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PREFACE

I started working on my PhD thesis in group of Prof. Dr. Martin Oettel in September
2012. At that time, he still did have a juniour research group at Institute of Physics: Con-
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Martin Oettel established Computational Soft Matter and Nanoscience group in Institut für
Angewandte Physik of Eberhard Karls Universität Tübingen.

During the first weeks in Tübingen, Martin suggested working on vacancies which
we were considering as a small warm–up project at that time. Ultimately, it turned
out to be a quite fascinating subject and we extend it to metals with high hopes of
addressing the unanswered problems in material science community. Afterwards, I
began working on Density Functional Theory and the Asakura–Oosawa model for
colloid–polymer mixtures. Meanwhile, I had the chance to investigate with Dr. Hen-
drik Hansen–Goos the properties of a new class of density functionals for the hard–
sphere system.

The actual writing of the thesis is done from January until July 2016 with some excuses
for break in between. I want to thank Dr. Johannes Bleibel, Dr. Hendrik Hansen–Goos,
and Dr. Hans Joachim Schöpe for their time in proofreading my thesis and the insight-
ful discussions that we had in between. I also thank my dear colleagues Malte Lütje,
Miriam Klopotek, and Stefano da Vela for their support and help in proofreading.

I thank my supervisor, Prof. Dr. Martin Oettel, for his great support, enthusiastic co-
operation, and collaborative discussions throughout my PhD studies. I appreciate his
thoughtful helps and suggestions for writing this thesis. I also acknowledge my second
supervisor, Prof. Dr. Roland Roth, who helped me to achieve a better understanding
of Density Functional Theory, through the course he held with Prof. Dr. Oettel on this
topic.

Finally, I want to thank my wife, Golzar Alavi, for her patience and encouragements,
especially during the past six months in which I was fully engaged in writing this
thesis. Without her, I would not be standing where I am now.
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PUBLICATIONS

The reported research studies in this thesis have been conducted between November
2012 and December 2015 mainly at Institut für Angewandte Physik, Eberhard Karls Uni-
versity of Tübingen. Most of the results of this research have already been published in
academic journals, and the corresponding publications are listed in the following.

Thermal vacancies in close–packing solids
M. Mortazavifar and M. Oettel, EPL (Europhysics Letters) 105, 56005 (2014).

Abstract:We derive an approximate expression for the equilibrium concentration
of thermal monovacancies in solids which allows for a transparent interpreta-
tion of the vacancy volume and the energetic/entropic part in the corresponding
Gibbs energy of vacancy formation ∆Gv. For the close–packing crystals of the
hard sphere and Lennard–Jones model systems very good agreement with simu-
lation data is found. Application to metals through the embedded–atom method
(EAM) reveals a strong sensitivity of the variation of ∆Gv with temperature to de-
tails of the EAM potential. Our result allows for an approximate, but direct mea-
surement of crystal free energies and vacancy concentration in colloidal model
systems using laser tweezers.

Statement of the author: Working on this topic was suggested at the beginning of my
PhD studies. The method was already applied to the hard–sphere system by Martin
Oettel. Motivated by the successful results for hard–core interaction, we applied the
method to systems with soft potentials. I have preformed the calculations for LJ and
EAM potentials in this paper.

Fundamental measure theory for the inhomogeneous hard–sphere sys-
tem based on Santos’ consistent free energy
H. Hansen-Goos, M. Mortazavifar, M. Oettel, and R. Roth, Phys. Rev. E 91, 052121
(2015).

Abstract:Based on Santos’ general solution for the scaled-particle differential equa-
tion, we construct a free–energy functional for the hard–sphere system. The func-
tional is obtained by a suitable generalization and extension of the set of scaled–
particle variables using the weighted densities from Rosenfeld’s fundamental
measure theory for the hard–sphere mixture. While our general result applies
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to the hard–sphere mixture, we specify remaining degrees of freedom by requir-
ing the functional to comply with known properties of the pure hard–sphere sys-
tem. Both for mixtures and pure systems, the functional can be systematically
extended following the lines of our derivation. We test the resulting function-
als regarding their behavior upon dimensional reduction of the fluid as well as
their ability to accurately describe the hard–sphere crystal and the liquid–solid
transition.

Statement of the author: The functional has been built and tested for the fluid phase
by Hendrik Hansen–Goos. I performed a full minimization of the functional in order
to obtain the liquid–solid coexistence densities and their corresponding free energies,
chemical potential, and pressure, as well as the equilibrium vacancy concentration of
the solid phase.

A fundamental measure density functional for fluid and crystal phases
of the Asakura–Oosawa model
M. Mortazavifar and M. Oettel, Journal of Physics: Condensed Matter 28, 244018
(2016).

Abstract:We investigate a density functional for the Asakura–Oosawa model of
colloid–polymer mixtures, describing both fluid and crystal phases. It is de-
rived by linearizing the two–component fundamental–measure hard sphere ten-
sor functional in the second (polymer) component. We discuss the formulation of
an effective density functional for colloids only. For small polymer–colloid size
ratios the effective, polymer–induced potential between colloids is short–range
attractive and of two–body form but we show that the effective density func-
tional is not equivalent to standard mean–field approaches where attractions are
taken into account by terms second order in the colloid density. We calculate
numerically free energies and phase diagrams in good agreement with available
simulations, furthermore we discuss the colloid and polymer distributions in the
crystal and determine equilibrium vacancy concentrations. Numerical results
reveal a fairly strong sensitivity to the specific type of underlying fundamental
measure hard sphere functional which could aid further development of funda-
mental measure theory.

Statement of the author: In this extensive work, the equilibrium properties of the fcc crys-
talline solid of a colloid–polymer mixture is investigated. The linearization trick which
is used here to construct the FMT functional, is a well known method in literature for
an FMT treatment of the AO model. Martin Oettel has written most of the theoretical
part which contains the comparison of the method with the mean–field approximation,
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and the derivation of an expression for the equilibrium vacancy concentration for the
AO model. I have calculated the required analytical expressions for constrained and
full minimization of the linearized WBII(tensor) functional, and performed all the DFT
computations.





ABSTRACT

The theoretical studies reported in this thesis concern the equilibrium properties of
a crystalline solid in a classical system. For this purpose, Density Functional Theory
(DFT) is introduced and its variational principle is explained. For the particular case
of a hard–sphere mixture, density functionals of Fundamental Measure Theory form
are introduced. Among the more sophisticated versions of the FMT functionals which
account for freezing, the tensorial version of the White Bear Mark II (WBII) functional
is employed and previously reported accurate results for an fcc crystalline structure
are recovered, i.e. the free energy, liquid–solid phase coexistence densities, and the
vacancy concentration for a one–component system. Furthermore, by an appropriate
extension of a general solution of the scaled–particle differential equation to inhomo-
geneous systems, a new class of free–energy functional for the hard–sphere system is
constructed. The functional is also capable of describing the liquid–solid phase tran-
sition. The resulting functional is less complex from a numerical point of view since
it does not require tensorial weight functions. The obtained solid and fluid phase co-
existence densities of the vectorial functional, as well as their corresponding free en-
ergies, the coexistence chemical potential, and the coexistence pressure, are in fairly
good agreement with Monte–Carlo (MC) simulation results.

In order to investigate in the following a colloid–polymer mixture in the context of the
Asakura–Oosawa (AO) model, the WBII(tensor) functional is linearized with respect to
the polymer density. The obtained crystal free energy curves are qualitatively similar to
those of a simple fluid with attractive interactions between the particles. Furthermore,
a comparison of the method with a standard mean–field approximation shows that
the FMT functional takes care of the attractive part of the effective potential between
colloidal particles in a fundamentally different way. The mean–field approximation
underestimates the attractive part of the potential and thus yields inaccurate phase
coexistence densities. On the other side, the obtained liquid–solid phase coexistence
densities from constrained minimization of the linearized WBII(tensor) functional are
in good agreement with available simulation data for large polymer–colloid size ratios
q & 0.6. While in this limit up to the triple point, the phase coexistence densities re-
main almost the same as pure hard–sphere system, the broadening of the liquid–solid
coexistence region is more pronounced for smaller q’s. For sufficiently small polymer–
colloid size ratio, i.e. q ≤ 0.31, the fluid–fluid phase transition becomes metastable.
Here, the fluid branch of the fluid–solid coexistence density is determined by a subli-
mation line whose corresponding colloid density varies from a rather high density at
the hard–sphere limit, to very small values at higher polymer reservoir packing frac-
tions. Moreover, using the linearized functional we are able to obtain the equilibrium
polymer density distribution in an fcc crystal of the colloidal particles. We have shown
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that for smaller q’s the majority of polymers fill the interstitial sites. This is not true
for larger polymers, q & 0.6, which tend to fill the vacant lattice sites. By performing
a full minimization of the functional, we have observed an anisotropy in the colloidal
density profile equivalent to those of a pure hard–sphere system. For small q, these
anisotropies are slightly enhanced. We have also observed an increase in the equilib-
rium polymer density at the lattice site after full minimization.

The thermal vacancies are investigated for the crystalline solid in equilibrium. Based
on the work by Stillinger et al., an expansion of the crystal partition function is derived
in terms of number of freely moving particles in the background of particles frozen at
their lattice sites. Using this expansion, we have derived an expression for the equi-
librium vacancy concentration nvac,eq. This expression relates the Gibbs free energy of
vacancy formation, ∆Gv = −kBT lnnvac,eq with kB the Boltzmann constant and T the
temperature, to a term corresponding to the crystal equation of state and a “vacancy
integral” which contains the vacancy entropy and the missing interaction energy of
the removed particle. For hard–spheres as a purely repulsive system, there is a good
agreement with obtained results from FMT and MC simulation. For studying the AO
model, we have rearranged the proposed series of the crystal partition function. The
obtained nvac,eq in the AO model, shows a fairly good qualitative agreement with FMT
results for q & 0.6. We have also applied the method to the Lennard–Jones (LJ) system.
A proper comparison with available simulation results shows good agreement for the
obtained values of the Gibbs free energy of the vacancy concentration. Moreover, the
obtained equation of state using the first order approximation of the partition function,
agrees with the parametrized LJ equation of state proposed by van der Hoef. We have
investigated nickel as an exemplary case for a metal with fcc crystalline structure. For
this purpose we have used the Embedded–Atom–Model (EAM) which gives a classi-
cal description of a many–body potential between atoms. Based on the sensitivity of
the obtained result to the parametrization of the EAM potentials, we conclude that the
Gibbs free energy of vacancy concentration at finite temperatures should be considered
in such parametrizations from the beginning.

Finally, the numerical methods and required analytical expressions for a proper im-
plementation of the FMT functionals are outlined in appendices. Here, for the pure
hard–sphere system as well as for the AO model, I have determined explicit analyti-
cal forms for the excess chemical potential of the FMT functionals in inhomogeneous
systems which are essential for the full minimization of the corresponding functional.



ZUSAMMENFASSUNG

Die theoretischen Untersuchungen in dieser Arbeit beschäftigen sich mit Gleichgewi-
chtseigenschaften eines Kristalls in einem klassischen System. Dafür wird Dichtefunk-
tionaltheorie (DFT) eingeführt und das zugehörige Variationsprinzip erläutert. Für
den Speziallfall einer Mischung harter Kugeln werden Dichtefunktionale aus der Fun-
damentalmaßtheorie (FMT) vorgestellt. Für die weiteren Betrachtungen wird zum
einen die Tensorversion des White Bear II(WBII)–Funktionals ausgewählt, welche eine
der erweiterten FMT–Formen ist, die den Gefrierübergang beschreiben. Akkurate, aus
der Literatur bekannte Resultate für den fcc–Kristall im einkomponentigen System
(freie Energie, Koexistenzdichten und die Leerstellenkonzentration) konnten repro-
duziert werden. Zum anderen wird die Konstruktion einer neuen Klasse von FMT–
Funktionalen vorgestellt, die durch eine geeignete Erweiterung der Lösung für die
scaled–particle–Differentialgleichung gewonnen wird. Funktionale dieses Typs besch-
reiben auch den Flüssig–Fest–Übergang, und sie sind für die Numerik weniger kom-
plex, da sie keine Tensor–Gewichtsfunktion beinhalten. Die berechneten Koexisten-
zdichten der flüssigen und festen Phase, die zugehörigen freien Energien, sowie Druck
und chemisches Potential bei Koexistenz zeigen eine gute Übereinstimmung mit
Monte–Carlo(MC)–Simulationsdaten.

Um im weiteren Kolloid–Polymermischungen mittels des Asakura–Oosawa(AO)–Mo-
dells zu behandeln, wird das WBII(Tensor)–Funktional bezüglich der Polymerdichte
linearisiert. Die daraus erhaltenen freien Energien für den Kristall zeigen ein qualita-
tiv ähnliches Verhalten wie diejenigen eines einfachen Fluids mit attraktiven Wech-
selwirkungen zwischen den Teilchen. Der Vergleich mit einer üblichen Mittleren–
Feld–Näherung zeigt, dass das FMT–Funktional den attraktiven Teil des effektiven
Potentials zwischen den Kolloiden grundlegend anders behandelt. Die Mittlere–Feld–
Näherung unterschätzt den Effekt des attraktiven Potentialanteils und ergibt somit
ungenaue Koexistenzdichten. Die berechneten Koexistenzdichten aus einer eingesch-
ränkten Minimierung des linearisierten FMT–Funktionals zeigen dagegen eine gute
Übereinstimmung mit Simulationsdaten für große Werte q & 0.6 des Größenverhält-
nisses zwischen Polymeren und Kolloiden. In diesem Bereich, bis zum Tripelpunkt,
bleiben die Koexistenzdichten nahe an denen des reinen Hartkugelsystems, wohinge-
gen eine Verbreiterung des Flüssig–Fest–Koexistenzbereiches für kleinere q einsetzt.
Für genügend kleine Größenverhätnisse q ≤ 0.31 wird der Flüssig–Flüssig–Übergang
metastabil. In diesem Bereich nun wird der fluide Zweig der Flüssig–Fest–Koexistenz-
dichtenkurve durch eine Sublimationslinie bestimmt, die von einer verhältnismäßig
hohen Dichte (im Grenzfall reiner harter Kugeln) zu sehr kleinen Dichten bei höheren
Polymer–Reservoirpackungsdichten verläuft. Weiterhin konnte mittels des linearisier-
ten Funktionals die Gleichgewichtsdichteverteilung der Polymere im fcc–Kristall der
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Kolloide bestimmt werden. Für kleinere q befindet sich die Mehrzahl der Polymere
auf Zwischengitterplätzen. Im Gegensatz dazu befinden sich größere Polymere (q &
0.6) in den Leerstellen des Gitters. Eine volle Minimierung des Funktionals ergab
Anisotropien des Dichteprofils der Kolloide im Kristall, die in etwa gleich denen in
einem reinen Hartkugelkristall sind. Für kleine q sind die Anisotropien etwas aus-
geprägter. Eine Erhöhung der Gleichgewichtsdichte der Polymere an den Gitterplätzen
nach voller Minimierung wurde beobachtet.

Thermische Leerstellen wurden für den Kristall im Gleichgewicht untersucht. Auf-
bauend auf den Arbeiten von Stillinger et al. wurde eine Entwicklung der Zustands-
summe des Kristalls bezüglich der Anzahl frei beweglicher Teilchen in einem Hin-
tergrund von an Gitterstellen fixierten Teilchen hergeleitet. Mittels dieser Enntwick-
lung wurde eine Gleichung für die Leerstellenkonzentration nvac,eq im Gleichgewicht
gewonnen. Dise Gleichung setzt die Gibbs’sche freie Energie der Leerstellenbildung,
∆Gv = −kBT lnnvac,eq (kB ist die Boltzmann–Konstante und T die Temperatur), in
Beziehung zur Zustandsgleichung des Kristalls und zu einem “Leerstellenintegral”,
welches die Leerstellenentropie und die fehlende Wechselwirkungsenergie des entfer-
nten Teilchens enthält. Für harte Kugeln als rein repulsives System zeigt sich eine
hervorragende Übereinstimmung mit den entsprechenden FMT– und MC–Resultaten.
Für die Anwendung auf das AO–Modell wurde die Zustandssummenentwicklung
umgeschrieben. Die hieraus berechnete Leerstellenkonzentration im Gleichgewicht
zeigt eine gute qualitative Übereinstimmung mit FMT–Resultaten für q & 0.6. Die
Methode wurde auch auf das Lennard–Jones(LJ)–System angewandt. Auch hier zeigt
sich bei einem entsprechenden Vergleich mit Simulationsdaten eine gute Überein-
stimmung für die Gibbs’sche freie Energie der Leerstellenbildung. Weiterhin konnte
eine Zustandsgleichung für das LJ–System aus dem führenden Term der Entwicklung
berechnet werden, die gut mit der Parametrisierung von van der Hoef übereinstimmt.
Weiterhin wurde Nickel als ein Beispiel für ein fcc–Metall mit dieser Methode unter-
sucht. Für die Berechnungen wurde die Methode der eingebetteten Atome (Embedded–
Atom Model, EAM) benutzt, welche eine klassische Vielteilchenwechselwirkung zwis-
chen den Atomen ansetzt. Aufgrund der beobachteten Empfindlichkeit der Resul-
tate bezüglich der Parametrisierungen der EAM–Potentiale wird die Schlussfolgerung
gezogen, dass die Gibbs’sche freie Energie der Leerstellenbildung bei endlichen Tem-
peraturen für solche Parametrisierungen von Anfang an einbezogen werden sollte.

Abschließend werden die numerischen Methoden und die benötigten analytischen
Ausdrücke für eine effiziente Implementierung der FMT–Funktionale im Anhang dar-
gestellt. Für das reine Hartkugelsystem wie auch das AO–Modell werden explizite
Ausdrücke für den Exzessanteil des chemischen Potentials im inhomogenen System
angegeben. Diese sind zentral für die volle Minimierung des entsprechenden Funk-
tionals.
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CHAPTER 1

INTRODUCTION

A crystalline solid is a state of matter in which the individual particles of the system
are arranged in a periodically ordered structure. Different types of solids can be clas-
sified with respect to the bonding forces between their components: the van der Waals
interaction in a molecular or Argon solid, the ionic bonding of two atomic substances
(for instance Sodium and Chloride in cooking salt), or the valence electrons holding
atoms in an ordered structure, e.g. carbon atoms in diamond. In a metal, the free
conduction electrons form a background “glue” in which the positive atomic ions are
held together. In all these cases, under proper physical circumstances the crystalline
structure has the minimum free energy and is therefore stable [1]. This symmetric form
of matter shows splendid physical properties which renders its investigation of great
importance.

Crystallization is one of the most common processes in which the disordered compo-
nents of a material perform a transition and line up in an ordered state. This may
happen around a nucleus of the same material which is formed in the disordered state
by a scarce probability (homogeneous nucleation). In a more common situation, due
to its lower energy barrier, a heterogeneity in the system which can be the walls of the
container or a dust particle, plays the role of the critical nucleus (heterogeneous nucle-
ation). In a metallic system the length scale of the nucleus is of order of a few nano–
meters and its investigation needs sophisticated experimental methods, e.g. neutron
scattering. On the other hand, the interaction between the atoms is determined by the
choice of the metal and is of many–body nature.

The length scale of the nucleation seed in a colloidal system is of order micro–meters.
As a result, liquid–crystal interfaces can be experimentally observed with single particle
resolution by using confocal microscopy for instance [2]. On the other hand the effect
of a substrate on periodicity of the crystalline state can be neglected due to the length
scale of the particles. Finally, the most important advantage of colloidal systems is that
the interactions between colloidal particles is pairwise and tunable by modifying the

1
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properties of the solvent or those of the colloids itself [3]. For instance, adding non–
adsorbing polymers to a suspension of sterically stabilized colloidal particles induces
an effective attraction between the particles [4]. This effective attraction is a function of
polymer–colloid size ratio and is proportional to the polymer density [5]. Furthermore,
the pairwise interaction between the particles makes it possible to study the system
by methods of classical statistical mechanics, e.g. Monte–Carlo simulation or Density
Functional Theory (DFT).

In a colloidal suspension, the short–range repulsive part of the potential between col-
loid particles is the main contribution to particle correlations, thus it determines the
properties and structure of the liquid. The smoothly varying attractive forces which
act in the ranges beyond repulsive interactions have little to do with the structure of
the system [6]. The attractive interactions between the particles induce a liquid–gas
phase transition and provide a ground state crystalline structure at densities lower
than close–packing. Therefore, hard spheres whose repulsive harsh interaction does
not allow overlap of the particles, are of great importance in theoretical studies since
they can be used as a reference system, while the attractive interactions are treated as
a perturbation [7]. Experimentally, it is possible to tune the van der Waals interaction
and combine it with steric stabilization using short brushes, in order to obtain an ap-
proximately pure hard–core potential between particles [3]. Since there is no attraction
between the hard–sphere (HS) particles, the liquid–solid phase transition is induced
completely by entropy.

In order to investigate crystallization, knowledge about bulk properties of the solid
and the liquid phases as well as their respective interfaces is mandatory. Density Func-
tional Theory is one of the most important theoretical tools which gives a macroscopic
description of the system of interest in equilibrium. The method was originally devel-
oped to study the ground state energy of a cloud of electrons in a metallic system, and
is hence of quantum physics origins. Later, the method was modified to be applied to
classical systems [7,8]. The challenge in classical DFT is to approximate an excess over
ideal gas functional, which describes the interactions of the particles as precisely as
possible. In 1989, Rosenfeld introduced Fundamental Measure Theory (FMT) as a den-
sity functional treatment for a mixture of hard–spheres [9]. During next 20 years, FMT
has been further developed to describe the transition to a solid state and its more so-
phisticated versions are capable to deliver the free energy and structure of a crystalline
state in a good agreement with simulation results [10–12].

Defects are another important aspect of a crystalline solid in equilibrium whose im-
pact on its other physical quantities, e.g. on the diffusion coefficient, has attracted the
attention of scientists. Point defects are localised around a lattice site. Thermally in-
duced vacancies are one of the different types of point defects and their presence is an
equilibrium property of a solid. A vacant lattice site induces the dominant mechanism
in diffusion (migration) of atoms. Here, an atom oscillating in vicinity of its lattice
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site jumps to the vacant site after overcoming an activation energy which it need for
passing through its neighboring atoms [13]. The equilibrium vacancy concentration,
i.e. the probability of finding a vacant site in a stable crystalline solid, is expressed as
the Boltzmann factor of the Gibbs energy for formation of a vacancy. In the material
science community, the formation energy is further expressed as a sum of the forma-
tion enthalpy and the change in configuration entropy. However, a clear description of
the mechanisms, which result in the formation of a vacancy in a crystalline solid is not
available. In the context of cell–cluster theories, starting from a formally exact relation
for the partition function of a crystal [14, 15], two dominant contributions to the va-
cancy formation energy have been identified, which are a term related to the equation
of state and an entropic term [16].

In this thesis, after a brief introduction to thermodynamics and classical statistical
physics in Chapter 2, Density Functional Theory is introduced and its variational prin-
ciple is explained. The main aspect of Chapter 3 is to see, how in a theoretical frame-
work the classically pairwise interactions are treated; specifically the more important
hard–core interaction is discussed in detail. Some approximate methods for construct-
ing a free energy functional functional for a system with interacting particles are dis-
cussed in the last section of this chapter. In Chapter 4, Fundamental Measure Theory is
introduced as a successful density functional treatment for hard–sphere systems. The
shortage of the original FMT functional [9] in describing freezing is discussed, and
the path towardi free energy functionals which are capable of delivering correct infor-
mation about an fcc solid is presented. For a unified treatment of a fluid and an fcc
structured solid in a colloid–polymer mixture, an FMT functional is derived in Chap-
ter 5. Here, we show, that the linearized functional, which is a known method in the
literature for obtaining a functional description of the Asakura–Oosawa model, treats
the attractive part of the potential in a fundamentally different way than the classical
treatments, e.g. mean–field approximations [17]. Finally, in Chapter 6 we calculate a
relation for the equilibrium vacancy concentration based on a formally exact partition
function for solids. For classical systems, the expression is applied to a hard–sphere
system as well as to a Lennard–Jones (LJ) system. The Embedded–Atom Model (EAM),
which is an attempt to describe a metallic system with classical potentials, is used to in-
vestigate the vacancy formation energy for Nickel. Based on the comparison of results
for three different parametrizations of EAM, we conclude that the Gibbs free energy of
vacancy concentration in further parametrizations of EAM should be considered from
the beginning.





CHAPTER 2

THEORY

Curiosity has always been a key motivation for mankind to achieve a better under-
standing of different phenomena occurring in nature. By finding similar patterns un-
der seemingly different circumstances, one may be able to predict what is nature’s
next step or even create a controlled process on their own. For this purpose, measur-
ing relevant parameters is the first step towards finding a relation between them and
eventually extending our knowledge about our surroundings. Physics in this sense, is
the science of measuring physical quantities and casting them into theoretical models
in an attempt to explain how “things” happen.

Thermodynamics is a branch of physics which gives a “a phenomenological description
of properties of macroscopic systems in thermal equilibrium” [18]. Thermodynamics tries to
find the relation between the energy exchange of a system with its surrounding and
some macroscopic physical properties of the system in equilibrium, e.g. temperature,
pressure, or changes in the volume or amount of the substance. Such a macroscopic
description of mutual transformation of heat and physical work, does not clarify, how
exactly the microscopic interactions between the components lead to such a macro-
scopic action.

Statistical physics fills in the gap between the microscopic description and macroscopic
properties of a system with a large number of components, e.g. atoms, molecules, par-
ticles, or even individuals in a society, by taking advantage of the statistical tools and
probability theory. It describes how the interactions of the components of the system
lead to their collective behaviour which is ultimately expressed by a macroscopic quan-
tity of the whole system. For this purpose, an important step is to obtain the partition
function, a weighted sum over all possible states of a system. With the partition func-
tion at hand, the ensemble average of a quantity gives the most probable outcome of
its measurement.

One of the most important theories which has its roots in statistical physics is Density

5
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Functional Theory (DFT). In the framework of DFT, one can obtain a free energy func-
tional depending on the local density of the components of the system. The method
was originally formulated and used as a powerful functional treatment for describ-
ing the ground state of an inhomogeneous interacting electron gas by Hohenberg and
Kohn [19]. Mermin extended the theory to finite temperatures by constructing a grand
potential functional for an interacting electron liquid [20]. A corresponding DFT for
the equilibrium state of a classical system entails a unique free energy functional of
the density profile which allows to calculate the ground state free energy of the system
and consequently allows to calculate its equilibrium thermodynamic properties using
a variational principle [7, 8].

In this chapter, after a brief introduction to thermodynamics in Section 2.1, the main
concepts of the statistical mechanics for classical systems are recapitulated and some
specific ensembles are introduced in Section 2.2. In Section 2.3, after a brief excursion
to history, the existence of a free energy functional of the density and its uniqueness
is proven. While discussions regarding the interactions between the partilces is left
for Chapter 3, an ideal gas with non–interacting particles is used as a test case for the
presented theories in this chapter.

2.1 Thermodynamics

Thermodynamics is a phenomenological description of a macroscopic system in ther-
mal equilibrium using a number of thermodynamic coordinate or state functions [18].
The state functions are either extensive or intensive. The extensive state variables scale
with the size of the system and have a conjugate intensive counterpart. The product of
the changes in an extensive state variable and its conjugate intensive counterpart, for
instance the volume V and the pressure p of the system respectively, determines the
amount of exchanged energy, e.g. in the form of a mechanical work dW = −pdV .

Since the state variables are not independent, the thermodynamic properties of the
system can be fully specified by an appropriate set of them. The relation between
the state variables is specified by the laws of thermodynamics which are based on
empirical observations. The zeroth law states, that if two systems are separately in
equilibrium with a third system, then they are also in equilibrium with one another.
According to the first law of thermodynamics the change in the internal energy of an
isolated system dU is equal to the amount of work it does dW , and its heat intake from
the surrounding dQ.

dU = dW + dQ . (2.1)

The second law which eventually leads to the definition of the entropy as the conjugate
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state variable of the temperature1, has two equivalent forms [18]:

1. It is impossible to have a thermodynamic process whose sole result is the complete con-
version of heat into work (Kelvin).

2. It is impossible to have a thermodynamic process whose sole result is the transfer of heat
from a colder to a hotter body (Clausius).

Due to the second law, the difference in the entropy of two states of the system can be
calculated by measuring the change in the heat exchange in infinitesimal small steps
between the two steps. Experiments at low temperature indicates that this difference
vanishes as T goes to zero which leads to the third law of the thermodynamics. Accord-
ing to the formulation of third law by Nernst, The entropy of all systems at zero absolute
temperature is a universal constant that can be taken to be zero [18].

For an adiabatically isolated system, the second law dictates the path to equilibrium
in which the entropy of the system is maximal. It is possible to define other types of
thermodynamic potentials for a non–isolated system, where the equilibrium state is
marked by extremizing the defined potentials. These potentials, their conserved state
variables, their application and differentials with respect to their state variables are
summarized in table 2.1.

The relation between the conserved state variables of a thermodynamic system is ex-
pressed via the equation of state. In 1662, Robert Boyle carefully measured the vol-
ume of trapped air in a tube whose other end was filled with mercury, hence its pres-
sure was known. He concluded that the product of these state variables is a constant
pV = constant. About hundred years later, Jacques Charles found a linear relation be-
tween the temperature and the volume of the gas. Finally, in 1834 the famous ideal
gas law was found by combining the Boyle’s law and Charles’ law. The ideal gas law
relates the volume, the pressure, and the temperature of an ideal gas in equilibrium
and it reads

pV = NkBT , (2.2)

where kB is the Boltzmann constant. For a non–ideal gas however, this relation should
be modified in order to express the pressure of a gas as a function of its density and
temperature. This will be discussed in Section 3.2.1.

1 See the dedicated section to entropy in Ref. [18] on page 13.
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Table 2.1: Different types of thermodynamic potentials, their conserved state vari-
ables and differential. The application column indicates the thermodynamic system
for which at its equilibrium the thermodynamic potential is minimized.

Potential differential application

Internal Energy dU = TdS − pdV + µdN adiabatically isolated
U(N, V, S)

Enthalpy dH = dU + d (pV ) no heat exchange dQ = 0
H(N, p, S) = TdS + V dp+ µdN

Helmholtz free energy dF = dU − d (TS) isothermal transformation
F (N, V, T ) = −SdT − pdV + µdN no mechanical work dW = 0

Gibbs free energy dG = dU − d (TS) + d (pV ) isothermal transformation
G(N, p, T ) = −SdT + V dp+ µdN dW 6= 0, constant force

Grand energy dΩ = dU − d (TS) + d (µN) chemical potential is fixed
Ω(µ, V, T ) = −SdT − pdV +Ndµ rather than particle number

2.2 Statistical Physics and Classical ensembles

The equation of state describes a system in equilibrium by providing an expression,
which relates a set of state variables to each other, e.g. pressure p, volume V , particle
number N , and temperature T of an ideal gas in Eq. (2.2). The other thermodynamic
variables of the system can be obtained using the relations provided in the context of
classical thermodynamics (see table 2.1). However, the route for deriving an equation
of state, provided the interaction between individual particles is known, is not clear for
most systems. Statistical physics deals with the interactions between a huge number
of individual particles of a macroscopic body (N ∼ 1023) in order to obtain its thermal
properties. Since the position r and the momenta p of particles are each specified by
three variables, the phase space of the system has 6N degrees of freedom. The Hamil-
tonian H of the system is written as a sum of the total kinetic energy of the particles
T ({pi}), the potential energy due to the interaction of the system with an external
potential V ({ri}), and the total potential energy U ({ri}) of the classically interacting
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particles with a pair potential u(r) which is expressed as a function of their distance.

H ({ri}, {pi}) = T ({pi}) + V ({ri}) + U ({ri})

=
N∑
i=1

(
p2
i

2mi

+ Vext(ri)

)
+

1

2

N∑
i,j=1

u(|ri − rj|) , (2.3)

where mi is the mass of the particles, and the external potential acts on each parti-
cle depending on its position ri. Having the information about the Hamiltonian of a
classical system, it is possible to determine the time evolution of the position and the
momenta of each individual particle [21]. This is equivalent to writing down New-
ton equation of motion for each particle and solving; a quite complicated task. Rather
than this, statistical mechanics deals with an ensemble of equally probable micro–states
which correspond to a given macro–state. Here each micro–state ψ is a “point” in phase
space ({pi}, {ri}) determined by the momenta and the position of each particle, while
a macro–state is specified by the macroscopic thermodynamic variables of the system.
There are different types of classical ensembles in statistical physics which differ only
in their conserved state variables. However, in the thermodynamic limit, with N →∞
while N/V is kept constant, all of these ensembles are equivalent.

2.2.1 Microcanonical ensemble

Consider a mechanically and adiabatically isolated system with a given internal energy
E0. Each of the micro–state in the phase space ψ which belong to this macro–state, lies
in the manifold which is described by H(ψ) = E0. Boltzmann’s assumption of equally
probable micro–states, the unbiased probability estimate in constrained phase space to
a constant energy, is given by the following postulate:

fm

(
ψ;H(ψ) = E0

)
=

1

A(N, V,E0)
. (2.4)

Here, the normalization factor A(N, V,E0) is the area of the surface of constant energy
E0 in phase space. The entropy of this uniform probability distribution is given by,

S(N, V, U) = −kB ln fm(ψ) = kB lnA(N, V,E0) . (2.5)

Consider the mixture of two micro–states ψ1 and ψ2, with equilibrium internal energies
E1 and E2 and entropies denoted by S1 and S2. In the equilibrium state of the new
micro–state ψ = ψ1 ⊗ ψ2, the entropy should be maximized. As a consequence the
partial derivative of the entropies Si with respect to internal energy Ei which defines a
“new” state variable, should becomes equal in the new equilibrated state. This newly
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defined state variable is in fact equivalent to the empirical temperature and is given
by2,

∂S

∂E
=

1

T
. (2.6)

2.2.2 Canonical Ensemble

In a canonical ensemble, rather than fixing the internal energy U and obtaining the
temperature T , one starts with a macro–state in which the temperature is fixed by cou-
pling the system to a heat bath and derives the energy of the system. The probability
of finding a micro–state ψ is given by the Boltzmann factor of its Hamiltonian.

fc (ψ) =
exp

(
−βH(ψ)

)∑′
{ψ} exp

(
−βH(ψ)

) with
′∑
{ψ}

=
1

N !

∑
{ψ}

, (2.7)

where the denominator is the canonical partition function Z =
∑′
{ψ} exp

(
−βH(ψ)

)
,

and the sum is over all possible micro–states {ψ}. Using the probability function from
Eq. (2.7), the ensemble average of the energy of the system 〈H〉 is calculated as follows:

〈H〉 =
′∑
{ψ}

fcH(ψ) =
′∑
{ψ}

H(ψ)
exp (−βH(ψ))

Z

= − 1

Z

∂

∂β

′∑
{ψ}

exp (−βH(ψ)) = − ∂ lnZ

∂β
(2.8)

On the other hand, using the thermodynamic relations (table 2.1) the internal energy
of the system E is related to the Helmholtz free energy F as,

E = F + TS = F − T ∂F

∂T

∣∣∣∣∣
N,V

= −T 2 ∂

∂T

(
F

T

)
=
∂(βF )

∂β
. (2.9)

By comparing the right hand side of Eqs. (2.8) and (2.9) we arrive to the important
relation between Helmholtz free energy and partition function of a canonical ensemble.

βF (N, V, T ) = − lnZ(N, V, T ) . (2.10)

Once the Helmholtz free energy is obtained, the other state variables of the system are
calculated as its differential with respect to their conjugated counterparts (see table 2.1).

2 See Ref. [18] page 101 for a detailed calculation and discussion
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As an example, the Hamiltonian of an ideal gas in the absence of any external potential
is given by the total kinetic energy of the particles. Therefore, the partition function of
an ideal gas with N identical particles and volume V is given by,

Z(N, V, T ) =
1

h3NN !

∫
drN

∫
dpN exp

(
−β

N∑
i=1

p2
i

2m

)
=

V N

h3NN !

(∫
dp exp

(
−β p

2

2m

))N
=

V N

N !λ3N
with λ =

h√
2πmkBT

, (2.11)

Here, λ is the de Broglie thermal wavelength which for numerical considerations is
usually set to 1, and h is the Planck constant which is used to mkae Z dimensionless.
Using Eq. (2.11), the Helmholtz free energy of the system βF = − lnZ reads

βF (N, V, T ) = − ln

(
V N

N !λ3N

)
= N

(
ln

(
Nλ3

V

)
− 1

)
, (2.12)

where we have used the Stirling’s approximation for the factorial of large numbers3.
Consequently, the chemical potential and the pressure of an ideal gas are obtained as
follows:

βµ =
∂βF

∂N
= ln

(
N

V
λ3

)
,

βp = −∂βF
∂V

=
N

V
. (2.13)

Note that the latter is the same as the empirical expression for the ideal gas equation
of state from Eq. (2.2).

2.2.3 Grand–canonical ensemble

The thermodynamic macro–state whose chemical potential is fixed rather than its par-
ticle number and does not exchange energy with its surrounding in the form of me-
chanical work, is described by the grand–canonical ensemble. The corresponding
micro–states {ψ} have an indefinite number of particles but are coupled to a reser-
voir of particles which maintains the chemical potential of the system at a constant

3 limN→∞ lnN ! ≈ N lnN −N
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value. The probability distribution for a micro–state ψ with HamiltonianH(ψ) is given
as follows.

fgc(ψ) =
exp

(
−βH(ψ) + βµN(ψ)

)
Ξ

, (2.14)

where the normalization factor Ξ is the grand partition sum whose relation to the
canonical partition function Z is exhibited by grouping the micro–states ψN with a
specific particle number N .

Ξ(µ, V, T ) =
′∑
{ψ}

exp

(
−βH(ψ) + βµN(ψ)

)

=
∞∑
N=0

exp (βµN)
′∑

{ψN}

exp

(
−βH(ψN)

)

=
∞∑
N=0

exp (βµN)Z(N, V, T ) . (2.15)

In a classical system, the sum over all possible micro–states in the first line of Eq. (2.15)
is equivalent to the classical trace Trcl, defined as follows:

Trcl ≡
∞∑
N=0

1

h3NN !

∫
drN

∫
dpN . (2.16)

It is trivial to show that the classical trace of the grand–canonical probability distribu-
tion function is one, Trclfgc = 1. Moreover, the ensemble average of an observable Ô,
which for an ergodic system is equivalent to its time average, is given by,

〈Ô〉 = Trcl fgc Ô . (2.17)

In a system with N particles, an important observable is the particle distribution ρ̂(r)
which basically counts the number of particles at a given position r. Therefore, inte-
grating ρ̂ over the whole space gives the number of particles N . The ensemble average
of the particle distribution is the single–particle density ρ(1)(r).

ρ̂(r) =
N∑
i=1

δ(r− ri) (2.18)

ρ(1)(r) = 〈ρ̂(r)〉 = Trcl fgc ρ̂(r) (2.19)
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Moreover, the ensemble average of the number of particles 〈N〉 is calculated as follows.

〈N〉 = Trcl fgc N =
∞∑
N=0

(
exp (βµN)Z(N, V, T )

Ξ(µ, V, T )
N

)

=
1

Ξ(µ, V, T )

∂

∂βµ

(
∞∑
N=0

exp (βµN)Z(N, V, T )

)

=
1

Ξ(µ, V, T )

∂ Ξ(µ, V, T )

∂βµ
=
∂ ln Ξ(µ, V, T )

∂βµ
. (2.20)

Similarly, one can calculate the fluctuation of the particle number 〈N2〉− 〈N〉2, see that
it is proportional to N and conclude, that the distribution function of particle number
is sharply peaked at N = N0 = 〈N〉. Therefore, in this limit the sum in Eq. (2.15) can
be approximated by its largest term.

Ξ(µ, V, T ) = exp (βµN0)Z(N0, V, T ) = exp (βµN0) exp (−βF (N0, V, T ))

= exp (−βΩ(µ, V, T )) , (2.21)

where Ω(µ, V, T ) is the grand potential (see table 2.1). Once the partition sum is
calcualted for a particular system, one can obtain its grand potential using Eq. (2.21).
As an example, the grand partition sum and the grand potential for an ideal gas is
calculated as follows.

Ξ(µ, V, T ) =
∞∑
N=0

exp (βµN)Z(N, V, T ) =
∞∑
N=0

1

N !

(
eβµ

λ3
V

)N
= ez V , with z =

eβµ

λ3
(2.22)

βΩ(µ, V, T ) = − ln Ξ(µ, V, T ) = −z V , (2.23)

where we introduced the fugacity of the system z = eβµ/λ3. Having the grand po-
tential, one can use its differential in table 2.1 to obtain the pressure and the particle
number of an ideal gas.

βp = −∂βΩ

∂V
= z , (2.24)

N = −∂Ω

∂µ
= z V . (2.25)

Therefore, the pressure of an ideal gas is equal to its fugacity. The resulting ideal gas
equation of state which is obtained by replacing the fugacity z in Eq. (2.25) by p, is the
same as the empirical expression (Eq. (2.2)).
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2.2.4 The Ornstein-Zernike relation

Similar to the single–particle density ρ(1)(r) (Eq. (2.19)) one can define an n–particle
density ρ(n)(rn) which simultaneously keeps track of the changes in the density of n
different particles at rn = (r1, . . . , rn) and is useful for obtaining information about a
correlation between these particles, if there is any. One can calculate this quantity by
calculating the ensemble average of the n–particle density distribution ρ̂n(rn) which
is equivalent to integrating out the spatial degrees of freedom of N − n remaining
particles from a distribution function, e.g. the grand canonical distribution function
fgc.

ρ̂n(rn) =
N∑
i1=1

N∑
i1<i2

· · ·
N∑

i1<i2<···<in=1

δ(r1 − ri1)δ(r2 − ri2) · · · δ(rn − rin) , (2.26)

ρ(n)(rn) = 〈ρ̂n(rn)〉 = Trclfgc ρ̂n(rn)

=
∞∑
N=n

1

h3N(N − n)!

∫
drN−n

∫
dpNfgc(r

N ,pN) . (2.27)

For instance, the n–particle density distribution of a homogeneous ideal gas with N
identical particles in the absence of any external potential, hence U = V = 0 andH = K,
is obtained as follows.

ρ
(n)
id (rn) =

1

Ξ

∞∑
N=n

1

h3N(N − n)!

∫
drN−n

∫
dpN exp

(
−β p

2

2m
+ βµN

)
=

1

Ξ

∞∑
N=n

eβµNV N−n

λN(N − n)!
=
zn

Ξ

∞∑
N=0

(zV )N

N !
= ρn , (2.28)

where in the last step we have used the identity ρ = z for an ideal gas (see Eq. (2.25)).
A more informative observable is the n–particle distribution function which is defined
as

g(n)(rn) =:
ρ(n)(rn)

Πn
i=1ρ

(1)(ri)
. (2.29)

Note that for a homogeneous system the denominator is simply ρn and the n–particle
distribution function is a normalized n–particle density. The distribution function for
an ideal gas always obeys g(n) = 1 and therefore, deviation from g(n) = 1 delivers
information about the structure of the system. For an isotropic system, e.g. a fluid, the
pair distribution function g(2)(ri, rj) is only a function of the distance r = |ri−rj|. When
r is much larger than the range of the interaction between the particles, the distribution
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function tends to its ideal gas limit and g(r → ∞) ≈ 1. Since an ideal gas has no
correlation by definition, one can define a total correlation function as h = g(2) − 1
which is 6= 0 due to the interaction of the particles in the system. Finally, the direct pair
correlation function c(2)(ri, rj) is defined via the Ornstein–Zernike equation [22].

h(ri, rj) = c(2)(ri, rj) +

∫
drk c

(2)(ri, rk)ρ
(1)(rk)h(rk, rj) . (2.30)

The interpretation of this “recursive” relation may be understood by writing it as a
series in h and reading it term by term: The total correlation function between ri and
rj , h(ri, rj), is obtained by the sum of the direct correlation function between these two
points, c(2)(ri, rj), and an indirect correlation function via all possible third points in
space, rk. This indirect correlation function depends on the direct correlation function
between ri and the third point rk, the density at this point ρ(1)(rk), and finally the total
correlation function between the third and second point h(rk, rj). For a uniform and
isotropic system the correlation functions are expressed as a function of the distance
between two points r = |ri − rj|. Therefore, the Ornstein–Zernike relation turns into,

h(r) = c(r) + ρ

∫
dr′ c(|r− r′|)h(r′) . (2.31)

where we have omitted the superscripts (2) for convenience. Note that the integral
term is the convolution between total and direct pair correlation functions. By taking
the Fourier transform of both sides we can write the following relation between the
Fourier transform of total correlation function h̃(k) and direct correlation function c̃(k).

h̃(k) =
c̃(k)

1− ρc̃(k)
=
S(k)− 1

ρ
, (2.32)

where we introduced the structure factor S(k). The structure factor is an important
observable in experiments since it is proportional to the scattering intensity for point
particles [6]. Furthermore, βS(k → 0)/ρ gives the isothermal compressibility χT =
(∂ρ/∂p)T /ρ of the fluid. As a result, one can obtain χT if the direct correlation function
is known.

χT =
1

ρkBT (1− ρĉ(k = 0))
. (2.33)

2.3 Density Functional Theory

In 1964 Hohenberg and Kohn used a variational principle to obtain the equilibrium
density distribution of an inhomogeneous electron gas in its ground state [19]. They
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have shown that the intrinsic part of the ground state energy is a unique functional
of the electron density, hence it is independent of the external potential. The method,
known as Density Functional Theory, was extended to finite temperatures by Mermin
for a treatment of an electron liquid [20]. Later in the 1970’s, DFT has been adopted
for classical systems in order to obtain the thermodynamic properties of a classical
fluid and the vapor–liquid interface [7, 8]. Since this energy functional is claimed to
be a unique functional of the local density profile, the free energy of the system, and
consequently, its thermodynamic properties, are obtained by having the knowledge of
the density distribution. In the following section, the existence of this unique energy
functional is proven.

2.3.1 Existence of a unique energy functional

Consider a classical system with N particles and intrinsic chemical potential denoted
by µ, whose Hamiltonian is expressed as H from Eq. (2.3). The grand potential func-
tional of the probability distribution f 4,

Ω [f ] =: Trcl f (H− µN + kBT ln f) , (2.34)

is at its minimum for the equilibrium probability distribution f = fgc from Eq. (2.14).
The minimum value is the grand potential βΩ = − ln Ξ where Ξ is the partition sum
of the grand–canonical ensemble (see Eqs. (2.15) and (2.21)). The proof is given in the
following.

1. Ω[fgc] = Ω

Ω[fgc] = Trcl fgc (H− µN + kBT ln fgc)

= Trcl fgc (H− µN + kBT (−βH + βµN)− kBT ln Ξ)

= −kBT ln Ξ since Trcl fgc = 1

= Ω . (2.35)

4 This section follows the steps in the DFT lecture given by M. Oettel and R. Roth in summer semester
2013 in University of Tübingen.
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2. Ω[f 6= fgc] > Ω

ln fgc = −βH + βµN − ln Ξ ⇒ H− µN = −kBT ln fgc + Ω , (2.36)
Ω[f 6= fgc] = Trcl f (H− µN + kBT ln f)

= Trcl f (−kBT ln fgc + Ω + kBT ln f)

= Ω + kBT Trcl f ln
f

fgc

= Ω + kBT Trcl fgc (x lnx+ 1− x) with x =
f

fgc

= Ω + kBT 〈g(x)〉 with g(x) = x lnx+ 1− x
> Ω since g(x) > 1 for x 6= 1 (2.37)

Now we want to prove that the proposed functional in Eq. (2.34) is a unique functional
of the equilibrium density ρeq. For this purpose, first note that the probability distri-
bution fgc depends on the external potential Vext via the Hamiltonian of the system H.
Furthermore, the one–particle equilibrium density ρeq = ρ(1) is by definition a func-
tional of fgc (see Eq. (2.19)). Therefore, for a given external potential Vext one can obtain
the equilibrium density. The uniqueness is proven, if one can determine the external
potential, and as a result the probability distribution, only by the knowledge of the
equilibrium density.

Proof by contradiction:

Consider two different external potentials Vext and V ′ext 6= Vext which give rise to
two different Hamiltonians H = T + V + U and H′ = T + V ′ + U 6= H, and
consequently two equilibrium probability distributions f and f ′ 6= f . The grand
potential functional of the probability distribution f ′ can be written as follows:

Ω [f ′] = Trcl f
′ (H′ − µN + kBT ln f ′)

< Trcl f (H′ − µN + kBT ln f) , (2.38)

where we have replaced f ′ with f . SinceH′ = H−V ′+V , we can write the second
line in Eq. (2.38) as,

Trcl f (H′ − µN + kBT ln f) = Trcl f (H− µN + kBT ln f)

+Trcl f (V − V ′)
= Ω[f ] + Trcl f (V − V ′) . (2.39)
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Furthermore, using the definition of density distribution from Eq. (2.18), one can
rewrite the classical trace of fV as follows.

Trcl fV = Trcl f

(
N∑
i=1

Vext(ri)

)
= Trcl f

(
N∑
i=1

∫
drVext(r)δ(r− ri)

)
=

∫
drVext(r)Trcl f ρ̂ =

∫
drVext(r)ρ(r) , (2.40)

Now assume that both of the distribution functions f and f ′ give rise to the same
equilibrium density ρ. Note that by making this assumption, it is impossible to
determine a unique distribution function by knowing the equilibrium density.
Under this assumption, the classical trace of fV ′ has the same form as Eq. (2.40)
with Vext replaced by V ′ext. As a result, by combining Eqs. (2.38)-(2.40) we can
write,

Ω [f ′] < Ω[f ] +

∫
drρ(r) (Vext(r)− V ′ext(r)) . (2.41)

However, the choice of f ′ as an starting point in Eq. (2.38) is completely arbitrary
and one can start from writing the grand potential functional of f and obtain a
similar expression.

Ω [f ] < Ω[f ′]−
∫

drρ(r) (Vext(r)− V ′ext(r)) . (2.42)

The contradiction between Eqs. (2.41) and (2.42) is due to the wrong assumption
that these two probability densities result in the same equilibrium density. There-
fore, the probability density is a unique functional of the equilibrium density.

Since the probability density is a unique functional of the equilibrium density we have
Ω[f ] = Ω[ρ]. The equilibrium density minimizes the grand potential functional and the
minimum value is the grand potential of the system:

Ω[ρeq] = Ω
Ω[ρ 6= ρeq] > Ω

}
⇔ δΩ

δρ

∣∣∣∣∣
ρ=ρeq

= 0 . (2.43)

Furthermore, one can rewrite the grand potential functional as a Legendre transforma-
tion of the free energy functional.

Ω[ρ] = Trcl f (H− µN + kBT ln f)

= Trcl f (T + U + kBT ln f) + Trcl f (V − µN)

= F [ρ] +

∫
drρ(r) (Vext(r)− µ) , (2.44)
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where F [ρ] is the intrinsic Helmholtz free energy functional of the system. Once the
form of this functional is determined, one can apply it to a system of interest and obtain
its Helmholtz free energy.

The assumption, that a one–body density distribution ρ is generated by some external
potential, the so–called Vext–representability of ρ, is known to be not necessarily guar-
anteed for an arbitrary density distribution in quantum DFT [19,23,24]. Based on a con-
strained search of the density profile, Levy has introduced an alternative approach, in
which a weaker condition,known asN–representability, is imposed in order to directly
obtain the density distribution from an N–body antisymmetric wave function [23].
Consequently, the existence of a generating external potential is not needed [23, 25].
The corresponding classical representation of Levy’s free energy functional reads [26]

FLevi [ρ] = min
f→ρ

[
Trclf (T + U + kBT ln f)

]
, (2.45)

in which, for a given one–body density profile ρ, among the corresponding normalized
density distributions f (see Eq. (2.19)), we are looking for the one which minimizes the
term in brackets. Note that here the functions f are general normalized distribution
functions and are not necessarily of Boltzmann–type containing the interaction be-
tween particles. Hence, ρ is constrained to be f–representable but not necessarily Vext–
representable. By constraining the search in Eq. (2.45) to the class of Vext–representable
densities, the obtained free energy functional is equivalent to F from Eq. (2.44). For a
given external potential, it can be proven that the variational principle from Eq. (2.43)
holds for the corresponding grand potential functional ΩLevi while the variational prin-
ciple turns into a two–stage minimization [26].

ΩLevi [ρ] = FLevi[ρ] +

∫
drρ(r) (Vext(r)− µ) , (2.46)

Ω = min
ρ

min
f→ρ

[
Trcl f (H− µN + kBT ln f)

]
= min

ρ
ΩLevi[ρeq] . (2.47)

In practice, such a minimization is as complicated as solving the many–body problem
itself. However, for a constrained or fixed number of particles where the grand and the
canonical ensembles are not equivalent in general [27–30], Levy’s method may result
in construction of approximate free energy functionals in the canonical ensemble.

2.3.2 Helmholtz free energy functional for an ideal gas

Consider an ideal gas withN identical particles in the presence of an external potential
Vext. Since the particles do not interact, the Hamiltonian of the system is given by
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H = T + V . The grand partition sum, and consequently the grand potential, of this
system is calculated as follows:

Ξid = Trcl exp (−βH + βµN)

=
∞∑
N=0

1

h3NN !

∫
drN

∫
dpN exp

(
−β

N∑
i=1

(
p2
i

2mi

+ Vext(ri)

)
+ βµN

)

=
∞∑
N=0

eβµN

h3NN !

(∫
dr exp (−βVext(r))

)N (∫
dp exp

(
−βp2

2m

))N
=

∞∑
N=0

1

N !

(
eβµ

λ3
Q

)N
= ezQ , with Q =

∫
dr exp (−βVext(r)) (2.48)

βΩid = − ln Ξid = − zQ . (2.49)

Here λ is de Broglie thermal wave length as introduced in Eq. (2.11), and z = eβµ/λ3 is
the fugacity of the ideal gas. In order to express the ideal gas grand potential βΩid as a
functional of density, one should obtain the ensemble average of the particle distribu-
tion ρ̂(r).

ρ(r) = 〈ρ̂(r)〉 = Trcl fgc ρ̂(r) = Trcl
exp (−βH + βµN)

Ξid

N∑
i=1

δ (r− ri)

=
1

Ξid

∞∑
N=1

eβµN

N !λ3N

∫
dr1 · · ·

∫
drN exp

(
−β

N∑
j=1

Vext(rj)

)
N∑
i=1

δ (r− ri)

=
1

Ξid

∞∑
N=1

zN

N !

N∑
i=1

[
exp (−βVext(r))

(∫
drj 6=i exp (−βVext(rj))

)N−1
]

=
1

Ξid

∞∑
N=1

zN

N !
N exp (−βVext(r))Q

N−1

= z exp (−βVext(r))
1

Ξid

∞∑
N=0

(zQ)N

N !
= z exp (−βVext(r)) , (2.50)

where in the last step we have used Eq. (2.48). The resulting expression for the equi-
librium density profile of an ideal gas in Eq. (2.50) is in the form of the barometric law.
Combining Eqs. (2.49) and (2.50) we obtain the ideal gas grand potential functional of
the density.

βΩid[ρ(r)] = −
∫

drρ(r) . (2.51)
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Note that for a bulk density ρ(r) = N/V we obtain βΩ = −N , the same results as one
can obtain by combining Eqs. (2.23) and (2.25). Furthermore, one can use Eq. (2.50) to
replace Vext(r)− µ in equation Eq. (2.44) by −kBT ln (λ3ρ(r)) and obtain the Helmholtz
free energy functional for an ideal gas.

βF id[ρ(r)] =

∫
drρ(r)

(
ln
(
λ3ρ(r)

)
− 1
)
. (2.52)

Conveniently, the Helmholtz free energy functional of a system with interacting parti-
cles is decomposed into its ideal gas part from Eq. (2.52) and the excess (over) ideal gas
part βF ex due to the interaction of the particles in the system. The important task in
taking advantage of DFT for studying classical system, is to obtain an excess Helmholtz
free energy functional which is taking care of the corresponding potential governing
the system. The derivation of such functionals will be discussed in more details in
Section 3.3.

2.3.3 Excess part of the free energy functional and direct correlation
functions

The excess part of the Helmholtz free energy is a generating functional for a hierar-
chy of direct correlation functions c(n)(rn). The first functional derivative of βF ex with
respect to single–particle density ρ(r) gives the single-particle direct correlation func-
tion c(1)(r). The pair correlation function c(2)(r, r′) is obtained by taking the functional
derivative of c(1)(r) with respect to ρ(r′). The higher order functions are defined simi-
larly.

c(1)(r) = − δβF ex[ρ]

δρ(r)
, (2.53)

c(2)(r, r′) =
δc(1)(r)

δρ(r′)
= − δ2βF ex[ρ]

δρ(r)δρ(r′)
(2.54)

...

c(n+1)(rn+1) =
δc(n)(rn)

δρ(rn+1)
= − δn+1βF ex[ρ]

δρ(r)1δρ(r2) · · · δρ(rn+1)
. (2.55)

By minimizing the grand potential functional and using the expression for
the Helmholtz free energy functional of an ideal gas (see Eqs. (2.44) and (2.52)), the
equilibrium density profile of a system in the presence of an external potential Vext is
written as follows:

λ3ρeq(r) = exp
[
−βVext(r) + βµ+ c(1)(r)

]
, (2.56)
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where c(1) is the single–particle direct correlation function defined in Eq. (2.53). By
comparing this result with the barometric law for the equilibrium density profile of
an ideal gas from Eq. (2.50), one can conclude that the one–particle direct correlation
function contains all the information regarding the interactions between the particles.
Furthermore, c(1) can be interpreted as the excess part of the intrinsic chemical poten-
tial5. In the absence of any external potential Vext = 0, one can write,

−c(1)(r) = βµ− ln
(
λ3ρeq(r)

)
= βµex , (2.57)

This relation is later used for obtaining the equilibrium density profile ρeq of a hard–
sphere system (see Appendix A.4).

5 See the discussion in Section 3.5 of Ref. [6].



CHAPTER 3

CLASSICAL PAIRWISE INTERACTIONS

A theoretical ideal gas whose particles do not interact with each other is an important
educational model. However, a system with non–interacting particles is not usually the
case in nature. In a metallic system for instance, there is an electromagnetic interaction
between the positively charged nuclei and the electrons with negative charge. This
many–body potential between the nuclei and electronic gas leads to a cohesive energy
which makes it possible to have a stable crystalline state at low enough temperatures
[31].

In a colloidal system, the length scales are much larger and the components are super–
molecules with typical size of 10 nm to 10 µm consisting of many atoms. Here, the elec-
tromagnetic interaction between the atoms leads to an effective interaction between
colloidal particles. This effective interaction is often expressed as a function of rela-
tive distance between the particles and is assumed to be pairwise. Therefore, the total
potential of a single particle is computed as a sum of its interactions with all other par-
ticles in the system. The thermodynamic properties of the system are mainly dictated
by the short–range repulsive part of this effective potential [6].

It was common to assume a system with a stable crystalline state necessarily needs an
attractive potential between its particles. However, in 1957 Wood et al. and Adler et
al. performed computer simulations and showed a phase transition from a disordered
liquid phase to an ordered state for particles with a purely repulsive interaction [32,
33]. This simple form of potential known as hard–spheres, has served as a reference
system for theoretical studies of liquid and solid states of a colloidal system ever since.
The difference of the hard–sphere potential with the “real” interaction between the
colloidal particles can be taken into account as a perturbation [6, 7].

In the context of classical DFT, the free energy functional is decomposed into an ideal
and an excess (over ideal) part. While the ideal gas part of the free energy functional
is known (see Section 2.3.2), the excess part is not known exactly in most cases. There

23
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are some methods which give approximate excess free energy functionals, for instance
the Low Density Approximation, Taylor expansion in density, or the phase field crys-
tal model, to name a few. In 1989, Rosenfeld introduced Fundamental Measure Theory
(FMT) for hard–core interactions which during the next 20 years evolved into an accu-
rate description of hard–sphere systems [9, 10, 12, 34].

In this chapter different types of colloidal interactions are shortly discussed in Sec-
tion 3.1. The hard–sphere system and some theoretical methods for investigating a
hard–core interaction are presented in Section 3.2. Finally, in Section 3.3 some approx-
imate methods for constructing the excess energy functional for a hard–sphere system
are introduced. A more detailed discussion on the FMT functionals for hard–spheres
is presented in Chapter 4.

3.1 Interactions between colloidal particles

Colloidal particles are super–molecules dispersed in a medium that is often a liq-
uid. The term super–molecule refers to the typical size order of the colloidal parti-
cles, roughly between 10 nm and 10µm which is much larger than those of the sol-
vent molecules. Due to their small mass and size, the molecules in medium are often
integrated out with their trace cast into the effective potential between the colloidal
particles.

In a colloidal suspension, there is a van der Waals attraction between the colloidal
particles. This short–ranged attraction arises due to the cooperative oscillations in the
electronic clouds of the atoms constructing colloidal particles. The van der Waals at-
traction between colloidal particles must be opposed by a repulsion in order to prevent
irreversible flocculation. This stabilization can be done for instance by using charged
colloidal particles as in DLVO. The DLVO model which is named after Derjaguin, Lan-
dau, Verwey, and Overbeek, is historically one of the first models which describes the
interactions between colloidal particles [35, 36]. Here, the compensating repulsive in-
teraction is the electrical double layer repulsion which depends on the concentration
of the salt in the suspension (see Fig. 3.1). Another way for stabilizing the suspension,
is inducing a repulsion by coating the colloidal particles with long polymer chains [3].

The effective potential between colloidal particles is tunable by modifying the proper-
ties of the solvent or those of the colloidal particles, e.g. changing the concentration of
the salt in the solvent, adding polymers to the suspension, or modifying the surface of
the colloidal molecules [3]. The physical properties of a colloidal dispersion and hence
the phase diagram of the system are dictated by the effective potential. In an atomic
system whose interactions are described by potentials with attractive and repulsive
parts similar to the Lennard–Jones potential, the law of corresponding states indicates
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Figure 3.1: Schematic illustration of selected types of pair interactions. a) The Lennard–
Jones potential is an important pairwise interaction which describes the components
interaction in some atomic system, e.g. noble gases like Argon. b) In DLVO the short–
range attraction is opposed by a repulsive interaction due to the electric force between
ions with like charge attracted to the surface of the colloidal particles. c) Attaching
short polymer chains to the surface of the colloidal particles results in a net repulsive
potential which in a proper combination with van der Waals attraction leads to a re-
alization of the theoretical hard–sphere model. d) Adding non–adsorbing polymer
chains results in a net attractive interaction between the colloidal particles known as
depletion interaction. The attractive potential depends on the density of polymers in
the suspension as well as the polymer–colloid size ratio.

that the phase diagram is scaled by the thermodynamic properties of the critical point,
thus the phase diagram topology of such fluids is approximately the same [6]. Simi-
larly the knowledge about the potential of the mean force between spherical colloidal
particles allows to estimate the phase diagram topology of a colloidal suspension [37].
These expected similarities with an atomic system, makes colloidal suspensions even
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more interesting to study.

The depletion interaction is another important potential which comes about by adding
non–adsorbing polymer chains to a colloidal suspension [4,5]. As a consequence of the
repulsive colloid–polymer interaction there exists an effective depletion layer around
a colloidal particle in which the configurational entropy of the polymer chains is de-
creased. In order to maximize their entropy, the polymers exert an osmotic pressure
onto the colloidal particles to increase the overlap of the depletion layers. This results
in an effective short–range attraction between the colloidal particles which depends on
the colloid–polymer size ratio and the density of the polymers (see Chapter 5).

The properties and structure of a colloidal suspension are mainly determined by the
short–range repulsive interaction between the particles [6]. The van der Waals interac-
tion between the colloidal particles is tunable by matching the refractive index of the
solvent to the one of the colloidal particles. By a combination of the such minimized
attraction and repulsive thin brushes, the colloidal particles behave almost as hard–
spheres [3]. The hard–sphere model is important in theory since it can be used as a
reference system with the additional attractions acting as a perturbation [7].

3.2 Hard Spheres

In a hard–sphere system the particle are not allowed to overlap with each other, hence
the pairwise potential between two spheres with radius Ri and Rj reads

uHS(rij) =

{
∞ rij = |ri − rj| < Ri +Rj ,
0 otherwise

, (3.1)

with ri and rj denoting the position of the particles in space. Since the interaction
potential is either 0 or∞ temperature does not play a role in the behavior of a hard–
sphere system. In fact, the internal energy of the system is zero, U = 0, and its free
energy is F = −TS. As a result, the thermodynamic properties of the system are
solely affected by entropy. The equilibrium configuration is obtained by maximizing
the entropy of the system. At low densities, the disordered arrangement in the liquid
corresponds to maximum entropy. However, by increasing the density, the number
of possible disordered arrangements reduces and the system undergoes a transition
into an ordered state in order to maximize its entropy. Hence, the phase transition
of a hard–sphere fluid into an fcc crystalline structure, is completely entropy driven.
This kind of fluid–solid phase transition was first observed in simulations for mono–
disperse repulsive colloidal particles in 1950’s [38, 39].

For realization of a hard–sphere system silica or Polymethyl methacrylate (PMMA)
particles are often used. PMMA is a synthetic resin produced from the polymeriza-
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tion of methyl methacrylate. The van der Waals attraction between the particles is
minimized by matching the refractive index of the solvent with the one of the colloidal
particles. In order to compensate any residual attraction, the particles are sterically sta-
bilized by coating with polymers [40, 41]. Polydispersity, the deviation of the particle
size from their average value, is an important parameter in determination of the phase
diagram of the hard–sphere system [41]. While it is possible to prepare a sample with a
narrow of particle size distribution [42], subtle differences in particle size distributions
are induced in a controlled process in order to investigate the effect of polydispersity
on physical properties of the system, e.g. the crystallization kinetics [43, 44].

Simulation studies on hard–sphere systems date back to the 1950’s, when Wood et
al. [32], and Alder et al. [33], showed the entropic phase transition in such a system.
An important difficulty in simulating the hard core interaction, is the discontinuity
of the potential (Eq. (3.1)). From another point of view, this is an advantage of the
system since each particle only is affected by and has influence on its nearest neighbour
particles. The fast advancements in computer technologies in the last decade has lead
to less expensive computing tools and availability of the super–computers to a larger
crowd. This has made it possible to use more sophisticated simulating methods and
larger system sizes to prevent finite size effects and obtain more reliable results. Such
reliable results backs up the theoretical studies for investigating the systems for which
the experimental realization is either impossible or too costly.

3.2.1 Virial expansion and the Carnahan–Starling equation of state

Due to the interaction of the particles in the system, the equation of state is different
from that of an ideal gas where u(r) = 0 (Eq. (2.2)). Defining the Mayer–f bond (func-
tion) as a function of the interaction between particles,

f(r) = exp(−βu(r))− 1 , (3.2)

for a system with N particles in a physical volume V , the deviation of the equation of
state from an ideal gas can be expressed as a virial expansion in the density ρ = N/V
as follows [6],

βp

ρ
= 1 +

∞∑
n=2

Bn(T )ρn−1 , with β =
1

kBT
. (3.3)

Here, the virial coefficients Bn are expressed as a function of temperature T . The first
coefficient is B1 = 1 and the higher order ones rise due to the n–body interactions in a
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non–ideal gas and are defined in terms of Mayer–f function f (Eq. (3.2)).

B2(T ) = − 1

2V

∫∫
dridrjf(rij) = − 1

2

∫
drf(r) , with rij = |ri − rj| (3.4)

B3(T ) = − 1

3V

∫∫∫
dridrjdrkf(rij)f(rjk)f(rik) , (3.5)

...

Bn(T ) = − 1

nV

∫
drn

∏
{ij}

f(rij) , (3.6)

where the product inBn(T ) is over all possible pairs of i and j. Note thatB3(T ) already
contains information about simultaneous interactions between three particles. In the
low density limit, it is reasonable to assume that such interactions do not exist, hence
Bn≥3 = 0. Therefore, in this limit it is sufficient to consider the second virial coefficient.

For a hard–sphere system, the Mayer-f functions are given as follows.

f(r) = exp(−βu(r))− 1 =

{
−1 r < σ
0 otherwise

(3.7)

where σ is the hard–sphere diameter. In this case, the virial coefficients Bn(T ) are inde-
pendent of temperature, hence constant values [6, 45]. The first three virial coefficient,
i.e. B2, B3, and B4, have been found analytically [6]. Some of the higher order terms,
B5 to B12, have been evaluated numerically [45–49].

As a result, the hard–sphere equation of state is given by [6],

βp

ρ
= 1 +

∞∑
n=2

Bn(T )ηn−1

= 1 + 4η + 10η2 + 18.365η3 + 28.225η4

+39.74η5 + 53.5η6 + 70.8η7 +O
(
η8
)
, (3.8)

where the hard–sphere packing fraction is denoted by η = π
6
σ3ρ. Carnahan and Star-

ling approximated the virial coefficients by n2 + n − 2, i.e. 4, 10, 18, 28, 40, 54, and 70
for B2 to B8 which slightly deviate from their calculated values presented in Eq. (3.8).
Using this approximation, the resulting sum is a geometric series which has a closed
form [50].

βpCS

ρ
= 1 +

∞∑
n=2

(n2 + n− 2)ηn−1 = 1 +
∞∑
n=1

(n2 + 3n)ηn

=
1 + η + η2 − η3

(1− η)3
(3.9)
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Figure 3.2: Equation of state of a hard–sphere fluid obtained by different theoreti-
cal methods: Carnahan–Starling from Eq. (3.9), Percus–Yevick compressibility from
Eq. (3.18), Percus–Yevick virial from Eq. (3.20), and virial expansion truncated after
specified orderin legends. The inset shows the relative deviation with respect to the
7th order virial expansion |p − p7th

vir |/p7th
vir up to the vicinity of fluid–solid phase transi-

tion η ≈ 0.5.

The Carnahan–Starling equation of state is a good fit to computer simulations in the
range of fluid densities and its largest deviation occurs at higher packing fractions and
is of the order of 1% (see Fig. 3.2). In particular one can obtain the excess free energy
density fex of a hard–sphere system from the Carnahan–Starling equation of state.

βf ex =
βF − βF id

V
= ρ

∫ η

0

dη′

η′

(
βp(η′))

ρ′
− 1

)
= ρ

η(4− 3η)

(1− η)2
. (3.10)

3.2.2 The Percus–Yevick approximation

The Ornstein–Zernike relation (Eq. (2.30)) gives a recursive relation between the to-
tal pair correlation function h(ri, rj) and the direct pair correlation function c(2)(ri, rj).
However, this relation is open and it is necessary to have information about c(2) in or-
der to solve it. In order to obtain a closure, consider an isotropic homogeneous system
with a single particle pinned at r = 0. The remaining N − 1 particles feel the force field
of the pinned particle as an external potential Vext(r) = u(r) with r = |r|. The single–
particle density ρ(1)(r) is equivalent to ρ(2)(0, r)/ρ where ρ(2)(0, r) is the two–particle
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density in the absence of the external potential. Using the definition of the distribution
function from Eq. (2.29), one can relate g(r) to the single–particle density as [51, 52],

ρ(1)(r) = ρg(r) . (3.11)

Furthermore, one can consider the external potential as a perturbation to the homo-
geneous system and expand exp

(
c(1)(r)

)
in terms of deviations in the single–particle

density ∆ρ(1). The expansion to the first order in ∆ρ(1) reads [6]

exp
(
c(1)(r)

)
≈ exp

(
c

(1)
ref (r)

)(
1 +

∫
dr′∆ρ(1)(r′)c

(2)
ref (r, r

′)

)
,

with ∆ρ(1)(r) = ρ(1)(r)− ρ(1)
ref (r) = ρg(r)− ρ = ρh(r) , (3.12)

where c
(1)
ref is the single–particle correlation function for the reference system (see

Eqs. (2.56) and (2.57)). Using the expressions for the single–particle density from
Eq. (2.56), one can obtain the Percus–Yevick approximation (“closure relation”).

g(r) = exp (−βu(r))

(
1 + ρ

∫
dr′ c(|r− r′|)h(r′)

)
= exp (−βu(r))

(
1 + h(r)− c(r)

)
, (3.13)

⇒ c(r) = g(r)
(
exp (βu(r))− 1

)
(3.14)

where we have used the Ornstein–Zernike relation for an isotropic homogeneous sys-
tem (Eq. (2.31)) in the second line and the definition of total correlation function h =
g − 1 in the last one. The Percus–Yevick approximation is important in the theory of
simple fluids since it has an analytical solution for the hard–sphere fluid. Defining
τ(r) =: g(r) exp(βu(r)), the Percus–Yevick approximation for a hard–sphere fluid is
written as follows:

c(r) = τ(r)
(
exp(−βu(r))− 1

)
=

{
−τ(r) r < σ

0 otherwise
(3.15)

On the other hand, the distribution function for r > σ is equal to τ(r) and for r < σ it is
zero since we have hard–spheres. As a result, using the Ornstein–Zernike relation one
can write the following integral equation for τ(r) [53].

τ(r) = 1 + ρ

∫
r<σ

dr′τ(r′)− ρ
∫

r′<σ
|r−r′|>σ

dr′τ(r′)τ(|r− r′|) . (3.16)

The equation is solved by taking the one-side Laplace transformation of the integral
equation and assuming the direct pair correlation function c(r) as a cubic polynomial in
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r/σ. Finally, the direct pair correlation function of a hard–sphere fluid for x = r/σ > 1
is given as follows.

c(x) = −α +
3

2
ηβx− 1

2
ηαx3 , with α =

(1 + 2η)2

(1− η)4
, β =

(2 + η)2

(1− η)4
. (3.17)

The Percus–Yevick compressibility equation of state is obtained by calculating the com-
pressibility of the hard–sphere fluid using Eq. (2.33) with c(r) from Eq. (3.17) and inte-
grating with respect to η.

βpcom
PY

ρ
=

1 + η + η2

(1− η)3
. (3.18)

Alternatively, one can start from the virial theorem which expresses the equation of
state as a time average of the interactions between particles, and relate it to the distri-
bution function. The equation of state in this case is related to τ(r) as [6]1,

βp

ρ
= 1 +

2π

3
ρ lim
r→σ+

r3τ(r) . (3.19)

By replacing the obtained expression for τ(r) = −c(r < σ) (Eq. (3.17)) in Eq. (3.19), the
Percus–Yevick virial equation of state is obtained.

βpvir
PY

ρ
=

1 + 2η + 3η2

(1− η)2
. (3.20)

The difference between two versions of the Percus–Yevick equation of state increases
with density (see Fig. 3.2). In comparison with the more exact Carnahan–Starling equa-
tion of state βpCS/ρ, the compressibility equation of state overestimates the pressure at
higher densities at which the transition to a crystal is expected. This will lead to wrong
predictions of the coexistence densities2.

3.2.3 Scaled–particle theory

The equation of state of a hard–sphere system can be derived in an extrapolation
scheme known as Scaled Particle Theory (SPT). Here the required work for inserting

1 See Section 2.5 of Ref. [6] for a detailed derivation.
2 See for instance the difference between coexistence densities predicted by two versions of FMT

functionals in Section 4.5 which is due to their different underlying equation of state.
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R R +Ri

Ri

Figure 3.3: A schematic illustration of a modified cavity in the scaled–particle theory.
Depicted is a single hard–sphere (solid blue) with radius Ri in vicinity of an assumed
cavity of size R (dashed red). The center of the hard–sphere is not allowed to enter the
modified cavity with radius R +Ri (dashed green).

a hard–sphere particle with radius R into a mixture of hard–sphere particles with ra-
dius Ri is calculated in two extreme limits, i.e. R → 0 and R → ∞. This reversible
work is equivalent to the excess chemical potential of the system due to the insertion
of the new particle. The corresponding excess chemical potential for mid–range sizes
is obtained by an extrapolation [6, 54, 55].

Consider a mixture of ν species of hard–spheres in a physical volume V . Each species
haveNi particles with radiusRi, hence the number density of each species is ρi = Ni/V .
In order to insert a new particle R � Ri, one should find a cavity of the same size R
in the system. Due to the spontaneous fluctuation of the particles, there is a finite
probability fcav of finding such cavity which is given as follows:

fcav(R) = exp(−βµex(R)) . (3.21)

Here, the probability is expressed as a function of excess chemical potential µex. This
probability is equivalent to the probability of finding modified cavities with radius
R + Ri in which the center of the corresponding hard–sphere with radius Ri is not
allowed (see Fig. 3.3). Obviously, if there is a hard–sphere in a modified cavity we
are not able to insert the new hard–sphere in it. Therefore one can express fcav as the
complementary probability focc that all such modified cavities are occupied.

fcav = 1− focc . (3.22)

Now, consider modified cavities whose radius are smaller than or equal to their cor-
responding hard sphere species, i.e. R + Ri ≤ Ri. This implies an extension of R to
unphysical negative values. In this limit, a modified cavity can be occupied at most
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with one particle. Therefore, focc is expressed as a sum over probabilities fi,occ of find-
ing a hard–sphere with radius Ri in its corresponding modified cavity.

focc(R) =
ν∑
i=1

fi,occ(R) =
ν∑
i=1

4

3
π(R +Ri)

3ρi for R ≤ 0 . (3.23)

Combining Eq. (3.21) with Eq. (3.23) we can write,

βµex(R) = − ln

(
1−

ν∑
i=1

4

3
π(Ri +R)3ρi

)
for R ≤ 0 . (3.24)

In the other extreme limit, the required reversible work for creating a large cavity of
size R� Ri is given by,

µex(R) =
4

3
πR3 p for R� Ri . (3.25)

Here, p is the total pressure of the hard–sphere mixture. Motivated by the form of the
function in Eq. (3.25), we will use the following ansatz for the excess chemical potential.

µex(R) =
4

3
πR3 p+ 4πR2 γ + 4πR κ+ 1 κ̄ for R ≥ 0 . (3.26)

Here, the reversible required work for creating a sphere cavity with radius R ≥ 0 is
expressed as a function of its fundamental measures (see Eq. (4.5)). The continuity of
µex and its derivatives at R = 0 which is imposed by equating them in two limits, i.e.
µex(0−) from Eq. (3.24) and µex(0+) from Eq. (3.26), implies that,

βκ̄ = − ln(1− ξ3) ,

4πβκ =
ξ2

1− ξ3

,

4πβγ =
4πξ1

1− ξ3

+
ξ2

2

2(1− ξ3)2
. (3.27)

where ξi’s are scaled–particle variables defined as

ξ3 =
ν∑
i=1

4

3
πR3

i ρi ,

ξ2 =
ν∑
i=1

4πR2
i ρi ,

ξ1 =
ν∑
i=1

Riρi . (3.28)
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Using these coefficients in Eq. (3.26), the excess chemical potential of inserting a hard–
sphere particle with radius R = Ri is obtained as follows.

βµex
i = − ln(1− ξ3) +

4πR2
i ξ1 +Riξ2

1− ξ3

+
R2
i ξ

2
2

2(1− ξ3)2
+

4

3
πR3

iβp . (3.29)

By using the thermodynamic relation,

∂βp

∂ρj
=

ν∑
i=1

ρi
∂βµi
∂ρj

=
ν∑
i=1

ρi

(
∂βµid

i

∂ρj
+
∂βµex

i

∂ρj

)
= 1 +

ν∑
i=1

ρi
∂βµex

i

∂ρj
, (3.30)

the equation of state for a mixture of hard–spheres is obtained as follows.

βp =
ξ0

(1− ξ3)
+

ξ1ξ2

(1− ξ3)2 +
ξ3

2

12π (1− ξ3)3 , (3.31)

where ξ0 is the total number density of the mixture,

ξ0 =
ν∑
i=1

ρi . (3.32)

Note that for a single–component system ν = 1 the equation of state reduces to the
Percus–Yevick compressibility equation (Eq. (3.18)). Furthermore, the corresponding
excess free energy density for the hard–sphere mixture is obtained as ,

βf ex = −ξ0 ln (1− ξ3) +
ξ1ξ2

1− ξ3

+
ξ3

2

24π (1− ξ3)2 . (3.33)

3.3 Excess Helmholtz free energy functional

As mentioned in Section 2.3, in the framework of the classical DFT, it is proven that
there exist a grand potential functional Ω[ρ] which is minimized by the equilibrium
density profile ρeq(r). The minimum value is the grand potential of the system Ω
from Eq. (2.21). Furthermore, the Helmholtz free energy functional which is defined
as the Legendre transformation of the grand potential functional, is conveniently de-
composed into an ideal gas part βF id and an excess (over ideal) part βF ex. This is
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summarized as follows.

Ω[ρ] = F id[ρ(r)] + F ex[ρ(r)] +

∫
drρ(r) (Vext(r)− µ) ,

δΩ[ρ]

δρ(r)

∣∣∣∣∣
ρ=ρeq

= 0 , Ω[ρeq] = Ω ,

βF id[ρ(r)] =

∫
drρ(r)

(
ln
(
λ3ρ(r)

)
− 1
)
. (3.34)

The main task in implementing the density functional theory for classical systems with
interacting particles is determining an excess free energy functional which describes
the interactions between the particles appropriately. However, the only functional
which has an exact analytical soultuion is for 1D hard–rods [56–58]. For other systems
there are approximate energy functionals which in some cases are applicable only to
special type of potentials [7, 59].

3.3.1 Low density limit and local density approximation

The excess part of the free energy functional can be expressed in terms of the Mayer–f
function (Eq. (3.2)) as follows.

βF ex[ρ] = −1

2

∫∫
dridrjρ(ri)ρ(rj)f (rij)

−1

6

∫∫∫
dridrjrkρ(ri)ρ(rj)ρ(rk)f (rij) f (rjk) f (rik) +O(ρ3) , (3.35)

where rij = |ri − rj|. In the low density limit ρ → 0, the exact form of the excess free
energy functional is found by truncating Eq. (3.35) after the first term. Consequently,
the direct pair correlation function is obtained using its definition from Eq. (2.54). For
the low density limit, the direct pair correlation function reads

c(2)(ri, rj) = f(|ri − rj|) +O(ρ2)

= −βu(|ri − rj|) +O(u2, ρ2) . (3.36)

where for the latter, we have assumed βu(r) � 1. The provided expression is known
as Random Phase Approximation (RPA) and predicts the correct asymptotic behaviour
of the direct correlation function, i.e. at long–ranges it should behave as the interact-
ing potential between particles [7, 60]. The approximation is good for a system with
smoothly varying density.
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Motivated by the expression for the excess free energy density from the Carnahan–
Starling equation of state (Eq. (3.10)), one can introduce the following excess free en-
ergy functional for a hard–sphere system.

βF ex
LDA[ρ] =

∫
drρ(r)

η(r)(4− 3η(r))

(1− η(r))2 . (3.37)

This so–called local density approximation is valid for a smoothly varying density dis-
tribution over the range of several particle size. Therefore, this approximation can not
be used for a hard–sphere system due to rapid changes in the density. The LDA func-
tionals are mainly used for treating a system with attractions. Here, the potential is
decomposed into a hard–core interaction and an attractive part which is often treated
with a mean–field free energy [7, 60].

An improvement beyond local density approximation is achieved by introducing ad-
ditional terms which are dependent on local gradient of the density ∇ρ(r). This non–
local description is able to account for inhomogeneities of small amplitude [6]. The
gradient expansion fails when it is applied to a system with hard–core interaction due
to a sharp finite–range interference of the density profile of two hard bodies [7].

3.3.2 Ramakrishnan–Yussouff functional

Consider a reference system whose pairwise particle interaction is given by uref(r) and
the excess free energy density βFref is known. For studying a system of interest with a
different particle interaction u(r), one can consider the difference as a perturbation to
the systemw(r) which is switched on gradually: u = uref +λw, and eventually gives the
potential of the system of interest when λ = 1. The excess free energy functional of this
system is given in a formally exact relation as a correction to βFref . Consequently, the
deviation of the direct correlation function from the reference system is approximated
in a mean–field form. As a result of this approximation known as Random–Phase Ap-
proximation (RPA), the direct pair correlation function which behaves asymptotically
as the interaction potential, is exact for long distances [6, 7].

In a rather similar way, one may relate the single–particle density of a reference state
of the system of interest to its final state via a linear integration path [6].

ρ(1)(r;λ) = ρ
(1)
ref (r) + λ∆ρ(1)(r) . (3.38)

The direct correlation functions are given hierarchically as functional derivatives of the
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excess free energy functional (Eq. (2.55)). Integrating them using Eq. (3.38) results in,

βF ex[ρ(1)] = βF ex[ρ
(1)
ref ]−

∫ 1

0

dλ

∫
dr
∂ρ(1)(r)

∂λ
c(1)(r;λ) ,

= βF ex[ρ
(1)
ref ]−

∫ 1

0

dλ

∫
dr∆ρ(1)(r)c(1)(r;λ) , (3.39)

c(1)(r;λ) = c
(1)
ref (r) +

∫ λ

0

dλ′
∫

dr′∆ρ(1)(r′)c(2)(r, r′;λ′) . (3.40)

...

c(n−1)(r;λ) = c
(n−1)
ref (r) +

∫ λ

0

dλ′
∫

dr′∆ρ(1)(r′)c(n)(r, r′;λ′) . (3.41)

Note that the excess free energy functionals on the two sides of Eq. (3.39) are the same
unique energy functional of the single–particle density. Moreover, the correlation func-
tions in the integrals belong to the final state of the system. Using c(1) from Eq. (3.40)
in Eq. (3.39) we can write,

βF ex[ρ(1)] = βF ex[ρ
(1)
ref ]−

∫ 1

0

dλ

∫
dr∆ρ(1)(r)c

(1)
ref (r) ,

−
∫ 1

0

dλ

∫ λ

0

dλ′
∫∫

drdr′∆ρ(1)(r)∆ρ(1)(r′)c(2)(r, r′;λ′) , (3.42)

Since c(1)
ref in the second term does not depend on λ, we can evaluate the integral

∫ 1

0
dλ =

1. By replacing c(2) in the integral of the third term in Eq. (3.42) with the expression in
Eq. (3.41) with n = 2, an integral in the term containing c

(2)
ref is obtained which can

be evaluated as
∫ 1

0
dλ
∫ λ

0
dλ′ = 1

2
. Following the same steps, one can write down a

formally exact Taylor expansion of the excess free energy functional as follows [6, 61].

βF ex[ρ(1)] = βF ex[ρ
(1)
ref ]−

∫
dr∆ρ(1)(r)c

(1)
ref (r)

−1

2

∫∫
drdr′∆ρ(1)(r)∆ρ(1)(r′)c

(2)
ref (r, r

′)

−1

6

∫∫∫
drdr′dr′′∆ρ(1)(r)∆ρ(1)(r′)∆ρ(1)(r′′)c

(3)
ref (r, r

′, r′′)− · · · .(3.43)

By truncating the series after the second term, the only required inputs for constructing
the functional are the excess free energy functional evaluated at a reference density, and
the direct pair correlation function which may be obtained from the solution of integral
equation theory or RPA [7]. A homogeneous fluid is often taken as the reference state,
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hence ρref(r) = ρ and the excess free energy is provided by an equation of state, and
the single–particle correlation c(1)

ref = −µex from Eq. (2.57).

Ramakrishnan and Yussouff constructed their functional by using the Percus–Yevick
approximation (Eq. (3.17)) as the undetermined direct pair correlation function [62].
Furthermore, they used the Carnahan–Starling equation of state for description of
their hard–sphere fluid which provides expressions for the excess free energy density
(Eq. (3.10)) and consequently the direct pair correlation function for the reference sys-
tem. The functional is capable of describing the hard–sphere fluid–solid coexistence.
Although the obtained transition densities are different from exact MC simulation re-
sults, the method is quite useful since it allows fast numerical calculations as a test
case. For instance in Ref. [61], the method has been used in a combination with Fun-
damental Measure Functionals (see Chapter 4). Here, the excess free energy and the
direct pair correlation function of the reference system are obtained from the provided
fundamental measure functional. Their results for phase coexistence densities are sur-
prisingly in good agreement with those of simulation results. However, the Taylor
expanded FMT functionals which are truncated after second order in density fail to
deliver correct order of magnitude for the equilibrium vacancy concentration in the
solid3.

3.3.3 Phase Field Crystal model

In the context of phase field models, after proper coarse graining of the system a scalar
order parameter ψ is defined for determination of the fluid and the crystalline state.
The order parameter evolves continuously from its value at the bulk fluid phase ψ =
0 to the bulk crystalline state ψ = 1. The order parameter is usually coupled to a
density field with conserved dynamic equations. In contrast, the dynamic evolution
of the order parameter is not conserved in general. However, at equilibrium the phase
boundary which separates the bulk states, is stationary, i.e. none of the phases are
growing. The free energy functional of the system is approximated in the form of a
Ginzburg-Landau functional of the order parameter [61, 63].

Using the same framework, Elder et al. developed a method called the Phase Field
Crystal (PFC) model in order to investigate elastic properties of a solid and study the
crystallization on atomic scale [64,65]. The order parameter in PFC Ψ is a density field
and has a periodic ground state. The ground state of Ψ is obtained by minimizing
the free energy functional of the order parameter [66]. However, it turns out that PFC

3 The reported coexistence densities of fluid ρflσ
3 and fcc ρcrσ

3 crystal in Ref. [61] are respectively
0.944 and 1.049 for RF(tensor) functional (see Section 4.2) and 1.021 and 1.123 for WBII(tensor) functional
(see Section 4.3). The vacancy concentration of an fcc solid is reported 0.1 for RF(tensor) and 0.09 for
WBII(tensor). See table 4.1 and table 4.2 for a comparison of the results with FMT functionals.
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is in fact an approximative Density Functional Theory [67–69]. The PFC free energy
functional which describes the static and dynamic properties of a conserved field Ψ is
given in its simplest symmetric form as follows [64],

F [Ψ] =

∫
dr

{
1

2
Ψ(r)

[
−ε+

(
q2

0 +∇2
)2
]

Ψ(r) +
1

4
Ψ4(r)

}
, (3.44)

where q0 and ε are constants and∇ represent the gradient of the order parameter field.

Consider the order parameter defined as the normalized deviation of the density from
the density of homogeneous fluid state ρref

4.

Ψ(r) =
ρ(r)− ρref

ρref

. (3.45)

Note that the order parameter is equivalent to the normalized single–particle density
deviation ∆ρ(1)/ρref from Eq. (3.38) if λ = 1. The ideal gas free energy functional
(Eq. (2.52)) may be expressed as a functional of order parameter as follows.

βF id[Ψ] =

∫
drρ(r)

(
ln
(
λ3ρ(r)

)
− 1
)

= βF id[ρref ] + βµidρref

∫
dr Ψ(r)

+ρref

∫
dr

{
1

2
Ψ2(r)− 1

6
Ψ3(r) +

1

12
Ψ4(r) +O(Ψ5)

}
, (3.46)

where βµid = ln (λ3ρref) is the ideal gas chemical potential. Note that the integral over
the linear term in Ψ results in a constant value. Assuming a spherical symmetry, hence
c(2)(r, r′) = c(2)(|r−r′|), and using the definition of Ψ from Eq. (3.45) one can rewrite the
Ramakrishnan–Yussouff approximation of the excess free energy functional (Eq. (3.43)
truncated after O(ρ2)) as follows.

βF ex[Ψ] = βF ex[ρref ] + βµexρref

∫
drΨ(r)

−ρ
2
ref

2

∫∫
drdr′Ψ(r)c

(2)
ref (|r− r′|)Ψ(r′) . (3.47)

where βµex = −c(1)
ref is the excess chemical potential of the reference system. One can

consider the integral over r′ as the convolution of c(2) and Ψ(r′), i.e. the product of their
Fourier transformations in the Fourier space. Since the direct pair correlation function

4 This derivation is presented by Robert Spatschek in the Phase Field summer school [70]
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has rotational symmetry, its Fourier transform is only a function of k = |k| and only
even terms appear in the Taylor expansion of c̃(2)(k),

c̃(2)(k) = c̃0 + c̃2k
2 + c̃4k

4 +O(k6) . (3.48)

Taking the backward Fourier transform, each term containing kn in Fourier space gives
∇n in real space and Eq. (3.47) turns into

βF ex[Ψ] = βF ex[ρref ] + βµexρref

∫
drΨ(r)

−ρref

2

∫
drΨ(r)

[
c0 − c2∇2 + c4∇4

]
Ψ(r) , with ci =

c̃i
ρref

(3.49)

Finally, the total free energy functional is obtained by combining Eqs. (3.46) and (3.49).

βF [Ψ] = ρref

∫
dr

{
1

2
(1− c0)Ψ2(r) +

1

2
c2Ψ (r)∇2Ψ(r)

−1

2
c4Ψ (r)∇4Ψ(r)− 1

6
Ψ3 (r) +

1

12
Ψ4 (r)

}
+βF [ρref ] + βµρref

∫
dr Ψ(r) . (3.50)

The functional in Eq. (3.50) is a local functional of the order parameter Ψ, and there-
fore is also local in density, in contrast with the Taylor expansion functional (Eq. (3.43))
which is non–local in density. The last two terms in Eq. (3.50) are constant, thus irrel-
evant in the determination of the physical properties, e.g. the phase diagram [61, 66].
Rescaling the order parameter Ψ′ = α(1 − 2Ψ) with α = 1/

√
−12c4 results in the same

form of PFC functional from Eq. (3.44) scaled with a factor. The scaling value of the
functional and the relation between the constants ε and q and the coefficients Ai are
given as follows.

FPFC =
βF

3ρrefc2
4

,

q0 =

√
− c2

4c4

,

ε =
c2

2 − c4 (3 + 4c0)

4c2
4

. (3.51)

As it is mentioned earlier, PFC is mainly used to study the crystallization and inves-
tigating the properties of the liquid–solid interfaces. Generally, the peaks of the order
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parameter which represents the crystalline state are almost sinusoidal in PFC while in
DFT they have Gaussian form [67]. On the other hand, using the full form of the func-
tional (Eq. (3.50)) Oettel et al. have shown that a proper matching between the Taylor
expanded DFT and PFC is achieved by identification of the PFC order parameter Ψ(r)
with a rescaled and shifted “smeared density” ρ(r)∗w(r) [61]. However, the functional
results in peculiar negative values for vacancy concentration at coexistence densities of
hard–sphere system. Furthermore, a direct calculation of Ai’s from a Taylor–expanded
FMT functional gives a PFC functional which does not account for fluid–solid phase
transition [61].

In the following chapter, we will discuss the Fundamental Measure Theory (FMT)
which is introduced by Rosenfeld in 1989 and provides an excess free energy func-
tional for a hard–sphere mixture. Starting from the low density limit and using a de-
convolution of the Mayer–f functions at this limit, Rosenfeld showed that the excess
free energy density is a function of a set a weighted (smeared out) densities [9].





CHAPTER 4

BULK CRYSTALS OF HARD SPHERES IN
FUNDAMENTAL MEASURE THEORY

In 1989, Rosenfeld introduced Fundamental Measure Theory (FMT) which expresses
the excess free energy density of a hard sphere mixture as a function of a set of weighted
(smeared–out) densities [9]. Inspired by the bulk behavior of the hard sphere mixture
described by the Percus–Yevick (PY) integral equation [57, 71], Rosenfeld built his ex-
cess free energy functional based on scaled–particle theory [54].

FMT is quite successful in describing a hard–sphere mixture in bulk fluid, by for in-
stance delivering the pair direct correlation function approximately correct. However,
the proposed functional by Rosenfeld diverges when it is applied to a particle which
is caged by its neighbors; a situation which should be addressed for a correct descrip-
tion of fluid–crystal phase transition. In a wider point of view, a functional which is
constructed for a 3D system with density profile ρ3D(x, y, z) should be able to handle
cases in which the system is confined to a lower dimension. For instance, by imposing
an appropriate external potential which restricts the density profile in the z = 0 plane,
i.e. ρ3D(x, y, z) = δ(z)ρ2D(x, y), the functional must deliver the free energy of a 2D sys-
tem. The ultimate dimensional crossover is confining a particle in a “0D cavity” with
density profile ρ3D(x, y) = δ(x)δ(y)δ(z), reminiscent of a caged particle by its neigh-
bors. The Rosenfeld functional is not able to treat the density crossover; a defect which
ultimately leads to its divergence when it is applied to a highly packed system. In an
early attempt to overcome this problem the functional was modified by a geometri-
cally based empirical approach [34, 72]. In a more systematic approach, one can start
from a 0D cavity for which the free energy is exactly known, and construct a functional
for higher dimensions. This low dimensional considerations ultimately lead to intro-
duction of the tensorial version of the FMT functionals [10, 73]. The tensorial version
of the functional is capable of describing crystals [11, 74]. However, as the underlying
thermodynamics of the FMT is based on the PY equation of state, the resulting coex-
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istence densities are shifted compared to simulation results [75–77]. Using the more
exact Carnahan–Starling (CS) equation of state [50, 78] instead of the PY compressibil-
ity equation, Roth et al. and Yu et al. in two separate studies overcame this problem by
introducing the equation of state as an input in the derivation of the functional [11,79].
The obtained coexistence densities from this functional are consistent with simulation
results [11, 74, 80].

Extending scaled–particle theory for the bulk, Santos has presented a general solution
for the scaled–particle differential equation [81]. This is possible by considering the
limit in which in a ν–component system of homogeneous hard sphere fluid one of the
components consists of point particles. This approach has been extended to inhomo-
geneous systems and the formulation of a corresponding functional which is shown to
be capable of predicting crystallization as well as a correct order of magnitude for the
equilibrium thermal vacancies in crystalline state [82].

In the following sections of this chapter, we will discuss the low density expansion of
the excess free energy as a function of the Mayer-f bonds. Rosenfeld’s deconvolution
of Mayer-f bonds in terms of weighted densities is the starting point of the derivation
of his fundamental measure functional. In Section 4.2 the concept of 0D cavities and
the Tarazona treatment of the functional is discussed. While the underlying equation
of state of these functionals is Percus–Yevick, the White Bear versions introduced in
Section 4.3 take advantage of the Carnahan–Starling equation of state. Santo’s general
solution for the scaled–particle differential equation and the self–consistent functional
based on this solution is presented in Section 4.4. Finally, in Section 4.5 the implemen-
tation of the FMT and numerical results concerning the liquid–solid phase transition
and their thermodynamic properties, equilibrium thermal vacancies and anisotropies
in density profiles of crystals are discussed.

4.1 Fundamental Measure Theory

In this section, we will follow Ref. [9] to derive Rosenfeld’s expression for the excess
free energy. As discussed in Section 3.3.1, one can write down an expansion of the
excess free energy functional in terms of Mayer–f functions fij(r) (see Eqs. (3.2) and
(3.35)). For a ν–component system, this expansion reads

βF ex [{ρi}] = − 1

2

∑
i,j

∫∫
dr1dr2 ρi(r1)ρj(r2)fij(r12)

− 1

6

∑
i,j,k

∫∫∫
dr1dr2dr3 ρi(r1)ρj(r2)ρk(r3)fij(r12)fik(r13)fjk(r23)

+ · · · , (4.1)
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where the sums run over different species and rij = |ri − rj|. In a hard sphere system
in which the interaction between particle i and j with radii Ri and Rj is defined by
Eq. (3.1), the Mayer–f function is either −1 for rij < Ri + Rj , or 0 when there is no in-
teraction between them. Hence the geometrical interpretation of the Mayer-f function
for a hard–sphere potential is the excluded volume around each particle. Using a set
of weight functions {wi}, Rosenfeld proposed a deconvolution of the Mayer–f function
for hard-spheres as follows,

−fij(r) = w3
i ∗ w0

j + w0
i ∗ w3

j + w1
i ∗ w2

j + w2
i ∗ w1

j −w2
i ∗w1

j −w1
i ∗w2

j . (4.2)

Here, ∗ is the 3–dimensional convolution defined as[
wαi ∗ w

β
j

]
(ri − rj) =

∫
dr′wαi (ri − r′)wβj (rj − r′) , (4.3)

and the weight functions wαi are given by:

w3
i (r) = θ (Ri − |r|) ,

w2
i (r) = δ (Ri − |r|) , w1

i (r) =
w2
i (r)

4πRi

, w0
i (r) =

w2
i (r)

4πR2
i

,

w2
i (r) = δ (Ri − |r|) er , w1

i (r) =
w2
i (r)

4πRi

, (4.4)

where θ(r) is the Heaviside step function, δ(r) is the Dirac delta function, and er = r/|r|
is the unit vector in direction of r. Integrating over the scalar weight functions gives
the fundamental measures of a sphere,∫

dr w3
i (r) =

4

3
πR3

i Volume∫
dr w2

i (r) = 4πR2
i Surface∫

dr w1
i (r) = Ri Mean radius of curvature∫

dr w0
i (r) = 1 Euler characteristic, (4.5)

hence the name of the theory. The deconvolution of the Mayer–f function proposed
by Rosenfeld (Eq. (4.2)) is not unique. For instance Kierlik and Rosinberg proposed a
deconvolution which avoids vectorial weight functions [83]. However, it can be shown
that the different expressions for the deconvolution are equivalent [84]. Rosenfeld has
used the vectorial weight functions wα in order to express the jump discontinuity of
the Mayer–f function at r = σ in the form of convolutions in Eq. (4.2) [9].
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The weighted (smeared–out) densities {nα(r)} are obtained by calculating the convo-
lution of the weight functions and the density profile.

nα(r) =
∑
i

[ρi ∗ wαi ](r) =
∑
i

∫
dr′ρi(r

′)wαi (r− r′). (4.6)

In the bulk homogeneous state, the vectorial weight functions vanish and the scalar
ones reduce to the scaled–particle variables (Eqs. (3.28) and (3.32)), nα(r) → ξα. Using
Eq. (4.2) and the definitions of the weighted densities from Eq. (4.6), one can rewrite
the low density approximation of βF ex from Eq. (4.1) as follows,

βF ex [{ρi}] =

∫
dr {n0(r)n3(r) + n1(r)n2(r)− n1(r) · n2(r)} . (4.7)

In this approximation only the first term in the expansion of βF ex by Mayer–f func-
tions (Eq. (4.1)) is considered and the three-, four–, and more–body overlaps of the
hard spheres contained in the higher order terms are neglected. Since the relation in
its present form is only valid in dilute systems, one should extrapolate the result to
higher densities in order to take advantage of FMT in more confined systems. For
this purpose, and inspired by the form of the low density limit, Rosenfeld proposed a
reasonable ansatz for the excess free energy,

βF ex [{ρi}] =

∫
dr Φ ({nα(r)}) . (4.8)

Note that the right hand side of the equation should be dimensionless as its left hand
side. Therefore, the dimension of the free energy volume density Φ is L−3 where L
denotes the length dimension. Considering the dimensions of the weighted densities,
[n0] = L−3, [n1] = [n1] = L−2, [n1] = [n1] = L−1, and [n3] = 1, Rosenfeld assumed that
the correct dimension for Φ is delivered by a sum of different terms each constructed
by a product of undetermined functions of n3 and a suitable set of other weighted
densities. By using this dimensional analysis, the excess free energy density is given as
follows.

Φ ({nα}) = f1(n3)n0 + f2(n3)n1n2 + f3(n3)n1 · n2

+f4(n3)n3
2 + f5(n3)n2n2 · n2. (4.9)

Using this excess free energy density, the Fourier transform of the direct correlation
function c(2)

ij reads

c
(2)
ij (k) = −

∑
α1,α2

∂2Φ

∂nα1∂nα2

wα1
i (k)wα2

j (k) , (4.10)
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where the scalar product is used between the vectorial quantities. The undesired 1/r
singularity of the obtained direct correlation function, which is a consequence of the
convolution of two delta shells, implies that the undetermined functions of n3 are re-
lated to each other as follows.

f3(n3) = −f2(n3) ,

f5(n3) = −3f4(n3) . (4.11)

Therefore, each term containing vectorial weight functions is bundled with a scalar one
and the excess free energy density is expressed as,

Φ = Φ1 + Φ2 + Φ3

Φ1 = f1(n3)n0

Φ2 = f2(n3) (n1n2 − n1 · n2)

Φ3 = f4(n3)
(
n3

2 − 3n2n2 · n2

)
. (4.12)

As the vectorial terms vanish in a homogeneous system, it is reasonable to do the fur-
ther calculation for obtaining fi’s for a bulk system in which the thermodynamic rela-
tions are valid. Here, the weight functions are reduced to the scaled–particle variables
and one can take advantage of the ideas from scaled–particle theory (see Section 3.2.3).
The required reversible work for inserting a particle with radius Ri, i.e. pVi, is equiv-
alent to the excess chemical potential µex

i of the system. Since the excess free energy
density is related to the density via the weighted densities, for the excess chemical
potential of species we have,

βµex
i =

∂Φ

∂ρi
=
∑
α

∂nα
∂ρi

∂Φ

∂nα
. (4.13)

Note that in a homogeneous system the derivatives of weighted densities with respect
to density is equivalent to the fundamental measures (Eq. (4.5)). In the limit ofRi →∞,
using Eq. (4.13) the pressure of the system reads

βp = lim
Ri→∞

βµex
i

Vi
=

∂Φ

∂n3

. (4.14)

On the other hand, the grand free energy density w is written as follows:

βw = βf −
ν∑
i=1

βµiρi = Φ−
ν∑
i=1

ρi (1 + βµex
i ) . (4.15)
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Finally, since in the bulk we have w = −p, combining Eqs. (4.14) and (4.15) we derive
the scaled particle differential equation.

∂Φ

∂n3

= n0 − Φ +
∑
α

∂Φ

∂nα
nα. (4.16)

The expressions given in Eq. (4.12) for Φ are used to obtain differential equations for
f1, f2, and f4 by comparing the factors of n0, n1n2, and n3

2. The integral constant are de-
termined by requiring that the single particle direct correlation function c

(1)
i = − δβFex

δρi
and the third virial coefficient are recovered in the low density limit. As a result, the
fi’s are obtained as [9],

f1(n3) = − ln(1− n3) ,

f2(n3) =
1

1− n3

,

f4(n3) =
1

24π(1− n3)2
. (4.17)

Finally, by using these expressions for fi’s in Eq. (4.12), the Rosenfeld excess free energy
density is obtained as follows.

ΦRF = ΦRF
1 + ΦRF

2 + ΦRF
3 ,

ΦRF
1 = −n0 ln(1− n3)

ΦRF
2 =

n1n2 − n1 · n2

1− n3

ΦRF
3 =

n3
2 − 3n2n2 · n2

24π(1− n3)2
. (4.18)

The Rosenfeld functional is successful in generating the Percus-Yevick compressibility
equation of state for a hard sphere mixtures [53, 71, 85] and the direct correlation func-
tion c(2)

ij (r) in a fluid [9]. However, it is unable to describe the hard sphere crystals. The
crystalline state is a highly inhomogeneous system in which each particle is confined
by its neighbors to stay in a small cavity. A functional which is built for a 3D system is
able to successfully describe such confinement if it is reducible to lower dimensions by
appropriate external potentials. This idea, known as dimensional crossover with 0D
cavities as its ultimate limit, is discussed in the following section.

4.2 0D–Cavities and the Tarazona functional

Assuming an external potential such that the system is held between two close walls
in the x–y plane, the local density profile of species i is given by ρ(r) = ρ2D(x, y)δ(z). In
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this way a homogeneous density profile in 2D denoted by ρ2D(x, y), may be treated as a
highly confined 3D system. Although the resulting excess free energy density obtained
by applying Rosenfeld functional to this density profile differs in its functional form
from that of scaled–particle theory, the numerical results are still in good agreement
[86,87]. By further confinement of the system along the x–axis, the local density profile
turns into ρ(r) = ρ1D(x)δ(y)δ(z). While the first two terms in Rosenfeld functional
(Eq. (4.18)) yield the exact result for the excess free energy density of a 1D hard rod
system (see Eq. (4.27)), the overlapping delta shells of n2 (see Eqs. (4.4) and (4.6)) results
in divergence of its third term.

The ultimate dimensional crossover is to a 0D situation, a cavity which can not hold
more than one particle and therefore its average occupation number is N ≤ 1. Inde-
pendent of its geometrical form, the grand partition sum for a 0D cavity in a grand
canonical ensemble is written as follows:

Ξ =
∞∑
N=0

exp(βµN)
ZN
N !

= 1 + Z1 exp(βµ) , (4.19)

where µ is the chemical potential, N is the number of particles, and ZN=1 is the only
non–zero canonical partition function of a 0D cavity since N ≤ 1. The average occupa-
tion number is obtained by,

N =
∂ ln Ξ

∂βµ
=

Z1 exp(βµ)

1 + Z1 exp(βµ)
. (4.20)

3D 1D 0D

2D

Figure 4.1: Dimensional crossover: confining the system to lower dimensions by ap-
plying appropriate external potentials. An FMT functional which has this property
yields the excess free energy of lower dimensions when applied to their corresponding
density profile; e.g. for 2D F ex

3D[ρ(x, y)δ(z)] = F ex
2D[ρ(x, y)]
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This enables us to write down the undetermined single–particle partition function Z1

as N exp(−βµ)/(1 − N). Therefore, the pressure of the system can be expressed as a
function of N .

βP = ln Ξ = − ln(1−N)

(4.21)

Using Eqs. (4.20) and (4.21), the free energy of a 0D cavity is written as follows:

βF0D = −βP + βµN

= ln(1−N) +N ln

(
N

Z1(1−N)

)
. (4.22)

For an ideal gas, the particles may occupy the cavity without any restriction on their
number. The canonical partition function for such system with N particles is ZN = ZN

1

and the grand partition sum from Eq. (4.19) turns into Ξ = exp
(
Z1eβµ

)
. Consequently,

the occupation number, the pressure, and the free energy of an ideal gas in a 0D cavity
are given as follows.

N =
∂ ln Ξ

∂βµ
= Z1e

βµ , (4.23)

βP = ln Ξ = Z1e
βµ = N , (4.24)

⇒ βF id
0D = −N +N ln

(
N

Z1

)
. (4.25)

By subtracting this ideal gas part from the full form of the free energy of a 0D cavity,
βF0D from Eq. (4.22), the excess free energy of a 0D cavity Φ0D is obtained. Consider-
ing N ≤ 1, one can substitute the average occupation number of the system with its
packing fraction η and write down Φ0D as [34],

Φ0D(η) = η + (1− η) ln(1− η). (4.26)

One of the most important aspects of the 0D cavity is that the crystalline state can be
interpreted as a highly confined inhomogeneous system in which each particle is caged
by its own neighbors. Therefore, an appropriate functional for describing this system
must necessarily recover the exactly known free energy density for a 0D cavity Φ0D

(Eq. (4.26)) when it is applied to the 0D density profile ρ0D(x, y, z) = δ(x)δ(y)δ(z).

By replacing the numerator of ΦRF
3 (Eq. (4.12)) with 3n3

2ξ (1− ξ)2 where
ξ(r) = |n2(r)/n2(r)| the divergence of the Rosenfeld functional in 1D is removed [34].
As a result of this empirical modification, the functional yields the correct excess free
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energy density in 1D by its first two terms ΦRF
1 + ΦRF

2 . Moreover, the exact form of
excess free energy density in 0D (Eq. (4.26)) is recovered when the functional is ap-
plied to ρ0D. However, the bulk properties of the system in 3D are not retrieved by this
empirical functional since in the bulk ξ → 0 and Φ3 vanishes. By anti–symmetrizing
Φ3 with respect to ξ, which is achieved by replacing its numerator by n3

2 (1− ξ)q with
q ≥ 2, the results for a 3D system are improved with the cost of the exactness in the 0D
limit [34, 72].

In a more systematic approach Tarazona et al. have proposed to build up the functional
based on the exactly known excess free energy of the 0D cavities [73]. This ensures the
exactness of the obtained 0D free energy from the functional as well as the dimen-
sional crossover property. The starting point is the exactly known excess free energy
functional for 1D hard rods [57].

βF ex
1D [ρ(x)] = −

∫ ∞
−∞

dx n0(x) ln (1− n1(x)) , (4.27)

where n0 and n1 are the weighted densities obtained by the convolution of the density
profile and the weight functions w0 and w1 which in 1D are defined as follows:

w1(x) = θ(x−R) ,

w0(x) =
1

2
(δ(x−R) + δ(x+R)) . (4.28)

Here, R is half of the length of a hard rod. Note that in 1D, n1 serves as a length(≡
volume) weighted density, hence the packing fraction in a homogeneous state, and
n0 marks the two ends of a hard rod, thus its “surface”. Applying the functional to
a single 0D cavity (Fig. 4.2.a) with density profile ρ(x) = δ(x), results in the excess
free energy of a 0D cavity (Eq. (4.26)). As an ansatz, the excess free energy density in
D dimensions has the same dependence on the volume weighted density nD and the
weighted surface density n0 as in Eq. (4.27),

βF ex
1 [ρ(r)] = −

∫
dr n0(r) ln (1− nD(r)) ,

= −
∫

dr n0(r)ψ1 (nD(r)) , with ψ1(η) =:
∂Φ0D(η)

∂η
. (4.29)

which indeed results in the exact 0D excess free energy when it is applied to a single
0D cavity. However, additional spurious terms are obtained when the functional is
applied to a more complicated 0D cavity, the simplest of which is a double 0D cav-
ity as shown in Fig. 4.1.b. In order to compensate for these deficiencies, additional
terms should be added to βF ex

1 . The more sophisticated 0D cavities correspond to the
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a) b)

c) d)

Figure 4.2: Four different geometrical situations for 0D cavities which only hold one
hard–sphere particle. While it can be shown the first two forms correspond to Φ1 and
Φ2, FMT functionals are not capable of exactly yielding a third term for three overlap-
ping cavities and Φ3 is given as an approximation. The triple cavity with only pair
overlaps in d) is an example of “lost–cases” which cannot be described by an FMT
functional.

supplementary information which is required for describing the possible geometrical
intersections of D > 1 dimensional spheres. For hard rods, these intersections are
points which can be handled by a single delta function. Therefore, it is quite rational
that a single 0D cavity yields sufficient insight for describing this limit. For a 3D sys-
tem, in addition to the surface of the spheres, there should be information regarding
the lines corresponding to the intersection of these surfaces and the points where these
lines cross.

The density profile for the double 0D cavity (Fig. 4.2. b) can be expressed as ρ(r) =
η1ρ(r1) + η2ρ(r2), where the average occupation number η = η1 + η2 is between 0 and
1, and the distance between the centers of the cavities is smaller than the diameter of
the hard–spheres |r1 − r2| ≤ 2R. This situation should be reducible to the single 0D
cavity when the cavities are far apart from each other. Therefore, the additional term
corresponding to the double cavity vanishes for |r1 − r2| > 2R. The excess free energy
functional for a double cavity is expressed conveniently as the product of the second
derivative of Φ0D and a function of n1, n2, and the vectorial weighted densities n1 and
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n2.

βF ex
2 [ρ(r)] =

∫
dr (n1n2 − n1 · n2)ψ2 (nD(r))

with ψ2(η) =:
∂2Φ0D(η)

∂η2
=

1

1− η
. (4.30)

The corresponding excess free energy functional to the single and double 0D cavities
(Fig. 4.2.a and Fig. 4.1.b), i.e. βF ex = βF ex

1 + βF ex
2 , is identical to the first two terms

of the Rosenfeld functional (Eq. (4.18)). One may expect the constructed functional
to handle the triple cavities with only pair overlaps between the cavities (Fig. 4.2.d).
However, these so called “lost–cases” do not give an exact 0D free energy and an FMT
functional is not capable of describing them [73].

In order to describe the triple cavity with three–body overlap (Fig. 4.2.c) it is possible
to assign a delta function to each of them and write down the density profile as a sum
of these delta functions. The excess free energy of the constructed functional up to
this step, results in undesired additional terms when applied to this density profile
which implies the necessity to add a third term to the functional βF ex

3 . The third term
obtained by this method vanishes when it is applied to a double or a single cavity,
hence for hard rods, and therefore recovers the exact form of the excess free energy
density in 1D and for a 0D cavity. However, it results in peculiar bulk properties in
3D, for instance marked deviations in the direct correlation function from the Percus-
Yevick results [10]. Moreover, the obtained Φ3 may not be expressed in the form of
single convolutions of the density profile which makes its application troublesome. In
order to overcome these problems, Tarazona has introduced a new tensorial weight
function for constructing Φ3 in a way that it reproduces the pair correlation function
of a triangle formed cavity (Fig. 4.2.c) as well as its full PY form for the bulk fluid
[10, 74, 88]. The tensorial weight function reads

wT
i (r) = δ(Ri − |r|)er ⊗ er , (4.31)

where ⊗ denotes the dyadic product.

In the tensorial version of Rosenfeld functional the first two terms are identical to the
original Rosenfeld functional (Eq. (4.18)), while the last term is calculated as a function
of scalar (n3 and n2), vectorial (n2), and tensorial (nT) weight functions and is given
by [74, 88],

ΦRFT
3 =

3 (−n2 n2 · n2 + n2 · nT · n2 + n2Tr[(nT)2]− Tr[(nT)3])

16π(1− n3)2
. (4.32)

The tensorial version of Rosenfeld’s fundamental measure functional does not diverge
in a highly confined system and is a good candidate for describing the crystalline state
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of a hard–sphere system. However, as it is shown in Section 4.5, due to the fact that the
derivation of the functional is based on scaled particle theory and its underlying equa-
tion of state is the Percus–Yevick equation of state, the obtained phase coexistence den-
sities are shifted to lower densities in comparison with MC simulation results. In the
next section, the White Bear functional is introduced which is based on the Carnahan–
Starling equation of state and therefore yields more precise results for free energies of
crystalline state and phase coexistence densities.

4.3 White Bear versions of FMT

While in its original form, FMT produces the Percus–Yevick compressibility equation
of state for fluid as an output, Roth et al. [11] and Yu et al. [79] have used the Mansouri–
Carnahan–Starling–Leland (MCSL) equation of state [78], as an input to the thermody-
namic equation (Eqs. (4.14) and (4.16)).

βp =
∂Φ

∂n3

= n0 − Φ +
3∑

α=0

nα
∂Φ

∂nα
(4.33)

The MCSL equation of state is a generalization of the exact one–component Carnahan–
Starling (CS) equation of state [50] to the ν–component hard–sphere fluid. Using this
equation of state as an input to the thermodynamic equation is valid since it is also
based on the same scaled–particle variables as the PY compressibility equation of state.
In the bulk, weighted densities turn into scaled–particle variables and the MCSL equa-
tion of state is rewritten as

βpMCSL =
n0

1− n3

+
n1n2

(1− n3)2
+

n3
2

12π(1− n3)3
− n3n

3
2

36π(1− n3)3
. (4.34)

Note that the last term is an additional term compared to the PY compressibility equa-
tion of state (Eq. (3.18)). Replacing βpMCSL in Eq. (4.33), and comparing the factors
of the n0, n1n2, and n3

2 on both sides, the same f1 and f2 as for the RF functional are
obtained (Eq. (4.17)), while for f4 we have,

f4(n3) =
n3 + (1− n3)2 ln(1− n3)

36πn2
3(1− n3)2

. (4.35)

As this solution results in the same low density limit as the one for the RF functional,
limn3→0 f4(n3) = 1/(24π), the low density approximation is recovered in this case as
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well. The first two terms of the White Bear functional are the same as Rosenfeld fun-
damental measure functional (Eq. (4.18)), and the third term reads [11]

ΦWB
3 =

(
n3

2 − 3n2n2 · n2

) n3 + (1− n3)2 ln(1− n3)

36πn2
3(1− n3)2

. (4.36)

As this third term, just like its predecessor, diverges in a highly confined system, the
functional is not capable of describing the crystalline state. The solution is either re-
placing the diverging term by empirical expressions for hard sphere mixtures [34, 72],
or using the tensorial weight functions for one–component hard sphere and replace
the numerator of ΦWB

3 with the one from ΦRFT
3 (Eq. (4.32)).

On the other hand, the equation of state is used as an input for obtaining the functional,
and therefore the self-consistency with the thermodynamic equation (Eq. (4.14)) is not
necessarily ensured in this case. From the scaled–particle equation (Eq. (4.16)), the
derivative of the excess free energy density with respect to n3 should be identical to
the pressure from the equation of state βpMCSL (Eq. (4.33)). However, here we obtain

∂ΦWB
bulk

∂n3

=
n0

1− n3

+
n1n2

(1− n3)2
− n3

2 (2− 5n3 + n2
3)

36πn2
3 (1− n3)3 −

n3
2 ln (1− n3)

18πn3
3

. (4.37)

Although this expression is different in its functional form from Eq. (4.34), its numerical
deviation remains below 2% with one–component fluid. Note that the numerical result
from the PY compressibility route, overestimates the pressure close to freezing up to 7%
[11]. As for the phase transition result, this functional improves the transition densities,
shifting them to ρfl = 0.934 and ρcr = 1.023, but still different from MC simulation
results ρfl = 0.940 and ρcr = 1.040 [80].

By introducing a new version of the Carnahan–Starling equation of state, which im-
proves the results for the binary and ternary hard sphere mixtures in comparison with
computer simulations [89], Hansen–Goos et al. built up the mark II of White–Bear
functional [12]. The new equation of state, is constructed in a way to be consistent
with the scaled–particle equation (Eq. (4.33)) for the one–component fluid in the first
place and reads [89]

βpCSIII =
n0

1− n3

+
n1n2(1 + 1

3
n2

3)

(1− n3)2
+
n3

2

(
1− 2

3
n2

3 + 1
3
n2

3

)
12π(1− n3)3

. (4.38)

Following the same analysis for deriving the White Bear excess free energy density, the
White Bear Mark II functional is obtained [12],

ΦWBII = −n0 ln(1− n3) + ϕ1(n3)
n1n2 − n1 · n2

1− n3

+ ϕ2(n3)
n3

2 − 3n2n2 · n2

24π(1− n3)2
, (4.39)
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with

ϕ1(n3) = 1 +
2n3 − n2

3 + 2(1− n3)ln(1− n3)

3n3

,

ϕ2(n3) = 1− 2n3 − 3n2
3 + 2n3

3 + 2(1− n3)2ln(1− n3)

3n2
3

. (4.40)

By this modification, the self consistency holds to a higher level in the context of mor-
phological thermodynamics. In the framework of morphological thermodynamics, it
is assumed that the grand potential of a fluid in a complexly shaped container, or
equivalently the grand partition of a fluid surrounding a complexly shaped particle,
satisfies the requirements of the Hadwiger theorem and therefore can be expressed as
as a linear combination of four fundamental measures of the container, i.e. its volume
V , its surface area A, its mean curvature C, and its Gaussian curvature X [90]. The
restrictions imposed by Hadwiger theorem implies that the grand potential should be
a motion invariant, continuous, and additive functional of the shape of the container.
It is reasonable to assume that the solvation free energy of a convex body away from
the critical point and the wetting or drying transition meets these requirements and is
related to its geometric measures via specific thermodynamic coefficients as [91, 92],

∆Ω = pV + σA+ κC + κ̄X . (4.41)

The thermodynamic coefficients which are independent of the shape of the convex
body are pressure p, the planar wall surface tension σ, and two bending rigidities κ
and κ̄. Considering the convex body a sphere with radius Rs which is inserted into
a hard–sphere mixture with radius R, the solvation free energy (Eq. (4.41)) should be
evaluated at the surface at which the equilibrium density profile of the fluid jumps dis-
continuously to zero, i.e. the solvent–accessible surface [93,94]. The solvent–accessible
surface is parallel to the physical wall of the inserted hard–sphere particle, hence is
simply a sphere with radius R+RS . Therefore, the solvation free energy (Eq. (4.41)) is
written as follows:

∆Ω(Rs) = p
4

3
π(Rs +R)3 + σ 4π(Rs +R)2 + κ 4π(Rs +R) + κ̄ 4π . (4.42)

On the other hand, considering a binary bulk mixture of a hard–sphere fluid with
radius R and a single sphere with radius Rs, thus ρ2 = ρs → 0, the solvent free energy
∆Ω is equivalent to the excess chemical potential µex

s and is obtained as follows [12,93].

β∆Ω = βµex
s = lim

ρs→0

∂Φ

∂ρs

=
∂Φ

∂n0

+Rs
∂Φ

∂n1

+ 4πR2
s

∂Φ

∂n2

+
4

3
πR3

s

∂Φ

∂n3

. (4.43)
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By comparing this expression with Eq. (4.42), a set of relations for the pressure, the
surface tension and the bending rigidities in the bulk is obtained [12].

βp =
∂Φ

∂n3

,

βσ =
∂Φ

∂n2

−R ∂Φ

∂n3

,

βκ =
1

4π

∂Φ

∂n1

− 2R
∂Φ

∂n2

+R2 ∂Φ

∂n3

,

βκ̄ =
1

4π

∂Φ

∂n0

− R

4π

∂Φ

∂n1

+R2 ∂Φ

∂n2

− 1

3
R3 ∂Φ

∂n3

. (4.44)

Note that the first relation is exactly the same expression for the pressure in the scaled–
particle theory (Eq. (4.14)). Using the WBII functional, the obtained pressure is exactly
the same as βpCSIII from Eq. (4.38). Moreover, the numerical results for the remaining
thermodynamic coefficients are in good agreement with their analytical forms [12].

Finally, in order to avoid divergence of the functional in a highly confined system and
be able to calculate the free energy of the crystalline state, the numerator of the third
term in the excess free energy density is replaced with the tensorial version of Tara-
zona.

ΦWBIIT = −n0 ln(1− n3) + ϕ1(n3)
n1n2 − n1 · n2

1− n3

+ ϕ2(n3)
3 (−n2 n2 · n2 + n2 · nT · n2 + n2Tr[(nT)2]− Tr[(nT)3])

16π(1− n3)2
, (4.45)

with ϕ1 and ϕ2 given in Eq. (4.40). The one–component WBII(tensor) functional gives
very precise bulk crystal free energies, correct order of magnitude for thermal vacancy
concentrations, and precise density profiles and surface tensions for the crystal-fluid
interface [12, 61, 80, 95]. In Section 4.5 numerical results for the liquid–crystal phase
transition and the thermal vacancy concentration obtained by WBII(tensor) functional
are presented.

By modifying the Carnahan–Starling equation of state, the inconsistency of the first
version of the WB functional with the scaled–particle differential equation is lifted in
the WBII functional for a one-component system. In a different approach, Santos ex-
pressed the bulk free energy density of the one–component system by taking advan-
tage of a scaling relation [96], and proposed a general solution to the scaled–particle
differential equation [81]. Hansen–Goos et al. developed the solution to an inhomo-
geneous system and have shown that the obtained functional delivers crystallization
without the use of the tensorial weight functions [82]. This will be discussed in the
next section.
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4.4 A new class of self-consistent functionals

For a ν–component system of a hard sphere fluid in 3–D, the free energy is called trun-
catable [97–99], if the excess free energy density Φ ({ρi}) is expressed as a function of
the partial number densities of species {ρi} by means of the scaled–particle variables
{ξα} defined in Eqs. (3.32) and (3.28). Considering the limit in which one of the com-
ponents is made of a point particle, Santos has proved that a truncatable free energy of
this system has the scaling property as follows [96].

ΦSantos ({ξα}) = −ξ0 ln(1− ξ3) + ξ1ξ2H(ξ3, z). (4.46)

Here, z = ξ2
2/12πξ1 and H is a dimensionless scaling function which remains undeter-

mined for now. Using this form of the excess free energy density for the scaled–particle
differential equation (Eq. (4.16) with nα = ξα), one obtains the following differential
equation and the solution for the undetermined scaling function H .

H(ξ3, z) = −(1− ξ3)
∂H(ξ3, z)

∂ξ3

− z∂H(ξ3, z)

∂z

⇒ H(ξ3, z) =
1

1− ξ3

Ψ

(
z

1− ξ3

)
. (4.47)

As a result, the excess free energy density ΦSantos is related to an undetermined function
Ψ(y) of a single dimensionless variable y = z/(1− ξ3). By choosing Ψ(y) = 1 + y

2
f0(y),

ΦSantos takes the following form,

ΦSantos ({ξα}) = −ξ0 ln (1− ξ3) +
ξ1ξ2

1− ξ3

+
ξ3

2

24π (1− ξ3)2f0 (y) ,

with y =
ξ2

2

12πξ1 (1− ξ3)
, (4.48)

which reduces to the original solution of the scaled–particle theory (Eq. (3.33)) if
f0(y) = 1. Moreover, by adjusting f0 any arbitrary equation of state, e.g. the Carnahan–
Starling equation of state, may be recovered in the limit of a pure hard sphere fluid [50].

fPY
0 (y) = 1 (4.49)

fCS
0 (y) =

2

3
y +

2

3
− 2 ln (1 + y)

3y2
= 1− 2

9
y +

1

6
y2 +O

(
y3
)
. (4.50)

In order to derive a functional for an inhomogeneous system based on Santos’ solution,
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Hansen–Goos et al. defined two additional weighted densities [82],

n̄1 = n1 −
n1 · n2

n2

,

n̄2 = n2 −
n2 · n2

n2

(4.51)

Considering the sum in the scaled–particle differential equation Eq. (4.16) over {n0,
n1, n̄1, n2, n̄2, n3}, they have derived the most general formal form of the excess free
energy density Φgen.

Φgen ({nα}) = − n0 ln (1− n3) +
n̄1n2

1− n3

+
n̄2

2n2

24π (1− n3)2 × F
[

n̄2
2

12πn̄1 (1− n3)
,
n̄1

n1

,
n̄2

n2

]
, (4.52)

with F being an undetermined function of three dimensionless arguments. In the low
density limit, the first argument vanishes and F is required to remain finite. This re-
quirement ensures that the functional results in the exact free energy density for a 0–D
cavity [34]. In the following, we obtain an expression for F as it has been done in
Ref. [82].

For specificity, we assume to have a pure one–component hard sphere system in or-
der to build a functional. Using the weight functions from Eq. (4.4) with the defined
weighted densities from Eq. (4.51), one can relate the weighted densities as

n1 =
n2

4πR
, n0 =

n2

4πR2
,

n̄1 =
n̄2

4πR
, (4.53)

where R denotes the radius of hard spheres. This leaves the F from Eq. (4.52) with two
arguments.

y =
Rn̄2

3 (1− n3)
, x =

n̄2

n2

=
n̄1

n1

(4.54)

Moreover, one can expand F around its limit for a homogeneous fluid in which x = 1.

Fm(y, x) = f0 (y)−
m∑
k=1

fk (y) (1− x)k . (4.55)

Choosing y as the argument of the expansion coefficients fi is arbitrary and any other
combination of x and y may be used as well; e.g. y/x. However, in the 0–D limit
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at which y → 0, the expansion coefficient functions in Eq. (4.55) are well behaved
while choosing y/x as the argument of fi results in a divergence of Fm in this limit (see
Appendix A of Ref. [82]). Combining Eqs. (4.55) and (4.52), Φgen is rewritten as

Φm = − n2

4πR2
ln (1− n3) +

n̄2n2

4πR (1− n3)

+
n̄2

2n2

24π (1− n3)2 × Fm
[

Rn̄2

3 (1− n3)
,
n̄2

n2

]
, (4.56)

In a homogeneous fluid the expansion term in Fm becomes zero, leaving this function
with only its first term f0(y). One can determine f0(y) by comparing Eq. (4.56) with
Santos general solution for scaled–particle differential equation (Eq. (4.48)), and set its
value to either fPY

0 from Eq. (4.49) for imposing the Percus–Yevick equation of state or
fCS

0 from Eq. (4.50) for the Carnahan–Starling equation of state.

The direct correlation function of the system which is expressed as the second func-
tional derivative of the excess free energy with respect to the density profile, does not
depend on the expansion coefficients except for the first one f1(y). This can be used
to overcome the divergence of direct correlation function of a fluid for r → 0 which is
reported for previous versions of functional based on Santos general solution [81,100].
This implies that,

f1(y) = f0(y) + 2yf ′0(y) +
1

2
y2f ′′0 (y). (4.57)

Depending on the input equation of state, fPY
0 or fCS

0 is used to determine the first
coefficient in the expansion.

fPY
1 (y) = 1 (4.58)

fCS
1 (y) =

1 + 4
3
y + 2

3
y2

(1 + y)2
= 1− 2

3
y + y2 +O

(
y3
)
. (4.59)

The functional in its current form is exact in the 0–D limit and obeys the input equation
of state in 3–D. In line with the idea of dimensional crossover, the second coefficient f2

is determined in a way that the functional expression for a homogeneous fluid in the
1–D limit becomes correct (see Appendix B of [82]). Following this route, we obtain an
expression for f2 which reads

f2(y) =
1

8

{
(35 + 78y + 54y2)f0(y) + (13 + 21y + 54y2)f ′0(y) + y2(1 + 3y)2f ′′0 (y)

}
−1

4

{
(7 + 6y)f1(y) + (1 + 3y)f ′1(y)

}
. (4.60)
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For the PY and CS equations of state, this leads to,

fPY
2 (y) =

3

8
(7 + 22y + 18y2) (4.61)

fCS
2 (y) =

15 + 69y + 221y2 + 438y3 + 459y4 + 269y5 + 54y6

12y(1 + y)3
− 5 ln(1 + y)

4y2

=
3

8

(
7 + 22y +

19

2
y2

)
+O(y3). (4.62)

However, by choosing these expressions for f2 the functional does not give a stable
crystal. It appears that obeying 0–D limit is a necessary condition for describing the
crystallization, but not a sufficient one. There are specific configurations, for instance
two cavities kept at a distance of 2R while touching at a single point, at which f2 di-
verges as it contains terms proportional to y2. This results in the divergence of the free
energy density in a confined system. As an alternative suggestion, Hansen–Goos et al.
propose using a constant value λ for f2 while for f0 and f1 the expressions in Eqs. (4.49)
and (4.58) are used for the Percus–Yevick equation of state and Eqs. (4.50) and (4.59)
for the Carnahan–Starling equation of state. By this choice of parameters, the func-
tional predicts crystallization for a hard sphere system as it is shown in the presented
numerical results in Section 4.5.

4.5 Bulk properties of the hard–sphere crystal

In the framework of classical DFT, the crystalline state is treated as an inhomogeneous
fluid in the grand ensemble. In order to find the equilibrium properties of a bulk crys-
talline state, the hard–sphere particles are initiated at the lattice sites of an fcc cubic
unit cell with side length a, as Gaussian peaks.

ρ (r) =
∑
i

(1− nvac)
(αG

π

) 3
2

exp
(
−αG|r− ri|2

)
. (4.63)

Here, the sum is over the fcc lattice sites, αG is the Gaussian width, and nvac is the
number density of vacant positions in a non–ideal crystal and is defined as∫

cell

dr ρ(r) =: 4(1− nvac) . (4.64)

The free energy density of the desired functional should then be minimized. This can
either be done with Constrained minimization or Full minimization.
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1. Constrained minimization: In constrained minimization, the free energy density
is minimized while the density profile is constrained to keep its initial Gaussian
form. The Gaussian width αG and the vacancy concentration nvac are the mini-
mization parameters.

Feq = min
{nvac,αG}

F [ρi] . (4.65)

2. Full minimization: Here, for obtaining the equilibrium density profile, after
specifying the chemical potentials of the species µi, the resulting integral equa-
tion from minimizing the grand free energy functional with respect to density
profile, δΩ/δρi = 0, should be solved for each of the species.

ln
(
σ3ρi(r)

)
= −δβF

ex [ρi]

δρi(r)
+ βV ext

i (r)− βµi(r) . (4.66)

During the minimization procedure, the equilibrium lattice constant aeq and va-
cancy concentration nvac,eq should adjust themselves accordingly. However, such
a procedure is not feasible [80]. Keeping the number density of the hard–spheres
constant throughout the minimization, enables us to reach the equilibrium state.
After initiating the Gaussian density profile with a specified lattice constant and
fixed vacancy concentration, the changes in excess chemical potential acquired by
the functional derivative of the excess free energy density functional is computed
numerically and the density profile is updated accordingly. This self–consistent
procedure which leads to the minimization of the free energy density is repeated
until the changes in the density profile are negligible (see Appendix A.4.1). In
order to reach the global minimum of F , the vacancy concentration is changed
and the minimization is set up from the beginning.

Feq = min
{nvac}

min
{ρi(r)}

F [ρi] . (4.67)

4.5.1 Phase transition

Having the free energy density curves for the crystalline state as well as the homoge-
neous fluid phase, one can obtain the phase transition using the Maxwell construction
(see Appendix D). We present here the numerical results for three classes of functionals
which indeed give rise to a hard–sphere crystal.

• RF(tensor) The tensorial version of Rosenfeld’s functional (Eq. (4.18) with Φ3

from Eq. (4.32)). This functional is based on Percus-Yevick equation of state,
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• WBII(tensor) The tensorial version of White Bear Mark II (Eq. (4.45)) which is
based on the more exact Carnahan-Starling equation of state,

• VEC(PY & CS) The FMT version of Santos general solution for the scaled particle
equation (Eq. (4.56)) with the expansion terms in Fm (Eq. (4.55)) considered up to
the second order. By assigning f1(y) to either Eq. (4.58) or Eq. (4.59) the Percus-
Yevick and the Carnahan–Starling equation of states are imposed consequently.
f2 is set to a constant value λ. The excess free energy density will be shown as
Φ

PY/CS
2,λ . The examined cases are λ = 0, 1/2, 1.

The phase coexistence densities for the fluid and the crystalline state, ρfl and ρcr, are
represented in table 4.1 along with the pressure βpcoex and the chemical potential βµcoex

at coexistence . The RF(tensor) results show a discrepancy in the estimation of the co-
existence result due to its underlying equation of state being the Percus–Yevick EoS.
However, the WBII(tensor) functional shows good agreement with the simulation re-
sults as it is based on the more exact Carnahan–Starling equation of state.
The VEC(PY/CS) are numerically less complex as they are not using tensorial weight
functions and allow fast numerical calculations. This could justify using them as a test
case. For this functional, the ΦPY

2,λ=0 and ΦCS
2,λ= 1

2

are the most promising ones.

4.5.2 Vacancy concentration

As it has been mentioned earlier, the free energy per particle is minimized either with
respect to the density profile (full minimization), or simultaneously with respect to the
Gaussian width and the vacancy concentration (constrained minimization). In either
case, the occupation number of particles which is 4 for an ideal fcc unit cell, is less
than this value due to the presence of an average vacant lattice site. Here, we focus
on another powerful aspect of FMT functionals which is delivering the correct order
of magnitude for the vacancy concentration, nvac ∼ O(10−4). This ability, along with
their successful description of a stable solid phase, is of great importance in further
applications of a FMT functional, e.g. describing crystal–fluid interfaces using DFT
[80].

The vacancy concentration for a hard–sphere crystal obtained from some other theo-
retical tools, such as Taylor expanded functionals or the Phase Field Crystal model, are
not only unphysical (∼ O(0.1)), but also negative in some cases which corresponds to
excess interstitials [61]. This is due to the fact that these approximations do not respect
the 0D-limit [80].

A more detailed discussion on the theoretical aspects of the vacancy concentration and
its physical interpretation is presented in Chapter 6. In this section, we are going to
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compare the capability of different type of FMT functionals in delivering nvac for a
one–component hard–sphere fluid.

In the case of tensorial functionals, RF(tensor) does not yield a minimum for free en-
ergy per particle as a function of varying vacancy concentration in full minimization.
The WBII(tensor) however, predicts the order of magnitude correctly. Using Φ

PY/CS
λ=1 as

the excess free energy density, the functional does not deliver a stable crystal with a fi-
nite vacancy concentration. However, for λ = 0, 1/2 the results show better agreement
with the simulation results than those of the WBII(tensor) (Fig. 4.3). At the exemplary
case of the solid coexistence density, ρσ3 = 1.04, the vacancy concentration obtained
from different functionals are presented in table 4.2.

Table 4.1: Coexistence densities (packing fraction) of the fluid ρfl(ηfl) and the crystal
ρcr(ηcr) as well as the pressure, the chemical potential, and the free energy per particle at
coexistence calculated by full minimization of the free energy density for three different
types of functionals: the tensorial White Bear Mark II functional (WBII(tensor)), the
tensorial Rosenfeld functional (RF(tensor)), and the FMT version of the Santos general
solution for the scaled particle theory. For the latter, the second term in the expansion of
Fm (Eq. (4.55)) is set to be a constant value f2 = λ = 0, 1/2, 1. The simulation results for
the coexistence densities and pressure are obtained by Monte–Carlo simulation [77].
The free energy per particle and chemical potential for ρflσ

3 = 0.940 are obtained using
Carnahan–Starling equation of state [61]. The crystal free energy density is calculated
using an improved fit in the form of Speedy equation of state for hard–sphere crystals
[80, 101]. The thermal de Broglie wavelength λ is set to σ.

ρflσ
3(ηfl) ρcrσ

3(ηcr) βµcoex βpcoexσ
3 (βF/N)fl (βF/N)cr

WBII(tensor) 0.945(0.495) 1.040(0.544) 16.40 11.89 3.82 4.96
RF(tensor) 0.892(0.467) 0.984(0.515) 15.75 11.28
VEC(PY), λ = 0 0.925(0.484) 0.995(0.521) 16.24 11.57 3.45 4.58

, λ = 1
2

0.907(0.475) 0.973(0.509) 15.07 10.50 3.17 4.16
, λ = 1 0.892(0.467) 0.965(0.505) 14.08 9.61 2.95 3.98

VEC(CS), λ = 0 0.980(0.513) 1.059(0.555) 18.43 13.84 4.21 5.68
, λ = 1

2
0.960(0.503) 1.025(0.536) 17.29 12.74 3.86 4.98

, λ = 1 0.936(0.490) 1.003(0.525) 15.89 11.41 3.47 4.52
SIM 0.940(0.492) 1.041(0.545) 16.09 11.58 3.75 4.96
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Figure 4.3: The thermal vacancy concentration nvac of a hard–sphere crystal obtained
by full minimization of the free energy functional are shown along with the simula-
tion results from Kwak et al. [102] and Bennett and Alder [103]. In the case of the
WBII(tensor) the constrained minimization results are also included.

4.5.3 Density distribution

The final density profile obtained by full minimization deviates from the Gaussian
approximation. For comparison, the density distribution along the fcc unit cell [100],
[110], and [111] directions is shown in Fig. 4.4 for the bulk density ρσ3 = 1.04. Note that
in this representation a Gaussian approximation is a straight line. For the WBII(tensor)
functional, the anisotropy is more pronounced in [110] and [111] direction and its devi-
ation from the MC simulation result increases away from lattice site r = 0. In the case

Table 4.2: The thermal vacancy concentration of the crystalline state obtained by full
minimization of different functionals at ρσ3 = 1.04. The simulation result is obtained
for ρ = 1.036 [102].

nvac

WBII(tensor) constrained 0.33× 10−4

full minimization 0.20× 10−4

VEC(PY) λ = 0 1.2× 10−4

λ = 1
2

0.5× 10−4

VEC(CS) λ = 0 1.5× 10−4

λ = 1
2

0.79× 10−4

SIM 2.4× 10−4
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of the VEC(PY/CS) functional, generally there is an overestimation at the lattice site
and the overlapping of the relaxed Gaussian peaks, especially in 110 direction, results
in a significantly higher value than what is expected from the simulation results (see
Fig. 4.4.b-e).

4.6 Summary and Conclusions

In this chapter, we have presented a brief introduction to Fundamental Measure The-
ory (FMT) as a powerful theoretical tool for studying hard–sphere mixtures in equi-
librium. Within the framework of classical density functional theory, the crystalline
state is treated as an extreme inhomogeneous state. Therefore, the extension of the the-
ory tools from one which solely describes a bulk homogeneous state (scaled–particle
theory) to one which is capable of delivering the equilibrium properties of an inho-
mogeneous system is necessary. Rosenfeld has done this by introducing a minimal
set of weight functions which are used to obtain the weighted (smeared out) densities.
The local weighted densities are used for calculating the excess (over ideal) free energy
density which is due to the interaction of the particles in the system. The Rosenfeld
functional delivers a pair direct correlation function for the hard–sphere fluid which is
the same as that from PY theory of the uniform mixtures [9]. This functional has many
applications for specific types of confinement, for instance the adsorption at a single
planar wall [83], and hard–sphere mixtures adsorbed at walls in model pores [88,104].
However, its excess free energy diverges when it is applied to a particle which is
caged by its neighbors [9,72]. We have discussed the problem in the context of dimen-
sional crossover and 0D cavities. The divergence of Rosenfeld’s fundamental measure
functional is resolved by introducing a tensorial weight function proposed by Tara-
zona [10, 73].

While the underlying equation of state for Rosenfeld’s fundamental measure function-
als and its derivatives is the Percus–Yevick compressibility equation of state, Roth et
al. have used the more exact Carnahan–Starling equation of state as an input to de-
rive the White Bear functional [11]. The tensorial version of the White Bear Mark II
is not only consistent with the restrictions imposed by the scaled–particle differential
equation, but also has a higher level of consistency in the context of morphological
thermodynamics [12]. Santos’ general solution for the scaled–particle equation leads
to a fundamental measure functional which is less complex from a numerical point of
view as it does not require tensorial weight functions [81, 82].

The most promising functional for studying the crystalline state and the fluid-solid
phase transition is the WBII(tensor) which is consistent with morphological thermo-
dynamics [12]. The bulk crystal free energies for a one–component hard–sphere mix-
ture obtained by the WBII(tensor) functional are in good agreement with simulation
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Figure 4.4: The density distribution of the hard–sphere crystal along the fcc lattice
directions [100], [110], and [111] obtained by full minimization of different functionals
for the solid coexistence density ρσ3 = 1.04. Shown is a log–plot of the density versus
the square of the distance from the lattice site. A Gaussian distribution is therefore
a straight line in this representation. Full symbols with error bars represent the MC
simulation result from [80]. The cartoon in which the particles laying in the same close–
packing layer are marked with the same color, indicates the lattice directions in an fcc
unit cell.
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results [80]. Moreover, this functional delivers a correct order of magnitude for ther-
mal vacancy concentrations [80]. In the case of the crystal–fluid interface, precise den-
sity profiles and surface tensions are obtained [61, 95]. We will use the WBII(tensor)
functional of 2–component hard–sphere mixtures to derive a density functional for a
colloid–polymer mixture in the next chapter.



CHAPTER 5

AN FMT FUNCTIONAL FOR FREEZING IN
THE ASAKURA–OOSAWA MODEL

The physical properties of a colloidal suspension, i.e. macromolecules dispersed in a
solution, depend firmly on the effective interactions between the colloidal particles.
There is an effective attraction between two colloidal particles when they get close
enough due to the Van der Waals interaction between their atomic building blocks.
This net attractive force between two atoms is the result of the interaction of sponta-
neous dipoles formed by the oscillations of their clouds of electron. For having a stable
solution, the effective attraction between two colloidal particles is normally balanced
by a repulsive force to prevent flocculation of the colloidal particles. This can be done
by the electrostatic repulsion of the counter–ions of the suspension which are attracted
to the charged surface of the particles. Another way is steric stabilization which is done
by coating the surface of the colloidal particles by polymeric chains [3, 6].

The depletion potential is another important type of effective interactions between col-
loidal particles. This occurs in mixtures of hard colloidal particles and non–adsorbing
polymeric chains. In such a suspension, the polymer configurational degrees of free-
dom are restricted in the vicinity of the colloidal particles. The tendency to maximize
the entropy of polymeric chains results in an effective attraction between colloidal par-
ticles whose strength is controlled by the polymer concentration. Therefore, the poly-
mer concentration can be used as a control parameter to induce phase separation into
colloid–poor (gas), colloid–rich (liquid), and crystal (solid) phases [3].

A minimalistic theoretical model for such a mixture has been proposed by Asakura
and Oosawa [4] and developed further by Vrij [5]. In the framework of the Asakura–
Oosawa (AO) model, the colloid–polymer mixture is treated as a non–additive binary
hard sphere suspension. The particles of species 1 which represent the colloidal parti-
cles interact with each other as hard–spheres of diameter σc. The polymers which are
assigned to particles of species 2 in the mixture are hard spheres of diameter σp = qσc

69
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when they interact with colloidal particles. Here, the polymer–colloid size ratio is de-
noted by q. The polymers are assumed to have no interaction with each other and
therefore are an ideal gas in the absence of the colloidal particles. Moreover, a polymer
reservoir is assumed to be coupled to the system. This reservoir of polymers keeps the
chemical potential of the polymer in the suspension at a constant value and therefore
dictates its concentration.

A simple, analytic approximation for the free energy of the AO model is represented by
free volume theory [105]. Since it is treating the colloid–polymer mixture in the bulk,
the obtained free energy has been mainly used to describe the gas–liquid phase tran-
sition densities. The obtained results give qualitative description of the corresponding
binodals from experimental data [106, 107]. Moreover, except for the vicinity of the
critical point, the binodals obtained by free volume theory are in good agreement with
the results from simulations [108,109]. For the treatment of the crystal phase of the AO
model, the accurately known free energy of the pure hard sphere solid is borrowed as
a reference system for applying perturbation methods [105, 110].

The AO model is a special case of a binary hard sphere mixture in which the interac-
tions between one of the species (polymers) is missing. Therefore, it is reasonable to
assume that fundamental measure theory is capable of describing it within the frame-
work of classical density functional theory. As it is introduced in Chapter 4, FMT is
very precise in the description of bulk and inhomogeneous hard sphere mixtures and
delivering the crystal–liquid phase transition densities. By linearizing the binary hard
sphere functional with respect to the density of polymers a proper functional for de-
scribing the AO model is constructed [111]. The obtained polymer–polymer direct
correlation function is zero, thus they do not interact with each other as it is desired.
The AO functional obtained by linearization of the Rosenfeld functional (Eq. (4.18))
recovers free volume theory for the bulk fluid state. Moreover, it is also able to calcu-
late pair correlations and structure factors, wetting behaviour at walls and associated
layering transition. The obtained results for the linearized Rosenfeld functional are in
good agreement with simulations [112]. However, as it is discussed in Section 4.2 the
Rosenfeld functional does not account for crystallization and therefore, any functional
which is derived from it also shares this deficiency.

In this chapter, by linearizing the White Bear II (tensor) functional which is the most
promising FMT functional for the hard sphere crystal1, with respect to the polymer
density, we construct a density functional for a unified treatment of fluid and crys-
talline states of the colloids in the AO model.

Subsequently, the free energies of an fcc crystal of the colloids are computed and the
phase coexistence densities are obtained using the common tangent construction. Fur-
thermore, for the crystalline state the colloid and polymer density distributions are

1see Eq. (4.45) and the numerical results for comparison of different type of functionals in Section 4.5.
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presented. For the more interesting case of small polymer–colloid size ratio q it can
be shown that the polymers degree of freedom may be integrated out and their ef-
fect be represented by an exact pair interaction between colloidal particles [4]. This
specific limit makes the AO model a suitable candidate as a generic colloid model to
investigate some longstanding problems in the general theory of fluid systems, e.g.
interfacial effects in the vapor–liquid phase transition [113]. We have shown that in
the limit of small q the conventional mean–field treatments of the AO crystals fails due
to an underestimation of the attractive part of the effective free energy of the colloidal
particles. Therefore, the presented AO functional is a prototype functional for colloidal
systems with short–range attraction and will eventually give a precise description of
the crystallization phenomena in such systems.

In the next section, the AO model is introduced as a minimalistic model for study-
ing a mixture of colloids in the presence of non–adsorbing polymers. In Section 5.2,
after recapitulating the free volume theory, a comparison of the attractive part of the
effective free energy for the bulk fluid with the naive mean–field treatment of the AO
model is presented. The linearization of the FMT functional and a justification on its
validity for the AO model is presented in Section 5.3. The linearized FMT functional
results in an effective one–component colloid functional. Our previously reported
results in Ref. [17] obtained by this effective functional are presented in Section 5.4.
The free energies of an fcc crystalline state of the colloids are reported in Section 5.4.1
and the FMT results for small polymer–colloid size ratio are compared with a simple
free volume model for an ideal crystal, and with the results from a mean–field func-
tional. The phase coexistence densities are obtained by the Maxwell construction and
are compared with other available numerical results (see Section 5.4.2). A discussion
on the effect of polmyer–colloid size ratio q on the equilibrium polymer density distri-
bution is given in Section 5.4.3. In Section 5.4.4 the full minimization of the effective
free energy of the colloids and its effect on the phase coexistence density and on the
colloid/polymer density distribution is discussed. The crystal free energies and the
phase coexistence densities obtained by linearization of the RF(tensor) functional are
compared with those of the WBII(tensor) in Section 5.4.5. Finally, Section 5.5 gives a
short summary and outlook.

5.1 Asakura–Oosawa Model

Adding non–adsorbing polymers to a colloid suspension enriches its phase behavior.
This is due to the osmotic pressure exerted on colloidal particles by polymers. A mini-
malistic yet powerful model for describing this system has been presented by Asakura
and Oosawa [4] and later on formulated by Vrij [5]. According to the Asakura–Oosawa
(AO) model, the colloids are hard spheres with diameter σc and their interaction is de-
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scribed by φcc in Eq. (5.1). While the polymer coils with radius of gyration Rg = σp/2
are allowed to interpenetrate each other and therefore behave as an ideal gas, the
polymer–colloid interaction, φcp, is again assumed to be of hard sphere type and there-
fore, their center of mass does not get closer to the center of a colloid than Rg + σc/2.
This is summarized as follows,

φcc(r) =

{
∞ r < σc
0 otherwise,

φcp(r) =

{
∞ r < 1

2
(σc + σp)

0 otherwise,
φpp(r) = 0 . (5.1)

Here, r is the distance between centers of the particles. Due to φcp there is a depletion
layer around a colloidal particle, i.e. an excluded volume in which a polymer can not
enter. If the excluded volume of two colloid particle overlap, as is shown in Fig. 5.1,
the available volume for the polymers increases, hence their entropy.

From a different point of view, the absence of polymers in the overlapping excluded
volumes and their presence around all other surfaces of the two colloidal particles, re-
sult in an osmotic pressure exerting a net short–range attraction between colloids. The
resulting effective two–body potential between colloids φAO(r) due to the depletion
interaction is proportional to the overlapping excluded volumes. Integrating out the
polymers degree of freedom in a more formal way (see Eq. (5.6) and the discussion
thereafter) leads to the same effective potential:

βφAO(r) =


∞ (r < σc)

−π
6
σ3

p ρp,r

(
1 + 1

q

)3 (
1− 3r

2σc(1+q)
+ r3

2σ3
c (1+q)3

)
(σc ≤ r ≤ σc + σp)

0 (otherwise)

.(5.2)

where ρp,r is the density of the polymer reservoir coupled to the system (see Eq. (5.4)).
The AO potential from Eq. (5.2) is exact as long as there are only two–body overlaps of
excluded volumes.

For examining the onset of three-body overlaps, one may put three particles on the
edges of an equilateral triangle with the side length of σc. The three exclusion spheres
should meet at most in one point at the center of the triangle (see Fig. 5.3b). The height
of this triangle is h = l+m with l = 1

2
(σc + σp) and m = 1

4
(σc + σp). On the other hand,

since the side length of this equilateral triangle is σc, its height is equal to h =
√

3
2
σc.

Therefore,

q =
σp

σc

=
2√
3
− 1 ≈ 0.1547, (5.3)
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σc σc + σp

σp

Figure 5.1: Adding non–adsorbing polymer chains to a colloidal suspension induces
a depletion layer around colloidal particles where the configurational entropy of the
polymeric chains is reduced. Depicted is the simplifications made in the AO model in
order to express the presence of polymers in the form of an effective attraction between
colloidal particles. The non–adsorbing polymeric chains in the suspension (left) are ap-
proximated by spheres with diameter σp which are allowed to overlap (middle). As a
result, in the absence of the colloidal particles, we have an ideal gas of the polymers.
The colloid–colloid and the colloid–polymer interactions are of hard–sphere type. The
diameter of the colloidal particles is σc. Hence the diameter of the polymers exclu-
sion sphere, the sphere into which the center of a polymer is not allowed, is σc + σp.
Overlapping of the exclusion spheres increases the total available volume for poly-
mers and therefore induces a depletion attraction among the colloidal particles. For
small polymer–colloid size ratios, q = σp/σp ≤ 0.1547 (see text), the polymers degree
of freedom may be integrated out in order to write down an exact effective interaction
between colloids (right).

where q is the polymer to colloid size ratio. As long as q ≤ 0.1547, there is only 2–
body overlapping of excluded volumes and the effective interaction between colloids
is given exactly by φAO (Eq. (5.2)).

For small polymer–colloid size ratios, one may integrate out the polymers degree of
freedom and write down an effective Hamiltonian only for the colloidal particles [114–
117]. In this sense, the polymers contribute to the total Hamiltonian of the system
as fictitious attractive agents for the colloids. For this purpose, rather than using a
canonical ensemble and assuming a constant particle number for each of the species,
it is more convenient to use a semi–grand ensemble in which the polymer chemical
potential µp is kept constant. In this picture, a polymer reservoir is assumed to be
coupled to the system, maintaining the polymer chemical potential at µp = µp,r.
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Figure 5.2: The effective colloid–colloid potential in the AO model φAO (Eq. (5.2) which
is obtained by integrating out the polymers degree of freedom. The effective potential
is normalized to the polymer reservoir packing fraction ηp,r and plotted for four dif-
ferent polymer–colloid size ratios q. The cut–off range of the potential 1 + q and its
minimum value −

(
1 + 3

2q

)
is marked on the curve for q = 0.1.

For practical reasons, it useful to define a reservoir polymer density ρp,r which for an
ideal gas is proportional to its fugacity zp = eβµp , and a reservoir polymer packing
fraction ηp,r as a function of µp,r.

ρp,r =
exp (βµp)

λ3
p

=
zp

λ3
p

. (5.4)

ηp,r =
π

6
σ3

pρp,r. (5.5)

Here, λp is the thermal de Broglie wavelength of the polymers. In the results section it
will be shown that the polymer reservoir packing fraction ηp,r is playing the role of an
inverse temperature in a simple fluid, e.g. Lennard–Jones, in which the pair interaction
between particles contains an attractive tail.

The Helmholtz free energy F ′(Nc, zp, V ) of a system with physical volume V and con-
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σc + σp

(a) q = 0.1

l

l m

(b) q = 0.1547 (c) q = 0.4

Figure 5.3: A 2D representation of overlapping of the exclusion spheres of three col-
loidal particles, with different values of polymer–colloid size ratio q. In (b) the colloids
are sitting at the corners of an equilateral triangle with side length σc, while the exclu-
sion spheres meet at one point in the center of this triangle. The height of this triangle
h =

√
3

2
σc is equal to l+m with l = 1

2
(σc +σp) and m = 1

4
(σc +σp), hence q ≈ 0.1547. The

two–body AO potential (Eq. (5.2)) is exact as long as there is only overlap of excluded
volumes between two colloids which is true for q ≤ 0.1547.

stant number of colloidal particles Nc is written as

exp [−βF ′] =
∞∑

Np=0

z
Np
p

λ
3Np
p Np!

∫
drNp

p

1

λ3Nc
c Nc!

∫
drNc

c exp [−β (Hcc +Hcp)] . (5.6)

Here, β = 1/kBT , λc is the thermal de Broglie wavelength of colloids, Np denotes
number of the polymers, and rc (rp) indicate the colloid (polymer) coordinates. The
contribution of the interacting particles to the total Hamiltonian of the system is written
as a sum of the Hamiltonian due to the colloid–colloid interaction Hcc and that due to
the colloid–polymer interaction Hcp which are defined as

Hcc =
Nc∑
i<j

φcc(|rc,i − rc,j|)

Hcp =
Nc∑
i=1

Np∑
j=1

φcp (|rc,i − rp,j|) . (5.7)

Here, we have used φcc(r) and φcp(r) as defined in Eq. (5.1). The corresponding term
for the polymer–polymer interaction Hpp is zero as they are treated as an ideal gas and
φpp(r) = 0. In a fixed configuration of Nc colloids acting as an external potential for the
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polymers, the grand potential of the polymers Ωp may be extracted from Eq. (5.6) as,

exp [−βΩp] =
∞∑

Np=0

z
Np
p

λ
Np
p Np!

∫
drNp

p exp

[
−β

Nc∑
i=1

Np∑
j=1

φcp (|rc,i − rp,j|)

]
. (5.8)

This enables us to rewrite Eq. (5.6) as the Helmholtz free energy of a one–component
hard sphere suspension with an effective Hamiltonian given by Heff = Hcc + Ωp,

exp [−βF ′] =
1

λcNc!

∫
drNc

c exp (−βHeff) . (5.9)

Furthermore, since the polymers are non–interacting, the exponential in Eq. (5.8) fac-
torizes into Np identical terms and the grand potential of the polymers may be written
as

−βΩp = ln


∞∑

Np=0

z
Np
p

λ
3Np
p Np!

(∫
drp exp

[
−β

Nc∑
i=1

φcp (|rc,i − rp|)

])Np


=
zp

λ3
p

∫
drp exp

[
−β

Nc∑
i=1

φcp (|rc,i − rp|)

]

= ρp,r

∫
drp

Nc∏
i=1

exp [−βφcp (|rc,i − rp|)] , (5.10)

where in the last step we have used the definition of ρp,r from Eq. (5.4). We can expand
the integrand of Eq. (5.10) in terms of the colloid–polymer Mayer–f functions,

fi = exp [−βφcp(|rc,i − rp|)]− 1. (5.11)

Note that as the colloid–polymer interaction is of hard sphere type, the Mayer–f func-
tion is 0 as long as the particles do not see each other, and is −1 when they overlap.
The expansion of the polymers’ grand potential in terms of Mayer–f functions is given
as follows,

−βΩp = ρp,r

∫
drp

Nc∏
i=1

(1 + fi)

= ρp,r

∫
drp + ρp,r

Nc∑
i=1

∫
drpfi + ρp,r

Nc−1∑
i=1

Nc∑
j>i

∫
drpfifj + · · · (5.12)
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The integral in the first term is the volume of the system, which gives the grand free
energy of the polymer ideal gas in the absence of the colloids. In the second term, the
integral is the total excluded volume of Nc non–interacting colloidal hard spheres in
the system. The polymers are free to move in this ”swiss cheese“ made by colloids.
The integrand of the third term, is the product of two Mayer–f functions and is non–
zero only for polymers which interact simultaneously with both of the corresponding
colloid particles. This is equivalent to the overlap of excluded volumes of colloids i
and j (see Fig. 5.1). Hence, ρp,r times this excluded volume is the attractive part of the
effective AO potential φatt

AO(r) between colloids i and j 2. Therefore,

βΩp = βΩp,0 + βΩp,1 + βΩp,2 + · · · ,
with βΩp,0 = −ρp,rV

βΩp,1 = ρp,rNc
4π

3
(Rc +Rp)3 = ρp,rηc(1 + q)3V

βΩp,2 =
Nc−1∑
i=1

Nc∑
j>i

βφatt
AO(|rc,i − rc,j|). (5.13)

Moreover, the first two terms in the expansion of βΩp do not affect determination of
thermodynamic properties of colloids, e.g. phase coexistence densities, as these terms
are either constant or linear in the colloid density. Therefore, in order to obtain an
effective free energy volume density βfeff for colloids these terms may be subtracted
with no harm.

βfeff = βf ′ − ρp,r

(
−1 + ηc(1 + q)3

)
. (5.14)

Here, f ′ is the volume density of the Helmholtz free energy given by Eq. (5.9).

In the next section free volume theory is introduced as a successful model for studying
AO model in bulk fluid and its relation to the effective Hamiltonian which is derived
here is discussed.

5.2 Free Volume Theory

One of the well-known theoretical tools for studying the AO-Model is free volume
theory which has been introduced by Lekkerkerker et al. [105]. In the framework of
this theory, the Helmholtz free energy density of the system whose physical volume
is V is decomposed into two independent terms; the hard sphere free energy density
of colloids fc, and the ideal gas free energy density of the polymers f id

p . The latter is

2φatt
AO(r) = φAO(r) from Eq. (5.2) with σc ≤ r ≤ σc + σp.
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calculated while Np polymer chains are assumed to move freely in the sub–volume of
the system which is not occupied by the colloids. This colloid–free volume is expressed
as the product of the free volume fraction α and the total volume of the system V . The
expressions for the free energy densities in the context of free volume theory is given
as follows.

fFV(ρc, ρp) = fc(ρc) + f id
p (Np, αV )

f id
p (Np, αV ) = ρp

[
ln

(
ρpλ

3
p

α

)
− 1

]
(5.15)

where ρc = Nc/V is the colloid number density and ρp = Np/V is the polymer number
density.

One can use the ideas of the scaled–particle theory (Section 3.2.3) to obtain the free
volume fraction α of the system by considering two extreme limits for the polymer size,
Rp � Rc and Rp → ∞. The corresponding mid–range values of Rp are extrapolated
from these two limits [6, 54, 55]. For the small polymer size Rp � Rc, the probability
of finding a cavity with radius Rp due to the spontaneous fluctuation of the colloids
within the system can be expressed as the exponential of minus the excess chemical
potential, i.e. the required reversible work for creating such a cavity. Note that, in the
limit of ρp → 0 this probability is equivalent to the free volume fraction of the system.

lim
ρp→0

α(ρc) = pcav(Rp) = exp(−βµex) . (5.16)

This is the same as the probability of existence of a cavity of size Rp + Rc in which
the centers of the colloids are not allowed. Now, we can extend Eq. (5.16) to negative
polymer sizes −Rc ≤ Rp ≤ 0 by considering cavities with radius 0 ≤ Rc + Rp ≤ Rc.
The probability of finding a colloid in this cavity pocc, and therefore not being able to
put a polymer in it 1− pcav, is equal to its volume times the colloid density. Therefore,
using Eq. (5.16) one can write,

βµex(Rp) = − ln(α) = − ln

(
1− 4

3
π(Rc +Rp)3 ρc

)
for Rp ≤ 0 . (5.17)

On the other hand, the required reversible work for creating a large cavity of sizeRp �
Rc is equal to the size of the cavity times the pressure of the colloids.

βµex(Rp) =
4

3
πR3

p P for Rp � Rc . (5.18)

The essential ansatz in relating these two limits is that for Rp ≥ 0 the excess chemi-
cal potential is related to the size of the cavity Rp via its fundamental measures (see



5.2. FREE VOLUME THEORY 79

Eq. (4.5)).

µex(Rp) =
4

3
πR3

p P + 4πR2
p γ + 4πRp κ+ 1 κ̄ for Rp ≥ 0 . (5.19)

The undetermined coefficients, γ, κ, and κ̄, are obtained by requiring the continuity
of µex and its derivatives at Rp = 0 for Rp ≤ 0 (Eq. (5.17)) and Rp ≥ 0 (Eq. (5.19)).
Denoting the packing fraction of colloids by ηc, these requirements are met as follows.

βκ̄ = − ln(1− ηc) . (5.20)

4πβκ =
1

Rc

3ηc

1− ηc

. (5.21)

4πβγ =
1

R2
c

(
3ηc

1− ηc

+
9η2

c

2(1− ηc)2

)
. (5.22)

Furthermore, since ρp → 0 the colloids may be assumed to be the only component
of the system. Therefore, the pressure βP can be replaced by the expression for the
scaled–particle equation of state for a single–component hard sphere system, i.e. the
Percus–Yevick compressibility equation of state Eq. (3.18).

βP

ρc

=
1 + ηc + η2

c

(1− ηc)3
. (5.23)

The obtained thermodynamic coefficients, i.e. βκ̄, βκ, βγ, and βP from Eq. (5.20) to
Eq. (5.23) are used to calculate the excess chemical potential µex for Rp ≥ 0 (Eq. (5.19)).
As a result, the free volume fraction of the system which is given by Eq. (5.17) for
ρp → 0 reads

α(ρc) = (1− ηc) exp
(
−Aγ −Bγ2 − Cγ3

)
, with γ =

ηc

1− ηc

,

A = 3q + 3q2 + q3 ,

B =
9

2
q2 + 3q3 ,

C = 3q3 . (5.24)

The obtained free volume fraction is used to calculate the ideal gas free energy density
of the polymers f id

p and consequently the free energy density of the colloid–polymer
mixture fFV from Eq. (5.15). But as mentioned earlier, it is more convenient to use a
semi–grand ensemble for such a mixture. In this ensemble a semi–grand free energy
density is defined as

f ′FV(ρc, µp) = fFV(ρc, ρp)− µpρp. (5.25)
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The polymer equilibrium density minimizes the semi–grand free energy density. Using
Eqs. (5.15) and (5.25) we can write,

∂f ′FV

∂ρp

=
∂f id

p

∂ρp

− µp
!

= 0

⇒ ρp = α(ρc)ρp,r (5.26)

where ρp,r is the reservoir polymer density (Eq. (5.4)). Finally, we can rewrite the semi–
grand free energy density by combining Eqs. (5.15), (5.25), and (5.26).

βf ′FV(ρc, µp) = βfc(ρc)− α(ρc)ρp,r, (5.27)

Once the chemical potential of the polymer reservoir is specified, βf ′FV is solely a func-
tion of the colloid density ρc. This is a convenient relation for determination of the
phase coexistence densities of the colloidal particles. For obtaining the coexistence
densities, the pressure of the system in two phases should be equated as well as the
chemical potential of colloids and polymers. As the chemical potential of the polymers
is already fixed at its reservoir value, the problem is reduced to determination of the
coexistence densities for a one–component system. Comparing the free energy density
proposed by free volume theory in Eq. (5.15) with Eq. (5.14), βf ′FV misses a constant
and a term linear in packing fraction of colloidal particles corresponding to Ωp,0 and
Ωp,1 (see Eq. (5.13)). Adding these missing terms does not affect the phase coexistence
determination. Therefore, the effective free energy density for colloids is defined as

βfeff(ρc, µp) = βfc(ρc) + ρp,r

(
−1 + ηc(1 + q)3

)
− ρp,rα(ρc)

= βfc(ρc) + βfeff,att(ρc, µp) . (5.28)

Motivated by this decomposition of the effective free energy density of colloids into a
pure hard sphere part and an attractive term, we will use a naive mean–field approach in
which the attractive term is related to the effective two–body potential φAO (Eq. (5.2))
via a virial expansion.

feff,att(ρc, µp) ≈ 1

2
batt

2 ρ2
c + · · · , (5.29)

batt
2 =

∫
dr φAO(r)θ(r − σc) . (5.30)

The virial coefficient batt
2 is calculated by a volume integral over the attractive part of

φAO using the Heaviside step function θ(x). This method works reasonably well for
simple fluids like the Lennard–Jones fluid whose attractive range is not as short as in
φAO. However, in the case of the AO model, the naive mean–field approach does not
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Figure 5.4: Effective free energy density of attraction between colloids “per polymer”
for two different size ratios q = 0.1 (red) and 0.6 (blue). Full lines correspond to free
volume theory, dashed lines to the virial expansion to second order (naive mean field
approximation). For higher densities, the naive mean field approximation underesti-
mates the attractive part of the effective free energy density.

work very well. This is shown in Fig. 5.4 in which feff,att from free volume theory is
compared with the naive mean–field approach for size ratios q = 0.1 and q = 0.6. In
both cases the difference increases with the colloid density. However, the difference is
worse for q = 0.1 which corresponds to a shorter ranged effective attraction between
the colloidal particles.

In free volume theory, the effective colloid free energy density (Eq. (5.28)) is linear in
ρp,r. Therefore, any viral coefficient related to ρ np,r with n ≥ 2 is zero. This is not true
for the full AO model as it is shown in the evaluation of the first few virial coefficients
and their relation to the effective attraction [118]. Nevertheless, feff,att from free vol-
ume theory is a very good approximation also for higher ρp,r as a comparison with
simulations shows [109]3.

The effective attraction leads to vapor–liquid phase separation as has been calculated
first in Ref. [105] and discussed in a number of subsequent papers. Fluid–crystal phase
separation has been discussed by using Eq. (5.24) for the fluid and crystal phases and
using a hard–sphere equation of state for the crystal [105] or perturbation theory [110,
117].

3There, a comparison for q = 1.0 is shown in their Fig. 4. Their attractive free energy density fatt is
defined without subtraction, i.e. the relation to our feff,att is given by βfeff,att = 6/π[βfatt+(ηp,r/q

3)(1−
ηc(1 + q)3)]
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5.3 Fundamental Measure Theory for the AO–model

In order to take advantage of FMT for investigating the AO–model, consider a non–
additive binary hard sphere mixture while assigning the species 1 to the colloids and
species 2 to the polymers. In the physical volume V , the system contains N1 = Nc

colloids and N2 = Np polymers and its grand potential functional reads

ΩAO[ρc, ρp] = F id
AO[ρc, ρp] + F ex

AO[ρc, ρp]−
2∑
i=1

∫
dr ρi(r)

(
µi − V ext

i (r)
)
, (5.31)

where µi and V ext
i are respectively the chemical potential and the external potential

for species i. The ideal gas Helmholtz free energy of this 2–component system F id
AO is

written as the sum of the ideal gas contribution of each species.

F id
AO[ρc, ρp] = F id

c [ρc] + F id
p [ρp]

F id
α [ρα] =

∫
dr ρα(r)

(
ln
(
λ3
αρα(r)

)
− 1
)
. (5.32)

Here, λα is the thermal de Broglie wavelength of species α. The excess free energy
functionalF ex

AO is written as the volume integral of the excess free energy density which
is a function of the local weighted densities. The latter is given by the sum of the local
weighted density of each species as we have a non–additive system.

F ex
AO[ρc, ρp] =

∫
dr ΦAO ({nα}) , with nα = nα,c + nα,p,

nα,i = ρi ∗ wαi . (5.33)

Here, ∗ denotes the 3D convolution. The weight functions for each species wαi are
given by Eq. (4.4) and/or Eq. (4.31) depending on the functional in use. The proper
excess free energy density for a colloid–polymer mixture described by the AO model
is obtained by an appropriate linearization of the hard sphere mixture functional ΦHS

in terms of the polymer density ρp [111].

ΦAO ({nα,c}, {nα,p}) = ΦHS ({nα,c}) +
∑
α

nα,p
∂ΦHS ({nα,c})

∂nα,c
(5.34)

The proposed density functional delivers the desired properties of the colloid–polymer
mixture. By removing the polymers from the system (nα,p = 0), the excess free en-
ergy density of the HS is recovered. Moreover, the functional is linear in ρp and the
polymer–polymer direct pair correlation function is zero,

c(2)
pp (|ri − rj|) = − δ2F ex

AO

δρp(ri)δρp(rj)
= 0 (5.35)
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This is indeed expected as the polymers are assumed to behave as an ideal gas in the
AO model.

For building up the functional in a more systematic approach, one can adopt the ideas
of the dimensional cross over explained in Section 4.2. In this case the 0D free energy
is given by [111],

ΦAO
0D = ηc + ln(1− ηc) (1− ηc − ηp) , (5.36)

where ηc and ηp respectively denote the packing fraction of the colloidal particles and
of the polymers. Since the functional in higher dimensions is constructed by a series
of derivatives with respect to ρi and multiplications by ρi, the resulting 3D functional
remains linear in the polymer density ρp. For instance the first two terms of the func-
tional which are given for a one–component hard sphere syatem in Eqs. (4.29) and
(4.30), are modified in the following way to be applied to a binary mixture [111].

ΦAO
1 = −

∑
i=c,p

∫
dr n0,i(r)ψi

(
n3,c(r), n3,p(r)

)
,

ΦAO
2 = −

∑
i=c,p

∫
dr (n1,in2,j − n1,i · n2,j)ψij

(
n3,c(r), n3,p(r)

)
,

with ψi(ηc, ηp) =:
∂ΦAO

0D

∂ηi
, ψij(ηc, ηp) =:

∂2ΦAO
0D

∂ηi∂ηj
(5.37)

Note that the terms in the sum with polymer weighted density are multiplied by a
derivative of 0D excess free energy density (Eq. (E.12)) with respect to polymer pack-
ing fraction. Since ΦAO

0D is linear in ηp, this product remains linear in polymer density.
Moreover, this linear property of the excess free energy density may be rationalized in
the context of the scaled–particle theory (Section 3.2.3) as follows. Here, the scaled–
particle differential equation corresponding to the required reversible work for intro-
ducing a polymer coil into a suspension of the colloids is given by,

lim
ρp→0

βµex
p

Vp

=
∂ΦAO

∂ξ3

with ξ3 =
2∑
i=1

ρiVi = ηc + ηp (5.38)

This relation must also hold for higher values of ρp since in the AO model the system is
assumed to be coupled to a polymer reservoir which maintains the polymer chemical
potential at a fixed µp,r. This is achieved if ΦAO contains only constant and linear terms
in ρp as it is proposed in Eq. (5.34).

In a semi–grand ensemble with a given µp and in the absence of external potential, the
appropriate quantity for minimization is,

F ′AO [ρc, ρp] = F id [ρc, ρp] + F ex
AO [ρc, ρp]− µp

∫
dr ρp (r) . (5.39)
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Note that minimization of F ′AO and the grand potential functional from Eq. (5.31) with
respect to ρp are equivalent. The equilibrium polymer density ρp,eq is obtained by such
minimization.

δF ′AO [ρc, ρp]

δρp(r)

∣∣∣∣∣
ρp(r)=ρp,eq(r)

!
= 0

⇒ ρp,eq(r) = ρp,r exp

[
−
∫

dr′
∑
α

∂ΦHS

∂nα,c
(r)wαp (r′ − r)

]
= ρp,r exp

[
c(1)

p (ρc(r))
]
. (5.40)

Here c(1)
p is a polymeric direct correlation function which is only function of the col-

loid density. Therefore, after fixing the polymer reservoir chemical potential µp,r, the
equilibrium polymer density is explicitly known for a given colloid density ρc(r). By
comparing Eq. (5.40) for the bulk fluid with Eq. (5.26), we can define an FMT free vol-
ume fraction.

αFMT = exp(c(1)
p ) (5.41)

The free volume fraction in the bulk, calculated by this relation, is exactly the one from
free volume theory (Eq. (5.24)) if the Rosenfeld excess free energy density (Eq. (4.18)) is
used as the underlying hard sphere functional for linearization (ΦHS in Eq. (5.34)). This
is indeed expected as both theories are based on the scaled particle theory formalism.

The effective free energy functional for colloids Feff is obtained by subtracting the non-
trivial constant and linear term in the colloid density βΩ0 + βΩ1 (Eq. (5.13)) from F ′AO.
The latter is evaluated with ρp,eq from Eq. (5.40). This effective free energy is decom-
posed into a hard sphere and an effective attractive term and reads [17]

βFeff [ρc(r);µp,r, q] = βFHS [ρc(r)] + βFeff,att [ρc(r);µp,r, q] , (5.42)

βFHS [ρc(r)] =

∫
dr ρc(r)

(
ln
[
ρc(r)λ

3
c

]
− 1
)

+

∫
drΦHS (nαc (r)) ,

βFeff,att [ρc(r);µp,r, q] = ρp,r

∫
dr
(
−ec

(1)
p (r) +

(
1− ηc (1 + q)3)) . (5.43)

Moreover, considering the discussion on the naive mean field approximation for the
bulk fluid (see Section 5.2 page 80), we can assume thatFeff,att is related to the attractive
part of the AO pair potential φatt

AO (Eq. (5.2) with r > σc) via a virial expansion for the
non–homogeneous state.

βFeff,att [ρc(r);µp,r, q] ≈
1

2

∫
dr

∫
dr′ρc(r)ρc(r

′)βφatt
AO(|r− r′|;µp,r, q) , (5.44)
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This relation is used as the naive mean–field approximation for the FMT functional. The
mean–field approximation is often applied to the Lennard–Jones system which decom-
poses the free energy functional into a pure hard–sphere part and a perturbation in the
form of a weighted density approximation of the attractive part. The method is quite
successful at describing the liquid–solid phase equilibria and the corresponding inter-
facial tensions [119].

5.4 Bulk Crystals in the AO–Model

For obtaining the equilibrium free energy for the homogeneous crystalline state in the
AO–model, we have assumed an fcc crystalline structure for the solid state of the col-
loids with a denoting the side length of the cubic unit cell as in the case of pure hard
spheres (see Section 4.5). The number of colloid particles in an ideal fcc unit cell is 4,
but here we will assume a non-vanishing vacancy concentration nvac, which results in
4(1−nvac)/a

3 being the number density of colloid particles. The colloid density profile
is initialized by Gaussian peaks at the fcc lattice sites.

ρc (r) =
∑
i

(1− nvac)
(αG

π

) 3
2

exp
(
−αG|r− ri|2

)
. (5.45)

After choosing the reference excess free energy density of the hard spheres ΦHS, the
polymer density profile is obtained by Eq. (5.40) and the effective free energy of the
colloids is then calculated from Eq. (5.43). In constrained minimization, the effective
free energy, or equivalently F ′, is minimized with respect to αG and nvac.

F ′eq (ηp,r, q) = min
{nvac,αG}

F ′ [ρc, ρp,eq[ρc]] . (5.46)

For the full minimization, the colloid density profile is initiated as Gaussian peaks
with αG obtained from the constrained minimization and a reasonably small nvac, e.g.
∼ 2× 10−4. After computing ρp,eq from Eq. (5.40), the colloid density profile is updated
according to,

log λ3
cρc = −δF ex [ρc; ρp[ρc]]

δρc

− µc . (5.47)

This self–consistent process, known as Picard iteration4, leads to the simultaneous min-
imization of the effective free energy density F ′ with respect to ρp and ρc. In order to

4See Appendix A.4.1 for more information.
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obtain the global minimum of F ′, the minimization procedure is re–initiated with an
updated nvac.

F ′eq (ηp,r, q) = min
{nvac}

min
{ρc(r)}

F ′ [ρc, ρp,eq[ρc]] . (5.48)

The obtained values for the equilibrium vacancy concentration using the constrained
minimization (Eq. (5.46)) of the linearized FMT functionals are of order . 10−4. On
the other hand, the difference between the obtained effective free energy from con-
strained and full minimization is small (see Fig. 5.15). Therefore, as in Ref. [17] the
focus of the results section is on constrained minimization. In Section 5.4.1, using the
linearized WBII(tensor) functional the effective free energy for colloids is obtained by
constrained minimization. The main purpose of Section 5.4.3 is to address two ques-
tions about the polymer density: Where do polymers sit in the fcc unit cell? And
what is the effect of the polymer–colloid size ratio? Using the effective free energy
of colloidal particles, their phase diagram is computed and discussed in Section 5.4.2.
Section 5.4.4 is dedicated to full minimization results of the effective free energy, its
difference with the constrained minimization, and the effect of this difference on the
equilibrium properties, e.g. the phase behavior. Finally, in Section 5.4.5 the obtained
results from the linearized RF(tensor) functional are compared with those from the
linearized WBII(tensor) functional.

5.4.1 Effective free energy of the colloid crystals

For a certain range of colloid–polymer size ratios q, polymer reservoir packing fractions
ηp,r, and colloid bulk number densities ρc, we have calculated the effective free energy
density for the crystalline state by constrained minimization with respect to αG and
nvac, and for the homogeneous fluid state. The calculation is done using the linearized
version of two type of functionals, RF(tensor) functional whose underlying equation of
state for fluid is Percus–Yevick (Section 4.2) and WBII(tensor) functional with the more
accurate Carnahan–Starling equation of state (Section 4.3). Due to different underly-
ing equation of states, there is a difference between the effective free energy densities
obtained by these functionals. This difference becomes more significant as q decreases.
For a more detailed discussion see Section 5.4.5.

We have shown the free energy curves βfeff(ρc)σ
3
c for fixed values of ηp,r (isotherms) ob-

tained by constrained minimization of the linearized WBII(tensor) functional in Fig. 5.5
for three different size ratios, i.e. q = 0.6, 0.4, 0.1. The free energy curves are qualita-
tively reminiscent to those of a simple fluid, Lennard-Jones for instance [120]. Here,
by decreasing the polymer–colloid size ratio q the attractive part of the pair interaction
becomes stronger. The polymer reservoir packing fraction ηp,r acts as an inverse tem-
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Figure 5.5: Comparison of the effective free energy density βσ3
cfeff(ρc) for different

values of the reservoir polymer packing fraction ηp,r (“isotherms”) and for three differ-
ent values of the polymer–colloid size ratios (a) q = 0.6, (b) q = 0.4, and (c) q = 0.1.
The results for the homogeneous fluid branch (dashed curves) are obtained using the
linearized WBII(tensor) functional. The effective free energy for crystal branch (solid
curves) is computed by constrained minimization of the same functional with respect
to αG and nvac. The thermal de Broglie wavelength λc is set to σc.

perature and by its increment (decreasing temperature) the effective attraction due to
polymers increases which results in more negative values for the crystal free energies.

For a better understanding of the effect of polymers on the attractive part of the ef-
fective free energy, we use the expression of free volume theory, Eq. (5.28), as a crude
approximation for the crystal. Here, we will calculate the excluded volume for an
ideal fcc crystal in which the colloids are fixed at their lattice sites. The free volume
fraction is calculated in different geometrical situations which arises due to increasing
bulk number density of the colloids and consequently decreasing fcc lattice constant
a = (4/ρc)

1/3. For a given q, the colloid densities may be divided in four ranges repre-
senting four different types of excluded volume overlaps:

(i) ρcσ
3
c ≤

√
2/(1 + q)3: The distance between the nearest neighbors in the fcc unit

cell rnn = a
√

2√
2

is larger than diameter of the exclusion spheres. Therefore, the
exclusion spheres do not have any overlap and the free volume fraction is simply
given by α = 1− ηc(1 + q)3. Consequently, the attractive part of the effective free
energy feff,att is zero.

(ii) ρcσ
3
c ∈ [

√
2/(1 + q)3, 2/(1 + q)3]: The exclusion spheres of the colloidal particles

sitting at the nearest neighbors lattice sites in the fcc unit cell have an overlap
which can be expressed as a function of their distance. Hence, the free volume
fraction is

α = 1− ηc(1 + q)3

[
1− 6

(
1− 3

2
r′ +

1

2
r′3
)]

with r′ =
a√

2(1 + q)σc

.(5.49)
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Using Eq. (5.28) the attractive part of the effective free energy density is given by,

βfeff,attσ
3
c = −6ρcηp,r

(
1 +

1

q

)3(
1− 3r′

2
+
r′3

2

)
, (5.50)

where r′ is the same as introduced in Eq. (5.49).

(iii) ρcσ
3
c ∈ [2/(1 + q)3, 4/(1 + q)3]: Four–body overlaps of the exclusion spheres occur

between each colloid sitting at a corner of fcc unit cell with the ones at the cen-
ter of its adjacent faces. In this case, we have determined numerical values for
the free volume fraction and consequently the attractive part of the effective free
energy density is computed.

(iv) ρcσ
3
c ≥ 4/(1 + q)3: Considering typical crystalline solid densities of the colloidal

particles, i.e. 0.95 . ρcσ
3
c ≤
√

2, this highly dense state can only occur for large
polymer–colloid size ratios q & 0.5 (see Fig. 5.6). In this case, the available free
volume for polymers, and consequently the free volume fraction, are zero. How-
ever, according to its definition from Eq. (5.28), the attractive part of the effective
free energy density is not zero and reads

βfeff,attσ
3
c = ρp,r(1− ηc(1 + q)3) . (5.51)

For large values of polymer–colloid size ratio q & 0.6, and for typical crystal densities,
ρcσ

3
c ≥ 1.0, we are always in regime (iv), as it is shown in Fig. 5.6. Therefore, α = 0

and the polymers do not affect the effective free energy density. This is also seen in the
obtained values of αG which are close to those of a pure hard sphere system. There is
a linear decrease in the effective free energy density proportional to ηp,r (see Fig. 5.5)
which is due to its definition in which the trivial constant and the linear term in the
colloid bulk density are subtracted (Eq. (5.43)).

By decreasing the size ratio to q = 0.4 (Fig. 5.5. b), we are in regime (iii) and α � 1.
Therefore, a linear increase in the effective free energy as a function of ηp,r is observed
and the situation is similar to larger q’s. As it is shown in Fig. 5.7. a, except for small
deviation at low colloid densities, the Gaussian width obtained by constrained mini-
mization is close to the pure hard sphere system.

By further decreasing the size ratio to q = 0.1, the regimes (i) and (ii) are reached.
In this case the free volume fraction and as a result the contribution of polymers to
the attractive part of the effective free energy is large enough to have a major effect
on the total effective free energy density. This explains the qualitative behavior of the
effective free energy by increasing ηp,r in Fig. 5.5. On the other hand, the deviation
of the Gaussian width from its pure hard sphere value is more pronounced as ηp,r

increases (Fig. 5.7. b).
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Figure 5.6: Typical crystal densities for colloid ρcσ
3
c versus size ratio q, marking the

different geometrical situations of overlapping exclusion spheres in an ideal fcc crystal.
For region (i) in which the colloid density is ρcσ

3
c ≤
√

2/(1 + q)3, there is no overlap.
For region (ii) colloid density is bigger than

√
2/(1+q)3 and smaller than 2/(1+q)3 and

2–body overlap of nearest neighbors occurs. In region (iii), ρc ∈ [2/(1 + q)3, 4/(1 + q)3]
and four–body overlaps of exclusion spheres occur between each colloid sitting at a
corner of fcc lattice unit cell with the ones at the center of their adjacent faces. Finally,
in region (iv) the overlapping of exclusion spheres results in zero volume fraction. The
free volume fraction of an ideal crystal with colloids fixed at their lattice sites is used
for obtaining an approximation for attractive part of effective free energy.

For the last case, since q ≤ 0.1546 and the effective AO pair potential (Eq. (5.2)) exactly
describes the interaction between colloids, we can take advantage of the naive mean–
field functional as introduced in Eq. (5.44). Here, the free energy functional can be
decomposed into an FMT part which solely describes the hard–core interaction and
a naive mean–field part which is responsible for the attractive part of the potential.
This technique is quite successful in describing Lennard–Jones crystal for obtaining
liquid-crystal interface tension and phase transitions [119]. However, here there is
a substantial underestimation of the attractive part of effective free energy using the
naive mean–field functional due to the short range of the attraction in φAO(r).

For q = 0.1 we compare the attractive part of effective free energy density per poly-
mer, βfeff,attσ

3
c/ηp,r, for the naive mean–field crystal, free volume theory for the ideal

crystal, and the linearized WBII(tensor) functional in Fig. 5.8. Although the qualita-
tive behavior of the free energy density predicted by free volume theory is the same
as the FMT functional, quantitatively it has a constant shift for all values of ρc. For
the naive mean–field functional, the curves for different values of ηp,r collapse onto a
single one and βfeff,attσ

3
c/ηp,r does not depend on the polymer reservoir packing frac-

tion. This is not true for the FMT functional in which by increasing ηp,r the attractive
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Figure 5.7: Comparison of the Gaussian width of the pure hard–sphere system ηp,r = 0
(black dashed curve) with that of the colloid density profile obtained by constrained
minimization of the WBII(tensor) functional for a) q = 0.4 and b) q = 0.1. As a general
rule, by increasing the polymer reservoir packing fraction the curves deviate from their
hard sphere case specifically at lower densities. The inset for q = 0.4 is the same plot
shown for colloid densities up to ρcσ

3
c = 1.30.

part of effective free energy becomes slightly stronger. On the other hand, the naive
mean–field functional gives only about 20% of the attractive free energy predicted by
the linearized WBII(tensor) functional. This is consistent with our findings from the
comparison of the naive mean–field approximation and free volume theory for bulk
fluid in higher densities as shown in Fig. 5.4.

5.4.2 Phase Behavior

For each q, the crystal–fluid coexistence densities ρc,cr and ρc,fl are calculated using the
common tangent construction for the effective free energy density of the bulk fluid
and the crystalline fcc solid at a given ηp,r (see Appendix D). The crystalline free en-
ergy density is obtained by constrained minimization of the linearized WBII(tensor)
and RF(tensor) functionals, with respect to αG and nvac. The results are presented in
Figs. 5.9–5.12 and 5.18. In all cases, by removing the polymers from the system, i.e.
ηp,r → 0, the corresponding known results for pure hard–sphere system is recovered
for the linearized functionals (see table 4.1). In Section 5.4.5 a quantitative comparison
of the phase diagrams obtained by the RF(tensor) and the WBII(tensor) functionals is
demonstrated (see Fig. 5.18). Here, we are presenting the results for the WBII(tensor)
functional in three categories of colloid–polymer size ratios.



5.4. BULK CRYSTALS IN THE AO–MODEL 91

0.96 1 1.04 1.08 1.12 1.16

ρ
c
σ

c

3

-30

-25

-20

-15

-10

-5

0

β
 σ

c3
f ef

f,
at

t /
 η

p
,r

η
p,r

 = 0.001

η
p,r

 = 0.010

η
p,r

 = 0.050

η
p,r

 = 0.100

0.96 1 1.04 1.08 1.12 1.16

ρ
c
σ

c

3

-30

-25

-20

-15

-10

-5

0

β
 σ

c3
f ef

f,
at

t /
 η

p
,r

free volume model

q = 0.1

Figure 5.8: Comparison for the attractive part of the effective free energy density “per
polymer” βσ3
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and the naive mean–field functional for different values of the reservoir polymer pack-
ing fraction ηp,r.
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Figure 5.9: Phase diagram of AO model for a) q = 1.0 and b) q = 0.6. Solid red
curves represents the binodals for the linearized WBII(tensor) functional, dashed red
curves indicate metastable branches, and blue dashed lines are results from free vol-
ume theory (fluid) and parametrized HS crystal equation of states [110]. The results
from simulations of the full AO model (using an “exact” effective pair potential) are
marked with black diamonds [109]. Green triangles show liquid–crystal coexistence
densities for full minimization (see Section 5.4.4).
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5.4.2.1 Large q’s

For large values of polymer–colloid size ratio, and for a state with highly dense col-
loidal particles the available free volume for polymers is almost zero. As a conse-
quence, in a vicinity of the fluid and the crystal coexistence densities, the contribu-
tion of the polymers to the effective free energy is negligible. Therefore, the obtained
phase coexistence densities is mainly dictated by the contribution of the colloidal hard–
spheres to the effective free energy and remains the same as the hard–sphere system
ηp,r → 0. This holds even for larger polymer reservoir packing fractions up to the
triple point ηtr

p,r. As shown in Fig. 5.9, our obtained binodals as well as triple points
for q = 1.0 and q = 0.6 are in very good agreement with simulations [109, 110]. The
MC simulations in Ref. [109] are done using an “exact” AO potential while the pre-
sented results from Ref. [110] are obtained using free volume–theory for the fluid and
a parametrized equation of state for the hard–sphere crystal [121]. This good agree-
ment for these polymer–colloid size ratios are of course expected due to the accuracy
of free volume theory which is based on the scaled–particle theory (see Section 5.2),
and the precise results of the WBII(tensor) functional for pure hard–sphere systems.

For q = 0.6, the obtained numerical values for the stable liquid–crystal phase coexis-
tence densities for different values of ηp,r, and their corresponding coexistence chemical
potential βµcoex and pressure βσ3

cpcoex are presented in table 5.1. Note the liquid–crystal
coexistence pressure which decreases from its hard–sphere value (βσ3

cpcoex ≈ 11.89) at
ηp,r → 0, to zero at triple point ηp,r = ηtr

p,r ' 1.35. For higher values of the polymer reser-
voir packing fraction ηp,r > ηtr

p,r, the liquid–crystal phase transition becomes metastable
(βσ3

cpcoex < 0) with respect to the vapor–crystal phase coexistence (βσ3
cpcoex ≈ 0) as pre-

sented in table 5.2.

5.4.2.2 Intermediate q’s

For q = 0.4, increasing ηp,r has a more significant effect on the difference between
the liquid and the solid coexistence densities ∆ρcσ

3
c = ρc,crσ

3
c − ρc,flσ

3
c . In this case, the

width of the coexistence region is almost doubled from ∆ρcσ
3
c = 0.0964 at ηp,r = 0.01, to

∆ρcσ
3
c = 0.2125 at the triple point ηp,r = ηtr

p,r ≈ 0.54. As shown in Fig. 5.10, the obtained
binodals agree well with the results computed by using free volume theory for the
fluid and the equation of state for the hard–sphere crystal proposed by Hall [110, 121].
This agreement was expected by considering the discussions which we have made in
the framework of free volume theory for an ideal crystal in Section 5.4.1 (see page 87).
There, we concluded that for this size ratio the total polymer density is still small, and
hence the contribution of the polymers to the effective free energy density is negligible.

One can approximate the effective interaction between the colloidal particles by the
effective pair potential of the AO model φAO (Eq. (5.2)). Note that φAO is obtained
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Table 5.1: Stable crystal and fluid coexistence densities of the AO model for q = 0.6 ob-
tained by constrained minimization of linearized WBII(tensor) functional with respect
to αG and nvac. The last column is the difference between crystal and fluid densities
∆ρcσ

3
c = ρc,crσ

3
c − ρc,flσ

3
c , which grows with increasing ηp,r.

ηp,r ρc,crσ
3
c (ηc,cr) ρc,flσ

3
c (ηc,fl) βµcoex βσ3

cpcoex ∆ρcσ
3
c

0.01 1.040(0.545) 0.945(0.495) 16.22 11.81 0.095
0.10 1.040(0.545) 0.944(0.494) 14.53 11.03 0.096
0.20 1.040(0.545) 0.944(0.494) 12.65 10.16 0.096
0.30 1.041(0.545) 0.944(0.494) 10.77 9.30 0.097
0.40 1.041(0.545) 0.943(0.494) 8.89 8.43 0.098
0.50 1.042(0.546) 0.943(0.494) 7.02 7.57 0.099
0.60 1.042(0.546) 0.943(0.494) 5.14 6.70 0.099
0.70 1.043(0.546) 0.943(0.494) 3.26 5.84 0.100
0.80 1.043(0.546) 0.942(0.493) 1.38 4.97 0.101
0.90 1.043(0.546) 0.942(0.493) -0.50 4.11 0.101
1.00 1.044(0.547) 0.942(0.493) -2.37 3.24 0.102
1.10 1.044(0.547) 0.941(0.493) -4.25 2.38 0.103
1.20 1.045(0.547) 0.941(0.493) -6.13 1.52 0.104
1.25 1.045(0.547) 0.941(0.493) -7.07 1.08 0.104
1.30 1.045(0.547) 0.941(0.493) -8.01 0.65 0.104
1.35 1.045(0.547) 0.940(0.492) -8.95 0.22 0.105

by considering only two–body overlaps of the exclusion spheres. Simulations using
φAO for q = 0.4, results in peculiar metastable vapor–liquid binodal [110]. Therefore,
we conclude that in this case the effect of simultaneous interaction of three or more
colloidal particles is too important to be neglected and these terms should also be con-
sidered in the effective colloid potential as in higher q’s. In Fig. 5.10, we have compared
our results with the obtained binodal from simulation using φAO, as well as the phase
coexistence densities obtained by using fluid and crystal perturbation theory [110,122].

By further decreasing polymer–colloid size ratio, the stable vapor–liquid binodal will
be restricted to a smaller range in the colloid density. Ultimately, the vapor–liquid
binodal becomes completely metastable for q ≤ qtrans. Here, the fluid branch of the
fluid–solid coexistence density is determined by a sublimation line whose correspond-
ing colloid density varies from a rather high density at hard–sphere limit, i.e. ηp,r → 0
to very small values at higher polymer reservoir packing fractions. For the linearized
WBII(tensor) functional this cross–over occurs at qtrans ≈ 0.31 as shown in Fig. 5.11. At
this polymer–colloid size ratio, the liquid branch skews rapidly toward lower colloid
densities and hits the critical point ηcr

p,r of the vapor–liquid binodal (Fig. 5.11. b). For
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Table 5.2: Stable vapor–crystal phase transition of AO model for q = 0.6 along with
metastable liquid-crystal phase transition obtained by constrained minimization of lin-
earized WBII(tensor) functional with respect to αG and nvac. Note the negative coexis-
tence pressure of the metastable liquid-crystal phase transition.

stable vapor-crystal
ηp,r ρc,crσ

3
c (ηc,cr) ρc,flσ

3
c (ηc,fl) βµcoex βσ3

cpcoex

1.40 1.051(0.550) 6.3e-05(3.3e-05) - 9.68 6.3e-05
1.45 1.061(0.556) 3.7e-05(1.9e-05) -10.21 3.7e-05
1.50 1.071(0.561) 2.2e-05(1.2e-05) -10.74 2.2e-05

metastable liquid-crystal
ηp,r ρc,crσ

3
c (ηc,cr) ρc,flσ

3
c (ηc,fl) βµcoex βσ3

cpcoex

1.40 1.045(0.547) 0.940(0.492) - 9.89 -0.22
1.45 1.046(0.548) 0.940(0.492) -10.83 -0.66
1.50 1.046(0.548) 0.939(0.492) -11.77 -1.09

higher values of ηp,r > ηcr
p,r, the liquid branch is metastable with respect to a corre-

sponding phase transition to a lower (vapor) density. Decreasing the polymer–colloid
size ratio by a slight value, e.g. to q = 0.30, results in a completely metastable vapor–
liquid binodal (Fig. 5.11. c).

Using φAO as the effective interaction between colloidal particles in simulations and
assuming a linear dependence of ηcr

p,r and ηtr
p,r on polymer–colloid size ratio, an ap-

proximate value for cross–over size ratio is obtained as qtrans = 0.45 [110]. The same
value for qtrans is also reported by another simulation study with a lattice version of
the AO model in which the polymers are restricted to a cubic lattice [123]. The ob-
tained cross–over value from the linearized WBII(tensor) is closer to that of the per-
turbation theory using φAO, and also that of free volume theory, i.e. 0.31 and 0.32
respectively [105, 110, 122]. In Ref. [124], the renormalization theory is used in order to
obtain analytical forms for the first, second, and third derivatives of the grand poten-
tial with respect to the colloid density. These derivatives are then used for computing
the colloid chemical potential, the pressure, and the vapor–liquid critical points. Con-
sequently, in the colloid limit where thickness of the depletion layer is assumed to be
independent of the polymer density, the cross–over value to a metastable vapor–liquid
binodal is reported as qtrans = 1/3 [124].

There are limited number of experimental studies reporting the value of qtrans. In
Ref. [106], colloidal polystyrene suspensions are used which are electrostatically sta-
bilized by sulfate groups. For preparing the samples, hydroxyethyl cellulose which
are used as polymeric chains are made non–adsorbing by adding non–ionic surfac-
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tant to the suspension. Three different samples of polystyrene suspension are used
whose particles diameter are σc = 0.12, 0.16, and 0.19 micrometers with about 10%
polydispersity. The effective polymer coil diameter is approximated as σp = 400Å,
i.e. the polymer–colloid size ratio of the samples are q = 0.33, 0.25, and 0.21. Only
in the latter case a coexistence of colloid–poor (vapor) and colloid–rich (liquid) re-
gions could not observed [106]. In Ref. [107], two different samples of Polymethyl–
methacrylate (PMMA) with about 5% polydispersity are used as colloidal particles.
The particles are sterically stabilized by coating with thin chemically grafted layers of
poly-12-hydroxystearic acid and suspended in cis–decalin. Polystyrene in cis–decalin
is used as non–adsorbing polymers. The samples are prepared by mixing PMMA sus-
pension with different polystyrene stock solutions. The experiments are done for three
different polymer–colloid size ratios q = 0.08, 0.25, and 0.57. Here, for q ≥ 0.25 a stable
three–phase coexistence of the colloidal vapor, liquid, and crystal is observed [107].

5.4.2.3 Small q’s

The main importance of this regime is that the effective pair potential of the AO model,
φAO from Eq. (5.2) with q . 0.1547, is exact. As a result the suspension can be used as a
prototype for a simple fluid with short–range attractions. Here, we have investigated
the phase diagram for q = 0.1 as an exemplary case. As shown in Fig. 5.12. a the broad-
ening of the phase coexistence region is more significant. Here, a small increasing in
the polymer reservoir packing fraction is enough for a rapid skew of the liquid branch
toward smaller colloid densities. A comparison with the obtained phase diagram from
simulations with the effective pair potential using Nc = 108 colloidal particles shows a
fairly good agreement [110]. Although an investigation on the finite size effects in sim-
ulations and its influence on the obtained binodal is not performed, we will compare
these results with ours in the following.

On the crystal branch, the obtained solid coexistence density from simulation shifts
slowly toward higher colloid densities from its hard–sphere value at ηp,r → 0 up to
ηp,r ≈ 0.07 where it shows a rapid shift to highly packed densities ρc,cr ≈ 1.3 and stays
there for higher ηp,r’s. This transition is more moderate in the obtained solid coex-
istence density from linearized WBII(tensor) functional. Moreover, for ηp,r & 0.06 a
meta–stable isostructural solid–solid phase transition is observed in simulations. We
could not confirm such a phase transition. In Fig. 5.12. b, we have plotted the effec-
tive free energy βfeff for selected values of ηp,r. Although the topology of the curves
at higher colloid densities suggest a phase transition, the constrained minimization
does not yield a metastable solid for ρcσ

3
c < 1.02. Nevertheless, the spinodal points,

the colloid densities at which ∂2βfeff/∂ρ
2
c = 0, are computed and marked with red tri-

angles in Figs. 5.12. a and 5.12. b. Using the obtained spinodal curve, we can make a
rough estimate of the critical point of the solid–solid phase transition. In comparison
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Figure 5.12: a) Phase diagram of the AO model for q = 0.1. Red solid curves are
the binodals from the linearized WBII(tensor) functional. The solid–solid spinodal
for the high density branch is shown by red triangles. Diamonds show simulation
results [109, 110]. The solid–solid spinodal curve is shown for higher branch of the
density with red triangles. Free volume theory binodals [110] (dash–dotted lines) em-
ploy Eq. (5.27) for the free energy with α always taken from the bulk fluid expression
(Eq. (5.24)) and fc parametrized by accurate equation of states for the HS fluid and
crystal phase. Long–dashed curves show the result from the free volume model for an
ideal crystal (see Section 5.4.1). Green triangles show liquid–crystal coexistence densi-
ties for full minimization (see Section 5.4.4).
b) Effective free energy density of the crystalline state of AO model for q = 0.1 obtained
by constrained minimization of linearized WBII(tensor) functional with respect to
{αG, nvac}. The circles at each ηp,r represent the colloid density at which ∂2βfeff/∂ρ

2
c = 0

(spinodal points). Only a branch of spinodal points at higher densities has been found.
For smaller ρc, a constrained minimization of the effective free energy functional is not
possible.

with simulation, our critical point occurs approximately at the same polymer reservoir
packing fraction, but at smaller colloid density.

The deviation of FMT results and simulations from Ref. [110] is more pronounced on
the fluid branch. The obtained curve from simulations has a negative slope at ηp,r → 0
similar to those of the higher polymer–colloid size ratios. In contrast, we have obtained
a positive slope for the fluid branch at this limit. This unusual behavior is also observed
in a more recent and larger–scale simulation of the AO model with more than 500
colloidal particles for q = 0.15 [77]. As shown in table 5.3, the obtained coexistence
densities from simulation of HS limit, i.e. ηp,r = 0, and ηp,r = 0.1, suggest a slight
positive slope for the fluid branch. In Ref. [110], a second order perturbation theory
is also investigated. The hard–sphere system is used as a reference system whose free
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Table 5.3: Comparison of the obtained values for coexistence densities of the AO model
for q = 0.15. The FMT results are obtained from constrained minimization of linearized
WBII(tensor) functional with respect to αG and nvac. The simulation results are from
Ref. [77].

FMT: SIM:
ηp,r ρc,crσ

3
c (ηc,cr) ρc,flσ

3
c (ηc,fl) βσ3

cpcoex ρc,crσ
3
c (ηc,cr) ρc,flσ

3
c (ηc,fl) βσ3

cpcoex

0.000 1.041(0.545) 0.940(0.492) 11.576
0.001 1.041(0.545) 0.945(0.495) 11.88
0.025 1.074(0.562) 0.953(0.499) 11.37
0.050 1.117(0.585) 0.955(0.500) 10.43
0.075 1.173(0.614) 0.945(0.495) 9.03
0.100 1.223(0.641) 0.920(0.482) 7.25 1.222(0.640) 0.943(0.494) 8.00

energy is provided by the Carnahan–Starling and the Hall expressions. The attractive
part of φAO is then treated as a perturbation and the total free energy is calculated. The
obtained binodal by this method also shows a positive slope for the fluid branch at
ηp,r → 0 [110].

In Fig. 5.12. a, we have also shown the obtained binodals for free volume theory and
the free volume model. For obtaining the results for free volume theory, the effective
free energy density is computed using Eq. (5.27) [110]. The free volume fraction α
from Eq. (5.24) is used for both the fluid and the solid phases. The corresponding
hard–sphere free energy density fc are calculated by the Carnahan–Starling (fluid) and
the Hall (solid) expressions. For the free volume model, the free volume fraction of the
solid phase is calculated for an ideal fcc unit cell (see page 87) and for the fluid α
from Eq. (5.24) is used. The hard–sphere free energy density is calculated using the
WBII(tensor) functional, i.e. the Carnahan–Starling expression for the fluid and con-
strained minimization of the functional with respect to αG and nvac for the solid.

5.4.3 The polymer density profile

The colloid density in in crystalline state is approximated by Gaussian peaks which are
ordered in an fcc cubic unit cell. But where do the polymers sit in this crystalline state?
As an exemplary case, we show here the results for the polymer density profile from
constrained minimization with respect to the Gaussian width while keeping fixed the
vacancy concentration at a reasonably low value, nvac = 2 · 10−4. The calculations are
done for ρcσ

3
c = 1.04 which is the pure hard–sphere coexistence density.

Since we have a finite value for the vacancy concentration nvac, it is possible for poly-
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mers to fill in the lattice sites. However, this is not the case for small polymer–colloid
size ratios, e.g. q = 0.1, for which there is enough space in an ideal lattice. Here, the
polymers tend to fill the interstitials in the fcc unit cell (see Fig. 5.13. a). By increasing
the polymer–colloid size ratio, and consequently decreasing the available free volume
at the interstitials, it is reasonably expected that the majority of polymers fill the vacant
positions at lattice sites.

In order to quantify this transition, one can define γ(q) as the ratio of polymer number
density at lattice sites rlatt, to that at the interstitials rinter.

γ(q) =:
ρp (rlatt)

ρp (rinter)
. (5.52)

Note that the obtained polymer density shares the same symmetries as the colloid den-
sity profile in an fcc unit cell (see Appendix A.1), Therefore, we have used the polymer
number density at rlatt = (0, 0, 0) and rinter = (a

2
, 0, 0) for obtaining γ. A cross–over

from the interstitial–filling–polymers being the majority to that of the lattice–filling–
polymers, occur at q0 where γ(q0) = 1. In Fig. 5.14 we have shown γ(q) as a function
of polymer–colloid size ratio for our selected set of parameters, i.e. ηp,r = 0.05 and
ρc = 1.04. In this case, we have obtained q0 ≈ 0.65. In Fig. 5.13. b, we have shown the
polymer density profile for q = 0.65 on one of the faces of the fcc unit cell. Here, one
can see that the density of the lattice–filling– and the interstitial–filling–polymers have
almost the same values.

For larger values of q, the free available volume at interstitials vanishes. In Fig. 5.13. c
we have shown the density profile for q = 1.0 where the majority of polymers are on
scarce vacant lattice sites.

As a general rule, the polymer density at the lattice site ρp(rlatt) is increased after full
minimization in comparison with its initially constrained minimized case. Perform-
ing a full minimization of the linearized WBII(tensor) functional is discussed in Sec-
tion 5.4.4 and the results for the polymer density profiles are presented in Fig. 5.16 for
q = 0.1.

5.4.4 Full minimization

We have investigated the effect of full minimization on the equilibrium properties of
the fcc solid phase for three exemplary parameter pairs {q, ηp,r} = {1.0, 0.64}, {0.6, 0.5}
and {0.1, 0.05}. For this purpose, after fixing the vacancy concentration, an iterative
solution is initiated with a Gaussian profile for colloidal particles. At each step, using
the current density profile of colloids ρ(i)

c , the equilibrium polymer density profile ρ(i)
p,eq

is calculated. Consequently, the excess chemical potential of the colloids and a new
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Figure 5.13: The local polymer packing fraction ηp(r) = (πσ3
p/6)ρp(r) on one of the faces

of the fcc cubic unit cell (z = 0) for ηp,r = 0.05, ρcσ
3
c = 1.04, and three different values

of polymer–colloid size ratios: (a) q = 0.1, (b) q = 0.65, and (c) q = 1.0. The results are
obtained by constrained minimization of the linearized WBII(tensor) functional with
respect to αG while the vacancy concentration is fixed nvac = 2 · 10−4.
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and the constrained minimization with respect to {αG, nvac}. Blue dashed line is differ-
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full minimization (nvac = 2 · 10−4 fixed). It is seen that the free energy is not very sensi-
tive to minimization with respect to nvac whereas the full minimization with respect to
ρc(r) introduces noticeable decreases.

Table 5.4: Comparison of phase coexistence densities ρc,cr and ρc,fl for selected param-
eter pairs {q, ηp,r} obtained by constrained minimization with respect to αG and nvac,
and full minimization with fixed nvac = 2 · 10−4 of linearized WBII(tensor) functional.

constrained full minimization
q ηp,r ρc,crσ

3
c (ηc,cr) ρc,flσ

3
c (ηc,fl) ρc,crσ

3
c (ηc,cr) ρc,flσ

3
c (ηc,fl)

1.0 0.64 1.039(0.544) 0.944(0.494) 1.036(0.542) 0.942(0.493)
0.6 0.50 1.042(0.546) 0.943(0.494) 1.035(0.542) 0.943(0.494)
0.1 0.05 1.186(0.621) 0.956(0.501) 1.162(0.608) 0.945(0.495)
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density profile ρnew
c is computed. The updated colloid density profile ρ(i+1)

c is obtained
by a mixture of ρ(i)

c and ρnew
c . In order to obtain a global minimum for the free energy

density, the procedure should be re–initiated by an updated nvac (see Appendix A.4 for
more details).

We will denote the effective free energy obtained by their corresponding minimization
methods as follows,

βfeff,0 : constrained minimization with respect to αG with fixed nvac = 2 · 10−4,
βfeff,1 : constrained minimization with respect to αG and nvac,
βfeff,2 : full minimization with fixed nvac = 2 · 10−4, (5.53)

Furthermore, in order to quantify the efficiency of minimization methods, we define
the following effective free energy differences,

∆βfeff,i = βfeff,0 − βfeff,i , with i = 1, 2 , (5.54)

with βfeff,i defined in Eq. (5.53). As it is shown in Fig. 5.15 for q = 0.1 and ηp,r = 0.05,
we observe that difference made by minimization with respect to nvac is negligible in
comparison to performing a full minimization. We conclude that nvac does not have
a noticeable effect on the obtained free energy density, and hence the corresponding
phase coexistence densities. Therefore, we have done full minimization only for nvac =
2 · 10−4.

Generally, ∆feff,2 is more significant for the AO model in comparison with pure hard–
sphere system where it is of the order of 10−3kBT per particle [80]. By decreasing the
polymer–colloid size ratio, this difference increases and reaches 0.1kBT for q = 0.1 (see
Fig. 5.15). The effect of full minimization on the phase coexistence densities is indicated
in Figs. 5.9 and 5.12 by the green triangles. The numerical values of the binodals are
compared in table 5.4. Only for q = 0.1 a noticeable shift is observed.

In the constrained approximation, colloid density profiles are isotropic around lattice
sites, except for tiny effects of overlapping Gaussians from neighboring sites. Accord-
ing to full minimization, small anisotropies occur. For q = 1.0 and 0.6, polymers
have no effect on the colloid profiles, and these anisotropies are more or less equiv-
alent to those in pure HS crystals [80]. For q = 0.1, we see that the anisotropies are
slightly enhanced compared to the pure hard–sphere system (Figs. 5.16. a and 5.16. b)
but these anisotropy differences are surprisingly small. Nevertheless, the free energy
difference of approximately 0.1 kBT per particle due to anisotropy is lager by a fac-
tor of 100 compared to pure HS, so the attractive part of the free energy functional is
much more sensitive to those anisotropies. The corresponding polymer profiles are
shown in Figs. 5.16. c and 5.16. d. Since for small q polymers go to the interstitials, we
have put the origin of the coordinate system at interstitials. The polymer profiles are
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anisotropic around lattice sites also in the constrained approximation. The main effect
of full minimization is seen in the polymer occupancy near the lattice sites, i.e. in col-
loid vacancies. For the fully minimized crystal, much more polymers are sitting at the
lattice sites compared to the crystal within constrained minimization.
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5.4.5 Comparison of RF(tensor) and WBII(tensor)

It is possible to linearize another type of FMT functional, e.g. RF(tensor), to obtain the
free energies and the phase coexistence densities of the AO model. In this section, the
results for constrained minimization of linearized RF(tensor) functional is compared
with those of the linearized WBII(tensor).

5.4.6 Crystal free energies

The main difference between the two type of functionals is their underlying equation of
states which is Percus–Yevick for RF(tensor) versus Carnahan–Starling for WBII(tensor)
(see Section 4.1 and Section 4.3). This difference results in a difference in the free en-
ergy density βσ3

cf of the pure hard sphere crystal which remains below 1% at its phase
coexistence density ρcσc ≈ 1.04. For the linearized version of these functionals which
are supposed to describe the AO model, the difference in the effective free energy den-
sity βσ3

cfeff is a nontrivial function of the polymer–colloid size ratio q, and the polymer
reservoir packing fraction ηp,r, as well as the colloid bulk density ρc. In case of the lat-
ter, as a general rule by increasing the colloid density this difference converges to its
counterpart of the hard sphere system. This is rationalized by the fact that in this limit
the colloidal hard spheres are nearly close–packed, leaving little space for the poly-
mers. As a result, in this regime the effective free energy is mainly dominated by the
contribution from the colloidal particles.

For larger size ratios q & 0.6, the difference in the effective free energy density βσ3
c∆feff

increases with ηp,r for a given ρc. The difference stays within 5% of the total effective
free energy density up to the triple point ηp,r ' ηtr

p,r. Note that in this case the effective
free energy density is similar to the corresponding hard sphere free energy density
since ρp ≈ 0 (see Fig. 5.17).

As the polymer–colloid size ratio decreases, the polymer density in the crystal in-
creases and affects the value of the effective free energy density. For small polymer–
colloid size ratios, e.g. q = 0.1, the significant increment of polymer density results in a
substantial difference in the effective free energy density. Furthermore, in this limit the
difference between the effective free energy density obtained by these linearized func-
tionals becomes more pronounced and is not a marginal effect anymore. This is shown
in Fig. 5.17 where βσ3

cfeff for the linearized WBII(tensor) and RF(tensor) functionals
along with their differences is shown for typical solid densities of colloid ρcσ

3
c & 1.
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Figure 5.17: Comparison of the effective free energy density βσ3
cfeff(ρc) of the crys-

talline state of the AO model obtained by constrained minimization of the linearized
WBII(tensor) functional and the RF(tensor) functional. a) For higher polymer–colloid
size ratios, q & 0.6, the difference in the obtained βσ3

cfeff(ρc) stays within 5% of the
total effective free energy for different values of polymer reservoir packing fraction.
b) The difference in effective free energy is plotted as a function of colloid bulk den-
sity. All the curves for different ηp,r lie on the same curve after ρcσ

3
c & 1.1 which is

the difference between the free energy densities for HS (ηp,r = 0). c) For q = 0.1 the
substantial difference in the polymer equilibrium density results in a noticeable dif-
ference between the obtained results from the two functionals. The obtained results
from constrained minimization of WBII(tensor) functional and RF(tensor) functional
are respectively presented by solid and long–dashed curves. d) By increasing the col-
loid density there is little space for polymers, thus the free energy density is mainly
dominated by colloidal hard spheres and the curves converge to the difference in the
free energy density in case of pure hard spheres. The thermal de Broglie wavelength
λc is set to σc.
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Figure 5.18: Comparison for phase diagram of the AO model for a) q = 0.6 and b)
q = 0.1 obtained by the linearized WBII(tensor) and RF(tensor) functionals. The sta-
ble binodals obtained by constrained minimization of effective free energy of the lin-
earized functionals are represented by red (WBII(tensor)) and green (RF(tensor)) solid
curves. For q = 0.6 the dashed curves correspond to the meta–stable phase coexistence
densities. The back diamonds are MC simulations results from Refs. [109, 110].

5.4.7 Phase diagram

The linearized functionals turn into their corresponding pure hard sphere functionals
in the limit of ηp,r → 0. As it is expected, in this limit the known phase coexistence
densities obtained by constrained minimization of the crystal free energy density are
recovered [80]: ρc,crσ

3
c = 1.040 and ρc,flσ

3
c = 0.945 for WBII(tensor) and ρc,crσ

3
c = 0.984

and ρc,flσ
3
c = 0.892 for RF(tensor).

For large polymer–colloid size ratios, e.g. q = 0.6, this difference in the phase coexis-
tence densities is also present at higher ηp,r. The absolute value of the difference slightly
decreases by increasing the polymer reservoir packing fraction to ηtr

p,r (see Fig. 5.18.b).

For q = 0.1, where the fluid–fluid binodal is meta–stable with respect to fluid–solid
phase transition, the broadening of the fluid–crystal coexistence region is noticeably
different for the two types of investigated linearized functionals (see Fig. 5.18.a). Here,
the solid branch of the binodals keeps almost the same difference as the pure hard
sphere limit for higher ηp,r. On the fluid branch however, the positive slope of the
binodal is present up to ηp,r ≈ 0.1 for the linearized RF(tensor) functional. By slightly
increasing the polymer reservoir packing fraction, the curve turns toward lower colloid
densities very rapidly. For the linearized WBII(tensor) functional, the turn–over occurs
at ηp,r ≈ 0.04 and the broadening toward lower colloid densities happens in a broader
range of ηp,r.
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5.5 Summary and Conclusions

Using classical density functional theory, we are able to describe the fluid and crystal
phases of the AO model in a unified way. A fundamental measure type functional for
the free energy of the model is derived by linearization of a pure hard sphere functional
with respect to the polymer density. The effective free energy of the colloids in an fcc
crystalline state is obtained by constrained minimization of the linearized functional.
The free energy curves are qualitatively similar to those of a system with attractive
interaction between particles. In the limit of small q in which the effective potential of
the AO model describes precisely the short–range attraction between colloids, we have
compared the attractive part of the effective free energy of the colloids with those of
the simplified free volume for ideal crystal and a naive mean–field approximation in
which the attractions are of second order in the colloid density. While the free volume
theory captures the qualitative behaviour of βfeff,att with increasing colloid density, the
naive mean–field curves account for only 20% of it and fails to give a good description
of the AO model. We conclude that a successful description of colloidal systems with
short–range attractions should start with a “translation” of the attractive interaction
into fictitious polymeric attractive agents which are treated as a second species in the
construction of the functional from the beginning rather than the conventional mean–
field treatments which are successful for longer–ranged potentials, e.g. the Lennard–
Jones potential.

The phase diagrams which are obtained by the common tangent construction of ef-
fective free energy curves are in good agreement with available simulation data. By
decreasing the polymer–colloid size ratio the fluid–fluid binodal becomes unstable
with respect to the fluid–solid phase transition. We have shown that the transition
into metastability of the fluid–fluid binodal occurs at q ≈ 0.31. The rather interesting
polymer distribution in the crystalline state of the colloids is discussed and it is shown
that for smaller size ratios the interstitial spaces in cubic unit cell is more favourably
occupied by the polymers. This scenario is changed for higher size ratios where the
polymers tend to fill the vacant lattice sites for q & 0.6.

The most important aspect of the AO model is the small q regime in which there is
an exact mapping of the colloid–polymer mixture onto a single–component colloid
suspension with short–range attractive interactions. In this case, the linearized func-
tional takes care of the pairwise attractions in a fundamentally different way than the
conventional methods in which the total free energy is extrapolated from a reference
bulk liquid state. As a result of this extrapolation, the obtained direct correlation func-
tions from this free energy inherit a spurious isotropic part from the liquid state. The
linearized functional however, genuinely results in anisotropic direct correlation func-
tions which are essential for a correct description of the crystalline state as is reported
also for Taylor–expanded density functionals [125]. Furthermore, these anisotropic
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direct correlation functions can be useful for investigation of a generalized theory of
elasticity which is potentially applicable to the colloidal system [126].

The small q regime of the AO model as a prototype of short–range attractive systems
is a good candidate for investigation of interfacial and nucleation phenomenal by sim-
ulations [113], for instance the estimation of nucleation barriers via finite–size Monte–
Carlo methods [127, 128]. The proposed linearized functional in this study can also be
applied to flat and curved fluid–solid interfaces for instance in order to compute rather
precise free energies and obtain detailed information on the density distributions.





CHAPTER 6

THERMAL VACANCIES IN
CLOSE–PACKING SOLIDS

An ideal crystal with perfectly ordered particles at their lattice sites and complete trans-
lational symmetries, is the simplest situation for a substance to be investigated theo-
retically. However, this is not often the case in reality: Crystals contain defects. In spite
of their scarceness, these deviations from an ideal crystal affect physical properties of
the material considerably. Point defects which are localised around a lattice site are the
simplest deviation from an ideal crystal. Substitutional impurities, interstitials, and
vacancies are a few examples for point defects (see Fig. 6.1).

Vacancies are lattice sites at which there is no particle. They occur at finite temperatures
when particles move more frequently and change their position randomly. By virtue
of this thermal motion, vacant sites are left behind resulting in an inevitable finite equi-
librium concentration of vacancies nvac,eq in lattice. Thus nvac,eq is a very basic property
of a crystalline material which has a significant effect on other physical properties, e.g.
diffusion coefficient and compressibility. Although its magnitude and temperature
dependency in different materials have been studied for nearly a century [129, 130],
conclusive experimental results as well as a unified description for nvac,eq is missing.

Since point defect in general enhance the entropy of a crystal, they are thermody-
namically stable in an equilibrium state. The equilibrium vacancy concentration is
expressed as,

nvac,eq = exp (−β∆Gv) , (6.1)

which serves to define equilibrium Gibbs energy of vacancy formation [129]. Here,
β = (kBT )−1 with kB the Boltzmann constant and T denoting the temperature. In the
material science community, ∆Gv is decomposed into the enthalpic ∆Hv and entropic
parts T∆Sv. The enthalpic part is the sum of the formation energy Ev at finite tem-
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Figure 6.1: Point defects in a 2D ideal crystalline lattice. The lattice is assumed to be in
equilibrium and the exaggerated effect of point defects on their neighboring particles
(black circles) is sketched by a displacement from their ideal lattice site (dark gray).
The particles around a vacant position rest at a different place other than equilibrium
site in an ideal lattice without a vacancy. The adjacent particles to an interstitial (red)
or a substitutional (blue) particle are shifted outward in relation to the impurity.

peratures and the required work for creating a vacant site with volume Vv in a system
with pressure p; i.e. pVv. Since the main contribution of Ev is from its zero temperature
value, the calculation of ∆Hv is computationally less costly than the entropic part. The
formation entropy T∆Sv results from changes in the lattice vibration frequencies due
to presence of vacancies. The frequency of a lattice vibration mode is expected to de-
crease since the lattice becomes softer with vacant sites [129]. The mutual interactions
of these vibrations (anharmonic excitations) is another quantity which should be ad-
dressed at finite temperatures for a metallic system [131]. One can use quantum DFT
(qDFT) to obtain these quantities. However, even using approximate exchange and
correlation functionals Exc with the cost of uncertainties in the obtained results, does
not help to decrease the usual computational cost of qDFT and the use of supercom-
puters is required for such calculations [131, 132].

Assuming the particles interactions is expressed as a classical potential, one can take
advantage of the tools from classical statistical physics. Here, the problem of vacancies
and other point defects can be addressed by writing down an appropriate partition
function Q for the crystalline state. Having the partition function at hand, a closed ex-
pression for the desired physical quantity can be derived by minimizing the Helmholtz
free energy of the system βF = − lnQ. In case the resulting expression is not analyt-
ically solvable, computational numerics is used which is much less costly than those
needed for qDFT for instance. On the other hand, the form of obtained expression
might result in a better understanding of the physics of vacancies.
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In this chapter, we will follow the steps taken in Ref. [16] for deriving an expression
for the concentration of the thermal vacancies in equilibrium nvac,eq. In the first section,
an expansion of the crystal partition function is presented in terms of number n of
particles which are free to move. The series is based on the work by Stillinger et al.
developed by the ideas from the cell cluster theory [14]. According to the cell cluster
theory, in a nearly closed–packed system each particle is free to move in the vicinity
of its designated lattice site. The restriction of particles to their Wigner–Seitz (WS) cell,
chops the volume space of the integration domain in the partition function into sub–
volumes with boundaries set on the borders of the WS cell (see Fig. 6.2). For T = 0, all
particles are frozen at their lattice site and n = 0. By truncating the partition function
series after the second term n = 1, we obtain a simple relation for ∆Gv (Eq. (6.25)).
This relation reveals the dependency of ∆Gv on the equation of state and some three–
dimensional configuration integrals.

In case of HS as a purely repulsive system, the agreement with quantitative results
obtained mainly by Monte Carlo simulations is very good [102, 103, 133]. By tweak-
ing the series, the method is applied to the AO model for investigating the vacancy
concentration in a colloid–polymer mixture. The qualitative behaviour as a function
of polymer reservoir packing fraction is what we were expecting from the FMT results
for larger polymer–colloid size ratios. As a third example for a simple model poten-
tial, we apply the theory to the Lennard–Jones system. The equation of state for LJ
obtained by the first order approximation of the partition function series matches well
the parametrized van der Hoef equation of state [120]. The vacancy concentration is
calculated for a range of temperatures and densities and is compared to the limited
number of simulation results [134].

Motivated by these results, we have examined Nickel as an exemplary case for metal
with face–centered cubic crystal structure. For this purpose, the embedded–atom po-
tentials (EAM) are used. These potentials in their original form, are decomposed into
a pair potential which is purely repulsive and a more complex attractive part. The re-
pulsive part is due to the interaction of the nuclei and the attractive part is given in the
form of an embedding function of the local electron density [135]. The results obtained
by the EAM potentials with the same physical interpretations, show the same temper-
ature behaviour of the vacancy concentration as the LJ solid. For another form of EAM
whose potentials are fitted in a more elaborate way and do not have a clear physical
interpretation, the behavior is somewhat different.

In the following section, the appropriate partition function for describing a closed–
packed solid with vacancies is presented. Using the Stillinger series obtained by this
partition function in Section 6.2, our central result on the thermal vacancies is pre-
sented in Section 6.3. We report our numerical results in Section 6.4 for the classical
systems, i.e. HS, the AO model, and LJ, and for exemplary case of Nickel via EAM.
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6.1 The crystal partition function

Consider the partition function of a face–centered cubic (fcc) reference lattice for the
crystalline state of a one–component substance. In a canonical ensemble with fixed
number of particles N , physical volume of the system V , and temperature T , by in-
tegrating out the trivial kinetic part of the partition function, its configurational part
reads

Q(N, V, T ) =
1

N !λ3N

∫
R3

dr1· · ·
∫
R3

drN exp (−βΦ(r1, . . . , rN)) . (6.2)

The internal energy of the system Φ depends on the individual atom positions r1, . . . , rN ,
and it is assumed to be decomposable into a sum over 1–particle potential energies φi.

Φ (r1, . . . , rN) =
N∑
i=1

φi(r1, . . . , rN) . (6.3)

The 1–particle energies φi are resulting from the interaction between particles which
is assumed to be a classical potential of possibly many–body nature. For a substance
with a pairwise potential u(rij) = u(|ri − rj|), these 1-particle energies become,

φ2p
i (r1, . . . , rN) =

1

2

N∑
j=1
j 6=i

u(rij) . (6.4)

We have also investigated a many–body form for the 1–particle energies in the context
of the Embedded-Atom Model (EAM) which is designed for classical treatment of a
metallic system. For a detailed description see Appendix F. Here, the total 1–particle
energy φEAM

i is decomposed into a pair part and an embedding potential part,

φEAM
i (r1, . . . , rN) = φ2p

i (r1, . . . , rN) + φNp
i (r1, . . . , rN), (6.5)

where φ2p
i is calculated from Eq. (6.4) using a pair potential between the nuclei and the

N–body embedding potential φNp
i is given by,

φNp
i (r1, . . . , rN) = F (ρa

i (r1, . . . , rN)) . (6.6)

In this relation, F is the embedding function and ρa
i is the total electron density at the

position of particle i, originating from all the other particles. This electron density is
a superposition of single particle electron densities ρa

ij(r) which is given for a distance
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r = |ri − rj| of particle j. As a result, the total electron density ρa
i is calculated as

follows,

ρa
i (r1, . . . , rN) =

N∑
j=1
j 6=i

ρa
ij(|ri − rj|) . (6.7)

The embedding function F (ρa
i ) determines the potential energy of “embedding” the

particle i in the system as a function of the local host electron density. This function
along with the pair potential of the nuclei φij(r) and the single particle electron density
ρa
ij(r) must be determined by material–specific fits [136]. In the original formalism of

the EAM, these functions have a physical interpretation. The single electron density
is modeled on Hartree–Fock solutions for the outermost orbitals of the investigated
atom. The pair interaction of the nuclei is assumed to be the Coulomb interaction
of a screened charge of the nuclei Z2(r)e2/(4πε0r). The undetermined functions, the
screening function Z(r) and the embedding function F (ρa

i ), are obtained by fitting pa-
rameters to measured physical properties of the material [137, 138]. In another form of
parametrization, the physical interpretation is left aside and all the functions are ob-
tained by fitting to the experimental and ab initio simulation results [139]. For detailed
information on different parametrization of the EAM see Appendix F.

For further developments, one can use the ideas of the cell cluster theory [14]. Suppose
the fcc reference lattice has M ≥ N lattice sites at positions sj with j = 1 · · ·M which
span the physical volume of the system V . In the following, we want to decompose the
full configuration space Ω = R

3N into smaller volumes where particle coordinates rj
are integrated over suitable unit cells. For this purpose, we denote by p(i) a mapping of
a particle indexed by i = 1 · · ·N to the lattice site p(i) ∈ {1, . . . ,M} such that p(i) 6= p(j)
for i 6= j. Consider Rp as the sum of the square of the particle displacement from their
assigned lattice site.

Rp =
N∑
i=1

(ri − sp(i))
2 . (6.8)

For any set of particle coordinates R = {r1, ..., rN} we may minimize Rp with respect
to the possible mappings p and call the minimal p an association of R with p. The con-
figuration space of all R associated with a particular p forms Ωp and thus Ω =

∑
p Ωp.

Obviously, there are N ! mappings of p onto the same set of lattice sites, differing only
in the order of lattice sites. Each of these mappings give the same contribution to Q.
Let l number only the mappings onto distinct lattice sites, p ≡ pl. Then the configura-
tion integral in Eq. (6.2) is decomposed into a sum over these distinct mappings since
the combinatorial factor 1/N ! takes care of the sum over p’s which map on to the same
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set of lattice sites,

Q(N, V, T ) =
1

λ3N

∑
l

∫
ωl1

dr1 · · ·
∫
ωlN

drN exp (−βΦ(r1, . . . , rN)) . (6.9)

Note that the integration domain of each particle j is now restricted to its associated
unit cell ωlj , and the full configuration space is given by Ωpl = ωl1⊗· · ·⊗ωlN . ForM = N
the union of the integration domains sweeps the whole space, i.e. R3 = ωl1 ⊕ · · · ⊕ ωlN .

6.2 The Stillinger series

The partition function Q (Eq. (6.9)) can be written as a formally exact product series
involving reduced configuration integrals Z l

i , Z l
ij , . . . . These reduced configuration inte-

grals describe the correlated motion of one , two , . . . free particles which are labelled
as i , ij , . . . while the remainingN−1 ,N−2 , . . . particles are fixed at their associated
lattice sites sk. We define these reduced configuration integrals as,

Z l
i :=

∫
ωli

dri exp

(
− βφi(ri; {rj})

)
with rj =sj (j 6= i) ,

Z l
ij :=

∫
ωli

dri

∫
ωlj

drj exp

(
−β
[
φi(ri, rj; {rk}) + φj(ri, rj; {rk})

])
with rk=sk (k 6= {i, j}) ,

... . (6.10)

The integration domains fulfill ωli, ωlj, · · · ⊂ Ωpl , and they depend on the indices of
the free particles i, j and also on the mapping pl determining at which lattice sites
the other particles are fixed. Note that Zij for two non–interacting particles i and j
reduces to the product of the corresponding configuration integrals of the individual
particles Z l

iZ
l
j . The higher order terms can also be decomposed into the product of

configuration integrals of non–interacting subsets of particles. For instance, for three
moving particles from which only two of them, e.g. i and j, interact with each other,
the configuration integral can be written as Z l

ijk = Z l
ijZ

l
k. The full partition function Q

is equivalent to the N th order configuration integral Z l
1...N in which all of the particles

are free to move.

Q =
1

λ3N

∑
l

Z l
1...N . (6.11)
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Now we are able to write down an expansion for the partition function in terms of
number of free moving particles in the system.

Q(N, V, T ) =
1

λ3N

∑
l

{
N∏
i

Y l
i

N∏
i<j

Y l
ij

N∏
i<j<k

Y l
ijk . . .

}
(6.12)

The Y ′s are defined in terms of the Z ′s in a way that for nth term the contribution
of lower order terms are cancelled out and the remainder delivers the corresponding
value for configuration partition function of n free moving particles. The lowest order
term Y l

i corresponds to a single moving particle and therefore is equivalent to Z l
i . The

higher order terms are defined in a recursive relation as follows.

Y l
i := Z l

i ,

Y l
ij :=

Z l
ij

Y l
i Y

l
j

=
Z l
ij

Z l
iZ

l
j

,

Y l
ijk :=

Z l
ijk

Y l
ijY

l
jkY

l
ikY

l
i Y

l
j Y

l
k

=
Z l
ijk

ZlijZ
l
jkZ

l
ik

ZliZ
l
jZ

l
k

,

...

Y l
i1...in

:=
Z l
i1...in∏

{j} Y
l
j1...jm

. (6.13)

The product in the denominator of the nth order term sweeps over all proper subsets
of {i1 . . . in} with n − 1 elements. The inclusion of the last term Y l

1...N in the series of
Eq. (6.12) leads to a cancellation of all lower–order Y ′s by the denominator of Y l

1...N and
the identity for partition function (Eq. (6.11)) holds. Thus, the series is formally exact.

Consider a single freely moving particle among the otherwise frozen particles at their
lattice sites or equivalently more non–interacting moving particles. The series in Eq. (6.12)
is truncated after the first term and the partition function reads

Q ≈ Q1 =
1

λ3N

∑
l

N∏
i

Z l
i . (6.14)

For an ideal crystal with no vacant lattice site there is only one distinct mapping pl and
all single-particle configuration integrals are equal, Z l

i ≡ Zs. Therefore, the Helmholtz
free energy of the system in this approximation turns into,

βF1

N
= − ln

Zs
λ3

. (6.15)
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In the low temperature limit T → 0, any displacement of the single free moving particle
from its equilibrium lattice site, i.e. minimal single–particle potential φi, substantially
decreases the integrand in the configuration integral exp(−βφi (ri; {rj}). Therefore, in
the low temperature limit one can approximate Zs with its integrand. Subsequently,
the first order approximation of the Helmholtz free energy density F1/N is equal to φi
which is equivalent to the cohesive energy per particle ucoh. Assuming λ = 1, the free
energy density reads

lim
T→0

F1

N
= φi =: ucoh . (6.16)

This confirms that in this limit the leading–order truncation is exact.

In the next section, we will introduce vacant sites to the ideal crystal lattice in order
to obtain the Helmholtz free energy and calculate the equilibrium thermal vacancy
density.

6.3 Equilibrium thermal vacancies

Suppose we have a finite number of vacant sites Nv with a small number density in
our fcc lattice,

nvac =
Nv

M
= 1− N

M
� 1 . (6.17)

This implies that statistically the vacancies do not interact with each other and each
particle at its lattice site feels the presence of at most one of them due to the finite
range of the interaction potential. Therefore, there are two types of Zi’s in the leading
term of the Stillinger series Q1 (Eq. (6.14)). We will represent the contribution of the
particles which do not have any interaction with vacancies by Zs, while Zsv,i denotes
the contribution of those who feel a vacant position at their ith neighboring layer, i ∈
{1..nm}. Here, nm represents the cut–off range of the potential in units of layers around
a lattice site.

In an fcc close–packed lattice, there are certain number of particles in each layer around
a particle (for a 2D representation see Fig. 6.2). This number is denoted by gi here.
Therefore, in our lattice we have giNv particles in the ith neighboring layer of a vacant
site which consequently feel this vacant site at their ith layer. The neighboring lattice
sites of the remaining N − Nv

∑nm

i=1 gi particles are completely filled. Moreover, the
distinct mappings pl in the sum over l from Eq. (6.14) is now interpreted as different
configurations of N identical particles in M lattice sites. This results in a combinatorial
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Figure 6.2: Schematic lattice in 2D with one vacancy. We have assumed a cut–off
Lennard–Jones interaction potential. Shown are examples for the single particle in-
tegral domains ωi around lattice sites si, given by the hexagonal Wigner–Seitz cell sur-
rounding the site si. The grey scale indicates the (exaggerated) 1–particle energies
φ2p
i from Eq. (6.4) due to the all other fixed particles. Different colors mark different

shells around the vacant position up to fifth shell neighborhood. The integral over
exp(−βφ2p

i ) within the Wigner–Seitz cell gives the single–particle integral; Zsv,1 for the
cell next to the vacancy (red particle), Zsv,2 for the cell in second–shell distance to the
vacancy (orange particle) and Zs for the cell in the upper right corner (black particle).

factor of
(
M
N

)
. Finally, we can rewrite the leading term as follows.

Q1 =
1

λ3N

(
M

N

)
(Zs)

N−Nv
∑nm
i=1 gi

nm∏
i=1

(Zsv,i)
giNv (6.18)

The first order approximation of the free energy density is,

βF1

N
= − 1

N
lnQ1

= − ln
Zs

λ3
− 1

N
ln

{(
M

N

)}
− M −N

N

nm∑
i=1

gi ln

(
Zsv,i

Zs

)
(6.19)

In the thermodynamic limit in which we let N,M → ∞ while keeping the particle
number density ρ = N/V constant, one can rewrite the second term in Eq. (6.19) using
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the Stirling approximation for large numbers1.

− 1

N
ln

{(
M

N

)}
= − 1

N
ln

(
M !

N !(M −N)!

)
= −M

N
ln

(
M

M −N

)
+ ln

(
N

M −N

)
=

1

1− nvac

lnnvac + ln

(
1− nvac

nvac

)
with nvac = 1− N

M

=
nvac

1− nvac

lnnvac + ln (1− nvac) . (6.20)

We can combine Eqs. (6.20) and (6.19) to rewrite the first order approximation for free
energy density as follows.

βF1

N
= − ln

Zs

λ3
+

nvac

1− nvac

lnnvac + ln(1− nvac)

− nvac

1− nvac

nm∑
i=1

gi ln

(
Zsv,i

Zs

)
. (6.21)

In order to obtain the equilibrium vacancy concentration nvac,eq, one should minimize
the free energy density with respect to nvac.

∂ (βF1/N)

∂nvac

= − 1

Zs

∂Zs

∂nvac

+
1

(1− nvac)2
lnnvac −

1

(1− nvac)2

nm∑
i=1

gi ln

(
Zsv,i

Zs

)
−nvac

nm∑
i=1

gi

{
1

Zsv,i

∂Zsv,i

∂nvac

− 1

Zs

∂Zs

∂nvac

}
≈ − 1

Zs

∂Zs

∂nvac

+ lnnvac −
nm∑
i=1

gi ln

(
Zsv,i

Zs

)
, (6.22)

where in the last step we have assumed nvac � 1. The equilibrium vacancy concen-
tration nvac,eq minimizes the free energy density and sets Eq. (6.22) to zero. As a result,
nvac,eq reads

nvac,eq ≈ exp

(
1

Zs

∂Zs

∂nvac

) nm∏
i=1

(
Zsv,i

Zs

)gi
. (6.23)

1limN→∞ lnN ! = N lnN −N
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On the other hand, by denoting the density of lattice sites with ρM = M
V

, the assumption
of nvac � 1 means that ρM ≈ ρ. As a result, the exponent in Eq. (6.23) turns into,

1

Zs

∂Zs

∂nvac

=
∂ lnZs

∂ρM

∂ρM
∂nvac

=
∂ lnZs

∂ρM

ρ

(1− nvac)2

≈ ρ
∂ lnZs

∂ρ

≈ −ρ ∂βF/N
∂ρ

= −βp
ρ
. (6.24)

In the last step we have used βF/N ≈ − lnZs and the thermodynamic relation for
pressure p = ρ2∂(F/N)/∂ρ. Using nvac,eq = exp (−β∆Gv), we arrive at our central
result for the Gibbs free energy of vacancy formation.

∆Gv =
p

ρ
− β−1

nm∑
i=1

gi ln

(
Zsv,i

Zs

)
. (6.25)

This relation is useful for a substance whose particles interaction is expressed as pair in-
teraction and the configurational integral are obtainable via Eq. (6.10). For hard spheres
where nm = 1 and g1 = 12, this formula is very accurate [16]. The pressure term actu-
ally determines the order of magnitude of nvac (∼ 10−5 at coexistence) and the second
term provides a correction. Note that in this case the configurational integrals Zs and
Zsv,1 are calculating the free available volume for the free moving hard sphere particle.

For a ν–component system with ν ≥ 2 there is no clear interpretation for the config-
urational integrals in terms of moving particles. In order to apply the theory to a 2–
component system for instance, one may consider the effect of single moving particles
of each species separately in the first order approximation. In this way, the treatment
in this approximation is similar to the one–component system. However, the higher
order terms corresponding to the correlated motion of two or more particles become
rapidly too complex due to the appearance of inter-species terms.

For the AO model (see Section 5.1) one can extend the theory in the following way. We
work in the semi–grand ensemble with fixed number of colloidal particles and con-
stant polymer chemical potential µp which is sustained with a coupled reservoir of
polymers. Here, the integrand of the configuration partition function of the crystal is
weighted by the corresponding term to the polymer Hamiltonian, i.e. the Hamilto-
nian of an ideal gas with constant chemical potential in the free volume fraction of the
lattice. The configurational partition function of the crystal of hard–sphere colloids is
therefore given by,

Q(N,µp, V, T ) =
1

λ3N

∑
l

∫
· · ·
∫

Ωpl

dr1 · · · drN ΘOV ({ri}) exp

(
eβµp

λ3
p

Vfree({ri})
)
. (6.26)
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Here, the ri are colloid positions and ΘOV is the colloid–colloid interaction term. Due
to the hard–sphere nature of the interaction, this term is written in the form of a Heavi-
side step function which is 1 when there is no overlap of hard–spheres, i.e. |ri− rj| > σ
for every {i, j} ∈ [1 . . . N ], and zero otherwise. Moreover, λp is the polymer de Broglie
thermal wavelength and Vfree is the free volume for one polymer expressed as a func-
tion of the positions of all colloids.

The cell cluster expansion for partition function (Eq. (6.12)) now starts with the zeroth
order in which all colloid particles are fixed. The zeroth order configuration integral
Z0,AO is originating from polymers only since the hard–sphere colloids do not interact
with each other at this limit and is given by

Z0,AO = exp

(
eβµp

λ3
p

(
NvV

(1)
p + (N −Nv)V (0)

p

))
, (6.27)

where V (1)
p is the free volume for one polymer within the WS cell around a vacant site

and V (0)
p is the free volume for one polymer within the WS cell around an occupied site.

The factor Nv resp. N − Nv arises from the configurational integral for one polymer
over the whole lattice which picks up V

(1)
p at all vacant sites and V

(0)
p at all occupied

sites. Note that the simple free volume model for the crystal discussed in Section 5.4.1
corresponds to the partition function Z0,AO with Nv = 0.

The configuration integral corresponding to a single moving colloid particle reads

Z l
i,AO :=

∫
ωpl

dri ΘOV (ri; {rj}) exp

(
eβµp

λ3
p

Vfree(ri; {rj})
)

with rj = sj(j 6= i)

≈
∫
ωpl

dri ΘOV (ri; {rj}) exp

(
eβµp

λ3
p

Vfree(si; {rj})
)

≈ Z0,AO Z l
i,HS . (6.28)

Here, we have approximated the available free volume for the polymers with a sin-
gle moving particle Vfree(ri; {sj}) with the free volume with all particles frozen at their
lattice sites Vfree(si; {sj}). As a result, the configuration partition function of a single
moving colloid is approximated by the product of Z0,AO from Eq. (6.27) and Z l

i = Z l
i,HS

from Eq. (6.10) with hard–sphere potential. By making this approximation, the poly-
mer contribution is assumed to be unaffected by the free-to-move colloids. We expect
this approximation to be accurate for q & 0.6 where polymers preferably occupy va-
cant sites2. Using Eqs. (6.27) and (6.28), the first order approximation for the AO model

2see Chapter 5.4.3 and Fig. 5.13
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partition function Q1,AO is given by,

Q1,AO =
1

λ3N

∑
l

Z l
i,AO ≈

1

λ3N

∑
l

Z0,AO Z l
i,HS

≈ 1

λ3N

(
N +Nv

N

)(
ZHS

s

)N−g1Nv
(
ZHS

sv

)g1Nv

× exp

(
eβµp

λ3
p

(
NvV

(1)
p + (N −Nv)V (0)

p

))
, (6.29)

where as in the single–component case (Eq. (6.18)) the distribution of Nv vacancies on
the available M = N +Nv lattice sites converts the sum over l to a combinatorial factor.
The configuration integral for a single moving hard–sphere particle with a vacant site
in its neighborhood is denoted by ZHS

sv , and ZHS
s represents one whose its neighbor-

ing lattice sites are completely filled. Using Eq. (6.29) the Helmholtz free energy per
particle reads

βf1,AO =
βF1,AO

N
= − 1

N
ln Q1,AO

=
nvac

1− nvac

lnnvac + ln (1− nvac)

− ln

(
ZHS

s

λ3

)
− g1nvac

1− nvac

ln

(
ZHS

sv

ZHS
s

)
−eβµp

λ3
p

(
nvac

1− nvac

V (1)
p +

1− 2nvac

1− nvac

V (0)
p

)
. (6.30)

Here the logarithm of the combinatorial factor in Eq. (6.29) is calculated by using the
Stirling approximation since in the thermodynamic limit N,M → 0 while ρ = N/V is
kept constant (see Eq. (6.20)). Considering the definition of polymer reservoir packing
fraction ηp,r from Eq. (5.5), by minimizing the free energy per particle with respect to
the vacancy concentration nvac we have,

∂βf1,AO

∂nvac

=
1− 2nvac

(1− nvac)2
lnnvac −

1

ZHS
s

∂ZHS
s

∂nvac

− g1(1− 2nvac)

(1− nvac)2
ln

(
ZHS

sv

Zs

)
− g1nvac

1− nvac

(
1

ZHS
sv

∂ZHS
sv

∂nvac

− 1

ZHS
s

∂ZHS
s

∂nvac

)
− ηp,r

π
6

(qσc)
3

(
(1− 2nvac)V

(1)
p − V (0)

p

(1− nvac)2
+

nvac

1− nvac

∂V
(1)

p

∂nvac

+
1− 2nvac

1− nvac

∂V
(0)

p

∂nvac

)

≈ lnnvac +
βpHS

ρ
− g1 ln

(
ZHS

sv

ZHS
s

)
− ηp,r

π
6

(qσc)
3

(
V (1)

p −V (0)
p +

∂V
(0)

p

∂nvac

)
, (6.31)
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where in the last step we have used nvac � 1 and the approximation of the hard–sphere
pressure βpHS from Eq. (6.24). The partial derivative of V (0)

p with respect to nvac can be
written as

∂V
(0)

p

∂nvac

=
∂V

(0)
p

∂ρM

∂ρM
∂nvac

=
∂V

(0)
p

∂ρM

ρ

(1− nvac)2

≈ ρ
∂V

(0)
p

∂ρ
. (6.32)

where ρM = M/V is the lattice site density and in the last step it is approximated by
the particle number density since nvac � 1. Note that −ρp,rV

(0)
p corresponds to the

polymer contribution to the free energy density in an ideal crystal (see Section 5.2).
Therefore, the outcome of Eq. (6.32) can be interpreted as the polymers contribution to
the pressure of the system. Finally, the equilibrium vacancy concentration for the AO
model nAO

vac,eq reads3

lnnAO
vac,eq ≈ −

βpHS

ρ
+ g1 ln

(
ZHS

sv

ZHS
s

)
+

ηp,r

π
6

(qσc)
3

(
V (1)

p − V (0)
p + ρ

∂V
(0)

p

∂ρ

)

≈ −βpAO

ρ
+ g1 ln

(
ZHS

sv

ZHS
s

)
+

ηp,r

π
6

(qσc)
3

(
V (1)

p − V (0)
p

)
(6.33)

In the first form, the connection to the equilibrium vacancy concentration of a hard–
sphere system is shown. Here, starting from its hard–sphere value at ηp,r = 0 the
vacancy concentration increases linearly with polymer reservoir packing fraction. On
the other hand, the second representation relates the equilibrium vacancy concentra-
tion to an equation of state term and an entropic term. The volume V i

p is determined
numerically for different q by a simple Monte–Carlo routine [140]. The obtained re-
sults for q = 0.3 with ρ = 1.2σ3, and for q = 0.6, 0.8 with ρ = 1.1σ3 from Ref. [17] are
presented in Section 6.4.2.

6.4 Numerical results

We have investigated four types of systems: Hard spheres as model system for col-
loids, the Lennard–Jones potential, Nickel as an exemplary case of a metal treated with
EAM, and the AO model for colloid–polymer mixture. While for the latter only the

3 In Ref. [17] we have used ZHS
s ≈ ZHS

sv . Therefore, the integral term −g1 ln
(
ZHS

sv /Z
HS
s

)
and the

polymers contribution to the pressure ρ(∂V (0)
p /∂ρ) are missing in the expression for nAO

vac,eq.
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results for thermal vacancies are represented here, the free energy per particle using
the first order approximation is also calculated for the other three. In case of LJ we also
have calculated the equation of state and compared it with the parametrized equation
of state of van der Hoef [120,141]. For EAM, we have employed three different versions
for Nickel [137–139] and obtained the sublimation line. The results show good agree-
ment with available simulation results. Finally, for the AO model we have compared
the results from the analytical expression in Eq. (6.33) with the result of constrained
minimization of effective free energy density (see Section 5.4.1) for three different size
ratios. The agreement between the two becomes better by increasing q as is expected.

6.4.1 Hard spheres

The interaction between two hard spheres with diameter σ is given by uHS as a function
of their center distance rij .

uHS(rij) =

{
∞ rij ≤ σ
0 otherwise

, (6.34)

For a hard–sphere system, the internal energy Φ is zero and the configuration integrals
correspond to the available volume for the freely moving particle. The maximum layer
of neighbors which should be taken into account is nm = 1 whose number of particles
is g1 = 12. The relevant configurational integrals are Zs and Zsv,1 which subsequently
correspond to a particle with all its neighboring lattice site fille with particles and one
which is missing a neighboring particle.

The free energy per particle obtained by the first order approximation of configuration
integrals (Eq. (6.15)) is within 1% of available simulation results. The remaining dis-
crepancy is lifted by taking into account the second order term which corresponds to
two moving particles [140]. This unveils the rapid convergence of the Stillinger series
for a hard–sphere system. Therefore, one can assume the first term already contains
the basic physics of the model. Due to the short range of the hard–sphere potential the
equilibrium vacancy concentration from Eq. (6.25) reads

nvac,eq = exp

(
−βp
ρ

)(
Zsv,1

Zs

)12

. (6.35)

As it is shown in Fig. 6.3, the corresponding results for nvac,eq shows very good agree-
ment with the simulation data from Refs. [102, 103] above the liquid–solid coexistence
density ρ = N/V = 1.040 . Here, the equation–of–state term p/ρ & 10kBT is the main
contributor to the Gibbs free energy of vacancy formation ∆Gv, while the vacancy in-
tegral term is responsible for about −1 kBT .
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Figure 6.3: Vacancy concentration versus density for hard spheres compared with sim-
ulation results of Bennett et al. [103] and Kwak et al. [102]. The error bars for the sim-
ulation data are unknown. The FMT results obtained by constrained (blue curve) and
full minimization (green diamonds) of the WBII(tensor) functional is also included.

Within DFT descriptions of the hard spheres, WBII(tensor) is one of the FMT func-
tionals which account for crystallization and predicts a correct order of magnitude for
the vacancy concentration around the liquid–solid coexistence density [80]. In Fig. 6.3,
we also include the results for constrained and full minimization of this functional.
For a more detailed information on the FMT results for vacancy concentration see Sec-
tion 4.5.2.

6.4.2 The AO model

For the AO model, an expression for nvac,eq is given by Eq. (6.33) which shows that in
the first order approximation the Gibbs free energy of vacancy formation
β∆Gv = − lnnvac,eq decreases linearly with ηp,r from its hard sphere value at ηp,r = 0.
The main contribution to the linear coefficient is obtained by calculating ∆Vp which
is the difference in the available free volume for polymers within a Wigner–Seitz cell
for a vacant cell V (1)

p and an occupied one V (0)
p while the colloids are assumed to be

fixed at their lattice sites. There is a modification from the AO model pressure βpAO/ρ
which is obtained analytically in the following way. Consider the free volume fraction
of an ideal crystal α which is the ratio of the free available volume for polymers Vfree

in an ideal fcc crystal (no vacancy) to the total volume of the cell Vcell. The free volume
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fraction is related to V (0)
p as follows.

α =
Vfree

Vcell

=
4V

(0)
p

a3
=
V

(0)
p

ρ
. (6.36)

Here, a is the side length of the unit cell and ρ = 4/a3 is the colloid density. For larger
polymer–colloid size ratios, i.e. q = 0.6, 0.8, the free volume fraction of an ideal fcc
crystal is zero4. Subsequently, V (0)

p and its derivative with respect to ρ vanish for these
size ratios. For smaller q’s however, assuming that the 4–body overlaps of the excluded
volumes are negligible, one can use the provided analytical form for the free volume
fraction (Eq. (5.49)) and Eq. (6.36) to calculate ∂V (0)

p /∂ρ.

∂V
(0)

p

∂ρ
= α + ρ

∂α

∂ρ

= 2α− 1 +
π

6
ρ (r − 9r3) with r =

a√
2(1 + q)σc

. (6.37)

The obtained linear coefficients and the non–vanishing modification term for q = 0.3
is presented in table 6.1.

We also have computed nvac,eq by the constrained minimization of an FMT functional
for the AO model, the linearized WBII(tensor) functional. The obtained results ap-
proximately confirm the exponential increase of vacancy concentration as a function of
polymer reservoir packing fraction ηp,r. As it is shown in Fig. 6.4, there is a semiquan-
titative agreement between the FMT results and analytical relation for larger polymer
colloid size ratios q & 0.6. However, for lower size ratios the slope of lnnvac,eq(ηp,r)
is considerably overestimated by the simple formula. This is due to the fact that at
this size ratio, polymers tend to fill in the interstitials rather than the vacant site and
this is not considered in the approximate zeroth order configuration integral Z0,AO (see
Eq. (6.27)).

4See page 87 and the discussion on the free volume fraction of an ideal crystal.

Table 6.1: The linear coefficient and its modification for the equilibrium vacancy con-
centration of the AO model.

{q, ρσ3
c} lnnAO

vac,eq(ηp,r = 0) = lnnHS
vac,eq ∆Vp = V

(1)
p − V (0)

p ρ
∂V

(0)
p

∂ρ

{0.3, 1.2} −18.9 34.5 −7.6
{0.6, 1.1} −12.6 1.4 0.0
{0.8, 1.2} −12.6 0.15 0.0
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Figure 6.4: Equilibrium vacancy concentration for the AO model as a function of poly-
mer reservoir packing fraction ηp,r. The results are obtained by constrained minimiza-
tion of WBII(tensor) functional for three parameter pairs of polymer–colloid size ratio
and colloid density {q, ρσ3

c}. Solid red lines correspond to the estimate of Eq. (6.33)
while the AO model pressure is neglected. Solid green line for q = 0.3 is the same
while the modification from Eq. (6.37) is considered.

6.4.3 The Lennard–Jones potential

In the case of LJ, we have used a truncated and shifted version of the potential uc
LJ(r).

uLJ(r) = 4ε

[
−
( r
σ

)−6

+
( r
σ

)−12
]
,

uc
LJ(r) =

{
uLJ(r)− uLJ(rc) for r ≤ rc
0 otherwise

, (6.38)

where rc is the cut–off range which is either set to 6σ or 2.25σ in our studies.

For an fcc crystalline state, the pressure is obtained numerically for a range of parti-
cle densities and temperatures using the first order approximation for the free energy
density of an ideal crystal βF1/N ≈ − lnZs. The configuration integral Zs is calcu-
lated using Gauss–Legendre quadrature with 20 grid points in a cubic sub–volume of
a Wigner–Seitz cell whose side length is chosen according to the ratio of the configura-
tion integrand at the center and at the border of integration domain. At the sublimation
line, the solid–gas coexistence density, we have p ≈ 0. Therefore, we can determine the
sublimation line by finding the densities at which the obtained pressure is zero. This
is done for rc = 2.25σ and 6σ and is shown in Fig. 6.5.a along with the result from the
parametrized van der Hoef equation of state [120, 141]. For rc = 6σ which is the same
cutoff used as in Ref. [120], the low temperature results match perfectly the sublima-
tion line of the van der Hoef equation of state. With increasing temperature, the higher
order terms Zij . . . should be considered for calculation of the free energy density to
compensate the deviation in the description of the sublimation lines.
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Figure 6.5: Phase diagram of Lennard–Jones system. a) Sublimation line obtained by
finding the density at which the pressure is zero for two different cut–off ranges. The
pressure is calculated from the first order approximation of the free energy density. The
dashed line is the parametrized van der Hoef equation of state [120]. b) Comparison
of the pressure of crystalline Lennard–Jones solid with rc = 6σ calculated for different
temperatures (symbols) with van der Hoef equation of state (solid lines) from ref. [120].

Equation of state curves p(ρ) for four different temperatures T for rc = 6σ are shown in
Fig. 6.5.b. For temperatures below and around the triple temperature kBTt ≈ 0.7ε, the
crystal equation of state obtained by the first order approximation of the free energy
density is in good agreement with the parametrization of van der Hoef as expected. For
higher temperatures deviations are visible especially at the lower densities. However,
as a result of the upward shifting of the solid–liquid coexistence density, the results for
stable crystals which occur at higher densities are still well described.

For T = 0, one may assume all N particles of an ideal crystal fixed at their lattice site.
Denoting their pair interaction u(r) the cohesive energy of such system reads

Ucoh,0 =
1

2

N∑
i=1

N∑
j=1
j 6=i

u(rij) =
N

2

N∑
j=1
j 6=i

u(rij) = Nucoh , (6.39)

where the distance between particles i and j is denoted by rij = |ri − rj| and ucoh

denotes the cohesive energy per particle. By choosing u(r) = uc
LJ(r) from Eq. (6.38)

with rc = 6σ, we have the minimal cohesive energy ucoh ' −8.52ε at ρσ3 = 1.09.
At this temperature limit, the vacancy formation energy Ev = ∆Gv(T = 0) may be
approximated by modulus of the difference between Ucoh,0 with the cohesive energy of
a crystal which contains a vacant site Ucoh,1. Suppose the missing particle is removed
from lattice site s1 and the indices for other N particles run from 2 . . . N + 1. Assuming
all particles remained fixed at their lattice site after creating the vacancy, the cohesive
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energy reads

Ucoh,1 =
1

2

N+1∑
i=2

N+1∑
j=2
j 6=i

u(rij)

=
N+1∑
i=1

1

2

N+1∑
j=1
j 6=i

u(rij)

︸ ︷︷ ︸
ucoh

− 1

2

N+1∑
i=2

u(ri1)

︸ ︷︷ ︸
ucoh

− 1

2

N+1∑
j=2

u(r1j)

︸ ︷︷ ︸
ucoh

= (N − 1)ucoh . (6.40)

This implies that for T → 0, the vacancy formation energy Ev for a system with pair
interaction is approximately minus the cohesive energy per particle ucoh. The expected
deviation is due to the displacement of the neighboring particles for relaxation of the
lattice after creating the vacant site which minimizes Ev.

In order to calculate the Gibbs free energy of the vacancy concentration at finite temper-
atures, we have used Eq. (6.25) by considering the vacancies up to the 6th neighboring
layer of the moving particle nm = 6.

∆Gv =
p

ρ
− β−1

6∑
i=1

gi ln

(
Zsv,i

Zs

)
. (6.41)

The vacancy configuration integral terms Zsv,i with i = 1 . . . 6 are calculated in the same
way as Zs. The obtained ∆Gv along the sublimation line are presented in Fig. 6.6.a
up to the triple temperature at which the sublimation line forks into the liquid–solid
coexistence line and the zero pressure line.

In the low temperature limit T → 0, the obtained values for the Gibbs free energy of
vacancy formation converges to Ev ' 8.06ε. The difference of Ev with |ucoh| ' 8.52 ε is
partly recovered by considering higher order terms in the vacancy integral terms nm >
6. For LJ with rcut = 6σ the maximum required value for nm at low temperatures is 28.
By considering this value for the maximum neighboring layer the vacancy formation
at zero temperature is Ev ' 8.46ε. The remaining difference δucoh = |ucoh| − Ev is
due to the effect of the collective particle displacements after creating a vacancy at
T = 0 which is not considered in the calculation of ucoh. This modification to ucoh

can be approximated by a sum of single–particle displacement in the potential field
of otherwise fixed particles [142]. For this purpose, N − 1 particles are fixed at their
ideal lattice sites and the single remaining particle is shifted until the total energy is
minimized. The sum over all 1–particle–shifts corresponds to the energy deviations
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from the ideal lattice δu1p
coh.

δu1p
coh =

1

N

N∑
i=1

{
min
ri

φi (ri; rj = sj)

}
with j 6= i . (6.42)

For LJ with rcut = 6σ, this difference is δu1p
coh ≈ 0.05 which recovers the difference be-

tween ucoh and Ev [142]. For finite temperatures, the increase in probability of vacancy
formation dictates itself by the entropy of vacancy formation T∆Sv.

∆Gv = Ev − T∆Sv . (6.43)

Our results show that the often–made assumption ∆Sv being independent of the tem-
perature holds only approximately (see Fig. 6.6.a).

We have compared our results with the simulation data of Jacucci et al. [134]. In their
study, they have placed the vacant site in the middle of a rather small simulation box
whose side length is three times the side length of the fcc cubic unit cell and contains
107 particles. In order to make a reasonable judgement on the quality of our approxi-
mation, note that the cutoff on the maximal number of shells nm in Eq. (6.25) has to be
chosen such that the maximum shell radius ≈ 1.5 a. This is the case for nm = 4 with
maximum shell radius

√
2a. Moreover, with this choice it is ensured that there is no

interaction between the vacancies in the periodic image of the simulation box. With
this considerations, our data are consistent with the simulation data of Jacucci et al.

In Fig. 6.6.b we have represented the equilibrium thermal vacancy concentration nvac,eq

for a stable crystal in the T–ρ–plane. The vacancy concentrations are quickly calcu-
lated using Eq. (6.25) and its maximum occurs at the triple point with nvac,eq ≈ 10−4.
Although it is the same result as HS near coexistence density (see page 125), it has a
completely different origin. Unlike the HS case, the pressure term in Eq. (6.41) does not
contribute since we are moving along the sublimation line and p is almost zero. Here,
the main contributor to the Gibbs free energy of vacancy formation are the vacancy
configuration integrals Zsv,i.

6.4.4 The Embedded-Atom-Model

As an exemplary case for a metallic system, we have studied Nickel by means of the
Embedded–Atom Model (EAM) which is a semi–empirical method for classical treat-
ment of a many–body metallic system for calculating its total potential energy [143]. As
it is mentioned earlier in Section 6.1, the 1–particle energy is calculated using Eqs. (6.5)
and (6.6). The obtained φi’s are then used to calculate the configuration integralsZs and
Zsv,i from Eq. (6.25). We have examined three versions of parametrization of the EAM
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Figure 6.6: Vacancy concentration and the Gibbs free energy of its formation for the
Lennard–Jones system (a) Gibbs energy of vacancy formation along the zero pressure
line and the solid–liquid coexistence line, meeting in the triple point. Different symbols
show the dependence of ∆Gv on the potential range through the maximum shell index
nm. The solid lines are ∆Gv = Ev − T∆Sv with Ev = 8.06ε and ∆Sv = 1.8ε/kB for the
red curve and Ev = 8.46ε and ∆Sv = 1.9ε/kB for the black curve. The black squares are
simulation data of Jacucci et al. [134], error bars are unknown. The inset is the same
plot for the temperatures in vicinity of the triple point. Here, the sublimation line forks
into the solid–liquid coexistence line and p = 0. (b) Equilibrium vacancy concentration
in the ρ–T plane. The long–range cutoff rc = 6σ is used for obtaining these results. The
maximum considered neighboring layer of a vacancy is nm = 6.

potential given by Foiles (F85) in Ref. [137], Foiles, Baskes and Daw (FBD86) in Ref.
[138], and Mishin et al. (M99) in Ref. [139]. All these potentials have been optimized
with respect to a number of solid properties at T = 0. For F85 and FBD86, the total
potential energy is decomposed into a repulsive and an attractive part. The repulsive
part is the interaction of the nuclei of the atom i with the host nuclei j = 1 . . . N ,j 6= i
which is represented as the repulsive Coulomb interaction with the screened nuclei
charges Z(r).

φ2p
i (r1, . . . , rN) =

1

2

N∑
j=1
j 6=i

u(rij) ,

u(rij) =
1

4πε0

Z2(rij)e
2

rij
, (6.44)

where e is the elementary charge. While in F85 the screening function is fitted to a
fourth order polynomial with cutoff range of 3.00Å, it is obtained in FBD86 by fitting a
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Yukawa potential to experimental values.

The upper cut–off range of the screening function Z(r) is 3.35Å for FBD86. The at-
tractive part of the total potential energy is due to the energy gain of ”embedding“
atom i into the system. This embedding energy is expressed as a function of the local
host electronic density ρa

i which is a superposition of the electronic density of atoms
j = 1 . . . N , j 6= i. The atomic electronic density of a single atom which is expressed
as a function of the distance is the solution of Hartree-Fock equations for the electrons
in the outer shells. Finally, the embedding function is a parametrization fit to a num-
ber of experimentally measured parameters: sublimation energy, equilibrium lattice
constant, elastic constant, vacancy formation energy at T = 0, . . . .

Unlike F85 and FBD86, M99 uses very general forms of the potential functions with
no reference to their original physical meaning. For the two–body potential u(r), the
atomic electronic density of a single atom ρa

ij(r), and the embedding function F (ρa
i ), we

have used the tabulated values from Ref. [139]. Both u(r) and ρa
ij(r) have finite values

in the range of 2.0Å ≤ r ≤ 5.804Å and are zero otherwise. The functions have been
fitted to a number of observables: the equilibrium lattice constant, the cohesive energy,
the vacancy formation energy, the vacancy migration energy, the intrinsic stacking fault
energy, and the experimentally measured phonon–dispersion relations [139]. Despite
the comprehensive list of fitting parameters, the obtained results for the melting tem-
perature determined by molecular dynamic simulations for F85 and FBD86, 1720 K and
1750 K respectively, are much closer to the experimental value of 1728 K. The obtained
results for M99 is 2240 K [144].

The sublimation line p = 0 is obtained using the first order approximation of the free
energy density and numerical computation of the pressure. A comparison of the re-
sults with simulation data is represented in Fig. 6.7 which shows good agreement for
F85 and M99 [144]. Furthermore, we have obtained the sublimation density for T = 0
by a linear fit to the sublimation curves. The obtained results are compared in table 6.2.

For T = 0, the cohesive energy of an ideal crystal with no vacancy and N atoms fixed
at their lattice sites, is written as a function of the pair potential and the embedding
function:

Ucoh,0 =
N∑
i=1


1

2

N∑
j=1
j 6=i

u(rij) + F (ρa
i )

 = Nucoh with ρa
i =

N∑
j=1
j 6=i

ρa
ij(rij) (6.45)

Here, due to the non–linear nature of embedding functions F , there is no straight-
forward derivation of an analytical form for Ucoh,1, the cohesive energy of a crys-
tal with one vacant site. In Fig. 6.8, we compare the cohesive energy per particle
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Figure 6.7: The variation of density with temperature along the zero pressure (sublima-
tion) line for Nickel obtained by different versions of EAM: F85(green), FBD86(blue),
and M99(red). The symbols connected with solid lines are MD simulation results [144].

ucoh with ∆Ucoh = Ucoh,1 − Ucoh,0 which corresponds to the vacancy formation en-
ergy ∆Gv(T = 0) = Ev without considering the relaxation of the lattice. Overall,
∆Ucoh ≈ −Ev is on the order of 30% of ucoh and it is not maximal at the equilibrium
density at this temperature ρ ≈ 8.95 g/cm3 unlike a system with pair potential, e.g. LJ.
This implies that for a correct description of vacancies in metals, the consideration of
many–body effects is essential.

By calculating the vacancy configuration integrals Zsv,i along the sublimation line
p = 0, we have obtained the Gibbs free energy of vacancy formation ∆Gv at finite
temperatures from Eq. (6.25). The obtained results in the limit of T → 0 along with

Table 6.2: Sublimation density at T = 0 for Nickel obtained by EAM potentials. The
first two columns are obtained by a linear fit to the sublimation curves from Fig. 6.7.
We have reported in the last column the minimal density for the cohesive energy per
particle ucoh computed for an ideal lattice whose particles are fixed at their lattice site.

ρsub(T → 0) [g/cm3]
EAM potential linear fit to sublimation curve Fig. 6.7

our method MD simulation [144] ∂ucoh/∂ρ = 0

F85 [137] 8.950 8.955 8.954
FBD86 [138] 8.971 8.984 8.963
M99 [139] 8.933 9.063 8.944
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Figure 6.8: The cohesive energy of Nickel as a function of density obtained by different
versions of EAM: F85(green), FBD86(blue), and M99(red). The lines with symbol rep-
resent ∆Ucoh, the difference between the cohesive energy of an ideal lattice Ucoh,0 with
the one from a lattice with a vacant site Ucoh,1. ∆Ucoh corresponds to the vacancy forma-
tion energy at zero temperature without considering the relaxation of the lattice after it
is created. The inset shows the cohesive energy per particle ucoh which for all different
version of EAM has an approximate minimum of ucoh ≈ −4.45 eV at ρ ≈ 8.95 g/cm3.

∆Ucoh the cohesive energy difference of an ideal lattice with a lattice containing a va-
cant site at T = 0, are compared in table 6.3 with previously calculated results of
Refs. [135, 138, 139]. Note that the only configuration integral appearing in the first
order approximation of the free energy is Zs which corresponds to one free particle in
otherwise frozen particles at their lattice sites. This approximate free energy is later
used for derivation of ∆Gv (Eq. (6.25)). Thus, at low temperatures the first order ap-
proximation of ∆Gv delivers precise results for Ev just by considering the modification
to ucoh. This modification is approximated by computing the effect of single particle
displacements and adding them up (see Eq. (6.42) and discussion above).

By increasing temperature, as it is shown in Fig. 6.9, ∆Gv behaves completely different
depending on the type of EAM potential in action. Here, we have two types of poten-
tials which are F85/FBD86 with conventional EAM picture of decomposing the total
energy into repulsive pair part and attractive embedding part, versus M99 in which
the physical interpretation is sacrificed for an optimization of potentials with respect to
physical observables. For F85/FBD86, ∆Gv(T ) decreases monotonously with increas-
ing T with an approximate slope, i.e. ∆Sv, reported in table 6.3 for low temperatures.
The entropy of vacancy formation ∆Sv increases slightly for higher temperatures simi-
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lar to the case of LJ (see Fig. 6.6.a). On the other hand, the linear behaviour of ∆Gv(T ) is
consistent with molecular simulation of copper which also has an fcc lattice structure,
using FBD86 potential [146]. In case of M99 however, ∆Gv(T ) remains almost constant
at its zero temperature value Ev ≈ 1.61eV with a local maximum at T ≈ 500K with
∆Gv ≈ 1.62eV. This non-monotonous behavior of ∆Gv at finite temperatures is also
reported in a qDFT study for Aluminium whose solid also has an fcc structure [147].

Another difference is in the variation of ∆Gv with the maximum considered neighbor-
ing layer nm at a fixed temperature. While for F85/FBD86 we observe a monotonously
increasing behaviour for ∆Gv as a function of nm, just like the Lennard–Jones solid,
for M99 there is an increase from nm = 1 to nm = 3 and from there a decrease is ob-
served up to the final considered layer nm = 6. The reason is the different approaches
in parametrization of the EAM potentials, especially their pair part. As mentioned ear-
lier, the F85 and FBD86 take the pair part as a purely repulsive short–range potential
which effectively has a cut–off range at the first and third layer respectively. For M99
however, the pair potential is somewhat longer–ranged with a cut–off at the fifth neigh-
boring layer and while it is repulsive for short ranges as expected, it also contains an
attractive part at longer distances. Due to these oscillations present in the embedding
function as well, we observe a non–monotonicity of ∆Gv both in temperature and nm.
We conclude that the parametrizations of EAM potentials affect the finite–temperature
behavior of the observables. Thus the properties of the material at non–zero tempera-
tures should be considered in the parametrization of the potentials from the beginning.

Table 6.3: Gibbs free energy of vacancy formation at T = 0 for Nickel obtained by
EAM potentials. ∆Ucoh is the difference between the cohesive energy of an ideal lattice
whose particles are fixed at their lattice sites with the one which has a vacant site. This
is obtained at the sublimation density of the corresponding EAM potential at T = 0
(first column of table 6.2). Since ∆Gv is not available directly for T = 0 via the compu-
tation of vacancy integrals, Ev is obtained by an approximate fit at low temperatures.
The obtained values are in good agreement with the results from the corresponding
references of the EAM potentials. For finite temperatures, it is often assumed that
∆Gv = Ev − T∆Sv. The entropy of vacancy formation ∆Sv is obtained by a linear fit
close to T = 0 for F85 and FBD86. The finite temperature behavior of M99 is completely
different (see Fig. 6.9).

∆Ucoh [eV] Ev [eV] ∆Sv [eV/ K]

F85 1.399 1.395 1.4 [137] 7.63 · 10−5

FBD86 1.689 1.691 1.63 [138] 9.30 · 10−5

M99 1.616 1.612 1.6 [139] –
Exp. – (1.58− 1.63)± 0.05 [145] –
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Figure 6.9: Gibbs free energy of vacancy formation in Nickel along the zero pressure
line obtained by EAM potentials. For M99, the dependence on the maximum shell
index nm in the vacancy integral term of Eq. (6.25) is shown with broken lines. The
maximum value of ∆Gv = 1.62 eV at T ≈ 500 K is shown with a black circle. For
F85 and FBD86 the temperature behavior and nm dependency is similar to the LJ case
(Fig. 6.6.b).

6.5 Summary and Conclusions

In the framework of the cell cluster theory, Stillinger has proposed an expansion for the
partition function of a crystal in terms of the number of moving particles in an other-
wise frozen lattice. The leading term truncation of the Stillinger series corresponds to
one freely moving particle in its Wigner–Seitz cell while all the other particles are fixed
to their lattice sites. We have shown that the first order approximation of the equation
of state obtained by this leading term of the Stillinger series gives a good description
for the hard sphere and Lennard–Jones model systems as well as for the exemplary
case of Ni in the Embedded–Atom–Model.

Using the same truncation, we have derived a relation for equilibrium vacancy con-
centration of an fcc lattice. The corresponding Gibbs free energy of vacancy formation
∆Gv obtained by Eq. (6.25) shows good agreement with simulations in the hard sphere
and Lennard–Jones case. The compact expression for ∆Gv allows for a transparent
interpretation of the two contributing sources to the Gibbs free energy of vacancy for-
mation which are the finite pressure and the missing cohesive energy of the particles
in the neighboring layer(s) of a vacant site. While in a HS system the finite pressure is
the main contributor to ∆Gv, in the LJ system this term vanishes since we are moving
along the sublimation line p = 0 and the missing cohesive energy of the particles is the
source of the Gibbs free energy of vacancy formation. For T = 0 in the LJ system, we
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have shown that Ev = ∆Gv(T = 0) ≈ ucoh as is expected and the deviation which is
due to the relaxation of the lattice after creating the vacancy is obtained by computing
the effect of the single–particle displacements, i.e. vacancy integrals.

For Nickel as an exemplary case of metals we have taken advantage of the EAM po-
tentials which are designed for classical treatment of a metallic system. Two types
of EAM potentials are investigated in this case: F85 from Ref. [137] and FBD86 from
Ref. [138], whose pair and embedding potentials has the physical spirit close to the
original EAM [135], and M99 from Ref. [139] which does not have any constraints on
the form of its potentials. For T = 0 we have recovered the obtained results forEv from
original works and shown that considering the many–body effects is essential since the
cohesive energy of vacancy formation recovers only 30% ofEv. Furthermore, the differ-
ent temperature behavior of ∆Gv depending on the type of the potential, F85/FBD86
versus M99, is discussed with the conclusion ∆Gv(T ) is significantly affected by the
details of parametrization of the EAM potentials.

Having this compelling consequence, we propose that in further EAM parametriza-
tions the Gibbs free energy of vacancy formation at finite temperatures should also be
considered as one of the fitting observables. For this purpose, ∆Gv(T ) could be com-
puted from Eq. (6.25) by means of quantum density functional theory (qDFT). Here,
the required single particle integrals Zs and Zsv,i are calculated with qDFT values for
the 1–particle energies φi
Furthermore, in this truncation the partition function Q1, free energy βF1, and the
equilibrium vacancy concentration nvac,eq are experimentally measurable for colloidal
crystals. Realization of this measurement is possible by letting a single particle move
freely while fixing all the other ones at their lattice site by employing an array of laser
tweezers [148,149]. The integrands of the required single–particle integrals Zs and Zsv,i

is directly obtained by recording the trajectory of the moving particle using video–
microscopy [150].

We have observed an underestimation in the obtained free energy for LJ. This defi-
ciency is partly recovered by considering the second order approximation and calcu-
lating the more complex configuration integral Z l

ij [142]. A more exact description of
the free energy density allows us to obtain further physical quantities, e.g. heat capac-
ity at constant pressure Cp. On the other hand, by adding the second vacancy in the
first order approximation, one could study the vacancy–vacancy interaction as a func-
tion of their dedicated lattice site distance uvv(|si− sj|). For a pair potential, e.g. LJ, uvv

is expected to have the same functionality of the distance as its pair potential, as for
the EAM potentials it has a more complicated form due to the many–body embedding
part of the potential [142].



APPENDIX A

NUMERICAL CONSIDERATIONS IN
IMPLEMENTING DFT

Having the formalism of the FMT introduced in Chapter 4 for the hard–spheres and
Chapter 5 for the AO model, it is important to be able to implement it correctly in order
to obtain numerical values of the desired physical quantities.

A.1 Discretization and symmetries

The first step in the setting up of the numerical environment is proper discretization of
the system. As it is mentioned earlier, for investigating the crystalline state we consider
an fcc unit cell whose side length is a.

a = 3

√
4 (1− nvac)

ρ̄
. (A.1)

Here, ρ̄ is the bulk number density of the hard–spheres and nvac ∼ 10−4 is a finite
value for the vacancy concentration. Note that the lengths are expressed in units of the
hard–sphere diameter σ. The side length of the cubic unit cell is divided in N equal
distances which lets every locally defined property of the unit cell to be saved in an
array of N × N × N , , e.g. the local number density ρ(x, y, z). For these discretized
coordinates, the length element in the real and the reciprocal lattice space are given by,

∆x = ∆y = ∆z =
a

N
,

∆kx = ∆ky = ∆kz =
2π

L
. (A.2)
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The density of the hard–sphere particles are initiated as Gaussian peaks at the lattice
sites of the fcc unit cell (see Fig. A.1). A Gaussian peak G(r) whose width is denoted
by αG and is centered at r0, and the local number density of the hard–spheres ρ(r) in
an fcc unit cell are given as follows.

G(r; r0) =
(αG

π

) 3
2

exp
(
−αG|r− r0|2

)
, (A.3)

ρ (r) =
∑
i

(1− nvac)G(r; ri) , (A.4)

where the sum is over the i lattice sites of the fcc unit cell. Note that ρ(r) must respect
the symmetries of the unit cell. Due to numerical precision, these symmetries do not
usually hold which results in unwanted imaginary part in the Fourier transform of the
density profile (see Eq. (A.10) and its following lines). In order to secure these symme-
tries, 1/8th of the unit cell is initiated by computing the relevant Gaussian peaks,

ρ1/8 (x, y, z) =
∑
i

G(r = (x, y, z); ri0) with 0 < x, y, z <
a

2
, (A.5)

where ri0 = (0, 0, 0), (a
2
, 0, 0), (0, a

2
, 0), and (0, 0, a

2
). The initiated box is then sym-

metrized within itself by taking an average of its density profile and those of the ro-
tated boxes which are obtained by setting the origin to the partially initiated particles
at ri0. The remaining array cells of the density in the cubic unit cell are copied from the
appropriate cells in the initiated box in the following steps.

1. along the x–axis: ρ(x, y, z) = ρ(a− x, y, z) with 0 < x, y, z < a
2

2. along the y–axis: ρ(x, y, z) = ρ(x, a− y, z) with 0 < x < a and 0 < y, z < a
2

3. along the z–axis: ρ(x, y, z) = ρ(x, y, a− z) with 0 < x, y < a and 0 < z < a
2

Finally, the values of the array cells are scaled so that the total number density precisely
results in ρ̄ = 4(1− nvac).

A.2 Fourier transformation and convolution

In order to obtain the excess free energy density Φ of the initiated density profile ρ(r)
one should calculate the weighted densities nα. The weighted (smeared–out) densities
are the convolution of the hard–sphere weight functions (wα from Eq. (4.4)) with the
density profile:

nα(r) = (ρ ∗ wα)(r) =

∫
dr′ρ(r′)wα(r− r′). (A.6)
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Figure A.1: Hard–sphere particles sitting at the lattice sites of a face-centered-cubic unit
cell with side length a. The particles sitting at the rear faces/corner are not shown. The
different colors represent different fcc close packing layers.

Considering computational costs of direct calculation of the convolution, it is more
convenient to calculate it indirectly by taking advantage of convolution theorem. For
two arbitrary well–defined functions f1 and f2, the convolution theorem states that the
Fourier transform of their convolution f1 ∗ f2 is equal to the product of their Fourier
transforms f̃1 × f̃2. Defining the forward and backward Fourier transform of the func-
tion f as,

F
[
f(r)

]
= f̃(k) =

∫
dr e−ik·r f(r) (A.7)

F−1
[
f̃(k)

]
= f(r) =

1

(2π)3

∫
dk eik·r f̃(k) , (A.8)

a proof for the convolution theorem is given by the following.

F
[
f1 ∗ f2

]
(k) =

∫
dr e−ik·r (f1 ∗ f2)(r)

=

∫
dr e−ik·r

∫
dr′f1(r′)f2(r− r′)

=

∫
dr

∫
dr′ e−ik·r

′
f1(r′) e−ik·(r−r

′) f2(r− r′)

= f̃1(k)f̃2(k) (A.9)
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Moreover, using Euler’s relation e−iθ = cos θ − i sin θ the Fourier transform of a real
function f(r) decomposes into a real part and an imaginary part.

f̃(k) =

∫
dr e−ik·r f(r) =

∫
dr cos(k · r) f(r)− i

∫
dr sin(k · r) f(r) (A.10)

For a completely symmetric function f(r) = f(−r) the integrand of the second term
is symmetric. Therefore, the imaginary part is zero and the Fourier transform is com-
pletely real. On the other hand, if the function is completely asymmetric f(r) = −f(−r)
the first term vanishes and the Fourier transform is imaginary.

In order to obtain the weighted densities, the Fourier transforms of the density profile
is computed using the fftw library for C++ which performs discrete Fourier transform
of a given complex array [151, 152]. Suppose the input array X is a 3D array whose
dimensions are [Nx, Ny, Nz]. The forward and backward discrete Fourier transforms
performed by fftw on X are given as follows,

X̃ ′[kx, ky, kz] =
Nx−1∑
nx=0

Ny−1∑
ny=0

Nz−1∑
nz=0

X[nx, ny, nz] exp

[
−2πi

(
kx
nx
Nx

+ ky
ny
Ny

+ kz
nz
Nz

)]
, (A.11)

X ′[nx, ny, nz] =
Nx−1∑
nx=0

Ny−1∑
ny=0

Nz−1∑
nz=0

X̃[kx, ky, kz] exp

[
2πi

(
nx
kx
Nx

+ ny
ky
Ny

+ nz
kz
Nz

)]
. (A.12)

A consecutive forward and backward fftw Fourier transform multiplies the input array
by a factor of NxNyNz. Furthermore, these expressions are not equivalent to those of
continuous Fourier transform (Eqs. (A.7) and (A.8)) since they are not multiplied by
the proper discretization units. Therefore, the output of the fftw routines, X ′ and X̃ ′,
must be multiplied by proper factors as follows,

X̃ = ∆x ∆y ∆z X̃ ′ =
( a
N

)3

X̃ ′ ,

X =
∆kx ∆ky ∆kz

(2π)3
X ′ =

1

a3
X ′ , (A.13)

where a is the side length of the fcc unit cell (Eq. (A.1)) and we have used Eq. (A.2)
for obtaining the normalization factor of forward and backward discrete Fourier trans-
forms.

The resulting Fourier transform of density profile, i.e. ρ̃, is completely real since the
density profile is initiated as a completely symmetric array. In order to ensure the
symmetry considerations of the weighted densities wα it is reasonable to calculate their
Fourier transform analytically and store them to be used for the numerical implemen-
tations. This also reduces computational cost since we are not computing the Fourier
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transform of these functions which are supposed to be used several times throughout
the code (see below).

A.3 Implementation of the weighted densities

The Fourier transforms of the weight functions are given as follows1.

w̃3(k) =
4π

k3
(sin(kR)− kR cos(kR)) ,

w̃2(k) =
4π

k
R sin(kR) ,

w̃2
i (k) = i

ki
k3

4πR2

(
kR cos(kR)− sin(kR)

)
= −i ki R2 w̃3(k) ,

w̃T
ij(k) =

1

R
w̃3(k) δij +

(
w̃2(k)− 3

R
w̃3(k)

)
kikj
k2

. (A.14)

The Fourier transforms of the scalar weight functions w̃3 and w̃2 only depend on the
size of reciprocal space vector k = |k|. As a result they are invariant under the re-
flections of their argument k under which one or more of elements of k are reversed
ki → −ki. This symmetry also holds for the diagonal elements of tensorial weight
function since we have,

w̃T
ij(k

′) =
1

R
w̃3(k′) δii +

(
w̃2(k′)− 3

R
w̃3(k′)

)
kiki
k2

= w̃T
ij(k) . (A.15)

As a result, the backward Fourier transform of the scalar weight function as well as
the diagonal elements of w̃T are real. On the other hand, the vectorial weight func-
tions and the off–diagonal elements of the tensorial weight function are anti symmet-
ric. This makes their backward Fourier transform completely imaginary. In order to
prevent any numerical inconsistency, these symmetries should be imposed by initiat-
ing 1/8th of cubic unit cell and proper copying of them to the remaining array cells.
For instance, the asymmetric property of w̃2 and the off–diagonal elements of w̃T

ij is
imposed numerically by setting the middle cell of their corresponding arrays to zero.

On the other hand, since k and its powers appear in the denominator of the Fourier
transforms of all weighted densities, for a proper implementation of these functions
their value at k = 0 should be replaced by their analytical forms in k → 0 limit. These

1 See Appendix B for a detailed calculation.
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limits are obtained by setting k = 0 in Eqs. (B.10), (B.12), (B.18), and (B.28).

lim
k→0

w̃3(k) =
4π

3
R3 ,

lim
k→0

w̃2(k) = 4πR2 ,

lim
k→0

w̃2(k) = 0 ,

lim
k→0

w̃T(k) =
4π

3
R2 I . (A.16)

A.4 Equilibrium density profile and minimization of the
free energy

After proper initialization of the density profile ρ(r) and Fourier transform of the
weighted densities w̃α, one can calculate the weight functions nα(r) (Eq. (A.6)) by ap-
plying the convolution theorem (Eq. (A.9)). The free energy of the hard–sphere system
is then calculated using these weighted densities in the desired form of the functional2.
For obtaining the equilibrium properties of a bulk crystalline state the free energy den-
sity of the desired system should then be minimized. This is either achieved by con-
strained minimization or full minimization. In constrained minimization, the density
profile is constrained to keep its initial Gaussian form while the Gaussian width αG

and the vacancy concentration nvac are the minimization parameters.

Feq = min
{nvac,αG}

F [ρ(r)] . (A.17)

In full minimization, the goal is to find the solution of the equilibrium density profile
ρeq(r), which minimizes the free energy density, in the following fundamental equation
in DFT (see Eq. (3.34)).

ln
(
λ3ρeq(r)

)
= c(1) [ρeq] + βV ext(r)− βµ , (A.18)

where c(1) denotes the single–particle direct correlation function which is the functional
derivative of the excess free energy functional βF ex with respect to the density profile3.
The thermal de Broglie wavelength denoted by λ is an irrelevant constant here. The

2 An additional step should be taken to obtain the free energy in the AO model which is calculating
the polymer density profile ρp(r) using Eq. (5.40) and consequently its corresponding weighted densities
nα,p.

3 see Appendix C for explicit relations for c(1).
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equilibrium density profile ρeq(r) obtained by solving Eq. (A.18) has a bulk density ρ0

which is a function of µ.

ρ0(µ) =
1

V

∫
drρeq(r) , with V = a3 . (A.19)

In principle, the lattice constant a (Eq. (A.1)) and the vacancy concentration nvac

(Eq. (4.64)) should adjust themselves to comply with Eq. (A.18). However, such a pro-
cedure is not feasible in practice [80]. Instead of this, for a given chemical potential
µ (or bulk density ρ0), the vacancy concentration, or equivalently the lattice constant,
is kept constant as well. In the obtained constrained solution of Eq. (A.18), ρ0(µ, nvac)
(or µ = µ(ρ0, nvac)) is in fact a Lagrangian multiplier which ensures Eq. (4.64) for the
vacancy concentration holds4.

A.4.1 Picard iterations

A self–consistent solution of Eq. (A.18) is obtained by starting from an initial density
profile, e.g. a Gaussian profile (Eq. (A.4)). Then, at each step of the iterative solu-
tion, using the current density profile ρ(i) the weighted densities and consequently the
single–particle direct correlation function c(1) are computed. Using these computed
quantities in the right hand side of Eq. (A.18), a new density profile ρnew is obtained.
If this density profile is directly used as an input to the next step, the iterations do not
converge to a solution. In order to avoid this kind of divergence, the changes in the
solution should be constrained. This is achieved by introducing a mixing parameter
α ∈ [0, 1] which controls the amount of changes in the new solution for the density
profile as follows.

ρ(i+1) = (1− α)ρ(i) + αρnew . (A.20)

While choosing small mixing parameter means slow convergence of the solution, a
large value of α might result in local packing fractions n3 larger than 1. Hence, the
optimal choice of mixing parameter in Picard iterations depends on the problem and
is usually determined empirically. For instance, it can be dynamically adopted during
the iterations to improve the speed of convergence. For this purpose a maximal mixing
parameter αmax is calculated as a function of n3 so that n3 < 1 holds [153].

For full minimization of the free energy of a crystal hard–sphere, I have chosen a con-
stant experimental mixing parameter ranging from 10−2 to 10−5. In order to compen-
sate the slow divergence of the solution in case of small α’s, the Direct inversion in
iterative subspace is used after performing a few Picard iterations.

4 For a detailed discussion see Section III.A in Ref. [80].
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A.4.2 Direct inversion in iterative subspace

The Direct inversion in iterative subspace (DIIS) is a numerical method which speeds
up the convergence and ensures more stability in the iterative solution of the self–
consistent field method [154–156]. DIIS approximates the final solution by a linear
combination of a finite number n of iterations output ρ(i).

ρ(n+1)(r) =
n∑
i=1

ciρ
(i)(r) . (A.21)

The coefficients of this linear combination, ci’s, are obtained by constructing a vector
∆ρ of residuals of the density profile ∆ρ(i) and approximating it with a null vector in a
mean–square sense.

∆ρ(i)(r) = ρ(i+1)(r)− ρ(i)(r) ,

∆ρ(r) =
n∑
i=1

ci∆ρ
(i)(r) , while

n∑
i=1

ci = 1 . (A.22)

As a result, in order to determine ci’s a set of n + 1 linear equations should be solved
which are given by,

S1,1 S1,2 · · · S1,n −1
S2,1 S2,2 · · · S2,n −1

...
... . . . ...

...

Sn,1 Sn,2
... Sn,n −1

−1 −1
... −1 0




c1

c2
...
cn
λ

 =


0
0
...
0
−1

 . (A.23)

Here, λ is a Lagrangian multiplier and Sij denotes the scalar product of ∆ρ(i) and ∆ρ(j).
By solving Eq. (A.23), the required coefficients for obtaining a linear combination of
ρ(i) (Eq. (A.21)) are obtained. An improved DIIS solution is only possible by updating
the independent iteration outputs ρ(i). This is achieved by performing several Picard
iterations after a DIIS step.

A.4.3 Convergence of the solution

For monitoring the convergence of solution, the following error function is defined.

ε =
1

V

∫
dr
(
ρ(i+1)(r)− ρ(i)(r)

)2
. (A.24)
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In practice a threshold value should be set to mark the end of iterations, e.g. ε = 10−7.
The required number of iterations cycles to converge to the solution depends on the
mixing parameter α as well number of Picard iterations between two DIIS steps and
DIIS vector size n in Eq. (A.21).

In some cases we are interested in properties of the exact solution although due to the
numerical implementation converging to ε ' 0 is very slow. Here, one can extrapolate
the quantity of interest, e.g. the free energy, as a function of ε in order to obtain the
exact result.

Considering Eq. (A.18) and its following discussion, another possible quantity for
monitoring the convergence is the constrained chemical potential which reads

µ(ρ0, nvac) =
1

V

∫
dr
(
ln
(
λ3ρeq(r)

)
− c(1) [ρeq(r)]

)
. (A.25)

An analysis of the constrained chemical potential, give insight to the local convergence
of the density profile.





APPENDIX B

FOURIER TRANSFORMATION OF THE
WEIGHTED DENSITIES

The independent weight functions for a hard sphere of radiusR are defined as follows:

w3(r) = θ (R− r) , (B.1)
w2(r) = δ (R− r) , (B.2)

w2(r) = δ (R− r) r
r
, (B.3)

wT(r) = δ(R− r) r⊗ r

r2
, (B.4)

where r = |r| and ⊗ denotes the dyadic product. We define the forward Fourier trans-
formation of a function in real space as follows.

F
[
f(r)

]
= f̃(k) =

∫
dr e−ik·r f(r) , (B.5)

Note that we have considered the normalization factor 1/(2π)3 in the backward Fourier
transformation (see Eq. (A.8)). In order to obtain the Fourier transformation of the
weight functions, we assume that the wave vector k is parallel to the z component
of the real–space coordinate system. Therefore, in terms of the spherical coordinates
(r, θ, ϕ), the exponent of the integrand in Eq. (B.5) reads

k · r = kr cos θ with k = |k| . (B.6)
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B.1 Fourier transformation of w3(r)

The Fourier transformation of the first scalar weight function w3(r) is calculated as
follows.

w̃3(k) =

∫
e−ik·r θ (R− r) dr =

∫ R

0

∫ π

0

∫ 2π

0

r2 sin θe−ikr cos θ dϕ dθ dr

= 2π

∫ R

0

[ r
ik
e−ikr cos θ

]π
θ=0

dr

=
4π

k

∫ R

0

r sin(kr) dr . (B.7)

The integral can be calculated by integrating by parts
∫
udv = uv −

∫
vdu with u = r

and dv = sin(kr)dr.

∫
r sin(kr) dr = − r

k
cos(kr) +

1

k

∫
cos(kr) dr

=
1

k2

(
−kr cos(kr) + sin(kr)

)
. (B.8)

Finally, w̃3 is calculated by using Eq. (B.8) in Eq. (B.7).

w̃3(k) =
4π

k3
(sin(kR)− kR cos(kR)) . (B.9)

For small values of k one can use the Taylor expansion of sinx and cosx to write w̃3(k)
as a polynomial in terms of kn. Denoting the factorial of n as n!, the low k limit of w̃3

reads

w̃3(k) =
4π

k3

{
kR− 1

3!
k3R3 +

1

5!
k5R5 − 1

7!
k7R7 +O(k9)

−kR +
1

2!
k3R3 − 1

4!
k5R5 +

1

6!
k7R7 −O(k9)

}
=

4π

3
R3 − 2π

15
k2R5 +

π

210
k4R7 +O(k6) . (B.10)
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B.2 Fourier transformation of w2(r)

The Fourier transformation of the second scalar weight function w2 which is a Dirac
delta function is obtained as follows.

w̃2(k) =

∫
e−ik·r δ (R− r) dr =

∫ π

0

∫ 2π

0

∫ ∞
0

r2 sin θe−ikr cos θ δ (R− r) dr dϕ dθ

= 2π

∫ π

0

R2 sin θe−ikR cos θ dθ

= 2π

[
R

ik
e−ikR cos θ

]π
θ=0

=
4π

k
R sin(kR) . (B.11)

For small values of k the Fourier transformation of w2 can be expressed as,

w̃2(k) =
4π

k
R

(
kR− 1

6
k3R3 +

1

120
k5R5 −O(k7)

)
= 4πR2 − 2π

3
k2R4 +

π

30
k4R6 −O(k6) . (B.12)

B.3 Fourier transformation of w2(r)

The Fourier transformation of the scalar weight functions are calculated under the as-
sumption that the z component of the real space vector is parallel to the reciprocal
vector k. The obtained Fourier transformations should be invariant under any rotation
of the coordination system. This is important in the calculation of the Fourier trans-
formation of the vectorial w2 and the tensorial wT weight functions. For the vectorial
weight function, it is necessary to express the real space unit vector in direction of vec-
tor r = (r, θ, ϕ) in terms of the polar θ and the azimuthal ϕ angles in the spherical
coordinates.

r

r
=

 sin θ cosϕ
sin θ sinϕ

cos θ

 . (B.13)
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The Fourier transformation of the vectorial weight function is calculated as follows.

w̃2(k) =

∫
e−ik·r

r

r
δ (R− r) dr

=

∫ π

0

∫ 2π

0

∫ ∞
0

r2 sin θe−ikr cos θ

 sin θ cosϕ
sin θ sinϕ

cos θ

 δ (R− |r|) dr dϕ dθ

=

∫ π

0

R2 sin θe−ikR cos θ

 0
0

2π cos θ

 dθ , (B.14)

where in the last step the integration of the periodic functions sinϕ and cosϕ for ϕ from
0 to 2π is zero. This implies that the resulting Fourier transformation is in the direction
of the real space z axis which is equivalent to the unit vector in reciprocal space k/k.
As a result,

w̃2(k) =
k

k
2πR2

∫ π

0

sin θ cos θe−ikR cos θdθ . (B.15)

The integral can be computed by a change of variable as x = cos θ whose differential
element is dx = − sin θ dθ.

w̃2(k) =
k

k
2πR2

∫ 1

−1

xe−ikRxdx

=
k

k
2πR2

(∫ 1

−1

x cos(kRx)dx− i
∫ 1

−1

x sin(kRx)dx

)
= i

k

k
4πR2

[
x

kR
cos(kRx)− 1

k2R2
sin(kRx)

]1

x=0

. (B.16)

Note that the first integral in the second line is zero since its integrand is asymmetric
with respect to x→ −x. For the second integral, since x sin(kRx) is symmetric with the
same variable change, its result with the current boundaries, i.e. x = −1 to 1, is twice
the one with x = 0 to 1. The result for the second integral is given by Eq. (B.8) with
r = x. Finally, the Fourier transformation of the vectorial weight function reads

w̃2(k) = i
k

k3
4π

(
kR cos(kR)− sin(kR)

)
= −i k w̃3(k) , (B.17)
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where w̃3(k) is the Fourier transformation of w3(r) from Eq. (B.9). One can use w3(k →
0) from Eq. (B.10) and rewrite Eq. (B.17) for small k as follows.

w̃2(k) = −i k
k

(
4π

3
kR3 − 2π

15
k3R5 +

π

210
k5R7 +O(k7)

)
. (B.18)

B.4 Fourier transformation of wT(r)

For the tensorial weight function the Fourier transformation is calculated as follows.

w̃T(k) =

∫
e−ik·r δ(R− r) r⊗ r

r2
dr

=

∫ π

0

∫ ∞
0

∫ 2π

0

e−ikr cos θ δ (R− r) r⊗ r

r2
r2 sin θdϕ dr dθ . (B.19)

The dyadic product of the real space unit vector (Eq. (B.13)) with itself in the integrand
can be expressed in terms of the polar and the azimuthal angles.

r⊗ r

r2
=

 sin θ cosϕ
sin θ sinϕ

cos θ

⊗
 sin θ cosϕ

sin θ sinϕ
cos θ


=

 sin2 θ cos2 ϕ sin2 θ sinϕ cosϕ sin θ cos θ cosϕ
sin2 θ sinϕ cosϕ sin2 θ sin2 ϕ sin θ cos θ sinϕ
cos θ sin θ cosϕ cos θ sin θ sinϕ cos2 θ

 . (B.20)

Note that in the calculation of the Fourier transformation the non–diagonal terms van-
ish due to the integration of the periodic functions in ϕ, i.e. sinϕ, cosϕ, and their
product. For the functions of ϕ in the diagonal terms we can write,

∫ 2π

0

cos2 ϕ dϕ =

∫ 2π

0

1 + cos(2ϕ)

2
dϕ = π∫ 2π

0

sin2 ϕ dϕ =

∫ 2π

0

1− cos(2ϕ)

2
dϕ = π (B.21)
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Using Eqs. (B.21) and (B.20) in Eq. (B.19) we have,

w̃T(k) =

∫ π

0

∫ ∞
0

∫ 2π

0

e−ikr cos θ δ (R− r|) r⊗ r

r2
r2 sin θdϕ dr dθ

= R2

∫ π

0

e−ikR cos θ

 π sin3 θ 0 0
0 π sin3 θ 0
0 0 2π sin θ cos2 θ

 dθ

= πR2

∫ π

0

e−ikR cos θ

(
sin3 θ I +

(
2 cos2 θ sin θ − sin3 θ

)
ez ⊗ ez

)
dθ

= πR2

∫ π

0

e−ikR cos θ

(
sin2 θ I +

(
3 cos2 θ − 1

)
ez ⊗ ez

)
sin θ dθ

= πR2

(
A I +B

k⊗ k

k2

)
. (B.22)

where I is the 3 × 3 unit matrix, ez denotes the real space unit vector along the z axis,
and in the last step we have used the equivalency of ez and the unit vector in reciprocal
space k/k. The undetermined integrals A and B are calculated as follows.

A =

∫ π

0

sin2 θe−ikR cos θ sin θ dθ

=

∫ 1

−1

(1− x2)e−ikRx dx with x = cos θ

=

∫ 1

−1

symmetric x→−x︷ ︸︸ ︷
(1− x2) cos(kRx) dx− i

∫ 1

−1

asymmetric x→−x︷ ︸︸ ︷
(1− x2) sin(kRx) dx︸ ︷︷ ︸

= 0

= 2

∫ 1

0

(1− x2) cos(kRx) dx

= 2

[
(1− x2)

sin(kRx)

kR

]1

x=0︸ ︷︷ ︸
= 0

+
4

kR

∫ 1

0

x sin(kRx) dx︸ ︷︷ ︸
see Eq. (B.8)

=
4

k3R3

(
sin(kR)− kR cos(kR)

)
=

1

πR3
w̃3(k) , (B.23)

where in the last step we have used Eq. (B.8) and w̃3(k) is the Fourier transformation
of w3(r) which is given in Eq. (B.9). The second integral B from Eq. (B.22) is calculated
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similarly.

B =

∫ π

0

(
3 cos2 θ − 1

)
e−ikR cos θ sin θ dθ

=

∫ 1

−1

(3x2 − 1)e−ikRxdx with x = cos θ

= 2

∫ 1

0

(3x2 − 1) cos(kRx)dx

= 2

[
(3x2 − 1)

sin(kRx)

kR

]1

x=0

− 12

kR

∫ 1

0

x sin(kRx)dx

=
4

kR
sin(kR)− 12

k3R3

(
−kR cos(kR) + sin(kR)

)
=

1

πR2
w̃2(k)− 3

πR3
w̃3(k) , (B.24)

where w̃3(k) and w̃2(k) are respectively the Fourier transformations ofw3(r) from Eq. (B.9)
andw2(r) from Eq. (B.11). Finally, using the provided expressions forA (Eq. (B.23)) and
B (Eq. (B.24)) in Eq. (B.22), the Fourier transformation of the tensorial weight function
reads

w̃T(k) =
1

R
w̃3(k) I +

(
w̃2(k)− 3

R
w̃3(k)

)
k⊗ k

k2
. (B.25)

Assuming k = (k1, k2, k3), the individual terms in w̃T(k) are given as follows.

w̃T
ij(k) = δij

4π

k3R

(
sin(kR)− kR cos(kR)

)
+
kikj
k2

12π

k3R

((
k2R2

3
− 1

)
sin(kR) + kR cos(kR)

)
, (B.26)

where δij denotes the Kronecker delta function.

δij =

{
1 i = j
0 i 6= j.

(B.27)

Furthermore, using Eqs. (B.10) and (B.12) the Fourier transformation of the tensorial
weight function (Eq. (B.25)) for small k is rewritten as follows:

w̃T(k) =

(
4π

3
R2 − 2π

15
k2R4 +

π

210
k4R6 +O(k6)

)
I

−
(

4π

15
k2R4 − 2π

105
k4R6 +O(k6)

)
k⊗ k

k2
. (B.28)





APPENDIX C

ANALYTICAL EXPRESSIONS FOR
EXPLICIT TERMS IN FMT

C.1 Hard–Spheres

As discussed in Section A.4, for obtaining the equilibrium properties of a system of
interest, the equilibrium density profile ρeq is computed by an iterative solution. For
this purpose, in each step of the iterations the weighted densities n(i)

α are calculated as
the convolution of the density profile ρ(i) and the weighted densities wα. Consequently
the single–particle correlation function c(1) should be computed in order to obtain ρnew

from Eq. (A.18). The new density profile is then mixed with ρ(i) to calculate ρ(i+1) (see
Eq. (A.20)).

The single–particle direct correlation function c(1) for a hard–sphere system reads

−c(1)(r) =
δβF ex [ρ(r)]

δρ(r)
=

δ

δρ

∫
dr Φ ({nα}) (C.1)

=
∑
α

∂Φ

∂nα
∗ wα , (C.2)

where the sum is over all weighted densities and ∗ denotes the convolution. Here, I
present the analytical expressions for the derivatives of the excess free energy
Φ = Φ1 + Φ2 + Φ3 with respect to the weighted densities. For an FMT functional,
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the general forms for Φi’s are given as follows.

Φ1 = −n0 ln(1− n3) , (C.3)

Φ2 = ϕ1(n3)
n1n2 − n1 · n2

(1− n3)
, (C.4)

Φ3 = ϕ2(n3)
3 (−n2 n2 · n2 + n2 · nT · n2 + n2Tr[(nT)2]− Tr[(nT)3])

16π(1− n3)2
. (C.5)

By choosingϕRF
1 = ϕRF

2 = 1 the RF(tensor) functional is obtained while for WBII(tensor)
we have,

ϕWBII
1 (n3) = 1 +

2n3 − n2
3 + 2(1− n3) ln(1− n3)

3n3

(C.6)

= 1 +
1

9
n2

3 +
1

18
n3

3 +O(n4
3) , (C.7)

ϕWBII
2 (n3) = 1− 2n3 − 3n2

3 + 2n3
3 + 2(1− n3)2 ln(1− n3)

3n2
3

(C.8)

= 1− 4

9
n3 +

1

18
n2

3 +
1

45
n3

3 +O(n4
3) . (C.9)

where the Taylor expansions (Eqs. (C.7) and (C.9)) are used in n3 → 0 limit in order to
avoid numerical errors.

Note that in Eq. (C.5) the scalar weighted densities n0 and n1, as well as the vectorial
weighted density n1, can respectively be expressed as a function of n2 and n2 (see
Eq. (4.4)). Therefore, in the following the required partial derivatives for calculating the
excess chemical potential µex = −c(1) (Eq. (C.2)) are only calculated for the independent
weighted densities, i.e. n2, n3, n2, and nT.

The derivatives with respect to n2 are given by,

∂Φ1

∂n2

= − ln(1− n3)

4πR2
, (C.10)

∂Φ2

∂n2

= ϕ1(n3)
n2

2πR(1− n3)
, (C.11)

∂Φ3

∂n2

= ϕ2(n3)
3 (−n2 · n2 + Tr[(nT)2])

16π(1− n3)2
. (C.12)
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For calculating the partial derivative of Φ with respect to n3 we have,

∂Φ1

∂n3

=
n2

4πR2(1− n3)
. (C.13)

∂Φ2

∂n3

=

(
ϕ1(n3)

1− n3

+
∂ϕ1(n3)

∂n3

)
n2

2 − n2 · n2

4πR(1− n3)
, (C.14)

∂Φ3

∂n3

=

(
2ϕ2(n3)

1− n3

+
∂ϕ2(n3)

∂n3

)
(C.15)

×3 (−n2 n2 · n2 + n2 · nT · n2 + n2Tr[(nT)2]− Tr[(nT)3])

16π(1− n3)2
. (C.16)

where the partial derivatives of ϕi are zero for the RF(tensor) functional and for the
WBII(tensor) functional using Eq. (C.9) we have,

∂ϕWBII
1

∂n3

=
−2n3 − n2

3 − 2 ln(1− n3)

3n2
3

(C.17)

=
2

9
n3 +

1

6
n2

3 +
2

15
n3

3 +
1

9
n4

3 +O(n5
3) , (C.18)

∂ϕWBII
2

∂n3

=
4n3 − 2n2

3 − 2n3
3 + 4(1− n3) ln(1− n3)

3n3
3

(C.19)

= −4

9
+

1

9
n3 +

1

15
n2

3 +
2

45
n3

3 +O(n4
3) , (C.20)

where as before the Taylor expansions (Eqs. (C.18) and (C.20)) are provided to be used
in n3 → 0 limit. The derivatives of Φ with respect to the vectorial and the tensorial
weight functions are given by,

∂Φ2

∂n2

= ϕ1(n3)
−n2

2πR(1− n3)
, (C.21)

∂Φ3

∂n2

= ϕ2(n3)
3 (−n2 n2 + nT · n2)

8π(1− n3)2
, (C.22)

∂Φ3

∂nT

= ϕ2(n3)
3 (n2 ⊗ n2 + 2n2nT − 3n2

T)

16π(1− n3)2
. (C.23)

The excess chemical potential which is needed for obtaining the equilibrium density
profile in full minimization (see Section A.4), is numerically obtained by using the
partial derivatives of the excess free energy density (Eqs. (C.12)-(C.23)) in Eq. (C.2).
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C.2 The AO model

In the AO model for a given colloid density profile ρc the equilibrium polymer density
ρp,eq is obtained as follows (see Section 5.3),

ρp,eq(r) = ρp,r exp
[
c(1)

p (r)
]
, with c(1)

p (ρc(r)) = −
∑
α

∂ΦHS

∂nα,c
∗ wαp , (C.24)

where ΦHS is the excess free energy of a pure hard–sphere system, i.e. Φ1 + Φ2 + Φ3

from Eq. (C.5), nα,c are the weighted densities of the colloid, and wαp are the polymer
weighted densities (Eq. (4.4) withRi = Rp). Note that the independent polymer weight
functions are given as follows,

w1
p =

w2
p

4πRp

=
w2

p

4πqRc

, w0
p =

w2
p

4πR2
p

=
w2

p

4πq2R2
c

, (C.25)

w0
p =

w2
p

4πR2
p

=
w2

p

4πq2R2
c

, (C.26)

where q = Rp/Rc is the polymer–colloid size ratio. In the previous section, the par-
tial derivatives with respect to the non–independent weighted densities were easily
replaced with their corresponding independent ones. Here this should be done with
caution since for instance the term containing partial derivatives of Φ1 reads

∑
α

∂Φ1

∂nα,c
∗ wαp =

∂Φ1

∂n3,c

∗ w3
p +

∂Φ1

∂n0,c

∗ w0
p (C.27)

=
∂Φ1

∂n3,c

∗ w3
p +

(
4πR2

c

∂Φ1

∂n2,c

)
∗
(

1

4πR2
p

w2
p

)
, (C.28)

where the second term is equivalent to ∂Φ1/∂n2 from Eq. (C.10) with an additional 1/q2

coefficient. As a result, for the convolutions with the independent polymer weighted
densities, i.e. w2

p, w3
p, w2

p, and wT
p , a compensating coefficient Ci,α should be consid-

ered. This compensating coefficients modify the partial derivatives of the hard–sphere
excess free energy density ΦHS

i with respect to colloid weighted density nα,c and relate
it to those calculated in the previous section as follows.

∂ΦHS

∂nα,c
=

3∑
i=1

Ci,nα
∂Φi

∂nα
(C.29)
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The partial derivatives with respect to n3,c as well as the corresponding terms to the ten-
sorial weight function nT,c are respectively the same as those provided in Eqs. (C.13)-
(C.16) and C.23. Therefore,

Ci,n3 = Ci,nT
= 1 , for i = 1, 2, 3 . (C.30)

For the compensating coefficients of partial derivative with respect to n2,c and n2,c we
have,

C1,n2 =
1

q2
, C2,n2 = C2,n2 =

1

2

(
1 +

1

q

)
, C3,n2 = C3,n2 = 1 . (C.31)

Using Eqs. (C.30) and (C.31) in Eq. (C.29), the required partial derivatives for calculat-
ing the single–particle correlation function for polymers c(1)

p (Eq. (C.24)) are obtained.
Consequently the polymer density profile ρp,eq and its corresponding weighted densi-
ties nα,p are computed. Finally, the excess free energy density for the AO model ΦAO is
calculated as follows,

ΦAO = ΦHS +
∑
α

nα,p
∂ΦHS

∂nα,c
. (C.32)

with the partial derivative of the hard–sphere excess free energy density with respect
to nα,c from Eq. (C.30).

Using Eq. (C.32) the colloid single–particle correlation function c(1)
c reads

−c(1)
c =

∑
α

∂ΦAO

∂nα,c
∗ wαc

= −c(1)
HS +

∑
α

[∑
α′

nα′,p
∂2ΦHS

∂nα,c∂nα′,c

]
∗ wαc . (C.33)

Here c(1)
HS = c(1) from Eq. (C.2) and the second partial derivative in brackets is given by,

∂2ΦHS

∂nα,c∂nα′,c
=

3∑
i=1

Ci,nα′
∂2Φi

∂nα∂nα′
(C.34)

where the compensating coefficients Ci,nα′ are the ones from Eqs. (C.30) and (C.31).
The second partial derivatives of the hard–sphere excess free energy density, i.e. Φ =
Φ1 + Φ2 + Φ3 with Φi from Eq. (C.5), are calculated in the following.
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For Φ1 we have,

∂2Φ1

∂n2∂n3

=
1

4πR2(1− n3)
, (C.35)

∂2Φ1

∂n3
2

=
n2

4πR2(1− n3)2
. (C.36)

For Φ2 we have,

∂2Φ2

∂n2
2

= ϕ1(n3)
1

2πR(1− n3)
, (C.37)

∂2Φ2

∂n2
2

= ϕ1(n3)
−1

2πR(1− n3)
, (C.38)

∂2Φ2

∂n2∂n3

=

(
ϕ1(n3)

1− n3

+
∂ϕ1(n3)

∂n3

)
n2

2πR(1− n3)
, (C.39)

∂2Φ2

∂n2∂n3

=

(
ϕ1(n3)

1− n3

+
∂ϕ1(n3)

∂n3

)
−n2

2πR(1− n3)
, (C.40)

∂2Φ2

∂n3
2

=

(
2ϕ1(n3)

(1− n3)2
+
∂ϕ1(n3)

∂n3

2

1− n3

+
∂2ϕ1(n3)

∂n3
2

)
n2

2 − n2 · n2

4πR(1− n3)
, (C.41)

where ϕ1 for the WBII(tensor) functional and its first derivative with respect to n3 are
respectively provided in Eqs. (C.9) and (C.20), and for its second derivative we have,

∂2ϕWBII
1 (n3)

∂n3
2

=
4n3 − 2n2

3 + 4(1− n3) ln(1− n3)

3n3
3(1− n3)

(C.42)

=
2

9
+

1

3
n3 +

2

5
n2

3 +
4

9
n3

3 +O(n4
3) . (C.43)

For non–zero second derivatives of Φ3 we have,

∂2Φ3

∂n2∂n2

= ϕ2(n3)
−3 n2

8π(1− n3)2
. (C.44)

∂2Φ3

∂n2∂nT

= ϕ2(n3)
3 nT

8π(1− n3)2
. (C.45)

∂2Φ3

∂n2∂nT

= ϕ2(n3)
3 n2

8π(1− n3)2
. (C.46)
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∂2Φ3

∂n2
2

= ϕ2(n3)
3 (−n2 + nT)

8π(1− n3)2
. (C.47)

∂2Φ3

∂nT
2

= ϕ2(n3)
3 (n2 − 3nT)

8π(1− n3)2
. (C.48)

∂2Φ3

∂n2∂n3

=

(
2ϕ2(n3)

1− n3

+
∂ϕ2(n3)

∂n3

)
3 (−n2 · n2 + Tr[(nT)2])

16π(1− n3)2
. (C.49)

∂2Φ3

∂n2∂n3

=

(
2ϕ2(n3)

1− n3

+
∂ϕ2(n3)

∂n3

)
3 (−n2 n2 + n2 · nT)

8π(1− n3)2
. (C.50)

∂2Φ3

∂nT∂n3

=

(
2ϕ2(n3)

1− n3

+
∂ϕ2(n3)

∂n3

)
3 (n2 ⊗ n2 + 2n2nT − 3n2

T)

16π(1− n3)2
. (C.51)

∂2Φ3

∂n3
2

=

(
6ϕ2(n3)

(1− n3)2
+
∂ϕ2(n3)

∂n3

2

1− n3

+
∂2ϕ2(n3)

∂n3
2

)
×3 (−n2 n2 · n2 + n2 · nT · n2 + n2Tr[(nT)2]− Tr[(nT)3])

16π(1− n3)2
, (C.52)

where ϕ2 for the WBII(tensor) functional (Eq. (C.9)) and its first derivative with respect
to n3 is calculated in Eq. (C.20) while its second derivative reads

∂2ϕWBII
2 (n3)

∂n3
2

=
−12n3 + 2n2

3 − 4(3− 2n3) ln(1− n3)

3n4
3

(C.53)

=
1

9
+

2

15
n3 +

2

15
n2

3 +
8

63
n3

3 +O(n4
3) . (C.54)

Using the second derivatives of the excess free energy density (Eqs. (C.36)-(C.54)) in
Eq. (C.34), we can calculate c(1)

c from Eq. (C.33).

The full minimization for the AO model starts from an initial Gaussian density profile
(see Eq. (A.4)) for the colloids. In each iteration, the colloid weighted densities nα,c are
calculated for obtaining c

(1)
p and the polymer density profile ρp,eq (Eq. (C.24)). After

calculating the polymer weighted densities nα,p, the colloid excess chemical potential
βµex

c = −c(1)
c (Eq. (C.33)) is obtained to be used in Eq. (A.18). The new colloid density

profile is mixed with the current one to be used in the next iteration (see Eq. (A.20)).





APPENDIX D

MAXWELL CONSTRUCTION

The Maxwell or common tangent construction is a well known method for obtaining
the phase coexistence densities ρ1 and ρ2 at a given temperature. At these densities,
the pressure p and the chemical potential µ are equal.

p1 = p2 ,

µ1 = µ2 , (D.1)

where pi = p(ρi) and µi = µ(ρi). Assuming the free energy densities of the system
in these two phases are analytically available, the chemical potential of the system is
obtained as its derivative with respect to the density at constant temperature.

µ(ρ) =
∂f

∂ρ
. (D.2)

Having the chemical potential, the pressure is obtained as,

p(ρ) = −f(ρ) + ρµ(ρ) . (D.3)

The process of equating the pressure and the chemical potential, and finding the den-
sities at which the phase transition occurs is shown schematically in Fig. D.1. The
method is known as the common tangent construction, as one should find a straight
line which is tangent to the branches of the free energy density at the coexisting den-
sities. The slope of the line is equal to the slope of the free energy curves, i.e. the
chemical potential.

In practice, one may fit a polynomial to the available data points for the free energy
density in order to find an analytical form and initiate the common tangent construc-
tion. For this purpose, having an initial guess for the coexistence densities ρ0,i, we have
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Figure D.1: Common tangent construction of the free energy curves for obtaining the
coexisting densities as well as the pressure and the chemical potential. a) The red and
blue curves represents the free energy density curves for two generic phases of the
system. The black curve is the common tangent whose slope is equal to the chemical
potential of the curves at its single–point–intersection with them: the coexistence den-
sities. b) The grand free energy density, w = f−µρwhich is equal to−p as a function of
densities. Red and blue curves represent the same phase as (a). The black curve from
(a) turns into a horizontal line whose ordinate is equivalent to the coexistence pressure
multiplied by −1.

fitted parabolas to the free energy density curves.

f1(ρ) = a1 + b1(ρ− ρ0,1) + c1(ρ− ρ0,1)2

f2(ρ) = a2 + b2(ρ− ρ0,2) + c2(ρ− ρ0,2)2 (D.4)

This enables us to have analytical form for the chemical potential and pressure of two
states. Using Eq. (D.2) the analytical form of the chemical potentials µi reads

µ1(ρ) = b1 + 2c1(ρ− ρ0,1) ,

µ2(ρ) = b2 + 2c2(ρ− ρ0,2) . (D.5)

By equating the chemical potentials µ1(ρ1) = µ2(ρ2) = µcoex, the coexistence density of
the second phase ρ2 may be expressed as a function of its corresponding value for first
phase ρ1.

ρ2 = ρ0,2 +
b1 − b2

2c2

+
c1

c2

(ρ1 − ρ0,1) . (D.6)

On the other hand, by combining the analytical forms of the free energy densities from
Eq. (D.4) and the chemical potentials from Eq. (D.5), one can obtain an analytical form
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for the pressure using Eq. (D.3).

p1(ρ) = −a1 + b1ρ0,1 + c1(ρ− ρ0,1)(ρ+ ρ0,1) ,

p2(ρ) = −a2 + b2ρ0,2 + c2(ρ− ρ0,2)(ρ+ ρ0,2) . (D.7)

By equating the pressure of the two phases at the coexistence densities p1(ρ1) = p2(ρ2) =
pcoex and using Eq. (D.6), the coexistence density of the first phase ρ1 can be expressed
in terms of the fitting parameters ai, bi, and ci, and the initial guesses for the coexistence
densities ρ0,i.

ρ1 =
−1

2
(b1 − b2) + c1ρ0,1 − c2ρ0,2 +

√
c2
c1
k

c1 − c2

with k =
1

4
(b1 − b2)2 − (a1 − a2)(c1 − c2)

+(c1b2 − c2b1)(ρ0,1 − ρ0,2) + c1c2(ρ0,1 − ρ0,2)2 , (D.8)

which can be later used in Eq. (D.6) to obtain the coexistence density of the second
phase ρ2. In case the difference of the obtained results with initial guesses is larger than
a given tolerance, e.g. |ρi − ρ0,i| > 0.001, the parabolas from Eq. (D.4) are re–initiated
with the previous results for ρi as the new ρ0,i and the procedure is repeated.





APPENDIX E

EXCESS FREE ENERGY OF A 0D CAVITY
FOR THE AO MODEL

The concept of a 0D cavity, a cavity which can not hold more than one particle, is
already introduced in Section 4.2. There we have discussed that an FMT functional
which accounts for freezing must necessarily results in 0D free energy under appro-
priate form of confining external potential. Moreover, it is possible to construct a func-
tional from 0D as explained in Section 4.2 (see Eq. (4.27) and its following discussion).

For extending the idea to the AO model, consider a cavity which either contains one
colloidal hard–sphere or the polymer ideal gas. The grand partition sum is written as

ΞAO =
∞∑

Np=0

∞∑
Nc=0

ZAO
Nc,Np

eβµcNceβµpNp

Nc!Np!

=
∞∑

Np=0

ZAO
Nc=0,Np

eβµp

Np!
+ ZAO

Nc=1,Np=0e
βµc

=
∞∑

Np=0

(Z1,p)Np eβµpNp

Np!
+ Z1,ce

βµc

= exp
(
Z1,pe

βµp
)

+ Z1,ce
βµc , (E.1)

where ZAO
Nc,Np

is the configuration partition function for the AO model with Nc colloids
and Np polymers, and Z1,i is the single particle partition function for species i. For the
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number of colloidal particles Nc we can write,

Nc =
∂ ln ΞAO

∂βµc

=
Z1,ce

βµc

exp (Z1,peβµp) + Z1,ceβµc
,

⇒ Z1,ce
βµc =

Nc exp
(
Z1,pe

βµp
)

1−Nc

. (E.2)

⇒ βµc = ln

[
Nc exp

(
Z1,pe

βµp
)

Z1,c (1−Nc)

]
. (E.3)

Similarly, for the number of polymer chains Np we have,

Np =
∂ ln ΞAO

∂βµp

=
Z1,pe

βµp exp
(
Z1,pe

βµp
)

exp (Z1,peβµp) + Z1,ceβµc
=

Z1,pe
βµp

1 + Nc

1−Nc

,

⇒ Z1,pe
βµp =

Np

1−Nc

. (E.4)

⇒ βµp = ln

[
Np

Z1,p (1−Nc)

]
. (E.5)

where we have used Eq. (E.2). Now we can rewrite Eq. (E.1) by the expressions ob-
tained from Eqs. (E.2) and (E.4) in order to calculate the pressure of the system.

βp = ln ΞAO =
Np

1−Nc

− ln (1−Nc) . (E.6)

As a result, we are able to calculate the free energy of a 0D cavity for the AO model.

βF = −βp+ βµcNc + βµpNp

= − Np

1−Nc

+ ln (1−Nc)

+Nc ln

[
Nc exp

(
Z1,pe

βµp
)

Z1,c (1−Nc)

]
+Np ln

[
Np

Z1,p (1−Nc)

]
. (E.7)

Here, we have used the expressions for βµc from Eq. (E.3), βµp from Eq. (E.5), and βp
from Eq. (E.6).

In order to determine the unknown expressions for the single–particle partition func-
tions Z1,i, consider the colloidal particles as ideal gas particles. The grand partition
sum for such a system is written as follows:

Ξid
AO =

∞∑
Nc=0

∞∑
Nc=0

(Z1,c)
Nc(Z1,p)NpeβµcNceβµpNp

Nc!Np!

= exp
(
Z1,ce

βµc + Z1,pe
βµp
)
, (E.8)
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The number of different species Ni and consequently their corresponding chemical
potentials µi and the pressure of the system pi are calculated as follows.

Nc =
∂ ln Ξ

∂βµc

= Z1,ce
βµc , Np =

∂ ln Ξ

∂βµp

= Z1,pe
βµp

⇒ βµc = ln

(
Nc

Z1,c

)
, βµp = ln

(
Np

Z1,p

)
βp = ln Ξ = Z1,ce

βµc + Z1,pe
βµp = Nc +Np (E.9)

Therefore, the ideal part of the free energy for the AO model reads

βF id = −βp+ βµcNc + βµpNp

= −Nc −Np +Nc ln

(
Nc

Z1,c

)
+Np ln

(
Np

Z1,p

)
(E.10)

By subtracting βF id from the total free energy from Eq. (E.7), we obtain the excess free
energy of a 0D cavity for the AO model.

βF ex = βF − βF id

= − Np

1−Nc

+ ln (1−Nc) +Nc +Np

+Nc ln

(
exp

(
Z1,pe

βµp
)

1−Nc

)
+Np ln

(
1

1−Nc

)
= (1−Nc −Np) ln(1−Nc) +Nc . (E.11)

By replacing Ni with the corresponding packing fractions ηi, Eq. (E.12) is recovered.

ΦAO
0D = ηc + ln(1− ηc) (1− ηc − ηp) , (E.12)

As discussed in Section 5.3, since ΦAO
0D has either constant or linear terms in the poly-

mer density ρp the obtained functional for higher dimensions is also linear in ρp (see
Eq. (E.12) and the following discussion).





APPENDIX F

EMBEDDED ATOM MODEL

The total energy of a systemEcoh provides information about the structure and thermal
properties of a solid. In a classical system whose particles interaction is described by a
pairwise potential u, Ecoh is simply calculated as,

Ecoh =
1

2

∑
i,j
i 6=j

u (rij) , with rij = |ri − rj| , (F.1)

where ri denotes the position of atom i. Here, the ansatz is that the atomic bonds act
independently and the presence of one does not affect the others. In a metallic system
however, this is not true since the interactions are of many–body nature. This can be
shown for instance by looking at the strong deviation of the solid cohesive energy Ecoh

with the Gibbs free energy of vacancy formation ∆Gv which for a pairwise interaction
is Ecoh ≈ ∆Gv.

Embedded Atom method (EAM) is an attempt to approximate the many–body interac-
tions which are neglected in Eq. (F.1). In this approach, the total energy of the metal is
calculated as the obtained energy of embedding a single atom into the electron density
provided by “host” atoms [135, 157].

Ecoh =
1

2

∑
i,j
i 6=j

u (rij) +
∑
i

F (ρa
i ) , with ρa

i =
∑
j 6=i

ρa (rij) (F.2)

Here, u is an electrostatic two–body potential, F is the embedding energy, ρa
i is the local

electron density at the position of atom i. The latter is calculated as a superposition of
ρa(rij) the spherically averaged electron density of atom j.

Fur numerical implementation, the required functions are atomic electron density ρa,
embedding function F , and the pair interaction u. In the following, three different
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parametrization of these undetermined functions for Nickel are presented. Through-
out these chapter, the energies are expressed in eV, the length unit is Å, and the densi-
ties are expressed as number in Å3.

F.1 F85

In the parametrization of the EAM potential presented by Foiles (F85) in Ref. [137],
the total potential energy is decomposed into a repulsive part due to the interaction of
the nuclei and an attractive part given by the embedding function (see Eq. (F.2)). The
short–range purely repulsive part of the potential is given by the repulsive Coulomb
interaction of atom i and the screened nuclei charges Z(r) of the host j 6= i.

u(rij) =
1

4πε0

Z2(rij)e
2

rij
, (F.3)

where e is the elementary charge. In F85, the screening function Z2(r) is fitted to a
fourth order polynomial for distances smaller than the cut–off range rcut.

Z2(r) =

{
a1(rcut − r)3 + a2(rcut − r)4 , for r < rcut

0 otherwise .
(F.4)

For Nickel the cut–off range of the screening potential is rcut = 3.0045 and the coeffi-
cients are a1 = 0.070937 and a2 = 0.146031.

The atomic electron density ρa is obtained based on the Hartree–Fock calculations of
Clementi and Roetti and of McLean and McLean [158, 159], and is approximated by a
mixture of ρa

s and ρa
d which are respectively the density of outer s and d orbitals.

ρa(r) = nsρ
a
s(r) + (n− ns)ρa

d(r) . (F.5)

Here, n is the total number of outer electrons and ns gives an effective measure of
the contribution of the s–orbital–like electrons which is obtained by a fitting to the
hydrogen heat of solution [135]. The spherically averaged s–like electron density ρa

s is
computed by,

ρa
s(r) =

1

4π

∣∣∣∣∑
i

CiRi(r)

∣∣∣∣2 with Ri(r) =

√
(2ζi)(2ni+1)

(2ni)!
rni−1e−ζir . (F.6)

The required parameters for obtaining ρa
s, as well as ρa

d which is computed by a similar
expression, are presented in table F.1.

Finally, the embedding function is determined by choosing functional forms which
meet some general requirements, namely,
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Table F.1: Parameters used to calculate the atomic electron density ρa. The total elec-
tron density is given by Eq. (F.5) with n = 10 and ns = 0.85 for Nickel. The spherically
averaged s– and d–like electron densities, i.e. ρa

s and ρa
s respectively, are computed

using Eq. (F.6).

4s 3d
i ni ζi Ci ni ζi Ci

1 1 54.88885 -0.00389 3 12.67582 0.4212
2 1 38.48431 -0.02991 3 5.43253 0.70658
3 2 27.42703 -0.03189
4 2 20.88204 0.15289
5 3 10.95707 -0.20048
6 3 7.31958 -0.05423
7 4 3.9265 0.49292
8 4 2.15289 0.61875

• F = 0 for ρa = 0,

• F decreases to a simple minimum with a value greater than the sublimation en-
ergy,

• The minimum of F occurs at ρa
0 which is slightly greater than average electron

density in equilibrium,

• it increases for ρa > ρa
0.

The functional forms which meet these requirements are adjusted to describe the bulk
equilibrium solid. This is achieved by a fitting to the equilibrium lattice constant, the
sublimation energy, the elastic constants, the vacancy formation energy, and the energy
difference of bcc and fcc lattice structures [137]. The obtained embedding function F is
presented as knots of a spline in table F.2. For spline interpolation the usual convention
of setting curvature to zero at endpoints is used1.

F.2 FBD86

Similar to F85, there are two distinct contribution to the total potential energy in the
parametrization presented by Foiles, Baskes and Daw (FBD86) in Ref. [138]. For FBD86,

1 See Section 3.3 of Ref. [160] for a numerical implementation of splines in C.
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Table F.2: Parameters used to calculate the screening Z2(r) and the embedding F func-
tions of F85 for Nickel [137]. The screening function Z2(r) is calculated by using a1,
a2, and rcut in Eq. (F.4). The embedding function F (ρa

i ) is obtained by spline interpo-
lation of the provided values with the usual convention of setting curvature to zero at
endpoints.

a1 a2 rcut ρa
i F

0.070937 0.146031 3.0045 0 0
0.01446 -3.5847
0.02891 -5.1449
0.05783 -3.4041

the embedding function F (ρa
i ) is specified so that for a given metal density, or equiva-

lently the lattice constant a in an fcc solid, the sublimation energyEsub is given by [161],

Esub(a) = −E0
sub (1 + a∗) e−a

∗
, with a∗ =

(
a

a0

− 1

)
/ (Esub/9BΩ) . (F.7)

Here, E0
sub is the sublimation energy at zero temperature and pressure, a∗ gives a mea-

sure of deviation of the lattice constant from its equilibrium value a0, B is the bulk
modulus, and Ω is the equilibrium volume per atom. As a result of the definition of
the embedding function in FBD86, the obtained result for the equilibrium lattice con-
stant, sublimation energy, and the bulk modulus are guaranteed to be correct for pure
material.

The electron density is given by Eq. (F.5) with the undetermined contribution of s–like
orbital ns. The relative values of ns is primarily determined by the heats of mixing
alloys. There is an overall scale factor which is not determined by the fitting. Foils et
al. have chosen arbitrarily ns = 1 for Copper and hence for Nickel we have ns = 1.5166.

Finally, the repulsive potential due to the interaction of the nuclei is given by the same
expression as F85 Eq. (F.3). However, the screening function Z in FBD86 is different
from that of F85 and it reads

Z(r) = Z0 (1 + βrν) e−αr , (F.8)

where Z0 is assumed to be the number of outer electrons of the atom and ν is empiri-
cally chosen so that a good representation of the elastic constant is achieved. For Nickel
these parameters are Z0 = 10 and ν = 1. The values of the undetermined parameters
α and β are primarily calculated by fitting to the shear moduli and the vacancy forma-
tion energy of the pure material. A summary of the required parameters for Nickel are
presented in table F.3.
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Table F.3: Parameters defining the EAM potentials of FBD86 for Nickel [138]. Z0, α, β,
and ν are used in Eq. (F.8) in order to obtain screening function Z and consequently
the repulsive electrostatic interaction of the nuclei (Eq. (F.3)). For calculating the elec-
tron density for Nickel ns and n are used in Eq. (F.5). The embedding function F is
constructed in a way to respect the Rose et al. equation of state (Eq. (F.7)) with the
following provided values for a0, E0

sub, and B). In practice, it is more convenient to cal-
culate a few spline knots for obtaining the embedding function for a range of electron
densities before the actual computations.

Z0 α β ν ns n a0 E0
sub B

10.0 1.8633 0.8957 1 1.5166 10.0 3.52 4.45 180

F.3 M99

The EAM potential given by Mishin et al. (M99) in Ref. [139] uses the same formalism
in Eq. (F.2). However, the potential functions have very general form with no refer-
ence to their original physical meaning. Therefore there is no restriction on expressing
the attractive and the repulsive contributions in terms of the pair potential and the
embedding functions respectively.

The functions have been fitted to an optimum number of observables in order to avoid
“overfitting”. For this purpose Mishin et al. have split an extended database of ex-
perimental and ab initio calculations in two sets. The first set of observables are used
for fitting the functions. The functions are later tested with the second set. The fitting
observables are namely the equilibrium lattice constant, the cohesive energy of the fcc
phase, the vacancy formation energy, the vacancy migration energy, the intrinsic stack-
ing fault energy, and the experimentally measured phonon–dispersion relations. More-
over, the potentials are fitted to ab initio energies of the hcp, bcc, and diamond structure
for comparison, while other structural energies are used in the testing stage [139]. The
obtained functions are provided as tabulated values and are presented here in table F.4.
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Table F.4: Tabulated values of the potential functions in M99 for Nickel [139].

r u(r) ρa(r) ρa
i F (ρa

i )

2.0000 0.7597 0.0671 0.0000 0.0000
2.1585 0.1812 0.0727 0.050 -0.2164
2.3170 20.1391 0.0761 0.100 -0.5094
2.4755 20.2214 0.0755 0.150 -0.8488
2.6340 20.2153 0.0691 0.200 -1.2042
2.7924 20.1766 0.0579 0.250 -1.5453
2.9509 20.1291 0.0440 0.300 -1.8419
3.1094 20.0909 0.0301 0.350 -2.0714
3.2679 20.0643 0.0193 0.400 -2.2426
3.4264 20.0423 0.0123 0.450 -2.3721
3.5849 20.0252 0.0081 0.500 -2.4766
3.7434 20.0139 0.0057 0.550 -2.5698
3.9019 20.0089 0.0043 0.600 -2.6542
4.0604 20.0084 0.0031 0.650 -2.7296
4.2189 20.0078 0.0021 0.700 -2.7958
4.3773 20.0043 0.0014 0.750 -2.8525
4.5358 0.0006 0.0008 0.800 -2.8995
4.6943 0.0044 0.0004 0.850 -2.9364
4.8528 0.0052 0.0002 0.900 -2.9631
5.0113 0.0037 0.0001 0.950 -2.9793
5.1698 0.0022 0.0000 0.975 -2.9834
5.3283 0.0024 0.0000 1.000 -2.9848
5.4868 0.0020 0.0000 1.025 -2.9840
5.6453 0.0004 0.0000 1.050 -2.9838
5.8037 0.0000 0.0000 1.100 -2.9990
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[44] H. J. Schöpe, G. Bryant, and W. van Megen, The Journal of Chemical Physics 127,
084505 (2007): Effect of polydispersity on the crystallization kinetics of suspensions of
colloidal hard spheres when approaching the glass transition.

[45] E. J. J. van Rensburg, Journal of Physics A: Mathematical and General 26, 4805
(1993): Virial coefficients for hard discs and hard spheres.

[46] F. H. Ree and W. G. Hoover, The Journal of Chemical Physics 40, 939 (1964): Fifth
and Sixth Virial Coefficients for Hard Spheres and Hard Disks.

[47] F. H. Ree and W. G. Hoover, The Journal of Chemical Physics 46, 4181 (1967):
Seventh Virial Coefficients for Hard Spheres and Hard Disks.

[48] N. Clisby and B. M. McCoy, Journal of Statistical Physics 122, 15 (2006): Ninth
and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions.

[49] R. J. Wheatley, Phys. Rev. Lett. 110, 200601 (2013): Calculation of High-Order Virial
Coefficients with Applications to Hard and Soft Spheres.

[50] N. F. Carnahan and K. E. Starling, The Journal of Chemical Physics 51, 635 (1969):
Equation of State for Nonattracting Rigid Spheres.

[51] J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958): Analysis of Classical Statis-
tical Mechanics by Means of Collective Coordinates.

[52] J. K. Percus, Phys. Rev. Lett. 8, 462 (1962): Approximation Methods in Classical
Statistical Mechanics.

[53] M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963): Exact Solution of the Percus-Yevick
Integral Equation for Hard Spheres, .

[54] H. Reiss, H. L. Frisch, and J. L. Lebowitz, The Journal of Chemical Physics 31,
369 (1959): Statistical Mechanics of Rigid Spheres.

[55] J. L. Lebowitz, E. Helfand, and E. Praestgaard, The Journal of Chemical Physics
43, 774 (1965): Scaled Particle Theory of Fluid Mixtures.

http://www.nature.com/nature/journal/v320/n6060/abs/320340a0.html
http://link.aps.org/doi/10.1103/PhysRevE.74.060401
http://scitation.aip.org/content/aip/journal/jcp/127/8/10.1063/1.2760207;jsessionid=RSzDAYo1WrENUyRi2K4-6Km7.x-aip-live-03
http://scitation.aip.org/content/aip/journal/jcp/127/8/10.1063/1.2760207;jsessionid=RSzDAYo1WrENUyRi2K4-6Km7.x-aip-live-03
http://stacks.iop.org/0305-4470/26/i=19/a=014
http://scitation.aip.org/content/aip/journal/jcp/40/4/10.1063/1.1725286
http://scitation.aip.org/content/aip/journal/jcp/46/11/10.1063/1.1840521
http://dx.doi.org/10.1007/s10955-005-8080-0
http://link.aps.org/doi/10.1103/PhysRevLett.110.200601
http://scitation.aip.org/content/aip/journal/jcp/51/2/10.1063/1.1672048
http://link.aps.org/doi/10.1103/PhysRev.110.1
http://link.aps.org/doi/10.1103/PhysRevLett.8.462
http://link.aps.org/doi/10.1103/PhysRevLett.10.321
http://scitation.aip.org/content/aip/journal/jcp/31/2/10.1063/1.1730361
http://scitation.aip.org/content/aip/journal/jcp/31/2/10.1063/1.1730361
http://scitation.aip.org/content/aip/journal/jcp/43/3/10.1063/1.1696842


183 BIBLIOGRAPHY

[56] R. Evans, Density functional theory for inhomogeneous fluids I: Simple fluids in equi-
librium, Lectures at 3rd Warsaw School of Statistical Physics: Kazimierz Dolny (2009).

[57] J. K. Percus, Journal of Statistical Physics 15, 505 (1976): Equilibrium state of a
classical fluid of hard rods in an external field.

[58] J. K. Percus, Journal of Statistical Physics 28, 67 (1982): One-dimensional classical
fluid with nearest-neighbor interaction in arbitrary external field.

[59] Y. Singh, Physics Reports 207, 351 (1991): Density-functional theory of freezing and
properties of the ordered phase.

[60] P. Tarazona and R. Evans, Molecular Physics 47, 1033 (1982): Long ranged corre-
lations at a solid-fluid interface A signature of the approach to complete wetting.

[61] M. Oettel, S. Dorosz, M. Berghoff, B. Nestler, and T. Schilling, Phys. Rev. E 86,
021404 (2012): Description of hard-sphere crystals and crystal-fluid interfaces: A com-
parison between density functional approaches and a phase-field crystal model.

[62] T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775 (1979): First-principles
order-parameter theory of freezing.

[63] M. Plapp, Phase–field Models, Lectures at Summer School for Phase–field models for
the evolution of complex structures: Peyresq(France) (2013).

[64] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys. Rev. Lett. 88, 245701
(2002): Modeling Elasticity in Crystal Growth.

[65] K. R. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004): Modeling elastic and
plastic deformations in nonequilibrium processing using phase field crystals.

[66] A. Jaatinen and T. Ala-Nissila, Journal of Physics: Condensed Matter 22, 205402
(2010): Extended phase diagram of the three–dimensional phase field crystal model.

[67] S. van Teeffelen, R. Backofen, A. Voigt, and H. Löwen, Phys. Rev. E 79, 051404
(2009): Derivation of the phase-field-crystal model for colloidal solidification.

[68] H. Emmerich, Journal of Physics: Condensed Matter 21, 464103 (2009): Phase–
field modelling for metals and colloids and nucleation therein: an overview.
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Germany.
Title of doctoral dissertation: Equilibrium properties of crystals
in the Hard–sphere and the Asakura–Oosawa model.
Supervisors: Prof. Dr. Martin Oettel, Prof. Dr. Roland Roth.


	Preface
	Publications
	Abstract
	Zusammenfassung

	Contents
	Introduction
	Theory
	Thermodynamics
	Statistical Physics and Classical ensembles
	Microcanonical ensemble
	Canonical Ensemble
	Grand–canonical ensemble
	The Ornstein-Zernike relation

	Density Functional Theory
	Existence of a unique energy functional
	Helmholtz free energy functional for an ideal gas
	Excess part of the free energy functional and direct correlation functions


	Classical pairwise interactions
	Interactions between colloidal particles
	Hard Spheres
	Virial expansion and the Carnahan–Starling equation of state
	The Percus–Yevick approximation
	Scaled–particle theory

	Excess Helmholtz free energy functional
	Low density limit and local density approximation
	Ramakrishnan–Yussouff functional
	Phase Field Crystal model


	Bulk Crystals of Hard Spheres in FMT
	Fundamental Measure Theory
	0D–Cavities and the Tarazona functional
	White Bear versions of FMT
	A new class of self-consistent functionals
	Bulk properties of the hard–sphere crystal
	Phase transition
	Vacancy concentration
	Density distribution

	Summary and Conclusions

	An FMT Functional for freezing in the AO model
	Asakura–Oosawa Model
	Free Volume Theory
	Fundamental Measure Theory for the AO–model
	Bulk Crystals in the AO–Model
	Effective free energy of the colloid crystals
	Phase Behavior
	Large q's
	Intermediate q's
	Small q's

	The polymer density profile
	Full minimization
	Comparison of RF(tensor) and WBII(tensor)
	Crystal free energies
	Phase diagram

	Summary and Conclusions

	Thermal Vacancies in close–packing solids
	The crystal partition function
	The Stillinger series
	Equilibrium thermal vacancies
	Numerical results
	Hard spheres
	The AO model
	The Lennard–Jones potential
	The Embedded-Atom-Model

	Summary and Conclusions

	Numerical Considerations in implementing DFT
	Discretization and symmetries
	Fourier transformation and convolution
	Implementation of the weighted densities
	Equilibrium density profile and minimization of the free energy
	Picard iterations
	Direct inversion in iterative subspace
	Convergence of the solution


	Fourier transformation of the weighted densities
	Fourier transformation of w3(r)
	Fourier transformation of w2(r)
	Fourier transformation of w2(r)
	Fourier transformation of wT(r)

	Analytical expressions for explicit terms in FMT
	Hard–Spheres
	The AO model

	Maxwell construction
	Excess free energy of a 0D cavity for the AO model
	Embedded Atom Model
	F85
	FBD86
	M99

	Bibliography
	List of figures
	List of tables

