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1 SUMMARY 

Na+/H+ exchanger 1 (NHE1) is fundamentally critical for the maintenance 

of cytosol pH homeostasis as well as cell volume regulation in a variety of cells 

including CD4+ T cells. Reactive oxygen species (ROS) formation is paralleled 

by activation of the NHE1. ROS formation in CD4+ T cells plays a decisive role 

in regulating inflammatory responses. As a candidate, Parkinson disease 

related gene DJ-1/Park7 is a redox-sensitive chaperone protein counteracting 

oxidation and presumably contributing to the control of oxidative stress 

responses and thus inflammation. DJ-1 gene deletion intensifies the 

progression of Parkinson’s disease presumably by augmenting oxidative 

stress. In this thesis, studies were carried out to find out whether DJ-1 is 

expressed in CD4+ T cells and affects ROS production as well as NHE1 in 

those cells. Furthermore, DJ-1 and NHE1 transcript and protein levels were 

quantified by qRT-PCR and immunoblotting respectively, intracellular pH (pHi) 

utilizing bis-(2-carboxyethyl)-5-(and-6)-carboxy fluorescein (BCECF) 

fluorescence, NHE activity from recovery after removal sodium followed by a 

activation by an ammonium pulse, and ROS production utilizing 2’,7’ –

dichlorofluorescin diacetate (DCFDA) fluorescence. Immunoblot data suggests 

that DJ-1 protein was abundantly found in CD4+ T cells. ROS formation, NHE1 

transcript levels, NHE1 protein, and NHE activity were higher in CD4+ T cells 

from DJ-1 deficient mice than from wild type mice in CD4+ T cells. Antioxidant 

N-acetyl-cysteine (NAC) and protein tyrosine kinase (PTK) inhibitor 

staurosporine decreased the NHE activity in DJ-1 deficient CD4+ T cells, and 

blunted the difference between DJ-1-/- and DJ-1+/+ CD4+ T cells, an 

observation pointing to a role of ROS in the up-regulation of NHE1 in DJ-1-/- 

CD4+ T cells. Together these results suggest that DJ-1 is a powerful regulator 

of ROS production as well as NHE1 expression and activity in CD4+ T cells. 
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Further studies were carried out to identify whether CD4+ T cells subtypes or 

helper T cells (Th) such as Th1, Th2, Th9, Th17 and iTregs development and 

functions were also governed by NHE1 or not, we measured the NHE1 activity 

in these cell types. Th cells subsets were characterized by flow cytometry and 

intracellular pH measured using 2',7'-Bis-(2-Carboxyethyl)-5-(and-6)- Carboxy- 

-fluorescein-Acetoxymethyl Ester (BCECF-AM) dye. NHE1 activity was 

estimated by ammonium pulse technique. Surprisingly, Th9 cells had 

significantly higher intracellular pH and NHE1 activity among other Th cells 

(Th1/Th2/Th17) and iTregs. NHE1 transcripts and protein expression were 

significantly higher in Th9 cells than in other Th cells subsets. Inhibition of 

NHE1 by NHE1-siRNA in Th9 cells downregulated IL-9 production. Functional 

NHE1 activity as well as development and IL-9 production of Th9 cells was 

further impaired by pharmacological inhibition of protein kinase Akt1/Akt2. Our 

findings reveal that Akt1/Akt2 sensitive NHE1 could be an important 

physiological regulator of Th9 cell differentiation and function. Thus, this thesis 

highlights the novel role of DJ-1 protein in the regulation of NHE1 in immune 

helper CD4+ T cells and NHE1 could regulates Th9 cells development and 

functions.  
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2 ZUSAMMENFASSUNG 
Na+/H+ Austauscher 1 (NHE1) sind fundamental entscheidend bei der 

Erhaltung der zytosolischen pH-Homöostase sowie bei der Regulation des 
Zellvolumens in einer Reihe von Zellen, einschließlich der CD4+ T-Zellen. Die 
Bildung von reaktiven Sauerstoffspezies (ROS) wird von einer Aktivierung des 
NHE1 begleitet. Die ROS-Bildung in CD4+ T-Zellen spielt eine entscheidende 
Rolle in der Regulierung der inflammatorischen Antwort. Potentiell involviert ist 
das Parkinson-assoziierte Gen DJ-1/Park7, ein Redox-sensitives 
Chaperone-Protein, das einer Oxidation entgegenwirkt und vermutlich zur 
Kontrolle der oxidativen Stressreaktion und dadurch der Inflammation beiträgt. 
Eine Deletion des DJ-1 Gens verstärkt die Progression der 
Parkinson-Krankheit vermutlich durch eine Erhöhung des oxidativen Stresses. 
In dieser Arbeit wurden Studien durchgeführt, um herauszufinden, ob DJ-1 in 
CD4+ T-Zellen exprimiert wird und die ROS-Produktion sowie NHE1 in diesen 
Zellen beeinflusst. Weiterhin wurden DJ-1- und NHE1-Transkripte und 
Proteinlevels durch qRT-PCR und Immunoblotting jeweils quantifiziert, der 
intrazelluläre pH (pHi) mittels bis-(2-carboxyethyl)-5-(and-6)-Carboxy 
fluorescein (BCECF)-Floureszenz, die NHE-Aktivität von der Erholung nach 
Entfernung von Natrium gefolgt von einer Aktivierung durch ein 
Ammonium-Puls, und die ROS-Produktion mittels 2’,7’–Dichloro 
fluorescindiacetat (DCFDA)-Floureszenz gemessen. Die Immunoblot-Daten 
deuten darauf hin, dass das reichlich DJ-1-Protein in CD4+ T-Zellen gefunden 
wurde. Die ROS-Bildung, NHE1 Transkript-Level, NHE1-Protein und 
NHE-Aktivität waren höher in CD4+ T-Zellen von DJ-1-defizienten Mäusen als 
in denen von Wildtyp-Mäusen.  Das Antioxidans N-Acetylcystein (NAC) und 
der Protein-Tyrosin-Kinase (PTK)-Inhibitor Staurosporin verringerten die 
NHE-Aktivität in DJ-1-deficienten CD4+ T-Zellen und dämpften den 
Unterschied zwischen DJ-1-/- und DJ-1+/+ CD4+ T-Zellen, eine Beobachtung, 
die auf eine Rolle von ROS in der Hochregulation von NHE1 in DJ-1-/- CD4+ 
T-Zellen hindeutet. Zusammen weisen die Ergebnisse darauf hin, dass DJ-1 
ein mächtiger Regulator der ROS-Produktion sowie der NHE1-Expression und 
-Aktivität in CD4+ T-Zellen ist. Weitere Studien wurden durchgeführt, um die 
Frage zu klären, ob die Entwicklung und Funktion der CD4+ T-Zell-Subtypen 
oder T-Helferzellen (Th) wie Th1, Th2, Th9, Th17 auch durch NHE1 geregelt 
werden oder nicht, wir maßen die NHE1-Aktivität in diesen Zelltypen. 
Th-Zellen-Subtypen wurden mittels Durchflusszytometrie und intrazellulärem 
pH mittels BCECF-AM-Färbung charakterisiert. Die NHE1-Aktivität wurde 
mittels der Ammonium-Puls-Technik abgeschätzt. Überraschenderweise 
hatten Th9-Zellen ein signifikant höheres intrazelluläres pH und NHE1-Aktivität 
verglichen zu anderen Th-Zellen (Th1/Th2/Th17) und iTregs. 
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NHE1-Transkripte und -Proteinexpression waren signifikant höher in Th9-Zells 
als in anderen Th-Zell-Subtypen. Eine Inhibition von NHE1 durch NHE1-siRNA 
in Th9-Zellen regulierte die IL-9-Produktion herunter. Die funktionelle 
NHE1-Aktivität als auch -Entwicklung und IL-9-Produktion von Th9-Zellen 
wurden darüber hinaus durch eine pharmakologische Inhibition der 
Proteinkinase Akt1/Akt2 beeinträchtigt. Unsere Ergebnisse zeigen, dass das 
Akt1/Akt2-sensitive NHE1 ein wichtiger physiologischer Regulator der 
Th9-Zell-Differenzierung und -Funktion sein könnte. Daher hebt diese Arbeit 
die neue Rolle des DJ-1-Proteins in der Regulierung von NHE1 in 
Immun-CD4+-T-Helferzellen hervor, und dass NHE1 die Entwicklung und 
Funktion der Th9-Zellen regulieren könnte. 
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3 SCIENTIFIC BACKGROUND 

3.1 Adaptive Immunology 

Other than the first line of body resistance, which called the innate 

immune response, there is a substantially more advanced guard line called 

adaptive immune response (Bonilla and Oettgen 2010). To eliminate 

pathogens the first line and the second line need to cooperate, and in most 

cases the innate responses call up the adaptive immune response. The 

striking difference in-between innate and adaptive response is the specificity 

among them (Bonilla and Oettgen 2010). The adaptive immune response is 

very particular to the pathogens that enact them. Alongside the memory effect 

of some members in the adaptive immune system, the body benefit from the 

first hit of the pathogens, such as the body recovered from some specific virus 

infection (measles) will remember the hit and protect from the same infection 

enduring(Bonilla and Oettgen 2010). 

The concept of adaptive immunity can be divided in to cellular immunity 

and humoral immunity. Cellular immunity, which recognize the non-self-cells, 

abnormal cells and microbes, and is, ended up to eliminated by the cytotoxic T 

cells and other Cells (Bonilla and Oettgen 2010). Humoral immunity which 

correlated with B cells took after by the antigen exposure, antibody secretion 

from the Plasma cells, and the memory effect for the memory B cells. Both T 

cells and B cells have their unique receptors, TCRs and BCRs respectively 

(Germain 2001). During T cells differentiation, TCRs are generated through 

their developmental pathway by DNA recombination in the thymus. Major 

histocompatibility complex (MHC) molecules present the antigen followed the 

formation of processed peptides, which can be recognized by TCRs (Germain 

1994). Each TCR and BCR has its conserve and variable region, resulting the 

combination of a huge diversity of receptors (Germain 2001). Due to huge 
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diversity, T cells and B cells recognize the diverse array of pathogens, in the 

mean while; cytotoxic T cells development and antibody production are 

triggered, as well as the generation of memory cells (Akira 2011). The 

accompanying figure outlined the procedure in adaptive immunity (Akira 2011). 

The foundation of adaptive immunity is specificity, plasticity and memory, all 

coordinated to the construction and homeostasis of functional lymphocyte 

repertoires (Blattman, Sourdive et al. 2000) 
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Figure 1 Adaptive Immunity	
Outline of the construction of adaptive immune system, the system can be 
divided into two main brunches, which are T cell immunity and B cell immunity. 
Followed by T cell releasing, different subtype of T cell accumulated and 
contribute to the adaptive immunity. On the other hand, in B cell immunity, 
initiated plasma cells and memory cells built together the humoral immunity.  	
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3.2 CD4+, CD8+ T cells and Dendritic Cells  

The CD4 molecule is a glycoprotein, which has been found on the surface 

of cell membrane, such as T helper (Th), monocytes, macrophages and 

dendritic cells. The CD4 protein is encoded by the CD4 gene in humans and 

mice,(Honczarenko, Kulczycki et al. 1977). The major function of CD4+ T cells 

is to provide help to other immune cells (Zhu and Paul 2008).The CD4+ T cells 

play a variety of roles by recognizing MHC class II molecules, such as 

activating the innate immune response, adaptive immune response, Killer T 

cells, and some non-immune cells, and also act as a regulatory immune 

response (Zhu and Paul 2008).  
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Figure 2 Helper function of CD4+ T cells to APCs 
After migrating to sites of infection, effector CD4+ T cells that recognize 
antigens on antigen-presenting cells (APCs) produce an array of effector 
cytokines that contribute to the character of the inflammatory responses in the 
tissue. Some products of highly activated effector CD4+ T cells, such as 
interleukin-10 (IL-10), dampen inflammation and regulate immunopathology, 
whereas others, such as interferon-  (IFN ), are pro-inflammatory and 
activate macrophages, which in turn drive further inflammation. The production 
of IL-10 by effector CD4+ T cells can have a profound impact on the outcome 
of a viral infection (Swain, McKinstry et al. 2012). 



CD4+,	CD8+	T	cells	and	Dendritic	Cells	

Effect of DJ-1 on Na+/H+ exchanger 1 (NHE1) activity in CD4+ T cells and role of NHE1 in T helper cells	 16	

 

The CD8+ (cytotoxic) T cells, like CD4+T cells, are generated in the 

thymus and express the T cell receptor (Tscharke, Croft et al. 2015).  The 

difference between CD8 and CD4 molecule is laid on that cytotoxic T cells 

recognize MHC class I molecules which have been found on all nucleated cells 

(Tscharke, Croft et al. 2015). For the cytosolic pathogen defensing cytotoxic T 

cells play a crucial role following three major mechanisms: secretion cytotoxic 

cytokines such as primarily TNF-α and IFN-γ; releasing cytotoxic granules 

such as perforin, and granzymes; destruction of infected cells via Fas/FasL 

interactions (Varga, Wissinger et al. 2000). 
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Figure 3 CD8+ T cells Immune response 
CD8+ T cells recognize peptides presented by MHC Class I molecules, found 
on all nucleated cells. The CD8 heterodimer binds to a conserved portion (the 
α3 region) of MHC Class I during T cell/antigen presenting cell interactions 
From Erika Wissinger, Imperial College London, UK.  
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One of the antigen-presenting cells (APCs) called Dendritic cells (DCs), 

addressed for their formation, dendritic shapes, can trigger the adaptive 

immune responses and promote the function of the immune system (Lipscomb 

and Masten 2002). Paul Langerhans first described DCs in human skin in 1868 

but thought they were cutaneous nerve cells. DCs are bone marrow derived 

leukocytes and are contributed as the most potential APC. They can also be 

propagated in vitro from bone marrow and peripheral cycling system followed 

by introducing growth factors, such as granulocyte macrophage-colony 

stimulating factor (GM-CSF).  

DCs can specifically capture and present antigens, converting proteins to 

peptides that are presented on major histocompatibility complex molecules, in 

most case MHC II which can then be recognized by T cells  (Roghanian, 

Williams et al. 2006, Young, Waller et al. 2008). DC subsets playing differing 

roles in defining the outcome of an immune response, although clearly some 

plasticity within defined subsets is possible so that each subset can exert 

tolerating and polarizing influences on responding T cells (Patterson 2000). 

DCs degrade antigens within a MHC class II-rich endosomal compartment 

(MIIC) yet preserve sufficient peptide structure to be expressed on their cell 

surface bound to MHC class II molecules (ten Broeke, Wubbolts et al. 2013). 

DCs take up antigens by phagocytosis, utilizing membrane receptors to trigger 

uptake, by receptor-mediated pinocytosis in clathrin-coated pits and by 

fluid-phase pinocytosis (Garrett, Chen et al. 2000). DCs can take up whole 

cells, including necrotic and apoptotic cells. They can also acquire antigens 

from live cells for presentation to cytolytic T cells (Harshyne, Watkins et al. 

2001) 
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3.3 CD4+ T cells signaling 

Unactivated T cells get activated through the Linker for activation of T 

cells (LAT) signaling (Keller, Zaidman et al. 2016). When APC present the 

antigen to T cell, MHC class II get recognized by TCR variety ligation part, 

SRC superfamily protein tyrosine kinases (PTKs) LCK connected with CD4 

and FYN bind with CD3 are activated, leads to phosphorylation of CD3 ζ-chain 

of the TCR complex and bind activated SYK-family PTKs-ζ-chain-associated 

protein of 70kD (ZAP70). When ZAP70 get activated, it phosphorylates LAT. 

LAT then phosphorylates SLP76 (SRC-homology 2 (SH2)-domain-containing 

leukocyte protein of 76 kD) and recruits SH2-domain-containing proteins 

growth factor receptor-bound protein 2 (GRB2), GRB2-related adaptor protein 

(GADS) and phospholipase C-γ1 (PLC-γ1) 4(Abraham and Weiss 2004).  

The hydrolysis of phosphatidylinositol 4,5-bisphosphate to inositol 

3,4,5-triphosphate (IP3) and diacylglycerol (DAG) have been supported by 

both LAT and SLP76 associates with the SH3 domain of PLC-γ1 activation 

(Yablonski, Kadlecek et al. 2001). Accumulated IP3 ended up to increases of 

cytosolic free Ca2+ concentration, as a secondary signal it leads to IL-2 gene 

expression, cell cycle entry and T cell effector functions. Production of DAG 

can activate both protein kinase C-θ (PKC-θ) and RAS guanyl 

nucleotide-releasing protein (RASGRP). Phosphorylated LAT also recruits the 

SH2 domain of GRB2 (Houtman, Yamaguchi et al. 2006), and therefore, the 

GRB2-associated RAS guanosine nucleotide-exchange factor (GEF), 

son-of-sevenless (SOS), as the regulator of RAS indicates the additional 

possible mechanism of RAS activation through LAT. Tyrosine- phosphorylated 

SLP76 also associates with the RHO-family GEF, VAV1, and the adaptor 

protein, NCK (Abraham and Weiss 2004). A threesome complex of SLP76, 

VAV1 and NCK-associated p21-activated kinase 1 (PAK1) as their 
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consequential role of SLP76, reveals a potential mechanism for SLP76 

regulation of actin cytoskeletal rearrangements following TCR stimulation. 

CD28 is a 44-kDa homo-dimeric protein involved in T-cell costimulatory 

signaling pathways (Rudd, Taylor et al. 2009). One of the main signaling 

pathways regarding to CD28 on T cell function regulation is CD28-PI3K 

signaling. PI3K production of PIP2 and PIP3 lipids bind the pleckstrin 

homology (PH) domains within proteins such as phosphoinositide-dependent 

protein kinase 1 (PDK1) (Alessi, Deak et al. 1997). PDK1 and PKB can 

themselves then phosphorylate and regulate multiple pathways linked to 

protein synthesis, cellular metabolism, and cell survival (Rudd and Schneider 

2003).  
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Figure 4  Proximal signalling complexes and downstream responses 
induced by T-cell receptor (TCR) ligation.  

Antigen presenting cells expose the MHC class II to T cell by counteract with 
TCR, thus triggered T cell signaling pathways contribute to cell cycle entry, 
IL-2 gene expression and T cell effector functions (Abraham and Weiss 2004).  
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3.4 T helper Cells 

With specific MHC II receptor, CD4+ T cells recognize antigens presented 

by antigen presenting cells such as dendritic cells by which they get activated 

and participate in the regulation of the immune response during infections, 

autoimmunity and cancer. In the importance of adaptive immunity, activated 

CD4+ T cells can be shaped during their development from conventional T 

cells. CD4+ T cells participate as a crucial role in the effector adaptive immune 

system (Zhu and Paul 2010). CD4+ T cells can be differentiated into various 

subtypes based on their cytokine secretion, such as Th1, Th2, Th9, Th 17 and 

regulatory T cells. 

 IFN- , TNF-  producing T helper 1 (Th1) cells (Zhou, Chong et al. 

2009, Zhu and Paul 2010). Th1 participate in the defense process of 

preventing intracellular parasites. IL-4 producing Th2 cells (Kudo, Ishigatsubo 

et al. 2013). In the functional aspect of Th2 cells, controlling extracellular 

pathogens and parasites as well as play an important role of allergy and 

anthemia. IL-17 producing Th17 cells (Bettelli, Carrier et al. 2006, Korn, 

Mitsdoerffer et al. 2008, Awasthi and Kuchroo 2009) defensing against the 

pathogens, and take part in the autoimmunity, transplant rejection and cancer 

immunology. IL-9 producing Th9 cells (Dardalhon, Awasthi et al. 2008, 

Dardalhon, Collins et al. 2015, Kaplan, Hufford et al. 2015), which is a 

relatively new subtype play an important role in INF-  dependent antitumor 

immunology as well as allergic inflammation in lungs and tuberculosis. TGF-  

and IL-10 producing suppressive regulatory T cells (Tregs) (Schmitt, Haribhai 

et al. 2012). Unlike other effect T cells play a suppression role in controlling the 

balance of T cells subsets in inflammation process and other abnormal 

abundance of effect T cells. A great deal of experimental efforts attempted to 

decipher the development and functions of various Th cells subsets. However, 
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the development and functions of Th9 cells remained incompletely 

understood.  

 

 

 

 

 

 

 

 

 

Figure 5 Summary of T helpers development 
By introducing cytokines in different combination such as IFN-γ, IL-12, IL-4 
TGF-β, IL-6, IL-4 and IL-2, Naïve T cells get differentiated into several 
subtypes such as Th1, Th2, Th17, Th9 and Treg. Differentiated T cells get 
involved into regulation of immune system by secretion of varieties of 
cytokines. 
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3.5 Intracellular pH 

In term of the prototypical mammalian cell, under physiological conditions, 

the extracellular pH is slightly alkaline (~7.3–7.4) (Casey, Grinstein et al. 2010). 

In some conditions, such as more alkaline environment-alkaline medium, cell 

itself will monitor to avoid intensely acidification. The intracellular pH (pHi) will 

turn into slightly acidification. In the process of cytosol acidification, there are 

two aspects was majorly discussed to illustrate the phenomenon (Casey, 

Grinstein et al. 2010). In one hand, the electrical potential across the 

membrane, which is negative inside, drives the uptake of positively charged 

protons and the efflux of negatively charged bases, such as HCO3–, through 

conductive pathways (Casey, Grinstein et al. 2010). In another hand, net acid 

equivalents are generated by various metabolic reactions (for example, ATP 

production in the cytoplasm by glycolysis and in mitochondria by oxidative 

phosphorylation), a situation that is exacerbated during bursts of activity, such 

as in muscle contraction or on activation of leukocytes by pathogens (Grinstein, 

Furuya et al. 1986). 
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Figure 6 Schematic of cytosolic pH in cell organelles 
The pH of individual cellular organelles and compartments in a prototypical 
mammalian cell. The values were collected from various sources. The 
mitochondrial pH refers to the matrix, that is, the space contained by the inner 
mitochondrial membrane. (Casey, Grinstein et al. 2010) 
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3.6 Ion carriers that regulate cytoplasmic pH  

The cytoplasm has a tendency to acidify owing to the activities of various 

of metabolic pathways, such as the ATP formation in the cytoplasm by 

glycolysis that generates lactate (the anaerobic segment in the figure) and the 

oxidative phosphorylation in mitochondria that produces CO2 (the oxygen 

consuming part appeared in the following figure 7 (Casey, Grinstein et al. 

2010). The transcendent pH-administrative transporters that are in charge of 

alkalization are the plasma membrane sodium hydrogen exchangers (NHEs) 

and sodium bicarbonate co-transporters (NBCs) (Grinstein, Furuya et al. 1986). 

A set number of cell sorts additionally alkalinize their cytosol through the 

activities of sodium dependent chloride bicarbonate exchangers (NDCBEs) 

(Casey, Grinstein et al. 2010). These transporters utilize the energy stored in 

the internally coordinated electrochemical Na+ gradient that is built up by 

sodium potassium ATPase pumps (NKAs) to drive solute transport (Casey, 

Grinstein et al. 2010). These alkalinizing components are counteracted the 

activities of plasma membrane chloride bicarbonate or anion exchangers 

(AEs), which acidify the cell. Plasma membrane Ca2+-ATPases (PMCAs), 

which exchange cytosolic Ca2+ for extracellular H+, likewise acidify the cytosol 

in response to boosts that exchange intracellular Ca2+. In tissues experiencing 

anaerobic metabolism, alkalinization might be favoured by monocarboxylate–

H+ co-transporters (MCTs; for example, in muscle).  
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Figure 7 Ion carriers that regulate intracellular pH 
The most studied transporters, which take part in the regulation of intracellular 
pH. Sodium ion, hydrogen, bicarbonate, chloride, ATP and other related 
elements construct the network in pH regulation. (Casey, Grinstein et al. 2010) 
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3.7 Sodium hydrogen exchanger 

Sodium hydrogen exchanger (NHE) is a group of ATP-independent 

membrane glycoprotein transporters that are included in the control of pH in 

cytosol, as well as after hormones and mitogens reaction cell volume and the 

cellular responses (Valles, Bocanegra et al. 2015). The transporters intervene 

the concurrent efflux of a hydrogen ion and the influx of a sodium ion transport 

the plasma membrane (Mahnensmith and Aronson 1985). The internal 

coordinated electrochemical Na+ gradient drives this process. There are nine 

known mammalian NHE isoforms (NHE1-9), all of which contrast in particular 

biological function as well as subcellular localization (Bobulescu and Moe 

2009). Furthermore, except their basic contribution in the media of cytosolic 

pH and cell volume, the NHE family has additionally been embroiled in 

diseases including hypertension and organ ischemia (Murphy and Eisner 

2009). Whilst the particular system by which NHE activity impacts blood 

pressure still depending on necessary further studies, it has been 

recommended to include the inversion of the Na+/Ca2+ exchanger (NCX); this 

prompts expanded intracellular Ca2+ concentration, leads to vascular smooth 

muscle cell contraction (Iwamoto, Kita et al. 2005). 
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Figure 8 A representative topology model of the NHE1 glycoprotein 

displaying the extracellular and intracellular cytosolic domains. 
A schematic shows the tracing pathways followed by hydrogen exchange, the 
certain binding point counteract with Sgk1 and Akt then activated the related 
cell signaling pathways	(Mohamed, Iman A et al. 2015). 
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NHE1 serves as an important alkalinizing mechanism of the cell in 

defense of H+ derived from metabolism or electrically-driven H+-accumulation. 

In addition, NHE1 constitutes a major pathway for Na+ influx into the cell and 

when coupled to Cl− and H2O uptake, it represents a mechanism for 

restoration of cell volume following cell shrinkage. (Donowitz, Ming Tse et al. 

2013). NHE1 is also involved in cell migration (Denker, Huang et al. 2000). 

NHE2 is involved in some intestinal and renal Na absorption and there is 

recent evidence that it has a role in repair of epithelial damage (Xue, Aihara et 

al. 2011). NHE3 is reused between apical membranes and the cytosol 

compartment of epithelial cells where it has a noteworthy contribution in renal 

and intestinal Na+ retention (D'Souza, Garcia-Cabado et al. 1998). Beside their 

parts in managing intracellular pH and cell volume, Majorly considerable 

studies are still needed in NHE4, NHE5, NHE6, NHE7, NHE8 and NHE9 

(Lemasters, Bond et al. 1996). 
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Figure 9 NHE regulates various cellular physiological function 
A summary of four major role of NHE in cell function regulation. Beside the role 
of maintains the pH homeostasis, combine with EGF Ang II, exchange of 
hydrogen leads to regulate the cell growth, hypertrophy and differentiation. 
Cross talk with F-Actin NHE regulates the cell migration. The entry of sodium 
leads to activation of calcium transportation ended up to influence the cell 
injury or cell death. 
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3.8 DJ-1 

DJ-1, initially distinguished as an oncogene product, a pervasively 

expressed protein associated in cellular transformation, oxidative stress 

function, and regulation of transcripts. (Mitsumoto and Nakagawa 2001, Zhong, 

Kim et al. 2006) DJ-1 assumes an imperative part of cell resistance by dampen 

p53-Bax-caspase signaling pathway. The defensive impacts of DJ-1 on 

program cell death are associated with its ability of decreasing Bax expression 

by dampen p53 transcriptional activity (Bonifati, Rizzu et al. 2003, Fan, Ren et 

al. 2008).. DJ-1 (PARK7) has been identified as the gene linked to early-onset 

familial Parkinson’s disease. DJ-1 decreases the sensitivity to excytotoxicity 

and ischemia proved by DJ-1 knockout model, in another word, production of 

DJ-1 could reverse this sensitivity and indeed enhancing cytoprotection 

(Aleyasin, Rousseaux et al. 2007). Oxidative stress is caused by the 

imbalance of the reactive oxygen species production and inhibition. As an 

oxidation-reduction escort DJ-1 protects neurons against oxidative stress and 

apoptosis (Bonifati, Rizzu et al. 2003, Billia, Hauck et al. 2013). From tumor 

hypoxia adaption model, DJ-1 protein has been investigated and revealed the 

dependent function in cell survival process, through the AKT related signaling 

pathways, involves in both AKT/mTOR (Vasseur, Afzal et al. 2009) and 

PTEN/AKT signaling (Billia, Hauck et al. 2013, Klawitter, Klawitter et al. 2013, 

Dongworth, Mukherjee et al. 2014). DJ-1 counteracts oxidative stress by 

specifically decreasing reactive oxygen species (ROS) upon oxidative 

alteration of a conserved cysteine residue or through stabilizing antioxidant 

transcription factors, for example, erythroid related factor 2 (NRF2) (Clements, 

McNally et al. 2006, Moscovitz, Ben-Nissan et al. 2015, Shi, Lu et al. 2015). 
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3.9 ROS and NHE1 

Recently study shows that ROS production relies on the activity such as 

H+ extrusion by the Na+/H+ exchanger NHE1 (Rotte, Pasham et al. 2010, Rotte, 

Pasham et al. 2011, Yang, Bhandaru et al. 2012, Alvarez and Villa-Abrille 

2013, Prasad, Lorenz et al. 2013, Qadri, Su et al. 2014, Park, Lee et al. 2015), 

which takes part in the control of intracellular pH (pHi) (De Vito 2006) and of 

several further cellular functions, for example, cell volume, cell proliferation 

and motility of cells (Putney and Barber 2004, De Vito 2006). NHE1 is 

ubiquitously expressed (Lacroix, Poet et al. 2004, Putney and Barber 2004, 

Fliegel 2005, De Vito 2006, Abu Jawdeh, Khan et al. 2011) and the most vital 

Na+/H+ exchanger isoform in the homeostasis modification of intracellular pH 

(pHi) (De Vito 2006). 

Past studies revealed that Na+/H+ exchanger activity in CD4+ T cells is 

sensitive to various stimuli including growth factors (EGF, angiotensin II) and 

cytokines including IL-2 and IFN-  (Wakabayashi, Shigekawa et al. 1997, 

Lacroix, Poet et al. 2004, Chang, Wang et al. 2010). The present study 

investigated the effect of DJ-1 on ROS production/generation and Na+/H+ 

exchanger activity in CD4+ T cells, which are required for the support of 

effective immune responses against different intracellular or extracellular 

pathogens and autoimmune disorders (Bluestone, Mackay et al. 2009, 

Abou-Jaoude, Monteiro et al. 2014, Bonelli, Shih et al. 2014, 

Brucklacher-Waldert, Carr et al. 2014, Hale and Ahmed 2015).  

But the role of DJ-1 on Na+/H+ exchanger activity regulation has not been 

defined. 
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4 AIMS OF THE THESIS 
l To identify the role of DJ-1 deficiency on NHE1 transcript and protein level 

as well as Na+/H+ exchanger (NHE) activity in activated CD4+ T cells. 
 

l To decipher the regulatory function of intracellular pH and NHE1 in the 
development of T helper (Th0/Th1/Th2/Th9/Th17 and iTregs) cells. 
 

l To examine the function of the NHE1 in Th9 cells development and 
functions. 
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5 MATERIALS AND METHODS 

5.1 Mice strains 

DJ-1-/- and DJ-1+/+ (10-12 week-old) mice on a C57BL/6 background were 

used for the experiments as described earlier (Billia, Hauck et al. 2013) and 

kept under standard husbandry conditions. DJ-1+/+ and DJ-1-/- mice were 

obtained by breeding DJ-1+/- heterozygous male and female mice. C57BL/6 

mice (8-10 weeks) were used for the Th cells experiments and kept in a 

conventional specific pathogen free facility. All the animal work was performed 

according to the EU Animals Scientific Procedures Act and the German law for 

the welfare of animals. The procedures were approved by the authorities of the 

state of Baden-Württemberg and the research has been reviewed and 

approved by an Institutional Animal Care and Use Committee. For each 

experiment 5-6 independent mice were used and data shown in each figure is 

representative of Means±SEM of independent mice experiment.  

 

5.2 Naïve T cells isolation 

To perform the Th differentiation or iTreg induction experiments, naïve 

CD4+CD62Lhigh+CD25- T cells were isolated using magnetic bead selection 

from spleen and lymph nodes as described earlier (Singh, Dyson et al. 2011, 

Singh, Chen et al. 2015). To isolate the CD4+ T cells, spleen and lymph nodes 

(inguinal, axillary, brachial, mediastinal, superficial cervical, mesenteric) were 

collected from the mice and macerated using syringe plunger. Cell suspension 

was centrifuged at 600xg at 40C for 5 minutes and cells pellet treated with RBC 

lysis buffer for 1 minute and washed three times. After washing cells were kept 

on roller at 40C (cold room) for 30 minutes in the presence of 40µl/mouse 

antibody mix containing anti-CD8, anti-MHC II, anti-CD11b, anti-CD16/32, 
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anti-CD45R, and Ter-119 (Dynabeads® Untouched™ Mouse CD4 cells kit, 

Invitrogen). Cells were washed after antibody incubation and Dynabead was 

added and incubated at 40C (cold room) for 30 minutes on roller to deplete the 

CD8+ T cells, B cells, NK cells, monocytes/macrophages, dendritic cells, 

erythrocytes and granulocytes and isolated CD4+ T cells. Further, to isolate 

CD4+CD25+ T cells, purified CD4+ T cells were incubated with 2 µl/mouse 

biotinylated-anti-CD25 (7D4 clone; BD Biosciences, UK) for 30 minutes in cold 

room on roller, washed and kept for 15 minutes with 20µl/mouse 

streptavidin-Microbeads (Miltenyi Biotech, Germany) for the indirect magnetic 

labelling of CD25+ T cells. Using MACS separation columns CD4+CD25+ T 

cells were positively selected and remaining cells were CD4+CD25- T cells 

(Niedbala, Besnard et al. 2014). To enrich naïve CD4+CD62Lhigh+CD25- T cells 

from CD4+CD25- T cells, these cells were again incubated with 10 µl/mouse 

biotinylated-anti-CD62L (clone MEL-14; BD Biosciences) for 30 minutes in 

cold room on roller, washed and kept for 15 minutes with 20µl/mouse 

streptavidin-Microbeads for the indirect magnetic labelling of CD62L+ T cells. 

Using MACS separation columns naïve CD4+CD62Lhigh+CD25- T cells were 

positively selected. Remaining cells were CD4+CD62L-CD44+CD25- T cells. 

Purity of these cells was checked by flow cytometry. As a result more than 90% 

cells were positive for naïve T cells. 

Purified CD4+ T cells (1x106 cells) from DJ-1+/+ and DJ-1-/- mice were 

activated in the presence of anti-CD3:anti-CD28 (1:2) (eBioscience, Frankfurt, 

Germany) for 1-3 days in R10 medium at 37° C in a 5% CO2 incubator. The 

cultured cells were used for pH measurements, immunoblotting, and 

q-RT-PCR. Further inhibitors used were cariporide (10 µM) (Sigma, Munich, 

Germany), antioxidant N-acetyl-cysteine (NAC; 10 µM) (Sigma) and ROS 

scavenging enzyme catalase (10 µM) (Sigma). 
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5.3 Th cells differentiation 

Naïve CD4+CD62Lhigh+CD25- T cells were activated in the presence of 

plate-bound anti-CD3/anti-CD28 antibodies (eBiosciences, Frankfurt, 

Germany) with a ratio of 1:2::anti-CD3:anti-CD28 (1ug/ml anti-CD3: 2 µg/ml 

anti-CD28) for Th1, Th2 and iTregs and 1:10::anti-CD3:anti-CD28 (1 µg/ml 

anti-CD3: 10 µg/ml anti-CD28) for Th9 and Th17. Briefly, T naïve cells were 

differentiated into Th1 using 20 ng/ml recombinant-IL-12 (eBiosciences, 

Frankfurt, Germany), anti-IL-4 (5 µg/ml; eBiosciences, Frankfurt, Germany), 

Th2 using 20 ng/ml recombinant-IL-4 (eBiosciences, Frankfurt, Germany), 

anti-IFN-  (5 µg/ml; eBiosciences, Frankfurt, Germany), Th9 using 2.5 ng/ml 

recombinant-TGF-β, 40 ng/ml recombinant-IL-4, anti-IFN-  (10 µg/ml), Th17 

using 2.5 ng/ml recombinant-TGF-β, 50 ng/ml recombinant-IL-6 (eBiosciences, 

Frankfurt, Germany), anti-IFN-  (5ug/ml), anti-IL-4 (5 µg/ml) and anti-IL-2 (5 

µg/ml; eBiosciences, Frankfurt, Germany) and iTregs using 2.5 ng/ml 

recombinant-TGF-β, 5 ng/ml recombinant-IL-2 (eBiosciences, Frankfurt, 

Germany), cultured for 3-4 days (Zhou, Chong et al. 2009, Perumal and 

Kaplan 2011, Kudo, Ishigatsubo et al. 2013, Chatterjee, Schmidt et al. 2014, 

Singh, Garden et al. 2015). Cells were harvested at day 3 and used for 

intracellular staining for characterising the Th cells using flow cytometry, 

q-RT-PCR, pHi, NHE1 activity and immunoblotting experiments.  
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5.4 Intracellular pH (pHi) measurement 

Equipment for pHi imaging 

Names Manufacturer and country of origin 

Discofix® Stopcock for Infusion 

Therapy 

B.Braun, Melsungen, Germany 

Centrifuge RotiFix 32 Hettich Zentrifugen, Tuttlingen, Germany 

Camera Proxitronic Proxitronic, Bensheim, Germany 

Eppendorf pipettes 1000 µl, 100 

l, 10 l 

Eppendorf AG, Hamburg, Germany 

Eppendorf cups 1.5, 2 ml Eppendorf AG, Hamburg, Germany 

Filter Set for BCECF-AM  AHF Analysentechnik AG, Tübingen, 

Germany 

Filter tips 10, 100, 1000µl  Biozym Scientific, Hess. Oldendorf, 

Germany 

Filter wheel  Sutter Instrument Company, Novato, USA 

Heraeus Incubator Thermo Electron Corporation, Dreieich, 

Germany 

Lamp XBO 75  Leistungselektronik Jena GmbH, Jena, 

Germany 

Metafluor software  Universal Imaging, Downingtown, USA 

Microscope Axiovert 100  Zeiss, Oberkochen, Germany 

Microscope cover glasses round, 

30mm diameter, 0.13-0.16 mm 

Karl Hecht KG, Sondheim, Germany 

 

MultiwellTM 6 well Becton Dickinson Labware, Franklin 

Lakes, USA 

Needles BD Microlance TM3, Becton Dickinson Labware, Franklin 
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1.2X40mm  Lakes, USA 

Objective neo fluar 40x/1.3 oil  Carl Zeiss, Oberkochen, Germany 

PP-Test Tubes 15, 50 ml Greiner bio-one, Frickenhausen, Germany 

Syringde BD 10ml, Leur-LokTM 

Tip  

Becton Dickinson Labware, Franklin 

Lakes, USA 

Syringde BD, PerfusionTM 50ml Becton Dickinson Labware, Franklin 

Lakes, USA 

Tissue Culture Dishes 35x10 mm Becton Dickinson Labware, Franklin 

Lakes, USA 

 

Figure 10 Intracellular pHi imaging setup.  

1-Micrsocope, 2-Camera control panel, 3-Camera, 4-Shutter, 5-Light source, 

6-Xenon lamp control panel, 7-Perfusion system, 8-Flow heating system, 

9-Measuring chamber 

pH measurement chemicals 

Substances  Manufacturer and country of origin 

Ampuwa Fresenius KABI, Bad Homburg, 
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Germany 

CaCl2 x 2 H2O Carl Roth, Karlsruhe, Germany 

CXCL12 Peprotech, Germany 

Ethylene glycol tetraacetic acid 

(EGTA) 

Sigma, Taufkirchen, Germany 

BCECF-AM Invitrogen, Karlsruhe, Germany 

Glucose Carl Roth, Karlsruhe, Germany 

HEPES Sigma, Taufkirchen, Germany 

Immersol 518F Carl Zeiss, Göttingen, Germany 

KCl Carl Roth, Karlsruhe, Germany 

LPS Sigma, Taufkirchen, Germany 

MgSO4 x 7 H2O Sigma, Taufkirchen, Germany 

Na2HPO4 x 2 H2O Sigma, Taufkirchen, Germany 

N-Methyl-D-glucamin (NMDG) Sigma, Taufkirchen, Germany 

NaCl Sigma, Taufkirchen, Germany 

Poly-L-Lysine  Sigma, Taufkirchen, Germany 

Phosphate buffered saline (PBS)  GIBCO, Carlsbad, Germany 

Silicone Grease Carl Roth, Karlsruhe, Germany 

Trypan blue solution 0,4% Sigma, Taufkirchen, Germany 

  

  

pH measurement buffer composition 

Table I Standard HEPES solution 

Substance [mM/L] 

NaCl 115 

KCl 5 

MgSO4*7H2O 1.2 
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HEPES 32.2 

Na2HPO4*2H2O 2 

CaCl2*2H2O 1 

Glucose 10 

pH 7.4 (NaOH); H2O (at the 37 0C) 

Table II Na+ free solution 

Substance [mM/L] 

NMDG 132.8 

KCl 3 

CaCl2*2H2O 

MgSO4*7H2O 

1 

1.2 

KH2PO4 

HEPES 

2 

32.2 

Mannitol 10 

Glucose 

HCL approx. 

10 

109 

pH 7.4 (HCL); H2O 

(at the 37 0C) 

 

 

Table III Standard NH4Cl 

Substance [mM/L] 

NMDG 122.8 

KCl 3 

CaCl2*2H2O 1 

MgCl2*6H2O 1.2 

KH2PO4 

HEPES 

2 

32.2 
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Glucose 

HCL approx. 

NH4Cl approx. 

10 

109 

20 

pH 7.4 (HCL or NMDG); H2O (at the 

37 0C) 

Table IV High K+ for Calibration  

Substance [mM/L] 

NMDG 32.8 

KCl 105 

CaCl2*2H2O 1 

MgSO4*7H2O 1.2 

HEPES 32.2 

Mannitol 5 

pH 7.0 (HCl); H2O (at the 37 0C) 
 

Cytosolic pH (pHi) was measured in Th cells as described previously 

(Salker, Zhou et al. 2015) using pH sensitive BCECF, AM dye (Life 

Technologies, USA). Naïve T cells were differentiated into Th cells and after 3 

days of differentiation of various subsets of Th cells were subjected to 

measurement of pHi with and without treatment. To measure the pHi and 

NHE1 activity of Th cells subsets, 300 l of cells were collected and were 

fixed on a coverslip coated by Poly-L-lysine (Sigma, Germany), which was 

then placed in a chamber. Th cells were co-incubated with 10 µM BCECF, AM 

(Life Technologies, USA) for 15 min at 370C. Once the incubation was finished, 

chamber was then placed on the stage of an inverted microscope (Zeiss 

Axiovert 135) with epifluorescence mode 40x oil immersion objective (Zeiss 

Neoplan, Germany). BCECF was successively excited at 490/10 nm and 

440/10 nm, and the resultant fluorescent signal was monitored at 535/10 nm 
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using an intensified charge-coupled device camera (Proxitronic, Germany) and 

specialized computer software (Metafluor, USA). Approximately 30-40 cells 

were outlined and monitored during the course of the measurements of 

BCECF, AM fluorescence. The results from each cell were averaged and used 

for final data analysis.  

High-K+/nigericin calibration technique was applied for converting intensity 

ratio (490/440) data into pHi values. The cells were perfused at the end of each 

experiment for 5 minutes with standard high-K+/nigericin (10 µg/ml) solution 

(pH 7.0). The intensity ratio data thus obtained were converted into pH values 

using the rmax, rmin, pKa values previously generated from calibration 

experiments to generate a standard nonlinear curve (pH range 5 to 8.5) (Rotte, 

Pasham et al. 2010). 

For acid loading, Th cells were transiently exposed to a solution 

containing 20 mM NH4Cl leading to initial alkalinization of pHi due to entry of 

NH3 and binding of H+ to form NH4
+. The acidification of pHi upon removal of 

ammonia allowed calculating the mean intrinsic buffering power (ß) of the cell. 

Assuming that NH4
+ and NH3 are in equilibrium in cytosolic and extracellular 

fluid and that ammonia leaves the cells as NH3:  

ß = [NH4
+]i/ pHi,  

where pHi is the decrease of cytosolic pH (pHi) following ammonia 

removal and [NH4
+]i is the decrease of cytosolic NH4

+ concentration, which 

is equal to the concentration of [NH4
+]i immediately before the removal of 

ammonia. The pK for NH4
+/NH3 is 8.9 and at an extracellular pH (pHo) of 7.4 

the NH4
+ concentration in extracellular fluid ([NH4

+]o) is 19.37 [20/(1+10pHo-pK)]. 

The intracellular NH4
+ concentration ([NH4]i) was calculated from: 

[NH4]i = 19.37 · 10pHo-pHi. 

The calculation of the buffer capacity required that NH4
+ exits completely. 

After the initial decline, pHi indeed showed little further change in the absence 



Surface	and	intracellular	antibodies	staining	

Effect of DJ-1 on Na+/H+ exchanger 1 (NHE1) activity in CD4+ T cells and role of NHE1 in T helper cells	 44	

of Na+, suggesting that there was no relevant further exit of NH4
+.  

To calculate the pH/min during re-alkalinization, a manual linear fit was 

placed over a narrow pH range with time which could be applied to all 

measured cells.  

The solutions used in the pHi and NHE1 measurements were composed 

of (in mM) as described earlier (Zhou, Pasham et al. 2015): standard Hepes: 

115 NaCl, 5 KCl, 1 CaCl2, 1.2 MgSO4, 2 NaH2PO4 10 glucose, 32.2 Hepes; 

sodium free Hepes: 132.8 NMDG Cl, 3 KCl, 1 CaCl2, 1.2 MgSO4, 2 KH2PO4, 

32.2 Hepes, 10 mannitol, 10 glucose (for sodium free ammonium chloride 10 

mM NMDG and mannitol were replaced with 20 mM NH4Cl); high K+ for 

calibration 105 KCl, 1 CaCl2, 1.2 MgSO4, 32.2 Hepes, 10 mannitol, 5 µM 

nigericin. The pH of the solutions was titrated to 7.4 or 7.0 using HCl/NaOH, 

HCl/NMDG and HCl/KOH, respectively, at 370C.  

 

5.5 Surface and intracellular antibodies staining 

Th cells were characterised by using surface and intracellular staining with 

relevant antibodies. In brief, Th cells were stimulated with anti-CD3/anti-CD28 

or 1 mg/ml PMA (Sigma, Germany) and 1 mg/ml Ionomycin (Sigma, Germany) 

for 4 hours and after 2 hours of PMA+Ionomycin treatment 1 µg/ml Brefeldin A 

(eBiosciences, Frankfurt, Germany) was added to the cultured cells for 2 hours. 

After 4 hours, cells were collected and used for surface staining for various 

antibodies dependent on the experiment (anti-Foxp3-APC and anti-IFN-

-FITC; eBiosciences, Frankfurt, Germany, anti-IL-4-PE anti-IL-17A-PE; BD 

Bioscience, UK, anti-IL-9-PE; Biolegends, USA), and washed with PBS. Cells 

were fixed with Foxp3 fixation/permeabilization buffer (eBiosciences, Frankfurt, 

Germany) for intracellular staining and incubated for 30 minutes. After 

incubation, cells were washed with 1x permeabilization buffer (eBiosciences, 
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Frankfurt, Germany) and intracellular monoclonal antibodies were added and 

incubated for additional 30 minutes. Cells were washed again with 

permeabilization buffer and PBS was added to acquire the cells on flow 

cytometry (FACSCalibre™, BD Bioscience, Heidelberg, Germany). 

 

5.6 q-RT-PCR 

Total mRNA was isolated from different Th cells (Th0, Th1, Th2, Th9, and 

Th17) and iTregs using mRNAeasy isolation kit (QIAGEN, Germany) as 

described by the manufacturer. 1 µg mRNA was converted into cDNA using 

Superscript III cDNA synthesis kit (Life Technologies, Germany). Briefly, in 10 

µl reactions, 10 ng cDNA, 2X SYBR green mastermix (Peqlab, Germany) and 

250 nM primers (Sigma, Germany) were used for q-RT-PCR reactions. 

q-RT-PCR run and data analysis was performed as described previously 

(Soroosh and Doherty 2009) for NHE-1 (F primer: 

5’-TCGCCCAGATGACCACAATTT-3’ and R primer: 

5’-GGGGATCACATGGAAACCTATCT-3’) and GAPDH (F primer: 

5’-CGTCCCGTAGACAAAATGGT-3’ and R primer: 5’- TTG ATG GCA ACA 

ATC TCC AC-3’) using universal cycling conditions (950C for 3 minutes, 950C 

for 10 seconds and 600C for 1 minute for 40 cycles followed by melting curve 

analysis).  

5.7 Semi-quantitative-RT-PCR for NHE1 isoforms 

 Total mRNA was isolated from 3 days activated CD4+ T cells using the 

mRNAeasy isolation kit (QIAGEN, Germany) as described by the 

manufacturer. 1.0 µg mRNA was converted into cDNA using the Superscript III 

cDNA synthesis kit (Invitrogen, Germany). Briefly, in 10 µl reactions, 10 ng 

cDNA, 2x Taq polymerase Master-mix (Peqlab, Germany) and 250 nM primers 
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were used for RT-PCR reactions (Singh, Ferreira et al. 2010). NHE isoforms 

primers used in reactions are described in a table below with their product size. 

PCR was run using standard PCR conditions (950C) for 3 minutes, 950C for 15 

seconds, 600C for 30 seconds and 720C for 30 second for 40 cycles followed 

by final extension at 720C for 10 minutes. All primers were purchased from 

Sigma. 

S.N. Primers name Primer sequences Product 

size 

1 NHE1 F TCGCCCAGATGACCACAATTT 172bp 

2 NHE1 R GGGGATCACATGGAAACCTATCT  

3 NHE2 F 

  
 

TGGCCAAGATTGGTTTTCATCTC 197bp 

4 NHE2 R TGGCATGAAGTAGCCAGCAT  

5 NHE3 F TCAGTGGCTTGATGGGTGAA 71bp 

6 NHE3 R AGCTGCAATGAGGCTACCAA  

7 NHE4 F AACCCACAGATGATGATGGCA 
 

117bp 

8 NHE4 R TCTTCATAGGGATCACTGCCTG 

 
 

 

9 NHE5 F ATGGTGTGGCTAATCCCGAA 73bp 

10 NHE5 R ACTGCAGCTGTGTCCTGAAA  

11 NHE6 F TGTTTGCTGGTCTTCGTGGT 70bp 

12 NHE6 R TGTCGTGCATAAGTGGCAGT 
 

 

13 NHE7 F TCTCGAAGTCGAAGCAAGCA 

 
 

144bp 

14 NHE7 R GATGGCAACAAAAGCACCGA  

15 NHE8 F TTGAAGTCGCATTGGTGGAG 95bp 

16 NHE8 R TGCAGATGGCTTCTTTGAAACAG  

17 NHE9 F TGTTTTCAGGTTTGCGAGGTGT 

 
 

70bp 
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18 

 

19 

20 

21 

22 

23 

24 

NHE9 R 

 

SLC4a1 F 

SLC4a1 R 

SLC4a2 F 

SLC4a2 R 

SLC4a4 F 

SLC4aF R 

TGTTTGGGCTGAGATTCCG 

 

GGCACCTACACACAGAAACTCT 

ACGGAGGCAAACATCATCCA 

TAAAGCACAGCCACCCAAGT 

TGGTAGCTCACGCTCTCTAT 

TTTAGCAACCCTGATAATGGCAG 

CCCCAACAAGCACATTGGAA 

 

 

128bp 

 

188bp 

 

160bp 

 

 

5.8 Immunoblotting 

Naïve T cells were differentiated into Th0, Th1, Th2, Th9, Th17 and iTregs 

from WT mice. After 48 hours of incubation, Th cell and iTregs were washed 

once with PBS and equal amount of H2O and 2X Lammelli’s Buffer added for 

cell lysis. Proteins were denatured at 950C for 5 minutes and stored at -200C. 

Sample proteins were loaded on 10% SDS-PAGE gel and run for 80-120 V for 

120 minutes. Proteins were electrotransferred onto membranes. Membranes 

were probed with the indicated primary antibodies for NHE1 (1:1000 NHE1 

rabbit antibody from Genetex®, USA), followed by HRP-conjugated secondary 

antibodies (1:2000 Cell Signalling, Germany). Membranes were washed and 

visualized with enhanced chemiluminescence detection system (ECL; Life 

Technologies, Germany) and data were analysed using Image J software. 

CD4+ T cells from DJ-1+/+ and DJ-1-/- mice were activated in the presence 

of anti-CD3:anti-CD28 (1:2) (eBioscience) for collecting the samples for 

immunoblotting. Activated T cells were washed once with PBS and equal 

amounts of H2O and 2 x Lamelli buffer added for cell lysis. Proteins were 

denatured at 950 C for 5 minutes followed by storage at -200 C. Sample 

proteins were loaded on 10% SDS-PAGE gel run for 120 V per gel for 100-120 
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minutes. Proteins were electro-transferred onto PVDF membranes (GE 

healthcare, Freiburg, Germany). Membranes were probed with the indicated 

primary antibodies (DJ-1 (1:1000; #5933), p-AKT(S473) (1:1000; #9271); 

GAPDH (1:1000; #2118), (Cell Signaling Technology, Leiden, The 

Netherlands) and NHE1 (1:1000; #GTX85046); GeneTex, Irvine, USA) 

followed by HRP-conjugated secondary antibodies (1:2000; Cell Signalling). 

Membranes were washed and visualized with enhanced chemiluminescence 

detection system (ECL; peqlab, Erlangen, Germany). Blot image quantification 

was done by ImageJ software. 

 

5.9 ROS production 

To determine ROS production in 3 days activated CD4+ T cells from both 

DJ-1+/+ and DJ-1-/-, approximately 2×105 cells were co-incubated with 10 µM 

2’,7’–dichlorofluorescin diacetate (DCFDA) (Sigma) for 30 min in the dark at 

room temperature. Cells were then washed with 100 l PBS and then 

resuspended into 200 l of fresh PBS. Furthermore, ROS in T cells were 

detected by Flow cytometry using the FACS Calibur (BD Biosciences, 

Heidelberg, Germany). DCFDA fluorescence intensity was measured in FL-1 

with as excitation wavelength of λ 488 nm and an emission λ wavelength of 

530 nm. Geometric mean of the FL-1 signal intensity was used to show the 

amount of ROS production. Cell volume was reflected by the geometric mean 

of forward scatter. Data were analysed with flow FlowJo (Treestar,USA) 

software. 

5.10 siRNA transfection of T cells 

Naïve T cells were transfected with siRNA-control and siRNA-NHE1 using 

DharmaFECT3 transfection reagent (Dharmacon, USA) as recommended by 
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manufacture’s guidelines. Briefly, Naïve T cells were washed 3x with PBS to 

remove any residual serum and antibiotics from the cells and 0.75 - 1x106 cells 

per well cultured in the presence of antibiotic free media in 24 well plate coated 

with anti-CD3::anti-CD28. Final concentration of 200nM of non-targeting 

siRNA-control and siRNA-NHE1 was added to 500 µl of media and cells were 

incubated with Th9 differentiating conditions as described earlier. Cells were 

further incubated for 4 days and stained for IL-9/Foxp3 antibodies. 

 

5.11 Statistical analysis 

Prism software (GraphPad software) was used for statistical analyses. 

Student’s t-test was used for significance. Flow cytometry data were analysed 

by Flowjo (Treestar, USA). Figures were made in Excel and GraphPad prism 

software. ImageJ was used for WB data analysis. P values of equal or less 

than 0.05 were considered significant. 
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6 RESULTS AND DISCUSSION 

 

 

 

 

 

 

 

Part1: Role of DJ-1 protein in NHE1 activity:  

In this chapter, I have described how DJ-1 protein is involved in the regulation 
of NHE1 activity and the mechanisms how DJ-1 is possibly controlling the 
NHE1 activity and ROS production 
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RESULTS: 

6.1 Enhanced Na+/H+ exchanger activity in DJ-1 

deficient CD4+ T cells  

To find out the impact of DJ-1/Park-7 on the activated CD4+ T cells, a ratio 

matric imaging system was utilized. As the nature of BCECF-AM followed by 

duplicate emission florescence 490/440. The impact of DJ-1 deficiency on 

Na+/H+ exchanger activity and intracellular pH (pHi) was detected at day 2 of 

activated CD4+ T cells. The initial pHi was not significantly different between 

DJ-1-/- CD4+ T cells and DJ-1+/+ CD4+ T cells. Na+/H+ activity of CD4+ T cells 

was subsequently measured using the ammonium pulse technique as 

described in method section. In following Fig.11 A and B, the addition of NH4Cl 

to the extracellular bath was followed by a sharp cytosolic alkalinization due to 

NH3 entry into the cells followed by binding of cytosolic H+ to form NH4
+. The 

subsequent removal of NH4Cl was followed by sharp cytosolic acidification due 

to NH3 exit and cellular H+ retention in a totally non-sodium environment. As 

long as Na+ was absent, neither in DJ-1+/+ CD4+ T cells nor in DJ-1-/- CD4+ T 

cells, acidification was followed by significant realkalinization. Thus, the cells 

did not express appreciable Na+-independent H+ extrusion irrespective of 

absence or presence of DJ-1. Addition of Na+ was followed by a recovering 

process since cell has to rescue its self into the initial level of pHi, this part was 

considered to reveal Na+/H+ exchanger activity. After 2 days of CD4+ T cell 

activation, the pHi recovery following addition of Na+ was significantly more 

rapid in DJ-1-/- CD4+ T cells than in DJ-1+/+ CD4+ T cells, illustrating higher 

Na+/H+ exchanger activity in DJ-1-/- CD4+ T cells. No significant difference of 

buffer capacity was observed between DJ-1+/+ CD4+ T cells and DJ-1-/- CD4+ T 

cells. Thus, following activation, DJ-1 deficiency enhanced Na+ dependent 

realkalinization reflecting enhanced Na+/H+ exchanger activity.  
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Figure 11 DJ-1 deficiency enhances Na+/H+ activity in CD4+ T cells. 
A,B. Original tracings reflecting alterations of cytosolic pH (pHi) following an 
ammonium pulse in CD4+ T cells isolated after 2 days of activation from 
DJ-1+/+ (A) and DJ-1-/- (B) mice. To load the cells with H+, 20 mM NH4Cl was 
added and Na+ removed (replaced by NMDG) in a first step, NH4Cl removed in 
a second step, Na+ added in a third step and nigericin (pHo 7.0) applied in a 
fourth step to calibrate each individual experiment. 
C-E. Arithmetic means ± SEM (n = 3 - 5 independent experiments) of cytosolic 
pH (pHi) prior to the ammonium pulse (C) Na+-dependent recovery of cytosolic 
pH (∆pH/min) following  an ammonium pulse (D) and buffer capacity (E) in 1 
or 2 days activated DJ-1+/+ CD4+ T cells (black bars) or DJ-1-/- CD4+ T cells 
(white bars). ** indicates statistically significant difference (p<0.005) between 
DJ-1+/+ and DJ-1-/- CD4+ T cells. 
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6.2 DJ-1 deficiency enhances the mRNA and 

protein expression of NHE1 in CD4+ T cells 

Functional NHE1 was upregulated in DJ-1 deficient T cells but how DJ-1 

deficiency is affecting NHE1 at transcript or protein level is not known. Thus, 

NHE1 transcription and/or translation, quantitative RT-PCR and 

immunoblotting, respectively, were performed. As illustrated in the following 

figure, the abundance of mRNA (Fig.12 A) and protein (Fig.12 B, C) was 

significantly higher in DJ-1-/- CD4+ T cells than DJ-1+/+ CD4+ T cells. Western 

blotting of NHE1 yielded two bands. The top band was used for quantification 

(Fig.12 B, C). We also verified the presence of DJ-1 protein expression in 

CD4+ T cells in both mice strains by immunoblotting (Fig.12 B). As expected, 

DJ-1-/- CD4+ T cells did not express DJ-1 protein whereas DJ-1 was 

abundantly present in DJ-1+/+ CD4+ T cells. To find out whether NHE1 was 

expressed in the cell membrane and in mitochondria, we stained the cells with 

NHE1 antibody and visualized NHE1 in both DJ-1-/- and DJ-1+/+ CD4+ T cells 

using the confocal microscopy. As a result expression of NHE1 was higher in 

DJ-1-/- CD4+ T cells than in DJ-1+/+ CD4+ T cells, whereby NHE1 was mainly 

localized in the cell membrane (Fig.12 D). Additional experiments identified 

different NHE isoforms (Fliegel 2005) in CD4+ T cells. All NHE isoforms were 

present except NHE3 in CD4+ T cells (Fig.12 D). Thus, in summary CD4+ T 

cells express various NHE isoforms and NHE1 expression is significantly 

higher in DJ-1-/- deficient CD4+ T cells than in DJ-1+/+ CD4+ T cells. 



§	WB	data	were	kindly	provided	by	Xiaolong	Shi,	Tubingen	University.	

Effect of DJ-1 on Na+/H+ exchanger 1 (NHE1) activity in CD4+ T cells and role of NHE1 in T helper cells	 54	

 

Figure 12 DJ-1 deficiency enhances NHE1 mRNA transcript and protein 

levels in CD4+ T cells 

A. Arithmetic means ± SEM (n = 3 - 5) of NHE1 mRNA levels in DJ-1+/+ (black 
bar) and DJ-1-/- (white bar) CD4+ T cells activated in the presence of anti-CD3 
and anti-CD28 for 3 days. 
B. Original Western blots showing DJ-1, NHE1 and GAPDH protein 
abundance in DJ-1+/+ and DJ-1-/- CD4+ T cells.  
C. Arithmetic means ± SEM (n = 3 - 5) of NHE1 mRNA levels in DJ-1+/+ (black 
bar) and DJ-1-/- (white bar) CD4+ T cells activated in the presence of anti-CD3 
and anti-CD28 for 3 days. 
D. Characterisation of NHE1 in DJ-1+/+ and DJ-1-/- CD4+ T cells by confocal 
microscopy. NHE1 expression (green) and nuclear staining (DRAQ5) is shown 
in upper and lower panel for DJ-1+/+ and DJ-1-/- CD4+ T cells. NHE1 appears to 
be express mostly on cell the membrane. 
E. Expression of different NHE isoform (1-9) from DJ-1+/+ and DJ-1-/- CD4+ T 
cells activated in the presence of anti-CD3 and anti-CD28 for 3 days by 
RT-PCR. CD4+ T cells express most of the NHE isoforms expect NHE3. 
*(p<0.01), **(p<0.008) indicate statistically significant difference between 
DJ-1+/+ and DJ-1-/- CD4+ T cells. 

§ WB data were kindly provided by Xiaolong Shi, Tubingen University. 
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6.3 ROS in CD4+ T cells is upregulated in the 

absence of DJ-1  

Recently study reveals DJ-1 deficiency leads to oxidative stress (Shi, Lu 

et al. 2015). Oxidative stress may in turn stimulate expression of NHE1 (De 

Vito 2006). To uncover the link between ROS and DJ-1 in CD4+ T cells, we 

measured ROS abundance using Flow cytometry utilizing 2’,7’ –

dichlorofluorescin diacetate (DCFDA), a fluorogenic dye that measures 

hydroxyl, peroxyl and other reactive oxygen species (ROS) activity within the 

cell later deacetylated by cellular esterases to a non-fluorescent compound, 

which is later oxidized by ROS into 2’, 7’ –dichlorofluorescein (DCF). DCF is a 

highly fluorescent compound, which can be detected by fluorescence 

spectroscopy with maximum excitation and emission spectra of 495 nm and 

529 nm respectively. As illustrated in Fig.13 A, B, By detecting FL-1 

fluorescence, ROS level was indeed significantly enhanced in DJ-1-/- CD4+ T 

cells as compared to DJ-1+/+ CD4+ T cells. According to the forward scatter, 

cell volume was similar in both DJ-1-/- CD4+ T cells and DJ-1+/+ CD4+ T cells 

(Fig.13 C,D).  
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Figure 13 Enhanced ROS production but normal forward scatter in 

DJ-1-/- CD4+ T cells  
A. Representative FACS histograms depicting ROS-dependent DCFDA 
fluorescence in CD4+ T from DJ-1-/- knockout mice (DJ-1-/-, red) and their wild 
type littermates (DJ-1+/+, blue) following 3 days of activation in the presence of 
anti-CD3 and anti-CD28 (upper panel).  
B. Arithmetic means ± SEM (n = 3-5 independent experiments) of the ROS 
Geometric Mean Fluorescence (MFI) intensity in DJ-1-/- (white bars) and 
DJ-1+/+ (black bars) CD4+ T cells following 3 days of activation.  
C. Representative FACS histograms depicting forward scatter of CD4+ T from 
DJ-1-/- knockout mice (DJ-1-/-, red) and their wild type littermates (DJ-1+/+, blue) 
following 3 days of activation in the presence of anti-CD3 and anti-CD28 
(upper panel).  
D. Arithmetic means ± SEM (n = 3-5 independent experiments) of forward 
scatter of DJ-1-/- (white bars) and DJ-1+/+ (black bars) CD4+ T cells following 3 
days of activation.*(p<0.05) indicates statistically significant difference  
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6.4 Na+/H+ exchanger activity is decreased by NHE1 

inhibitor cariporide, antioxidant NAC and 

catalase 

In order to further elucidate the mechanisms achieving and regulating Na+ 

dependent realkalinization, experiments were performed in DJ-1-/- CD4+ T cells 

in the absence and presence of NHE1 inhibitor cariporide (10 µM), of 

antioxidant N-acetyl-cysteine (NAC; 10 µM) and of ROS scavenging enzyme 

catalase (10 µM). The respective original tracings are illustrated in Fig.14 A-C. 

As shown in Fig.14 D, cariporide treatment (Fig.14 D), but not NAC treatment 

(Fig.14 E) or catalase treatment (Fig.14 F) significantly reduced the pHi of 

DJ-1-/- CD4+ T cells. Na+-dependent cytosolic alkalinisation was significantly 

blunted by each, cariporide (Fig. G), NAC (Fig.14 H) and catalase (Fig.14 I). 
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Figure 14 Attenuation of NHE1 activity by cariporide, NAC and catalase 

in DJ-1-/- CD4+ T cells 

A-C. Original tracings of typical experiments as described in Fig.1 for 
determination of pHi and Na+/H+ exchanger activity in CD4+ T cells from DJ-1-/- 
mice without (left panels) and with (right panels) treatment with Cariporide (10 
µM), (A, 15 minutes), NAC (10 µM), (B, 4 hours) and catalase (10 µM), (C, 4 
hours) after 3 days of activation.  
D-F. Arithmetic means ± SEM (n = 3 - 5 independent experiments) of cytosolic 
pH prior to the ammonium pulse (pHi) in DJ-1-/- CD4+ T cells without (white 
bars) and with (grey bars) treatment with cariporide (D), NAC (E) and catalase 
(F).  
G-I. Arithmetic means ± SEM (n = 3 - 5 independent experiments) of 
Na+-dependent recovery of cytosolic pH (∆pH/min) in DJ-1-/- CD4+ T cells 
without (white bars) and with (grey bars) treatment with cariporide (10 µM) (G), 
NAC (H) and catalase (I). *(p<0.05), **(p<0.01) indicate statistically significant 
difference. 
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6.5 Cariporide, NAC and catalase reduce the ROS 

production 

As illustrated in Fig.15 A-F, treatment with cariporide (10 µM), NAC 

(10 µM), and catalase (10 µM), each significantly decreased ROS 

production in DJ-1-/- CD4+ T cells. As shown in Fig.15 G-M, cariporide and 

NAC treatment, but not catalase treatment, significantly decreased cell 

volume. 



Cariporide,	NAC	and	catalase	reduce	the	ROS	production	

Effect of DJ-1 on Na+/H+ exchanger 1 (NHE1) activity in CD4+ T cells and role of NHE1 in T helper cells	 60	

 

 

Figure 15 Impact of cariporide, NAC and catalase on ROS abundance 

and forward scatter in DJ-1-/- CD4+ T cells 

A-C. Representative FACS histograms depicting ROS-dependent DCFDA 
fluorescence in CD4+ T from DJ-1-/- knockout mice (DJ-1-/-) without (red lines) 
and with (blue lines) treatment with Cariporide (10 µM), (A, 15 minutes), NAC 
(10 µM), (B, 4 hours) and catalase (10 µM), (C, 4 hours) after 3 days of 
activation.  
D-F. Arithmetic means ± SEM (n = 3 - 5 independent experiments) of 
ROS-dependent DCFDA fluorescence in DJ-1-/- CD4+ T cells without (white 
bars) and with (grey bars) treatment with cariporide (D), NAC (E) and catalase 
(F).  
G-I. Representative FACS histograms depicting forward scatter of CD4+ T 
from DJ-1-/- knockout mice (DJ-1-/-) without (blue lines) and with (red lines) 
treatment with cariporide (G, 15 minutes), NAC (H, 4 hours) and catalase (I, 4 
hours) after 3 days of activation.  
K-M. Arithmetic means ± SEM (n = 3 - 5 independent experiments) of forward 
scatter of DJ-1-/- CD4+ T cells without (white bars) and with (grey bars) 
treatment with cariporide (K), NAC (L) and catalase (M). **(p<0.01), 
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***(p<0.001) indicate statistically significant difference. 
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6.6 Protein tyrosine kinase (PTK) inhibitor 

significantly reduces the NHE1 and ROS 

production 

 DJ-1 redox-sensitive chaperone protein may play a role in the redox 

regulation of T cell receptor (TCR) signaling. Therefore, we studied 

whether protein tyrosine kinase (PTK) activation is involved in ROS 

production and NHE activation. As a result PTK inhibitor staurosporine 

(100 nM; for 4 hours treatment after 3 days of activation) significantly 

decreased the NHE1 activity in DJ-1-/- CD4+ T cells (Fig.16 A). Further, 

ROS production was also significantly reduced after application of PTK 

inhibitor staurosporine to DJ-1-/- CD4+ T cells (Fig.16 B).  In theory, the 

link of ROS production and NHE1 activity may have resulted from Ca2+ 

influx in activated T cells. We thus performed the experiments in the 

presence and absence of a Ca2+ buffer. As a result, the buffer did not 

appreciably alter pHi and NHE1 activity (Fig.16 C). 



Protein	tyrosine	kinase	(PTK)	inhibitor	significantly	reduces	the	NHE1	and	ROS	production	

Effect of DJ-1 on Na+/H+ exchanger 1 (NHE1) activity in CD4+ T cells and role of NHE1 in T helper cells	 63	

Figure 16 Effect of protein tyrosine kinase (PTK) inhibitor 

staurosporine and extracellular free Ca2+ for pHi and NHE1 

regulation and ROS production in DJ-1-/- CD4+ T cells 

A. Original tracings of typical experiments as described in Fig.1 for 
determination of pHi and Na+/H+ exchanger activity in CD4+ T cells from DJ-1-/- 
mice without (left panels) and with (right panels) treatment with Staurosporine 
(100 nM) (4 hours), after 3 days of activation. Arithmetic means ± SEM (n = 3 
independent experiments) of pHi and pHi/minutes (NHE activity) of DJ-1-/- 
CD4+ T cells without (white bars) and with (grey bars) treatment with 
Staurosporine. ***(p<0.001) indicate statistically significant difference. 
B. Arithmetic means ± SEM (n = 3 independent experiments) of 
ROS-dependent DCFDA fluorescence in DJ-1-/- CD4+ T cells without (white 
bars), Ca2+ free buffer (grey bars) and treatment with Staurosporine (dark grey 
bars). ***(p<0.001) indicate statistically significant difference. 
C. Original tracings of typical experiments as described in Fig.1 for 
determination of pHi and Na+/H+ exchanger activity in CD4+ T cells from DJ-1-/- 
mice with (left panels) and without (right panels) Ca2+, after 3 days of activation. 
Arithmetic means ± SEM (n = 3 independent experiments) of pHi and 
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pHi/minutes (NHE activity) of DJ-1-/- CD4+ T cells with (white bars) and without 
(grey bars) Ca2+. 
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6.7 HCO3
- has no effect on NHE1 production 

 Besides NHE, other exchanger or transporters such as Cl-/HCO3
- or 

Na+-HCO3
- may be involved in pHi regulation in CD4+ T cells. Abnormalities in 

pHi regulation by these mechanisms could lead to immune dysfunctions. As 

there is an evidence that the Ae2a gene or Slc4a4 mRNA (an acid loader with 

electroneutral and Na+ independent Cl-/HCO3
- anion exchanger) in CD8+ T 

cells is involved in pHi regulation by exchanging bicarbonate for chloride 

across the plasma membrane in an electroneutral fashion (Concepcion, Salas 

et al. 2014). We measured the mRNA expression level of SLC4a1, SLC4a2 

and SLC4a4 by q-RT-PCR for DJ-1+/+ and DJ-1-/- CD4+ T cells and found no 

significant difference (Fig.17 A). Further, we performed twin NH4Cl pre-pulse 

protocol for DJ-1-/- and DJ-1+/+ CD4+ T cells showing the time scale of the 

experiments in both HEPES and HCO3
-, however, we did not observe any 

significant difference for pHi in HEPES and HCO3
- in 2 pulse chase 

experiments (Fig.17 B). 
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Figure 17 HCO3
- has no impact on pHi and NHE1 regulation in DJ-1-/- 

CD4+ T cells 

A. mRNA expression of SLC4a1, SLC4a2 and SLC4a4 by q-RT-PCR for 
DJ-1+/+ and DJ-1-/- CD4+ T cells (n = 3 independent experiments). 
B. Original tracings of typical experiments for determination of pHi in CD4+ T 
cells from DJ-1+/+ and DJ-1-/- mice with HEPES (Na+ free) and HCO3

- solutions 
(n = 3 independent experiments). 
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DISCUSSION 1 

This part of the thesis described a novel functional role of the DJ-1 protein, 

i.e. the regulation of NHE1 activity and ROS production in CD4+ T cells. These 

findings are the first to uncover enhanced Na+/H+ exchanger 1 activity in DJ-1 

deficient CD4+ T cells, which is evident with no treatment with cytokines (IL-2, 

IFN- ), growth factors (EGF, angiotensin II) and hormones (glucocorticoids) 

(Chang, Wang et al. 2010, Voelkl, Pasham et al. 2013, Chatterjee, Schmidt et 

al. 2014, Qadri, Su et al. 2014). The impact of DJ-1 on NHE1 expression is 

somehow evidence to the effect of DJ-1 on NHE1 activity. It is proved follow 

higher abundance of NHE1 mRNA levels and NHE1 protein abundance. NHE1 

as a transmenberane protein is exist in the plasma membrane of most 

mammalian cells and described as the housekeeping isoform of NHE family 

(Fliegel 2005, De Vito 2006). Other NHE isoforms such as NHE6 and NHE7 

are exclusively found in intracellular organelles such as mitochondria and 

trans-Golgi (De Vito 2006). In CD4+ T cells, the NHE1 protein is mostly 

localized in the plasma membrane, as apparent from confocal microscopy. 

Localization to other structures cannot be discounted, nonetheless. 

 T-cell receptor initiation by lectin, antibodies and cytokines leads to the 

activation of the amiloride-sensitive NHE activity (Lacroix, Poet et al. 2004, 

Fliegel 2005, De Vito 2006, Chang, Wang et al. 2010). To our best knowledge, 

the expression of the NHE1 in T cells was transcendent compared to other 

NHE isoforms, at least compare with NHE2 and NHE3. In our study we also 

characterized all NHE isoforms (1-9) by RT-PCR and we also discovered 

comparative results as beforehand depicted (Wakabayashi, Shigekawa et al. 

1997, Lacroix, Poet et al. 2004, Fliegel 2005, De Vito 2006, Chien, Liao et al. 

2007, Chang, Wang et al. 2010, Odunewu and Fliegel 2013). NHE5, NHE6, 

NHE8 and NHE9 were also expressed in wild type CD4+ T cells. However, 
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DJ-1-/- CD4+ T cells predominantly expressed NHE1, which is transparently 

evidenced by the PCR gel imaging. Previous findings suggested that the DJ-1 

protein is associated in the control of ROS production (Billia, Hauck et al. 2013, 

Shi, Lu et al. 2015). Thus, the higher NHE1 mRNA and protein as well as 

Na+/H+ exchanger activity could have been due to enhanced ROS production 

in DJ-1-/- CD4+ T cells. The impact of ROS production on Na+/H+ exchanger 

activity is apparent from the sharp decrease of Na+/H+ exchanger activity 

following treatment of the cells with antioxidant NAC, and in the presence of 

the ROS scavenging enzyme catalase. DJ-1 redox-sensitive chaperone 

protein may play a role in the redox regulation of TCR signaling.  Our data 

suggested that PTK is involved in regulation of NHE1 production as PTK 

inhibitor staurosporine blocks the NHE1 activity as well as ROS production in 

DJ-1-/- CD4+ T cells. This observation suggests that DJ-1 plays a role in the 

regulation of TCR signaling. Removal of extracellular Ca2+ had, however, no 

effect on pHi and NHE1 activity in DJ-1-/- CD4+ T cells. 

Beyond its role in the regulation of cytosolic pHi, Na+/H+ exchanger 

activity also participates in the regulation of cell volume, which involves parallel 

activity of Na+/H+ and Cl-/HCO3
- exchanger (Boyarsky, Ganz et al. 1988, Watts, 

George et al. 2013, Lee, Mele et al. 2014). The carriers mediate the entry of 

NaCl in exchange for H+ and HCO3
-, which are replenished from CO2 and are 

thus not osmotically relevant (Lang, Busch et al. 1998, Hoffmann, Lambert et 

al. 2009). Increase of cell volume in a timely fashion is a prerequisite for cell 

proliferation and stimulation of cell proliferation is paralleled by a shift of the 

Na+/H+ exchanger cell volume regulatory set point to larger volumes (Lang, 

Busch et al. 1998, Allantaz, Cheng et al. 2012, Feske, Skolnik et al. 2012, 

Chatterjee, Schmidt et al. 2014). However, we did not observe significant 

differences of cell volume between DJ-1+/+ and DJ-1-/- CD4+ T cells. Since the 

formation of ROS is paralleled by activation of NHE1, it is necessary to study 
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whether the link of DJ-1 to responses on ROS production and NHE1 activity 

increase are dependent on intracellular calcium elevation or Ca2+ influx in 

activated T cells. Furthermore, there is a possibility that other acid or base 

transporting carriers or exchangers are expressed to control the pHi in DJ-1-/- 

CD4+ T cells such as Cl-/HCO3
- or Na+-HCO3

-. However, we did not observe 

any significant difference in pHi after the twin NH4Cl pre-pulse experiments 

performed in the presence of either HEPES or HCO3
-. 

According to previous studies, progesterone induces cytosolic 

acidification in human T cells (Chien, Liao et al. 2007, Chang, Wang et al. 

2010). These observations lead to the conclusion that inhibition of NHE1 

activity by progesterone contributes to acidification in human T cells. Further, 

the expression of NHE1 mRNA was also increased in human lymphocytes 

during metabolic acidosis (Lacroix, Poet et al. 2004, Odunewu and Fliegel 

2013). It is well known that cytosolic pH modifies the ROS production, which 

may regulate the NHE1 activity or conversely ROS is activating the NHE1 

activity (Meima, Webb et al. 2009, De Giusti, Caldiz et al. 2013, Salker, Zhou 

et al. 2015, Zhou, Pasham et al. 2015). A recently published study also 

suggested that regulatory T cells also have enhanced production of ROS in 

DJ-1-/- mice (Singh, Chen et al. 2015). The enhanced ROS production in DJ-1 

deficient CD4+ T cells strengthens the idea that a relationship occurs between 

DJ-1/ROS/NHE1 activities. According to observations of others (Lim and 

Zhang 2013, Parsanejad, Bourquard et al. 2014, Shi, Lu et al. 2015) and us 

(Singh, Chen et al. 2015), we suggest that the DJ1-ROS-NHE1 relationship 

appears to be general mechanism in other cell types, such as neurons, 

muscles etc. Possibly DJ1 dysfunction can be rescued by down-regulating 

NHE1 using pharmacological inhibitors. It is tempting to speculate that NHE1 

inhibitors could be used for the treatment of Parkinson’s disease. 

These data suggest that DJ-1 deficient CD4+ T cells are prone to 
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upregulate NHE1 due to ROS production during the activation of T cells with 

anti-CD3 and anti-CD28 antibodies. The significance of Na+/H+ exchanger 

activity for ROS production is illustrated by the observation that ROS 

production is inhibited by NHE1 blocker cariporide. In conclusion, this study 

discloses a novel impact of DJ-1 on ROS production, NHE1 expression, and 

NHE1 activity in activated CD4+ T cells.  

In the future, it is worthy to investigate a role of various of ion channels 

like NHE, AE, NBC, NCX, and MCT in the universal physiological network by 

alteration of DJ-1 in nervous immune cells like Neuroglia utilizing ratio-matric 

imaging system which may contribute to understand more about the role of 

physiological factors in DJ-1 related Parkinson diagnose and treatment.  
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Part2: Potential role of NHE1 activity in T helper 9 (Th9) 

cells:  
In this chapter, I have described how pH and NHE1 activity are upregulated in 
various Th cells subsets and how NHE-1 could be affecting the development 
and functions of Th9 cells in vitro. 
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RESULTS: 
 

6.8 Characterisation of Th cells subsets at mRNA 

and protein level 

In this part of thesis, I intend to characterize Th cells subsets and iTregs, 

naïve CD4+ T cells were differentiated into Th1, Th2, Th9, Th17 and iTregs in 

presence of various cytokines recombinant proteins and antibodies described 

in methods. As shown in the following Fig.18 A, we measured the respective 

cytokines and transcription factors of particular Th cells subsets and iTregs, 

respectively, by flow cytometry to identify whether cells are differentiated 

appropriately into particular Th cells lineage. Further, we performed q-RT-PCR 

for Th cells subsets to explore whether Th cells subsets are truly unique 

(Fig.18 B). IFN-  is produced by the majority of Th1 cells, but not by other Th 

cells subsets, while IL-4 is produced by Th2 cells but not by other Th cells. IL-9 

is largely produced by Th9 cells. However, a little amount of IL-9 is also 

produced by iTregs and Th2 cells. Th17 cells produce mainly IL-17 (Fig.18 B). 

These results suggested that our naïve T cells were correctly differentiated 

into various Th cells subsets and iTregs. 
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Figure 18 Differentiation of Th cells and iTregs 
A. Naïve T cells were differentiated into Th cells and iTregs as described in 
methods and stained for corresponding cytokines. Each Th cells subsets is 
specific for respective cytokines and transcription factor (Th1; IFN-γ, Th2; IL-4, 
Th9; IL-9, Th17; IL-17A and iTregs; Foxp3) expression at protein level. FACS 
plot shown here is representative for 5-6 independent experiments. 
B. Naïve T cells were differentiated in Th cells and iTregs as described in 
methods sections and RNA was isolated to perform q-RT-PCR. Each Th cells 
subsets is specific for respective cytokines and transcription factor (Th1; IFN-γ, 
Th2; IL-4, Th9; IL-9, Th17; IL-17A and iTregs; Foxp3) expression at transcript 
level.  
§ mRNA and Protein data were kindly provided by Dr. Yogesh Singh, 
Tubingen University. 
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6.9 NHE1 expression in Th cells subsets 

Transcript levels of NHE1 were quantified in various Th cells subsets and 

iTregs by q-RT PCR. NHE1 mRNA transcript levels were significantly higher in 

Th9 cells than in Th0, other Th cells subsets (Th1, Th2 and Th17) and iTregs 

(Fig.19 A). To confirm this finding, we measured the NHE1 protein by 

immunoblotting and found very similar results as those of transcript levels 

(Fig.19 B). Similar to transcript levels, NHE1 protein levels were higher in Th9 

cells than in any other Th cells subsets and iTregs. 
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Figure 19 NHE1 expression in Th cells subsets and iTregs at mRNA and 

protein level 
A. Naïve T cells were differentiated in Th cells and iTregs as described in 
methods sections and RNA was isolated for q-RT-PCR quantifying NHE1 
transcript levels. Th9 cells have significantly higher NHE1 RNA expression 
than other Th cells subsets and iTregs. Arithmetic means ± SEM (n = 5 
independent experiments) of the Th cells mRNA level. *indicates statistically 
significant difference (*p<0.05). 
B. NHE1 protein expression in Th cells subsets and iTregs. NHE1 expression 
was statistically significantly higher in Th9 than in other Th cells subsets and 
iTregs. Arithmetic means ± SEM (n = 5 independent experiments) of the NHE1 
protein level in Th cells. *indicates statistically significant difference (*p<0.05). 
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6.10 pHi and NHE1 activity in Th cells 

In order to test, whether enhanced NHE1 expression in Th9 cells resulted in 

enhanced Na+/H+ activity and alkaline cytosolic pH (pHi), pHi was estimated 

from BCECF fluorescence using Fluorescence Microscopy. We found that Th0, 

Th2 and iTregs had similar pHi values (Fig.20 A,B). To our surprise, Th1 cells 

had the lowest pHi compared with all Th cells subsets including iTregs (Fig.20 

A,B). In contrary, Th9 had significantly higher pHi than any of the other Th cells 

subsets including iTregs (Fig.20 A,B). Na+/H+ activity was measured utilizing 

the ammonium pulse technique. In this method, addition of 20 mM NH4Cl 

replacing NaCl in the superfusate was followed by NH3 entry into the cells with 

subsequent transient cytosolic alkalinisation due to binding of H+ to NH3 thus 

forming NH4
+. Subsequent removal of NH4Cl was followed by cytosolic 

acidification due to NH3 exit with cytosolic dissociation of NH4
+ and retention of 

H+. In the absence of Na+ realkalinization was negligible in all Th cells subsets 

as well as iTregs. Thus, none of the Th cells subsets and iTregs expressed an 

appreciable Na+ independent H+ extruding transport system. However, the 

subsequent addition of Na+ was followed by rapid cytosolic realkalinization, an 

observation pointing to NHE activity (Fig.20 A,C). NHE activity was 

significantly higher in Th9 cells than in other Th cells and iTregs (Fig.20 A,C). 

Thus, these data strongly suggested NHE1 could be involved in Th9 cells 

development or functions. 
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Figure 20 pHi and NHE1 activity in Th cells subsets and iTregs 
A. Alterations of cytosolic pH (pHi) following an ammonium pulse in Th cells 
subsets and iTregs. To load the cells with H+, 20 mM NH4Cl was added and 
Na+ removed (replaced by NMDG) in a first step, NH4Cl removed in a second 
step, Na+ added in a third stem and nigericin (pH0 7.0) applied in a fourth step 
to calibrate each individual experiment. Original tracing of typical experiments 
for pHi measurement and Na+/H+ exchanger activity in Th cells subsets and 
iTregs 
B. Arithmetic means ± SEM (n = 3-5 independent experiments) of cytosolic 
pH prior to the ammonium pulse (pHi) in Th cells subsets and iTregs. 
*indicates statistically significant difference (*p<0.05). 
C. Arithmetic means ± SEM (n = 3-5 independent experiments) of 
Na+-dependent recovery of cytosolic pH (ΔpH/min) in Th cells subsets and 
iTregs. *indicates statistically significant difference (*p<0.05). 
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6.11 NHE1 activity is dependent on Akt signalling 

in Th9 cells 

Previous studies have suggested that AKT signalling is involved in NHE1 

regulation (Wu, Khan et al. 2004, Meima, Webb et al. 2009, Abu Jawdeh, 

Khan et al. 2011). Akt/mTOR signalling events are further involved in the 

development of Th cells subsets (Pierau, Engelmann et al. 2009, Lee, 

Gudapati et al. 2010, Kim, Sklarz et al. 2013) and iTregs (Haxhinasto, Mathis 

et al. 2008). However, the role of Akt/mTOR signalling has not been defined in 

Th9 cells development. To identify the possible role of Akt and NHE1 in Th9 

cells development, we explored the phosphorylation of Akt at S473 site and 

found that Th9 cells have significantly higher rates of Akt phosphorylation than 

the other Th cells subsets and iTregs (Fig.21 A). Therefore, we reasoned that 

increased phosphorylation level of Akt leads to enhanced expression of NHE1 

in Th9 cells compared with other Th cells subsets including iTregs. To explore 

whether Akt influenced NHE1 expression, we differentiated naïve T cells into 

Th9 cells in presence and absence of Akt1/2 inhibitor and measured NHE1 

activity. As shown in Fig, B, Akt inhibition significantly decreased NHE1 activity. 

Moreover, inhibition of Akt reduced the expression of IL-9 (Fig.21 C). Those 

data reveal that AKT is crucial for the up-regulation of NHE1 activity and IL-9 

production in Th9 cells. 
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Figure 21 Regulation of NHE1 activity and IL-9 production by Akt in Th9 

cells 
A. Characterisation of Akt in Th cells subsets and iTregs. Phosphorylation of 
Akt at Ser 473 is significantly higher in Th9 cells compared to iTregs. 
Arithmetic means ± SEM (n = 5 independent experiments) of the Th cells 
protein level. *indicates statistically significant difference (*p<0.05). 
B. Naïve T cells were differentiated into Th9 cells with and without Akt1/2 
inhibitor (0.3µM) and pHi as well as NHE1 activity measured. Original tracing 
of typical experiment for pHi measurement and Na+/H+ exchanger activity in 
Th9 cells and after treatment of Akt1/2 inhibitor. Arithmetic means ± SEM (n = 
3-4 independent experiments) of cytosolic pH prior to the ammonium pulse 
(pHi)  and Na+-dependent recovery of cytosolic pH ( pH/min) in Th9 cells 
with and without Akt1/2 inhibitor. *indicates statistically significant difference 
(*p<0.05). 
C. A representative FACS plot showing differentiated Th9 cells with and 
without Akt1/2 inhibitor (0.3 µM). Data shown here are representative of n=3 
experiments.*indicates statistically significant difference (***p<0.0005). 
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6.12 NHE1 is directly involved in regulation of IL-9 

production 

To uncover the importance of NHE1 in Th9 cells functions and development, 

we used NHE1-siRNA to knock-down NHE1 in Th9 cells. The transfection 

efficiency of siRNAs was tested using control siRNA which was labelled with 

FAM dye. FAM fluorescence was measured by flow cytometry. As a result 

more than 90% CD4+ T cells were positive for FAM dye (green colour) (data 

not shown). After siRNA treatment, pH and NHE1 activity were measured 

using BCECF. As a result knock-down of NHE1 drastically reduced the activity 

of the Na+/H+ exchanger (Fig. 22 A, C) and decreased intracellular pH (Fig 22 

A, B). NHE1 knock-down further reduced IL-9 production (Fig.22 D) and the 

ability of Th9 cells becoming Tregs (Fig.22 E). Thus, NHE1 is apparently an 

essential component of Th9 cells development. 
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Figure 22 Regulation of Th9 cells and iTregs development by NHE1  
A. Alterations of cytosolic pH (pHi) following an ammonium pulse in 
transfected Th9 cells with control and NHE1 siRNAs. To load the cells with H+, 
20 mM NH4Cl was added and Na+ removed (replaced by NMDG) in a first step, 
NH4Cl removed in a second step, Na+ added in a third step and nigericin (pH0 
7.0) applied in a fourth step to calibrate each individual experiment. Original 
tracings of typical experiments for pHi measurement and Na+/H+ exchanger 
activity in Th cells subsets and iTregs 
B. Arithmetic means ± SEM (n = 3-5 independent experiments) of cytosolic 
pH prior to the ammonium pulse (pHi) in siRNA control and siRNA NHE1 Th9 
cells. *indicates statistically significant difference (*p<0.05). 
C. Arithmetic means ± SEM (n = 3-5 independent experiments) of 
Na+-dependent recovery of cytosolic pH (ΔpH/min) in siRNA control and 
siRNA NHE1 Th9 cells. *indicates statistically significant difference (*p<0.05). 
D. Differentiation of Th9 cells transfected with control and NHE1 siRNAs. At 
day 4 day, Th9 cells were activated with PMA, Ionomcyin and Brefeldin for 2 
hours and stained for IL-9 and Foxp3. Representative FACS plots show the 
Th9 differentiation after knock-down of NHE1. 
E. Arithmetic means ± SEM (n = 3-5 independent experiments) of IL-9 and 
Foxp3 expression in siRNA control and siRNA NHE1 Th9 cells. *indicates 
statistically significant difference (***p<0.001, *p<0.05). 
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DISCUSSION2 

In this part of thesis, to understand more about how NHE function in the 

Th cells pro-activation process, the characteristics of NHE from several Th 

cells subsets (Th0, Th1, Th9 and Th17) and suppressive T cell were further 

tested. The present study reveals a totally novel importance of intracellular pH 

regulation and Na+/H+ exchanger activity in development and functions of Th 

cells subsets, in particular of Th9 and iTregs.  

Past reports shows that IL-2 signalling can prompt the NHE1 activity in 

human T cells (GORDON B. MILLS 1986). In our study, we also got 

comparable results as described earlier in murine T cells (Chien, Liao et al. 

2007, Chang, Wang et al. 2010). Further experiments suggested that among 

Th cells subsets, variety of intracellular pH, which is governed by Na+/H+ 

exchanger activity of specific Th cells. Na+/H+ exchanger activity is highly 

sensitive to intracellular pH and is switched off upon cytosolic alkalinisation 

(Wakabayashi, Shigekawa et al. 1997). Th9 cells had the highest and Th2 

cells the lowest Na+/H+ exchanger activity compared to other in vitro induced T 

helpers (Th0, Th1 and Th17) and suppressive T cell. Up-regulation of Na+/H+ 

exchanger activity in Th9 cells enhances the extrusion of H+ thus contributing 

to the maintenance of alkaline pHi. Moreover, NHE1 mRNA and protein levels 

were higher in Th9 cells than in any other Th cells and iTregs.  

In addition, this study uncovered the important regulation role of Akt on 

NHE1 activity in Th9 cells. Akt is known to govern the signalling for other Th1, 

Th2, Th17 cells subsets and iTregs. However, the role of Akt has not been 

defined in Th9 cells. We found that Th9 cells had the highest level of Akt 

phosphorylation. This could be due to high Rictor activity in Th9 cells 

compared with iTregs. This higher activity of Akt could affect the NHE1 activity 

in Th9 cells as previous studies suggested a role of Akt in regulating the NHE1 
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activity (Wu, Khan et al. 2004, Meima, Webb et al. 2009, Zhou, Pasham et al. 

2015). Akt could also be required for up-regulation of IL-9 cytokine expression, 

as Akt inhibition decreased the production of IL-9 in Th9 cells. It appears that 

Akt is critically important for regulating function and development of Th9.  

GITR signalling has been shown as a tool of regulating the Th9/iTregs 

balance in cancer (Kim, Kim et al. 2015, Xiao, Shi et al. 2015). Our studies 

suggest that NHE1 may have the instrumental effect for the Th9/iTregs axis 

associated with GITR signalling. From the analysis of our siRNA knock-down 

data it is tempting to speculate that NHE1 is essential for Th9/iTregs axis in 

cancer patients. Tumor cells generate lactate thus leading to a highly acidic 

environment (Cairns 2015). An adequate immune response against tumor 

cells requires survival of the respective immune cells in the acidic environment. 

Enhanced NHE1 activity may indeed confer some protection against an acidic 

environment. On the other hand, cytosolic alkalinisation is known to stimulate 

glycolysis (Boiteux and Hess 1981, Heinrich, Melendez-Hevia et al. 1999, 

Tennant, Duran et al. 2010), which may support energy supply to Th9 cells. It 

can be explained by the enhanced glycolysis in Th9 cells contributes to 

deprivation of neighbouring cancer cells from glucose. Clearly, Unmistakably, 

extra trial exertion is required to characterize the role of NHE1 activity for Th9 

survival and function.  

In summary, we have shown that NHE1 is required for the development 

of Th9 cells. These data will help to understand the physiological function of 

Th9 cells. Thus it is tempting to speculate that NHE1 could contribute to the 

cancer metabolism checkpoint therapy. 

In the future, it would be very interesting to investigate especially how 

the high NHE activity is involved in the regulation of Th9 cell functions in vivo. 

For example, as a key member of antitumor immune system, it is worthy to test 

the role of high NHE activity in assistance to Th9 function in the tumour niche. 
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SUMMARY 

To sum up both the result chapters, this thesis described that DJ-1 

protein is very crucial to maintain the ROS production and NHE1 activity. In 

addition to this, further NHE1 is also involved in the development and functions 

of Th9 cells. This thesis, elucidate the novel role of NHE1 in CD4+ helper T 

cells and potential implications of NHE1 in Parkinson’s disease as well as in 

cancer pathogenesis.   
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