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Summary 

The pathological aggregation of amyloidogenic proteins characterizes many 

neurodegenerative diseases such as Alzheimer disease (AD), which represents 

the most common form of dementia. The amyloid-beta (Aβ) peptide is one of 

the principal aggregating proteins in AD. Aβ is suggested to have the ability to 

adopt distinct structural conformations, a feature reminiscent of prion “strains” 

described for transmissible spongiform encephalopathies. In vitro, distinct 

biological activities were induced by structural differences in Aβ and distinct Aβ 

conformations have been described in Aβ precursor protein (APP) transgenic 

(tg) mouse models. Only recently the existence of structural Aβ variants has 

been suggested among smaller cohorts of AD patients. Nevertheless, the 

molecular basis for these variations could so far not be elucidated in mouse 

models of β-amyloidosis and the diversity of structural characteristics remains 

obscure in the broader population of AD patients. In this regard, the aim of this 

thesis was to further investigate differences in Aβ conformation. Thereby, novel 

conformation-sensitive dyes, called luminescent conjugated oligothiophenes 

(LCOs), should serve to assign a structural fingerprint to the distinct Aβ 

aggregates. 

 

In a first set of experiments, we investigated the existence of different Aβ 

conformers in models of β-amyloidosis. Initially, we were interested in the 

impact of endogenous murine Aβ on amyloid formation in tg mice. APP tg 

mouse models develop many of the typical characteristics of β-amyloidosis due 

to the overproduction of human Aβ but generally continue to express 

endogenous murine Aβ. Even though the murine Aβ peptide is present, its 

contribution to the β-amyloidosis or its influence on the plaque conformation in 

APP tg mouse models remains to be elucidated. We detected an influence of 

murine Aβ on the plaque load in a slowly Aβ-depositing model, whereas no 

obvious effect was seen in a model with more rapid amyloidosis. While we 

could show a tight association of murine with human Aβ fibrils, no significant 

influence of the murine Aβ subtype on the Aβ plaque conformation could be 

detected in this study. Conclusively, the mechanistically complex interaction of 

the two Aβ subtypes may affect the pathogenesis of APP tg mouse models and 
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should be considered respectively when different models are used for 

translational preclinical studies. In the following, we were interested in whether 

distinct Aβ conformations can be detected independent of the biological system 

and thus investigated Aβ conformers in an organotypic slice culture model for β-

amyloidosis. Aβ deposition was induced in hippocampal slice cultures (HSCs) 

with a combinatorial treatment of Aβ seeding extract and synthetic Aβ. Spectral 

analysis following LCO staining revealed conformational differences between 

the Aβ deposits in the cultures, shown to be dependent on both the origin of the 

Aβ seeding extract (from APP23 or APPPS1 tg mice) and the type of synthetic 

Aβ (Aβ1-40 or Aβ1-42). These experiments substantiated the feasibility of 

investigating conformational differences of Aβ in HSCs, a fast and easy-

accessible model system that combines the advantages of in vitro and in vivo 

approaches to study β-amyloidosis. As a final step to further investigate the 

properties of Aβ as a pathogenic protein, we investigated whether the observed 

Aβ conformers were conserved upon formaldehyde fixation. Prions are known 

for their remarkable resistance to the inactivation by formaldehyde. In our study, 

we could show that beside the Aβ inducing activity, also the conformational 

differences were preserved after formaldehyde fixation. We detected different 

Aβ conformers between mice inoculated with fixed brain material from either 

APP23 or APPPS1 tg animals. These findings might be exploited to establish 

the relationship between the molecular structure of Aβ aggregates and the 

variable clinical features and disease progression of AD even in formalin-fixed 

autopsy material. 

 

The second set of experiments was designed to assess conformational 

differences between Aβ aggregates directly in human AD tissue. Post-mortem 

brain tissues from 26 AD cases were investigated by spectral analysis using the 

conformation-sensitive LCO dyes. We were able to spectrally distinguish 

morphologically similar Aβ plaques from familial and sporadic AD cases. 

Interestingly, spectral analysis could detect differences not only within different 

familial cases but also within the group of sporadic AD patients, for which the 

origin of these variations remains mainly elusive. Structural differences in 

sporadic patients did not correlate with risk factors such as the age or 

apolipoprotein E genotype, and neither with biochemical characteristics. These 
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results provide evidence for the structural diversity of Aβ aggregates among AD 

cases with either different or related etiologies. In the future, the observed 

conformational variety might be further investigated and correlated to clinical 

data of the patients.  

 

In conclusion, we were able to detect conformational differences between Aβ 

aggregates by applying a novel conformation-sensitive method. We observed 

distinct Aβ conformers in different models of β-amyloidosis and intriguingly also 

among AD patients. The variations found in AD patients may account for 

different neurotoxic or cognitive defects in these patients and should be further 

investigated in relevance to the disease. Using our findings as a foundation, a 

crucial goal would be to develop novel structure-specific compounds that can 

specifically target the harmful conformers. This would open the possibility for 

the development of structure-specific imaging tools applicable for diagnostics or 

in personalized therapies. 
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Introduction 

1. Amyloid proteins 

1.1. Definition and general overview 

When the Dutch chemist Geradus Johannes Mulder first described proteins in 

1839 (Mulder, 1839), he had presumably no idea how important these 

substances are in the human body and he could not have predicted that a 

century later they would also be crucial pathological entities of 

neurodegenerative disease. Proteins are polymers build up of long chains of 

amino acid residues, which are involved in nearly every process in the living 

organism (Branden and Tooze, 1999). They are responsible for catalysis, 

transport, protection, regulation, and scaffolding among other cellular tasks, 

which are fundamental for a healthy, well-functioning organism. However, 

proteins can also be harmful, if they lose their physiological function or if they 

gain toxic, pathogenic functions (Pallares and Ventura, 2016). A group of 

proteins - called amyloidogenic proteins - can exhibit a pathogenic function, 

because of their tendency to misfold and aggregate, which can initiate a 

disease process.  

 

The term amyloid was introduced back in 1854 from the German pathologist 

Rudolph Virchow (Virchow, 1854, Sipe and Cohen, 2000, Kyle, 2001). Virchow 

observed a characteristic reaction of the cerebral corpora amylacea with iodine. 

He named these structures amyloid, derived from the Latin “amylum”, because 

he was convinced that the substance he found in the corpora amylacea was 

starch. Though, at that time, it was still under debate whether amyloid should be 

considered to be starch or cellulose (Sipe and Cohen, 2000). As staining 

methods and microscopy techniques improved over the years, our 

understanding of amyloid structures has advanced considerably and a detailed 

overview of the amyloid structure and formation is found in the next section (see 

1.2.). Nowadays, an amyloid protein is known as an insoluble, unbranched 

filament consisting of many-stranded β-sheets (Eisenberg and Jucker, 2012, 

Sipe et al., 2014). Amyloid fibrils are typically around 10 nm thick and 0.1 – 10 

µm in length. By definition, all amyloids exhibit a characteristic cross-β 

diffraction pattern when X-rays are directed on them. Amyloid deposits have an 
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affinity for the dye Congo red and these red-stained deposits are birefringent, 

exhibiting typical green or yellow anomalous colors when examined between 

crossed polarizers (Howie et al., 2008, Howie, 2015). Classically amyloid 

deposits were characterized as being found in extracellular spaces of living 

tissue. Nevertheless, some intracellular deposits such as neurofibrillary tangles 

of the tau protein are also matching most of the biochemical characteristics and 

may therefore be called “intracellular amyloid” (Sipe et al., 2014). So far, 

approximately 25 proteins have been identified as amyloid-forming under 

physiological conditions. All of these amyloid proteins are associated with 

serious diseases including the most common age-related neurodegenerative 

diseases, Alzheimer`s disease (AD) and Parkinson`s disease (PD), but also the 

infamous Creutzfeldt-Jakob disease (CJD) caused by prions (Ross and Poirier, 

2004, Chiti and Dobson, 2006, Eisenberg and Jucker, 2012). An overview of 

some important human amyloid diseases and associated amyloid proteins can 

be found in Table 1. The proteins in the amyloid state are herein designated as 

protein A, followed by a suffix, which is an abbreviated form of the parent or 

precursor protein name (Sipe et al., 2014). 

 

Table 1. Selected human amyloid diseases and associated amyloid proteins (modified from  
Eisenberg and Jucker, 2012). 

Disease Amyloid protein 

Alzheimer’s disease Aβ 

Amyotrophic lateral sclerosis ASOD1 

Creutzfeldt-Jakob Disease APrP 

Familial British Dementia ABri 

Familial Danish Dementia ADan 

Frontotemporal lobar degeneration (FTLD)-tau ATau 

Gerstmann-Sträussler-Scheinker APrP 

Hereditary cerebral hemorrhage with amyloidosis, Dutch type Aβ 

Hereditary cerebral hemorrhage with amyloidosis, Icelandic type ACys 

Parkinson’s disease ASyn 

Transthyretin familial amyloidosis ATTR 
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1.2. Structure and formation 

The non-crystalline and insoluble nature of amyloids for a long time caused 

difficulties in determining their molecular architecture by classic high-resolution 

structural biology methods like X-ray crystallography or nuclear magnetic 

resonance (NMR; reviewed in Tycko, 2015). Nevertheless, the field gained 

some insight into the molecular structure of amyloids over the years with more 

recent advanced methods including cryo-electron microscopy (Jimenez et al., 

1999) or solid-state NMR (Tycko, 2011). Early electron microscopic analysis 

revealed that each amyloid fibril consists of two to three protofilament subunits, 

which are arranged in a helical manner (Shirahama and Cohen, 1967, Serpell 

et al., 2000, Sanders et al., 2014). In each individual protofilament, the 

polypeptide chain has been re-arranged into β-strands that run perpendicular to 

the long axis of the fibril. This arrangement of the fibrils produces the cross-β 

diffraction pattern when X-rays are directed on amyloids. The pattern shows two 

characteristic scattering diffraction signals at 4.7 and 10 Å, which result from the 

stacking and inter-strand distances in the β-sheets, respectively (Eanes and 

Glenner, 1968, Sunde et al., 1997). Already in 1935 William Astbury observed 

the characteristic cross-β diffraction pattern by simply holding a stretched, 

poached egg white into an X-ray beam (Astbury et al., 1935). Later, Pauling and 

Corey showed that the β-sheets in the amyloid fibrils are connected via 

hydrogen bonds (Pauling and Corey, 1951, Eisenberg and Jucker, 2012). The 

backbone C=O and N-H groups of adjacent β-strands bind to each other and 

form a very stable network of β-sheets that run perpendicular to the fibril axis. 

Neighboring β-sheets can thereby be arranged in a parallel or anti-parallel 

fashion (Eisenberg and Jucker, 2012). The exposure of the hydrogen bonds in 

the β-strand backbone and the subsequent binding to other protein chains are 

the prerequisites for the formation and elongation of amyloid fibrils. Amyloid 

formation can be initiated by the failure of the protein to maintain its native 

functional conformation, leading to accumulation of the protein into insoluble 

aggregates (Stefani and Dobson, 2003). This process can be promoted by the 

accumulation of partially unfolded or misfolded species, which are highly 

aggregation-prone or by an imbalance between protein synthesis and clearance 

mechanisms (Powers et al., 2009).  
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In vitro, the aggregation process of amyloid proteins is characterized by a slow 

lag phase in the beginning, followed by a fast exponential growth phase. Once 

an oligomeric nucleus or “seed” is formed, the aggregation process occurs quite 

rapidly (Jarrett and Lansbury, 1993, Chiti and Dobson, 2006, Lee et al., 2011). 

This nucleation-dependent mechanism of amyloid formation is graphically 

depicted in Figure 1. The addition of pre-formed exogenous seeds decreases 

the lag time of the aggregation procedure dramatically, a process called 

“seeding” (Walker et al., 2002, Meyer-Luehmann et al., 2006, Eisele et al., 

2009). 

 

 
Figure 1. Nucleation-dependent formation of amyloid aggregates. The initiation of the 
aggregation process is characterized by a slow phase, in which an oligomeric nucleus (seed) is 
formed from misfolded amyloid proteins. Typically, it takes a certain time until the first 
aggregates are detectable, which is also called “lag time”. Once the nucleus is formed, further 
addition of monomers happens very rapidly and larger aggregates and fibrils are formed (growth 
phase). At some point the growth process slows down and reaches a thermodynamic 
equilibrium. The addition of an exogenous seed into the system can dramatically shorten the lag 
time and an earlier and faster growth phase is triggered (dashed line; modified from Jarrett and 
Lansbury, 1993). 

 

1.3. Amyloid diversity 

Cohen and Calkins already noted in 1959 that amyloids from different sources 

are chemically very similar (Cohen and Calkins, 1959). Indeed, all amyloids are 

comprised of insoluble fibers that share a common structural build-up and 
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consequently exhibit a similar X-ray diffraction pattern (Sunde et al., 1997). 

Amyloids show a common core structural element composed of two to four β-

sheets that closely interact with each other, despite potential differences in the 

underlying polypeptide sequences. Further, repetitive hydrophobic interactions 

can be often observed along the fibril axis of the amyloid polypeptide (Chiti and 

Dobson, 2006). Beside these similarities, a significant morphological 

heterogeneity can exist between amyloid fibrils, even those formed from the 

same peptide (Bauer et al., 1995, Tycko, 2015). Depending on the arrangement 

of the side chains, the length of the β-strands as well as the parallel or 

antiparallel arrangement can vary. Furthermore, the length and conformation of 

the β-sheet loops, the spacing between the β-sheets or the number of sheets 

that form the protofilament can be substantially different between amyloid 

proteins (Chiti and Dobson, 2006, Tycko, 2015). The polymorphism of amyloid 

fibrils can also be influenced by the growth conditions of the fibrils. Factors like 

the nucleation-, extension-, or fragmentation rates can determine the 

predominant fibril species. All above-mentioned factors can cause certain 

heterogeneity of amyloids that may lead to pathological differences, which 

underlie a specific disease. Amyloid diseases will be discussed more closely in 

the next chapter. 

 

2. Amyloid diseases 

2.1. Alzheimer’s disease 

AD is a neurodegenerative disease and the most common form of dementia. 

The term dementia describes a set of symptoms that includes loss of memory, 

mood changes as well as problems with communication, reasoning and 

handling daily life. Dementia is a progressive process indicating that the 

symptoms get gradually worse. Auguste Deter exhibited those symptoms 

together with disorientation and hallucinations when she was examined by Alois 

Alzheimer in 1901 (Alzheimer, 1907). In 1906, after Auguste Deter died, 

Alzheimer analyzed her brain and described a disease, which was later named 

after him by Emil Kraepelin (Kraepelin, 1910). Beside an overall atrophic brain, 

Alzheimer observed lesions resembling “senile plaques” and “neurofibrillary 

tangles”, which are established as hallmark lesions of AD today (Figure 2; 
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Alzheimer, 1907, 1911, Glenner and Wong, 1984, Goedert and Spillantini, 

2006). Senile plaques are extracellular deposits of the amyloid-beta (Aβ) 

peptide, which can be found in limbic brain regions such as the hippocampus 

and amygdala but also in specific cortical and subcortical regions. Classical 

senile plaques, show a central compact core structure enriched in Aβ that can 

be specifically stained by Congo red and is often surrounded by more loosely 

arranged Aβ deposits and dystrophic neurites (Masters et al., 1985, Morgan et 

al., 2004). However, in most AD cases, less dense and mainly Congo red-

negative Aβ deposits are much more abundant, which are often referred to as 

“diffuse” Aβ plaques (Tagliavini et al., 1988, Morgan et al., 2004). Neurofibrillary 

tangles are filamentous lesions composed of hyperphosphorylated forms of the 

microtubule-associated protein tau that accumulates in selective neurons in the 

brains of AD patients (Kosik et al., 1986).  

 

 
Figure 2. Hallmark lesions of AD. Extracellular deposits of Aβ can be found as compact or 
diffuse aggregates in the brains of AD patients. Representative pictures show compact and 
diffuse Aβ plaques fluorescently labeled with an amyloid-specific dye. Intracellular tau inclusions 
constitute the second hallmark pathology of the disease. A representative picture shows 
fluorescently labeled neurofibrillary tangles made of tau protein in human AD brain sections. 
Scale bar: 20 µm. 

 

In the beginning of the 20th century, when Alzheimer made his observations, life 

expectancy was much shorter than it is today, and with age as the highest risk 

factor for AD (Yoshitake et al., 1995, Alzheimer's-Association, 2015), it was a 

rather rare disease. As of 2015, there were approximately 9.9 million new cases 

of dementia worldwide, which means one new case every three seconds 

(Prince et al., 2015). The total number of cases reached thereby an estimated 

46.8 million people last year and this number is expected to almost double 

every 20 years. Some studies are more optimistic, indicating that the age-
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specific risk of AD and other dementias in higher-income western countries may 

even have declined in the past 25 years (Manton et al., 2005). These declines 

have largely been attributed to higher levels of education and improved control 

of cardiovascular risk factors (Schrijvers et al., 2012). In addition to the medical 

issues, a high number of dementia cases also means a considerable 

economical burden for the whole society (Alzheimer's-Association, 2015). The 

global costs for dementia are at present approximately US$ 818 billion and they 

increase steadily (Prince et al., 2015). This proves especially dramatic in low or 

middle-income countries, which harbor more than half of all dementia cases. 

Notably, some of the cases that contribute to the numbers listed above might 

not suffer solely from AD, but may harbor other pathologies. Some scientists 

even view AD as a heterogeneous syndrome, essentially a collection of many 

diseases, whereas others see it as a homogenous disorder with ageing 

contributing minor aspects (Morris et al., 2014). Conclusively, AD is an 

incurable and devastating disease, which causes tremendous problems and 

encumbrances for patients and caregivers and in addition it constitutes a 

substantial global financial challenge. In this regard, it is of great interest for our 

society to interfere with this high numbers of AD cases worldwide and to find an 

effective treatment strategy. 

 

2.2. APP processing and the Aβ peptide 

The main actor in AD is the Aβ peptide. It is derived from the Aβ precursor 

protein (APP) through sequential secretase-mediated cleavage steps (Figure 3; 

Sisodia et al., 1990, Sisodia, 1992, Thinakaran and Koo, 2008). APP 

constitutes a single-pass transmembrane protein, which is produced in large 

quantities in neurons and is metabolized very rapidly (O'Brien and Wong, 2011). 

In 1987, several groups determined experimentally that the gene encoding APP 

is located on chromosome 21 and therefore provided the missing link between 

AD and Down’s syndrome (trisomy 21; Goldgaber et al., 1987, Kang et al., 

1987, Robakis et al., 1987). The pathway of APP processing can either follow a 

“non-amyloidogenic” route (Figure 3A), which doesn’t result in Aβ production, or 

it can follow the “amyloidogenic” route leading to Aβ generation and finally AD 

(Figure 3B). In the non-amyloidogenic pathway, APP is first cleaved by α-
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secretase within the sequence of Aβ thereby preventing Aβ production (Esch et 

al., 1990, Sisodia et al., 1990, Sisodia, 1992). The extracellular secreted 

fragment of APP that is produced is called APPsα and the remaining 

membrane-bound c-terminal fragment (CTF), called CTF-α. A cut by γ-

secretase (composed of at least four subunits including the proteins presenilin 1 

or 2, nicastrin, APH-1 and PEN-2; Edbauer et al., 2003, Chow et al., 2010), 

cleaves the CTF-α subsequently into the APP intracellular domain (AICD) and 

p3. In contrast, the amyloidogenic pathway leads to Aβ production through 

sequential cleavage by β-secretase and γ-secretase. In the first step, β-

secretase cutting generates the secreted APPsβ fragment and the membrane-

bound CTF-β. Finally, CTF-β is processed by cleavage through the γ-secretase 

into AICD and the Aβ peptide. The latter may subsequently form Aβ fibrils and 

aggregate into pathogenic Aβ plaques as depicted in Figure 3. 

 

 
Figure 3. APP processing and related pathways. (A) In the non-amyloidogenic pathway, APP is 
sequentially processed by membrane-bound α- and γ-secretases. α-secretase cleaves within 
the Aβ domain, thus precluding generation of an intact Aβ peptide. The fates of N-terminally 
truncated Aβ (p3) and the APP intracellular domain (AICD) are not fully determined. (B) The 
amyloidogenic processing of APP is carried out by sequential action of membrane-bound β- and 
γ-secretases. The resulting Aβ peptide gets secreted into the extracellular space where it tends 
to aggregate and form Aβ fibrils and plaques (modified from Thinakaran and Koo, 2008). 

 

The length of the generated Aβ can range from 38 to 43 amino acids, whereby 

the predominantly produced peptide is 40 amino acids long (Aβ40) (Vigo-

Pelfrey et al., 1993). This variability depends on the exact cleavage site of the γ-

secretase. Aβ isoforms ending at amino acid 42 (Aβ42) have been shown to be 
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the most aggregation-prone, constituting one of the determining factors of 

amyloid formation (Jarrett et al., 1993). In the recent years, numerous shorter 

isoforms of Aβ have been detected in the brains of AD patients (Tekirian et al., 

1998, Portelius et al., 2008), although the relative importance of these truncated 

isoforms in the pathogenesis of AD remains controversial (Portelius et al., 

2010b).  

 

2.3. Genetics of Alzheimer’s disease 

Glenner and Wong identified the Aβ amino acid sequence in 1984 by extracting 

cerebrovascular amyloid from dementia patients (Glenner and Wong, 1984). 

Together with subsequent analyses performed by Hardy and colleagues in the 

early 1990’s, the way was paved for the main hypothesis about the successive 

events leading to AD. The “amyloid cascade hypothesis” regards Aβ 

accumulation as the hallmark event, followed by further neurological changes 

such as neurofibrillary tangle formation or synapse loss (Hardy and Allsop, 

1991, Hardy and Higgins, 1992, Hardy and Selkoe, 2002). Thereby, Aβ 

aggregation is seen as a consequence of the misbalance between Aβ 

production and Aβ clearance. Strong support for the amyloid cascade 

hypothesis is given by the familial forms of AD (FAD), which are mainly caused 

by mutations in genes involved in Aβ metabolism. FAD will be discussed more 

closely in the next section (see 2.4.). Interestingly, the majority of patients, 

about 99%, suffer from late-onset sporadic AD (SAD; Goedert and Spillantini, 

2006). The cause for SAD is mainly unknown, although several factors were 

identified that might influence the risk to develop AD or lower the age of disease 

onset. Among those, age is the highest risk factor for AD, but also diabetes, 

atherosclerosis, head-injury and a number of behavioral and environmental 

factors (Mayeux, 2003). The best-established risk factor for SAD is 

apolipoprotein E (ApoE), which is a secreted lipoprotein involved in cholesterol 

metabolism. ApoE was discovered as a genetic risk factor for SAD in 1993 

(Corder et al., 1993) and it exists as three isoforms ApoE2, ApoE3 and ApoE4. 

The possession of one or two copies of ApoE4 increases AD risk up to 12-fold 

relative to ApoE3, while the rare ApoE2 allele is even protective (Corder et al., 

1993, Strittmatter et al., 1993, Holtzman et al., 2012). The ApoE4 effect is found 
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in various populations and marked by an earlier disease onset with more severe 

pathology, but otherwise typical clinical progression. 

2.4. From familial Alzheimer’s disease to models of β-amyloidosis 

Molecular genetics studies in several affected families have identified three 

main genes associated with highly penetrant early-onset FAD: the APP gene on 

chromosome 21 (Van Broeckhoven et al., 1990, Goate et al., 1991), presenilin 

1 (PSEN1) on chromosome 14 (Sherrington et al., 1995) and presenilin 2 

(PSEN2) on chromosome 1 (Levy-Lahad et al., 1995). To date, over 230 

mutations in PSEN1 are known to be involved in FAD, making it the most 

common cause of the hereditary forms of the disease 

(www.alzforum.org/mutations). The mutations in both PSEN genes influence the 

APP processing to yield preferentially Aβ42, thereby increasing the Aβ42/40 

ratio (De Strooper, 2007). Most pathogenic APP mutations cluster near the β-

secretase and γ-secretase cleavage sites (Figure 4). Generally, these mutations 

increase total Aβ levels and/or the Aβ42/Aβ40 ratio as shown in cell culture 

experiments (Haass et al., 2012), while APP promoter mutations and APP gene 

duplication have the same effect. Other mutations in APP are associated with 

rare cases of familial vascular amyloidosis. FAD patients show the first signs of 

dementia often before 60 years of age and the disease is generally autosomal 

dominantly inherited (Selkoe, 2011). An overview of familial mutations causative 

for AD is presented in Figure 4.  
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Figure 4. APP mutations associated with familial AD (FAD). Mutations associated with early-
onset FAD are highlighted in part of the amino acid sequence of APP. Most mutations are 
clustered in the close vicinity of secretase-cleavage sites, thereby influencing APP processing. 
The mutations are named after the nationality or location of the first family in which that specific 
mutation was demonstrated. Familial mutations in the presenilin 1 and 2 genes (PSEN1, 
PSEN2) are influencing γ-secretase processing. The Aβ sequence is indicated in dark red 
(modified from Van Dam and De Deyn, 2006). 
 

 

The FAD cases included in this thesis carry mutations in the APP or PSEN1 

genes. Some details about these mutations are found in the following: 
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1991). It was one of the first described mutations for APP and is the most 

common APP mutation worldwide. The average age-of-onset in these patients 

lies between 50-60 years. Neuropathologically, the phenotype associated with 

this mutation is highly variable. Besides severe AD pathology, amyloid 

angiopathy and Lewy bodies are often observed (www.alzforum.org/mutations). 

The APP V717I mutation is part of a group of mutations clustering around the γ-

secretase cleavage site. As confirmed in cell culture experiments, this mutation 

increases the Aβ42/40 ratio by increasing the Aβ42 levels while Aβ40 stays 

unaffected (Eckman et al., 1997).  

 

PSEN1 A431E 

The A431E mutation in PSEN1 is frequently found in FAD cases with Mexican 

origin and genetic analyses hint to a founder mutation descending from a single 

common ancestor (Rogaeva et al., 2001, Murrell et al., 2006, Yescas et al., 

2006). Characteristic for this mutation is a very early onset of the disease, often 

before 40 years of age. The neuropathology shows cotton wool plaques along 

with classical AD pathology. Mutation carriers are shown to have low levels of 

Aβ1-37, Aβ1-38 and Aβ1-39 fragments, which are produced by the γ-secretase. 

This indicates, that the mutation might modulate γ-secretase cleavage in a 

disease-promoting manner (Portelius et al., 2010a).  

 

PSEN1 F105L  

The F105L mutation in PSEN1 was first discovered in a patient from Germany 

(Finckh et al., 2000). The onset of the disease seems to range between 50-60 

years of age, although only a few affected families have been identified so far. 

In addition to AD pathology, those patients often show signs of Parkinsonism. 

So far, the biological effects of this mutation are unknown 

(www.alzforum.org/mutations).   

 

Based on the knowledge about the familial mutations, animal models for 

different amyloid pathologies were generated. Genetically modified animals 

harboring these disease-associated mutations reproduce some, whereby not all 

aspects associated with AD (Jucker, 2010). Two well-studied transgenic (tg) 

mouse models for cerebral β-amyloidosis, both characterized by high Aβ 
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production, are the so-called APP23 and APPPS1 mice. APP23 mice harbor 

the “Swedish” double-mutation KM670/671NL in APP (Sturchler-Pierrat et al., 

1997) which is located immediately adjacent to the β-secretase cleavage site  

(see Figure 4; Mullan et al., 1992). This mutation results in an enhanced 

cleaving capacity of the β-secretase leading to an increased total Aβ production 

(Sturchler-Pierrat et al., 1997). The APPPS1 mice express in addition to the 

Swedish double-mutation, human PSEN1 with the L166P mutation resulting in 

an increased ratio of Aβ42 over Aβ40 (Radde et al., 2006). Currently, mouse 

models are the best-established system to study human age-related 

neurodegenerative diseases (Jucker, 2010). In summary, AD manifests as a 

genetically heterogeneous disease with familial and sporadic etiologies. Mouse 

models engineered to recapitulate aspects of amyloid pathology contribute to 

the better understanding of mechanisms involved in AD. 

 

3. Amyloid conformers 

3.1. Prion strains 

Classically, prions are defined as infectious particles consisting of misfolded 

prion protein (PrP; Prusiner, 1982, Prusiner, 1998). Prions can cause fatal 

transmissible diseases in mammals including humans. Among them is the 

variant CJD representing a unique human form of bovine spongiform 

encephalopathy (BSE) known in cattle. Besides the aggregation of PrP, prion 

diseases are pathologically characterized by spongiform degeneration of the 

brain and neuronal loss (DeArmond and Prusiner, 1995). Similar to other 

amyloid diseases, there can be either hereditary or idiopathic forms. The 

pathogenic agent in prion disease is a misfolded isoform of the normal, cellular 

PrP (PrPc), called PrP-scrapie (PrPSc). PrPSc is abnormally enriched in β-sheets 

and can induce other PrP molecules to misfold and aggregate (Prusiner, 1998, 

Prusiner, 2013). PrPSc shows resistance to denaturation, partial resistance to 

protease digestion and is quite insoluble (Cohen and Prusiner, 1998). 

Furthermore, PrPSc seems to be very resistant to the inactivation by 

formaldehyde, a chemical used for the fixation of tissues and to neutralize 

viruses during the preparation of vaccines (Fox et al., 1985, Delrue et al., 2012). 

Certain variability is observed in the clinical and pathological occurrence of 
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prion diseases. These variations are based on differences in conformation and 

arrangement of the underlying proteins and are referred to as prion “strains” 

(Aguzzi et al., 2007, Collinge and Clarke, 2007, Prusiner, 2013). Many factors, 

such as post-translational modifications and specific aggregation conditions can 

create distinct self-propagating conformations of PrPSc giving rise to different 

prion strains (Safar et al., 1998, Frost and Diamond, 2010). After inoculation 

into tg animals, prion strains cause consistent disease characteristics, such as a 

specific incubation period, distinct patterns of PrPSc distribution and a certain 

severity of the spongiosis in the brain. Typically, bioassays are applied that 

identify a successful transmission of prion strain characteristics into a new host 

to define different strains (Aguzzi et al., 2007, Collinge and Clarke, 2007). 

 

3.2. Conformational differences of other amyloids 

The concept of strains is not restricted to prions but rather seems to be a 

common characteristic of amyloid diseases (Chiti and Dobson, 2006, Tanaka et 

al., 2006, Walker and Jucker, 2015). For example, distinct Aβ fibrils can be 

formed by seeded fibril growth presenting with different conformations and 

toxicities, which are even passed to the next generation of fibrils (Petkova et al., 

2005). Seeding studies in tg mice showed that Aβ seeds derived from tg mouse 

models for cerebral amyloidosis or human AD tissue can be transmitted to APP 

tg host mice inducing an accelerated pathology (Walker et al., 2002, Meyer-

Luehmann et al., 2006, Eisele et al., 2009, Eisele et al., 2010, Langer et al., 

2011, Eisele et al., 2014). Intriguingly, differences in molecular composition and 

conformation of the Aβ seeds are maintained after propagation in the host mice 

(Heilbronner et al., 2013). Similar to Aβ, prion-like induction is also seen for 

intracellular amyloid proteins like tau inclusions or α-synuclein (α-syn), the main 

aggregating protein in PD (Frost and Diamond, 2010, Goedert et al., 2010). For 

tau, a recent study revealed that different tau strains induce differential patterns 

of induction and microglia activation in the brains of tau tg mice (Sanders et al., 

2014). Furthermore, the injection of homogenized brain material from patients 

with distinct tauopathies into tg mice produced morphologically different tau 

inclusions (Clavaguera et al., 2013). In the case of α-syn, missense mutations, 

which are responsible for dominantly inherited forms of PD, give rise to fibrils 
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whose conformation is distinct from that of wild-type (wt) fibrils (Yonetani et al., 

2009). Distinct α-syn fibril structures can even cross-seed tau fibrils differentially 

as shown in vitro and in tg mouse studies (Guo et al., 2013). Finally, it was 

proven that conformationally different α-syn strains are able to induce distinct 

histopathological and behavioral phenotypes, reminiscent of prion strains 

(Peelaerts et al., 2015). In summary, Aβ, tau and α-syn exhibit prion-like 

templated misfolding, as shown by in vitro studies and in tg mouse models. 

Similar to prions, these proteins might also form distinct conformers in humans 

that account for differences in the pathogenic phenotype of the diseases. 

Although Lu et al. lately identified a single distinct Aβ fibril structure in each of 

two AD patient brains (Lu et al., 2013), the link between the underlying 

conformation and the clinical phenotype was not conclusive. It is still 

challenging to assess and compare conformational differences between 

amyloids and relate them to clinical variability. Thus, we have pursued a novel 

approach to investigate conformational differences within the fibril organization 

in the aggregates, by employing a novel class of amyloid dyes. Structural 

changes, otherwise invisible by conventional methods, manifest as a shift in the 

dye emission properties, which can be detected and analyzed using light 

microscopy techniques. 

 

4. Novel dyes to assess amyloid conformation 

4.1. Luminescent conjugated oligothiophenes (LCOs) 

For decades, the dye Congo red was seen as the gold standard of amyloid 

detection in post-mortem brain tissues (Bennhold, 1922, Puchtler, 1962). Up to 

date, amyloid pathologies are still diagnosed using Congo red staining, which 

exhibits birefringence accompanied by yellow/green anomalous colors between 

crossed polarizers, as part of the classic definition of ordered structures within 

amyloid proteins (Sipe et al., 2014). The fluorescent Thioflavin T (ThT) is 

another well-established amyloid-binding dye often applied in in vitro amyloid 

fibrillation assays (Vassar and Culling, 1959, LeVine, 1993). Meanwhile, many 

fluorescent and non-fluorescent amyloid-specific dyes have been developed, 

which are often direct derivatives of the classical dyes. Such an example is the 

fluorescent dye Methoxy-X04, a derivate of Congo red, which has the 
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advantage of a better blood-brain barrier (BBB) passage upon systemic 

injection and is therefore often used for in vivo multiphoton microscopy in 

mouse models of AD (Klunk et al., 2002, Hefendehl et al., 2011). Another 

example is the Pittsburgh compound B (PIB), an analogue of ThT, which is 

routinely used for AD diagnosis in positron emission tomography (PET) scans in 

humans (Klunk et al., 2004). Although all these dyes reliably detect amyloid 

deposits, they do not reveal any fine molecular differences, which underlie the 

previously described heterogeneity in amyloid conformation. A novel group of 

amyloid binding dyes, the luminescent conjugated oligo- or polythiophenes 

(LCOs or LCPs), exhibit conformation-specific properties that could be used to 

examine this heterogeneity. The use of conformation-sensitivity in biological 

applications is not entirely new. In 1999, conjugated polymers were established 

as fluorescent sensors and applied for example to detect solid-state DNA 

(Leclerc, 1999). A conformation-dependent color reaction reported on the single 

or double-stranded condition of the DNA. This effect is based on the fact that 

the planar and non-planar conformations of the conjugated polymer have 

different emission spectra (Leclerc, 1999, Ho et al., 2002). Peter Nilsson and 

co-workers further developed this concept and established a flexible thiophene 

backbone as the basic principle of LCO and LCP function (Figure 5; Aslund et 

al., 2009a).  

 
Figure 5. LCO and LCP principle of function. (A) The flexible LCO/LCP backbone. Binding of a 
LCO or LCP molecule to an amyloid protein can induce a twist in the thiophene backbone, 
which is dependent on the amyloid conformation. (B) The twisting of the LCO/LCP backbone is 
reflected in differences in the emission spectrum of the respective dye. High-resolution 
fluorescence images show the details of the interplay between Aβ deposits (green), 
neurofibrillary tau tangles, and dystrophic neurites (yellow red) after LCO staining. 
Conformationally different amyloid deposits are highlighted (green and red arrows, respectively) 
to indicate striking spatial co-localization and differences in emission color. Scale bar: 10 µm. 
Images adapted from (Aslund et al., 2009a, Aslund et al., 2009b).  
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They first introduced a zwitterionic LCP, which was able to visualize differences 

in the conformational state of synthetic peptides in 2003 (Nilsson et al., 2003). 

This work provided the foundation for the LCPs and LCOs to be applied for 

optical fingerprinting of conformationally different amyloid proteins. Two years 

later, the monomer-based LCP polythiophene acetic acid (PTAA) was shown to 

distinguish between the native and fibrillar form of insulin (Nilsson et al., 2005). 

The conformational changes of the protein induced during the amyloid 

fibrillation pathway altered the geometry of the PTAA backbone and could be 

observed as shift in the emission spectrum. In comparison with native insulin, 

the emission maximum of PTAA when added to insulin fibrils was shifted to 

longer wavelengths and showed decreased intensity. This shift indicated that 

the interaction with fibrils resulted in a planar and highly conjugated polymer 

backbone. Ideally, polythiophenes that are applied for amyloid detection and 

discrimination should only detect fibrillar protein conformations and not, as 

PTAA, show an optical response also when interacting with the native form. 

Therefore, trimer-based LCPs were engineered, which show significantly 

increased binding specificity for amyloid-like fibrils (Aslund et al., 2007). The 

superiority of these newly developed amyloid dyes to the conventional is their 

potential to discriminate between various amyloid conformations in disease-

associated tissue by providing a direct link between spectral signature and 

protein conformation (Nilsson et al., 2006, Nilsson and Hammarstrom, 2008). 

Indeed, LCPs could be used to distinguish between different prion strains, 

otherwise indistinguishable by classical immunohistochemistry (Sigurdson et al., 

2007). Since identical recombinant PrP exhibited indistinguishable LCP spectra 

in this study, the conclusion was that the characteristic differences observed on 

the tissue resulted from distinct conformations of the PrP strains. Similarly, 

LCPs can be applied for spectral discrimination of different Aβ conformations in 

vitro and in APP tg mice (Nilsson et al., 2007). LCPs have shown great potential 

as amyloid imaging agents (Nilsson and Hammarstrom, 2008), but at the same 

time some major drawbacks came to light. Dependent on the overall charge of 

the LCPs, very specific buffer systems are required, impeding the possibility of 

using them in living organisms. (Aslund et al., 2009a, Klingstedt and Nilsson, 

2012) Furthermore, the inherently large molecular weight of the polymers 

precluded passage over the BBB. Therefore, modifications of the probe design 
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were required in order to optimize amyloid binding at physiological conditions 

and to increase the chance of BBB crossing. The solution was a well-defined 

shorter backbone, resulting in the LCOs (Aslund et al., 2009b). By now, many 

LCOs have been proven capable of distinguishing tau inclusions from Aβ 

pathology in mouse models of amyloidosis and post-mortem AD brain tissue 

(Aslund et al., 2009b, Klingstedt et al., 2011, Wegenast-Braun et al., 2012, 

Simon et al., 2014). Lately, a combination of two structurally different but related 

LCOs could even enhance the spectral differentiation since the dyes bind on 

separate ultra-structural elements (Nystrom et al., 2013). The tetrameric 

oligothiophene qFTAA was shown to respond to mature amyloid fibrils, whereas 

the heptameric oligothiophene hFTAA stained additionally early prefibrillar 

states of amyloid. Nevertheless, the relation between the conformational 

differences of the amyloid proteins and a potential role in the pathogenesis or 

diagnosis of neurodegenerative disease is still widely missing. Using this novel 

conformation-sensitive method, this thesis aimed to study the effect of structural 

diversity of amyloid aggregates on AD pathology. Thereby our goal was to gain 

insights into the conformation and diversity of amyloid deposits, which are not 

conceivable with conventional methods. 
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Materials and Methods 

1. Mice 

A variety of mouse models were used to analyze conformational differences 

between amyloid deposits. Hemizygous APP23 mice, overexpressing human 

APP with the Swedish double mutation (Sturchler-Pierrat et al., 1997) and 

hemizygous APPPS1 mice, co-expressing human APP with the Swedish double 

mutation and human PSEN1 with the L166P mutation (Radde et al., 2006) were 

analyzed. In addition, to investigate the influence of murine Aβ on amyloid 

deposition, these mice were bred with mice lacking endogenous murine APP 

(Calhoun et al., 1999) to generate littermates with and without the murine form 

(koAPP23, koAPPPS1). All mice were bred on a C57BL/6J background and all 

lines expressed the transgenes under the neuron-specific murine Thy1 

promoter. Any procedures with animals were performed in compliance with 

protocols approved by the local animal use committee and university 

regulations. 

2. Patient samples 

Tissue samples from 26 clinically and pathologically diagnosed AD cases were 

analyzed (Table 2). Included among them were eight FAD cases (AD 1-8) with 

following mutations: V717I in APP, A431E in PSEN1 and F105L in PSEN1. The 

remaining 18 cases (AD 9-26) had a sporadic etiology.  
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Table 2. Case list 
 

Case 
 

Etiology Age  Sex PMI (h) ApoE type 

AD1 APP V717I 45 m 4 n.a. 

AD2 APP V717I 49 f 2.7 3/3 

AD3 APP V717I 54 f 5.3 3/3 

AD4 PSEN1 A431E 43 f 4 3/3 

AD5 PSEN1 A431E 47 n.a. n.a. 3/3 

AD6 PSEN1 A431E 44 m n.a. 3/3 

AD7 PSEN1 F105L 68 f 36 2/3 

AD8 PSEN1 F105L 67 f 8 2/3 

AD9 sporadic 80 f 25.8 n.a. 

AD10 sporadic 62 m 8.5 2/3 

AD11 sporadic 81 f 17.7 3/3 

AD12 sporadic 70 m 8.5 3/3 

AD13 sporadic 81 f n.a. 3/3 

AD14 sporadic 81 f 2 3/3 

AD15 sporadic 62 f 6 3/3 

AD16 sporadic 74 m 2.5 3/3 

AD17 sporadic 54 m 5.5 3/3 

AD18 sporadic 91 f 3 3/3 

AD19 sporadic 81 m 4 3/3 

AD20 sporadic 89 m 49 3/4 

AD21 sporadic 64 m 9 3/4 

AD22 sporadic 87 f 6 3/4 

AD23 sporadic 58 f 6 3/4 

AD24 sporadic 77 m 6 3/4 

AD25 sporadic 88 m 9 3/4 

AD26 sporadic 72 f 3 3/4 

f = female; m = male 
PMI (h) = Postmortem interval (hours)  
ApoE type = Apolipoprotein E genotype 

 

The samples were obtained from two different sources, the Emory University 

Brain Bank and the Indiana Alzheimer’s Disease Centre. Informed consent was 

received from all individual participants included in the analysis.  

3. Histology 

Tissue for immunohistochemistry was immersion-fixed in 4% paraformaldehyde 

(PFA) in phosphate-buffered saline (PBS), subsequently cryoprotected in 30% 
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sucrose in PBS and frozen in methylbutane on dry ice. Fixed mouse brains 

were cut with a freezing-sliding microtome into either 25 µm or 40 µm thick 

sections. The sections were collected in cryoprotectant (35% ethylene glycol, 

25% glycerol in PBS) and stored at -20 °C until use. Fresh frozen human tissue 

was cut into 12 µm thick sections on a cryotome, dried at room temperature 

(RT) over night and stored at -80 °C. 

4. Immunohistochemistry 

Immunohistochemical staining was performed according to standard 

immunoperoxidase procedures using an Elite ABC kit (Vector Laboratories, 

Burlingame, CA) and the Vector SG as a substrate. In general, Aβ deposits 

were stained using the polyclonal antibody CN3 (1:1000) raised against 

synthetic human Aβ1–16 peptide (Eisele et al., 2010). Counterstaining with 

Congo red was performed according to standard protocols. For immuno-

labeling of murine Aβ a customized protocol was used. Unspecific binding sites 

were blocked in three steps: first with anti-mouse blocking serum (Vector 

Laboratories M.O.M. blocking reagent), second with skim milk powder (3% (w/v) 

solution in dH2O), and third with standard blocking solution (0,15% (v/v) Triton 

x-100 and 5% (v/v) horse serum in Tris-buffered saline). The murine Aβ-specific 

monoclonal antibody m3.2 (Morales-Corraliza et al., 2009) was used as primary 

antibody (1:500). The anti-mouse biotinylated secondary antibody (Vector 

Laboratories, Vectastain mouse IgG; 1:250) was detected with a streptavidin 

based fluorescent detection system (ATTO647N, ATTO-Tec GmbH, Siegen, 

Germany; 1:500). 

5. LCO staining 

Three different LCO variants, qFTAA (quadro-formyl thiophene acetic acid), 

pFTAA (penta-formyl thiophene acetic acid) and hFTAA (hepta-formyl 

thiophene acetic acid) were used in this thesis for detection and analysis of 

amyloid pathology. pFTAA staining (3 µM in PBS) for mouse brain sections and 

slice cultures was performed as previously described (Klingstedt et al., 2011). 

The sections were incubated with the LCO solution for 30 min at RT, in a dark 

chamber. For the analysis of Aβ plaques in AD patients, the human tissue was 

stained with qFTAA and hFTAA (2.4 µM qFTAA and 0.77 µM hFTAA in PBS; 30 

min RT in the dark) similar to a previous description (Nystrom et al., 2013). All 
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LCOs were kindly provided by K. Peter R. Nilsson, Linköping University, 

Sweden. 

6. Image acquisition 

Fluorescent and brightfield images were acquired on a Zeiss Axioplan 2 

microscope with an Axiocam HRm (Carl Zeiss MicroImaging GmbH, Jena, 

Germany) using the respective objective (x4 objective 0.1 numerical aperture 

(NA) for mosaic overview pictures; x20 objective 0.5 NA, x40 objective 1.3 NA 

or x63 objective 1.4 NA for higher resolution imaging, all from Zeiss) and the 

Zeiss AxioVision 4.7 software. Images depicting pFTAA-/immuno-double 

labeling were taken with a Zeiss LSM 510 META (Axiovert 200M) confocal 

microscope. Laser lines 458 nm and 633 nm were used to excite pFTAA and 

ATTO647N, respectively. To depict the whole structure of interest, some 

images were acquired as z-stacks and maximum intensity projections are 

shown as indicated. 

7. Spectral analysis 

Spectra for all experiments were acquired on the Zeiss LSM 510 META 

confocal microscope using the argon 458 nm laser line for excitation; acquisition 

of emission spectra from 470 nm to 695 nm was performed using the Zeiss 

LSM META detector. For imaging of fixed mouse sections and slice cultures an 

x63 objective (oil-immersion, 1.4 NA, Zeiss) was used and for imaging of human 

Aβ deposits an x40 (oil-immersion, 1.3 NA, Zeiss) objective. For all experiments 

the amyloid deposits were randomly chosen and three regions of interest were 

measured in the center of each deposit. Care was taken to exclude areas of 

incomplete staining or lipofuscin autofluorescence. After the spectral 

measurements, all emission spectra were normalized to their respective 

maxima. For each deposit, the mean was calculated before averaging the 

values per animal or patient. The ratio of the intensity of emitted light at the 

blue-shifted portion and red-shifted peak was used as a parameter for spectral 

distinction of different Aβ deposits. In each experiment the peaks were selected 

individually to maximize the spectral distinction.  
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Spectral analysis of Aβ plaques in APPPS1 and koAPPPS1 mice: Fixed 

APPPS1 and koAPPPS1 mouse sections were analyzed from five mice per 

genotype. 14-16 Aβ plaques were investigated in each animal.  

 

Spectral analysis of Aβ deposits in slice cultures: For the analysis of Aβ 

deposits in slice cultures, plaques were selected from the intermediate sections 

of the cultures (neither top nor bottom section) and border regions were 

excluded. In 11-13 cultures per treatment condition, each 4-15 Aβ plaques were 

analyzed. 

 

Spectral analysis of Aβ plaques in fresh frozen and fixed mouse brain sections: 

APPPS1 and APP23, fresh-frozen and formaldehyde fixed brain sections were 

analyzed (n=3-4 animals per group). In each animal 40 Aβ plaques were 

measured in the hippocampus.   

 

Spectral analysis of human AD plaques: For the analysis of human AD tissue, 

Aβ plaques from temporal, frontal and occipital cortices were analyzed. 15-75 

Aβ plaques were measured in each of the different regions and 45-190 plaques 

in total per patient. 

8. Stereological analysis 

The Aβ loads in APP and koAPP tg mice were quantified on a CN3 and Congo 

red-stained set of every 12th systematically sampled coronal section. Cortical 

brain regions were defined using a standard mouse brain atlas. Stereological 

analysis was performed using a Zeiss microscope (Axioskop) equipped with a 

motorized xyz-stage coupled to a video-microscopy system (Microfire, 

Optronics, California, USA). The investigators who performed the analysis were 

blind to the sample genotypes. The total Aβ load (expressed as percentage of 

total cerebral cortex area) was determined by calculating the areal fraction 

occupied by CN3- and Congo red-positive staining in two-dimensional sectors 

(20x objective, 0.45 NA; Calhoun et al., 1998).  
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Results 

1. Aβ conformers in models of β-amyloidosis 

1.1. Human and murine Aβ subtypes in APP transgenic mouse models 

 

This section summarizes results from the published manuscript (Mahler et al., 

2015).  

 

Mouse models of cerebral β-amyloidosis develop the typical disease-associated 

amyloid lesions due to the overproduction of human Aβ and generally, those 

mice also continue to express endogenous murine Aβ. It was shown before that 

both peptides deposit in these models (van Groen et al., 2006b), however the 

exact role of murine Aβ in amyloid formation is still elusive. The murine and 

human Aβ peptides differ in three amino acids at residues 5, 10 and 13 

(Yamada et al., 1987). Hence, the two subtypes may contribute differentially to 

the amyloidosis in mouse models of AD. To this end, the influence of murine Aβ 

in APP23 and APPPS1 mice on a wt versus a murine APP-null background 

(koAPP) was analyzed.  

 

First, the contribution of murine Aβ to amyloid deposition was assessed in both 

mouse lines. Looking at the APP23 versus koAPP23 mice, no obvious 

differences were visible with respect to amyloid deposition on anti-Aβ 

immunostained cortical brain sections at first glance (Figure 6A). This 

observation is in accordance with a previous report (Calhoun et al., 1999). 

However, stereological analysis of the total Aβ-positive area revealed a 

difference between genotypes, with APP23 mice exhibiting a ~25% increase in 

Aβ load compared to age-matched koAPP23 mice at 14.5 and 18.5 months of 

age, which reached significance for the 14.5 month-old group (Figure 6A). In 

addition to an increase of the diffuse and compact Aβ deposits in the brain 

parenchyma, an increase (~50%) in vascular Aβ (cerebral β-amyloid 

angiopathy, CAA) was observed for APP23 versus koAPP23 mice at both ages. 

Notably, CAA was only a minor component of the respective total Aβ load. 
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When looking at the results from the APPPS1 mice, a model of more rapid 

amyloidosis, no such effect was visible (Figure 6B). Although this model has 

lower human APP overexpression than APP23 mice (three- versus seven-fold), 

the onset of amyloidosis is much faster due to an increased Aβ42/40 ratio. CAA 

deposits are rather rare in these animals (Radde et al., 2006). Stereological 

analysis of the total Aβ-positive area showed only small, non-significant 

differences between the animals with or without the murine APP gene at 3 or 6 

months of age (Figure 6B). 

 

Figure 6. Aβ load in APP23 versus koAPP23 mice and APPPS1 versus koAPPPS1 mice. (A) 

Representative images of cortical brain sections from 14.5 and 18.5 month-old APP23 and 

koAPP23 mice stained with an antibody specific for Aβ (CN3) in combination with Congo red. 

Inserts represent higher magnification of cortical plaques. Stereological analysis of total Aβ load 

(CN3/Congo red-positive area as percentage of total cerebral cortex; 14.5 months: n=9 APP23, 

n=9 koAPP23, unpaired t-test, p=0.015; 18.5 month: n=4 APP23, n=6 koAPP23, unpaired t-test, 

p=0.19; error bars: SEM). The striped area at the top of the bars represents the percentage of 

vascular Aβ. (B) Representative images of cortical brain sections from 3 and 6 month-old 

APPPS1 and koAPPPS1 mice stained with CN3 and Congo red. Inserts represent higher 

magnification of cortical plaques. Stereological analysis of the Aβ load (CN3/Congo red-positive 
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area as percentage of total cerebral cortex area; 3 months: n=8 APPPS1, n=7 koAPPPS1, 

unpaired t-test, p=0.97; 6 months: n=8 APPPS1, n=6 koAPPPS1, unpaired t-test, p=0.44; error 

bars: SEM). The very minor amount of vascular amyloid in APPPS1 mice is not visible in the 

respective graphs. Scale bar: 50 µm for (A) and (B). 

 

The accumulation of murine Aβ in both APP23 and APPPS1 mice prompted us 

to investigate whether murine Aβ is co-deposited with human Aβ in β-amyloid 

plaques. Brain sections were stained with the murine Aβ-specific antibody m3.2 

and the LCO pFTAA. The m3.2 immunoreactivity closely matched pFTAA 

staining in both APP tg lines (Figure 7). No labeling for the m3.2 antibody was 

detected in brains of koAPP23 and koAPPPS1 mice. Both dyes showed 

labeling of the core and peripheral regions of the Aβ plaques in each mouse 

line.  
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Figure 7. Murine Aβ is part of Aβ plaques in APP23 and APPPS1 mice. Immunohistological 
staining for murine Aβ (m3.2 antibody) is visible in Aβ plaques of 14.5 month-old APP23 (A) and 
3 month-old APPPS1 (B) mice. Plaques were counter-stained with the amyloid-specific 
fluorescent dye pFTAA. As expected, no staining of murine Aβ was observed in koAPP23 and 
koAPPPS1 mice. Two representative animals were examined for each group (4 brain 
sections/animal). Scale bars: 20 µm for (A) and 10 µm for (B). Images in (B) represent 
maximum intensity projections of six z-planes each. 
 
 

As murine and human Aβ deposit in close proximity in the plaques of the APP 

tg models that were investigated, we speculated that this tight association might 

result in different conformations of human versus mixed Aβ fibrils. In an initial 

attempt to identify such structural changes, 3-month-old APPPS1 and 

koAPPPS1 brain sections were stained with pFTAA and spectrally analyzed. 

For this analysis, APPPS1 mice were used, which depicted a high percentage 
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of co-deposited murine Aβ (data not shown; Mahler et al., 2015). pFTAA was 

previously shown to detect different plaque morphotypes (Lord et al., 2011) and 

was therefore used to investigate potential conformational differences in this 

study. Although, a slight tendency towards red-shifted wavelengths of the 

plaques with solely human Aβ could be observed, the spectral analysis was 

unable to detect significant differences between human and mixed mouse-

human fibrils (Figure 8).  

 

 
Figure 8. Spectral similarities between plaques of APPPS1 and koAPPPS1 mice. (A) 
Normalized emission spectra of APPPS1 (green) and koAPPPS1 (purple) mouse plaques, 
stained with pFTAA. Each curve represents the mean plaque spectrum per animal (n=14-16 
plaques/animal). (B) For quantitative analyses the ratio of emitted light at 502 and 588 nm was 
assessed for individual Aβ plaques and the mean ratio determined per animal. Five animals 
were analyzed per line; 14-16 Aβ plaques per animal were considered. One dot represents one 
animal; data are mean ± SEM. Unpaired t-test revealed no significant differences between the 
two mouse lines (p=0.1465). 
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1.2. Different Aβ conformers in organotypic slice cultures 

 

This section summarizes results from the published manuscript (Novotny*, 

Langer*, Mahler et al., 2016).  

 
As exemplified by PrP, amyloid peptides harboring the exact same amino acid 

sequence can exhibit distinct, strain-like properties (Prusiner, 1998). This is 

also suggested for the Aβ peptide, which depicted differences in plaque 

morphology and LCO spectral properties in APP23 and APPPS1 mice, even 

after inoculation into host mice (Heilbronner et al., 2013). These 

conformational differences were now analyzed in hippocampal slice cultures 

(HSC), a novel model system combining the advantages of in vitro and in vivo 

approaches to study β-amyloidosis. In order for Aβ deposition to be triggered 

in slice cultures, one-time application of amyloid-laden extract from tg mouse 

brains and synthetic Aβ supplementation into the culture medium is required. 

Consequently, one could assume that Aβ aggregation in culture occurs via a 

seeded conversion mechanism.  

 

To confirm such a mechanism, we analyzed the conformational 

characteristics of Aβ deposits in HSCs. Therefore, the HSCs were treated 

with brain extracts from either aged APP23 or APPPS1 mice and were 

incubated with medium supplemented either with synthetic Aβ1-40 (Aβ40) or 

Aβ1-42 (Aβ42). HSCs treated with APP23 brain extract and Aβ40 showed 

predominately large plaques whereas HSCs treated with APPPS1 extract and 

synthetic Aβ42 depicted rather small, compact plaques that were also more 

abundant (Figure 9A,D). Both the brain extract as well as the synthetic Aβ 

seemed to have an effect on the morphology of the induced deposits, as 

cultures treated with the combinations of APP23 extract/synthetic Aβ42 and 

APPPS1 extract/synthetic Aβ40 showed a mixed appearance (Figure 9B,C). 

This observation was confirmed with a spectral analysis of the different 

deposits. Sectioned HSCs from all treatment groups were stained with the 

LCO pFTAA, which revealed spectral differences between the deposits that 

can be attributed to distinct conformations (Figure 9E). The cultures treated 
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with the combination of APP23 extract/synthetic Aβ40 and APPPS1 extract/ 

Aβ42 exhibited the largest spectral differences, whereas the mixed treatment 

groups showed intermediate spectral properties (Figure 9E). Consequently, 

the origin of the applied seeding extract (APP23 or APPPS1) as well as the 

type of synthetic Aβ (Aβ40 or Aβ42) that was added into the culture medium 

had a significant influence on the induced plaque conformation.  

 

 
Figure 9. Aβ conformation in HSC’s depends on the seed and synthetic Aβ species. (A–D) 
Differences in structural appearance of induced Aβ deposits (anti-Aβ immunostaining) in 10-
week-old wt HSC’s inoculated with different brain extracts and incubated with 1.5 µM of either 
synthetic Aβ40 or Aβ42 in the culture medium. (A) Large fibrillary deposits of Aβ (arrows) 
were observed with APP23 brain extract and synthetic Aβ40. (B) Inoculation with APP23 
brain extract and synthetic Aβ42 revealed a mixed pattern of small and large fibrillary 
deposits. (C) APPPS1 brain extract combined with synthetic Aβ40 revealed large and 
compact deposits, whereas (D) numerous small deposits (arrows) were seen with APPPS1 
brain extract and synthetic Aβ42. Scale bar: 20 µm. (E) Spectral properties of the induced Aβ 
deposits using the conformation-sensitive LCO pFTAA. For quantitative comparison, the ratio 
of light emitted at 599 and 502 nm was assessed for individual Aβ deposits and the mean 
ratio determined per HSC. 11–13 cultures per treatment condition were analyses and each 4–
15 Aβ plaques. One dot represents one culture; data are mean ± SEM. ANOVA (extract × 
synthetic Aβ) revealed a significant effect for extract (F(1,43)=6.41; p<0.05) and synthetic Aβ 
(F(1,43)=26.17; p<0.001) but failed to reach significance for the interaction (F(1,43)=1.61; 
p>0.05). 
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1.3. Aβ conformers are preserved after formaldehyde fixation 

 
This section summarizes results from the published manuscript (Fritschi*, 

Cintron*, Ye, Mahler et al., 2014).  

 
Aβ seeds bear many similarities to classical prions illustrated by their potential 

to induce Aβ aggregation in the living brain by the inoculation of exogenous 

seeds (Walker et al., 2002, Meyer-Luehmann et al., 2006, Eisele et al., 2009, 

Eisele et al., 2010, Langer et al., 2011) and their strain-like behavior while 

transmitting different Aβ conformations to the next generation (Heilbronner et 

al., 2013). Moreover, prions are remarkable for their resistance to inactivation 

by formaldehyde. In this study, it was shown that Aβ seeds also resemble 

prions in this regard by retaining their ability to induce Aβ deposition in tg mice 

even after the donor tissue has spent years in formaldehyde. Consequently, 

we investigated whether different Aβ conformers could also be preserved, 

following formaldehyde fixation.  

 

Extracts from fixed and fresh-frozen APPPS1 and APP23 hemispheres were 

intracerebrally injected into young APP23 tg mice and immunohistochemically 

analyzed after 4 months. The morphology of the Aβ deposits looked typical for 

the respective mouse line when mice were injected with the fresh-frozen brain 

extracts (i.e. large Aβ plaques with diffuse periphery for APP23 mice, and 

small, compact deposits for APPPS1 mice; Figure 10A,B). However, fixed 

donor extracts from both APP23 and APPPS1 tg mice gave rise to Aβ 

plaques that were rather small and compact (Figure 10C,D). Subsequent 

spectral analysis revealed that the LCO pFTAA is able to spectrally 

discriminate between Aβ deposits in mice that were injected either with fresh-

frozen APP23 or fresh-frozen APPPS1 brain extract (Figure 10E). The 

spectral analysis of plaques induced by the injection of fixed APP23 or fixed 

APPPS1 brain extracts showed as well a significant difference (Figure 10E), 

similar to that in unfixed tissue. In summary, pFTAA is still able to detect 

different Aβ conformations between APP23 and APPPS1 mice after 

formaldehyde treatment. 
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Figure 10. Formaldehyde fixation preserves strain-like properties of seeded Aβ plaques. 
Brain extracts from aged APPPS1 or APP23 tg donor mice were intracerebrally injected into 
pre-depositing, 3–4 month-old APP23 tg host mice. Brains were analyzed 4 months after 
inoculation using Aβ immunostaining. (A-D) The extract of the fresh-frozen APP23 brain 
tissue induced a more diffuse pattern of Aβ deposition (A), whereas the extract of the fresh-
frozen APPPS1 brain tissue induced a more punctate pattern (B). Injection of extracts from 
formaldehyde-fixed brain tissue induced a more punctate pattern for both APP23 (C) and 
APPPS1 (D) donor mice. Scale bar: 200 µm. (E) Spectral properties of the induced Aβ 
deposits using the LCO pFTAA. For quantitative analysis, the ratio of the intensity of the 
emitted light at 492 and 599 nm was calculated. Each dot represents one Aβ plaque. The 
mean and SEM are indicated for each animal (n=3–4/group). ANOVA (genotype of donor 
material × tissue preparation) revealed a significant effect of the donor genotype (F(1,9)=165.6; 
p<0.001) but no significant effect of the tissue preparation (F(1,9)=4.856; p=0.055) or 
interaction (F(1,9)=3.947; p=0.078). 
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2. Aβ conformers in Alzheimer’s disease patients 

In a recent study, differences in the Aβ fibril structure were identified between 

two AD patients (Lu et al., 2013). A single predominant Aβ fibril structure was 

detected in each case, suggesting that fibrils in the brain may spread from a 

single nucleation site. In a separate study, came indications that a special 

subtype of AD, termed rapid AD given the expedited cognitive decline in these 

patients, contain different Aβ structures as shown by detergent insolubility and 

aggregate sizes (Cohen et al., 2015). Consequently, variations in AD may 

arise from distinct Aβ fibril structures. Indeed, many factors might contribute to 

the phenotypic appearance of the disease and the impact of different 

structural characteristics and their relation to the clinical phenotype remains 

obscure for the broader population of AD patients. In this study, we aimed to 

expand our understanding of structural variations in plaques of different AD 

cases. To achieve this goal we performed spectral analysis of AD tissues 

stained with the conformation-sensitive dyes described before. 

2.1. Morphological characterization of Alzheimer’s disease plaques  

The plaque morphology was investigated in eight FAD cases (with an APP 

V717I, PSEN1 A431E or PSEN1 F105L mutation; see Table 2) and 18 SAD 

cases by fluorescent microscopy. Fresh frozen brain sections were stained 

with the LCOs qFTAA and hFTAA in order to spectrally characterize all ultra-

structural components of the amyloid deposits (Nystrom et al., 2013). In all 

cases compact Aβ plaques and diffuse Aβ deposits could be observed (Figure 

11). The number of deposits and the proportion of compact versus diffuse 

plaques varied slightly between particular sections and regions, however a 

rather homogenous picture of deposition was observed looking at the overall 

set of AD patients. A single exception constituted a SAD case previously 

described to exhibit a significantly reduced high-affinity binding of PIB (PIBneg) 

(Rosen et al., 2010). The plaque morphology proved special in this case, 

depicting a faintly stained plaque core surrounded by an area with strong 

staining resulting in a “ring-shaped” appearance of these plaques. What was 

described for 6E10-immunostained plaques in Rosen et al. (2010) could be 

confirmed with qFTAA/hFTAA staining in this study (Figure 11). Ring-shaped 

compact as well as more diffuse Aβ plaques were seen in this case. Diffuse 
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deposits as predominantly seen in all other AD cases were rather rare in this 

case with deficient PIB binding. 

 

 
Figure 11. Plaque morphologies of sporadic and familial AD cases. Representative images of 
qFTAA and hFTAA stained compact (upper row) and diffuse (lower row) Aβ plaques in the 
frontal cortex. In general, plaques from sporadic AD cases are morphologically similar to 
plaques from familial cases (APP V717I, PSEN A431E and PSEN F105L mutations). Only the 
PIBneg sporadic AD case showed a specific, distinct plaque morphology. In comparison to the 
other AD cases, the PIBneg case exhibited a weaker qFTAA/hFTAA staining in the plaque 
core, for compact (upper row) as well as diffuse (lower row) Aβ plaques. Scale bar: 20 µm. 
 

2.2. Biochemical analysis of Alzheimer’s disease tissue 

The tissue samples from all AD patients were analyzed for their Aβ load and 

Aβ42/40 ratio (experiments performed by Jay Rasmussen). Brain tissue 

homogenates were analyzed by an electro-chemiluminescence immunoassay 

(MesoScale Discovery). Looking at the Aβ amount, the PIBneg case occupied 

again a unique position, showing an extremely high Aβ load compared to all 

other cases (Figure 12A, red). Within the FAD cases, the PSEN1 A431E 

mutation cases (blue) showed a slightly higher Aβ load than the PSEN1 

F105L (grey) cases and the APP mutation (green). The SAD cases (orange) 

seemed to have an overall lower Aβ load than the PSEN1 A431E cases, with 

the exception of the PIBneg case and one other SAD case (AD13). The 

Aβ42/40 ratio was highest in the APP mutation cases and also generally high 

in the SAD cases, again with the exception of the PIBneg case and AD13, 

whose high Aβ load seemed to mainly arise from high Aβ40 (Figure 12B). 
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Figure 12. Biochemical characterization of AD brain tissue (performed by Jay Rasmussen). 
(A) Total Aβ load in pmol/g tissue from all FAD and SAD cases measured by MesoScale after 
formid acid extraction. The different groups are indicated in the legend. (B) Aβ42/40 ratio 
calculated from total Aβ40 and Aβ42 values for all patients. 
 

2.3. Different Aβ conformers among human amyloid plaques 

Seeing as the PIBneg case showed a unique plaque morphology and different 

biochemical characteristics in addition to the drastically reduced PIB binding, 

one could assume that this case also harbors a special distinct plaque 

conformation. Consequently, the PIBneg case was foremost compared for 

conformational differences against six other SAD cases in order to confirm 

that the spectral analysis method we have applied so far to reveal fine plaque 

structural detail can pick up any differences in the internal plaque 

organization. Thus, qFTAA/hFTAA stained sections were examined; staining 

revealed a prominent difference between the PIBneg case and the SAD cases, 

both visually perceivable and quantifiable by spectral analysis (Figure 13A,B).  
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Figure 13. The PIBneg case shows a distinct spectral signature. (A) Normalized spectral 
curves of sporadic AD patients showing that the PIBneg case (red) has a blue-shifted spectrum 
compared to six other sporadic AD cases (orange). Each curve represents the mean plaque 
spectrum from one patient (n=45-60 plaques/patient). (B) Images of plaques in a sporadic AD 
case and the PiBneg case. Colors are created from spectral color-coding of the acquired 
images. The distinct blue-shifted core of the PiBneg plaques is clearly distinguishable on the 
sections. Scale bar: 20 µm. 

 

Following these experiments where the plaque structure of a unique AD case 

stood out from the structures of regular SAD cases, plaques of all SAD and 

FAD cases were considered to discern inter-group differences. To visualize 

the spectral differences between single plaques the ratio of emitted light was 

calculated from the regions with maximal spectral separation, at 502 nm and 

588 nm respectively. The ratios of the qFTAA/hFTAA stained sections 

revealed significant differences between FAD and SAD cases. For the FAD 

cases, the plaque spectra of the single patients looked quite similar to each 

other within any of the three mutations (Figure 14A,B). However, between the 

mutations differences could be detected. Looking at the means of the three 

PSEN1 A431E mutation cases, these were significantly different from all other 

FAD and the SAD cases (Figure 14B). In addition, the APP mutation cases 

were significantly different from the SAD; only the PSEN1 F105L mutation 

cases were quite similar to the APP mutation and SAD cases. Looking at the 

single plaques measured for each patient a certain spectral variability was 

observed, indicating that even in individual patients, plaques can exhibit quite 

diverse structural characteristics (Figure 14A).  
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Figure 14. Conformational differences between FAD and SAD cases. (A) qFTAA and hFTAA 
stained brain sections from all FAD and SAD cases were spectrally analyzed and the ratio of 
emitted light at 502 nm and 588 nm was calculated to quantify the spectral differences. 45-
190 plaques were analyzed per patient. One dot represents one plaque and mean ± SEM is 
indicated for each patient. (B) For statistical analysis the mean was calculated for the different 
mutations groups and SAD (including PIBneg) from the means of the single patients. One dot 
represents one patient and mean ± SEM is indicated per group. ANOVA revealed significant 
differences between the groups (n=26, 2-18/group; F(3,22)=64.88; p<0.0001). Bonferroni post-
hoc analyses were applied for multiple comparisons with the statistical significance set at 
p<0.05. PSEN1 A431E cases were significantly different from APP V717I, PSEN1 F105L and 
SAD (p<0.0001). APP V717I was significantly different from SAD (p<0.001). PSEN1 F105L 
was not different from APP V717I and SAD (p>0.05). 
 

Next, we wanted to assess the intra-individual variation in spectral signatures. 

Therefore, we analyzed differences among three different neocortical regions 

in each of the groups: the superior middle temporal gyrus (SMTG), the middle 

frontal gyrus (MFG) and the pericalcarine region of the occipital lobe (OL). For 

the FAD cases small differences were observed between the three regions, 

although the spectra appeared all together similar for the different mutation 

groups (Figure 15A). In the sporadic cohort, some cases showed greater 

differences among regions (e.g., AD9 and AD12, Figure 15B), but in general 

the spectral signatures were fairly homogeneous in a given individual. For all 

cases, we did not observe that a single brain region was consistently different 

from the other regions. However, in the two SAD cases that appeared as 
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outliers (AD9 and AD12) it seemed that the SMTG spectra was quite blue-

shifted. 

 

 
Figure 15. Different brain regions show predominantly spectral similarities. (A,B) Ratio of 
emitted light at 502 nm and 588 nm was calculated for quantitative comparison of individual 
Aβ plaques. 18-76 plaques were analyzed per region, for the SMTG, the MFG and the OL of 
all FAD (A) and SAD (B) cases. One dot represents one plaque; mean ± SEM are indicated 
for each region. 
 

2.4. Conformational differences are not directly attributable to a single 

disease-associated characteristic  

The structural heterogeneity observed for the different mutations of FAD 

cases might be partly attributable to the genetic, biochemical and phenotypic 

differences described previously (Larner and Doran, 2006, Maarouf et al., 

2008, Ringman et al., 2014, Roeber et al., 2015). More intriguing were the 

conformational differences seen within the group of SAD cases representing 

the vast majority of affected patients, for which the origin of the observed 

heterogeneity is mainly obscure. Therefore, we wanted to confirm that the 

observed spectral differences are not associated with factors that might 

influence the plaque conformations such as the age of the patients, the post-

mortem interval (PMI), biochemical characteristics and the ApoE genotype. 

The mean LCO ratio for each SAD patient was hence correlated with the 
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respective factor (Figure 16A-D) and for ApoE the LCO ratios were compared 

for the different genotypes (Figure 16E). None of the factors showed a 

correlation with the LCO ratio and distinct ApoE genotypes depicted similar 

spectral properties.  

 

 
Figure 16. Disease-associated factors are not responsible for distinct LCO ratios. (A-E) 
Correlations between age (A), PMI (B), total Aβ load (C), Aβ42/40 (D) ratio and the LCO ratio 
502/588 nm of the respective SAD patients. Pearson’s correlation coefficient r and its p-value 
indicate that none of the correlations were statistically significant. (E) SAD patients (n=17; for 
AD9 the ApoE genotype was not available) were divided into three groups according to their 
ApoE genotype as indicated in the legend. One dot represents one patient. Mann Whitney 
test revealed no difference between the ApoE3/3 and ApoE3/4 genotype (p=0.2061).  
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In summary, spectral imaging of the qFTAA and hFTAA double-stained 

human AD tissues revealed variations between plaques of certain FAD and 

SAD cases and most interestingly detected a conformational heterogeneity 

within SAD patients that is not directly correlated to a certain disease-

associated characteristic. 
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Discussion and Conclusions 

 
Although much has been discovered about the molecular processes 

underlying AD pathology in the past years, major questions have not been 

answered and a cure for this pervasive malady is elusive. The Aβ peptide, 

one of the principle aggregating proteins in AD and a target for therapeutics, 

is presented with a structural heterogeneity reminiscent of prion strains. The 

strain-properties of Aβ aggregates have been structurally analyzed in this 

thesis in different models of β-amyloidosis and human post-mortem brain 

tissue. A detailed knowledge about the structural differences of amyloid 

proteins would be essential to understand the biological effects arising from 

structural variations (Tycko, 2015). Ultimately, the goal is to use this 

knowledge for the development of new compounds that bind to specific kinds 

of pathogenic amyloid fibril structures, both for diagnostic imaging (Klunk et 

al., 2004) and/or for inhibiting aggregation (Estrada and Soto, 2007).  

 

Aβ conformers in models of β-amyloidosis 
 

Mouse models, developed on the basis of the familial disease mutations, 

recapitulate many aspects of the disease, hence they are suitable tools to 

analyze the hitherto unexplored molecular processes. Most human APP tg 

mouse models of AD generate endogenous murine Aβ together with tg 

human Aβ. Yet the role of the murine peptide in amyloid formation is not well 

understood. Murine Aβ differs from human Aβ in its amino acid sequence and 

might potentially also show dissimilarities in the conformation. In this regard, 

the influence of murine Aβ on the amyloidosis in mouse models remains 

ambiguous. As a first step in our study, we addressed whether murine Aβ has 

an influence on the amyloid deposition in different mouse lines. Accordingly, 

the amyloid load was assessed by stereological analysis in APP23 and 

APPPS1 mice. We saw a significant increase of cerebral β-amyloid load in 

14.5 month-old and 18.5 month-old APP23 mice compared to koAPP23 mice 

lacking endogenous mouse APP and Aβ. At both ages, parenchymal plaques 

and CAA were elevated with an even stronger increase of the rather rarely 

found CAA. Interestingly, the amyloid load did not differ significantly between 
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APPPS1 and koAPPPS1 mice, in contrast to the striking difference observed 

in APP23 mice. In a previous study, mouse APP has been overexpressed in 

APPswe/PS1dE9 mice with the amyloidosis burden being intermediate 

between APP23 and APPPS1. This resulted solely in an increase in CAA but 

not in faster or more extensive plaque deposition (Jankowsky et al., 2007).  

 

Seeing an impact on the amyloid load, we next investigated whether human 

and murine Aβ are co-deposited in plaques of APP23 and APPPS1 mice. 

Staining with the murine-specific antibody m3.2 and the conformation-

sensitive dye pFTAA revealed murine Aβ in tight association with human Aβ 

in amyloid fibrils. This result was confirmed by electron microscopy (Mahler et 

al., 2015) and is in line with studies suggesting the formation of mixed human-

murine fibrils in vitro (Fung et al., 2004) and the co-deposition (Pype et al., 

2003, van Groen et al., 2006a) or co-immunoprecipitation (Morales-Corraliza 

et al., 2013) of murine and human Aβ within the mouse brain. The tight 

association of human and murine Aβ in amyloid fibrils could result in 

conformational differences compared to fibrils composed of purely human Aβ. 

In order to investigate potential structural differences, the fluorescence 

emission of the LCO dye pFTAA, bound to human and mixed human-mouse 

amyloid fibrils, was spectrally investigated. We decided to analyze APPPS1 

mice for this purpose, because they showed the highest percentage of murine 

Aβ (Mahler et al., 2015). Even though a small tendency towards red-shifted 

spectra of the koAPPPS1 mice could be detected, no significant spectral 

differences were observed between APPPS1 and koAPPPS1 plaques. 

However, very fine differences below the detection limit of the herein tested 

dye could exist. Future experiments to assess a structural influence of murine 

Aβ should also include the APP23 and koAPP23 mice with increased animal 

numbers. Therefore, final conclusions about conformational differences 

between the Aβ subtypes cannot be drawn until further analyses have been 

performed. However, these data indicate that the structural micro-organization 

within the plaque is similar in mice with or without the murine subtype. 

Intriguingly, this similarity was observed despite the contribution of different 

materials to the build-up of the plaque, which is in line with studies suggesting 
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seeded templating (reviewed in Jucker and Walker, 2013, Walker and Jucker, 

2015). Consequently, the overproduced human Aβ subtype may 

predominately influence the plaque conformation, with material diversity 

contributing a minute effect, in the mice with both subtypes. Taken together, 

our data show that the impact of mouse Aβ on amyloidosis differs among APP 

tg mice and seems to decrease in more aggressive models. Mouse Aβ may 

therefore affect study outcomes differently depending on the model used and 

should thus be addressed in individual lines, before reaching conclusions 

based on the modeled humanized β-amyloidosis. 

 

Another set of experiments should address whether Aβ conformers and the 

concept of seeded templating are dependent on the biological system. To this 

end, we tested conformational differences of Aβ in an organotypic slice 

culture model, using mouse HSCs and a combined treatment approach with 

Aβ seeding extract and synthetic Aβ. It was first shown for prions that 

differences can exist between the conformations of the proteins even though 

the underlying amino acid sequence is exactly the same (Pan et al., 1993, 

Bessen and Marsh, 1994, Prusiner, 1998). This behavior was recently 

confirmed for the Aβ peptide. Different Aβ conformers were shown to exhibit 

distinct biological activities in vitro (Petkova et al., 2005, Eisenberg and 

Jucker, 2012) and polymorphic Aβ deposits as well as structural Aβ variants 

have been described in APP tg mouse models (Heilbronner et al., 2013) and 

AD brains (Lu et al., 2013). In our study we demonstrated that also in HSCs 

Aβ conformers could be observed and that plaque formation occurs, as in 

prion diseases, via a templated conversion mechanism (Novotny et al., 2016). 

Spectral analysis of Aβ deposits stained with the conformation-sensitive dye 

pFTAA revealed different Aβ morphotypes. These differences proved 

dependent on the nature of the synthetic Aβ species in the culture medium 

(Aβ40 versus Aβ42) and also on the applied brain extract (APP23 or APPPS1 

mice). The combined treatment of APP23 extract and synthetic Aβ40 gave 

rise to large, diffuse plaques with a red-shifted spectral signature, which 

underscores the more diffuse Aβ arrangement in these deposits. Treatment 

with APPPS1 extract and synthetic Aβ42 induced rather small, compact 

plaques with a blue-shifted spectrum supporting the more dense Aβ 
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arrangement in these deposits. In agreement with this, the cross-treatments 

(APP23/Aβ42 and APPPS1/Aβ40) generated Aβ plaques with mixed 

morphology and intermediate spectral properties, showing that both the 

applied seeding extract and the synthetic Aβ contribute to the amyloid 

formation. Of note, the amyloid-associated changes in HSCs occur in wt brain 

tissue thus avoiding the potential confounding overexpression of APP in tg 

mice (Jucker, 2010). Seeded Aβ aggregation in HSCs is a unique and valid 

model of β-amyloidosis, also for SAD. Systems that model the complex brain 

environment are urgently needed to study the mechanisms governing Aβ 

aggregation in vivo and to test therapeutic approaches (Forman et al., 2004). 

Our data demonstrate that different Aβ conformers can be found in HSCs and 

therefore seem to be independent of the biological system. In conclusion, our 

study provides evidence that conformational differences and strain-like 

behavior can be successfully studied in this rapid and easy accessible novel 

model system. 

  

We further investigated Aβ conformers in mouse models of β-amyloidosis, this 

time with a focus on the exceptional durability of prion-like proteins. The 

persistent infectivity of prions even after exposure to formaldehyde for month 

or years (Pattison, 1965, 1972, Brown et al., 1986) was one of the earliest 

indications that the causative agent of Scrapie was unlike conventional 

infectious agents (Pattison, 1965). In our study, it was shown that Aβ seeds, 

like prions, are resistant to inactivation by formaldehyde (Fritschi et al., 2014). 

We demonstrated that apart from their amyloid-inducing activity, the 

conformational differences between Aβ aggregates are also maintained in 

formaldehyde fixed tissue. In accordance with previous studies (Heilbronner 

et al., 2013), we found morphological and conformational differences between 

plaques induced from brain extracts of fresh-frozen APP23 and APPPS1 

mice. Remarkably, spectral analysis of pFTAA-stained sections still showed 

structural differences between APP23 and APPPS1 plaques, when mice were 

inoculated with fixed extracts. The morphology of the induced amyloid 

deposits was rather similar here. Consequently, formaldehyde fixation may 

partially modify the histological appearance of seeded Aβ plaque morphology, 

but at the same time maintain at least some of the basic conformational 
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properties of the aggregated Aβ. The present findings highlight the 

extraordinary robustness of Aβ seeds and in light of previous studies showing 

that Aβ seeds remain functional following boiling (Meyer-Luehmann et al., 

2006) or drying (Eisele et al., 2009), our results further underscore their 

resemblance to prions. In summary, the formaldehyde-fixed Aβ seeds largely 

retained their conformational templating capacity, as the nascent amyloid 

deposits replicated the spectral properties of the parental seeds, at least at 

the binding-sites of the conformation-sensitive dye. Conclusively, the 

discovery that both the self-propagating activity and strain-like features of 

aggregated Aβ are maintained in fixed tissue supports their incorporation into 

the broad conceptual framework of prions. 

 

In conclusion, the use of animal models to study amyloidosis in vivo and/or ex 

vivo has many advantages as the models often resemble the pathological 

lesions seen in patients remarkably well and at the same time constitute a 

fast-replicating system which can be easily manipulated. In this thesis we 

showed that mouse models and HSCs are even capable to recapitulate the 

different conformational characteristics of amyloid diseases. However, one 

should consider that the endogenous mouse Aβ could have an influence on 

the pathology in tg mouse models, an aspect which should be respectively 

noted and addressed. Moreover, regarding animal models used in 

translational studies, certain structural and/or biochemical variations may exist 

between the human and animal amyloids due to the different environment. 

This is exemplified by a difference in solubility between the human and mouse 

Aβ species (Kuo et al., 2001) or the low retention of PIB in mouse models 

compared to human AD brains (Klunk et al., 2005). In all nonhuman animals, 

Aβ deposits might be structurally different on a conformational level and this 

difference could be associated with the disease mechanism (Levine and 

Walker, 2010). In order to investigate variations in the structural level among 

human aggregates and disease cases, conformational differences were 

studied in plaque deposits of post-mortem human AD tissue.  
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Aβ conformers in Alzheimer’s disease patients 

 

Post-mortem brain tissues from 26 pathologically diagnosed AD patients were 

studied in terms of morphological, biochemical and conformational 

characteristics of their Aβ plaque pathology. FAD mutation cases harboring 

an APP (V717I) or PSEN1 (A431E or F105L) mutation, as well as SAD cases 

including one remarkable case of deficient PIB component binding, were 

analyzed. A distinct plaque conformation in the PIBneg SAD case was readily 

observed. Since this case was described to have a distinct plaque 

morphology and significantly elevated Aβ values in terms of total Aβ and Aβ40 

(Rosen et al., 2010), which was confirmed in our study, we set off to 

investigate whether the structure of those plaques would also be unique. A 

well-defined LCO spectral blue-shift of the plaque cores was detected in this 

PIBneg case, so prominent that it could be visually distinguished as well (see 

Figure 13). This corroborated the fact that our qFTAA/hFTAA LCO pair is 

applicable and able to distinguish variable plaque conformations in human 

tissue. Consequently, we applied both LCOs to stain and analyze the entire 

AD cohort and uncovered remarkable differences between morphologically 

and biochemically similar Aβ plaques from FAD and SAD cases. The PSEN1 

A431E mutation cases showed the biggest difference compared to both to the 

other FAD and the SAD cases. Plaque spectra from these patients were 

significantly blue-shifted compared to the other cases, indicating a higher 

percentage of qFTAA staining in these plaque cores, which might originate 

from a high proportion of mature Aβ fibrils and a compact fibril arrangement 

(Nilsson et al., 2007, Nystrom et al., 2013). The APP V717I mutation cases 

were still significantly blue-shifted from the SAD cases, albeit red-shifted 

compared to the PSEN1 A431E cases. Cases from the second PSEN1 

mutation, F105L, were significantly red-shifted from the first PSEN1 mutation 

and rather similar to the APP mutation and SAD cases. This could indicate 

that patients with the F105L mutation in PSEN1 have a more diffuse Aβ 

arrangement in their plaques compared to the patients harboring the A431E 

mutation. This difference between the PSEN mutations was not completely 

unexpected, since a substantial phenotypic, histopathological and molecular 

heterogeneity is described for PSEN mutation cases (Larner and Doran, 
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2006, Maarouf et al., 2008, Roeber et al., 2015). In general, variations in the 

phenotypic and molecular characteristics are common among the familial 

forms. Interestingly, we found conformational differences also between the 

SAD patients, which support the idea that certain heterogeneity also exists 

between SAD cases (De Kimpe and Scheper, 2010, Janocko et al., 2012, 

Warren et al., 2012, Mattsson et al., 2016). It should be noted, however, that 

the heterogeneity between FAD cases with different mutations, which is 

supported by the high clinical symptom variability, may simply reflect the 

genetic, neuropathological and biochemical diversity in these patients. For 

SAD, the risk-genes can explain only about 30% of the phenotypic variations 

(Cohen et al., 2016) leaving the factors that lead to a heterogeneity in SAD 

largely elusive (Di Fede et al., 2013, Mattsson et al., 2016).  

 

Amyloid deposition in the human brain is a progressive process that follows a 

distinct sequence, in which different brain regions are hierarchically affected 

(Braak and Braak, 1991, Thal et al., 2002, Thal et al., 2014). This concept 

hints to the possibility that differences in the amyloid conformation could be 

influenced by different plaque maturation stages in the respective brain 

region. Therefore, we spectrally investigated the plaque conformation in three 

different brain regions, for each patient. Spectra from SMTG, MFG and OL 

showed small variations for the FAD cases, but seemed overall quite similar 

within each group of the familial patients. The SAD cases were presented with 

a different pattern as more pronounced differences were detected in certain 

regions. In particular, the SMTG plaque spectra were showing a blue-shift in 

two of the SAD cases. Generally, the plaque pathology is thought to start in 

the neocortex, which includes all the brain regions investigated herein, and 

further spread into deeper brain areas (Braak and Braak, 1991). However, it is 

also known that for single patients the start and spreading of the Aβ pathology 

can vary substantially. Consequently, the blue-shift of the plaques in the 

SMTG, which hints to a more dense amyloid packing or a more maturated 

state of the fibrils compared to more reddish plaques, may arise from a 

different maturation stage in those regions. However, these differences may 

just as well be influenced by other, unexplored factors such as 

neuroinflammatory processes or yet undefined co-factors.  
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Lately, the paradigm from Braak et al. (1991) has been refined describing 

distinct biochemical stages of amyloid deposition and their relation to 

symptomatic and preclinical AD (Rijal Upadhaya et al., 2014). Thus, distinct 

biochemical stages of disease progression might have an influence on the 

clinical and pathological phenotype of AD patients, as well. To investigate a 

potential relationship of the structural differences in the SAD cohort with 

biochemical aspects, such as the Aβ load or the Aβ42/40 ratio, a correlation 

analysis with the LCO data was performed. No correlation between the LCO 

ratio and the Aβ load or Aβ42/40 ratio was detected. Risk factors like the age 

or ApoE genotype are thought to account for part of the phenotypic 

heterogeneity in SAD patients (Lahiri et al., 2004). Thus, we also investigated 

a correlation between the age of the patients as well as the ApoE genotype 

and the LCO data, but found no significant correlations. Finally, a potential 

degradation effect caused by a prolonged PMI, which might influence the 

structural properties of the tissue, was assessed, but no correlation between 

our structural data and the PMI was detected. Conclusively, the spectral 

results suggest conformational differences for Aβ pathology between FAD 

and SAD cases and remarkably also between distinct SAD patients. However, 

in order to confirm a strain-like paradigm for the human plaque pathology 

further experiments are needed. Such experiments should include the 

transmission of the aggregates to a susceptible host system, where it is 

anticipated that the different conformations are preserved if the strain principle 

applies for the investigated deposits (Aguzzi et al., 2007, Collinge and Clarke, 

2007). The spectral data of the SAD cohort did not correlate with biochemical 

characteristics or established risk factors in our study, although a potential 

correlation cannot be excluded for a larger or differential cohort of AD 

patients. Nevertheless, these results suggest that the plaque conformation 

stays largely unaffected by general factors addressing the whole body or 

system suggesting that the initial seed formation or direct interactions of other 

cells on the plaque might predominantly influence the final plaque 

arrangement.  

 

A sensible future step would be to correlate these conformational differences 

to the clinical phenotype in the AD patients. So far, the existence of significant 
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correlations between variations in structural features and variations in amyloid 

diseases has not been shown in humans (Tycko, 2015). However, such 

correlations could have diverse implications, as any correlations between Aβ 

fibril structures and the clinical progression in AD would favor the idea that 

amyloid fibrils have clinically relevant neurotoxic effects (Chetelat et al., 

2012). Other studies however showed that some humans with substantial Aβ 

deposition in the brain do not show any clinical signs of AD (Gu et al., 2015) 

and that the amyloid load per se cannot predict the cognitive status in AD 

patients (Giannakopoulos et al., 2003). On the background that distinct 

predominant Aβ fibril structures can develop in different AD patients (Lu et al., 

2013), these variations raise the important question of whether this 

polymorphism correlates with and even causes differences in neuronal 

toxicities, binding stoichiometry of imaging agents, and AD symptoms. In 

consequence, the amyloid diversity may potentially explain part of the 

discrepancy seen before.  

 

We approached the question whether conformational differences can be 

detected among AD patients with novel, conformation-sensitive LCO dyes. 

LCOs are nowadays established as a valuable tool to detect and distinguish 

between amyloid lesions in mouse models of β-amyloidosis and on human 

post-mortem tissue (Aslund et al., 2009b, Klingstedt et al., 2011, Wegenast-

Braun et al., 2012, Klingstedt et al., 2013, Shirani et al., 2015). In this thesis 

they were shown for the first time to successfully distinguish between Aβ 

conformers in a larger cohort of human AD brain sections. It is our aspiration 

that this work will pave the way towards the development of novel structure-

specific imaging and treatment compounds for amyloid diseases, an 

especially important goal in light of potential correlations between amyloid 

structure and clinical phenotype. Only recently, pentameric LCOs have been 

introduced as successful anti-prion compounds in tg mice (Herrmann et al., 

2015). In AD patients, Aβ-binding compounds like PIB are used routinely for 

PET in research and clinical practice (Klunk et al., 2004, Fleisher et al., 2011). 

The molecular-level binding sites for these compounds are currently under 

investigation (Fosso et al., 2016, LeVine and Walker, 2016) and differences in 

ligand binding, that are known for PIB in human AD (Rosen et al., 2010), may 
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also relate to structural amyloid variations and support the need for novel 

agents that selectively bind distinct amyloid structures. A specific goal should 

be to develop compounds that direct the aggregation process away from 

certain structures and towards others. Assuming, that certain structures lead 

more aggressively to the neurodegeneration in AD patients, the clearance of 

those conformers could be used to prevent or limit the disease process in 

those patients (Tycko, 2015).  

 

In conclusion, a better understanding of the structural diversity of Aβ 

aggregates could provide important clues to the pathogenesis of AD and 

thereby also suggest new therapeutic approaches to the disease. The 

conformation-sensitive LCO tools open up a new way of investigating features 

of the disease that couldn’t be assessed via classical methods so far, which 

might ultimately be used to discern benign from toxic aggregates. Once this 

technology is established it could be intended for imaging, diagnosis or even 

treatment of many neurodegenerative diseases. 
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Common abbreviations 

 
α-syn α-synuclein 

Aβ amyloid beta 

AD Alzheimer’s disease 

AICD APP intracellular domain 

ANOVA analysis of variance 

APP amyloid beta precursor protein 

ApoE apolipoprotein E 

BBB blood-brain barrier 

BSE Bovine spongiform encephalopathy 

CAA cerebral amyloid angiopathy 

CJD Creutzfeldt Jakob disease 

CTF C-terminal fragment 

FAD familial Alzheimer’s disease 

hFTAA hepta-formyl thiophene acetic acid 

ko knock-out 

LCO luminescent conjugated oligothiophene 

LCP luminescent conjugated polythiophene 

MFG middle frontal gyrus 

min minutes 

NMR Nuclear magnetic resonance 

OL occipital lobe 

PBS Phosphate-buffered saline 

PD Parkinson’s disease 

PET Positron emission tomography 

pFTAA penta-formyl thiophene acetic acid 

PIB Pittsburgh compound B 

PSEN presenilin 

PrP prion protein 

qFTAA quadro-formyl thiophene acetic acid 

RT Room temperature 

SAD sporadic Alzheimer’s disease 
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SEM standard error of the mean 

SMTG superior middle frontal gyrus 

TBS Tris-buffered saline 

tg transgenic 

ThT Thioflavin T 

wt wild-type 
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