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Summary 

Episodic memory is an essential cognitive function to support our everyday life. It depends on 

the hippocampus to bind the experienced events into their spatiotemporal contexts, i.e. giving 

us information about what has happened, where and when. Sleep is vital for declarative 

memory. Broad evidence suggests sleep as an optimal state to transfer a 

hippocampus-dependent memory from a temporary short-term representation into its stable 

neocortical long-term storage, i.e. its consolidation. This sleep-mediated consolidation process 

is thought to happen especially during deeper slow-wave sleep, i.e. a sleep stage most abundant 

in children before puberty. It is unclear how sleep consolidates particularly episodic memory, 

and how sleep-mediated consolidation changes during development. This dissertation aimed to 

establish new behavioral paradigms and study sleep’s effect on episodic memory in adults and 

children. We hypothesized that sleep benefits specifically the consolidation of episodic aspects 

of memory, especially in children.  

To explore sleep’s effect on episodic memory consolidation in human adults (18-37 years) 

and children (8-12 years) we established a new episodic task to assess “What-Where-When” 

memory by explicit (oral report) and implicit (eye-tracking) measures. Additionally, we 

changed a word-pair learning task to an item–source paradigm, in which word pairs (items) 

were learned in temporal contexts (source) separated by two lists. This task allowed the 

assessment of episodic aspects of word-pair learning, i.e. the binding of item and source 

memory. Using the same tasks, children and adults encoded two episodes and learned two lists 

of word pairs, with each episode and list being separated by an hour. Memory was then tested 

on short-term (1-hour delay) prior to sleep as well as after long-term retention (~10-h delay) 

with either a night of sleep or a day of wakefulness. In adults, explicit and implicit measures of 

episodic memory were positively associated with each other, and both benefitted from sleep, 

thus linking this sleep benefit to previous rodent studies and opening the possibility to apply 

this paradigm to a broader age range (study I).  
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Comparing adults with children, both ages showed a two-fold benefit for episodic memory 

after sleep than after wakefulness, even though children had superior amounts of slow-wave 

sleep. Surprisingly, children started at a much lower episodic memory level on the short-term 

before sleep than adults, suggesting children had less capacity to encode or retain episodic 

memories. However, children did not forget the episodes any further over the any long-term 

retention interval as the adults did, suggesting the consolidation of episodic memory in children 

to be more efficient, and unrelated to sleep (study II).  

Replicating previous studies, we also found that children benefit from sleep for the 

explicitly learned word-pair memory over sleep. Unlike the weak temporal memory effect in 

the episodic task, we found a benefit from sleep for the temporal context memory in the 

word-pair learning task. Although also here the children’s capacity for episodic binding was 

reduced shortly after encoding (1-hour recall) as compared to adults, unlike in the episodic task, 

the children seemed rather to “unbind” the word-pair and temporal context memory over sleep. 

Moreover, children maintained semantic memory for the word pairs better on short-term, but, 

unlike adults, they showed forgetting over sleep. This suggests altered forgetting curves over 

sleep for episodic vs. semantic based memory (study III). Across studies, episodic aspects were 

in part positively correlated with sleep spindles (a hallmark feature of sleep) and slow-wave 

sleep, while semantic aspects correlated negatively with sleep spindles, suggesting different 

preferred roles for sleep spindles and slow-wave sleep in episodic and semantic memory 

consolidation. Notably, sleep more effectively consolidated the kind of memory that each age 

group retained worse on the short-term, e.g. the still developing episodic memory in children. 

Taken together, this thesis supports the hypothesis that sleep benefits the consolidation of 

hippocampus-dependent memory for episodes and their spatial and temporal contexts. 

Children’s lower capacity for episodic memories might be compensated by more effective 

consolidation mechanisms. The finding that deeper sleep in children might also favor 

unbinding of episodic memories (i.e. decontextualization) should be scrutinized in future 

studies. 
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Zusammenfassung  

Das episodische Gedächtnis ist eine kognitive Funktion, die unverzichtbar ist für unser 

tägliches Leben. Es benötigt den Hippocampus, um die erfahrenen Ereignisse in ihren örtlichen 

und zeitlichen Kontext zu binden, d.h. es gibt uns Informationen darüber, was passiert ist, wo 

und auch wann. Schlaf ist unerlässlich für das deklarative Gedächtnis. Umfassende 

wissenschaftliche Untersuchungen deuten auf Schlaf als einen optimalen Zustand hin, um eine 

vom Hippocampus abhängige Gedächtnisspur von einer temporären Repräsentation im 

Kurzzeitgedächtnis hin zu einer stabil, gespeicherten Langzeitgedächtnisspur im Neocortex zu 

transferieren, d.h. ihre Konsolidierung. Es wird angenommen, dass dieser von Schlaf 

vermittelte Konsolidierungsprozess besonders während des tieferen langsamwelligen Schlafes 

(sog. Deltaschlaf oder engl. „slow-wave sleep“) stattfindet, d. h. in Schlafstadien, welche am 

häufigsten im Schlaf von Kindern vor der Pubertät vorkommen. Es ist unklar, wie Schlaf im 

Besonderen das episodische Gedächtnis konsolidiert, und auch wie die schlafvermittelte 

Konsolidierung sich während der körperlichen und geistigen Entwicklung verändert. Diese 

Dissertation hat zum Ziel neue Verhaltensparadigmen zu etablieren und den Effekt von Schlaf 

auf das episodische Gedächtnis in Erwachsenen und Kindern zu erforschen. Um den Effekt von 

Schlaf auf die Konsolidierung von episodischem Gedächtnis bei menschlichen Erwachsenen 

(18-37 Jahre) und Kindern (8-12 Jahre) zu explorieren, haben wir eine neue episodische 

Aufgabe etabliert, um das „Was-Wann-Wo“-Gedächtnis (engl. „What-Where-When“ memory) 

mittels expliziten (mündliche Abfrage) und impliziten (Eye-tracking) Messmethoden zu 

bestimmen. Zusätzlich haben wir eine Wortpaarlernaufgabe abgewandelt, bei der Wortpaare 

als Gedächtniselemente und zwei Wortpaarlisten als zeitlichen Kontext für den 

Gedächtnisursprung dienten (engl. „item-source“-Paradigma). Diese Aufgabe ermöglichte das 

Bestimmen von episodischen Gedächtnisaspekten des Wortpaarlernens, d.h. die 

Gedächtnisverbindungen zwischen Gedächtniselementen und ihrem zeitlichen 

Gedächtnisursprung. Kinder und Erwachsene enkodierten unter Verwendung derselben 

Aufgaben zwei Episoden und lernten zwei Wortpaarlisten, jede jeweils zeitlich durch eine 

Stunde getrennt. Das Gedächtnis wurde dann darauf getestet, wie viel nach einem kurzen 

Zeitintervall (1 Stunde Verzögerung) vor dem Schlaf, oder nach einem langen Zeitintervall 

(~10 Stunden Verzögerung) mit entweder einem Nachtschlaf oder einer Wachheit am Tag, 

behalten wurde. In Erwachsenen waren die expliziten und impliziten Messgrößen des 

episodischen Gedächtnisses positiv miteinander assoziiert und beide profitierten vom Schlaf. 

Dabei lässt sich wurde der hier aufgezeigte Nutzen von Schlaf in unseren Ergebnissen mit 

denen von vorherigen Studien bei Nagetieren verbinden und eröffnete uns auch die 

Möglichkeit diese Paradigma auf eine breitere Altersspanne anzuwenden (Studie I). Im 

Vergleich von Erwachsenen mit Kindern zeigten beide Altersgruppen ein doppelt so gutes 
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episodisches Gedächtnis nach dem Schlaf als nach der Wachheit über den Tag, und das obwohl 

die Kinder weitaus höhere Anteile an langwelligem Schlaf aufzeigten. Überraschenderweise 

starteten die Kinder auf einem viel niedrigeren Niveau als die Erwachsenen für episodisches 

Gedächtnis wenn der Abruf nach dem kurzen Zeitintervall vor dem Schlaf erfolgte. Das deutet 

darauf hin, dass die Kinder eine niedrigere Kapazität hatten die Episoden zu encodieren oder 

diese im Gedächtnis zu behalten. Jedoch vergaßen die Kinder die Episoden über die den langen 

Zeitintervall nicht noch weiter sowie die Erwachsenen, was auch wiederum darauf hindeutet, 

dass die Konsolidierung vom episodischen Gedächtnis effizienter in Kindern und auch 

unabhängig von Schlaf zu sein scheint (Studie II). Auch beim Replizieren von vorigen Studien 

konnten wir ebenso einen Vorteil von Schlaf für das explizit gelernte Wortpaar-Gedächtnis in 

Kindern über das gemessene Schlafintervall feststellen. Im Gegensatz zu dem schwachen 

Effekt für das Zeitgedächtnis in der episodischen Gedächtnisaufgabe, fanden wir, dass Schlaf 

auch das Gedächtnis des zeitlichen Kontexts während der Wortpaarlernaufgabe unterstützte. 

Obwohl auch hier die Kapazität für episodische Gedächtnisverbindungen kurz nach dem 

encodieren (Abruf nach 1 Stunde) im Vergleich zu den Erwachsenen schon reduziert war, 

schienen die Kinder, im Gegensatz zu der episodischen Gedächtnisaufgabe, ihre encodierten 

Gedächtnisverbindungen zwischen den Wortpaaren und deren zeitlichen Kontext über Schlaf 

hinweg eher wieder zu lösen. Zudem behielten die Kinder semantische Gedächtnisinhalte für 

die Wortpaare besser über den kurzen Zeitintervall, aber im Gegensatz zu den Erwachsenen, 

zeigten die Kinder auch ein Vergessen dieser Inhalte über den Schlafintervall hinweg. Dies legt 

unterschiedliche Vergessenskurven über Intervalle mit Schlaf für das episodisch- vs. das 

semantisch, gestützte Gedächtnis nahe (Studie III). Über alle Studien hinweg korrelierten die 

episodischen Gedächtnisaspekte zum Teil positiv mit Schlafspindeln (ein kennzeichnendes 

Merkmal für Schlaf) und langsamwelligem Schlaf, wohingegen semantische 

Gedächtnisaspekte negativ mit Schlafspindeln korrelierten. Dies deutet auf eine 

unterschiedliche Präferenz für die Rolle von Schlafspindeln und von langsamwelligem Schlaf 

in der Konsolidierung vom episodischen und semantischen Gedächtnis hin. Beachtenswert ist 

auch, dass Schlaf gerade die Art von Gedächtnis effektiver konsolidierte, welche jede 

Altersgruppe über den kurzen Zeitintervall hinweg schlechter behielt, was z.B. bei den Kindern 

das sich immer noch entwickelnde episodische Gedächtnis war. Zusammengefasst unterstützt 

diese Dissertation die Hypothese, dass Schlaf die Konsolidierung des vom Hippocampus 

abhängigen Gedächtnisses für Episoden und deren örtlichen und zeitlichen Kontext unterstützt. 

Die geringere Kapazität für episodisches Gedächtnis bei Kindern könnte durch deren 

effektivere Konsolidierungsmechanismen kompensiert sein. Der Befund, dass der tiefere 

Schlaf in Kinder auch das Lösen von episodischen Gedächtnisverbindungen begünstigen kann 

(d.h. eine Dekontextualisierung der Gedächtnisinhalte), sollte in zukünftigen Studien nochmals 

genauer überprüft werden.  
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Synopsis 

Introduction 

1. Memory in general 

Memory is a fascinating cognitive function of the brain. To form a memory, one needs to 

encode, store, and subsequently recall information at later time points. Having memories, we 

can therefore form our self-identity, acquire and store new knowledge or skills, and even 

accordingly plan and make decisions for the future. Memory is also a key for learning processes, 

through which we gain knowledge of the world and modify our subsequent behavior (Mastin, 

2010). During learning (intentionally or incidentally), neurons at specific brain areas fire 

together to build up connections (Hebb, 1949). “Cells that fire together, wire together” well 

described the classic Hebbian’s theory of learning (Lowel & Singer, 1992). When those 

connections are consolidated and later can be retrieved, memories are formed.  

 

1.1 The process of memory formation 

The process to form a memory refers to encoding, consolidation, storage and retrieval. 

Encoding converts the perceived items into a construct that stores as memory. At the neuronal 

level, encoding refers to synaptic long-term potentiation (LTP) or long-term depression (LTD), 

which are the primary form of learning-dependent synaptic plasticity (Poo et al., 2016). 

Perception and attention are involved in the encoding process; also emotion influences memory 

encoding by raising arousals (Sharot & Phelps, 2004). Consolidation is the process of 

stabilizing a memory trace after the initial acquisition (Yadin Dudai, 2004). Consolidation is 

considered to consist of two levels of processes: “synaptic consolidation” and “system 

consolidation”. Synaptic consolidation, happening within a few hours after encoding, refers to 

the remodeling of synapse and spines of neurons that relate to memory representations and 

gradually lead to enduring changes (Kandel, 2001). System consolidation involves a continuous 
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process that pushes newly encoded memory representations to redistribute into long-term 

storage over hours to years (Dudai, 2004; Frankland & Bontempi, 2005). The standard 

consolidation theory hypothesized that hippocampus and related structures in the MTL serve as 

a temporary store of newly encoded memory traces. Over time, by reactivation of hippocampal 

memory networks, new information gradually integrates into the neocortex to become 

long-term memories (Marr, 1971). Retrieval of memory refers to re-accessing events or 

information from the past, which have been previously encoded and stored in the brain. 

 After successful encoding, a failed consolidation or retrieval leads to memory forgetting, 

which may indicate a memory is either physically unavailable (a memory gets lost), or the 

memory is temporally inaccessible (Hardt, Nader, & Nadel, 2013). Although we will not 

remember every detail of our daily life (e.g., what did you eat for lunch 100 days before), there 

are memories we always keep in mind, for example, our family name (but see a special kind of 

humans who seem to remember every single thing that they experienced by just giving 

temporal cues from Parker, Cahill, & McGaugh, 2006). Interference theory assumes that 

forgetting is due to the competition of newly encoded information and previous stored old 

memory (Tomlinson, Huber, Rieth, & Davelaar, 2009). Proactive interference is “forgetting 

due to interference from the traces of events or learning that occurred prior to the materials to be 

remembered” (Still, 1969), while retroactive interference happens when newly learned 

information interferes with the recall of previously learned information (Wohldmann, Healy, & 

Bourne, 2008). 

 The memories that have been stored successfully into the long-term storage are not always 

accurate (Loftus, 2005). Apart from being interfered or forgotten, the stability of the stored 

memories could also undergo a process of Reconsolidation, which assumes that consolidated 

memories may enter a labile state after the retrieval (Forcato et al., 2007; Forcato, Rodriguez, 

Pedreira, & Maldonado, 2010). Reconsolidation is not merely a paradoxical process to erase 

already previously acquired memory, but rather suggested to be “a form of new learning” that 

during retrieval, the ostensibly consolidated memories get “updated” with current new 

information (S. H. Wang & Morris, 2010). 
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1.2 Memory types 

According to the Atkinson-Shiffrin model (Atkinson & Shiffrin, 1968), there are mainly three 

kinds of memories that are categorized with the lifespan (or stages) of the memory: Sensory 

memory holds sensory information less than one second after an item is perceived. It includes 

Iconic memory (Sperling, 1960), Echoic memory (Neisser, 1967) and Haptic memory (Bliss, 

Crane, Mansfield, & Townsend, 1966), which three represent for the visual, auditory and tactile 

sensory memories. Short-term memory allows recall after period of several seconds to a minute 

without rehearsal. Working memory has a short-term buffer, but it is not exactly short-term 

memory (Diamond, 2013).  

This thesis, however, focuses mainly on Long-term memory, which stores information over 

long periods, i.e. from hours after encoding but potentially lasting up to years. Additionally, 

depending on whether a memory can be accessed consciously or not, long-term memories are 

categorized as declarative memory (i.e. explicit memory) and non-declarative memory (i.e. 

implicit, in the traditional view). Although a new model was proposed according to the 

processing mode rather than conscious access (Henke, 2010), for simplicity, this thesis is going 

to discuss different declarative memories, mainly episodic memory, in the following sections 

according to the traditional (explicit) model. 

2. Episodic memory and related brain structures 

2.1 What is episodic memory? 

Episodic memory is a part of the declarative memory system. It describes the ability to 

remember specific events or episodes that happened in our personal past, in contrast to the 

ability to simply know the knowledge or facts about the world (Salwiczek, Watanabe, & 

Clayton, 2010). According to the definition from Endel Tulving, episodic memory is “an 

information processing system that receives and stores information about temporally dated 

episodes or events, and about temporal-spatial relations among these events.” (Tulving, 1972) 

Episodic memory is crucial to guide our daily activates such as remembering where you need to 
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go to fetch your parked car after work, or recollecting what you ate recently in which restaurant 

that could cause you sickness right now. 

 Episodic memory used to be considered as a human-unique ability because recollection is 

assumed to be essential for the retrieval process (Tulving, 1983). However, evidence in animals 

gradually accumulates to reveal that many of them also seem to have episodic-like memory, 

though it is hard to detect the autonoetic consciousness, which is supposed to be essential for 

human-like episodic memory. Therefore similar behavior mimicking important aspects of 

episodic in animals have been identified as “episodic-like” memory and can, for example, be 

found in primates (Beran et al., 2016) also see review from (Schwartz & Evans, 2001), rats 

(Inostroza, Binder, & Born, 2013), mice (Fellini & Morellini, 2013), birds (N. Clayton, 1998), 

and even in invertebrates (Jozet-Alves, Bertin, & Clayton, 2013).   

 The episodic memory, when the sense of self is involved, is called autobiographic memory 

(Nelson & Fivush, 2004). It forms our personal identity since one can locate him-/herself into a 

past time that he or she must be able to identify him- or herself in nowadays (Klein & Nichols, 

2012). 

 

2.2 Neural basis of episodic memory 

2.2.1 Encoding 

Medial temporal lobe (MTL) and multiple neocortical areas are involved in episodic memory 

encoding. Hippocampus (HPC), a core structure of MTL, is essential for the formation of new 

episodic memory (Eichenbaum, Sauvage, Fortin, Komorowski, & Lipton, 2012). Patients with 

injured HPC (for example, the famous patient H.M., whose bilateral hippocampus were 

removed for the reason of severe epilepsy) cannot form new long-term memory for events (for 

example, who have you met yesterday at school).  

 At encoding, HPC obligatorily receives inputs from entorhinal cortex, which in turn accept 

inputs from perirhinal cortex and parahippocampal cortex. HPC then is thought to integrate the 

parts and features about object representations from the perirhinal cortex and view-specific 

scene representations from the parahippocampal cortex into a spatiotemporal frame 
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(Moscovitch, Cabeza, Winocur, & Nadel, 2016; Nadel & Peterson, 2013). Within HPC, by 

receiving signals from the posterior neocortex, the posterior end of HPC captures detailed local 

spatiotemporal aspects of an experienced event, while the anterior end of HPC captures global 

aspects of an event, which is based on interactions with the anterior neocortex (Moscovitch et 

al., 2016; Strange, Witter, Lein, & Moser, 2014). Apart from this, prefrontal cortex (PFC) and 

related brain structures participate in episodic encoding by a top-down modulation (Nolde, 

Johnson, & Raye, 1998). Neuroimaging evidence suggests that areas in the PFC, mainly 

ventromedial PFC (vmPFC) and ventrolateral PFC (vlPFC), aid the organization of information 

(Ranganath & Knight, 2002) and also underlie the execution of semantic strategies which 

enhance encoding (Gabrieli, Poldrack, & Desmond, 1998), e.g. thinking about the meaning of 

the study material or rehearsing it in working memory. Also, attention and emotion also 

influence episodic memory encoding. Attention, another hallmark of autonoetic consciousness, 

determines mostly how well different components of an episode are encoded (Guerin, Robbins, 

Gilmore, & Schacter, 2012). This process is supported by ventral partial cortex (VPC), which is 

also associated with time perception and the sense of self (Cabeza, Ciaramelli, & Moscovitch, 

2012). Emotion can promote long-term episodic memory by increasing attention (Phelps, 2004) 

and vivid episodic memories can be recalled after a long time when strong emotion was 

involved during encoding (Talmi, 2013). 

 

2.2.3 Retrieval 

Episodic memory retrieval relies on conscious recollection (Tulving, 1983). Recollection is a 

process that elicits the retrieval of contextual information about a particular event or experience 

that has occurred, and it depends on how well an episode is encoded and stored. Also, context or 

item cues that associated with the event can trigger remembering an episode, e.g. a similar 

associated semantic knowledge, emotion, auditory, olfactory and visual factors. The first stage 

of retrieval involves a rapid and unconscious interaction between the cues and HPC, which in 

turn reactivates the related neocortical representations. And the second stage, a slow process, 

involves the manipulation of cortical networks from the output of the first stage that reinstate 
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previously encoded episodic memories (Moscovitch, 2008; Moscovitch et al., 2016). The 

retrieval of contextual and temporal information requires especially the right hemisphere of the 

PFC (Preston & Eichenbaum, 2013), which is also necessary for other higher order functions, 

for instance, organization, and executive functions. Besides, superior and inferior parietal 

regions engage in episodic retrieval as well to determine the cues and the recollection process, 

respectively (Cabeza, Ciaramelli, Olson, & Moscovitch, 2008; Yazar, Bergström, & Simons, 

2012). When it refers to remembering very vivid autobiographical memories, even after many 

years, HPC remains always activated (Bonnici et al., 2012).  

 

2.2.2 Consolidation 

Before memories become stored for long-term, they undergo a procedure of consolidation, by 

which, the encoded episodic traces get stabilized and strengthened. HPC is crucial for episodic 

memory formation, but after consolidation, some memories become independent of this 

structure, and eventually seem transferred to permanent storage. Patients with hippocampal 

defects still maintain the ability to recall past event memories from a long time before, but they 

have problems to keep newly encoded episodes for long-term storage (for example the famous 

amnesia patient H.M.). Since those patients still have remained a relatively intact neocortex, it 

was thus suspected that long-term episodic memories are eventually stored in our neocortex and 

that this storage requires a support or transfer of information from HPC. Indeed, recent 

evidence from neurobiology confirmed that long-term memory is stored in dendritic spines 

within the neocortex (Hofer, Mrsic-Flogel, Bonhoeffer, & Hubener, 2009).  

 Regarding episodic memory consolidation, the trace transformation theory, an extension of 

multiple trace theory, posited that episodic features were quickly and sparsely encoded in HPC, 

where the ensembles of hippocampal neurons act as an index of neocortex representations. 

With the reactivation of hippocampal-neocortical ensembles, episodic memories interact and 

integrate into cortical semantic representations (schema), while some gist memories are posited 

to coexist with hippocampal representations that remain the related contexts (Y. Dudai, 2012; 

Inostroza & Born, 2013; Winocur, Moscovitch, & Bontempi, 2010). This does also explain 
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why functional neuroimaging studies observe HPC activation in healthy subjects recalling 

remote autographical memories (Bonnici et al., 2012; Viard et al., 2010). 

 Considering the active system consolidation theory of sleep, which presumes that memory 

transformation between HPC and neocortex happens during sleep, gives thus sleep a 

fundamental role in the consolidation of hippocampus-dependent episodic memory. Rodent 

studies have confirmed that after sleep rats showed exploration pattern that may indicate 

episodic-like memory (Inostroza et al., 2013; Oyanedel et al., 2014). Importantly, the Study I 

included in this thesis provides the first evidence that sleep contributes directly to 

“What-Where-When” episodic memory in humans, which we replicated in the Study II in both 

children and adults. 

Experimental paradigms to assess episodic memory 

According to the original concept, episodic memory refers to the mental recollection of a 

specific event that happened at a specific time and place in the past (Tulving, 1972). Therefore, 

the experimental paradigm that tests the binding of the three central elements - “What”, “Where” 

and “When” - has been wildly utilized to assess episodic memory (WWWhen paradigm, to 

distinguish from WWWhich, see below). Operationalized approaches to study episodic 

memory that are less biased to human concepts are used in animal research, and crucially, those 

approaches can establish equivalent indications of memory in animals that are analogous to 

human aspects of episodic memory. For example, episodic-like memory in rodents can be 

analyzed by the time that an animal spends on exploring objects in a specific environment, e.g. 

a maze or an open arena. The differences in exploration time on novel or familiar objects allows 

us to judge if an animal can recognize the object, or can distinguish where the object was 

located (dislocated vs. stationary), and even if it was seen at either an old or recent episode 

(Fellini & Morellini, 2013; S. M. Holland & Smulders, 2011; Kart-Teke, De Souza Silva, 

Huston, & Dere, 2006; Zhou & Crystal, 2009). Although the temporal component is a central 

feature of episodic memory, it is still under debate about how to assess this especially this 

component since many concepts of temporal memory are also able to explain the observed 
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behavior (Martin-Ordas & Call, 2013). The paradigm mentioned above considers the “when” 

indicates “in which moment” in time, which represents the temporal context that an event 

happens. There are other studies arguing that episodic memory must include a flexible 

mental-time-traveling, which requires subjects to remembers “how long ago” an event has 

happened (N. Clayton, 1998; N. S. Clayton, Yu, & Dickinson, 2003; Roberts et al., 2008), or 

the temporal sequence of the events in relation to each other (Ergorul & Eichenbaum, 2004; 

Fortin, Agster, & Eichenbaum, 2002). 

 There is also a debate about whether this temporal component is actually needed to form 

episodic memory. Eacott and Easton invented the “What-Where-Which” paradigm 

(WWWhich) (Eacott, Easton, & Zinkivskay, 2005; Eacott & Norman, 2004). They argued that 

it is rather the contextual cue that defines a specific occasion and to a lesser degree the 

relational or temporal (i.e. how long ago) information being a weak cue for episodic memory 

(Easton, Webster, & Eacott, 2012). However, Cheke and Clayton argued that even though the 

recollection of “when” an event occurred may not be required to recall episodic-like memory, 

this component is necessary to behaviorally confirm an event is a specific episode, rather than 

timeless facts about an object or its space (L. G. Cheke & Clayton, 2010).  

 The item-source paradigm is a simplified version of the above WWWhen or WWWhich. It 

treats the spatiotemporal context or other contextual information as a source to differentiate one 

event from the others without distinguishing the context into further categories (like spatial or 

temporal). As an everyday example, one might see a familiar face on the street, but could not 

remember who s/he is, and then you started searching this face in all your stored sources in 

mind. When in the end one finally finds the source that matches this person, you remember who 

s/he is and where/when you have met before. This cued recollection procedure refers to two 

processes. Firstly, you recognize the item (e.g., the face/person) is familiar, and then you 

remember the source (where/when) that you have seen this item.  

 The Remember/Know paradigm that is testing recognition memory has been used in the 

early explorations of episodic memory. Similar to the item-source paradigm, participants are 

asked about their personal experience on given items, and they need to report whether they 



   

17 

 

remember that this object that they have seen before or they just know it (i.e. not remembering 

the source of the information). Remembering reflects a conscious recollection of the 

experienced events, and therefore is considered to reflect episodic memory. But simply 

knowing the object is familiar, without recollecting the episodic details would not be 

considered to reflect episodic memory, but only familiarity instead (Yonelinas, 2001) 

 Different experimental paradigms may result in different results. A study had compared 

different kinds of paradigms (What-Where-When, Source Memory, and Free Recall) to assess 

episodic memory (L. Cheke & Clayton, 2013). The inconsistent results between various 

paradigms revealed from this study suggested that completing different episodic tasks might 

not refer completely to the same cognitive functions. This evidence thus cautions the 

comparison among distinct studies to explain every aspect of episodic recollection, and it also 

suggests to rather using several tasks that cover episodic memory under different aspects.  

 The works in this thesis also tested episodic memory by using operationalized paradigms, 

which closely match the animal experimental paradigms but apply them to humans. 

Furthermore, by using different designs to test various aspects of human memory experience 

allows us to test the relation of those aspects to each other. Thus this further bridges the gap 

between the human and the animal experience and capabilities in episodic memory. 

Developmental trajectories of episodic memory 

Very early in our lives, we experience abundant episodes that relate to our daily life are even 

vital for surviving. For example, it is crucial for an infant to recognizing the mother’s voice 

(Decasper & Fifer, 1980) and face (Bushnell, Sai, & Mullin, 1989). The ontogeny of 

hippocampus-dependent memory was suggested to start around the age of 9 months (Mullally 

& Maguire, 2014), when infants at this age can recollect actions over a long-term period 

(Carver & Bauer, 2001), with brain activities related to this recollection process (Paller & Kutas, 

1992). However, as adults, we can barely remember any of those valuable episodes from 

infancy, which has been termed as infantile amnesia (Howe & Courage, 1993). To successfully 

form episodic memory, a broad range of cognitive functions are needed to be developed, 
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including relational binding, a subjective sense of self in time, and a developed spatial 

cognition. Therefore, it is assumed that not until the related brain structures are well developed 

to support the above functions, it is the developmental time point that episodic memory could 

be successfully stored into a long-term memory system (Mullally & Maguire, 2014). 

 In Tulving’s original definition, autonoetic consciousness, i.e., consciously aware that an 

event is “remembered” but not just simply “known”, is required for episodic memory (Tulving, 

1972). The requirement of autonoetic consciousness thus also relies on semantic knowledge 

and thus makes semantic memory also an essential aspect to be assessed in parallel with 

episodic memory, also given the fact that semantic memory can mask a true assessment of real 

episodic memory (Tulving, 2005). Agreeing with this concept and accounting for semantic 

knowledge, some studies claimed that a true episodic memory capability only emerges around 

the 4th year of age and onwards (Perner, 2001; Perner & Ruffman, 1995). Even though 

language can help us access memory, does it mean that children do not have episodic memories 

before they master a language well enough to express their memories? Studies on even younger 

children spoke against this notion. They showed that by a benefiting from an already developed 

sense of self being attributed to the fact that they have autobiographical memories, children as 

young as two-year-old must have the capability to form episodic memory, even if their capacity 

to maintain this kind of memory is rather poor (Howe & Courage, 1993, 1997; Scarf, Gross, 

Colombo, & Hayne, 2013). Nevertheless, comparing with adults or older children (e.g., 

7-year-olds), the relatively poor performance of young children (e.g., 4-year-olds) could due to 

their limited capacity to encode context information and complex relational structures (Yim, 

Dennis, & Sloutsky, 2013). The capacity to retrieve specific episodes continually improves 

during middle childhood, while memory for isolated items or facts reaches the adult level 

earlier than memory for contexts (Ghetti & Angelini, 2008; Picard, Cousin, Guillery-Girard, 

Eustache, & Piolino, 2012). This developmental change of episodic memory emerges from the 

parallel development of a brain network that includes the HPC, PFC and posterior parietal 

cortex (Ghetti & Bunge, 2012). Inspiringly, this early period of episodic memory development 

in the middle of childhood and beyond is the time where environmental support that is provided 
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by educational settings may have particularly large and beneficial effects on memory 

performance (Sander, Werkle-Bergner, Gerjets, Shing, & Lindenberger, 2012). 

 The major consolidation mechanism underlying the development of episodic memory in 

children is unknown. Does sleep support episodic memory the same way as it is in adults? And 

if so, would the effects of sleep on episodic memory be comparable as it is in declarative 

memory in the similar age group children (e.g. Wilhelm, Prehn-Kristensen, & Born, 2012)? 

Hence, in the Study II of this thesis, we addressed those questions not only in adults but also in 

children of 8-12 years as a first step of episodic memory development at the ages towards a 

fully developed adult episodic memory. 

Interdependency of semantic memory and episodic memory 

As another typical declarative memory, semantic memory cannot be ignored when 

understanding episodic memory. Semantic memory is defined as being independent of any 

form of a specific memory experience. It refers to general knowledge about the world, storage 

of “words and other verbal symbols, their meaning and referents, about relations among them, 

and about rules, formulas, and algorithms for manipulating them” (Tulving, 1972; Yee, 

Chrysikou, & Thompson-Schill, 2013). Examples of semantic memory include names and 

attributes of all objects and actions, concepts and the association between them, categories and 

their bases, knowledge of causes and effects, and so on (Binder & Desai, 2011). Semantic 

memory is thus important for the formation to episodic memory since we cannot remember the 

past, plan the future or reason about information without having a preexisting conceptual 

knowledge stored in the semantic memory system (Binder & Desai, 2011). 

 It has been long assumed that to process semantic concepts partly depend on the sensory 

and motor experiences. For example, when we process motion, sound, olfaction and gustatory 

concepts, the related brain areas (or nearby) also active as during the real sensory or motion 

actives (See a summary in Binder & Desai, 2011). On top of those direct sensory-motor related 

concepts, those abstract representations were suggested to be supported by the “convergence 
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zones” that refer to inferior parietal cortex, ventral and lateral temporal lobe and anterior 

portions of fusiform gyrus (Binder & Desai, 2011; Damasio, 1989) 

 Although Endel Tulving differentiated episodic memory and semantic memory at the very 

early stage, with the formation of semantic memory not necessarily depended on episodic 

memory (Tulving, 1972), there is still an ongoing debate regarding to what extend semantic 

memory is formed from episodic memory (Yee et al., 2013). Studies in children with amnesia at 

an early age of life revealed evidence that, although those children had episodic memory 

impairments that due to bilateral hippocampal damage, their semantic knowledge was 

relatively intact (Bindschaedler, Peter-Favre, Maeder, Hirsbrunner, & Clarke, 2011; Gardiner, 

Brandt, Baddeley, Vargha-Khadem, & Mishkin, 2008; Vargha-Khadem et al., 1997). Moreover, 

evidence that supports the interdependency of these two kinds of declarative memories is 

accumulating (see the review from Greenberg & Verfaellie, 2010).  

It was generally accepted that the neural basis of semantic memory and episodic memory 

are different, while episodic memory depends primarily on the hippocampus, semantic memory 

largely depends on the underlying cortices (Vargha-Khadem et al., 1997). However, these two 

memory types are not completely independent, rather, they support the formation of each other. 

At encoding, semantic memory can act as a framework or scaffolding to facilitate the episodic 

acquisition, which has been found in healthy subjects compared to patients with an impaired 

semantic system like dyslexia and aphasia (Graham, Simons, Pratt, Patterson, & Hodges, 2000; 

Kan, Alexander, & Verfaellie, 2009; Kinsbourne, Rufo, Gamzu, Palmer, & Berliner, 1991; 

Reder, Park, & Kieffaber, 2009; Y. Wang, Mao, Li, Lu, & Guo, 2016; Ween, Verfaellie, & 

Alexander, 1996). Other works suggested that new semantic learning could also rely on the 

function of the MTL thought to be the core structure supporting episodic memory. For example, 

amnesia patients had impaired abilities to learn new semantic knowledge, which also correlated 

with the degree of MTL damage (Levy, Bayley, & Squire, 2004). In fact, one theory suggests 

that semantic knowledge is abstracted by multiple various spatiotemporal contexts (Baddeley, 

1988; Greenberg & Verfaellie, 2010; Mayes & Roberts, 2001). Even though it seems possible 

to form semantic memory independent of MTL or the capacity for episodic encoding (Stark, 
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Gordon, & Stark, 2008; Tulving, Hayman, & Macdonald, 1991), such a formation is rather 

slow and the learned new information is then often hyper-specific and cannot well integrate into 

the semantic storage (Greenberg & Verfaellie, 2010).   

This mutual interdependent effect has also been found in the retrieval phase. Again, studies 

that compare healthy subjects with amnesic patients have shown that the MTL impairment in 

patients had harmed their autobiographic memory and therefore hindered their ability to access 

semantic knowledge (Kopelman, Stanhope, & Kingsley, 1999; Westmacott, Black, Freedman, 

& Moscovitch, 2004). Likewise, autobiographical memories also construct semantic 

knowledge that when the capacity of episodic recall declines, semantic memory also declines 

(Maguire, Kumaran, Hassabis, & Kopelman, 2010; Piolino et al., 2003). Additionally, evidence 

from neuroimaging studies showed co-activation in mutually shared brain regions when 

processing these two kinds of memory. For example, the posterior cingulate gyrus and adjacent 

precuneus may function as an interface between semantic networks and the HPC to facilitate 

meaningful events into episodic memory (Binder & Desai, 2011). Indeed, recent evidence from 

(Brodt et al., 2016) suggested that with each repetitive encounter of episodes within a virtual 

spatial maze, the activation of HPC network decreases while posterior parietal cortex increases. 

It thus might mark a quick transition from the hippocampal dependency of episodic memory to 

a stable neocortical semantic network during learning. Together with the additional finding that 

this heightened parietal cortex activation was predictive of the memory performance on 

long-term (i.e. a day), it opens the possibility that such a fast memory transfer could also 

happen during wakefulness when similar episodes of the day are spontaneously activated, a 

process thought to happen more often during sleep.  

In summary, scientists reached a consensus that episodic memory and semantic memory 

are not entirely distinct mental process. On the contrary, they facilitate each other’s formation 

and recall. Since these two memories also have different features and function, the mechanism 

regarding how they mutually support each other is still an interesting and important scientific 

question. The Study III in this thesis slightly touched this topic by designing a task with 

semantically related word pairs with episodic temporal context. It was not aimed to disentangle 
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the relationship between semantic memory and episodic memory in specific but could provide 

some interesting hints that refer to age-related differences in memory consolidation that are due 

to the diverse of memory types. 

3. Sleep  

We are all born with a natural ability to switch our states between wake and sleep. During 

wakefulness, we receive information, form memories, and express emotions with 

consciousness. On the contrary, when falling into the state of sleep, we lose consciousness and 

the awareness of what happens to our body during sleep. Having to give up the apparent loss of 

wakeful benefits for about one-third of our lifetime marks the importance of sleep in our 

survival. Although it has been for long taken as granted, sleep is crucial for our body health in 

energy saving (Berger & Phillips, 1995), metabolic regulation (Knutson, Spiegel, Penev, & 

Van Cauter, 2007) and adaptive immune functions (Lange, Dimitrov, & Born, 2010). More 

importantly, sleep speaks strongly for the notion of being mainly “for the brain” (Hobson, 

2005).  

 Sleep in mammals consists of two main stages: NonREM sleep (including Stage II sleep 

and SWS) and REM (rapid-eye-movement) sleep, which alternate in a cyclic manner. 

NonREM sleep is dominant for the early part of a typical night sleep, and its proportion 

decreases while REM sleep becomes prevalent at the second half night until waking up.  

 Sleep patterns change dramatically across the lifespan. For humans, the amount of sleep 

decreases gradually with age, from about 16 hours at neonate to about 6 hours for the elderly 

after 70-year-olds. However, the most dramatic change happens before adolescence (Roffwarg, 

Muzio, & Dement, 1966). During the early postnatal period, sleep is immature, and is separated 

in quiet sleep (analogous to adults’ NonREM sleep) and active sleep (analogous to adults’ REM 

sleep). With age, REM sleep gradually diminishes to about 25% by the age of 2-3 years, when 

NonREM sleep becomes dominant. During childhood, sleep duration gradually drops to about 

nine hours at around 12 years of age (Iglowstein, Jenni, Molinari, & Largo, 2003).  
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Sleep and memory consolidation 

It has been widely accepted that sleep is important for memory consolidation (Diekelmann & 

Born, 2010; Rasch & Born, 2013). A vast body of evidence showed that compared to 

wakefulness, sleep positively supports declarative memory consolidation (e.g., Plihal & Born, 

1997), including the formation of semantic memory (e.g. Tamminen, Lambon Ralph, & Lewis, 

2013; Tilley, Home, & Allison, 1985), and also non-declarative memories like motor learning 

(Antony, Gobel, O'Hare, Reber, & Paller, 2012; Brawn, Fenn, Nusbaum, & Margoliash, 2008; 

Fischer, Hallschmid, Elsner, & Born, 2002) and emotional memory (P. Holland & Lewis, 2007; 

Hu, Stylos-Allan, & Walker, 2006). New findings suggested that sleep specifically benefits the 

episodic kind of memory (Inostroza et al., 2013; Inostroza & Born, 2013; Oyanedel et al., 

2014). 

 Starting with pioneer works of Ebbinghaus (Ebbinghaus, 1983), the forgetting rate of 

learned syllables was reduced after a night of sleep, and follow-up studies confirmed that sleep 

prevents further forgetting (Jenkins & Dallenbach, 1924). Therefore sleep has been assumed to 

act as passively protecting memory from retroactive interference (J. M. Ellenbogen, Payne, & 

Stickgold, 2006). This hypothesis reinforced that sleep transiently shelters memory from 

interference, but it denied that sleep actually consolidates memory. However, if memory 

remains unchanged during sleep, it would not show a reduced susceptible to interference after 

sleep (Jeffrey M. Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). Hence 

sleep must play more than a simple role of “passive protection”.  

 Recent theories suggest an active role of sleep in memory consolidation (see the review of 

Diekelmann, 2014; Diekelmann & Born, 2010; Rasch & Born, 2013). According to the active 

system consolidation theory, during learning, information is encoded in parallel to HPC, as the 

temporary memory hub, and the stimuli-relevant neocortex, as the long-term storage of 

memories. During sleep, newly encoded hippocampal memory representations become 

reactivated and reorganized, which allows newly acquired information to be gradually 

integrated into the pre-existed neocortical neural network for long-term memory system (Rasch 
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& Born, 2013). This hypothesis has been updated recently for episodic memory consolidation. 

It assumes a leading role for the prefrontal-hippocampal memory system that during 

wakefulness hippocampus encodes the episodic natures by binding an experienced event into 

its temporal-spatial context (Huber & Born, 2014). During subsequent sleep (presumably SWS), 

neural memory representations in the hippocampus (e.g., place-cells) become repeatedly and 

spontaneously reactivated in the same temporal order as during the experience (i.e., so-called 

memory “replay”), allowing for their redistribution largely into neocortical and striatal 

networks (Huber & Born, 2014; Inostroza & Born, 2013). This process could also result in a 

strengthening of the overlapping gist across memories to form our cognitive schema, but at the 

expense of weakening associated additional information, for example, the learning context 

(Lewis & Durrant, 2011). Therefore sleep has been considered to function for “semantization” 

with episodic details being pruned and reorganized to form more abstract semantic knowledge. 

Although there is evidence that one-night sleep could not be enough to reveal such a 

“semantization” effect (Cox, Tijdens, Meeter, Sweegers, & Talamini, 2014; Jurewicz, Cordi, 

Staudigl, & Rasch, 2016).  

Sleep stages and specific features in memory consolidation 

 Substantial evidence supported the dual process hypothesis that hippocampus-dependent 

declarative memories preferentially benefit from SWS, whereas non-declarative memories, 

such as procedural memory and emotional memory, additionally profit from REM sleep (Born, 

Rasch, & Gais, 2006; Gais & Born, 2004). Since this thesis mainly focuses on episodic memory, 

a main kind of declarative memory, some important and relevant sleep features are discussed 

below. 

 According to the active memory consolidation model, newly encoded memory 

representations that temporarily are stored in hippocampal networks, are reactivated during 

SWS after the encoding experience to be redistributed and transferred to cortical networks 

severing as a long-term store. This hippocampal-neocortical transfer of reactivated memories is 

thought to be orchestrated by EEG slow oscillations (Mitra et al., 2016) that are generated in the 
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neocortex and stimulate synchronous hippocampal reactivations that are marked by 

hippocampal sharp-wave ripples (SW-Rs), and thalamo-cortical sleep spindles (Marshall, 

Helgadottir, Molle, & Born, 2006). Hippocampal ripples nested in spindle oscillations 

(Clemens et al., 2007; Staresina et al., 2015), i.e., spindle-ripple events have been proposed as a 

mechanism that specifically serves the transfer of reactivated hippocampal memories to 

neocortical, preferentially prefrontal cortical areas (Born & Wilhelm, 2012).  

 Key features of sleep architecture that underlie memory consolidation thus include slow 

oscillations (SOs, also called slow waves) (Chauvette, Seigneur, & Timofeev, 2012) and sleep 

spindles (Sirota, Csicsvari, Buhl, & Buzsaki, 2003), which also develop with age. Slow-wave 

activity (SWA), which is defined by the 0.5- to 4.0 Hz frequency band including the core 

frequency of slow oscillations (SOs, ~0.8 Hz in humans), has been proposed to reflect the 

dynamics of synaptic strength (Tononi & Cirelli, 2006), which is associated with the degree of 

neural synchronization in the cortical networks (Whitlock, Heynen, Shuler, & Bear, 2006). 

There is a gradual increase of SWA during childhood. This is in line with the overwhelming 

increase in synaptic connectivity, starting from the first year of life and reaching a plateau 

around the beginning of puberty (McAllister, 2000).  

 Sleep spindles are waxing and waning activities between 12–15 Hz that are typical 

oscillations of light sleep (Stage 2 sleep) as well as deeper SWS (De Gennaro & Ferrara, 2003). 

Spindle activity can be detected within the first month of life (Ellingson, 1982). Spindle 

densities (highest at centroparietal sites) slightly decrease towards the end of infancy (2-3 

years), and then increase strikingly during the whole childhood until puberty, to then slowly 

decrease again with age (Scholle, Zwacka, & Scholle, 2007) though between the ages from 2-5 

years in a longitudinal study no such change was observed (McClain et al., 2016). 

 SWA and sleep spindles that associate with hippocampal SW-Rs are important sleep 

features, and their occurrence and properties can reflect local synaptic networks that were 

previously strengthened (e.g. LTP) during a wakeful learning experience (Huber, Ghilardi, 

Massimini, & Tononi, 2004; Werk, Harbour, & Chapman, 2005). There is also further 

indication that the coordinated occurrence of such sleep features thought to support the 
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hippocampal-to-neocortical transfer of memory representations is a causal predictor for 

declarative memory consolidation (H. V. Ngo, Claussen, Born, & Molle, 2013; H. V. V. Ngo et 

al., 2015). The developmental trajectory of these sleep features could serve as a reference for 

the development of memory consolidation mechanism and for the developmental state of the 

memory system itself. 

Developmental evidence on sleep and memory consolidation 

Childhood is the most important period of our life to learn and to shape the connections in our 

brain for all future experiences. Children spend much of their waking hours to acquire skills and 

knowledge of the world. This requires a superior capacity to learn and form memories that 

benefit naturally from the developing brain, which is assumed to be very sensitive to novel 

stimuli and experiences (Wilhelm et al., 2014). Remarkably, childhood is also the period when 

the most dramatic changes of sleep structure happen (Roffwarg et al., 1966). Children spend 

much longer time in sleep and sleep deeper than adults. Considering of the memory function of 

sleep, it is reasonable to assume that sleep plays an important role for the developing brain to 

build up matured cognitive functions. 

 Sleep for memory consolidation in children was first reported in declarative memory, 

where age-appropriate word-pair learning was used for 9-12 years old children (Backhaus, 

Hoeckesfeld, Born, Hohagen, & Junghanns, 2008). This study showed clear evidence that 

declarative memory in children was enhanced after sleep, but not after an equivalent length of 

wakefulness. Importantly, this study reported a positive correlation of the retained word pairs 

with NonREM sleep. Follow-up studies compared children at this age with healthy adults and 

indicated that the effect size of sleep on declarative memory consolidation (on word-pair and 

visuospatial memory) in children was equivalent to adults, even though children had much 

higher amounts of SWS than adults (Wilhelm, Diekelmann, & Born, 2008). Unlike the 

beneficial effect of sleep that was found in declarative memory, post-sleep procedural memory 

deteriorated in children, which was opposite to adults (Wilhelm et al., 2008). Of note, the 

degree of the post-sleep impairment in procedure memory failed to predict long-term 
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performance (Zinke, Wilhelm, Bayramoglu, Klein, & Born, 2016), a phenomenon that was 

found in sensorimotor learning in young songbirds (Deregnaucourt, Mitra, Feher, Pytte, & 

Tchernichovski, 2005). These studies spoke against the hypothesis that more SWS or longer 

sleep time predicts larger sleep effect on memory. Then why do children show so much of SWS 

as compared to adults? A study that compared children at that age (i.e. pre-puberty) with adults 

shed new light on this: it was not the absolute amount of declarative memory, but rather the 

abstract gain in knowledge from the implicitly learned material that in particular benefited from 

the SWS-rich sleep in children (Wilhelm et al., 2013). Similarly, sleep also facilitates newly 

acquired novel words to integrate into children’s long-term lexical memory and was associated 

with the ability to recognize and recall novel spoken words (Henderson, Weighall, Brown, & 

Gaskell, 2012). 

 Nevertheless, there are only a handful of studies that investigated sleep’s effect on memory 

in younger children and infants for declarative memories. Those studies mainly utilized a task 

paradigm called “differed imitation” – an experimental paradigm to test declarative-like 

memory in infants for unique experiences. For this paradigm, a short nap shows benefits for 

declarative memory consolidation (Seehagen, Konrad, Herbert, & Schneider, 2015), and the 

flexible memory retrieval in infants (Carolin Konrad, Seehagen, Schneider, & Herbert, 2016), 

as well as differences along the early age for the role of night sleep in crucial aspects of the 

recall for the imitation (C. Konrad, Herbert, Schneider, & Seehagen, 2016). Also, sleep seems 

to facilitate the generalization/abstraction capacities in infants (Friedrich, Wilhelm, Born, & 

Friederici, 2015; Gomez, Bootzin, & Nadel, 2006; Hupbach, Gomez, Bootzin, & Nadel, 2009).  

 Although studies in sleep and memory consolidation in children are accumulating, there is 

to date no evidence about sleep’s role in particularly episodic memory consolidation in children, 

i.e. at an age where they show a developmental peak in SWS, which is thought to have the 

optimal conditions for hippocampal-neocortical memory consolidation processes taking place. 

This makes pre-puberty childhood an optimal model to study hippocampus-dependent episodic 

memory consolidation and is thus the focus of investigation in this thesis. 
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Objectives and expected output of the doctoral research  

To sum up, there was a knowledge gap about sleep’s role in the consolidation of episodic 

memory, e.g., how does sleep support episodic memory and its different aspects (e.g., temporal 

or spatial context), and how does episodic memory develop from childhood to adulthood. This 

doctoral thesis aims to explore how episodic memory consolidates during periods with either 

nocturnal sleep or daytime wakefulness, and how this process is related to the aspects of 

childhood brain development. For this purpose, we planned the following experiments: 

 First of all, a novel experimental paradigm was established to test episodic memory in the 

strictest definition (“What” happens at “Where” and “When”). This task allowed us to examine 

episodic memory in children and adults with two behavioral measures that is an explicit 

measure by oral report, and an implicit measure by tracking eye movements. Both measures 

allowed the assessment of the spatiotemporal integration that was required to test specifically 

for episodic memory in a verbal and non-verbal manner as well as to track the interdependency 

of these two measures and how each depends on consolidation processes. In addition, the 

combination of both explicit with implicit measures bared the potential for an arbitrary use of 

both measures to indicate core features of episodic memory in future applications using solely 

eye-tracking to measure episodic memory, e.g. in patients with language deficiencies or infants. 

The experimental paradigm is described thoroughly in Study I (Appendix - Study I). In this 

study, the effect of sleep on memory recall and the possible neural basis during sleep that could 

contribute to the memory consolidation process were disentangled. According to the 

assumption that overnight sleep facilitates declarative memories (Diekelmann & Born, 2010), 

we hypothesized that after sleep, participants would recall more episodic memory for the 

explicit measure. Also, an animal study has reported that after sleep rats showed stronger 

behavior indicating episodic-like memory (Inostroza et al., 2013), so we explored the possible 

link to that study to measure spatiotemporal integration of episodic memory in humans using 

eye-tracking of exploration behavior similar to the task design used in rats. We attempted to 
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establish an implicit measure that is sensitive enough to detect episodic memory for non-verbal 

subjects, as good as the oral report.  

 Next, we tested the hypothesis that episodic memory consolidation happens preferably 

during SWS. Since SWS is naturally more abundant in children, and no study has shown how 

sleep supports episodic memory particularly in children, we adopted the experiments from the 

first study (“What-Where-When” paradigm) and utilized it also to children aged 8-12 years. In 

addition, to amend the shortage of the previous study design that lacked a control on shorter 

forgetting periods, additional groups of children and adults were recruited to serve as the 

pre-sleep control. This additional testing before sleep on a shorter time interval after encoding 

attempted to understand the dynamics of forgetting or change of episodic memory between 

short-term and long-term intervals. The results are reported in Study II (Appendix - Study II). 

This study provides an overview of how episodic memory changes from the onset of sleep 

towards longer time intervals after nocturnal sleep or daytime wakefulness. Also, a direct 

comparison between memory performance of children and adults was presented. We 

hypothesized that there is a significant sleep effect for the What-Where-When episodic binding 

in children as well, with the strength of the sleep effect being positively influenced by the 

amount of SWS or SWS related electrophysiological features, such as SWA or SO densities as 

well as sleep spindles. Furthermore, when compared with the adult subjects on recall 

performance after long and short time intervals, the sleep children were expected to outperform 

the sleep adults for the explicit What-Where-When episodic binding on the long interval, but 

only after sleep, not wakefulness, and showing less forgetting over sleep than adults. 

 Lastly, to exclude the possibility that the missing sleep effect on the temporal aspects of 

episodic memory that was masked by the strong sleep effect on the spatial aspects of the 

“What-Where-When” task, we adapted a classic paired-associative learning task (studying 

word pairs) to also allow recall for episodic aspects of the memory (temporal context, and its 

binding of word-pair memory as items). The word-pair learning served not only as a replication 

control with a previously reported benefit from sleep in children (Backhaus et al., 2008) and 

adults (Plihal & Born, 1997), but also diverted participants’ from noticing the episodic temporal 
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context. Using this paradigm imitated the everyday situation in which we can still recall when 

an event happened even though we did not pay specific attention to remember the time when 

that event happened. We compared the sleep effect on these two kinds of memory in children. 

Additional adult groups for the long-term memory controls were also tested either before or 

after sleep. The procedural design was analogous to the “What-Where-When” episodic 

paradigm in Study II, and allowed us to simultaneously compare sleep’s influence on different 

experimental paradigms: purely episodic item-temporal context memory, and more 

semantic-based memory for word-pair associate learning. The results are reported in Study III 

(Appendix - Study III). We hypothesized that the word-pair memory shows signs of forgetting 

after one hour, but with sleep further preventing this forgetting. For the episodic aspects, we 

expected to see children that slept recall the temporal contexts and their bound items better than 

the Wake children and Pre-sleep children. Additionally, we hypothesized the forgetting curve 

of children and adults could be similar as we observed in Study II. 
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Conclusion and general discussion  

Taken together, the findings included in this thesis indicated that i) a nocturnal sleep benefits 

the binding of an item into its spatiotemporal context, a core feature of episodic memory, for 

both explicit and correlating implicit measures in human adults. In particular, fast sleep 

spindles may underline the neural basis of this consolidation (Study I). Introducing the same 

paradigm to children around ten-years-old, we found that ii) children did not exceed adults as 

we expected for the capacity of consolidating the absolute amount of episodic memory, even 

though they had a superior amount of SWS. This result is in line with a previous study that 

showed comparable sleep effect on a visuospatial memory task in children and adults (Wilhelm 

et al., 2008). However, by assessing the memory performance shortly after encoding, we found 

that in order to understand sleep’s efficiency in memory consolidation, the pre-sleep 

performance should be taken into account (Study II). Finally, we asked whether the sleep effect 

on a general memory consolidation profits from the episodic nature of memory. To answer this 

question, we examined the consolidation of word-pair memory, which has been shown in 

previous studies to have robust benefit from sleep. We could replicate the previous findings of 

sleep’s positive effect on word-pair learning in school children (Backhaus et al., 2008; Wilhelm 

et al., 2008). In addition, we provided new evidence that the episodic temporal context from a 

learning material also benefits from sleep and may be an integral part of the learning memory 

that aids this sleep benefit. Surprisingly, in this task, sleep did not preferentially support a fully 

integrated by binding its items (word-pairs) to their source (temporal context), rather, sleep 

seems to encourage the process of “unbinding”, which could serve as additional evidence for 

schema building. Also, SWS and sleep spindles were found to associate with those 

consolidation processes differentially.  
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Forgetting curves differences over sleep and comparing related memory types between 

children and adults 

 When looking at Study II and Study III together, an interesting age-related difference of 

forgetting curves between “what-where-when” episodic memory and semantic based 

word-paired memory appeared. In Study II, the adults forgot episodic memory over all 

measured time points, even after one night of sleep. However, in children the recall of episodic 

memory kept rather steady, starting with lower performance shortly after encoding (~1 h), but 

on the long time interval (~10 h) reaching recall levels comparable to adults. Notably, sleep in 

children upheld episodic memory to a larger extent, though long-term forgetting did not reach 

significance (Figure 1, Study II). On the contrary, for the word-pair memory, the memory more 

based on semantic knowledge, children’s forgetting was more drastic over the long retention 

time (Figure 1B, Study III). Why did children seem to forget semantic associations over time 

(even after sleep), but maintain episodic associations, while this is the opposite for this two 

memory types in adults? To our knowledge, this is the first evidence of two opposite 

age-related forgetting trends for two different declarative memory types (i.e., episodic-like or 

semantic-like memory). Our understanding from forgetting curves stems mainly from the 

pioneering work from Ebbinghaus (Ebbinghaus, 1983). He and later researchers following his 

work were testing repeatedly encoded nonsense syllables in adults with different retention time. 

They have observed a consistent and dramatic forgetting over time (Murre & Dros, 2015). 

Importantly, on top of the general forgetting, a slight improvement of memory appears around 

24 h or shortly after, an effect, which has later been attributed to the sleep (Jenkins & 

Dallenbach, 1924). 

Our adults’ performance on episodic “What-Where-When” memory showed a similar 

pattern, which precludes the influence of familiarity of the learning materials (familiar face vs. 

less familiar nonsense syllables) and mental efforts (implicitly encoded episodes vs. repeatedly 

learned syllables). However, should children follow a similar forgetting curve regardless of the 

memory type? To our best knowledge, there is no previous evidence that has described how 
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memory in children changes within 24 hours. However studies on eyewitness memory tracked 

over weeks to month indicated that children and adults share similar accuracy 

(incorrect-to-correct rate) for the long-term memory (Paz-Alonso, Larson, Castelli, Alley, & 

Goodman, 2009; Pipe & Salmon, 2009). This seems to back up the episodic performance for 

our Sleep and Wake groups, which did not show significant differences between age groups. 

However, can the most significant difference between age groups after the short 1-h interval be 

explained by the encoding efficiency, i.e., children encode worse than adults, or show a fast 

forgetting, i.e., children could lose those memories more quickly within the one hour? Given 

that the encoding in children was generally not impaired as compared to adults (Word-pair 

memory immediate recall, Figure 2A) and episodic memory is a rather volatile memory, the 

weaker episodic component of Study III seems to have deteriorated already after 1-h, and then 

remained similar level after 11h (Word-pair and list memory, in Figure 2C). This could be 

considered evidence for the fast episodic forgetting of specifically episodic memory in children 

over short periods. From this we could infer that the huge difference observed in the WWW 

memory in the pre-sleep groups between the children and the adults could due to the fast 

forgetting of children, whereas the lessened forgetting of the word-pair memory (Study III, 

Figure 1B, 2B) could due to the different encoding strategies owed to the different nature of 

those two memory types (more semantic related, less episodic related). Nevertheless, we cannot 

rule out that children encoded less contextual episodic details in the first place, and thus future 

studies that thoroughly design to test this assumption should be conducted. 

Limited capacity of sleep on memory consolidation 

When focusing on the quantitative change of memories other than the exact memory type, we 

found there are interesting consistencies between Study II and III. For instance, in Study II, the 

group that performed higher before sleep (i.e., the Pre-sleep adults reached over 60% 

performance) had reduced memory after sleep, while the low starters (i.e., the Pre-sleep 

children reached less than 30%) did not significantly differ (and even slightly increased) after 

sleep; In Study III, learners with no forgetting before sleep (Pre-sleep children) dropped 
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significantly as compared to after sleep, while the Pre-sleep adults who already forgot before 

but slightly upheld the memory after sleep. In other words, independent of memory type and 

subjects’ age, the pre-sleep performance may predict the sleep effect on memory consolidation. 

Thus, the higher performers lost over sleep, while the more moderate performers did not. This 

is in line with previous studies that claimed sleep favors specifically the intermediate 

performance before sleep (Wilhelm, Metzkow-Meszaros, Knapp, & Born, 2012). In this study, 

children and adults were trained for motor sequence learning. Comparing with wakefulness, 

sleep effect was only significant for the intermediate pre-sleep performers, rather than the high 

and low performers. Also, a recent study in adults on the sleep’s effect of information load 

during encoding adds new evidence on declarative memory to support this idea (Feld, Weis, & 

Born, 2016). In this study, the beneficial sleep effect was only observed when participants 

learned an intermediate amount of 160 word-pairs, but not in either shorter list (40 pairs) or 

longer list (320 pairs). Notably, the conclusions of these two studies all speak for a limiting 

effect of sleep on over-trained ceiling performance or material learned under high mental 

demands, as it was suggested previously that sleep’s enhancement is greater for weakly 

encoded than strongly encoded memories (Diekelmann, Wilhelm, & Born, 2009). Our tasks 

required less cognitive load with either one-time encoding of word-pairs, or implicitly encoded 

episodes and also precluded ceiling performance. In fact, the immediate recall performance of 

word-pair for both children and adults was set to an intermediate level (Study III, Figure 2A), 

which allowed sensitivity for a sleep effect. It might thus be that particularly in children the 

cognitive load during encoding and the memory level at the time of going to sleep were ideal to 

benefit from it, and those conditions were met to a lesser degree for adults. Moreover, the fact 

that children retained similar amounts of episodic memory than adults after a long retention, 

even without sleep, supports the view that there are memory consolidation mechanisms that 

might protect memory at a very low level independent of processes during sleep, at least for 

time scales of ~10 h. Although with no direct evidence within the first 24 h, research on 

children for eyewitness memory had revealed that young children tend to remember less 

information of an event, but with a higher accuracy (Ornstein, Gordon, & Larus, 1992; Poole & 



   

35 

 

White, 1995), which indicated children’s limited capacity of remembering that information but 

relatively good ability to maintain it over a long-term period. 

Sleep for vivid episodic remembering, episodic forgetting and the relation to semantic 

memory 

The active systems consolidation theory predicts that the hippocampus-dependent 

representations are gradually integrated into the neocortex and become less 

hippocampus-dependent by spontaneously reactivation during sleep (mainly during SWS), 

which is a process that favors memory to be less vivid (i.e. less bound into the context) and 

fosters abstractions to form cognitive schema (i.e. unbound item memory) (Inostroza & Born, 

2013; Lewis & Durrant, 2011). Does this mean that sleep sacrifices episodic memory to favor 

semantic memories? It has been assumed that sleep has a “trade-off” effect between different 

memory types (Diekelmann, 2014). For example, it has been found that after sleep, the 

emotional component of a scene increased, but the memory for the neutral background 

concurrently decreased (Payne, Chambers, & Kensinger, 2012; Payne, Stickgold, Swanberg, & 

Kensinger, 2008). How this preferential consolidation of sleep works in emotionally neutral 

hippocampus-dependent memories is not well studied yet, but from the data presented in this 

thesis, we may speculate about this further. 

In Study I, we showed that there is a clear sleep effect for a better vivid episodic memory 

(not only the “What-Where-When” but also the “What-Where” memory) as compared with 

wakefulness, which sounds contradicting the assumption that sleep weakens episodic memory. 

But when considering the pre-sleep memory performance in Study II, a clear forgetting in 

episodic memory was demonstrated in the sleep group for adults. That is to say, sleep in adults 

prevents further forgetting of vivid episodic memory. However the current episodic task was 

not designed to measure a simultaneous increase of semantic memory, thus we still do not know 

whether there are direct sleep-processes involved in transferring episodic memory to semantic 

memory. Surprisingly, children did not show such an over-night forgetting of episodic memory. 

On the contrary, children that slept were even slightly better than the children measured for 
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pre-sleep performance. Thus, the hypothesis that sleep promotes the process of forgetting 

hippocampus-dependent episodic context (Hardt et al., 2013) does not seem to apply to children 

in this task, since their memory was still bound into context as it was before sleep. However, the 

evidence in Study III did speak for an episodic “unbinding” role of sleep in children, because 

after sleep the “episodic-like” memory (word-pair and list memory) did not change whereas the 

separate measures including word-pair or list memory became significant. Though this study 

cannot directly proof any memory transformation over sleep, the implication of the “unbinding” 

between memories could serve as first evidence to guide future studies on that matter. 

Though future studies should design dedicated test to address this issue more accurately, 

we are tempted to speculate that one-night of sleep (or the early following nights after episodic 

encoding) benefits the remembering specifically of vivid episodic memory when comparing 

with the same period of wakefulness. But with the passage of time and more sleep periods, the 

original episodic details would become obscure and the core content (fact) of what happened of 

an experienced episode could become less dependent on the hippocampus and ultimately form 

the semantic knowledge stored mainly in cortical networks. In terms of development, this 

process might be speeded up in children and their sleep, as the nature of being young is to learn 

more and build up individually new cognitive schema. 

The candidates of sleep parameters that support episodic memory consolidation 

The sleep EEG data did not reveal any consistencies regarding the neural mechanism that may 

underlie the consolidation of explicit “What-Where-When” episodic memory, but only for an 

association of sleep spindles to the implicit measure. It has been found that in humans, 

SWS-rich sleep early during the night consistently benefits (explicit) declarative memory 

(Diekelmann & Born, 2010). Combining this with the evidence of neural reactivation in the 

hippocampus during slow-wave sleep (Wilson & McNaughton, 1994), SWS has been assumed 

to be important for long-term storage of episodic memory (Inostroza & Born, 2013). 

Unexpectedly, according to our design, the hallmark features of SWS like slow oscillations 

(SOs) and slow-wave activities (SWA) did not reveal any consistent correlations that could 
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underpin the consolidation of episodic bindings, in neither adults nor children. This 

unanticipated outcome, however, does not exclude the real contribution from SWS to episodic 

memory consolidation.  

On the one hand, to avoid reconsolidation process that could be triggered by repeatedly 

assessing memory (Hupbach, Gomez, & Nadel, 2009), we avoided testing the subjects 

repeatedly on previously learned episodes. This resulted in the lack of a baseline measure to 

indicate the individual change in memory over a long retention interval. Thus our episodic task 

design failed to offer the possibilities for an apparent association with potential EEG features. 

Even though at Study II, we account for this defect by adding the Pre-sleep groups to serve the 

baseline for behavior comparisons, the design was still not appropriate to report the exact 

contributor of sleep parameters for episodic memory consolidation on an individual level.  

 On the other hand, the experimental paradigm with baseline measure in Study III allowed 

proper associations of memory changes with sleep features. This showed positive associations 

for the episodic binding of word and list memory with SWS and spindle activities that was 

contrasted by a negative association of sleep spindles with the semantic content of this memory 

(i.e., for the word-pair memory itself). Indeed, new evidence from (Niknazar, Krishnan, 

Bazhenov, & Mednick, 2015) revealed the concurrence of spindle activity and slow waves 

during SWS might be optimally suited for hippocampus-dependent memory consolidation 

(Maingret, Girardeau, Todorova, Goutierre, & Zugaro, 2016; Niknazar et al., 2015). In addition, 

there is new evidence that, even disregarding the lacking baseline, the episodic memory recall 

after sleep in adults seems associated with the infra-slow organization of sleep spindles 

predominant in parietal cortical areas (Lecci S. et al., Manuscript in revision), i.e. within the 

same cortical areas that support long-term memory following rapid encoding of re-experienced 

episodes (Brodt et al., 2016). Given that sleep spindles seem to play a role in episodic memory 

consolidation as observed here, their highest density specifically during periods of childhood 

when episodic memory is most rapidly developing (Scholle et al., 2007) shifts the focus away 

from slow waves and highlight their importance for future investigations on episodic memory. 
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Taken together, this suggests that spindles and slow-wave sleep favor the consolidation of 

episodic rather than semantic memory. However the exact role of those EEG features and how 

they interplay to benefit one over the other aspect of memory needs to be investigated in future 

studies. 
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Limitations and outlook 

Our studies provided new perspectives on the efficiency of consolidation over one night of 

sleep when considering the encoding level and hence revealed different forgetting curves 

depending on age. Importantly, by adapting different paradigm to assess episodic memory, 

many questions regarding sleep’s role in episodic memory consolidation could be answered. 

But due to contradicting findings, the different paradigms also generated further questions on 

how the different factors determine the consolidation process of different declarative memory 

types in sleep. For instance, at the behavioral level, if episodic memory differed largely 

between children and adults already one hour after encoding, but was equivalent after 10 hours, 

then how do episodic memories fade on even shorter and longer time intervals (e.g. minutes and 

days)? Also, is the lower performance of children after one hour already an indicator of 

worsened encoding in this episodic task of a faster forgetting? Finally, would the episodic 

memory be also protected from further wakefulness (i.e. extending the retention interval to 24 

h), thus revealing a true protection of the episodic memory from interference? Those questions 

call for future investigations to find the ideal time window for sleep to consolidate episodic 

memory with the highest efficiency, and how this time window depends on age.  

More interestingly, what is the sleep’s role in balancing between episodic memory 

consolidation and cognitive schema formation? It would be very interesting to discover 

whether sleep promotes episodic fading while in parallel forming new semantic 

memory/schema that are related directly to everyday episodes rather than to repetitively learned 

material. Though the tasks used here could indicate changes in binding of items into their 

spatiotemporal context on not explicitly learned materials, it could not indicate a parallel 

transfer of this unbinding to contribute to a schema memory.  

Last but not the least, why do we forget some memories that were vividly formed and 

consolidated? If we forget the most details over time, what are the things (gist) that are left, and 

what determines the selection of the remained gist memory? And what might cause the remote 

vivid memories that we always remember (strongly personal emotion related)? Future studies 
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should address possible predictors on the fading of memory for specific items or their specific 

context (e.g. spatial or temporal context) and how they relate to sleep, modulating emotion, 

attention and the strength of the memory (e.g. influences of repetition or varying encoding 

time). 

On the neural level, our investigation did not provide direct evidence of which sleep stages 

or featured sleep parameters contribute to the consolidation process of explicit episodic 

memory (Study II). Although SWS was hypnotized to be the key in declarative memory 

consolidation, it was only in the Study III that an association was found between the percentage 

of SWS with the word and list memory. However, there was no difference of this memory 

comparing between Sleep and Wake conditions. The question remains that if sleep enhances 

consolidation of truly episodic memories on the behavioral level, then why there is no 

consistent correlation across the studies reported here? We assume that the consolidation of 

episodic memory may refer to a comprehensive process that multiple brain regions were 

involved, which is hard to be detected by the sparse electrodes we applied in all these studies. In 

conclusion, future studies are needed to further disentangle sleep’ role in episodic memory 

consolidation. 
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Sleep benefits in parallel implicit and explicit measures
of episodic memory
Frederik D. Weber,1,3 Jing-Yi Wang,1,3 Jan Born,1,4 and Marion Inostroza1,2

1Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany; 2Departamento de

Psicologı́a, Universidad de Chile, 1058 Santiago de Chile, Chile

Research in rats using preferences during exploration as a measure of memory has indicated that sleep is important for the
consolidation of episodic-like memory, i.e., memory for an event bound into specific spatio-temporal context. How these
findings relate to human episodic memory is unclear. We used spontaneous preferences during visual exploration and
verbal recall as, respectively, implicit and explicit measures of memory, to study effects of sleep on episodic memory con-
solidation in humans. During encoding before 10-h retention intervals that covered nighttime sleep or daytime wakefulness,
two groups of young adults were presented with two episodes that were 1-h apart. Each episode entailed a spatial configu-
ration of four different faces in a 3 × 3 grid of locations. After the retention interval, implicit spatio-temporal recall per-
formance was assessed by eye-tracking visual exploration of another configuration of four faces of which two were from the
first and second episode, respectively; of the two faces one was presented at the same location as during encoding and the
other at another location. Afterward explicit verbal recall was assessed. Measures of implicit and explicit episodic memory
retention were positively correlated (r ¼ 0.57, P , 0.01), and were both better after nighttime sleep than daytime wakeful-
ness (P , 0.05). In the sleep group, implicit episodic memory recall was associated with increased fast spindles during
nonrapid eye movement (NonREM) sleep (r ¼ 0.62, P , 0.05). Together with concordant observations in rats our
results indicate that consolidation of genuinely episodic memory benefits from sleep.

Originally, episodic memory has been defined with reference to
stored “information about temporally dated episodes or events,
and temporal–spatial relations between them” (Tulving 1983).
Specific to episodic memory is that an experienced event upon
its one-time occurrence becomes bound to the particular tem-
poral and spatial context in which it occurred (Tulving 2002).
However, apart from the binding of item memory into spatio-
temporal context, the episodic memory concept originating
from human research has also emphasized the dependence of ep-
isodic memory on autonoetic consciousness during recollection,
which refers to a subjective awareness of the self as part of the re-
membered episode (Tulving 2001, 2002). Because examination of
these subjective aspects of episodic memory appears to be suitable
only for language-based approaches, research in animals has fo-
cused on the core features of episodic memory in terms of a mem-
ory for “what” (event) happened “where” (spatial location) and
“when” (temporal order of events; Clayton and Dickinson 1998;
Clayton et al. 2003), leaving unanswered the question to which
extent this memory is truly episodic (Klein 2013; Pause et al.
2013).

There is now ample evidence that sleep benefits the consoli-
dation of memory (Rasch and Born 2013). It has been proposed
(Diekelmann and Born 2010) that sleep supports, in particular,
the system consolidation of hippocampus-dependent memory
which, in the classical view, is declarative memory and comprises
episodic and semantic memories (Squire 1992; Diekelmann and
Born 2010). According to this concept, slow wave sleep (SWS) pro-
motes the neuronal reactivation of newly encoded hippocampal

memory representations and thereby not only strengthens them
but also stimulates their redistribution to extrahippocampal net-
works serving as long-term store. Rapid eye movement (REM)
sleep might add to consolidation by promoting synaptic consoli-
dation processes which also would enhance nonhippocampal,
e.g., procedural, types of memory (Diekelmann and Born 2010).

Although numerous studies in humans have demonstrated
that sleep strengthens declarative memory, the effects of sleep
on strictly episodic memory and its item-context binding features
are less well investigated (Inostroza and Born 2013). There is some
evidence that sleep preferentially strengthens context over item
memory (Rauchs et al. 2004; Spencer et al. 2006; Lewis et al.
2011; van der Helm et al. 2011). However, others failed (Cairney
et al. 2011), and none of these studies specifically examined the
binding of an event into spatio-temporal context as a key feature
underlying the formation of episodic memory. Notably, effects of
sleep on the binding of item memory into spatio-temporal con-
text have so far been directly examined only in one study in rats
(Inostroza et al. 2013a). This study revealed sleep to, indeed, be
necessary for upholding an integrative episodic-like representa-
tion. Rats which remained awake during the 80-min retention in-
terval following encoding did not display any significant signs of
episodic-like memory at retrieval testing, and in separate experi-
ments these rats also forgot spatial and temporal context memory.

The present study followed two aims: First, based on the ev-
idence in rats (Inostroza et al. 2013a), a supporting effect of sleep
on core features of episodic memory—i.e., the binding of item
memory into a spatio-temporal context—should be demonstrated
in healthy humans. Second, we aimed at establishing a close
link of the findings about the sleep-dependency of episodic-like
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memory in rats to human episodic memory. For this purpose, we
adopted a task paradigm in humans that assessed episodic memo-
ry, like in rats, based on exploratory preferences (Kart-Teke et al.
2006). Whereas in rats exploratory locomotor behavior is typically
used to assess episodic memory, in our human participants we
used visual exploration. Importantly, in so doing we established
a nonverbal, implicit measure of episodic-like memory in hu-
mans, which we tested for its correlation with truly explicit epi-
sodic memory recall.

Results

Implicit episodic memory
Analysis of variance (ANOVA) of normal-
ized visual exploration time for the dif-
ferent items (faces) during the retrieval
phase revealed different patterns de-
pending on whether participants had
slept or were awake during the retention
interval between encoding and retrieval
(F(1,27) ¼ 5.52, P ¼ 0.026, for Displaced/
Stationary [Spatial component] × Old/
Recent [Temporal component] × Sleep/
Wake [Condition]). Separate analyses of
the Sleep and Wake groups indicated
that only the Sleep group displayed sig-
nificant episodic memory, i.e., a pattern
of visual exploration that matched ex-
ploratory preferences in rodents with
significant episodic-like memory (Li and
Chao 2008; Inostroza et al. 2013a). The
episodic nature of the expressed memory
integrating temporal and spatial compo-
nents manifests itself in the interaction
between spatial and temporal com-
ponents of the task (F(1,14) ¼ 6.56, P ¼
0.023, for Spatial component × Tempo-
ral component in a sub-ANOVA on the
Sleep group) (Fig. 1B), i.e., a pattern
that is primarily characterized by rela-
tively shorter exploration time for the
face that is both old–familiar and dis-
placed than would be expected from add-
ing up the spatial main effect (i.e., longer
exploration for the displaced than sta-
tionary faces) and the temporal main
effect (i.e., longer exploration for the
old–familiar than recent–familiar faces).
The Wake group did not display a signifi-
cant pattern of visual exploration, i.e.,
no indication of episodic memory (P .
0.36, for Spatial component × Temporal
component interaction). Post-hoc t-tests
between the groups revealed greatest dif-
ferences for the recent–familiar station-
ary item for which exploration time, on
average, was shortest in the Sleep group
(mean+SEM, 431.9+53.00 msec) but
longest in the Wake group (763.57+
98.81 msec, t(27) ¼ 23.015, P ¼ 0.006,
d ¼ 1.11) (Fig. 1B). Spatial and Temporal
component main effects were not signif-
icant (P . 0.32).

The presence of episodic memory in
visual exploration patterns at retrieval

selectively in the Sleep group was confirmed using the “episodic
binding” score in which basically the statistical Spatial com-
ponent × Temporal component interaction term was used to spe-
cifically express the spatio-temporal binding underlying the
formation of an episode (see Materials and Methods). Accord-
ingly, significant spatio-temporal episodic binding was only
observed in the Sleep group (13.47+5.25%, t(14) ¼ 2.56, P ¼
0.023, d ¼ 0.66) but not in the Wake group (26.03%+6.49%,
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Figure 1. (A) Experimental design. Each session included an encoding phase, a retention interval, and
a retrieval phase. The encoding phase comprised two episodes (Old Episode, Recent Episode) 1-h apart,
each entailing a specific configuration of four individual faces in a 3 × 3 grid of locations. The subse-
quent 10-h retention interval contained either an 8-h interval of nighttime sleep (Sleep group) or
daytime wakefulness (Wake group). The retrieval phase started with implicit recall which was assessed
by eye-tracking visual exploration of another configuration of four faces. Two of these faces were from
the first (Old) and second (Recent) episode, respectively, and of the two faces one was presented at the
same location (Stationary) as during the episode and the other at another location (Displaced) resulting
in four stimulus types: Old–familiar Stationary (OS), Old–familiar Displaced (OD), Recent–familiar
Stationary (RS), and Recent–familiar Displaced (RD). Implicit recall was followed by explicit verbal
recall testing. Face configurations were randomized across episodes and implicit recall. For the figure,
individual faces are anonymized by ID-numbers representing one of the total set of 24 faces used in
the task (first episode faces—black; second episode faces—gray; one gray-scaled example face illustrat-
ed for explicit recall). Bottom part illustrates faces used in the different experimental phases: in the face
familiarization phase before the experiment proper, subjects were familiarized with 16 faces (gray
circles), of which eight faces were used in the encoding phase of the episodic memory task, four in
the old episode, and four in the recent episode. For implicit recall testing, four of the faces presented
in the episodes of the encoding phase were used, two from each episode. During explicit recall
testing 24 faces were presented, i.e., aside from the 16 familiarized faces (eight from episodes—
black circles, eight not from the episodes but presented in the face familiarization phase—gray
circles), and eight entirely novel faces (empty circles), which also allowed to discrimination between
“face recognition” (novel vs. familiar) and “What” memory (familiar in episodes vs. familiar but not
in episodes). (B) Mean (+SEM) visual exploration time for each stimulus type, and (C) “episodic
binding” scores (indicating spatio-temporal binding in episodic memory) (see Materials and
Methods) and separately measures of the spatial and temporal components in episodic memory
during implicit recall testing, for the Sleep group (n ¼ 15, filled bars) and the Wake group (n ¼ 14,
empty bars). Note, for clarity, absolute rather than normalized exploration time (i.e., exploration
time divided by the total time of all looks on a face) is indicated. (∗) P , 0.05, (∗∗) P , 0.01, above
bars for difference between Sleep and Wake groups, within bars (in panel C) for comparison with
chance level (zero).
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t(13) ¼ 20.93, P ¼ 0.37), and the positive episodic binding score of
the Sleep group also significantly differed from that of the Wake
group (t(27)¼ 2.35, P ¼ 0.026, d ¼ 0.87) (Fig. 1C). Scores formed
separately for the spatial and temporal components of episodic
memory (reflecting the statistical Spatial and Temporal main ef-
fects) failed to reach significance in both the Sleep and Wake
groups and also did not differ between the groups (spatial
score—Sleep, 3.90+6.62%; Wake, 23.54+6.56%, t(27) ¼ 0.80,
P ¼ 0.43; temporal score—Sleep, 21.78+7.38%; Wake, 27.91+

7.62%, t(27) ¼ 0.58, P ¼ 0.57).
For both experimental groups, control analyses excluded

any transition effects, i.e., exploration time was not influenced de-
pending on whether or not during the encoding phase a certain
grid location was occupied by an item in both episodes (Sleep,
t(13) ¼ 20.18, P ¼ 0.86; Wake, t(12)¼ 20.12, P ¼ 0.91; comparison
between groups t(25)¼ 20.046, P ¼ 0.96, d ¼ 0.02).

Explicit episodic memory
Explicit recall of episodic memory (“what–where–when” mem-
ory) was assessed after implicit retrieval measurement, and deter-
mined by the percentage of (all possible) faces that the participant
correctly identified as occurring in one of the episodes (“what”)
and for which he also identified the correct episode (“when”)
and the location (“where”) at which it occurred (see Materials
and Methods). Explicit episodic recall was above chance in both
groups (Sleep P , 0.001, Wake P ¼ 0.025, Mann–Whitney test)
but differed between the conditions, with performance being
distinctly better in the Sleep than Wake group (41.79+6.94%
vs. 17.86+6.51%, P ¼ 0.005, r ¼ 0.51) (Fig. 2A). Higher recall
performance in the Sleep than Wake group was confirmed in an
analysis restricted to faces that were not involved in implicit recall
(P , 0.022) excluding a biasing influence of prior implicit recall
testing. In an exploratory ANOVA, episodic memory recall did
not differ between faces of the first and second episode (P .
0.18, for respective Episode main effect and Episode × Sleep/
Wake interaction).

Separate analysis of the “what” component (number of faces
correctly identified as belonging to one of the two episodes ex-
pressed as percentage of episode faces that were correctly rec-
ognized as familiar and belonging to one of the two episodes)
revealed performance well above chance in both conditions

(Sleep, 90.0+3.70%, P , 0.001; Wake, 84.52%+6.03%, P ¼
0.002) but without a significant group difference (P ¼ 0.43). The
proportion of recalled faces (i.e., “what” component) for which
the place was correctly recalled (“what and where”) was above
chance in both groups (Sleep, 69.55+5.48%; Wake, 51.62+
7.28%; both P , 0.001), and was marginally (but not signifi-
cantly) greater in the Sleep group (P ¼ 0.057). The proportion of
recalled faces for which the episode was correctly recalled
(“What and When”) was above chance only in the Sleep group
(61.19+5.95%, P ¼ 0.040), but failed to reach significance in
the Wake group (55.90+7.01%, P ¼ 0.21; for the difference be-
tween groups, P ¼ 0.57). Interestingly, restricting the analysis of
these items (for which “What and When” was correctly recalled)
to only those for which the spatial component (“What–
Where”) was not correctly recalled yielded a significantly better
recall for the Wake than the Sleep group (12.71+3.91% vs.
30.07+6.21%, P ¼ 0.016) suggesting that temporal processing
considered in isolation might be superior in the wake state.
Finally, an overall analysis of faces correctly recognized as famil-
iar, which included also those faces presented only during the fa-
miliarization phase, indicated that both the Sleep and Wake
groups displayed close to ceiling object-recognition performance,
with no differences between groups (Sleep, 91.67+3.64%; Wake,
94.64+2.61%, P ¼ 0.90).

Correlation analyses
We calculated correlations between implicit and explicit measures
of episodic memory and, for the Sleep group, between recall mea-
sures and sleep parameters. The implicit episodic binding score in-
ferred from visual exploration was significantly correlated with
explicit episodic memory recall (“What–Where–When”) across
both groups (r ¼ 0.57, P ¼ 0.002) (Fig. 2B), which was mainly
driven by the sleep group (Sleep, r ¼ 0.63, P ¼ 0.017; Wake, r ¼
0.21, P ¼ 0.47). There was no correlation between separate implic-
it and explicit scores of spatial or temporal components of episod-
ic memory (P . 0.30).

The Sleep group displayed normal overnight sleep during the
retention interval (see Table 1 for a summary of sleep parameters).
Correlation analyses revealed a consistent pattern of moderate
associations, in particular between NonREM sleep processes and
implicit measures of episodic memory. Thus, the episodic bind-
ing score showed a positive correlation with time in NonREM sleep
(r ¼ 0.68, P ¼ 0.007) and, in parallel, consistent correlations with
centro-parietal (fast) spindle counts during NonREM sleep (r ¼
0.62, P ¼ 0.017, for average spindle count across central and pari-
etal electrodes) (Fig. 3). In further exploratory analyses, the
separate temporal memory component score showed negative
correlations with time in stage 2 NonREM sleep (r ¼ 20.71, P ¼
0.004) and fast spindles counts over centro-parietal areas (r ¼
20.57, P ¼ 0.03, for average count across electrodes). There were
no consistent correlations with EEG power in the frequency
ranges of interest with the exception of a negative correlation be-
tween “What” memory and NonREM EEG activity in the 0.5- to
8-Hz range that was highest for the delta band (P , 0.0001,
r ¼ 20.88). Explicit episodic memory recall did not show any sig-
nificant correlation with sleep measures, and there was also no
consistent association between memory measures and REM sleep
parameters.

Memory for word-pair associates, vigilance, and mood
Between the experimental episodes of the encoding phase, partic-
ipants learned two lists of word-pairs, i.e., a control task of de-
clarative memory for which beneficial effects of sleep are well
established (e.g., Plihal and Born 1997). As expected, recall of
the word-pairs tested at the end of the retrieval phase was
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Figure 2. (A) Mean (+SEM) explicit recall of episodic “What–Where–
When” memory and of subcomponents (“What,” “What and Where,”
“What and When”) during the retrieval phase for the Sleep (n ¼ 15,
filled bars) and Wake groups (n ¼ 14, empty bars). (+) P , 0.1, (∗) P ,
0.05, (∗∗) P , 0.01, (∗∗∗) P , 0.001, above bars for difference between
groups, within bars for comparison with chance level (dotted line). (B)
Pearson product–moment correlation between implicit episodic memory
(Episodic binding score) and explicit episodic memory recall (What–
Where–When), across the Sleep (filled circles) and Wake groups (empty
circles, n ¼ 28; data from one Sleep subject was excluded due to ceiling,
100%, explicit recall performance). (∗) P , 0.01.
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significantly better in the Sleep than Wake group (99.21+2.80%
vs. 91.13+2.67%, t(27)¼ 2.09, P ¼ 0.047, d ¼ 0.78).

Vigilance was assessed by the Psychomotor Vigilance Task
(PVT) before each episode during the encoding phase and be-
fore implicit recall during the retrieval phase, but did not differ be-
tween groups (Sleep vs. Wake: before first episode 291.35+32.41
msec vs. 286.46+20.34 msec; before second episode, 296.35+
21.72 msec vs. 291.92+27.47 msec; before implicit recall,
291.73+24.00 msec vs. 285.68+23.11 msec; all P . 0.50).
There were also no differences between groups in subjective sleep-
iness assessed by the Stanford Sleepiness Scale (SSS) (Sleep vs.
Wake: before first episode 3.25+1.14 vs. 2.84+0.99; before sec-
ond episode, 3.5+1.17 vs. 2.92+1.12; before implicit recall
2.50+0.80 vs. 1.92+0.76; all P . 0.10), and in mood, assessed
by the Positive Affect Negative Affect Scale (PANAS) (Sleep
vs. Wake group: before encoding phase, Positive Affect 24.43+

1.25 vs. 27.62+1.8, P . 0.40, Negative Affect 12.93+0.91 vs.
12.54+0.55, P . 0.76; before retrieval phase, Positive Affect
26.16+1.52 vs. 29.36+1.64, P . 0.23, Negative Affect 12.54+
0.69 vs. 11.93+0.35, P . 0.66).

Discussion
We report novel evidence indicating that sleep in humans
strengthens the binding of an item memory into spatio-temporal
context which is a core feature of episodic memory. Importantly,
we assessed episodic memory implicitly by visual exploration
times, and explicitly by verbal recall, and for both measures sleep
compared to wakefulness produced a more than twofold increase
in strength of episodic binding. Although explicit assessment sug-
gests episodic binding is present after sleep and wakefulness, im-
plicit assessment indicated above-chance episodic binding only
if subjects slept after encoding. Compared with the distinct effect
on episodic binding, sleep had only minor effects on separate im-
plicit or explicit retrieval measures of “What,” “Where,” and
“When” components of the encoded episodes. To immediately
support a fresh episodic memory might represent a basic compo-
nent of sleep’s function in memory processing.

We established a novel task that allowed for assessing truly
episodic memory in humans in both ways, i.e., implicitly, using
visual exploration, and explicitly, using verbal recall. The task de-
sign originated from previous studies that employed behavioral
exploration preferences to investigate episodic-like memory in ro-
dents (Dere et al. 2006; Kart-Teke et al. 2006, 2007; DeVito and
Eichenbaum 2010; Davis et al. 2013a,b; Inostroza et al. 2013a,b).
The episodic nature of our task was further enhanced by using

unique faces that were presented in a unique spatio-temporal con-
text. To reduce emotionality, we used faces with a neutral expres-
sion that, in addition, were familiarized before the experiment
proper. Emotionality has been considered a feature inherent to ep-
isodic memory and, indeed, is a critical factor determining persis-
tence of episodic memory (Libkuman et al. 2004; Dere et al. 2010;
Pause et al. 2013). Nevertheless, we preferred to make the experi-
enced episodes relatively neutral, because in this way visual explo-
ration was expected to be determined predominantly by novelty,
preventing that emotional aspects in the stimulus configuration
masked memory-guided visual exploration.

Implicit memory was successfully indicated in the task by
visual exploration time, specifically the time participants spent
looking at a particular face at their first looks on a face, with the
exploration times being characteristically enhanced when a face
at retrieval testing is encountered in a conflicting spatio-temporal
context relative to the previously encoded episodes. Thus, visual
exploration time is longer for faces spatially displaced than for
(stationary) faces presented at the same location as during encod-
ing, and in parallel with temporal conflict, exploration time is
longer for faces that belong to the older compared to the more re-
cently encoded episode. A consistent exploration pattern for the
faces with conflicting contexts indicates associated spatial and
temporal memory. Crucially, episodic binding of an event to-
gether with spatial and temporal context components expresses
itself in an interaction of spatial and temporal memory effects
for a unique face, as derived from the exploration pattern, rather
than in a mere additive effect of both components. This interac-
tion between “when” and “where” effects on visual exploration
time indicates that the gain in exploration time for faces that
are both old and displaced (i.e., OD) is less than would be expected
from adding up spatial and temporal main effects. It is this inter-
action expressing itself in a relatively reduced exploration of
OD items that has been consistently revealed as an indicator of
episodic-like memory in rodent studies (e.g., Kart-Teke et al.
2006, 2007; Inostroza et al. 2013a), and that provides a valid mea-
sure of an integrated rather than separated retrieval of spatial
and temporal context, i.e., of contextual binding as a hallmark
of episodic memory (Clayton et al. 2003, but see also Place et al.
2012).

Semantic memory can mask the assessment of episodic
memory and, although our subjects were not instructed to learn
anything, the encoding phase comprising three consecutive
runs through each episode might have triggered semantic mem-
ory formation (Pause et al. 2013). However, simple models of
familiarity-based recall, where trace strength is reflected in mem-
ory strength, would predict generally better recall performance for
the recent than the older episode. This is not supported by our
results as there were no significant differences in this direction

Table 1. Sleep parameters for experimental night of the Sleep
group

Sleep stages Time in minutes

TST 467.29+6.01
Sleep onset 14.21+3.52
Wake 15.93+8.10
Stage 1 14.43+2.82
Stage 2 239.29+11.47
Stage 3 40.36+2.19
Stage 4 55.25+7.98
SWS latency 14.75+1.50
SWS 95.61+7.82
REM latency 113.46+10.89
REM 98.64+6.77

Data are means+SEM, n ¼ 14. Total sleep time (TST) and time in different
sleep stages, sleep onset latency (with reference to lights off) and latency for
slow wave sleep (SWS) and rapid eye movement (REM) sleep with reference
to sleep onset.

r = 0.62*
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Figure 3. Pearson product–moment correlation in the Sleep group
(n ¼ 14) between fast sleep spindle counts during NonREM sleep and
implicit episodic memory (Episodic binding score). (∗) P , 0.05.
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for any of the implicit or explicit memory measures. Explicit
“what–where–when” memory was even better for the first than
second episode in the Wake group, possibly reflecting proac-
tive interference which was annulled by sleep (Abel and Bäuml
2013). Also, we controlled that our implicit measure of episodic
memory is, indeed, item specific, i.e., it is only sensitive to a spe-
cific face (“what”) and not to any face in a shared spatio-temporal
context. This was indicated by calculating a “transition score”
which excluded that mere spatial overlaps regarding the
occupation of a grid location between the first and second epi-
sode significantly contributed to our episodic memory measure.
Finally, implicit assessment of memory on only half of the items
involved in each episode allowed us to control whether implicit
recall biased subsequent assessment of explicit memory. Although
such bias cannot be entirely ruled out, explicit “what–where–
when” memory for the faces used in implicit recall testing showed
no difference from memory for items that were not used.

Tulving (2002) considered episodic memory recall a capacity
that involves the ability to “mentally time travel” and re-ex-
perience specific events, and thereby relies on a sense of self and
conscious awareness that the experience occurred in the past.
Although this definition reflects the phenomenological aspects
of episodic memory in humans, it exclusively relies on the verbal
report of subjective experiences. However, it prevents its investi-
gation in animals. The absence of any objective behavioral mea-
sure for episodic memory is also not conducive to a rigorous
scientific investigation of this kind of memory in humans (Allen
and Fortin 2013). Here, this issue is addressed. A major advantage
of our implicit memory measure is that it allows for examining
episodic memory in nonverbal humans, i.e., infants, and also
for comparisons across species. Although not specifically scoring
for episodic binding, studies in rodents using exploration behav-
ior in an analogous task design revealed an episodic-like pattern
strikingly similar to that observed here for human visual explora-
tion (Dere et al. 2006; Kart-Teke et al. 2006, 2007; Davis et al.
2013a,b). Furthermore, those studies showed that this episodic-
like memory exploration pattern is crucially dependent on hip-
pocampal function (DeVito and Eichenbaum 2010) and sleep
(Inostroza et al. 2013a). The latter observation concurs with
the present study where the episodic-like memory exploration
pattern was also robustly expressed only in the participants of
the Sleep group. Thus, the present findings constitute a strong
link between sleep-dependency in human episodic memory and
episodic-like memory in rodents. Pause et al. (2010) took an ap-
proach to explore episodic memory-like exploration patterns in
humans comparable to ours. However, rather than on visual ex-
ploration they relied on explorative button presses as a nonverbal
measure, and subjects were instructed to learn the episodes at
encoding. At a recall test 24 h later, they found nearly significant
spatial and temporal main effects, however no cues for episodic
binding, suggesting that visual exploration might be more sensi-
tive to preferences promoted by implicit memory than explor-
atory motor behaviors.

Sleep’s function for declarative memory has been conceptu-
alized to be an active system consolidation process rather than a
passive protection against interference (Stickgold 2005; Diekel-
mann and Born 2010; Lewis and Durrant 2011; Inostroza and
Born 2013; Rasch and Born 2013). According to this concept,
an episode is encoded in both hippocampal and extrahippo-
campal networks, whereby the hippocampus preferentially en-
codes aspects binding items into their unique spatio-temporal
context. During subsequent SWS, hippocampal portions of the
representation are repeatedly reactivated to support an immediate
strengthening of hippocampal traces and also redistribution to-
ward preferential storage of information in extrahippocampal
networks. This redistribution entails a transformation of represen-

tations toward more decontextualized schema-like representa-
tions (Marr 1971; Frankland and Bontempi 2005; Diekelmann
and Born 2010; Winocur et al. 2010). The EEG slow oscillation
and fast (12–15 Hz) spindles are considered hallmarks of the con-
solidation processes, in as much as the slow oscillation appears
to synchronize hippocampal memory reactivations and accompa-
nying sharp wave-ripples with the occurrence of spindles, thus al-
lowing for the formation of spindle–ripple events as a mechanism
supporting the transfer of reactivated memory information to-
ward extrahippocampal circuitry (Mölle and Born 2011; Mölle
et al. 2011). Consistent with this view, here we found a robust
association between episodic memory recall and spindle counts
during post-encoding NonREM sleep. Together with numerous
previous studies showing similar correlations between sleep spin-
dle activity and the retention of declarative as well as procedural
memory (e.g., Gais et al. 2002; Tamaki et al. 2009; Barakat et al.
2011; Wilhelm et al. 2011; Rasch and Born 2013), this observation
does not only underline the importance of spindles for memory
processing in general but also points to a specific function of
spindles in enhancing spatio-temporal integration in a memory,
which might be conveyed via a direct impact on hippocampal net-
works (Clemens et al. 2007). The association with spindle activity
occurring selectively for implicit rather than explicit episodic
memory recall is difficult to explain in this context; it might be
that the implicit measure is more sensitive, capturing variability
in recall of hippocampal memories to a greater degree than the ex-
plicit recall measure.

Implicit but not explicit recall showing robust correlation
with sleep spindles raises the question whether the two recall
measures access the same representation, although via different
retrieval pathways, or whether there exist distinct implicit and
explicit representations that happen to correlate significantly
because they encode for the same experience. That the wake group
showed significant explicit episodic memory, but chance level
performance for implicit episodic memory recall, could be taken
as a hint for two different representations being accessed in the
tests. This assumption would be further supported if implicit
and explicit episodic memory underwent different transforma-
tions across sleep. However, as we did not assess recall before the
retention interval, sleep-induced memory transformation could
not be examined here. Nevertheless, the effects of sleep compared
with wakefulness, being surprisingly in parallel for implicit and
explicit measures of episodic memory, speak in favor for a com-
mon representation underlying both types of recall measures
which, indeed, share the essential features of episodic experience,
but the autonoetic consciousness that is produced only during ex-
plicit recollection.

Materials and Methods

Participants
Participants were healthy, nonsmoking, and native-speaking
volunteers recruited from the campus of the University of
Tübingen. They were randomly assigned to either the Sleep group
(n ¼ 15, nine men) aged (mean+ standard deviation) 23.72+
3.14 yr, or the Wake group (n ¼ 14, seven men, age ¼ 24.25+
5.08 yr). They had normal or corrected to normal vision and did
not take any medication at the time of the experiments. They
had a normal sleep–wake rhythm and were not on any night
shifts during the 6 wk preceding the experimental session.
Participants were instructed to keep their regular sleep schedule,
abstain from caffeine- and alcohol-containing drinks for at least
3 d prior to and on the days of the experiments. Prior to the ex-
periment proper, participants of the Sleep group spent one habit-
uation night in the sleep laboratory. Subjects gave written
informed consent before participating and the study was ap-
proved by the local ethics committee.
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Design and procedures
The experiments were performed according to a between-groups
design, including a Sleep group and a Wake group. For each
group, the experiment consisted of an encoding phase followed
by an #10-h retention interval, followed by a retrieval phase
(Fig. 1A). The encoding phase comprised the encoding of two ex-
perimental episodes, which were separated by 1 h. The retrieval
phase included an implicit recall followed by an explicit recall
of the materials learned in the encoding phase. For subjects of
the Sleep group, the encoding phase took place between 8:15
pm and 10:45 pm, and the retrieval phase between 8 am and
9:30 am. Sixty minutes after the encoding phase, they went to
bed (lights off) for an 8-h sleep period. The retrieval phase started
60 min after awakening. For the Wake group, the encoding phase
took place between 7:15 am and 11:15 am, and the retrieval phase
between 6:15 pm and 9:15 pm. During the wake interval, the sub-
jects followed their usual activities outside the laboratory. They
were not allowed to engage in stressful mental and physical activ-
ities. Activity during the retention interval was measured by a
wristwatch (Actiwatch 2, Philips). Moreover, subjects provided a
report about their activities during this time when they returned
to the lab.

To confirm regular declarative memory benefits from sleep, a
standard paired words associate learning task (two lists of 40 word-
pairs) was used which in previous studies proved sensitive to the
effects of sleep (Plihal and Born 1997; Ngo et al. 2013). Lists
were learned to a criterion of 24 correctly recalled words (cued re-
call). In the encoding phase, one list was learned 20 min after pre-
sentation of the first episode of the episodic memory task, and the
other 20 min after presentation of the second episode. In the re-
trieval phase, cued word recall was tested 10 min after episodic
memory retrieval was completed.

Subjects were familiarized with the face stimuli used in the
episodic memory task 1 d (in two cases 2 d) before the experiment
proper, to avoid that the use of novel faces would distract the sub-
ject’s attention from the spatio-temporal features of the task. To
control for vigilance, before this familiarization phase as well as
before the encoding phase, in between the two episodes, and be-
fore retrieval testing the Psychomotor Vigilance Test (PVT, 5 min)
and the Stanford Sleeping Scale (SSS) were administered. To mea-
sure current mood, the Positive Affect Negative Affect Scale
(PANAS) (Watson et al. 1988; Krohne et al. 1996) was given before
the encoding and retrieval phases.

Episodic memory task
The encoding phase of the episodic memory task comprised the
presentation of two episodes separated by 1 h during which sub-
jects engaged in standardized activities (PVT, word-pair associates
learning, filling in questionnaires, etc.). During each episode, par-
ticipants were presented on a screen with a specific spatial config-
uration of four different faces arranged in a 3 × 3 grid of possible
locations (with the center location of the grid left always empty)
(Fig. 1A).

During the retrieval phase, implicit spatio-temporal recall
performance was assessed by eye-tracking. For this purpose sub-
jects were presented with another configuration of four faces
used in the encoding phase (see below for the specific characteris-
tics of this configuration to enable testing of implicit episodic
memory). Participants were kept unaware during encoding and
implicit recall testing that the task aimed at testing memory, but
instead were told that attention was measured, and were instruct-
ed to attend to the presented stimulus configurations.

Spontaneous preference in visual exploration times was used
as measure of memory, analogous to exploration preferences in
rats; i.e., relatively longer fixation of a new than familiar face indi-
cates item memory; relatively longer fixation of a familiar face pre-
sented at a new than at an old location indicates spatial memory,
and relatively longer fixation of a face from the first than second
episode indicates temporal memory (Ennaceur and Delacour
1988; Ennaceur and Meliani 1992; Mitchell and Laiacona 1998).
Five minutes after implicit recall, explicit recall was measured
by asking the subject successively whether a certain face occurred

in one of the two episodes, and if so in which episode and at what
grid location it occurred.

Stimuli and stimulus presentation
Stimuli were 24 colored frontal images of natural female faces
with neutral expression, placed on a white background (taken
from the FACES database [Ebner et al. 2010]). Faces were random-
ized across subjects. Only female faces were used to reduce re-
sponse variability (Penton-Voak et al. 1999).

Stimuli were presented on a monitor (ASUS Model VE248H,
24-in, 16:9, 1920 × 1080 px) and controlled using the software
Presentation (Neurobehavioral Systems, version 15.1). Subjects
sat in a comfortable position with an eye distance of #60 cm in
front of the screen, with their head leaning against an individually
adjusted headrest on the back of the chair. To improve eye-
tracking data during the episodic memory task, subjects were in-
structed not to move their head too much and to move only their
eyes for visual exploration, but not head and neck.

During the familiarization phase before the experiment
proper, subjects were presented with 16 faces (in random order)
in five separate runs, separated by 30-sec breaks. Faces were
presented one at a time with a 2-sec interstimulus interval.
Immediately after stimulus onset, the face started moving
smoothly for 1 sec (a minimum of 450 px) with the start and
stop positions randomly chosen for each face presented on the
screen. Then, the face rested for 7 sec on the stop position. One
second before onset of each stimulus, a voice (from a speaker) sig-
naled “look now” (German: “Schau mal”). Before the task, sub-
jects were instructed to merely “pay attention” to the presented
stimuli. The presentation scheme aimed to minimize any spatial
interference with the face presentation during the episodic mem-
ory task using all available presentation space. To further avoid
context interference, face familiarization took place in another
room on another screen.

On the episodic memory task, the faces were presented on a
3 × 3 grid, with the grid location designed as windows of a house.
Each episode started with indicating to the subject on the screen
the episode (“1” or “2”); then the house with “closed windows”
(gray framing without faces) was shown for 15 sec, and the subject
was to fixate with his/her eyes a cross appearing in the center
window (which was not used for face presentations). Once the fix-
ation cross was fixated for 100 msec, it disappeared. During
this time, instructions appeared on the screen, to concentrate
and to explore in which window which face appeared (German:
“Erkunden Sie, in welchen Fenstern welche Personen sind!”).
Thereafter, with a delay of 50 msec, presentation of faces started
as soon as the participant had fixated the fixation cross for 100
msec. Face presentation comprised two phases. In the “overview
phase,” all four face stimuli were shown on their respective loca-
tion simultaneously for 15 sec. In the second “eye-trigger phase,”
the four faces were covered by “closed” windows and the specific
face did not appear until the participant triggered its presentation
by looking at the respective closed window area for at least 200
msec. The triggered face was then shown in the respective win-
dow. Presentation was discontinued as soon as the subject had
looked at the respective stimulus area for a total of 7 sec (regardless
of whether or not the gaze was intermittently directed away from
the face location) which assured optimal control over the stimulus
during encoding. Presentation of each face could be triggered only
once, and the phase was completed when all four faces were dis-
covered, i.e., triggered by the participant. During each episode
the sequence of overview phase and eye-trigger phase was run
three times in an identical manner.

Implicit recall testing consisted of only one overview phase.
It involved a configuration of four familiar faces of which two
were previously presented in the first (“old–familiar”) and the
other two in the second episode (“recent–familiar”). Of these,
one was presented at the same location (“stationary”) as during
the respective encoding and the other was presented at another
(new) location (“displaced”) which was not occupied during
the respective episode at encoding. This gives rise to four stimuli
types: Old–familiar Stationary (OS), Old–familiar Displaced
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(OD), Recent–familiar Stationary (RS), and Recent–familiar
Displaced (RD). Thus, during implicit recall testing only faces
that occurred during one of the two episodes of the encoding
phase were presented, and no others. Although the face configu-
ration during implicit recall testing was randomized, there were
specific rules to position the stimuli that were mainly introduced
to minimize potentially confounding effects on exploration time
arising from the fact that a certain location could have been occu-
pied by a face in just one episode or both episodes during encod-
ing, and to exclude face-specificity of effects. Thus, the OS face was
always on a location that had been occupied during both epi-
sodes, with the face from the second episode on this location
not being used for implicit recall testing. The RS face was on a lo-
cation that was empty during the first episode. The OD face was
also on a location that was not occupied during the first episode,
but was occupied by the face chosen for RD in the second episode.
The RD face was then on a location that was not occupied during
the second episode, but was occupied in the first episode with a
face not used for implicit recall testing. Both episodes shared the
location of the OS and another location presenting a face not pre-
sented at implicit recall testing. The center location of the grid was
not used for face presentation to assure a similar distance of all fac-
es from the center. Face presentation during implicit recall testing
lasted between 30 and 60 sec, and within these margins was
stopped (with a delay of 3 sec) as soon as looking time for each
face was .3 sec for each of the four face areas.

Eye-tracking and implicit memory measurement
Eye movements were tracked using a remote system (Eye-Follower
2.0, interactive minds, tracking rate of 60 Hz on each eye).
Eye-tracking was individually calibrated before each episode and
before implicit recall testing. During calibration a colored filled
circle traveled to one of 13 different calibration points, rested on
each point until fixation of that position was detected by the eye-
tracker, and then moved to the next calibration point. During cal-
ibration, the participant also received feedback about fixation per-
formance accuracy. The calibration procedure was repeated until
the assessed accuracy and precision reached a criterion of ,0.6˚
deviation from five distributed test targets.

Eye-tracking analyses were restricted to the dominant eye
as determined by the hole-in-the-card test (Dolman method)
(Cheng et al. 2004). Fixations were detected using a 0.8˚ (30 px)
visual angle gaze deviation threshold from the Euclidean centroid
of the ongoing fixation and a minimum fixation duration of 100
msec (six samples), after removing artifacts (due to blinking, eye-
occlusion, etc.). Visual exploration time of faces was measured
based on “looks.” A look on a face was considered the time the
dominant eye was within the face’s grid location, i.e., the gray
frame surrounding a face, without leaving it. A look contained
at least one fixation. Then, the visual exploration time spent on
each face was determined by dividing the total time of all looks
on a face by the number of looks on that face. Looks were sampled
only up to the time point when all faces of the configuration had
received at least one look.

Implicit memory
For determination of implicit memory, data from the first 30 sec of
recordings were used. To reduce interindividual variability, visual
exploration time for each face was normalized by dividing explo-
ration time for the face by the sum of exploration time across all
four faces (using absolute exploration times did not essentially
change results reported here). Implicit episodic memory was de-
fined by an “episodic binding” score assessing binding, i.e., inte-
grated temporal and spatial aspects of an episode, as it manifests
itself in the interaction between spatial exploration preference
(i.e., longer exploration time for the “displaced” than “stationary”
faces) and temporal exploration preference (i.e., longer explora-
tion time for the “old” than “recent” faces). Specifically, based
on corresponding studies of behavioral exploration in rodents
(Kart-Teke et al. 2006, 2007; Inostroza et al. 2013a) this spatio-
temporal interaction is expected to expresses itself in a gain of vi-

sual exploration time for an item that is both old and displaced
(i.e., OD) which is distinctly smaller than would be expected
from merely adding up spatial and temporal main effects. The ep-
isodic binding score was calculated as follows: [(OS+RD) – (OD +
RS)]/[OS + OD + RS + RD], where OS, OD, RS, and RD represent
the visual exploration times for the old stationary, old displaced,
recent stationary, and recent displaced faces, respectively. Because
we hypothesized episodic memory consolidation produces longer
visual exploration time for the OS and RD stimuli, the scores were
defined such that values were positive for enhanced preference of
those objects. Note, this score of episodic memory binding as de-
fined by the interaction between spatial and temporal exploration
preferences reflects the integrative assessment of both spatial and
temporal information.

As an approach to infer spatial memory separate from tempo-
ral memory and vice versa, that is not reflected in the episodic
binding score, we additionally calculated two different scores.
The spatial score [(OD + RD) – (OS + RS)]/(OS + OD + RS + RD)
indicated enhanced preference of displaced (OD, RD) over station-
ary (OS, RS) faces; the temporal score [(OS + OD) – (RS + RD)]/
(OS + OD + RS + RD) indicated enhanced preference of faces
from the first episode (OS, OD) over that of the second (RS, RD).
To statistically confirm presence of memory, scores were com-
pared with chance level (zero) using two-tailed one-sample t-tests.

To examine if exploration time was influenced depending on
whether or not during the encoding phase a certain grid location
was occupied by a face in both episodes, in control analyses we
compared exploration time for faces in the second episode be-
tween those that shared (sharing) and those that did not share
(nonsharing) the location with another face in the first episode,
using the score (sharing – nonsharing)/(sharing + nonsharing).
Significance (against zero) of this “transition” score indicated
that a face of the second episode which shared its location with
a face from the first episode was preferentially explored over sec-
ond episode faces not sharing their location with a first episode
face. The analysis was restricted to the first 15-sec interval of the
second episode. Two participants (one Sleep, one Wake) were ex-
cluded from this analysis due to insufficient eye-tracking data on
all four objects.

Explicit memory recall
For explicit recall testing, all 24 faces (eight presented during the
episodes and during the familiarization phase, eight presented
only during the familiarization phase, and eight completely
novel) were presented consecutively (in random order) and the
subject had to indicate (with no time limit, by mouse clicks on re-
spective response text to questions presented on the screen)
whether the face was new or familiar (object recognition); and if
familiar, whether it occurred in the first or second episode (tempo-
ral “what–when” memory) or in none of the two episodes (i.e.,
was presented only during the familiarization phase), and wheth-
er it occurred in one of the episodes, at what grid location (spatial
“what–where” memory). For the latter question, the grid was
presented and the subject indicated the remembered location
per mouse click. For each answer, confidence (0%–100% certain-
ty) was rated immediately afterward. Subjects were trained on the
recall procedure, using a dummy face, right before testing. In a fi-
nal separate recall test, two grids were presented and the subject
was asked to indicate which grid locations were occupied by faces
during the first and second episode (spatial “where–when”
memory).

Explicit episodic memory was determined by the percentage
of faces that were correctly identified as occurring in one of the
episodes (i.e., “what”), and for which the subject also correctly
indicated the episode (i.e., “when”) and the grid location (i.e.,
“where”) it occurred, minus the locations for which the subject
in the final separate recall test had forgotten that they were occu-
pied with any face, with the number of episode faces correctly
identified as familiar set to 100%. The chance level for this score
was 2.78% (i.e., the chance to correctly recognize eight out of
16 familiar faces, one of two episodes, one of nine grid locations,
for eight faces).
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In addition, we separately assessed the “what” component of
episodic memory as the percentage of episode faces that were cor-
rectly recognized as familiar and belonging to one of the two ep-
isodes, with the number of episode faces correctly identified as
familiar set to 100%, The chance level for this score was 50.0%
(eight of a total of 16 familiar faces). A general face recognition
score was defined by the percentage of faces correctly identified
as familiar (including those eight faces not used in the episodic
memory task), with a chance level of 66.7% (16 familiar out of
24 faces). Finally, we calculated the percentage of correctly recog-
nized faces for which also the episode (“what and when”) or for
which also the location (“what and where”) was correctly recalled.
The latter two scores were calculated additionally for only the
cases where the “where” and “when” components, respectively,
were not correctly remembered. The presence of explicit memory
above chance level was assessed using one-tailed, one-sample
t-tests or a nonparametric equivalent. Confidence ratings were
not considered in the analyses.

Sleep recordings, EEG analyses, and spindles
To evaluate sleep in the Sleep group, polysomnographic record-
ings were performed, including EEG recordings from Fz, F3, F4,
Pz, P3, P4, Cz, C3, C4 (according to the 10–20 system) with linked
reference electrodes attached to the mastoids. An electrode at Fpz
served as ground. Electrode impedance was ,5 kohm. Additional-
ly, the horizontal and vertical electrooculogram and electromyo-
gram (from electrodes at the chin) were obtained. Signals were
amplified (BrainAmp, Brain Product) and digitized at a sampling
rate of 250 Hz. The EEG was filtered between 0.3 and 35 Hz.
Sleep stages were scored offline in 30-sec epochs following stan-
dard criteria (Rechtschaffen and Kales 1968). For each subject,
we determined sleep latency (with reference to lights off), total
sleep time (starting with sleep onset), time spent in different sleep
stages, i.e., wake, nonrapid eye movement (NonREM) sleep stages
1, 2, 3, and 4, and REM sleep (in minutes). Slow wave sleep (SWS)
was defined by the sum of stage 3 and 4 sleep. Data from one Sleep
subject was excluded due to corrupt EEG.

For a more fine-grained analysis of the EEG during sleep, pow-
er spectra were calculated using the Brain Vision Analyzer (version
2.0, Brain Products). Following removal of epochs contaminated
by visually identified artifacts, Fast Fourier Transformations
(0.061-Hz resolution) with a Hanning window was applied to a
10-sec data block which was moved in 5-sec steps in time during
the respective sleep stage intervals.Average spectra were calculated
across the time an individual spent in NonREM sleep (including
stage 2, and SWS) and REM sleep, and also separately for the
time spent in SWS and stage 2 sleep. Mean power was determined
for the 0.5- to 4-Hz slow wave activity (SWA), the 0.5- to 1-Hz slow
oscillation, 1- to 4-Hz delta, 4- to 8-Hz theta, 9- to 12-Hz slow spin-
dle, and the 12- to 15-Hz fast spindle frequency bands.

In addition, to determine spindle density (per 30 sec) and
counts, discrete slow and fast spindles were automatically identi-
fied during NonREM sleep (including stage 2 and SWS) using a
custom-made algorithm (SpindleToolbox, version 1.1) as de-
scribed previously in Wilhelm et al. (2011). Briefly, for each sub-
ject, the slow and fast spindle frequency peaks were visually
identified from power spectra in the channels of interest (slow,
11.14+0.16 Hz; fast, 13.37+0.13 Hz); slow spindles were detect-
ed from fronto-central channels (Fz, F3, F4, Cz) and fast spindles
from centro-parietal channels (Pz, P3, P4, Cz, C3, C4) according
to their respective expected power maxima (Mölle et al. 2011).
Then, the root mean square (RMS) of the EEG signal band-pass-
filtered in the+1.5-Hz range around the detected spindle peak
was calculated for subsequent 0.2-sec intervals separately for
each EEG channel. A spindle was counted when the signal exceed-
ed an individual amplitude threshold of 1.5 standard deviations
from the mean RMS in a specific channel for 0.5–3 sec.

Statistical analyses
Statistical testing was done using [R] (64-bit Windows version
2.15.0) (R Core Team 2012). Values are given as mean+ SEMs.

Pre-tests involved Shapiro–Wilk’s test for normality and for group
tests, and Levene’s test for homoscedasticity. To assess differences
between Sleep and Wake groups, we used Student’s t-test for equal
variances and Welch’s t-test with approximation to the degrees of
freedom for unequal variances, when normality was assumed;
otherwise we used nonparametric Mann–Whitney rank sum test
with either exact P-values, or P-values that were continuity cor-
rected in normal approximation. Cohen’s d and Pearson’s r were
used to indicate effect size for parametric and nonparametric tests,
respectively. Unless otherwise indicated P-values are reported un-
corrected for multiple comparisons. The significance level was set
to a , 0.05.
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Abstract 

Abilities to encode and remember events in their spatiotemporal context (episodic 

memory) rely on brain regions that mature late during childhood and are supported by sleep. 

We compared the temporal dynamics of episodic memory formation and the role of sleep in 

this process between 62 children (8-12yrs) and 57 adults (18-37yrs). Subjects recalled  

“what-where-when” memories after a short, 1-hour retention interval, or after a long, 

10.5-hour interval either containing nocturnal sleep or daytime wakefulness. Although 

children showed diminished recall of episodes after 1 hour, possibly resulting from inferior 

encoding, unlike adults, they showed no further decrease in recall after 10.5 hours. In both 

age groups, episodic memory benefitted from sleep. However, children’s more effective 

offline retention was unrelated to sleep. 

 

Keywords: electroencephalography, declarative memory   
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More Effective Consolidation of Episodic Long-Term Memory in Children Than 

Adults - Unrelated to Sleep 

Episodic memory is “an information processing system that receives and stores information 

about temporally dated episodes or events, and about the temporal-spatial relations among 

these events.” (Tulving, 1972). The episodic memory system essentially relies on the 

hippocampus, which, together with the prefrontal cortex and posterior parietal cortex, forms 

representations for unique events that occur in a distinct spatio-temporal context (Cabeza 

Ciaramelli, Olson, & Moscovitch, 2008; Preston & Eichenbaum 2013), e.g. a memory for 

what exactly happened at a specific time and place in one’s life. In the adult brain, episodic 

memory representations are thought to form the basis for the formation of more semantic and 

schema-like representations that lack contextual detail, and can be accessed independently of 

the hippocampus (Dudai, Karni, & Born, 2015; Winocur, Moscovitch, & Bontempi, 2010). 

Sleep is an integral part of this consolidation process, as newly encoded neural episodic 

representations are reactivated in hippocampal and cortical networks during slow wave sleep 

(SWS) (O’Neill, Pleydell-Bouverie, Dupret, & Csicsvari, 2010; Rasch & Born, 2013). This 

strengthens both the episodic representation as well as its transformation into less context 

dependent semantic memory (Inostroza & Born, 2013; Oyanedel et al., 2014; Sweegers & 

Talamini, 2014; Weber, Wang, Born, & Inostroza, 2014). 

The episodic memory system shows developmental trajectories from early childhood 

well into adolescence. Explicit recall of episodic memory seems to be functioning in a 

rudimentary way at the age of 3 to 4 years (Hayne & Imuta, 2011). The ability to fully 
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organize the experienced events in the context of when and where they occurred then 

improves throughout the first decade of life and even beyond (Bauer et al., 2012; Picard, 

Cousin, Guillery-Girard, Eustache, & Piolino, 2012; Yim, Dennis, & Sloutsky, 2013). A 

recent study suggests that memory for where events occurred reaches adult performance by 

9½ years, whereas memory for when events occurred continuously improves into adulthood 

(Lee, Wendelken, Bunge, & Ghetti, 2016). This is in contrast to a previous study by 

Guillery-Girard et al. (2013) which also confirms the age between 9 and 10 years as a critical 

step in episodic development, but rather suggests that memory for where events occur 

improves up until adulthood. This slow development appears to be partly due to the 

protracted maturation of the brain structures involved in episodic memory formation (Ghetti 

& Bunge, 2012; Gogtay et al., 2006; Seress & Abraham, 2008). For example, myelinization 

in the prefrontal cortex is not completed until late adolescence (Teffer & Semendeferi, 2012). 

In contrast to structural immaturity of memory systems, however, children’s sleep is marked 

by an increase of electroencephalographic activity that is related to memory consolidation: 

children sleeplonger and deeper, with increased proportions of SWS (Mindell, Owens, & 

Carskadon, 1999; Ohayon, Carskadon, Guilleminault, & Vitiello, 2004). Specifically, EEG 

slow-wave activity (SWA, 0.5–4 Hz), which is a hallmark of SWS, causally contributes to the 

consolidation of hippocampus-dependent memory (Marshall, Helgadóttir, Mölle, & Born, 

2006; Ngo, Martinetz, Born, & Mölle, 2013). SWA reaches its plateau during preadolescence 

at around 9–11 years of age, i.e., an age when also hippocampus-dependent memory function 

appears to reach a first maximum (Feinberg, Higgins, Khaw, & Campbell, 2006; Huber & 
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Born, 2014). Indeed, 8 to 11-year-old children learning an implicit motor sequence task 

showed distinctly higher gains in explicit sequence knowledge after sleep than adults 

(Wilhelm et al., 2013). This suggests that processing of hippocampal memory during 

post-learning sleep is enhanced at this age. However, the effects of sleep on genuinely 

episodic memory, i.e., a memory for “what” happened “where” and “when”, to our 

knowledge, have not been directly compared between children and adults. 

Against this backdrop, here, we examined how recall of an episodic memory 

developed over time in 8–12 years old children and in adult controls, also taking into account 

the role of sleep. We used an episodic memory task that enabled integrated as well as separate 

testing of what, where, and when aspects of experienced episodes in both age groups (Weber 

et al., 2014). Memory was tested either after a short 1-hour retention interval or after a long 

10.5-hour retention interval, with the latter including either a period of nocturnal sleep or 

daytime wakefulness. Because brain structures that serve the encoding of episodic memory 

are not completely mature in children, we expected children to show diminished recall 

performance compared to adults after short and long retention intervals not involving sleep. 

By contrast, the deeper SWS in children was expected to enhance consolidation of episodic 

memory over the long retention interval including sleep and reduce further forgetting to a 

higher degree than in adults.  

Methods 

Participants 

Sixty-two children (age range 8–12 years), and 57 adults (18–37 years, only one 
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above 30 years) from the same mid-sized city in southern Germany participated in the 

experiments in one of three retention conditions (Pre-Sleep, Sleep, and Wake). Groups of 

children and adults in the three conditions were matched on age and general cognitive 

performance (assessed by a computerized version of a forward digit span task, Blackburn, 

2011). Furthermore, there were no differences in parent- or self-reported habitual sleep length 

or bedtime between conditions. Data collection took place between 2012 and 2015.  

Children were recruited from local schools and adults by advertisements distributed at the 

university campus. All participants were native German speakers, healthy and had normal or 

corrected to normal vision. They reported not to nap habitually or have any sleep disorders 

(e.g., sleep apnea, irregular sleep, insomnia etc.), and did not take any medication at the time 

of the experiments. Post-hoc analysis of sleep data in the Sleep participants indicated no 

further sleep disorders (e.g. epilepsy, bed wetting, sleep walking, night terrors etc.). A general 

questionnaire (containing questions like “Does your child have any known chronic illness?”, 

“Does your child (or someone in the family) have an attention deficit disorder?”) that parents 

answered for their children excluded known neurological and psychiatric disorders (such as 

attention deficit hyperactivity disorder, dyslexia, autism, and epilepsy). Participants had an 

age-appropriate sleep–wake rhythm and (adults) were not on any night shifts during the 6 

weeks preceding the experimental session. Participants were instructed to keep a regular 

sleep schedule, abstain from caffeine- and alcohol-containing drinks for at least 3 days before 

and on the days of the experiments. Children kept sleep diaries for one week before the 

experiments started. Adult participants and children’s caregivers gave written informed 
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consent prior to the experiments. The study protocol was approved by the local ethics 

committee. 

Design and procedures 

The study followed a 2 (Age groups) × 3 (Retention conditions) between groups 

design. Accordingly, children and adults were allocated to one of 3 Retention conditions: with 

memory being tested either after a short 1-hour retention interval in the early evening (i.e., 

Pre-sleep groups: children: n = 20, 8 males, age: 9.86 ± 0.30 years; adults: n = 18, 10 males, 

23.13 ± 0.82 years), or after a long 10.5-hour interval including nocturnal sleep (Sleep groups: 

children: n = 21, 10 males, 9.86 ± 0.25 years; adults: n = 25, 14 males, 23.53 ± 0.25 years) or 

daytime wakefulness (Wake groups: children: n = 21, 12 males, 9.95 ± 0.25 years; adults: n = 

14, 7 males, 24.25 ± 1.36 years). Adult Sleep and Wake groups included a subsample of 

subjects from a previously reported study (Weber et al., 2014), with one group not extended 

for replication (Wake, n = 14). Assignment of subjects to the different retention conditions 

was random except that, for children, practical and other issues were also considered (e.g., 

driving distance between home and lab, school schedule, siblings were allocated to different 

groups). Experiments with children were mostly conducted on holidays and weekends. 

The experimental procedure for all groups (illustrated in Figure 1) consisted of an 

encoding phase comprising the learning of an episodic memory task, a retention interval and 

a retrieval phase where the memory had to be recalled. In the Pre-sleep groups, the retention 

interval was short, i.e., 1 hour, whereas in the Sleep and Wake groups this retention interval 

was longer covering an interval of ~10.5 hours, including a nocturnal period of sleep or a 
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daytime period of continuous wakefulness, respectively. Learning and retrieval phases were 

timed individually with reference to the reported habitual sleep schedules ensuring 

appropriate testing times for children and adults, alike, while strictly keeping to the 1-hour or 

10.5-hour retention interval schedule. In an additional familiarization phase taking place ~24 

hours before the encoding phase, all participants were familiarized with the face stimuli of 

the episodic memory task. Participants of the Sleep groups also spent the night following the 

familiarization phase in the lab to habituate to sleeping under laboratory conditions. 

Participants of the Sleep groups arrived at the lab about 3 hours before their usual 

bedtime. Following preparation for the EEG and polysomnographic recordings, they 

performed the episodic memory task (encoding, children between 6:00–8:00 pm, adults 

between 7:00–10:45 pm), and then prepared for sleep in the lab (lights off in children about 

30 minutes, in adults about 60 minutes, after the encoding phase). Time in bed was 9.5 hours 

for children and 8 hours for adults. The retrieval phase started 30 minutes after waking (from 

stage 2 or 1 NonREM sleep) for children and 60 minutes after waking for adults. The slight 

difference in the timing of sleep between children and adults was introduced to keep the 

overall length of the retention interval comparable in both age groups, and to simultaneously 

account for the fact that children sleep longer than adults. 

In the Wake groups, the encoding phase took place between 7:00–9:00 am in children, 

and between 7:15–11:15 am in adults. Afterwards, the participants followed their normal 

daily routine but were instructed to avoid stressful mental and physical activities. They were 

not allowed to take a nap, which was controlled by actigraphy (Actiwatch 2, Philips, The 
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Netherlands). Adherence to the instructions was controlled (by interview) when the 

participants came back to the lab for the retrieval phase (approximately 7:00 pm in children, 

between 6:15–9:15 pm in adults). In Pre-sleep participants, the encoding phase was 

scheduled approximately 3.5 hours before the usual sleep time (between 4:00–6:00 pm in 

children, between 7:00–8:30 pm in adults), and the retrieval phase 1 hours later. Participants 

in the Wake and Pre-sleep groups did not sleep in the lab after the retrieval and went home. 

Breaks during the experiments were filled with card games with the experimenter or a 

puzzle-like game on the computer (www.snood.com, like it has been done in previous studies, 

e.g., Feld, Weis, & Born, 2016). Short breaks were introduced if needed or requested by the 

participants or to care for the age-appropriate bodily needs (e.g., drink water, go to toilet) and 

to keep motivation up (e.g., experimenter interaction). To control for effects on executive 

functions (i.e. the cognitive control of behavior) and possibly confounding effects of 

sleepiness, vigilance was assessed using reaction time performance during a 5-minute 

interval on the Psychomotor Vigilance Task (PVT, Roach et al., 2006), and sleepiness was 

assessed by self-report using the Stanford Sleepiness Scale (SSS, Hoddes, Dement, & 

Zarcone, 1972). Assessment of SSS and PVT were introduced to the participants in the 

familiarization phase prior to the experiment proper and applied before encoding of each of 

the two episodes of the episodic memory task, and again before retrieval testing. 

Episodic memory task 

The episodic memory task was adopted from a previous study (Weber et al., 2014; 

Figure 1). The task stimuli included a total of 24 female faces, 16 of which the subjects had 
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studied in the familiarization phase 24 hours before the experiment proper. Of these 16 faces, 

8 were used for the encoding phase. The encoding phase of the task comprised the 

presentation of two episodes separated by 1 hour, during which the participants engaged in 

standardized activities (including performance on control tasks, see above). Each episode 

consisted of the presentation (on a PC monitor) of a specific spatial configuration of 4 

different faces arranged in a 3 × 3 grid of possible locations (with the center location of the 

grid always empty). In fact, each face appeared in a certain window of a house, and the 

participant was instructed that “in this game”, he or she “needs to explore which person is 

behind which window of this house” (incidental learning instructions). Participants were kept 

unaware that the task measured memory, but were instructed to keep focused on the task as 

trained before the experiment proper. Eye movements were tracked (Eye-Follower, 2.0, 

interactive minds, tracking rate 60 Hz on each eye) for closed-loop control of the face 

presentations during the episodes to automatically control for encoding time and to handle the 

loss of attention without experimenter interference. 

Each episode started by indicating (on the screen and for children, additionally, 

spoken via loudspeakers) the episode (“Game 1” or “Game 2”); then the house was shown 

with closed windows for 15 s, and the participant was instructed to fixate on a cross 

appearing in the center window with his or her eyes. Once the cross was fixated for 100 ms, it 

disappeared, and instructions were given (on the screen and via loudspeakers) to explore 

which face appeared in which window. Thereafter, the presentation of faces started. First, in 

an “overview phase”, all 4 faces were shown simultaneously at their respective location for 
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15 s. Then, in the “eye-trigger phase”, the 4 faces were masked by closed windows, and a 

specific face reappeared after the participant had triggered its presentation by looking at the 

respective closed window area for at least 200 ms. The presentation of a face in the specific 

window was discontinued as soon as the participant had looked at the respective area for a 

total of 7 s (regardless of whether or not the gaze was intermittently directed away). This 

assured that the face presentation time was constant for all subjects. Presentation of each face 

could be triggered only once, and the eye-trigger phase was completed whenever all 4 faces 

were discovered and shown for 7 s, or after 240 s. During each episode, the sequence of 

overview phase and eye-trigger phase was run 3 times in an identical manner. On altogether 9 

runs children failed to trigger all 4 faces in all eye-trigger phases. Data of 1 child was 

excluded from analysis because he failed to trigger the 4 faces on all runs. The encoding 

phase lasted about 4–12 minutes, depending on how fast participants discovered faces in the 

eye-trigger phases. 

For explicit recall testing during the retrieval phase, all 24 faces (8 presented during 

the episodes and also during the familiarization phase, 8 presented only during the 

familiarization phase, and 8 completely novel) were presented consecutively in random order 

and the participant had to indicate via mouse clicks (i) whether a face was new or familiar 

(object recognition); (ii) if familiar, whether it occurred in one of the episodes or not (“what” 

memory, i.e., was presented only during the familiarization phase the day before) and (iii) if it 

was the first or second episode (temporal “what–when” memory). (iv) If the participant 

indicated that the face occurred in one of the episodes, he or she should indicate at which 
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window location the face occurred (spatial “what–where” memory). In a final separate test, 

subjects were presented with a grid and asked to indicate which grid locations were occupied 

by faces during the first and second episode (object unspecific spatio-temporal “where–when” 

memory). (Adults additionally gave confidence ratings immediately after each answer, which 

were not analyzed here). Participants were trained on the recall procedures, using a dummy 

face, right before testing. There was no time limit for answering. Children reported their 

answer orally and the experimenter clicked the respective answers accordingly. To prevent 

biasing, the experimenter was blind to which faces and locations were used for an individual 

participant during the encoding phase. For standardization purposes, all instructions and 

questions were recorded and read to the children by a computer generated female voice.  

Explicit recall testing was preceded by a short implicit memory test using eye tracking, 

for which the house and two faces from each episode (on either changed or unchanged 

locations) were presented for up to 60 s. Respective data will be reported elsewhere. Implicit 

memory testing was followed by a 5-minute relaxation pause before continuing with the 

explicit recall to reduce cognitive load and avoid interference with the explicit recall 

procedure. To exclude that this implicit memory test affected explicit recall, the explicit recall 

was also analyzed for only those faces not used for implicit recall testing. These analyses 

confirmed virtually all results reported here for the explicit recall of all face stimuli on the 

episodic memory task and that implicit testing did not affect children more than adults. 

Stimuli and familiarization. Twenty-four colored frontal images of natural female 

faces with neutral expression (taken from the FACES database, Ebner, Riediger, & 
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Lindenberger, 2010), placed on a white background, were used as stimuli. Faces were 

randomized across subjects. Only female faces were used throughout the whole task to 

reduce response variability (Penton-Voak et al., 1999). Stimuli were presented on a monitor 

(ASUS Model VE248H, 24-in, 16:9, 1920 × 1080 px) and controlled using the software 

Presentation (Neurobehavioral Systems, version 15.1). Participants sat in a comfortable 

position with an eye distance of ~ 60 cm from the screen, with their head leaning against the 

back of the chair for stability. To improve eye-tracking data, subjects were instructed not to 

move their head but use only their eyes for visual exploration. 

For familiarizing the subjects with 16 faces (on the day before the experiment proper), 

the faces were presented one at a time with a 2-s interstimulus interval. Immediately after 

stimulus onset, the face started moving smoothly for 1 s (a minimum of 450 px) with the start 

and stop positions randomly chosen for each face presented on the screen. Then, the face 

stopped moving for 7 s. Before the onset of each stimulus, a voice signaled, “Look!”. The 

familiarization phase comprised 5 runs of all faces, with intermittent breaks of variable length 

(0.5–10 minutes). The subjects were instructed to focus on looking at the stimuli. 

Memory scores. Episodic memory, i.e., “What–Where–When” memory, was 

determined by the percentage of the faces that were correctly identified as occurring in one of 

the episodes (i.e. “What”), and for which the subject also correctly indicated the episode (i.e., 

“What–When”), and the grid location (i.e., “What–Where”) it occurred, minus the locations 

for which the subject had forgotten that they were occupied with any face in the final separate 

recall test (false “Where-When” memory), with the number of episode faces correctly 
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identified as familiar set to 100%. The subtraction of false “Where-When” memory was done 

to exclude that previously correctly recalled face locations were guessed or attributed to not 

integrated separate “What-Where” memory. Thus, the chance level of “What–Where–When” 

memory was 2.78% (i.e., the possibility to correctly recall 8 out of 16 familiar faces, in 1 out 

of 2 episodes, and in 1 out of 9 grid locations). The “What” component of episodic memory 

was defined by the percentage of faces that were correctly recognized as occurring in either 

episode, with the number of episode faces that were identified as familiar set to 100%. The 

chance level for the “What” memory was 50% (8 of 16 familiar faces). The “What–Where” 

and “What–When” components were calculated as the percentage of the faces with correct 

“What” memory, for which the location and the episode, respectively, were correctly 

identified. The chance level for the “What–Where” memory was 11.11% (1 out of 9 locations) 

and 50% (1 out of 2 episodes) for “What–When” memory.  

Finally, a score for general face recognition was calculated based on the percentage of 

faces correctly identified as familiar (including those 8 faces not used in the episodic memory 

task), with a chance level of 66.7% (16 familiar faces out of 24).  

Sleep recordings and EEG analysis 

Sleep group participants received polysomnographic recordings including EEG 

recordings from Fz, F3, F4, Cz, C3, C4, Pz, P3, P4 electrode sites (International 10–20 

system, reference: linked electrodes at the mastoids, ground at Fpz), electromyography (EMG) 

recordings from electrodes placed at each musculus mentalis, and electrooculography (EOG) 

recordings from electrodes around the eyes. In children, two EOG electrodes were placed 1 



EPISODIC MEMORY CONSOLIDATION IN CHILDREN   14 

cm above the left outer canthus and 1 cm below the right outer canthus, respectively, whereas 

in adults four electrodes were placed 1 cm right to the right outer cantus, 1 cm left to the left 

outer cantus, and 1 cm each above and below the center of the right eye. Electrode 

impedances were kept below 5 kOhm. Signals were amplified (BrainAmp, Brain Products, 

Gilching, Germany), digitized (sampling rate >250 Hz) and filtered (EEG and EOG 0.3–35 

Hz, EMG 10–100 Hz). Sleep stages were scored offline by two experienced raters according 

to standard criteria (Rechtschaffen & Kales, 1968). For each subject, total sleep time (TST, 

starting with sleep onset), time spent in sleep stages: stage 1, 2, SWS (the sum of stage 3 and 

stage 4), non-rapid eye movement (NonREM) sleep (sum of stage 2 and SWS), REM sleep 

and wakefulness, their proportion to TST, as well as SWS and REM sleep latencies were 

determined. Sleep onset was defined with reference to lights off by the first occurrence of 

stage 1-sleep epoch followed by stage 2-sleep.  

For a more fine-grained analysis, power spectral analyses were performed on the 

NonREM sleep EEG to determine mean power density in the following frequency bands: 

slow-wave activity (0.5–4 Hz), theta (4–8 Hz), spindles (9–15 Hz), slow spindles (9–12 Hz) 

and fast spindles (12–15 Hz). Furthermore, slow oscillations and spindles during NonREM 

sleep were analyzed according to previously published algorithms (Mölle, Marshall, Gais, & 

Born, 2002). For each individual and channel, the number of slow oscillations, their density 

(per minute NonREM sleep), mean amplitude, and slope, as well as absolute spindle counts, 

spindle density (per minute NonREM and SWS for fast and slow spindles, respectively), 

mean amplitude, average oscillatory frequency and duration were calculated (see Supporting 
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Information for a detailed description of these sleep EEG analyses). 

Data reduction and statistical analysis 

Episodic memory performance data from one of the Pre-sleep and one of the Sleep 

children had to be excluded because of technical problems during encoding. One Wake child 

was excluded because he took a nap during the retention interval. Sleep data from three 

children and one adult were discarded due to technical artifacts. Thus, the sample available 

for the episodic memory performance consisted of 59 children (Pre-Sleep: n = 19; Sleep: n = 

20; Wake: n = 20) and 57 adults (Pre-Sleep: n = 18; Sleep: n = 25; Wake: n = 14). For the 

sleep group, sleep data was available for 24 adults and 18 children with only 17 children 

providing complete data for the correlational analyses with episodic memory performance. 

Statistical analysis was done using [R] (Mac OS X version 1.7.1, R Core Team, 2012). Means 

± SEM are reported. Normality and homogeneity were pre-tested using Shapiro-Wilk´s test 

and Levene´s test, respectively. Analyses were based on global 2 (Age groups) × 3 (Retention 

conditions) analysis of variance (ANOVA), in which, children and adults represented the Age 

groups, and Pre-sleep, Sleep, and Wake groups represented the retention conditions. 

Significant interactions in the global ANOVA were followed up by two 2 × 2 sub-ANOVA. 

One was designed to examine the effects of sleep vs. wakefulness and, aside from the Age 

group factor, included a Sleep vs. wake factor, representing the Sleep and Wake groups. The 

other sub-ANOVA was designed to examine the dynamics of episodic memory, across the 

short 1-hour (Pre-sleep) recall and the longer-term recall after Sleep, aside from the Age 

group factor. Post hoc tests followed significant ANOVA effects, including Student’s t-test or, 
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if variances were unequal, Welch’s t-test with an approximation for the degrees of freedom, if 

normality of both samples was not violated. Otherwise, we used nonparametric 

Mann-Whitney U test (Wilcoxon rank-sum test). Cohen’s d and Pearson’s r were used to 

indicate the size of central effects for parametric and nonparametric tests, respectively. For 

correlational analyses, Pearson product-moment and Spearman´s rank correlation were used, 

respectively. Because these analyses were of exploratory nature and no possible association 

should be missed, we did not correct the level of significance for multiple testing in these 

analyses (which nevertheless did not yield any significant correlation). The significance level 

was set to 0.05. 

Results 

Episodic memory 

Explicit recall of episodic memory (“What–Where–When”) was above chance in all 

six experimental groups (children Pre-sleep: t (18) = 4.41, p < .001, Sleep: t (19) = 7.72, p 

< .001, Wake: p < .001, adults Pre-sleep: t (17) = 10.37, p < .001, Sleep: t (24) = 7.13, p < .001, 

Wake: p = .025, t-test and Mann–Whitney U test, respectively, one-sided). Children and 

adults showed different dynamics of episodic memory recall across the short 1-hour 

(Pre-sleep) retention interval and the longer (sleep and wake) retention intervals (F (2,110) = 

6.54, p = .002, for Age group × Retention condition in a global ANOVA, see Figure 1C, for a 

summary of results including pairwise statistical comparisons). Both children and adults 

showed better episodic memory recall after sleep than after a comparable retention period of 

wakefulness (F (1, 75) = 11.74, p < .001, for Sleep vs. wake main effect in a 2 (Age groups) × 



EPISODIC MEMORY CONSOLIDATION IN CHILDREN   17 

2 (Sleep vs. wake) sub-ANOVA), with the average magnitude of this sleep-dependent recall 

enhancement being closely comparable in the two age groups (p = .29, for Age × Sleep vs. 

wake interaction; What–Where–When recall rates, children - Sleep: 34.23 ± 4.07%, Wake: 

21.34 ± 4.63%, W = 278.5, p = .03, r = .4, and adults - Sleep: 42.12 ± 5.52%, Wake: 17.86 ± 

6.51, W = 275.5, p = .002, r = .55). 

Notably, the sleep effect in the two age groups rode on quite different pre-sleep 

performance levels. Whereas the adult Pre-sleep group showed, as expected, high rates of 

episodic memory performance after a short 1-hour retention interval, respective recall rates of 

the Pre-sleep children were on average less than half of those of the adults (26.24 ± 5.32 % vs. 

61.61 ± 5.67 %, in the Pre-sleep adults). With reference to their high recall performance after 

the short 1-hour interval, adults forgot episodic memory across the longer Sleep interval (and 

even more so across the Wake interval). By contrast, the children showed virtually no further 

decrease in recall (i.e., forgetting) across the Sleep interval, but on a descriptive level 

episodic memory recall was even increased after Sleep compared to the Pre-sleep condition. 

This pattern was statistically confirmed in a 2 (Age group) × 2 (Pre-sleep vs. sleep) 

sub-ANOVA, revealing a significant Age group × Pre-sleep vs. sleep interaction (F (1, 78) = 

6.72, p = .01). Post hoc t-tests confirmed that this effect was solely driven by the large 

difference between age groups in “What–Where–When” recall in the Pre-sleep condition (t 

(34.71) = 4.54, p < .001, d = 1.50), whereas after sleep, episodic recall was comparable 

between the age groups (t (41.65) = 1.15, p = .26). Also, the tests confirmed significant 

forgetting in the adults from the 1-hour Pre-sleep recall to the longer-term recall after Sleep (t 
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(39.41) = 2.46, p < .02), whereas, in children, the opposite increase in episodic memory recall 

from Pre-sleep to the Sleep condition failed to reach significance (t (34.16) = -1.19, p = .24). 

Episodic memory components 

We examined to what extent the enhancing effects of sleep and the age-dependent 

differences in the dynamics (from short 1-hour Pre-sleep to longer-term recall after Sleep) on 

episodic memory recall also emerged for the “What”, “What–Where”, and “What–When” 

sub-components of episodic memory (Figure 2). Explicit recall of the subcomponents of 

episodic memory was above chance in all six experimental groups (all p < .05), except for the 

“What-When”-memory performance of the adult Wake group. “What” memory (i.e., the 

percentage of familiar faces correctly judged as belonging to one of the two episodes) was 

not significantly influenced by sleep compared to wakefulness (p > .065, for all analyses), but, 

like episodic memory recall, showed superior recall rates at the 1-hour Pre-sleep test in adults, 

and a stronger forgetting from Pre-sleep recall to recall testing after Sleep, in comparison 

with children (F (1, 78) = 7.17, p = .009, for Age × Pre-sleep vs. sleep, see Figure 2 for post 

hoc tests). “What–Where” memory (i.e., the proportion of faces, for which the location was 

correctly remembered), was generally better in adults than children (F (1,75) = 7.36, p = .008, 

for main effect Age group) and was enhanced by sleep in both age groups (F (1,75) = 11.95, p 

< .001, for main effect Sleep vs. wake), with the size of this enhancement being comparable 

between age groups (p = .92, for Age group × Sleep vs. wake, recall rates – children Sleep: 

55.57 ± 4.66%, Wake: 38.71 ± 4.64%, t (38) = -2.56, p = .01, d = 0.81, adults Sleep: 69.39 ± 

3.98%, Wake: 51.62 ± 7.28%, t (37) = -2.34, p = .02, d = 0.75). Furthermore, “What–Where” 
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memory was markedly superior in adults compared to children at the Pre-sleep testing (p < 

.001, Mann-Whitney U test), but tended to show larger differences between the Pre-sleep 

testing to the testing after Sleep in adults than in children (F (1, 78) = 3.88, p = .052, for Age 

group × Pre-sleep vs. sleep), although the interaction term was only marginally significant. 

For the “What–When” memory component (i.e., the proportion of recalled faces for which 

the episode was correctly recalled), neither the enhancing effect of sleep (p > .25, for the 

respective analyses), nor the stronger forgetting from Pre-sleep to testing after Sleep in adults 

compared to children, reached significance (p = .16, for Age group × Pre-sleep vs. sleep). 

We also examined capabilities to correctly recognize a face as familiar, which also 

included those eight faces presented only during the familiarization phase but not during one 

of the experimental episodes. The overall ANOVA revealed a significant effect of age group 

only (F (1,110) = 10.66, p = .002) indicating better performance in adults than children in 

general. This age effect appeared to be driven by the faces only presented during the face 

familiarization phase (F (1,110) = 14.86, p < .001) but did not occur for faces presented again in 

the episodes (p > .72) indicating that face recognition was comparable across age groups with 

respect to episodic encoding.  

Sleep parameters and associations with memory performance 

Table 1 summarizes the sleep architecture for the two sleep groups, as well as results 

from statistical comparisons between the age group. As expected, total sleep time was longer 

in the children than in the adults. After sleep onset, children reached slow-wave sleep (SWS) 

earlier and REM sleep later than adults did. In general, children spent less time in light sleep 
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stages (stage 1 and 2) and spent less time in wake after sleep onset (WASO). Sleep in 

children and adults contained comparable proportions of REM and NonREM sleep (stage 2 

plus SWS), but proportions of SWS were considerably greater in children than in adults (see 

also Figure 1A). Table 1 also includes average power in selected EEG frequency bands, 

considered relevant for sleep-dependent memory consolidation (see Figure S1, for respective 

spectra), as well as the essential parameters for EEG slow oscillations and spindles in the two 

groups. Importantly, the increased proportion of SWS in children was associated with a 

greater number and density of slow oscillations (p < .01) and a greater density of fast 

(centro-parietal) spindles (p < .01) and slow (frontal) spindles (p < .05) than in adults (p 

< .05, see Table S1 for more detailed analyses). 

 We explored associations between episodic memory performance (“What–Where–

When” recall) and sleep parameters (as listed in Table 1) applying correlation analyses 

separately on the two age groups. None of these sleep parameters were consistently 

correlated with the episodic memory score. 

Vigilance and sleepiness 

We measured vigilance (using the PVT) and subjective sleepiness (with the SSS), 

before encoding of each episode as well as before recall testing, to control for possible 

confounding effects of changes in executive function. As expected, the children showed 

generally slower reactions times on the PVT than adults (425.39 ± 13.87 ms vs. 306.08 ± 

5.18 ms, p < .001). On the other hand, subjective sleepiness was lower in the children than in 

the adults (2.22 ± 0.09 vs. 2.86 ± 0.09, p < .001). Because of these general differences 
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between the age groups, the subsequent analyses concentrated on differences between the 

retention conditions, assessed separately for the age groups. In children, PVT performance 

did not differ between Pre-sleep, Sleep, and Wake conditions, neither at encoding nor at 

retrieval (all p > .24). Subjective sleepiness in the children was lower in the Pre-sleep group 

than in the two other groups at encoding (p < .007 for both comparisons) but did not differ 

between the retention groups at retrieval testing (p > .19). 

 The adult groups did not differ in PVT reaction times at encoding (p > .07 for 

One-Way ANOVA). However, in the retrieval phase, the reaction time of the Wake group was 

shorter than in the two other groups (p < .043 for both comparisons). The corresponding 

pattern was obtained for subjective sleepiness which did not differ between adult groups at 

encoding (p > .2 for both comparisons), but revealed that the Wake group felt less sleepy than 

the two other groups at retrieval testing (p < .012, for both comparisons).  

 We additionally calculated correlations between vigilance measures at retrieval 

testing and episodic memory recall for the retention conditions in both age groups separately. 

These correlations neither reached significance for PVT reaction times (all absolute r < 0.26, 

p > .29) nor for rated sleepiness (all absolute r < 0.37, p > .13) thus excluding that episodic 

recall performance was substantially confounded by non-specific change in vigilance across 

the retention conditions. 

Discussion 

Our results provide evidence for differential temporal dynamics of episodic memory 

consolidation in children and adults. After a short 1-hour retention interval, the 8–12 years 
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old children showed distinctly lower recall than adult controls. By contrast, after a long 

~10.5-hour retention interval, children’s episodic memory recall was comparable with that in 

adults. This was due to substantial further forgetting in adults, i.e., a decrease in recall 

observed after the long retention intervals when compared with recall after the short interval, 

whereas no such further forgetting was observed in the children. Sleep in the long 10.5-hour 

interval, compared with wakefulness, enhanced episodic memory in both age groups to a 

similar extent, although children spent distinctly more time in slow-wave sleep (SWS). 

Increased density of slow oscillations and spindles also indicated that SWS was deeper in 

children than in adults.  

 The benefit of intervening sleep on episodic memory recall confirms previous 

findings in adult humans and rodents (Oyanedel et al., 2014; Racsmány, Conway, & Demeter, 

2010; van der Helm, Gujar, Nishida, & Walker, 2011; Weber et al., 2014). Like those studies, 

the current study also showed an enhancing effect of sleep on the “where” component of 

episodic memory that was irrespective of age. Effects on the “when” component appear to be 

consistently less robust (e.g., Oyanedel et al., 2014) for both age groups, which might reflect 

that the task paradigm is less sensitive to this component. There is also an ongoing 

conceptual debate to what extent hippocampal representations directly encode temporal 

aspects of an episode (Easton, Webster, & Eacott, 2012). Item or “what” memory did not 

benefit from sleep, which agrees with the view that sleep preferentially strengthens 

hippocampus-dependent memory (Diekelmann & Born, 2010; Inostroza & Born, 2013; 

Mumby, Tremblay, Lecluse, & Lehmann, 2005). Thus, the present study is the first to 
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demonstrate a beneficial effect of sleep on hippocampus-dependent genuinely episodic 

memory in preadolescent children. 

 Notably, the magnitude of the sleep-induced enhancement in episodic memory recall 

was similar in children and adults. This finding was unexpected, because the children showed 

more and deeper SWS, i.e., the sleep stage thought to be most relevant for the consolidation 

of hippocampus-dependent memory (Marshall & Born, 2007). Indeed, in several previous 

studies sleep-induced benefits on declarative types of memory in children appeared to be of a 

roughly comparable size to what is observed in adults (e.g., Henderson, Weighall, Brown, & 

Gaskell, 2012; Wilhelm, Diekelmann, & Born, 2008). However, those studies used tasks like 

word-pair learning, which probably do not reflect genuine episodic memory formation (Pause, 

Jungbluth, Adolph, Pietrowsky, & Dere, 2010). By contrast, children showed a distinctly 

superior benefit from sleep on a task requiring the abstraction of explicit knowledge from 

implicitly learned materials (Wilhelm et al., 2013). In that study, children at the age of 8–11 

years were trained on a classical serial reaction time task under implicit conditions (i.e., not 

knowing about the underlying sequence in the task). Compared with wakefulness, 

post-training sleep benefitted explicit sequence knowledge, and this benefit was distinctly 

larger in the children than adults. Moreover, correlational analyses suggested this greater 

benefit to be linked to an enhanced slow wave activity in those children. Thus, SWS in 

children seemed to exert a stronger reorganizing effect on the task representations, thus 

allowing a greater gain of explicit knowledge. The different outcomes – similar memory 

enhancement but stronger memory reorganization after sleep in children, compared with 
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adults – might be reconciled based on concepts proposing that neural reactivations of 

hippocampal representations exert a twofold action on episodic representations: on the one 

hand they strengthen the hippocampal representation itself and, on the other hand, they 

support the gradual redistribution and reorganization of the representation (Inostroza & Born, 

2013). In the present study testing episodic memory recall, we examined effects of sleep on 

the representation itself rather than its reorganizing influence. Thus, in the proposed 

conceptual framework, the present data in combination with previous findings of a superior 

reorganizing effect of sleep in children on memory representations (Ashworth, Hill, 

Karmiloff-Smith, & Dimitriou, 2014; Urbain et al., 2016; Wilhelm et al., 2013), suggest that 

the effect of sleep (and associated neural reactivations) on hippocampal episodic memory 

representation itself is comparable in middle childhood and adulthood but might be superior 

specifically in terms of the redistribution and reorganization of the representations.  

 This conclusion is also consistent with the present observation of episodic memory 

recall being unrelated to sleep slow oscillatory and spindle activity, because these rhythms 

might be more closely linked to the transfer of reactivated hippocampal memory information 

(Bergmann, Mölle, Diedrichs, Born, & Siebner, 2012; Staresina et al., 2015), rather than to 

the strengthening of the episodic memory itself. In this view, the strengthening of the 

episodic memory representation itself is linked to neural reactivations, associated with 

so-called hippocampal sharp wave-ripple complexes, a cognitive biomarker for the replay of 

episodic events which are indicated by fast synchronous network oscillations (ripples) in 

hippocampal regions which output to the neocortex. They occur mainly during quiet 
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wakefulness and SWS and are thought to assist in the transfer of hippocampal memory 

representations and redistribution to cortical circuits for the support of memory consolidation. 

They occur in synchrony with both the up-state of the slow oscillation and the troughs of the 

spindles but, their numbers remain unchanged by top-down influences of slow oscillations or 

spindles (Bendor & Wilson, 2012; Buszaki 2015). 

 Still, it could be argued that differences in pre-sleep memory strength between 

children and adults confounded the effects of subsequent sleep. At retrieval testing after the 

1-hour short retention interval before sleep, recall of episodic memory was higher in the 

adults than in children suggesting a weaker memory strength in children at the time of falling 

asleep. Indeed, on a procedural motor sequence learning task, children who in general 

showed distinctly lower performance levels than adults, improved in the motor skill across 

sleep only after they underwent a pre-training to enhance their performance level (Wilhelm, 

Metzkow-Mészáros, Knapp, & Born, 2012). The greatest sleep-dependent benefits were 

revealed at an intermediate pre-sleep performance level which is consistent with findings in 

adults displaying greater sleep-dependent gains for weaker than stronger procedural memory 

traces (Kuriyama, Stickgold, & Walker, 2004). However, it is unclear to what extent these 

observations can be generalized to hippocampus-dependent types of episodic and declarative 

memory. There are hints from studies in adults that consolidation during sleep favors weakly 

over strongly encoded memories (Diekelmann, Born, & Wagner, 2010; Drosopoulos, Schulze, 

Fischer, & Born, 2007). Obviously, these observations would not explain that the children of 

the present study, showing a weaker pre-sleep strength of episodic memory than the adults, 
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did not display the expected superior sleep-induced enhancement of episodic memory. 

 The difference in recall after the short 1-hour pre-sleep interval between the age 

groups was indeed profound, with recall rates in the adults reaching average levels more than 

twice as high as those in the children. Whereas previous studies did not provide any evidence 

that episodic memory in children is very rapidly forgotten within 1 hour, they have 

consistently shown a less effective encoding of such memories in children (Guillery-Girard et 

al., 2013; Picard et al., 2012; Rollins & Riggins, 2013; Yim et al., 2013). Thus, the distinctly 

reduced episodic memory recall in children following the short 1-hour retention interval most 

likely reflects diminished capabilities to encode episodes in a coherent fashion in space and 

time, although in the present experiments we did not directly examine encoding by an 

immediate recall test. Moreover, the differences in tasks and reported memory components to 

previous studies cautions us to compare the differing concepts of temporal memory (e.g. like 

relational item-sequence memory in Guillery-Girard et al., 2013 and Lee et al. 2016). 

Diminished episodic memory encoding in children has been attributed to the protracted 

maturation of underlying brain structures, in particular of the prefrontal cortex but also of the 

hippocampus (Ghetti & Bunge, 2012; Gogtay et al., 2006; Seress & Abraham, 2008). This is 

consistent with maturation of the “where” memory processes up into adulthood 

(Guillery-Girard et al., 2013), which showed the strongest age-related differences in the 

current study as well. Furthermore, the most robust sleep benefit for the “where” component 

for children in particular suggests that these maturational changes might happen most 

effectively during sleep in this age group. This is consistent with less indication for 
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developmental trajectories for “when” or “what” memory in our sample (e.g. like in Picard et 

al., 2012) showing less or no sleep benefit due to slower development or processes 

independent of sleep.  

 Because of the immaturity of mainly the prefrontal cortex, children display generally 

diminished executive control functions (Hsu & Jaeggi, 2014; Picard, Reffuveille, Eustache, & 

Piolino, 2009). Accordingly, compared to the adults, the children of this study showed 

diminished performance on the Psychomotor Vigilance Task both during encoding and 

retrieval with this task specifically assessing the vigilance component of executive control, 

i.e., the capability to maintain attention over time. Such non-specific reduction in executive 

control and vigilance might also have lowered memory performance in the children, although 

within the group of children, episodic memory recall after the short or long retention interval 

did not significantly correlate with performance on the PVT. Also, self-reported sleepiness 

(SSS) could not explain the lowered performance (like the PVT it was not correlated with 

episodic memory recall), though this measure might be less sensitive (especially considering 

that it has not been specifically validated for use in children).  

 Importantly, however, even if diminished executive control lowered memory 

encoding and retrieval in general in the children, this could not explain the main finding of 

this study, i.e., that unlike adults showing strong forgetting of episodic memory from the 

short to the long retention interval, children did not show such decrease in recall but, 

maintained recall performance levels over the long interval. This finding also cannot be 

questioned based on the relatively small subgroup sample sizes (especially the adult awake 
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group) which might be considered another limitation of the study. It rather seems justified to 

conclude from this data that, independently of sleep or wakefulness, children showed more 

effective consolidation of episodic memory. The underlying mechanisms are unclear. 

Hippocampal ripples accompanying the reactivation of episodic representations might be 

involved as they occur both during SWS and quiet wakefulness (Buzsáki, 2015; Clemens et 

al., 2007). Although the occurrence of ripples does not appear to be increased during 

childhood, they might more effectively induce plastic synaptic changes (Buhl & Buzsáki, 

2005).     

 In sum, we used a genuine episodic memory task, which enabled us to directly 

compare retention of these memories after short (1 hour) and long (10.5 hour) intervals 

between 8-12 years old children and adults. Diminished retention at the 1-hour recall 

suggests that children had already encoded the episodes less effectively than the adults, 

although this conclusion has to be scrutinized in further studies examining encoding using 

immediate recall tests. On the other hand, children showed, in contrast to adults, no 

significant signs of further forgetting this information across the 10.5-hour interval. The 

mechanisms underlying enhanced consolidation in children are independent of sleep. 
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Tables 

Table 1 

Sleep parameters and correlations with episodic memory recall 

Sleep parameter Correlations with memory recall [r] 

Stages [min] Children (n = 18) Adults (n = 24) Children (n = 17) Adults (n = 24) 

TST  553.19±  3.45 *** 468.27± 2.80 -.20 -.10 

Sleep onset  15.80 ±  3.97 15.66 ± 2.46 -.07  .04 

SWS latency  8.78 ±  0.76 *** 15.98 ± 2.35 -.03 -.31 

REM latency  117.61± 10.35 ** 88.04 ± 6.57 -.07  .12 

WASO 1.39 ±  0.88 *** 13.60 ± 5.09  .08  .22 

Stage 1 11.47 ±  1.01 ** 20.00 ± 2.62  .20 -.12 

Stage 2 120.03±  9.09 *** 228.56± 8.28 -.06 -.11 

SWS 275.86± 10.81 *** 97.79 ± 7.28 -.12  .05 

NonREM 395.89±  6.44 *** 326.35± 6.99 -.30 -.08 

REM 138.67±  4.79 *** 104.17 ± 5.65  .17 -.10 

Stages - % of TST 

WASO  0.25 ±  0.16 *** 2.96 ± 1.13   .08  .24 

Stage 1 2.07 ±  0.18 ** 4.29 ± 0.57   .22 -.10 

Stage 2 21.66 ±  1.61 *** 48.73 ± 1.64  -.05 -.11 

SWS 49.89 ±  1.97 *** 20.94 ± 1.59  -.09  .05 

NonREM 71.56 ±  1.04 69.67 ± 1.41  -.25 -.07 

REM 25.07 ±  0.86 22.19 ± 1.16   .21 -.10 

SWA, 0.5–4 Hz, in SWS  

(Fz,Cz,Pz) [µV²/Hz] 539.08± 46.19 ***  211.64± 17.21   -.11 -.04 

Spindle activity, 9–15 Hz, in NonREM 

(Fz,Cz,Pz) [µV²/Hz] 4.70 ±  0.68 ***  2.31 ± 0.22   -.05 -.06 

Slow oscillations in NonREM (at Fz) 

Count 2616 ±   66 *** 1833 ±   76     -.47 *  .05 

Density [1/min] 7.63 ±  0.15 *** 6.36 ±  0.21   -.25  .05 

Amplitude [µV] 274.49± 11.93 *** 177.84 ±  7.94   -.03  .11 

Slope [µV/s] 651.13± 34.08 *** 447.59 ± 23.79    .01  .05 

Fast spindles in NonREM (at Cz) 

Count 1658 ±   52 1532 ±   58    -.44  .17 

Density [1/min] 4.84 ±  0.13 * 5.30 ±  0.12    -.28  .28 

Core frequency [Hz] 12.22 ±  0.14 *** 13.31 ±  0.12    -.03  .22 

Slow spindles in SWS (at Fz) 

Count 1191 ±   52 *** 417 ±   48    -.06  .13 

Density [1/min] 4.87 ±  0.18 4.60 ±  0.39     .11  .20 

Core frequency [Hz] 11.21 ±  0.15 11.20 ±  0.16    -.10  .22 
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Means ± SEM for the sleep parameters are shown in the left columns for children compared 

with adults. The right columns show Pearson’s correlation of sleep parameters with episodic 

memory recall (“What-Where-When”). Given are the total sleep time (TST), sleep onset 

(with reference to the time of lights off), latency for slow wave sleep (SWS) and rapid eye 

movement (REM) sleep (with reference to sleep onset) and time spent awake after sleep 

onset (WASO), sleep stage 1, sleep stage 2, SWS, NonREM (S2 + SWS) and REM in 

minutes and percentage of total sleep time. In addition, slow wave activity (SWA, 0.5–4 Hz) 

and spindle activity (9–15 Hz) both averaged across Fz, Cz, and Pz, are indicated. For 

identified slow oscillation and fast and slow spindles events, the absolute count, density (per 

minute), and average amplitude is given. Additionally, the average slope of the 

down-to-upstate transition is indicated for the slow oscillation, as well as the core frequency 

(cycles per second of identified events) for spindles. Slow oscillation and spindle parameters 

are given for the site of the typical maximum of these events (Fz and Cz, respectively). *** p 

< .001, ** p < .01, * p < .05 
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Figures 

 
 

Figure 1. Experimental design, task procedures, and episodic memory recall. (A) Different 

groups of children (8–12 years) and adults were tested in three Retention conditions, i.e., the 

Pre-sleep, Sleep, and Wake condition. Each condition comprised an encoding, a retention, 

and a retrieval phase, with only the retention phase differing between conditions: In the 

Pre-sleep condition, the retention phase covered a short 1-hour interval in the early evening. 

In the Sleep and Wake conditions the retention interval was longer (~10.5 hours) and covered 

periods of nocturnal sleep or daytime wakefulness, respectively. Time of the end of encoding 

(after the second episode was encoded) and the start of retrieval are marked exemplary for 

children, but in fact were timed following the individual and group specific sleep habits (see 

Methods). Grey bars under the Sleep retention condition indicate the average percentages of 

total sleep time children and adults spent in the different sleep stages. Compared to adults, 

children had higher percentages of slow wave sleep (SWS) and lower percentages of lighter 

stage 1 and 2 sleep. Percentages of REM sleep were comparable for both age groups. (B) The 
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encoding phase of the episodic memory task comprised two episodes (Game 1, Game 2) 

separated by a 1-hour interval, each entailing the presentation of a specific configuration of 

four individual faces in a 3 × 3 grid of locations. In the retrieval phase, explicit recall of 

episodic memory was assessed by presenting 24 faces and asking whether (i) the face was 

new or familiar; (ii) if familiar, whether it occurred in one of the games or not (What), and 

(iii) if it was Game 1 or Game 2 (When). (iv) If the participant indicated that the face 

occurred in one of the Games, he or she should indicate at which location the face occurred 

(Where, shown together with the empty grid) (see Methods for details). The bottom part 

illustrates the faces used in the different experimental phases: the face familiarization phase 

took place on the day before the experiment proper, subjects were familiarized with 16 faces 

(gray circles), of which 8 faces were used in the encoding phase of the episodic memory task 

(4 in each game). At recall testing 24 faces were presented, i.e., the 16 familiarized faces (8 

from the games - black circles, 8 not in the games but presented in the familiarization phase - 

gray circles), and 8 entirely novel faces (empty circles). These latter faces allowed to 

discriminate between “face recognition” (novel vs. familiar) and “What” memory (in the 

episodes vs. not in the episodes). (C) Mean (± SEM) episodic memory (“What–Where–

When”) recall in children (empty bars) and adults (filled bars) for the different retention 

conditions (children Pre-Sleep, n = 19; Sleep, n = 20; Wake, n = 20; adults Pre-Sleep, n = 18; 

Sleep, n = 25; Wake, n = 14). ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001, for post hoc pairwise 

comparisons. Asterisks in the bars indicate significance for above chance level performance 

(dotted line).  
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Figure 2. Mean (± SEM) recall for sub-components of episodic memory (“What”, “What–

Where”, “What–When”) in children (empty bars) and adults (filled bars) for the different 

retention conditions (children Pre-Sleep, n = 19; Sleep, n = 20; Wake, n = 20; adults 

Pre-Sleep, n = 18; Sleep, n = 25; Wake, n = 14). ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001, for post 

hoc pairwise comparisons. Asterisks in the bars indicate significances for above chance level 

performance (dotted line). 



Supporting Information 

Additional Sleep EEG Analyses 

Analysis was performed using the SpiSOP tool (http://www.spisop.org) based on 

MATLAB 2013b (Mathworks, Natick, USA) and FieldTrip (Oostenveld, Fries, Maris, & 

Schoffelen, 2011, http://www.ru.nl/neuroimaging/fieldtrip). 

Power spectral analyses of NonREM sleep. Power spectra were calculated on 

consecutive artifact-free 5-s intervals of NonREM sleep, which overlapped in time by 4 s. 

Each interval was tapered by a single Hanning window before applying Fast Fourier 

Transformation that resulted in interval power spectra with a frequency resolution of 0.2 Hz. 

Power spectra were then averaged across all blocks (Welch's method) and normalized by the 

effective noise bandwidth to obtain power spectral density estimates for the whole data. Mean 

power density in the following frequency bands was determined: slow-wave activity (0.5–4 

Hz), theta (4–8 Hz), spindles (9–15 Hz), slow spindles (9–12 Hz) and fast spindles (12–15 

Hz), and log transformed (decibel) prior to statistical testing.  

Slow oscillations. Identification of slow oscillations was based on a previously 

published algorithm (Mölle, Marshall, Gais, & Born, 2002). For each EEG channel, the 

signal during NonREM epochs was filtered between 0.5 and 3.5 Hz (-3 dB roll-off) using a 

digital FIR filter (Butterworth, order of 4). Then all time intervals with consecutive positive-

to-negative zero crossings were marked as putative slow oscillation if their durations 

corresponded to a frequency between 0.5 and 1.11 Hz (Ngo, Martinetz, Born, & Mölle, 

2013). Putative slow oscillations were immediately excluded with an amplitude >1000 µV (as 

these were considered artifacts) or when both negative and positive half-wave amplitudes 

were smaller than -15 µV and +10 µV, respectively. A slow oscillation was then identified if 

its negative half-wave peak potential was lower than the mean negative half-wave peak of all 

putatively detected slow oscillations in the respective EEG channel, and also only if the 



amplitude of the positive half-wave peak was larger than the mean positive half-wave 

amplitude of all other putatively detected slow oscillations within this channel. For each 

individual and channel, the number of slow oscillations, their density (per min NonREM 

sleep), mean amplitude, and slope (the ratio between absolute value of the negative half-wave 

peak and the time to the next zero crossing; Riedner et al., 2007) were calculated.  

Spindles. For the detection of spindles, the EEG signal was filtered between 9 and 15 

Hz (-3dB roll off). Then, using a sliding window with a size of 0.2 s the root mean square 

(RMS) was computed and the resulting signal was smoothed in the same window with a 

moving average. A spindle was detected when the smoothed RMS signal exceeded an 

individual amplitude threshold 1.75 times the standard deviation of the filtered signal in this 

channel at least once, and additionally, exceeded a lower threshold of 1.5 standard deviations 

for 0.5–3 s. The crossings of the lower threshold marked the beginning and end of each 

spindle. Spindle amplitude was defined by the voltage difference between the largest trough 

and the largest peak. Spindles were excluded with amplitudes higher than 200 µV. For a 

separate detection of slow and fast spindles, respective frequency peaks were visually 

identified in individual power spectra of all NonREM sleep epochs. According to their 

expected power maxima (Mölle, Bergmann, Marshall, & Born, 2011), slow spindle peaks 

were identified in frontal channels (F3, Fz, F4) and fast spindle peaks were identified in 

centro-parietal (C3, Cz, C4, P3, Pz, P4). In two children and two adults clear slow spindle 

peaks were not manifested and the mean of the age group was taken instead. For each EEG 

channel, the NonREM epochs were filtered with a band-pass of ± 1 Hz (-3 dB cutoff) around 

the individual fast or slow spindle frequency peaks, respectively. The further detection 

procedure followed the same spindle detection algorithm described above. For each subject 

and channel absolute spindle counts, spindle density (per min NonREM and SWS for fast and 



slow spindles, respectively), mean amplitude, average oscillatory frequency and duration 

were calculated.  
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Table S1 

Properties of Slow Oscillations and Spindles in Children and Adults 

Events Children (n = 18) Adults (n = 24) p-value 

Slow Oscillations      
Count Fz 2616 ± 66 1833 ± 76 <.001 

Count Cz 2489 ± 69 1644 ± 69 <.001 

Count Pz 2169 ± 58 1618 ± 80 <.001 

Density [1/min] Fz 7.63 ± 0.15 6.36 ± 0.21 <.001 

Density [1/min] Cz 7.25 ± 0.11 5.71 ± 0.20 <.001 

Density [1/min] Pz 6.33 ± 0.13 5.61 ± 0.23 .011 

Amplitude [µV] Fz 274.49 ± 11.93 177.84 ± 7.94 <.001 

Amplitude [µV] Cz 282.69 ± 11.99 161.60 ± 6.72 <.001 

Amplitude [µV] Pz 215.37 ± 8.57 143.28 ± 5.95 <.001 

Frequency [Hz] Fz 0.84 ± 0.00 0.83 ± 0.01 .028 

Frequency [Hz] Cz 0.84 ± 0.00 0.82 ± 0.01 .062 

Frequency [Hz] Pz 0.85 ± 0.00 0.81 ± 0.01 <.001 

Slope [µV/s] Fz 651.13 ± 34.08 447.59 ± 23.79 <.001 

Slope [µV/s] Cz 650.80 ± 29.63 376.04 ± 17.88 <.001 

Slope [µV/s] Pz 519.35 ± 22.20 306.57 ± 14.03 <.001 

Spindles (9–15 Hz)      

Count Fz 1427 ± 44 1146 ± 47 <.001 

Count Cz 1337 ± 49 1144 ± 46 .007 

Count Pz 1145 ± 56 1215 ± 52 .36 

Density [1/min] Fz 4.17 ± 0.11 3.97 ± 0.13 .26 

Density [1/min] Cz 3.9 ± 0.11 3.96 ± 0.12 .69 

Density [1/min] Pz 3.33 ± 0.15 4.21 ± 0.14 <.001 

Amplitude [µV] Fz 71.17 ± 3.58 47.82 ± 2.26 <.001 

Amplitude [µV] Cz 61.2 ± 2.91 48.36 ± 2.05 .001 

Amplitude [µV] Pz 43.66 ± 2.56 43.91 ± 2 .94 

Core frequency [Hz] Fz 11.44 ± 0.14 11.54 ± 0.16 .66 

Core frequency [Hz] Cz 12.01 ± 0.14 12.29 ± 0.18 .22 

Core frequency [Hz] Pz 11.88 ± 0.15 12.51 ± 0.19 .01 

Duration [ms] Fz 897 ± 13 821 ± 8 <.001 

Duration [ms] Cz 907 ± 16 818 ± 9 <.001 

Duration [ms] Pz 920 ± 13 854 ± 11 <.001 

Fast spindles      

Power peak [Hz] 12.26 ± 0.12 13.40 ± 0.12 <.001 

Count Fz 1680 ± 47 1402 ± 56 <.001 

Count Cz 1658 ± 52 1532 ± 58 .10 

Count Pz 1532 ± 51 1629 ± 57 .21 

Density [1/min] Fz 4.92 ± 0.13 4.84 ± 0.13 .69 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Means ± SEM parameters (at Fz, Cz, and Pz location) of slow oscillation and spindle events 

identified during NonREM sleep in the Sleep groups of children and adults. For slow 

oscillation events the count, density, average amplitude, average frequency (as derived from 

the period length), and the slope of the down-to-upstate transition is indicated. For spindles 

(9-15 Hz) and subclasses of fast and slow spindles (the latter identified based on the 

frequency of the individual power peak in the spectrum) the frequency of the power peak, the 

count, density, average amplitude, core frequency (defined by the average number of 

cycles/s), and the duration is indicated. The right column indicates significance level for 

Density [1/min] Cz 4.84 ± 0.13 5.30 ± 0.12 .011 

Density [1/min] Pz 4.46 ± 0.12 5.65 ± 0.13 <.001 

Amplitude [µV] Fz 50.90 ± 2.90 28.00 ± 1.23 <.001 

Amplitude [µV] Cz 44.93 ± 2.52 32.67 ± 1.63 <.001 

Amplitude [µV] Pz 31.78 ± 2.24 30.90 ± 1.64 .75 

Core frequency [Hz] Fz 11.91 ± 0.13 13.02 ± 0.12 <.001 

Core frequency [Hz] Cz 12.22 ± 0.14 13.31 ± 0.12 <.001 

Core frequency [Hz] Pz 12.16 ± 0.14 13.35 ± 0.12 <.001 

Duration [ms] Fz 936 ± 16 812 ± 10 <.001 

Duration [ms] Cz 980 ± 20 841 ± 14 <.001 

Duration [ms] Pz 1013 ± 16 888 ± 15 <.001 

Slow Spindles      

Power peak [Hz] 11.06 ± 0.13 11.27 ± 0.14 .27 

Count Fz 1585 ± 51 1200 ± 61 <.001 

Count Cz 1364 ± 55 1033 ± 50 <.001 

Count Pz 1191 ± 63 909 ± 48 .001 

Density [1/min] Fz 4.63 ± 0.14 4.15 ± 0.18 .040 

Density [1/min] Cz 3.97 ± 0.14 3.58 ± 0.14 .053 

Density [1/min] Pz 3.46 ± 0.17 3.14 ± 0.13 .12 

Amplitude [µV] Fz 53.20 ± 2.66 31.37 ± 1.36 <.001 

Amplitude [µV] Cz 42.30 ± 2.34 28.06 ± 1.06 <.001 

Amplitude [µV] Pz 30.46 ± 1.90 23.99 ± 1.01 .005 

Core frequency [Hz] Fz 11.21 ± 0.15 11.20 ± 0.16 .95 

Core frequency [Hz] Cz 11.47 ± 0.17 11.30 ± 0.18 .50 

Core frequency [Hz] Pz 11.49 ± 0.17 11.36 ± 0.21 .63 

Duration [ms] Fz 924 ± 13 828 ± 8 <.001 

Duration [ms] Cz 942 ± 19 814 ± 11 <.001 

Duration [ms] Pz 960 ± 24 847 ± 19 <.001 



direct comparisons between age groups. The most important results were: compared to adults, 

children displayed higher counts, density, average amplitude, and greater slopes of slow 

oscillations. With regard to spindles, children showed higher counts and amplitude of fast 

spindles at Fz, but increased fast spindle density at Pz compared to adults. Fast spindle 

duration was generally longer and core frequency was generally slower than in adults. Slow 

spindle count and amplitude were higher in the children, in particular at Fz, and slow spindle 

duration was generally longer than in adults. 

  



 
 

Figure S1. Mean ± SEM power density in children (black lines) and adults (grey) in 

NonREM sleep, as well as separately for slow wave sleep (SWS) and stage 2 (S2) sleep at Fz, 

Cz and Pz electrode sites (resolution 0.2 Hz). Spectra were normalized by multiplying with 

the mean of the total power density between 20 and 30 Hz. Stacked dots underneath the 



spectra indicate significant differences between children and adults for each frequency bin 

(one dot p < .05, two dots p < .01, three dots p < .001. Note, that power below 8 Hz and 

around 12 Hz was generally increased in the children. 
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Highlights 

Sleep benefits word paired-associate learning in 8 to 12-year-old children. 

Sleep does not specifically enhance episodic binding of word-pair to specific source. 

Compared with adults, children mainly store word-pairs as items unbound to a source. 
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Abstract 

Word paired-associate learning is a well-established task to demonstrate post-learning 

consolidation during sleep in adults as well as children. Sleep has been proposed to benefit newly 

encoded memory mainly by an impact on its episodic features, i.e., a memory for an event (item) 

bound into spatiotemporal context (source). In order to examine to what extent the enhancing 

effect of sleep on word-pair memory in children originates from an effect on the episodic 

representation of the task, we tested children (8-12 yrs., n = 61) on a modified paired-associate 

task where two lists of word-pairs were each studied once 1-hour apart. Retrieval testing 

comprised cued recall of the target word (considered item memory) and recall of the word-pair 

list (source memory), and took place either after 1 hour (short retention interval) or after 11 

hours, with this long retention interval covering either nocturnal sleep or daytime wakefulness. 

Compared with the wake interval, sleep enhanced recall of both word-pairs and the lists per se, 

while the combined recall of word-pairs and the associated list remained unaffected. An 

additional comparison with adult controls (n = 37) suggested that item-source bound memory 

(combined recall of word-pair and list) is generally diminished in children. Our results argue 

against the view that the sleep-induced enhancement in word-pair memory in children is a 

consequence of sleep specifically enhancing the episodic task representation. On the contrary, 

sleep in children might have stronger unbinding effects on episodic representations, which are 

less developed than in adults.  

 

Keywords: memory consolidation, electroencephalography, declarative memory, episodic 

memory, child development, sleep  



WORD-PAIR MEMORY AND SLEEP IN CHILDREN 2 

 

Sleep facilitates memory consolidation with ample evidence, especially for declarative memories 

(Rasch & Born, 2013). Many of these studies have employed the declarative word paired-

associate learning task. In this task, subjects study a list of associated word-pairs and cued recall 

is tested after a retention interval of specific length by presenting the first words of the pairs. 

Sleep compared to wakefulness after learning robustly enhances memory for the studied pairs, in 

adults (Payne et al., 2012; Plihal & Born, 1997) and children (Potkin & Bunney, 2012; Wilhelm, 

Diekelmann, & Born, 2008).  

 The beneficial effect of sleep on declarative memory consolidation has been assumed to 

rely on a process of system consolidation involving neural reactivations that primarily affect the 

episodic features of the encoded task representations residing in hippocampal networks 

(Diekelmann & Born, 2010; Inostroza & Born, 2013). Specifically, the hippocampus is thought 

to encode an episode by binding an event (item) into its spatiotemporal context (source). Thus, 

memory for episodic features, like information about when and where an event occurred 

crucially relies on hippocampus (Devito & Eichenbaum, 2011; Lehn et al., 2009), and memory 

for such contextual information seems to be supported by sleep (Drosopoulos, Windau, Wagner, 

& Born, 2007; van der Helm, Gujar, Nishida, & Walker, 2011). Moreover, sleep also appears to 

support the binding of item memory into source memory which is characteristic for episodic 

memory (Inostroza, Binder, & Born, 2013; Oyanedel et al., 2014; Weber, Wang, Born, & 

Inostroza, 2014), although other studies show the opposite, i.e., a ‘de-contextualizing’ effect of 

post-encoding sleep enhancing the unbinding of episodic memory such that the memory for 

items becomes less dependent on the spatiotemporal source in which it was learned (Cairney, 

Durrant, Musgrove, & Lewis, 2011; Deliens & Peigneux, 2014; Sweegers & Talamini, 2014).  

 Children show robust abilities to form memories for events (items) early in development 
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(Mullaly & Maguire, 2014). However, memory for source information, like the spatial and 

temporal context an event has occurred in, shows a protracted trajectory of development 

throughout the first decade of life and even beyond (Bauer & Lukowski, 2010; Picard, Cousin, 

Guillery-Girard, Eustache, & Piolino, 2012) with a distinct developmental trajectory for binding 

item and source (Riggins, 2014). This slow development appears to be partly due to the 

protracted maturation of the brain structures involved in episodic memory formation (Ghetti & 

Bunge, 2012; Gogtay et al., 2006). However, children’s sleep is also longer and deeper, with 

higher proportions of slow-wave sleep (SWS) containing more intense slow-wave activity, 

reaching a maximum in preadolescence (Ohayon, Carskadon, Guilleminault, & Vitiello, 2004; 

Huber & Born, 2014; Wilhelm et al., 2014). Because processes during SWS such as slow wave 

activity and associated spindle activity, are implicated in the consolidation of declarative 

memory (e.g., Marshall, Helgadóttir, Mölle, & Born, 2006; Ngo, Martinetz, Born, & Mölle, 

2013), children might be expected to display enhanced sleep-dependent memory consolidation, 

despite a less developed episodic memory system.  

 Against this backdrop, our study aimed to dissociate to what extent the enhancing effect 

of sleep on word-pair memory in 8-12-year old children might originate from strengthening the 

underlying episodic task representation. We relied on word paired-associate learning because it 

has consistently reflected the memory-enhancing effects of sleep in previous studies. But, the 

task was modified – comprising two different word-pair lists to be studied 1 hour apart – to 

discriminate effects of sleep on item and source memory and on the binding of these two aspects. 

Enhanced episodic memory consolidation during sleep was expected to increase, in particular, 

the number of recalled word-pairs for which also the list (source) was correctly recalled. 

Methods 
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Participants 

Sixty-one healthy children (8-12 years) without any known neurological or psychiatric disorder 

were recruited from local schools. Two children had to be excluded because of missing data, and 

one for taking a nap during wake retention. Participants were assigned to three experimental 

groups with age and gender balanced (Pre-Sleep: 9.65 ± 0.27 years, n = 20, 9 males; Sleep 

group: 9.9 ± 0.24 years, n = 21, 10 males; Wake group: 10.1 ± 0.28 years, n = 17, 10 males).  To 

compare the dynamics of memory retention between children and adults, an additional control 

sample of 37 adults (healthy German native speakers, 18-30 years) was recruited. They were 

either assigned to the Pre-sleep (23.13 ± 0.81 years, n = 18, 8 males) or the Sleep condition 

(23.32 ± 0.53 years, n = 19, 10 males), and basically followed the same procedure as the children 

participants. Participants were part of a larger study and performed another unrelated task, which 

will be reported elsewhere. The ethics committee of the local university approved this study.  

Design and Procedures 

The experimental procedure consisted of an encoding phase, a retention phase, and a retrieval 

phase. The retention interval was either short (1 hour) for children in the Pre-sleep group or long 

(11 hours)  in the Sleep and Wake (10 hours for the Sleep adults, Figure 1A).  

Participants of the sleep groups slept one night in the sleep lab with polysomnographic 

recording one day before the experiments. On the experiment night, children arrived at the lab 

about 3 h earlier than their usual bedtime. After the preparation for EEG, children encoded two 

lists of word-pairs between 6:00 pm and 8:00 pm with a 1-hour break that was filled with 

standardized lab activities (i.e. playing games with the experimenter). Children went to bed 30 

minutes after the encoding phase completed and slept in the lab for about 9.5 h with 

polysomnographic recordings. The retrieval phase began 45 minutes after waking up and 



WORD-PAIR MEMORY AND SLEEP IN CHILDREN 5 

 

consisted of the recall of word-pairs and their temporal context. 

The encoding phase of the Wake group children took place between 7:00 am to 9:00 am 

at the experimental days. After the encoding phase, participants followed their normal daily 

routine outside the lab avoiding stressful mental and physical activities and were restrained from 

taking a nap, which was controlled with actigraphy (Actiwatch 2, Philips, Netherlands). With a 

retention interval of about 11 h, participants came back to the lab to complete the retrieval phase 

at around 7:00 pm. 

Children in the Pre-sleep group came to the lab for the experimental evening about 3.5 h 

before their normal sleep time, and the encoding phase took place between 4:00 pm and 6:00 pm. 

The retrieval phase took place 1 h after the encoding phase was completed. Sleep recordings, 

EEG analyses, other control measures performed to exclude confounding influences of 

alterations in vigilance, as well as statistical analyses are described in detail the Supplementary 

material. 

Word-pair learning 

The paired-associate learning task comprised 40 (80 for adults) semantically related word-pairs 

and was adopted from a previous study (Wilhelm et al., 2008). These word-pairs were split 

randomly into two equally sized lists with the word-pairs in random order. During encoding, 

word-pairs were presented on the screen for 6 s with 1 s pause for children and 4 s with 1 s pause 

for adults, respectively. Participants were instructed to remember the word-pairs for a later recall 

(item memory). No instructions were given to remember the temporal context (list order), 

however, word-pair lists were introduced as “List 1” or “List 2” on the PC screen. Right after 

encoding of each list, children were shown one cue word of each word-pair on the PC screen and 

were asked to orally recall the corresponding target word without any feedback (immediate 
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recall). After the retention phase, delayed recall of word-pairs from both lists was tested in 

random order. Additionally, participants had to indicate in which of the two lists a specific word-

pair (item) was presented originally (source memory).  

The memory task was designed for one-time encoding, thus precluding the exclusion of 

poor performers right away. Therefore, poor performers with an average immediate word-pair 

recall below 40% were excluded from the analyses (Children: n = 5, adults: n = 4).  

Results 

Immediate recall of word-pairs in the children neither differed between the three retention groups 

(Pre-sleep, Sleep, Wake, F(2, 50) = 0.89, p > .4) nor between List 1 and 2 (F(1, 50) = 0.85, p > .4). 

Forgetting dynamics over the retention interval (measured as the difference in delayed recall of 

word-pair with respect to immediate recall) were, however, markedly different between retention 

groups (F(2,50) = 8.96, p < .001, one-way ANOVA). Across the short 1-hour retention interval 

(Pre-sleep), forgetting of word-pairs was virtually absent. Further forgetting across the longer 11-

hour interval was reduced in the Sleep group compared to the Wake group (t(29.72) = 2.22, d = 

0.73, p = .03 for Pre-sleep vs. Sleep; t(31) = 3.71 d = 1.28, p < .001 for Pre-sleep vs. Wake; d = 

0.82, t(20.71) = 2.30, p = .03 for Sleep vs. Wake, two-tailed t-tests, Figure 1B).  
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Figure 1. Experimental design, and memory dynamics in children. (A) The Encoding phase of the experiment 

consisted of learning two lists of word-pairs, each studied once one hour apart. The duration of the retention interval 

was either 1 hour (Pre-sleep condition) or 11 hours with the latter including either a night of sleep (Sleep condition) 
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or daytime wakefulness (Wake condition). In the retrieval phase cued recall was tested for each word-pair followed 

by a recall of the list (forced choice between List 1 or 2) in which the word-pair had appeared. (B-G) Children’s 

mean (± SEM) cued recall performance for the Pre-sleep (gray bars), Sleep (black) and Wake (white) conditions for 

(B) correctly recalled word-pairs, (C) correctly recalled lists, (D) trials with both correctly recalled word-pairs and 

lists, (E) trials with correctly recalled word-pairs or lists, (F) trials with correctly recalled word-pairs but incorrect 

list recall, and (G) trials with correct list recall but incorrect word-pair recall. Recall is expressed as the difference 

from immediate recall of word-pairs during the encoding phase. * p < .05, ** p < .01, for pairwise comparisons 

between retention conditions.  

 

 The absolute number of words with correct list recall was comparable across conditions 

(Pre-sleep: 22.72 ± 0.97, Sleep: 24.00 ± 0.78, Wake: 22.07 ± 0.78, F(2, 50) = 1.33, p = .27), 

although list recall in the Sleep group tended to be better than in the Wake group (t(33) = -1.72, p 

= .095). In order to more sensitively assess recall we adjusted it to the individual’s encoding 

performance, i.e., we expressed list recall as the difference from the individual’s word-pair recall 

at the immediate recall test (set to 100 %) serving as an approximate baseline. Indeed, this 

measure revealed a pronounced enhancing effect of sleep vs. wakefulness on list recall (F(2,50) = 

3.89, p = .03; t(33) = 2.64, p = .01, for Sleep vs. Wake group, Figure 1C).  

 To disentangle the effects of sleep on word-pair recall and list recall, we separately 

analyzed the effects for recall trials (i) on which both word-pair recall and list recall was correct 

(integrated memory for the item bound into its source) (ii), on which word-pair recall or list 

recall was correct, (iii) on which only word-pair recall was correct but not list recall, and (iv) on 

trials where only list recall but not word-pair recall was correct, with all of the measures adjusted 

to the individual’s immediate word-pair recall. Unexpectedly, sleep did not significantly enhance 

recall for word-pairs together with the list in which the pairs occurred (i.e., the item bound into 

its source, F(2, 50) = 0.73, p = .49, for main effect Condition; t(33) = -1.25, p = .22, for Sleep vs. 
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Wake group, Figure 1D). By contrast, a large beneficial effect was revealed for sleep on general 

recall of word-pairs or the correct list (i.e., any of item or source, bound and unbound, F(2, 50) = 

6.13, p = .004; t(33) = - 3.35, p = .002, for Sleep vs. Wake group, see Figure 1E). This sleep effect 

did not appear to be driven by correct word-pair recall for which list recall was incorrect (p = .56, 

for Sleep vs. Wake group, Figure 1F), but rather by trials with correct list recall but incorrect 

recall of the target word (i.e., word-pair, t(31.71) = -2.24, p = .032, for Sleep vs. Wake, Figure 1G).  

 Forgetting from the short 1-hour retention interval (Pre-sleep) to the long 11-hour 

retention intervals (Sleep, Wake) occurred at a significant level only for the trials with correct 

word-pair recall but incorrect list recalls (p = .023 and p = .016 for comparison with Sleep and 

Wake, respectively, Figure 1F). Forgetting was not significant for trials with only correct list 

recall (both ps > .26, Figure 1G). 

 Correlational analyses did not reveal any strong and significant association between 

delayed recall of word-pairs and list recall in any of the groups (all rs < .36, all ps > .14), 

indicating that – in all experimental groups – both types of recall were largely independent. 

Furthermore, correlational analyses revealed that word-pair recall at the immediate recall test 

was associated with later list recall across the three retention conditions (r = .27, p = .048) 

suggesting these measures share a component of “general memory capabilities”. Such shared 

component can be taken to justify our use of immediate word-pair recall values (as an estimate of 

memory encoding) for adjusting the individual’s list recall (see above). 

Correlations between memory performance and sleep parameters 

Sleep in children showed the expected pattern with long overall duration and remarkably great 

amounts of slow wave sleep (Supplementary Table 1). Of the correlations calculated between 

sleep parameters and memory performance, only a few remained significant after correcting for 
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multiple testing. Recall of word-pairs with simultaneously correct list recall (adjusted to the 

individual’s encoding performance) correlated positively with the percentage of SWS (r = .61, p 

= .009) and negatively with the percentage of Stage 2 sleep (r = -.61, p = .01). Spindle density 

during NonREM sleep correlated negatively with general word-pair memory (r = -.59, p = .012) 

and recall of word-pairs without correct list recall (r = -.58, p = .014). 

Comparison of the temporal dynamics of memory between children and adults 

To explore if the forgetting dynamics across the short 1-hr and long 11-hr retention intervals in 

children differed from those in adults, we tested two groups of adults on the respective Pre-Sleep 

and Sleep conditions.  To account for differences in general learning capabilities between 

children and adults, we used longer lists in the adults, and age groups were compared based on 

the percentages of recalled word-pairs (at the different time points) with reference to the total 

number of word-pairs per list (see Methods). Also here, in the sub-analyses, we refrained from 

adjusting recall after 1 and 11 hr to immediate recall performance. 

 Indeed, the percentage of recalled word-pairs at immediate recall did not differ between 

age and retention groups (p = .19 for the main effect of Age, and p = .54 for the main effect of 

Pre-Sleep vs. Sleep group, Figure 2A). Children showed no forgetting of word-pairs at the 1-

hour recall and increased forgetting after 11 hours (p = .034), whereas adults showed substantial 

forgetting already at the 1-hour recall with no further increase at the 11-hour recall (F(1,67) = 5.29, 

p = .025, for Age × Pre-sleep/Sleep interaction, Figure 2B). Notably, in the sub-analyses this 

differential forgetting dynamics in children was only present for the trials with correct word-pair 

recall in conjunction with incorrect list recall (F(1,67) = 4.94, p = .03, for Age × Pre-sleep/Sleep, 

Figure 2D) but not in any other subgroup of trials, including the trials with both correct word-

pair and list recall (p > .49, Figure 2C). In fact, the number of trials with both correct word-pair 
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and list recall was generally less in children than adults (F(1,67) = 9.45, p = .003, Figure 2C), and 

the number of trials with correct word-pair recall in conjunction with incorrect list recall was 

generally better in children than adults (F(1,67) = 6.97, p = .01, Age main effects).  

 

Figure 2. Comparison of recall performance between children (white bars) and adults (black) for the 1-hour Pre-

sleep condition (left bars) and 11-hour Sleep conditions (right bars) for (A) immediate cued recall of word-pairs 

during the encoding phase (B) delayed cued recall of word-pairs (expressed as difference to immediate recall as in 

A), and for subgroups of trials (C) with both correct word-pair and list recall and (D) with correct word-pair but 

incorrect list recall. Recall is expressed as the percentage of total number word-pairs presented at the encoding phase 

(40 in children, 80 in adults). Note, recall in C and D is not adjusted to the individual’s immediate recall during the 

encoding phase. * p < .05, ** p < .01, for pairwise comparisons.  
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Discussion 

We used a modified version of the word paired-associate learning task to determine the extent to 

which sleep’s enhancing effect on word-pair memories in children might originate from a 

strengthening of episodic representations. Compared to wakefulness, post-learning sleep 

enhanced word-pair recall, in general, which replicates several previous studies in children 

(Potkin & Bunney, 2012; Wilhelm et al. 2008) and underlines the robustness of the effect that 

emerged despite the necessary task changes in comparison to other studies (one-time encoding of 

word-pairs, encoding of 2 different lists 1 hour apart). Sleep also benefited general list memory 

as well as isolated list memory (i.e., trials with incorrect word-pair recall). Surprisingly, however, 

no sleep benefit was revealed for the combined word-pair with correct list memory.  

 Assuming that correct word-pair memory with correct list recall is a measure closely 

reflecting the item-source binding characteristic of episodic memory, the absence of any 

enhancing effect of sleep on this measure argues against the view that sleep effects on episodic 

representations essentially contribute to the general enhancement in word-pair memory, all the 

more so since both measures of memory performance were uncorrelated. The absence of a sleep-

induced enhancement in combined word-pair/list recall also diverges from previous findings 

indicating a sleep-induced enhancement of episodic “what-where-when” memory in children of 

the same age group, although in that study the gain in episodic memory after sleep was not 

superior to that seen in adults (Wang et al., 2016). A tentative explanation for this discrepancy is 

that unlike in that foregoing study manipulating spatial as well as temporal context aspects of the 

episode, here, source memory was mainly defined by the temporal context aspects, i.e., by the 

second list learned 1 hour after the first list. Temporal features of episodic memory formation 

show a protracted development well into adolescence (e.g., Picard et al., 2012). 
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 Indeed, the observations of absent or only moderate sleep-induced enhancements in 

measures of episodic memory in this and previous studies might simply reflect the immaturity of 

the episodic memory system and the fact that at this age children’s encoding and forming 

memories for episodes is less well structured in time and space (Ghetti & Bunge, 2012; Riggins, 

2014). Supporting this view, the comparison of memory dynamics with an adult control group 

revealed generally reduced memory for word-pairs in conjunction with the correct list, but 

enhanced memory for word-pairs in the absence of correct list recall, i.e., children appear to 

preferentially store word-pair memories unbound to their source. On the other hand, correlational 

analyses confirmed that like in adults (Inostroza & Born, 2013), SWS in children preferentially 

supports episodic-like memory, here of word-pairs bound to the correct list. In this context, the 

strong negative correlation of EEG spindle density with word-pair memory in the absence of list 

recall and with general word-pair recall, was unexpected and also diverges from findings in 

adults of a link between spindles and non-episodic semantic types of memory (e.g., Schabus et 

al., 2004). It might point to differential functions of sleep spindles for memory processing in 

children.  

Apart from enhancing general word-pair memory, sleep in the children also generally 

enhanced list memory, as well as isolated list memory (in the absence of correct word-pair 

memory). The result of particularly strong effects of sleep on isolated list memory is a further 

hint that sleep in children does not act towards enhancing episodic memory features binding 

source with item characteristics. In fact, sleep-induced enhancements in word-pair and list 

memories that are entirely independent of whether or not respective source or item information is 

also correctly recalled, could be taken to speculate that sleep in children fosters the “unbinding” 

of item and source information in episodic representations. Sleep unbinding episodic 
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representations has been observed in adults although often developing more slowly over several 

nights (Cairney et al., 2011; Deliens & Peigneux, 2014; Jurewicz, Cordi, Staudigl, & Rasch, 

2016; Sweegers & Talamini, 2014). That children overall form less distinct episodic memory, in 

this context, might explain unbinding effects to emerge faster in the children (already after one 

night), and might also explain the strong enhancement in list memory considered incidentally 

encoded source information, as encoding in children would be expected to be less distinctive 

between source and item information. However, the hypothesis of a fast unbinding effect of sleep 

on episodic memory in children, although attractive, needs to be scrutinized using task designs 

directly testing the context-dependency of item recall after sleep.    
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Supplementary material 

Sleep recordings and EEG analysis 

Sleep was recorded using standard polysomnography including EEG recordings from Fz, F3, F4, 

Cz, C3, C4, Pz, P3, and P4 electrode sites (reference: linked electrodes at the mastoids, ground: 

Fpz), electromyography on the chin (musculus mentalis), and electrooculography (around the 

eyes). Signals were amplified (BrainAmp, Brain Products, Gilching, Germany), digitized 

(sampling rate >250 Hz) and filtered (EEG and EOG 0.3–35 Hz, EMG 10–100 Hz). Sleep stages 

were scored offline by two experienced raters according to standard criteria (Rechtschaffen & 

Kales, 1968). Concrete slow oscillations and general spindles (9–15 Hz) were detected using 

standard settings of the SpiSOP tool (Weber, 2016) which was based on previously published 

algorithms (Mölle, Marshall, Gais, & Born, 2002), and spindle and slow oscillation parameters 

(e.g. density) were averaged across the anterior-posterior axis, i.e., Fz, Cz and Pz. Supplementary 

Table 1 contains a summary of the sleep scoring parameters. Due to exclusion of poor 

performers (see Methods) correlation analysis of sleep scoring, spindle and slow oscillation 

parameters with overnight changes in memory (as presented in Figure 1) included one Sleep 

group child less than was usable from the EEG sleep recordings  (n = 17). 

Supplementary Table 1  

Sleep parameters (n = 18) 

 

 

 

 

 

 

Stages 

TST [min] 553.19± 3.45  

Sleep onset [min] 15.80 ± 3.97 

WASO [%] 0.25 ± 0.16  

Stage 1 [%] 2.07 ± 0.18  

Stage 2 [%] 21.66 ± 1.61  

SWS [%] 49.89 ± 1.97  

NonREM [%] 71.56 ± 1.04 

REM [%] 25.07 ± 0.86 



 

 

Means ± SEM are shown for the total sleep time (TST), sleep onset (with reference to the time of lights 

off and beginning of first occurrence of stage 1-sleep epoch followed by stage 2-sleep), and time spent 

awake after sleep onset (WASO), sleep stage 1, sleep stage 2, SWS, NonREM (S2 + SWS) and REM in 

percentage of total sleep time.  

 

Children’s vigilance and subjective tiredness  

Before the encoding of each list and before retrieval vigilance was assessed using reaction time 

performance during a 5-min version of the Psychomotor Vigilance Task (PVT). Furthermore, 

subjective tiredness was assessed using the Stanford Sleepiness Scale (SSS, Hoddes, Dement, & 

Zarcone, 1972). 

Reaction time on the PVT did not differ between Pre-sleep, Sleep, and Wake conditions, 

neither at encoding (Pre-sleep: 403.56 ± 13.84 ms, Sleep: 420.64 ± 33.44 ms, Wake: 390.21 ± 

15.27 ms) nor at retrieval (Pre-sleep: 449.04 ± 32.48 ms, Sleep: 391.35 ± 16.03 ms, Wake: 

408.69 ± 19.44 ms, all p > .22). Subjective tiredness (as assessed by the SSS) of the Pre-sleep 

group was lower than the other two groups at encoding (Pre-sleep: 1.58 ± 0.14, Sleep: 2.63 ± 

0.30, Wake: 2.61 ± 0.30, p < .007 for both comparisons) but did not differ between the groups at 

retrieval testing (Pre-sleep: 1.78 ± 0.17, Sleep: 2.41 ± 0.26, Wake: 2.36 ± 0.34, p > .19). 

Considering SSS at retrieval or encoding as covariate did not essentially change any of the 

reported ANOVA effects for memory recall except that the decrease in general word-pair 

memory from the Pre-sleep to the Sleep condition in children failed to reach significance (Figure 

2A). This suggests the reduced forgetting in the Pre-sleep children might be partially driven by 

lower tiredness at encoding in this condition. Otherwise, these results exclude that sleep-wake 

related differences in memory recall were confounded by non-specific alterations in vigilance. 

 



 

 

Statistical Analysis 

Statistical analysis was done using [R] (Mac OS X version 1.7.1, R Core Team, 2012).  Mean ± 

SEM are reported. Kruskal-Wallis one-way ANOVA was used as nonparametric test in case 

normality and homogeneity assumptions of ANOVA were not met. Post-hoc tests followed 

significant ANOVAs effects, including Student’s t-Test for equal variances and Welch’s t-Test 

with approximation to the degrees of freedom for unequal variances; otherwise we used 

nonparametric Mann–Whitney U test. Cohen’s d indicated central effect sizes. Moreover, 

associations were tested using linear regression analysis with Pearson product-moment and 

Spearman´s rank correlation for the parametric and nonparametric tests, respectively. For 

simplicity, p-values are reported uncorrected for multiple comparisons. Significance level was 

set to 0.05.  
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