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Abstract (English) 

 

Dynamic equilibrium of internal conditions such as body temperature, blood pressure, blood pH, 

hormones, blood glucose, insulin concentrations, and the like is vital for health and survival, and 

indeed many diseases involve a disturbance of homeostasis. Mainly the nervous system and the 

endocrine system control regulation mechanisms, and in general after sensing imbalance, appro-

priate biochemical or physiological feedback loops regulate the condition to the normal balance 

set-point. This dissertation aimed to investigate novel real-time functional magnetic resonance 

imaging neurofeedback (rt-fMRI-NF) methodologies enable healthy individuals, and patients to 

learn to regulate homoeostatic brain networks. The first study targeted the effect of rt-fMRI-NF 

training-induced up-regulation of functional connectivity (FC) between reward value- and im-

pulse-control-related brain areas on eating behaviour in a proof-of-principle correlative pre-post 

pilot experiment. The second study explored the possibility of manipulating functional connectivi-

ty between anterior insular cortex (AIC) and somatosensory cortex (SC) by rewarding simultane-

ous activity in these two brain regions. We postulated that the functional interconnection be-

tween AIC and SC, regions which receive visceral and skin afferents respectively, organizes the 

processing of bodily signals from the viscera and somatic tissues which represents the core aspect 

of emotional regulation in the James-Lang concept of emotion. Finally in the third study, we inves-

tigated whether patients with contamination obsessions and washing compulsions can learn to 

volitionally decrease (down-regulate) BOLD activity in the insula in the presence of disgust/anxiety 

provoking stimuli. The result of the first study showed that conscious voluntary up-regulation of 

correlation results in an increased functional connectivity between the dorsolateral prefrontal 

cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC), a connectivity that is involved in self-

control and healthy food choices. The behavioural results indicated a tendency towards healthier 

food choices comparing post transfer session with respect to the pre-test session. The second 

study confirmed our hypothesis that volitional up-regulation of simultaneous combined BOLD 

activity of AIC and SC leads to enhanced functional connectivity between them, a connectivity 

that permits enriched feelings from the body and subjective feeling of emotions. We observed 

that the modulation of functional connectivity between the AI and SC predicted performance in 

the heartbeat perception task. In the third study, we found that OCD patients could gain self-

control of the BOLD activity of insula after few training sessions. Together behavioral findings 

from our three studies provide new insights that the homeostatic self-regulating ability of the 

brain can be strengthened by rt-fMRI-NF training. They clarify that changing and modulating neu-

ronal pathways in brain networks underling self-control, decision making, and emotional experi-

ences will result in promising behavioral consequences.   
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Abstrakt (German) 

 

Eine dynamische Balance der physiologischen Gegebenheiten wie Körpertemperatur, Blutdruck, 

Blut-PH-Wert, Hormonspiegel, Blutzucker und Insulinkonzentration ist für die Gesundheit und das 

Überleben unverzichtbar. Viele Krankheiten haben eine Störung der Homöostase zur Folge. Vor 

allem das Nerven- und das Hormonsystem steuern Regulationsmechanismen und sobald diese ein 

Ungleichgewicht feststellen, gibt es passende biochemische oder physiologische Feedback-

Kreisläufe, die den Gesamtzustand in die Balance zurückführen. Diese Dissertation untersucht 

neuartige Methoden des Echtzeit-Neurofeedbacks, das auf funktioneller Magnetresonanztomo-

graphie basiert (Real-time functional magnetic resonance imaging – rt-fMRI-NF), um es gesunden 

Probanden und Patienten zu ermöglichen, homöostatische Netzwerke des Gehirns zu regulieren. 

Die erste Studie hatte zum Ziel, die Auswirkungen der Hochregulierung der funktionellen Konnek-

tivität durch rt-fMRI-NF-Training (engl. Functional connectivity – FC) zwischen Belohnungs- und 

impulsivitätsregulierenden Gehirnarealen auf das Essverhalten zu untersuchen. Diese Studie war 

ein Pilotexperiment im Pre-Post-Schema. Die zweite Studie untersuchte die Möglichkeit, die funk-

tionelle Konnektivität zwischen der anterioren Insula (AIC) und dem somatosensorischen Kortex 

(SC) durch Belohnung von gleichzeitiger Aktivität dieser Regionen zu beeinflussen. AIC und SC sind 

Gehirnregionen, die physiologische Zustandsinformationen von Körpergewebe und großflächigen 

Hautsegmenten erhalten. Wir nahmen an, dass die funktionelle Verbindung zwischen diesen Re-

gionen die Verarbeitung dieser Signale der inneren Organe und Körpergewebe übernimmt. Dies 

stellt einen Kernbereich des Gefühlskonzeptes von James-Lang dar. In der dritten Studie unter-

suchten wir, ob Patienten mit kontaminationsbezogenen Zwangsgedanken und Waschzwang ler-

nen können, ihre BOLD-Aktivität in der Insula herunterzuregulieren, wenn sie mit ekelerregenden 

oder Angst hervorrufenden Stimuli konfrontiert werden. Die Ergebnisse der ersten Studie zeigten, 

dass die willentliche Hochregulierung der Korrelation zu einer erhöhten funktionellen Konnektivi-

tät zwischen dem dorsolateralen präfrontalen Kortex (dlPFC) und dem ventromedialen präfronta-

len Kortex (vmPFC) führt. Diese Konnektivität betrifft Selbstkontrolle und die Entscheidung für 

gesunde Nahrungsmittel. Die Verhaltenstests deuten darauf hin, dass die Probanden sich in der 

Transfersitzung (nach der Intervention) für weniger ungesunde Nahrungsmittel entscheiden als in 

der Sitzung vor der Intervention. Die zweite Studie bestätigte unsere Hypothese, dass die willent-

liche Hochregulierung von gleichzeitiger BOLD-Aktivität von AIC und SC deren funktionale Konnek-

tivität erhöht. Diese Verbindung ermöglicht eine verstärkte Körperwahrnehmung und ein verän-

dertes subjektives Gefühlserleben. Wir beobachteten, dass die Veränderung der funktionellen 

Konnektivität zwischen AIC und SC die Leistung der Probanden in der Aufgabe (Wahrnehmung des 

Herzschlags) verbesserte. In der dritten Studie fanden wir heraus, dass Patienten mit Zwangsstö-

rungen (OCD) nach einigen Trainingseinheiten die Selbstkontrolle der BOLD-Aktivität der Insula 
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erreichen konnten. Fasst man die Ergebnisse der drei Studien zusammen, konnten wir zeigen, 

dass die Fähigkeit des Gehirns zur homöostatischen Selbstregulierung durch die Verwendung von 

rt-FMRI-Training verbessert werden kann. Zudem ist nun klarer, dass die Veränderung und die 

Modulation von neuronalen Pfaden in Gehirnnetzwerken, die der Selbstkontrolle, der Entschei-

dungsfindung und der Gefühlswahrnehmung zugrunde liegen, zu vielversprechenden Verhaltens-

veränderungen führt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Synopsis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

20 

 

Neurofeedback and neuroplasticity 

Neuroplasticity, brain plasticity, is the brain’s ability to restructure itself by forming new neural 

connections and/or prune irrelevant connections and pathways after training or practice 

throughout life. Neurofeedback is defined as a learning process utilizing operant learning mecha-

nisms to control brain activity. Neurofeedback takes advantage of the brain's plasticity and by 

providing continuous information about the brain activity, or physiological process to humans or 

animals, permits a voluntary self-regulation of that activity through feedback and reward 

(Birbaumer et al. 2013, Birbaumer et al. 2009). Different imaging modalities have been used for 

neurofeedback. Electro-encephalography (EEG), and electro-physiology use neuroelectric activity  

(Neuper et al. 2003, Fetz 1969, Fetz et al. 1971, Spilker et al. 1969, Wolpaw et al. 2002, Turnip et 

al. 2011, Turnip et al. 2012, Kim et al. 2014, Soekadar et al. 2014, Pineda et al. 2008), magneto- 

encephalography (MEG) uses magnetic fields produced by electrical currents in the brain (Florin et 

al. 2014), and functional near-infrared spectroscopy (fNIRS) (Sitaram et al. 2009, Sitaram et al. 

2007, Naito et al. 2007, Fazli et al. 2012, Hong et al. 2015)  and real time functional magnetic res-

onance imaging (rtfMRI) (Weiskopf et al. 2004, LaConte 2011, Caria et al. 2007, Sulzer et al. 2013) 

benefit from metabolic activity of the brain.   

The first study on neurofeedback reported the use of the alpha waves of human partici-

pants (Spilker et al. 1969). This promising study triggered other work, where they showed that 

animals are also able to alter their brain activity by providing feedback  (Fetz 1969, Fetz et al. 

1971). However, it took many years until neurofeedback found its way into clinical applications. 

Recently researchers showed that during and after training self-regulation of slow cortical poten-

tials (SCPs), patient with drug-resistant epilepsy experienced less frequent ictal events 

(Kotchoubey et al. 2001, Rockstroh et al. 1993). Strehl et al. showed that children with attention 

deficit–hyperactivity disorder (ADHD) could learn to regulate negative SCPs. This well-controlled 

study resulted in significant improvement in behavior, attention, and IQ (Strehl et al. 2006).  
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Real time fMRI neurofeedback principles  

RtfMRI allows noninvasive and real time measurement of metabolic brain activity, and was first 

introduced in 1995 (Cox et al. 1995). Advances in hardware and software, made the rtfMRI a 

powerful technique with potential applications from diagnosis to monitoring and treatment of 

disorders     (Birbaumer et al. 2009, Birbaumer et al. 2006, deCharms et al. 2004, deCharms et al. 

2005, deCharms 2007, deCharms 2008, Weiskopf et al. 2007, Weiskopf et al. 2004, Weiskopf 

2012). In contrast to the conventional fMRI, in rtfMRI the dependent variable is behavior while 

brain activity is noninvasively manipulated as the independent variable (Caria et al. 2012, 

Weiskopf 2012). The principal advantages of rtfMRI lie in its noninvasive nature, ever-increasing 

availability, relatively high spatiotemporal resolution, and its capacity to demonstrate the entire 

network of brain areas engaged when subjects undertake particular tasks. 

Normal functioning of brain depends on neurovascular coupling which is the basis of func-

tional MRI and rtfMRI. Hemodynamic response (HR) allows homeostatically adjustment of blood 

flow to deliver nutrients such as oxygen and glucose to active neurons. One disadvantage of these 

techniques is that, like all hemodynamic-based modalities, it measures a surrogate signal whose 

spatial specificity and temporal response are subject to both physical and biological constraints 

(Logothetis 2008). The Blood-oxygen-level dependent (BOLD) signal reflects neural activity indi-

rectly, and the exact relationship between the measured fMRI signal and the underlying neuronal 

activity is only partly understood and remains under vigorous investigation (Logothetis et al. 2001, 

Logothetis et al. 2004, Magri et al. 2011). However, compared to other modalities such as TMS, 

EEG, and even fNIRS, rtfMRI owns higher spatial resolution and subcortical regions can be precise-

ly studied. With modern multi-channel EEG systems, the source localization is an intrinsically ill-

posed problem  (Baillet et al. 2001). Due to this problem in EEG, brain areas underlying learning of 

self-regulation and the relationship with behavior is not clear (Weiskopf 2012).  

RtfMRI-BCI works as a closed loop system, and normally has three main components 

(brain signal acquisition, online analysis, and feedback) which are usually executed by separate 

computers connected via TCP/IP protocol. MRI scanner using the fast echo planar imaging (EPI) 
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sequences measures spatially circumscribed brain activity. Data are retrieved and exported to a 

feedback computer every repetition time (TR). There, real time data pre-processing and statistical 

analysis are performed using dedicated software. Motion and image distortion correction, tem-

poral filtering, spatial smoothing, and normalization are among important pre-processing steps. 

Modern technologies allow applying online real time statistical analysis as powerful as their of-

fline counterparts (Weiskopf 2012). Univariate general linear model (GLM) (Bagarinao et al. 2003, 

Goebel et al. 2001, Caria et al. 2007, Caria et al. 2012, Weiskopf et al. 2004, Sulzer et al. 2013), 

and multivariate support vector machines (SVMs)  (Sitaram et al. 2011, LaConte et al. 2007, 

Hollmann et al. 2011) are among important model-based methods widely used in rtfMRI.  Inde-

pendent component analysis (ICA) on the other hand is a potential data-driven approach, which 

has been applied successfully to the fMRI data in real time  (Esposito et al. 2003, Wang et al. 

2013). After performing statistical analysis, contingent feedback is provided to the participant in 

the scanner via a projector (commonly visually, in the form of a thermometer icon, with the tem-

perature measure indicating the current level of brain activity. However, not only visual but also 

auditory or haptic feedback is possible) using stimulus computer. Information from the feedback, 

almost real time, helps subjects to learn to voluntarily control their brain activity in the targeted 

brain regions or network. 

 

Real time fMRI clinical applications and technical considerations 

Over years, patient studies support the feasibility of rtfMRI-based neurofeedback training, where 

they have reported neurophysiological and/or behavioral effects. Some of these investigations 

include chronic Pain (deCharms et al. 2005), chronic tinnitus (Haller et al. 2010), schizophrenia  

(Ruiz et al. 2013, Cordes et al. 2015), major depression (Linden et al. 2012, Young et al. 2014), 

alcohol abuse/addiction (Karch et al. 2015, Kirsch et al. 2015), nicotine addiction  (Li et al. 2013, 

Hartwell et al. 2013, Hartwell et al. 2016, Hanlon et al. 2013), chronic stroke (Sitaram et al. 2012), 

Parkinson disease (Subramanian et al. 2011), obesity (Frank et al. 2012), obsessive-compulsive-

disorder  (Scheinost et al. 2013, Buyukturkoglu et al. 2015), spider phobia (Zilverstand et al. 2015), 
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and psychopathy (Sitaram et al. 2014). Although clinical application of rtfMRI seems promising, 

but so far most of the aforementioned studies suffer from small size test/control groups and par-

tially successful transfer when participants need to perform the task inside or outside the MR 

scanner without feedback. Moreover, intermediate or long lasting behavioral effects were not 

investigated or have not been found  (Brühl 2015).  Hence, still there should be many methodo-

logical considerations for the use of rtfMRI-based neurofeedback for treating (psychiat-

ric/neurological) disorders. The number and the optimal duration of a training session, inter-

session interval, necessity of adaptation based on targeted disorder, implicit or explicit instruc-

tion, the best interface for feedback display, interventions to be used in the control group, inter-

mittent or continuous feedback are among critical issues that need to be addressed in future 

works  (Sulzer et al. 2013, Fovet et al. 2015, Stoeckel et al. 2014).  

Although ambiguous instruction to participants in a neurofeedback study might lead to a 

substantial rate of non-learners, Birbaumer, a pioneer in the field of neurofeedback and rtfMRI, 

does not support explicit instruction for regulating brain activity in neurofeedback studies. As long 

as a single region in the brain such as amygdala might have a multiple functions, instructing sub-

jects to use specific mental imagery (i.e. imagining fearful situation) to regulate activity in that 

region would not be the best solution. Instead, he believes in using pure reward and contingency 

of feedback (Birbaumer et al. 2013). Patients often have cognitive deficits, or are not able to fol-

low instructions. 

Another critical point in neurofeedback is the learning curve (Birbaumer et al. 2013). With 

rtfMRI within a very short time, almost less than half an hour, people are able to control their 

brain activity in any circumscribed brain region inside the MR scanner, while in EEG-based neu-

rofeedback it might be longer than several hours. The brain is usually continuously informed 

about the blood flow and it has to regulate the blood flow extremely tightly in order to equilibri-

um function. In neuro-vascular coupling, the feedback comes from the vessels to the brain, and 

that is probably one reason why people are able to control metabolic changes in the brain better 

than neuroelectric activity.  There are no specific sensors in the brain to update the brain about its 
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underlying electrical activity; therefore, in rtfMRI the feedback to the brain is faster, more reliable 

and specific.  Birbaumer et al. propose that learning regulation of brain activity is similar to skill 

learning (Birbaumer et al. 2013). The striatum and basal ganglia are critical brain areas for skill 

learning. Feedback from brain’s vascular system to these areas constrains the abstract nature of 

the skill to be acquired (Birbaumer et al. 2013, Koralek et al. 2012). Emmert et al. by performing a 

meta-analysis of several rtfMRI studies also observed the activation of both the basal ganglia and 

the anterior insula (AI) during the regulation of brain activation across the studies (Emmert et al. 

2016). 

 

Single region of interest versus brain networks 

The majority of early rtfMRI studies, targeted diverse but single brain areas such as amygdala   

(Posse et al. 2003, Zotev et al. 2011), anterior insula  (Caria et al. 2007, Caria et al. 2010, Veit et al. 

2012, Ruiz et al. 2013), several subdivisions of the ACC (Weiskopf et al. 2003, Hamilton et al. 2011, 

deCharms et al. 2005), several sensorimotor areas  (Lee et al. 2009, Yoo et al. 2008, Johnson et al. 

2012, Chiew et al. 2012, Berman et al. 2012), and auditory cortex (Yoo et al. 2006).  They have 

shown that self-regulation of BOLD activity inside these region of interests (ROIs) could be learned 

specifically.  However, the brain consists of many different networks (Van Den Heuvel et al. 2010). 

Spatially distributed but functionally linked regions in the brain are continuously exchanging in-

formation during resting state and functioning of the brain. Concert action of several brain regions 

and even networks is essential for performing complex cognitive processes. In fact, in the brain 

processes of emotion, language, perception, etc., which have been examined in rtfMRI studies, 

the activation of multiple brain regions have been observed (Ruiz et al. 2014). However, under-

standing dynamic flow of information across neuronal networks has been always a challenge for 

neuroscience.  
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Brain connectivity 

Altered brain connectivity has been observed in a number of diseases such as obesity, ADHD, 

stroke, autism spectrum disorder (ASD), and Alzheimer disease (AD). How brain connectivity and 

integration of information might be disturbed during neurological or psychiatric diseases and its 

relationship with behavior has attracted considerable attention (Bullmore et al. 2009, Greicius 

2008). Brain connectivity which has gained a considerable popularity among neuroscientists refers 

to a network of anatomical coupling (anatomical connectivity), statistical dependencies mainly 

temporal correlation (functional connectivity), and causal interaction (effective connectivity) be-

tween spatially distinct units in the nervous system (Ribeiro et al. 2015, Guye et al. 2008). It can 

be defined at several levels of scale, microscale, mesoscale and macroscale. At the microscale 

(micrometer resolution), several techniques such as histological staining and post-mortem dissec-

tions of neural tissues have been employed  (Van Buren et al. 1958, Eickhoff et al. 2006, 

Schmahmann et al. 2007). These techniques unravel the interactions at the level of individual 

neurons, and their synaptic connections. Mesoscale corresponds to networks connecting neu-

ronal populations such as cortical columns. It deals with a spatial resolution of hundreds of mi-

crometers. However to link brain structure to function, studying connectivity at macroscale (in-

teracting regions) is needed.   

In recent years, there is a tendency towards functional integration than segregation, and 

the main approach to characterize integration is brain connectivity. Structural connectivity defines 

as synaptic connection between adjacent neurons or fiber tracks between spatially remote brain 

regions. It mostly relies on diffusion tensor imaging (DTI) which measures the directionality of 

water diffusion within brain structures. DTI is a suitable technique for evaluating the integrity of 

white matter tracts. White matter consists of myelinated axonal fibres that connect cortical re-

gions. Although structural connectivity itself would not fully describe brain connectivity, but effec-

tive connectivity partially depends on structural connectivity. In a visual interhemispheric integra-

tion task, superior dynamic causal models (DCMs) were those models that profited from tractog-

raphy information (Stephan et al. 2009). However, the degree to which the effective connectivity 
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relies on structural constrains has not been fully understood yet. In fact, the intact anatomy is 

needed but the effective connectivity of a structural connectivity cannot be inferred from its 

quantitative information and it does not need to rely on monosynaptic connections (Friston 

2011). Therefore, in general, functional links may not be observed necessarily upon anatomical 

connection (Biswal et al. 2010).  While functional connectivity is a descriptive observable phe-

nomenon, effective connectivity is an abstract notion, a model-based approach trying to explain 

the existing correlation, coherence or other measures of dependencies of measurement of neural 

activities (Friston et al. 1993, Friston 1994, Friston 2011). In functional connectivity, there is no 

inference about the coupling between regions, and it only tests some deviations of correlation 

against the null hypothesis. Difference in correlation between two regions among different condi-

tions would reflect that the neural activity differed between conditions but the underlying cou-

pling can still be the same.  Change in coupling elsewhere in the network via a third region, 

change in amplitude of fluctuation of neural activity, and even change in noise level could explain 

the change in functional connectivity with intact effective connectivity (Friston 2011).  

Various imaging modalities (electrophysiological recording, EEG, MEG, PET and fMRI) that 

vary in temporal, and spatial resolution and also differ in many other features such as data repre-

sentation (neuron or neuronal ensembles), nature of activity (electrical or hemodynamic) have 

been employed to study different levels of description of connectivity (Fingelkurts et al. 2005) 

which makes it a complicated concept. In addition, applying different computational algorithms 

even to the same dataset based on different definitions, introduce more complexity (Horwitz 

2003). Another major issue which studying brain connectivity suffers from,  would be the fact that 

none of the imaging modalities, due to either inherent or technological limitation is truly able to 

capture the delicate spatio-temporal characteristics of brain’s electrical activity (Duyn 2012). 

However, there is no direct way to measure connectivity in the brain, and each imaging modality 

has its own merits and limitations in characterizing brain connectivity, and therefore, the interpre-

tation have always been challenging and a vast simplification of brain networks have been consid-

ered.   
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fMRI a tool for studying brain connectivity 

Functional MRI has been extensively used for studying both segregation as well as integration of 

information being processed. Several researchers have been using fMRI for studying functional 

connectivity in many different experimental contexts such as resting state (Biswal et al. 1995, 

Damoiseaux et al. 2006, Greicius 2008, Salvador et al. 2005) as well as in tasks or stimulus-based 

experiments. Although functional MRI provides precise spatial localization, it relies on hemody-

namic activity, and indeed any connectivity measure using fMRI reflects the co-fluctuation in 

BOLD signal in segregated brain regions. Therefore, its limitations such as inherent delay due to 

the nature of the hemodynamic response, and the variation of HRF in different regions across 

entire brain and even different subjects should be considered. 

Two main classes of algorithms have been used for calculating functional connectivity, 

knowledge-based (supervised) and data-driven (unsupervised) algorithms. Knowledge-based ap-

proaches need prior knowledge about a model behind data generation process (Lang et al. 2012). 

They are biased by the seed selection, which mostly anatomically or by performing a cognitive 

task is defined. They employ several regions of interest (ROI) as seed and looks for co-variation 

elsewhere in the brain with the average BOLD activity of the seeds (seed to voxel analysis) or be-

tween seeds (ROI to ROI analysis). The pairwise co-variation is specified based on cross correlation 

analysis (CCA) with mostly zero lag (Pearson correlation), mutual information and coherence. 

Head motion, physiological artifacts from breathing and cardiac rhythms, and low frequency 

scanner noise could lead to increased Pearson correlation. To distinguish direct from indirect con-

nections, and connectivity arising from the correlation of interfering signals other than the neural 

sources, the partial correlation analysis has been employed (Zhen et al. 2007).  Many studies have 

been applying knowledge-based techniques to the resting state functional connectivity (Andrews-

Hanna et al. 2007, Andrews-Hanna et al. 2010, Biswal et al. 1995, Cordes et al. 2000, Fransson 

2005, Larson-Prior et al. 2009, Song et al. 2015), as well as task/stimulus based functional connec-
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tivity (Gordon et al. 2012, Li et al. 2012, Newton et al. 2011, Hampson et al. 2006, Buckner et al. 

2009, Demb et al. 1995, DeSalvo et al. 2014). 

 On the other hand, unsupervised data-driven approaches including clustering and de-

composition algorithms need no prior knowledge or model.  These methods rely on the assump-

tion that the brain is organized in a finite set of functional networks. Singular value decomposition 

(SVD), principal component analysis (PCA), independent component analysis (ICA) are among 

decomposition techniques, while Hierarchical, partitional, and spectral clustering are some im-

portant unsupervised clustering techniques which have been employed in studying functional 

connectivity by several researchers (clustering techniques:  (Cordes et al. 2002, Salvador et al. 

2005, Thirion et al. 2006, Van Den Heuvel et al. 2008), and decomposition techniques:  (Friston et 

al. 1993, Beckmann et al. 2005, Calhoun et al. 2001, van de Ven et al. 2004, Esposito et al. 2006). 

In resting state fMRI (RS-fMRI) volunteers/patients are instructed to relax, and not to per-

form any explicit cognitive, motor or language tasks. RS-fMRI connectivity provides important 

insight on intrinsic functional networks in the brain in the absence of any explicit task. Even it 

allows studying how the connectivity of different brain areas can be adopted for engaging in dif-

ferent networks at different times (Smith 2012). Many functional connectivity studies assume 

temporal stationary of brain signals, but functional connectivity is not static (Chang et al. 2010), 

and in addition to average functional connectivity, its dynamic nature should also be considered 

(Lang et al. 2012). Multiple brain resting-state networks associated with visual (Beckmann et al. 

2005, Power et al. 2011, Smith et al. 2009), attention (Fox et al. 2006, Power et al. 2011), sen-

sorimotor (Biswal et al. 1995), as well as default mode network (Greicius et al. 2003) have been 

identified. Deviation in networks associated with mental and neurodegenerative diseases have 

also been studied (Bassett et al. 2009). For example, several studies confirm the decreased func-

tional or structural connectivity of distributed brain regions in ASD patients (Müller et al. 2011, 

Hughes 2007). 

In resting state data, the correlation analysis could be applied across whole time series. In 

task data, if two brain areas both respond to the task stimulus, then they will be correlated, even 
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if there is no connectivity between them. Psychophysiological interactions (PPI) analysis solves 

this problem. In fact, PPI detects task-specific (context-specific) enhancement in the coupling be-

tween seed of interest and the rest of brain (O'Reilly et al. 2012). In other words, to regress out 

the confounding effect, the psychological and physiological time courses are also included in the 

analysis. 

Dynamic causal modeling (DCM) (Friston et al. 2003), and Granger causality (G-causality) 

analysis (Goebel et al. 2003) are the two most popular methodologies for describing effective, 

directional, connectivity. DCM is a generic Bayesian model comparison approach, which compares 

the carefully selected models (neurobiologically motivated models) of how data were generated. 

A DCM is fitted to the data (parameter estimation at neuronal level) such that modelled and 

measured signals are maximally similar. In fact, it infers hidden neural states from measurement 

of neural activity (Stephan et al. 2010, Stephan et al. 2008). Dynamical causal interaction between 

neural populations and experimental (context or time) perturbation of this interaction is estimat-

ed by DCM (Friston et al. 2003). Lohmann et al. stated that due to serious inconsistency between 

model evidence and priors, even winning model in DCM cannot be trusted (Lohmann et al. 2012, 

Lohmann et al. 2013). On the other hand, G-causality which is a statistical concept can be directly 

applied to any given time series. It tests whether the information of one time series (X) could be 

used for forecasting the future of another(Y), even better than the information from the past of Y 

itself (Granger 1969, Friston et al. 2013, Seth et al. 2015). Then it is said that X Granger causes Y. 

However, G-causality of fMRI signals has been always controversial (David et al. 2008, Roebroeck 

et al. 2011). Hemodynamic delay, and low sampling rate (very slow repetition time) of fMRI se-

quences are two main concerns and limitations of applying G-causality to fMRI data. Although G-

causality is insensitive to HRF regional variability, it should be used under careful consideration. 

Comparison between different conditions would be one possible approach to assume unchanged 

HRF. Correlating causal influences between ROIs and behavioral performance was also employed 

by different researchers (Wen et al. 2012, Bressler et al. 2008). Bressler et al. showed that top-

down G-causality from parietal to occipital regions predicted behavioral performance (Bressler et 
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al. 2008). Wen et al. also showed that Granger causal influences from ventral attention network 

to dorsal attention network predicts degraded performance while reciprocal direction was associ-

ated with enhanced performance(Wen et al. 2012). 

 

Connectivity-based rtfMRI neurofeedback 

As it has been discussed in the previous sections, in traditional fMRI studies the analyses are per-

formed offline. However, real time fMRI neurofeedback studies benefit from acquiring, retrieving, 

and analysing functional data in a real time scale. This allows subjects to be informed and updated 

about their brain activity in circumscribed regions every repetition time (TR), almost less than 2 

seconds.  As described earlier, several rtfMRI neurofeedback studies have been trying to train 

subjects to regulate brain activity in a single region. They have shown that volitionally regulation 

of a specific region leads to behavioral consequences that are specific to the functional role of 

that region in the brain. However, large-scale neural systems are coupled functionally, and indeed 

any high level cognitive function is achieved by involving multiple brain regions or neural systems. 

Therefore, recently a lot of attention have been attracted towards establishing new methodolo-

gies or adopting available offline approaches to make it possible to use the information from 

brain networks or multiple brain regions for building neurofeedback systems. Several researchers 

implemented and developed real-time multivariate classifiers especially based on SVMs for appli-

cation in rtfMRI neurofeedback experiments (LaConte et al. 2007, Rana et al. 2013, Sato et al. 

2013, Shibata et al. 2011). Connectivity-based neurofeedback is another alternative network-

based approach, which is highly promising in noninvasively and nonpharmacologically modulating 

brain connections. In the rest of this synopsis, the concentration would be on real-time functional 

and effective connectivity methodologies in rtfMRI neurofeedback and their applications in regu-

lating homeostatic brain networks.   

Scharnowski et al. by using offline DCM showed that successful up-regulation of activity in 

visual cortex was associated with enhanced connectivity between visual cortex and superior pari-

etal lobe (Scharnowski et al. 2014).  By employing offline multivariate G-causality, Lee et al. 

showed that extended training of self-regulation of insular cortex was associated with reducing 



 

31 

 

the extend of superfluous connection and strengthening relevant connections (Lee et al. 2011). 

Several other studies also have shown that successful regulation of a single brain region leads to 

change in the brain network connectivity (Veit et al. 2012, Zotev et al. 2011, Hamilton et al. 2011).  

Although all these studies suggest modulating brain connectivity through self-regulation of brain 

activity in a circumscribed brain region, but they had no prior assumption about brain regions on 

the other side of augmented connections.  Based on these findings for the first time, Ruiz et al. 

showed that healthy participants are able to enhance functional connectivity between inferior 

frontal gyrus (IFG) and superior temporal gyrus (STG) after a few training sessions by providing 

contingent feedback from correlation coefficient between these regions (Ruiz et al. 2011). In the 

formula they used for calculating feedback, emphasis was more on the correlation resulted from 

high amplitude BOLD signals than low amplitude random fluctuation. Koush et al. proposed a 

DCM-based approach for manipulating causal interaction between brain regions for rtfMRI neu-

rofeedback studies (Koush et al. 2013).  Two years later, Koush and his colleagues applied their 

proposed real-time DCM methodology to the emotion regulation network. They showed that 

healthy participants were able to learn to enhance top down connectivity from the dorsomedial 

prefrontal cortex (dmPFC) onto the amygdala (Koush et al. 2015).  These encouraging evidences 

suggest that regarding clinical application towards treatment of diseases (obesity, schizophrenia, 

addiction, and ASD among many), targeting brain network connectivity may be more suitable than 

a single brain region.    

 

Homeostatic brain networks – obesity, OCD and interoception 

Homeostasis in general, refers to the characteristic of a system that helps maintaining equilibri-

um. Human homeostasis is defined as self-regulating processes by which the internal conditions 

and systems of body remain stable despite external environmental changes due to eating, preg-

nancy, and the like. Dynamic equilibrium of conditions such as body temperature, blood pressure, 

blood pH, hormones, blood glucose and insulin concentrations, etc. is vital for health and survival, 

and indeed many diseases involve a disturbance of homeostasis. Constant monitoring and ad-
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justment of physiological conditions is called homeostatic regulation. Mainly the nervous system 

and the endocrine system control regulation mechanisms, and in general after sensing imbalance, 

appropriate biochemical or physiological feedback loops regulate the condition to the normal 

balance set-point (Matthews et al. 1985). For instance, regulating body temperature is supervised 

by the nervous system, in which brain and specifically temperature-sensitive neurons of preoptic 

area of the hypothalamus control the adjustment of body temperature by tuning the metabolic 

rate, the breathing rate, the circulation of blood near the skin and some other subtle parameters. 

Specific to this dissertation, homeostatic brain networks underling obesity and interoception will 

be reviewed.  Furthermore, three novel rtfMRI neurofeedback experiments will be discussed, and 

will be elucidated that these novel methodologies enable healthy and overweight individuals to 

learn to regulate homoeostatic brain networks.  

Obesity is at least partially due to an imbalance of homeostasis, emerged through genetic, 

environmental and biopsychosocial mechanisms (Wells 2006, Marks 2015). Psychological feature 

of homeostatic theory of obesity (Circle of Discontent) implies that disequilibrium is resulted from 

feedback loops of weight gain, body disappointment, negative affect and emotional energy-dense 

overconsumption. Based on this theory, once weight rises due to whatever reason (i.e. body dis-

appointment), then reciprocal causal interaction between these items leads to instability of the 

system which makes it very difficult to control overweight (Marks 2015).  Energy dis-homeostasis 

is another important feature of obesity (Woods et al. 1998). Energy homeostasis is achieved when 

anabolic and catabolic processes are in balance over long intervals. There exist two negative 

feedback loops which keep the level of adipose mass in a stable set-point over time. Energy im-

balance follows by changes in hormonal (Leptin, Insulin, and Glucocorticoid) concentration. In 

case of negative energy balance, less insulin and leptin are secreted and reach the brain while 

glucocorticoid concentration increases. This stimulates appetite and results in more food intake 

and energy storage. Opposite mechanisms and effects, follow positive energy balance (Woods et 

al. 1998). However, defects to these regulatory mechanisms lead to different eating disorders.  
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The brain is the most important organ of energy homeostasis. The hypothalamus, by integrating 

information from different systems and organs, is a key region in several homeostatic regulation 

mechanisms such as weight supervision and regulating body temperature. In fact, the hypothala-

mus is a link between the autonomous nervous system and the endocrine system. By integrating 

information from inside and outside the brain, the hypothalamus drives appropriate actions to 

the organs and tissues outside the brain through the autonomous nervous system and the endo-

crine system. The hypothalamus sends its messages inside and outside the brain using neuro-

transmitters. The neurotransmitter dopamine plays an important role in controlling feeding be-

havior, and its amount positively correlates with the level of pleasure while eating. Obese patients 

have lower concentration of the D2 dopamine receptors, therefore obesity could be interpreted 

as imbalance between energy homeostasis and reward network.  Neuroimaging studies have con-

firmed that reward network in obese patients show altered activation compared to lean individu-

als (Stoeckel et al. 2008, Martin et al. 2010). 

Another determining factor in food intake is cognitive control including decision-making. 

Several studies have shown that obesity is associated with alteration in brain structures, function-

al connectivity, and purposeful behavior (Raschpichler et al. 2012, Weygandt et al. 2013, Carnell 

et al. 2013). Weygandt et al. showed that being able to lose more weight over time could be pre-

dicted from the degree of functional connectivity between dorsolateral prefrontal cortex (dlPFC) 

(area for controlling eating behaviour) and ventromedial prefrontal cortex (vmPFC) (region that 

process food value) (Weygandt et al. 2013). Hare et al. showed that activity in vmPFC correlated 

with combination of competing factors (healthiness and tastiness) while dlPFC activity was in-

creased by exercising self-control (Hare et al. 2009). In addition to the dlPFC and the inferior 

frontal gyrus (IFG), the activity of the anterior insula and the temporo-parietal junction (TPJ) was 

also observed during active regulation of desire for food. This finding implies the importance of 

interoceptive awareness as a key process underlying conscious regulation of appetite (Hollmann 

et al. 2012). Herbert et al. showed that obese and overweight individuals have lower interocep-

tive awareness than healthy people (Herbert et al. 2014).  
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Interoception is defined as the sense of the internal physiological condition of the body (Craig 

2003). The intensity of subjective feeling of emotion reflect the interoceptive sensitivity (IS) (sen-

sitivity to the variation of internal bodily signals) (Critchley et al. 2004). According to the intero-

ceptive inference (also known as interoceptive predictive coding) theory, top-down predictive 

inference of the causes of interoceptive sensory signals determines the subjective feeling of emo-

tion (Seth 2013, Seth et al. 2011). Based on this model, the top-down expectation is updated by 

interoceptive predictive error signals arise from any undesired variation in the internal conditions 

(i.e. blood sugar level). Then subjective feeling of emotion is experienced (i.e. experiencing hunger 

or thirst for sugary foods). Next, the resulting high-level prediction error can be resolved by em-

ploying autonomic control (change in metabolic rate) or allostatic behaviour (eating available 

food) (or both) (Seth 2014, Gu et al. 2014). In addition, somatic marker hypothesis links the inter-

oception with decision-making. Based on this theory, somatic markers (interoceptive responses) 

guide decision-making (Damasio 1991). According to this hypothesis, when individuals face con-

flicting choices, they may be unable to decide merely based on cognitive processes. 

Bud Craig in a series of articles presented a lot of evidences from psychiatry, psychology 

and neuroscience that insular cortex is where interoception generates feeling (Craig 2002, Craig 

2003, Craig 2005, Craig 2009, Craig 2011, Craig 2013, Craig 2015). Feeling from the body are the 

most fundamental sensations, which underlie most of our affective responses. Bodily feelings 

could be a direct (i.e. am I warm enough?) or indirect (i.e. do I need a fresh air?) reflection of 

body’s physiological conditions. Lamina I (a thin layer of cells at the top of gray matter in the spi-

nal cord) receives input from small-diameter sensory fibers of the body. From there, the infor-

mation continues its travel to the brain by Lamina I’s fibers (or, axons) through the lateral spino-

thalamic pathway. Indeed, the destination are thalamic nuclei in the center of the forebrain. Dur-

ing the route, in the medulla (the lower part of the brain stem), nucleus tractus solitarii’s (NTS) 

axons incorporate Lamina I’s axons. NTS neurons receive input from different set of small-

diameter sensory fibers that innervate the heart, the tongue and all of the viscera. Thalamic nu-

clei, in turn convey the sensory activity to the cerebral cortex, including dorsal posterior insula. In 
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fact, not only sensory input from viscera, but also the small-diameter sensory fibers (conveying 

information about the condition of the tissue itself) from all tissues of the body, including skin, 

muscle, and bone provide the continuous information required for homeostatic control of ongo-

ing changes in blood flow and respiration. This pathway supports sensations from the body such 

as pain, itch, vascular flush, and so on. In contrast, sensory fibers which have large-diameter axons 

and cell bodies provide the exteroceptive sensory information elicited by external world. These 

evidences reasonably explain the presence of two separate anatomical ascending sensory path-

ways: spinothalamic and dorsal column-medial lemniscal pathways conveying interoceptive and 

exteroceptive signals respectively. Based on these findings, interoception include the sensory 

information from not only viscera (heart, liver, and stomach), muscles, and teeth, but also skin 

(the largest organ in the body). All and all, interoception directly support homeostatic energy effi-

ciency. In other words, the sensors which report the physiological conditions of all tissues in the 

body, enable the neural, endocrine and behavioral functions for supporting the process of home-

ostasis to perform optimally and efficiently together (Kanosue et al. 2010, Amann et al. 2011). For 

example, the same small-diameter sensory receptors of muscles which involve in energy self-

regulation, also contribute to the subjective feeling of fatigue. They signal workload, metabolite 

concentration, vascular distension, mechanical distortion and temperatures. In the Craig homeo-

static model, primary interoceptive representation, the high-resolution representation of ongoing 

metabolic and vascular conditions, which are conveyed by small-diameter sensory fibers, is em-

bedded in the posterior insula. For example, objective feeling of painful heat intensity is correlat-

ed with the activity in the dorsal posterior insula. According to this model, based on comprehen-

sive evidences, there is a multimodal integration in the mid-insula. In the mid-insula, interoceptive 

image of the body is sequentially integrated with extroceptive sensory activity such as those from 

skin and muscles, with homeostatic motor activity (i.e. breathing), with environmental sensory 

information (auditory, and visual), and with hedonic activity from accumbens and orbitofrontal. 

The PET study of cool feelings showed that subjective rating of cool temperature correlated first 

with activation in mid-insula and then strongly with the anterior insula. Therefore, feelings from 
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the body emerge first in the mid-insula. In the last step, AIC (where conscious experience of emo-

tion emerges) incorporates emotionally salient activity from limbic cortical regions (ACC, OFC), as 

well as social and cognitive activities from vmPFC, and dlPFC. Sequential re-representations of 

bodily sensations across IC, provides a foundation for the integration of homeostatic conditions of 

the body, with the sensory environment, the internal autonomic states and motivational and so-

cial conditions.  

Alternative hypothesis on interocpetive awareness’s pathways suggests that the insula 

would not be necessary for interoceptive awareness, and pathways projecting to the somatosen-

sory cortex (SC) would be involved. Khalsa et al. had a unique opportunity to study the existence 

of different pathways. Their subject suffered from complete damage to the bilateral IC, ACC, OFC 

and amygdala, but the bilateral SC was intact. Any dose-dependent increase in heart rate after 

bolus administrations of isoproterenol (a sympathetic agonist) was precisely reported verbally 

and by turning a dial by the patient. However, as soon as the lower left chest skin was anesthe-

tized (using a topical lidocaine), he was not anymore aware of any change in the heart rate. Their 

result showed that both pathways independently mediate interoceptive awareness (Khalsa et al. 

2009). It clarified that the skin sensory afferents to the primary and secondary somatosensory 

cortices (SC: S1 and S2), which usually believed to support exteroception, independently from 

sensory afferents to IC and ACC enable awareness of the cardiovascular status of the body. Couto 

et al. in a case study showed that their patient who was using an external heart (an extracorpore-

al left-univentricular cardiac assist device, LVAD) relies on somatosensory beats from LVAD in the 

modified heartbeat detection task, rather than direct vagal enervation of the endogenous heart 

(Couto et al. 2014). He showed lack of empathy when observed painful pictures of accidents, and 

compared to the control group he performed significantly worse in theory of mind tasks. 

Another interesting converging evidence on multiple interoceptive pathways is that, all 

other studies which reported activation of insular cortex (IC) during cardiac interoception, showed 

the activation of somatosensory cortex (SC) as well (Cameron et al. 2002, Pollatos et al. 2007, 
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Critchley et al. 2004). One more clue of skin relevance in the cardiac interoceptive awareness is 

the negative correlation between BMI and heartbeat detection performance (Rouse et al. 1998).  

To summarize, people have non-identical bodily awareness, and therefore different sub-

jective emotional experience (Wiens 2005). Those with higher awareness have more intense reac-

tions to emotive pictures and are better at describing their emotions. Even they are better at rec-

ognizing other people emotions from their faces. Furthermore, interoroceptive awareness influ-

ences decision-making (Dunn et al. 2010, Kirk et al. 2011), and theory of mind (Lutz et al. 2009).  

In this doctoral dissertation, the effort has been on designing and performing experiments 

for modulating homeostatic networks by using rtfMRI neurofeedback in order to improve intero-

ceptive awareness, decision-making related eating behavior in obese patients, and self-control in 

obsessive-compulsive disorder (OCD) patients. Three studies have been conducted. In the first 

study, we wanted to investigate if overweight participants are able to learn to enhance their func-

tional connectivity between vmPFC and dlPFC using neurofeedback training, and whether success-

ful training of functional connectivity improves the inhibitory control of eating behaviour. To-

wards this purpose, participants were trained to volitionally up-regulate the functional connectivi-

ty (partial correlation) between vmPFC and dlPFC over several sessions. In the second study, we 

aimed at enhancing interoceptive awareness by modulating functional connectivity between SC 

and AIC indirectly in healthy participants. In contrast to the first study, we tried to boost function-

al connectivity between SC, and AIC by neurofeedback training of voluntarily up-regulation of 

simultaneous combined activity from both regions. Therefore, the two studies shared the fact 

that both targeted modulating functional connectivity for improving homeostatic regulation, but 

their approaches for enhancing the strength of coupling were different.  

As we discussed earlier, the neural mechanisms underlying learning regulation of BOLD 

activity have been investigated and is understood (Birbaumer et al. 2013). On the other hand, 

although there exist many encouraging evidences for neurofeedback training of functional con-

nectivity, but still underlying mechanism of regulating connectivity needs to be investigated. As a 

result, neuroscientifically, modulating coupling between distributed regions in the brain by target-
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ing the BOLD activity is preferred over connectivity’s measures such as correlation. In fact, Hebbi-

an theory that explains the fundamental mechanism for synaptic plasticity was the basis for our 

second study. According to the Hebbian theory, any two cells or systems of cells that are repeat-

edly active at the same time will tend to become associated (Hebb 1949). In other word, cells that 

fire together wire together (Lowel et al. 1992). Although applying both methodologies successful-

ly resulted in enhancing functional connectivity in our studies, but there has been a limitation to 

employ the same Hebbian-based approach for modulating connectivity in eating-related brain 

areas in the first study. The limitation rises from the fact that employing successful strategies for 

up-regulating BOLD activity in dlPFC might lead to deactivation or co-activation of vmPFC. There-

fore, learning processes would be difficult, if not impossible.  

Finally in the last study, we investigated whether patients with contamination obsessions 

and washing compulsions can learn to volitionally decrease (down-regulate) BOLD activity in the 

insula in the presence of disgust/anxiety provoking stimuli. In concordance with the role of insula 

in disgust processing, new neural models based on neuroimaging studies suggest that abnormal 

high activations of insula could be implicated in OCD psychopathology, at least in the subgroup of 

patients with contamination fears and washing compulsions. We employed rtfMRI-NF technique 

for training OCD patients to volitionally down-regulate the insula activation. Post treatment, the 

effect of down-regulation on clinical, behavioural and physiological changes pertaining to OCD 

symptoms was evaluated. 

The result of the first study showed that conscious voluntary up-regulation of correlation 

results in an increased functional connectivity between the dlPFC and vmPFC, a connectivity that 

is involved in self-control and healthy food choices. The behavioural results indicated a tendency 

towards healthier food choices comparing post transfer session with the pre-test session. Offline 

partial correlation analysis in the second study confirmed our hypothesis that volitional up-

regulation of simultaneous combined BOLD activity of AIC and SC leads to enhanced functional 

connectivity between them, a connectivity that permits enriched feelings from the body and sub-

jective feeling of emotions. Very interestingly, the results elucidated that coupling strength be-
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tween right AIC and SC predicts the interoceptive sensitivity measured by heartbeat perception 

task. Results of the third study showed that OCD patients could gain self-control of the BOLD ac-

tivity of insula, albeit to different degrees. Positive changes in behaviour in the Ecological disgust 

test (EDT) were observed following the rtfMRI trainings. Behavioural changes were also confirmed 

by reductions in the negative valence and in the subjective perception of disgust towards symp-

tom provoking images. 

This dissertation clarifies that rtfMRI neurofeedback is a powerful efficient technique for 

neuroplasticity and enhancing altered or interrupted homeostatic equilibrium. Specifically, func-

tional connectivity between areas that process food value (vmPFC) and those that control eating 

behaviour(dlPFC) in overweight subjects, and  also functional connectivity in brain regions which 

mediate interoceptive awareness (AIC, and SC) in healthy participants can be enhanced by rtfMRI 

neurofeedback training. Promisingly, we showed that not only up-regulation, but also down-

regulation of BOLD activity in AIC is achievable.  

Behavioral findings from our three studies provide new insights that the homeostatic self-

regulating ability of the brain can be strengthened by neurofeedback. They clarify that changing 

and modulating neuronal pathways in brain networks underling self-control, decision making, and 

emotional experiences will result in promising behavioral consequences.  Despite the costs and 

accessibility of MR technology, the possibility to manipulate homeostatic brain networks through 

few sessions of training is highly important and represents a novel approach for clinical applica-

tion.   
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Abstract 

Background: Individual differences in interocpetive awareness explain some of the variations in 

emotional information processing. Several studies have shown that activity of the right anterior 

insular cortex (AIC) is associated with accuracy in heartbeat perception and detection tasks. On 

the other hand, there exist alternative hypotheses about the functional neuroanatomy of intero-

ception suggesting that the AIC is not critical for processing interoception. It has been shown that 

different pathways play a role in interoceptive awareness including visceral afferents projecting to 

the AIC and anterior cingulate cortex (ACC), and skin afferents projecting to the somatosensory 

cortex (SC). We assumed that AIC and SC interoceptive pathways have a different and comple-

mentary role for heartbeat interoception. The anterior insula (AI) pathway conveys pressure re-

lated heartbeat signals, whereas the SC pathway transmits the exogenous somatosensory com-

ponent associated with cardiac activity; together they would then permit to analyse emotional 

activations and probably emotional valence. 

Objective: we postulated that the functional interconnection between AIC and SC, regions which 

receive visceral and skin afferents respectively, organizes the processing of bodily signals from the 

viscera and somatic tissues which represents the core aspect of emotional regulation in the 

James-Lang concept of emotion. We trained healthy participants to volitionally regulate BOLD 

activity in the AIC and SC simultaneously using real-time functional magnetic resonance imaging 

neurofeedback (rtfMRI-NF). We specifically aimed to manipulate functional connectivity between 

AIC and SC by rewarding simultaneous activity in these two brain regions. 

Design: 12 healthy individuals were trained to regulate simultaneous BOLD activity in the AIC and 

SC over one training day consisting of four neurofeedback sessions and one localiser session.  

Average BOLD activity of ROIs in AIC and SC, selected based on localiser session, was used for 

calculating feedback (Turbo-BrainVoyager 3.2, Brain Innovation B.V.). 

Results: 9 out of 12 participants were able to regulate BOLD magnitude successfully in the right 

AIC and SC. Training resulted in a significantly increased BOLD activity, increased effect-size, in 

both the right AIC, and SC. Offline partial correlation connectivity analysis showed significant in-

crease of correlation between right AI and SC over sessions during regulation. Regression analysis 

revealed that learned coupling between right AIC and SC predicted interoceptive sensitivity. 

Conclusion: We employed a novel neurofeedback approach to increase functional connectivity. 

Accordingly, by rewarding BOLD response in both AIC and SC simultaneously through rtfMRI-NF 

training we tightened their functional interconnection. At behavioral level, we observed that the 

modulation of functional connectivity between the AI and SC predicted performance in the heart-

beat perception task. The possibility to manipulate interoceptive sensitivity through self-
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regulation of specific neuronal network activity might represent a novel approach for clinical ap-

plication aiming at treating disorders of interoceptive awareness i.e. obesity and anorexia-bulimia. 

 

Keywords: Interoceptive awareness, rtfMRI-neurofeedback, functional connectivity, learning 
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1. Introduction 

Interoception denotes the sense for visceral and somatic afferent bodily information originating 

from inside the body (Craig 2002, Craig 2003, Seth 2013). Detection of internal bodily sensation 

has been defined as interoceptive awareness (Garfinkel 2013). Interoceptive feedback keeps the 

internal physiological state in a stable equilibrium (Critchley et al. 2013, Ondobaka et al. 2015, 

Craig 2009, Seth et al. 2011). It has been proposed that heightened interoceptive awareness could 

be associated with more intense emotional experiences (Wiens 2000). This is in line with the 

James–Lange theory of emotion, and its more recent version of somatic marker according to 

which subjective emotional experience depends upon the perception of physiological changes of 

the body (Damasio 1991, Craig 2009, Seth et al. 2011, Seth 2013). 

Functional imaging studies have provided evidence that the right anterior insular cortex 

(AIC) is a critical region for interoceptive and subjective emotional awareness (Gu et al. 2013, 

Craig 2009, Pollatos et al. 2007). Several studies have shown that activity of the right AIC is associ-

ated with accuracy in heartbeat and other visceral perception and detection tasks (Critchley et al. 

2004, Pollatos et al. 2005). Awareness of emotionally salient stimuli also correlates with AIC activi-

ty (Critchley et al. 2004). 

The AIC forms the substrate for a neural representation of interoceptive bodily states and 

generates regulatory signals necessary to maintain bodily homeostasis (Craig 2002, Craig 2003, 

Craig 2009, Critchley et al. 2004, Craig 2005). Craig in his model of human awareness suggested a 

mechanism of a global instantiation of bodily status within the right anterior insula, “the material 

me”.  In this model, the posterior insula and the primary interoceptive cortex are associated with 

somatotopic representation of bodily states, and sequential integration of salient visceral/bodily 

activity with cognitive and motivational information progresses from the posterior to the anterior 

insula. According to this model, damage to the AIC would result in the lack of interoceptive 

awareness (Craig 2002, Craig 2003, Craig 2005, Craig 2009). Recently, Seth et al. also proposed an 

interoceptive predictive coding model of conscious presence pointing to the anterior insula as key 

region for assessing top-down predictions of interoceptive signals evoked (directly) by autonomic 
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control signals and (indirectly) by bodily responses to afferent sensory signals. Within this frame-

work, interoceptive prediction error would then result from comparing top-down interoceptive 

predictions with bottom-up bodily signals. As claimed by this model, the anterior insula plays a 

critical role as a neural comparator of top-down interoceptive predictions and bottom-up bodily 

signals (Seth 2013).  

On the other hand, there exist alternative hypotheses about the functional neuroanatomy 

of interoception suggesting that the AIC might not be the sole region for mediating interoception.  

It has been shown that additional pathways play a role in interoceptive awareness including vis-

ceral/bodily afferents projecting to the insular cortex and ACC (Anterior cingulate cortex), and 

skin afferents projecting to somatosensory cortex (SC) (Cameron et al. 2002, Khalsa et al. 2009, 

Pollatos et al. 2007, Couto et al. 2014). Khalsa et al. by combining lesion and pharmacological 

methods studied a patient with bilateral damage to insula and ACC, and intact bilateral SC. This 

patient showed good performance on heartbeat detection task, but after chest skin anaesthesia  

interoceptive sensitivity was impaired (Khalsa et al. 2009). This important study challenged cur-

rent neuroimaging findings of the insula as the exclusive cortical substrate for interoceptive 

awareness. Instead, these results supported the existence of two, possibly independent, path-

ways mediating interoceptive awareness: one constituted of visceral afferents projecting to the 

insular cortex (IC) and ACC, and one including skin afferents projecting to secondary somatosen-

sory cortex. 

 This finding is also supported by studies showing that lower body mass index predicts 

better heart beat detection accuracy, thus suggesting that skin receptors are important for inter-

oceptive awareness (Rouse et al. 1998, Couto et al. 2014).  In addition, most of previous neuroim-

aging studies reporting AIC activation associated with interoceptive sensitivity also reported acti-

vation of SC (Critchley et al. 2004, Pollatos et al. 2005, Pollatos et al. 2007). Furthermore, several 

different interoceptive awareness/attention tasks were associated with SC activity (Dickenson et 

al. 2013, Kashkouli Nejada et al. 2015, Kilpatrick et al. 2011). 
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 The present study aimed at clarifying the neural correlates underlying interoceptive 

awareness using a novel approach based on instrumental learning of BOLD response through real-

time fMRI. In the last decade, a number of investigations have demonstrated that learned regula-

tion of the blood-oxygen-level dependent (BOLD) signal is possible in brain areas related to differ-

ent type of processing: sensorimotor, cognitive and emotion (Birbaumer et al. 2013, Caria et al. 

2012, Weiskopf 2012, Sulzer et al. 2013). More importantly, real-time functional magnetic reso-

nance imaging (rtfMRI) studies have shown that neurofeedback training, besides allowing specific 

control of localized BOLD signal, leads to changes in human behavior (Sulzer et al. 2013, Caria et 

al. 2012, Weiskopf 2012, Weiskopf et al. 2007). In particular, changes in emotional responses 

were reported concurrently with successful regulation of AI activity (Caria et al. 2012, Caria et al. 

2015). 

In this study we postulated a critical role of the functional interconnection between AI 

and SC, regions which receive visceral and skin afferents respectively, mediates the processing of 

bodily signals from the viscera and somatic tissues which represents a core aspect of motivational 

regulation (Bechara et al. 2004, Craig 2002). We assumed that AI and SC interoceptive pathways 

have  different and complementary roles for heartbeat interoception. AI pathway conveys endog-

enous, more visceral heartbeat signals, whereas the SC pathway transmits the exogenous somatic 

somatosensory component associated with cardiac activity; together they would then permit a 

complete perceptive model of heart rate changes. 

Hence, we hypothesized that interoceptive awareness would be modulated by the func-

tional coupling between anterior insula and somatosensory cortex more than by the isolated ac-

tivity of each single region. To this aim, we trained healthy participants to volitionally regulate 

simultaneous combined BOLD activity in the AI and SC using rtfMRI neurofeedback. We specifical-

ly aimed to manipulate functional connectivity between AI and SC by reinforcing activity in these 

two brain regions simultaneously. This novel approach is based on Hebbian learning mechanisms 

(Hebb 1949) indicating that neuronal assemblies are formed through their successful coactiva-

tions. Accordingly, by rewarding BOLD response in both AI and SC through neurofeedback training 
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we aimed to reinforce their functional interconnection. At behavioral level, we then expected that 

the modulation of functional connectivity between AI and SC would predict performance on 

heartbeat perception task. As a first step, we intended to demonstrate that learning of brain func-

tional connectivity is possible as a proof-of-principle approach. It is obvious however that differ-

ential training of both areas probably needs to be realized as a control condition. However, in 

order to secure the specificity of training changes to interoception, a comparable exteroception 

task was introduced. 

Ultimately, the possibility to manipulate interoceptive sensitivity through self-regulation 

of specific neuronal network activity might represent an approach for clinical application aiming 

at treating psychological and psychiatric disorders where altered interoceptive and emotional 

awareness is often observed.  
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2. Methods 

2.1. Participants  

Twelve healthy volunteers participated to the study (mean age 27 ± 3.62 years, 9 females, 11 right 

handed). They had no history of neurological or psychiatric disorders including substance 

abuse/dependence or psychotropic medications, or any other medical condition that requires 

regular medical treatment. All participants were previously involved in at least one MR experi-

ment. They signed a written informed consent and were monetary compensated for their effort 

and participation at the end of the experiment (12 €/hr). This study was approved by the local 

ethics committee of the Faculty of Medicine of the University of Tübingen. Participants were in-

structed not to move and to breath regularly in order to avoid artefacts.  

 

2.2. Experimental procedure 

All participants underwent a single fMRI day. The experiment was preceded by a preparation 

phase, and included MR data acquisition for a high resolution brain anatomy, a functional localiz-

er, and four neurofeedback training sessions. 

 

2.2.1. Preparation 

Few days before the scanning sessions, participants were provided with written instructions about 

the experimental task. Participants were administered the Vividness of Visual Imagery Question-

naire—(VVIQ-2, Marks, 1995) and the Body Perception Questionnaire (BPQ) in order to test for 

the individuals’ imagery ability and awareness of bodily changes respectively. The items of the 

VVIQ-2 test will possibly bring certain images to the mind. During the VVIQ-2 participants are 

asked to rate the vividness of each image on a 5-point scale. For example, if the image is dim or 

vague, participants are supposed to give a rating of 2. High scores on the VVIQ–2 indicate vivid 

visual imagery. The BPQ includes 5 subtests: bodily awareness, stress response, autonomic nerv-

ous system reactivity, stress style, and health history inventory. Subjects required scoring their 

answers on a 5-point scale (ranging from never to always). 
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At the experimental day, participants were debriefed about the experiment, and at the very be-

ginning, they were trained to use a keypad composed of 10 keys (zero, 1, 2... 9) by asking them to 

report numbers between 1 and 19 (while they were lying on the scanner table, the experimenter 

instructed random numbers to them auditorily). Participants were trained until their response 

was sufficiently fast and reliable (100% correct in 60 responses).  

 

2.2.2. Localizer 

The functional localizer permitted to delineate AI and SC. It consisted of 3 interoception and 3 

exteroception trials alternated with rest. During the interoceptive task (16 seconds), subjects 

were asked to attend to their own heart, and silently count their heartbeat for as long as the task-

type indicator (a dark coloured heart on a light background) was displayed (Figure 1B). The exter-

oceptive task (16 seconds) was indicated by a dark coloured musical note symbol on a light back-

ground, and participants had to silently count the number of tones during the period the indicator 

was on the screen (Figure 1A).  After each condition, subjects were asked to report the number of 

heartbeats or tones using the keypad (3 seconds). During rest (16 seconds) a dark cross was pre-

sented on a light gray background (Figure 1E), and subjects were instructed to relax. 

 

2.2.3. Feedback training 

Participants underwent four neurofeedback training sessions in one day where they learned to 

voluntarily regulate their own brain activity. Each neurofeedback session composed of 8 regula-

tion, and 8 baseline trials which were followed by interoception/exteroception trials pseudo-

randomly and alternated with rest. During regulation, a thermometer and an up-arrow sign next 

to it were shown to the subjects (Figure 1C).  The thermometer informed them in real-time about 

the current level of combined brain activation. The number of grey lines in the thermometer re-

flected the level of activation. Their task was to increase the number of grey lines. We instructed 

participants to figure out cognitive strategies that work for them to accomplish better regulation, 

and once they find one, they should keep using it. We proposed some additional suggestions. 
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These suggestions included a) using emotional imagery, recalling some of the most emotional 

episodes of his/her life, and try to feel the same emotion as they felt in the past b) to concentrate 

on internal bodily signals, such as breathing, heartbeats, gastrointestinal movement or c) body 

perception (focus on perception of your arms, legs etc.). They were told that feedback is a bit 

delayed and they will see the effect of a strategy after about six or seven seconds. During the 

baseline, only the thermometer frame with a small plus sign (symbol of the trial) next to it was 

presented, but no feedback was provided (without updating gray thermometer’s lines) (Figure 

1D). During the baseline, participants were instructed to relax and reduce any cognitive load and 

not to think about the experiment. During the interoceptive and extroceptive tasks, participants 

were supposed to do the same as they did during the localizer session. The duration of each trial 

was as follow: regulation: 30 seconds, baseline: 30 seconds, extro- and interoception trial: 14, 15, 

16, 17 seconds (these times include 3 seconds for reporting numbers) pseudo-randomised, rest: 

30 seconds – (duration of interoception or exteroception trial). All stimulus presentation pro-

grams were implemented in Matlab using Psychtoolbox version 3.0.12. 

 

 

 

 

 

 



 

76 

 

 

Figure 1: Experimental protocol – the experiment consisted of a localizer and 4 neurofeedback sessions. Localizer per-

mitted to estimate the localization of the AI and SC cortices. It included 3 interoception and 3 exteroception trials alter-

nated to rest. Each neurofeedback session composed of 8 regulation, and 8 baseline trials which were followed by inter-

oception/exteroception trials pseudo-randomly and alternated with rest. Below are the description of different trials: 

 

A. Exteroception trial: participants were asked to attend to the auditory tones, and silently count them as long as 

the task-type indicator (a dark coloured musical note symbol on a light background) was displayed. The dura-

tion of each extroception trial was 20 seconds in the localizer session, but pseudo-randomly varied during neu-

rofeedback sessions (14, 15, 16, 17 seconds). Subjects were asked to report the number of tones using the key-

pad. All of the aforementioned times include 3 seconds for reporting number of tones. 

B. Interoception trial: participants were asked to attend to their own heart, and silently count the heartbeat for 

as long as the task-type indicator (a dark coloured heart on a light background) was displayed. The duration of 

interoception trial was 20 seconds in the localizer session, but pseudo-randomly varied during neurofeedback 

sessions (14, 15, 16, 17 seconds). Subjects were asked to report the number of  heartbeats using the keypad. 

All aforementioned times include 3 seconds for reporting number of hearbeats. 

C. Regulation trial: The regulation was cued with an up-arrow next to the thermometer. The combined BOLD-

activity of AI and SC was reflected by the grey lines inside the thermometer, and were updated every TR=1.5 

seconds.  Subjects were required to increase the number of lines. The duration of regulation was 30 seconds.  

D. Baseline trial: The baseline was cued with a plus sign next to the thermometer. During this trial, only the emp-

ty thermometer frame and plus sign were shown to the subjects. Subjects were required to relax and reduce 

any cognitive work during this period. The duration of baseline was 30 seconds.  

E. Rest: It was cued by a plus sign in the center of the screen. Subjects were required to relax during this period. 

The duration of the rest trial was 16 seconds in the localizer, and 30 seconds – (duration of interoception or ex-

teroception trial) in neurofeedback training sessions. 
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MR compatible headphones were used for presenting tones during exteroceptive task (Figure 1A). 

In order to make the difficulty of both the intero- and exteroceptive tasks comparable (Figure 1A 

and 1B), the volume of tones were individually determined at the beginning of the experiment. To 

achieve this, participants were asked to adjust the intensity of the volume of the tones while the 

scanner was acquiring images.  Participants were instructed to repeatedly decrease the volume of 

the tones until the minimal not detectable level (they do not hear anything) and then increase it 

to one level higher (the first higher detectable level). They could use left, right index, and right 

middle finger to decrease, increase, and confirm the intensity of tones.  This minimum detectable 

level was used for constructing the tone intensities in exteroceptive task in localizer and neuro-

feedback sessions.  The frequency of tones was 800 Hz, with a duration of 200 millisecond, a 

length that is comparable to the average duration of a heartbeat. To control for habituation ef-

fects, tones were presented in 3 different intensities, 1, 14, and 34db above the subject’s thresh-

old intensity.  Additionally the inter tone interval was varied pseudo-randomly by 600, 800, 1000, 

1200, 1400 millisecond.  A Siemens Pulse oximeter (Physiological Monitoring Unit) was used for 

recording heartbeats by attaching the light sensor to the finger.  

 

2.3. MRI data acquisition 

Functional images were acquired using a 3.0 T MR scanner, with a standard 64-channel head coil 

(Siemens Prisma Magnetom, Erlangen, Germany). During feedback training, standard echo planar 

imaging (EPI) images consisting of twenty axially oriented slices (voxel size=3×3×3.3 mm3, slice 

gap=0.57 mm) were acquired (repetition time TR=1500 ms, matrix size=64×64, echo time TE=35 

ms, flip angle α=79°, bandwidth=1.905 kHz/pixel). With the same parameters the localizer images 

acquired at TR=2000 ms. For superposition of functional maps upon brain anatomy a high resolu-

tion T1 weighted image of the whole brain was collected from each subject (ADNI, matrix 

size=256×232, 192 partitions, voxel size=1×1×1 mm3, TR=2000 ms, TE= 3.06 ms, TI=1100 ms, 

α=9°). In order to minimize head movements two foam cushions were positioned around partici-

pant’s head. 
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2.4. Data Processing 

 2.4.1. Neurofeedback - online analyses 

The MR images were exported in real time from the MRI console computer to the Turbo brain 

voyager computer. To avoid the T1 saturation effect, the first 10 images were discarded. The real 

time motion correction was applied by aligning all functional images to the first recorded volume 

in the first session, and images in all other sessions were aligned accordingly.  Motion corrected 

functional images were then spatially smoothed by a kernel of 9 mm. Incoming images were con-

sidered for calculating feedback, the average BOLD activity within online selected ROIs in AIC, and 

SC.  The participants were updated about their brain activity only during regulation by visually 

provided feedback in every TR. To have a smooth feedback, less prone to noise, the feedback 

value at each moment was calculated based on moving average of the current and the two previ-

ous combined BOLD activities of the ROIs. The more the average brain activity of AIC and SC was, 

the higher the number of gray lines inside the black thermometer.  

 

2.4.2. Offline fMRI voxel-based data analysis 

Functional imaging data were analyzed using SPM 8 (Wellcome Department of Cognitive Neurolo-

gy, London, UK).  All functional images were first motion corrected and realigned. The high-

resolution T1 image was then co-registered to the mean image of the EPI series for each partici-

pant. Segmentation parameters were used to normalize the functional scans to a standard Mon-

treal Neurological Institute (MNI) template. Normalized images were spatially smoothed with a 

9mm full-width half-maximum Gaussian kernel. Low frequency drifts were removed using a high-

pass filter with 128 seconds cut off. After functional data preprocessing, a general linear model 

was adopted to perform first level statistical analysis. For each participant, an analytic design ma-

trix was constructed using the following type of events as regressors: baseline, regulation, intero-

ception-preceded by regulation, interoception-preceded by baseline, exteroception-preceded by 

regulation, and exteroception-preceded by baseline. Conditions were modeled with a canonical 

hemodynamic response. In addition, a regressor considering key-pressed onsets was included to 
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cancel out residual hand movement-related variance. For each participant, contrast images of 

regulation versus baseline, and interoception vs exteroception were created. Contrast images 

were then entered into a second-level (random-effects) analysis to allow population-level infer-

ences. One-sample t-tests on the contrast images imported from the first-level analysis were per-

formed to assess group effects across all participants.  

 

2.4.3. Offline fMRI ROI-based data analysis 

2.4.3.1. Self-regulation effect-size 

Information about the time courses of the voxels inside anatomically selected right secondary SC 

corresponding to supramarginal gyrus (BA40) and right AI were extracted, and linearly detrended.  

To factor out the stimulus-induced activity during regulation trial, and possible effect of BOLD 

activity from previous trial on the baseline trial, the 5 data points at the beginning of both trials 

were excluded. The neurofeedback training effect-size during regulation trial was then calculated 

separately for each ROI by calculating the following formula for all subjects and training sessions: 

Effect-size = ((BOLD_regulation - BOLD_baseline) / BOLD_baseline)*100. Group analysis was per-

formed by comparing the training effect-size over sessions using ANOVA and the paired t-test.  

 

2.4.3.2. Functional connectivity analysis 

Offline partial correlation analysis was performed to regress out any global fluctuation or un-

wanted movement artifact that possibly had not been corrected by preprocessing algorithms. For 

performing partial correlation analysis a control (third) region was selected from subcortical white 

matter far from AIC and SC in the temporal lobe (Sphere with a radius of 6 millimeters centered in 

x=40, y=-40, z=7 (MNI space)).  Group analysis was performed by comparing the correlation be-

tween AIC and SC over sessions using the paired Wilcoxon signed rank test. 
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2.4.4. Behavioral data analysis 

The interoceptive/exteroceptive sensitivities were calculated based on the real and the reported 

number for the heartbeats or auditory tones for each subject as follow: 

 

Sensitivity = (reported number – real number) / real number 

 

  Regression analysis was performed between BOLD activity in both AI and SC, and intero-

ceptive sensitivity across those participants who showed successful regulation of BOLD activity in 

both ROIs. The same analysis was performed between interoceptive sensitivity and the coupling 

among AI and SC. Average heart rate during regulation and its differences with respect to baseline 

were also calculated for each training session across all participants. To associate brain (regulation 

ability) and behaviour (sensitivity) to the individuals’ imagery ability and awareness obtained from 

questionnaires and body mass index (BMI) multivariate regression analysis was performed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

81 

 

3. Results 

3.1. Self-regulation ability 

3.1.1. BOLD activity 

 Nine participants were able to successfully regulate BOLD magnitude in the right anterior AI and 

SC. Neurofeedback training resulted in a significantly increased effect-size in both the right AI 

(F(3,24)=3.65, p = 0.02; t = 2.39, p = 0.03), and SC (F(3,24)=2.11, p=0.1; t = 2.05, p = 0.03) compar-

ing session 4 to session1 (Figure 2).  

 

3.1.2. Offline connectivity analysis 

Offline connectivity analysis showed a significant increase of partial correlation between right AI 

and SC comparing session4 versus session1 only during regulation, and not baseline (F(3,24)=1.89, 

p=0.15; p = 0.02) (Figure 3). 

 

3.1.3. Heart rate 

Significant increase in heart rate was observed during regulation compared to baseline for each 

training session (session1: p=0.01; session2: p=0.02; session3: p=0.02; session4: p=0.02) (Figure 

4). Between training sessions, there was no significant increase in heart rate during regulation 

(Figure 5). 

 

3.2. Brain-bahavior association 

There was not meaningful relation between BOLD activities in any of AIC or SC ROIs with intero-

ceptive sensitivity. The significant correlation between coupling among AIC and SC, and interocep-

tive sensitivity (IS) during baseline (r=0.43, p=0.01) (Figure 7) and regulation (r= 0.45, p=0.009) 

(Figure 6) was observed. Negative correlation between coupling among AIC and SC, and extero-

ceptive sensitivity was observed(r=-0.40, p=0.02). Furthermore, connectivity between significantly 

activated clusters from statistical maps, such as thalamus, and basal ganglia with the right AIC 
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were tested for potential association with IS. Multivariate regression analysis showed a significant 

negative association between regulation-ability in AIC with awareness (Beta=-0.33, p=0.04).  

 

3.3. Neural substrate of the learning effect 

Group random effects analysis confirmed an increased BOLD–magnitude in the right AIC, right SC, 

right and left basal ganglia, right mid-cingulate and, right thalamus.  All activation maps are gen-

erated from regulation> baseline comparing session 4 versus session 1, and projected on a single-

subject T1 template. The activation map were thresholded at p=0.008. 

 

 

 

 

 

 

 

 

Figure 2: Feedback training BOLD regulation’s effect-

size – there is a significant increase of regulation effect-

size between session4 and session1 in both SC and AIC.  

Figure 3: Offline functional connectivity - significant increase 

of connectivity (Partial correlation) between SC, and AIC over 

sessions and only during Regulation was observed. 
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Figure 4: Heart rate differences- in each training ses-

sion, a significant increase of heart rate in Regulation 

compared to Baseline was observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. Coupling between SC and AIC during regulation 

versus interoceptive sensitivity ((reported – real)/real) 

including all training sessions across all subjects - Signifi-

cant relationship was demonstrated by a significant cor-

relation (r=0.45, p=0.009). Interoception trials subsequent 

to regulation were considered for this analysis. 

 

Figure 7. Coupling between SC and AIC during baseline 

versus interoceptive sensitivity ((reported – real)/real)    

including all training sessions across all subjects - Signifi-

cant relationship was demonstrated by a significant 

correlation (r=0.43, p=0.01). Interoception trials subse-

quent to baseline were considered for this analysis. 

Figure 5: Heart rate – there is no significant difference 

in heart rate over sessions during regulation. 
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Table 1: Brain regions underlying increased regulation ability (regulation>baseline)(session4) >  (regulation>baseline)(session1) 

 
 
 
 
 

Brain regions                              KE Coordinates (MNI) t-value 

 X     y Z  

 

Right Supramarginal gyrus                       167  66  -40 34 7.25 

Right Putamen                                         1321  24   - 1   4 6.93 

Right Thalamus                                               -  18  -19   5 6.88 

 

 

 

Right Rolandic operculum                            -  57    11   1 6.46 

Left Putamen                                              217 -24    -7  -1 6.69 

 

 

Left Pallidum                                                   - -12     8  -2 6.50 

Left Caudate                                                    - -12     8   7 4.33 

Mid-Cingulate                                             185  12   11 37 5.75 

 

 

Right Anterior Insula                                     -    33   30   1 3.03 

Left Frontal_Sup_Medial                              -  0   29 40 5.52 

Left Angular gyrus                                        43 -45  -61 49 4.67 

Left Post central gyrus                                75 -42  -28 58 3.99 
     

Figure 8. Coupling between SC and AIC during 

regulation versus exteroceptive sensitivity ((re-

ported – real)/real) including all training sessions 

across all subjects. Exteroception trials subsequent 

to regulation were considered.  

 

Figure 9. Brain regions underlying increased regulation 

ability - Random effects analysis on the experimental 

contrast  confirmed an increased BOLD–magnitude in 

the right AIC, right SC, right and left basal ganglia, right 

mid-cingulate and, right thalamus.  Activation map is 

generated from regulation> baseline comparing ses-

sion4 versus session1, and projected on a single-subject 

T1 template. 
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4. Discussion 

Brain is continuously updated about the physiological states of all body’s tissues. Small-diameter 

sensory afferents from skin (via spinal laminar 1) and all viscera (carrying motivational information 

such as hunger, satiety, thirst, and the like via vagus and glossopharyngeal nerves terminating 

within NTS (nucleus of the solitary tract)) provide ongoing sensory inputs to the homeostatic cells 

in spinal and brain stem. In the Craig homeostatic model, primary interoceptive representation, 

the high-resolution representation of ongoing metabolic and vascular conditions, which are con-

veyed by the small-diameter sensory fibers, is embedded in the posterior insula. AIC (where con-

scious experience of emotion emerges) incorporates emotionally salient activity from limbic corti-

cal regions (ACC, OFC), as well as social and cognitive activities from vmPFC, and dlPFC (Craig 

2002, Craig 2009). Researchers have shown that differences in sensitivity to the internal bodily 

signals, interoceptive sensitivity, predicts the individual differences in the intensity of subjective 

emotional experiences (Critchley et al. 2004, Pollatos et al. 2007). However, the large-diameter 

skin sensory afferents projecting to the primary and secondary somatosensory cortices (SC: S1 

and S2), which usually believed to support exteroception, independently from small-diameter 

sensory afferents to IC and ACC would enable awareness of the cardiovascular status of the body 

(Khalsa et al. 2009, Couto et al. 2014, Cameron et al. 2002, Rouse et al. 1998). Built on these pre-

vious findings, we hypothesized that the functional interconnection between AIC and SC organizes 

the processing of bodily signals from the viscera and somatic tissues which represents the core 

aspect of emotional regulation in the James-Lang concept of emotion, and its newer version of 

somatic marker (Damasio 1991).  

In this study, we employed a novel neurofeedback approach to increase functional con-

nectivity. Accordingly, by rewarding BOLD response in both AIC and SC simultaneously through 

rtfMRI-NF training we tightened their functional interconnection. Most of participants were able 

to regulate BOLD magnitude successfully in the right AIC and SC. Training resulted in a significantly 

increased BOLD activity, increased effect-size, in both the right AIC, and SC. Offline partial correla-

tion connectivity analysis showed significant increase of correlation between right AI and SC over 
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sessions during regulation. This interesting finding shows that up-regulating simultaneous BOLD 

activity of two spatially separated brain regions could potentially be used for enhancing functional 

connectivity (FC) between those regions.  Researchers have shown that there is a clear neuronal 

mechanism underlying learning regulation of BOLD activity (Birbaumer et al. 2013), therefore 

indirect modulation of FC by targeting BOLD activity rather than a measure of FC such as correla-

tion would be easier to learn and might have stronger transfer effect. 

At behavioral level, due to the significant increase of heart rate, probably higher anxiety 

level, during regulation compared to baseline, there was not a clear association between intero-

ceptive sensitivity and BOLD activity in AIC or SC. However, we did observe an improvement in 

interceptive sensitivity at the group level in those subjects who showed enhanced FC between the 

two regions. Furthermore, very interestingly, as we have postulated we observed that the modu-

lation of FC between the AIC and SC predicted performance in the heartbeat perception task dur-

ing both baseline and regulation.  This finding elucidates that interoceptive awareness would be 

mediated by simultaneous action of both SC and AIC pathways, the higher FC the higher aware-

ness. The possibility to manipulate interoceptive sensitivity through self-regulation of specific 

neuronal network activity might represent a novel approach for clinical application aiming at 

treating disorders of interoceptive awareness i.e. obesity and anorexia-bulimia.  
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