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Tübingen

2016



Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen

Fakultät der Eberhard Karls Universität Tübingen.
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Abstract

mRNA translation is one of the most complex molecular processes that has been devel-

oped during the evolution of the cell. It synthesizes proteins that are the building blocks

and workhorses of the cells. Translation consists of initiation, elongation and termination.

These three steps require hundreds of molecules to participate in a concerted manner.

Translational control regulates protein levels in response to intra- and extra-cellular envi-

ronmental changes. Regulation at the translational level is important in situations where

transcription regulation alone cannot satisfy the emergent needs of the cell or when local

control over protein abundance is required. Translational control plays an essential role

in maintaining cell homeostasis, physiology and modulating cell growth. Dysregulation of

mRNA translation or aberrant function of translation machinery can lead to a variety of

diseases including metabolic disorders and cancer. Thus, elucidating the mechanisms of

translational control is key for understanding how diseases develop.

High-throughput sequencing technologies are widely used to determine and quantify

DNA and RNA molecules on a large scale, which has remarkably facilitated our under-

standing of many biological functions in a system-wide manner. An extension of this

technology, ribosome profiling, even allows characterization of ribosome-occupied mRNA

fragments. Ribosome profiling, thus, provides an opportunity to globally monitor the

translation in vivo and study the mechanisms of translational control.

My thesis consists of two main parts: 1) The first part focusses on development of

RiboDiff, a statistical framework and computational tool for detecting genes under differ-

ential translational regulation. RiboDiff fits quantitative ribosome profiling and RNA-Seq

measurements with a negative binomial based generalized linear model. Subsequently,

a statistical test is performed to identify genes under differential translational control

between measurements in two conditions. Our experiment demonstrates RiboDiff outper-

formed state-of-the-art existing approaches. 2) The second part establishes a computa-

tional pipeline for analyzing ribosome profiling data. Using this pipeline, we studied the

translational regulation in leukemia and other conditions. We identified mRNAs that pre-

sented distinct translation efficiency and ribosome footprint density in a condition that the

cells were treated with a chemical compound Silvestrol. Further analysis of these mRNAs

revealed that the guanine quartet (GCC)4 sequence pattern, which forms a G-quadruplex

structure, is enriched in the 5’ UTR of 280 mRNAs with down-regulated translation. Ex-

perimental validations supported our findings and confirmed that the G-quadruplex is

an RNA element that represses the translation initiation activity. Applications of the

computational approach on other translational researches illustrate the versatility of the

proposed analysis methodology.
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Zusammenfassung

Die mRNA-Translation ist einer der komplexesten molekularen Prozesse die sich entwi-

ckelt haben. In diesem Prozess werden Proteine, wichtige Elemente und Arbeitspferde von

Zellen, synthetisiert. Die Translation unterteilt sich in drei Schritte: Initiation, Elongation

und Termination. Diese drei Schritte erfordern das abgestimmte Zusammenspiel von Hun-

derten von Molekülen in einer bestimmten Reihenfolge. Durch Kontrolle der Translation

regeln Zellen die Proteinspiegel in Reaktion auf intra- und extrazelluläre Veränderungen

der Umwelt. Regulation auf der Translationsebene ist insbesondere in Situationen wichtig

für die Zellen, in denen die Transkriptionsregulation allein die auftretenden Bedürfnisse

der Zelle nicht erfüllen kann oder die lokale Kontrolle über Proteinmengen benötigt wird.

Translationskontrolle spielt ausserdem eine wesentliche Rolle bei der Aufrechterhaltung

der Zell-Homöostase, der Physiologie und um das Zellwachstum zu modulieren. Dysregu-

lation der mRNA-Translation oder anomale Funktion der Translationsmaschinerie kann

zu einer Vielzahl von Krankheiten, wie zum Beispiel Stoffwechselerkrankungen und Krebs,

führen. Um das Entstehen von Krankheiten besser zu verstehen, ist es daher wichtig die

Mechanismen der Translationskontrolle zu verstehen.

Hochdurchsatzsequenzierungstechnologien werden häufig zur Bestimmung und Quan-

tifizierung von DNA- und RNA-Moleküle in großem Maßstab verwendet, was unser sys-

temisches Verständnis von vielen biologischen Funktionen erleichtert hat. Eine Weiter-

entwicklung dieser Technologie, das Ribosome Profiling, ermöglicht sogar die Bestimmung

der an Ribosomen gebundenen mRNA-Fragmente. Ribosome Profiling ermöglicht somit

die Translation in vivo zu betrachten und erleichtert es die Mechanismen der Translations-

kontrolle zu ergründen.

Meine Arbeit besteht aus zwei Hauptteilen: 1) Sie beschäftigt sich einerseits mit der

Entwicklung von RiboDiff, einer statistischen Methode und einem Computerprogramm

um die Gene zu bestimmen, deren Translation unterschiedlich zwischen zwei Bedingungen

reguliert ist. Zu diesem Zweck modelliert RiboDiff quantitative Ribosome Profiling und

RNA-Seq Messungen mit einem verallgemeinerten linearen Modell das auf der Negativ-

Binomial-Verteilung basiert. Anschließend wird ein statistischer Test durchgeführt, um

Gene unter differentieller Translationskontrolle, zwischen den Messungen in beiden Be-

dingungen, zu identifizieren. Unsere Experimente zeigen, dass RiboDiff existierenden

Ansätzen überlegen ist. 2) Weiterer Gegenstand der Arbeit ist die Entwicklung einer

Pipeline für die Analyse von Ribosome Profiling-Daten. Mit dieser Pipeline untersuchten
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Zusammenfassung

wir die Translationsregulation unter anderem in Leukämie. Mit Hilfe dieser Pipeline kon-

nten wir mRNAs identifiziert, die unterschiedliche Translationseffizienzen und Ribosom-

Dichten in Zellen aufwiesen, welche mit dem chemischen Wirkstoff Silvestrol behandelt

wurden. Eine weitergehende Analyse dieser mRNAs ergab, dass das (GCC)4 Guanin-

Quartett Sequenzmuster, das eine G-Quadruplex-Struktur induziert, in der 5’-UTR von

280 mRNAs mit herunterregulierter Translationseffizienz angereichert ist. Eine experi-

mentelle Untersuchung dieser Motive bestätigte unsere Ergebnisse und zeigte, dass G-

Quadruplexe ein Translationsrepressor sind.
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1 Introduction

1.1 DNA and Genetic Information

DNA, or deoxyribonucleic acid, is a macromolecule composed of the monomers called

nucleotide. Each nucleotide unit is made up of a nucleobase, a deoxyribose and one

phosphate group [1, 2]. Typically, four different nucleotides exist in the DNA strand.

They are adenine (A), thymine (T), guanine (G) and cytosine (C), depending on

what nucleobase is attached to deoxyribose. The nucleotides are connected to one

another through the chemical bonds between the deoxyribose of one nucleotide and

the phosphate of the next. In the cell, the linear sequence of nucleotides along the

DNA encodes all the genetic information a cell needs to have during its life time,

which holds true for all three domains of life, but not including RNA viruses [3].

The DNA is in a helical shape with double-strand form as its primary structure.

The two strands are reverse complementary, following the matching rule between a

pair of bases on the two chains: A pairs with T, and C pairs with G, also called

as Watson-Crick base pair [4]. In human, each cell contains 3.2 × 109 base pairs

of DNA [5]. This genetic blueprint is known as the human genome. It has been

estimated that if stretch out the DNA from a single human cell, it is about 2 meters

in length [6]. The question is how the DNA is packed small enough to fit the

space in the cell. Studies have revealed that, in eukaryotes, the DNA is spirally

coiled with histone proteins and forms the basic unit of DNA packaging—nucleosome

[7]. The nucleosome is further coiled to form a complex of macromolecule with a

loose structure—chromatin [8]. Consequently, the later is tightly packed with other

proteins resulting a highly compact but well organized structure called chromosome

[9].

In human, the diploid cell contains 23 pairs of chromosomes, one in each pair is

inherited from the mother and the other is from the father [10]. Although the somatic

cells carry the same genomic DNA, the genetic material is used in many different
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Introduction

ways depending on the type of the cells. A gene is a piece of DNA that encodes a

biological function. All the cellular processes are under the precise control of the gene

expression, namely, the on and off status of a gene. The gene transcription copies

the genetic information from the DNA to messenger RNA and further downstream

molecules that contribute to the diverse functions of the cell.

1.2 Transcription

Transcription is a cellular process by which the genetic information is transferred

from DNA to ribonucleic acid (RNA) by RNA polymerase. This process, also called

gene expression, is the first step that cell produces its functional molecule—protein.

Therefore, it is under sophisticated regulation that differs from cell to cell, and time

to time [1, 11].

In eukaryotes, as the DNA is wrapped around histone proteins and tightly packed

as the form of chromosome, the gene transcription firstly starts with the modification

of chromosome architecture at the small region where the gene of interest is located,

resulting a loose and open chromatin state, known as chromatin remodeling, to

facilitate RNA transcription machinery proteins to access [12, 13].

Transcription initiation takes place at the promoter region, typically 25 nucleotides

upstream of a gene, where a specific DNA sequence is firstly recognized and bound

by transcription factor TFIID. Afterwards, other proteins, such as RNA polymerase

II, TFIIA, TFIIB, TFIIE, TFIIF etc., are subsequently assembled into the transcrip-

tion initiation complex around the promoter and then triggers the transcription [1].

In eukaryotic cell, RNA polymerase II is responsible for transcribing the vast ma-

jority of protein coding genes, whereas RNA polymerase I and III transcribe genes

encoding ribosomal RNA, transfer RNA and other small RNAs [14, 15, 16].

Once the transcription initiation complex is assembled, RNA polymerase II begins

to elongate the RNA transcript. Briefly, RNA polymerase II unwinds the local

DNA helix and uses the antisense strand of the DNA as the template to incorporate

ribonucleotides from four nucleoside triphosphates (ATP, CTP, UTP, and GTP) as

substrate. The incorporated ribonucleotide is determined by the complementary

base-pairing to the nucleotide on the DNA template. Note, on the RNA the base

uracil (U) instead of thymine (T) matches to adenine (A) in DNA [17]. Roughly,

the RNA polymerase moves 20 nucleotides per second for eukaryotic transcription

12



1.2 Transcription

in the direction of 3’ to 5’ on the antisense DNA strand [1], namely the nascent

transcript is generated from its 5’ end to 3’ end. Therefore, the RNA sequence is

the same as the gene on the sense strand of the DNA with T replaced by U.

While RNA polymerase approaches to the end of a gene, two proteins—CstF

and CPSF—bind to specific sequences on the RNA molecule [18]. Then the RNA

is cleaved at the cleavage site, and up to 200 adenines are added by poly-A poly-

merase to the 3’ end of the cleavage site [19]. Once the transcription ends, the RNA

polymerase detaches the DNA template and can be involved in initiating another

transcription. It is possible that a gene is under transcription by multiple RNA poly-

merases to rapidly produce the transcripts to meet the needs of the cell. However,

on average 10-15 copies of each transcript present in a single cell [1].

The RNA that is being generated by RNA polymerase is called pre-RNA. The pre-

RNA needs to be processed to become a mature RNA. The RNA processing is always

coupled with transcription [20]. It includes the capping on the 5’ end of the nascent

pre-RNA [21], splicing out the noncoding introns and concatenating the exons [22],

and polyadenylation of the 3’ end [19] as describe previously. The processed RNA is

called the messenger RNA (mRNA), which is exported from nucleus to cytoplasm

and can guide to produce the proteins. There are also some other mature RNAs

directly execute their functions instead of translating into proteins, such as rRNA,

tRNA, miRNA, lincRNA, etc.

The strength of the transcription depends on a few aspects. For instance, a

favorable promoter sequence by the transcription factors; an enhancer element far

away from the promoter region; and also some additional activators or repressors

can regulate the gene expression and change the concentration of mRNA molecules

[1].

Unlike the DNA formed as a double-stranded molecule connected by hydrogen

bonds between the two strands, RNA is a single strand molecule with shorter length.

However, the ribonucleotides on the linear strand can pair with each other, therefore,

fold into variety of secondary structures, such as stem, loop, hairpin, etc. In addition,

some nonconventional base-pair interactions even result in folding RNA molecule

into more stable three-dimensional structures [23].
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1.3 Translation

The protein is a workhorse that performs vast majority of the biological functions

in the cell, including catalyzing biochemical reaction, cross-membrane transporta-

tion, signal transduction, etc. In addition, it is also the building blocks of the cell.

Translation is the process that decodes the genetic information in mRNA into the

amino acid and produces the protein.

The genetic code carried by mRNA includes four types of nucleotides (A, C, G,

U). However, 20 different amino acids are commonly found in the natural proteins.

It has been proved that three consecutive nucleotides on mRNA comprised of the

codon that determines one amino acid type [24]. As the codons are redundant

(43 = 64), some amino acids are determined by more than one triplet [25].

The protein translation takes place on the ribosome in cytoplasm. Ribosome is a

large molecular complex with sophisticated structure. It contains two subunits—a

40S small subunit including an 18S RNA and 33 ribosomal proteins, and a 60S large

subunit consists of a 5S RNA, a 5.8S RNA, a 28S RNA subunits and 46 proteins

[26, 27, 28]. The ribosomal RNAs are responsible for catalyzing the synthesis of the

peptide, whereas the ribosomal proteins stabilize the structure of ribosome [1]. The

two subunits are assembled in nucleolus [29] and relocated to cytoplasm or attach

onto the membrane of endoplasmic reticulum [30]. It has been reported that the

number of ribosome in human Jurkat cell is about 2 million [31].

Ribosome itself is not able to match amino acids to the codons on mRNA. This

task is performed by a unique type of RNA molecules known as transfer RNAs

(tRNAs). The 80 nucleotide long tRNA forms the structure in a shape of cloverleaf

with the anticodon on its one end and the other end is a short single-stranded region

where the amino acid is attached to [32]. The aminoacyl-tRNA synthetase recognizes

the amino acid and covalently links it to the appropriate tRNA that harbors the

correct anticodon corresponding to the amino acid [33]. Therefore, both anticodon

on tRNA and the aminoacyl-tRNA synthetase ensure the genetic code is converted

to amino acid correctly.

In eukaryotic cell, the first step of translation is initiation, which is the rate-

limiting step of the entire translation [1]. Briefly, a specific initiator tRNA that

carries a methionine is firstly assembled onto the small subunit of ribosome with

other translation initiation factors (eIFs) such as eIF2, eIF1 and eIF5. This pre-

14
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initiation complex is then attached to eIF4E and eIF4G that have already bound to

the 5’ cap of mRNA [34]. Next, the complex moves to the downstream along mRNA,

scanning the start codon (AUG) with the assist of eIF4A to go through the secondary

structures on the 5’ untranslated region (UTR) [35]. Once the small subunit reaches

the start codon, the initiation factors are dissociated and the ribosome large subunit

is assembled with small subunit to form the complete ribosome. The detail of

translation initiation can be found in Figure 1.1.
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Figure 1.1: Diagram of the cap-dependent eukaryotic translation initiation. This

figure is based on the original version in Mamatha Bhat, et al. Nat Rev Drug

Discov, 2015 [36] with modifications.
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The ribosome provides three sites to tRNAs while elongates the peptide [1]. The

initiator tRNA [37] occupies the ribosomal P-site with its anticodon complimentarily

match to the AUG on the mRNA. After the next tRNA carrying the second amino

acid occupies the ribosomal A-site, the peptidyl transferase transfers the methionine

from the P-site tRNA to the C-terminal of the amino acid on the A-site tRNA [38].

Then ribosome undergoes confirmation change to move mRNA three nucleotide

forward, which shifts the two tRNAs to the E- and P-sites and leaves an empty

A-site for the third tRNA to enter. During the elongation step, the two factors (EF-

Tu and EF-G) remarkably accelerate the translation [39]. It was estimated that, in

eukaryotic cell, the ribosome extends two amino acids per second in average [1].

The elongation ends when the stop codons (TAG, TTG, TGA) are encountered at

the A-site. The release factor binds to ribosome upon this signal, which triggers the

newly synthesized peptide to be released from the ribosome [40]. Once the mRNA

is also released, the ribosome separates itself and the two subunits can enter another

translation cycle.

Although protein synthesis is the most energy-consuming process in the cell, trans-

lational control can provide quicker adjustment directly to cellular alterations than

transcription. First of all, the intact cap structure and poly(A) sequence on the

two ends of mRNA are the most essential elements that promote the translation [1].

The cap-binding affinity of eIF4E has been recognized having globally impact on

translation efficiency. The mTORC signaling pathway can inhibit the protein 4E-

BP and free the eIF4E to bind the cap and initiate translation [41]. Other initiation

factors have also been reported to play a role in translational control. For instance,

the phosphorylation of eIF2α subunit down-regulates translation by blocking the

GTP-GDP exchange on eIF2 at the initiation stage [42]. The sequence features and

structures on mRNA also provide alternates for translational control. The internal

ribosome entry site (IRES) in the 5’ UTR or even the coding exons allows ribosome

to synthesize a protein in different rate [43]. Other translational controls such as

repression of specific genes’ translation by their upstream open read frames (uORFs)

as well as miRNA involved translational regulation indicated a diverse spectrum of

controlling the gene expression at the translation level [44].
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1.4 RNA-Seq

1.4 RNA-Seq

In the past 10 years, the revolutionary high throughput sequencing technologies have

comprehensively changed the way we think and conduct our biological research. In

contrast to the traditional Sanger sequencing method, high throughput sequencing,

or deep sequencing, is capable to sequence the DNA or RNA at very high coverage

at affordable cost [45]. RNA-Seq is a technology using high throughput sequencing

platform to determine the whole transcriptome of the cell samples [46, 47]. It differs

from DNA sequencing in how the library is prepared. Currently, RNA-Seq is the

state-of-the-art strategy to study transcriptome such as expression quantification,

alternative splicing, de novo transcript assembly, and small RNA identification, etc

[46, 48].

Several commercially available platforms can be used to perform RNA-Seq exper-

iment, including FLX pyrosequencing system from Roche 454 [49], Illumina Genome

Analyser [50], PacBio System [51] and AB SOLiD system [52]. The first three are

based on sequencing by synthesis approach, whereas AB SOLiD system employs

sequencing by ligation.

The first step of RNA-Seq is sample preparation. After extract the RNA com-

ponent from sample cell, the DNA contamination is removed by using DNase, and

ribosomal RNA is removed by Poly(A) mRNA selection [53] or hybridization-based

rRNA depletion [54]. The remaining RNA molecules undergo fragmentation, then

followed by reverse transcribed into cDNA.

The next step is template preparation. This step can be different depending on

which sequencing platform is used. Here we take the Illumina Genome Analyser

as an example to explain the process. After fragment size selection, the cDNA is

ligated with the adaptors containing universal priming sites to both ends of the

fragments. Then a PCR reaction with a few cycles is performed to enrich the

successfully ligated cDNA. Next, the single-stranded fragments containing adaptors

are immobilized onto a solid surface—flow cell—which is coated with the adaptors

in advance. Then, the solid-phase amplification is performed to produce 100-200

million spatially separated template clusters [45].

The last step is sequencing and imaging. Illumina Genome Analyser uses the

reversible terminator chemistry to determine the nucleotides sequence of the tem-

plate. Briefly, four types of fluorescently labeled reversible terminator nucleotides
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are added to synthesize the complementary strand of the template cluster obtained

from previous step. Here, the DNA chain is extended one nucleotide at a time.

The non-incorporated nucleotides are washed away. A camera takes images of the

fluorescently labeled nucleotides. Then the fluorescent dye, along with the terminal

3’ blocker, is chemically removed (cleavage step) in order to restore the 3-OH group,

allowing for the next cycle to begin [45].

In the end, RNA-Seq platforms generate a file containing millions of the short frag-

ment sequences—reads, and the quality of every nucleotide on each read, which can

be used in different way depending on what types of analysis needs to be done. RNA-

Seq is a technology that not only provides the number of reads to quantify the gene

transcription, but also reveals the nucleotide resolution insight of the transcripts,

which facilitates the transcriptome assembly, alternative splicing identification and

gene fusion study [46, 55].

1.5 Ribosome Profiling

Ribosome profiling is a deep sequencing based technology that globally monitors

the protein synthesis by sequencing the mRNA fragment that is occupied by ri-

bosome. Therefore, it provides tens of millions of quantifiable ribosome footprints

as the snapshot of the translatome of the cell sample. This technology was firstly

established by Nicholas Ingolia and Jonathan Weissman in 2009 [56]. It filled the

technical gap between RNA-Seq and Mass spectrometry which genome-wide quan-

tify the transcriptome and proteome respectively.

Ribosome profiling shares the same sequencing strategy with RNA-Seq, but the

preparation of the sequencing libraries differs a lot between the two protocols [58].

The first step of ribosome profiling is to obtain the cell lysates in which the ribosomes

are immobilized on the mRNA by translation elongation inhibitor cycloheximide

[59]. Because the translation initiation is the rate-limiting step of protein synthesis

[1], after treat the cell with cycloheximide, the likelihood to have ribosome freezed

at the first 10 codons is relative high. To digest the mRNA that is not occupied by

ribosome, nuclease (RNase I) is added into the cell lysate and the ribosome with the

protected mRNA fragment are selectively enriched. Next, the ribosomes are sepa-

rated from the footprints by sedimenting through a sucrose cushion. The footprints

are subjected to serials of manipulation including linker ligation, reverse transcrip-
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Figure 1.2: Illustration of ribosome footprinting sample preparation and Illumina’s

high throughput sequencing. i, cell lysate preparation; ii, RNase digestion; iii, Foot-

print recovery; iv, Linker ligation and reverse transcription; v, Circularization; vi,

DNA template immobilization on the flow cell; vii, Bridge amplification to obtain
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Figure 1.2: the DNA clusters (Each cluster represents an original DNA template.

Up to 200 million clusters are on a single flow cell.); viii, Synthesis DNA by adding

one nucleotide labeled with dye; ix, Recording the color of dye, cleaving dye and

terminating groups on the nucleotides, wash; x, repeat step viii, ix until the end

of sequencing reads. The figure is based on the original versions in Nicholas Ingo-

lia, Nat Rev Gene 2014 [57] and Michael Metzker, Nat Rev Gene 2010 [45] with

modifications.

tion and circularization. Lastly, the ribosomal RNA contamination is removed by

hybridization to biotinylated sense-strand oligonucleotides followed by removal of

the duplexes through streptavidin affinity. The remaining footprint samples are se-

quenced by deep sequencing platform such as Illumina HiSeq [60], and the 25− 35

bp long single-end footprint sequences are obtained in the end. Figure 1.2 shows

the detailed steps of the entire ribosome profiling and deep sequencing workflow.

A few points need to pay attention when analyze the ribosome profiling data.

First, always check the quality of sequencing results. Remove any over-represented

reads, for instance, the linker sequence. Also, estimating the proportion of ribosomal

RNA reads is recommended. Although rRNA depletion is performed before sequenc-

ing, rRNA contamination can still exists which reduces the chance to sequence the

real footprints. The read length after trimming the linker sequence should be eval-

uated. Read length shorter than 20 bp needs to be filtered out. As the 30 bp

single-end footprint easily results multi-mapping, only using uniquely aligned reads

can avoid the ambiguous alignment.

Ribosome profiling provides a quantitative manner to monitor the translation of

protein coding genes [57, 61]. Together with RNA-Seq measurement, it sheds lights

on the genes translation efficiency [62, 63] and can reveal the translational con-

trol independent of transcriptional regulation. As ribosome profiling also provides

the footprints at the nucleotide resolution, it reflects the ribosome density along

the mRNA. Therefore, by searching for the location where ribosome stalls, we can

postulate the biological reason that leads to the change of footprint density distri-

bution [64], for instance, special RNA structures. Furthermore, by treating the cells

with translation initiation inhibitors, such as harringtonine [62] or lactimidomycin

[65], ribosome profiling facilitates study the alternative start codons under certain
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conditions as well as identification of short upstream open reading frames (uORFs).

1.6 Probability Distributions

1.6.1 Definitions and Properties

In probability theory, a variable is a symbol (x, y, etc.) that denotes a mathematical

object, which could be any specified set of values, such as a number, a vector or a

matrix. If the value of a variable is subject to variations due to effect of random-

ness, that variable is a random variable. A probability distribution is an equation

that links the value of random variable with its probability of occurrence. Sample

distribution and population distribution are the two types of probability distribu-

tions. The frequency of random variable occurs in one or a few experiments is a

sample distribution, for instance, the read count frequency of ribosome profiling of

the genes in one organism. Whereas, the frequency of random variable occurs in

infinite experiments is the population distribution. Obviously, read count frequency

of ribosome profiling in all organisms is a population distribution.

The random variable can be discrete or continuous. A discrete random variable

only takes finite number of values. In contrast, continuous random variable is defined

as an interval where infinite numbers of values in that interval shape the entire

random variable. For instance, the read count of RNA-Seq or ribosome profiling is

discrete, while the fold change of gene expression is a continuous random variable.

The sum of the probability for both discrete and continuous random variable in the

sample space X is equal to 1:

• for discrete variable,
∑
xi∈X

f(xi) = 1 ,

• for continuous variable,

∫
all x

f(x) dx = 1 .

The expected value (mean µ) of a random variable X is the sum of all possible

values of the product of the random variable and its frequency:

• for discrete variable, E(X) = µ =
∑
xi∈X

f(xi) · xi ,

• for continuous variable, E(X) = µ =

∫
all x

f(x) dx · x .
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The expected value represents the location of the probability distribution. We also

need an estimates that represents how spread out the random variable is. To measure

the dispersion, the most common used estimate is the variance. The variance is

calculated as the average squared deviation of each variable from the expected value:

Var(X) = σ2 = E((X − E(X))2) = E(X2)− (E(X))2 (1.1)

Therefore,

• for discrete variable, Var(X) = 1
n

∑
xi∈X

(xi − µ)2

• for continuous variable, Var(X) =

∫
all x

x2 f(x) dx− µ2

Usually, the function used to describe a discrete probability distribution is called

a probability mass function (pmf ). And the function for continuous probability

distribution is called probability density function (pdf ). In the next section, I will

highlight some frequently used probability distributions in biological research.

1.6.2 Discrete Probability Distributions

Binomial distribution If n numbers of statistic experiments are performed,

each individual experiment with probability p resulting in outcome A, and 1 − p

for outcome B, and experiments are independent, then the probability to observe x

numbers out of n trails showing outcome A follows a Binomial distribution, namely,

X ∼ B(n, p). If n = 1, the binomial distribution is called a Bernoulli distribution.

The probability mass function of Binomial distribution is given by:

f(x;n, p) = Pr(X = x) =

(
n

x

)
px(1− p)n−x, with

(
n

x

)
=

n!

x!(n− x)!
. (1.2)

One biological example is if a SNP frequency in the population is 0.3, and we

randomly select 10 persons from the population, the probability that half of them

will have this SNP can be calculated by Binomial probability mass function.

Poisson distribution In a statistic experiment, if the number of possible out-

comes is large, and the possibility for each outcome to appear is small, the probability
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1.6 Probability Distributions

to observe a certain number of the outcome in a fixed time interval follows a Poisson

distribution with mean λ: X ∼ P(λ).

The probability mass function for Poisson distribution is given by:

f(x;λ) = Pr(X = x) =
λx · e−λ

x!
, (1.3)

where e is the Euler’s number; k! is the factorial of k; λ is the expected value of

X, namely, E(X) = λ. In Poisson distribution, the variance is also equal to λ,

V ar(X) = λ.

The Poisson distribution can be derived as a limit of the binomial distribution.

Therefore, it is used as an approximation to the binomial distribution with param-

eters n and p, when n gets very large and p is small. In this case the λ = n · p.
Poisson probability distribution is widely used in Biology. For instance, we know

the mutation in the genome follows a Poisson distribution. Also, if we do high

throughput exon sequencing, the read count of protein coding exons or the untrans-

lated region are also Poisson distributed.

Negative binomial distribution In serials of statistic experiments, where each

experiment has probability p for outcome A, and 1− p for outcome B, and experi-

ments are independent of each other, to obtain outcome A for r times, the number

of trails (x) to be performed follows a negative binomial distribution, X ∼ NB(r, p).

The probability mass function for negative binomial distribution is given by:

f(x; r, p) = Pr(X = x) =

(
x+ r − 1

x

)
px(1− p)r. (1.4)(

x+r−1
x

)
can also be written as:(

x+ r − 1

x

)
=

(x+ r − 1)!

x!(r − 1)!
= (−1)x

(
−r
x

)
. (1.5)

This is why the name “negative binomial” is given. In biology related study, the

negative binomial distribution is often parameterized in terms of its mean µ and

dispersion κ. Then we have
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p =
µκ

1 + µκ

r =
1

κ

f(x;µ, κ) =

(
x+ 1

κ
− 1

x

)( µκ

1 + µκ

)x( 1

1 + µκ

) 1
κ

(1.6)

Compare to Poisson distribution, negative binomial has an dispersion parameter

that does not equeal to its mean µ. The variance and dispersion relation is given by

σ2 = µ+ κ · µ2. (1.7)

Therefore, when the dispersion κ is getting very small, the negative binomial

distribution is approaching to Poisson distribution:

Poisson(λ) = lim
κ→0

NB(r, p) = lim
κ→0

NB(r,
λ

λ+ r
) (1.8)

Later we will discuss the read count data for genes from RNA-Seq and ribosome

profiling with a few biological replicates follow the negative binomial distribution.

1.6.3 Continuous Probability Distributions

Normal distribution A continuous random variable X follows normal distribu-

tion, or Gaussian distribution, if it has the following probability density function:

f(x;µ, σ) = Pr(X = x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (1.9)

where µ denotes the expected value; σ is the standard deviation. Normal distribution

is the most commonly used continuous probability distribution because of central

limit theorem, which states that if we subsample a random variable following any

probability distribution multiple times, the mean of the obtained subsamples follows

a normal distribution.

The normal distribution is symmetric around the point x = µ. When the µ = 0

and σ2 = 1, the normal distribution becomes a standard normal distribution. The

random variable of a standard normal distribution is called a Z-score. Any random

variable X from a normal distribution can be transformed into a Z-score by:
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z =
X − µ
σ

(1.10)

t distribution When the sample size is small, the t distribution is used to describe

the distribution of a sample that drawn from the normal distributed population. The

probability density function of t distribution is given by

f(x) = Pr(X = x) =
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

(
1 +

x2

ν

)− ν+1
2

, (1.11)

where Γ denotes the gamma function; ν is the number of degrees of freedom, namely,

ν = n − 1, with n representing the number of observations. In other words, the t

distributions for different sample sizes are different in their shapes. Compare to the

normal distribution, t distribution has heavier tails, although it is a symmetric bell

shaped.

The t distribution can be used to infer whether a sample with size n, mean x̄

and standard deviation s is from a population distribution with mean µ. In this

application, a t score is calculated by

t =
x̄− µ
s/
√
n
. (1.12)

Chi-squared distribution The sum of squares of k independent random variable

from standard normal distribution follows a chi-squared distribution with k degrees

of freedom. Namely, let X =
∑k

i=1 Z
2
i , we have X ∼ χ2(k).

chi-squared distribution is very rarely used in modeling natural phenomena. In-

stead, it is frequently used to do hypothesis testing, such as chi-squared test of

goodness of fit of observed data, likelihood ratio test and log-rank test in survival

analysis, etc.

The probability density function of chi-squared distribution is given by

f(x; k) = Pr(X = x) =
x
k
2
−1 e−

x
2

2
k
2 Γ(k

2
)

(1.13)

Gamma distribution If a continuous random variable follows the following prob-

ability density function, the random variable is drawn from a gamma distribution

with shape parameter α and scale parameter s:
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f(x;α, s) = Pr(X = x) =
xα−1 e−

x
s

sα Γ(α)
, (1.14)

where x > 0 and α, s > 0, under the assumption X ∼ Gamma(α, s).

The skewness is one of the properties of gamma distribution. It only depends on

the shape parameter α, and can be calculated as 2/
√
α. Accordingly, the gamma

distribution approaches to Gaussian when the shape parameter is large enough.

In evolutionary biology, the rate of evolution of amino acid sites within a protein

differs among each other due to different natural selection pressures. The distribu-

tion of these rates follows a gamma distribution as described already [66, 67].

1.7 Probabilistic Model for Ribosome Profiling Data

Similar to RNA-Seq, ribosome profiling is a deep sequencing-based technology that

generates millions of short sequences. The standard data analysis pipeline includes

alignment of the short sequences to the genome or transcriptome of interest and

counting how many sequences are mapped to each gene or transcript. This is a

translation quantification process because the in vivo translation strength is propor-

tional to the mRNA abundance and the amount of ribosome associated to mRNA

molecule. If a gene is actively translated in the cell, the concentration of ribosome

protected mRNA fragment within the cell lysate is relatively high compared to other

genes, therefore, it has more chance to be sequenced, resulting more sequencing reads

of its own.

For the purposes of comparing differential translation or, even more complicated,

evaluating translation efficiency change, the read counts is obtained as the quan-

tification measurement for every gene or sub-gene features. Unlike the microarray

data, the quantification of deep sequencing based methods ends up with the discrete

variables—count data. One option is to transform and standardize the read counts

to approximate as Gaussian distributed data set [68]. However, this transforma-

tion has drawback towards the low counts that are far from normal distribution.

In addition, the transformation loses the mean-dispersion relationship [69, 70] that

count data intrinsically retain, leading to potentially inefficient statistical inference.

Therefore, a discrete probability model that accounts for the properties of the read

count data is more powerful and sensitive than simply transforming to Gaussian in
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terms of detecting the differential translation.

An mRNA molecule being translated has its specific ribosome footprint concentra-

tion µ within the cell. Assuming every footprint fragment has the same opportunity

to be sequenced (for example, no GC content bias), the probability that these foot-

prints are successfully detected by ribosome profiling experiment is proportional to

the µ with variations due to randomness from the sequencing process. Assuming

the sequencing platform has small technical variation, if we sequence the same cell

sample multiple times, the resulting footprint counts for a single transcript follows

the Poisson distribution centered around the mean µ.
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Figure 1.3: Probability mass function of Poisson (top) and negative binomial (bot-

tom) distribution. The mass functions are defined only at integer values on x-axes.

The dashed curves connecting each dots are only for easily observation. λ, denotes

Poisson mean; µ and κ, denote negative binomial mean and dispersion, respectively.

As described before, in the Poisson model the variance equals to the mean. This

feature has limitations when applies Poisson to the discrete count data. Currently,

experimentalists usually do two or three biological replicates for each conditions,
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one can easily observe the large variance (over-dispersion) of the counts between

the samples. The variance consists of both biological and technical parts. The ob-

served variance can be very large especially for low read counts and cannot be fully

represented by the Poisson variance. Therefore, a more suitable probability model

is the negative binomial distribution parameterized by mean µ and dispersion κ.

The variance of negative binomial is calculated by adding a second term κ · µ2 to

the Poisson mean. Hence, negative binomial model is capable to capture a wide

spectrum of dispersion across the replicates and do statistical inference appropri-

ately. In figure 1.3, the probability mass function of Poisson and negative binomial

distribution demonstrate the variance of negative binomial can be much larger than

Poisson when their means are the same.

1.8 Regression and Generalized Linear Model

Regression In statistical modeling, regression analysis is a statistical process

that estimates the relationship between the independent variables X (or “explana-

tory variables”) and the dependent variables Y (or “response variables”). The es-

timated relationship is a mathematical function of the independent variables called

the regression function. Generally, the regression aims to describing how the mean

of the dependent variable E(Y ) changes when the independent variable changes,

given by E(Y ) = f(X, β), where β is the unknown parameters to be estimated from

the regression system. In regression analysis, it is also essential to characterize the

variation of the dependent variable which follows a certain probability distribution.

The regression usually falls into two categories: linear model and nonlinear model.

In linear model, the regression function is expressed as a linear combination of the

one or multiple parameters βs. In contrast, nonlinear model cannot be expressed

by the additive form of βs, and numerical optimization algorithms are applied to

determine the best fitting.

Linear regression Given data set containing explanatory variable X and response

variable Y , if the mathematical relationship betweenX and Y is linear with Gaussian

noise ε added to Y , the relationship is called linear regression, Y = X β + ε. For

instance, the following two expressions are linear regressions because of the linear

combination of βs:
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yi = β0 + β1xi + εi, with i = 1, . . . , n.

yi = β0 + β1xi + β2x
2
i + εi, with i = 1, . . . , n.

(1.15)

In practise, different strategies can be used to estimate the parameter βs from

the X and Y , such as ordinary least squares (OLS), generalized least squares (GLS)

and total least squares (TLS) etc. Among these, ordinary least squares is the most

commonly used method. It minimizes the sum of squared residuals, which are the

distances between the response variable and its expected value. Linear regression

has a closed form of expression for the estimated parameter β̂:

β̂ = (XTX)−1XTY (1.16)

Generalized linear model In the previous section, we introduced the linear

regression in which the response variable is assumed to follow the normal distribu-

tion. However, in reality, many observed data to be modeled is clearly not normal

distributed. For instance, the relationship between two genes in the gene network

or metabolic pathway is a binary variable; the read count of mRNA from RNA-Seq

experiment is negative binomial distributed. This section introduces the generalized

linear model (GLM) to accommodate response variable that follows any distribution

of exponential family. In GLM, a link function that links the response variable to

the linear predictor, where the linear combination of βs similarly exists as that in

linear regression.

A generalized linear model consists of three elements:

• The response variable follows a probability distribution from the exponential

family;

• A linear predictor η = X · β = β0 + β1x1 + β2x2 + · · ·+ βkxk;

• A link function g() which transforms the nonlinear distributed expected value

of response variable to the linear predictor, E(Y ) = g−1(η) = g−1(X · β). The

canonical link function of some exponential family distributions can be found

in Table 1.1.

The most commonly used distributions of exponential family can be expressed in
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Table 1.1: Canonical link and response range for the listed distributions.

Probability distribution Canonical link Range of Y
Binomial Logit 0, 1, 2, · · ·
Poisson Log 0, 1, 2, · · ·
Negative binomial Log 0, 1, 2, · · ·
Gaussian Identity (−∞, +∞)
Gamma Inverse (0, +∞)

the following generalized form:

f(y; θ, φ) = exp
(yθ − b(θ)

a(φ)
+ c(y, φ)

)
, (1.17)

where a(), b() and c() are known functions that vary according to different prob-

ability distributions. θ is the canonical parameter for the distribution in question.

It is related to the mean µ of the distribution. φ is the scale parameter. For some

probability distributions, it is a fixed value; while in other distributions it is an

unknown parameter to be estimated from the data.

The reason for expressing diverse distribution functions in the common expo-

nential form is that general properties of exponential family can be applied to the

individual distribution. For instance, the expected value and variance are given by

E(Y ) =
db(θ)

dθ
= b′(θ) (1.18)

V ar(Y ) = a(φ)b′′(θ) = a(φ)
d2b(θ)

dθ2
(1.19)

where b′(θ) and b′′(θ) are the first and second derivatives of b(θ).

The useful feature of a generalized linear model is, for any probability distributions

of exponential family, the parameter βs in the linear predictor can be estimated by

the same algorithm—iterative reweighted least squares (IRLS ). The goal of IRLS is

to minimize the residue for GLM in order to find the best betas:

arg min
β
‖Y −X β‖ = arg min

β

n∑
i=1

|yi − xiβ| (1.20)

The iterative reweighted least squares includes the following steps:
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• First starts with an initial µ0, and the η0 = g(µ0). A simple choice for the

initial µ0 is to set µ0 = Y ;

• At each iteration, a working dependent variable Z is calculated by

Z = η + (Y − µ)
dη

dµ
(1.21)

• And an iterative weight w is calculated by

w =
φ/a(φ)

b′′(θ)( dη
dµ

)2
(1.22)

• Lastly, a β̂ is obtained by regressing the working dependent variable Z on the

predictors X using the weight factor w:

β̂ = (XTWX)−1XTWZ, (1.23)

where X is the model matrix; W is a diagonal matrix of weight factor w; Z is

the working response variable.

The IRLS procedure is repeated until the algorithm converges at a point where

successive estimates βs change less than a specified value.
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2 Detecting Translational Control from

Ribosome Footprints and RNA-Seq

2.1 Motivation

The deep sequencing based RNA-Seq is a revolutionary technology that tremen-

dously facilitates researchers to quantitatively measure mRNA abundance and infer

the transcriptional regulation globally under a given condition [71, 72]. However, the

correlation between mRNA and protein abundance is frequently low due to trans-

lational regulation and post-translational modification [73]. The recently described

ribosome footprinting protocol [58] uses high throughput sequencing to identify

mRNA fragments that are occupied by ribosome during protein translation. There-

fore, ribosome footprint profiling provides valuable information on protein synthesis.

These information includes overall abundance of ribosomes loaded on mRNA, the

density of ribosomes at a specific mRNA region and the ribosome pausing events, etc.

Any alteration of these observable outcomes are the consequences of certain transla-

tional regulation. However, to study translational control is nontrivial, because the

observed ribosome profiling is fundamentally confounded by mRNA transcriptional

activity. To simply illustrate the issue, we can take the overall ribosome occupancy

as an example, where the ribosome occupancy can be measured by the footprint

read count from original sequencing data. As shown in Figure 2.1C, although the

footprint counts in two experimental conditions are drawn from different negative

binomial distributions, the transcriptional landscape (Figure 2.1A and B) needs to

be considered before making any conclusion on translational control. Briefly, if the

confounding factor—transcriptional scenario—shares the similar distribution (panel

A) with ribosome profiling (panel C), the probability that translational regulation

has observable effect on footprint is low, whereas if the treatment leads to different

profiles at transcriptional and translational levels (panel B and C), it indicates a

translational regulation exists on top of transcription.
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Figure 2.1: Illustration of read counts sampling from different negative binomial

distributions at transcription (A and B) and translation (C) levels.

Studies have reported that translational control is essential for cell in response to

stresses [74], regulating development [75] and immune reaction [76] etc. Remark-

able progress has been achieved in demonstrating translational regulation plays a

important role in causing disease such as cancer [77, 78, 79, 80]. In order to decipher

principles of translational regulation in case-control studies, tools that can reliably

detect changes in ribosome footprint taking mRNA activity into account are needed.

In this chapter, I will introduce a statistical framework and analysis tool, RiboDiff,

that I developed in order to detect genes with changes in translation efficiency across

experimental conditions. RiboDiff uses generalized linear models to estimates 1) the

mean counts from the RNA-Seq and ribosome profiling read counts respectively and

2) the over-dispersion of the biological replicates of these two sequencing protocols

separately, and performs a statistical test based on the estimates for differential

translation efficiency. Hence, it provides the genes or transcripts that are potentially

governed by translational regulation in a given condition.

2.2 Related Methods

2.2.1 Z-score Method

Translation efficiency (TE) is widely used to measure the rate of mRNA translation

into proteins within cells. For gene i, it can be calculated by

TEi =
AiRF
AimRNA

, (2.1)
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where A represents the true concentration of mRNA and ribosome footprint (RF)

fragments in the cell. In the case of high throughput sequencing, the absolute

concentration can be approximated by the Reads Per Kilobase of transcript per

Million (RPKM) or read counts (y) in the exonic region of gene i obtained from

the RNA-Seq and ribosome profiling data [56, 62, 63, 81]. Therefore, the TE fold

change (∆TE) in different conditions is given by

∆TEi = log(
TEi

C1

TEi
C2

) = log(
Ki
RF,A

Ki
mRNA,A

)− log(
Ki
RF,B

Ki
mRNA,B

), with Ki
t,c = mean

j
(yi,jt,c),

(2.2)

where t denotes the data type, as t = {RF, RNA-Seq}; c denotes the condition, as

c = {A,B}; j indexes the replicates. Therefore, yi,jt,c stands for the t type of read

count y of gene i in its jth replicate under condition c and Ki
t,c is the mean count

of gene i in type t and condition c. In order to identify the candidate genes whose

∆TE remarkably deviate from the mean, a Z-score can be calculated for each gene

i by

zi =
∆TEi − µ∆TE

σ∆TE

, with σ∆TE =

√√√√ 1

N

N∑
i=1

(∆TEi − µ∆TE)2, (2.3)

where µ∆TE is the mean of ∆TE of all genes; N denotes the total gene number;

σ∆TE is the standard deviation. Therefore, the target genes with TE down and

up-regulation are defined by identifying those |zi| > G, where G is an arbitrarily

chosen cutoff.

2.2.2 Errors-in-Variables Regression

In 2013, Olshen et al. developed a tool, Babel, which is based on errors-in-variables

regression to detect the translational regulation [82]. Similar to the previously pub-

lished tools for RNA-Seq analysis, Babel models read counts using the negative

binomial distribution parameterized by mean count and dispersion φ.

Specifically, the model treats mRNA abundance as measured with error instead of

a fix value. Assume xg and yg represent the mRNA and ribosome profiling abundance

of gene g respectively and a linear relationship exists between these two variables

as yg = β̂ · xg, where β̂ is estimated from a trimmed least squares regression. Next,
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the genes are split into B bins based on mRNA abundance. The dispersion is then

estimated by minimizing the squared error between empirical variance Vb in bin b

and the overall dispersion φ:

φ̂ = arg min
φ

B∑
b=1

(Vb − φ)2. (2.4)

After mean and dispersion are estimated, the parametric bootstrap is used to gain

P -value under the null hypothesis that ribosome profiling follows the expectation

from the mRNA-ribosome regression. Finally, the Fisher′s method is used to convert

the P -values of each RNA-Seq and ribosome profiling pair in every replicate within

a condition into a single consensus P -value, and the changes in translational regu-

lation between conditions is assessed by converting the within-condition P -value to

standardized Z-statistics using the Gaussian quantile function.

2.3 RiboDiff

2.3.1 Library Size Normalization

Normalization for deep sequencing data is a critical step before starts doing any

further analysis [83]. The systematic biases can come from sample preparation,

sequencing, and even downstream pipeline, such as alignment and quantification,

etc. If the goal of the experimental design is to identify genes that are differentially

transcribed or translated in case-control study, the initial mRNA or ribosome oc-

cupied mRNA fragment must be prepared in the same amount before sequence the

samples. The technical details used in the data parsing pipeline, such as the number

of mismatch, supporting splicing reads during alignment, using uniquely aligned or

multiple mapped reads to do quantification, can also create biases towards genes.

However, the most likely global bias is caused by the different sequencing depths

on different flow cell lanes of the high throughput sequencer [83]. As the sample

libraries (biological replicates) are usually deposited on different lanes, the coverage

of sequencing reads for libraries vary within and between experimental treatments.

In order to make the data from different replicates clearly comparable, transforma-

tion of the data taking into account the library size that would distort the entire

raw data distribution is inevitably needed.
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2.3 RiboDiff

Several deep sequencing-based library normalization methods have been reported

[84, 85, 86]. Here we use the metrics similar to [85] with modifications. We calculate

the normalization constant (or size factor) for RNA-Seq and ribosome footprinting

(RF) libraries separately. The formula is given by:

SrT = median
i:yi,rT >0

(
yi,rT + 1

n
√∏n

j=1(yi,jT + 1)

)
. (2.5)

Here, T denotes data type (RNA-Seq or RF); r denotes the r-th sample in data

type T which includes replicates of both experimental treatments. yi,rT is the observed

count of type T for gene i in sample r. For all genes in all replicates, we add one to

their count value to avoid the degenerate case of setting the geometric mean across

all replicates (indexed by j) in the denominator to zero. We calculate the ratios

(Ω) of observed counts of all genes in a given sample to the geometric means and

determine the median of these ratios whose count is greater than zero as the size

factor. Figure 2.2 shows an example from real data (GEO accession: GSE56887)

that a large proportion of ratio Ω that is equal to zero in both ribosome footprint

and RNA-Seq data. As we know that many genes’ transcriptional or translational

activities are too low to be detected by deep sequencing, excluding these genes from

calculating the size factor can avoid it drifting towards zero.

99
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nc

y

Ribosome Footprint RNA-Seq

Figure 2.2: Histogram of the ratio Ω in ribosome footprint and RNA-Seq data. The

bars at zero indicate the genes without any read count.

With the size factor calculated, the normalized read counts for each gene can be

easily obtained by dividing their original counts by the size factor of the correspond-
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ing sample.

2.3.2 Estimating the Mean for Count Variables

As described before, the ribosome footprint profiling (RF) is naturally confounded

by mRNA abundance. We seek a strategy to compare RF measurements taking

mRNA activity into account in order to accurately discern the translational effect

in case-control experiments.

C

β i
C + β i

mRNA β i
C + β i

RF+ β i
Δ,C
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mRNA,C μ i

RF,C
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rRF
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i ϵ { 1,2,...,G }

?

Figure 2.3: Graphical model representing RiboDiff. Grey circle: observable variables;

empty circle: unobservable variables; black square: functions; arrow: dependency;

C: a given experimental condition; G: number of genes; r: biological replicates.

The dashed arrow denotes the relationship that we aim to test.

The graphic model of our method, RiboDiff, is highlighted in Figure 2.3. Briefly,

assuming an experimental treatment C perturbs the transcriptional activity of gene i

and the effect of this perturbation is spontaneously passed from transcription (black

square on the left side) to the translation (black square on the right side), as shown
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2.3 RiboDiff

by the arrow between the two squares. Next, a question we can ask is that whether

treatment C affects the translation of gene i directly. In other words, does the

dashed arrow from treatment pointing to the translation exist? In this system, we

only observe the quantification of gene as the form of read count in each replicate

r at mRNA and RF levels. To answer this question, we first estimate the mean

µi of the count variable yi, which probabilistically follows the negative binomial

distribution [87, 85, 86] as:

yi ∼ NB(µi, κi), (2.6)

where κi is the dispersion parameter across the biological replicates needs to be

estimated later. Here, I am describing how we couple the two biological processes

together and perform the statistic inference.

We formulate the problem as a generalized linear model (GLM) with the logarithm

as the link function:

log(µ) = η = X × β, (2.7)

where η is the linear predictor of GLM. X is the explanatory matrix. β is the

coefficients or latent quantities. In particular, at transcription level, we express

expectations on read counts as a function of a latent quantity βC that represents

the baseline mRNA abundance in the two conditions (C = {0, 1}) plus the latent

quantity βmRNA that relates mRNA abundance to RNA-Seq read counts:

log(µimRNA,C) = βiC + βimRNA (2.8)

We assume that transcription and translation are successive cellular processing

steps and that abundances are linearly related. Therefore, the expected ribosome

footprint read count log(µiRF,C) is given by:

log(µiRF,C) = βiC + βiRF + βi∆,C (2.9)

A key point to note is that βiC is revealed to be a shared parameter between the

expressions governing the expected RNA-Seq and RF counts. It can be considered

to be a proxy for shared transcriptional/translation activity under condition C in

this context. The term βiRF relates mRNA abundance to RF read counts. Then,
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βi∆,C indicates the deviation from that activity under condition C, with βi∆,C = 0

for C = 0 and free otherwise.

We use a generalized linear model (GLM) to learn the latent quantities βs from

the observed count data, and then calculate the means. To control the observed read

counts fitting into the GLM system, an n × 5 explanatory matrix X is designed,

where n equals to the total number of replicates in both experimental conditions for

RNA-Seq and RF. Here we show it in the context of linear predictor η of GLM:

η =



C 0 C 1 mRNA RF ∆Eff.

1 0 1 0 0

1 0 1 0 0

0 1 1 0 0

0 1 1 0 0

1 0 0 1 0

1 0 0 1 0

1 0 0 1 0

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1



×



βiC=0

βiC=1

βimRNA

βiRF

βi∆


. (2.10)

In X matrix, the first two columns represent the baseline mRNA abundance

βiC in the two conditions. The third and fourth columns (βimRNA and βiRF ) define

whether the counts are from RNA-Seq or RF, respectively.1 The fifth column (βi∆,C)

relates the RF count to the potential translational effect. Each row of X is used

to control how the observed count of a specific sample should be decomposed into

latent quantities in order to fit the GLM models. In this example, as indicated by the

third column, the first four rows (marked in blue) model RNA-Seq counts with two

replicates for each condition, C0 and C1, while the last six rows (marked in green)

model RF counts with three replicates for each condition. Note the first and second

columns in X are shared between RNA-Seq and RF counts, where we couple the

two different data sets. The linear predictor η then is linked with negative binomial

distributed mean µiRF,C and µimRNA,C through logarithm as the link function, namely

log(µ) = η = X × β. The βs are estimated by maximizing the likelihood of GLM

1In the implementation, in order to keep full rank of X, we do not include the fourth column
βi
RF , as it is linearly dependent with the third column.
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[88] (See Chapter 1 for details).

After the βi is estimated for each gene, the expected RNA-Seq and RF counts,

µimRNA,C and µiRF,C can be obtained. The next step is to estimate the dispersion

parameter κi by maximizing the negative binomial likelihood function with the ob-

served read counts and the expected counts.

2.3.3 Estimating the Dispersion for Count Variables

The discrete variable of read count from deep sequencing data follows a negative

binomial distribution with parameter mean µ and dispersion κ. Therefore, we esti-

mate κ given observed counts and the previously estimated mean µ by maximizing

the NB likelihood function.

The probability mass function of the negative binomial distribution is given by:

Pr(yi,j) =

(
yi,j + 1/κi,j − 1

yi,j

)(
1/κi,j

1/κi,j + µi,j

)1/κi,j(
1− 1/κi,j

1/κi,j + µi,j

)yi,j
, (2.11)

where yi,j is the observed RF or RNA-Seq read count of jth replicate of gene i; κi,j

is the dispersion parameter of the NB distribution where yi,j is drawn from; µi,j

is the estimated count of jth replicate. Thus the logarithmic likelihood of negative

binomial of gene i is given by

log `NB =
n∑
j=1

log(Pr(yi,j))− 1

2
log(det(X ′ · diag(

µi

1 + µiκi
) ·X)). (2.12)

Note that the likelihood function is adjusted by a Cox-Reid term as suggested

by Robinson et al. [89] to compensate bias from estimating coefficients in fitting

GLM. Again, X is the explanatory matrix; n is the total number of RNA-Seq and

RF replicates; µi is the vector of estimated counts; κi is the dispersion vector.

2.3.4 The Mean-Dispersion Relationship

Fitting the GLM consists of learning the parameters βi and dispersions κi given

mRNA and RF counts for the two conditions C = {0, 1}. We perform alternating
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optimization of the parameters βi given dispersions κi and the dispersion parameters

κi given βi, similar to the EM algorithm:

βi = arg max
βi

`glm(βi|yi, κi) and κi = arg max
κi

`NB(κi|yi, µi). (2.13)

The raw dispersion estimated from each gene carries large sampling variance due

to limited number of replicates used in the previous two likelihood maximizations.

As proposed by Anders et al. [70], a systematic trend of dispersions κF as a function

of the mean is given by:

κiF = f(µ) = λ1/µ
i + λ0 (2.14)

To obtain the coefficients λ1 and λ0, we regress the raw dispersion κi given the

mean counts use the GLM with Gamma exponential family distribution. An example

of the regression result is shown as the red curve in Figure 2.4.

2.3.5 Finalize Dispersion Estimation

To get the final dispersion κiS, we follow the empirical Bayes Shrinkage approach

published by Love et al. recently [90]. This approach is based on the observation

that the dispersion follows a log-normal prior distribution [91] centered at the fitted

dispersion κiF . Moreover, the variance (σ2
w) of the logarithmic residual between raw

dispersion κiR and κiF is comprised of 1) the variance of sampling distribution of the

logarithmic dispersion σ2
x and 2) the variance of the log-normal posterior distribution

σ2
p. The σ2

x can be approximately obtained from a trigamma function:

σ2
x = ψ(

m− d
2

), (2.15)

where m is the number of samples and d is the number of coefficients. Whereas,

the σ2
w is calculated as the median absolute deviation (mad) of logarithmic residuals

between pairs of κiR and κiF :

σ2
w = mad

i
(log κiR − log κiF ). (2.16)

Therefore, we can get the σ2
p by
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Figure 2.4: Scatter plot of the mean-dispersion relationship. Dispersions smaller

than 1× 10−6 are plotted on the bottom.

σ2
p = σ2

w − σ2
x, (2.17)

and obtain the final dispersion κiS by maximizing the posterior:

κiS = arg max
κiS

(
`NB(κiS|yi, µi)−

(log κiS − log κiF )2

2σ2
p

)
. (2.18)

In Figure 2.4, the green dots are the finalized dispersions that are shrunken from

the raw dispersions towards the fitted dispersions.

2.3.6 Statistical Test

In a treatment/control setting, we evaluate whether a treatment has a significant

differential effect on translation efficiency compared to the control. This is equiv-

alent to determining whether the parameter β∆,1 differs significantly from 0 and
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whether the relationship denoted by the dashed arrow in Figure 2.3 is needed or

not. Statistically, the Null model is given by:

log(µimRNA,C) = βiC + βimRNA

log(µiRF,C) = βiC + βiRF

(2.19)

And the alternative model is given by:

log(µimRNA,C) = βiC + βimRNA

log(µiRF,C) = βiC + βiRF + βi∆,C

(2.20)

We fit the observed count data yi and the explanatory matrix X into the Null

and alternative GLM models in parallel. The difference between the deviances for

the two GLM fitting (DH0 and DH1) follows an approximate χ2 distribution. The

deviance of a GLM fitting is calculated as:

D = −2(log(`(yi|βi0))− log(`(yi|βis))), (2.21)

where βi0 denotes the coefficients used in this GLM model, while βis denotes the

coefficients for the “saturated model” of the GLM system. Therefore, the deviance

is -2 times the log-likelihood ratio of the used model compared to the saturated

model.

The p-values generated from the χ2 test are further corrected by multiple test-

ing correction methods, such as Bonferroni correction [92] and Benjamini-Hochberg

procedure [93].

2.3.7 Estimating the Dispersion for RNA-Seq and RF Separately

Because RNA-Seq and ribosome footprinting are different sequencing protocols, the

properties of the read counts from these two protocols can vary. Here we show an

example where estimating κ separately may be needed. The example data are from

a recent publication [94].

The empirical dispersion estimates for RNA-Seq and RF counts are calculated

from the following equation [85, 87, 90, 69]:
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σ2 = µ+ κµ2. (2.22)

Figure 2.5 shows the mean-dispersion relationship. It demonstrates the deviation

of the empirical dispersion of RNA-Seq and ribosome footprint data in this experi-

mental setting. The deviation between these two data sets becomes small when read

count increases.

RF

RF

Figure 2.5: Scatter plot of empirical dispersions. The X-axis is split into several

bins and the median of κ in each bin is highlighted and connected. The empirical κ

smaller than zero are plotted at the bottom of the figure.

In the implementation, enabling RiboDiff to infer dispersion parameter κ for dif-

ferent data sources is to replace the scalar κ with a vector variable in the EM

algorithm:

βi = arg max
βi

`glm(βi|yi,
−→
κi ) and κi = arg max

−→
κi

`NB(
−→
κi |yi, µi). (2.23)
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Additionally, the mean-dispersion regression and the empirical Bayes shrinkage

for the dispersions are also performed for RNA-Seq and RF separately.

2.4 Results from Simulated Data

2.4.1 Data Simulation

To test the performance of RiboDiff, we simulated the RF and RNA-Seq read count

for 2,000 genes with 500 genes showing down regulated translation efficiency (TE)

and 500 genes showing up regulated TE. There are three replicates for each of the

two conditions (i.e., treatment and control) for RNA-Seq and RF. Therefore, count

matrix dimensions are 2,000 × 12.

We first generated the mean counts for two treatments of both RF and RNA-

Seq across all 2,000 genes assuming their mean counts are randomly drawn from

a negative binomial distribution with parameter n and p, where n = 1/κ and p =

n/(n+ µ). Then, for each mean count µi, we generated three count values as three

replicates from a negative binomial distribution with parameter µi and κi, where κi

is calculated as κi = f(µi) = λ1/µ
i + λ0.

To simulate the genes with TE changes in two treatments, we multiply the fold

difference to the mean count of the target genes, assuming the fold changes follow

a gamma distribution that is observed from real data (GEO accession: GSE56887).

The gamma distribution has a shape parameter α and a scale parameter s, and

its mean µG = α · s. In the following simulation, we fix s and only change α to

obtain different means for the two treatments and simulate genes having different

fold changes using these two means. The fold increase FI is obtained by

FI = XG(α, s) + 1, (2.24)

where XG is a random vector containing 500 elements generated from a gamma

density function. And the fold decrease FD is obtained by

FD =
1

FI
. (2.25)

Here, we simulated five groups of count data. In each group, 1,000 out of 2,000

genes showing TE changes:
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• mean count has a fold change only for RF count, with α = 0.8;

• mean count has a fold change only for mRNA count, with α = 0.6;

• mean count has a fold change only for RF count, with α = 1.5;

• mean count has a fold change only for mRNA count, with α = 1.5;

• mean count has a fold change for RF with α = 0.8 AND for mRNA with α =

0.6, referred as “combined” in Figure 2.6.

Figure 2.6: Sensitivity and specificity of RiboDiff on simulated data.

Note that in the last group, if the gene has fold increase in RF, it must have a fold

decrease in RNA-Seq. By doing this, the effect at the mRNA level is added to the

TE change outcome instead of offsetting the effect caused by RF. Other simulation

parameters are as follow: for all RF and RNA-Seq, n = 1, λ1 = 0.1, λ0 = 0.0001, s

= 0.5. The parameter p controls the scale of the count. We use 0.008 for RF and

0.0002 for mRNA. We run RiboDiff with the five dataset to estimate its sensitivity

and specificity (Figure 2.6).

2.4.2 Performance under Different Numbers of Replicates

To evaluate how the number of replicates influences the dispersion estimation, RF

and RNA-Seq counts for 5, 000 genes with two to ten replicates for each condition
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were simulated using the same way as described above. For instance, two replicates

for condition A and two replicates for condition B in RF, and the same number of

replicates for condition A and B in RNA-Seq. In total, we have 9 data sets. Each

of them has a certain number of replicates ranging from two to ten. Next, we run

RiboDiff on these 9 data sets.
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Figure 2.7: Evaluation of RiboDiff performance by using different number of repli-

cates. A, Mean-dispersion relationship. B, Comparison between the theoretical and

estimated mean.
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RiboDiff firstly estimates the raw dispersion κi for each gene based on their RF

and RNA-Seq counts. Then, a mean-dispersion relationship κF = f(µ) = λ1/µ+λ0

is obtained by regressing the raw dispersion κi given the mean count µi using GLM

to learn λ1 and λ0. Figure 2.7A shows the mean-dispersion relationship function

for different number of replicates. From this plot we see that the estimated mean-

dispersion relationships, using three to ten replicates, are rather similar to each

other, whereas the result using only two replicates deviates from the rest. This

indicates that the raw dispersion κi estimated using two replicates is less reliable.

We observed that the dispersion estimates of high read count genes are larger if only

two replicates are used, which can decreases true positive rate.

We use the same simulated data set to show how the number of replicates affects

the latent quantity β. For each gene, there are multiple β’s that represent different

latent quantities, and these βs are summed up to obtain the estimated counts of

RNA-Seq or RF. Hence, we compare the estimated RF count (µiRF ) of every gene i

against their mean counts (theoretical means) that are used to generate the negative

binomial counts in the data simulation. In Figure 2.7B, each subplot is the compar-

ison of estimated counts (Y axis) from n replicates against the theoretical means (X

axis). As we can see, the theoretical means and the estimated means correlate well

in all 9 experiments (all r > 0.99).
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Figure 2.8: The sensitivity and specificity of RiboDiff by using different number of

replicates. This figure shares the same legend with figure 2.7A.

Figure 2.8 shows how sensitivity and specificity depend on a chosen p-value thresh-

old. For the sensitivity, the area under curves for 2 to 10 replicates increases when
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the number of replicates increase, whereas the specificities from the same data set do

not have large difference among them. This illustrates that the test is well-calibrated

and that one can recommend using three replicates to achieve a close-to-best sensi-

tivity.

2.4.3 Comparison to other methods

We simulated data with different dispersions applied to mRNA and RF count to

illustrate the performance of RiboDiff and compare it with Z-score method and

Babel. The same simulation strategy was used as we described before with modifi-

cations. Briefly, 1,000 out of 2,000 genes were chosen to have ∆TE fold change by

altering their mean counts of mRNA and RF. The following parameters were used

to generate the mRNA count:

n = 1, p = 0.5× 10−4, λ1 = 0.1, λ0 = 0.1× 10−3, α = 0.8, s = 0.5

And for RF count, the parameters were as follow:

n = 1, p = 0.1× 10−2, λ1 = 10.0, λ0 = 0.01, α = 0.8, s = 0.5

For the data, we run RiboDiff using the model where dispersions are estimated

for the simulated RNA-Seq and RF counts separately. We also run Babel using its

default parameters. The Z-score for every gene is calculated as described before.

The receiver operating characteristic (ROC) curve (Figure 2.9) indicates superior

quantitative performance of RiboDiff compared to Babel and Z-score method.

As RiboDiff is able to estimate the dispersion for different sequencing protocols

either jointly or separately, the next is to study how different the results of the two

approaches are and which one outperforms the other. To illustrate this question,

we simulated two other data sets as following: the mRNA dispersion of every gene

used above is multiplied by factors of 10 and 100, respectively, and we re-generated

the mRNA counts using these different dispersions. Then the three data sets of

mRNA counts with gradient differences in the dispersions are paired with the same

simulated RF counts from above. In addition to running RiboDiff with the two dis-

persion estimation settings on the three data sets, we also included DESeq2 [90] to

compared the performance to RiboDiff. In general, the typical purpose of using DE-
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RiboDiff.SeparateDisp

Babel
Z-score method

Figure 2.9: The receiver operating characteristic (ROC) curve of RiboDiff, Babel

and Z-score method by using simulated data.

Seq2 is to identify differentially expressed genes in case-control study. Here, we use a

specific design formula for DESeq2: condition + protocol + condition:protocol. The

interaction term between sequencing protocol and experimental condition represents

the possible condition differences controlling for protocol type. In Figure 2.10, from

the top to the bottom, the three dispersion plots on the left side show the three

simulated data sets where mRNA dispersions are approaching to merge with RF

dispersions. The ROC curves on the right side are the corresponding performances

of RiboDiff with joint and separate dispersion estimates and DESeq2. Although

RiboDiff with joint dispersion estimate performs similar to DESeq2, estimating dis-

persion separately yields better results under the condition of different dispersions

of the two protocols.
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Figure 2.10: Comparison of ROC curves of RiboDiff and DESeq2 using simulated

data. (A-C) The left panel are the dispersions of mRNA and RF; the right panel

are the corresponding ROC curves. From the top to the bottom, the differences of

dispersion are large, moderate and small, respectively.
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2.5 Results from Real Biological Data

2.5 Results from Real Biological Data

2.5.1 Data Source

The real biological data we used here is from a recent study where Wolfe et al. dis-

covered the translational control of oncoproteins is represented by the stable mRNA

structure called G-quadruplex in the 5’ untranslated region and the translation

initiation factor eIF4A RNA helicase [64]. In this study, there are two biological

replicates for both DMSO (control) treated and drug (Silvestrol, 25 nM) treated ex-

periments at ribosome footprint level, and three replicates for the two experimental

conditions at RNA-Seq level. The data is from NCBI Gene Expression Omnibus

database with series number GSE56887.

2.5.2 Methods Comparison

The sequencing data were processed in a similar way as before [64], which includes

trimming the adapter tail in the reads, aligning the reads, filtering the ribosomal

RNA contamination, and counting the reads for genes, etc.

Here, we compared the results from RiboDiff, Z-score method and Babel. We

ran RiboDiff and Babel using their default parameters. The translation efficiency

change (∆TE) was calculated as described in Equation 2.2. Then a Z-score for each

gene was obtained by using Equation 2.3. The genes with | zi | ≥ 1.5 were selected as

significant. Figure 2.11 shows the histogram of (∆TE). The proportion of significant

genes identified by RiboDiff, Z-score method and Babel in each bar are labeled in

different colors. As shown in this figure, Z-score method classifies genes with most

extreme ∆TE by using the fixed cutoff, whereas RiboDiff estimates the significance

in a parametric manner, where gene with large ∆TE but low read count are deemed

likely to be false positive, because their variances is large compared to other highly

translated genes.

Figure 2.12 A and B shows that the overlap of significant genes detected by

RiboDiff and Z-score based method are limited in both TE down and up regulated

gene sets. Further analysis indicates most of the significant genes detected by the

Z-score method having their mean RF counts smaller than 100 with only a few

exceptional cases. In contrast, the significant genes detected by RiboDiff scatter

over a wide range of mean RF count (Figure 2.12C and D). It is rational that
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RiboDiff FDR ≤ 5%
| Z-score | ≥ 1.5

All

Babel FDR ≤ 20%

Figure 2.11: Comparison of RiboDiff, Z-score method and Babel using real biological

data.

for highly translated genes, it is more confident to identify significant TE change

between two treatments due to enough supported read counts. This is the reason

that RiboDiff can detect highly translated genes as significant ones even though

their absolute value of Z-score are less than 1.5 (| ∆TE | below the dashed lines in

Figure 2.12 C and D). This comparison indicates RiboDiff identifies more sensible

hits and is not biased towards genes with low mean count that inherently have more

uncertainty rather than statistically significant differences.
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RiboDi� FDR ≤ 5%
All tested genes

| z-score | ≥ 1.5
All tested genes

1e-3 1e-2

A B

C D

387 214 269 356 185 278

Figure 2.12: Comparison between RiboDiff and Z-score method on real biological

data. (A and B) Venn diagrams showing the number of overlapping and self specific

genes detected by RiboDiff and Z-score method. (A) TE down regulated genes. (B)

TE up regulated genes. Red ellipse: results from RiboDiff; blue ellipse: results from

Z-score based method. (C and D) Scatter plot of mean RF count against the

| ∆TE |. (C) Result of RiboDiff. Significant genes are labeled as red. (D) Result

of Z-score based method. Significant genes are labeled as blue. The narrow panels

above the scatter plots are the estimated density functions of significant genes on

x-axes by using non-parametric kernel density estimation.
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3 Computational Pipeline for Ribosome

Footprinting Data

3.1 Introduction

As described before, the deep sequencing-based ribosome profiling method globally

characterizes the mRNA fragments occupied by ribosome during protein synthesis.

Similar to RNA-Seq data, the sequencing reads of these footprints provide not only

the quantification of mRNA translation but also the ribosome density distribution

at the nucleotide resolution. However, many properties of the sequencing results

differ between these two protocols.

First, as the ribosome protected mRNA fragment is relative short, usually from 25

to 35 base pair long [62, 64], the ribosome footprint contained in the raw sequencing

read at its 5’ end is only a fraction of the entire sequence, and the remaining 3’

end is the linker introduced in footprint sample preparation followed by a general

sequencing adapter sequence. For the same reason, the ribosome profiling is always

done in the single-end sequencing approach, whereas paired-end sequencing has

become the standard procedure for RNA-Seq. Short read also has difficulties when

align it against the reference genome, including the higher likelihood to align it to

multiple genomic loci and the lower likelihood to be mapped if it crosses the mRNA

splicing site.

Additionally, the ribosome RNA contamination in the footprint data can strongly

dominate in the cDNA templates that are going to be sequenced [58]. This is due to

the huge amount of ribosomal RNA compared to mRNA concentration in the cell.

Although in the ribosome profiling protocol there are steps responsible for rRNA

depletion, we still find 25-65% reads in the FASTQ sequencing output belongs to

ribosome RNAs. These rRNA reads not only decrease the amount of informative

sequences, but also can result in erroneous alignment because of the short read

length. Therefore, computationally remove the rRNA reads is needed.
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Raw data

Check quality

Align to rRNA
sequence

Align to reference
sequence

Keep reads only
aligned to ref.

Remove ambiguous
alignment

Quanti�cation

Correlation or PCA

RiboDi�

Figure 3.1: The flowchart of computational pipeline for analyzing ribosome footprint

data.

In this chapter, I will describe the computational pipeline for processing ribosome

profiling data together with RNA-Seq result (Figure 3.1). The Shell and Python

scripts are included in RiboDiff release version. Figure 3.2 shows an example of

the ribosome footprint and RNA-Seq read coverage distribution at the locus of gene

FKBP4 (Chromosome 12, 2904119-2914577, hg19 assembly) after processing the

FASTQ sequencing data.
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3.2 Checking Sequencing Quality

Figure 3.2: Ribosome footprint and RNA-Seq read coverage distribution of gene

FKBP4. The gene structure is highlighted in yellow. The skyblue rectangles repre-

sent protein coding exons and grey ones represent untranslated regions. The arrows

of the last exons indicate this gene is on the plus strand of the DNA. The lines

links the exons represent the introns. FKBP4 contains five annotated transcripts.

The first read coverage track is the ribosome footprints. Most of the reads locate

in the protein coding exons. The second track shows the ribosome profiling treated

with the translation elongation inhibitor harringtonine. As a consequence, almost

no footprint is observed in the coding region. The third track shows the RNA-Seq

read coverage, where we can see the 5’ and 3’ UTR are mapped as well as the

coding region. The height of each peak indicates the depth of the coverage at the

corresponding site.

3.2 Checking Sequencing Quality

The FASTQ file generated by a high throughput sequencing machine is a text format

containing both nucleotide sequence and the corresponding quality for each base

pair. The quality is encoded with a single ASCII character. Below is an example of

FASTQ format from the Illumina Genome Analyzer:

@HISEQ: 2 2 0 :H9TFBADXX: 1 : 1 1 0 1 : 2 6 3 6 : 2 1 4 2 1 :N: 0 :TTAGGC

TGGGAGGAGCAGCAGCAGGGTGGGACTGGGGCGTTCTACATCTCATTCAG

+

=@@B?D? ;CDBFFDFDF?AC+A@G=?BBDGIIE55 ;A=7AAEDBDBBBB>

The first line starts with a “@” character and followed by an identifier for the

read. The second line is the nucleotide sequence. The third line begins with a “+”
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character separating the sequence and the quality information below. And the last

line is the corresponding quality of each base pair in the second line. The quality is

indicated by an ASCII character whose numerical representation is calculated as:

N = −10× log10(p) + 33, (3.1)

where p is the estimated probability of the base call being wrong. The term

−10 log10(p) is called the Phred quality score Q, which is used by traditional Sanger

sequencing.

The sequencing quality largely depends on many factors, including the quality of

the purified DNA template, the reagents added into the sequencing reaction and the

manipulation by the experiment operators. Therefore, it is always worth checking

whether the quality of the obtained sequence file is good enough to do the down-

stream analysis.

Figure 3.3: An example of selected outputs from FastQC. A, Mean quality scores

across all bases from all reads. The Y-axis is the standard Sanger score. B, GC

content distribution over all reads. C, Percent of remaining reads after remove

duplicates. D, Adapter content.
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3.3 Remove Ribsomal RNA

In our pipeline, we use FastQC [95] to evaluate the qualities of both ribosome

profiling and RNA-Seq data. It takes the FASTQ file as input and performs basic

statistics such as total number of sequences, number of sequences with poor quality,

sequence length and average GC content. In addition, it provides other more useful

information, including per base sequence quality, per sequence quality scores, per

base sequence content, per sequence GC content, sequence duplication levels, over-

represented sequences, adapter content, and so on. Figure 3.3 shows an example of

FastQC run on our unpublished data. The plots indicate the overall base pair qual-

ity along the reads is good (Q > 30, error rate < 0.01%) and the read duplication

level is low. However, a subset of reads with high GC content is indicated by the

second peak at 56% on x-axis. The bottom right panel shows where the Illumina

universal adapter locates in the reads. Specifically, as in this example we use the ri-

bosome profiling reads, there is a 17-bp linker (CTGTAGGCACCATCAAT) before

the universal adapter.

3.3 Remove Ribsomal RNA

Processing massively parallel high throughput sequencing data includes the quality

checking, trimming the adapter from the reads, alignment, quantification, etc. There

are several tools capable of dealing with RNA-Seq data [96, 97, 98, 99]. However,

due to the unique features of ribosome profiling data, such as short single-end reads,

large amount of rRNA composition, a specific pipeline is needed. Here, I will describe

the computational workflow I built up for analyzing the footprint data.

Based on our observation, the rRNA-like reads varies from 25-65% for the single

ribosome profiling library. The rRNA is transcribed from ribosomal DNA (rDNA)

sequence on the genome. Because the reads are short, it is possible that these

rRNA-like reads are (partially) aligned to other genomic loci such as protein coding

genes. Besides, as the rDNAs are organized as both repeated operons (18S, 5.8S

and 28S rDNA) and the widely scattered 5S rDNA on different chromosomes, any

misassemblies of the highly similar rDNA copies lead to erroneous annotation for

both coding and non-coding regions. Therefore, failure to remove all rRNA reads

from the ribosome profiling data can result in misclassifications during the read

counting step for gene translation quantification. Obviously, these issues cannot be

solved by removing rDNA annotation from the gtf or gff file which is used to guide
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the quantification of the translation.

In our computational pipeline, we use an alignment-based strategy to identify

rRNA-like reads from the ribosome profiling data and remove them subsequently.

Specifically, all the rRNA sequences for a given species are retrieved from SILVA

[100], NCBI [101] and Ensembl [102] databases. SILVA is a comprehensive resource

that contains quality checked ribosomal sequences for thousands of species. Next,

the rRNA sequences are linked one to another with 10, 000 ‘N’s separating the

neighboring two rRNAs. The obtained sequence is further used as the species-

specific ribosome reference to which the ribosome profiling reads can be aligned. All

the successfully aligned reads are labeled as the ribosomal reads originated from the

ribosomal RNA contamination. The rRNA sequences retrieved from the databases

should be redundant, because more reference sequences with nucleotide variations

improves the read mappability given the same parameters used for the alignment.

We use STAR [103] to do all the alignments for both ribosome profiling and RNA-

Seq data in the pipeline. STAR is a splice-aware aligner which searches for a maximal

mappable prefix in the reference sequence for each read. It has a significant speed

advantage because it uses un-compressed suffix arrays to represent the reference.

The suffix array of reference sequence can be created by executing the following

command:

$ STAR −runMode genomeGenerate −genomeFastaFi les human rRNA .

f a s t a −genomeDir . / ref rRNA/ −runThreadN 1

The argument ‘-genomeFastaFiles’ is for specifying the rRNA reference file in

FASTA format. ‘-genomeDir’ is the path where the suffix array and other related

files are generated.

Next, the ribosome profiling reads are aligned to the rRNA reference:

$ STAR −genomeDir . / ref rRNA/ −r e a d F i l e s I n f o o t p r i n t . f a s t q −
runThreadN 1 −c l ip3pAdapterSeq CTGTAGGCAC −clip3pAdapterMMp

0 .1 −outFilterMultimapNmax 1000 −outFilterMismatchNmax 2 −
al ignIntronMax 9998 −seedSearchStartLmax 15 −genomeLoad

NoSharedMemory

The argument ‘-clip3pAdapterSeq’ specifies the linker sequence needs to be trimmed.

‘-readFilesIn’ specifies the FASTQ file to be aligned. ‘-clip3pAdapterMMp’ sets the

mismatch rate when searching for the linker. ‘-outFilterMultimapNmax’ sets the
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number of multiple mapping for each read. ‘-outFilterMismatchNmax’ sets the mis-

match nucleotides. ‘-alignIntronMax’ specifies the maximum length of intron for

splicing alignment. As we have 10, 000 ‘N’s separating each rDNA in the reference

sequence, to avoid false splicing mapping cross different rDNA, we set 9998 for this

argument. ‘-seedSearchStartLmax’ sets the seed length that read is split into pieces

no longer than it. Next, a Python script is called to parse the alignment BAM file

to obtain the rRNA read IDs, which is serialized into bytes and stored as cPickle

file.

The next step is to align the ribosome profiling reads against the reference genome.

This is the most essential and fundamental step of data analysis, because all the

downstream works are based on the alignment information. As we study the trans-

lation regulation in human T-cell acute lymphoblastic leukaemia (described in the

next chapter), we downloaded the human genome (assemble version GRCh37) and

its corresponding annotation GTF file from Ensembl [102]. To build the suffix array

of reference genome, the following command is executed:

$ STAR −runMode genomeGenerate −genomeFastaFi les Homo sapiens .

f a s t a −genomeDir . / re f genome / −s jdbGTFfi le Homo sapiens .

g t f −sjdbOverhang 49 −runThreadN 1

Here we provide the annotation GTF file such that STAR can use the splicing

junction information to guide the aligning in addition to de novo splicing mapping.

Next, to do the alignment, the pipeline calls STAR again:

$ STAR −genomeDir . / re f genome / −r e a d F i l e s I n f o o t p r i n t . f a s t q −
runThreadN 1 −c l ip3pAdapterSeq CTGTAGGCAC −clip3pAdapterMMp

0 .1 −outFilterMultimapNmax 1 −outFilterMismatchNmax 2 −
al ignIntronMax 500000 −seedSearchStartLmax 15 −genomeLoad

NoSharedMemory

Note the argument ‘-outFilterMultimapNmax’ is set to ‘1’ such that only uniquely

mapped reads are output in BAM files. This is a trade-off between reducing align-

ment uncertainty and obtaining large amount of reads to detect lowly translated

genes. Subsequently, our computational pipeline removes the alignment entries from

the BAM file if the read IDs are identified as rRNA contamination previously. The

similar commands are executed for RNA-Seq data to identify and remove rRNA

reads. Figure 3.4 shows an example of removing rRNA contamination from both
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ribosome profiling and RNA-Seq data. In this example, rRNA reads account for

24.54% of originally aligned ribosome profiling reads, whereas only 1.63% of the

aligned RNA-Seq sequence are from ribosome contamination.

0.5
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Figure 3.4: A histogram of number of reads before and after removing rRNA con-

tamination. A, ribosome profiling data; B, RNA-Seq data. The GEO data accession

number: GSE66810. The average read length of ribosome profiling is slightly longer

than from the previously published protocol [58] due to using micrococcal nuclease

to digest the ribosome-protected mRNA fragment.

3.4 Ambiguous Alignment

Similar to other read aligners for high throughput sequencing data, STAR trims the

read from both 5’ and 3’ ends in order to find the maximum mappable prefixes on

the suffix array of the whole genome. This is very useful for relative long and paired-

end RNA-Seq reads. However, as the ribosome profiling read is short (usually 50

bp) and contains a specific linker sequence at the 3’ end, additional trimming 3’ end

of the reads after cutting the linker can result in false aligning. This is because the

quality of the bases in the middle part of the read is significantly higher than the

two ends. Similarly, over trim the read from the 5’ end can also leads to fallacious

mapping. As shown in figure 3.3A, although the quality scores of the first few bases

are lower than others, the error rate of one base with quality score Q equals to 30

is 0.1% (calculated from Q = −10 log10(p)). Obviously, clipping the bases with

error rate 0.1% from an extremely short read to increase the mappability must be
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cautious.

Here we define an alignment is ambiguous if

• for the 3’ end, it satisfies:

– the first 8 bases of trimmed sequence is NOT ‘CTGTAGGC’ (allowing

one mismatch).

• for the 5’ end, it satisfies either one of the following three criteria:

– one or more bases are trimmed if the aligned length is 16-24 bp;

– two or more bases are trimmed if the aligned length is 25-30 bp;

– four or more bases are trimmed if the aligned length is 31-50 bp.

Once being identified, the ambiguous alignments are removed from the BAM files.

Table 3.1 shows an example of filtering the ambiguous ribosome profiling reads of

our unpublished data. It indicates the ambiguous alignment can account for a large

amount of the reads if the aligned length (not include the trimmed sequences at the

5’ and 3’ ends) is short. Further filtering by ribosome footprint length can also be

applied to refine the alignment, which has been implemented in our pipeline as well.

Table 3.1: Statistic of filtering the ambiguous alignments of ribosome profiling reads.

Length rRNA reads removed Ambiguous alignment
removed

Ambiguous aligment (%)

16-20 bp 2,936,366 829,576 71.7%
21-25 bp 1,170,487 796,549 31.9%
26-30 bp 1,852,942 1,740,299 6.1%
30-50 bp 1,318,365 1,167,907 11.4%

3.5 Sample Quality Control

3.5.1 Quantification of Transcription and Translation

After align the ribosome profiling and RNA-Seq reads to the reference genome, we

quantify the transcription and translation by counting the reads based on the BAM

65



Computational Pipeline for Ribosome Footprinting Data

file given the annotated genomic features. The BAM file is a compressed, binary

file containing all the alignment information for each read, such as the chromosome

name, position, strand, mismatch/insertion/deletion of the alignment, the read ID,

sequence, and the quality, and so on. It can be converted to a human readable text

format—SAM file. More details about BAM and SAM files can be found at [104].

The annotation file is usually in GTF or GFF file formats. Take GTF format as

an example: the GTF file is a text file contains nine columns separated by tabs.

The nine columns are sequence name, data source, feature, start, end, score, strand,

frame and attribute. The feature includes ‘gene’, ‘transcript’, ‘exon’, ‘CDS’, ‘UTR’

etc. More information about GTF and GFF can be found at [105].

ENSG00000136997, c-Myc, Chr 8: 127,735,434-127,741,434 (GRCh38)

isoform 1
2
3
4
5

consensus

A

B C D

E F G

gene

reads

gene A
gene B

Figure 3.5: Schematic of counting the reads for gene. A, the transcript structure of

gene c-Myc from Ensembl annotation version 75. The rectangles are exons. Red

represents coding regions; grey represents 5’ and 3’ untranslated region; blue repre-

sents the consensus exonic region. B-G, cases where reads are counted (B-E) and

not counted (F-G).

Figure 3.5 illustrates how we count the reads. In this example, the c-Myc gene

has five annotated transcript isoforms. Each transcript isoform consists of different

number of exons separated by introns which are spliced out during transcription.

The exons have different boundaries as shown in the figure. To quantify the tran-

scription and translation for a gene, we collapse the structure of all exons into one

consensus sequence (Figure 3.5A) and count the RNA-Seq or ribosome profiling

reads in the consensus exonic region. Specifically, reads that reside within and par-

tially overlap with the exons are counted. Splice junction reads and reads that
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bridge exons are also counted. However, in the case of one gene overlapping with

another, reads entirely mapped to both genes or entirely mapped to one gene but

partially to the other are not considered as informative reads, hence are excluded

from counting (Figure 3.5B-G). The counting script is originally written in Python

by my colleague, Andre Kahles, with modifications.

3.5.2 Sample Correlation

Before performing the downstream analysis, it is always useful to assess the overall

similarity between samples. This assessment helps to understand the sample corre-

lations. Generally, the sample correlations within the same experimental condition

are higher than that cross conditions. Any aberrant correlations caused by certain

sample outliers, which were produced inappropriately during sample preparation or

sequencing steps, should be removed for further computational analysis.

Pearson and Spearman correlations are the two frequently used metrics. For

Pearson correlation, it is assumed that the relationship between a pair of data set

(X, Y ) is linear. Pearson’s correlation coefficient r is the covariance of X and Y

divided by the product of their standard deviations σX and σY :

r =
cov(X, Y )

σX σY
=
E[(X − µX)(Y − µY )]

σX σY

=

∑n
i=1(xi − µX)(yi − µY )√∑n

i=1(xi − µX)2
√∑n

i=1(yi − µY )2
,

(3.2)

where E is the expectation. µX , µY is the mean of X and Y . The correlation

coefficient ranges from −1 to 1. A value equals to 1 indicates the two data sets

positively correlate with each other perfectly, namely Y increases as X increases; A

value equals to −1 indicates a perfect negative correlation where Y deceases as X

increases. If the two data sets do not correlate at all, the value equals to 0.

To calculate Pearson correlation of ribosome profiling and RNA-Seq data, we use

the quantitative measurement—read count—of all pairs of genes in two samples.

However, a logarithmic transformation is applied to the count data because the

Pearson correlation is a measure of the linear correlation. Figure 3.6 shows an

example of Pearson correlation of a ribosome profiling experiment, where both the

control and treatment contain three replicates. We can see that the third sample in
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control is less correlated with the other two samples in the same condition. Similarly,

the second sample in treatment is also an outlier compared to the other two samples.

Therefore, these two samples should be removed from the data set for analysis in

the next step.
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Figure 3.6: Scatter plot of pairs of samples from a ribosome profiling experiment.

The data used here are from our collaboration with Wendel lab at MSKCC.

In contrast, Spearman correlation is a measure of the monotonic correlation be-

tween X and Y . To calculate the Spearman correlation, instead of taking the values

of data sets, X and Y are firstly converted to ranks. Then the correlation ρ is

obtained by comparing the ranks of each pair of xi and yi:

ρ = 1− 6
∑n

i=1(xi − yi)2

n(n2 − 1)
. (3.3)

As Spearman correlation uses rank information, it can only indicates the mono-

tonicity of the data. In our computational pipeline, we calculate Pearson correlation

because the goal of the data assessment is to know the overall similarity between

samples, not only the change of the rank in two expression count data.
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3.5.3 Principal Component Analysis

Another way to assess the sample similarity is to perform a principal component

analysis (PCA). Assuming we have an m × n data matrix X of ribosome profiling

counts, where m is the number of samples and n is the total number of protein-

coding genes, the PCA identifies the patterns in the data in a way that the patterns

express the data with minimal loss of information. The patterns are called principal

components T . Because principal components are much less than the features (genes

entries) in the data, PCA is widely used to reduce the dimensions of the datasets.

Briefly, the principal component T is a k×m matrix. The first component tk=1,m

is given by

tk=1,m = X · wk=1,m , (3.4)

where w is called the loadings. It is obtained by

wk=1,m = arg max
w

∑
i

(xi · wk=1,m)2 = arg max
w

wTXTXw

wTw
(3.5)

The next jth component is then calculate by

wk=j,m = arg max
w

wTX̂j
T
X̂jw

wTw
with X̂j = X −

k−1∑
s=1

Xwsw
T
s (3.6)

Therefore, each row in dataset X (the n samples) are projected to a new space

with less dimensions while the variance of the data is explained by all the elements

in principal components vector t1, t2, . . . , tk in a descending order.

Practically, the PCA consists of the following steps:

• calculate the mean of each row in X and subtract the mean from the each

element of the row;

• Calculate the covariance matrix of the rows in X;

• Calculate the eigenvectors and eigenvalues of the covariance matrix;

• Sort the eigenvectors by decreasing eigenvalues and Choose eigenvectors with

the largest eigenvalues;

• Transform the samples onto the new subspace.
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Control 1
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Control 3
Treatment 1
Treatment 2
Treatment 3

Figure 3.7: PCA of samples from a ribosome profiling experiment. The data are the

same as in Figure 3.6. The arrows indicate the two outlier replicates.

Details about the steps can be found at [106, 107]. In out pipeline, we implemented

the PCA using scikit-learn. To compare to the Pearson correlation result in the

previous section, we computed the principal components using the same data and

plotted the first two PCs (Figure 3.7). As shown here, the two outliers deviated far

from other four samples are exactly the same as detected by the Pearson correlation.

3.6 Implementation and Software

The computational pipeline is implemented in Shell and Python. RiboDiff is imple-

mented in Python. The libraries that RiboDiff depends on include Numpy (1.8.0

or higher), Scipy (0.13.3 or higher), Matplotlib (1.3.0 or higher) and Statsmodels

(0.5.0 or higher). These requirements can either be installed individually or as a

Python distribution that includes all the required packages. Please find more details

at http://www.scipy.org/install.html

The supplemental information can be found at http://bioweb.me/ribodiff.

Source code is publicly available at https://github.com/ratschlab/RiboDiff un-

der GPL license.
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4 EIF4A Promotes Oncogene Translation in

Cancer

4.1 Background

In the central dogma, one of the essential step is messenger RNA translation, where

the DNA information is decoded to produce the protein. Precise control of this step

ensures many aspects in cellular processes, such as normal growth, differentiation,

homeostasis and response to enviromental changes etc. [74, 75, 76]. Dysregulation

of mRNA translation has been observed in many disease development such as cancer

[80, 108]. Many tumour suppressors and oncogenes can affect the translation ma-

chinery, leading to aberrant translation of a subset of genes in tumor cells [109, 36].

One example is overexpression of the translation initiation factor eIF4E causes ma-

lignant transformation in cultured rodent cells [110]. Other studies have shown that

eIF4E-binding protein (4E-BP) [111, 112], ribosomal protein S6 kinase (S6K) [113],

eIF4GI [114, 115] and eIF3 [116, 117] are also implicated in cell transformation and

tumorigenesis. Therefore, the discovery of molecular mechanism of translational

change that provokes the cancer development holds promise to design anticancer

therapies against the potential targets.

Ribosomal footprint profiling combined with deep mRNA sequencing technology

enables precise measurements of changes in mRNA translation [56]. Immediate

readouts are the number of ribosome footprints (RFs) at the translated region, which

provides a surrogate indication of translational activity for a given gene. Moreover,

each RF can be mapped to a specific location and indicate distribution along the

transcript.

In this chapter, I will describe our discovery of a novel translational control mech-

anism represented by translation initiation factor eIF4A promoting the oncogene

translation. We found that the RNA helicase activity of eIF4A enables it to unwind

the structure called G-quadruplex in the 5’ untranslated region in mRNA, which

71



EIF4A Promotes Oncogene Translation in Cancer

facilitates the ribosome to successfully locate the start codon and initiate the trans-

lation. We also show the anticancer effect of a natural compound—Silvestrol—can

offset the over translated oncogenes in leukemia cell line by disrupting the eIF4A

helicase activity. This work is a collaboration with Dr. Hans-Guido Wendel at

Memorial Sloan Kettering Cancer Center. I performed most of the computational

work by combining the RNA-Seq and ribosome footprint data to decipher the trans-

lational control through the interaction between eIF4A and RNA G-quadruplex.

4.2 Aberrant Translation Causes Leukaemia

4.2.1 EIF4A Accelerates Leukaemia Development

We first created the leukemia mouse model as following (Figure 4.1): 36 T-cell

acute lymphoblastic leukaemia (T-ALL) samples were historically collected from

paediatric patients at multiple organizations. The mutation analysis was performed

according to the literatures [118, 119, 120]. Among these samples, we found PTEN

mutations (14%) and deletions (11%), NOTCH1 mutations (56%) and an IL7R

mutation (3%). This result agrees with the previous report that Notch signaling

pathway is responsible for the development and progression of human malignancies,

including leukemia [121]. These mutated NOTCH1 was then cloned into retroviral

vector and transduced to hematopoietic progenitor cells (HPCs), which were col-

lected from a pregnant mouse. The HPCs harboring the NOTCH1 mutations were

injected to irradiated mice (C57BL/6J females between 6 and 10 weeks of age). After

91.5 days in average, the mice developed T-cell acute lymphoblastic leukaemia.

Leukaemic
mouse

Pregnant 
mouse

HPCs Irradiated
recipient

Retroviral transduction

Figure 4.1: Diagram of the intracellular NOTCH1-driven murine T-ALL model.

HPCs, hematopoietic progenitor cells.
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4.2 Aberrant Translation Causes Leukaemia

The leukaemia disease onset was accelerated by the following experiments:

• knockdown Pten by shRNA (short-hairpin RNA) [122];

• expression of the mutant Il7r;

• expression of translation initiation factor eIF4E;

• expression of translation initiation factor eIF4A.

The data were analysed in Kaplan-Meier format using the log-rank (Mantel-Cox)

test [123] for statistical significance. Table 4.1 shows the number of days before the

leukaemia onset observed in the experimental mice. The leukaemia development

after transplantation of HPCs transduced with NOTCH1 and empty vector, eIF4E,

eIF4A1, IL7r, sh-Pten shown in Figure 4.2A. Down-regulating of eIF4E by express-

ing a constitutive 4EBP-encoding allele [124] or eIF4A by constructing the shRNA

can both rapidly eliminate T-ALL from a mixture of murine cell population with

and without the knockdown of eIF4E or eIF4A (Figure 4.2B).

Table 4.1: Number of days before the leukaemia onset in mice.

Gene Days before T-ALL onset Number of mice p value
sh-Pten 47.1 n = 10 p < 1× 10−4

IL7r 35.5 n = 4 p < 1× 10−4

eIF4E 30.75 n = 4 p < 1× 10−4

eIF4A 33.8 n = 5 p < 1× 10−4
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Figure 4.2: EIF4E and eIF4A accelerate the onset of T-ALL (A); This effect can be

eliminated by the knowdown of eIF4E and eIF4A (B).
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4.2.2 Anticancer Drugs Suppress Leukaemia

It has been reported that several chemical compounds have therapeutic effect against

mouse lymphoma model [125, 126] by suppressing the translation initiation of target

genes. Silvestrol, a natural compounds isolated from species of the Aglaia genus

of the Meliaceae plant family, are novel inhibitors of translation initiation [125,

127]. In this study, we use Silvestrol and its synthetic analogue, (±)-CR-31-B (CR,

Figure 4.3) to show their anticancer effect. A reporter assay confirms that both

drugs preferentially block cap-dependent translation of Renilla luciferase compared

to Firefly luciferase expressed from the hepatitis C virus (HCV) internal ribosome

entry site (IRES) (Figure 4.4A).

A B

Silvestrol (±)-CR-31-B

Figure 4.3: Chemical structure of silvestrol (A) and (±)-CR-31-B (B).

As shown in Figure 4.4B, C and D, Silvestrol has excellent single agent activity

against T-ALL in vitro and in vivo. To generate half-maximum inhibitory concen-

tration (IC50) curves, T-ALL cell lines and samples were treated with silvestrol for

48 hours. The IC50s for Silvestrol ranged from 10 nM in DND41 cells to 86 nM

in MOLT-16 cells, and for the analogue CR the IC50s were in similar range. No-

tably, Silvestrol was equally active against PTEN wild type (KOPT-K1) and PTEN

mutant (JURKAT, CEM) cells, and the least sensitive line (MOLT-16) carries a c-

MYC translocation (Figure 4.4B). To demonstrate the anticancer effect of the drugs,

we performed the following xenograft study. Briefly, 5, 000, 000 KOPT-K1 cells in

30% matrigel were injected subcutaneously into C.B-17 SCID mice. When tumours

were readily visible, the mice were injected with 0.5mg/kg Silvestrol, 0.2 mg/kg

(±)-CR-31-B, or vehicle control on 7 consecutive days. Tumour size was measured

daily by calliper. In vivo, both Silvestrol and CR were effective against xenografted

T-ALL cells (Figure 4.4C and D). Treatment of KOPT-K1 tumor ( 1 cm3) bearing

NOD/SCID mice with systemic administration of Silvestrol (day 1-6) and CR (day

1-7) produced a significant delay in tumor growth (Silvestrol: n = 7, p < 0.001;
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CR: n = 8, p < 0.001). Pathology on treated tumors showed massive apoptosis by

TUNEL and loss of proliferation.
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Figure 4.4: Silvestrol has single-agent activity against T-ALL. A, Reporter system

with capped Renilla luciferase (red) and Firefly luciferase under the HCV IRES

(black). Bottom, relative levels of Renilla luciferase (red) and Firefly (black) lu-

ciferase upon control (DMSO), Silvestrol or CR treatment. B, Viability of T-ALL

cells treated with silvestrol. C and D, Tumour size of KOPT-K1 xenografts treated

with Silvestrol and CR or vehicle control on days indicated by red arrows. P values

were calculated using ANOVA.

Notably, we did not observe severe toxicity, death, or weight loss. CR treatment at

therapeutic doses showed a reversible drop in white cell count with a nadir on day 19,

and no other changes in blood counts or bone marrow cytology, or serum chemistry.

In addition, we observed no changes in intestinal histology. Hence, Silvestrol and

the CR analogue are highly effective T-ALL drugs and well tolerated in vivo.

Several studies have shown that Silvestrol is an inhibitor of cap-dependent trans-
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lation through the RNA helicase eIF4A [125, 127, 128]. However, the precise mRNA

features that necessitate the eIF4A helicase action are not known. In the next sec-

tion, we use ribosome footprint profiling and RNA-Seq high throughput sequencing

technologies to uncover the mechanism of translational control in T-ALL cell that

is targetable by Silvestrol.

4.3 Ribosome Profiling and Computational Analysis

4.3.1 Sample Preparation and Deep Sequencing

Total mRNA

Ribosome-
protected mRNA

RNA-Seq
Purify

Silvestrol
or control
treatment

KOPT-K1

Drug-sensitive
transcripts 

Figure 4.5: Schematic of the ribosome footprinting study.

To understand the effect of Silvestrol on translation in T-ALL, we use human

T-ALL cell line KOPT-K1, which is originally from haematopoietic and lymphoid

tissue and bears a mutation in Notch1 that contribute to T-ALL induction and

maintenance [119], to perform the downstream experiments. KOPT-K1 cells were

treated with Silvestrol or Dimethyl sulfoxide (DMSO, here used as the control) for 45

min. This early time point was chosen to capture effects on translation and minimize

secondary transcriptional changes. Next, we treated the cells by cycloheximide for 10

min to inhibit the translation [59] and then harvested for total mRNA and ribosome

footprint mRNA fragment isolation. Total mRNA was isolated using RNA isolation

kit from Qiagen and subjected to RNA sequencing. Ribosome protected mRNA

fragments were isolated following published protocol [58]. Briefly, cell lysates were

subjected to ribosome footprinting by nuclease treatment. Footprint fragments were

purified by one step sucrose cushion and gel extraction. Deep sequencing libraries

were generated from these fragments. Both total mRNA and footprint fragment

libraries were sequenced on the Illumina HiSeq 2000 platform. Figure 4.5 illustrates

the experimental pipeline of sample preparation.
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4.3 Ribosome Profiling and Computational Analysis

4.3.2 Alignment, Filtering and Quantification

The human genome sequence hg19 was downloaded from UCSC public database

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes). Ribosome foot-

print (RF) reads were aligned to reference genome hg19 using PALMapper [129].

PALMapper clips the linker sequence (5’-CTGTAGGCACCATCAAT-3’) which is

technically introduced during RF library construction, and trims the remaining se-

quence from the 3 end while aligns the reads to reference sequence. Briefly, we set

the parameters for PALMapper as following: maximum number of mismatches: 2;

maximum number of gaps: 0; minimum aligning length: 15; maximum intron length

(splice alignment): 10000; minimum length of a splicing read aligned to either side

of the intron boundary: 10. We only use the uniquely aligned reads for further

analysis.

To remove ribosome RNA contamination, the footprint reads were also aligned

to a ribosome sequence database using PALMapper with the same parameters ex-

cept allowing splice alignment. We retrieved the human ribosome sequences from

BioMart Ensembl [130] and SILVA [100] databases and merged the results into a

single FASTA file which was used as reference sequence to align against. The rRNA-

aligned reads were filtered out from hg19-aligned reads.

After we removed the rRNA contamination, we still observed a portion of reads

that were dominant by linker sequence and Illumina P7 adapter. These reads can

also be trimmed during mapping and cause false alignment. Therefore, we searched

the nucleotide sequence for possible RF linker from the trimming site (±2 bp) up to

8 bp to its 3’ direction allowing 1 nt mismatch. We removed the read if there was

no such linker sequence existed. Figure 4.6 highlights the filtering step for footprint

data. Finally, we filtered out reads ≤ 24 bp and ≥ 36 bp, and the remaining reads

with aligned length from 25 to 35 bp were used to analyze the translational effect

of Silvestrol (Figure 4.7).

Total mRNA sequencing reads were aligned to the hg19 reference using STAR

[103]. We performed the splice alignment and only use the uniquely aligned reads

with maximum three mismatches. rRNA contaminating reads were also filtered out

using the same strategy described before.

For each gene, we quantified their mRNA and RF abundance by counting the

aligned reads that were mapped within exonic regions. The genome annotation
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Figure 4.7: Read length histograms of ribosome footprint data after quality control

filtering.

downloaded from GENCODE (http://www.gencodegenes.org/releases/14.html) was

used to guide the quantification. We then calculated the Pearson’s correlation co-

efficient (r) between a pair of samples using the equation 3.2. Here we excluded

genes with zero read count. The heat map of Pearson’s correlation coefficient be-

tween samples are shown in figure 4.8. For the footprint data, out of six samples

we removed two outliers (the third replicate in control, and the second replicate in

Silvestrol treatment) and the remaining two biological replicates showed excellent

consistency (control, r = 0.95; Silvestrol, r = 0.94).

4.3.3 Initial Survey of the Data

First, we checked the overall changes at transcriptional and translational levels be-

tween control and drug treated samples. For each gene, we calculated the abundance

measurements, Reads Per Kilobase per Million mapped reads (RPKM) [71], for both
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Figure 4.8: Pearson’s correlation coefficient between ribosome footprint samples.

RNA-Seq and ribosome footprint data. Figure 4.9A shows the frequency of RPKM

fold change of Silvestrol treated against control samples. It indicates the ribosome

protected mRNA fragments were fewer in number and showed a wider variation of

RPKM fold change than total mRNA, which confirmed that our choice of an early

time point of treatment had indeed minimized transcriptional variation. Next, we

examined the correlation between control and drug treated footprint data. Fig-

ure 4.9B shows a good linear relationship of the data under the two experimental

conditions.

However, an assay of metabolic labeling of nascent proteins indicated a broad

inhibitory effect on translation. We found that measurements of nascent protein

synthesis with non-radioactive L-azidohomoalanine (AHA) labeling across a 4 hour

time course revealed a progressive reduction of protein synthesis reaching 60% with

Silvestrol and 80% with Cyclohexemide compared to control (Figure 4.9C). This

assay was performed as following: after treated with Silvestrol, Cycloheximide or

DMSO, cells were incubated in methionine free medium for 30 min prior to AHA

labeling for one hour. Cells were then fixed with 4% paraformaldehyde in PBS for 15

min, permeablized with 0.25% Triton X-100 in PBS for 15 min followed by one wash

with 3% BSA. Next, cells were stained using Alexa Fluor 488 Alkyne with Click-iT
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Cell reaction Buffer Kit. Changes in mean fluorescence intensity as a measure of

newly synthesized protein was detected by flow cytometry analysis.
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Figure 4.9: The global effect of Silvestrol on translation. A, Silvestrol-induced

changes in total mRNA and ribosome occupied mRNA. B, RF abundance (RPKM)

for genes across control and Silvestrol samples. C, Mean fluorescence intensity of

incorporated AHA in newly synthesized proteins in KOPT-K1 cells treated with

DMSO (control), Silvestrol (25 nM), or Cycloheximide (CHX; 100nM) for the indi-

cated time periods. D, Histogram of the RF abundance of all genes (measured as

unique RPM) for Silvestrol- and DMSO-treated cells.

Moreover, as shown in Figure 4.9D, the overall RPM (Reads Per Million mapped

reads) frequency distribution of ribosome footprint from control and Silvestrol treated

samples were largely overlapping, which indicated Silvestrol affected mRNAs were

not limited to specific subgroups of mRNAs, e.g. those with especially high or low

ribosome occupancy. Hence, Silvestrol produces a broad inhibitory effect on the

translation of many transcripts in human T-ALL cells.
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The RPKM and RPM was calculated by

RPKM =
1

N

N∑
j=1

106 · Ci,j

Ki,j · Sj
and RPM =

1

N

N∑
j=1

106 · Ci,j

Sj
(4.1)

where Ci,j and Ki,j are the read count and exonic length for gene i in sample j,

respectively. Sj is the library size factor of sample j. N denotes the total number

of samples in either Silvestrol-treated or control experiment.

4.3.4 Identify Gene with TE Change

As described previously, Silvestrol showed a broad spectrum of inhibitory effect on

many genes, we sought to identify the targets whose ribosome footprint profiles were

significantly changed in response to Silvestrol treatment. We used DEXSeq [70] to

perform the statistical test. DEXSeq use a generalized linear model to identify

the significant difference by assuming the read count—discrete random variable—

follows negative binomial probabilistic distribution. Therefore, it takes into account

the large biological variability between replicates, which has been demonstrated to

be crucial to avoid a great number of false positives.

Although DEXSeq aims to detect differential exon usage from RNA-Seq data,

here we used it in a specific way: for each gene, we fit the footprint and mRNA read

counts into DEXSeq framework, in which Silvestrol treatment and control are two

experimental conditions, and we tested whether footprint read counts (consisting 2

replicates for each condition) were significantly different between control and drug-

treated conditions given the confounding factor mRNA abundance measurements

(We split the 3 replicates of RNA-Seq data and recombined them into two pairs

such that each of them consists of two replicates). Hence, this statistical framework

identifies the gene with change in translation efficiency (TE), where TE is the ribo-

some footprint (RF) abundance normalized by mRNA expression from RNA-Seq.

The analysis of TE change was further visualized by plotting a histogram of the

log-ratio of TE in Silvestrol treated samples to controls (Figure 4.10). In the figure,

a shift to the left is consistent with a broad inhibitory effect on translation. The sig-

nificant gene targets were color-highlighted according to the statistical significance.

Using a stringent cut-off (p < 0.03), we identified 281 transcripts whose TE was the

most affected by Silvestrol (TE down), and 190 transcripts that were least sensitive
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Figure 4.10: Histogram of the TE change. More or less affected genes are identified

as TE down (red) and TE up (blue), respectively.

and showed an increase in translation efficiency (TE up).

4.3.5 Identify Gene with RF Density Change

In the previous section, we only considered changes in the abundance of ribosome

footprint (RF) per gene as an indication of translation efficiency. However, we

reasoned that changes in the density of ribosomes along the gene might provide an

additional indication of translational effect of Silvestrol. Note that the RF read

alignment provides exact positional information of the ribosome protected mRNA

fragment on the gene. We used rDiff [86] to identify any significant changes of RF

density across the length of the genes. Briefly, the BAM files containing alignment

within exonic region and a GTF file containing the gene annotation information

were the two inputs for rDiff. Here, rDiff maps the high dimensional alignment
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information (A1 and A2, denote for two experimental conditions) to a Hilbert space

(H) via a function φ as [φ : A1 → H] and [φ : A2 → H]. It represents each alignment

as one point in the H space by defining a mean map such that

µA1 =
1

N

N∑
i

φ(Ai1) and µA2 =
1

N

N∑
i

φ(Ai2). (4.2)

Next, it computes the distance between the two mean maps (Maximum Mean

Discrepancy) [131, 132] for the two alignments from Silvestrol treated and control

samples:

MMD(A1, A2) =‖ µA1 − µA2 ‖H . (4.3)

A nonparametric test with 10, 000 permutations was performed to detect distinct

RF density. We found that 847 protein-coding genes showed a significant (p < 0.001)

change in RF distribution. We refer to these as the rDiff positive set. Figure 4.11A,

B and C are the three gene examples with different ribosome footprint density under

the two conditions. As the RF density varies too much in different genes, we asked

weather a common pattern exists if we average the RF density from all the gene

in the rDiff positive set. To answer the question, we normalized read coverage

for each transcript by the mean coverage of that particular transcript. Then the

UTR and coding exon length were normalized in proportion to the total length

of the corresponding regions in the rDiff positive genes. Finally all the normalized

transcripts were averaged together to plot the RF density. The density was smoothed

using “moving average” smoothing algorithm.

As shown in Figure 4.11D, these transcripts presents an high density in the 5’

UTR and corresponding loss of coverage across the protein coding region in the

Silvestrol treated experiment. This indicates unknown factor in the 5’ UTR may

lead to the observation.

4.3.6 Motifs of Silvestrol Sensitive Transcripts

Inspired by the observation found in rDiff positive genes, we also performed the

similar analysis on TE down and TE up genes identified by DEXSeq. Interestingly,

among the TE down genes we saw increased RF density in the 5’ UTR and reduction

across the coding sequence (figure 4.12A). In contrast, no observable change in the
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Figure 4.11: Ribosome footprint densities for indicated genes (A, B and C), and the

overall density of all rDiff positive genes (D).

5’ UTR and coding region in the TE up genes were presented (figure 4.12B). Based

on these observations, we speculated a common feature exists in the 5’ UTR of TE

down and rDiff positive genes.

5’ UTR length has been implicated in translational control [133]. Comparing the

5’ UTR length across TE up, TE down and background transcripts, we observed that

mRNAs with longer 5’ UTRs were significantly enriched among the most Silvestrol

sensitive mRNAs (average length: 368 nt in TE down; 250 nt in background),

whereas the TE up group showed no significant difference in 5’ UTR length (average

length: 265 nt) (Figure 4.13). The background was randomly selected from the genes

that neither belong to TE down, TE up nor rDiff positive genes.

We also searched for known translation regulatory elements, for example, TOP

[134] / TOP-like sequences [63], internal ribosome entry sites (IRES) [135], and

pyrimidine rich translational elements (PRTEs) [134]. We found no predilection for

TOP, TOP-like, PRTE, or IRES elements in TE down genes. Whereas the TE up

group showed an enrichment for IRES elements.
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Before sum up the RF densities of all the transcripts, the density was normalized

by the mean coverage of each transcript. Therefore, the density curve indicates

the distribution change along itself instead of the absolute coverage change between

Silvestrol treated and control samples.
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Figure 4.13: Comparison of 5’ UTR lengths for TE down or up versus background

transcripts. Asterisks indicate mean of transcript lengths. P values were calculated

from two-sample Kolmogorov-Smirnov test.

Next we asked the question whether a shared motif could be identified in the 5’

UTR of TE down and up genes. In order to illustrate this, we firstly quantified

the transcripts for every gene based on the RNA-Seq data using MISO [136]. The

5’ UTR of the dominated transcript was collected for predicting motifs. We used

DREME [137] to search for significantly enriched sequence motifs in the TE down

and TE up groups compared to the background list. Over represented motifs were

determined with two different settings: searching for k-mer length greater than
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or equal to nine and twelve base pairs. We considered the predicted consensus

sequences with p < 1× 10−4 as significant motifs.

This analysis retrieved a 12-mer (GCC)4 . The GC-rich sequence pattern that

was significantly over represented among the TE down transcripts (94 out of 281 ,

p = 6.19 × 10−5) (Figure 4.14). In addition, we found 14 similar 9-mer variations

of this motif that were similarly enriched in the TE down group where 177 out of

281 transcripts harbored at least one and often multiple occurrences of these 9-mer

motifs (p = 9.28× 10−5) (Figure 4.14). On the other hand, the TE up mRNAs did

not share a recognizable motif.

0

1

2

Bi
ts

0

1

2

Bi
ts

0

1

2

0

1

2

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.14: The twelve- and nine-nucleotide motifs enriched in TE down transcripts.

Next, we investigated whether rDiff positive genes share the common features with

TE down group. Similar to the TE down genes, the rDiff positive mRNAs are sig-

nificantly enriched for longer 5’ UTRs (p = 0.004). Further, the rDiff positive genes

showed no significant enrichment of TOP, PRTE, or IRES elements. Surprisingly,

DREME analysis for a recurrent motif identified a single 12-mer motif in 233 out of

826 transcripts with only one variable nucleotide (p = 5.45 × 10−5) (Figure 4.15).

We also identified three additional 9-mer motifs that with similar enrichment and

similar GC-rich composition (Figure 4.15).

4.3.7 From Motif to Structure

We also wondered whether genes with TE change have specific structural feature

that set them apart from the rest transcripts. Using RNAfold [138] we observed

a striking enrichment for G-quadruplex structure [139] among the TE down genes
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(p = 0.89x10−10, Figure 4.16A). Specifically, 69 of 220 TE down mRNA harbored

at least one G-quadruplex in their 5’ UTR. Moreover, 48 out of 79 G-quadruplex

structures perfectly localized to the (GCC)4 12-mer motif, and 50 out of 79 localized

to the 9-mer motifs and the neighboring nucleotides (Figure 4.16B). In contrast, the

TE up mRNAs did not show significant difference compared to background mRNAs

(Figure 4.16A).

As described before, the enriched 12-mer motif in rDiff positive genes was nearly

identical to the TE down motif, and showed a similar pattern of alternating guanines

with one linking cytosine (Figure 4.14 and Figure 4.15). The G-quadruplex predic-

tion also indicated an enrichment of this structure in the 5’ UTR of rDiff positive set

(p = 0.0038, Figure 4.16A). Similarly, the majority of predicted G-quadruplexes ex-

actly localized to the 12-mer and 9-mer motifs in the 5’ UTR of the positive mRNAs

(Figure 4.16B).

G-quadruplex structures are based on non-Watson-Crick interactions between at

least four paired guanine nucleotides that align in different planes and are connected

by a linker nucleotide [139] (Figure 4.17A). In our study, we most often observed

two guanines separated by an intervening cytosine and sometimes an adenine. The

ADAM10 5’ UTR provides an example showing the RNA secondary structure con-

taining four predicted G-quadruplex (Figure 4.17B). Two of them match the typical

12-mer motif sequence and the other two are formed by a longer sequence including

elements that are similar although not identical to the canonical (GCC)4 motif.
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Figure 4.17: The example of G-quadruplex structure. A, Diagram of parallel G-

quadruplex conformation. Subscript numbers denote the nucleotide position. B,

The structure of ADAM10 5’ UTR with canonical motif formed G-quadruplex (red

box) and non-canonical motif formed G-quadruplex (blue box).
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4.4 Hallmark of Silvestrol Affected mRNAs

4.4.1 (GCC)4 Motif Forms G-quadruplex

To validate whether the 12-mer and many extended 9-mer motifs can form RNA G-

quadruplex structure, we performed Circular Dichroism experiment. We compared

the molar ellipticity of three different RNA oligomers including the (GCC)4 mo-

tif, a known G-quadruplex found in the human telomeric RNA [140] and a control

oligomer with equal GC content and length but reshuffled guanine and cytosine or-

der. We observed the positive and negative molar ellipticity peaks at 264 nm and 240

nm for both oligomers of (GCC)4 and human telomeric sequence, whereas the control

oligomer showed a shift in peak wavelengths to 270 and 233 nm (Figure 4.18A). We

also examined RNA oligomers encoding the 9-mer motifs and included two flanking

nucleotides exactly as they occurred in the 5’ UTRs of genes with predicted 9-mer

motifs (MTA2, TGFB1, MAPKAP1, ADAM10). These oligomers showed the same

pattern and the typical molar ellipticity peaks at 264 nm and 240 nm indicative of

a parallel GQ structure (Figure 4.18B).

Circular Dichroism combined with thermal unfolding study revealed that the melt-

ing temperature for the (GCC)4 motif was higher (56 ◦C) than the control oligomer

(49 ◦C). Also, the free energy of unfolding was higher for the (GCC)4 motif com-

pared to the control oligomer, with a difference of -32 kcal/mol (Figure 4.18C).

Similarly, computational prediction of the complete 5’ UTR sequences showed a de-

crease of the predicted minimum free energy with increasing number of predicted

G-quadruplex structures (Figure 4.18D). Together, these results demonstrated that

both 12-mer and 9-mer motifs can contribute to form GQ structure that represent

a more stable state of the 5’ UTR.

4.4.2 G-quadruplex and eIF4A Affect Translation

We directly tested the effects of the (GCC)4 motif in a translation reporter assay.

We constructed a luciferase reporter system to compare the translational effect of

G-quadruplex to the previously used control oligomer of the same length and GC

content. Briefly, four (GCC)4 or control oligomer in tandem were cloned into the

5’ UTR of Renilla luciferase plasmid pGL4.73 and HCV-IRES firefly were used as

internal control. As shown in Figure 4.19A and B, treatment with Silvestrol (25 nM)
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Figure 4.18: Circular dichroism spectra of the oligomers. A, (GCC)4 motif, 12-mer
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motifs with flanking nucleatides from the 5’ UTR of indicated genes folded in KCl.

C, Melting curve for circular dichroismspectra scan at a wavelength of 264nm for

the (GCC)4 and the control oligomer. ∆G, free energy of unfolding. D, Box plot of

the free energy decrease for UTRs with 1, 2 or ≥ 3 motifs.

reduced the translation of the G-quadruplex construct and did not affect the con-

trol, whereas cycloheximide (20 nM) equally suppressed both reporters. Although

other RNA helicases (DHX9, DHX36) have been reported in resolving G-quadruplex

structure [140, 141], RNAi-mediated eIF4A knockdown in the same reporter assay

confirmed an eIF4A dependent effect on the G-quadruplex reporter with little effect

on the control sequence (Figure 4.19C).

Given all evidences together, we conclude that long 5’ UTR and the (GCC)4 mo-

tif or highly similar sequence patterns that can form G-quadruplex structure are

the hallmarks of eIF4A-dependent and Silvestrol sensitive translation. Our results

demonstrate that, in T-ALL cells, the RNA helicase activity of oncogenic eIF4A

is required to unwind the G-quadruplex structure in the 5’ UTR of many can-
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Figure 4.20: Diagram showing the mechanism of eIF4A-dependent translational con-

trol.

cer related genes and initiates their translation. The anticancer drug, Silvestrol,

selectively blocks the translation by inhibiting the oncogenic eIF4A, causing the

ribosomes accumulate in the 5’ UTR and a down-regulated translation efficiency,

which consequently suppresses the T-ALL leukaemia development Figure 4.20. The

cancer related genes are highlighted in Figure 4.21.
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4.5 Discussion

Recent studies have described individual examples of G-quadruplex structures in the

N-RAS gene, where it also limits translation, or in the VEGF IRES-element where

it is thought to enhance IRES dependent translation [142, 143, 144]. Additional

computational analyses have suggested that these structures may have a broader

role in translational control although the molecular mechanism has remained unclear

[145].

In this study, we used ribosome footprinting strategy and RNA-Seq to identify the

key features in the 5’ UTR that confer a requirement for the eIF4A RNA helicase

for translation. Sepcifically, longer 5’ UTRs and a 12-mer (GCC)4 motif confer

eIF4A dependence. In some instances, the computational analysis also identified

enrichment of several 9-mer motifs with variation in their neighboring nucleotides.

Importantly, the 12-mer and 9-mer motifs precisely localize to more than half of all
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predicted RNA G-quadruplex structures. This result is very striking, even taking

into account the limitations of available computational methods to identify sequence

motifs and predict RNA structures.

Our findings indicate that the GC-rich motifs or its structural form G-quadruplex

represents a translational control element that is encoded in the 5’ UTR of several

hundred mRNAs and imparts a requirement for eIF4A RNA helicase activity.

Note that we identified the genes showing translation efficiency change induced by

the drug treatment. This is not equivalent to identifying distinct ribosome footprint

profiles. Because any transcriptional changes leads to the alteration in translation.

On the other hand, even no TE change is observed, it is still not sufficient to conclude

the absence of translational control, as the ribosome density distribution along the

mRNA can be completely different.

We started this study when the RiboDiff has not been developed. Although

DEXSeq [70] framework is capable of addressing the confounding issue, it aims to

detect the differential read counts from RNA-Seq experiments. Therefore, some

technical limitations exist. A further investigation using RiboDiff on the same data

indicates twice as many as candidate genes from DEXSeq are detected, and more

than 90% genes from DEXSeq are included in the new gene sets, providing an

opportunity to examine the comprehensive drug-sensitive gene profile.
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Summary and Outlook

My doctoral research mainly focused on the study of protein translational control

by using high-throughput ribosome profiling and RNA-Seq methods. In collabo-

ration with Wendel lab, we discovered the role of RNA G-quadruplex in eIF4A-

dependent oncogene translation in leukaemia. The eukaryotic translation initiation

factor 4A (eIF4A) is an RNA helicase that is required to promote the protein trans-

lation for hundreds of genes including oncogenes and transcriptional factors. Many

of those harbor the guanine quartet (GCC)4 motif in the 5’ UTR of their mRNAs.

The guanine quartet forms into an RNA G-quadruplex structure that needs RNA

helicase eIF4A to unwind in order to facilitate the ribosome 40S small subunit to

go through and initiate the translation at the start codon. The anti-cancer com-

pound Silvestrol suppresses the leukaemia development by interacting with eIF4A

and blocking its RNA helicase activity, therefore inhibits the oncogenes’ translation.

Note that after treating the lymphoblastic leukaemia cell line with Silvestrol, we still

observed ribosome footprints in the coding regions although the footprint density

decreases (see some examples in Figure 4.11A-C). This indicates the ribosome small

subunit can slide along the 5’ UTR even without the assistant of eIF4A. In other

words, RNA G-quadruplex serves as a rate limiter to control the translation of the

oncogenes. In a normal state, these genes are mildly translated for the cells to satisfy

their basic physiological requirements and maintain a balance between proliferation

and apoptosis. However, if the eIF4A is activated under certain circumstances, the

consequence of the up-regulation of the translation for these oncogenes may lead to

the development of cancer.

Study on the biology of protein translation motivated us to develop a compu-

tational approach that can identify genes under specific translational regulation in

different conditions. As the translational landscape provided by the ribosome pro-

filing method is fundamentally confounded by the transcription abundance, we need
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a statistical framework that can distinguish the translational differences between

conditions while takes both transcription level variability and the large variance of

read count data across biological replicates into account. In the second half of my

doctoral study live, I worked on developing RiboDiff, an approach and software that

use the negative binomial distribution in a generalized linear model to estimate the

over dispersion across samples for RNA-Seq and ribosome profiling data separately,

and detects the genes with differential translational regulation while controls the

transcriptional differences. Similar to other tools for differential gene expression

analysis, such as DESeq and edgeR, RiboDiff detects the relative up- and down-

regulations from the quantification measurements. This is because the count data

of all samples are first sequencing library size corrected in order to eliminate the

differences on sequencing depth for each sample. However, if a certain experimental

treatment has a global effect on almost all the genes’ translation, the normalization

of library size neutralizes the global effect and we obtain the relative translational ef-

ficiency changes for a gene compared to other genes after the treatment. Hence, the

assumption of RiboDiff is only a subset of genes are under differential translational

regulation.

In the next two sections, I will briefly introduce two other projects that I also

contributed to during my dotoral study.

MYC Shapes Cellular Metabolism through Selective Translation Targets

This project is a collaboration with Wendel lab at MSKCC studying the gene

MYC in cancer (manuscript submitted). It has been widely recognized that MYC is

a transcriptional factor that regulates cell cycle, apoptosis and cellular transforma-

tion [146]. Constitutively expressed MYC in human leads to many types of cancer

[146]. It has also been reported that MYC can affect protein translation by altering

the ribosome biogenesis through transcription regulation of rRNA and ribosomal

proteins [147]. In this study, we ask the question of whether MYC can modulate

translation through certain specific ways except globally regulating ribosome biogen-

esis. We switch off MYC in a B-cell lymphoma cell line whose MYC is conditional

regulated by tetracycline (Figure 5.1A and B), and performed the RNA-Seq and

ribosome profiling experiments in parallel (Figure 5.1C). The sequencing data were

processed through our computational pipeline (Chapter 3). After preprocessed the
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Figure 5.1: The global translational effect of knocking down MYC. A, Western

blot of MYC after being switched off. B, Global translation measured by L-

azidohomoalanine (AHA) decreased in the time course after switched off MYC.

C, Scatter plot of fold change of RNA-Seq against fold change of ribosome profiling.

Each dot represents a gene. A linear correlation between the two measurements is

observed. The red and blue dots are genes identified as TE down and up. Lowly

translated genes (footprint read count smaller than 5) but show transcriptional dif-

ference are labelled in yellow. D, Histogram of TE fold-change for all genes. E and

F, Enriched motifs identified in TE down and up gene sets.
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data by our computatioanl pipeline and statistical test by RiboDiff, we identified

2, 115 genes shows significant difference in the translation efficiency at FDR < 0.05.

Among these genes, 1, 530 genes are TE down-regulated, whereas 585 genes are up-

regulated (Figure 5.1D). Further computational analysis revealed that four RNA

motifs are enriched in the 5’ UTR of the TE down genes, while three motifs are

enriched in TE up genes (Figure 5.1E and F). Currently, our work is mainly focusing

on identifying the specific proteins (RBM42 and SRSF1 etc.) that bind to the

predicted motifs and investigating how MYC governs those RNA binding proteins.

Interferon-γ Regulates mRNA Translation to Activate Macrophage

In addition to the described projects, I also participated in a collaboration with

Ivashkiv lab at Hospital for Special Surgery. In this study, we elucidated the

interferon-γ (IFN-γ), a cytokine produced by natural killer (NK) cells, potentiates

macrophage activation by regulating mRNA translation and cellular metabolism.

Briefly, IFN-γ suppresses both MAPK-MNK-eIF4E and mTORC1 signaling path-

ways, which prime macrophages for enhanced bacterial and virus killing and in-

flammatory activation. Ribosome profiling study of primary human monocytes and

macrophages indicated the co-existence of translationally down-regulated (TE down)

genes and up-regulated (TE up) genes. In addition to the TE down observation, a

consequence of the suppression of the two signaling pathway, we performed miRNA-

Seq for human primary macrophages to investigate the global miRNA expression

profile. We found that IFN-γ suppressed the expression of 54 miRNAs, which sup-

ports the hypothesis that IFN-γ increases the translation of genes by suppressing

miRNA expression. Further miRNA target analysis indicated many TE up genes

contain the reverse complimentary seed sequence of the suppressed miRNA in their

3’ UTR regions. Figure 5.2 shows an example of TE up mRNAs that are targeted

by transcriptionally suppressed miR-146b-3p. This observation indicates miRNAs

potentially be involved in translational control. Further experimental validatons are

needed for detailed studies.
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MAP3K10 ATACTCAGGGACAGGGCATCATGGGGG
ZNF618 TTGTTCACCTTCAGGGCATTGAGCTGC
CDK16 CACACCCCTCACAGGGCAGCCCCCAAC
EIF4EBP1 TCTCCCTCACTCAGGGCACCTGCCCCC
LRP3 GGAAGAGCTAGCAGGGCAGTGCTAAGA
SYNGAP1 GGGAGGTAGGACAGGGCTGGGCTTCCC
CHKB CCTGGAGCCTCCAGGGCAGGACCTTGG

Seed-binding + 10 bp– 10 bp

Figure 5.2: Potential mRNA target of miR-146b-3p that were translationally up-

regulated by IFN-γ. Asterisks indicate the 3’ UTR sequence complementary to the

seed sequence of miR-146b-3p. Source: Nature Immunology. 2015 Aug;16(8):838-49.

Future work

RiboDiff is a software facilitates researchers studying translational regulation.

The idea of developing this statistical framework was gained from the tight working

with biologists. As I am approaching to the end of the doctoral study, it is the

time to plan for the future career and decide the direction to go in the next step.

Until now, I have already worked on genomics, proteomics, mRNA translation. It

would be great if I can get one step back to the transcriptomics and fill the gap

between genomics and mRNA translation. In addition, I would like to continue

working at the border of method development and biological research. Immunology

is a subject that studies the molecular and cellular components that comprise the

immune system in both health and disease conditions. Furthermore, immunotherapy

has been used in cancer treatment together with chemotherapy and radiotherapy,

which has been proved to be a promising strategy for certain cases. After finish

my doctoral research, I will work as a postdoc with Prof. Rudensky at Memorial

Sloan Kettering Cancer Center. My goal is to use the computational methods and

statistical modeling on epigenomic data to understand the molecular mechanism

governing the differentiation and function of CD4 T lymphocytes and their role in

immunity and tolerance. More specifically, I will study the roles of regulatory T

cells in control of tumor immunity and immunity to infections, and in maintenance

of immune homeostasis at environmental interfaces.
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Florence Jaffrézic, and French StatOmique Consortium. A comprehensive eval-

uation of normalization methods for illumina high-throughput rna sequencing

data analysis. Brief Bioinform, 14(6):671–83, Nov 2013.

[84] Mark D Robinson and Alicia Oshlack. A scaling normalization method for

differential expression analysis of rna-seq data. Genome Biol, 11(3):R25, 2010.

[85] Simon Anders and Wolfgang Huber. Differential expression analysis for se-

quence count data. Genome Biol, 11(10):R106, 2010.

[86] Philipp Drewe, Oliver Stegle, Lisa Hartmann, André Kahles, Regina Bohnert,
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Appendix

RiboDiff Manual

This document shows how to use RiboDiff to detect the protein translational ef-

ficiency change from ribosome footprint profile (Ribo-Seq) and RNA-Seq data in

different experimental conditions.

To run RiboDiff, please provide two input files:

1) A comma delimited text file (CSV) that describes the experimental design. Here

is an example:

Samples,DataType,Conditions

RbCtlR1,Ribo-Seq,Control

RbCtlR2,Ribo-Seq,Control

RbTrtR1,Ribo-Seq,DrugTreated

RbTrtR2,Ribo-Seq,DrugTreated

RnaCtlR1,RNA-Seq,Control

RnaCtlR2,RNA-Seq,Control

RnaCtlR3,RNA-Seq,Control

RnaTrtR1,RNA-Seq,DrugTreated

RnaTrtR2,RNA-Seq,DrugTreated

RnaTrtR3,RNA-Seq,DrugTreated

In this experimental design file, there are three columns organized underneath a

header line. The first column indicates the sample name. The second column

indicates the data type. It only accepts “Ribo-Seq” and “RNA-Seq” to represent

the ribosome footprint and RNA-Seq data, respectively. The last column indicates

to which condition the sample belongs. More than two condition keywords are not

accepted here. Note the columns are comma separated.

2) A text file containing the raw read count for each gene as follows:
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Entry RbCtlR1 RbCtlR2 RbTrtR1 RbTrtR2 RnaCtlR1 RnaCtlR2 RnaTrtR1 RnaTrtR2
G0001 69 77 81 98 2914 2931 2520 2566
G0002 159 141 145 139 1285 1285 1242 1246
G0003 246 239 236 259 806 847 862 819
G0004 70 59 71 84 1413 1490 1464 1499
...

In this file the sample name in header line must agree with that in experimental

design file. The columns are tab-separated. Only including protein coding genes

may give a better global estimation.

Assuming you are at the RiboDiff package directory, the command to run RiboDiff

is:

python . / s c r i p t s /TE. py −e <e x p o u t l i n e . txt> −c <c n t t a b l e . txt> −o <r e s u l t . txt>

RiboDiff loads the input files and normalizes the raw count of each replicate sample

according to its sequencing library size. Then, it estimates the dispersion parameter

for each gene using a generalized linear model, assuming that read counts follow

a negative binomial distribution. Note, users can enable or disable the different

dispersion estimation for Ribo-Seq and RNA-Seq separately. Next, RiboDiff per-

forms a statistical test based on the H0 and H1 model fitting. Finally, multiple test

correction is performed to generate an adjusted P value for every gene.

RiboDiff also calculates the log2 fold change of translational efficiency for all genes.

In addition, RiboDiff can plot figures to visualize the data and the statistical test

results. The figures includes

• A scatter plot of dispersion against the mean count across replicates of Ribo-

Seq and RNA-Seq.

• A scatter plot of log2 fold change of translational efficiency against the mean

count across replicates of Ribo-Seq.

• A histogram of log fold change of translational efficiency with significant pro-

portion marked in red (TE down) and blue (TE up).

The dispersion used in the fisrt scatter plot is the empirical dispersion. It is calcu-

lated as the relationship of V ar = mean+ (mean× disp2)

The help information for running RiboDiff is listed below. Users can display it by

typing “python TE.py -h” in command line.
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Options:
-h - -help show this help message and exit.

Required:
-e ExptOutline Text file describing experiment Outline. Must follow required for-

mat, please see the manual.
-c CntFile Text file containing the count data. Header line must be consistent

with information in experiment Outline.
-o OutFile Tab delimited text file containing the results.

Optional:
-d DispDiff Allow different dispersions for Ribo-seq and RNA-Seq count data.

On: 1; Off: 0. [default: 1]
-s SumCntCutoff Set the sum of normalized read count as the threshold to do the

test. This option applies for both Ribo-seq and RNA-Seq data.
[default: 10]

-i DispInitial Set the initial dispersion to start the estimation. [default: 0.01]
-m MultiTest Method for multiple test correction. Options: BH (Benjamini-

Hochberg); Bonferroni. [default: BH]
-r RankResult Rank the result table in ascending order by a specific column.

Adjusted p value: 1; TE change: 2; Gene id: 3; Keep the order as
in count file: 0. [default: 0]

-p Plots Make plots to show the data and results. Plots are in pdf format.
On: 1; Off: 0. [default: 0]

-q CutoffFDR Set the FDR cutoff for significant case to plot. [default: 0.1]

Similar to many other RNA-Seq based tools, RiboDiff uses negative binomial distri-

bution to model the read count, which handles larger variation across samples than

Poisson. However, if the randomness of count data from certain types of samples

are extremely large, limited number of replicates cannot provide a good estimation

on dispersion, which ends up with less significant results.
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Source Journals of the Thesis

• Yi Zhong, Theofanis Karaletsos, Philipp Drewe, et al. RiboDiff: Detecting

Changes of Translation Efficiency from Ribosome Footprints. Bioinformatics.

2016 Sep 14. doi: 10.1093/bioinformatics/btw585

• Andrew Wolfe, Kamini Singh, Yi Zhong, et al. RNA G-quadruplexes cause

eIF4A-dependent oncogene translation in cancer. Nature. 2014 Sep 4;513(7516):65-

70.

• Xiaodi Su, Yingpu Yu, Yi Zhong, et al. Interferon-gamma regulates cellu-

lar metabolism and mRNA translation to potentiate macrophage activation.

Nature Immunology. 2015 Aug;16(8):838-49.
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Personal Contribution

• I developed the computational tool RiboDiff, including design the project and

writing the codes. Theofanis Karaletsos and Philipp Drewe participated in

this project by providing supports on math theory. Vipin Sreedharan helped

to wrap the code. Gunnar Rätsch provided supervision. The manuscript of

this work is preprinted in bioRxiv and published in Bioinformatics.

• I built the computational pipeline for analysis of the ribosome profiling and

RNA-Seq data. This part of the work is incorporated into RiboDiff manuscript

and published as software on github.com.

• I contributed to the collaborating project with Wendel lab where we found

the protein translational control through G-quadruplex. I did most of the

computational analysis with significant help from Philipp Drewe. This part of

the work was supervised by Gunnar Rätsch. The work has been published in

Nature.
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Singh, Hans-Guido Wendel, Gunnar Rätsch. RiboDiff: Detecting Changes of

Translation Efficiency from Ribosome Footprints. Bioinformatics. 2016 Sep

14.

• Andrew Wolfe, Kamini Singh, Yi Zhong, Philipp Drewe, Vinagolu Rajasekhar,

Viraj Sanghvi, Konstantinos Mavrakis, Man Jiang, Justine Roderick, Joni

Van der Meulen, Jonathan Schatz, Christina Rodrigo, Chunying Zhao, Pieter

Rondou, Elisa de Stanchina, Julie Teruya-Feldstein, Michelle Kelliher, Frank

Speleman, John Porco, Jerry Pelletier, Gunnar Rätsch, Hans-Guido Wendel.
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