imidazole 29.0 

r.m.s.d. bond lengths [Å] 0.01 

r.m.s.d. bond angles [°] 0.98 

Values in parentheses are for the highest-resolution shell. 

 

The protein consists of 22.5 heptad repeats; 4 are formed by the (GCN4)3 and 18.5 by 

the σ1 segment. The amino acids at positions a and d of a heptad repeat form the 

hydrophobic core of the coiled coil. Nine interhelical salt bridges, mostly formed between 

amino acids at position g and e, stabilize the coiled coil structure. Seven salt bridges 

belong to the σ1 segment and are distributed over the entire length of the σ1 molecule. 

Few hydrophilic amino acids are located at typical hydrophobic positions a and d. N38 

and N94 occupy d positions and bind chloride ions inside the core (Figure 4.8). The B-

factors of the chloride ions and the surrounding amino acids are similar, indicating full 

occupancy of the ions (N38: 20-27 Å2, Cl-: 24 Å2, and N94: 17-19 Å2, Cl-: 17 Å2).   

A stutter is located close to the C-terminal end of the protein. This formal insertion of four 

amino acids (here: VTTE; 147-150) into the heptad repeat leads to a local unwinding of 

the α-helices and the coiled coil. The residue E150 at the d position is shifted outside of 

the core and forms a da-layer with V151. The Cβ and Cγ atoms of E150 contribute to the 

hydrophobic interaction with V151, while the carboxyl group forms a charge-mediated 

interaction with R153, which also forms a salt bridge with D155 from an adjacent subunit. 
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Figure 4.8 Crystal structure of (GCN4)3-T1L σ1(29-159). (A) The protein forms a trimeric parallel α-

helical coiled coil that has two chloride ions bound within the core. The part of the structure belonging 

to (GCN4)3 is colored grey, and the part belonging to σ1 is colored in blue, red, and yellow. Chloride 

ions are colored green (B, C) Close-up views of the bound chloride ions complexed by N38 and N94, 

respectively. View along the threefold axis of the molecule. (D) Close-up of the stutter, viewed along 

the threefold axis. E150 is shifted outward of the core and forms a da-layer with V151. (E) E150 also 

interacts with R153 that additionally forms an interhelical saltbridge with D155. 

 

T1L σ1(29-159) – Purification and Crystallization  

To verify that the σ1 tail domain independently forms a stable, trimeric coiled coil, a 

construct without the trimerization motif (GCN4)3 was designed and cloned into pET16b 

using the NcoI and BamHI restriction sites. The protein contains residues 29-159 and 

two additional amino acids (Met and Ala) at the N-terminus due to the cloning procedure.  

The protein was produced after induction with 0.3 mM IPTG at 25°C overnight and 

purified via anion exchange chromatography followed by size exclusion chromatography 

(Figure 4.9). The protein elutes early, at a retention volume that corresponds to a 

globular protein of ~ 100 kDa. This finding indicates that the protein exhibits a trimeric, 

elongated structure similar to (GCN4)3-T1L σ1(29-159). Circular dichroism (CD) spectra 

of the purified protein show that the molecule is folded and α-helical at a broad range of 

pH values (pH 1-9). Temperature-dependent CD-measurements from 10 to 95°C 

revealed a melting curve with a sharp transition from folded to random coil at 70°C 

(Rebecca Ebenhoch, Bachelor Thesis, 2014).   

For crystallization, a PEG-precipitation test was performed to adjust the protein 

concentration. Well diffracting crystals were obtained in 20% PEG8000, 0.1 M CAPS 

pH 10.5, 0.2 M NaCl at 4°C (Figure 4.9). Molecular replacement attempts with the 
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complete or partial σ1 segment of the (GCN4)3-T1L σ1(29-159) structure as a search 

model were not successful.  

Experimental phases were obtained using single-wavelength anomalous diffraction 

(SAD; Table 4.3). For this purpose, the protein was denatured and refolded in an iodide-

containing buffer to exchange the bound chloride ions of the coiled coil core. The 

refolded protein was analyzed by circular dichroism. The CD-spectra was similar to an 

untreated protein sample. Crystals were obtained in 18% PEG8000, 0.1 M CAPS pH 9.5, 

0.2 mM NaI by seeding with crystals from the original crystallization condition at 4°C. 

 

 

 

Figure 4.9 Purification and crystallization of T1L σ1(29-159). (A) Analytical size exclusion 

chromatogram of T1L σ1(29-159). The absorbance is shown at 215 nm. An SDS-PAGE gel showing 

the concentrated protein is included. A band at ~14 kDa corresponds to the molecular weight of a 

monomer. (B) Crystals of T1L σ1(29-159) in 20% PEG8000, 0.1 M CAPS pH 10.5, 0.2 M NaCl. (C) 

Crystals of refolded T1L σ1(29-159) grown in 18% PEG8000, 0.1 M CAPS pH 9.5, 0.2 M NaI. 

 

T1L σ1(29-159) – Crystal Structure 

The crystals belong to space group P21 and contain one trimeric σ1 molecule in the 

asymmetric unit. All residues except of the last C-terminal amino acid of σ1 are defined 

in the electron density.  

The protein folds into a parallel, trimeric α-helical coiled coil of ~ 190 Å in length. Similar 

to (GCN4)3-T1L σ1(29-158), the σ1 structure is stabilized by seven interhelical salt 

bridges. It is composed of 18.5 heptads and two halogenide ions that are bound by 

asparagine residues 38 and 94 inside the core of the molecule. However, the main chain 

atoms of the identical parts of the two structures superimpose with a high r.m.s.d. value 

of 2.5 Å (Figure 4.10, see Table 5.1 at page 73). Alignments of main chain atoms 

between individual chains have r.m.s.d. values of 1.54-1.82 Å.  
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Table 4.3 Data collection and refinement statistics of T1L σ1(29-159) 

Data collection  Native Refolded Refolded 

Wavelength [Å] 0.91841 1.0000 2.0000 

Resolution range [Å] 41.7-1.43 

(1.52-1.43) 

48.7-1.35 

(1.39-1.35) 

48.7-2.4 

(2.46-2.40) 

Space group P21 P21 P21 

Unit cell dimensions [Å] 53.4, 37.2, 94.9 52.7, 37.6, 89.7 52.7, 37.6, 89.7 

Unit cell angles [°] 90.0, 102.6, 90.0 90.0, 100.5, 90.0 90.0, 100.5, 90.0 

Completeness [%] 99.3 (96.1) 100 (100) 100 (100) 

Total reflections 445146 (63117) 503646 (33260) 1039304 (18914) 

Unique reflections 67304 (10401) 76273 (5563) 25687 (1566) 

Redundancy 6.6 (6.1) 6.6 (6.0) 40.5 (12.1) 

Rmeas [%] 12.3 (71.4) 10.9 (87.6) 7 (14.4) 

CC1/2 [%] 100 (96) 100 (72) 100 (99) 

I/σ 11.0 (2.1) 12.0 (1.9) 50.1 (12.9) 

Wilson B [Å2] 19.2 16.2 13.5 

Anomalous Signal [%]   4.5 (1.4) 

Refinement    

Rwork/ Rfree [%] 19.3/ 23.0   

Atoms    

     Protein 3032   

     Waters 688   

     Chloride 2   

B factors [Å2]    

     Chain A 19.0   

     Chain B 19.9   

     Chain C 18.1   

     Water 33.0   

     Chloride 15.0   

r.m.s.d. bond lengths [Å] 0.01   

r.m.s.d. bond angles [°] 0.89   

Values in parentheses are for the highest-resolution shell. 
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Figure 4.10 Superposition of the T1L σ1(29-159) and (GCN4)3-T1L σ1(29-159) structure. (A) The 

identical parts (residues 29-158 of σ1) of two structures are aligned via their coiled coil axis generated 

by the program twister [111]. The GCN4-segment is colored in grey, and σ1 is colored in blue, red, 

and yellow. Coiled coil axes are shown in grey, and α-helical axes are shown in the color of the 

according σ1 chains. The two coiled coil molecules differ in their twist. (B,C) Close up view along the 

coiled coil axis. While the three chains of the helical-bundles are properly aligned on the C-terminal 

part (C), the chains disperse at the N-terminal part of the molecules (B).  

 

The local coiled coil geometry of the two structures was analyzed with the program 

twister [111] (Figure 4.11). The stutter of T1L σ1 (VTTE; 147-150) located close to the C-

terminal end of the solved σ1 tail domain was identified and found to be compensated by 

a local unwinding of the coiled coil and the α-helices. The unwinding of the coiled coil is 

detected by a local increase of the coiled coil pitch (the distance of one full turn of the 

superhelix) that is accompanied by a local increase of the coiled coil phase yield per 

residue. A minor decrease in the α-helical phase yield per residue indicates the local 

unwinding of the α-helices.  
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Figure 4.11 Local coiled coil parameters plotted against residue numbers of (GCN4)3-T1L 

σ1(29-159) and T1L σ1(29-159). (GCN4)3-T1L σ1(29-159) plots are shown in black, and T1L σ1(29-

159) plots are shown in blue. The stutter location is indicated with a red bar. (A) Coiled coil pitch. The 

average pitch of (GCN4)3-T1Lσ1 is 157 ± 44 Å and of T1L σ1(29-159) is 174 ± 55 Å. The pitch locally 

increases at the stutter position. (B) Coiled-coil phase yield per residue (the angle between two 

consecutive residues relative to the vectors connecting the Cα-atoms and the coiled coil axis). Typical 

values for left-handed coiled coils are around -4°. Right-handed coiled coils have positive values. At 

the stutter, the coiled-coiled phase yield increases. (C) Crick α-helical phase. The Crick angle, which 

defines the phase of the Cα-atoms relative to the coiled coil axis is plotted for positions a and d. (In an 

idealized coiled coil residues in a positions have values ~ -30° and d positions have values ~ 20°). At 

the stutter the Crick angles have a minimum. Values are increased C-terminal the stutter. (D) α-helical 

phase yield per residue (the angle between two consecutive residues relative to the vectors 

connecting the Cα-positions to the α-helical axis) decreases at the stutter position.  
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4.2 T3D σ1 Fragments 

 

Figure 4.12 Overview of T3D σ1 constructs. The sizes of the σ1 fragments are indicated as white 

boxes of different length. His6-tags and the thrombin (Thro) cleavage sites are indicated. Constructs 

that led to a crystal structure are marked with a star.  

 

4.2.1 T3D σ1(28-455 and 30-455) 

The T3D σ1 constructs comprising amino acids 28-455 and 30-455 were cloned via NheI 

and BamHI restriction sites into pET28b. The His6-tagged proteins were over-expressed 

as verified by immunoblotting, but they were insoluble in all buffers tested.  

 

4.2.2 Coiled Coil – Body Constructs of T3D σ1  

The T3D σ1 constructs comprising amino acids 1-291, 1-234, 25-291, and 25-251 were 

cloned via NheI and HindIII restriction sites into pET28b. With the exception of T3D 

σ1(1-234), all constructs could be over-expressed by induction with 0.3 mM IPTG at 

20°C. The His6-tag could be removed by on-column digestion with thrombin, or the 

tagged-proteins could be eluted from the Ni-affinity chromatography column with an 

imidazole concentration of about 150 mM.  

 

T3D σ1 (25-291) – Purification and Crystallization 

His6-tagged T3D σ1(25-291) was separated from aggregated protein by size exclusion 

chromatography (Figure 4.13). The protein concentration was adjusted for crystallization 

with a precipitation test. 

Small needle clusters were obtained in 40% MPD, 0.1 M Tris pH 8.0 at 4°C. The additive 

screen (Hampton research) was applied to optimize the crystallization condition, and 

small needle-like clusters were obtained first in several conditions. After four weeks, 
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three-dimensional crystals grew in some conditions that contained linker molecules 

(10 mM taurine; 10 mM betaine hydrochloride; 3% (w/v) 1,6-diaminohexane). SDS-

PAGE with samples of dissolved crystals and the protein solution stored at 4°C revealed 

that the protein was degraded over time. The gel bands were analyzed by MALDI-mass 

spectrometry (Lisa Kraft, AK Kalbacher, University of Tuebingen). The identified 

fragments cover the T3D σ1 sequence from residue 38 almost completely until residue 

R262 (Appendix).  

 

 

Figure 4.13. Purification and crystallization of T3D σ1(25-291). (A) Size exclusion chromatogram 

of T3D σ1(25-291). The absorbance is shown at 230 nm. The protein is present in the void volume (1) 

and in the second peak (2) indicated by the SDS-PAGE gel. (B) The protein degraded over time. The 

protein solution that was used for crystallization and stored at 4°C was loaded on the SDS-PAGE gel 

~1 week after purification (4°C). Crystals that have been used for structure determination were 

dissolved and subjected to SDS-PAGE (xtal). In comparison to the freshly purified protein the majority 

of the protein runs at a lower molecular weight. (C) Initial crystals of T3D σ1(25-291) in 40% MPD, 

0.1 M Tris pH 8.0 are shown on the upper picture. Crystal used for structure determination is shown on 

the lower picture (40% MPD, 0.1 M Tris and 3% (w/v) 1,6-Diaminohexane). 

 

 

T3D σ1 (25-291) – Crystal Structure 

A complete data set to 2.25 Å resolution was collected and used for solving the structure 

by molecular replacement. The crystals belonged to space group C2 and contained one 

σ1 trimer in the asymmetric unit. 
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Table 4.4 Data collection and refinement statistics of T3D σ1(25-291) 

Data collection T3D σ1(25-291) 

Resolution range [Å] 49.1-2.25 (2.31-2.25) 

Space group C121 

Unit cell dimensions [Å] 351.2, 41.6, 63.4 

Unit cell angles [°] 90.0, 95.3, 90.0 

Completeness [%] 99 (98) 

Total reflections 295462 (22021) 

Unique reflections 43612 (3206) 

Rmeas [%] 13.3 (91.2) 

CC1/2 [%] 100 (83) 

I/σ 12.1 (2.1) 

Wilson B [Å2] 38.5 

Refinement  

Rwork/ Rfree [%] 22.3/ 24.7 

Atoms  

     Protein 4748 

     Waters 420 

B factors [Å2]  

     Chain A 46.1 

     Chain B 47.5 

     Chain C 46.5 

     Water 41.0 

r.m.s.d. bond lengths [Å] 0.004 

r.m.s.d. bond angles [°] 0.755 

Values in parentheses are for the highest-resolution shell. 

 

The protein folds into a parallel α-helical coiled coil and four triple β-spiral repeats, β1-β4 

(Figure 4.14). Few residues that belong to the short coiled coil of the T3D σ1 body 

domain are visible in the electron density (defined residues: chain A 27-243, chain B 27-

240, chain C 27-239). The body domain and the N-terminal half of the coiled coil 

contribute most of the crystal contacts. The middle part of the coiled coil does not interact 

with adjacent proteins and therefore, has temperature factors between 70-85 Å2. The 

main chain atoms of the different chains of the coiled coil superimpose with the 

appropriate T1L σ1 coiled coil residues with a r.m.s.d. value between 1.4-1.7 Å. The 

coiled coil domain consists of 20 heptads and is ~ 205 Å long. Six interhelical salt 

bridges are distributed over the entire length of the coiled coil and stabilize the structure.  
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Figure 4.14 Crystal structure of T3D σ1(25-291). The σ1 protein is colored in blue, red, and yellow. 

(A) The protein folds into a trimeric parallel α-helical coiled coil domain (residues 27-168) and a body 

domain that consists of four triple β-spiral repeats, β1-β4 (residues 169-234). (B) Close-up of the 

stutter, with view along the threefold axis. I154 is shifted outward of the core and forms a da-layer with 

Q155. (C) Q155 also interacts with R150 that also contacts T152 of an adjacent α-helix. (D) 

Backbone-backbone interactions between V170 residues at the domain-transition site. View along the 

threefold axis. (E) The two domains are connected by a direct interaction between body domain 

residue N182 and carbonyl groups of A169 and E166, which are located at the end of the coiled coil. 

An interhelical salt bridge formed by E166 and R161 stabilizes the end of the coiled coil.  

 

Few hydrophilic amino acids occupy typically hydrophobic positions a and d. Residues 

S39 (position a) and H42 (position d) bind several water molecules inside the core 

(Figure 4.15). The B-factors of the water molecules are similar to the surrounding amino 

acids, indicating full occupancy. A second histidine residue, H123, is located at position 

a, but the water bound at the trimer interface has a higher B-factor, and its electron 

density is weaker in comparison to the other bound water molecules.  

A stutter is located close to the C-terminal end of the coiled coil domain. This 

discontinuity of the heptad repeat of a four amino acid insertion (here: VTSI; 151-154) is 

compensated by a local unwinding of the α-helices and the coiled coil. The unwinding of 

the coiled coil is detected by a local increase of the coiled coil pitch and a minor 

decrease in the α-helical phase yield per residue indicates the local unwinding of the α-

helices. Residue I154 at the d position of the stutter is shifted outside of the core and 

forms a da-layer with Gln155. The Cβ and Cγ atoms of Q155 contribute to the 

hydrophobic interaction with I154. Q155 additionally interacts with R150, which further 

contacts T152 from an adjacent subunit. 
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Figure 4.15 Bound water molecules inside the core and local coiled coil parameters plotted 

against residue numbers of T3D σ1(25-291). The σ1 chains are colored in blue, red and yellow. 

Water molecules are shown as red spheres. (A) S39 at position a and H42 at position d of the heptad 

repeat bind water molecules inside the core. (B) H123 binds a water molecule at the trimer interface. 

(C) The coiled coil pitch (black line) and the α-helical phase yield (the contribution to the α-helical turn) 

per residue (blue line) are plotted against the residue number. The stutter location is indicated with a 

red bar. The average pitch of the T3D σ1 coiled coil domain was calculated with the program twister to 

148 ± 23 Å. The pitch locally increases and the α-helical phase yield per residue locally decreases at 

the stutter position. 

 

The body domain is directly connected to the coiled coil, and no intrinsic flexible region 

was observed between the two domains. N182 of the body domain interacts with 

carbonyl groups of A169 and E166, which are located at the C-terminal end of the coiled 

coil. E166 also forms an interhelical salt bridge with R161 stabilizing the end of the 

helical bundle. The β-spiral repeats, β1-β4, are similar to a previously solved T3D σ1 

structure ([19], PDB ID: 3S6X). The main chain atoms of the corresponding parts 

superimpose with a r.m.s.d. value of 0.63 Å.  

 

T3D σ1 (1-291) – Purification and Crystallization 

The cleaved protein T3D σ1(1-291) was tested for pH-stability. Size exclusion 

chromatography of the protein in different buffers demonstrated that it is almost insoluble 

at a pH of 7.6, while it is soluble at higher pH values. Minor aggregation was observed at 

a pH of 8.6 and, even after several weeks, the protein was not degraded.   

 

4.2.3 Coiled coil Construct 

T3D σ1 (1-168) – Purification and Crystallization 

The T3D σ1 construct comprising amino acids 1-168 was generated by introducing a 

stop codon into pET28b::His6-T3D σ1(1-291) at the position corresponding to Ala169 via 

site-directed mutagenesis.  
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The protein was separated from most impurities by binding to a Ni-affinity 

chromatography column. On-column digestion was followed by size exclusion 

chromatography (Figure 4.16). The untagged protein contains six additional amino acids 

(Gly-Ser-His-Met-Ala-Ser) at the N-terminus due to the cloning procedure.  

Crystals of T3D σ1(1-168) were obtained with the hanging drop vapor diffusion method in 

70% MPD, 0.1 M HEPES pH 7.5 at 20°C. A complete data set extending to 1.6 Å 

resolution was collected, and the structure was solved via determining phases by 

molecular replacement. The program Sfcheck (CCP4) [112] calculated ~25% pseudo-

translational symmetry.  

 

 

Figure 4.16 Purification and crystallization of T3D σ1(1-168). (A) Size exclusion chromatogram of 

T3D σ1(1-168). The absorbance is shown at 230 nm. An SDS-PAGE gel showing the concentrated 

protein is included. A band at ~19 kDa corresponds to the molecular weight of the protein. (B) Crystals 

of T3D σ1(1-168) in 70% MPD, 0.1 M HEPES pH 7.5 at 20°C.  

 

T3D σ1 (1-168) – Crystal Structure 

The structure was solved in the space group R32 with one σ1 monomer in the 

asymmetric unit (Table 4.5). The biological σ1-trimer is formed by the crystallographic 

symmetry. There is no electron density present for the N-terminus (residues 1-24) and 

the last six residues of the C-terminus. Residues 25-94 are well defined and possess low 

B-factors (Figure 4.17). This part of the structure is involved in most crystal contacts, 

while residues 95-162 contribute little to the crystal packing contacts, have higher B-

factors and the electron density is poorly defined. Due to the high percentage of pseudo-

translation and the region of poor electron density, the R-factors of the structure (Rwork 

23.6%, Rfree: 25.4%) are high for a resolution of 1.6 Å.  
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Figure 4.17 Crystal structure of T3D σ1(1-168). (A) The σ1 monomer that forms the asymmetric unit 

is colored according to B-factors from blue (15 Å2) to red (120 Å2). The symmetry-related molecules 

that complete the σ1 trimer are colored in grey. The N-and C-termini are indicated. (B) Close-up view 

of the N-terminal residues that are defined in the electron density. (C) Well defined electron density of 

residues with low B-factors. (D) Poorly defined electron density of the C-terminal residues that have 

high B-factors. The 2Fo-Fc electron density map is contoured in blue at 1.0 σ and the Fo-Fc map is 

contoured in green at 3.0 σ and red at -3.0 σ. 

 

Table 4.5 Data collection and Refinement statistics of T3D σ1(1-168) 

Data collection T3D σ1(1-168) 

Resolution range [Å] 41.0-1.6 (1.64-1.60) 

Space group R32  

Unit cell dimensions [Å] 38.5, 38.5, 737.3 

Unit cell angles [°] 90, 90, 120 

Completeness [%] 100 (100) 

Total reflections 545257 (37568) 

Unique reflections 29360 (2077) 

Rmeas [%] 7.7 (135) 

CC1/2 [%] 100 (78.7) 

I/σ 22.9 (2.3) 

Wilson B [Å2] 31.1 

Refinement  

Rwork/ Rfree [%] 23.0/ 25.1 

Atoms  

     Protein 1003 

     Waters/ MPD 69/ 24 

B factors [Å2]  

     Chain A 56.6 

     Water 45.2  

     MPD 55.9 
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r.m.s.d. bond lengths [Å] 0.015 

r.m.s.d. bond angles [°] 1.209 

Values in parentheses are for the highest-resolution shell. 

 

4.3 Interactions between σ1 and Neutralizing Antibodies 

Figures and text are adapted with permission: Copyright © American Society for 

Microbiology, JVI, 91 2017, doi:10.1128/JVI.01621-16. 

4.3.1 Formation and Crystallization of σ1-Fab Complexes 

Stable σ1-Fab complexes were formed and subsequently purified and separated from 

excess Fabs by SEC (Figure 4.18). Crystals of the T1L σ1-5C6 Fab complex were 

obtained with a concentration of 1-4 mg/ml in 9.5-11.5% (w/v) PEG8000, 0.1 M MES (pH 

5.5-6.5), and 0.2 M zinc acetate at 4°C using the hanging-drop vapor diffusion method. 

Mother liquor containing 12% MPD was used as cryoprotectant. Diffraction data from two 

crystals were collected, processed, and merged for structure determination by molecular 

replacement. 

 

 

Figure 4.18 Complex formation and purification of σ1-Fab complexes. Size exclusion 

chromatogram with the absorbance shown at 280 nm. (A) The two peaks contain T1L σ1-5C6 Fab 

complex (peak 1) and excess of Fabs (peak 2). A SDS-PAGE gel is included. Light and heavy chains 

of 5C6 have molecular weigths of ~24 kDa, and T1L σ1 head has a molecular weight of ~18.5 kDa. 

(B) The T3D σ1-9BG5 Fab complex (peak 1) is separated from excess Fabs (peak 2). A SDS-PAGE 

gel is included. Light and heavy chains of 9BG5 have molecular weigths of ~24 kDa, and T3D σ1 head 

has a molecular weight of ~17.7 kDa. 

 

Crystals of the T3D σ1-9BG5 Fab complex were obtained with a concentration of 1-

2 mg/ml in 10-12% (w/v) PEG8000, 0.1 M Tris (pH 6.5-7.5), and 0.2 M magnesium 
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chloride at 4°C using the hanging-drop vapor diffusion method. The reservoir solution 

was covered with ~150 µl silicone oil to reduce vapor diffusion due to initially fast growing 

crystals. Mother liquor containing 12% MPD was used as cryoprotectant. The structure 

was solved by molecular replacement.  

 

4.3.2 Crystal Structure of T1L σ1-5C6 Fabs 

The 3.7 Å resolution structure of T1L σ1 head in complex with 5C6 Fabs was solved in 

space group C2 with one trimeric σ1 head and three Fab molecules in the asymmetric 

unit (Table 4.6). The variable domains (VL and VH) of 5C6 are well ordered, and the 

interaction area with σ1 is well defined in the electron density map, while the constant 

domains (CL and CH) of 5C6 are poorly visible. The T1L σ1 fragment folds into one β-

spiral repeat and the globular head domain. The upper part of the σ1 head is faced by 

the variable domains VL and VH of three Fab molecules (Figure 4.19). Each Fab spans 

two σ1 subunits. The σ1-Fab contact buries a surface of 727 Å2 from the solvent with 

light and heavy chain contributions of 171 Å2 and 556 Å2, respectively.  

 

 

Figure 4.19 Crystal structure of T1L σ1 head in complex with 5C6 Fabs. Subunits of σ1 are 

colored in blue, red, and yellow. The light and heavy chains of the 5C6 Fab fragment are shown in 

light and dark brown. (A) Top view along the σ1-threefold-axis. The σ1 head domain is surrounded by 

three Fab molecules. Each Fab fragment spans two σ1 subunits, appearing to stabilize the trimeric 

state of σ1. (B) Side view, showing 5C6 Fabs binding at the upper, C-terminal region of the σ1 head.  

 

The σ1 protein is exclusively engaged by the complementarity-determining regions 

(CDRs) of 5C6, which are referred to as L1-L3 for CDRs 1-3 of VL and H1-H3 for CDRs 

1-3 of VH, respectively (Figure 4.20). Three of the six CDRs are involved in binding σ1: 

L1, H2, and H3. L2 likely forms only a single hydrogen bond with σ1, whereas L3 and H1 

do not interact with σ1 at all. 
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Figure 4.20 Contacts between T1L σ1 head and 5C6 Fabs. Subunits of σ1 are colored in blue, red, 

and yellow. The light and heavy chains of the 5C6 Fab fragment are shown in light and dark brown. 

(A) Close-up view of 5C6 Fab binding across two σ1 subunits. CDR loops are highlighted in light (L1, 

H1), medium (L2, H2), and dark (L3, H3) green in case of VL, and grey in case of VH. Black box 

indicates the location of the interactions shown in (B). CDR H3 interacts mainly with one σ1 subunit by 

forming several hydrogen bonds with σ1 residues from four different β-strands. R424σ1 is engaged by 

the carbonyl groups of I101H3 and G103H3 and is sandwiched by Y107H3 and Y457σ1. Both Y102H3 and 

Y104H3 interact with σ1 residues from both subunits simultaneously. Y102H3 forms hydrogen bonds 

with Q371σ1, G448σ1, and Q417σ1, and Y104H3 forms hydrogen bonds with G448σ1 and D426σ1. 

 

H3 contributes substantially to the interaction with σ1. This CDR extensively contacts 

one σ1 subunit, forming multiple hydrogen bonds with σ1 residues from four β-strands. A 

key interaction involves R424σ1, which forms hydrogen bonds with the carbonyl groups of 

I101H3 and G103H3 as well as the side chain of Q417σ1. Residue R424σ1 additionally 

makes cation-π interactions with Y107H3 and Y457σ1. The long H3 CDR also contacts the 

interface of two σ1 subunits. Y102H3 and Y104H3 interact with σ1 residues from both 

subunits simultaneously. Y102H3 forms hydrogen bonds with Q371σ1, G448σ1, and 

Q417σ1 using its amine, hydroxyl, and carbonyl groups, respectively. G448σ1 and D426σ1 

are contacted by the Y104H3 side chain.  

 

Table 4.6 Data collection and refinement statistics of T1L σ1 – 5C6 Fabs 

Data collection T1L σ1 – 5C6 Fabs 

Resolution range [Å] 48.99 - 3.70 (3.80 - 3.70) 

Space group C2  

Unit cell dimensions [Å] 223.6, 129.1, 87.9 

Unit cell angles [°] 90, 101.24, 90 

Completeness [%] 99.9 (99.7) 

Total reflections 314028 (24377) 

Unique reflections 26264 (1965) 

Rmeas [%] 29.5 (161.9) 

CC1/2 [%] 99.1 (74.8) 
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I/σ 7.94 (1.71) 

Wilson B [Å2] 90.7 

Refinement  

Rwork/ Rfree [%] 23.6/ 28.0 

Atoms  

     Protein 12621 

B factors [Å2]  

     Chain A, B, C 53.2, 51.8, 54.7 

     Chain D, E,F, 119.7, 121.5, 136.9 

     Chain G, H, I 136.3, 144.7, 136.3 

r.m.s.d. bond lengths [Å] 0.01 

r.m.s.d. bond angles [°] 1.28 

Values in parentheses are for the highest-resolution shell. 

 

4.3.3 Crystal Structure of T3D σ1-9BG5 Fabs 

The 3.0 Å resolution structure of the T3D σ1 head in complex with 9BG5 Fabs was 

solved in space group P1 with two trimeric σ1 proteins and six Fab molecules in the 

asymmetric unit (Table 4.7). 

Similar to the T1L σ1-5C6 structure, three 9BG5 Fab molecules engage the head domain 

of T3D σ1, and each Fab spans two σ1 subunits (Figure 4.21). However, the location of 

the 9BG5 mAb epitope is different. 9BG5 binds to the side of the T3D σ1 head domain, 

while 5C6 engages T1L σ1 closer to the top of the head domain. The σ1-Fab contact 

buries a surface of 905 Å2 from solvent with almost equal contributions of the light 

(436 Å2) and heavy chains (469 Å2).  

 

 

Figure 4.21 Crystal structure of T3D σ1 head in complex with 9BG5 Fabs. Subunits of σ1 are 

colored in blue, red, and yellow. The light and heavy chains of the 9BG5 Fab fragment are shown in 

light and dark violet. (A) Top view along the σ1-threefold-axis. The σ1 head domain is surrounded by 

three Fab molecules. Each Fab fragment spans two σ1 subunits, appearing to stabilize the trimeric 

state of σ1. (B) Side view, showing 9BG5 Fabs binding σ1 in the middle of the head domain. 
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Five of the six CDRs are in contact with the flat epitope (Figure 4.22). L1 forms an 

extended hydrogen bond network with σ1 involving eight direct interactions. Residue 

E419σ1, which forms an intramolecular salt bridge with R427σ1, is faced by L1 residues 

S30L1, S31L1, and N32L1. Residue N32L1 also interacts with the carbonyl group of V392σ1 

and with the guanidine group of R51L2, which also forms a salt bridge with D340σ1 

located at the interface between two σ1 subunits. CDRs H1, H2, and H3 participate in 

intermolecular contacts with several hydrophobic interactions, a small number of 

hydrogen bonds, and one cation-π interaction. 

 

 

Figure 4.22 Contacts between the T3D σ1 head and 9BG5. Subunits of σ1 are colored in blue and 

yellow. The light and heavy chains of the 9BG5 Fab fragment are shown in light and dark violet. (A) 

CDR loops are highlighted in light (L1, H1), medium (L2, H2), and dark (L3, H3) green in case of VL 

and grey in case of VH. The black box indicates the location of the interactions shown in (B). The CDR 

L1 loop forms an extensive hydrogen-network with one σ1 subunit. E419σ1 makes an intramolecular 

salt bridge with R427σ1 and is faced by the three Fab residues, S30L1, S31L1, and N32L1. CDR L2 

residue R51L2 forms an intermolecular salt bridge with D340σ1 and is stabilized by a cation-π 

interaction with Y105H3. 

 

Table 4.7 Data collection and refinement statistics of T3D σ1 – 9BG5 Fabs 

Data collection T3D σ1 – 9BG5 Fabs 

Resolution range [Å] 49.04 - 3.00 (3.08 – 3.00) 

Space group P1  

Unit cell dimensions [Å] 103.2, 109.3, 131.7 

Unit cell angles [°] 103.1, 113.6, 103.5 

Completeness [%] 98.5 (98.4) 

Total reflections 338722 (26084) 

Unique reflections 94667 (7020) 

Rmeas [%] 11.6 (85.4) 

CC1/2 [%] 99.5 (64.7) 

I/σ 13.08 (1.89) 

Wilson B [Å2] 55.9 
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Refinement  

Rwork/ Rfree [%] 22.3/ 24.7 

Atoms  

     Protein 24507 

B factors [Å2]  

     Chains A, B, C 45.4, 45.9, 45.6 

     Chains D, E,F, 50.5, 52.4, 55.7 

     Chains G, H, I 75.3, 77.4, 76.3 

     Chains J, K, L 94.6, 106.6, 99.2 

     Chains M, N, O 110.2, 74.1, 80.3 

     Chains P, Q, R 94.9, 80.7, 98.2 

r.m.s.d. bond lengths [Å] 0.004 

r.m.s.d. bond angles [°] 0.99 

Values in parentheses are for the highest-resolution shell. 

 

 

4.3.4 Affinity Determination of Fabs for σ1 

Surface plasmon resonance (SPR) experiments with immobilized σ1 heads and Fabs as 

analytes were conducted to obtain affinity and kinetic data for the interaction of σ1 with 

Fabs (Figure 4.23). Both, 5C6 and 9BG5 Fabs bound their target σ1 with low nanomolar 

affinity following a 1:1 Langmuir interaction model. The KD values of the Fab-σ1 

interactions are similar, with 2.0 (± 0.1) × 10-9 M for T1L σ1-5C6 and 2.5 (± 0.2) × 10-9 M 

for T3D σ1-9BG5, but the binding kinetics differ. The T1L σ1-5C6 Fab complex has 

significantly lower association and dissociation rates compared to the T3D σ1-9BG5 Fab 

complex. 
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Figure 4.23 Kinetics of Fab binding to σ1. Representative SPR-binding studies of the T1L σ1 head 

with 5C6 Fabs (A) and the T3D σ1 head with 9BG5 Fabs (B). The σ1 protein was immobilized on a 

sensor chip, and twofold dilutions of Fab fragments were injected in duplicate. Fab concentrations 

ranging from 280 to 8.8 nM for 5C6 (A) and from 37.5 to 0.6 nM for 9BG5 (B) are indicated at the right 

of each sensorgram. The data sets were globally fitted (red lines) to a 1:1 Langmuir binding model. 

The corresponding χ2 values are indicated in the table below. (C) The KD values and, association (ka) 

and dissociation (kd) constants and their standard deviations were determined using three 

independent measurements.  

 

4.3.5 Affinity Determination of hJAM-A for σ1 

SPR experiments with immobilized σ1 heads and the human JAM-A ectodomain as 

analyte were conducted to determine affinities of T1L and T3D σ1 for JAM-A 

(Figure 4.24). The JAM-A molecule bound to both T1L and T3D σ1 with high nanomolar 

affinities with average KD values of 2.0 (± 0.1) × 10-7 M for T1L σ1 and 5.3 (± 0.5) × 

10-7 M for T3D σ1. Due to high on- and off-rates of JAM-A binding to σ1, kinetic 

parameters of the interaction could not be determined. 
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Figure 4.24 SPR studies of JAM-A binding to σ1. Representative sensorgrams of 10 different JAM-

A concentrations (A: 0.02 to 10 μM, B: 0.04 to 20 μM) injected in duplicate over immobilized T1L σ1 

(A) and T3D σ1 (B), respectively, at 25°C. Red boxes indicate the range used for calculation of 

equilibrium response values. Binding curve of JAM-A to T1L σ1 (C) and T3D σ1 (D). The equilibrium 

response values are plotted against the injected JAM-A concentrations. KD values are indicated. 

Copyright © American Society for Microbiology, JVI, 89, 2015, 6136-6140, doi:10.1128/JVI.00433-15.   

 

4.3.6 JAM-A Binding to σ1-mAb complexes 

To investigate whether JAM-A can engage σ1 saturated with neutralizing antibodies, I 

conducted SPR-measurements with the σ1 head domain immobilized on a biosensor 

chip (Figure 4.25).  

The response of 5C6 Fabs (~160 RU) and the JAM-A ectodomain (~71 RU) to σ1 was 

tested first. 5C6 antibodies were injected twice and Fabs were applied to the surface 

immediately afterwards to determine whether all accessible binding sites of σ1 were 

engaged by the mAbs. Injection of the JAM-A ectodomain followed and the response 

level increased (~67 RU), indicating binding of the soluble protein to a T1L σ1-5C6 mAb 

complex. After surface regeneration, the response level of JAM-A or 5C6 Fabs was 
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tested again and showed that a similar amount of JAM-A can bind to σ1 alone and to a 

σ1-mAb complex.  

In the case of T3D σ1, 9BG5 mAb injection was directly followed by an injection of 9BG5 

Fabs to determine whether all accessible σ1 epitopes were bound by the mAbs. A 

second injection of 9BG5 mAbs to surface saturation was followed by injection of the 

JAM-A ectodomain. The response level increased (~ 30 RU), suggesting binding of the 

soluble JAM-A protein to a T3D σ1-9BG5 mAb complex. Response levels of 9BG5 Fabs 

and JAM-A (27 RU) to σ1 alone were evaluated after surface regeneration and showed 

that similar amounts of JAM-A can bind to σ1 alone and to the σ1-mAb complex. 

 

Figure 4.25 Binding of the soluble ectodomain of reovirus receptor JAM-A to σ1 complexed 

with mAbs. Shown are reference SPR sensorgrams. (A) JAM-A binding to immobilized T1L σ1 

complexed with 5C6 mAbs was observed. Control experiments pre- and post-complex formation with 

JAM-A and 5C6 Fabs were performed and showed that similar amounts of JAM-A bound to σ1 alone 

and to a σ1-mAb complex. (B) JAM-A binding to immobilized T3D σ1 complexed with 9BG5 mAbs 

was observed. Control experiments after regeneration of the σ1 surface with 9BG5 Fabs and JAM-A 
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were performed and showed that similar amounts of JAM-A bound to σ1 alone and to a σ1-mAb 

complex. 

5 Discussion 

5.1 The σ1-Tail Domain 

5.1.1 Anchoring of σ1 in the Virus 

The trimeric reovirus attachment protein σ1 is anchored at the five-fold axis of the virion 

by interacting with the pentameric λ2 protein. The first N-terminal ~ 25 amino acids of σ1 

are thought to contact λ2, and as the sequence possesses a heptad repeat pattern, this 

part of the protein is predicted to form a small coiled coil that is appended to the rest of 

the tail domain by a short linker region [60,113].  

EM reconstructions of reovirus virions and ISVPs revealed small density features 

corresponding to σ1 protruding from the center of the λ2 turrets [28]. Comparison of 

reconstructions of particles that have σ1 bound and particles that lack σ1 showed density 

features just above and beneath the top of the λ2 turret, indicating that the σ1 anchor is 

incorporated within the pentameric λ2 protein [114,115]. The density feature of σ1 within 

the λ2-cavity forms a knob like structure.  

A deeper understanding of the structural features underlying the symmetry-mismatch, 

the unusual interaction between the pentameric λ2 and the trimeric σ1 proteins, would 

shed light on assembly and disassembly processes of the virus. To investigate whether 

the N-terminus of σ1 has a defined structure in the absence of λ2, a crystal structure of a 

T3D σ1 construct comprising residues 1-168 was solved. The σ1 trimer is formed by 

crystallographic three-fold symmetry, but there is no electron density visible for the 

residues of interest (amino acids 1-24). This finding indicates that this part of the protein 

is either too flexible or unstructured to be resolved in the electron density. It is therefore 

impossible to say whether the N-terminus of σ1 is structured or not.  

It is possible that the six non-native amino acids at the N-terminus of σ1, a remnant from 

cloning, influence the σ1 structure. Therefore, and also to compare the findings with T1L 

σ1, a new construct, SUMO-T1L σ1(2-178), was cloned and is currently under 

investigation. This construct has the advantage that, after tag-cleavage with the protease 

UlpI, no additional non-native amino acids remain appended to the σ1 protein.  

It is unlikely that the coiled coil region of the tail domain (amino acids 25 onwards) found 

in the T3D σ1(1-168) structure would correspond to the knob-like density feature within 

the λ2-cavity as the opening of λ2 spans only ~ 15 Å, while the coiled coil has a diameter 

of ~ 25 Å. It remains possible that the N-terminal region of σ1 requires an interaction with 
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λ2 to become folded and that the small predicted coiled coil corresponds to the knob-like 

density observed by EM analysis, while the flexible linker penetrates the λ2 channel. 

The current model predicts that σ1 cannot escape λ2 in virions and ISVPs, as the 

channel at the center of λ2 is too narrow. During ISVP-to-core transition, λ2 undergoes a 

conformational change that increases the width of the channel allowing release of σ1 that 

poorly binds to cores [28]. The recoating of cores with µ1/σ3 causes λ2 to rearrange into 

its closed conformation. Except for the appearance of the knob-like density, recoating 

with additional σ1 does not induce further major changes in the capsid. Therefore, it is 

hypothesized that σ1 assembles before or in concert with µ1/σ3 [115]. An experiment, 

such as adding µ1/σ3-recoated core particles to σ1 containing cell lysate and testing for 

σ1 insertion would be informative.  

The λ2 protein forms solely monomers when it is expressed alone and requires the 

scaffold of the core to form pentamers. To strengthen the model that σ1 is incorporated 

into λ2 pentamers, and to further investigate the symmetry mismatch, one could recoat 

core particles with µ1/σ3 and shorter σ1 proteins containing photo-reactive amino acids 

at the N-terminus for site-specific cross-linking. Photo-reactive unnatural amino acids 

such as photo-Met or photo-Leu could be incorporated into σ1 either during recombinant 

protein production or via peptide synthesis [116,117]. Other photo-reactive amino acids 

such as p-benzoyl-L-phenylalanine, which can be incorporated into biomolecules by 

genetic code expansion methods, might be too bulky for this experiment. Furthermore, 

the heterologous production of the σ1 tail yields high protein amounts and enables 

recombinant modifications, e.g., the specific introduction of cysteine residues for labeling 

with Alexa fluorophores for FRET-based approaches, that might be useful to determine 

whether the N-terminus of σ1 has a defined structure. NMR spectra of T1L σ1(2-178) 

and NMR spectra of T3D σ1(1-168) compared with T3D σ1(25-168), which both have the 

same six non-native amino acids, would be a different and more elegant way to 

determine whether the σ1 N-terminus is structured.  

Reovirus σ1 and adenovirus fiber share functional and structural properties [63]. Both 

proteins mediate cell-attachment, possess a fibrous domain composed of triple β-spiral 

repeats, have a globular head domain, and are associated with the virus at the 

icosahedral vertices. However, most data suggest that the two trimeric proteins have 

different approaches to encounter the ‘3-5’ symmetry-mismatch. The virus-anchoring 

region of adenovirus fiber is larger than the expected region of σ1 and has in comparison 

no predicted secondary structure but a highly conserved region among the adenovirus 

serotypes. Compared to σ1, adenovirus fiber is thought to interact at the outer surface of 
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the pentameric vertex-protein using monomeric “cables” for binding between two 

subunits. Several EM analyses of adenoviruses and crystal structures of the pentameric 

protein complexed with fiber peptides support this model [64,118]. However, one crystal 

structure of a chimeric virus exists that reveals electron density proposed to belong to the 

fiber within the central cavity of the pentameric protein [119]. This interaction was 

suggested to represent an intermediate state during virus cell entry or assembly 

[118,119]. 

 

5.1.2 The σ1 Coiled Coil 

Prior to this work, crystal structures of only two small regions of the T1L σ1 tail (residues 

29-78 and 120-160) that are both N- and C-terminally flanked by (GCN4)3 were known 

(Reiss, Dissertation, 2013). To investigate whether the σ1 tail can independently form a 

stable trimeric coiled coil or whether its trimeric structure is enforced by the trimerization 

units, longer T1L σ1 constructs with or without a single N-terminal (GCN4)3-motif were 

purified and crystallized.  

The proteins elute from SEC-columns at retention volumes corresponding to globular 

proteins of higher molecular weight, reflecting a large hydrodynamic radius due to the 

rigidity of the elongated molecules. The T1L σ1(29-158) protein is stable across broad 

pH- and temperature ranges, as determined by circular dichroism measurements, 

indicating that the (GCN4)3-motif is not required for multimerization of the protein. Both 

crystal structures revealed trimeric helical bundles with two chloride ions bound in the 

center of the coiled coil. 

Superpositions of the σ1 structure lacking (GCN4)3 with the σ1 structures containing 

(GCN4)3 yield high r.m.s.d. values (Table 5.1). The extent of the deviation is higher for 

the longer constructs. This finding indicates that the trimerization unit constrains the σ1 

structure, causing deviations of the winding that add up along the α-helix and casts doubt 

on the usefulness of the fusion-tag in this particular case. However, differences in crystal 

packing and crystal contacts also might influence the winding.  

In comparison, the tail domain residues that are defined well in the electron density 

(residues 29-95, chain A) of the two T3D σ1 crystal structures, T3D σ1(1-168) and T3D 

σ1(25-291), that do not contain a (GCN4)3-motif and differ in the space group and crystal 

contacts, align with an r.m.s.d. value of 0.26 Å (main chain) or 0.54 Å (all atoms).  
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Table 5.1 Superposition of the untagged σ1 protein with (GCN4)3-carrying fragments of 

T1L σ1 tail domain structures. Coordinates of similar σ1-residues were superimposed by 

LSQ (chain A only) or SSM superpose (chain ABC). 

T1L σ1(29-159) 

 

Main chain  

(chain ABC) 

Main chain 

(chain A) 

All atoms 

(chain A) 

(GCN4)3-T1L σ1(120-160)-(GCN4)3 1.37 Å 0.65 Å 1.24 Å 

(GCN4)3-T1L σ1(29-78)-(GCN4)3 - 0.90 Å  1.52 Å 

(GCN4)3-T1L σ1(29-158) 2.50 Å 1.78 Å 2.15 Å 

 

 

Interhelical salt bridges between positions g and e+1 contribute approximately 1.5 kJ/mol 

to the coiled coil stability, and the charge patterns at those positions influence the 

preference for homo- or heterotypic or parallel or antiparallel pairing as well as the 

oligomerization state of an α-helical bundle [120,121].  

The coiled coils of T1L σ1(29-158) and T3D σ1(25-291) are stabilized by several 

interhelical salt bridges along the σ1 tail domain (Figure 5.1, Appendix helical wheel). For 

the T3D σ1 structure, all predicted charge-mediated interactions between adjacent α-

helices are present, while for the T1L σ1 structures, two such interactions are not part of 

the construct, one formed between E27 and K32 at the N-terminus, and one formed 

between R171 and E176 at the C-terminus of the tail.  

Few interhelical salt bridges involve residues at positions other than g and e+1, such as 

the interaction between R153 and D155 of T1L σ1 or between E159 and R161 of T3D 

σ1. These interactions are likely made possible by the locally altered geometry caused 

by the stutter. The interaction between R120 and D122 of T3D σ1 that occupy e and g 

positions of the same heptad is likely linked to the presence of H123 at the following core 

position. The histidine side chain is bulky and hydrophilic and leads to a local increase of 

the coiled coil pitch, making a salt bridge between R120 and D122 possible. 
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Figure 5.1 Amino acid sequence alignment of residues 1-200 of T1L, T2J, and T3D σ1. The 

heptad repeats (abcdefg)n of the tail domain are indicated and highlighted in alternating light and dark 

brown shading. Typically hydrophobic positions a and d are bold. Red asterisks mark the start and end 

of T1L σ1(29-158), and a blue asterisk marks the N-terminal start of T3D σ1(25-291). Charged 

residues that form interhelical salt bridges of adjacent α-helices are highlighted in blue, and the acid 

base pairs are connected by underlines. The stutter is framed with a red box. Hydrophilic residues that 

occupy positions a and d are highlighted in red. A conserved Asn residue of the body domain is 

highlighted in green. 

 

The hydrophobic core provides the largest contribution to the overall stability of an α-

helical bundle [120]. In most coiled coils, a small percentage of polar core residues are 

present that add oligomerization and orientation specificity at the expense of stability. 

Here, T1L σ1 harbors two threonines at a positions and two asparagines at d positions, 

while T3D σ1 has a serine, two histidines, and an arginine at a and d positions. The main 

electron density for the arginine (R67) is shifted to the outside of the core and forms a 

hydrogen bond with S66 of an adjacent α-helix (Figure 5.2). Little density is present in 

the core of the 2.25 Å resolution structure of T3D σ1(25-291), while the unbiased Fo-Fc 

electron density map of the 1.6 Å resolution structure of T3D σ1(1-168) indicates 

alternative conformations for R67, so that one arginine in one of the three chains at a 

time is present in the core (Figure 5.2). 
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Figure 5.2 Residue R67 of T3D σ1 occupies a typically hydrophobic a position. Close up view 

along the three-fold axis. The σ1 chains are colored in blue, red, and yellow in the 2.25 Å resolution 

structure of T3D σ1(25-291) (A) and yellow and grey (symmetry mates) in the 1.6 Å resolution 

structure of T3D σ1(1-168) (B). The 2Fo-Fc electron density map is contoured in blue at 1.0 σ, and the 

Fo-Fc map is contoured in green at 3.0 σ and in red at -3.0 σ. The residue R67 is shifted out of the core 

and towards the surface of the coiled coil, where it interacts with S66 of an adjacent α-helix. Unbiased 

electron density inside the core indicates an alternative conformation of R67 that is modeled in (B) and 

shows that one R67 residues at a time can be present inside the core.  

 

Acidic and basic amino acids that occupy core positions play important roles in the pH-

dependent structural rearrangements of known coiled coil-containing proteins, such as 

influenza hemagglutinin or macrophage scavenger receptor [122,123]. Peptides 

composed of 4-5 heptad repeats with amino acid substitutions of Glu or His at core 

positions were investigated for pH-induced conformational changes [124,125]. At certain 

pH values, these residues are charged causing interhelical electrostatic repulsion at the 

core that destabilizes the coiled coil and leads to a random structure. 

Of the three reovirus serotypes, only T3D σ1 possess basic histidines at core positions 

that point inside. CD measurements of the tail domain could indicate a pH-dependent 

influence on the coiled coil structure. However, as the histidines are separated from each 

other by eleven heptad repeats it is likely that a destabilization at low pH will be 

compensated by the surrounding helices. The other two serotypes do not have charged 

residues at similar locations and, thus, it seems unlikely that the histidines play a crucial 

role in the assumed conformational rearrangement of σ1.  

Histidines within a helical bundle can function as ligands for various ions [126,127]. Only 

water molecules are bound within the T3D σ1 protein structure. It is possible that a 

different crystallization condition or metal ion soaking of the obtained crystals would 

reveal a structure with bound ions.  
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T1L σ1 harbors two and T2J σ1 harbors one asparagine at d positions. The asparagines 

of T1L σ1 coordinate halogenide ions in the hydrophobic core, a characteristic property 

that has been observed in other trimeric coiled coils [128]. Asparagines at the core 

positions that have been substituted with hydrophobic amino acids in other coiled coil 

structures led to a loss of structural specificity. The asparagines present in T1L σ1 and 

T2J σ1 also might act as additional trimerization determinants necessary for proper 

assembly of the α-helical bundle. Residue H42 of T3D σ1 is located at a position similar 

to N38 of T1L σ1, and it also might influence the trimeric aligning of the σ1 subunits. 

Uninterrupted heptad repeats are predominantly found in short coiled coil structures, 

e.g., in transcription factors, while heptad breaks (stutter, stammer) are encountered in 

many longer coiled coil domains [68]. These discontinuities can be tolerated by a local 

distortion of the geometry that is generally confined to two α-helical turns on both sides of 

the heptad break [69,120]. The local geometry change is assumed to either terminate the 

structural motif or contribute to the flexibility of longer coiled coil structures. Heptad 

breaks can modify the assembly of a protein and its interaction properties, as was shown 

in an analysis of a stutterless vimentin [129]. Stutter positions also are highly conserved 

in many viral fusion proteins, suggesting a functional role in proteins that often adopt 

different conformations. 

In the σ1 proteins of all three serotypes, the stutter position close to the C-terminal end of 

the coiled coil is conserved. Following the stutter, T1L σ1 has two heptad repeat 

insertions and T2J σ1 has one heptad repeat insertion relative to T3D σ1. The stutter 

sequences lead to a local unwinding of the coiled coil and the α-helices in the T1L σ1 

and T3D σ1 structures. This unwinding causes the formation of a da-layer, and a 

hydrophilic interaction between the conserved threonine at position b of the stutter and 

the conserved arginine (position g-1) of an adjacent α-helix.  

To further define the role of the observed features of the T1L σ1 and T3D σ1 tail 

domains, mutant σ1 proteins were engineered. In T1L σ1, the core asparagines were 

replaced with hydrophobic amino acids, and in T3D σ1, stutterless tail domains were 

engineered through either an insertion of three additional amino acids or a deletion of the 

four stutter residues. Mutant viruses were recovered using the reverse genetics 

approach, and their viral attachment and cell entry properties are currently being 

analyzed to define the effect of the engineered mutations in a physiological setting. This 

analysis also may reveal whether the ions in the core or the conserved stutter serve 

crucial roles in σ1 function.  
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5.2 The σ1 Tail-Body Junction 

EM images of the σ1 protein isolated from virions by mild heating show three regions of 

greater flexibility, one close to the N-terminus, one at the midpoint of the molecule that 

correlates with the junction of the tail and the body domain, and one close to the head 

domain [61]. These flexible parts could facilitate a structural rearrangement of σ1 during 

viral disassembly or assembly.   

The region just below the head was indeed shown to be flexible by previous 

crystallographic analyses of σ1 [63]. To investigate the remaining two regions of 

predicted flexibility, T1L and T3D σ1 proteins comprising these regions were purified and 

crystallized. As discussed above, the N-terminal part of the T3D σ1(1-168) structure is 

not resolved in the electron density, likely because of its highly flexible nature or 

conformational heterogeneity. 

The structure of T3D σ1(25-291) comprises the tail and a portion of the body domain and 

reveals a seamless transition of the two domains. Backbone-backbone interactions 

between valines V170 of the three chains at the transition site and direct interactions 

between N182 of the body and carbonyl groups of E166 and A169 at the end of the 

coiled coil stabilize the junction of the two domains. Thus, the structure does not readily 

explain the flexibility at the midpoint of σ1 observed in the EM images. 

The valine and threonine at the domain junction, as well as the asparagine that interacts 

with the coiled coil, are also conserved in the body domains of T1L and T2J σ1 

(Figure 5.1, page 74). An interhelical salt bridge that stabilizes the C-terminal end of the 

T3D σ1 coiled coil is also predicted in the sequence of the other two serotypes. 

Therefore, it is likely that the transition of the tail to the body domain of T1L and T2J σ1 is 

similar to the T3D σ1 structure.  

In T1L σ1, a methionine is located at the end of the coiled coil (analogous to A169 of 

T3D σ1), and the presence of this larger residue might lead to a larger coiled coil 

diameter at the transition site compared with T3D σ1. X-ray diffraction data were 

obtained for crystals of a T1L σ1 construct comprising the coiled coil and a portion of the 

body domain, and the data are currently being processed. The crystal structure of this 

protein will likely elucidate features of the tail-body junction in T1L σ1 and clarify whether 

its structure is indeed similar to T3D σ1. 

The structural information obtained for T3D σ1(25-291) can be combined with the known 

T3D σ1 structure consisting of the body and the head domain (PDB ID: 3S6X). The main 

chains of the body domain present in both structures align with a low r.m.s.d value of 
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0.34 Å (all atoms: 0.63 Å) and result in a high-resolution model of σ1 that fits well with 

the elongated EM reconstruction of full-length T2J σ1 (Figure 5.3). 

 

 

Figure 5.3 Model of T3D σ1 superimposed on a computer-processed electron micrograph of 

T2J σ1. (A) The T3D σ1 model is assembled by combining the residues 27-243 of the T3D σ1(25-

291) structure with residues 244-455 of PDB ID: 3S6X (after alignment of the identical parts of the 

body domain). Both structures used for the model have a resolution of 2.25 Å. The model is colored 

according to B-factors from blue (20 Å2) to red (120 Å2). The T3D σ1 model is superimposed onto a 

computer-processed electron micrograph of T2J σ1 adapted from [61]. (B, C) Electron micrographs of 

T2J σ1 molecules isolated from virions show kinks at two different region of the molecule [61]. Figure 

used with permission. 

 

The head and body domains of σ1 are connected by a linker region that allows 

movement between the two domains and explains the flexibility of the molecule near the 

head domain [17,19,63]. Within the T3D σ1(25-291) structure, no such intrinsic flexible 

region was observed that could account for the flexibility in the middle of the σ1 protein. 

Instead, it is possible that conformationally distinct, stable states of σ1 exist in which the 

tail and body have different but defined orientations.  

In the study of Fraser et al. [61], just a minor fraction (2-4%) of the σ1 particles showed 

kinks near the midpoint of the molecule. This rare observation could be an artifact, a 

result of the harsh sample preparation that included heating of the virus to 52°C for 

30 min (to release σ1) and negative staining using uranyl formate that might affect the 

protein structure. The comparison with EM micrographs of recombinant σ1 could give 

some more hints about the flexibility of the molecule. Therefore, the T1L and T3D σ1 

constructs of different lengths that comprise the coiled coil tail and parts of the body 

domain, as well as T1L σ1(29-470) that is composed of the tail, body, and head domains, 

might be useful. The initial purification test of SUMO-T1L σ1(2-470) looked promising, 
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and it is probably worthwhile to investigate this construct further. In comparison to the 

untagged T1L σ1(29-470) protein, the construct possesses additional N-terminal amino 

acids, and the purification could be simpler and less time-consuming. 

The contribution of direct body-tail domain interactions to the stability of σ1 and the effect 

of the interhelical salt bridge at the end of the coiled coil could be investigated with 

mutant σ1 proteins in the proposed EM study. Proteins that are more flexible at the 

midpoint of the molecule might increase the percentage of kinked or bent structures 

within the sample. 

To investigate whether the observed tight and stable transition of the two domains has 

an influence on the function of σ1, mutant T3 reovirions with alterations in the tail, such 

as a N182A point mutation, have been recovered and will be tested for attachment, 

internalization, disassembly, and membrane penetration.  

While the B-factors for residues at the tail-body junction are low in the T3D σ1(25-291) 

structure, the residues that belong to the small coiled coil that directly follows β-spiral 

repeat β4 have negligable electron density and high B-factors. The T3D σ1(170-455) 

structure of PDB ID 3S6X has similar low B-factors for the N-terminal part of the body 

domain (β1-β4) and high B-factors for the small coiled coil and the following β-spiral 

repeats β5-β7 (Figure 5.3). Higher temperature factors indicate a higher degree of 

thermal mobility within a molecule or regions that are involved in fewer crystal contacts.  

The susceptibility of T3D σ1 to protease cleavage within the coiled coil of the body 

domain and the finding that the point-mutation T249I, which has a stabilizing effect on 

the coiled coil, renders the protein resistant to proteolytic cleavage is a further indication 

for some flexibility in this region. 

Due to the low resolution and signal-to-noise ratio of the EM micrographs in the Fraser et 

al. study [61] and the low percentage of particles kinked in the middle of the fiber, 

determination of the region of higher flexibility is somewhat imprecise. New EM images 

of σ1 with a better resolution could better define locations of flexibility. 

The evidence that σ1 undergoes an extensive structural rearrangement is based on prior 

EM studies [28,29], and further experiments are required to support this hypothesis. 

Assuming that σ1 has a defined and compact conformation on virions, complexes with 

σ1 specific antibodies, such as 9BG5 or 5C6, would trap σ1 and reveal a defined pattern 

of the mAbs on the virus surface on EM images. If it is indeed the case that σ1 has a 

linear, elongated structure when present on ISVPs but is non-linear and hidden on the 

virus surface due to possible interactions with σ3 or σ3/µ1, complexes with σ1-specific 

mAbs would reveal a non-uniform pattern of mAb-spiked particles.    
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5.3 σ1 Interactions with Neutralizing Antibodies 

Figures and text are adapted with permission: Copyright © American Society for 

Microbiology, JVI, 91 2017, doi:10.1128/JVI.01621-16. 

5.3.1 Strategies for Viral Escape from Antibody Neutralization 

Previous analysis of reovirus variants that resist neutralization of 5C6 or 9BG5 have 

identified two residues in the T1 and T3 σ1 head domains critical for antibody recognition 

[92,98]. The crystal structures of complexes between T1L σ1 with 5C6 Fabs and T3D σ1 

with 9BG5 Fabs presented here have elucidated the complete antibody-binding sites and 

provide insights into the strategies by which the reovirus variants escape neutralization.  

T1 reovirus variants that are resistant to 5C6 display point mutations Q417K or G447S. 

Residue Q417σ1 is engaged by the carbonyl group of 5C6 residue Y102H3. The mutation 

Q417K likely would sterically hinder Y102H3 and Y104H3 interactions with σ1, and the 

introduced positive charge next to R424σ1 might locally alter the σ1 structure due to 

electrostatic repulsion. G447σ1 is not directly involved in interactions with 5C6. The effect 

of mutant G447S on neutralization likely results from a diminished residue flexibility. The 

larger side chain probably alters the local protein structure and prevents binding of CDR 

H3 to σ1. 

Mutant viruses of T3 that escape 9BG5-neutralization display the single mutation D340V 

or E419K and are less neurovirulent in mice than the wildtype virus, suggesting that a 

step in the viral life cycle is altered by these mutations. The mutation D340V introduces 

an aliphatic amino acid that results in the loss of the charge-mediated interaction with 

R51L2 of 9BG5. Residue E419σ1 forms several hydrogen bonds with 9BG5. The mutation 

E419K inverts the residue charge and likely weakens the interaction with 9BG5 due to 

direct disruption of contacts with 9BG5 residues S30L1, S31L1, and N32L1. 

 

5.3.2 Effects of 5C6 and 9BG5 on σ1-Binding to Glycan Receptors  

Reoviruses are thought to use an adhesion-strengthening mechanism for cell-attachment 

in which low-affinity binding of σ1 to cell-surface glycans is followed by high-affinity 

binding to JAM-A. The glycan binding site of T1L σ1 is located in the head domain and is 

in direct proximity to the 5C6 epitope (Figure 5.4). Residues Q371σ1 and T373σ1 are part 

of the GM2 glycan binding site as well as the 5C6 epitope of T1L σ1. The location of 

CDR H1 reduces the available space at the carbohydrate binding site and could 

therefore directly block low-affinity engagement of the glycan receptor (Figure 5.4C). 



 

81 

 

Hemagglutination (HA) inhibition assays showing that 5C6 mAbs and Fabs efficiently 

block T1L virions and ISVPs to agglutinate human erythrocytes substantiate this finding.   

 

 

Figure 5.4 Receptor and antibody binding sites on T1L and T3D σ1. Surface representation of σ1 

structures. Residues that contact receptors and the mAb within a distance cutoff of 5 Å are colored. 

The JAM-A binding sites are shown in green, glycan binding sites are blue, the 5C6 epitope is colored 

in light (light chain) and dark (heavy chain) brown, and the 9BG5 epitope is colored in light (light chain) 

and dark (heavy chain) violet. (A) T1L σ1 head. (B) T3D σ1 body and head. (C) Close up view 

showing that the 5C6 epitope overlaps with the glycan binding site of T1L σ1. The residues Q371σ1 

and T373σ1 interact with GM2 (blue) as well as with CDR H3 (black) of 5C6. The CDR H1 (light grey) 

occludes the glycan receptor binding site and would hinder GM2-binding due to the reduced space of 

the receptor binding site. 

 

The carbohydrate binding site of T3D σ1 is located at the N-terminal part of the body 

domain, while the 9BG5 epitope is located in the head domain (Figure 5.4B). Therefore, 

it would not be anticipated that 9BG5 binding would directly interfere with sialic acid 

engagement.  

In HA inhibition assays, 9BG5 mAbs and Fabs efficiently block HA by T3SA+ virions, but 

neither 9BG5 mAbs nor Fabs inhibit HA by T3SA+ ISVPs. This finding supports the 
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hypothesis that σ1 adopts a more compact conformation on virions than on ISVPs. On a 

compact virus-bound arrangement, the 9BG5 epitope on the σ1 head could be in close 

spatial proximity to the carbohydrate-binding site on the σ1 body domain and would thus 

be able to interfere with glycan receptor engagement. During virion-to-ISVP conversion, 

σ1 likely adopts the elongated conformation observed in the crystal structure [19], where 

the 9BG5 epitope is sufficiently distant to the glycan-binding site (~120 Å) such that an 

IgG molecule probably could not sterically hinder binding of σ1 to the glycan receptor. 

 

5.3.3 Effects of 5C6 and 9BG5 on σ1-Binding to JAM-A 

The binding site of the serotype-independent receptor JAM-A is conserved in T1 and T3 

reoviruses and located at the lower part of the σ1 head domain (Figure 5.4, page 81). 

Both the 5C6 epitope that is located close to the top of the σ1 head and the 9BG5 

epitope in the middle of the σ1 head span two σ1 subunits and are distinct from the 

JAM-A receptor-binding site.  

SPR studies using immobilized σ1 are consistent with this finding and demonstrated that 

the soluble JAM-A ectodomain can additionally bind to σ1 complexed with 5C6 or 9BG5. 

This finding indicates that the two mAbs do not neutralize reovirus infection by direct 

blockade of the JAM-A receptor-binding site.  

Reovirus binding to JAM-A expressed on CHO cells is inhibited by the cognate mAbs 

and Fabs. If σ1 can bind 5C6 or 9BG5 and JAM-A simultaneously, then by what 

mechanism is the neutralization of reovirus infection by 5C6 and 9BG5 accomplished? 

The membrane-associated JAM-A protein extends from the cell by about 80-90 Å, and 

the binding site for σ1 is located on the most membrane-distal Ig-like domain. JAM-A is 

engaged by σ1 residues on the lower part of the σ1 head, adjacent to the body domain. 

Modeling indicates that reovirus binding to JAM-A on the cell surface would bring the top 

of the σ1 head domain into close proximity with the cell membrane (Figure 5.5A).  

Up to three mAbs can bind to one σ1 trimer, and taking geometric considerations into 

account, one antibody can engage one binding site of one σ1 molecule with one Fab but 

would not be able to engage the same trimer by binding another epitope with the second 

Fab. A σ1-bound mAb could probably not bind with its second Fab to a different σ1 

protein on the surface of the same virion due to the large distance between the 

icosahedral five-fold axes. Due to the minor presence of σ1 on the virus particle, binding 

to a σ1 protein of another reovirus virion (with the second Fab) seems also unlikely to be 

important for neutralization.  
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When 5C6 or 9BG5 antibodies bind to σ1, the virus almost certainly could not engage 

JAM-A, as the membrane-anchored receptor could not reach its binding site on the σ1-

surface. The affinity of both 5C6 and 9BG5 Fabs for their cognate σ1 proteins is around 

100-fold stronger than the affinity of JAM-A for σ1. Thus, it is unlikely that JAM-A 

competes for binding to σ1 and suggests that the mechanism of antibody interference 

with reovirus binding to JAM-A is based on indirect steric hindrance with the cell 

membrane (Figure 5.5B). 

 

 

Figure 5.5 Model of the proposed neutralization mechanism of 5C6 and 9BG5 blocking σ1-

binding to membrane-associated JAM-A by steric hindrance with the cell-surface. The full-length 

model of T3D σ1 (PDB ID: 3S6X connected with T3D σ1(25-291)) is colored in blue, the membrane-

bound ectodomain of JAM-A (PDB ID: 1NBQ with an additional five amino acids added at the C-

terminus using coot) is colored in green, and antibodies (PDB ID: 1IGT, aligned with 9BG5 Fabs via 

the antigen binding fragments) are colored in light and dark purple. The cell surface is indicated by a 

plane colored in grey. (A) Binding of σ1 to JAM-A on the cell-surface brings the top of the σ1 head in 

close proximity with the cell-membrane. (B) 9BG5-bound σ1 close to the cell surface (for clarity only 

two mAbs are shown). The bulky antibodies would clash with the cell-surface, impede JAM-A binding.  
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5.3.4 Neutralization Recognition of other Virus Fiber Proteins 

While the mechanism of reovirus neutralization may be mainly explained by interference 

with receptor binding at the cell surface, it is conceivable that 5C6 and 9BG5 also impair 

later steps in the infectious cycle. The 5C6 and 9BG5 binding sites are well placed to 

hinder a possible structural change in σ1 that may be important for reovirus cell-uptake. 

Both epitopes bridge σ1-subunits and thus are conformationally dependent. Such a 

binding mode is also shared by neutralizing antibodies directed against stalk-like 

attachment proteins of other viruses.    

The hemagglutinin of influenza virus is a trimeric molecule that consists of a globular 

head, which mediates binding to cell-surface glycan-receptors, and a stem region, which 

mediates fusion of the viral envelope with the cellular membrane. Broadly neutralizing 

mAbs that are directed against the highly conserved stem region of hemagglutinin bind 

across the two subunits (HA1 and HA2) of a protomer and lock the protein in the pre-

fusion conformation. Thus, the mAbs inhibit a conformational change of the protein that 

is required for membrane fusion [130].   

A similar neutralization strategy is observed for rotaviruses, which also belong to the 

Reoviridae family. The rotavirus attachment protein, VP4, is a spike-like molecule that 

consists of two fragments, VP5* and VP8*, which are generated by proteolytic cleavage 

[131]. The body of the spike is formed by VP5*, which contains the hydrophobic 

membrane penetration domain. The distal globular head domain is formed by VP8*, 

which is involved in carbohydrate-receptor engagement. The core of VP5* has a fold that 

is similar to that of the head domain of reovirus σ1 [132].  

VP4 undergoes a conformational change from a local dimer to a trimer during cell entry. 

The neutralizing mAb 2G4 binds the dimeric form of VP4 in the cleft between the heads 

and prevents the irreversible reorganization of the protein to the trimeric state [133]. The 

binding site of 2G4 was mapped by an escape mutation located in the membrane 

penetration domain of VP5* [134], but the complete epitope is unknown, and a detailed 

understanding of the neutralization mechanism is therefore not yet possible. 2G4 also 

can bind to the trimeric VP4, but it remains possible that the mAb interacts with residues 

of VP8* and prevents the conformational change by spanning subunits. 

Common to these examples is a neutralizing mechanism in which the mAbs bind across 

subunits of a multimeric viral attachment protein and thereby stabilize a particular 

conformation that prevents a structural rearrangement of the protein. The anti-reovirus 

mAbs 5C6 and 9BG5 share the same, subunit-bridging strategy for binding attachment 



 

85 

 

protein σ1, suggesting a likely role for a σ1 conformational change during cell entry. In 

future studies, neutralizing and non-neutralizing mAbs that target σ1 on virions or ISVPs 

may serve as useful tools to probe the hypothesized, conformational rearrangement. 
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6 Appendix 

6.1 Construct Overview 

Construct Mwmonomer [kDa] ε280nm [M-1cm-1] pI  

SUMO-T1L (2-470)  64 (tagged) 

51 (untagged) 

60390  

58900 

5.3 

5.1 

pE-SUMOpro amp 

SUMO-T1L (29-470) 61 (tagged) 

48 (untagged) 

60390 

58900 

5.3 

5.0 

pE-SUMOpro amp 

His6-T1L σ1(29-470) 51 58900 5.8 pET28b kana 

T1L σ1(29-470) 48 58900 5.0 pET16b 

His6-T1L σ1(29-303) 32 (tagged) 

30(untagged) 

9970 

9970 

5.8 

5.0 

pET28b kana 

His6-T1L σ1(29-265) 28 (tagged) 

26 (untagged) 

8480 

8480 

6.0 

5.0 

pET28b kana 

His6-T1L σ1(29-249) 26 (tagged) 

24 (untagged) 

8480 

8480 

6.0 

5.0 

pET28b kana 

(GCN4)3-T1L σ1(29-159) 18 1490 4.9 pIBA-GCN4tri-His 

T1L σ1(29-159) 14 - 4.7 pET16b 

His6-T3D σ1(28/30-455) 49 (tagged) 39420 5.8 pET28b 

His6-T3D σ1(1-234) 28 (tagged) 

26 (untagged) 

- 6.1 

5.3 

pET28b 

His6-T3D σ1(1-291) 34 (tagged) 

32 (untagged) 

1490 

1490 

6.1 

5.3 

pET28b 

His6-T3D σ1(25-251) 27 (tagged) 

25 (untagged) 

- 6.3 

5.4 

pET28b 

His6-T3D σ1(25-291) 31 (tagged) 

29 (untagged) 

1490 

1490 

6.3 

5.5 

pET28b 

His6-T3D σ1(1-168) 21 (tagged) 

19 (untagged) 

- 5.8 

4.9 

pET28b 
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6.2 MALDI-MS: T3D σ1(25-291)  
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6.3 Helical Wheel Projections of T1L and T3D σ1 Tail Domain 
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