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Abbreviations 
 

APs   Action potentials 

BPI   Brief Pain Inventory 

CI   Confidence interval 

CNS   Central nervous system 

CRPS   Complex regional pain syndrome 

DBS   Deep brain stimulation 

DN4   Douluer Neuropatique en 4 questions 

DNIC   Diffuse noxious inhibitory control 

DREZ   Dorsal root entry zone 

DRG   Dorsal root ganglion 

DRGS  Dorsal root ganglion stimulation 

EEG   Electroencephalogram 

EFNS   European Federation of Neurological Societies 

EOG   Electrooculography 

EPs   Evoked potentials 

EQ-5D  EuroQol five dimensions questionnaire 

ERF   Emotional Role Functioning 

FBSS   Failed back surgery syndrome 

FDA   Food and Drug Administration 

fMRI   Functional magnetic resonance imaging 

GABA  Gamma-aminobutyric acid 

GHP   General Health Perception 

IASP   International Association for the Study of Pain 

ICD   International Classification of Diseases 

IMMPACT  Initiative on Methods, Measurement, and Pain Assessment in Clinical 
  Trials 

IPG   Implantable power generator 
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LANNS  Leeds Assessment of Neuropathic Pain 

LEPs   Laser-evoked potentials 

M0   Baseline measuring time-point with DRGS turned OFF 

M1  1-Month measuring time-point with DRGS turned ON 

M6  6-Months measuring time-point with DRGS turned ON  

MEG   Magnetoencephalography 

MH   Mental Health 

MRI   Magnetic resonance imaging 

NeuPSIG  Neuropathic Pain Special Interest Group 

NGFs   Nerve growth factors 

NPQ   Neuropathic Pain Questionnaire 

NRS   Numerical rating scale 

NS   Nociceptive specific 

P  Pain 

PDI   Pain Disability Index 

PeNS   Peripheral nerve stimulation 

PET   Positron emission tomography 

PF   Physical Functioning 

PLP   Phantom limb pain 

PNS   Peripheral nervous system 

PRF   Physical Role Functioning 

PSN   Primary sensory neurons 

QoL   Quality of life 

QST   Quantitative sensory testing 

RIII reflex  Nociceptive flexion reflex 

SCS   Spinal cord stimulation  

SEP   Somatosensory evoked potentials 

SF-36   Medical Outcomes Survey - Short Form 

SI   Primary somatosensory cortex 



 3 

SII   Secondary somatosensory cortex 

SPECT  Single-photon emission computed tomography 

SRF   Social Role Functioning 

SSRs   Plantar sympathetic skin responses 

TENS   Transcutaneous electrical nerve stimulation 

TNF   Tumor necrosis factor 

V   Vitality 

VAS   Visual analog scale 

VRS   Verbal rating scale 

WDR   Wide dynamic range 

WHO   World Health Organization 

YAP  Yttrium - Aluminum - Perovskite 
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1 INTRODUCTION 
 

 

In this study, we used laser-evoked potentials (LEPs) to assess the efficacy of 

dorsal root ganglion stimulation (DRGS) as a treatment for chronic peripheral 

localized neuropathic pain. LEPs are considered the gold standard for the assessment 

of the functional integrity of pain pathways (Haanpaa, Attal et al. 2011). The 

mechanisms behind pain relief via electrical stimulation are not fully understood, and 

to the best of our knowledge, no study to date has used neurophysiological measures 

of pain perception in patients treated with DRGS.  

DRGS was introduced for clinical use in some European countries and in 

Australia in 2011. The therapy targets primary sensory neurons (PSN) within the 

dorsal root ganglion (DRG). Following peripheral nerve damage, glial cells, nerve 

growth factors (NGFs), ion channels, chemokines and specific genes in the DRG 

undergo several adaptive alterations (Krames 2014). How DRGS interferes with those 

mechanisms is still largely unknown.  

To investigate this issue, we performed the current prospective open-label 

study. At baseline (prior to DRGS therapy) and at one and six months after DRGS 

onset, the following variables were measured: LEPs parameters, pain intensity (using 

the Numerical Rating Scale, NRS), neuropathic pain components (using 

PainDETECT), quality of life  (using the Medical Outcomes Survey – short form, SF-

36) and pain disability (using the Pain Disability Index, PDI). A total of seven patients 

with localized neuropathic pain were enrolled in this study. All patients gave proper 

informed consent and only those who understood the study methods, and were able to 

regularly attend the experimental sessions were included.  

 

Therefore, this study had two main objectives: 1. To assess the efficacy of 

DRGS in pain management by measuring LEPs (taken to reflect pain pathways 

functional status) and NRS scores and 2. To correlate this treatment efficacy with 
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neuropathic pain components, quality of life and pain disability measurements, using 

the PainDETECT, SF-36 and PDI questionnaires, respectively.  
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2 BACKGROUND 
 

2.1 Pain 

2.1.1 Definition 

Pain is defined by the International Association for the Study of Pain (IASP) 

as an “unpleasant sensory and emotional experience with actual or potential tissue 

damage, or described in terms of such damage” (Loeser and Treede 2008). Others 

have defined it as a complex phenomenon, multidimensional in nature, an individual 

and subjective experience related to the person´s early life experiences involving 

beliefs, emotions and thoughts (Boos and Abebi 2008). Furthermore, nociception or 

pain perception comprises “the neural process of encoding and processing the pain 

stimulus, which is defined as an actual or potential event of tissue damage” (Loeser 

and Treede 2008). Nociception therefore enables an individual to elicit an 

appropriate, life-preserving reaction to a harmful stimulus (Thomas Cheng 2010) and 

thus avoid further lesions while protecting homeostasis. 

2.1.2 Pain classification 

Pain may be categorized in several ways. For treatment and research purposes, 

it is always judicious to fit a particular pain diagnosis into a specific group. In this 

regard, the most important aspects of pain are time course and type of pain. Having 

access to this information can help clinicians reach individualized diagnoses, thus 

optimizing the choice of therapy and treatment efficacy. 

2.1.2.1  Time course 

Pain may be classified as acute or chronic. Acute pain is commonly associated 

with ongoing tissue damage or a specific noxious stimulus that may occur following 

different pathophysiological scenarios such as infection or soft tissue lesions. Acute 

pain typically lasts for less than 1 month (Moore 2009) and serves as a physiological 

warning to the body of a specific threat or disease.  

The term “chronic pain” usually refers to pain that persists past the normal 

healing time (i.e. usually for more than 3 to 6 months; Treede, Rief et al. 2015) – in 

research, the most common standard is 6 months (Merskey, Bogduk et al. 1994). 
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During this longer time-period, pain has lost its function as a warning sign and 

becomes a disease.  

2.1.2.2 Types of pain 

Pain is commonly categorized into two main categories: nociceptive pain and 

neuropathic pain. Nociceptive pain arises from the activation of nociceptors (Loeser 

and Treede 2008) and can be subdivided into somatic and visceral nociceptive pain. 

Somatic nociceptive pain may in turn be categorized as either superficial or deep. 

Neuropathic, on the other hand, may be subdivided into central and peripheral 

neuropathic pain. Finally, the co-occurrence of nociceptive and neuropathic pain in 

the same patient is known as mixed pain (Baron and Binder 2004, Pazzaglia and 

Valeriani 2009). 

2.2 Neuropathic pain 

2.2.1  Definition 

The IASP originally defined neuropathic pain in 1994 as “pain initiated or 

caused by a primary lesion or dysfunction in the nervous system” (Merskey, Bogduk 

et al. 1994). Since then, this definition has been widely criticized for being too broad. 

In 2008, the definition was modified to “pain arising as a direct consequence of a 

lesion or disease affecting the somatosensory system” (Loeser and Treede 2008), 

which remains the currently accepted definition.  

2.2.2  Classification 

The most accepted classification of chronic pain is the one proposed by the 

World Health Organization (WHO) through the International Classification of 

Diseases (ICD). However, the latest released version, which is the 10th revision, does 

not reflect the current epidemiology of chronic pain, including chronic neuropathic 

pain. Therefore, an IASP task force developed a classification that will be released in 

the ICD-11. According to this new revision, there are four categories of neuropathic 

pain (Treede, Rief et al. 2015): 
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• Peripheral neuropathic pain 

• Central neuropathic pain 

• Other neuropathic pain 

• Neuropathic pain not otherwise specified 

In clinical practice, when a clear definition is not possible, one usually 

observes peripheral or central neuropathic pain. Peripheral neuropathic pain includes 

any disease or pathology affecting the peripheral nervous system (PNS; e.g. diabetic 

neuropathy), while central neuropathic pain comprises any disease or pathology 

involving the central nervous system (CNS; e.g. post-stroke pain) (Gilron, Jensen et 

al. 2013). Additionally, neuropathic pain is also classified as either spontaneous 

(stimulus-independent) or evoked (stimulus-dependent) (Pazzaglia and Valeriani 

2009). 

2.2.3 Diagnostic criteria 

A grading system for neuropathic pain diagnosis was released in 2008. The 

system proposes three levels of certainty by which neuropathic pain can be present or 

absent in an individual patient (possible, probable and definite neuropathic pain) (Fig. 

1). The use of such criteria helps stratify patients according to established methods of 

assessment and its use is recommended for clinical and research purposes. 
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Fig. 1 – Flow chart grading system for neuropathic pain (adapted from Treede, Jensen 

et al. 2008). 

 

2.2.4 Somatic representation 

In 2014, a screening tool based on the IASP grading system was developed to 

classify localized neuropathic pain and improve treatment strategies. When the area of 

maximum pain is circumscribed and smaller than a sheet of paper (A4 format), it was 

defined as localized neuropathic pain. If larger, it is considered neuropathic pain 

(Mick, Baron et al. 2014). However, sensitization mechanisms that typically occur in 

neuropathic pain are not accounted for in this screening tool.  
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Table 1 – Localized neuropathic pain screening questions (adapted from Mick, 

Baron et al. 2014). 

Question Observation 

• Does the patient’s history suggest a 
relevant nerve lesion or disease? 

 

• Is the pain distribution neuroanatomically 
plausible? 

 

• Does the neurological examination reveal 
any negative or positive sensory sign in the 
area of the presumably lesioned nerve? 

3x yes  = at least probable 

neuropathic pain 

• Is the most painful area circumscribed and 
smaller than an A4 paper? 

4x yes = at least probable 

localized neuropathic pain 

 

2.3 Dorsal root ganglion stimulation  

2.3.1 Background 

The electrical stimulation of neural targets for the treatment of chronic pain 

has been established for several decades. However, only recently have key structures 

associated with the physiological processing of pain signals been tested as potential 

therapeutic targets for neuromodulation. As the site of the first synaptic modulation in 

the pain pathway, the DRG is a key structure in pain processing. Despite its relation to 

the development of chronic pain, the DRG was not explored as a target for 

neuromodulative pain treatments until recent years. The first to attempt this approach 

were Wright and Colliton, who showed pain reduction by stimulating the DRG in one 

patient diagnosed with refractory discogenic low back pain (Wright and Colliton 

1998). In that case, the visual analog scale (VAS) score went from 8 to 2.5 after 8 

months of stimulation targeting bilateral DRGs at the L2 nerve root level.  

Nerve root stimulation attempting to recruit the DRG has also been shown to 

be beneficial (Alo, Yland et al. 1999), including stimulation using a transforaminal 

approach that resulted in effective pain relief (Haque and Winfree 2006; Kellner, 

Kellner et al. 2011). Additionally, a method for lead implantation with a curved stylet 

was shown to facilitate the procedure (Haque and Winfree 2009). In one case report, a 
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patient with post herpetic neuralgia in the left C2 dermatome did not require any 

medication following DRGS with an implanted peripheral nerve stimulation (PeNS) 

electrode (Lynch, McJunkin et al. 2011). No complications were described, and the 

stimulation effects remained stable over a 6-month follow-up period. Following the 

success of several single case reports and small series, DRGS should be further tested 

in larger groups of patients. With the recent design of a new specialized electrode, 

(Deer, Grigsby et al. 2013) DRGS has become more widespread. 

2.3.2 Anatomy and physiology of the dorsal root ganglion  

In humans, the dorsal root ganglia give rise to 31 pairs of nerves (8 cervical, 

12 thoracic, 5 lumbar, 5 sacral and 1 coccygeal) (Krames 2014). Proximally, the 

spinal nerves are divided into ventral motor efferent roots and dorsal sensory afferent 

roots. The dorsal root ganglia are localized in the dorsal root, close to the 

zygapophyseal joints and intervertebral disc (Fig. 2) (Hasegawa, An et al. 1993). As 

one moves caudally along the intervertebral foramen, the DRG becomes longer and 

wider. The positioning of the DRG shows little variability across subjects, and is 

located between the medial and lateral borders of the pedicles in most healthy 

individuals (Shen, Wang et al. 2006). Disease in adjacent structures can potentially 

cause compression and radiculopathy (e.g. herniated disc).  
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Fig. 2 – DRG anatomy. 

 

Reprinted from “Gray's Clinical Neuroanatomy – The Anatomic Basis for Clinical 

Neurosciences,” by Elliott L. Man and David G. Brock, 2011, Chapter 8, Spinal Cord 

and Nerve Roots, pg. 117. Copyright© 2011 by Saunders, an imprint of Elsevier Inc. 

 

The dorsal root ganglia contain almost all PSN cell bodies - as many as 15,000 

(Devor 1999). Because of the small size of the somata and the usually long axon, 

99.8% of the PSN cytoplasm is in the axon (Hogan 2010). The DRG therefore has 

high metabolic demand, with chemicals and proteins being transported over long 

distances.  

In DRG neurons, a single axon arises from the cell body and then divides into 

two branches, making them ‘pseudo-unipolar’. One branch extends peripherally and 

the other to the spinal cord, forming the so-called T-junction. This formation avoids 

information slowdown by the soma, thus ensuring fast action potentials (APs) 

transmission (Hogan 2010). The PSN in the DRG may also function as a low-pass 

filter to impulses coming from peripheral receptors (Krames 2014). 

In humans, DRG neurons are round and range in size between 20-150 µm. 

They are divided into two distinct types according to their cytoplasmic neurofilament 
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domains: large-light (type A) and small-dark (type B). Large-light neurons consist of 

myelinated Aß fibers while small dark neurons have Aδ and C fibers (Devor 1999). 

Within each DRG, there are several different cell populations, including cells that 

control sensory modality (heat, mechanical, chemical), range of sensitivity 

responsiveness, conduction velocity capability and neurotransmitter release 

specificity. Thus, the DRG is a highly specialized structure with several different 

neurophysiological functions (Hogan 2010). 

The surface of the DRG somata are covered by microvilli, which significantly 

increases the membrane surface (Devor 1999). Interestingly, the dorsal root ganglia 

have no blood-brain barrier, which allows the exchange of many small and large 

molecules, including drugs (Hogan 2010). However, although their surface 

membranes are permeable to many medications, they do not trap them within, thus 

lowering the chance of intoxication. Surrounding the soma are supporting satellite 

glial cells that regulate the neurons’ internal environment and maintain electrical 

isolation (Nedergaard, Ransom et al. 2003). Satellite cells also communicate with 

their associated soma. This configuration also limits interactions between 

neighbouring neurons, leading to non-synaptic coupling mechanisms that are 

responsible for cross-excitation (Devor 1999). According to Hanani, the satellite glial 

cells are similar to astrocytes, with some additional unique functions. The spatial 

configuration around the DRG allow for those satellite cells to exert tighter 

extracellular control relative to other glial cells, which also explains the absence of a 

blood-nerve barrier (Hanani 2005). 

The main function of PSNs is to conduct APs from the periphery to the CNS, 

but there is evidence that this also happens in the opposite direction (Hogan 2010).  

Ultimately, the role of the DRG neurons is to maintain a balanced membrane 

resting state, allowing for the correct interpretation of stimuli and ensuring 

appropriate responses during sensory encoding. During the APs, Na+, K+ and Ca2+ 

ions flow across the membranes ionic channels, leading to cell depolarization 

followed by repolarization. Ca2+ plays a special depolarizing role in these signaling 

mechanisms by entering the soma. Ca2+ also acts as second messenger in neuronal 

development, gene expression, neurotransmitter release, kinase activity and apoptosis. 
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Therefore, the proper functioning of the Ca2+ channels that are extensively distributed 

across the DRG membrane is of utmost importance (Abdulla and Smith 2001). 

2.3.3 Dorsal root ganglion stimulation - state of the art 

The development of a novel electrode system, specifically engineered for 

DRGS, has facilitated the use of this technique for the clinical treatment of chronic 

neuropathic pain. The electrodes used for DRGS are more delicate, smaller, thinner 

and more flexible than traditional spinal cord stimulation (SCS) electrodes. They can 

be percutaneously inserted, thus making the procedure minimally invasive (Bara and 

Deer 2016).  

One major potential advantage of DRGS is to complement traditional 

neuromodulation techniques such as SCS of the dorsal column. Initial observations 

indicate that DRGS is superior to conventional SCS for the treatment of localized 

pain, such as pain of the hand, individual fingers, the foot, the knee or the groin 

region. Moreover, SCS of the dorsal column commonly produces alterations in 

stimulation intensity or undesirable effects depending on body posture or movement 

pattern, which does not occur under DRGS (Kramer, Liem et al. 2015). Other 

problems related to traditional SCS include high lead migration rates with consequent 

loss of pain relief.  SCS may also cause unpleasant stimulation-associated paresthesia, 

and because it cannot accurately target smaller painful regions, these sensations are 

frequently generated in broader areas than the specific area of pain (Deer, Levy et al. 

2013b). DRGS may also help avoid such limitations.  

The first human study conducted with DRGS on 10 patients was published in 

2013 (Deer, Grigsby et al. 2013). In that study, DRGS was applied during a period of 

one week. Patients had been diagnosed with a neuropathic pain condition that was 

refractory to all previous therapies, either conservative or surgical. In this cohort, 

from the eight patients who completed the study, 75% experienced more than 50% 

pain relief relative to baseline, and all of them had anatomically specific relief over 

the painful region. Furthermore, medication intake was reduced by 78%. Also, pain 

ratings in the low back pain subgroup decreased by 84% after one week, a 34% higher 

rate than that observed in traditional SCS (North, Kidd et al. 2005). Finally, the 

authors were able to apply less electrical current with DRGS than is normally used for 
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SCS of the dorsal column, which saves battery life. The authors concluded that DRGS 

relieved pain in a satisfactory manner without any major safety concerns and 

highlighted the need for further corroborating studies.  

That publication was followed by the first prospective phase I multicenter 

study using DRGS (Liem, Russo et al. 2013). The main goals of that study were to 

analyze the rates of adverse events and paresthesias, as well as to evaluate pain relief, 

quality of life (QoL), mood and physical functioning. A total of 70 adverse events 

occurred in 24 of the 32 patients tested. Paresthesias due to stimulation were properly 

localized over the painful area and did not vary significantly with changes in body 

position. The overall average pain relief was 66% during the test phase and 56.3% at 

the 6-month end-point evaluation, at which time significant improvements in QoL, 

mood and physical functioning were also observed. During this trial, electrode 

migration rate was 3%, considerably lower than that observed in traditional SCS. The 

rate of pain reduction during the ON-phase of stimulation was always higher than 

50%. Foot pain, which is generally difficult to treat with traditional SCS, responded 

positively to DRGS. In conclusion, DRGS relieved chronic pain even in anatomical 

regions that are normally difficult to reach with SCS.  

The same group then published a 12-month follow-up study of the same 

population showing significant improved status in pain relief, mood and QoL (Liem, 

Russo et al. 2015). Thus, DRGS seems to be a better option for treating some 

neuropathic pain states, especially in cases of localized pain. However, the population 

studied by this group was heterogeneous in terms of neuropathic pain etiologies, 

which warrants further studies addressing specific pain conditions.  

Conventional SCS is a therapeutic option in patients with complex regional 

pain syndrome (CRPS) who do not respond to conservative clinical interventions (e.g. 

medication, physical therapy). However, Van Buyten et al. showed that DRGS can 

also be effective in treating this condition (Van Buyten, Smet et al. 2014).  

It is estimated that 2-4% of all patients who underwent herniorrhaphy will 

develop neuropathic pain as a consequence of nerve damage during surgery (Werner 

2014). Schu et al. studied the effectiveness of DRGS for localized neuropathic pain of 

the groin in 12 patients diagnosed with post herniorrhaphy pain (Schu, Gulve et al. 
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2014). An additional 17 patients presented with diverse etiologies involving chronic 

pain. Twenty-five of the 29 patients had a positive test trial and 23 of those completed 

the study protocol. Of the 23 patients, 82.6% had pain relief greater than 50%, as 

reflected in their VAS score. Therefore, also in the case of groin pain, DRGS provides 

pain relief that conventional SCS usually does not.  

The use of DRGS to treat phantom limb pain (PLP) was studied by Eldabe et 

al. (Eldabe, Burger et al. 2015). There is currently level IV evidence supporting the 

use of SCS to treat PLP, even though low rates of long-term pain relief have been 

reported (McAuley, van Groningen et al. 2013). SCS has been shown to be more 

effective against stump pain, which is often caused by a neuroma at the amputation 

nerve’s ending, and less effective against phantom phenomena or myofascial stump 

pain. These other conditions affecting amputated patients are very often neglected or 

co-occur in a single patient, rendering treatment in these cases challenging. Eldabe et 

al. investigated eight phantom-pain patients who received DRGS and reported an 

average pain reduction of 52% (Eldabe, Burger et al. 2015). The effects of DRGS in 

conditions such as visceral pain, somatic trunk pain and upper limb have yet to be 

determined (Liem 2015). 

2.4 Laser-evoked potentials  

2.4.1 Evoked potentials - definition 

Evoked potentials (EPs) reflect event-related electrical activity (i.e. the sum of 

excitatory and inhibitory post-synaptic potentials on cortical neurons) measured 

through electroencephalography (EEG) and represented as peaks and deflections. EPs 

are classified according to their time of occurrence in relation to the stimulus onset 

(latency), their polarity (negative or positive) and magnitude (amplitude). Thus, pain-

related EPs represent the neuronal response to a painful stimulus and may be used to 

detect and analyze neuronal function (Madsen, Finnerup et al. 2014). 

2.4.2 Background 

The use of laser radiant heat to selectively activate pain fibers in research was 

first described in 1975 (Mor and Carmon 1975). The first reports of such research 

employed CO2 laser, which is categorized in the infrared spectrum with a wavelength 
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of 10.6 µm. The total amount of energy delivered depends on the stimulus duration 

and laser beam diameter. The rate of CO2 laser skin reflectance is less than 2%, which 

is needed to elicit a clear cortical evoked response (Hardy 1980).  

In 1976, the same group used short laser pulses (in the ms range) that was 

locked to EEG recordings (Carmon, Mor et al. 1976). All subjects evoked highly 

similar responses after 20 to 50 averaged stimuli. The most prominent component was 

recorded from the Cz electrode linked to the earlobes and corresponded to a negative 

wave followed by a positive wave (Carmon, Mor et al. 1976). The greater the 

stimulus power, the larger the recorded peak-to-peak amplitudes. Notably, pain 

related potentials were produced only when individuals actually felt pain. Sensations 

of warmth that were not perceived as painful did not elicit a response.  

In 1978, the first study addressing the clinical significance of LEPs was 

published (Carmon, Dotan et al. 1978). There was a significant correlation between 

referred pain intensity and LEPs parameters. In fact, the authors concluded that the 

LEPs measured pain intensity objectively. LEPs amplitude correlated significantly 

with individuals’ pain rating scores. These results established LEPs as a 

neurophysiological correlate of pain experience (Carmon, Friedman et al. 1980). 

CO2 laser selectively activates thin and slow (C and Aδ) conduction fibers 

(Bromm and Treede 1984). A component analysis study showed that the late response 

originating from a stimulus on the left radial nerve dermatome elicited a negative-

positive wave over Cz against the ear lobes with latencies of 235 and 380 ms 

respectively, and a peak-to-peak amplitude of 16 µV (Bromm and Treede 1987). An 

ultra-late positive wave with amplitude of 8 µV was also recorded at about 1300 ms 

using a pressure block paradigm for Aß fibers. This approach resulted in two 

independent responses for two distinct patterns of pain sensations. The late 

component represented Aδ fiber activation (fast and sharp pain), whereas the ultra-

late component was related to C fiber activation (slow and dull pain). The late 

component was labeled N240/P370 and the ultra-late component was labeled 

N1050/P1250 (Bromm and Treede 1987). Yet another study identified four additional 

components: the N200, the P320, the N500, and the seldom-occurring P800 (Kakigi, 

Shibasaki et al. 1989). The greater the intensity of the subjective pain, the greater the 

amplitude of the P320 wave, which was maximal at the vertex. Tourniquet-induced 
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ischemia over the upper arm for 30 minutes gradually diminished the LEPs amplitude 

until it was no longer detectable. The lack of a signal correlated with the individual’s 

inability to rate the stimulus as painful. Also, after an anesthetic block was applied to 

the ulnar nerve, no pain sensation was experienced and therefore no LEPs were 

recorded. In that study, only Aδ waves were clearly identified. Importantly, no EPs 

were elicited after electrical or mechanical tactile stimulation. Therefore, the authors 

concluded that P320 LEPs reflect an evoked response specific to pain (Kakigi, 

Shibasaki et al. 1989).  

Arendt-Nielsen et al. tested healthy individuals to establish healthy thermal 

thresholds for use during laser stimulation. They considered skin thickness, 

temperature, color, sex and reflectance, as well as laser beam diameter and stimulus 

duration. Higher skin temperature was associated with lower pain thresholds.  

Increasing stimulus duration resulted in a logarithmic decrease in pain and sensory 

thresholds. Additionally, the smaller the beam diameter, the lower the pain or sensory 

threshold, as long as the power was kept constant. No pain threshold differences were 

observed for different skin pigmentations. Women had relatively lower pain 

thresholds, most likely due to their smaller skin thickness. Finally, intra-individual 

variability was low, suggesting robust results (Arendt-Nielsen and Bjerring 1988).  

Skin type also affects the threshold, with glabrous skin having a higher pain 

threshold relative to hairy skin. Thresholds also varied more within and across 

subjects with glabrous skin. Moreover, an increase in temperature in either skin type 

reduced the amount of energy needed to elicit any sensation (painful or non-painful). 

In conclusion, CO2 laser stimuli were found to selectively stimulate primary afferent 

fibers, including nociceptive receptors, thus eliciting painful as well as non-painful 

sensations (Pertovaara, Morrow et al. 1988). 

Currently, two main laser-evoked components are reliably recorded: the N1, 

which is a small-amplitude negative wave recorded in the temporal regions 

contralateral to the site of stimulation, and the N2/P2 biphasic complex the most 

studied component, which is maximal at the vertex and is the most reliable and 

reproducible measure across studies (Madsen, Finnerup et al. 2014)  (Fig. 3). 

 



 19 

Fig. 3 – N2 and P2 LEPs components recorded in a healthy subject at our laboratory. 

 

2.5 Study aims 

 

It is known that the DRG plays a crucial role in pain processing. The DRG has 

traditionally been targeted to treat chronic neuropathic pain through ablative 

procedures, and has only recently been considered as a target for neuromodulation 

(Pope, Deer et al. 2013). Clinical results have shown that DRGS provides relief in 

some neuropathic pain conditions (Forget, Boyer et al. 2015). However, due to the 

recent introduction of this method, there is a need for new studies explaining these 

clinical effects. 

The current work had two main goals: to determine 1) whether DRGS-induced 

pain reduction correlates with LEPs measurements and 2) whether DRGS influences 

neuropathic pain components, QoL and disability related to chronic pain, as measured 

by different standardized tests.  
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2.6 Scientific questions 

 

 Hypothesis 1: DRGS restores the N2/P2 peak-to-peak amplitude in chronic 

neuropathic pain.  

Hypothesis 2: DRGS reduces chronic neuropathic pain and neuropathic pain 

components. 

 Hypothesis 3: DRGS improves QoL and disability related to chronic 

neuropathic pain.  

 



 21 

3 MATERIAL AND METHODS 

 

3.1 Study design 

The study was performed prospectively and enrolled patients from the chronic pain 

outpatient clinic at the Department of Neurosurgery of the Eberhard-Karls University 

in Tuebingen, Germany. It was designed as a prospective, open-label non-placebo 

controlled study, with evaluation time-points at 1 and 6 months post DRGS. Patients 

were always aware of the stimulation of the painful area when DRGS was ON. DRGS 

produces paresthesia in the area corresponding to the specific nerve root dermatome. 

Medication intake was kept stable throughout the study. 

Inclusion Criteria 

• Patients > 18 years old 

• Confirmed diagnosis of localized chronic neuropathic pain, affecting only one 

side of the body, warranted by abnormal LEPs 

• Pain refractory to conventional medical treatment for at least 6 months 

• Confirmation of peripheral nerve or nerve root lesion (sensory loss, allodynia 

or motor deficits) 

• Normal cognition allowing understanding of the informed consent 

Exclusion Criteria 

• Prevalence of nociceptive pain 

• Psychosomatic pain and/or severe depression 

• Failure to comply with the study protocol or understand its terms 

• Skin lesion or disease in the area to be stimulated by the laser 

3.2 Dorsal root ganglion stimulation – surgical procedure 

During the first consultation with each patient, we noted the painful area, we 

determined the level of DRG to be treated based on the dermatome affected and in 

cases of clinical uncertainty, we conducted a test block using fluoroscopy. 
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We also conducted routine pre-operative work-up assessments and patients 

were informed about surgical goals and risks in accordance with German Federal 

Law.  

Surgical Procedure 1 – Lead implantation 

The patient was taken to the operating room and the procedure was initiated 

under either general or local anesthesia. Local anesthesia is usually preferred because 

it allows patient’s neurological monitoring with greater precision. Intraoperative 

assessment also permits more accurate targeting. The patients were positioned on the 

operating table in a prone position with arms and pressure points securely cushioned. 

Kyphosation of the lumbar spine was performed to facilitate puncture of the epidural 

space. Patients’ skin was properly draped after iodine solution cleansing. Fluoroscopy 

in the antero-posterior view was then used to select the optimal needle entry point to 

best target the DRGS. We then placed the incision marks at the site designated for the 

implantable power generator (IPG), which is generally below the belt line around the 

buttock region. The needle entry point is located 1.5 to 2 levels below the intended 

interspinal space over the contralateral pedicle line. The needle tip should aim at the 

intended DRG at an angle of approximately 30 degrees relative to the anatomical 

spine midline. The epidural space was assessed using live-mode fluoroscopy guidance 

and the loss-of-resistance technique. After the puncture was made, its position was 

verified by inserting a flexible metallic guide-wire (Bara and Deer 2016).  

Then, a cylindrical quadripolar electrode (Spinal Modulation, Menlo Park, 

CA, USA) was prepared and introduced. This electrode is placed inside a sheath with 

a curved distal tip and secured to avoid sliding of the lead during navigation. The lead 

is navigated under fluoroscopy guidance into the neural foramen of interest. The 

optimal position is reached when the contacts are placed exactly below the pedicle, 

where the DRG is expected to be located. Lateral fluoroscopy is then performed to 

show the lead contacts, which are ideally located at the dorsal portion of the 

neuroforamen. Once optimal placement is achieved, the sheath is retracted carefully.  
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Fig. 4 – Schematic representation - DRGS at the thoracic (T12) DRG on the right 

side.  

 

Modified from original picture. Courtesy of St. Jude Medical – all rights reserved. 

Fig. 5 – Case example - DRGS leads placed at lumbar (L1 and L2) DRGs on the right 

side - postoperative radiographs in antero-posterior (A) and lateral (B) views.  

 

A lead strain relief loop in the epidural space is performed to avoid lead 

dislocation. Before retracting the needle, a subcutaneous pocket around the puncture 

site is created and the lumbar fascia is exposed. Next, the needle is completely 

retracted. An anchor device is inserted and at least two stitches with non-absorbable 

sutures are sewn and fixed to the fascia in order to avoid lead migration. A strain loop 

is created and placed in the subcutaneous pocket. The distal portion of the electrode is 
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then tunneled through the subcutaneous tissue and externalized through the skin on 

the lateral portion of the lumbar region. An impedance check is performed to verify 

the integrity of the electrical circuit and results should ideally range between 600 and 

1500 mΩ. Wound closure is performed on two layers. The externalized lead portion is 

secured to the skin with a suture and the wounds are draped with a sterile dressing.  

Test phase 

After surgery, the patient is taken to the ward and the leads are connected to an 

external power generator. Programming of the lead or leads is performed according to 

the patient’s response to different stimulation parameters. The aim is to cover the 

maximal possible area of pain to ensure satisfactory results. After optimal settings are 

set, stimulation is set to ON and the patient is discharged from the hospital on the next 

day to test the stimulation at home. Test stimulations are conducted for one week, 

after which the patient is evaluated in the outpatient clinic. If the response is 

considered positive (average pain relief of 50% or more compared to baseline 

according to NRS scores) and the patient is satisfied, we proceed to the IPG 

placement. The externalized leads are cut off in a sterile fashion and a suture is 

performed on the site of lead externalization to decrease risk of infection.  

Surgical procedure 2 – IPG implantation 

The patient is taken to the operation theatre and the procedure is performed 

under general anesthesia. The previously planned pocket site for the IPG is re-opened 

with blunt dissection to avoid breakage of the lead, which is often lying underneath 

the wound. After localizing the lead’s distal tips, an epifascial gluteal pocket is 

performed with blunt dissection, carefully controlling any bleeding with bipolar 

cautery. Once the opening is large enough to house the IPG, the leads are connected 

to the IPG ports and secured with a torque screwdriver system. Thereafter, the IPG is 

placed inside the pocket and two sutures are placed through the IPG fixation sites to 

the fascia in order to keep it in place, avoiding flipping or excess movement. The 

electrode impedances are re-checked through a remote controller. The closure is then 

performed in a three-layer fashion and the wound is draped with a sterile dressing.  
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Fig. 6 – IPG (Spinal Modulation, Menlo Park, CA, USA). Courtesy of St. Jude 

Medical – all rights reserved. 

 

Postoperative assessment 

After IPG implantation, the stimulation is turned to OFF. Two weeks after the 

termination of the test phase, chronic pain intensity has returned to baseline levels. At 

this time, the investigators explained the study to the patient and gave him/her the 

informed consent form to study and sign prior to enrollment.  

3.3 Enrollment and ethics 

The ethics committee of the University of Tuebingen approved the study under 

protocol number 096/2011BO2. Patients were enrolled in the study after 

understanding and signing the informed consent form and received no financial 

compensation for their participation. Participants were told that they could leave the 

study at any time without any consequences or alterations to their medical treatment.  

3.4 Functional assessment 

3.4.1 Clinical questionnaires 

On postoperative day 1 (M0), while the stimulation was still OFF, patients 

were asked to complete three different clinical questionnaires: 1) PainDETECT 

(Freynhagen, Baron et al. 2006), a neuropathic pain screening tool developed and 

validated in German, 2) SF-36, a self-report survey of patient QoL (Brazier, Harper et 

al. 1992), and 3) PDI, a validated tool to assess disability in chronic neuropathic pain 

(Tait, Pollard et al. 1987). The patients were given detailed instructions on how to fill 

out the questionnaires and were given two sets of blank questionnaire forms to take 
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home after discharge and to fill them out one day before returning for the remaining 

neurophysiological measurements (after 1 and 6 months, i.e. at times M1 and M6). 

3.4.2 Laser-evoked potentials  

Pre-measurement assessment 

On the morning of postoperative day 2, patients were recruited for LEPs 

recordings. Before leaving the ward, they were carefully instructed about the 

procedure, the risks, and the safety recommendations. The measurement workflow 

included the following steps, listed here in chronological order: 

• Patients were always admitted to the laboratory laser room during the 

morning, between 10:00 and 11:00 a.m. Then, he/she was asked to expose 

both legs and groins with underwear left on. Thereafter, the patient was asked 

to relax in a comfortable reclinable armchair.  

• The patient was then asked to indicate the site of maximal chronic pain, which 

we marked with a soft tip pen for the skin. This area was used throughout the 

study for all measurements and the contralateral homologous area was used as 

the control region. 

• Before measurements were taken, we used the NRS to determine each 

patient’s pain intensity. Next, we set up the EEG equipment, which is a 64 

Channel EEG system (ActiCap, BrainProducts, Gilching, Germany). The pain- 

evoked potentials were recorded using 32 channels, two additional channels 

were used for electro oculographic (EOG) recordings, and one other channel 

for offline re-referencing at the nose, for a total of 35 channels.  

• The equipment setup, which included two amplifiers, one power source, 

adequate cable connections, trigger port unit and a Microsoft Windows based 

EEG software - Brain Recorder version 2.0 (BrainProducts, Gilching, 

Germany), was mounted and set up following the manufacturer’s guidelines.  

• We measured the patient’s head perimeter with a centimeter scaled tape at the 

glabella-inion level in order to choose the appropriate EEG cap size (54, 56 or 

58 cm in diameter). This number was recorded and used in each patient’s 

subsequent experimental sessions. The electrodes were placed into the cap 



 27 

following the 32-channel 10/20 system, using code numbers on each electrode 

as a guide.  

• We determined the Cz electrode’s position, which was at the intersection of 2 

lines: the glabella-inion and bitemporal line.  

• The cap and electrodes were then positioned using the Cz electrode as a 

reference and secured with a chin strap.  

• The three extra electrodes were placed using electrode-specific plastic holders 

and stickers to fix them appropriately: two on the epicanthal angle bilaterally 

for oculographic recordings and one at the nose.  

• The electrode sites were injected with special EEG conducting gel using a 

syringe with a blunt tip needle. The EEG system was then turned on to check 

for impedance. A light indicator at each electrode turns green when impedance 

is below 5 kΩ, which is considered optimal for data recordings. Impedance 

values were double-checked with the computer software after all lights turned 

green. 

• Patients and investigators wore laser protective goggles throughout the 

experiments.  

LEPs protocol 

• The measurements were performed with a CO2 laser device (MCO25, KLS 

Martin, Tuttlingen, Germany). A room was especially prepared in accordance 

with German regulations for class IV laser devices. The laser settings selected 

during the study were determined after extensive test sessions with healthy 

volunteers. The beam diameter was set to 3.5 mm and the laser pulse duration 

to 15 ms. These parameters were found to elicit a sharp, pinprick pain 

sensation without causing undesirable skin burns. 

• The first laser procedure was conducted to determine each subject’s pain 

threshold. Before beginning that session, we re-checked the side of pain and 

whether the stimulator was turned OFF (M0 measurement). The pain threshold 

was determined on the control area contralateral to the painful region. We 

assumed that because the pain was unilateral, no disease affected the non-

painful control region. Therefore, we were able to elicit normal LEPs from the 

control region, which functioned as a reference and internal control.  



 28 

• Each participant received standardized instructions regarding the process of 

determining the pain threshold. They were told that the sensation should be 

similar to that of a drop of boiling water falling onto the skin (i.e. a sharp, fast, 

and slightly unpleasant painful sensation). We used an upward staircase design 

to detect each patient’s pain threshold: starting at low intensity laser power 

values, 3 laser pulses of each increasing laser power were subsequently 

delivered to the skin of the control region. When the sensation of sharp pain 

was elicited, after 3 consecutive laser shots, we recorded the value and set this 

as our NRS 4 score. This laser power value was recorded as the patient’s 

individual pain threshold and used throughout the whole experiment.  

• We used noise-cancelling in-ear earphones playing white noise to protect 

patients’ ears from the click produced by the laser device and to prevent any 

auditory-related potentials to create artifacts during the experiment. To this 

end, we performed three laser shots targeting the wall of the room while the 

white noise was playing. If the patient identified the click among the laser 

shots, we turned the volume up by 5% and retested until the white noise 

volume was loud so he/she could no longer perceive the clicks. That volume 

was then maintained constant during the whole experiment. 

• Before starting the experiment, we instructed patients to stay relaxed and to fix 

their gaze on a fixed point on the wall in front of them. They were asked to 

avoid blinking and any body movement during the recording sessions. To 

ensure patients were paying attention, we asked them to mentally count the 

number of laser shots perceived as painful during each block session and told 

them we would ask them at the end of the block how many shots they were 

able to feel.  

• The measurement session was designed in two parts. In the first part, we 

recorded LEPs from a dermatome on the control (non-painful) side to assure 

that the patient had understood the experiment and followed instructions. 

Whenever possible, LEPs were recorded from the L3 dermatome close to the 

medial portion of the skin next to the knee. If the L3 dermatome of the painful 

region was affected, we conducted the calibration on the dermatome above it. 

Twenty to 30 laser shots were delivered at this block session. During the 

measurement, the spot targeted by the laser beam was shifted slightly after 
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each shot to avoid habituation effects or repetitive stimulation of the same 

spot. We recorded the mean NRS score elicited by the whole set of laser shots. 

• In the second part of the experiment, we delivered one run of 20 to 30 laser 

shots with the laser power value set to match the previously determined pain 

threshold. The NRS score of the laser evoked pain sensation on the control 

region should be 4. The laser beam was moved slightly in between shots. First, 

the LEPs were recorded from the non-painful control side. As described 

above, we recorded the number of laser shots. We also made sure the NRS 

score was 4. The same procedure was then conducted for the painful side.  

• After the experiment, the DRGS was turned to ON. The patient was then 

released and instructed to keep the stimulation in the ON mode at all times.  

• After 1 month (M1) and 6 months (M6) of DRGS, the patient came back and 

repeated the experiment with the DRGS on the ON mode. 
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Fig. 7 – Study design. 

 

Fig. 8 – Experimental setup – LEPs protocol. 
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Data processing and analysis 

EEG data were acquired at a 5000 Hz sampling rate and downsampled to 

500Hz. Continuous data were then band-pass filtered from 0.3 to 30Hz, segmented 

into epochs (-100 ms to 700 ms) and re-referenced to the nose electrode.   The EEG 

data were stored using codes created with Brain Recorder 2.0 (Brain Products, 

Gilching, Germany). Pre-processing was conducted using the Brain Analyzer version 

2.1 (Brain Products, Gilching, Germany). The time window of interest was selected 

based on the target component, the N2/P2 complex, which usually appears between 

150 and 450 ms after the onset of laser pulse. Baseline correction was performed from 

time window -100 ms to 0. We implemented an automatic artifact exclusion tool to 

discard epochs in the Cz channel exceeding ± 50 µV of amplitude. We then conducted 

a visual inspection and manually rejected any epochs contaminated with muscle or 

eye movement artifacts. Finally, the artifact free epochs from each trial were averaged 

and time-locked to the onset of the laser stimulus to measure Aδ-related LEPs. The 

N2 and P2 peaks in each curve were visually assigned according to the polarity, 

latency and scalp map. Whenever no evoked responses were detected from the painful 

side due to neuropathic pain, the N2 and P2 latencies of the LEPs recorded from the 

control side were used as references in the statistical analyses. The N2 and P2 peaks 

are maximal in amplitude at the vertex (Cz electrode) (Madsen, Finnerup et al. 2014). 

N2/P2 peak-to-peak amplitude from the Cz electrode data was measured using the 

Brain Analyzer 2.1 software. All data were recorded and stored in a Microsoft Excel 

worksheet file. 

3.4.3 Statistical analysis 

Background 

Statistical analyses were performed with the SPSS software, version 22 (IBM, 

USA). Our first goal was to evaluate the peak-to-peak amplitude of the N2/P2 LEPs 

and NRS scores before and after DRGS implementation, while our secondary goal 

was to investigate the effect of DRGS on neuropathic pain components, QoL and 

disability related to chronic neuropathic pain, as measured by the PainDETECT, SF-

36 and PDI clinical questionnaires. We used Friedman and Wilcoxon signed-rank 

tests for the first set of analyses (LEPs and NRS), and descriptive statistical methods 
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for the second set (PainDETECT, SF-36 and PDI). We used 95% confidence interval 

(CI) plots to show the peak-to-peak N2/P2 LEPs amplitude reproducibility on the 

control side. Data are summarized in box-plot and bar graphs. The significant alpha 

level was set at .05. Additionally, an alpha level Bonferroni correction was conducted 

before the first set of statistical analyses, for an alpha of .016. No further corrections 

were applied in the post-hoc analyses. 

Hypothesis 1 

We used the N2/P2 complex as a target for testing whether LEPs changes as a 

result of DRGS. We measured the N2/P2 complex’s peak-to-peak amplitude values in 

µV from the painful dermatome receiving DRGS and the homologous dermatome on 

the control non-painful side. We conducted descriptive statistics using a 95% CI error 

plot on the control non-painful side to assess the reproducibility of repeated recording 

sessions for the group data. We used the two-tailed Friedman test for repeated 

measures to compare all three data points. The level of significance was set at .016 

after Bonferroni correction.  If the test showed statistically significant results, the 

Wilcoxon signed-rank test was implemented for post-hoc comparisons between the 

three paired conditions.  

Hypothesis 2 

To test whether DRGS reduces chronic neuropathic pain, we applied two 

validated and standardized pain scales: the NRS, an 11-point self-report scale of pain 

intensity, and the PainDETECT, a screening questionnaire to identify neuropathic 

pain components. Due to the dataset’s small sample size and non-normal distribution, 

we compared scores at M0, M1 and M6 using the non-parametric Friedman test for 

repeated measures. The level of significance was set to .016 after Bonferroni 

correction. Whenever we observed statistically significant differences, we performed 

post-hoc analyses using the signed-rank Wilcoxon test to assess relationships between 

the three paired subgroups. PainDETECT questionnaire scores were descriptively 

assessed with box-plot charts. The graph depicts the mean scores that were classified 

according to the questionnaire’s cut-off limits (Fig. 14).   

 



 33 

Hypothesis 3  

To assess whether DRGS affects QoL and disability related to chronic 

neuropathic pain, we used two validated and standardized clinical questionnaires: SF-

36 and PDI. We scored the SF-36 using the RAND score version (Hays, Sherbourne 

et al. 1993). Here again, we used descriptive statistics with box-plot and bar graphs.  
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4 RESULTS 

 

4.1 Demographic data 

Of the 16 patients recruited to participate in the study, seven completed all 

three time-point measurements and one was excluded due to predominantly 

nociceptive pain. Table 2 shows patient demographics: 

Table 2 – Study group demographics. 

Id Sex Age Pain 
duration 
(months) 

Etiology Area of Pain Levels 
Stimulated 

Side 

1 F 57 36 Post  femoral artery 
catheterism 

Groin L1 and L2 Right 

2 M 47 40 Post lumbar 
discectomy 

Groin and leg L2, L3 and L4 Right 

3 F 43 74 Post knee surgery Knee L3 and L4 Left 

4 M 53 120 Post lumbar 
discectomy 

Groin and leg L1 and L2 Left 

5 M 53 32 Post inguinal hernia 
surgery 

Groin L1 and L2 Right 

6 M 50 84 Post fracture 
correction surgery 

Leg L4 and L5 Right 

7 F 52 24 Post inguinal hernia 
surgery 

Groin L1 and L2 Right 

 

4.2 Laser-evoked potentials  

The N2/P2 peak-to-peak LEPs amplitudes were measured in µV at M0, M1 

and M6. On the non-painful control side, we performed a 95% CI graphical 

representation of the study group’s N2/P2 peak-to-peak amplitudes to show 

reproducibility (Fig. 9). On the graph one can observe that most amplitudes were 

between 10 and 17 µV across all measurements, with no statistical difference 

(Friedman Test, [χ2(2) = 2.000, p = .368]). The median values with interquartile 

ranges are 13.46 µV (11.61-16.33 µV), 14.16 µV (13.11-14.38 µV) and 13.59 µV 

(8.30-14.72 µV) at M0, M1 and M6, respectively. 
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Fig. 9 – 95% CI N2/P2 peak-to-peak amplitude (µV) from the non-painful control 

side, showing reproducibility across measurements at M0, M1 and M6. 

 

A two-tailed non-parametric Friedman test for repeated measures revealed a 

significant effect of DRGS on the N2/P2 peak-to-peak amplitudes [χ2(2) = 10.571,    p 

< .01]. A Wilcoxon signed-rank test showed that the amplitudes at M0 were different 

from M1 [Z = -2.366, p < .05] and M6 [Z = -2.366, p < .05], showing a significant 

increase of the N2/P2 peak-to-peak amplitude after implementation of DRGS (Fig. 

10). 
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Fig. 10 – N2/P2 peak-to-peak amplitude (µV) on the painful side significantly 

increased at M1 and M6 in comparison to M0. 

 

We then calculated the grand average of the seven patients’ N2/P2 EEG 

curves. Figure 11 shows a graph with the data from all three time points overlayed, 

which shows restoration of the peak-to-peak amplitude after DRGS at M1 and M6 in 

comparison to M0. 
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Fig. 11 – Grand average LEPs curves (n=7), showing no LEPs at M0 and LEPs 

restoration at M1 and M6. 

 

Next, a two-tailed non-parametric Friedman test for repeated measures 

revealed a significant effect of DRGS on the ratio of peak-to-peak amplitudes 

between the painful test side and the non-painful control side [χ2 (2) = 11.143, p < 

.01]. The Wilcoxon signed-rank test showed that the ratio at M0 was different from 

M1 [Z = -2.366, p < .05] and M6 [Z = -2.366, p < .05]. The significant increase from 

M1 to M6 indicates LEPs restoration to near normal levels (Fig. 12). 

 

 

 

 

 

 

 



 38 

Fig. 12 – Ratios of the N2/P2 peak-to-peak amplitudes (µV) of the painful versus non-

painful side, showing a significant increase in the M1 and M6 ratio relative to M0. 

 

4.3 Pain intensity evaluation 

NRS scores were significantly lower under DRGS (Friedman Test, [χ2(2) = 

11.385, p < .01]): Scores at M1 [Z = -2.371, p < .05] and M6 [Z = -2.371, p < .05] 

differed significantly from those at M0 (Wilcoxon signed-rank test; Fig. 13).  
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Fig. 13 – NRS scores significantly decreased at M1 and M6 in comparison to M0. 

 

The mean values of spontaneous pain intensity in the affected area decreased 

from 7.6 at baseline to 2.1 at 1 month and 2.2 at 6 months after introduction of DRGS. 

This corresponds to an overall NRS pain score decrease of 73% at 1 month and 72% 

at 6 months.  

4.4 Neuropathic pain components 

Mean PainDETECT values decreased from 19.7 at M0 to 15.7 at M1 and 14.5 

at M6. Interestingly, scores decreased in line with pre-defined cut-off values, which 

divide score ranges into 3 distinct intervals (neuropathic, unclear and nociceptive) 

(Fig. 14). This finding indicates neuropathic pain amelioration. 
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Fig. 14 – PainDETECT scores decreased at M1 and M6 relative to M0. 

 

4.5 Quality of life assessment 

The SF-36 is organized into eight different QoL dimensions: Vitality (V), 

Physical Functioning (PF), Pain (P), General Health Perceptions (GHP), Physical 

Role Functioning (PRF), Emotional Role Functioning (ERF), Social Role Functioning 

(SRF) and Mental Health (MH). Each dimension is scored on a scale of 0 (worst QoL) 

to 100 (best QoL) (Fig. 15).  
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Fig. 15 – SF-36 mean scores on 6 out of 8 items improved at M1 and M6 relative to 

M0.  

 

Only two of the dimensions showed no improvement over time: General 

Health Perceptions and Emotional Role Functioning. By contrast, the mean score for 

Pain went from 22.5 at M0 to 43.2 at M1 and 52.5 at M6 (Table 3).  

Table 3 – Mean SF-36 scores. 

 M0 M1 M6 

V 38.5 53.5 54.2 

PF 42.8 62.1 58.5 

P 22.5 43.2 52.5 

GHP 57.8 44.2 53.5 

PRF 25.0 50.0 53.5 

ERF 71.4 66.6 71.4 

SRF 46.4 62.5 69.6 

MH 56 66.8 66.8 
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4.6 Pain-related disability assessment 

PDI scores range from 0 (no disability related to pain) to 70. Scores decreased 

at M1 (22.8) and M6 (18) relative to M0 (38.5; Fig. 16). 

Fig. 16 – PDI scores decreased at M1 and M6 in comparison to M0. 
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5 DISCUSSION 

 

5.1 Neuromodulation for pain - background 

The use of electrical stimulation to treat pain conditions dates to 15 A.D., 

when accidental contact with a torpedo fish resulted in relief from gout pain 

(Goldenberg 2006). In the modern era of medicine, pain neuromodulation arose after 

the publication of the gate control theory by Melzack and Wall in 1965 (Melzack and 

Wall 1965). Two years later, Shealy et al. published the first description of electrical 

stimulation of the spinal cord by insertion of a lead in the subarachnoid space of the 

dorsal column to treat a cancer pain patient (Shealy, Mortimer et al. 1967). Thereafter, 

the first commercially available spinal cord stimulator system was released in 1968 

(Kumar and Rizvi 2014). Since then, the field of neuromodulation for pain, especially 

SCS, has evolved exponentially. Research in the area of neuromodulation continues to 

elucidate the mechanisms behind this technique and contribute to its improvement. 

Research using evidence-based together with mechanism-based medicine can 

contribute to the development of state-of-the-art treatments (Levy 2012).  

Several studies addressing the effects of neuromodulation on different pain 

conditions have been published during the last decade (Boswell, Shah et al. 2005, 

Airaksinen, Brox et al. 2006, Boswell, Trescot et al. 2007, Cruccu, Aziz et al. 2007, 

North, Shipley et al. 2007, Manchikanti, Boswell et al. 2009, Manchikanti, Abdi et al. 

2013). Most of those studies focused on SCS systems with the usual electrode design 

specifications engineered to be inserted into the dorsal column. In those studies, the 

frequency of stimulation was set at a regularly spaced, fixed rate of electrical spikes, 

mostly between 30 and 300 Hz (Meier 2014). This is typically called tonic SCS of the 

dorsal column.  

In a recent review of neuromodulation for the treatment of chronic pain 

including SCS (Deer, Krames et al. 2014), the authors suggested that more 

randomized studies testing efficacy are needed, and also that efforts should be made 

to guarantee patients’ access to such techniques. Furthermore, they recommended 

consensus meetings be held to determine the most appropriate use of neurostimulation 
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for pain. According to Meier, 25 to 50% of patients do not benefit from SCS (Meier 

2014), and several authors have suggested ways of producing better outcomes 

(Sindou, Mertens et al. 2003, Atkinson, Sundaraj et al. 2011, Campbell, Jamison et al. 

2013). Currently, the only clear positive level of evidence (I to II) for tonic low-

frequency SCS of the dorsal column is for patients diagnosed with failed back surgery 

syndrome (FBSS) (Grider, Manchikanti et al. 2016; Manchikanti, Falco et al. 2014).  

5.2 Innovative approaches using spinal cord stimulation 

SCS has been used now for nearly half a century. However, there is still plenty 

of room for design innovations, system upgrades or hardware/software refinements. 

There have been several recent advancements in this area, particularly for SCS. These 

include rechargeable generators, multicolumn electrode leads, long-range telemetry, 

self-adjustable stimulation, magnetic resonance imaging (MRI) compatible systems, 

wireless rechargeable leads, novel programming waveforms, and electrodes for new 

stimulation targets. Some technologies expected to emerge in the near future are new 

stimulation paradigms, closed loop stimulation, optogenetic-based stimulation, the 

addition of neurochemicals to hybrid systems and miniaturization (Slavin 2014). The 

techniques with the greatest impact on clinical practice are most likely the two new 

waveform programming paradigms available for SCS, high frequency stimulation and 

burst stimulation, and DRGS (Raja & Wallace 2015).  

5.2.1 Electrical properties of the stimuli 

Relative to traditional (tonic) SCS, burst and high frequency SCS stimulation 

have been shown to offer better clinical outcomes (De Ridder, Plazier et al. 2013, 

Kapural, Yu et al. 2015). Burst stimulation is set to 40 Hz burst mode as  a constant 

stimulus with 5 spikes at 500 Hz per burst and pulse width with interspike intervals of 

1 ms, while high frequency stimulation consists of SCS at regular spaced spikes of 

stimulation with frequencies of up to 10 kHz (Raja & Wallace, 2015). Clinical trials 

using both techniques have shown preliminary positive results, including pain relief 

without paresthesia generation, particularly for lower back pain (Tiede, Brown et al. 

2013, Al-Kaisy, Van Buyten et al. 2014, de Vos, Bom et al. 2014, Schu, Slotty et al. 

2014, Kapural, Yu et al. 2015). A recent review article gave level of evidence IV for 
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burst stimulation and level of evidence II to III for high frequency stimulation.  

(Grider, Manchikanti et al. 2016).  

5.2.2 Dorsal root ganglion stimulation  

DRGS for the treatment of chronic pain is a relatively recent technique (Deer, 

Grigsby et al. 2013). Since 2011, DRGS is performed in some European countries and 

in Australia (Deer, Kramer et al. 2014). Some studies have referred to the technique 

with a different name: “spinal cord stimulation of the dorsal root ganglion” (Liem, 

Russo et al. 2015). Most authors agree that DRGS recruits the CNS (Liem 2015). A 

recent review highlights DRGS as an emerging management option for neuropathic 

pain (Pessoa, Escudeiro et al. 2015). Additionally, contemporary textbooks in the 

field of neuromodulation have already dedicated an exclusive chapter to DRGS for 

the treatment of chronic pain (Kugler 2013, Knotkova and Rasche 2014, Deer and 

Pope 2015, Slavin 2015).  

A recent review suggested, that despite some evidence for the efficiency of 

DRGS, that more evidence is needed of its long-term efficacy and safety (Forget, 

Boyer et al. 2015). These authors further recommended the use of tools such as LEPs 

and quantitative sensory testing (QST) (Forget, Boyer et al. 2015). The ACCURATE 

study is a large ongoing clinical trial that aims to evaluate the safety and effectiveness 

of DRGS for patients diagnosed with CRPS I and II (2016). In it, a group receiving 

DRGS is compared to a control group receiving traditional tonic SCS. Follow-up 

results at 12 months have been positive. Relative to the control group, more patients 

who received DRGS reported successful pain relief (74.2% vs. 53% of patients). 

Additionally, most DRGS patients had better stimulation targeting, enabling better 

coverage of the painful area. There was also a lower rate of paresthesia in the 

stimulated area among the DRGS patients (2015). As a result of these findings, in 

February 2016, the Food and Drug Administration (FDA) approved the treatment with 

DRGS for patients diagnosed with CRPS type I and II in the United States. It is 

important to note that this clinical trial was sponsored by the manufacturer of the 

neuromodulation system, raising a potential conflict of interest. 
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5.3 Mechanisms of action of neuromodulation  

5.3.1 Background 

Although neuromodulation was introduced several years ago, the mechanisms 

underlying the treatment of chronic pain through it have yet to be fully understood. 

But before understanding the mechanics behind SCS and even DRGS, one must fully 

understand neuropathic pain pathophysiology. In the following sections, we also 

consider the standardized methods used to quantify results, such as pain intensity 

scales, neuropathic pain assessment tools, and neurophysiological techniques.  

5.3.2 Pathophysiology of chronic neuropathic pain  

Chronic neuropathic pain is defined as maladaptive pain resulting from a 

lesion or disease affecting the somatosensory system. In contrast to regular pain, 

which plays a protective role in avoiding further tissue damage, chronic neuropathic 

pain offers no biological function. Neuropathic pain syndromes usually present a 

combination of negative symptoms or sensory deficits (e.g. loss of sensation), 

together with positive symptoms, which may include paresthesia or allodynia (Woolf 

and Mannion 1999). The diverse clinical presentation in neuropathic pain is directly 

related to the variety of mechanisms responsible for chronic pain development, 

including ectopic neuronal activity due to hyperexcitability, peripheral sensitization 

associated with a reduced activation threshold of the PSN, central sensitization due to 

increased excitability and synaptic efficacy of neurons in central nociceptive 

pathways, impaired inhibitory mechanisms of nociception, and activation of microglia 

and other non-neural cells in the CNS (Table 4) (Gilron, Jensen et al. 2013, Gilron, 

Baron et al. 2015).  
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Table 4 – Neuropathic pain mechanisms (modified from Gilron, Baron et al. 2015). 

Neuropathic pain mechanisms 

• Ectopic activity 
• Peripheral sensitization 
• Central sensitization 
• Impaired inhibitory modulation 
• Activation of microglia 

Several chronic pain mechanisms are generated in the spinal cord, the first 

relay in the pain pathways from the periphery to the brain (D'Mello and Dickenson 

2008).  There are currently two possible distinct theories regarding chronic pain: 

central sensitization (i.e. neurogenic hyperalgesia), which manifests as slight sensory 

loss and partial nociceptive deafferentation (i.e. painful hypoalgesia), which presents 

as significant sensory deficits (Baumgartner, Magerl et al. 2002). Identifying the 

sensory profile of an individual’s neuropathic pain can lead to better selection of 

therapy, which highlights the importance of a mechanism-based classification of 

neuropathic pain (Baumgartner, Magerl et al. 2002, Cruccu and Truini 2009).   

5.3.3 Peripheral neuropathic pain  

In this brief review, we focus on the pathophysiological mechanisms of 

peripheral neuropathic pain, which is defined as “pain arising as a direct consequence 

of a lesion or disease affecting the peripheral somatosensory system” (Loeser and 

Treede 2008). Peripheral neuropathic pain manifests as spontaneous, stimulus-

independent pain and/or as stimulus-evoked pain  (i.e. pain hypersensitivity) (Fig. 17) 

(Woolf and Mannion 1999). Peripheral nerve damage can lead to significant 

alterations in the neuron itself and/or in processes involved in nociception. Finally, a 

peripheral nerve lesion can lead to a number of pathophysiological alterations (Kehlet, 

Jensen et al. 2006).  

Spontaneous and evoked pain 

Spontaneous pain is often described as shooting, lancinating or burning pain. It 

can be further divided into paroxysmal pain and constant pain. Paroxysmal pain is 

associated with high frequency bursts generated ectopically. Not only are the 
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peripheral terminals sensitized, but also the cell bodies and the region near the DRG, 

contributing to the generation of spontaneous bursts (Truini and Cruccu 2006). On the 

other hand, constant pain is the most typical form of neuropathic pain, and is 

attributed to either spontaneous firing of C fiber afferents due to excitation of C 

nociceptors in the skin, or as a consequence of central hyperactivity resulting from 

deafferentation.  

Evoked pain is also a common outcome in peripheral neuropathic pain and 

may manifest as hyperalgesia or allodynia. Hyperalgesia is defined as “increased pain 

sensitivity” (Loeser and Treede 2008), generally resulting from abnormal processing 

of nociceptor input. Neuropathic hyperalgesia can be categorized as primary or 

secondary. Primary hyperalgesia is caused by the sensitization of the injured tissue 

after a peripheral nerve lesion, whereas secondary hyperalgesia is produced in an 

adjacent portion of unaffected tissue in response to CNS sensitization (Cohen and 

Mao 2014). Allodynia, on the other hand, is defined as “pain in response to a non-

nociceptive stimulus” (Loeser and Treede 2008). It is believed that allodynia 

translates a pure sensitization of the peripheral receptors, with reduction of the 

mechanical threshold in the sensitized nociceptors (Serra 1999). However, the most 

accepted explanation contends that central nociceptive neurons are sensitized to 

mechanically evoked input mediated by Aß fibers (Truini and Cruccu 2006). 
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Fig. 17 – Aetiology, mechanisms and symptoms of peripheral neuropathic pain 

(modified from Woolf and Mannion 1999). 

 

5.3.4 Pathophysiology of the dorsal root ganglion in neuropathic pain 

The DRG is a key structure in the processing of pain in chronic pain states, 

affecting intricate mechanisms in peripheral and central pain processing. The DRG 

participates in various pain-related pathophysiological modifications during 

inflammation, somatic pain and neuropathic pain. In a recent review, the authors 

suggest that the DRG is an important therapeutic target in the treatment of 

neuropathic pain and also the source of mechanisms associated with the development 

of neuropathic pain (Sapunar, Kostic et al. 2012). In the event of nerve injury, the 

PSN in the DRG start to generate ectopic discharges, contributing to neuropathic pain 
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and paresteshias (Wall and Devor 1983, Amir, Michaelis et al. 1999, Sapunar, 

Ljubkovic et al. 2005). Membrane potential oscillations at sub-threshold levels are 

increased in a chronic nerve injury and are associated to the ectopic discharges in the 

DRG (Amir, Michaelis et al. 1999). The ectopic activity is thought to be the source of 

pain producing signals after peripheral nerve lesions (Truini, Biasiotta et al. 2010). It 

is also known that the DRG starts to respond to blood-borne chemicals following a 

nerve lesion (Burchiel 1984). 

One of the mechanisms responsible for hyperexcitability is thought to be the 

loss of Ca2+ influx into the somata (Lirk, Poroli et al. 2008). It has been shown that 

loss of Ca2+ current is related to the passage of high-frequency bursts from the 

periphery to the CNS. Furthermore, the low-pass filtering function that ensues in 

healthy DRG neuronal cells on the T-junction is impaired (Luscher, Streit et al. 1994). 

Some pathological conditions, such as neural injury and increased neural activity, 

may decrease the concentration of extracellular Ca2+. This often happens following a 

nerve injury, which enhances hyperexcitability even when ion channel properties are 

not affected (Lirk, Poroli et al. 2008).  

After a nerve lesion, the neural activity of the DRG is intensely modulated by 

a complex cascade of immune and glial cell responses (Scholz and Woolf 2007). The 

release of signaling inflammatory molecules from these cell types can lead to 

hypersensitivity of nociceptors in the periphery (Julius and Basbaum 2001). 

Following a peripheral nerve injury or inflammation, the glial cells surrounding the 

soma proliferate. Those cells produce cytokines and neurotropins, which in turn 

contribute to chronic pain states (Znaor, Lovric et al. 2007), and the release of 

neurotropic factors has been shown to exacerbate allodynia (Zhou, Deng et al. 2000). 

Nerve growth factor, a neurotropin that is elevated in inflammatory tissues, can 

modify PSN phenotype, altering sensory neuron function and leading to persistent 

pain (Woolf 1996). 

Inflammatory cell proliferation surrounding the DRG after nerve injury 

involves macrophages and lymphocytes (Hu and McLachlan 2002). As these cells 

release excitatory cytokines, generation of ectopic neuron firing ensues, leading to 

neuropathic pain development (Hu and McLachlan 2002). It has been shown that 

tumor necrosis factor (TNF) alpha, a pro-inflammatory cytokine, can induce neuron 
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ectopic activity (Sorkin, Xiao et al. 1997). Additionally, inflammation at the level of 

the DRG is important in the development of neuropathic pain (Li, Xie et al. 2011). 

Na+ ion channels are associated with increased excitability in DRG C cells. An 

enhancement of C cell excitability has been shown after nerve injury in rats, which 

was most likely associated with a Na+ channel mechanism (Zhang, Donnelly et al. 

1997). Also, after axotomy, there is an up-regulation of type 3 sodium channel 

mRNA, which is not normally expressed by mature DRG neurons, and this may 

explain Na+ channel involvement in hyperexcitable states after nerve injury (Waxman, 

Kocsis et al. 1994). Lower APs thresholds in DRG neurons with an increase in 

spontaneous APs were also observed in a study analyzing rats after ligation of the 

sciatic nerve, suggesting that the DRG cell body is the source of this abnormal 

activity (Study and Kral 1996). It is reasonable to assume that the pathological 

activity in the DRG may be associated with the initial phases of neuropathic pain 

(Wall and Devor 1983). Neuropathic pain hyperexcitability has also been linked to 

Na+ channel hyper-expression (Devor, Govrin-Lippmann et al. 1993).  

K+ channels are also involved in neuropathic pain development, as seen in a 

rat model of sciatic nerve injury (Kajander, Wakisaka et al. 1992). Furthermore, 

alterations in K+-channel function have been associated with chronic pain, including 

neuropathic pain (Du and Gamper 2013). Moreover, impairment of glial K+ 

homeostasis may further contribute to pain (Takeda, Takahashi et al. 2011). 

Norepinephrine, an excitatory neurotransmitter, can alter DRG physiology due 

to the DRG’s sympathetic sensitivity in chronic pain states. Norepinephrine 

sensitivity can lead the PSN in the DRG to develop spontaneous firing. Moreover, 

after a nerve injury, norepinephrine appears to influence neuronal firing of sensitized 

A and C fibers via up-regulated alfa2-adrenoceptors, especially when there is ongoing 

spontaneous neuron activity. The abnormal sympathetic neuronal activity may be 

associated with cutaneous pain and hyperalgesia (Xie, Zhang et al. 1995). Finally, 

sympathetic innervation of the DRG after nerve lesions may play a role in 

sympathetically maintained neuropathic pain (Chung, Lee et al. 1996). 
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5.3.5 Spinal cord stimulation of the dorsal column - mechanisms of action  

Gate control theory  

The gate control theory proposed by Melzack and Wall was the most accepted 

theoretical framework explaining pain relief during SCS of the dorsal column 

(Melzack and Wall 1965). According to this model, a “gate” acts as an integrative 

center mediated by A fibers. The stimulation of the dorsal column leading to 

activation of A fibers can activate inhibitory interneurons in the dorsal horn. 

Interneuron activation, in turn, suppresses pain transmission by “closing” the gate to 

the afferent nociceptive inputs generated by small myelinated Aδ or unmyelinated C 

fibers. In order to validate this model as a mechanistic explanation, SCS must 

suppress the activity of wide dynamic range (WDR) neurons and SCS-mediated 

inhibitions must involve inhibitory interneurons (Zhang, Janik et al. 2014). Some 

evidence in rats points to a drastic reduction in the WDR neurons’ spontaneous 

activity rate in the dorsal root following a conditioned stimulus in the dorsal column 

or in the posterior root (Guan, Wacnik et al. 2010). Additionally, pain suppression in 

animal models of neuropathic pain under SCS has been shown through suppression of 

WDR neurons, which requires activation of A-fibres originating from the pain area 

(Guan 2012). Dorsal horn WDR hyperexcitablity has been shown to normalize after 

SCS (Yakhnitsa, Linderoth et al. 1999).  

Segmental mechanisms 

With the publication of additional potential segmental mechanisms explaining 

pain relief during SCS, the gate control theory was considered to be insufficient on its 

own. The gate theory fails to fully explain SCS mechanisms of action (Kumar, Toth et 

al. 1998), and this view is corroborated by clinical findings of sustained pain relief 

even after cessation of stimulation (Lindblom and Meyerson 1975). For example, 

electrical stimulation of low-threshold afferents in an area surrounding the primary 

excitatory receptive field of a neuron results in inhibition of the neuron, similarly to 

stimulation of the dorsal column (Hillman and Wall 1969), and is therefore based on a 

mechanism similar to SCS. The influence of different cell populations, such as 

nociceptive-specific (NS) neurons and low-threshold neurons within the dorsal horn, 

can additionally influence pain relief during SCS. Distinct roles of these cells as well 
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as the interaction with the WDR neurons led to the development of the hypothesis of a 

microcircuit of pain perception (Prescott and Rate 2012). Furthermore, additional 

segmental effects include aberrant nerve sprouting into atypical laminae following a 

nerve lesion (Woolf, Shortland et al. 1992), excitatory synaptic receptor expression 

leading to hyperexcitability and sensitization of NS neurons (von Hehn, Baron et al. 

2012), and loss of inhibitory mechanisms (Woolf and Wall 1982), all of which are also 

not accounted for by the gate theory (Zhang, Janik et al. 2014). The SCS-induced 

WDR neuron inhibition can occur to a greater extent if the electrode is positioned at 

the spinal level adjacent to the affected dermatome, and this suggests a segmental 

spinal site of action (Smits, van Kleef et al. 2012). Gamma-aminobutyric acid 

(GABA) mediated inhibition of local interneurons appears to be the driver of A-fiber 

mediated inhibition (Zhang, Janik et al. 2014), which also seems to be segmental. 

This GABA mediated effect was demonstrated in two clinical randomized trials 

through use of GABA B receptor agonist baclofen (Lind, Schechtmann et al. 2008, 

Schechtmann, Lind et al. 2010). 

Supraspinal mechanisms 

Supraspinal mechanisms appear to be independent of segmental mechanisms 

and may play a role in SCS (Saade´, Tabet et al. 1986, Foreman and Linderoth 2012). 

Opioidergic (Sato, King et al. 2013), serotoninergic (5-HT) (Song, Ultenius et al. 

2009), adenosinergic (Cui, Sollevi et al. 1997) and cholinergic (Schechtmann, Song et 

al. 2008) systems have also been shown to contribute to SCS, and recent evidence in 

rats suggests modulation of a spinal-supraspinal loop (Song, Ansah et al. 2013). The 

nucleous raphes magnus in the rostroventromedial medulla (Song, Ansah et al. 2013) 

and periaqueductal gray matter (Sorkin, McAdoo et al. 1993) appear to contribute to 

the descending antinociceptive system in SCS. Inhibition of neuropathic pain in rats 

has been shown to occur through dorsal column stimulation by activation of brainstem 

centers via rostral projections of the dorsal column nuclei (El-Khoury, Hawwa et al. 

2002). It is possible that SCS pain relief may be a consequence of a complex 

interaction between ascending and descending fibers as well as due to direct root 

stimulation (Yang, Carteret et al. 2011). In fact, spinal and supraspinal mechanisms 

appear to be acting synergistically in pain relief through SCS (Barchini, 

Tchachaghian et al. 2012). 
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Finally, changes in the pain matrix (i.e. the network of brain areas involved in 

pain processing) also contribute to SCS-mediated pain relief (Tracey and Mantyh 

2007; Garcia-Larrea and Peyron 2013). Researchers have identified areas of 

activation and/or inhibition of dorsal column nuclei which may function as a neural 

relay for SCS-induced alterations in the brain (Qin, Yang et al. 2009). Studies using 

functional magnetic resonance imaging (fMRI) showed increased activation of 

primary somatosensory cortex (SI) and secondary somatosensory cortex (SII) during 

neuropathic pain (Kiriakopoulos, Tasker et al. 1997), and pain reduction by SCS has 

been associated with reduced activity in prefrontal cortex, cingulate gyrus, thalamus, 

supplementary motor area, and postcentral gyrus (Rasche, Siebert et al. , Moens, 

Sunaert et al. 2012). Moreover, the effects of activation due to SCS in the 

contralateral insula and ipsilateral SII following unilateral painful heat stimulation 

were higher when measured during simultaneous stimulation (SCS + heat evoked 

pain) than when measured separately under either SCS or heat evoked pain. This 

finding raised the hypothesis that SCS interferes with pain processing by saturating 

neuronal circuits with neuronal impulses, which in turn reduces input to the pain 

matrix (Stančák, Kozák et al. 2008).  

A positron emission tomography (PET) study in patients undergoing SCS for 

angina showed a number of regions (i.e. medial prefrontal cortex and cingulate gyrus) 

associated with nociception (Hautvast, Ter Horst et al. 1997). Another PET study 

showed significant simultaneous activation of the contralateral thalamus and bilateral 

parietal association area, as well as activation of the prefrontal cortex and cingulate 

gyrus during SCS, suggesting a strong influence of multiple supratentorial structures 

in pain processing (Kishima, Saitoh et al. 2010). And another PET study by Sufianov 

et al. showed that patients under SCS experience a normalization of brain metabolism 

and function (Sufianov, Shapkin et al. 2014). Further neuronal activation/deactivation 

patterns in multiple brain regions were also found in a Tc-99m-HMPAO single-

photon emission computed tomography (SPECT) study (Nagamachi, Fujita et al. 

2006).  The identification of lateral and medial pain systems related to distinct 

noxious and innocuous CO2 laser stimuli confirmed a major division of function 

within the pain matrix (Kulkarni, Bentley et al. 2005), and both may be affected by 

SCS, especially in the new waveform paradigm of burst (De Ridder, Plazier et al. 

2013). Although studies have shown pain matrix effects after SCS, several authors 
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believe that few conclusions can be drawn and that more studies are necessary to 

assess the specific role of each particular brain area (Meier 2014, Zhang, Janik et al. 

2014).  

To conclude, there remains an incomplete understanding of SCS mechanisms 

of action and chronic neuropathic pain response to this technique. Thus, there is a 

wide opportunity for further research towards new experimental models and clinical 

investigation, as well as to explore novelty stimulation paradigms (Meier 2014, 

Bentley, Duarte et al. 2016). 

5.3.6 Dorsal root ganglion stimulation -  proposed mechanisms of action 

Most studies on DRGS to date include PSN cultured cell techniques, 

neurophysiological assessment or animal models.  

The neuronal somata of the first sensory neurons lie within the DRG, 

including those conveying Aδ and C fibers. Spontaneous or facilitated firing of 

lowered threshold neurons in the DRG can produce hyperexcitability, increasing pain 

signals towards the spinal cord. The mechanism behind pain alleviation through 

DRGS can be elucidated from research with electrical deep brain stimulation (DBS) 

(McIntyre, Savasta et al. 2004). Similarly to DBS, DRGS could potentially alter 

abnormal electrical activity of DRG neurons, decreasing pain by modulating ion 

channels through use of external electrical current (Bradford 1970). Specific genes 

that alter neuronal function are also expressed under electrical stimuli (Klein, Tendi et 

al. 2003). Evidence from cultured DRG cells show a direct correlation between 

electrical DRGS and neuronal somata activation (Fuchs, Rigaud et al. 2007). Yet 

another study recently showed that field electrical stimulation of DRG neurons can 

cause Ca2+ influx, triggering second messenger processes. Ca2+ enhanced influx has 

been associated to decreased excitability and restored the filtration of high-frequency 

action potentials (Koopmeiners, Mueller et al. 2013).  

Electrical stimulation of neural tissue was shown to stimulate the synthesis of 

growth factors. There is evidence that electrical DRGS may release abnormal growth 

factors and/or inhibit the release of normal ones (Aaron, Boyan et al. 2004). Similar 
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mechanisms may be extended to immune response changes, which would lead to 

decreased pain following electrical DRGS.  

As seen following dorsal column stimulation, autonomic effects are observed 

after electrical DRGS, which suggests that the dorsal root afferent fibers influence 

downstream autonomic effects (Croom, Foreman et al. 1997). Proposed mechanisms 

of DRGS based on this assumption include vasodilatory effects. Additionally, one 

may expect stabilization of nociceptors in the periphery, deactivation of WDR 

neurons in the dorsal horn and modulation of supraspinal brain regions involved in 

chronic pain (Krames 2015). Another hypothesis proposes that DRGS has a potential 

effect on DRG microglia, decreasing the release of chemokines associated to chronic 

pain, as seen in DBS (Vedam-Mai, van Battum et al. 2012). The decrease of the pro-

inflammatory effect on microglia has been shown with electrical stimulation in a rat 

photic injury model (Zhou, Ni et al. 2012).  

Table 5 – Hypothesized mechanisms of action - DRGS (modified from Krames 2015). 

Hypothesized mechanisms of action  - DRGS 

• Modification of growth factor release 
• Reversal of cytokine release 
• Downstream and upstream effects 
• Rectification of electrical activity patterns 
• Reversal of genetic changes 
• Down-regulation of abnormal ion channels and restitution of normal ion 

flux 
• Filtering of electrical impulses 

According to Yan et al., DRG electrical stimulation leads to nerve 

regeneration with neurite outgrowth via calcium influx that may result in stabilization 

of pain neurophysiology (Yan, Liu et al. 2014), a mechanism that has also been 

modeled computationally (Adams, Willits et al. 2016).  

In sum, DRGS may function as a signal stabilizer of pain input coming from 

the periphery. Furthermore, it may reverse neural plasticity and sensitization of the 

CNS or even prevent maladaptative changes if initiated early in neuropathic pain 

patients (Liem 2015). 
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5.3.7 Neurophysiological assessment under neuromodulative therapies  

Neurophysiological tools such as somatosensory evoked potentials (SEP), 

plantar sympathetic skin responses (SSRs), F-wave, H-reflex, nociceptive flexion 

assessment (RIII-reflex) (de Andrade, Bendib et al. 2010), have allowed investigators 

to further test SCS mechanisms of action in real clinical practice. In a study with 

FBSS patients, the authors assessed a variety of neurophysiological measurements 

during SCS ON and OFF conditions: segmental spinal integration was measured by 

means of sensorimotor reflexes for small fibers (RIII-reflex) and large fibers (H-

reflex); spinal motorneuron excitability was assessed by recording F-waves; 

suprasegmental sensory pathways (dorsal columns) were examined by recording P40-

SEP; and SSRs were assessed to evaluate SCS effects on sympathetic-related activity. 

Normalization of neurophysiological values during the ON condition were found in 

SSRs, F-wave persistence, reduced F-wave amplitude, increased F-wave latency and 

increased SEP latency. Significant differences between ON and OFF were found in 

SEP amplitude, H-reflex amplitude, RIII-reflex threshold and RIII-reflex area (de 

Andrade, Bendib et al. 2010).  

Other studies have also found attenuation in RIII-reflex after SCS (Garcia-

Larrea, Sindou et al. 1989, Garcia-Larrea, Peyron et al. 2000), which may be the 

strongest objective evidence of a real analgesic effect. A decrease in P40-SEP 

amplitude speaks in favor of supraspinal mechanisms effect (de Andrade, Bendib et 

al. 2010, Larson, Sances et al. 1974, Doerr, Krainick et al. 1978). A collision of 

action potentials travelling in opposite directions on peripheral large diameter fibers 

may explain such findings (Buonocore, Bodini et al. 2012). Antidromic action 

potentials as well as orthodromic activation of supraspinal systems may act 

simultaneously to relieve pain in SCS (Weigel, Capelle et al. 2015). Median and 

posterior tibial nerve SEP attenuation of abnormally enhanced responses was 

observed in patients under SCS for neuropathic pain (Theuvenet, Dunajski et al. 

1999). The SEP amplitude decrease was also shown in a more recent study and was 

greater in SCS when compared to transcutaneuos electrical nerve stimulation (TENS) 

(Wolter, Kieselbach et al. 2013).  
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During SCS ON, attenuation of somatosensory processing in SI and SII was 

also observed during SEP of the tibial and sural nerve using a high density EEG 

dipole reconstruction method. The tonic increase of SI and SII cortical activity due to 

SCS-related lemniscal neuron activation or the inhibition of somatosensory afferent 

input at the segmental level is thought to diminish sensitivity to neuropathic pain 

(Polacek, Kozak et al. 2007). Enhancement of plantar SSRs reveals that there is also a 

sympathetic effect (de Andrade, Bendib et al. 2010). Bilateral decrease in pain 

threshold after cessation of SCS on a population diagnosed with unilateral pain speaks 

in favor of the supraspinal effects of SCS. Moreover, SCS appears to adjust the 

neurophysiological response of the neuropathic pain side to the unaffected side 

(Weigel, Capelle et al. 2015).  

In conclusion, these findings suggest an inhibition of Aß and Aδ myelinated 

fibers either at a segmental or suprasegmental level, as well as provide objective 

evidence of pain relief during the SCS ON condition (de Andrade, Bendib et al. 

2010). Taken together, the neurophysiological data suggest that SCS normalizes 

pathological pain processing in chronic pain patients to a more healthy state of 

cortical activity (Bentley, Duarte et al. 2016). 

5.4 Laser-evoked potentials  

 

Laser-evoked potentials (LEPs) are the gold standard assessment tool to 

evaluate pain physiology and pathophysiological mechanisms (Bromm and Lorenz 

1998, Haanpaa, Attal et al. 2011). LEPs can be used to investigate specific diseases 

that affect the nociceptive system (Treede, Meier et al. 1988, Kakigi, Shibasaki et al. 

1990, Bromm, Frieling et al. 1991, Treede, Lankers et al. 1991, Kakigi, Kuroda et al. 

1992, Agostino, Cruccu et al. 2000, Cruccu, Leandri et al. 2001, Garcia-Larrea, 

Convers et al. 2002, Spiegel, Hansen et al. 2003, Truini, Haanpaa et al. 2003). 

Furthermore, solid-state lasers (e.g. Neodymium Yttrium - Aluminum – Perovskite 

(YAP)) facilitated application to any body region and also decreased unintended 

superficial skin burns (Spiegel, Hansen et al. 2000, Cruccu, Pennisi et al. 2003).  

In 2004, the European Federation of Neurological Societies (EFNS) released 

guidelines for neuropathic pain assessment (Cruccu, Anand et al. 2004). At the time 
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of the publication, LEPs studies amounted to little more than 100 scientific articles in 

peer-reviewed journals. The expert panel review stated that LEPs were the most 

reliable neurophysiological tool to assess the functional integrity of nociceptive 

pathways and granted a grade B level of recommendation for use of Aδ LEPs to 

diagnose peripheral and central neuropathic pain. A grading system proposed to 

diagnose neuropathic pain in clinical and research scenarios has included LEPs as one 

of the principal tests, reinforcing its relevance in neuropathic pain investigation 

(Treede, Jensen et al. 2008). LEPs detect any functional conduction abnormality in 

the pain pathways, even when caused by minute somatosensory system lesions 

(Cruccu, Aminoff et al. 2008). LEPs should be included in the standard treatment of 

patients diagnosed with painful disorders, particularly in situations where the clinical 

sensory tests are inconclusive or the causative illness is unclear (Haanpaa, Backonja 

et al. 2009, Pazzaglia and Valeriani 2009).  

A revision of the 2004 guidelines from the EFNS published in 2010 showed a 

substantial new number of high quality studies on LEP (Lefaucheur and Creange 

2004, Truini, Galeotti et al. 2008, Truini, Padua et al. 2009, Haanpaa, Attal et al. 

2011), upgrading the level of recommendation of LEPs to grade A (Cruccu, Sommer 

et al. 2010). LEPs were also shown to be a good option to monitor and evaluate pain-

related conditions in the elderly who show degenerative changes in the nociceptive 

pathways (Cruccu and Truini 2010). A second separate revision published in 2011 by 

the Neuropathic Pain Special Interest Group (NeuPSIG) also issued a level A grade of 

recommendation for the use of LEPs to assess Aδ fiber pathways in neuropathic pain 

(Haanpaa, Attal et al. 2011).  

More recently, Garcia-Larrea proposed that a “physiological photograph” with 

the use of neurofunctional methods such as LEPs is highly relevant, prompting 

optimized management strategies (Garcia-Larrea 2012). Definite diagnosis of 

neuropathic pain yields at least one objective confirmatory test proving existence of 

lesion or disease affecting the somatosensory system (Treede, Jensen et al. 2008); and 

LEPs can determine better than any other tool such an impairment. The author 

suggests that abnormal LEPs elicited from a painful region should be interpreted as an 

electrophysiological signature of neuropathic pain (Garcia-Larrea 2012). A study by 

Valeriani et al. also recently highlighted LEPs role in identifying the underlying 
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pathophysiological mechanisms of neuropathic pain subtypes (Valeriani, Pazzaglia et 

al. 2012). 

In conclusion, the LEPs technique is to date the most advanced and reliable 

method to evaluate the functional integrity of pain pathways, and can also be used to 

study pain sensation and modulation (Matre and Nilsen 2014, La Cesa, Tamburin et 

al. 2015, Mainka, Maier et al. 2015). 

5.4.1 Effects of dorsal root ganglion stimulation on laser-evoked potentials 

LEPs precisely identify lesions in any portion of the nociceptive system. Laser 

pulses through CO2 laser or solid-state lasers (thulium or neodymium-based) 

exclusively activate Aδ and C fibers while avoiding the activation of Aβ non-

nociceptive related fibers.  

Functional assessment of the nociceptive pathways is of utmost importance 

during the management of neuropathic pain patients (Valeriani, Pazzaglia et al. 

2012). It is established that neuropathic pain arises from nociceptive pathway damage 

(Truini, Garcia-Larrea et al. 2013). In our study, we used the CO2 laser, which is the 

most widely used in clinical investigation. The fact that we observed a clear LEP 

alteration in comparison to a control non-painful area in our study confirms that our 

patients had a definitive localized neuropathic pain (Mick, Baron et al. 2014, Treede, 

Jensen et al. 2008). When no pathologic condition affects the pain pathways, LEPs 

should reflect the functional integrity of the nociceptive system. Suppression, reduced 

amplitude or delayed latency of LEPs in comparison to a valid control is considered a 

hallmark in substantiating the diagnosis of neuropathic pain (Valeriani, Pazzaglia et 

al. 2012).  

In this study, we selected patients with unilateral pain, thus allowing the 

internal control to be performed on the homologous contralateral non-painful region. 

Spontaneous pain is often associated to complete absence of LEPs, whereas provoked 

pain signs such as allodynia/hyperalgesia may show partially preserved LEPs (Truini, 

Biasiotta et al. 2010). In our study group, some patients showed complete abolition of 

LEPs at baseline, while others showed a decreased peak-to-peak amplitude response 
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compared to controls. Positive signs such as allodynia or hyperalgesia were not 

directly associated with partially preserved LEPs.  

As mentioned above, LEPs reliably reflect Aδ fiber activation. The so-called 

N2/P2 complex, the component most frequently evaluated in clinical practice, 

represents activation of insular networks and the anterior cingulate cortex, with some 

contribution from prefrontal and parietal regions, reaching maximal amplitudes at the 

vertex. Aδ-related LEPs have also demonstrated good intra-subject reproducibility, 

making it an ideal tool for a repeated measures study design (Bentley, Youell et al. 

2002, Garcia-Larrea 2006). In our group, we observed inter-session reproducibility in 

the control condition, which reinforces the findings of our test condition. The N2 

response is considered to be a more reliable measure of the nociceptive volley, as it is 

less influenced by cognitive or attention effects (Garcia-Larrea 2012). In fact, LEPs 

are a mixture of sensory and attentional-cognitive responses and should be interpreted 

as such. To improve inter-session reproducibility, attentional levels should be kept 

stable across measurements (Garcia-Larrea 2006). In our study, we instructed 

patients to keep their eyes open and to count the stimuli to keep attentional levels as 

constant as possible.  

When neuropathic pain affects only one or a few dermatomes, LEPs 

accurately detect the area of disease. These dermatome-guided LEPs facilitate 

measurements in localized neuropathic pain (Lorenz, Hansen et al. 1996, Quante, 

Hauck et al. 2007).  

In our study group, we selected the most painful area inside a dermatome 

territory. This is important, since the stimulated area is also dermatome-guided, which 

ensures we are eliciting responses from the correct region. Paresthesia over the 

painful region also confirms that we have selected an appropriate region to test.  

SCS of the dorsal column as well as DRGS alleviate pain. It is hypothesized 

that the DRG may be an extension of the CNS, and as a consequence a laterally 

displaced portion of the spinal cord (Liem 2015). In line with this theory, one may 

also hypothesize that some mechanisms by which DRGS decreases pain may be 

shared with those attributed to traditional SCS of the dorsal column. However, DRG 

is a promising target for modulation because it represents the first integration stage 
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along the pain pathways. Moreover, some mechanisms may be exclusive to DRGS 

(Krames 2015).  

To the best of our knowledge, only one published article has studied LEPs in 

patients under SCS of the dorsal column and no study has reproduced such findings 

using DRGS (Sestito, Lanza et al. 2008). In that article, patients diagnosed with 

cardiac syndrome X and treated with SCS showed a significant increase in N2/P2 

peak-to-peak LEP amplitudes during stimulation ON in comparison with stimulation 

OFF. This finding is in line with our results: after DRGS, we observed a significant 

increase in the N2/P2 peak-to-peak LEP amplitude elicited from the most painful area 

of chronic neuropathic pain after 1 and 6 months of ON stimulation in comparison 

with baseline (OFF).   

One possible explanation for an increase in LEP amplitude is that just as in 

traditional SCS, DRGS removes the inhibition caused by sustained chronic pain, 

known as diffuse noxious inhibitory control (DNIC). DNIC can selectively inhibit the 

convergent neurons in the dorsal horn of the spinal cord during sustained noxious 

stimuli. This mechanism is even more pronounced when high frequency APs are fired 

(as occurs in the DRG during neuropathic pain), thus amplifying the effect by 

temporal summation (Le Bars, Dickenson et al. 1979). LEPs may also be affected by 

chronic neuropathic spontaneous pain acting as a heterotopic-like pain stimulus. We 

hypothesize that spontaneous continuous chronic pain could actually function as an 

overload of neuronal input leading to painful evoked-response signal disruption. This 

concept was confirmed in humans with CO2 laser stimuli, corroborating a counter-

irritation mechanism following a painful stimulus, which decreased VAS ratings of 

laser-evoked painful stimuli in normal subjects (Kakigi 1994).  

As a complement to DNIC, DRGS inhibition of PSN hyperexcitablity 

synergistically amplifies pain alleviation. Spontaneous or facilitated firing of lowered 

threshold DRG neurons in neuropathic pain conditions can substantially increase pain 

signals in the direction of the spinal cord. Electrical DRGS has been shown to 

modulate ion channels, restore the filtration of high-frequency APs and activate DRG 

somata (Bradford 1970, Fuchs, Rigaud et al. 2007, Koopmeiners, Mueller et al. 

2013). We hypothesize that DRGS can function by decreasing the excessive 
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discharges caused by the DRG hyperexcitable neurons in neuropathic pain, thereby 

restoring the functional integrity of pain pathways. Ultimately, this could lead to the 

normalization of cortical processing, as suggested by our findings.  

It is known that precise synchronous neuronal firing is essential for normal 

APs transmission. One of the roles of the DRG is to function as a low pass filter and 

to modulate electrical impulses from the nociceptors to the dorsal root entry zone 

(DREZ) (Gemes, Koopmeiners et al. 2013). Pain relief may be a consequence of the 

restoration of the high-frequency action potentials filtering in the DRG (Liem 2015). 

Here, chronic spontaneous pain inhibited acute laser-evoked pain, as reflected by 

LEPs. In fact, LEPs abnormalities may reflect a lesion on the thermo-algesic 

transmission and not the pain per se. Therefore, the restoration of pain pathways 

during DRGS may explain the LEP amplitude increase (Garcia-Larrea 2012). 

As suggested by previous work, the electrode’s position is of critical 

importance to optimize pain relief. In a study testing SCS in rats, placing the lead 

contacts at the level where the damaged fibers reach the dorsal horn resulted in 

superior pain relief than placing them rostrally to the lesion (Smits, van Kleef et al. 

2012).  

Moreover, SCS of the dorsal column can regularly activate cutaneous afferents 

via the dorsal root (Buonocore, Bonezzi et al. 2008). Dorsal root stimulation has been 

associated with pain relief and has been shown to decrease WDR neuronal 

spontaneous activity in the dorsal horn to a similar degree as dorsal column 

stimulation (Guan, Wacnik et al. 2010). In line with this finding, we hypothesize that 

the DRG may play a role during dorsal root stimulation, explaining, at least partially, 

the pain relieving effect of decreasing the spontaneous activity of WDR neurons.  

Magnetoencephalograpy (MEG) has also been used to record evoked 

potentials during SCS for chronic neuropathic pain. A small study reported restoration 

of SI organization after tactile-evoked responses in two patients receiving SCS for 

CRPS (Pahapill and Zhang 2014).  

In summary, LEP serves as an objective measure of DRGS efficacy for 

chronic peripheral localized neuropathic pain. The restoration of N2/P2 peak-to-peak 
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LEPs amplitudes suggests a normalization of the pain signal transmission through the 

thermo-algesic pathways and a normalization of pain processing at the cortical level. 

5.5 Pain intensity assessment 

The visual analog scale (VAS), numerical rating scale (NRS) and verbal rating 

scales (VRS) are the most commonly used pain scales in the literature (Haanpaa, 

Attal et al. 2011). A systematic review concluded that NRS is superior to VAS and 

VRS and recommends standardization based on the NRS-11 (Hjermstad, Fayers et al. 

2011). Also, recent neuropathic pain guidelines graded NRS as level A 

recommendation for pain intensity measurement (Haanpaa, Attal et al. 2011).  

To measure pain intensity, the patient is asked to assign a number between 0 

and 10 that best represents the pain intensity he or she is experiencing. ‘0’ means no 

pain and ‘10’ is the worst possible pain. As ongoing burning pain is the most typical 

type of pain associated with neuropathic pain (Marchettini 2005), the NRS is one of 

the primary outcome measures in this work.  

5.5.1 Effects of dorsal root ganglion stimulation on pain intensity  

In our group of seven patients there was a significant decrease in NRS pain 

scores in comparison to baseline after one and six months of DRGS. The mean values 

of spontaneous pain intensity in the affected area decreased from 7.6 at baseline to 2.1 

at 1 month and 2.2 at 6 months after introduction of DRGS. This corresponds to an 

overall NRS pain score decrease of 73% at 1 month and 72% at 6 months and is in 

accordance with the published data in the literature (Liem, Russo et al. 2013).  

Deer et al. reported 70% overall pain reduction in VAS scores after a pilot 

study to evaluate the short-term safety and effectiveness of DRGS (Deer, Grigsby et 

al. 2013). Similarly, Liem et al. reported 58% overall pain reduction in VAS scores at 

the 6-month follow-up in a group of 32 patients treated with DRGS for various 

chronic pain etiologies (Liem, Russo et al. 2013). At the one-year follow-up, 

published two years later, overall pain was still reduced by 56% (Liem, Russo et al. 

2015).  
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Other studies evaluating single etiology neuropathic pain patients also showed 

positive pain relief outcomes using DRGS. Schu et al. reported an overall pain 

reduction of 71.4% in VAS scores in a study with 25 patients managed with DRGS 

for chronic groin pain after a mean follow-up of 42.5 months (Schu, Gulve et al. 

2014). Similarly, Van Buyten et al. reported 62% overall pain reduction in a study 

with eight patients diagnosed with CRPS (Van Buyten, Smet et al. 2014). Eldabe et al. 

reported 50.8% in overall pain reduction in VAS scores in a study addressing 

phantom limb pain after a mean follow-up of 14.4 months (Eldabe, Burger et al. 

2015). Single case reports, although using different electrode designs, also showed 

positive results (Lynch, McJunkin et al. 2011, Garg and Danesh 2015).  

Another important measurement is the rate of patients who experience more 

than 50% pain relief after DRGS. In our group, five out of seven patients (71%) had at 

least 50% pain relief at both the 1 and 6 month follow-ups. This finding is also in line 

with the literature, which reports rates between 60 and 82% (Deer, Grigsby et al. 

2013, Liem, Russo et al. 2013, Schu, Gulve et al. 2014, Van Buyten, Smet et al. 2014, 

Liem, Russo et al. 2015). Moreover, these rates of pain relief are better than results 

reported in studies with traditional SCS of the dorsal column, which are between 40-

50% for radicular pain. 

5.6 Neuropathic pain screening tools 

The aim of the neuropathic pain screening tools is to identify neuropathic pain 

for clinical or research purposes (Haanpaa, Attal et al. 2011). These tools consist of 

standardized questionnaires designed to recognize pain characteristics associated with 

neuropathic pain. In comparison to one-dimensional pain scales such as the NRS-11, 

neuropathic pain screening tools assess neuropathic pain syndromes in greater detail. 

Identifying neuropathic pain is important to select the right therapy, including 

neuromodulation. Pain descriptors included in such questionnaires are considered to 

have a discriminant diagnostic value (Bouhassira and Attal 2011). The 5 validated 

screening tools recommended by recent guidelines include the Leeds Assessment of 

Neuropathic Pain Symptoms and Signs (LANNS), Douleur Neuropatique en 4 

questions (DN4), Neuropathic Pain Questionnaire (NPQ), ID Pain and painDETECT 

(Haanpaa, Attal et al. 2011). Overall, these tools fail to indicate the correct diagnosis 
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in 10 to 20% of patients with clinically diagnosed neuropathic pain (Bouhassira and 

Attal 2011).  

5.6.1 PainDETECT  

PainDETECT is a neuropathic pain screening tool that was developed and 

validated in German (Haanpaa, Attal et al. 2011). PainDETECT is an easy-to-apply 

questionnaire that requires no physical examination (Freynhagen, Baron et al. 2006). 

It evaluates seven sensory descriptors and two items related to spatial and temporal 

aspects of pain. Scores range from 0 to 38, and scores 12 and below indicate a 15% or 

less likelihood of having a neuropathic pain component. Scores between 13 and 18 

represent an uncertainty zone where there is a possible neuropathic pain component 

but no measurable likelihood ratio. Finally, scores of 19 and above indicate a greater 

than 90% chance of having neuropathic pain. 

5.6.2 Effects of dorsal root ganglion stimulation on PainDETECT 

PainDETECT was validated as a screening tool to predict the likelihood of a 

neuropathic pain component in chronic pain disorders (Freynhagen, Baron et al. 

2006). A cutoff score of ≥ 19 is thought to indicate a likely neuropathic pain 

component (> 90%). PainDETECT has a sensitivity of 85% and specificity of 80%, 

which is slightly higher in comparison with other screening tool questionnaires and 

has been recommended as a reliable screening tool in neuropathic pain assessment 

guidelines (Haanpaa, Attal et al. 2011). To the best of our knowledge, this is the first 

time PainDETECT is used to assess pain disability associated with DRGS. In the 

present study, mean scores on this measure decreased from 19.7 at M0 to 15.7 at M1 

and 14.5 at M6. This can be interpreted as a trend towards improvement in 

neuropathic pain components with the use of DRGS.  

5.7 Quality of life assessment in neuropathic pain 

 
QoL is broadly assessed as an indirect measure of the effectiveness of a 

treatment for chronic pain. There is a close association between neuropathic pain and 

reduced QoL, even though decreased pain scores may not necessarily lead to better 

QoL. Also, neuropathic pain was shown to have a greater negative impact on QoL 
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than non-neuropathic chronic pain (Jensen, Chodroff et al. 2007, Smith and Torrance 

2012). Generic QoL measures are scales or questionnaires that assess common 

elements of health, well-being and functionality. The Medical Outcomes Survey Short 

Form (SF-36; Brazier, Harper et al. 1992) is recommended by the Initiative on 

Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) 

(Dworkin, Turk et al. 2005). Recent guidelines also recommended the SF-36 or 

EuroQol five dimensions questionnaire (EQ-5D) to assess QoL in clinical research 

(Haanpaa, Attal et al. 2011). 

5.7.1 Effects of dorsal root ganglion stimulation on quality of life 

We observed an increase in SF-36 mean scores for Vitality, Physical 

Functioning, Pain, Physical Role Functioning, Social Role Functioning and Mental 

Health at M1 and M6 relative to M0. Moreover, just on Pain, scores increased from 

22.5 at M0 to 43.2 at M1 and 52.5 at M6. However, no trend towards improvement 

was detected on two items: General Health Perception and Emotional Role Function. 

The results presented here show a trend towards improvement in six of the 

eight items on the SF-36. Kumar et al. showed a significant score increase on all items 

of the SF-36 questionnaire after 6 months of SCS of the dorsal column in 24 patients 

diagnosed with FBSS (Kumar, Taylor et al. 2007). Rutten et al. also reported 

significant improvement on all items of the SF-36 in a similar group of patients at the 

12 and 24 month follow-ups (Rutten, Komp et al. 2002). To date, no study has 

assessed SF-36 together with DRGS. Liem at al. reported a significant increase in 

QoL as measured by EQ-5D, a similar test, at 6 months (Liem, Russo et al. 2013) and 

at 12 months (Liem, Russo et al. 2015) during the use of DRGS for diverse chronic 

neuropathic pain conditions. Van Buyten et al. also reported significant improvement 

in EQ-5D scores at the 12-month follow-up for CRPS patients treated with DRGS 

(Van Buyten, Smet et al. 2014). Finally, Eldabe et al. reported improvement on EQ-5D 

scores in two patients diagnosed with PLP (Eldabe, Burger et al. 2015).  

In conclusion, the present results show a trend towards improvement in most 

of the SF-36 items. This shows that SF-36 is a valuable tool to assess QoL in patients 

treated with DRGS. 
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5.8 Pain-related disability assessment in neuropathic pain 

Measures of disability are implemented as an indirect evidence of chronic pain 

therapy outcomes. It is well established that chronic neuropathic pain interferes with 

the physical and psychological functioning of patients. Disability is defined as a 

“physical or mental condition that limits a person’s movements, senses or activities” 

(Haanpaa, Attal et al. 2011). Some tools for measuring disability have been 

specifically designed for neuropathic pain. The Brief Pain Inventory (BPI) and PDI 

are recommended for general neuropathic pain conditions (level A) (Haanpaa, Attal 

et al. 2011). PDI is a validated tool that measures an individual’s ability to participate 

in essential life activities (Tait, Pollard et al. 1987, Chibnall and Tait 1994) on a scale 

of 0-70 (higher scores reflect greater disability). PDI assesses seven different life 

dimensions: Family/Home responsibilities, Recreation, Social Activity, Occupation, 

Sexual Behavior, Self Care and Life-Support Activities (Tait, Pollard et al. 1987). 

5.8.1 Effects of dorsal root ganglion stimulation on pain-related disability 

The mean PDI score was 38.5 at M0 and decreased to 22.8 (41%) at M1 and 

18 (54%) at M6, revealing DRGS improved disability over time. In a previous study 

of patients diagnosed with postherpetic neuralgia and acute herpes zoster pain treated 

with SCS, PDI scores decreased significantly after stimulation onset (Harke, 

Gretenkort et al. 2002). In another study of SCS of the dorsal column in FBSS 

patients, the median PDI score dropped from 43 at baseline to 26 (a 40% decrease) at 

the 12-month follow-up and to 28 (a 35% decrease) at the 24-month follow-up 

(Rutten, Komp et al. 2002). Similar findings were also found in a study testing SCS in 

the cervical region, where mean scores dropped from 49.6 at baseline to 28.4 (a 43% 

decrease) at the 12-month follow-up (Deer, Skaribas et al. 2014). No published study 

investigating DRGS has assessed PDI. However, BPI has been implemented as a 

disability measure in some publications showing significant BPI improvement after 

DRGS at 6 months (Liem, Russo et al. 2013) and 1 year (Liem, Russo et al. 2015). 

Finally, a study testing patients diagnosed with CRPS also showed significant 

improvement in BPI scores after 12 months of DRGS onset (Van Buyten, Smet et al. 

2014). 
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In summary, PDI scores decreased, supporting a trend towards improvement 

in disability in our study group. These findings are in accordance with the literature 

and reinforce the use of PDI as a measure of disability in patients under DRGS. 
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6 CONCLUSION 
 

6.1 Laser-evoked potentials 

We found a significant increase in N2/P2 peak-to-peak amplitudes on the 

painful side at M1 and M6 in comparison to M0 (p < .05). On the control non-painful 

side, we detected no visible change in N2/P2 peak-to-peak amplitudes across the three 

time-points. Moreover, when comparing the ratio of the peak-to-peak amplitude 

between painful and non-painful sides at each time-point (M0, M1 and M6), we 

observed a significant decrease of the ratio at M0 only (p < .05). At M1 and M6, both 

ratios were around 1, suggesting LEPs amplitudes were restored to near normal levels.  

6.2 Clinical assessment  

The clinical assessment results showed a clear benefit of using DRGS. NRS 

pain intensity rating scores significantly decreased at M1 and M6 relative to M0 (p < 

.05). As secondary outcomes, PainDETECT, SF-36 and PDI scores also showed a 

trend towards positive outcomes at M1 and M6 relative to M0, except for two items in 

the SF-36 (GHP and ERF).  
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7 SUMMARY 

 

The modern era in neuromodulation for the treatment of pain began after 

Melzack and Wall’s seminal work describing the so-called gate control theory 

(Melzack and Wall 1965). The first application of neuromodulation in a chronic pain 

patient was performed by Shealy in 1967 (Shealy, Mortimer et al. 1967). Since then, 

SCS - traditionally involving the placement of an electrode placed on the dorsal 

column of the spinal cord - has become a valuable method to treat chronic neuropathic 

pain.  

DRGS appeared in 2011 as an interesting new option in neuromodulation for 

chronic neuropathic pain. Even though clinical results addressing DRGS have already 

been published and show encouraging clinical results, limited data concerning 

mechanisms of action have been released to date. This observation highlights the need 

for further investigation into DRGS, e.g. by implementing standardized clinical 

assessment tools or neurophysiological techniques (Forget, Boyer et al. 2015).  

The primary aim of this study was to assess LEPs and to evaluate pain 

intensity changes at 1 and 6 months after DRGS onset in comparison to baseline (no 

stimulation). A secondary aim was to evaluate how DRGS affects different clinical 

measures, as assessed with a neuropathic pain screening tool questionnaire 

(PainDETECT), a generic QoL questionnaire (SF-36), and a questionnaire of 

disability associated with chronic neuropathic pain (PDI). 

Through an open-label study design, we evaluated seven patients (4 men and 3 

women; mean age 50.7 years) diagnosed with unilateral chronic peripheral localized 

neuropathic pain of the groin, knee or leg who were implanted with DRGS electrodes. 

LEPs N2/P2 peak-to-peak amplitude values significantly increased after 1 and 6 

months of DRGS in comparison to baseline (p < .05). The N2/P2 mean values 

increased from 3.7 µV at baseline to 11.3 µV and 10.7 µV at 1 and 6 months, 

respectively. At the end of the sixth month under stimulation, LEPs amplitudes were 

restored to normal values. On the other hand, pain intensity ratings measured through 

NRS scores significantly decreased after 1 and 6 months of DRGS in comparison to 
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baseline (p < .05). The scores dropped from a mean of 7.6 at baseline to 2.1 and 2.2 at 

1 and 6 months, respectively. We also confirmed a trend for improvement in the 

PainDETECT, SF-36, and PDI measures.  

These findings suggest that DRGS increases LEPs amplitude and decreases 

chronic neuropathic pain, resulting in treatment efficacy. We suggest that the 

observed LEPs restoration reflects normalization of pain pathway signal transmission.  

Therefore, a better understanding of the role of the DRG in neuromodulation 

for chronic neuropathic pain will surely impact the field of neuromodulative 

techniques. The present work represents a contribution towards this goal.  
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8 ZUSAMMENFASSUNG 

 
Die moderne Neuromodulations-Ära für die Behandlung von Schmerzen 

begann nach der bahnbrechenden Arbeit von Melzack und Wall, die die sogenannte 

Gate-Steuertheorie (Melzack und Wall 1965) beschrieben. Die erste Anwendung von 

Neuromodulation bei einem chronischen Schmerzpatienten wurde im Jahre 1967 von 

Shealy (Shealy, Mortimer et al. 1967) durchgeführt. Die Rückenmarkstimulation 

(SCS) – traditionell praktiziert durch das Platzieren einer Elektrode am Hinterstrang 

des Rückenmarks – hat sich seitdem als wertvolle Methode etabliert, um chronisch 

neuropathische Schmerzen zu behandeln.  

 

Die Stimulation des Dorsalganglions (DRGS) wurde im Jahr 2011 als eine 

neue interessante Option der Neuromodulation zur Behandlung chronisch 

neuropathischer Schmerzen eingeführt. Obwohl klinische Ergebnisse der 

Dorsalganglienstimulation bereits veröffentlicht wurden und ermutigende Ergebnisse 

zeigen konnten, wurden bislang nur begrenzte Daten bezüglich ihrer 

Wirkungsmechanismen veröffentlicht. Diese Tatsache unterstreicht die 

Notwendigkeit, weitere Untersuchungen bzgl. DRGS durchzuführen, zum Beispiel 

mittels standardisierter klinischer Bewertungsinstrumente oder neurophysiologischer 

Techniken (Forget, Boyer et al. 2015). 

 

Das primäre Ziel dieser Studie war die Untersuchung von Laser evozierten 

Potentialen (LEPs) und die Auswertung von Veränderungen der Schmerzintensität ein 

bzw. sechs Monate nach Beginn der DRGS Behandlung im Vergleich zu 

Ausgangsdaten ohne Stimulation. Ein sekundäres Ziel war die Beurteilung des Effekts 

der Stimulation des Dorsalganglions auf verschiedene klinische Messwerte mittels 

eines Screening-Fragebogens für neuropathische Schmerzen (PainDETECT), eines 

generischen Fragebogens zur Lebensqualität (SF-36) und eines Fragebogens bzgl. der 

Lebensbeeinträchtigungen durch chronische neuropathische Schmerzen (PDI). 

 

Mittels eines Open-Label-Study-Designs werteten wir sieben Patienten mit der 

Diagnose einseitiger chronisch neuropathischer, peripher lokalisierter Schmerzen im 

Bereich der  Leiste, des Knies oder Beines aus, bei denen DRG Elektroden implantiert 
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worden waren. Das mittlere Alter der Studiengruppe war 50.7 Jahre (4 Männer und 3 

Frauen). Die LEPs N2/P2 peak-to-peak Amplitudenwerte waren ein und sechs 

Monate nach Stimulation des Dorsalganglions im Vergleich zum Ausgangswert (p < 

.05) signifikant erhöht. Die N2/P2 Mittelwerte erhöhten sich von 3.7 µV zu Beginn 

der Studie auf 11.3 µV nach einem Monat bzw. auf 10.7 µV nach sechs Monaten. 

Weiterhin hatten sich nach sechs Monaten unter Stimulation die LEPs Amplituden 

wieder auf Normalwerte erholt. Die durch NRS Scores gemessenen Bewertungen der 

Schmerzintensität sind nach einem und sechs Monaten nach Stimulation des DRG im 

Vergleich zu den Ausgangswerten (p < .05) deutlich zurückgegangen. Die Werte 

fielen von einem Mittelwert von 7.6 bei Studienbeginn auf 2.1 nach einem Monat 

bzw. auf 2.2 nach sechs Monaten. Ein Verbesserungstrend bei neuropathischen 

Schmerzkomponenten durch PainDETECT, SF-36 und PDI konnte ebenso aufgezeigt 

werden. 

 

Diese Ergebnisse deuten darauf hin, dass die Stimulation des DRG die LEPs 

peak-to-peak Amplituden erhöht und chronische neuropathische Schmerzen 

verringert, wodurch eine wirksame Behandlung ermöglicht wird. Wir vermuten, dass 

die Wiederherstellung der LEPs Amplituden auf Normalwerte die Normalisierung der 

Schmerzbahnen-Signalübertragung widerspiegelt. 

 

Daher wird das bessere Verständnis für die Rolle des DRG in der 

Neuromodulation bei chronischen neuropathischen Schmerzen mit Sicherheit eine 

Auswirkung auf das Gebiet der neuromodulativen Techniken haben. Die vorliegende 

Arbeit leistet einen Beitrag zu diesem Ziel. 
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