
Controls of vertical carbon stable isotope 

distribution in topsoil:                            

temperature, precipitation and time  
 

Dissertation 

 
der Mathematisch-Naturwissenschaftlichen Fakultät 

der Eberhard Karls Universität Tübingen 

zur Erlangung des Grades eines 

Doktors der Naturwissenschaften 

(Dr. rer. nat.) 

vorgelegt von 

Diplom-Geographin Melanie Brunn 

aus Bad Kreuznach 

 

 

 

 

 

Tübingen 

2016 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der 

Eberhard Karls Universität Tübingen.  

 

 

Tag der mündlichen Qualifikation:    17.02.2017  

Dekan:       Prof. Dr. Wolfgang Rosenstiel  

1. Berichterstatterin:      Prof. Dr. Yvonne Oelmann 

2. Berichterstatterin:      Prof. Dr. Sandra Spielvogel 



Contents I 

 

Contents 

Contents ............................................................................................................................. I 

Danksagung .................................................................................................................... IV 

Summary ........................................................................................................................... V 

Zusammenfassung .......................................................................................................... VI 

List of abbreviations ...................................................................................................... VII 

List of tables ................................................................................................................. VIII 

List of figures ................................................................................................................. IX 

1 Summarizing overview ................................................................................................. 1 

1.1 Introduction ....................................................................................................... 1 

1.2 Methods ............................................................................................................. 6 

1.2.1 Study sites ......................................................................................... 6 

1.2.1.1 Rhineland-Palatinate, Germany ....................................... 7 

1.2.1.2 Black Forest, Germany .................................................... 8 

1.2.1.3 Haast, New Zealand ......................................................... 9 

1.2.2 Sampling and sample preparation ................................................... 10 

1.2.3 Elemental and isotopic measurements ............................................ 11 

1.2.4 Calculations and statistical analysis ................................................ 12 

1.3 Results and discussion .................................................................................... 13 

1.3.1 Temperature and precipitation effects on δ
13

C depth profiles in 

SOM under temperate beech forests (Chapter 2) ........................... 13 

1.3.2 Three decades after afforestation are sufficient to yield 

decomposition-related vertical δ
13

C depth profiles in soil (Chapter 

3) ..................................................................................................... 14 

1.3.3 Vertical distribution of carbon and nitrogen stable isotope ratios in 

topsoil across a temperate rainforest dune chronosequence in New 

Zealand (Chapter 4) ........................................................................ 15 

1.3.4 Interaction of spatially independent data with vertical C stable 

isotope distribution ......................................................................... 15 

1.3.5 Error discussion .............................................................................. 26 

1.4 General conclusion ........................................................................................... 29 

1.5 Author contribution .......................................................................................... 31 

1.6 References ........................................................................................................ 32 

2 Temperature and precipitation effects on δ
13

C depth profiles in SOM under temperate 

beech forests ........................................................................................................... 37 

2.1 Abstract ............................................................................................................ 38 

2.2 Introduction ...................................................................................................... 39 



Contents II 

 

2.3 Material and methods ....................................................................................... 41 

2.3.1 Sampling sites ................................................................................. 41 

2.3.2 Sampling and sample preparation ................................................... 43 

2.3.3 Roots ............................................................................................... 44 

2.3.4 Laboratory analysis ......................................................................... 44 

2.3.4.1 pH measurement ............................................................ 44 

2.3.4.2 Elemental and isotopic measurements ........................... 44 

2.3.5 Statistical analysis and calculation of beta values .......................... 45 

2.4. Results ............................................................................................................. 46 

2.4.1 δ
13

C depth profiles .......................................................................... 46 

2.4.2 Temperature and precipitation gradient .......................................... 47 

2.5 Discussion ........................................................................................................ 50 

2.5.1 Temperature impact on δ
13

C depth profiles .................................... 51 

2.5.2 Precipitation impact on δ
13

C depth profiles .................................... 52 

2.6 Conclusion ....................................................................................................... 53 

2.7 Acknowledgement............................................................................................ 54 

2.8 References ........................................................................................................ 54 

3 Three decades after afforestation are sufficient to yield decomposition-related vertical 

δ
13

C depth profiles in soil ...................................................................................... 57 

3.1 Abstract ............................................................................................................ 58 

3.2 Introduction ...................................................................................................... 58 

3.3 Material and methods ....................................................................................... 60 

3.3.1 Sampling sites ................................................................................. 60 

3.3.2 Sampling and sample preparation ................................................... 61 

3.3.4 Laboratory analysis, statistics and calculations .............................. 61 

3.3.4.1 pH measurement ............................................................ 61 

3.3.4.2 Potential soil respiration ................................................ 61 

3.3.5 Elemental and isotopic measurements ............................................ 62 

3.3.6 Calculations and statistical analyses ............................................... 63 

3.4 Results .............................................................................................................. 64 

3.5 Discussion ........................................................................................................ 67 

3.6 Conclusion ....................................................................................................... 70 

3.7 Acknowledgement............................................................................................ 71 

3.8 References ........................................................................................................ 71 

3.9 Supplementary material ................................................................................... 74 

4 Vertical distribution of carbon and nitrogen stable isotope ratios in topsoil across a 

temperate rainforest dune chronosequence in New Zealand.................................. 75 

4.1 Abstract ............................................................................................................ 76 

4.2 Introduction ...................................................................................................... 76 

4.3 Material and methods ....................................................................................... 80 

4.3.1 Sampling site ................................................................................... 80 

4.3.2 Sampling and sample preparation ................................................... 80 



 III 

 

4.3.3 Laboratory analysis, calculations and statistics .............................. 81 

4.3.3.1 Elemental and isotopic measurements ........................... 81 

4.3.3.2 Calculations and statistical analysis ............................... 82 

4.4 Results .............................................................................................................. 83 

4.4.1 Element concentrations, C: N ratios and isotopic signatures in litter, 

organic layer and mineral soil with proceeding pedogenesis ......... 83 

4.4.2 Vertical differences in δ
13

C and δ
15

N values and beta values with 

proceeding pedogenesis .................................................................. 87 

4.5 Discussion ........................................................................................................ 88 

4.5.1 δ
13

C and δ
15

N values in litter with proceeding pedogenesis ........... 88 

4.5.2 Vertical patterns of δ
13

C values with proceeding pedogenesis ....... 91 

4.5.3 Vertical patterns in δ
15

N values with proceeding pedogenesis ....... 93 

4.6 Conclusion ....................................................................................................... 95 

4.7 Acknowledgment ............................................................................................. 96 

4.8 Literature .......................................................................................................... 96 

4.9 Supplementary material ................................................................................. 100 

 

 

 

  



Danksagung IV 

 

Danksagung 

Besonderer Dank gilt Frau Prof. Dr. Yvonne Oelmann, für die Ermöglichung dieser 

Arbeit, das Teilen ihres Wissens, ihre Geduld und ihr Vertrauen, für die Ermutigung zur 

Entwicklung eigener Ideen und die gegebene Freiheit, diese zu verwirklichen. Weiterer 

Dank gilt Frau Prof. Dr. Sandra Spielvogel für die Betreuung in Koblenz, die Realisie-

rung interessanter Tagungsteilnahmen und die Begleitung dieser Arbeit. Ulli Bange und 

Sabine Flaiz möchte ich für ihren Einsatz im Labor danken. Ebenso auch allen anderen 

Mitarbeitern und wissenschaftlichen Hilfskräften für die produktive Zusammenarbeit 

und die Assistenz in Mainz, Koblenz, Tübingen, Hannover, in der Schweiz und in Neu-

seeland, ohne die diese Arbeit nicht mögliche gewesen wäre. Hervorragend unterstützt 

bei den Probenahmen haben mich Karina Traub in den Rheinland-Pfälzischen Wäldern, 

sowie Prof. Dr. Leo Condron und Dr. Andrew Wells, die die Begehung des Dünen-

Sumpfgebietes in Neuseeland ermöglicht haben. Den Mitgliedern der Arbeitsgruppen in 

Koblenz und Tübingen danke ich für ihre Unterstützung bei Organisatorischem, ihrer 

Anteilnahme, ihrem offenen Ohr und die konstruktiven Gespräche. Besonders danke ich 

Marc Ruppenthal für den Wissensaustausch, Agnes Rehmus für die langjährige Freund-

schaft, Sophia Leimer für die Einladungen zu den informativen Kolloquien, Alevtina 

Evgrafova für die motivierenden Worte, Elisabeth Sorkau, Karla Dietrich, Jennifer 

Herschbach und Michaela Dippold unter anderem für die Gastlichkeit und Harald Neid-

hardt für die Bereitschaft und die schnelle Bearbeitung von Anliegen aller Art. 

Diese Arbeit wäre nicht möglich gewesen ohne die Unterstützung meiner Eltern und 

meiner Familie, die immer an mich geglaubt haben. Meinem Mann gilt besonderer 

Dank für das entgegengebrachte Verständnis, die Reisebereitschaft und den fachlichen 

Austausch. Und auch meinen Kindern danke ich für die Möglichkeit, die Welt aus einer 

anderen Perspektive zu betrachten. 

Dem Interdisziplinären Promotionszentrum und der Forschungsförderung des wis-

senschaftlichen Nachwuchses der Universität Koblenz-Landau danke ich für die Finan-

zierung wissenschaftlicher Hilfskräfte sowie nationaler und internationaler Tagungen. 

Diese Arbeit wurde finanziert durch ein Promotionsstipendium der Stipendienstiftung 

Rheinland-Pfalz und durch ein Stipendium des Deutschen Akademischen Austausch-

dienstes.  

 



Summary V 

 

Summary 

A crucial ability to evaluate the effects of changes in land-use and global climate is 

the understanding of carbon (C) storage in soil. The decomposition of organic matter 

(OM) in soil presents a determining mechanism, due to the impact it has on whether 

soils function as a sink for C or fuel the atmosphere’s carbon dioxide concentrations. 

The vertical distribution of C stable isotopes in topsoil serves as a powerful tool to in-

vestigate decomposition of OM in soil.  

It is of particular interest how the decomposition of OM in soil relates to changing 

mean annual temperature (MAT) and mean annual precipitation (MAP). Therefore, I 

conducted a field study with comparable confounding variables and MAT or MAP, re-

spectively as changing variable. Relations between the vertical decrease of C concentra-

tions and the increase of δ
13

C values in soil profiles from litter to mineral soil at 10 cm 

depth served to approximate decomposition. In contrast to the general assumption of the 

Van´t Hoff´s kinetic theory, the results suggest a decline of decomposition with increas-

ing MAT. Low soil moisture likely hampered microbial activity under elevated MAT. 

Approximated decomposition increased across the gradient of MAP. Selective sorption 

and the downward transport of hydrophilic, 
13

C enriched compounds with fluxes of soil 

solution might have dominated the development of δ
13

C depth profiles under high 

MAP.  

The investigation of δ
13

C depth profiles during land-use change indicated that three 

decades following afforestation of former cropland are sufficient to develop δ
13

C depth 

profiles. On timescales of millennia, aged soils are supposed to sequester large amounts 

of C with an assumed decrease of decomposition. However, δ
13

C depth profiles sug-

gested no constant decrease of OM decomposition during 2,870 years of ecosystem de-

velopment and pedogenesis. Interestingly, δ
13

C depth profiles were related to the depth 

distribution of nitrogen stable isotopes, suggesting shared processes shaping δ
13

C and 

δ
15

N vertical depth profiles. 

Carbon stable isotope distribution in topsoil significantly changed with MAT, MAP 

and over time. The findings of this work contribute to a better understanding of how 

decomposition responds to climate change and pedogenesis. In essence, the analysis of 

δ
13

C depth profiles in topsoil offers an alternative and reliable method to approximate 

decomposition of OM in soil. 
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Zusammenfassung 

Kohlenstoffspeicherung in Böden ist eine entscheidende Komponente zur Beurtei-

lung der Folgen des globalen Klima- und Nutzungswandels. Umsatz von organischer 

Bodensubstanz (OBS) gilt dabei als wichtiger Mechanismus der Senken- oder Quellen-

funktion von Böden für Kohlenstoff (C). Die vertikale Verteilung stabiler C Isotope 

(δ
13

C) im Oberboden bietet ein Instrument zur Untersuchung des Umsatzes von OBS.  

Es ist von besonderem Interesse, welchen Einfluss sich ändernde Jahresmittel-

temperaturen (JMT) oder Jahresniederschlagssummen (JNS) auf Umsatz von OBS ha-

ben. Um dies zu untersuchen führte ich eine Feldstudie durch mit vergleichbaren Stand-

ortbedingungen, jedoch JMT beziehungsweise JNS als sich ändernde Variable. Zur Ab-

schätzung des Umsatzes der OBS diente der Zusammenhang zwischen der vertikalen 

Abnahme von C Gehalten und der Zunahme von δ
13

C Werten in Profilen von der Streu-

auflage zum Mineralboden bei 10 cm Tiefe. Entgegen der generellen Annahme der ki-

netischen Theorie (Van´t Hoff) deuten die Ergebnisse auf eine Abnahme des Umsatzes 

mit zunehmender JMT hin. Niedrige Bodenfeuchte erschwerte wahrscheinlich die 

mikrobielle Aktivität unter höherer JMT. Der abgeschätzte Umsatz der OBS stieg ent-

lang des Niederschlagsgradienten. Selektive Sorption und der abwärtsgerichtete Trans-

port hydrophiler, 
13

C angereicherter Bestandteile mit der Bodenlösung könnten die Tie-

fenverteilung von δ
13

C unter hoher JNS dominiert haben.  

Nach Aufforstung ehemaliger Ackerflächen zeigte sich, dass eine Zeit von drei De-

kaden zur Entstehung von δ
13

C Tiefenprofilen ausreichen. Auf einer Zeitskala von Jahr-

tausenden wird angenommen, dass Böden große Mengen von Kohlenstoff speichern 

und eine Reduzierung des Umsatzes von OBS stattfindet. Die δ
13

C Tiefenverteilung 

deutet allerdings darauf hin, dass Umsatz der OBS mit der Zeit nicht kontinuierlich ab-

nimmt. Interessanterweise zeigten sich Zusammenhänge zwischen δ
13

C Tiefenprofilen 

und der Tiefenverteilung von stabilen Stickstoffisotopen, was auf gemeinsame Prozesse 

zur Entwicklung von δ
13

C und δ
15

N Tiefenprofilen hindeutet. 

Die Verteilung von δ
13

C Werten in Oberböden änderte sich signifikant mit JMT, JNS 

und der Zeit. Meine Ergebnisse können zu einem besseren Verständnis von Änderungen 

des Umsatzes der OBS während des Klimawandels und der Bodenbildung beitragen. 

Die Analyse von δ
13

C Tiefenprofilen scheint eine alternative und verlässliche Methode 

zur Abschätzung von Umsatz von OBS in Oberböden zu sein. 
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1 Summarizing overview  1 

 

1 Summarizing overview 

1.1 Introduction 

The decomposition of organic matter (OM) in soil is crucial to sustain fertility of 

soils and to discuss mitigation strategies of the climate change (Lehmann and Kleber, 

2015; Schmidt et al., 2011). Soils are able to store vast amounts of carbon (C) with par-

ticular importance of world forests soils (Dixon et al., 1994; Lal et al., 2007; Post and 

Kwon, 2000; Schlesinger, 1990; Wiesmeier et al., 2014). This soil C can be released to 

the atmosphere as CO2 or stored, with decomposition as important mechanism to con-

trol the soil´s source and sink function. Therefore, understanding C sequestration in soil 

to mitigate rising atmospheric CO2 concentrations depends in part on our ability to in-

vestigate decomposition of OM.  

Projections of the global climate predict a significant increase of temperature and 

greater variability of precipitation (Intergovernmental Panel on Climate Change, 2013). 

It has often been questioned how the predicted global warming will affect the decompo-

sition of OM in soil (Amundson, 2001; Conant et al., 2011; Davidson and Janssens, 

2006; Kirschbaum, 2000). According to the kinetic theory describing chemical reac-

tions, reaction rates increase with increasing temperature (vant´t Hoff, 1898) which 

should accelerate the decomposition of OM in soil under increased temperatures. This 

relation has widely been observed across varieties of ecosystems (Davidson and 

Janssens, 2006; Kirschbaum, 2000). However, constraints remain for decreased micro-

bial substrate accessibility, e.g. under hampered solute transport (Giardina and Ryan, 

2000). At low soil moisture levels, decomposition of OM is therefore supposed to de-

cline (Moyano et al., 2013; Townsend et al., 1995; Trumbore, 2009). In contrast, satu-

rated conditions in soil under elevated soil moisture similarly inhibit microbial respira-

tion and hamper decomposition (Moyano et al., 2013). Generally, adequate amounts of 

precipitation provide supply of sufficient pore water and fluxes of soil solution that 

maintain microbial activity and decomposition (Guggenberger and Kaiser, 2003; Kaiser 

and Kalbitz, 2012) leading to an increase of decomposition of OM under elevated tem-

perature (Kirschbaum, 2000; Trumbore, 2009). Incubation studies or soil warming ex-

periments allow for testing the response of soil to increased temperature. In contrast, not 

actively manipulated soil research at field sites with comparable environmental and soil 

conditions (temperature, precipitation, soil texture, mineralogy, vegetation etc.) consider 
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soil under steady state and may provide differing results compared to manipulated stud-

ies (Agren and Bosatta, 2002; Conant et al., 2011). Since manipulated experiments are 

supposed to address easily accessible C that can get rapidly lost (Agren and Bosatta, 

2002), not actively manipulated studies probably include other processes linked to C 

accessibility in soil, such as transport and sorption. 

Huge amounts of C are stored in topsoil (Scharlemann et al., 2014) and particularly 

the accumulation of thick organic layers with time is discussed to contribute to long-

term C sequestration (Clemmensen et al., 2013; Clemmensen et al., 2015). Therefore, 

ecosystem dynamics experience growing attention in discussions of C sequestration 

(Schmidt et al., 2011). Long-term chronosequences serve as ideal sites to investigate C 

dynamics. Ecosystem and soil development across chronosequences can be defined in a 

progressive phase after initial disturbance, in a phase of maximal biomass in which the 

ecosystem stabilizes and in a retrogressive phase, where the ecosystem undergoes de-

clines in productivity and nutrient cycling; trends that have been observed along chro-

nosequences around the world (Peltzer et al., 2010; Wardle et al., 2004). Decomposition 

of OM in soil increases in progressive phases due to the accumulation of organic mate-

rials while at the later phases of long-term soil development, decomposition is supposed 

to decrease (Peltzer et al., 2010; Wardle et al., 2004). In particular, mycorrhizal fungi 

are considered to hamper decomposition at old sites and therefore, to contribute to C 

sequestration of soil (Clemmensen et al., 2015).  

During the decomposition process, complex compounds are biochemically trans-

formed. Greater transfer of the light isotope 
12

C and discrimination of the heavy isotope 

13
C during microbial metabolism result in enrichment of the remaining C pool (Lerch et 

al., 2011; Werth and Kuzyakov, 2010). The relation of 
13

C/
12

C stable carbon isotopes in 

OM can therefore serve as indirect indicator of biogeochemical processes such as C 

decomposition. In soil profiles from litter to mineral soil, a vertical decrease of C asso-

ciated with an enrichment of the heavier isotope 
13

C can be measured across varieties of 

ecosystems and environmental gradients (Acton et al., 2013; Boström et al., 2007; 

Ehleringer et al., 2000). The accumulation of 
13

C enriched compounds from microbial 

products or microbial cells itself (Diochon and Kellman, 2008; Lerch et al., 2011) are 

assumed to play a major role in this vertical increase of δ
13

C values. Therefore, the rela-

tion between vertical enrichment in 
13

C and C processing has been ascertained to ap-

proximate decomposition of OM in soil (Acton et al., 2013; Balesdent and Mariotti, 

1996; Boström et al., 2007; Garten, 2006; Guillaume et al., 2015; Marty et al., 2015). 
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By plotting logarithmized (log10x) element concentration in OM against its isotopic ra-

tio, the slopes of the linear regression (indicated as beta values) can serve as proxy for 

decomposition (Fig. 1.1). 

 

 Figure 1.1 Conceptual figure showing general trends of decreasing C concentrations and increasing δ
13

C 

values with soil depth (A & B). Beta values can be calculated from linear regression slopes by plotting 

δ
13

C values against logarithmized C concentrations (C). Linear regression slopes were found to change 

with temperature, precipitation and time. Beta serves as approximation for decomposition of organic 

matter in topsoil.  

In addition to microbial fractionation, other parameters are discussed to control the 

vertical C isotope distribution: i) the Suess effect, ii) root OM additions, iii) physico-

chemical sorption of C and downward cycling of dissolved OM with soil solution. First, 

impacts of a continuous decrease of atmospheric δ
13

CO2 by 1.5‰ during the last two 

centuries (Francey et al., 1999; Keeling et al., 2005) - known as the Suess effect - might 

contribute to the observed average vertical δ
13

C distribution. However, studies of δ
13

C 

depth profiles in archived and modern soils (Torn et al., 2002) or bare-fellow soil stud-

ies excluding vegetation inputs and therefore impacts of atmospheric changes 

(Balesdent and Mariotti, 1996) gave evidence that additional processes must contribute 

to the shifts of δ
13

C throughout the soil profile. Second, since roots are enriched in 
13

C 

by 1– 2‰ compared to δ
13

C values of aboveground plant material (Badeck et al., 2005; 

Werth and Kuzyakov, 2010), their considerable presence in topsoil might explain an-

other part of the difference in δ
13

C of OM with soil depth. Third, the vertical distribu-

tion of C stable isotopes is additionally attributed to the selective physico-chemical 

sorption characteristic of soils and therefore to soil texture (Kaiser et al., 2001; Kaiser 

and Kalbitz, 2012; Nakanishi et al., 2012). The idea behind this is that hydrophilic, 
13

C 

enriched decomposition products cycle down the soil profile with fluxes of dissolved 

organic carbon, while hydrophobic, 
13

C depleted compounds were sorbed (Nakanishi et 
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al., 2012). Thus, soils with finer texture develop greater isotopic differences between 

litter and mineral soil (Bird et al., 2003; Wynn et al., 2005). 

Although temperature and precipitation effects on δ
13

C depth profiles were reported 

in several studies (Garten, 2006; Garten et al., 2000), such effects might be caused by 

factors that coincided with temperature/precipitation gradients which probably affected 

shifts of 
13

C distribution throughout the soil profile, e.g. soil texture, tree species, litter 

quantity and quality or site exposition. A field study was necessary along temperature 

and precipitation gradients with negligible variation in soil, vegetation and site charac-

teristics but the examined parameter as changing variable, i.e. temperature during the 

determination of precipitation impacts and vice versa. In former studies on δ
13

C depth 

profiles, these factors were not considered systematically and therefore, environmental 

conditions excluding temperature and precipitation need to be comparable among sites. 

During vegetation changes of ecosystems like the conversion from arable sites to 

forests, microbial processing and the impact of the Suess effect can profoundly change 

and therefore affect δ
13

C depth profiles. This might be attributed to shifted conditions 

for microbial activity and to time effects. For example, increased above- and below-

ground biomass production and potential acidification induced by afforestation of arable 

sites can shift microbial community structures by promoting fungal abundance 

(Laganière et al., 2010; Pietri and Brookes, 2009), increase soil respiration (Hall and 

Silver, 2013) and increase dissolved organic matter production (Hansson et al., 2010) 

that are supposed to promote the development δ
13

C depth profiles (Kaiser and Kalbitz, 

2012). While at arable sites, the removal of OM and disturbance through plowing may 

impede the development of δ
13

C depth profiles through hampered physical protection 

and aggregation of OM (Del Galdo et al., 2003; Six et al., 2002), afforested sites should 

experience a distinct vertical distribution of C stable isotopes. More pronounced δ
13

C 

depth profiles under afforested sites might be attributed to accumulated 
13

C enriched 

products originating from decomposition of OM, to greater OM inputs, to the Suess 

effect and to undisturbed transport and sorption processes within the soil column. At 

continuously forested sites, these parameters should be amplified and facilitate a greater 

isotopic difference in topsoil and therefore more distinct δ
13

C depth profiles. The land-

use change from arable sites to afforestation can perfectly serve to test for the time re-

quired to develop decomposition-related δ
13

C depth profiles. 

Under prolonged times of soil and ecosystem development, the retrogressive model 

suggests declines in ecosystem productivity, decomposition and nutrient cycling 
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(Peltzer et al., 2010; Wardle et al., 2004). Given a potential decline of microbial cycled 

products, the enrichment of 
13

C should decrease with proceeding time. In addition, 

shifts of nitrogen (N) stocks and cycling may influence the isotopic signatures of soils 

and plants (Martinelli et al. 1999). These shifts comprise N limited conditions during 

primary succession (Vitousek, 2004; Vitousek and Howarth, 1991) which may progress 

to phosphorus (P) limitation in extremely old and/or highly weathered soils (Vitousek 

and Farrington, 1997; Walker and Syers, 1976). According to positive relations between 

foliar N concentrations and δ
13

C values (Guehl et al., 1995; Körner and Diemer, 1987; 

Vitousek et al., 1990), δ
13

C values of litter should increase with increasing N and there-

fore with time across chronosequences. However, litter δ
13

C values in boreal forest 

chronosequences in Sweden increased with proceeding time (Hyodo et al., 2013; Hyodo 

and Wardle, 2009). Foliar morphological adaption to lower nutrient availability at late 

stages of pedogenesis, i.e. increased internal resistance of CO2 diffusion through the 

development of thicker and smaller leaves was supposed. This adaption is comparable 

to water stress effects on plants that equally reduces the stomatal conductance and re-

sults in higher δ
13

C values due to closed stomata (Farquhar et al., 1989). In addition to 

the widely observed vertical enrichment of 
13

C in soil profiles, a similar enrichment of 

15
N can develop in topsoil (Craine et al., 2015; Hobbie and Ouimette, 2009; Wallander 

et al., 2009). Likewise, betaN values can be calculated by means of linear regressions 

between logarithmized N concentrations and according δ
15

N values. Similar relations 

were compiled by Hobbie and Ouimette (2009) and the authors emphasized the im-

portance of mycorrhizal fungi in controlling vertical δ
15

N depth trends. Fractionation 

against 
15

N during N transfer by mycorrhizal fungi to host plants is suggested, resulting 

in 
15

N depleted litter and 
15

N enriched OM in mineral soil (Hobbie and Ouimette, 2009). 

The vertical enrichment in 
15

N between litter and mineral soil was found to vary strong-

ly, with ectomycorrhizal (EM) systems c. doubling the enrichment in 
15

N compared to 

systems dominated by arbuscular mycorrhiza (AM) (Hobbie and Ouimette, 2009). 

Mycorrhizal associations inconstantly shifted with time across chronosequences (Dickie 

et al., 2013) with strong host specificity (Martinez-Garcia et al., 2015). Due to shifts in 

mycorrhizal communities, δ
15

N values of litter and mineral soil OM could change with 

time and therefore affect betaN values, while beta values, as a measure of decomposi-

tion, could decrease in relation to the retrogressive model.  

Former studies were lacking information on temperature or precipitation effects on 

δ
13

C depth profiles with MAT or MAP, respectively as sole changing variable under 
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field site conditions. In addition, the required time to develop distinct decomposition-

related δ
13

C depth profiles needs to be clarified and the proceeding development during 

long-term pedogenesis. According to above mentioned possible impacts of temperature, 

precipitation and time on vertical C stable isotope distribution, I addressed the following 

research questions in this thesis: 

1) How do temperature and precipitation affect vertical C stable isotope distribution 

under field site conditions and comparable environmental parameters (Chapter 2)? 

2) Can distinct δ
13

C depth profiles be found a few decades following afforestation of 

former cropland (Chapter 3)? 

3) How do δ
13

C and δ
15

N depth profiles develop during long-term ecosystem and soil 

formation (Chapter 4)? 

First, I hypothesized that higher temperatures increase microbial activity and decom-

position of OM in soil and thus, beta values. In addition, I hypothesized that increasing 

precipitation positively affects decomposition due to conditions favorable for microbial 

activity which enhances the downward transport of microbial cycled DOM and there-

fore, increases beta values. Second, I hypothesized that δ
13

C depth profiles do not de-

velop under arable land but vertical changes emerge within decades under afforested 

cropland and become further amplified at continuously forested sites. Third, conforming 

to the retrogressive model which suggests declines in ecosystem productivity, decompo-

sition and nutrient cycling (Peltzer et al., 2010), I hypothesized that beta values, as a 

measure of decomposition, decrease with proceeding time during long-term soil and 

ecosystem development. According to a possible shift in mycorrhizal communities with 

time, i.e. AM to EM due to host specificity inferred from shifts in tree species (Turner et 

al., 2012b), I additionally hypothesized that differences between δ
15

N values of litter 

and mineral soil OM increase with time, resulting in increasing betaN values. 

1.2 Methods 

1.2.1 Study sites 

To address my research questions, I chose three different study sites; (1) sites across 

a temperature and precipitation gradient in northern Rhineland-Palatinate, Germany, (2) 
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sites under different times of forest cover in the Black Forest, Germany and (3) sites 

across a long-term soil chronosequence at Haast, New Zealand. Due to regular intensive 

survey of environmental parameters and careful analysis of extensive geospatial data, 

exclusion of confounding variables affecting gradients of MAT or MAP can be assumed 

in forests of northern Rhineland-Palatinate. The widely distributed land-use change of 

afforestation of former cropland is exactly dated in the Black Forest (Germany). There-

fore, the short-term establishment of vertical δ
13

C distribution can well be investigated 

here. Beside short-term soil and ecosystem development, also long-term changes can be 

determined across chronosequences, turning them into “natural experiments” investigat-

ing pedogenetic impacts on the vertical distribution of C stable isotopes (Laliberté et al., 

2013; Lambers et al., 2008; Vitousek and Farrington, 1997; Walker and Syers, 1976). 

Intensive silvicultural use, strong human disturbance and high atmospheric N deposi-

tions found in Europe are neglectable in New Zealand. The humid temperate climate at 

New Zealand´s West coast in addition to its unique rainforest vegetation are supposed to 

provide new insights into C dynamics and the Haast chronosequence might complement 

information on long-term development of vertical C stable isotope distribution. 

 

1.2.1.1 Rhineland-Palatinate, Germany 

With the objectives to ascertain climate effects on patterns of vertical δ
13

C values of 

soil organic matter (SOM) while minimizing the effect of confounding variables, I 

chose ten sites of mature beech (Fagus sylvatica L.) forest ecosystems under silvicultur-

al use in Rhineland-Palatinate, Germany (Chapter 2; Fig. 2.1) (between 49°54′N and 

50°46′N, 6°52′E and 7°57′E). Sites were located across gradients of MAT (7.9 to 9.7 °C 

mean annual temperature) and MAP (607 to 1085 mm mean annual precipitation) 

(German Weather Service). Due to my preselection, environmental characteristics other 

than climate and altitude (i.e., soil type = Cambisol, soil texture = clayloam, tree species 

= beech, stand age = 40-70 yrs and exposition = north) did not differ among sampling 

sites. ArcGIS Desktop (10) was used to select sampling sites out of extensive geodata 

sets provided by the Rhineland-Palatinate Forest Administration, the Rhineland-

Palatinate Geological Survey and Mining Authority, the Rhineland-Palatinate Centre of 

Excellence for Climate Change Impacts and the German Weather Service.  

Temperature and precipitation data were based on interpolated climate data (refer-

ence period 1971-2000) with a spatial resolution of 1x1 km (German Weather Service). 

Climate characteristics were selected in an orthogonal way that allowed for a separation 
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between temperature and precipitation effects i.e., differences in temperature under con-

stant precipitation and vice versa. Across the temperature gradient, precipitation varied 

between 675 and 733 mm MAP, while MAT varied between 7.9 and 9.1°C MAT across 

the precipitation gradient.  

The temperature gradient covaried with an altitudinal gradient with significant rela-

tion between both parameters (r = -0.92; P < 0.001). Altitude and temperature were not 

analyzed separately, so that a potential altitudinal effect forms part of the temperature 

gradient. The maximum difference in altitude in the study was 300 m and thus, small in 

comparison with literature on altitudinal effects on carbon isotope fractionation (Körner 

et al., 1991). Organic layer and mineral soil samples of 10 cm depth were collected in 

November and December 2011, shortly after the autumnal abscission of the leaves. At 

each site, five pseudoreplicated samples were taken. 

1.2.1.2 Black Forest, Germany 

To address the question whether δ
13

C have developed already a few decades follow-

ing afforestation of cropland, sites associated with different land-use forms and different 

times of forest cover (arable sites: 0 yrs, afforested sites: < 50 yrs and continuously for-

ested sites: > 150 yrs) were chosen in the Black Forest, Germany (48°16′N, 8°15′E) 

(Fig. 1.2). This area in Southwestern Germany is prominent for afforestation of former 

cropland that became unprofitable and thus, land-use change has established as a widely 

distributed practice within the last century. Arable sites were regularly plowed until a 

depth of 20 cm and grown with potato, rye and oat in crop rotation, while dominating 

species at afforested sites was Picea abies (L.) Karst. (Norway spruce), cultivated c. 31 

to 48 yr ago and followed crop rotation (potato, rye and oat). Continuously forested 

sites were grown with Picea abies (L.) Karst. and Abies alba Mill. (Silver fir) which 

have persisted for ≥ 150 yrs. Silvicultural practice at the afforested and the continuously 

forested sites was selection cutting according to the local “Plenterwald” system. All 

sites were continuously grown with C3-vegetaion and not exceeding a distance of 20 

km. Cambisols with gneiss and granite as bedrock were sampled within an altitudinal 

range between 385 and 680 meters above sea level. Mean annual temperature (1961-

1990) at Wolfach was 9.4 °C with MAP of 1286 mm yr
-1

 (German Weather Service). 

For each land-use type, soil cores were sampled in fourfold repetition at three different 

locations in October and November 2013, i.e. each type contains four pseudoreplicates 

(fourfold repetition at each site = variation at one site) multiplied by three (sampling at 
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three different locations) resulting in 12 profile samples for each land-use and a total of 

36 profile samples. 

 

 

 

 

 

 

 

1.2.1.3 Haast, New Zealand  

A total of 11 sites across a soil age gradient were chosen at the coastal foredune 

progradation dune ridge system located at the West Coast of New Zealand´s South Is-

land (43°53′S, 169°3′E) to test for long-term effects of soil development on δ
13

C and 

δ
15

N depth profiles in topsoil (Fig. 1.3). This Haast dune chronosequence has formed 

under temperate humid climate (mean annual temperature = 11.3 °C, mean annual pre-

cipitation = 3455 mm) with parent material containing 88.7 ± 2.8% sand, 8.0 ± 2.1% silt 

and 3.5 ± 0.5% clay (Turner et al., 2012a) and is exposed to negligible human disturb-

ance and low atmospheric N deposition (0.9 to 1.5 kg N·ha
-
1·yr

-1
) (Galloway et al., 

2004; Menge et al., 2011). Dune ridges form a slightly undulating topography (< 5 m to 

20 m a.s.l.) with overall extension c. 5 km inland and soils developing from Arenosol to 

Podzol (Turner et al., 2012a). The whole formation covers a time of c. 6,000 yrs and 

was extensively described by Wells and Goff (2007) and Turner et al. (2012a). Five 

pseudoreplicated samples from litter, organic layers and mineral soil were sampled on 

Figure 1.2 Map showing the distribution of sampling sites in the Black Forest, Germany. Agricultural 

sites were sampled at “Oberer Kurzbach”, “Stampfershof” and “Sumhof”, afforested sites at “Im 

Eulersbach”, “Eulersbacher Hof” and “Hunselhof” and continuously forested sites at “Sumhof”, “Im 

Eulersbach” and “Hunselhof”.  
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11 dune ridges (landward direction) in March 2013, resulting in 55 profiles covering a 

time span from c. 120 to c. 2,870 yrs (Chapter 4; Tab. 4.1). 

 

Figure 1.3 Satellite image of the Haast dune chronosequence with sampled dune stages (0-10) that repre-

sent a soil age gradient from c. 120 – c. 2,870 yrs B.P. Included map of New Zealand shows the Haast 

chronosequence as study area (provided by Wells and Goff 2006). 

1.2.2 Sampling and sample preparation 

At all study sites, soil samples were collected by a root auger (Eijkelkamp 

Agrisearch Equipment BV, Netherlands). Since the isotopic enrichment of 
13

C in OM 

throughout the soil is most pronounced in the upper centimeters of the soil profile 

(Accoe et al., 2003; Fang and Moncrieff, 2005; Kammer et al., 2012) soil cores were 

taken to a depth of 10 cm of the mineral soil. The soil cores with a diameter of 8 cm 

were cut into 1 cm sections (Fig. 1.4). 

The organic layers were collected as Oi horizon (litter) and, if present, Oe and Oa 

horizon prior to cutting the mineral soil into sections. All samples were oven dried at 

55°C or 60°C, respectively until weight constancy. The dried organic layer samples 

were ground in a shredder (Retsch SM 2000) resulting in a homogeneous mixture. 
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Dried mineral soil samples were sieved through a 2 mm sieve. To reduce impacts of 

“fresh” belowground C input, roots were removed by a pair of tweezers. Thereafter, 

these aliquots and those of the shredded organic layer samples were ground and homog-

enized with a Planetary Ball Mill PM 200 (Retsch, Germany).  

 

Figure 1.4 Division of the soil core (A) and soil core sectioned into 1-cm segments (B) to obtain stable 

isotope depth profiles in high resolution. Pictures took by A. Rehmus. 

1.2.3 Elemental and isotopic measurements 

Carbon and nitrogen concentrations were analyzed with an Elemental Analyzer (Iso-

tope Cube, Elementar, Hanau, Germany). Since all soil samples were free of carbonate 

(verified by means of hydrochloric acid addition to finely ground mineral soil samples) 

and acidic (pH ≤ 4.5), measured total C concentration equals the organic C concentra-

tion. Stable isotope ratios were analyzed by coupled isotope ratio mass spectrometry 

(IRMS) (Isoprime 100, Isoprime, Manchester, England). Results are given in delta nota-

tion as δ
13

C [‰VPDB] for C and δ
15

N [‰Air] for N stable isotopes (Eq. 1.1):  

                     
                   

         
       

, where R represents the 
13

C/
12

C or the 
15

N/
14

N ratio, respectively. Data across the tem-

perature and precipitation gradient (Chapter 2) were measured in Mainz, Germany with 

IAEA-CH-6 and IAEA-CH-7 for normalization of measured δ
13

C values to the VPDB 

scale. Data of the Black Forest (Chapter 3) were measured in Bern, Switzerland with 

A B
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IAEA-CH-6, IAEA-CH-7 and EMA-P2 used for normalization. Data across the Haast 

chronosequence (Chapter 4) were measured in Hannover, Germany with IAEA-CH-3, 

IAEA-CH-6 and IAEA-600 for normalization of measured δ
13

C values (in ‰VPDB) and 

USGS25, IAEA-N-1 and IAEA-N-2 for normalization of measured δ
15

N values (in 

‰Air). Long-term measurement accuracy of all IRMS analyses based on routine meas-

urements of interspersed standard samples in each run during the measurement period 

was less than ±0.3‰ for δ
13

C and ±0.2‰ for δ
15

N. 

1.2.4 Calculations and statistical analysis 

According to Garten (2006), linear regression analyses determined the patterns of 

isotopic changes within soil profiles. Therefore, log10x-transformed C concentrations 

[log10 (g·C·kg
-1

)] (= x) were regressed against their C stable isotope value [δ
13

C] (= y) 

of the depth intervals (organic layers and mineral soil). The absolute values of the 

slopes were termed beta. In a similar way, I plotted log10x-transformed N concentrations 

[log10 (10
-1

g·N·kg
-1

)] (= x) against δ
15

N values (=y) to obtain betaN values (Chapter 4). 

Different units for the logarithmized C and N concentrations resulted in positive values 

on the x-axis (Chapter 4). To my knowledge, betaN values have never been calculated 

before.  

In addition to beta values, vertical isotopic differences were used to describe vertical 

changes in C (Δ
13

C) and N stable isotopes (Δ
15

N) from litter to mineral soil (Chapter 3 

and 4). There was spatial variation in the depth and thickness of soil horizons between 

sites, e.g. a soil horizon at 10 cm soil depth of a given location does correspond to a 

slightly deeper or shallower depth as compared to the neighboring sampling site. I tried 

to account for this by using maximum difference in profiles instead of the difference 

between the litter layer and mineral soil at 10 cm soil depth to best represent the vertical 

changes in δ
13

C and δ
15

N values (Chapter 4). 

One-way ANOVA post-hoc tests were applied to detect significant differences be-

tween beta values. In case of homogeneous variances I used a post-hoc Tukey test. In 

case of heteroscedasticity, a Games-Howell test was conducted. In addition to this, 

matched pairs t-tests (in case of homogeneity of variances) or Welch´s t tests (in case of 

heteroscedasticity) for the comparison of beta values, proportions of explained varia-

tions and Δ
13

C or Δ
15

N values were applied. The level of significance was set to P ≤ 
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0.05 in all tests. Probability of fit to normal distribution was tested by Kolmogorov-

Smirnov tests (Chapter 2, 3 and 4). 

Autocorrelation of data was tested by the Durbin-Watson Test and reconciled with 

critical values for the Durbin-Watson Test provided by Savin and White (1977). Only 

non-autocorrelated data were evaluated (Chapter 4).  

1.3 Results and discussion 

1.3.1 Temperature and precipitation effects on δ
13

C depth profiles in SOM 

under temperate beech forests (Chapter 2) 

From litter down to the mineral soil at 10 cm depth, soil organic carbon (SOC) con-

tent decreased (47.5 ± SE 0.1% to 2.5 ± 0.1%) while δ
13

C values increased (-29.4 ± 

0.1‰ to -26.1 ± 0.1‰) (Chapter 2; Fig. 2.2). Litter of sites under higher MAP or lower 

MAT had lower δ
13

C values. This is in line with literature data on climate driven plant 

physiological processes. Beta values ranged between 0.6 and 4.5 (range of r from -0.7 

to -1.0; P < 0.01). Due to an assumed decay continuum and similar variations of δ
13

C 

values in litter and at 10 cm depth, I conclude that effects on isotopic composition in the 

Oi layer continue vertically and therefore, δ
13

C values in litter do not solely control beta 

values. Beta values decreased with increasing MAT (r = -0.83; P < 0.05). Reduced soil 

moisture and therefore both, reduced microbial activity and reduced downward 

transport of microbial cycled DOM (= 
13

C enriched) might be responsible for less pro-

nounced δ
13

C depth profiles in case of high temperatures. Greater C: N ratios (lower 

degradability) of litter under higher temperatures likely contributed to these depth 

trends. Beta values increased with increasing MAP (r = 0.73; P < 0.05). I found de-

creasing C: N ratios in the mineral soil with increasing MAP suggesting higher decom-

position. Exclusion of the organic layers from linear regressions indicated a stronger 

impact of MAP on the development of δ
13

C depth profiles.   

The results suggest temperature and precipitation effects on δ
13

C depth profiles and 

indicate stronger 
13

C enrichment under lower MAT and higher MAP. This was against 

my hypotheses assuming accelerated decomposition under higher temperatures and in-

creased decomposition under higher precipitation. Time series of vertical δ
13

C depth 

profiles might provide insights into climate change effects. So far, it remained unclear 

http://www.sciencedirect.com/science/article/pii/S001670611400278X
http://www.sciencedirect.com/science/article/pii/S001670611400278X
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how fast δ
13

C depth profiles develop. Therefore, I chose a second approach in order to 

test for the temporal aspects of the vertical 
13

C enrichment. 

1.3.2 Three decades after afforestation are sufficient to yield decomposition-

related vertical δ
13

C depth profiles in soil (Chapter 3) 

Since many parameters affecting δ
13

C depth patterns can change fast and strongly 

during land-use changes, vegetation conversions provide valuable insights into C dy-

namics in soil. During land-use changes from cropland over afforested cropland to con-

tinuously forested sites in the Black Forest, Germany, C accumulated with increasing 

time of forest cover while δ
13

C depth profiles developed within decades. Carbon con-

centration of mineral soil and approximated decomposition were positively related, sug-

gesting that C accumulation is not necessarily coupled with reduced decomposition. The 

Suess effect, increased belowground biomass production and related greater dissolved 

organic matter production as well as lower pH values may have accounted for greater 

isotopic differences in topsoil and increased potential soil respiration at afforested sites, 

leading to greater transport of 
13

C enriched microbial products. These parameters ap-

peared to become further amplified at continuously forested sites. In contrast, soils un-

der agricultural use showed near zero vertical enrichment in 
13

C but low measured po-

tential soil respiration fits well to trends of increasing decomposition with time of forest 

cover. In line with my hypothesis, the results suggest a hampered applicability of verti-

cal C stable isotope distribution to approximate low decomposition in soil. Respiration 

was related to vertical C stable isotope patterns and therefore, seems to contribute to 

shape δ
13

C depth profiles. In total, the data revealed that short timescales of 30 yrs are 

sufficient to develop distinct δ
13

C depth profiles in topsoil.  

With proceeding time of ecosystem and soil development, the decomposition-related 

distribution of C stable isotopes in soil profiles may be subject to change. Therefore, a 

long-term soil chronosequence was chosen to test for relations to vertical δ
15

N distribu-

tion and the development of δ
13

C depth profiles during millennia.  
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1.3.3 Vertical distribution of carbon and nitrogen stable isotope ratios in 

topsoil across a temperate rainforest dune chronosequence in New 

Zealand (Chapter 4) 

Chronosequences can provide valuable insights into C and N dynamics across natural 

gradients with C and N stable isotopes serving as powerful tool investigating these dy-

namics. During 2,870 yrs of soil and ecosystem development across the Haast 

chronosequence, decreasing δ
13

C values of litter with age suggested a physiological 

response of plants to decreased litter N concentrations. A decrease of litter δ
15

N in the 

early succession stages and a second decline after 1,300 yrs indicated reduced N2 fixa-

tion. Beta values calculated from linear regressions between logarithmized C concentra-

tions and δ
13

C values (betaC) increased during early ecosystem development and at old 

sites while they were lowest at the intermediate stages (1,500 yrs) (Chapter 4; Fig. 4.3), 

which suggests decomposition did not decrease constantly with time. BetaN values de-

scribing the relation between the vertical distribution of N concentrations and δ
15

N val-

ues were lowest at the youngest site and increased within the first 200 yrs, likely be-

cause litter as the uppermost part of the vertical depth profile reflected an increased 

supply of N depleted in 
15

N provided by fungi. I found relations between betaC and 

betaN values suggesting that there might be shared processes shaping δ
13

C and δ
15

N 

vertical depth profiles, e.g. microbial cycling, transport or sorption. The rather fluctuat-

ing patterns of beta and betaN values falsify my third hypothesis assuming a continuous 

decrease of beta and an increase of betaN values within times of millennia. Therefore, 

my results demand a reconsideration of OM decomposition during long-term soil and 

ecosystem development in temperate rainforest dune systems and a possible transfera-

bility to other studies. 

1.3.4 Interaction of spatially independent data with vertical C stable isotope 

distribution 

Investigating impacts of climatic parameters on the vertical distribution of C stable 

isotopes in topsoil was addressed in the study across the temperature and precipitation 

gradient in northern Rhineland-Palatinate, Germany (Chapter 2). However, interpreta-

tion of the temperature impact was restricted by low soil moisture levels at warm sites. 

My study was designed to keep MAP (and other parameters like soil texture, tree spe-

cies, exposition etc.) comparable across the temperature gradient, resulting in missing 

information on temperature effects on beta values under changed soil texture or changed 
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vegetation. To test whether temperature impacts on beta values can be observed inde-

pendently of site property restrictions set across the MAT and MAP gradient in Rhine-

land-Palatinate, I extended data from my studies with other literature data of global dis-

tribution (Tab. 1.1). By including spatially independent data, I aimed to: (i) expand the 

temperature range and (ii) to vary the underlying parameters like soil moisture contents 

by changing MAP of sites. In the same way, I used data from these studies to extend the 

precipitation gradient in order to test for precipitation impacts on the vertical distribu-

tion of C stable isotopes in topsoil by adding literature data. Similarly, I aimed to ex-

pand the precipitation gradient and to vary the underlying parameters to better conclude 

temperature and precipitation effects on beta values. 

Since I observed effects of time on the development of δ
13

C depth profiles, i.e. of 

forest cover (Chapter 3) and of soil and ecosystem development (Chapter 4), I embed-

ded the observed beta values into spatially independent literature data from Diochon et 

al. (2009) with the objective to assess effects of soil and ecosystem age on beta values.  

Data collection 

Results from a total of 22 globally distributed studies constantly grown with C3 vege-

tation were included in the analysis of temperature and precipitation impacts (Fig. 1.5 

and Tab. 1.1). MAT ranged between 5.5°C and 27°C and MAP between 687 mm and 

4,065 mm.  

Due to strong variations in MAP, data from Brunn et al. (2014) (Chapter 2) were av-

eraged and divided into beta values from sites with low MAP (< 1,000 mm) and sites 

with high MAP (≥ 1,000 mm). Results from the Black Forest (Chapter 3) and from the 

Haast chronosequence (Brunn et al., 2016) (Chapter 4) were incorporated as one single 

average beta value each. From all other studies, I used the absolute values of the given 

beta value, so that higher beta values approximate high decomposition of OM in soil 

and vice versa. All 12 studies incorporated in the meta-analysis by Acton et al. (2013) 

were included in this thesis with 13 data points (Tab. 1.1). Another 13 data points are 

based on my studies and literature data not investigated in the meta-analysis by Acton et 

al. (2013). 
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Figure 1.5 Globally distributed study locations with mean beta values. 

However, I combined beta values by building means of data sampled in Kentucky by 

Acton et al. (2013) and by Campbell et al. (2009). The data provided by Garten et al. 

(2000) varied strongly in MAT and were therefore separated and averaged to obtain two 

mean beta values, one from sites with MAT ≥ 10°C, and one from sites with MAT < 

10°C. In a similar way, I included two beta values from Garten (2006) by building 

means of sites with MAT ≥ 10°C and of sites with MAT < 10°C. Data from Gregorich 

et al. (1995), Nadelhoffer and Fry (1988), Richter et al. (1999), Richards et al. (2007), 

Desjardins et al. (1994) and Martin et al. (1990) were included as given by Acton et al. 

(2013). I calculated beta values by Diochon et al. (2009) to separate the data into an age 

gradient across their investigated chronosequence. However, only one mean beta value 

was included into the investigation of temperature and precipitation impacts. Since line-

ar regression slopes were calculated from Rayleigh distillation in Wynn et al. (2005), I 

multiplied the given Rayleigh fractionation factor by 2.3 = ln(10), based on differences 

between plotting δ
13

C values against ln-transformed (natural logarthim) or log10-

transformed (decadal logarithm) C concentrations. A similar relation between the Ray-

leigh fractionation factor and beta was observed by Garten (2006). Accordingly, I added 

data by Accoe et al. (2003) and by Laskar et al. (2016) which I both multiplied by 2.3. 
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In addition, beta values from Guillaume et al. (2015), Powers and Schlesinger (2002), 

Lins et al. (2016), Krull et al. (2002) and unpublished data provided by Rehmus et al. 

collected in forests of Southern Rhineland-Palatinate (Germany) were added with one 

average beta value each. With aim to investigate time effects on beta values I included 

studies by Brunn et al. (2014), Brunn et al. (2016), unpublished data from the Black 

Forest (Chapter 3) and by Diochon et al. (2009).   

Table 1.1 Studies with location, mean annual temperature (MAT), mean annual precipitation (MAP), 

average beta value and the underlying sampling depth  

 

 

Sampling depth of all studies varied considerably between 10 and 170 cm with mean 

sampling depth of 56 ± 7 cm and relative standard deviation (RSD) of 68%. The varia-

tion of beta values was smaller with RSD = 48%, suggesting that variation of the sam-

pled soil depth is not transferred to beta values. Beta values represent the relation be-

tween C concentrations and δ
13

C values and therefore reduce effects of the sampled soil 

depth. In addition, great differences in C concentrations with depth converge by 

logarithmizing C concentrations which again reduces differences of C concentrations 

between litter and mineral soil and therefore sampled soil depth. Although sampling 

depth and beta values were linearly related (r = 0.47; P = 0.015), this relation might not 

Study Location
MAT  

[°C]

MAP 

[mm yr
-1

]
beta

Sampling 

depth [cm]

Accoe et al. 2003 Belgium 10.1 755 3.9 40

Acton et al. 2013* Blue Mountains, SE Australia 11.8 1,076 1.3 50

Letcher County, Kentucky, USA 12.0 1,085 1.4 50

Brunn et al. 2014 (Chapter 2) Rhineland-Palatine, Germany 8.9 687 2.1 10

8.1 1,061 3.5 10

Brunn submitted (Chapter 3) Black Forest, Germany 9.4 1,286 2.1 10

Brunn et al. 2016 (Chapter 4) Haast, New Zealand 11.3 3,455 1.2 10

Campbell et al (2009)* Eastern Kentucky, USA 13.1 1,220 2.0 40

Desjardins et al. 1994* Capito Poqo, Para, Brazil 26.7 2,500 4.3 40

Diochon et al. 2009* Liscomb Game Sanctuary, Nova Scotia, Canada 5.8 1,300 1.1 50

Garten et al. 2000* Southern Appalachian Mountains, USA 11.6 1,500.0 2.1 40

6.3 1,500.0 1.2 40

Garten 2006 Great Smoky Mountains National Park, USA 11.2 1,658 2.0 30

Powers & Schlesinger 2002 Sarapiquı́ , Costa Rica 24.6 4,065 2.9 100

Gregorich et al. 1995* Eastern Ontario, Canada 5.5 975 0.8 70

Guillaume et al. 2015 Jambi Province, Sumatra, Indonesia 27.0 2,224 2.8 100

Krull et al. 2002 Kakamega Forest, Kenya 25 2,040 3.9 74

Laskar et al. 2016 Kangar Valley National Park, Central India 25.7 1,533 4.8 110/170

Lins et al. 2016 Serra do Mar State Park, Sao Paulo, Brazil 18.6 2,836 2.2 100

Martin et al. 1990* Lamto, Ivory Coast 27.0 1,300 4.7 120

Nadelhoffer & Frey 1988* Wisconsin; USA 7.0 950 2.2 20

Rehmus et al. unpublished Rhineland-Palatinate, Germany 8.0 994 1.4 10

Richards 2007* Yarraman State Forest, Australia 17.1 3,000 2.4 100

Richter et al 1999* Calhoun Experimental Forest, South Carolina, USA 17.0 1,250 3.7 60

Wynn et al. 2005* Iron Range National Park, Australia 25.5 2,159 2.7 100

Table 1.1 Studies with location, mean annual temperature (MAT), mean annual precipitation (MAP), average 

beta value and the underlying sampling depth from which beta values were calculatated
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only be an effect of sampling depth, but the fact that soils were sampled deeper at tropi-

cal warm sites with deeply developed soils and a high decomposition of OM that is sup-

posed to increase the vertical 
13

C enrichment.  

All beta values (n = 26) were compiled to perform linear regression analysis in order 

to investigate the relationship between beta and MAT or beta and MAP. Control of pre-

cipitation effects across the temperature gradient was tested by classification of the data 

into beta values from studies with MAP ≤ 1,000 mm and with MAP > 1,000 mm and 

into sites ≤ 1,500 mm
 
and sites > 1,500 mm MAP. According to the average MAT of 

14.6 ± 1.5°C of all studies, I classified beta values across the precipitation gradient into 

sites ≥ 15°C and < 15°C MAT. To assess the impact of time on beta values, data points 

(n = 29) were tested for linear relations with an age gradient spanning from 1 to 2,870 

yrs B.P. The level of significance was set to P ≤ 0.05. Probability of fit to normal distri-

bution was tested by Kolmogorov–Smirnov tests. 

Results and Discussion 

Temperature: If environmental parameters and precipitation were kept constant, beta 

values decreased across the temperature gradient (Chapter 2). However, these results 

were obtained under low levels of precipitation (675-733 mm MAP) that were supposed 

to affect beta values by constraining the decomposition process by reducing soil mois-

ture. No effects of temperature on δ
13

C values in topsoil vegetation were observed 

across a transect of 400 mm yr
-1

 MAP in China (Jia et al., 2016) and in alpine grass-

lands on the Tibetan Plateau (Yang et al., 2015). Missing temperature impacts might 

similarly be based on reduced microbial activity. In addition, a potential reduction of the 

downward flux of 
13

C enriched materials could be hampered under dry conditions and 

result in lower beta values of sites with low MAP. At dry sites with MAP < 1000 mm, 

beta values of compiled studies showed no linear trend with MAT (Fig. 1.7 A). Howev-

er, sites with MAT < 5.5°C and MAP < 687 mm were not covered in this thesis. 

In contrast to these findings, beta values increased significantly with increasing MAT 

(r = 0.7; P < 0.001) if spatially independent data from different climatic zones are com-

piled (Fig. 1.6). Mean beta value of these 22 studies was 2.3 ± 0.2 and residuals of the 

linear regression were normally distributed. This result of steeper regression slopes be-

tween logarithmized C concentrations and δ
13

C values of depth profiles under higher 

MAT is in line with Acton et al. (2013) and supports the general assumption of increas-

ing decomposition with increasing temperature (Amundson, 2001; Jobbagy and 

Jackson, 2000; Kirschbaum, 2000; Trumbore, 2009). Separating data points from Acton 



1 Summarizing overview  20 

 

et al. (2013) and others results in a slightly steeper regression line with higher signifi-

cance (y = 0.1x + 0.3; r = 0.87; P < 0.001) compared to linear regression build up of 

own and literature data not analyzed by Acton et al. (2013) (y = 0.1x + 1.4; r = 0.56; P 

= 0.045). The coefficient of correlation of meta-analysis by Acton et al. (2013) was 1.4 

times higher compared to the coefficient of correlation of beta values regressed against 

MAT of all compiled studies. However, the trend of increasing beta values with increas-

ing MAT significantly persists despite this added data (Fig. 1.6). In addition, strong 

effects of MAT on beta values dominate soil moisture affected results observed across 

the temperature gradient in Rhineland-Palatinate, Germany (Chapter 2). 

 

Figure 1.6 Beta values in relation to mean annual temperature (MAT) of spatially independent data. * 

Data from Acton et al. 2013. 

Positive differences from predicted beta values calculated with the linear regression 

equation with values ≥ two-times the standard deviation stem from studies by Brunn et 

al. (2014) and Accoe et al. (2003), both not considered in the study by Acton et al. 

(2013) and therefore contribute to explain the lower coefficient of correlation in this 

thesis. The beta value included from Accoe et al. (2003) is derived from δ
13

C depth dis-

tribution of Belgian grassland soils. Data from the Black Forest (Chapter 3) are partly 
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R² = 0.52; P < 0.001
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based on cropland sites, similarly to data by Richards et al. (2007) who compared pas-

ture with forest sites. However, the included beta value was an average value for each 

study. Clearcut and post-clearcut sites were investigated by Diochon et al. (2009) and 

similarly included with one average value. Yet, vegetation and/or land-use type may 

affect beta values which need further consideration that is not addressed in the investi-

gation of MAT and MAP effects, since forest was the underlying vegetation type of all 

other investigated beta values. The second data point with strong deviation from its pre-

dicted value originates from German forest sites in northern Rhineland-Palatinate. The-

se sites exposed to average MAP of 1,060 mm yr
-1

 and MAT of 8.1°C MAT were char-

acterized by increased beta values compared to sites of similar MAT. Likewise, beta 

values were slightly but not significantly higher in the precipitation class > 1,000 mm 

yr
-1

 and in the precipitation class > 1,500 mm yr
-1

, respectively, suggesting greater de-

composition under higher MAP. Alternatively, transport of hydrophilic, 
13

C enriched 

products might be enhanced in soil profiles exposed to higher MAP (Nakanishi et al., 

2012). On a global scale, a high number of sampling sites located in the Tropics with 

high decomposition of OM in soil might raise beta values under high MAT. Yet, it ap-

peared that approximated decomposition increases more strongly with increasing tem-

perature under dryer conditions, represented by steeper regression lines of beta values at 

sites ≤ 1,500 mm MAP with increasing MAT (Fig. 1.7 B). A more dense survey of beta 

values of savanna sites with high MAT and low MAP would give better insights here. 

Martin et al. (1990) observed 
13

C depth distribution in savanna soils and their beta val-

ues fits well to tropical sites with much higher MAP, suggesting that MAP is compared 

to effects of MAT of minor importance in affecting beta values. However, literature 

data combined with own data suggest a strong positive relation between beta values and 

MAT which is well in line with the assumption that higher temperatures increase the 

decomposition of OM in soil.  



1 Summarizing overview  22 

 

 

Figure 1.7 Beta values in relation to mean annual temperature (MAT) separated into classes with different 

mean annual precipitation (MAP) with 1,000 mm yr
-1

 (A) and 1,500 mm yr
-1

 as class boundary. Insignifi-

cant relations were not depicted. 

Precipitation: Keeping temperature and environmental parameters (soil texture, tree 

species) comparable (between 7.9 and 9.1°C MAT), I found beta strongly and positively 

related to MAP (Chapter 2). In contrast, compiled literature data showed no linear trend 

of beta values and MAP (Fig. 1.8). It remains challenging whether other sites would 

feature corresponding results if soil and vegetation characteristics in addition to MAT 

were kept comparable with precipitation as sole changing variable. Compiled studies 

often capture MAP effects by varying altitude and therefore MAT with considerable 

reductions on decomposition of OM in soil. Under comparable site conditions and ex-

clusion of anaerobic situations but MAP as changing variable, I assume a dominating 

mechanistic influence on δ
13

C depth profile development. I speculate that 
13

C enriched 

products were shifted down the soil profile with fluxes of dissolved organic matter, con-

forming to the stripping idea in soil columns (Kaiser and Kalbitz, 2012), leading to 

greater isotopic differences between litter and mineral soil and therefore beta values at 

sites with higher MAP. This process might only sustain under sufficient supply of mi-

crobial recycled products that might not be available if MAT goes below the tempera-

ture needed to maintain the decomposition of OM. At sites in northern Rhineland-

Palatinate, Germany, exceptionally high beta values suggest that the vertical transport of 

hydrophilic 
13

C might have dominated the impact of decomposition on beta. Fine soil 

texture with increased selective sorption characteristics may have contributed to results 

of greater isotopic enrichment of 
13

C in depth profiles.  
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Figure 1.8 Beta values in relation to mean annual precipitation (MAP) of spatially independent data. * 

Data from Acton et al. 2013. 

The assumption of hampered decomposition under increased MAP (Amundson, 

2001) cannot be shown with global data. Yet, if beta values are separated into data with 

MAT > 15°C, beta values decrease with increasing precipitation (Fig. 1.9), conforming 

to literature findings (Amundson, 2001; Meier and Leuschner, 2010). Results of lowest 

beta values under high MAP and temperatures > 15°C might be based on water-

saturated soil conditions resulting in low vertical enrichment of 
13

C by low microbial 

decomposition (Krüger et al., 2014). Both, relatively low beta values given in the study 

of Lins et al. (2016) who calculated beta without the litter layer and data by Richards et 

al. (2007) with sites of highly variable precipitation might additionally have affected 

this negative linear trend. In either case, increasing beta with increasing MAP as found 

in Rhineland-Palatinate sites could not be shown. Neither do beta values show increas-

ing trends with MAP if MAT is kept constant.  
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Figure 1.9 Beta values in relation to MAP separated into MAT classes with 15°C MAT as class boundary. 

Insignificant linear relations were not depicted. 

Multiple regression analysis indicated that 64% of beta values can be explained by 

MAT and by MAP. Although sampling sites differed in many parameters, e.g. in alti-

tude, in soil texture, in vegetation, in litter quality and quantity, in climatic zones and 

therefore in distribution of precipitation throughout the year, radiation and evapotranspi-

ration, sampling method and the underlying laboratory of measurement, MAT appeared 

to explain a high percentage of beta values compiled from these apparently different 

studies. An even better prediction of beta values might be achieved if above mentioned 

parameters were included.  

Age: No linear trend of beta values across an age gradient of soil and ecosystem de-

velopment was observed (Fig 1.10). In contrast, I found that potential soil respiration 

and δ
13

C shaping processes like the Suess effect, organic matter input (above- and be-

lowground), and fungal: bacterial ratios might be higher only three decades following 

afforestation. This time was sufficient to detect a significant vertical C stable isotope 

distribution used for the calculation of beta values. 

y = -0.001x + 5.1

R² = 0.42; P = 0.05

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 2,000 4,000

b
et

a

MAP [mm yr-1]

< 15 °C MAT
> 15 °C MAT
≤



1 Summarizing overview  25 

 

 

Figure 1.10 Beta values in relation to soil and ecosystem age with detailed figure showing soil and eco-

system or stand ages < 300 yrs. 

 Similarly, Diochon et al. (2009) observed increasing beta values during forest de-

velopment with development of distinct δ
13

C depth profiles 15 yrs post-clearcut. How-

ever, results of increased beta values in continuous forest sites were not found in their 

study. Diochon et al. (2009) found lower beta values in the continuous forest which is in 

line with assumptions that C is more stabilized at older forest sites (Six et al., 2002). 

Beta values developed in a similar way at the long-term Haast chronosequence in New 

Zealand (Chapter 4), with increasing beta values during early ecosystem development in 

the first 300 yrs but a decline of beta values in the phase of maximal biomass. It seems 

that beta values increase during early ecosystem development, although more data are 

needed to underpin this assumption. In particular, including more data from long-term 

soil chronosequences might sustain trends of beta values during soil and ecosystem de-

velopment and would clarify the impact of fungi, mycorrhiza, vegetation type, the or-

ganic layer and proposed ecosystem phases (Peltzer et al., 2010; Wardle et al., 2004) on 

beta values. Particularly MAT and MAP could significantly affect the dimension and 

the timescale needed to increase beta values in early progressive phases. 
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Conclusion 

Decomposition of OM in soil approximated via δ
13

C depth profiles (= beta) showed 

effects of temperature, precipitation and time along global gradients. While there was a 

positive relation between decomposition and MAT according to the kinetic theory, 

MAP seems to play a minor role in affecting decomposition of OM compared to MAT. 

However, under specific conditions, MAP significantly affects δ
13

C distribution and 

therefore beta values. This was given under saturated soil conditions that reduced de-

composition under high MAP and when confounding variables (MAT, soil texture, veg-

etation) were excluded. In the latter, increased 
13

C transport via DOM fluxes likely 

dominated. Further studies are needed covering areas with comparable confounding 

variables but changing MAP, e.g. at windward and leeward sides. However, keeping 

input quality and quantity comparable remains challenging within not manipulated field 

site studies. Effects of time on beta values appeared to be ecosystem specific, but with 

an increase of decomposition during early ecosystem development and measureable 

δ
13

C depth profiles after three decades. Thus, with the prerequisite of a dominance of C 

processing over selective sorption in the soil column, beta values represent a reliable 

approximation of decomposition of OM of soils under steady state. 

1.3.5 Error discussion 

Possible bias may have arisen during following procedures: i) sampling site selec-

tion, ii) sample collection, iii) sample preparation, iv) isotopic analysis and v) applica-

tion of the sampling design. In addition, vi) the approach using beta values as approxi-

mation for decomposition of OM in soil may be questioned. 

 First, extensive spatial geodata sets served to select sampling sites across the tem-

perature and precipitation gradient (Chapter 2). Forest spatial geodata relied on frequent 

survey by forest officials. Climate spatial geodata were interpolated to a resolution of 1 

× 1 km and therefore, subject to generalization. Therefore, in situ MAT and MAP val-

ues might slightly deviate from spatial geodata. In addition, the selected temperature 

gradient covaried with an altitudinal gradient. I did not vary altitude and temperature 

separately, so that a potential altitudinal effect formed part of the temperature gradient. 

However, the maximum difference in altitude in the study was 300 m and thus, small in 

comparison with literature on altitudinal effects on carbon isotope fractionation (Körner 

et al., 1991). 
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Second, the high percentage of coarse fractions or thick roots at some sampling sites 

restricted the sampling of the entire soil depth profiles at certain sites. As extensively 

discussed in section 1.3.4, the calculation of beta values reduces variations of the sam-

pled soil depth. This reduction is caused by: i) transformation of “depth” into C concen-

trations and by ii) using logarithmized values of C concentrations. The latter compresses 

the variations of C. To overcome variations of sampling depth and thickness of soil ho-

rizons between sampling sites, I related maximum isotopic difference in profiles to beta 

values to additionally represent vertical changes. 

Third, great amounts of roots or fungi might affect beta values by “fresh C” inputs 

into mineral soil and by changing δ
13

C values. In preliminary studies in northern Rhine-

land-Palatinate, I tested the impact of fine roots on δ
13

C depth profiles. In four out of 

five soil profiles, δ
13

C depth profiles containing fine roots were less steep compared to 

δ
13

C depth profiles without fine roots (Chow-test, F(2,16) = range between 6.1 to 224.3, 

p ≤ 0.01). In addition to this, I analyzed the vertical change of δ
13

C values of removed 

roots at two selected sites (n = 93 samples). The difference between roots of each depth 

and the respective Oi horizon ranged between –0.1 to + 3.2‰ and thus, was not con-

sistent across the depth profiles. On average, OM of soil was by 2.7 ± 0.5‰ enriched in 

13
C compared to the Oi horizon (Wilcoxon signed-rank test, Z(93) = -12.0, p < 0.001) 

while roots were by 1.1 ± 1.1‰ 
13

C enriched compared to the Oi horizon (Wilcoxon 

signed-rank test, Z(93) = -6.5, p < 0.001). These results suggest that roots contribute to 

shape vertical δ
13

C depth distribution, although they are insufficient to explain entire 

13
C enrichment. I accounted for this by a carful removal of all visible roots by a pair of 

tweezers. However, in systems where fungi are abundant, removal of roots is supposed 

to affect the vertical isotopic changes in depth profiles by changing the ratio between 

soils to fungal litter. Since fungi were found to be 
13

C depleted (Kohl et al., 2015) their 

contribution could lower δ
13

C values in mineral soil samples and therefore the isotopic 

difference between litter and mineral soil OM. I assume that fungi were abundant at 

least at some stages across the Haast chronosequence and therefore, I discussed and 

took into account that the sample preparation might have an impact on δ
13

C depth pro-

files (Chapter 4).  

Fourth, since all soil samples were free of carbonate (verified by means of hydro-

chloric acid addition to finely ground mineral soil samples) and acidic (pH ≤ 4.5), 

measured total C concentration equals the organic C concentration. The isotopic analy-

sis of the samples was performed in different laboratories, each with slightly different 



1 Summarizing overview  28 

 

methods of isotopic determination. Data across the temperature and precipitation gradi-

ent (Chapter 2) were measured in Mainz, Germany with IAEA-CH-6 and IAEA-CH-7 

for normalization of measured δ
13

C values to the VPDB scale. Data of the Black Forest 

(Chapter 3) were measured in Bern, Switzerland with IAEA-CH-6, IAEA-CH-7 and 

EMA-P2 used for normalization. Data across the Haast chronosequence (Chapter 4) 

were measured in Hannover, Germany with IAEA-CH-3, IAEA-CH-6 and IAEA-600 

for normalization of measured δ
13

C values (in ‰VPDB) and USGS25, IAEA-N-1 and 

IAEA-N-2 for normalization of measured δ
15

N values (in ‰Air). Long-term measure-

ment accuracy of all IRMS analyses based on routine measurements of interspersed 

standard samples in each run during the measurement period was less than ±0.3‰ for 

δ
13

C and ±0.2‰ for δ
15

N. This analytical uncertainty is less than the expected natural 

variability. In addition, analytical uncertainties can be neglected if comparing data sets 

within one study or if beta values are compared.  

Fifth, the studies at Rhineland-Palatinate, Germany (Chapter 2) and at Haast, New 

Zealand (Chapter 4) contain no real replications. I used pseuoreplicates to describe im-

pacts of parameters on vertical C stable isotope distribution. Data of both studies there-

fore rather represent location differences than treatment effects and provide limited 

transferability (Hurlbert, 1984). However, replication of sites across chronosequences is 

not possible, because comparable sites are not available (Diochon et al., 2009) and 

therefore, results involve dynamics within this investigated system. I tried to account on 

the use of pseudoreplicated samples by extending my results with spatially independent 

data (Chapter. 1.3.5).  

Sixth, although beta values seem to be robust on variations of depth, the development 

of thick organic layers at aged soils across the Haast chronosequence (Chapter 4) may 

have hampered the accuracy of beta values to approximate decomposition of OM in 

soil. Including the organic layer (Oe and Oa layer) with high C concentrations but 

strong 
13

C enrichment into linear regressions between log10 (g·C·kg
-1

) and δ
13

C values 

of aged soils results in less steep regression lines, visible in diverging Δ
13

C and beta 

values (Chapter 4; Fig. 4.3). In addition, due to its strong depletion in 
13

C, data from 

litter layers (Oi layers) strongly deviated from their predicted values at aged soils (Fig. 

S4.1). Despite the normal distribution of residuals, litter layers steepened regression 

lines. Similar effects of the litter layer were found under continuously forested sites in 

the Black Forest, Germany (Chapter 3). However, these statistical deviations of litter 

layer data should not account assuming a decay continuum from litter to mineral soil.  
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1.4 General conclusion 

In line with results across varieties of ecosystems and environmental gradients, organic 

matter C stable isotope ratios significantly increased with soil depth. However, variation 

of vertical C stable isotope distribution occurred depending on temperature, precipita-

tion and time. According to the questions raised in the introduction, my results allow to 

draw the following general conclusions. In addition they allow providing an outlook for 

using organic matter C stable isotopes as proxy for decomposition. 

1. How do temperature and precipitation affect vertical C stable isotope distribution 

under field site conditions and comparable environmental parameters (Chapter 2)? 

Vertical δ
13

C values showed distinct patterns depending on variations of MAT and 

MAP. Given the relation between the vertical distribution of δ
13

C values in topsoil 

and the approximation of decomposition of OM (= beta values), my results suggest 

decreasing decomposition with increasing MAT. This was against my hypothesis as-

suming accelerated decomposition under higher temperatures and contrasts results 

from globally independent data which rely on general assumptions of the kinetic the-

ory. Lower microbial activity linked with decreased substrate accessibility due to low 

soil moisture levels serve to discuss effects of MAT on vertical C stable isotope dis-

tribution. In line with my hypothesis, I observed increasing decomposition with in-

creasing MAP. However, selective sorption and the downward transport of hydro-

philic, 
13

C enriched compounds with fluxes of soil solution might have dominated 

the development of δ
13

C depth profiles under high MAP. Higher numbers of cross 

site studies with comparable confounding variables are necessary to test how micro-

bial decomposition of OM and selective sorption interact and how these processes af-

fect δ
13

C depth profiles. 

2. Can distinct δ
13

C depth profiles be found a few decades following afforestation of 

former cropland (Chapter 3)?  

Examining the impact of time on the development of vertical C stable isotope distri-

bution in topsoil, I found a few decades following afforestation of former cropland 

sufficient to develop distinct δ
13

C depth profiles. In line with my hypothesis, vertical 

C stable isotope distribution suggests limited applicability to approximate low de-

http://dict.leo.org/ende/index_de.html#/search=accessibility&searchLoc=0&resultOrder=basic&multiwordShowSingle=on&pos=0
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composition in soil, but an increase of approximated decomposition with time of for-

est cover. 

3. How do δ
13

C and δ
15

N depth profiles develop during long-term ecosystem and soil 

formation (Chapter 4)? 

At timescales of millennia, I found variable trends for δ
13

C and δ
15

N depth profiles 

with time and no constant decrease of beta values. The rather fluctuating behavior of 

beta and betaN values falsifies my third hypothesis assuming a continuous decrease 

of beta and an increase of betaN values during millennia. Beta values increased dur-

ing early ecosystem development and at old sites, while they were lowest at the in-

termediate stages (1,500 yrs) across the Haast dune chronosequence under temperate 

rainforest. Increasing beta values during the early phase of ecosystem development 

suggest enhanced decomposition, probably stimulated through plant communities 

containing low abundances of woody species, while fungal colonization in accumu-

lated organic layers likely decreased beta values at the intermediate stages. I could 

not clarify one main process responsible for increasing beta values at the late stages 

of the chronosequence. Increasing decomposition related to the canopy opening after 

the collapse of first generation trees was discussed which however, contradicts de-

creasing N availability observed across the chronosequence. A separation from 

aboveground input from input in soil serves as another explanation. However, the lat-

ter assumption raises doubt relating to the existence of a decomposition continuum in 

soil profiles. Increasing manganese concentrations of litter as a measure of greater 

litter decomposition status rather suggest that litter processes are transferred down in 

soil profiles. This strengthens the robustness of beta values to approximate decompo-

sition. Interestingly, relations between δ
13

C and δ
15

N depth profiles reveal shared 

processes shaping depth distribution of stable isotopes of C and N, e.g. microbial cy-

cling, transport or sorption and therefore, the interplay with other nutrients suggests 

processes relevant for δ
13

C depth distribution.  

The analysis of vertical C stable isotope distribution appeared to provide an easily 

applicable approach to approximate decomposition under field conditions. Further ma-

nipulative experiments together with a better understanding of fractionation processes in 

the plant-soil-continuum could considerably improve predictions of beta values as 

proxy for decomposition of OM and its relation to turnover times and decomposition 

rates. Shifts of microbial community structures with particular role of mycorrhiza in 
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temperate systems, the role of thick organic layers at old sites, the physical accessibility 

of C and fractionation during transport mechanisms should need closer consideration on 

their impact on δ
13

C depth profiles. Beta values describe progressive processes of C 

availability and accessibility in combination with the downward shift of OM. Clarifying 

how microbial decomposition of OM and selective sorption of OM interact and how 

these processes affect the isotopic signature of bulk SOM at different climate regimes 

and differently aged soils are great challenges. Labeling studies under field site condi-

tions together with compound specific analysis might gain better insights. In addition, 

many open questions remained on processes affecting isotopic signatures of litter that 

forms the uppermost part of depth profiles. For example, the (physiological and mor-

phological) response of plants to nutrient limitation of aged soils including the conse-

quences on their isotopic signatures in addition to shifts in function and species compo-

sition of N2 fixers need to be studied.  

A fast development of δ
13

C depth profiles within decades was measured and there-

fore, it remains uncertain whether beta values are able to evaluate long-term C storage 

reaching centuries. However, analyzing vertical δ
13

C distribution in topsoil provides a 

chance to overcome the measurement of C in soils with much faster turnover of months, 

as it is addressed in short-term manipulated experiments. Hence, with the prerequisite of 

a dominance of C processing over selective sorption in the soil column, beta values 

suggest to be a reliable approximation of decomposition of OM under steady state, and 

therefore, the distribution of C stable isotopes in topsoil may contribute to evaluate the 

source-/sink functions of soils for C. 

1.5 Author contribution 

List of Publications  

1. Temperature and precipitation effects on δ
13

C depth profiles in SOM under temperate 

beech forests (Chapter 2) 

2. Three decades after afforestation are sufficient to yield decomposition-related vertical 

δ
13

C depth profiles in soil (Chapter 3) 

3. Vertical distribution of carbon and nitrogen stable isotope ratios in topsoil across a 

temperate rainforest dune chronosequence in New Zealand (Chapter 4) 
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2.1 Abstract 

Enrichment of 
13

C in SOM with soil depth is related to interacting processes influ-

enced by temperature and precipitation. Our objectives were to derive climate effects on 

patterns of vertical δ
13

C values of soil organic matter (SOM) while minimizing the ef-

fect of confounding variables. 

We investigated vertical changes in δ
13

C values of SOM in 1-cm depth intervals in 

silvicultural mature beech (Fagus sylvatica L.) forest ecosystems in northern Rhineland-

Palatinate across gradients of MAT (7.9 to 9.7°C mean annual temperature) and MAP 

(607 to 1085 mm mean annual precipitation) in winter 2011. Forest stands (n = 10) were 

chosen based on data sets provided by the Rhineland-Palatinate Forest Administration 

so that variations in these gradients occurred while other environmental factors like 

physico-chemical soil properties, tree species, stand age, exposition and precipitation 

(for the temperature gradient) or temperature (for the precipitation gradient) did not dif-

fer among study sites.  

From litter down to the mineral soil at 10 cm depth, soil organic carbon (SOC) con-

tent decreased (47.5 ± SE 0.1% to 2.5 ± 0.1%) while the δ
13

C values increased (-29.4 ± 

0.1‰ to -26.1 ± 0.1‰). Litter of sites under higher MAP/ lower MAT had lower δ
13

C 

values which was in line with literature data on climate driven plant physiological pro-

cess. To compare the dimension of the vertical 
13

C enrichment, δ
13

C values were re-

gressed linearly against log-transformed carbon contents yielding absolute values of 

these slopes (beta). Beta values ranged between 0.6 and 4.5 (range of r from -0.7 to -1.0; 

p < 0.01). Due to an assumed decay continuum and similar variations of δ
13

C values in 

litter and in 10 cm depth, we conclude that effects on isotope composition in the Oi lay-

er continue vertically and therefore, δ
13

C values in litter do not solely control beta val-

ues. Beta values decreased with increasing MAT (r = -0.83; p < 0.05). Reduced soil 

moisture and therefore both, reduced microbial activity and reduced downward 

transport of microbial cycled DOM (= 
13

C enriched) might be responsible for less pro-

nounced δ
13

C depth profiles in case of high temperatures. Greater C:N ratios (lower 

degradability) of the litter under higher temperatures likely contributed to these depth 

trends. Beta values increased with increasing MAP (r = 0.73; p < 0.05). We found de-

creasing C:N ratios in the mineral soil that possibly indicates higher decomposition un-

der higher precipitation. Exclusion of the organic layers from linear regressions indicat-

ed a stronger impact of MAP on the development of δ
13

C depth profiles.   
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Our results confirm temperature and precipitation effects on δ
13

C depth profiles and 

indicate stronger 
13

C enrichment under lower MAT/higher MAP. Therefore, time series 

of vertical δ
13

C depth profiles might provide insights into climate change effects. 

2.2 Introduction 

Stable carbon isotopes have been used to describe SOM dynamics (Accoe et al., 

2003; Balesdent and Mariotti, 1996; Garten et al., 2000). With increasing soil depth the 

SOM becomes enriched in 
13

C leading to less negative δ
13

C values in deeper parts of the 

mineral soil (Boström et al., 2007; Ehleringer et al., 2000; Nadelhoffer and Fry, 1988b). 

Several processes might cause these δ
13

C depth changes. First, the Suess effect i.e., the 

depletion of 
13

C in the atmosphere due to combustion of fossil fuel, might lead to an 

accumulation of 
13

C depleted organic material in the surface layers of the soil (Friedli et 

al. 1986, Boström et al. 2007). However, studies of δ
13

C depth profiles in archived and 

modern soils (Torn et al., 2002) or bare-fellow soil studies (Balesdent and Mariotti, 

1996) gave evidence that additional processes must contribute to the shifts of 
13

C 

throughout the soil profile. Second, roots are enriched in 
13

C by 1-2‰ compared to δ
13

C 

values of aboveground plant material (Badeck et al., 2005; Bird et al., 2003; Werth and 

Kuzyakov, 2010). The considerable presence of roots (from trees and herbaceous 

plants) in the upper soil might therefore explain another part of the differences in δ
13

C 

of SOM with soil depth. Third, isotopic fractionation during microbial metabolism of 

SOM with respiration of lighter compounds (Lerch et al., 2011; Werth and Kuzyakov, 

2010; Wynn et al., 2005) and fourth, the downward cycling of hydrophilic, 
13

C enriched 

decomposition products (Dümig et al., 2013; Nakanishi et al., 2012) with dissolved or-

ganic carbon (DOC) fluxes and the selective physico-chemical sorption of hydrophobic, 

13
C depleted compounds likely contribute to establish the vertical δ

13
C depth trends 

(Dümig et al., 2013; Kaiser and Kalbitz, 2012; Nakanishi et al., 2012). However, to 

date, neither the mechanisms nor the dynamics are completely understood. 

Several authors reported on the relationship between decomposition of SOM and 

δ
13

C depth profiles in soils (Acton et al., 2013; Ehleringer et al., 2000; Garten, 2006; 

Garten et al., 2000; Nadelhoffer and Fry, 1988b; Powers and Schlesinger, 2002). In the 

studies of Garten (2006) or Acton et al. (2013), rates of changes in δ
13

C throughout soil 

profile were interrelated to isotopic fractionation during decomposition and a relation-

ship between 
13

C enrichment and C turnover verified by laboratory incubation meas-
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urements of soil C mineralization (Garten, 2006) and by carbon isotope mass balance 

modeling and meta-analysis (Acton et al., 2013). In these studies, the regression be-

tween log-transformed carbon contents (= soil depth) and δ
13

C values were established 

and slopes of the linear regressions (= beta values) were used to describe shifts of 
13

C 

throughout the soil profiles, while beta values served as proxy for C turnover. Except 

for the Suess effect all other processes potentially explaining the depth profile of δ
13

C 

values (see preceding paragraph) are affected by many environmental conditions includ-

ing climate. Although temperature and precipitation effects on δ
13

C depth profiles were 

reported in several studies (Garten, 2006, 2011; Garten et al., 2000), such effects might 

be caused by factors that coincided with temperature/precipitation gradients and thus, 

influenced shifts of 
13

C throughout soil profile in the above-mentioned studies: (i) soil 

texture, (ii) tree species, (iii) litter quantity and quality or (iv) site exposition. A field 

study is necessary along temperature and precipitation gradients with negligible varia-

tion in soil, vegetation and site characteristics. Since in former studies on δ
13

C depth 

profiles these factors were not considered systematically, environmental conditions ex-

cluding temperature and precipitation need to be comparable among sites. 

The relationship between temperature and reaction rates as well as biological pro-

cesses established by Van’t Hoff (1884) generally indicates an accelerated turnover of 

soil organic matter (SOM). On the other hand, soil moisture which is controlled by both, 

temperature and precipitation, might influence microbial activity (Davidson and 

Janssens, 2006; Giardina and Ryan, 2000; Goebel et al., 2011; Moyano et al., 2013). 

Because experimental field or laboratory studies have restricted predictive power for 

temperature and precipitation effects under real field conditions (Borken et al., 2006; 

Kirschbaum, 2000; Schindlbacher et al., 2012; Unger et al., 2010), studies along natural 

gradients are useful (Meier and Leuschner, 2010; Scharnweber et al., 2011; Wang et al., 

2013). 

In our study, we therefore selected forest sites with comparable environmental char-

acteristics and soil properties across a temperature (7.9 to 9.7°C MAT) and a precipita-

tion gradient (607 to 1085 mm MAP) under beech (Fagus sylvatica L.) forests in north-

ern Rhineland-Palatinate. In high resolution we analyzed the organic layers and the up-

per mineral soil. Our objective was to assess temperature and precipitation effects on 

δ
13

C depth profiles. According to former studies (Acton et al., 2013; Garten, 2006; 

Powers and Schlesinger, 2002), the degree of 
13

C enrichment in SOM was described by 

beta values (|δ
13

C/log (g C kg
-1

)|) i.e., the absolute values of the slopes of the linear re-
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gressions between log-transformed carbon contents (= soil depth) and δ
13

C values. We 

hypothesized that (i) higher temperatures increase microbial activity and decomposition 

of SOM and thus, beta values and (ii) increasing precipitation positively affects decom-

position in soil due to conditions favorable for microbial activity and enhances the 

downward transport of microbial cycled DOM and therefore, increases beta values.  

2.3 Material and methods 

2.3.1 Sampling sites 

Sampling sites were located across temperature and precipitation gradients in mature 

beech (Fagus sylvatica L.) forest ecosystems under silvicultural use in Rhineland-

Palatinate (Fig. 2.1). ArcGIS Desktop (10) was used to select sampling sites out of the 

extensive geodata sets provided by the Rhineland-Palatinate Forest Administration, the 

Rhineland-Palatinate Geological Survey and Mining Authority, the Rhineland-

Palatinate Centre of Excellence for Climate Change Impacts and the German Weather 

Service. Environmental characteristics other than climate and altitude (i.e., soil type, 

soil texture, tree species, stand age and exposition) did not differ among sampling sites 

(Tab. 2.1).  

 

Figure 2.1 Maps of the sampling sites with distribution of forest areas in Rhineland-Palatinate (A), the 

temperature gradient (B) and the precipitation gradient (C). 
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In general, the selection of sites was different to the random approach commonly 

used. Due to our preselection, temperature (and altitude) and moisture are the only vari-

ables that differ across our study sites and therefore, site-effect is reduced which does 

minimize the need for replicates but does restrict the transferability to other site condi-

tions.  

Table 2.1 Selection creteria for all sampling sites across the temperature and precipitation gradient in 

Rhineland-Palatinate, Germany 

 

Temperature and precipitation data is based on interpolated climate data (reference 

period 1971-2000) with a spatial resolution of 1x1 km (German Weather Service). Cli-

mate characteristics were selected in an orthogonal way that allowed for a separation 

between temperature and precipitation effects i.e., differences in temperature under con-

stant precipitation and vice versa (Tab. 2.2). We aggregated the data of the precipitation 

gradient with sites < 8.5°C MAT and gradient with sites MAT 8.5 to 9.5°C to investi-

gate precipitation effect on beta values and on C:N ratios. 

The temperature gradient covaried with an altitudinal gradient. Altitude and tempera-

ture were related significantly (y = -0.01x+10.51***; r = -0.92). We did not vary alti-

tude and temperature separately, so that a potential altitudinal effect forms part of our 

temperature gradient. The maximum difference in altitude in our study was 300 m and 

thus, small in comparison with literature on altitudinal effects on carbon isotope frac-

tionation (Körner et al., 1991). 

Value

Soil type Cambisol

Soil texture

Clayloam (20-30% clay; 50-65% silt) with 

siliceous sandstone as detritus (Lower 

Devonian)

Bedrock Deep argillaceous schist (Lower Devonian)

Soil physical properties
Oven-dry-density ≤ 1.2 gcm

-3
; free of 

carbonate

Dominant tree species Fagus sylvatica  L.

Tree species mixture Monocultures (< 10 % other tree species)

Stand age
40-70 years (sites t2p5 = 90 years and t3p2 = 

25 yrears) 

Potential natural vegetation Luzulo-Fagetum; Hordelymo-Fagetum

Slope 0-26°

Exposition Northeast, north or northwest

Altitude 140-440 m.a.s.l.(mean altitude = 323 ± 31 m)

Site properties

Table 2.1 Selection criteria for all sampling sites across the temperature and precipitation 

gradient in Rhineland-Palatinate, Germany

Environmental Characteristic

Soil

Forest site
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Table 2.2 Sampling sites within the temperature and precipitation gradient with according MAT [°C] and 

MAP [mm·yr
-1

]. MAP varied between 675 to 733 mm across the temperature gradient, while MAT varied 

between 7.94 to 9.07°C across the precipitation gradient. 

 

2.3.2 Sampling and sample preparation 

Organic matter and soil samples were collected at ten forest sites in November and 

December 2011, shortly after the autumnal abscission of the leaves. At each sampling 

site, five replicates were taken. 

Soil samples were collected by a root auger (Eijkelkamp Agrisearch Equipment BV, 

Netherlands). Since the 
13

C enrichment throughout the soil is most pronounced in the 

upper centimeters of the soil profile (Accoe et al., 2003; Fang and Moncrieff, 2005; 

Kammer et al., 2012) soil cores were taken to a depth of 10 cm of the mineral soil. The 

soil cores with a diameter of 8 cm were cut into 1 cm sections and each stored separate-

ly in plastic bags. 

The organic layers were collected as Oi (litter), Oe and Oa horizon prior to cutting 

the mineral soil into sections. The high percentage of the coarse fractions in soil at some 

forest sites restricted the depth which could be sampled resulting in a sampling depth of 

7 cm at site t7p0 D, 8 cm at site t5p3 C and 9 cm for two replicates of the site t8p6 (A 

and B) and at the sites t1p9 D, t2p5 C, t3p2 E and t7p0 D. 

All samples were oven dried at 55°C until weight constancy. The dried organic layer 

samples were ground in a shredder (Retsch SM 2000) resulting in a homogeneous mix-

ture. Dried mineral soil samples were sieved through a 2 mm sieve. Thereafter, these 

aliquots and those of the shredded organic layer samples were ground and homogenized 

with a Planetary Ball Mill PM 200 (Retsch, Germany).  

t0p8; t1p9

8.5-9.5 t4p1; t7p0 t5p3 t6p7

T
e
m

p
e
r
a

tu
r
e
 g

r
a

d
ie

n
t 
→ ≥ 9.5 t8p6; t9p4

< 8.5 t2p5; t3p2

Precipitation gradient →

< 675 675-749 750-849 ≥ 950

Table 2.2 Sampling sites within the temperature and 

precipitation gradient with according MAT [°C] and 

MAP [mm yr-1]. MAP varied between 675 to 733 mm 

across the temperature gradient, while MAT varied 

between 7.94 to 9.07°C across the precipitation 

gradient.
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2.3.3 Roots 

To keep the root impact in our study as small as possible we i) chose forest sites with 

potential natural vegetation with negligible understory vegetation (Hordelymo- or 

Luzulo-Fagetum) and ii) removed all visible roots of each mineral soil sample by a pair 

of tweezers.  

In preliminary studies (unpublished), we tested the impact of fine root removal on 

δ
13

C depth profiles. In 4 out of 5 soil profiles, δ
13

C depth profiles containing fine roots 

were less steep compared to δ
13

C depth profiles without fine roots (Chow-test, F(2,16) 

= range between 6.1 to 224.3, p ≤ 0.01). In addition to this, we analyzed the vertical 

change of δ
13

C values of removed roots at two selected sites (n = 93 samples). The dif-

ference between roots of each depth and the respective Oi horizon ranged between –0.1 

to + 3.2‰ and thus, was not consistent across the depth profiles. On average, SOM was 

by 2.7 ± 0.5‰ enriched in 
13

C compared to the Oi horizon (Wilcoxon signed-rank test, 

Z(93) = -12.0, p < 0.001) while roots were only by 1.1 ± 1.1‰ 
13

C enriched compared 

to the Oi horizon (Wilcoxon signed-rank test, Z(93) = -6.5, p < 0.001). Due to the re-

sults of these preliminary studies, we deduce that the contribution of roots to the δ
13

C 

depth profile is insufficient to explain entire 
13

C enrichment in SOM. 

2.3.4 Laboratory analysis 

2.3.4.1 pH measurement 

According to DIN 19684, 12.5 ml of 0.01 N CaCl2 solution was added to 5 g of a 

mixed soil sample of each soil core and stirred 5 minutes. The suspension was allowed 

to settle for one hour and then stirred up again. Afterwards, pH was measured with an 

HI 1292 electrode (HANNA instruments, Germany). 

2.3.4.2 Elemental and isotopic measurements 

Carbon and nitrogen contents (w/%) were determined with an Elemental Analyzer 

(Vario EL III, Elementar). Since all soil samples were strongly acidic (pH 3.6 to pH 4.5) 

and free of carbonate (Tab. 3), the measured total C content was equivalent to the or-

ganic C content. Stable C isotope ratios were analyzed by a coupled isotope ratio mass 

spectrometry (IRMS) (Isoprime, GV Instruments, UK). Results are given in delta nota-

tion as δ
13

C in ‰VPDB (Eq.2.1):  
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where R is the 
13

C/
12

C ratio. We used IAEA-CH-6 and IAEA-CH-7 for normaliza-

tion of measured δ
13

C values to the VPDB scale. Long-term measurement accuracy of 

IRMS analyses based on routine measurements of interspersed standard samples in each 

run (total number of standard replicates for this study: n = 100) of sulfanilic acid (Merck 

KGaA, Germany) during the measurement period was ±0.3‰. We regularly evaluated 

the EA-IRMS system for nonlinearity and measurement drift and found that both did 

not affect the measurements beyond the general long-term measurement accuracy of 

0.3‰. 

2.3.5 Statistical analysis and calculation of beta values 

The δ
13

C depth profile approach is based on the vertical decrease of C content simi-

larly to the SOC decay in soil as an approximation of the depth increments (Garten et 

al., 2000). Beta values were derived from the slopes of the linear regressions (Eq. 2.2) 

                   
                   

   

          
   

  

between log-transformed C contents (log (g C kg
-1

)) (= x) and their respective δ
13

C 

values (‰VPDB) (= y) of the depth intervals (organic layers and of the mineral soil). We 

refer to the absolute value of the slope of the linear regression equation as beta values. 

Since environmental characteristics and soil properties, except climate and altitude were 

held constant, these beta values represent the climate dependent change in the δ
13

C val-

ues from fresh litter input to older SOM for every tenfold increase in the SOC content 

and, these beta values can be considered as indicative of isotopic fractionation during 

decomposition combined with physical processes in soil (Acton et al., 2013; Garten, 

2006).  

We employed linear regression analyses to quantify the influence of climatic parame-

ters (MAT and MAP). The level of significance was set at p ≤ 0.05 in all tests. The pre-

requisite of normal distribution was verified by a Kolmogorov-Smirnov test. 
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2.4. Results 

2.4.1 δ
13

C depth profiles 

With increasing soil depth the mean SOC content decreased from 47.5 ± SD 1.1% to 

2.5 ± 0.8% while the mean δ
13

C values increased from -29.4 ± 0.8‰ to -26.1 ± 0.6‰ 

(Fig. 2.2). The vertical depth increase coincided with a decrease in the C content (y = 

3.17x+24.36***; r = 0.81). In 26% of the profiles in our study, C contents of single in-

crements (n = 16) throughout the soil profile deviated marginally from trends of de-

creasing values with soil depth. 

 

Figure 2.2 Changes of the soil organic carbon content (SOC) [%] and the δ
13

C values [‰VPDB] with depth 

of all sites. 

The relative standard deviation (%RSD = relative standard deviation calculated by 

dividing the standard deviation by the mean) of δ
13

C values in the litter (RSD = 2.7%) 

was nearly comparable to the RSD of δ
13

C values in the mineral soil at 10 cm depth 

(RSD = 2.2%). The mean 
13

C enrichment i.e., the difference between δ
13

C values of the 

Oi horizon and δ
13

C values of SOM in 10 cm soil depth was 3.4 ± SE 0.2‰ (Tab. 2.3). 

The logarithm of C contents was related closely to the change in δ
13

C values from the 

organic layers down to 10 cm of the mineral soil. Linear regressions between the log 

transformed C contents (log (g C kg
-1

)) and the corresponding δ
13

C values (‰VPDB) 

were highly significant (P ≤ 0.008) throughout all sampling sites with r ranging between 

-0.69 and -0.99 (Fig. 2.3). The variation of beta values among the five replicates within 

one forest site was low with RSD ranging between 9% (sites t3p2 and t4p1) and 33% 

(site t9p4). Beta values were most pronounced if the organic horizons were included 

. . . . .

δ13C [‰ VPDB]
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into the linear regressions, resulting in steeper regression slopes (higher beta values) in 

soil profiles containing the organic horizons compared to regressions in the mineral soil 

only (betaMineralSoil) (beta = 2.4 ± 0.1; betaMineralSoil = 2.0 ± 0.2). 

2.4.2 Temperature and precipitation gradient 

The litter layer (Oi horizon) of the warmer sites tended to have higher δ
13

C values 

(Tab. 2.3) and its δ
13

C values were positively related to MAT (y = 0.65x-34.89**; r = 

0.59). Site t8p6 B had an exceptionally high δ
13

C value in the Oi horizon that deviates 

from other Oi δ
13

C values and that was higher than δ
13

C values from deeper soil depth 

(Fig. 2.3). We found a weak negative relation between altitude and litter δ
13

C values 

with y = -0.003x-28.31**; r = -0.39. Mean root: finefraction mass ratio of the removed 

roots ranged between 0.004 g g
-1

 (site t8p6) and 0.02 g g
-1

 (site t1p9) (Tab. 2.3) and no 

impact of MAT or MAP was found. 

Table 2.3 Sampling sites with according site characteristics, mean root mass in g·roots·g
-1

finefraction, Oi 

horizon (litter) δ
13

C values and 
13

C enrichment from top Oi horizon down to the mineral soil at 10 cm 

depth. Mean values with ±SE and n. 

 

Beta values decreased with increasing temperature (Fig. 2.4). The highest mean beta 

value of 4.0 ± 0.2 was found at site t0p8, the forest site with the lowest MAT. The low-

est mean beta value of 0.9 ± 0.1 was observed at site t9p4, the site with the highest 

MAT (Fig. 2.3).  

Site MAT [°C]
MAP 

[mmyr
-1

]

Altitude 

[m.a.s.l.]
pH

Mean root 

mass [gg
-1

]

Litter δ
13

C      

[‰ VPDB]

Mean 
13

C 

enrichment     

[‰ VPDB]

t0p8 7.94 1037 385 3.6 0.01±0.00; n=50  -30.7±0.1; n=5  5.2±0.2; n=5

t1p9 8.28 1085 386 3.9 0.02±0.00; n=49  -29.4±0.3; n=5 3.3±0.3; n=4

t2p5 8.30 704 440 4.2 0.01±0.00; n=49  -29.4±0.1; n=5 3.5±0.2; n=4

t3p2 8.34 675 425 4.5 0.01±0.00; n=49  -29.7±0.2; n=5 3.7±0.2; n=4

t4p1 8.76 643 342 4.0 0.01±0.00; n=50  -29.3±0.3; n=5 3.3±0.2; n=5

t5p3 8.81 681 367 4.0 0.01±0.00; n=48  -29.0±0.2; n=5 2.4±0.1; n=4

t6p7 8.96 766 277 4.4 0.00±0.00; n=50  -29.3±0.2; n=5 3.8±0.3; n=5

t7p0 9.07 607 245 4.5 0.01±0.00; n=46  -29.6±0.2; n=5 3.1±0.2; n=3

t8p6 9.52 733 225 3.9 0.00±0.00; n=48  -28.3±0.4; n=5 3.3±0.3; n=3

t9p4 9.73 683 140 4.5 0.01±0.00; n=50  -28.9±0.4; n=5 2.1±0.3; n=5

Table 2.3 Sampling sites with according site characteristics, mean root mass in g roots/g f inefraction, Oi 

horizon (litter) δ
13

C values  and 
13

C enrichment from top Oi horizon down to 10 cm mineral soil. Mean 

values with ±SE and n .
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Figure 2.3 Regressions between C content (log10(g·C·kg
-1

)) and the corresponding δ
13

C values [‰VPDB] 

for all sampling sites with 5 replicates each (A, B, C, D, E) and according linear regression line. *P 

<0.05; **P<0.01; ***P<0.001. 
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We found an increase of C: N ratios with increasing temperature in the Oi horizon 

(Fig. 2.5). The C: N ratios of the mineral soil were not related to the MAT. δ
13

C values 

in the Oi horizon were weakly related to MAP (y = -0.001x-28.41**; r = -0.40) i.e., the 

litter δ
13

C values decreased with increasing precipitation. Beta values were positively 

related to MAP (Fig. 2.4). The C: N ratios of the mineral soil decreased with increasing 

MAP, whereas we found no significant change of the C:N ratios with increasing pre-

cipitation in the Oi horizon (Fig. 2.5).  

 

 

Figure 2.4 Beta values (|δ
13

C/log10(g·C·kg
-1

)|) across the temperature gradient (°C MAT) and the precipi-

tation gradient (mm·yr
-1

 MAP) with linear regression lines. *** P< 0.001. 

 

Figure 2.5 C: N ratios of the Oi layer (upper circles) und the mineral soil (circles below) across the tem-

perature gradient (°C MAT) and the precipitation gradient (mm·yr
-1

 MAP) with linear regression lines. 

*** P< 0.001. 
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If the organic horizons were excluded from the liner regressions between δ
13

C and 

log C contents, no significant relation was found for betaMineralSoil and MAT (y = -

0.060x+2.149; r = -0.027) but for betaMineralSoil and MAP (y = 0.003x-0.06**; r = 0.46). 

2.5 Discussion 

Our results confirm the widely reported enrichment of 
13

C in SOM with increasing 

soil depth (Accoe et al., 2003; Boström et al., 2007; Dümig et al., 2013; Garten, 2006; 

Nadelhoffer and Fry, 1988b). Measured mean 
13

C enrichment (3.4‰) nearly doubled 

the historic change of δ
13

C in the atmosphere (around 1.8‰) (Francey et al., 1999; 

Keeling et al., 2005). This is according to former investigations (Balesdent et al., 1993; 

Ehleringer et al., 2000; Garten et al., 2000; Torn et al., 2002; Werth and Kuzyakov, 

2010; Wynn et al., 2005) and discloses that in addition to the Suess effect other process-

es must contribute to the shifts of 
13

C throughout the soil profile. While there might be a 

systematic influence of the Suess effect for all of our study sites, we can exclude a tem-

perature/moisture-dependent Suess effect for our sites with a maximum distance of less 

than 100 km. To minimize the well known root impact on δ
13

C values throughout soil 

profile we i) chose northern exposed forest sites with potential natural vegetation with 

negligible understory vegetation and ii) removed all visible roots before analysis. In a 

preliminary study, the comparison of δ
13

C values of Oi horizon, roots and SOM sug-

gested that roots were unlikely to entirely explain the vertical 
13

C changes in SOM.  

To compare the dimension of vertical δ
13

C changes in SOM in high spatial resolu-

tion, we used the widely accepted (Campbell et al., 2009; Ehleringer et al., 2000; 

Garten, 2006; Garten et al., 2000; Nadelhoffer and Fry, 1988b; Powers and Schlesinger, 

2002) relationship between SOM decay and vertical 
13

C enrichment by using beta val-

ues. The average beta values in our study were higher than values observed along an 

elevation gradient in temperate Southern Appalachian Mountains, USA (Garten, 2006; 

Garten et al., 2000) and lower than beta values observed in tropical Costa Rica (Powers 

and Schlesinger, 2002). In total, the range of beta values between 0.6 and 4.5 exceeded 

the range of beta values in the above mentioned studies. However, heterogeneous spe-

cies (Brüggemann et al., 2011; Garten and Taylor, 1992), decomposition state of the 

litter (Kammer et al., 2012), soil texture differences (Bird et al., 2003; Wynn et al., 

2005) or the different sampling methods within and among the studies might result in 
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specific beta values at different forest sites and therefore, lead to variations in beta val-

ues that hampers the comparability.  

Yet, the impact of the Oi horizon δ
13

C values on beta is not fully understood. The ini-

tial substance should not affect the dimension of beta values within the decay continu-

um, as it has already been proposed by Garten et al. (2000) and is confirmed by compa-

rable variations of δ
13

C values in the litter and in the mineral soil at 10 cm depth in our 

study. On the other hand, if we extended our approach to greater soil depths (> 10 cm) 

and a specific steady-state δ
13

C value in greater soil depth existed, δ
13

C values in the 

litter would affect the slopes of the linear regressions used for beta. If the organic hori-

zon was excluded from the linear regressions, no relation was found for betaMineralSoil and 

MAT but for betaMineralSoil and MAP, likely indicating a stronger impact of precipitation 

on the development of δ
13

C depth profiles in our study. 

2.5.1 Temperature impact on δ
13

C depth profiles 

The litter layer (Oi horizon) of the warmer sites tended to have higher δ
13

C values 

(Tab. 2.3). The isotopic composition of C in litter partly reflects temperature conditions 

due to temperature impacts on plant physiological processes i.e., an air-to-leaf water 

vapor pressure deficit might force the stomata to be closed, the dark respiration could be 

enhanced, or temperature might lower the soil moisture through evapotranspiration. In 

the study of Wang et al. (2013), temperature and δ
13

C values of leaves were positively 

related along a 400 mm precipitation isoline corroborating our results. In contrast, 

Körner et al. (1991) found decreasing δ
13

C values in leaves with increasing temperature 

(decreasing latitude). But they emphasized the sampling of non water-stressed plants. 

Strong interrelations between temperature and humidity constrain the interpretation of 

sole temperature effects on litter δ
13

C values. Although we found a weak negative rela-

tion between altitude and litter δ
13

C values, the precipitation impact or the low altitudi-

nal difference of 300 m might have diminished the isotopic fractionation effects leading 

to 
13

C enrichment with increasing altitude described by Körner et al. (1991). Further-

more, a potential altitude influence on the input signal (δ
13

C of the litter) was normal-

ized by the regression used for calculating beta values. 

Beta values were significantly lower in case of higher temperatures (Fig. 2.4). These 

findings contradict the interrelations of MAT and beta values of compiled data present-

ed by Acton et al. (2013). If beta values are understood as proxy for C decomposition 
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(Acton et al., 2013; Garten, 2006), we can deduce decreasing decomposition of SOM 

under increasing temperatures. This is counterintuitive given the well-known relation-

ship between temperature and reaction rates established by Van’t Hoff (1884) that was 

corroborated by a positive relationship between temperature and carbon turnover 

(Amundson, 2001; Kirschbaum, 2000). The C:N ratio of the litter as an indicator for 

substrate decomposability was greater at sites with high temperatures as compared to 

sites with lower temperatures and might corroborate decreased litter decomposability in 

case of higher temperatures. Positive relationships between C:N ratios in litter and tem-

perature were reviewed by Sardans et al. (2012) and typical for temperate ecosystems 

where high temperatures coincide with droughts. 

As a result of high evapotranspiration at warmer sites in our study, soil moisture 

might have been reduced. Together with a low degradable litter (greater C:N ratios), the 

low soil moisture might have negatively affected microbial activity and the downward 

cycling of 
13

C enriched material. Therefore, δ
13

C depth profiles in SOM were less de-

veloped i.e., the 
13

C enrichment was distinctly smaller at the warmer sites. However, a 

sole temperature effect on δ
13

C depth profiles without a restriction on drought remains 

unclear. 

2.5.2 Precipitation impact on δ
13

C depth profiles 

We found increasing beta values with increasing precipitation (Fig. 2.4). Higher de-

composition under higher MAP was not consistently in line with literature. Precipitation 

increases were generally assumed to hamper decomposition, thus turning forest soils 

into C sinks (Amundson, 2001; Meier and Leuschner, 2010). Due to slope positions of 

our study sites, we presume no longer periods under saturated condition in soil matrix 

resulting in low microbial respiration. A higher decomposition under higher precipita-

tion was supported by decreasing C: N ratios in mineral soil with increasing precipita-

tion (Fig. 2.5) which may confirm the enhanced microbial decomposition due to better 

substrate decomposability or a relative accumulation of N. Higher water infiltration in 

soils under higher precipitation likely promoted conditions favorable for microbial ac-

tivity in our study.  

Vertical percolation of soil solution plays an important role in the translocation of 

13
C enriched DOC (Nakanishi et al., 2012). Dissolved organic carbon, originating from 

recent photosynthates, appeared to be more mobile and enriched in 
13

C as compared to 
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organic material with higher degradation status. Microbially altered or recycled materi-

als are sorbed preferentially and depleted in 
13

C (Cleveland et al., 2004; Guggenberger 

and Kaiser, 2003; Nakanishi et al., 2012). The combination of the sorption of 
13

C-

depleted products and the downward transport of 
13

C enriched material resulted in a 

distinct δ
13

C depth profile (Nakanishi et al., 2012). Optimal microbial activity in com-

bination with high water fluxes and the sufficient input of plant material with specific 

litter quality likely guaranteed the release of overlaying SOM and enhanced the devel-

opment of distinct δ
13

C depth profiles under higher precipitation. 

Again, similar to temperature effects, we presume that precipitation effects on the 

13
C enrichment in soil profile were influenced by the interacting effects of (i) specific 

litter quality (e.g. changing C:N ratios), (ii) microbial respiration (e.g. degree of frac-

tionation) and (iii) the physico-chemical sorption properties of the soils (e.g. amount of 

percolating soil solution ), leading to a more pronounced 
13

C enrichment at sites with 

higher precipitation.  

2.6 Conclusion 

Temperature and precipitation impacts on vertical changes of SOC and δ
13

C values 

were investigated in 1-cm-intervals in SOM from Oi horizon down to the mineral soil at 

10cm depth at 10 forest sites. With increasing soil depth we found decreasing SOC con-

tent while the δ
13

C values increased. Soils under higher temperatures exhibited a lower 

13
C enrichment compared to soils under higher precipitation. Therefore, these vertical 

depth profiles of δ
13

C values combined with C:N ratios in litter and in mineral soil indi-

cated climate-driven decomposition trends. The results fit well to recent models and 

studies evidencing a combination of isotopic fractionation during microbial metabolism, 

of physical mixing processes during decomposition, and of downward transport of 
13

C 

enriched DOC inducing the vertical 
13

C enrichment in SOM. 

However, uncertainties remained on temperature effects on δ
13

C depth profiles not 

affected by drought, the evidence of the decay continuum, interannual changes of depth 

profiles and on the time scale on which δ
13

C depth profiles develop and therefore, fur-

ther studies on the dynamics and mechanisms of δ
13

C depth profiles are needed to fully 

explain climate impacts on vertical 
13

C enrichment in SOM and a supposed link to C 

decomposition and the physical accessibility of C.  
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3.1 Abstract 

Decomposition in soils is crucial in evaluating mitigation of rising atmospheric CO2 

levels with vertical carbon (C) stable isotope distribution in topsoil serving as easily 

applicable method to investigate C dynamics in soil. Since many parameters affecting 

δ
13

C depth patterns can change fast and strongly during land-use changes, vegetation 

conversions provide valuable insights into C dynamics in soil. 

We sampled 36 topsoil core profiles (0-10 cm) with sites under different land-use, 

i.e. arable sites and continuously forested sites as references for none or maximum de-

velopment of vertical δ
13

C distribution, respectively and afforested sites to test for the 

time of δ
13

C depth profile formation in the Black Forest, Germany. Relations between 

the vertical decrease of C and the increase of δ
13

C values served to approximate decom-

position and tested for relationships to potential soil respiration of a laboratory incuba-

tion study. 

We found an accumulation of C with increasing time of forest cover and a develop-

ment of δ
13

C depth profiles within decades. Carbon concentrations and decomposition 

were positively related, suggesting that C accumulation is not necessarily coupled with 

reduced decomposition. The Suess effect, increased belowground biomass production 

and related greater dissolved organic matter production as well as lower pH values may 

have accounted for greater isotopic differences in topsoil and increased potential soil 

respiration at afforested sites, leading to greater transport of 
13

C enriched microbial 

products. These parameters appeared to become further amplified at continuously for-

ested sites. In contrast, soils under agricultural use showed near zero vertical enrichment 

in 
13

C but low measured potential soil respiration fits well to trends of increasing de-

composition with time of forest cover. 

Our results suggest a hampered applicability of vertical C stable isotope distribution 

to approximate low decomposition in soil, underpin the contribution of respiration to 

shape vertical C stable isotope patterns and provide evidence that short timescales of 30 

yrs are sufficient to develop distinct δ
13

C depth profiles in topsoil.  

3.2 Introduction 

The vertical change in organic matter (OM) carbon (C) stable isotope ratios is a 

widely reported phenomenon across varieties of ecosystems and environmental gradi-
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ents with OM becoming enriched in the heavier isotope 
13

C. The analyses of the vertical 

δ
13

C changes have been proven to be a useful tool investigating C processing, with line-

ar regression slopes between logarithmized C concentrations and δ
13

C values in soil 

profiles serving to approximate decomposition of OM in soil (Brunn et al., 2016; Brunn 

et al., 2014). Assessing decomposition experiences significant attention owing to its 

strong relation to the C sequestration potential of soils and therefore, complements the 

evaluation of mitigating rising atmospheric CO2 concentrations (Lal, 2005; Wiesmeier 

et al., 2014). It remains an open question on what timescale OM pools react (Schmidt et 

al., 2011) and how fast δ
13

C depth profiles develop in soil.  

Mechanistically, one main parameter shaping δ
13

C depth profiles appeared to be the 

accumulation of 
13

C enriched compounds from microbial C processing or microbial 

cells itself (Diochon and Kellman, 2008; Lerch et al., 2011). Lasting decades, 
13

C en-

riched microbial products might accumulate and facilitate greater enrichment in mineral 

soil. The atmospheric depletion of 
13

CO2 (Rubino et al., 2013) - known as Suess effect - 

during the past two centuries has often been discussed as another parameter shaping 

δ
13

C depth profiles (Acton et al., 2013; Boström et al., 2007; Menichetti et al., 2014). 

The incorporation of more depleted plant material in the upper parts of topsoil is sup-

posed to enhance the isotopic difference of OM in soil profiles suggesting that the long-

er the site is exposed to the change of atmospheric δ
13

CO2, the more pronounced the 

depth profile is.  

During vegetation changes of ecosystems like the conversion from arable sites to 

forests, microbial processing and the impact of the Suess effect can profoundly change 

and therefore affect δ
13

C depth profiles. This might be attributed to shifted conditions 

for microbial activity and to time effects. For example, increased above- and below-

ground biomass production and potential acidification induced by afforestation of arable 

sites can shift microbial community structures by promoting fungal abundance 

(Laganière et al., 2010; Pietri and Brookes, 2009), increase soil respiration (Hall and 

Silver, 2013) and increase dissolved organic matter production (Hansson et al., 2010) 

that are supposed to promote the development of distinct δ
13

C depth profiles (Kaiser 

and Kalbitz, 2012). While at arable sites, the removal of OM and disturbance by plow-

ing may impede the development of δ
13

C depth profiles through hampered physical pro-

tection and aggregation of OM (Del Galdo et al., 2003; Six et al., 2002), afforested sites 

should experience a distinct vertical distribution of C stable isotopes. More pronounced 

δ
13

C depth profiles under afforested sites might be attributed to accumulated 
13

C en-
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riched products originating from decomposition of OM, to greater OM inputs (above- 

and belowground) that can increase respiration, to the Suess effect and to undisturbed 

transport and sorption processes within the soil column. At continuously forested sites, 

the consequences of all these parameters should be amplified and facilitate a greater 

isotopic difference in topsoil and therefore more distinct δ
13

C depth profiles.  

In our study, we focused on the time required for the development of vertical δ
13

C 

profiles in soils by comparing arable, afforested and continuously forested sites with 

different times of 0, < 50 and > 150 yrs grown with Norway spruce in the Black Forest, 

Germany. In addition, we elucidated decomposition inferred from vertical δ
13

C profiles 

patterns by measuring soil respiration in a laboratory incubation study. Our aim was to 

test whether δ
13

C depth profiles develop after afforestation of arable land. We hypothe-

sized that δ
13

C depth profiles do not develop under arable land but vertical changes 

emerge within decades under afforested cropland and become further amplified at con-

tinuously forested sites. 

3.3 Material and methods  

3.3.1 Sampling sites 

We chose sites associated with different land-use forms and different times of forest 

cover (arable sites: 0 yrs, afforested sites: < 50 yrs and continuously forested sites: > 

150 yrs) in the Black Forest, Germany (48°16′N, 8°15′E). This area in Southwestern 

Germany is prominent for a reforestation of former cropland that became unprofitable 

and thus, land-use change has established as a widely distributed practice within the last 

century. Arable sites were regularly plowed until a depth of 20 cm and grown with pota-

to, rye and oat in crop rotation. Dominating species at afforested sites was Picea abies 

(L.) Karst. (Norway spruce) that has been cultivated c. 31 to 48 yr ago and has followed 

crop rotation (potato, rye and oat). Dominating species at continuously forest sites were 

Picea abies (L.) Karst. and Abies alba Mill. (Silver fir) which have persisted for ≥ 150 

yrs. Silvicultural practice at the afforested and the continuously forested sites was selec-

tion cutting according to the local “Plenterwald” system. All sites were continuously 

grown with C3-vegetaion and not exceeding a distance of 20 km. Cambisols with gneiss 

and granite as bedrock were sampled at steep slope positions within an altitudinal range 

between 385 and 680 meters above sea level. Mean annual temperature (1961-1990) at 
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Wolfach was 9.4 °C with mean annual precipitation of 1286 mm yr-1 (German Weather 

Service). 

3.3.2 Sampling and sample preparation 

For each land-use type, we sampled soil cores in fourfold repetition at three different 

locations in October and November 2013, i.e. each type contains four pseudoreplicates 

(fourfold repetition at each site = variation at one site) multiplied by three (sampling at 

three different locations) resulting in 12 profile samples for each land-use and a total of 

36 profile samples. In a quadratic pattern with 20 m distances between corners, we col-

lected samples by a root auger (Eijkelkamp Agrisearch Equipment BV, Netherlands) to 

a depth of 10 cm in mineral soil and after removal, soil cores (diameter of 8 cm) were 

cut into 1 cm sections. The organic layers of the afforested and the continuously forest-

ed sites were collected as Oi (litter) horizon prior to cutting the mineral soil into sec-

tions. Arable sites were plowed and no organic horizon existed.  

All samples were oven dried at 50°C until weight constancy. The dried organic layer 

was ground in a shredder (Retsch SM 2000). Dried mineral soil samples were sieved 

through a 2 mm sieve and root material was removed. Aliquots were ground and ho-

mogenized with a Planetary Ball Mill PM 200 (Retsch, Germany).  

3.3.4 Laboratory analysis, statistics and calculations 

3.3.4.1 pH measurement 

PH of soil samples was determined with CaCl2 solution and measured with a HI 

1292 electrode (Sen Tix 81, WTW, Germany). 

3.3.4.2 Potential soil respiration 

We determined the potential soil respiration in a two-day laboratory incubation ex-

periment in order to relate them to beta values as an approximation of decomposition. 

Mineral soil samples were rewetted with deionized water to gain a soil moisture content 

of 30% and afterwards incubated at 20  1 °C in an airtight leach trap with KOH solu-

tion as CO2 absorbent (Macfayden, 1970). After 48 hours, BaCl2 mixed with a 2.5% 

phenolphthalein/thymophtalein tracer solution were added to the KOH solution. The 

released CO2 [ml h
-1

] during incubation was determined titrimetrically with HCl solu-

tion (Macfadyen 1970) and calculated as [Eq. 3.1]:   
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, where 0.1 is a factor for the concentration difference of 1 mol l
-1

 KOH and 0.1 mol 

l
-1

 HCl, HClb/HCls the HCl titration volume for the blank/sample, 



f t  the titration factor, 

KOHi the total KOH volume incubated, KOHt the KOH volume titrated, 22.4 is the mo-

lar gas volume l mol
−1
 at 20 °C, h is the incubation period in hours and 2 is the reac-

tion ratio factor. Produced CO2 was converted into µg CO2 per dry mass of soil per hour 

(µg CO2 g soil
−1

 h
−1

) or into µg CO2 per mg C per hour (µg CO2 mg C
−1

 h
−1

). Improper 

experimental setup was assumed when values exceeded 7.7 µg CO2 g soil
 −1

 h
−1

 (mean 

plus twofold standard deviation) and therefore, soil respiration of two soil samples: af-

forested sites (A) and continuously forested sites (I) were excluded. By building means 

of values obtained from locations (pseudoreplicates), this exclusion of values did not 

affect data interpretation. 

3.3.5 Elemental and isotopic measurements 

Carbon concentrations were analyzed with an Elemental Analyzer (Isotope Cube, 

Elementar, Hanau, Germany). Since all pH values of soil samples were ≤ 6.3 and free of 

carbonate (tested with hydrochloric acid on properly ground samples), the measured 

total C concentration was equivalent to the organic C concentration. Stable isotope rati-

os were analyzed by a coupled isotope ratio mass spectrometry (IRMS) (Isoprime 100, 

Isoprime, Manchester, England). Results are given in delta notation as δ
13

C [Eq. 3.2]:  

               
                   

         
        

where R is the 
13

C/
12

C ratio. We used IAEA-CH-6, IAEA-CH-7 and EMA-P2 for 

normalization of measured δ
13

C values [in ‰VPDB]. Measurement accuracy of IRMS 

analyses based on routine measurements of interspersed samples per 15 samples of 

EMA-P2 during the measurement period was ≤ ± 0.01‰ (n = 31) and for sulfanilic acid 

± 0.02‰ (n = 18). 
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3.3.6 Calculations and statistical analyses   

Linear regression analyses were used to determine the patterns of isotopic changes 

within the soil profile. We regressed log10-transformed carbon concentrations [log10 

(g·C·kg
-1

)] (= x) and their respective stable isotope values [δ
13

C ‰] (= y) of the depth 

intervals (organic layers and of the mineral soil) (Brunn et al., 2016; Brunn et al., 2014; 

Garten, 2006). Absolute values of regression slopes were termed beta values, so that 

higher beta values approximate higher decomposition and vice versa. We defined beta 

values as beta = 0 at sites with formerly positive regression slopes (n = 2; 6% of all cas-

es) (Fig. S3.1), corresponding to a vertical isotopic depletion. To omit bias, beta values 

of all non-significant linear regressions (n = 11; 31% of all cases) were included into 

analyses. 

In addition to beta values, we used Δ values to describe vertical changes in C concen-

trations (= ΔC) and in δ
13

C values (= Δ
13

C) of soil profiles. Due to spatial variation in 

the depth and thickness of soil horizons between sampling sites, e.g. a soil horizon at 10 

cm soil depth of a given location does correspond to a slightly deeper or shallower 

depth as compared to the neighboring sampling site, we used maximum difference in 

profiles instead of the difference between topmost and lowermost sampled soil depth to 

best represent the vertical changes. At afforested and continuously forested sites, Δ val-

ues equal the difference in C concentration between mineral soil (low C concentrations) 

and litter (high C concentrations) and the isotopic difference between mineral soil (max-

imum δ
13

C value) and litter (minimum δ
13

C value). No distinct vertical decrease in C 

concentrations and isotopic enrichment in 
13

C were found at arable sites. I.e. in half of 

these soil profiles, OM decreased in C concentrations with depth with average depth of 

minimum C concentrations at -5.8 cm and average depth of maximum C concentrations 

at -5.7 cm depth. Similarly, in 7 out of 12 soil profiles, minimum δ
13

C value were deep-

er (average depth = -6.4 cm) in soil profile than maximum δ
13

C values (average depth = 

-5.7) contradicting an isotopic enrichment. Therefore, Δ values on arable sites rather 

refer to a maximum variation of C concentrations and δ
13

C values in soil profiles more 

than to the general vertical decrease of C concentrations and the isotopic enrichment of 

13
C. Relative standard deviation (%RSD= relative standard deviation calculated by di-

viding the standard deviation by the mean) are given for averaged values.  

We employed one-way ANOVA post hoc tests to quantify vertical changes on varia-

bles or different land-use forms. In case of homogeneity of variances we used a post hoc 

Tukey test whereas in case of heteroscedasticity, the Games Howell test was conducted. 
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We applied paired t-tests (in case of homogeneity of variances) or Welch´s t-tests (in 

case of heteroscedasticity) to compare two values. In addition, we tested for relations 

between values by linear regression analysis. Significance was determined at p ≤ 0.05 in 

all tests. Normal distribution was tested by a Kolmogorov-Smirnov test. 

3.4 Results 

Carbon concentrations as mean of the total depth profile were c. one quarter lower on 

arable sites compared to continuously forested sites (F (2,6) = 25.7; P = 0.001) with no 

significant change in C concentrations between afforestation and continuous forest 

(Tab. 3.1). In mineral soil only, mean C concentrations of arable sites did not signifi-

cantly differ from afforested sites but from continuously forested sites (F (2,6) = 11.0; P 

= 0.010) (Tab. 3.1) pointing to (i) times of > 50 yrs of forest cover are required for dis-

tinct C accumulation in mineral soil and (ii) the importance of the organic layer in af-

fecting total profile C concentrations. δ
13

C values in mineral soil OM were by 1‰ low-

er on arable sites compared to the continuously forested sites (F (2,6) = 6.07; P = 0.036) 

(Tab. 3.1). While continuously forested sites were characterized by significantly great-

est C concentrations in mineral soil compared to arable and afforested sites, they also 

featured highest δ
13

C values in mineral soil OM compared to arable sites.  

No organic layer existed on arable sites. On continuously forested sites, we observed 

a greater accumulation of organic material with a mean litter layer thickness of 2.9 ± 0.1 

cm compared to afforested sites where organic layers were 1.8 ± 0.2 cm thick (F (22) = 

1.1; P = 0.000). We found no significant differences in litter layer C concentrations and 

C isotopic signature between sites. However, litter at continuously forested sites had 

slightly lower C concentrations (409.4 ± 35.6 g·C·kg
-1

) compared to afforested sites 

(421.4 ± 9.2 g·C·kg
-1

) and was by c. 1‰ depleted in 
13

C compared to the afforested 

sites. Litter C: N ratios did not differ between afforestation (29.7 ± 1.4) and continuous-

ly forested sites (29.4 ± 0.8). 
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Table 3.1 Mean ± SE values of parameters at sites of different land-use with letters representing signifi-

cant differences between land-uses. n = 9, except litter δ
13

C values n = 6 owing to the missing organic 

layer at arable sites. 

 

 

We found lowest vertical changes of C concentrations on arable sites compared to af-

forested and continuously forested sites (F (2,6) = 96.2; P = 0.000) (Tab. 3.1). This 

nearly missing vertical variation in C concentrations on arable sites was also present in 

the vertical variation of OM δ
13

C values, resulting in low Δ
13

C values (Tab. 3.1). We 

found lowest isotopic difference on arable sites, with greater isotopic difference at af-

forested and highest isotopic difference at continuously forested sites (F (2,6) = 31.9; P 

= 0.001) (Tab. 3.1).    

Absolute values of the linear regression slopes (= beta) between log10-transformed C 

concentration and the corresponding δ
13

C values served to approximate decomposition. 

Linear regressions were in 58% (n = 21) highly significant (P ≤ 0.001), while in 28% (n 

= 10) of all profiles non-significant linear regressions were found; mainly attributed to 

arable sites (Fig. S3.1). Beta ranged between 0.6 and 4.1 with a mean of 2.1 ± 0.4 (RSD 

= 53%) and r between -0.42 and -0.99. On arable sites, beta values were significant in 

only two out of 12 depth profiles and had a low mean coefficient of determination of R
2
 

= 0.16 ± 0.0. Nevertheless, non-significant beta values were included into analysis. We 

found more significant relationships and higher coefficients of determination at the con-

tinuously forested sites (afforestation: R
2
 = 0.78 ± 0.0; continuously forested sites: R

2
 = 

0.91 ± 0.0) with only one non-significant linear regression at afforested sites (Fig. S3.1). 

Beta values did not significantly differ between land-uses. Low significance of linear 

regressions (Fig S3.1) and high RSD of 60% of beta values on arable sites might have 

hampered distinct differences. However, a trend of higher beta values with time of for-

est cover was visible (Fig. 3.1c & Tab. 3.1).  

 

Land-use beta pH
δ

13
Clitter 

[‰VPDB]

Arable sites 3.4 ± 0.3 b 1.6 ± 0.6 0.3 ± 0.1 c 4.7 ± 1.2 b 4.5 24.8 ± 4.9 b 24.8 ± 4.9 b -27.9 ± 0.1 b

Afforested sites 3.9 ± 0.1 ab 1.4 ± 0.3 1.8 ± 0.3 b 394.1 ± 10.7 a 4.1 71.1 ± 5.5 a 36.1 ± 5.9 b -27.4 ± 0.2 ab -28.7 ± 0.3

Continuous forest 5.1 ± 0.5 a 3.1 ± 0.5 3.0 ± 0.3 a 362.9 ± 36.7 a 3.7 99.0 ± 10.5 a 67.9 ± 8.8 a -26.9 ± 0.3 a -29.6 ± 0.5

δ
13

Cmineral 

soil [‰VPDB]

Table 3.1 Mean ± SE parameters of sites under different land-use with letters representing significant differences between land-

uses. n  = 9, except litter δ
13

C values n  = 6 owing to the missing organic layer at arable sites.

Soil 

respirati

on 

[μg·CO2·

h
-1

]

Δ
13

C 

[‰VPDB]

ΔC                    

[g·C·kg
-1

]

Csoil profile                 

[g·C·kg
-1

]

Cmineral soil                 

[g·C·kg-1] 
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Figure 3.1 Mean ± SE changes of logarithmized C concentrations [log10(g·C·kg
-1

)] with depth (a), of OM 

δ
13

C values [‰VPDB] with depth (b) and log10(g·C·kg
-1

) plotted against δ
13

C values (c) for sites under 

different land-use: arable sites (yellow), afforested sites (blue) and continuously forested sites (green). n = 

3 for each data point. Error bars represent two standard errors. 

Among land-uses, we found trends of decreasing pH values with time of forest cover. 

Although insignificant, arable sites had highest pH values (4.5) compared to afforested 

sites (4.1) and continuously forested sites (3.7). 

Potential soil respiration per g soil measured during the two-day laboratory study 

ranged between 2.7 and 5.8 μg CO2 h
-1

 with mean soil respiration of 4.1 ± 0.3 μg CO2  

h
-1

. Values differed between arable and continuously forested sites (F (2,6) = 7.3; P = 

0.025) with lowest soil respiration on arable sites, intermediate soil respiration at the 

afforested sites and highest soil respiration at the continuously forested sites (Tab. 3.1). 

Soil respiration was significantly and positively related to beta values and to the isotopic 

difference Δ
13

C, while it was negatively related to litter δ
13

C values (Tab. 3.2). In addi-

tion, beta values were positively related to Δ
13

C and C concentrations in mineral soil. 

Similarly, we found a negative relation of beta and litter δ
13

C values (Tab. 3.2). No rela-

tions of any value with pH values of soil were observed. Similarly, C: N ratios of litter 

were not related to any parameter investigated in this study. All other observed relations 

with correlation coefficients and significance are given in Tab. 2. 
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Table 3.2 Correlation coefficients between variables. Bold numbers represent significant relations with *, 

P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. n = 9, except litter δ
13

C values n = 6 owing to the missing organic 

layer on arable sites with 0 yrs of forest cover. 

 

3.5 Discussion 

With changing land-use, we found distinct variations of vertical isotopic differences 

(Δ
13

C) in topsoil. At arable sites, δ
13

C depth profiles were least developed, while we 

found most pronounced δ
13

C depth profiles at continuously forested sites, i.e. the longer 

the time of forest cover, the greater the vertical enrichment in 
13

C, which approves our 

hypothesis. Values of the isotopic difference close to zero on arable sites may be at-

tributed to a missing organic layer on top of soils - assumed to set the isotopic baseline 

(Shilenkova and Tiunov, 2013) - and recent plowing, and therefore mixing and disturb-

ance of OM in soil profiles. However, despite an assumed strong impact of the organic 

layer, Menichetti et al. (2014) observed a small but present vertical isotopic enrichment 

of 
13

C in soils of different bare-fellow experimental sites kept without any OM inputs. 

This finding is in line with the observations of small Δ
13

C values on arable sites in our 

study. We discuss several parameters that have accounted for isotopic differences in 

topsoil under different land-use; (i) the Suess effect, (ii) litter δ
13

C values, (iii) microbial 

processing, (iv) roots and (v) transport and sorption processes in soil profiles (Fig. 3.2).   

Soil 

respiration 
beta Δ

13
C ΔC pH Csoil profile Cmineral soil 

beta 0.767**

Δ
13

C 0.895*** 0.670*

ΔC 0.483 0.170 0.765*

pH -0.308 -0.292 -0.309 0.254

Csoil profile                0.637 0.511 0.873** 0.871** -0.357

Cmineral soil                0.631 0.682* 0.789* 0.600 -0.378 0.915***

δ
13

Clitter -0.954** -0.909* -0.877* 0.829* -0.043 -0.189 -0.338

Table 3.2 Correlation coefficients between variables. Bold numbers represent significant relations with *, P  ≤ 0.05; 

**, P  ≤ 0.01; ***, P  ≤ 0.001. n  = 9, except litter δ
13

C values n  = 6 owing to the missing organic layer on arable 

sites with 0 years of forest cover.
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Figure 3.2 Conceptual figure showing parameters that appeared to affect δ
13

C depth profiles for sites 

exposed to different land-use (arable sites, afforested sites, and continuously forested sites) in this study. 

Potential soil respiration, 
13

C enrichment, soil organic carbon (SOC) concentration and pH were deter-

mined in this study. Other parameters are based on literature data.  

It remains challenging to what extend the Suess effect can serve to explain vertical 

trends of δ
13

C in OM. Presuming that the isotopic dilution of atmospheric CO2 with 
13

C 

of c. 2‰ is first, fully transferred into plants and litter during the total observed time 

span of our study and is second, the only parameter affecting the vertical isotopic differ-

ence in topsoil, the isotopic difference from litter to mineral soil at sites with plant cover 

> 150 yrs should equal the decrease in δ
13

CO2 of 2‰. In our study, sites with forest 

cover > 150 yrs (continuously forested sites) had mean Δ
13

C of 3.0 ± 0.3‰ which was 

greater than the expected impact of the atmospheric depletion. Even sites with forest 

cover < 50 yrs (afforested sites) had an isotopic difference of 1.8 ± 0.3‰; exceeding the 

expectations of the Suess effect being the only driver of δ
13

C depth profiles, since the 

atmospheric depletion is approximated to have c. 1.5‰ within the past 50 yrs (Rubino 

et al., 2013). The other way, the Suess effect as single driver of δ
13

C depth profiles 

would result in a difference of 0.5‰ in Δ
13

C values between afforested and continuous-

ly forested sites, but we observed a difference more than twice as high. Conforming to 

other studies, we assume that besides the Suess effect, additional processes must exist to 

contribute to the vertical δ
13

C distribution. 
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Litter as the uppermost isotopic signal was slightly depleted in 
13

C at continuously 

forested sites compared to afforested sites (Tab. 3.1). Since needle litter experiences 

turnover times within a decadal range (Czimczik and Trumbore, 2007), we can exclude 

a pure effect of the atmospheric depletion in 
13

C on litter δ
13

C values in our study. 

Trends of lower litter δ
13

C values at continuously forested sites might be linked with 

greater fungal abundance, probably related to slightly lower pH values. Lower pH val-

ues could affect microbial community structures by promoting fungi (Pietri and 

Brookes, 2009). Since fungi were found to be depleted in 
13

C (Kohl et al., 2015; 

Wallander et al., 2009), the spatial separation of fungi and bacteria in soil profiles can 

increase the isotopic difference in soil profiles. A potential increasing abundance of 

fungi in the litter layer could therefore result in more depleted litter at continuously for-

ested sites. However, the isotopic signature of litter lacks in explaining the greater en-

richment in 
13

C of OM in mineral soil at sites with longer times of forest cover (Tab. 3.1 

& Fig. 3.1).  

The positive relations between beta values, Δ
13

C and potential soil respiration (Tab. 

3.2) suggest a contribution of microbial processing in shaping δ
13

C depth profiles. The 

idea behind relations of the isotopic enrichment and decomposition refers to kinetic 

fractionation during the respiration process, resulting in respiration of the lighter 
12

C 

and accumulation of the heavier 
13

C isotope in soil OM (Diochon and Kellman, 2008; 

Lerch et al., 2011; Wynn et al., 2005). Given that the loss pathway of C is determined 

via soil respiration, OM should become enriched in 
13

C, resulting in positive relations 

between soil respiration and beta values. The results of our study show a significant 

relation between the vertical distribution of δ
13

C values and potential soil respiration 

(Tab. 3.2) and therefore clearly suggest the evidence of beta values being an approxima-

tion of microbial C processing in soil. Beta values did not significantly distinguish be-

tween sites exposed to different land-uses (Tab. 3.1). However, we found trends of 

higher beta values, higher potential soil respiration and a significantly more pronounced 

vertical isotopic difference (Δ
13

C) in topsoil of afforested sites that further increased at 

continuously forested sites (Tab. 3.1). The accuracy of beta values as approximation for 

decomposition at sites with low decomposition appeared to be debatable since linear 

regressions at arable sites had low coefficients of determination and were predominantly 

non-significant. The generally very good curve fitting of linear regressions to calculate 

beta values of previous and other studies (Acton et al., 2013; Brunn et al., 2016; Brunn 

et al., 2014; Powers and Schlesinger, 2002) suggest a limited appliciability of beta val-
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ues on plowed arable sites. Though, the significant relation between beta values and 

potential soil respiration (Tab. 3.2) indicates the good approximation of beta values as a 

measure for C processing and therefore suggests lower decomposition on arable sites 

owing to lower beta values and lower soil respiration, supporting trends of greater de-

composition at afforested and continuously forested sites.  

Considering respired CO2 is composed of heterotrophic (microorganisms decompos-

ing OM) and autotrophic (roots and associated microorganisms) components 

(Brüggemann et al., 2011; Hanson et al., 2000), greater rooting density and biomass 

production (Bahn et al., 2008; Peri et al., 2015) at sites longer exposed to forest cover 

might induce greater respiration. Since roots have higher δ
13

C values compared to 

leaves (Badeck et al., 2005; Hobbie et al., 2004), the greater enrichment in 
13

C in miner-

al soil of continuously forested sites in our study (Tab. 3.1 & Fig. 3.1) suggests a greater 

rooting and contributes to explain increased potential soil respiration. As a result of crop 

harvesting, low root abundance at arable sites likely reduced respiration rates.  

In addition to root impacts, transport and sorption processes may have contributed to 

trends of more pronounced δ
13

C depth profiles with time of forest cover. Hansson et al. 

(2010) underlined the contribution of roots in creating dissolved organic matter (DOM), 

which were attributed to play an important role in shaping δ
13

C depth profiles (Kaiser 

and Kalbitz, 2012). They found DOM produced from root litter at later stages of de-

composition more strongly sorbed in mineral soil compared to DOM from fresh litter 

types, suggesting that the greater length of tree colonization at continuously forested 

sites compared to afforested sites in our study likely induced accumulating effects 

through more continuous input of decomposition products from litter and roots. In addi-

tion, lower pH values were found to increase dissolved organic C and increase microbial 

respiration (Hall and Silver, 2013) and could therefore also enhance δ
13

C depth profiles 

through greater transport of 
13

C enriched products.  

3.6 Conclusion 

We could show that land-use affected vertical δ
13

C distribution with significantly 

less distinct δ
13

C depth profiles at arable sites compared to continuously forested sites. 

Three decades after conversion, δ
13

C depth profiles developed with isotopic differences 

in topsoil in between those of arable sites and continuously forested sites. Absolute val-

ues of slopes of linear regression lines (= beta) between log10-transformed C concentra-
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tion and δ
13

C values were used to approximate decomposition. Beta values were posi-

tively related to potential soil respiration suggesting microbial processing as a compo-

nent to explain vertical C stable isotope distribution. In addition, depletion of atmos-

pheric CO2 in 
13

C, accumulation of 
13

C enriched microbial products, increasing fungal: 

bacterial ratios, greater root biomass, decreasing pH, as well as increased transport and 

sorption processes in soil profiles are proposed to enhance δ
13

C depth trends. However, 

greater potential soil respiration and greater beta values under continuously forested 

sites contradict expectations of forest soils offering a mitigation strategy to reduce glob-

al warming by acting as a C sink and suggest a low C sequestration potential of forest 

soils. This might demand a reconsideration of the role of soils afforested with spruce in 

regard to its postulated function within the global change. 
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3.9 Supplementary material 

 

Figure S3.1 Linear regressions between carbon concentrations [log10(g·C·kg
-1

)] and corresponding δ
13

C 

values [‰VPDB] with linear regression lines and regression equation of arable sites, afforested sites and 

continuously forested sites. Plots in one line represent fourfold pseudoreplicates at one location. *, P < 

0.05; **, P < 0.01; ***, P < 0.001.  
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4.1 Abstract 

Chronosequences can provide valuable insights into carbon (C) and nitrogen (N) dy-

namics across natural gradients with C and N stable isotopes serving as powerful tool 

investigating these dynamics.  

We studied changes in δ
13

C and δ
15

N values in litter, organic layer and mineral soil 

on dunes across the Haast chronosequence (New Zealand), which spans 120 to 2,870 

yrs of pedogenesis beneath a temperate rainforest. Decomposition was approximated 

from linear regression slopes between C concentrations and δ
13

C values and termed 

betaC. Similarly we calculated betaN values to test the relationship between vertical N 

decrease and δ
15

N increase.  

Decreasing δ
13

C values of litter with age suggests a physiological response of plants 

to decreased litter N concentrations. A decrease of litter δ
15

N in the early succession 

stages and a second decline after 1,300 yrs indicates reduced N2 fixation. BetaC values 

increased during early ecosystem development and at old sites, and were lowest at the 

intermediate stages (1,500 yrs), which suggests decomposition did not decrease con-

stantly with time. BetaN values were lowest at the youngest site and increased within the 

first 200 yrs, likely because litter as the uppermost part of the vertical depth profile re-

flected an increased supply of N depleted in 
15

N provided by fungi. We found relations 

between betaC and betaN values suggesting that there might be shared processes shaping 

δ
13

C and δ
15

N vertical depth profiles, e.g. microbial cycling, transport or sorption.  

4.2 Introduction 

Chronosequences provide unique opportunities to investigate carbon (C) and nitro-

gen (N) dynamics in natural ecosystems. Environmental and biological changes during 

ecosystem development are considered an important driver of C stabilization in soils 

(Jones et al., 2015; Schmidt et al., 2011) which profoundly affects atmospheric carbon 

dioxide concentrations (Stockmann et al., 2013). For example, in boreal systems with 

slow decomposition, old soils sequestered more C than younger soils, caused by the 

accumulation of an organic layer (Clemmensen et al., 2013). Stable isotopes of carbon 

(δ
13

C) and nitrogen (δ
15

N) can be used as indirect indicators of biogeochemical patterns 

and processes across chronosequences (Craine et al., 2015; Högberg, 1997). During 

biogeochemical reactions, isotopic fractionation occurs, i.e. a discrimination of heavier 
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isotopes that leave the reactant enriched and the product isotopically depleted (Hobbie 

and Högberg, 2012). For instance, isotopic ratios served to assess plant N nutrition 

(Hyodo et al., 2013; Unkovich, 2013), C and N transfer to and by mycorrhizal fungi 

(Clemmensen et al., 2013; Hobbie and Högberg, 2012), decomposition (Acton et al., 

2013; Brunn et al., 2014; Garten, 2006; Guillaume et al., 2015) or interrelations be-

tween above and belowground processes (Hobbie and Ouimette, 2009; Hyodo and 

Wardle, 2009; Menge et al., 2011). Despite the complexity of the C and N cycle, inter-

pretation of C and N isotopes in plants, soil and depth profiles can help to elucidate key 

aspects and processes that dominate the C and N cycle in particular ecosystems.  

Ecosystem and soil development across chronosequences can be defined in a pro-

gressive phase after initial disturbance, in a phase of maximal biomass in which the eco-

system stabilizes and in a retrogressive phase, where the ecosystem undergoes declines 

in productivity and nutrient cycling; trends that have been observed along 

chronosequences around the world (Peltzer et al., 2010; Wardle et al., 2004). Early in 

primary succession, primary production is commonly limited by N availability 

(Vitousek, 2004; Vitousek and Howarth, 1991), which may progress to phosphorus (P) 

limitation in extremely old and/or highly weathered soils (Vitousek and Farrington, 

1997; Walker and Syers, 1976). Changes in C and N stocks and cycling accompany 

these biogeochemical shifts, and may influence the isotopic signatures of plants and 

soils (Martinelli et al., 1999). 

For example, litter δ
13

C values in boreal forest chronosequences in Sweden increased 

with proceeding time (Hyodo et al., 2013; Hyodo and Wardle, 2009). Foliar morpholog-

ical adaption to lower nutrient availability at late stages of pedogenesis, i.e. increased 

internal resistance of CO2 diffusion through the development of thicker and smaller 

leaves was supposed. This adaption is comparable to water stress effects on plants that 

equally reduces the stomatal conductance and results in higher δ
13

C values due to closed 

stomata (Farquhar et al., 1989). Similarly, according to positive relations between foliar 

N concentrations and δ
13

C values (Guehl et al., 1995; Körner and Diemer, 1987; 

Vitousek et al., 1990), δ
13

C values should increase with increasing N and therefore with 

time across chronosequences.  

In contrast to foliar and litter δ
13

C values, which typically is interpreted as an integra-

tor of water stress, δ
15

N values have been used to infer N input and loss pathways, as 

well as overall N availability (Craine et al., 2015; Högberg, 1997). Specifically, δ
15

N of 

litter reflects the fraction of N incorporated from dinitrogen (N2) fixation, as well as 
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isotopic enrichment of the available soil N pool due to fractionating losses that preferen-

tially remove 
14

N (e.g. denitrification) (Houlton and Bai, 2009; Houlton et al., 2006). 

Due to the negligible fractionation during nutrient retranslocation before leaf abscission 

(Garten et al., 2011; Menge et al., 2011), δ
15

N values in litter layer of soils can reflect N 

sources and their transformation by N cycling processes. Across chronosequences, dep-

osition or bedrock material are comparable and should not affect variations in litter δ
15

N 

values, while N loss and all other forms of N input may change. However, to compare 

chronosequences from different sites with each other, all N input values have to be con-

sidered, making chronosequences of each site specific in its isotopic signature. For ex-

ample, low N deposition and less N from bedrock in early phases of ecosystem devel-

opment can generate systems with strong dependence on N2 fixation (Menge and Hedin, 

2009; Vitousek and Howarth, 1991). The high energy costs of N2 fixation make it un-

likely to persist if soil N availability is high compared to the utilization of other N forms 

(Andrews et al., 2011; Vitousek and Howarth, 1991). However, contrasting trends with 

a decoupling of N2 fixation and N availability in soil were also documented (Menge and 

Hedin, 2009; Reed et al., 2011). Since litter δ
15

N values converge to atmospheric iso-

topic signatures at sites where biological N2 fixation dominates (Unkovich, 2013) and 

e.g., N supplied by fungi results in 
15

N depleted litter (Hobbie and Ouimette, 2009), 

litter δ
15

N values can help to indicate the dominating N source used by plants. 

The uppermost litter layer contains more C and N than mineral soil below and this 

vertical decrease in C and N concentrations is associated with an increase in δ
13

C and 

δ
15

N values, i.e. organic matter (OM) becomes enriched lower in the soil (Billings and 

Richter, 2006; Brunn et al., 2014; Hobbie and Ouimette, 2009; Nadelhoffer and Fry, 

1988a). In addition to several mechanisms and processes driving vertical isotopic 

changes, the accumulation of 
13

C and 
15

N enriched compounds from microbial products 

or microbial cells itself are supposed as important parameters (Billings and Richter, 

2006; Dijkstra et al., 2006; Lerch et al., 2011). Vertical isotopic patterns in soils have 

been described by enrichment factors corresponding to the isotopic difference from lit-

ter to mineral soil (Krull et al., 2002) or by plotting logarithmized (log10x) element con-

centration in OM against its isotopic signature (Acton et al., 2013; Brunn et al., 2014; 

Garten, 2006; Guillaume et al., 2015). In the latter, slopes of linear regressions (indicat-

ed as betaC values) between logarithmized C concentrations and the according isotopic 

ratios served to approximate decomposition. BetaC values could therefore be a valuable 

tool to assess changes of C processing during ecosystem and soil development.  
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In addition to the vertical enrichment of 
13

C, a similar enrichment of 
15

N can develop 

in topsoil (Craine et al., 2015; Hobbie and Ouimette, 2009; Wallander et al., 2009). 

Likewise, betaN values can be calculated by means of linear regressions between 

logarithmized N concentrations and according δ
15

N values. Similar relations were com-

piled by Hobbie and Ouimette (2009) and the authors emphasized the importance of 

mycorrhizal fungi in controlling vertical δ
15

N depth trends. Fractionation against 
15

N 

during N transfer by mycorrhizal fungi to host plants is suggested, resulting in 
15

N de-

pleted litter and 
15

N enriched OM in mineral soil (Hobbie and Ouimette, 2009). The 

vertical enrichment in 
15

N between litter and mineral soil was found to vary strongly, 

with ectomycorrhizal (EM) systems c. doubling the enrichment in 
15

N compared to sys-

tems dominated by arbuscular mycorrhiza (AM) (Hobbie and Ouimette, 2009). 

Mycorrhizal associations inconstantly shifted with time across chronosequences (Dickie 

et al., 2013) with strong host specificity (Martinez-Garcia et al., 2015). For example, 

while boreal chronosequences are supposed to lack a stage with AM, EM plants are 

absent across sequences in Hawaii (Dickie et al., 2013). Chronosequences in New Zea-

land are potentially able to host both mycorrhiza types. However, the Franz Josef 

chronosequence (c. 200 km north of Haast) does not harbor EM plant species (Dickie et 

al. 2013) that are present at the late stages of the Haast chronosequence (Turner et al., 

2012b).  

In this study, we aimed to contribute to a better understanding of C and N dynamics 

with providing stable C and N isotope data in high resolution of topsoil during 

pedogenesis and ecosystem development. We investigated c. 2,870 yrs across the well 

established Haast chronosequence (Eger et al., 2011; Jangid et al., 2013; Turner et al., 

2012a; Turner et al., 2012b; Turner et al., 2014) located on a well drained sandy dune 

substrate with fast podzolisation (Turner et al., 2012b) on New Zealand´s South Island. 

Our objectives were to unravel whether (i) δ
13

C and δ
15

N values in litter and (ii) vertical 

shifts of δ
13

C and δ
15

N values with soil depth change with soil age across a soil 

chronosequence under superhumid climate conditions. 

Previous studies showed increasing nutrient limitation across the Haast 

chronosequence (Turner et al., 2012a) and abundances of bacterial taxa closely related 

to heterotrophic diazotrophs (Jangid et al., 2013). Therefore, we hypothesized (1) that 

litter δ
13

C values increase with proceeding ecosystem development and pedogenesis, 

similarly to δ
13

C values in boreal chronosequences and (2) that δ
15

N values of litter are 

close to the isotopic signature of atmospheric N2 due to the high contribution of biologi-
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cal N2 fixation at Haast. Conforming to the retrogressive model which suggests declines 

in ecosystem productivity, decomposition and nutrient cycling (Peltzer et al., 2010), we 

hypothesized (3) that betaC values, as a measure of decomposition, decrease with pro-

ceeding time. According to the possible shift in mycorrhizal communities with time, i.e. 

AM to EM due to host specificity inferred from shifts in tree species (Turner et al., 

2012b), we hypothesized (4) that differences between δ
15

N values of litter and mineral 

soil OM increase with time resulting in increasing betaN values. 

4.3 Material and methods  

4.3.1 Sampling site 

The Haast coastal foredune progradation dune ridge system has formed under tem-

perate humid climate (mean annual temperature = 11.3 °C, mean annual precipitation = 

3455 mm) at the West Coast of New Zealand´s South Island (43°53′S, 169°3′E). The 

chronosequence features comparable parent material with 88.7 ± 2.8% sand, 8.0 ± 2.1% 

silt and 3.5 ± 0.5% clay content (Turner et al., 2012a), negligible human disturbance 

and low atmospheric N deposition (0.9 to 1.5 kg N·ha
-
1·yr

-1
) (Galloway et al., 2004; 

Menge et al., 2011). Dune ridges form a slightly undulating topography (< 5 m to 20 m 

a.s.l.) with overall extension c. 5 km inland and soils developing from Arenosol to 

Podzol (Turner et al., 2012a). The whole formation covers a time of c. 6,000 yrs and 

was extensively described by Wells and Goff (2007) and Turner et al. (2012a).  

4.3.2 Sampling and sample preparation 

We collected five replicate samples from litter, organic layer and mineral soil on 11 

dune ridges (landward direction) in March 2013, resulting in 55 profiles covering a time 

span from c. 120 to c. 2,870 yrs (Tab. 4.1). Soil samples were collected by a root auger 

(Eijkelkamp Agrisearch Equipment BV, Netherlands) to a depth of 10 cm of the mineral 

soil. After removal of soil cores (diameter of 8 cm), we cut mineral soil into 1 cm depth 

sections. Organic layers were collected as litter (Oi horizon) and organic (Oe and Oa 

horizons) layers. At some sites, thick roots restricted the depth which could be sampled, 

resulting in a sampling depth of 7 cm at dune stage 0 (B), 8 cm at dune stages 0 (A and 

D), 3 (A), 4 (B) and 5 (B) and 9 cm for two replicates of the dune stage 0 (C and E).  
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Table 4.1 Sampling sites description with dune age [B.P.], dating method, depth of the organic horizons 

[cm] (= Oi, Oe and Oa horizons) with standard errors and letters across the Haast dune chronosequence, 

New Zealand 

 

All samples were oven dried at 60°C and visible roots and parts of green moss that 

survived drying procedure were carefully removed. The dried litter and organic layer 

samples were ground in a shredder (Retsch SM 2000). Dried mineral soil samples were 

sieved < 2 mm. Aliquots and those of the shredded litter and organic layer samples were 

ground and homogenized using a Planetary Ball Mill PM 200 (Retsch, Germany). 

4.3.3 Laboratory analysis, calculations and statistics 

4.3.3.1 Elemental and isotopic measurements 

Carbon and nitrogen concentrations were determined with an Elemental Analyzer 

(Isotope Cube, Elementar, Hanau, Germany). Since all soil samples were strongly acidic 

(Turner et al., 2012a) and free of carbonate (verified by means of hydrochloric acid ad-

dition to finely ground mineral soil samples), measured total C concentration equals the 

organic C concentration. Stable isotope ratios were analyzed by coupled isotope ratio 

Dune 

stage

Dune age 

[years 

B.P.]
a

Dating 

method

Depth of the 

organic 

horizons [cm] 

0
b

120 Estimated 1.4 ± 0.5 c

1
b

187 Tree rings 1.0 ± 0.3 c

2 296 Tree rings 3.8 ± 1.4 bc

3 398 Tree rings 4.6 ± 0.5 b

4 523 Tree rings 2.4 ± 0.2 bc

5 603 Tree rings 3.4 ± 1.2 bc

6
b

793 Tree rings 3.0 ± 0.9 bc

7 1,310 Estimated 11.6 ± 2.5 abc

8 1,830 Estimated 26.2 ± 8.6 abc

9 2,350 Estimated 29.2 ± 3.8 a

10 2,870 Estimated 18.2 ± 3.3 abc

Table 4.1 Sampling sites description with dune age 

[B.P.], dating method, depth of the organic horizons 

[cm] (= Oi, Oe and Oa horizons) with standard errors 

and letters representing significant differences 

between the dune stages of the Haast chronosequence, 

New Zealand.

a
 Dates from year of sampling (2013); ages of dune 

stages 1–6 from Wells and Goff (2007) and Turner et al. 

(2012),  and stages 7–10 estimated by assuming an 

equal number of years (c.  520 yr) between each dune 

stage.

b 
Dunes for these stages were less pronounced on the 

north side of the river therefore, dunes occurring on a 

parallel system on the south side of the river were 

sampled.
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mass spectrometry (IRMS) (Isoprime 100, Isoprime, Manchester, England). Results are 

given in delta notation as δ
13

C for C and δ
15

N for N stable isotopes in ‰: [Eq. 4.1] 

                    ‰   
       

         
           

, where R represents the 
13

C/
12

C or the 
15

N/
14

N ratio, respectively. We used IAEA-

CH-3, IAEA-CH-6 and IAEA-600 for normalization of measured δ
13

C values [in 

‰VPDB] and USGS25, IAEA-N-1 and IAEA-N-2 for normalization of measured δ
15

N 

values [in ‰Air]. Measurement precision of IRMS analyses based on routine measure-

ments of interspersed samples per 15 samples of sulfanilic acid (Merck KGaA, Ger-

many) during the measurement period was ± 0.1‰ (n = 53) for δ
13

C and ± 0.2‰ (n = 

52) for δ
15

N. This analytical uncertainty was less than the expected natural variability. 

Mean difference of duplicate measurement for δ
13

C values (n = 112) of the organic ho-

rizons and mineral soil samples was 0.08‰ and for δ
15

N values (n = 53) 0.07‰.  

4.3.3.2 Calculations and statistical analysis 

Linear regression analyses determined the patterns of isotopic changes within soil 

profiles. We regressed log10x-transformed element concentrations [log10 (g·C·kg
-1

)] or 

[log10 (10
-1

g·N·kg
-1

)] (= x) and their according stable isotope values [δ
13

C] or [δ
15

N] (= 

y) of the depth intervals (organic layers and mineral soil) (Acton et al., 2013; Brunn et 

al., 2014; Garten, 2006). Different units for the logarithmized C and N concentrations 

resulted in positive values on the x-axis. The absolute values of the slopes were termed 

beta and referred to as betaC and betaN, respectively. 

In addition to beta values, we used vertical isotopic differences to describe vertical 

changes in C (Δ
13

C) and N stable isotopes (Δ
15

N) from litter to mineral soil. There was 

spatial variation in the depth and thickness of soil horizons between dune stages, e.g. a 

soil horizon at 10 cm soil depth of a given location corresponds to a slightly deeper or 

shallower depth as compared to the neighboring sampling site. We tried to account for 

this by using maximum difference in profiles instead of the difference between the litter 

layer and mineral soil at 10 cm soil depth to best represent the vertical changes in δ
13

C 

and δ
15

N values. The difference between maximum δ
13

CMax or δ
15

NMax (isotopic signa-

ture of the mineral soil) and minimum values δ
13

CMin or δ
15

NMin (isotopic signature of 

the litter) of each profile was calculated using equation [4.2] for C and [4.3] for N val-

ues: 
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Linear regression analyses were used to quantify the impact of soil age on variables. 

We assessed trends across the overall chronosequence as well as in singles phases, i.e. 

the early phase (stages 0-2), the intermediate phase (stages 3-6) and the late phase (stag-

es 7-10). Since these phases potentially do not cover the changes of variables with time 

in between these phases, we additionally provide two tables containing mean ± SE val-

ues of variables in the supplemental material with results from one-way ANOVA post-

hoc tests showing differences between the stages (Tab. S4.1 and Tab. S4.2). In case of 

homogeneous variances, we used a post-hoc Tukey test. In case of heteroscedasticity, a 

Games-Howell test was conducted. In addition to this we applied matched pairs t tests 

(in case of homogeneity of variances) or Welch´s t tests (in case of heteroscedasticity) 

for the comparison of beta values, proportions of explained variations and Δ
13

C or Δ
15

N 

values. Autocorrelation of data was tested by the Durbin-Watson Test and reconciled 

with critical values for the Durbin-Watson Test provided by Savin and White (1977). 

Only non-autocorrelated data were evaluated. The level of significance was set to P ≤ 

0.05 in all tests. Probability of fit to normal distribution was tested by Kolmogorov-

Smirnov tests. 

4.4 Results 

4.4.1 Element concentrations, C: N ratios and isotopic signatures in litter, 

organic layer and mineral soil with proceeding pedogenesis 

With increasing soil depth, average C concentration in OM decreased from 338.2 ± 

SE 41.4 g·C·kg
-1

 in litter to 21.9 ± 1.2 g·C·kg
-1 

in mineral soil, while δ
13

C values in-

creased from -29.9 ± 0.9‰VPDB to -28.2 ± 0.6‰ (Fig. 4.1). Similarly, average N con-

centration decreased vertically from 12.3 ± 1.3 g·N·kg
-1

 to 1.3 ± 0.1 g·N·kg
-1

, while 

δ
15

N values increased from -2.4 ± 1.5‰Air to 3.2 ± 2.7‰ (Fig. 4.1). Litter and organic 

layer thickness (Oi, Oe and Oa horizon) increased with time across the chronosequence 

(P < 0.001; r = 0.745) with development of a distinguishable organic layer (Oe and Oa 

horizon) from stage 7 onwards. Mean thickness of the Oi, Oa and Oe layers until stage 6 

was 2.8 ± 0.4 cm while from stage 7 average thickness increased to 22.1 ± 3.0 cm. 
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Figure 4.1 Mean +/- SE C (a) and N concentrations [g·kg
-1

] (d) and δ
13

C [‰VPDB] and (b) δ
15

N values 

[‰Air] (e) with depth [cm] across all dune stages (n = 11, except the organic layer: n = 4) showing a verti-

cal decrease in C and N concentrations and an increase in δ
13

C and δ
15

N values. Figures on the right rep-

resent relations between log10 (g·C·kg
-1

) and δ
13

C values (c) or log10 (10
-1

·g·N·kg
-1

) and δ
15

N values (f) of 

which beta values can be derived. Litter layer (Oi layer) values depicted as triangles (n = 11), organic 

layers (Oe and Oa layer) as squares (n = 4). Organic layers occur from stage 7 on (soil age > 1,300 yrs) 

and are not present in the stages before. Depths of litter and organic layers as mean +/- SE in cm. Error 

bars represent two standard errors. 

Litter (Oi layer) C concentrations increased with time across the overall 

chronosequence (P < 0.001; r = 0.594), while N concentrations in litter decreased (P = 

0.006; r = -0.37) and C: N ratios increased with time (P < 0.001; r = 0.73) (Fig. 4.2). 

Litter δ
13

C values ranged between -33.1‰ and -28.4‰ and significantly decreased by c. 

2‰ (P < 0.001; r = -0.61) across the chronosequence (Fig. 4.3a). δ
15

N values in litter 

varied in a much wider range between -4.8‰ and 1.3‰ but we could not find an overall 

trend across the chronosequence, rather two declines in litter δ
15

N values. The organic 

layer (Oe and Oa layer) was characterized by decreasing δ
13

C values (P = 0.024; r = -

0.60) with time (Fig. 4.3a). In mineral soil, we found an overall increase in C: N ratios 

(P < 0.001; r = 0.75) and in δ
15

N values (P < 0.001; r = 0.75). 
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Figure 4.2 Mean ± SE C (a) and N concentrations [g·kg
-1

] (b) and C: N ratios (c) in litter (Oi horizon), 

organic layers (Oe and Oa horizons) and mineral soil as functions of site age in years before present [yrs 

B.P.]. Dotted lines depict significant linear trends across the overall chronosequence, while arrows depict 

linear trends during the early (stages 0-2), the intermediate (stages 3-6) or the late (stages 7-10) phase of 

ecosystem development. Numbers at the x axis represent the dune stages referring to Tab. 4.1. Error bars 

are two standard errors and represent variation on one dune with n = 5. 

We found significant linear changes with time in element concentrations, C: N ratios 

and isotopic signatures in litter and mineral soil during the early (stages 0-2) and the late 
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phase (stages 7-10), while the intermediate phase (stages 3-6) was lacking significant 

trends. Early ecosystem development was characterized by a strong increase in mineral 

soil C concentrations (P < 0.001; r = 0.91), a decrease in litter N concentrations (P < 

0.001; r = -0.81) and an increase in mineral soil N concentrations (P = 0.038; r = 0.54) , 

an increase in litter and mineral soil C: N ratios (P < 0.001; r = 0.84 and r = 0.91) (Fig. 

4.2) and decreasing δ
13

C (P = 0.016; r = -0.61) and δ
15

N values (P < 0.001; r = -0.93) 

(Fig. 4.3).  

 

Figure 4.3 Mean ± SE δ
13

C [‰VPDB] (a) and δ
15

N [‰Air] values (b) in the litter layer (Oi horizon), the 

organic layers (Oe and Oa horizons) and in the mineral soil. Maximum isotopic difference from litter to 

mineral soil in 
13

C (c) and 
15

N (d) is given as Δ
13

C and Δ
15

N.  BetaC (c) and betaN (d) values represent 

absolute values of regression slopes between log10x element concentrations and isotopic signatures. All 

values as functions of site age in years before present [yrs B.P.]. Dotted lines depict significant linear 

trends across the overall chronosequence, while arrows depict linear trends during the early (stages 0-2), 

the intermediate (stages 3-6) or the late (stages 7-10) phase of ecosystem development. Numbers at the x-

axis represent the dune stages referred to Tab. 4.1. Error bars are two standard errors and represent varia-

tion on one dune with n = 5. 

During the late ecosystem development, we found similar trends in litter as compared 

to the early ecosystem development, i.e. a second decrease in litter N concentrations (P 

= 0.006; r = -0.60), an increase in litter C: N ratios (P = 0.005; r = 0.60) (Fig. 4.2) and 
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decreasing δ
13

C (P = 0.004; r = -0.62) and δ
15

N values (P = 0.003; r = -0.63) (Fig. 4.3) 

with time. Stages 4 to 8 featured mean δ
15

N values with -2.1 ± 0.2‰ but wide ranges in 

litter δ
15

N values, always with maximum values converging to the atmospheric signa-

ture (0‰). In addition, C: N ratios (P = 0.011; r = 0.55) and δ
13

C values (P = 0.003; r = 

0.64) increased in mineral soil during the late phase. 

4.4.2 Vertical differences in δ
13

C and δ
15

N values and beta values with 

proceeding pedogenesis 

We found a mean enrichment in 
13

C of Δ
13

C = 1.9 ± 0.1‰ and a three times greater 

enrichment in 
15

N of Δ
15

N = 6.0 ± 0.3‰ in profiles from litter to mineral soil. In 40% of 

the profiles, mineral soil C concentrations and δ
13

C values at 10 cm depth matched with 

the observed minimum C concentration and maximum δ
13

C values. In the other profiles 

(n = 32), we found 2.5 ± 0.6 g·kg
-1

 higher C concentrations and 0.2 ± 0.3‰ lower δ
13

C 

values in the mineral soil at 10 cm depth, corresponding to 11.4% and 0.7% variation, 

respectively. The variation was less pronounced for N concentrations. In 33% of the 

profiles (n = 18), N concentrations were higher by 0.2 ± 0.0 g·N·kg
-1 

as compared to 

minimum N, while
 
in 70% of the profiles (n = 38) δ

15
N values in the mineral soil at 10 

cm depth deviated by 0.7 ± 0.1‰ from maximum δ
15

N values corresponding to 15.4% 

and 21.9% variation, respectively. In total, the vertical variation from a continuous C 

and N decrease and an isotopic enrichment of 
13

C and 
15

N was considered negligible. 

Absolute values of linear regression slopes (= betaC) between log10 (g·C·kg
-1

) and 

according δ
13

C values served to describe vertical isotopic patterns with mean betaC val-

ue of 1.2 ± 0.1. Linear regressions were significant in 90% of the profiles (n = 51). Non-

significant regressions (P > 0.05) were observed at sites 0B, 5B, 6D, 7E and 8D (Fig. 

S4.1). To omit bias, betaC values of these regressions were included in further analyses. 

Mean R
2
 was 0.67 ± 0.0. In 95% of the profiles (n = 52) betaN values resulted from sig-

nificant linear regressions between log10 (10
-1

g·N·kg
-1

) and according δ
15

N. Non-

significant regressions (P ≥ 0.05) were observed at sites 5B, 6A and 9B (Fig. S4.2). 

Mean betaN value was 5.0 ± 0.3 with R
2
 = 0.77 ± 0.0. Residuals were normally distrib-

uted in either case both for regressions of C and N. Sites with a distinguishable accumu-

lated organic layer (soil age ≥ 1,300 yrs B.P.) featured a lower proportion of explained 

variation of 20%. Thus, R
2
 at sites with an accumulated organic layer (stages 0 to 6: R

2
 

= 0.75 ± 0.0; stages 7 to 10: R
2
 = 0.54 ± 0.0) were significantly lower for relations be-
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tween log10 (g·C·kg
-1

) and δ
13

C values (P = 0.008) and for relations between log10 (10
-

1·
g·N·kg

-1
) and δ

15
N values (stages 0 to 6: R

2 
= 0.83 ± 0.0; stages 7 to 10: R

2
 = 0.54 ± 

0.0) (P = 0.015). 

Δ
13

C (P = 0.001; r = 0.49) and Δ
15

N (P < 0.001; r = 0.77) linearly increased with 

time across the overall chronosequence. In contrast, betaC and betaN values did not show 

significant linear trends (Fig. 4.3c and 4.3d). For every one per mill increase in 
13

C, OM 

increased by 3.1 ± 0.2‰ in 
15

N. BetaC and Δ
13

C values were significantly related (P < 

0.001; r = 0.65), similarly to betaN and Δ
15

N values (P = 0.007; r = 0.36). In addition, 

Δ
13

C and Δ
15

N were significantly related (P < 0.001; r = 0.52), similarly to betaC and 

betaN (P < 0.001; r = 0.47). During the early phase, we found increasing trends of Δ
15

N 

values (P < 0.001; r = 0.81), betaC values (P = 0.018; r = 0.60) and betaN values (P < 

0.001; r = 0.89). Slight but not significantly higher betaN values (5.0 ± 0.4) compared to 

Δ
15

N (4.1 ± 0.2‰) during the early and the intermediate phase disclose the deviation of 

vertical 
15

N enrichment with depth. Those effects were obscured by stronger impacts of 

litter and organic layers on the regression slopes at the later stages. We found no linear 

trends of isotopic differences and beta values during the intermediate phase. However, 

Δ
13

C was lowest in this phase of the chronosequence (1.2 ± 0.2‰) as compared to the 

early (1.9 ± 0.1‰) and the late phase (2.1 ± 0.3‰) (P < 0.025). The late phase featured 

increasing Δ
13

C values (P < 0.001; r = 0.72) and increasing betaC values (P < 0.001; r = 

0.79). There were no linear trends of Δ
15

N values in the late phase, but these values 

were with mean Δ
15

N of 8.0 ± 0.5‰ significantly higher at the late phase as compared 

to the early (4.4 ± 0.4‰) and the intermediate (3.9 ± 0.2‰) phase (P < 0.001). 

4.5 Discussion 

4.5.1 δ
13

C and δ
15

N values in litter with proceeding pedogenesis 

As a result of a possible morphological adaption to deceasing nutrient availability 

with time, we hypothesized that litter δ
13

C values increase with proceeding ecosystem 

development and pedogenesis. However, we observed a decrease in litter δ
13

C values 

with site age (Fig. 4.3a) which was contrary to findings across boreal chronosequences 

(Clemmensen et al., 2013; Hyodo et al., 2013; Hyodo and Wardle, 2009) and therefore 

falsifies our first hypothesis. The following parameters might be involved in explaining 

the decreased δ
13

C values of litter (i) soil respiration, (ii) irradiance, (iii) nutrient limita-
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tion. At Haast, there is an increasing abundance of moss, understory species and seed-

lings with site age (Turner et al., 2012b) which utilize a greater proportion of 
13

C de-

pleted CO2 respired from soil (Hyodo and Wardle, 2009) and are exposed to a lower 

irradiance which would both result in lower δ
13

C values in litter (Fotelli et al., 2003; 

Hyodo and Wardle, 2009) and could therefore induce a decrease in litter δ
13

C with time. 

On the other hand, root respired CO2 of woody species or of species associated with 

mycorrhiza was found to be 
13

C enriched (Ghashghaie and Badeck, 2014). Therefore, 

respiration impacts on plants remain indistinct and cannot clearly be related to changed 

litter δ
13

C values. Due to the close distance of the dunes (< 5 km), we exclude spatial 

variations in humidity, since the humid climate would not cause differences on stomatal 

conductance.  

Nutrient limitation provides another explanation for lower litter δ
13

C values as it is 

shown by decreasing N concentrations of litter and increasing C: N ratios across the 

chronosequence (Fig. 4.2). Nutrient limitation promotes plant stress which could either 

force plants to adapt morphologically, resulting in increased δ
13

C values as it was found 

in boreal systems (Hyodo et al., 2013; Hyodo and Wardle, 2009), or nutrient limitation 

can induce increased stomatal conductivity and therefore a higher photosynthetic frac-

tionation (Cernusak et al., 2013; Farquhar et al., 1989; Peltzer et al., 2010). Although P 

is typically thought to limit primary production on older surfaces (Vitousek and 

Farrington, 1997; Walker and Syers, 1976), we observed decreasing litter N concentra-

tions and decreasing δ
13

C values, similar to results from other studies (Guehl et al. 

1995; Vitousek et al. 1990).  Thus, it is possible that nutrient limitation may have driven 

the depletion of 
13

C in litter. In contrast to findings across chronosequences in boreal 

ecosystems, decreasing δ
13

C values of litter suggest a physiological response rather than 

a morphological adaption to changes in nutrient dynamics in this temperate rainforest 

system. 

Our second hypothesis assuming that litter δ
15

N values are close to the atmospheric 

signature due to the contribution of N via biological N2 fixation across the overall Haast 

chronosequence cannot be fully verified. The δ
15

N signature of litter suggests biological 

N2 fixation occurring in the early stages of ecosystem development with a decline at c. 

300 yrs and a subsequent increase of N2 fixation again at stages 4-8, but at this time 

rather related to free-living than symbiotic pathways of N2 fixation. Immediately after 

dune formation, we found δ
15

N values in litter of -0.3 ± 0.1‰ (Fig. 4.3b). Atmospheric 

N2 fixing legumes, e.g. the visibly dominant species broom (Cytisus Scoparius) that 
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colonized the beachfront dune likely converged litter δ
15

N values to the atmospheric 

value and raised C and N concentrations in mineral soil in the following development 

(Fig. 4.2b). According to the visible abundance of legumes and litter δ
15

N values close 

to zero, biological N2 fixation appears to be important during ecosystem establishment 

at Haast which supports the outstanding role in N supply by biological N2 fixation dur-

ing early succession (Menge and Hedin, 2009; Vitousek et al., 2013).  

The subsequent decrease of litter δ
15

N values within the first c. 300 yrs of ecosystem 

development (Fig. 4.3b) suggests a reduced N2 fixation rate. Reduced N2 fixation during 

the early phase might be related to the growing overstory vegetation, since N2 fixers 

were found to be shade-intolerant (Vitousek et al., 2013) or to species replacement as it 

was found for a symbiotic N2 fixing plant at the Franz Josef chronosequence (Menge 

and Hedin, 2009). While it is accepted that a higher N availability reduces N2 fixation 

(DeLuca et al., 2008; Menge and Hedin, 2009), which could additionally well explain a 

reduction of N2 fixation, we found that N concentrations of litter decreased in the early 

phase, that rather argues for a reduced N availability. This decreased N availability dur-

ing the early phase at Haast is linked with a decrease in litter δ
15

N values and therefore 

in line with literature data where positive relations between N availability and litter δ
15

N 

values were widely presented (Craine et al., 2015). In addition, different N2 fixation 

strategies (Menge et al., 2015; Reed et al., 2011) may exist at Haast and could be de-

coupled from N availability. However, reduced N2 fixation combined with reduced N 

availability raises the importance of other N nutrition forms to maintain N acquisition. 

Utilization of nitrate (NO3
-
) (Templer et al., 2007) or N supply by mycorrhizal fungi 

(Hobbie et al., 1999; Hyodo et al., 2013) would both result in distinct depletion of 
15

N 

in litter. On the other hand, readily available mineral forms of N were found to induce a 

reduction of biological N2 fixation (Reed et al., 2011) calling for further studies on 

function, species composition and possible switch off of N2 fixers to clarify our find-

ings. 

Between stages 4 to 8 (c. 523 to c. 1,830 yrs), δ
15

N values of litter converging closer 

to zero suggest N2 fixation, while lower δ
15

N values of litter rather argue for a supply 

with other N forms, e.g. through fungi or mycorrhiza (Hobbie and Högberg, 2012). 

Dinitrogen fixation during the intermediate stages could confirm the activity of 

diazotrophic N2 fixers, since abundances of N2 fixing bacterial rRNA genes were ob-

served at Haast (Jangid et al., 2013). In addition, the role of N2 fixing bryophytes and 

lichens colonizing the more diverse and tall habitats during the intermediate stages 
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could have been increased. Menge and Hedin (2009) proposed a possible decoupling of 

N2 fixation and N availability in soil, with these species possibly serving as a positive 

feedback to ecosystem N availability. Again, full documentation of N2 fixing species 

composition might clarify the functioning of biological N2 fixation at Haast. However, 

we assume that the intermediate phase featured mixed impacts of atmospheric N2 fixa-

tion, i.e. symbiotic and free living N2 fixation and supply with other recycled N forms, 

which might parallel the supposed heterogeneity associated with patches (Pickett and 

White, 1985).  

During the late phase (stages 7-10), we found a decline in litter δ
15

N values (Fig. 

4.3b) together with decreasing litter N concentrations and increasing C: N ratios (Fig. 

4.2), similarly to the early phase. In the same manner, greater N availability as reduction 

of N2 fixation could be excluded. Increasing mycorrhizal abundance with supply of 
15

N 

depleted N, 
15

N depleted N provided by litter decomposition (Menge et al., 2011) or a 

potential decrease of N2 fixation under increasing P limitation (Vitousek and Howarth, 

1991) might serve as alternative explanations for decreasing δ
15

N values of litter.  

In summary, δ
15

N values of litter converged to the atmospheric isotopic signature in 

the early succession and in the intermediate stages. However, under several conditions, 

e.g. changes in species composition, structural changes of the canopy or as a result of 

increasing P limitation, N2 fixation seems to be replaced by other N nutrition forms and 

appeared to be not constantly dominant across the Haast chronosequence. 

4.5.2 Vertical patterns of δ
13

C values with proceeding pedogenesis 

Thirdly, we hypothesized a continuous decrease in decomposition with time. How-

ever, betaC values as approximation of decomposition (Acton et al., 2013; Brunn et al., 

2014; Diochon and Kellman, 2008; Garten, 2006; Guillaume et al., 2015; Marty et al., 

2015) increased during early ecosystem development and at old sites, while they were 

lowest at the intermediate stages (1,500 yrs) which falsifies our third hypothesis. Verti-

cal δ
13

C patterns described by betaC values (1.2 ± 0.1) and Δ
13

C (1.9 ± 0.1‰) were at 

the lower end of data reported in the literature (Brunn et al., 2014; Garten, 2006; 

Guillaume et al., 2015; Powers and Schlesinger, 2002). This was possibly affected by 

the coarse soil texture at Haast that has been shown to influence isotope fractionation on 

mineral soil δ
13

C values (Bird et al., 2003). Low vertical enrichment in 
13

C might be 

exacerbated with root removal during our sample preparation. In systems where fungi 
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are abundant, root removal could increase the amount of fungal remains (Hobbie and 

Ouimette, 2009). Since fungi are 
13

C depleted (Kohl et al., 2015) their contribution 

could lower δ
13

C values in mineral soil samples and therefore the isotopic difference 

between litter and mineral soil OM. Impacts of a continuous decrease of atmospheric 

δ
13

CO2 by 1.5‰ during the last two centuries (Francey et al., 1999; Keeling et al., 2005) 

might explain the observed average vertical change in δ
13

C. However, this Suess effect 

would result in Δ
13

C values distinctly lower than 1.5‰ at the youngest site (<120 yrs) 

that contained no C before its formation. In addition, the Suess effect lacks in explain-

ing variations in Δ
13

C between dune stages > 300 yrs, i.e. the atmospheric change as 

single driver of δ
13

C depth profiles would result in more constant Δ
13

C values. Together 

with findings from other studies (Acton et al., 2013; Guillaume et al., 2015), we infer 

that the Suess effect alone is not able to fully explain the vertical enrichment of 
13

C in 

OM in soil profiles.  

Increasing betaC values during the early phase of ecosystem development (Fig. 4.3c) 

suggest enhanced decomposition, probably stimulated through plant communities con-

taining low abundances of woody species (Turner et al., 2012b). At stage 7 and 8, we 

observed lowest betaC values (Fig. 4.3c & Tab. S4.2). First generation trees collapsed 

after stage 6 and a distinguishable organic layer started to accumulate from stage 7 on 

(Tab. 4.1). Fungi preferably colonize the organic horizon below the fresh litter layer 

(Lindahl et al., 2007) and the accumulated organic layer could therefore promote fungal 

colonization. Fungi and mycorrhiza are supposed to reduce decomposition rates 

(Clemmensen et al., 2015; Gadgil and Gadgil, 1971; Langley and Hungate, 2003) and 

could lower betaC values. Low betaC values were associated with relatively low δ
13

C 

values in mineral soil (Tab. S4.1 & Fig. 4.3a) probably governed by decreased microbi-

al cycling and therefore a lower accumulation of 
13

C enriched microbial products. In 

addition, Kramer et al. (2003) observed no vertical trends in δ
13

C if OM is recycled 

from the structurally and chemically altered organic layer.  

While we can mechanistically explain a possible reduction in decomposition rates 

from early to the intermediate stages, we lack an explanation for the increase of betaC 

values at the later stages. Stimulated decomposition probably owing to a reduced cano-

py closure after the collapse of first generation trees likely lowered organic layer thick-

ness at stage 10 as compared to stages 8 and 9 (Tab. 4.1). However, increasing decom-

position is against our third hypothesis that decomposition declines constantly across 

the chronosequence according to the retrogressive model (Peltzer et al., 2010). And in-
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creasing decomposition contradicts the reduced N concentrations in litter attributed to a 

lower N availability (Fig. 4.2).This implies that the later stages do not belong to the ret-

rogressive phase and could be better described as transition time characterized by an 

elevated decomposition, e.g. related to canopy opening. Higher decomposition results in 

elevated 
13

C enriched decomposition products (Billings and Richter, 2006) and together 

with a shift to slightly finer soil texture (Turner et al., 2012a) that facilitate a better sorp-

tion capacity of enriched microbial products (Bird et al., 2003), higher decomposition 

results in increased δ
13

C values in mineral soil at the late stages. Alternatively, betaC 

values could be insufficient to describe decomposition at sites with an accumulated or-

ganic layer. Including the organic layer (Oe and Oa layer) with high C concentrations 

but strong 
13

C enrichment (Fig. 4.1) into linear regressions between log10 (g·C·kg
-1

) and 

δ
13

C values results in less steep regression lines, visible in diverging Δ
13

C and betaC 

values as soils age (Fig. 4.3c). Lower δ
13

C values of litter at later stages might suggest 

that litter layers control the vertical isotopic gradients. In dependence of an decomposi-

tion continuum from less decomposed litter to more decomposed OM in the mineral soil 

(Melillo et al., 1989), δ
13

C values of litter form part of the vertical patterns in isotopic 

enrichment and should therefore not control vertical isotopic gradients. This decomposi-

tion continuum can be underpinned by manganese (Mn) concentrations in litter (un-

published data). Manganese concentrations in litter were found to be positively related 

to litter decomposition (Berg et al., 2007; Keiluweit et al., 2015). Significant linear rela-

tions between litter Mn concentrations and betaC values at Haast (r = 0.41; P = 0.002) 

suggest the applicability for beta values as an indicator of decomposition. However, the 

falsification of our third hypothesis merits further detailed studies of the quality of betaC 

values and the interplay between the accumulation of an organic layer, decomposition 

rates, and the translocation of organic compounds to deeper spodic horizons (not con-

sidered in our study) at older sites.  

4.5.3 Vertical patterns in δ
15

N values with proceeding pedogenesis 

Our fourth hypothesis was that differences between δ
15

N values of litter and mineral 

soil OM increase with time resulting in increasing betaN values. Average betaN (5.0 ± 

0.3) and Δ
15

N values (6.0 ± 0.4‰) were in line with literature data reviewed by Hobbie 

and Ouimette (2009). The wide range of observed data (betaN between 1.3 and 9.3; 

Δ
15

N between 1.7‰ and 13.0‰) suggests a diversity of dominant fractionation process-
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es across the chronosequence, e.g. mineralization in soil (Dijkstra et al., 2006) or chang-

es in mycorrhizal fungal association (Hobbie and Ouimette, 2009). δ
15

N values in soil 

as one component of the difference between litter and soil increased continuously with 

proceeding dune age (Fig. 4.3). This might be caused by “stripping”: During mineraliza-

tion, the dynamic exchange of microbially derived hydrophilic and plant derived hydro-

phobic OM and subsequent continuous stripping throughout the soil profile (Kusliene et 

al., 2015). This concept relies on the most abundant forms of transported N, being dis-

solved organic N (DON) combined with NH4
+ 

in unpolluted areas (Perakis and Hedin, 

2002). Since NH4
+
 and microbial biomass are enriched in 

15
N (Dijkstra et al., 2006; 

Templer et al., 2007), the mixing of microbial vs. plant derived OM result in stripping 

of charged OM that is retained in soil, whereas non-charged compounds will be trans-

ported downwards. This stripping is controlled by sorption sites and thus, soil texture. 

In our chronosequence, the shift to soils with slightly finer textures (Turner et al., 

2012a) together with increased aggregate formation and stabilization by fungal hyphae 

(Rillig et al., 2015) might feature greater sorption capacity through organo-mineral-

complexes with increased site age and therefore probably amplify the δ
15

N increase in 

mineral soil with time.  

If combined with litter δ
15

N values, during early succession, Δ
15

N and betaN values 

strongly increased, supporting the assumption of fungal colonization in this time owing 

to fractionation against 
15

N and thus, 
15

N-depleted N transferred to plants. As a result, 

low δ
15

N values of litter further increase the difference between litter and mineral soil 

and thus, also vertical patterns. In addition, microbial recycling of OM originating from 

the structurally and compositionally altered organic layer rather than from fresh litter 

(Kramer et al., 2003) or greater proportions of 
15

N-enriched fungal remains (Hobbie and 

Högberg, 2012) could explain elevated δ
15

N values in mineral soil from stage 7 on. In 

line, arbuscular mycorrhiza that were host specific for kamahi (Weinmannia racemosa) 

at the nearby Franz-Josef chronosequence (Martinez-Garcia et al., 2015) could also be 

dominant at Haast, where kamahi regenerates in tree-fall gaps (Turner et al., 2012b). 

However, mean isotopic enrichment during the late phase (Δ
15

N) of 8.0 ± 0.5‰ was 

greater than gradients observed in AM-dominated systems (Hobbie and Ouimette, 

2009). At stage 10, we observed an isotopic enrichment (Δ
15

N) of 9.9 ± 0.6‰ that is in 

line with 
15

N enrichment found in EM-dominated systems (Hobbie and Ouimette, 

2009). Thus, the increasing abundance of ectomycorrhizal Silver beech (Nothofagus 
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menziesii) (Turner et al., 2012b) might also explain elevated mineral soil δ
15

N values at 

the late stages.  

The contribution of denitrification to the enrichment of 
15

N in soils, as it has been 

widely observed (Craine et al., 2015; Houlton and Bai, 2009; Houlton et al., 2006) was 

found to not occur or being not expressed at the nearby Franz Josef chronosequence 

(Menge et al., 2011). Although waterlogging was excluded at Haast (Turner et al., 

2012a), we are unable to exclude impacts on gaseous N losses on isotopic signatures in 

soil profiles that may also account for greater δ
15

N values in mineral soil and therefore 

to more distinct depth profiles. However, a possible increase of δ
15

N values in mineral 

soil induced by dentrification contradicts the decrease of δ
15

N values of litter during the 

late phase (Fig. 4.3). 

 Analogous to relations between betaC and Δ
13

C, we found betaN and Δ
15

N values di-

verging as soils aged (Fig. 4.3d). Similarly, the accumulated organic layer seems to con-

tribute to this trend, i.e. including the organic layer, containing even higher N concen-

trations but being strongly 
15

N enriched compared to the litter layer (Fig. 4.1), into line-

ar regressions between log10 (10
-1

g·N·kg
-1

) and δ
15

N values results in less steep regres-

sion lines. Our fourth hypothesis that betaN values increase with site age cannot fully be 

verified, since only Δ
15

N increased across the chronosequence but not betaN values, 

probably indicating that despite effects of mycorrhizal fractionation other processes 

affect δ
15

N depth profiles during ecosystem development and pedogenesis. 

4.6 Conclusion 

The findings of this study provided new information on C and N dynamics occurring 

during c. 2,870 yrs of soil and ecosystem development across the temperate rainforest 

Haast dune chronosequence. In contrast to findings across boreal chronosequences, we 

found δ
13

C values in litter decreasing with time, probably indicating a physiological 

rather than a morphological adaption to changes in nutrient dynamics. Litter δ
15

N values 

suggested N2 fixation that might be attributable to the activity of diazotrophs identified 

at Haast. However, other N nutrition forms, e.g. utilization of NO3
-
 or N supply by 

mycorrhizal fungi likely contributed to two declines in litter δ
15

N values, one in the ear-

ly phase (between 120 and 296 yrs) and a second decline in the late phase (between 

1,300 and 2,870 yrs). Against our hypothesis, decomposition (approximated with linear 

regression slopes between log10 (g·C·kg
-1

) and δ
13

C values) did not constantly decrease 
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with time. Instead, we found an increase of decomposition at the beginning of ecosys-

tem development and a second increase in the late phase. Lowest decomposition during 

the intermediate phase matched with the accumulation of the organic layer. Increasing 

decomposition during the late phase might indicate dynamics linked with canopy open-

ing after the collapse of first generation trees. While we have indications that δ
15

N depth 

profiles are related to mycorrhizal fractionation as it is reported in the literature, addi-

tional processes might affect δ
15

N depth profiles during ecosystem development. Inter-

estingly, we found relations between betaC and betaN values, similarly to Δ
13

C and Δ
15

N, 

suggesting that there might be shared processes shaping δ
13

C and δ
15

N depth profiles, 

e.g. microbial cycling, transport or sorption. However, further manipulative experiments 

and measurements of different N2 fixation pathways are needed to underpin the assumed 

mechanisms and causal connections, particularly the role of mycorrhizal associations 

and forms of N2 fixation, vertical transport and sorption processes and the functioning 

of the organic layer.  
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4.9 Supplementary material 

 

Figure S4.1 Linear regressions between logarithmized carbon concentrations log10 (g·C·kg
-1

) and corre-

sponding δ
13

C values [‰VPDB] for dune stages (0-10) with five replicates each (A-E) and linear regression 

lines including regression equation. No regression lines at sites with insignificant linear regressions. *, P 

< 0.05; **, P < 0.01; ***, P < 0.001. 
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Fig S 4.1 Linear regressions between logarithmized carbon concentrations log10 (g·C·kg-1) and

corresponding δ13C values [‰VPDB] for dune stages (0-10) with five replicates each (A-E) and linear

regression lines including regression equation. No regression lines at sites with insignificant linear

regressions. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Figure S4.2 Linear regressions between logarithmized nitrogen concentrations log10 (10
-1

·g·N·kg
-1

) and 

corresponding δ
15

N values [‰Air] for dune stages (0-10) with five replicates each (A-E) and linear regres-

sion lines including regression equation. No regression lines at sites with insignificant linear regressions. 

*, P < 0.05; **, P < 0.01; ***, P < 0.001.  
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Fig S 4.2 Linear regressions between logarithmized nitrogen concentrations log10 (10-1·g·N·kg-1) and

corresponding δ15N values [‰Air] for dune stages (0-10) with five replicates each (A-E) and linear

regression lines including regression equation. No regression lines at sites with insignificant linear

regressions. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Table S4.1 Mean ± SE element concentrations and isotopic signatures in litter (Oi layer), organic layers 

(Oe and Oa layer) and in mineral soil of dune stages. Letters represent significant differences between 

dune stages. In case of homogeneous variances we used a post-hoc Tukey test. In case of 

heteroscedasticity, a Games-Howell test was conducted. P ≤ 0.05; n = 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pool
Dune 

stage

0 365.5 ± 42.5 abc 16.3 ± 1.2 a 22.1 ± 1.2 c -29.3 ± 0.1 a -0.3 ± 0.1 a

1 342.4 ± 41.0 abc 13.2 ± 1.3 ab 25.9 ± 2.1 bc -29.5 ± 0.2 a -2.3 ± 0.3 b

2 334.5 ± 47.2 abc 8.3 ± 1.0 bc 39.9 ± 3.2 ab -30.0 ± 0.2 a -3.8 ± 0.3 bc

3 354.0 ± 22.6 ab 10.6 ± 0.8 bc 33.5 ± 1.3 ab -29.2 ± 0.3 a -3.2 ± 0.3 bc

4 361.1 ± 23.5 abc 8.4 ± 0.8 bc 43.6 ± 2.8 a -30.1 ± 0.2 a -2.6 ± 0.5 abc

5 300.5 ± 45.6 abc 9.1 ± 2.0 bc 34.8 ± 3.4 abc -29.7 ± 0.2 a -2.1 ± 0.5 abc

6 338.1 ± 13.3 c 8.7 ± 0.5 bc 39.1 ± 2.2 a -29.4 ± 0.3 a -2.0 ± 0.5 abc

7 436.7 ± 16.1 ab 11.5 ± 0.7 abc 38.2 ± 1.6 a -29.7 ± 0.3 a -1.7 ± 0.4 abc

8 415.5 ± 39.8 abc 10.7 ± 1.1 bc 40.8 ± 6.5 abc -29.9 ± 0.5 ab -1.1 ± 0.9 abc

9 481.0 ± 5.8 a 7.2 ± 0.7 c 69.1 ± 6.6 a -31.1 ± 0.6 ab -3.7 ± 0.4 bc

10 473.7 ± 3.8 ab 8.3 ± 0.9 bc 59.6 ± 6.2 a -31.3 ± 0.1 b -3.9 ± 0.3 c

7 349.0 ± 20.8 a 14.6 ± 1.0 a 24.1 ± 2.7 a -28.7 ± 0.3 a 0.5 ± 0.8 a

8 377.9 ± 56.1 a 12.5 ± 1.6 a 31.0 ± 5.4 a -28.7 ± 0.3 a 0.1 ± 0.6 a

9 379.8 ± 25.2 a 14.2 ± 1.3 a 27.0 ± 2.4 a -29.2 ± 0.1 a 1.2 ± 0.3 a

10 283.1 ± 57.2 a 10.5 ± 0.8 a 26.2 ± 3.4 a -29.3 ± 0.1 a 1.8 ± 0.8 a

0 12.9 ± 2.2 b 1.2 ± 0.1 bc 9.6 ± 0.9 d -28.4 ± 0.1 abc 2.2 ± 0.2 bc

1 25.7 ± 1.8 a 2.2 ± 0.2 a 11.3 ± 0.1 d -27.8 ± 0.1 a 1.9 ± 0.1 c

2 37.7 ± 2.4 a 2.0 ± 0.1 a 18.2 ± 0.9 bc -28.4 ± 0.1 bc 1.3 ± 0.5 c

3 31.1 ± 1.4 a 1.9 ± 0.0 a 15.8 ± 0.5 c -27.9 ± 0.1 ab 0.7 ± 0.3 c

4 45.5 ± 11.4 ab 2.4 ± 0.5 ab 18.3 ± 1.0 bc -28.5 ± 0.2 abc 1.3 ± 0.3 c

5 39.1 ± 9.6 ab 2.2 ± 0.4 ab 16.7 ± 0.9 bc -28.9 ± 0.2 abc 0.5 ± 0.4 c

6 46.5 ± 5.7 a 3.1 ± 0.7 ab 16.8 ± 0.6 bc -28.4 ± 0.3 abc 1.8 ± 0.6 c

7 65.9 ± 10.6 ab 3.4 ± 0.6 ab 19.1 ± 0.7 abc -28.7 ± 0.1 c 4.2 ± 1.0 ab 

8 25.9 ± 2.5 ab 1.2 ± 0.1 b 20.3 ± 0.9 ab -28.5 ± 0.1 c 5.7 ± 0.3 a

9 39.4 ± 8.3 ab 1.8 ± 0.4 ab 22.6 ± 1.0 a -28.5 ± 0.0 c 4.1 ± 0.3 ab

10 46.4 ± 14.4 ab 2.1 ± 0.6 ab 22.3 ± 1.1 a -28.2 ± 0.1 abc 5.3 ± 0.4 a
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Table S4.1 Mean ± SE element concentrations and isotopic signatures in litter (Oi layer), 

organic layers (Oe and Oa layer) and in mineral soil of dune stages. Letters represent 

significant differences between dune stages. In case of homogeneous variances we used a 

post-hoc Tukey test. In case of heteroscedasticity, a Games-Howell test was conducted. 

P  ≤ 0.05; n  = 5
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Table S4.2 Mean ± SE beta values and maximum isotopic difference as Δ
13

C or Δ
15

N in soil profiles of 

dune stages. Letters represent significant differences between dune stages.  In case of homogeneous vari-

ances we used a post-hoc Tukey test. In case of heteroscedasticity, a Games-Howell test was conducted. P 

≤ 0.05; n = 5. 

 

 

 

 

 

 

 

Dune stage

0 0.8 ± 0.1 abc 1.8 ± 0.2 c 1.6 ± 0.3 bc 2.6 ± 0.2 d

1 1.6 ± 0.2 ab 5.6 ± 0.4 ab 2.2 ± 0.2 abc 4.9 ± 0.3 c

2 1.7 ± 0.2 a 7.5 ± 0.6 a 1.8 ± 0.2 abc 5.7 ± 0.5 bc

3 1.2 ± 0.2 abc 5.0 ± 0.4 ab 1.4 ± 0.4 bc 4.1 ± 0.3 bcd

4 1.6 ± 0.3 ab 6.2 ± 1.0 ab 1.8 ± 0.3 abc 4.5 ± 0.2 bc

5 0.7 ± 0.2 bc 3.8 ± 0.8 bc 0.8 ± 0.2 c 2.7 ± 0.2 d

6 1.1 ± 0.3 abc 5.1 ± 1.0 ab 1.0 ± 0.3 c 4.4 ± 0.5 bcd

7 0.5 ± 0.1 c 5.4 ± 0.7 ab 1.1 ± 0.2 bc 7.7 ± 1.4 abcd

8 0.6 ± 0.1 c 5.1 ± 0.5 ab 1.6 ± 0.5 bc 6.4 ± 0.7 abcd

9 1.0 ± 0.2 abc 3.6 ± 0.6 bc 2.6 ± 0.6 ab 8.0 ± 0.4 ab

10 1.7 ± 0.2 a 5.8 ± 0.4 ab 3.3 ± 0.2 a 9.9 ± 0.6 a

Table S4.2 Mean ± SE beta values and maximum isotopic 

difference as Δ
13
C or Δ

15
N in soil profiles of dune stages. Letters 

represent significant differences between dune stages.  In case of 

homogeneous variances we used a post-hoc Tukey test. In case of 

heteroscedasticity, a Games-Howell test was conducted. P ≤ 0.05; 

n  = 5

betaC betaN
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