
 

Suicidal Erythrocyte Death - Regulation by the                    

G-Protein Subunit Gαi2 and occurrence in                       

Heart Failure and Bronchogenic Carcinoma 

 

Suizidaler Erythrozytentod – Regulation durch die              

G-Protein Untereinheit Gαi2 sowie Auftreten bei                 

Herzinsuffizienz und Bronchialkarzinom 

 

Dissertation 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Eberhard Karls Universität Tübingen 

zur Erlangung des Grades eines Doktors der Naturwissenschaften 

(Dr. rer. nat.) 

 

vorgelegt von 

Rosi Bissinger 

aus  

Arad, Rumänien 

Tübingen, 2016 



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag der mündlichen Qualifikation: 22.07.2016 

Dekan:     Prof. Dr. Wolfgang Rosenstiel 

1.Berichterstatter   Prof. Dr. Florian Lang 

2.Berichterstatter    Prof. Dr. Friedrich Götz 

 

  



3 

 

1 CONTENTS 

1 CONTENTS ................................................................................................................. 3 

2 ABBREVIATIONS ......................................................................................................... 6 

3 SUMMARY/ZUSAMMENFASSUNG ........................................................................... 10 

4 INTRODUCTION ....................................................................................................... 15 

4.1 Physiological functions of erythrocytes ...................................................................................... 15 

4.2 Erythropoiesis ............................................................................................................................. 15 

4.3 Composition of the erythrocyte membrane ................................................................................ 16 

4.4 Eryptosis ..................................................................................................................................... 17 

4.4.1 Mechanisms of eryptosis ......................................................................................................... 18 

4.4.2 Eryptosis in human diseases .................................................................................................... 19 

4.5 Anemia ....................................................................................................................................... 20 

4.6 Lung Cancer ................................................................................................................................ 22 

4.6.1 Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) ................................ 22 

4.6.1.1 Lung Cancer Staging ....................................................................................................... 23 

4.6.1.2 Treatment of Lung Cancer ............................................................................................. 24 

4.6.2 Anemia in Cancer .................................................................................................................... 25 

4.6.2.1 Anemia as an independent prognostic factor ................................................................ 25 

4.7 Cardiovascular diseases .............................................................................................................. 26 

4.7.1 Heart failure ............................................................................................................................ 26 

4.7.1.1 Anemia in heart failure .................................................................................................. 27 

4.8 G-protein coupled receptors (GPCRs) ......................................................................................... 31 

4.8.1 Importance of GPCRs............................................................................................................... 31 

4.8.1.1 Structure of GPCRs ......................................................................................................... 31 

4.8.1.2 GPCR signaling ............................................................................................................... 32 

4.8.1.3 GPCRs in erythrocytes .................................................................................................... 34 



4 

 

5 OBJECTIVE OF THE STUDY ........................................................................................ 35 

6 MATERIALS & METHODS ......................................................................................... 36 

6.1 Eryptosis in patients ................................................................................................................... 36 

6.1.1 Recruitment of patients with lung cancer ............................................................................... 36 

6.1.2 Recruitment of patients with acute heart failure .................................................................... 36 

6.1.3 Erythrocyte isolation, solutions and measurements ............................................................... 37 

6.1.3.1 Isolation of erythrocytes ................................................................................................ 37 

6.1.3.1.1 Ringer solution .......................................................................................................... 37 

6.1.3.1.2 Annexin Wash Buffer ................................................................................................ 38 

6.1.4 Flow Cytometry ....................................................................................................................... 38 

6.1.4.1 Measurement of annexin V binding .............................................................................. 39 

6.1.4.2 Determination of erythrocyte forward scatter .............................................................. 40 

6.1.4.3 Estimation of intracellular Ca2+ of erythrocytes............................................................. 40 

6.1.4.4 Determination of reticulocytes ...................................................................................... 40 

6.1.4.5 Measurement of intracellular ceramide of erythrocytes .............................................. 41 

6.1.4.6 Estimation of reactive oxygen species (ROS) ................................................................. 42 

6.1.4.7 Confocal microscopy and immunofluorescence ............................................................ 43 

6.1.4.8 Plasma measurements ................................................................................................... 43 

6.2 Eryptosis in mice ......................................................................................................................... 44 

6.2.1 Gαi2+/+ and Gαi2-/-  mice .......................................................................................................... 44 

6.2.1.1 Blood parameters and erythrocyte isolation ................................................................. 44 

6.2.1.2 Determination of reticulocytes, annexin V binding, forward scatter and Fluo3 
fluorescence ...................................................................................................................................... 45 

6.2.2 May-Grünwald staining ........................................................................................................... 45 

6.2.3 Triggering of suicidal death of mouse erythrocytes by different stimulators ......................... 45 

6.2.3.1 Hyperosmotic solution ................................................................................................... 45 



5 

 

6.2.3.2 C6 Ceramide and Sphingomyelinase .............................................................................. 46 

6.2.4 Confocal microscopy and immunofluorescence ..................................................................... 47 

6.2.5 Immunoblotting....................................................................................................................... 47 

6.2.6 Determination of the osmotic resistance ................................................................................ 48 

6.2.7 Statistics .................................................................................................................................. 48 

7 RESULTS ................................................................................................................... 49 

7.1 Eryptosis in patients ................................................................................................................... 49 

7.1.1 Eryptosis in lung cancer ........................................................................................................... 49 

7.1.2 Eryptosis in acute heart failure ............................................................................................... 63 

7.2 Eryptosis in mice ......................................................................................................................... 72 

7.2.1 Role of Gαi2 in erythrocytes .................................................................................................... 72 

8 DISCUSSION ............................................................................................................. 81 

8.1 Eryptosis in patients ................................................................................................................... 81 

8.1.1 Eryptosis in lung cancer ........................................................................................................... 81 

8.1.2 Eryptosis in acute heart failure ............................................................................................... 86 

8.2 Eryptosis in mice ......................................................................................................................... 89 

8.2.1 Role of Gαi2 in eryptosis ......................................................................................................... 89 

9 REFERENCES ............................................................................................................ 93 

10 ACKNOWLEDGEMENT ........................................................................................... 116 

11 LIST OF PUBLICATIONS........................................................................................... 118 

 

 

  



6 

 

2 ABBREVIATIONS 

α Alpha 

ACEI Angiotensin converting enzyme inhibitor 

AHF Acute Heart Failure 

AJCC American Joint Committee on Cancer 

AMP Adenosine monophosphate 

AMPK AMP-activated protein kinase 

ANOVA Analysis of variance 

APC Adenomatous-polyposis-coli 

ARA Aldosterone receptor antagonist 

ARB Angiotensin receptor blocker 

ATP Adenosine triphosphate 

a.u. Arbitrary units 

AWB Annexin Wash Buffer 

β Beta 

BD Becton Dickinson 

BHK Baby Hamster Kidney 

BSA Bovine Serum Albumin 

°C Celsius 

C57BL6 C57 black 6 

Ca2+ Calcium 

CaCl2 Calciumchloride 

cAMP Cyclic adenosine monophosphate 

CAV Cyclophosphamide, adriamycin and       

vincristine 

cGMP Cyclic guanosine monophosphate 

CK1α Casein Kinase 1 alpha 

CKD Chronic Kidney Disease 

Cl- Chloride 

CNS Central Nervous System 

C-terminus Carboxy-terminus 

CVD Cardiovascular disease 

CXCL16/SR-PSOX Chemokine (C-X-C motif) ligand 

16/Scavenger Receptor that binds phos-

phatidylserine and oxidized lipoprotein 

DNA Deoxyribonucleic acid 

dl Deciliter 

DCF 2´7´ dichlorofluorescin 

DCFDA 2´7´ dichlorofluorescin diacetate 

ECL Enhanced chemiluminescence 

ED-SCLC Extended Disease Small Cell Lung    

Cancer 

EDTA Ethylenediaminetetraacetic acid 

e.g. Exempli gratia; for example 

EP Etoposide platin 



7 

 

EPO Erythropoietin 

EpoR Erythropoietin receptor 

ESA Erythropoiesis stimulating agent 

FACS Fluorescence-activated cell sorting 

Fig Figure 

FITC Fluorescein isothiocyanate 

fl Femtoliter 

FL Fluorescence channel 

FLUOS 6-carboxy-fluorescein-N-

hydroxysuccinimide 

FSC Forward Scatter 

γ Gamma 

GDP Guanosine diphosphate 

GTP Guanosine triphosphate 

g Gram 

g Gravity 

G-protein Guanine nucleotide-binding protein 

GPCR G-Protein coupled receptor 

GAPDH Glyceraldehyde-3-phosphate                

dehydrogenase 

h Hour 

Hb Hemoglobin 

HF Heart Failure 

HEPES 32 N-2-hydroxyethylpiperazine-N-2-

ethanesulfonic acid 

ID Iron deficiency 

i.e. Id est; that is 

Ig Immunglobuline  

IL Interleukin  

IVC Individually ventilated cage 

JAK3 Janus-activated kinase 3 

K+ Potassium 

KCl Potassium chloride 

kDa Kilodalton 

KH2PO4 Monopotassium phosphate 

LC Lung cancer 

LCC Large cell carcinoma 

LD-SCLC Limited disease small cell lung cancer  

LCNEC Large cell neuroendocrine carcinoma 

LV Left ventricular 

LVEF Left ventricular ejection fraction 

LVF Left ventricular failure 

MAPK Mitogen-activated protein kinase 

MCH Mean Corpuscular Hemoglobin 

MCHC Mean Corpuscular Hemoglobin             

Concentration 



8 

 

MCV Mean Corpuscular Volume 

MgSO4 Magnesium sulfate 

min Minute 

ml Milliliter 

mM Millimolar 

MSK1/2 Mitogen-and stress-activated kinases 1 

and 2 

n Number 

NaCl Sodium chloride 

NaOH Sodium hydroxide 

Na2HPO4 Disodium phosphate 

Na3VO4 Sodium orthovanadate 

NaF Sodium fluoride 

nm Nanometer 

NSCLC Non-small cell lung cancer 

N-terminus Amino-terminus 

NYHA  New York Heart Association               

PAGE Polyacrylamide gel electrophoresis 

PAK2 Kinase p21-activated kinase 2 

Pat Patient 

PBS Phosphate-buffered saline 

PGE2 Prostaglandin E2 

pH Lat. Pondus Hydrogenii  

PKC Protein Kinase C 

PLC Phosphatidylinositol phospholipase C 

PS Phosphatidylserine 

PVDF Polyvinylidene fluoride 

RBC Red blood cell 

Retic-COUNT 1-methyl-4[(3-methyl-2(3H)-

benzothiazolylidine) methyl]-

quinolinium 4-methyl benzene sulfonate 

(Thiazole Orange) 

RGS Regulators of G-protein signaling 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RPM Rotations per minute 

RT Room temperature 

RV Right ventricular 

RVF Right ventricular failure 

SCC Squamous cell carcinoma 

SCLC Small cell lung cancer 

SDS Sodium dodecyl sulfate 

SDS-PAGE SDS polyacrylamide gel electrophoresis 

SEM Standard error of mean 

SPF Specified pathogen-free 

SSC Side scatter 



9 

 

TBS-Tween Tris buffered saline, with Tween 

TM Transmembrane 

TNF Tumor necrosis factor  

TNM Tumor Node Metastasis 

Tris-HCl Tris (hydroxymethyl)-aminomethane-   

hydrochloric acid 

TRPC6 Transient receptor potential channel 6 

µg Microgram 

UICC Union International for Cancer Control 

µl Microliter 

µm Micrometer 

µM Micromolar 

U/ml Units per milliliter 

VTE Venous thromboembolism 

WHO World Health Organization 

 

  



10 

 

3 SUMMARY/ZUSAMMENFASSUNG 

Suicidal erythrocyte death, also called “eryptosis” is a specialized type of cell death that 

erythrocytes can undergo prior to their senescence. Several xenobiotics, endogenous 

mediators and diseases trigger eryptosis, a process, characterized by morphological 

changes such as erythrocyte cell membrane scrambling and cell shrinkage. Mechanisti-

cally, eryptosis is triggered by increased intracellular Ca2+ concentration, which is, in 

turn, elicited by enhanced Ca2+ entry via non-selective cation channels. Enhanced cyto-

solic Ca2+ activity stimulates scramblases resulting in the translocation of phosphatidyl-

serine (PS) to the erythrocyte membrane. This phenomenon also results in the activation 

of Ca2+-activated K+ channels leading to cellular efflux of K+ and osmotically obliged 

water with subsequent erythrocyte shrinkage. On the other hand, eryptosis may be stim-

ulated by ceramide, which can act independently of increased intracellular Ca2+. Eryth-

rocyte survival is further regulated by cellular osmotic, energy and redox balance. A 

wide range of signaling molecules such as kinases are decisive in the regulation of the 

eryptosis machinery. As eryptotic erythrocytes are rapidly cleared from the blood 

stream by macrophages, excessive eryptosis may contribute to the development of ane-

mia if the loss of erythrocytes is not compensated by the production of new red blood 

cells. Anemia is known to impair the quality of life in patients with lung cancer (LC) 

and acute heart failure (AHF) and is an important indicator of prognosis in these condi-

tions. 

In the first part of the present dissertation, the hypothesis that enhanced eryptosis con-

tributes to the development of anemia associated with LC and AHF, was tested. To this 

end, the present data reveal that patients with either LC or AHF showed increased retic-

ulocytosis suggesting enhanced erythrocyte turnover. According to the present observa-

tions, erythrocyte PS exposure in LC patients is significantly more pronounced in LC 

patients with and without cytostatic treatment as compared to healthy controls. Erythro-

cytes from LC patients show enhanced forward scatter (reflective of cell volume), oxi-

dative stress and ceramide abundance.  
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These effects could be attributed to components of plasma from LC patients. Similarly, 

AHF patients showed enhanced percentage of PS-exposing erythrocytes, which was 

accompanied by decreased forward scatter as well as enhanced oxidative stress. Taken 

together, the present data suggest that eryptosis is an important mechanism in the path-

ogenesis of anemia in LC and AHF patients. 

In the second part of the present dissertation, the role of Gαi2, a type of G-protein cou-

pled receptor protein, in erythrocyte survival was explored. Putative functions of the G-

protein subunit Gαi2-dependent signaling in nucleated cells include ion channel regula-

tion, cell differentiation, proliferation and apoptosis. The present data show that Gαi2 is 

expressed in both murine and human erythrocytes and further elucidate the influence of 

Gαi2 on the survival of anucleated erythrocytes. To this end, erythrocytes were isolated 

from Gαi2-deficient mice (Gαi2-/-) and corresponding wild-type mice (Gαi2+/+). Erythro-

cyte parameters were similar in both Gαi2-/- and Gαi2+/+ mice but the mean corpuscular 

volume and the leukocyte count was significantly higher in Gαi2-/- mice. May Grünwald 

staining showed no apparent differences in erythrocyte shape from Gαi2+/+  as compared to 

Gαi2-/- mice . Spontaneous PS exposure of circulating Gαi2-/- erythrocytes was significant-

ly reduced in comparison to Gαi2+/+ erythrocytes. PS exposure was significantly blunted 

in Gαi2-/- as compared to Gαi2+/+ erythrocytes following ex vivo exposure to the patho-

physiological cell stressor hyperosmotic shock (+550 mM sucrose) as well as following 

treatment with bacterial sphingomyelinase or C6 ceramide. Erythrocyte Gαi2 deficiency 

further attenuated hyperosmotic shock-elicited enhanced cytosolic Ca2+ activity and cell 

shrinkage. Moreover, Gαi2-/- erythrocytes were more resistant to osmosensitive hemoly-

sis as compared to Gαi2+/+ erythrocytes. Taken together, the present data suggest that 

Gαi2 deficiency in erythrocytes confers partial protection against suicidal cell death. 
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Zusammenfassung 

Der suizidale Erythrozytentod, auch als “Eryptose” bezeichnet, ist eine besondere Form 

des Zelltodes, den Erythrozyten vor ihrer Seneszenz eingehen können. Verschiedene 

Xenobiotika, endogene Mediatoren und Erkrankungen verursachen eine Eryptose, ein 

Prozess, der durch morphologische Veränderungen wie z.B. durch die Umlagerung von 

Phospholipiden der Zellmembran („scrambling“) und Zellschwund gekennzeichnet ist. 

Mechanistisch wird die Eryptose durch eine erhöhte intrazelluläre Calciumkonzentrati-

on, welche wiederum durch einen erhöhten Calciumeinstrom durch nicht-selektive Ka-

tionenkanäle ausgelöst wird, eingeleitet. Die erhöhte zytosolische Calciumaktivität sti-

muliert Scramblasen was zur Translokation von Phosphatidylserin (PS) an die Erythro-

zytenoberfläche führt. Dieses Phänomen führt auch zur Aktivierung der Ca2+-

abhängigen Kaliumkanäle was einen Ausstrom von Kalium und Wasser und einen an-

schließenden Zellschwund zur Folge hat. Andererseits kann eine Eryptose auch durch 

Ceramid eingeleitet werden, welches unabhängig von einer erhöhten intrazellulären 

Calciumkonzentration agieren kann. Das erythrozytäre Überleben wird außerdem durch 

eine zelluläre osmotische und energetische Homöostase und einem Redoxgleichgewicht 

reguliert. Eine Bandbreite an Signalmolekülen wie z.B. Kinasen sind für die Regulation 

der Eryptosemaschinerie bedeutend. Da eryptotische Erythrozyten schnell durch Mak-

rophagen aus der Blutbahn eliminiert werden, könnte eine übermäßige Eryptose zur 

Entstehung einer Anämie führen insofern der Verlust an Erythrozyten nicht durch eine 

Produktion neuer Erythrozyten ausgeglichen wird. Es ist bekannt, dass eine vorherr-

schende Anämie die Lebensqualität von Patienten mit Lungenkrebs und akuter Herzin-

suffizienz beeinträchtigt. Eine vorliegende Anämie kann als wichtiger Prognosefaktor 

für den Verlauf dieser Erkrankungen herangezogen werden. 

Im ersten Teil der vorliegenden Dissertation wurde die Hypothese, eine erhöhte Erypto-

se trage zur Entstehung einer mit Lungenkrebs und akuter Herzinsuffizienz assoziierten 

Anämie bei, untersucht. Die vorliegenden Daten zeigen, dass Patienten, die entweder an 

Lungenkrebs oder akuter Herzinsuffizienz leiden, eine erhöhte Retikulozytose aufwei-

sen was auf einen erhöhten Erythrozytenumsatz hinweist.  
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Den vorliegenden Beobachtungen zufolge ist die erythrozytäre Phosphatidylserinexpo-

sition bei Lungenkrebs ohne und mit zytostatischer Behandlung im Vergleich zur ge-

sunden Kontrollgruppe deutlich erhöht. Die Erythrozyten der Lungenkrebspatienten 

zeigen ein erhöhtes Forward Scatter (stellvertretend für das Zellvolumen) und ein er-

höhtes Level an oxidativem Stress und Ceramid. Diese Effekte könnten auf Komponen-

ten im Plasma der Lungenkrebspatienten zurückgeführt werden. In ähnlicher Art und 

Weise zeigen auch Patienten mit akuter Herzinsuffizienz einen erhöhten Prozentsatz an 

Phosphatidylserin-exponierenden Erythrozyten, begleitet von einem erniedrigten For-

ward Scatter und erhöhtem oxidativem Stress. Zusammengefasst lässt sich sagen, dass 

die vorliegenden Daten auf die Eryptose als einen bedeutenden Mechanismus in der 

Pathogenese der Anämie bei Lungenkrebs- und akuten Herzinsuffizienzpatienten hin-

weisen. 

Im zweiten Teil der vorliegenden Dissertation wurde die Rolle von Gαi2, einem G-Protein 

gekoppelten Rezeptorprotein, im erythrozytären Überleben untersucht. Mögliche Funktio-

nen des Gαi2-abhängigen Signalweges in zellkernhaltigen Zellen umfassen die Regulation 

von Ionenkanälen sowie Zelldifferenzierung, Proliferation und Apoptose. Die vorliegen-

den Daten belegen die Expression von Gαi2 sowohl in murinen als auch in menschlichen 

Erythrozyten und erläutern den Einfluss von Gαi2 auf das Überleben der kernlosen Eryth-

rozyten. Zu diesem Zweck wurden Erythrozyten aus Gαi2-defizienten (Gαi2-/-) und den 

dementsprechenden Wildtypmäusen (Gαi2+/+) isoliert. Die Erythrozyten betreffenden Pa-

rameter waren in beiden Mäusen, Gαi2-/-  und Gαi2+/+, ähnlich. Das mittlere korpuskuläre 

Volumen und die Leukozytenzahl war allerdings in Gαi2-/- Mäusen signifikant höher. An-

hand der May-Grünwald-Färbung konnten keine nennenswerten Unterschiede in der 

Morphologie zwischen Gαi2+/+ und Gαi2-/- Erythrozyten verzeichnet werden. Das mittlere 

korpuskuläre Volumen war allerdings in Gαi2-/- Mäusen signifikant höher. Die spontane 

PS-Exposition der in der Blutbahn zirkulierenden Gαi2-/- Erythrozyten  war im Vergleich 

zu den Gαi2+/+  Erythrozyten signifikant niedriger. Die PS-Exposition war nach einer ex 

vivo Exposition gegenüber pathophysiologischen Zellstressoren wie hyperosmolarem 

Schock (+550 mM Saccharose) und nach Behandlung mit bakterieller Sphingomyelina-

se und C6 Ceramid in den Gαi2-/- Erythrozyten im Vergleich zu Gαi2+/+ Erythrozyten 

signifikant niedriger. Die erythrozytäre Gαi2-Defizienz schwächte die durch den hyper-
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osmolaren Schock erhöhte Calciumaktivität und den Zellschwund ab. Desweiteren wa-

ren die Gαi2-/- Erythrozyten gegenüber osmosensitiver Hämolyse resistenter als die 

Gai2+/+ Erythrozyten. Insgesamt zeigen die vorliegenden Daten, dass eine Gαi2-

Defizienz der Erythrozyten einen teilweisen Schutz gegenüber dem suizidalen Erythro-

zytentod verleiht.  
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4 INTRODUCTION 

 

4.1 Physiological functions of erythrocytes 

Among the different cell types in humans, erythrocytes (or red blood cells (RBCs)) are 

morphologically and functionally unique. They are the most abundant cell type in the 

human body [1] and in healthy individuals, the number of erythrocytes reaches up to 4-6 

x 1012 per liter of blood [2]. With a diameter of about 6-8 µm and a thickness of about 2 

µm, erythrocytes are smaller than most other human cells and are characterized by an 

outstanding formability. These features enable them to pass through small capillaries 

with relative ease [3, 4]. Unlike nucleated cells, erythrocytes lack important organelles 

such as a nucleus, mitochondria and ribosomes. The lack of these important cellular 

organelles enables them to store more hemoglobin, the oxygen-binding protein. Fur-

thermore, the biconcave shape of erythrocytes is further designed for their main func-

tion i.e. the transport of oxygen and carbon dioxide by increasing the surface area for the 

diffusion of these gases [5]. The oxygen binding hemoglobin molecules consist of four 

polypeptide subunits, two Hb α and two Hb β units, each one containing an iron com-

plex, the heme. In addition to oxygen transport, erythrocytes also play an important role 

in the regulation of pH in the body [6, 7] as well as in the maintenance of vascular re-

sistance and vessel diameter due to their ability to release adenosine triphosphate (ATP) 

[8]. ATP is released from the erythrocytes into the surrounding environment as a re-

sponse to not only different physiological stimuli including hypoxia and hypercapnia 

[9], decreased pH [10], membrane deformation [11] but also to pharmacological stimuli 

[12]. Biochemically, the only known energy source of RBCs is the anaerobic oxidation 

of glucose (i.e. glycolysis) [13].  

4.2 Erythropoiesis 

Generation of erythrocytes occurs in the fetal liver and spleen, in the embryonic yolk 

sac and in the fetal as well as adult red bone marrow. Erythrocyte formation from plu-

ripotent hematopoietic stem cells in the bone marrow is stimulated by the renal hormone 

erythropoietin (EPO) and this process is termed as “erythropoiesis” [14].  
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Erythropoiesis maintains the number of circulating erythrocytes under various physio-

logical conditions [15]. During erythropoiesis, erythrocytes undergo different stages of 

differentiation, from erythroblasts to reticulocytes, and finally to mature anucleated 

erythrocytes [1]. On average, the normal life span of a normal erythrocyte is about 120 

days [1], after which they are removed by macrophages residing in the liver and spleen 

[16]. Aged erythrocytes expose phosphatidylserine on their membrane, which is recog-

nized by phosphatidylserine receptors of macrophages. Subsequently, the erythrocytes 

are engulfed, digested and removed from the blood stream [17]. The decrease in cell 

volume further facilitates their engulfment [17].  

4.3 Composition of the erythrocyte membrane 

Being the only structural component of erythrocytes, the plasma membrane is responsi-

ble for all kinds of transport, mechanical and antigenic characteristics of these cells [3]. 

The erythrocyte membrane constitutes a bipolar lipid bilayer, integral membrane pro-

teins and a membrane skeleton (cytoskeleton). Approximately 52% of the membrane 

mass is attributed to proteins, 40% to lipids and 8% to carbohydrates [18]. Carbohy-

drates are attached exclusively to the outer surface of the erythrocyte membrane. The 

lipid bilayer is composed of phospholipids and cholesterol [3], where the phospholipids 

are asymmetrically distributed [19, 20]. While sphingomyelin, phosphatidylcholine and 

glycolipids appear on the outer surface of this lipid bilayer, phosphatidylethanolamine, 

phosphatidylserine and, to a lesser extent, phosphatidylinositol are located on the inner 

side of this bilayer [19, 20]. This phospholipid asymmetry is generated and maintained 

by several phospholipid transport proteins by energy-dependent and/or energy-

independent mechanisms [3, 21, 22]. The membrane skeleton is located on the inner 

surface of the lipid bilayer and forms a complex network that consists of structural pro-

teins such as α and β-spectrin, actin, protein 4.1R, protein 4.9 (dematin), adducin, tro-

pomodulin and tropomyosin [23-25]. The membrane proteins either adhere peripherally 

to the lipid bilayer or penetrate it (transmembrane proteins). The membrane skeleton is 

coupled to the lipid bilayer via transmembrane proteins [26].  
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The linkages are generated by ankyrin and protein 4.1R [3]. To date, more than 50 

transmembrane proteins that serve different functions such as adhesion, transport or 

signaling, have been identified [3]. In the present study, the Gardos Channel, a Ca2+-

activated K+ channel [27], is of particular relevance. 

4.4 Eryptosis  

Several years ago, erythrocytes were described to undergo a unique type of cell death that is 

analogous to apoptosis of nucleated cells [28-30]. Erythrocyte injury may jeopardize their 

integrity and survival in the circulation [31]. Under these circumstances, they are able to 

undergo a specialized form of cell death prior to their senescence i.e. the suicidal eryth-

rocyte death, also referred to as “eryptosis” [32]. Eryptosis is a closely regulated and 

coordinated programmed cell death where any damage to the plasma membrane and 

release of intracellular content is averted [33]. Erythrocytes undergoing eryptosis show 

cell blebbing, cell membrane scrambling with exposure of phosphatidylserine from the 

inner leaflet of the membrane to the erythrocyte surface and cell shrinkage. All these 

aforementioned features are typical hallmarks of apoptosis in nucleated cells [28-30]. 

Eryptotic cells are rapidly cleared from the circulation by macrophages and therefore 

prevented from undergoing hemolysis, a necrosis like cell death, which is associated 

with the release of hemoglobin into the plasma [31, 34]. The excessive release of hemo-

globin would otherwise pass the renal glomerular filter and precipitate within the acid 

lumen of the renal tubular system, subsequently occluding nephrons and impairing kid-

ney function [35]. Accordingly, eryptosis is a “soft” mechanism that prevents hemolysis 

[34]. In contrast to apoptosis of nucleated cells, the process of eryptosis is devoid of 

mechanisms such as nuclear condensation, DNA fragmentation and mitochondrial de-

polarization [36, 37]. 
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4.4.1 Mechanisms of eryptosis 

One of the decisive mechanisms in the triggering of eryptosis is the increase of cyto-

solic Ca2+ concentration, which occurs due to the stimulation of Ca2+ entry into the cells 

[28-30]. Ca2+ triggers the activation of scramblases, which, in turn, mediates cell mem-

brane scrambling and the breakdown of the cell membrane phospholipid asymmetry, 

whereby phosphatidylserine is translocated from the inner leaflet of the cell membrane 

to the erythrocyte surface [38]. In addition to cell membrane scrambling [39], Ca2+ fur-

ther triggers vesiculation [40] and activates the cysteine endopeptidase calpain, an en-

zyme that causes the degradation of the cytoskeleton leading to cell membrane blebbing 

[41]. Enhanced cytosolic Ca2+ further activates Ca2+-sensitive K+ channels, also referred 

to as Gardos Channels, with subsequent exit of K+. The exit of K+ leads to hyperpolari-

zation of the cell membrane and to an efflux of Cl-. Water passively follows along the 

concentration gradient, resulting in cell shrinkage, another hallmark of eryptosis [42]. 

The Ca2+ entry may result from the activation of Ca2+-permeable non-selective cation 

channels [43, 44]. These erythrocyte channels have not been characterized at the molec-

ular level but it is assumed that TRPC6 channels are involved [45]. Activation of these 

non-selective cation channels could result from the removal of extracellular chloride 

[46, 47], prostaglandin E2 (PGE2) [48], oxidative stress [47, 49] or hyperosmotic shock 

[46, 49]. Eryptosis is further stimulated by energy depletion [50], an impaired antioxi-

dant defense [51-54] and by endogenous substances as well as several xenobiotics [31]. 

Another important trigger of eryptosis is the formation of ceramide. Ceramide is pro-

duced from cell membrane sphingomyelin by the action of sphingomyelinase enzyme 

[55]. Ceramide formation sensitizes the cells to the effect of increased Ca2+ on phospha-

tidylserine exposure [34]. Both ceramide formation and increased cytosolic Ca2+ can 

also have a synergistic effect. Moreover, several kinases participate in the activation of 

suicidal erythrocyte death e.g. protein kinase C (PKC) [50], Janus-activated kinase 

JAK3 [56], casein kinase 1α (CK1α) [57], p38 MAPK [58] and caspases [59]. On the 

other hand, activation of other kinases results in the inhibition of eryptosis e.g. stimula-

tion of cGMP-dependent protein kinase [60], mitogen-and stress-activated kinases 

MSK1 and MSK2 [61], AMP activated kinase (AMPK) [62], and PAK2 kinase [63]. 

Eryptosis is also triggered by the non-specific multikinase inhibitors sunitinib [64] and 

sorafenib [65], indicating an inhibitory effect of these kinases.  
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4.4.2 Eryptosis in human diseases 

Besides endogenous substances and xenobiotics that stimulate eryptosis [66], enhanced 

suicidal erythrocyte death has also been observed in various clinical conditions includ-

ing malignancy [67], chronic kidney disease [68], iron deficiency [69], and many more 

[70].  

An overview of the mechanisms of eryptosis and diseases associated with eryptosis is 

illustrated in Fig. 1. 

 

 

 
  

Fig. 1: Mechanisms of eryptosis in different diseases [70]. 

 

 

Importantly, eryptosis serves the purpose of eliminating potentially harmful defective 

erythrocytes from the blood stream [34]. Eryptotic erythrocytes expose phosphatidylser-

ine on their surface, which is recognized by specific phagocyte receptors that subse-

quently engulf and degrade them [17, 71]. Phosphatidylserine not only binds to phago-

cytes but also to docking molecules such as CXCL16/SR-PSOX [72] and several other 

receptors expressed on the surface of endothelial cells [73, 74]. Similar to endothelial 

cells, CXCL16 is also expressed on platelets in an activation-dependent manner [75-77] 

and binding of erythrocyte phosphatidylserine to blood platelets has also been reported 

[75]. The microcirculation can be impaired by the binding of erythrocyte phosphatidyl-

serine to endothelial cells of the vascular wall or to blood platelets [54]. Accordingly, 

eryptotic erythrocytes may play an important role in the stimulation of blood clotting 

and contribute to the pathogenesis of thrombosis [72, 78-80]. In theory, erythropoiesis 
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compensates the loss of erythrocytes by eryptosis, and the total number of erythrocytes 

in the circulation remains unaffected.  

Increased reticulocytosis may therefore be an indicator for enhanced eryptosis, even in 

the presence of an apparently normal blood count [34]. However, anemia could develop 

if the enhanced suicidal erythrocyte death is not outweighed by a similar production of 

new erythrocytes [54]. Indeed, anemia is the most important manifestation of pathologi-

cal changes in erythrocytes [34]. Recent epidemiological studies suggest that approxi-

mately one third of the world’s population suffers from anemia [81]. 

4.5 Anemia 

Anemia is a clinical condition, which is characterized by a decreased erythrocyte count, 

hemoglobin, and/or hematocrit level [82]. This results in a lower ability of the blood to 

supply the body tissues with sufficient oxygen. Severe anemia may potentially lead to 

hypoxia of different organs [83]. Anemia may result from enhanced blood loss, in-

creased destruction of erythrocytes or decreased production of functional erythrocytes 

[82]. Anemia can be classified according to its pathophysiology, erythrocyte size (Mean 

Corpuscular Volume; MCV) and the amount of hemoglobin in each cell (Mean Corpus-

cular Hemoglobin Concentration; MCHC). In normochromic, normocytic anemia, the 

MCHC and MCV are normal (MCV: 80-100 fl). In hypochromic, microcytic anemia, 

MCHC and MCV are decreased (MCV: < 80 fl). In normochromic, macrocytic anemia, 

MCHC is normal, but MCV is increased (> 100 fl) [84]. In most cases, anemia is multi-

factorial and shows a diverse pathophysiology [81]. Anemia may be further subclassi-

fied into mild anemia with a hemoglobin level of 9.5-10.9 g/dl (mainly asymptomatic), 

moderate anemia (8.0-9.4 g/dl), severe anemia (6.5-7.9 g/dl) and life threatening anemia 

with a hemoglobin level of <6.5 g/dl [85]. Important markers commonly used for a 

more accurate characterization of anemia are the serum levels of ferritin and transferrin 

as well as the transferrin saturation. In the body, iron is mainly stored in the form of 

ferritin. Accordingly, low ferritin levels may thus be an indicator for iron deficiency 

(ID), a possible cause of anemia. In ID, transferrin, responsible for the transport of iron 

to the cells, is increased, while the transferrin saturation is decreased. 
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Clinical signs and symptoms of anemia include impaired cognitive function, headache, 

dizziness, chest pain, indigestion, menstrual problems, decreased motivation, depres-

sion, nausea, fatigue, anorexia, exertional dyspnea, cardiovascular complications, loss 

of libido and sleeping disorders [86].  
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4.6 Lung Cancer 

Lung cancer can arise in virtually all parts of the lung including the trachea, bronchi or 

bronchioles. 

Each lung section consists of a predominant cell type, which reflects a predominant sub-

type of cancer. Lung cancer is the main reason for cancer death worldwide, accounting 

for 1.6 million deaths annually [87]. In 85-90% of the cases, pathogenesis of lung can-

cer is directly attributable to the consumption of tobacco [88]. The mean age at death 

from lung cancer for both genders is similar, with a mean age of 68.6 years for males 

and 70.5 years for females [89]. At the time of diagnosis, approximately 70% of the 

patients are diagnosed with locally advanced or metastatic disease [90], which is one of 

the reasons for the dismal five-year survival rate with only about 15% after diagnosis 

[90]. 

4.6.1 Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) 

According to its histopathological characterization, lung cancer can be classified into 

two major types: Small Cell Lung Cancer (SCLC) and Non-Small Cell Lung Cancer 

(NSCLC). Approximately 85% of bronchogenic carcinomas are of the NSCLC type 

[91]. Because of their similarity in prognosis and treatment, NSCLC is any type of epi-

thelial cancer and can be further grouped into three main subtypes: adenocarcinoma, 

squamous cell carcinoma and large cell carcinoma. Adenocarcinoma is the most fre-

quently diagnosed histological subtype of NSCLC with a prevalence of about 50%, fol-

lowed by squamous cell (epidermoid) carcinoma (~35%). Large cell carcinomas consti-

tute approximately 15% of NSCLC cases [91]. In addition to the aforementioned types 

of carcinomas, a few rarer subtypes are also found [92].  

In comparison to other subtypes of lung cancer, adenocarcinomas are characterized by 

their extensive molecular heterogeneity [93, 94]. The tumors usually originate from the 

smaller airways and penetrate peripheral lung tissues [95] such as the bronchioles and 

alveoli. They may further be classified as mucinous or nonmucinous [96]. Adenocarci-

noma is the most commonly occurring type of lung cancer in general [97], is more fre-

quently found in women [98] and is the most common type of lung cancer in non-

smokers [95, 97, 99].  
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Squamous cell carcinoma (SCC) tends to be more centrally located [95], peripheral 

SCC, however, is associated with a better prognosis and fewer symptoms as compared 

to central SCC [100]. The presence of cavity, an independent and unfavourable prog-

nostic factor that is very common in SCC [101, 102], is associated with a worse clinical 

outcome [101]. Histologically, the most common feature of SCC is keratinization and/or 

the formation of intercellular bridges [103].  

The criteria for the diagnosis of large cell carcinoma (LCC) vary widely. They are a 

heterogenous group [104] and may represent undifferentiated forms of other types of 

cancers [95]. In 1999, large cell neuroendocrine carcinoma (LCNEC) was introduced as 

a variant type of large cell carcinoma [105]. The tumor cells of LCNEC are generally 

large [106], lack specific histological features of NSCLC but show neuroendocrine dif-

ferentiation like SCLC [105]. Thus, in some cases it can be difficult to distinguish them 

from SCLC [107]. At the cellular level, LCNEC shows a higher proliferative activity 

than classical LCC [108, 109] and, similar to SCLC [110], the survival rate is substan-

tially worse than for other NSCLC [108]. 

SCLC is a high-grade neuroendocrine carcinoma [111] that mainly arises in the central 

airways [95, 112]. It is characterized by rapid growth and the early occurrence of wide-

spread metastases at the time of diagnosis [113, 114]. The main location for distant me-

tastases are liver, bones, pancreas, contralateral lung, adrenal glands, extra-thoracic 

lymph nodes and pleural and/or pericardial fluids [115]. Metastases to the brain are very 

common in this type of cancer [116, 117]. SCLC is considered to be the most aggressive 

type of lung cancer [118] and has the poorest five-year survival rate of all lung cancer 

types [119]. 

4.6.1.1 Lung Cancer Staging 

Lung Cancer Staging enables us to classify the extent and progress of the disease. De-

termination of staging is performed routinely and is essential for planning of therapy. 

NSCLC is classified according to the AJCC (American Joint Committee on Cancer) 

staging system, which is based on the TNM, the “Tumor-Node-Metastasis”-system 

[120]. T indicates tumor size and its extension (T1-4), N describes the spread of cancer 
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to regional lymph nodes (N0-N3) and M indicates the occurrence of metastases (M0-

M1) [120]. NSCLC can be further subdivided into stage IA & B, stage IIA & B, stage 

IIIA & B and stage IV. Moreover, SCLC can also be simply classified as limited disease 

(LD-SCLC) and extended disease (ED-SCLC) [121].  

4.6.1.2 Treatment of Lung Cancer 

NSCLC is relatively insensitive to radiation therapy and chemotherapy, therefore the 

treatment of choice is mainly surgical resection. Stage I to IIIA NSCLC is mainly treat-

ed by surgery, although stage IIIA tumors are resectable only in few cases [122]. Stage 

IIIB and IV are considered inoperable. For these stages, palliative chemotherapy is ap-

plied [123, 124]. Chemotherapy mainly consists of the platinum-based regimens of cis-

platin [125] and carboplatin [126] that are mainly used in combination with paclitaxel 

[127], docetaxel [128], gemcitabine [129], pemetrexed [130], etoposide [131] and/or 

vinorelbine [132]. More recently, newer insights on the molecular mechanisms of 

NSCLC and its different mutations have enabled the development of novel therapeutic 

agents that have shown to improve the clinical outcome [133].  

On the other hand, surgical treatment for SCLC may be considered only in selected cas-

es such as T1-2, N0-1 stage [134]. On the basis of rapid metastasis formation, SCLC 

can be considered as a generalized disease and is virtually inoperable. SCLC, however, 

is very chemosensitive [135] and is more responsive to radiotherapy than NSCLC [105]. 

However, SCLC acquires drug resistance during the course of the disease [136]. In the 

70s, cyclophosphamide, adriamycin and vincristine (CAV regimen) became the stand-

ard treatment for patients with limited SCLC [137, 138]. In the 80s, however, the com-

bination of cisplatin and etoposide (EP regimen) was increasingly used in the treatment 

of SCLC [137, 139] and to this day is considered as gold-standard. This therapeutic reg-

imen is often administered concomitant with thoracic radiotherapy [111]. Although a 

majority of patients respond to first-line therapy [140], nearly all patients with ED and 

about 80% with LD develop recurrent SCLC [112]. In such cases, the treatment is fol-

lowed up with a second-line chemotherapy which is suitable as palliative treatment 

[141]. The second-line therapy comprises of a single pharmacological agent [141] and 

may include agents such as topotecan [142] or oral etoposide [143].  
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4.6.2 Anemia in Cancer 

Anemia is very commonly diagnosed in cancer patients. 30-90% of cancer patients suf-

fer from some form of anemia depending on the type and stage of cancer [144]. Patients 

suffering from lung cancer show a higher frequency of chemotherapy-induced anemia 

[145]. The etiology of anemia in cancer patients is multifactorial [82]. Malignancy per 

se can trigger anemia or may exacerbate pre-existing anemia [82]. Cancer cells may 

infiltrate bone marrow and thus directly subdue hematopoiesis. Tumor anemia can also 

be caused due to organ damage and chronic haemorrhages [82]. On the other hand, can-

cer-induced inflammatory cytokines may suppress the production of EPO and the pro-

liferation of erythroid progenitor cells [146, 147]. Nutritional deficiencies in cancer pa-

tients could also indirectly contribute to anemia [82]. In addition, chemotherapeutic 

drugs negatively influence hematopoiesis as well as the synthesis of red blood cell pre-

cursors in the bone marrow [82]. Noticeably, platinum-based chemotherapeutic regi-

mens afflict renal tubular cells, which, in turn diminish endogenous EPO production 

[148]. Thus, patients receiving platinum-based chemotherapy have a higher risk for de-

veloping anemia as compared to patients receiving non-platinum based chemotherapy 

[149]. 

4.6.2.1 Anemia as an independent prognostic factor 

Compelling evidence suggests that anemia is an independent prognostic factor for the 

survival rate of cancer patients [150]. The appearance of anemia is associated with de-

creased survival in almost all previously studied cancer types [150]. As a matter of fact, 

anemia can reduce the tolerance to anticancer therapy [151]. In worse cases, anemia 

may lead to hypoxia, which influences tumor behaviour [146]. Tumor hypoxia is asso-

ciated with resistance to both radiation therapy and chemotherapy [144]. It is further 

associated with angiogenesis, the growth of new capillary vessels, which supports tumor 

progression and tumor growth [152-155]. Anemia not only impacts tumor behaviour but 

profoundly affects the quality of life in cancer patients. It is associated with impaired 

organ function, increased risk of postoperative mortality and a higher probability of 

blood transfusion after chemotherapy [146]. Furthermore, anemia worsens fatigue, a 

cardinal symptom in cancer patients [156]. 
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4.7 Cardiovascular diseases 

Cardiovascular diseases (CVDs) remain one of the major causes of all deaths worldwide 

[157]. CVDs involve ailments of the heart or the blood vessels and are considered to be  

multifactorial with a complex pathophysiology. In 2012, approximately 17.5 million 

fatalities were caused by CVDs which represents around 31% of all global deaths [158]. 

According to the World Health Organization (WHO), CVDs will continue to remain the 

most common cause of mortality in the future [158]. 

4.7.1 Heart failure 

Heart failure (HF) is one of the most common manifestations of CVDs, which afflicts 

23 million people worldwide [159, 160]. HF is considered to be one of the major rea-

sons for hospitalization in Germany [161], United States and Europe [162]. In particu-

lar, this condition has become a growing problem in the ageing population of industrial-

ized countries [163]. The incidence of HF rises from 1.7% in the age group between 55-

64 years to 9.8% in the age group between 75 and 84 years. The incidence has been 

reported to reach 16.8% in the octogenarian cohort [164].  

Clinically, HF is defined as the inability of the heart to support the physiological and 

metabolic demands of the body [165, 166]. The supply of sufficient blood and oxygen is 

affected in the failing heart [167]. HF is considered to be a syndrome that develops as a 

syndrome of underlying cardiac diseases [168]. Its clinical diagnosis is often based on a 

constellation of different signs and symptoms [168] and thus, there is no universal con-

sensus as to the precise definition of HF [168, 169]. Symptoms of HF often include 

dyspnea at rest or during exercise [170], fatigue [171], a reduced exercise capacity 

[172], an increased incidence of arrhythmias [173], fluid retention [174] and a dimin-

ished quality of life [175]. According to the New York Heart Association (NYHA) clas-

sification, the severity level of HF is divided into four different stages (A-D) which are 

based on the subjective estimate of a patient and may not necessarily correlate with the 

objective estimate [176]. 
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Anatomically, HF can be further subclassified into left ventricular (LV) failure (LVF) 

and right ventricular (RV) failure (RVF) [177, 178], LVF being the most common type 

of HF [178]. Lack of adequate treatment of one type of HF may impair the normal func-

tioning of the other ventricle, thus, leading to biventricular failure [177]. In decompen-

sated HF, the symptoms of this condition are aggravated as a result of rapid deteriora-

tion of cardiac function. In compensated HF, however, symptoms are relatively stable 

[179]. There are various causes for HF which may include coronary artery disease, 

chronic hypertension, cardiomyopathy, valve dysfunction, cardiac arrhythmias, pericar-

dial diseases, infections and/or diabetes mellitus [163]. Chronic anemia can also cause 

HF even in the absence of underlying heart disease [180, 181]. Previous studies have 

documented that therapeutic transfusion in anemia has a beneficial effect on HF [181, 

182]. Remarkably, coronary artery disease per se or coexisting hypertension seems to 

be the most common cause for HF in developed Western countries [163]. Due to the 

multifactorial and complex etiology of the pathogenesis of HF, it is difficult to ascertain 

the precise cause in many clinical cases [163].  

Depending on the duration of its manifestation, HF can be classified as either chronic or 

acute. Chronic HF develops over a course of several months to years, while acute heart 

failure (AHF) develops within few hours to days. Accordingly, AHF has been defined 

as “the sudden or gradual onset of the signs or symptoms of heart failure requiring un-

planned office visits, emergency room visits, or hospitalization” [183]. AHF patients are 

further classified into patients whose chronic HF worsened or those with de novo AHF 

[183]. Irrespective of whether the HF is actively treated or is asymptomatic, it is a lethal 

condition and has a 60% five-year mortality rate following diagnosis [163].  

4.7.1.1 Anemia in heart failure 

Anemia is a very frequent comorbidity in patients suffering from either acute or chronic 

HF. The prevalence of anemia in HF patients is, on the one hand, dependent on the se-

verity of the disease while, on the other hand, dependent on the exact definition of ane-

mia. Approximately 14.4% of HF patients have a hemoglobin level lower than 11 g/dl 

and the percentage of HF patients with a hemoglobin level lower than 12 g/dl steeply 

rises to 55.6% [184-186].  
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Anemia in patients with HF is associated with lower blood pressure, increased edema, 

enhanced levels of proinflammatory cytokines, C-reactive protein and neurohormones 

as well as an increased use of diuretics [187]. Several studies have reported a high prev-

alence of anemia in HF, which is associated with a poor prognosis [180, 181, 188, 189]. 

Strikingly, the cause(s) of anemia in chronic and acute HF have been a subject of de-

bate. As a matter of fact, HF can be considered as an inflammatory disease [190] and, 

thus, anemia could prevail due to a decreased production of erythropoietin as a conse-

quence of enhanced inflammatory cytokine production (TNF-α, IL-6) that could, in 

turn, interfere with EPO gene expression [191, 192]. Furthermore, the cytokine produc-

tion may reduce the activity of EPO in the bone marrow [193]. 

Anemia in HF can be due to a reduced erythrocyte count (true anemia) or may be the 

result of an increased plasma volume, also referred to as hemodilution that results in 

pseudoanemia [194, 195]. Hemodilution is a very common phenomenon encountered in 

patients suffering from HF and anemia, with a prevalence of about 46% [194]. It may 

result due to the activation of vasopressin and renin-angiotensin-aldosterone system, 

which consequently leads to water and sodium retention [191]. In contrast to patients 

with true anemia, HF patients with hemodilution may simply require an adjustment in 

their diuretic dosage [194]. Interestingly, pseudoanemia has been reported to have a 

worse clinical outcome as compared to “true” anemia [191, 194]. 

More recently, the role of iron deficiency (ID) in anemia associated with HF has been 

the subject of discussion [196-199]. Iron is crucial for optimal erythropoiesis. Around 

40% of HF patients have been reported to suffer from anemia [196]. Intriguingly, ap-

proximately 60% of the patients with anemia and 40% of non-anemic patients suffer 

from ID [196]. Compelling evidence suggests a direct association between ID and low 

iron content in the heart [200, 201] and in the bone marrow [202] of HF patients. 

Treatment of ID by exogenous iron supplementation in HF patients had a positive im-

pact on the quality of life and on the clinical status of these patients [203, 204]. Even in 

the absence of anemia, ID per se is associated with a worse clinical outcome in HF and 

individual iron status may be considered as a potentially independent and strong predic-

tor of clinical outcome in HF [204, 205]. 
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Fig. 2. Causes of anemia in heart failure [206]. 

 

Besides iron, other nutrients such as vitamin B12 and folic acid, may also negatively 

impact the outcome in HF patients [204]. The incidence of folic acid and vitamin B12 

deficiency in HF is rather low, with a share of 8% and 6%, respectively [207]. Although 

both vitamin B12 and folic acid play an important role in erythropoiesis, their levels are 

not directly related to prognosis in HF and were further shown not to be associated with 

mortality [204]. 

HF in approximately half of the patients is associated with chronic kidney disease 

(CKD) that is known to cause decreased erythropoietin production in the kidney due to 

inadequate erythropoiesis [208, 209]. There is strong evidence that CKD is a major con-

tributor to HF and vice versa. Remarkably, anemia further worsens CKD and HF, and 

all these conditions exacerbate one another, thus, establishing a vicious circle [210], the 

cardio-renal anemia syndrome [209]. Anemia can result in increasing the stroke volume 

of the heart, thereby, leading to cardiac stress, which, in turn, results in the deterioration 

of cardiac function [193]. Accordingly, anemia may be an underlying cause in the path-

ogenesis of HF [180]. 
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Angiotensin converting enzyme inhibitors (ACEIs), beta blockers, aldosterone receptor 

antagonists (ARAs, e.g. spironolactone and eplerenone), angiotensin receptor blockers 

(ARBs), anticoagulants, vasodilators, digoxin, anti-arrhythmic drugs, diuretics and 

statins are commonly used in the treatment of HF [211]. Ironically, however, some of 

these agents are associated with the development of anemia despite improving the clini-

cal status of HF [212]. 

Angiotensin, for example, is a physiological stimulator of erythropoietin and hence, the 

use of ACEIs has been associated with suppression of erythrocyte production subse-

quently resulting in anemia [213-215]. The use of carvediol, a beta-blocker, is associat-

ed with lower hemoglobin levels [216]. In particular, elderly HF patients are vulnerable 

to gastrointestinal bleedings and, thus, to anemia due to their advanced age and the ex-

istence of multiple comorbidities [217], increased use of anticoagulants [218] and an-

tiplatelet agents e.g. aspirin [219, 220].  
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4.8 G-protein coupled receptors (GPCRs) 

4.8.1 Importance of GPCRs 

Receptors on cell membranes detect and transmit a variety of different molecular sig-

nals. Most of these receptors are coupled to guanine-nucleotide-binding signal transduc-

ing proteins (G-proteins) and are, therefore, referred to as G-protein coupled receptors 

(GPCRs). G-proteins receive the information from the receptor and subsequently trans-

mit the signals to effector molecules [221]. Hitherto known effector molecules of G-

proteins include phosphatidylinositol phospholipase C (PLC) isoforms, adenylyl 

cyclases, cGMP phosphodiesterase, phosphatidylinositol-3 kinases and ion channels 

such as potassium as well as calcium channels [222, 223].  

G-protein coupled receptors (GPCRs) encompass the largest family of transmembrane 

receptors that are encoded by approximately 720 to 800 genes in the human genome 

[224]. Physiologically, they are the most important membrane proteins and play a deci-

sive role in the regulation of different functions of almost all cells in the body [225, 

226]. On the basis of their paramount physiological significance, they are categorized as 

the most important therapeutic targets for the pharmaceutical industry and account for 

about 30% of the total sales of therapeutic drugs [227, 228]. Both antagonists and ago-

nists of GPCRs are widely used in the treatment of diseases of virtually every organ 

system such as the metabolic, urogenital, cardiovascular, CNS and respiratory system 

[229]. A study by Vassilatis et al. revealed 392 mouse and 367 human GPCRs with 343 

GPCRs being common to both species [230]. 

4.8.1.1 Structure of GPCRs 

On the basis of their structure, GPCRs are also known as “7 TM (transmembrane) re-

ceptors”, serpentine receptors [224] and heptahelical receptors [231]. Although they are 

diverse in their sequence homology and structure, GPCRs share a common structure 

that consists of a polypeptide chain with seven transmembrane helices and three intra-

cellular as well as three extracellular loops. The C-terminus is located intracellularly, 

while the N-terminus is located extracellularly.  
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The extracellular loops and the N-terminus are responsible for the recognition of a wide 

variety of ligands [225]. Based on their amino acid sequence, GPCRs can be divided 

into five different families: the adhesion receptor family, the secretin receptor family, 

the glutamate receptor family, the frizzled/taste 2 receptor family and the rhodopsin 

family [232].  

4.8.1.2 GPCR signaling 

GPCRs have the ability to recognize a wide range of extracellular stimuli including light 

[233], amino acids [234], proteins [235], taste ligands [236], metals [237], peptides 

[238], fatty acids [239], nucleotides [240], biogenic amines [241], odorants [242], ster-

oids [243],  citric acid cycle intermediates [244], lipids [245] or Ca2+ [246]. Binding of a 

ligand to a G-protein coupled receptor causes a conformational change in the receptor, 

which, in turn, affects its interaction with heterotrimeric G-proteins that are attached on 

the interior surface and consist of α, β and γ-subunits. The ligand binding promotes the 

exchange of GDP for GTP on the α-subunit and furthermore leads to the dissociation of 

the α-subunit from the β γ heterodimer. Consequently, the free β γ complex and α-GTP 

each activate effector molecules such as ion channels or enzymes [226, 247, 248]. After 

the dissociation of the ligand from the receptor, the intrinsic GTPase activity of the Gα 

subunit results in the hydrolysis of GTP to GDP, that, in turn, leads to the reassociation 

of the subunits and to the rebinding of the heterotrimer to the receptor [247, 248].  
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Fig. 3: Structure, activation and signaling of GPCR receptors [246]. 

 

G proteins are classified into four main families on the basis of the α subunit i.e. αq for 

αq containing protein, whose members activate PLC-β; Gαs for stimulatory protein, 

whose members stimulate adenylyl cyclase; Gα12 for α12 containing protein, whose 

members interact with regulators of G protein signaling (RGS) domain-containing Rho 

exchange factors and Gαi for inhibitory protein, whose members inhibit adenylyl 

cyclase [222]. The Gαi family further consists of different α subunits, namely Gαi1, 

Gαi2, Gαi3, Gαz, and Gα0 as well as another two α subunits i.e. Gαgust and Gαt [249]. 

Each family of Gαi subunits regulates specific effector proteins and is differentially 

expressed in various tissues [222, 249, 250]. Gαi1, Gαi2 and Gαi3 are ubiquitously ex-

pressed [249, 251] and are characterized by their sensitivity to pertussis toxin [250, 

251]. These three closely related members share 85 to 95% of their amino acid sequence 

identities [252]. The αi2 subunit orchestrates different functions including inhibition of 

adenylyl cyclase, which leads to downregulation of cAMP levels [250, 253-255]. Gαi2 

is the quantitatively predominant Gαi isoform [251] and is an essential regulator of en-

dothelial [256], platelet [257] and leukocyte functions [258]. It further participates in 

important cellular functions such as apoptosis [259], cell proliferation, cell differentia-

tion [260] and ion channel regulation [261-263]. 
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4.8.1.3 GPCRs in erythrocytes 

Although the functions of G-proteins in nucleated cells is widely documented, their po-

tential role in red blood cells remains elusive. So far it has been shown that the hetero-

trimeric G-proteins Gαs, Gαq, Gαz, Gαi1, Gαi2 and Gαi3 are expressed in erythrocyte 

membranes [264-266]. Gαi2 expression was reported to be reduced in erythrocytes of 

humans suffering from type 2 diabetes leading to reduced accumulation of cAMP and 

reduced ATP release [264]. Heterotrimeric Gi proteins have been shown to play a cru-

cial role in the release of ATP by erythrocytes [267]. These findings are consistent with 

data from animal models of diabetes, whereby reduced expression of the Gi subclass 

was observed in these animals [268, 269]. These observations suggest an important role 

of Gαi2 in the pathophysiology of diabetes [269]. Besides diabetes, lower levels of 

Gαi1, Gα12 and Gαo were observed in erythrocyte membranes of hypertensive subjects 

suggesting a possible role of these proteins in the regulation of blood pressure [270, 

271]. 

Recent studies further suggest a critical role of some of the heterotrimeric G-proteins in 

the signaling pathway of EPO because Gαi1, Gαi2, Gαi3, Gαq and Gαs were shown to 

be expressed in hematopoietic cells [272, 273]. However, only Gi isoforms are present 

in day 10 erythroblasts [274]. Strikingly, of the Gi isoforms, only the Gαi2 isoform is 

potentially required for the regulation of calcium channels by erythropoietin [273]. 

 

 

 

 

 

 

 



35 

 

5 OBJECTIVE OF THE STUDY 

The objectives of the first part of this study are to investigate the contribution of eryp-

tosis,  the suicidal erythrocyte death, and its mechanisms in the development of anemia 

in two important clinical conditions i.e. lung cancer and acute heart failure. Further-

more, the present study aimed to elucidate a possible contribution of eryptosis in lung 

cancer-related anemia. To test this hypothesis, the exposure of phosphatidylserine on 

the erythrocyte surface, erythrocyte cell volume, intracellular Ca2+ concentration, gener-

ation of reactive oxygen species and the abundance of ceramide were determined by 

flow cytometry. In order to corroborate the data generated using FACS analysis, confo-

cal microscopy was used to visualize eryptotic erythrocytes. Additionally, hematologi-

cal parameters and experiments in patient plasma have been performed to elucidate the 

mechanisms of eryptosis associated with these conditions. 

In the second section of this study, the role of Gαi2, a G-protein subunit, in the regula-

tion of erythrocyte survival has been explored. Firstly, using immunoblotting it was 

shown that Gαi2 is expressed in both human and murine erythrocytes. To investigate the 

functional significance of Gαi2 in erythrocyte survival, erythrocytes from wild-type 

control mice (Gαi2+/+) and Gαi2-deficient (Gαi2-/-) mice were isolated and compared 

with one another. To this end, blood parameters were examined in these mice and flow 

cytometry and confocal microscopy were applied to examine the responses of erythro-

cytes from Gαi2+/+ and Gαi2-/- mice to eryptotic stimuli ex vivo including hyperosmotic 

shock as well as treatment with bacterial sphingomyelinase and C6 ceramide. In addi-

tion to analyzing phosphatidylserine exposure, erythrocyte cell volume and intracellular 

Ca2+ concentration were analyzed both spontaneously and following exposure to patho-

physiological cell stressors such as hyperosmotic shock as well as bacterial sphingomy-

elinase and C6 ceramide. Lastly, using spectrophotometry, the resistance of erythrocytes 

from Gαi2+/+ and Gαi2-/- mice to osmosensitive hemolysis was examined.  
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6 MATERIALS & METHODS 

 

6.1 Eryptosis in patients 

6.1.1 Recruitment of patients with lung cancer 

Whole blood was drawn from patients suffering from different types and stages of lung 

cancer (6 ♀, 11 ♂, 52-85 years). One group of patients received cytostatic treatment 

(n=11). Another group comprised of patients with a recent diagnosis of lung cancer where 

cytostatic therapy had not yet commenced (n=6). Whole blood was also drawn from age 

and sex matched healthy volunteers (4 ♀, 11 ♂, 41-70 years) with no known history or 

diagnosis of any clinical conditions. 

All lung cancer patients were recruited from the Department of Internal Medicine, Univer-

sity of Tübingen, Germany. The healthy volunteers were blood donors at the blood bank of 

the University of Tübingen.  

6.1.2 Recruitment of patients with acute heart failure 

Whole blood was collected from patients suffering from acute heart failure (5 ♀ , 17 ♂, 

33-84 years). The patients were recruited from the Department of Internal Medicine of the 

Charité Campus Virchow Clinic, Berlin, Germany. All patients showed signs and symp-

toms of heart failure during hospitalization due to an acute exacerbation, which could not 

be managed in an ambulatory setting. Whole blood was also drawn from an age and sex 

matched control group (5 ♀, 5 ♂, 35-78 years) recruited at the same clinic. 

 

The Ethics Committee of the University of Tübingen approved both studies (184/2003V) 

and both patients and healthy volunteers signed a written informed consent.  
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6.1.3 Erythrocyte isolation, solutions and measurements 

6.1.3.1 Isolation of erythrocytes 

One ml Lithium-Heparin whole blood drawn from patients or healthy volunteers was add-

ed to 3 ml Ringer solution and centrifuged at 120 x g for 20 min at 23 °C, following which 

the platelets and leukocytes-containing supernatant was discarded and erythrocytes were 

transferred into a new Eppendorf tube. The subsequent measurements were performed 

in freshly isolated erythrocytes from healthy donors and patients or in erythrocytes from 

healthy donors (blood group O-) after 24 hours (h) incubation in 500 µl plasma from 

patients or healthy donors at a hematocrit of 0.4%. 

6.1.3.1.1 Ringer solution 

Due to the lack of a nucleus and mitochondria, erythrocytes are not able to generate 

energy from the citric acid cycle. RBCs obtain their energy almost exclusively by gly-

colysis of glucose [275] and can, therefore, be stored in a relatively simple medium con-

taining glucose as the only energy source. The Ringer solution, in which the erythro-

cytes were kept in this study, enables them to maintain their ion and water homeostasis. 

The composition of the solution is shown in Table 1. 

Table 1: Composition of Ringer solution 

Substance Concentration (mM) 

NaCl 125 

KCl 5 

CaCl2 1 

MgSO4 1 

HEPES 32.2 

Glucose 5 

NaOH 13 

 

A volume of 982.798 ml H2O was added to the different components listed in Table 1. In 

order to maintain physiological conditions, the pH of the Ringer solution was adjusted to 

7.4 by the addition of HEPES and NaOH.  
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6.1.3.1.2 Annexin Wash Buffer 

The Annexin Wash Buffer (AWB) is the main buffered-solution in this study, which 

was used to determine annexin V binding and intracellular Ca2+ content of erythrocytes 

using FACS analysis. 

Since the binding of annexin V to phosphatidylserine on the erythrocyte surface is a 

calcium-dependent process, the AWB contains a higher amount of calcium chloride (5 

mM) as compared to Ringer solution (1 mM). The composition of this buffer is illus-

trated in Table 2. 

Table 2: Composition of “Annexin Wash Buffer” 

Substance Concentration (mM) 

NaCl 140 

HEPES 10 

CaCl2 5 

NaOH 4 

 

Subsequently, a volume of 990 ml H2O was added to the different components listed in 

Table 2. The pH of the AWB was adjusted to 7.4 by the addition of HEPES and NaOH. 

6.1.4 Flow Cytometry  

Flow cytometry, also called FACS analysis (“Fluorescence activated cell sorting”), is a 

technology, which simultaneously detects multiple biochemical and physical character-

istics of particles, usually cells. Measurements can be performed not only on whole cells 

but also on cellular components including organelles or nuclei. Flow cytometry provides 

information about the size of a particle, its granularity and if labelled, about its fluores-

cence intensity. Several thousand cells flow in a fluid stream per second and pass one or 

several lasers. While passing the laser, cells scatter the laser light in different directions 

that is captured by different detectors. Forward Scattered light (FSC) reflects the rela-

tive cell size and the cell-surface area and is displayed on the x-axis. Side-scattered light 

(SSC) gives information about the cell content and granularity of the cells and is shown 
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on the y-axis. Additionally, particles can be stained with fluorescent antibodies that are 

directed against specific intracellular antigens or antigens located on the cell surface. 

Secreted factors, however, can also be analyzed. Each fluorescent compound, e.g. FITC, 

absorbs light over a certain range of wavelengths, which is defined as its specific excita-

tion or absorption spectrum. The absorbed light will be subsequently emitted again and 

accordingly, each fluorochrome has its specific emission spectrum. Emitted wave-

lengths are always longer than absorbed wavelengths because more energy is consumed 

at excitation (shorter wavelength). The use of such fluorescent dyes, in addition to FSC 

and SSC measurements, enables a more accurate characterization of several cell types 

and is used to differentiate cellular subpopulations. 

In the present study, FACS analysis was performed on a FACS-Calibur (BD Bioscienc-

es, Heidelberg, Germany) which consists of four different laser channels (FL-1 to FL-

4). Each of them detects a specific range of wavelengths. FL-1 channel for example 

detects green fluorescence with wavelengths between 480 and 530 nm and was the most 

frequently used channel in this study. The FACS-Calibur is equipped with two lasers, a 

488 nm argon ion laser and a 635 nm diode laser. In this study, each of the fluoro-

chromes was excited by the argon laser and the subsequent signal was detected in FL-1 

channel. In the present study, a total of 50,000 cells were counted for the analysis of 

each parameter. 

6.1.4.1 Measurement of annexin V binding 

In order to determine the abundance of phosphatidylserine on the erythrocyte surface, 

freshly drawn blood was stained with Annexin V-FITC (ImmunoTools, Friesoythe, 

Germany). In 500 µl AWB, 2 µl erythrocytes and 2.5 µl Annexin V-FITC were added 

(1:200 dilution). This mixture was incubated in the dark at 37°C for 15 min. The Annex-

in V-FITC fluorescence was detected in FL-1 channel with an excitation wavelength of 

488 nm and an emission wavelength of 530 nm. A marker (M1) was placed to set an 

arbitrary threshold between annexin V binding cells and control cells. 
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6.1.4.2 Determination of erythrocyte forward scatter 

The cell volume of erythrocytes was determined by analyzing forward scatter (FSC). In 

this study, the forward scatter was simultaneously measured with annexin V binding. 

While the detection of annexin V binding requires staining with a fluorescent probe, 

FSC was measured without any fluorescent staining. For the determination of FSC, a 

dot plot of FSC vs. side scatter (SSC) was created. The measurements were performed 

on a linear scale for both parameters and the geometric mean of each sample was ana-

lyzed. 

6.1.4.3 Estimation of intracellular Ca2+ of erythrocytes 

One of the main hallmarks of eryptosis is the increase of the intracellular Ca2+ concen-

tration of erythrocytes. For the quantification of intracellular Ca2+ of erythrocytes, 

Fluo3-AM-dependent fluorescence (Biotium, Hayward, USA) was measured. The flow 

cytometric analysis of intracellular Ca2+ in erythrocytes using Fluo3-AM has been de-

scribed previously [276]. Fluo3-AM is a chemically modified version of the dye Fluo3, 

which has an additional acetoxymethyl group that is linked to the rest of the molecule 

via an ester bond. Fluo3-AM is able to penetrate the cell membrane. Intracellularly, es-

terases hydrolyze Fluo3-AM, which leads to the cleavage of the acetoxymethyl group. 

Due to this cleavage, Fluo3-AM is able to bind to calcium ions, which subsequently 

leads to the formation of a chelate complex. Two µl of freshly drawn blood was incu-

bated in 500 µl AWB and 5 µM Fluo3-AM at 37°C for 30 min in the dark. Thereafter, 

Ca2+-dependent fluorescence intensity was measured in FL-1 channel with an excitation 

wavelength of 488 nm and an emission wavelength of 530 nm. The geomean of Fluo3 

fluorescence was individually measured for each sample. 

6.1.4.4 Determination of reticulocytes 

Reticulocytes are immature red blood cells and the direct precursor cells of mature 

erythrocytes. Similar to mature red blood cells, they have lost their nuclei but still con-

tain ribosomes and mitochondria. These organelles contain DNA and RNA, which dif-

ferentiates them from erythrocytes. Retic-COUNT is the trade name for 1-methyl-4[(3- 
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methyl-2(3H)-benzothiazolylidine) methyl]-quinolinium 4-methyl benzene sulfonate 

and is also called Thiazole Orange. The method to determine reticulocytes by Thiazole 

Orange was described previously by Lee et al. [277]. Thiazole is a fluorescent dye that 

binds to DNA and RNA, which leads to the formation of a fluorescent nucleotide-

reagent complex with an absorption band at 475 nm. Reticulocytes can therefore be de-

tected by an argon laser with 488 nm. The fluorescence emission band is at 530 nm.  

In order to determine the percentage of reticulocytes, whole blood (2 μl) was added to 

500 µl Retic-COUNT (Thiazole Orange) reagent from Becton Dickinson, San Jose, 

USA. In order to determine autofluorescence, 2 µl of whole blood was simultaneously 

incubated in 500 µl PBS (unstained control). After staining of the samples for 30 min at 

room temperature (RT) in the dark, flow cytometry was performed according to the 

manufacturer’s instructions. The FSC and SSC were set on a logarithmic scale and the 

erythrocytes were gated. Subsequently, the Thiazole Orange-fluorescence intensity of 

the cells was determined in the FL-1 channel. The number of Retic-COUNT positive 

reticulocytes was expressed as the percentage of the total gated erythrocyte population. 

The percentage obtained from the unstained control sample was subtracted from the 

corresponding Retic-COUNT-stained sample. 

6.1.4.5 Measurement of intracellular ceramide of erythrocytes 

The observation that phosphatidylserine is still exposed on the outer leaflet of the mem-

brane of erythrocytes even after inhibition of the cation channel by amiloride and re-

moval of extracellular Ca2+ [49], raised the question of a calcium-independent pathway 

triggering eryptosis [55]. Finally, ceramide was identified as a mediator of calcium-

independent eryptosis [55]. Ceramide is cleaved by the enzyme sphingomyelinase from 

sphingomyelin and enhances the sensitivity of the enzyme scramblase for the effects of 

calcium [55]. 

In order to determine the abundance of ceramide in erythrocytes, a monoclonal anti-

body-based assay was used with anti-ceramide antibody (clone MID 15B4) as the pri-

mary antibody [278] and polyclonal fluorescein-isothiocyanate (FITC)-conjugated goat 

anti-mouse IgG and IgM specific antibody as the secondary antibody. Initially, 4 µl 
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erythrocytes were mixed in 1 ml Ringer solution. One hundred µl of the resulting cell 

suspension was centrifuged at 1600 rpm for 3 min at RT pelleting the erythrocytes. The 

supernatant was discarded and the erythrocyte pellet was subsequently stained with 1 

µg/ml anti-ceramide antibody (Enzo Life Sciences, Lörrach, Germany) with a dilution 

of 1:10 for 1 h at 37°C in phosphate-buffered saline (PBS) containing 0.1% bovine se-

rum albumin (BSA). After two washing steps with 100 µl PBS-BSA, cells were further 

stained for 30 min with polyclonal fluorescein-isothiocyanate (FITC)-conjugated goat 

anti-mouse IgG and IgM specific antibody (1:50 dilution; BD Pharmingen, Hamburg, 

Germany) in PBS-BSA. By repeated washing with 50 µl PBS-BSA, unbound secondary 

antibody was removed. The samples were finally resuspended in 200 µl PBS-BSA and 

analyzed by flow cytometric analysis in FL-1 channel at an excitation wavelength of 

488 nm and an emission wavelength of 530 nm on a FACS Calibur. The geometric me-

an of each sample was individually calculated. 

6.1.4.6 Estimation of reactive oxygen species (ROS)  

In order to determine the redox state of the RBCs and to measure the generation of reac-

tive oxygen species (ROS), 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) was 

employed (Sigma Aldrich, Hamburg, Germany). DCFDA is a fluorogenic and cell-

permeable dye which detects peroxyl, hydroxyl and other intracellular ROS activity. 

After diffusion into the cells, intracellular esterases deacetylate DCFDA to a non-

fluorescent compound. It is later oxidized by reactive oxygen species into 2´7´-

dichlorofluorescein (DCF), which is a highly fluorescent compound. The determination 

of ROS by DCFDA in red blood cells has been described previously [279]. 

For the determination of ROS, 4 µl of purified erythrocytes were mixed into 1 ml Ring-

er solution. 150 µl of the resulting cell suspension was centrifuged at 1600 rpm for 3 

min at RT. The cells were stained with 10 µM DCFDA in Ringer solution at 37°C for 

30 min in the dark and then washed three times in 150 µl Ringer solution. Subsequently, 

the DCFDA-loaded erythrocytes were resuspended in 200 µl Ringer solution. The ROS 

dependent fluorescence was measured in FL-1 channel at an excitation wavelength of 

488 nm and an emission wavelength of 530 nm on a FACS-Calibur. For each sample, 

the geometric mean was individually analyzed. 
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6.1.4.7 Confocal microscopy and immunofluorescence 

In immunofluorescence, a microscope-based technique, specific target antigens are vis-

ualized by fluorescence-labeled antibodies [280]. In this study, phosphatidylserine on 

the outer membrane of erythrocytes was detected by FLUOS-labeled Annexin V. In 

order to visualize eryptotic erythrocytes, 20 μl erythrocytes (1x106 cells) were stained 

with Annexin V–FLUOS (1:100 dilution, Roche Diagnostics, Mannheim, Germany) in 

200 µl AWB for 30 min in the dark at RT. The erythrocytes were washed twice and 

subsequently resuspended in 200 μl AWB. Forty μl were spread onto a glass slide and 

dried for 15 min at RT. The slides were covered with PROlong Gold antifade reagent 

(Invitrogen, Darmstadt, Germany). Finally, both images were taken on a Zeiss LSM 5 

EXCITER confocal laser-scanning microscope and with the phase light (Carl Zeiss Mi-

croImaging, Germany) with a water immersion Plan-Neofluar 40/1.3 NA DIC. A scale 

bar of 5 μm was used. 

6.1.4.8 Plasma measurements 

In order to determine if eryptosis is triggered by component(s) in the plasma of the pa-

tients, erythrocytes (blood group O-) were incubated in plasma of the patients and plas-

ma of healthy volunteers. The erythrocytes of blood group O- were obtained from 

healthy volunteers of the blood bank of the University of Tübingen. In order to isolate 

the plasma of patients and healthy donors, whole Lithium-Heparin blood was centri-

fuged at 2500 rpm for 5 min at RT without brake. Subsequently, 500 µl plasma of 

healthy volunteers and patients was transferred to Eppendorf cups. Afterwards, 2 µl 

purified erythrocytes of the blood group O- were added to the plasma and incubated for 

24 h at 37°C. Finally, 150 µl cell suspension were pipetted into a 96 well plate, centri-

fuged for 1600 rpm for 3 min at RT and the annexin V binding (see 6.1.4.1), forward 

scatter (see 6.1.4.2), intracellular Ca2+ (see 6.1.4.3), ceramide abundance (see 6.1.4.5) 

and reactive oxygen species (see 6.1.4.6) were determined. 
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6.2 Eryptosis in mice 

6.2.1 Gαi2+/+ and Gαi2-/-  mice 

In order to study the participation of Gαi2-protein in the regulation of erythrocyte sur-

vival, experiments were performed in age and sex matched Gαi2 knockout mice (Gαi2-/-) 

and their wild type littermates (Gαi2+/+). The mice were generated and initially character-

ized on a SV129 background [281]. Mice were backcrossed on a C57BL6 background 

and kept under specified pathogen-free (SPF) environment in individually ventilated 

cages (IVC) to prolong life expectancy [257, 282]. All animal experiments were con-

ducted according to the German law for the care and use of laboratory animals and were 

approved by local authorities. 

6.2.1.1 Blood parameters and erythrocyte isolation  

For the blood count, EDTA blood was analyzed utilizing an electronic hematology par-

ticle counter (type MDM 905 from Medical Diagnostics Marx; Butzbach, Germany) 

that is equipped with a photometric unit for hemoglobin determination. White blood 

cells, RBCs, hemoglobin, hematocrit, MCV, MCH, MCHC and platelets of Gαi2+/+ and 

Gαi2-/- have been determined. For all other experiments, heparin blood was obtained from 

the retrobulbar plexus of the mice. Plasma erythropoietin levels were determined using a 

commercially available ELISA kit according to the manufacturer’s instructions (R&D Sys-

tems, Minneapolis, USA). In order to obtain pure erythrocytes, murine erythrocytes were 

isolated utilizing Ficoll (Biochrom AG, Germany) and were washed two times at 2500 rpm 

for 5 min with Ringer solution containing 125 mM NaCl, 5 mM KCl, 1 mM MgSO4, 32 

mM HEPES/NaOH (pH 7.4), 5 mM glucose and 1 mM CaCl2. 
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6.2.1.2 Determination of reticulocytes, annexin V binding, forward scatter and Fluo3 

fluorescence 

The percentage of annexin V binding cells (6.1.4.1), forward scatter (6.1.4.2), intracel-

lular Ca2+ (6.1.4.3) and the percentage of reticulocytes (6.1.4.4) have been measured 

immediately after retrieval of the blood and isolation of the erythrocytes. The percent-

age of reticulocytes has additionally been measured by Ter119/CD71 staining using 

flow cytometry. For the analysis of the intracellular Ca2+ content of the mouse erythro-

cytes, the percentage of Fluo3 positive cells instead of the geometric mean of the Fluo3 

fluorescence has been determined. 

6.2.2 May-Grünwald staining 

May-Grünwald staining was applied to examine changes in erythrocyte shape between 

Gαi2+/+ and Gαi2-/- erythrocytes. For this reason, 20 µl of erythrocytes were smeared 

and fixed using methanol onto a glass slide. Subsequently, the cells were stained with 5 

% Giemsa Azur-Eosin (Merck Millipore, Germany) in phosphate-buffered saline for 20 

mins with the following components (in mM): 1.05 KH2PO4, 2.97 Na2HPO4, 155.2 

NaCl. Subsequently, images were taken on a Nikon Diaphot 300 Microscope (Nikon 

Instruments, Germany). 

6.2.3 Triggering of suicidal death of mouse erythrocytes by different stimulators 

6.2.3.1 Hyperosmotic solution 

Eryptosis can be triggered by a multitude of xenobiotics, by depletion of energy, oxida-

tive stress or hyperosmotic stress [49, 55]. In order to investigate a putative role of Gαi2 

in the regulation of eryptosis, suicidal death of erythrocytes was stimulated by exposure 

of the cells to hyperosmotic stress. Under hyperosmotic stress, erythrocytes expose 

phosphatidylserine on their surface and show cell shrinkage. All events are triggered by 

increased cytosolic calcium activity [49]. Extracellular hyperosmotic environment was 

created by addition of 550 mM sucrose to Ringer solution and incubation of the eryth-

rocytes of Gαi2-/- and Gαi2+/+  mice in this solution for 30 min. 4 µl erythrocytes were in-

cubated in 1 ml Ringer or hyperosmolar Ringer solution, respectively. After incubation, 

150 µl of the respective samples were transferred onto a 96 well plate and the plate was 
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centrifuged at 1600 rpm for 3 min. Subsequently, the percentage of annexin V binding 

erythrocytes (6.1.4.1), the forward scatter (6.1.4.2) and the intracellular Ca2+ activity 

(6.1.4.3) have been determined. For the analysis of intracellular Ca2+ activity, the percent-

age of Fluo3 positive cells has been analyzed. 

 

Table 3: Composition of hyperosmolar Ringer solution 

Substance Concentration 

(mM) 

NaCl 125 

KCl 5 

CaCl2 1 

MgSO4 1.2 

HEPES 32.2 

Glucose 5 

Sucrose 550 

NaOH 13 

 

6.2.3.2 C6 Ceramide and Sphingomyelinase 

Both C6 ceramide and sphingomyelinase have been described as powerful stimulators 

of eryptosis earlier [55]. Ceramide is produced from cell membrane sphingomyelin by a 

sphingomyelinase and thus, addition of sphingomyelinase stimulates suicidal erythro-

cyte death [55]. 

In order to further examine the role of Gαi2 in suicidal erythrocyte death, C6 ceramide 

and sphingomyelinase have been used to trigger eryptosis in Gαi2-/- and Gαi2+/+ erythro-

cytes. 50 µM C6 ceramide (Enzo Life Sciences, Lörrach, Germany) have been added to 

4 µl purified erythrocytes in 1 ml Ringer solution. After the incubation time of 12 h at 

37°C, 150 µl of the erythrocyte suspension were centrifuged at 1600 rpm for 3 min and 

subsequently, phosphatidylserine exposing erythrocytes have been determined as de-

scribed previously (6.1.4.1).  
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Another trigger of eryptosis, bacterial sphingomyelinase (Sigma Aldrich, Hamburg, 

Germany), at a concentration of 0.01 U/ml has been added to 1 ml Ringer solution and 4 

µl erythrocytes. After incubation for 24 h at 37°C, 150 µl of the cell suspension were 

centrifuged at 1600 rpm for 3 min. Finally, the percentage of annexin V binding cells 

has been determined (6.1.4.1). 

6.2.4 Confocal microscopy and immunofluorescence 

In order to visualize eryptotic erythrocytes, confocal images of Gαi2-/- and Gαi2+/+ eryth-

rocytes have been taken as described above (6.1.4.7). Sections were analyzed using a Leica 

TCS-SP/Leica DM RB confocal laser scanning microscope. Images were subsequently 

processed with Leica Confocal Software LCS (version 2.61). 

6.2.5 Immunoblotting 

In order to examine the expression of Gαi2 in murine and human erythrocytes, western 

blotting was performed. The erythrocyte pellet (150 µl) was lysed in 50 ml of 20 mM 

HEPES/NaOH (pH 7.4). Ghost membranes were pelleted (15,000 g for 20 min at 4°C) 

and lysed in 200 μl lysis buffer (50 mM Tris-HCl, pH 7.5; 150 mM NaCl; 1% Triton X-

100; 0.5% SDS; 1 mM NaF; 1 mM Na3VO4 and 0.4% β-mercaptoethanol) containing 

protease inhibitor cocktail (Sigma, Schnelldorf, Germany). In all cases, 60 μg of protein 

was solubilized in Laemmli sample buffer at 95°C for 5 min and resolved by 10% SDS-

PAGE. For immunoblotting, proteins were electrotransferred onto a polyvinylidene 

difluoride (PVDF) membrane and blocked with 5% nonfat milk in TBS-0.10% Tween 

20 at RT for 1 h. Then, the membrane was incubated with affinity purified rabbit Gαi2 

antibody (1:1000; 62 kDa; Cell Signaling, Danvers, MA, USA) at 4°C overnight. After 

being washed (in TBS-0.10% Tween 20) and subsequently blocked, the blots were in-

cubated with secondary anti-rabbit antibody (1:2000; Cell Signaling) for 1 h at RT. Af-

ter being washed, the antibody binding was detected with the ECL detection reagent 

(Amersham, Freiburg, Germany). In order to examine the expression of Gαi2 in human 

erythrocytes, highly purified concentrates were provided by the blood bank of the Uni-

versity of Tübingen. The erythrocyte concentrates contained less than 1% platelets and 

were virtually free of white blood cells.  



48 

 

6.2.6 Determination of the osmotic resistance 

Two µl of blood were added to 200 μl of PBS solutions with different osmolarities (0% 

to 100%) on a 96 well plate. The different osmolarities were prepared by the addition of 

a defined volume of PBS solution to a defined volume of distilled water. The plate was 

incubated at 37°C for 10 min. After centrifugation for 5 min at 3000 rpm, 50 µl of the 

supernatant were transferred to another 96 well plate, and the absorption at 405 nm was 

determined as a measure of hemolysis on a spectrophotometer (BioTek Instruments 

GmbH, Bad Friedrichshall, Germany). Absorption of the supernatant of erythrocytes 

lysed in pure distilled water was defined as 100% hemolysis. 

6.2.7 Statistics 

All data are expressed as arithmetic means ± SEM. Student’s t-test or Mann-Whitney 

test were performed to determine statistical significance between the two groups using 

Graph Pad Prism version 6.00 for Windows, GraphPad Software, La Jolla California 

USA; n denotes the number of individuals. p<0.05 was considered to be significant. 
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7 RESULTS 

 

7.1 Eryptosis in patients 

7.1.1 Eryptosis in lung cancer 

In order to explore whether suicidal erythrocyte death contributes to the pathophysiology 

of anemia in lung cancer, whole blood was drawn from patients suffering from different 

stages and types of non-small cell lung cancer (n=13) or small cell lung cancer (n=4). In 

total, 17 patients were enrolled in the study, 11 males and 6 females, with a mean age of 65 

± 2.4 (age range: 52 to 85 years).  

Non-small cell lung cancer can be further divided into three different subtypes: adenocar-

cinoma, squamous cell carcinoma (SCC) and large cell carcinoma (LCC). The age, sex, 

clinical diagnosis and the stage of disease for each patient are shown in Table 4. 

In order to test the impact of the cytostatic treatment on anemia and suicidal erythrocyte 

death, the patients were divided into two groups. Pat. Group I did not receive cytostatic 

treatment (n=6, 2 ♀, 4 ♂, mean age: 68.7 ± 4.1 years) whereas Pat. Group II was under 

cytostatic treatment (n=11, 4 ♀, 7 ♂, mean age: 63.0 ± 2.9 years).  

 

Whole blood was additionally taken from an age-and sex-matched healthy control group (4 

♀, 11 ♂, mean age: 57.1 ± 1.8 years, age range: 41-70 years).  
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Table 4: Characteristics of the lung cancer patients, without (Pat. Group I) and with    

(Pat. Group II) cytostatic treatment [283] 

Number Age Sex Clinical diagnosis Treatment 

1 63 m Small cell lung cancer,                                        

neuroendocrine carcinoma                                    

(T4 N3 M1b, stage IV, UICC/AJCC) 

Carboplatin                        

Etoposide 

2 66 m Non-small cell lung cancer,                                  

poorly differentiated adenocarcinoma                   

(T4 N3 M1b, stage IV, UICC/AJCC) 

Cisplatin                           

Gemcitabine                     

Carboplatin 

3 52 m Non-small cell lung cancer,                                    

squamous cell carcinoma                                      

(cT2a cN2 cM0, stage IIIA, UICC/AJCC) 

Cisplatin                              

Vinorelbine                 

Docetaxel 

4 52 f Non-small cell lung cancer,                              

poorly differentiated adenocarcinoma                      

(cT2b cN2-3 M1b, stage IV, UICC/AJCC) 

Cisplatin                              

Gemcitabine 

5 62 m Non-small cell lung cancer,                                    

poorly differentiated squamous cell carcinoma                                      

(pT3 pN0 L0 V0 Pn0 R0, stage IIB, AJCC/UICC) 

Cisplatin                                   

Vinorelbine 

6 56 m Non-small cell lung cancer,                                        

adenocarcinoma                                                        

(cT4 cN3 M1a, stage IV, AJCC/UICC) 

Docetaxel 

7 64 m Small cell lung cancer                                                   

(cT4 N3 M1b, stage IV, UICC/AJCC) 

Carboplatin                        

Etoposide                           

Topotecan 

8 66 f Non-small cell lung cancer                                        

(stage IV, UICC/AJCC) 

Carboplatin                            

Gemcitabine 

9 53 f Non-small cell lung cancer,                                                       

squamous cell carcinoma                                                 

(cT3 N3 M1, stage IV, UICC/AJCC) 

Carboplatin                              

Vinorelbine                          

Pembrolizumab 

10 77 m Non-small cell lung cancer,                                         

poorly differentiated adenocarcinoma                           

(T4 N3 M1b, stage IV, UICC/AJCC) 

Carboplatin                         

Gemcitabine 

11 81 f Small cell lung cancer                                                    

(cT2b cN2 M0, stage IIIA) 

Carboplatin                  

Etoposide 

12 60 f Small cell lung cancer                                                        

(T4 N3 M1, stage IV) 

No cytostatic                

treatment 

13 71 f Non-small cell lung cancer,                                               

adeonocarcinoma G3 

No cytostatic                       

treatment 

14 74 m Non-small cell lung cancer,                                          

poorly differentiated squamous cell carcinoma              

(T3 cN0-1 M0) 

No cytostatic                           

treatment 

15 59 m Non-small cell lung cancer,                                             

adenocarcinoma (cT2a pN 1-2 M0) 

No cytostatic                          

treatment 

16 63 f Non-small cell lung cancer,                                            

squamous cell carcinoma (cT4 cN3 cM0) 

No cytostatic                         

treatment 

17 85 m Non-small cell lung cancer,                                             

adenocarcinoma (cT3-4 cN0-1 M0) 

No cytostatic                        

treatment 
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In order to verify whether the lung cancer patients enrolled in this study suffered from 

anemia, the erythrocyte number, hemoglobin and the hematocrit level were determined.  

Both Pat. Groups (I and II) had a significantly lower number of erythrocytes. The eryth-

rocyte number was lower in Pat. Group II under cytostatic treatment (3.1 ± 0.1 x106/µl) 

as compared to Pat. Group I (4.2 ± 0.2 x106/µl) (Fig. 4 A). 

Hemoglobin level was similarly lower in Pat. Group I (12.4 ± 0.7 g/100 ml) and was 

lowest in Pat. Group II (9.6 ± 0.4 g/100 ml) (Fig. 4 B). 

Similar observations were made on the hematocrit level, which was significantly de-

creased in Pat. Group I (37.0 ± 1.9%) and reached the lowest value in Pat. Group II 

(28.7 ± 1.4%) (Fig. 4 C). 

Thus, all patients were anemic. None of the healthy volunteers were anemic. 

Although Pat. Group II showed the lowest erythrocyte number, hemoglobin and hema-

tocrit level, they had the highest percentage of reticulocytes (3.0 ± 0.6%) as compared 

to the control group and Pat. Group I (1.8 ± 0.3%) indicating that the anemia was pre-

sent despite enhanced production of erythrocytes (Fig. 4 D). 

The mean corpuscular volume (MCV) was slightly but significantly enhanced in Pat. 

Group II (91.5 ± 1.0). MCV was also slightly increased in Pat. Group I (88.8 ± 1.2), the 

difference did, however, not reach statistical significance (Fig. 4 E). 



52 

 

 

Fig. 4: Effect of lung cancer on erythrocyte blood parameters: Arithmetic means ± SEM of (A) eryth-

rocyte count, (B) hemoglobin, (C) hematocrit, (D) percentage of reticulocytes and (E) mean corpuscular 

volume in blood drawn from healthy volunteers (n=15, white bars) and patients without (n=6; Pat. Group 

I, grey bars) and with (n=11; Pat. Group II, black bars) cytostatic treatment. * (p<0.05), ** (p<0.01) and 

*** (p<0.001) indicate significant difference from healthy volunteers (unpaired t test). ## (p<0.01) indi-

cates significant difference from patients without cytostatic treatment (unpaired t test) [283]. 
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The percentage of reticulocytes was inversely and significantly correlated with the 

erythrocyte number (Fig. 5 A), the hemoglobin level (Fig. 5 B) and the hematocrit (Fig. 

5 C), which confirms that anemia prevailed despite increased reticulocyte production. 

 

 

Fig. 5: Correlations of reticulocyte number with different blood parameters in LC patients. (A-C). 

Reticulocyte number as a function of (A) erythrocyte number (p=0.0129, R2=0.3897), (B) hemoglobin 

concentration [g/dl] (p=0.076, R2=0.4337) and (C) hematocrit (p=0.0099, R2=0.4119) in lung cancer 

patients (n=17). * (p<0.05) and ** (p<0.01) indicate significant correlation. For all correlations, Spear-

man nonparametric analysis was used [283]. 

 

Table 5 shows several blood parameters obtained from the LC patients (Pat. Group I 

and II) and the healthy volunteers.  
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Table 5: Mean age, sex and blood parameters of lung cancer patients without                

(Pat. Group I) and with (Pat. Group II) cytostatic treatment                                                 

(values are given as mean ± SEM). Values without SEM in this table reflect standard                 

clinical reference values and do not represent data from healthy controls [283] 

 Healthy volunteers          

(A) 

Patients without                     

cytostatic                     

treatment                                      

(Pat. Group I) (B)                        

Patients with 

cytostatic 

treatment 

(Pat. Group 

II)                         

(C) 

p-value 

Mean age                                  

(years) 

57.1 ± 1.8 68.7 ± 4.1      63.0 ± 2.9   0.0073** (A vs. B) 

0.0839 (A vs. C) 

0.2722 (B vs. C) 

Sex 11 males                                         

4 females 

4 males                                                              

2 females 

7 males                    

4 females 

 

Plasma creatinine 

concentration  

(mg/100 ml) 

0.5-0.8 (female)                  

0.6-1.1 (male) 

0.6 ± 0.04   0.8 ± 0.07 0.1159 (B vs. C) 

Plasma uric acid 

(mg/100 ml) 

2.4-5.7 (female)                    

3.4-7.0 (male) 

5.4 ± 0.7  5.7 ± 0.5 0.7789 (B vs. C) 

Plasma ferritin                    

concentration                 

(µg/100 ml) 

1.0-20 (female)                   

3.0-30 (male) 

n.a.      44 ± 26.4 n.a. 

Red blood cell                       

distribution width 

(%) 

< 14 14.0 ± 1.2 16.8 ± 0.7 0.059 (B vs C) 

Erythrocytes 

(x106/µl) 

5.2 ± 0.1 4.2 ± 0.2 3.1 ± 0.1 <0.001*** (A vs. B) 

<0.001*** (A vs. C)       

0.001## (B vs. C) 

Hematocrit (%) 43.6 ± 0.9 37.0 ± 2.0      28.7 ± 1.4  0.0018** (A vs. B) 

<0.001*** (A vs.C)                              

0.0027## (B vs. C) 

Hemoglobin (g/dl) 14.5 ± 0.4 12.4 ± 0.7       9.6 ± 0.4 0.0103* (A vs. B) 

<0.001*** (A vs.C)                                  

0.0029## (B vs. C) 

Reticulocytes                        

(%) 

1.4 ± 0.1 1.8 ± 0.3 3.0 ± 0.6  0.381 (A vs. B)  

0.0123* (A vs. C) 

0.1625 (B vs. C) 

Mean Corpuscular 

Volume (fl) 

84.7 ± 1.4 88.8 ± 1.2 91.5 ± 1.0 0.0929 (A vs. B)          

0.0011** (A vs. C) 

0.1184 (B vs. C) 

MCH                    

(pg/erythrocyte) 

27.0-34.0 29.7 ± 0.6 30.6 ± 0.3 0.175 (B vs. C) 

MCHC                          

(g/100 ml) 

32.0-36.0 33.4 ± 0.4 33.4 ± 0.3 0.9094 (B vs. C) 

Plasma total                 

protein                             

(g/100 ml) 

6.5-8.5 7.4 ± 0.2 7.0 ± 0.1 0.2007 (B vs. C) 

C-reactive protein 

(mg/100 ml) 

< 0.5 4.4 ± 2.4 3.0 ± 1.1 0.5253 (B vs. C) 

Leucocytes (/µl) 3800-10300 7607 ± 776.8 8839 ± 3285 0.7901 (B vs. C) 

Lymphocytes (%) 20-45 19.2 ± 2.1 23.9 ± 5.4 0.5825 (B vs. C) 
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Monocytes (%) 2-8 8.2 ± 0.8 7.0 ± 1.1 0.4664 (B vs. C) 

Thrombocytes 

(x103/µl) 

150-450 317 ± 52.9 277.9 ± 43.2 0.5878 (B vs. C) 

 

Further experiments were conducted in order to investigate, whether the anemia of the 

patients was paralleled by and possibly due to accelerated suicidal erythrocyte death.  

In order to visually identify phosphatidylserine-exposing erythrocytes, cells of LC pa-

tients of Group I and healthy volunteers were stained with Annexin V-FLUOS and the 

FLUOS-dependent fluorescence was visualized by confocal microscopy. Images were 

as well taken with the phase light. In LC patients of Group I, the number of fluorescent 

cells and thus, phosphatidylserine-exposing erythrocytes was enhanced in freshly drawn 

blood from LC patients of Group I than in blood of healthy volunteers (Fig. 6 A). 

Furthermore, the percentage of phosphatidylserine-exposing erythrocytes was quantified  

by FACS analysis. In order to stain PS-exposing erythrocytes, Annexin V-FITC was 

employed and the percentage of annexin V positive cells was determined. As depicted 

in Fig. 6 B and C, Pat. Group II showed the highest percentage of annexin V positive 

cells (1.4 ± 0.1%), followed by Pat. Group I (1.2 ± 0.3%). The percentage of phosphati-

dylserine-exposing erythrocytes was significantly lower in the healthy control group 

(0.6 ± 0.1%). As illustrated in Fig. 6 D, the percentage of annexin V binding cells was 

higher in lung cancer patients than in healthy volunteers irrespective of age.  
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Fig. 6: Phosphatidylserine exposure of erythrocytes taken from patients without and with cytostatic 

treatment and healthy control group. (A). Light microscopy (left panel) and confocal images (right 

panel) of FLUOS-dependent fluorescence of human erythrocytes stained with FLUOS-conjugated annex-

in V. The specimens were obtained from healthy volunteers (Control, upper panels) and from lung cancer 

patients without cytostatic treatment (Group I, lower panels). Scale bar 20 µm. (B). Original representa-

tive histogram of annexin V binding of erythrocytes in freshly drawn blood from healthy volunteers (red 

shadow) and from patients without (Pat. Group I, grey line) and with cytostatic treatment (Pat. Group II, 

black line). M1 indicates the fluorescence of annexin V defining the percentage of annexin V binding 

erythrocytes. (C). Arithmetic means ± SEM of the percentage of annexin V binding erythrocytes in fresh-

ly drawn blood from healthy volunteers (n=15, control, open circles) and patients without (n=6, closed 

squares) and with (n=11, closed triangles) cytostatic treatment. * (p<0.05) and *** (p<0.001) indicate 

significant difference from healthy volunteers (Mann Whitney test). (D). Percentage of annexin V binding 

erythrocytes in healthy individuals (open circles) and lung cancer patients of group I (n=6, closed 

squares) and group II (n=11, closed triangles) as a function of age. The regression line shown is calculat-

ed for healthy individuals (p=0.8343, R2=0.0035) [283]. 

 

In order to test if a component in the plasma of the LC patients triggers eryptosis, eryth-

rocytes from healthy donors of blood group O- were exposed to plasma of Pat. Group I 

and II. After a plasma exposure for 24 h, the percentage of annexin V binding erythro-

cytes was determined. The percentage was highest in Pat. Group II (9.3 ± 1.6%) and 

tended to be increased in Pat. Group I (9.0 ± 1.0%), the difference did, however, not 

reach statistical significance (p=0.058) (Fig. 7 B).  

A                                                      B

100 101 102 103 104

Annexin V fluorescence (rel. units)

N
u

m
b

e
r

o
f 

c
e

ll
s M1

0

80

160

240

320

400

*

***
C                                                           D

R2=0.0035

p= 0.8343

Age (years)

40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5

A
n

n
e

x
in

V
 b

in
d

in
g

c
e
ll
s

[%
]

Control Pat. Group I Pat. Group II

0.0

0.5

1.0

1.5

2.0

2.5

A
n

n
e

x
in

V
 b

in
d

in
g

c
e
ll
s

[%
]



57 

 

 

Fig. 7: Effect of patient plasma without and with cytostatic treatment on the exposure of phospha-

tidylserine in erythrocytes from healthy volunteers. (A). Original representative histogram of annexin 

V binding of erythrocytes from healthy volunteers after a 24 h exposure to plasma from healthy volun-

teers (red shadow) and to plasma from patients without (Pat. Group I, grey line) and with cytostatic treat-

ment (Pat. Group II, black line). M1 indicates the annexin V fluorescence defining the percentage of 

phosphatidylserine binding erythrocytes. (B). Arithmetic means ± SEM of the percentage of annexin V 

binding erythrocytes from healthy volunteers after a 24 h exposure to plasma from healthy volunteers 

(n=15, white bar) and to plasma from patients without (n=6, grey bar) and with (n=11, black bar) cytostat-

ic treatment. * (p<0.05) indicates significant difference from healthy volunteers (unpaired t test) [283]. 

One of the hallmarks of suicidal erythrocyte death is cell shrinkage, which can be esti-

mated by forward scatter in FACS analysis. In order to verify if cell volume of cancer 

patients with and without cytostatic treatment is changed, forward scatter of freshly 

drawn blood was determined. The forward scatter tended to be lower in Pat. Group I 

(456.5 ± 14.1 a.u.), but was significantly increased in Pat. Group II (495.5 ± 4.1 a.u.) as 

compared to the control group (478.8 ± 5.2 a.u.) (Fig. 8 A and B). 

Similar observations were made after the incubation of erythrocytes of blood group O-  

in plasma of both LC patient groups. The cell volume in these erythrocytes was signifi-

cantly enhanced after exposure to plasma of Pat. Group II (514.1 ± 19.5 a.u.), it, howev-

er, showed a slight, but not significant decrease in cell volume after exposure to plasma 

of Pat. Group I (414.6 ± 38.0 a.u.) as compared to the control group (450.2 ± 17.3 a.u.) 

(Fig. 8 C and D). 
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Fig. 8: Effect of lung cancer on forward scatter of erythrocytes. (A). Original representative histogram 

of erythrocyte forward scatter in freshly drawn blood from healthy volunteers (red shadow) and from LC 

patients without (grey line) and with cytostatic treatment (black line). (B). Arithmetic means ± SEM of 

forward scatter geometric mean of erythrocytes in freshly drawn blood from the healthy control group 

(n=15, white bar) and from LC patients without (n=6, grey bar) and with (n=11, black bar) cytostatic 

treatment. * (p<0.05) indicates significant difference from the healthy control group. ## (p<0.01) indi-

cates significant difference from LC patients without cytostatic treatment (unpaired t test). (C). Original 

representative histogram of erythrocyte forward scatter from healthy volunteers after a 24 h exposure to 

plasma from the healthy control group (n=15, red shadow) and to plasma from patients without (grey 

line) and with cytostatic treatment (black line) (D). Arithmetic means ± SEM of forward scatter geometric 

mean of erythrocytes from healthy volunteers after a 24 h exposure to plasma from healthy volunteers 

(n=15, white bar) and to plasma from LC patients without (n=6, grey bar) and with (n=11, black bar) 

cytostatic treatment. * (p<0.05) indicates significant difference from the healthy control group. # 

(p<0.05) indicates significant difference from LC patients without cytostatic treatment (unpaired t test) 

[283]. 

 

An increase of the intracellular Ca2+ content of erythrocytes is another trigger of eryp-

tosis that can be measured by the fluorescence of Fluo3. Fluo3 fluorescence was ana-

lyzed both in freshly drawn blood of healthy volunteers and LC patients and after expo-

sure of healthy erythrocytes of blood group O- to plasma of the patients and healthy vol-

unteers for 24 h. No significant difference in Fluo3 fluorescence in freshly drawn blood 

between the LC patients and the healthy volunteers was observable (Fig. 9 A and B). 
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Furthermore, Fluo3 fluorescence in the plasma experiments was not significantly differ-

ent between the respective groups (Fig. 9 C and D). 

 

Fig. 9: Effect of lung cancer on erythrocyte intracellular Ca2+ activity. (A). Original representative 

histogram of erythrocyte Fluo3 fluorescence in freshly drawn blood from the control group (red shadow) 

and from LC patients without (grey line) and with cytostatic treatment (black line). (B). Arithmetic means 

± SEM of erythrocyte Fluo3 fluorescence in freshly drawn blood from healthy volunteers (n=15, white 

bar) and from patients without (n=6, grey bar) and with cytostatic treatment (n=11, black bar). (C). Origi-

nal representative histogram of erythrocyte Fluo3 fluorescence from healthy volunteers after a 24 h expo-

sure to plasma from healthy volunteers (red shadow) and to plasma from patients without (grey line) and 

with cytostatic treatment (black line). (D). Arithmetic means ± SEM of Fluo3 fluorescence of erythro-

cytes from healthy volunteers after a 24 h exposure to plasma from healthy volunteers (n=15, white bar) 

and to plasma from patients without (n=6, grey bar) and with cytostatic treatment (n=11, black bar) [283]. 

 

Ceramide is another stimulator of eryptosis, which is effective even in the absence of 

increased intracellular Ca2+
.  Therefore, the abundance of ceramide in freshly drawn 

blood was analyzed. As a result, Pat. Group I showed a slight increase of ceramide (14.5 

± 1.2 a.u.), the difference did, however, not reach statistical significance. Pat. Group II 

showed a significantly higher ceramide abundance (18.6 ± 1.1 a.u.) as compared to Pat. 

Group I and the healthy control group (13.3 ± 0.4 a.u.) (Fig. 10 A and B). 
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In order to analyze if a component in plasma triggers the formation of ceramide, healthy 

erythrocytes (blood group O-) were incubated in plasma of both patient groups and 

healthy volunteers for 24 h. Erythrocytes exposed to plasma of Pat. Group II showed the 

highest ceramide abundance (18.6 ± 1.1 a.u.). The exposure to plasma of Pat. Group I 

slightly, but not significantly triggered ceramide formation (16.3 ± 2.3 a.u.) (Fig. 10 C 

and D). Accordingly, the results were similar to those obtained in freshly drawn blood. 

 

Fig. 10: Effect of lung cancer on the ceramide abundance of erythrocytes. (A). Original representa-

tive histogram of ceramide-dependent FITC fluorescence of erythrocytes in freshly drawn blood from the 

control group (red shadow) and from patients without (grey line) and with cytostatic treatment (black 

line). (B). Arithmetic means ± SEM of ceramide-dependent FITC fluorescence of erythrocytes in freshly 

drawn blood from the healthy control group (n=15, white bar) and from LC patients without (n=6, grey 

bar) and with cytostatic treatment (n=11, black bar). *** (p<0.001) indicates significant difference from 

healthy volunteers. # (p<0.05) indicates significant difference from Pat. Group I (unpaired t test). (C). 

Original representative histogram of ceramide-dependent FITC fluorescence of erythrocytes from healthy 

volunteers after a 24 h exposure to plasma from healthy volunteers (red shadow) and to plasma from 

patients without (grey line) and with cytostatic treatment (black line). (D). Arithmetic means ± SEM of 

ceramide-dependent FITC fluorescence of erythrocytes from healthy volunteers after a 24 h exposure to 

plasma from healthy volunteers (n=15, white bar) and to plasma from patients without (n=6, grey bar) and 

with cytostatic treatment (n=11, black bar).*** (p<0.001) indicates significant difference from healthy 

volunteers (unpaired t test) [283]. 
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Another main trigger of eryptosis is the production of reactive oxygen species, a marker 

of cellular redox status. The production of ROS was quantified by fluorescence of 2’,7’-

dichlorodihydrofluorescein diacetate (DCFDA) in freshly drawn blood. Pat. Group II 

showed a significantly higher DCFDA fluorescence in freshly drawn blood (14.5 ± 0.8 

a.u.) as compared to Pat. Group I (12.4 ± 0.8 a.u.) and the control group (12.0 ± 0.4 a.u.) 

(Fig. 11 A and B). 

Similar results were obtained after the exposure of healthy erythrocytes to plasma of 

both patient groups. Erythrocytes exposed to plasma of Pat. Group II showed the high-

est DCFDA fluorescence (18.5 ± 2.1 a.u.). No difference was observed between the 

exposure to plasma of Pat. Group I (11.2 ± 0.4 a.u.) and the healthy control group (12.1 

± 1.0 a.u.) (Fig. 11 C and D).  
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Fig. 11: Effect of lung cancer on reactive oxygen species production in erythrocytes. (A). Original 

representative histogram of DCFDA fluorescence of erythrocytes in freshly drawn blood from the healthy 

control group (red shadow) and from LC patients without (grey line) and with cytostatic treatment (black 

line). (B). Arithmetic means ± SEM of DCFDA fluorescence of erythrocytes in freshly drawn blood from 

the healthy control group (n=15, white bar) and from LC patients without (n=6, grey bar) and with cyto-

static treatment (n=11, black bar). ** (p<0.01) indicates significant difference from the healthy control 

group (unpaired t test). (C). Original representative histogram of DCFDA fluorescence of erythrocytes 

from healthy volunteers after an exposure to plasma from healthy volunteers (red shadow) and to plasma 

from patients without (grey line) and with cytostatic treatment for 24 h (black line). (D). Arithmetic 

means ± SEM of DCFDA fluorescence of erythrocytes from the healthy control group after a 24 h expo-

sure to plasma from healthy volunteers (n=15, white bar) and to plasma from patients without (n=6, grey 

bar) and with cytostatic treatment (n=11, black bar). ** (p<0.01) indicates significant difference as com-

pared to healthy volunteers. # (p<0.05) indicates significant difference from patients without cytostatic 

treatment (unpaired t test) [283]. 
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7.1.2 Eryptosis in acute heart failure 

The second study in patients suffering from acute heart failure (AHF) explored whether 

AHF is paralleled by anemia and to what extent suicidal erythrocyte death contributes to 

anemia. For this reason, whole blood was drawn from patients suffering from AHF. All 

patients were hospitalized and had a significantly lower ejection fraction (25 ± 3%). 22 

patients in total, 17 males and 5 females, were enrolled in the study, with a mean age of 

65.4 ± 3.2 (age range: 33 to 84 years). The cause for the present heart failure was either 

ischemic (10/22) or dilated cardiomyopathy (12/22). On an average, the patients were di-

agnosed with heart failure for the first time around 43.5 ± 9.2 months ago.  

Important clinical characteristics of the AHF patients are listed in tables 6 and 7. 

 

Whole blood was also taken from an age and sex matched healthy control group, 5 males 

and 5 females in total, with a LVEF of 57 ± 2% and a mean age of 57.7 ± 4.6 years (age 

range: 35 to 78 years).  
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Table 6: Characteristics of the acute heart failure patients enrolled in the study:                     

Age, sex and blood parameters [284] 

 Control values          

(n=10) 

Acute Heart Failure                                       

(n=22) 

p-value 

Age                                  

(years) 

57.7 ± 4.6 65.4 ± 3.2        0.19 

Sex 5 males                                         

5 females 

5 female                                                              

17 males 

 

LVEF (%) 57 ± 2 25 ± 3     <0.001*** 

Hematocrit (%) 40.1 ± 1.0 35.6 ± 1.2  0.027 * 

Hemoglobin (g/dl) 14.1 ± 0.4 11.5 ± 0.5      0.008 *** 

Erythrocytes (x106/µl) 4.3 ± 0.2 4.1 ± 0.2       0.449 

Reticulocytes (%) 1.1 ± 0.2 2.3 ± 0.3   0.0156 * 

Mean                             

Corpuscular                   

Hemoglobin (pg) 

31.1 ± 0.5 28.2 ± 0.5      0.0056 ** 

Mean                                    

Corpuscular               

Volume (fl) 

91.0 ± 1.6 88.2 ± 1.5       0.388 

Serum                                

creatinine                        

(mg/dl) 

0.92 ± 0.06 1.44 ± 0.15 0.019 * 

Leucocytes (/µl) 8.4 ± 1.9 8.5 ± 0.7       0.93 

C-reactive protein  

(mg/100 ml) 

2.7 ± 0.7 27.0 ± 7.3       0.2 

Ferritin                          

(µg/100 ml) 

n.a. 238.3 ± 48.5  

Transferrin                       

saturation                             

(%) 

n.a. 14.5 ± 2.3  
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Table 7: Characteristics of the acute heart failure patients enrolled in the study:                     

cause of heart failure, medication and time after first diagnosis [284] 

 Acute Heart Failure                                       

(n=22) 

Cause of Heart Failure 

 

Ischemic                          

cardiomyopathy:                
10/22 (45 %) 

Dilated                                       

cardiomyopathy:          
12/22 (55 %) 

Medication ASS: 10/22 (45%)                            

 

Clopidogrel: 3/22 (14%) 

 

Warfarin/NOACs: 

12/22(54%) 

 

Beta-Blockers:                   

22/22 (100%) 

 

ACE-Inhibitors/ARB: 

18/22 (82%)   

  

    Loop diuretics:  

          18/22 (82%) 

 

Eplerenone/ 

Spironolactone:  

16/22 (73%) 

Time after first                                 

diagnosis of Heart               

Failure (months) 

43.5 ± 9.2 

 

The present study explored if anemia contributes to the pathophysiology of AHF and to 

what extent anemia is paralleled by enhanced suicidal erythrocyte death.  

As demonstrated in Fig. 12, hemoglobin level (A), hematocrit (B) and mean corpuscular 

hemoglobin (C) were significantly lower in the AHF patients as compared to the healthy 

volunteers. Accordingly, the AHF patients were anemic. Although the AHF patients had a 

significantly higher percentage of reticulocytes (2.3 ± 0.3%) (Fig. 12 D) than the healthy 

control group (1.1 ± 0.2%), their anemia still prevailed. 
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Fig. 12: Blood parameters from healthy volunteers and AHF patients. Arithmetic means ± SEM 

(n=10-22) of (A) hemoglobin level, (B) hematocrit, (C) mean corpuscular hemoglobin and (D) percent-

age of reticulocytes in blood drawn from healthy volunteers (n=10, white bars) and AHF patients (n=22, 

black bars). * (p<0.05), ** (p<0.01) and *** (p<0.001) indicate statistically significant difference as 

compared to the healthy control group (unpaired t test) [284]. 

 

A significant negative correlation was observed between the percentage of reticulocytes 

and the hemoglobin level (R2= 0.6849, p<0.0001, Fig. 13 A), between the number of retic-

ulocytes and the erythrocyte number (R2=0.6488, p<0.0001, Fig. 13 B) and also between 

the reticulocyte number and the hematocrit level (R2=0.5945, p = 0.002, Fig. 13 C ). All 

findings suggest that the anemia of the patients occurred despite formation of new erythro-

cytes. Six out of the 22 patients (27%) suffered as well from iron deficiency (ID) if ID is 

defined by ferritin levels of lower than 100 μg per liter or between 100 and 299 μg per 

liter, if the transferrin saturation was <20%. The AHF patients showed a significantly 

higher serum creatinine level, however, none of the patients were on dialysis or taking 

erythropoietin. 
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Fig. 13: (A-C). Correlations of reticulocyte number with different blood parameters in AHF pa-

tients. Reticulocyte number as a function of (A) hemoglobin (p<0.0001, R2=0.6849), (B) erythrocyte 

number (p<0.0001, R2=0.6488), (C) hematocrit (p=0.002, R2=0.5945) in AHF patients. ** (p<0.01) and 

**** (p<0.0001) indicate significant correlation. For all correlations, Spearman nonparametric analysis 

was used [284]. 

In order to identify whether the anemia of the patients is partly due to enhanced eryp-

tosis, phosphatidylserine-exposing erythrocytes were labeled with FITC-labeled Annex-

in V. As illustrated in Fig. 14 A and B, the AHF patients had a significantly higher per-

centage of annexin V binding erythrocytes (1.8 ± 0.1%) as compared to the control 

group (1.2 ± 0.2%).  

In order to test whether the enhanced eryptosis of the AHF patients is stimulated by a 

blood-borne component, erythrocytes from healthy volunteers (blood group O-) were 

incubated in plasma drawn from either, AHF patients or from healthy volunteers for 24 

h. Subsequently, the percentage of annexin V binding erythrocytes was determined. As 

demonstrated in Fig. 14 C and D, the percentage of phosphatidylserine-exposing eryth-

rocytes was significantly higher after an exposure to plasma from the patients (25.1 ± 
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3.0 %) as compared to exposure to plasma from the healthy control group (13.1 ± 

2.7%). 

 

Fig. 14: Phosphatidylserine exposure of erythrocytes drawn from healthy volunteers and AHF pa-

tients (A-B) and after a 24 h exposure to plasma of the healthy control group and the AHF patients 

(C-D). (A). Original histogram of annexin V binding of erythrocytes in freshly drawn blood from the 

healthy control group (red shadow) and from AHF patients (black line). M1 indicates the fluorescence of 

annexin V defining the percentage of annexin V binding erythrocytes. (B). Individual values and arithme-

tic means ± SEM of the percentage of annexin V binding erythrocytes in freshly drawn blood from 

healthy volunteers (left, black triangles, n=10) and patients (right, black squares, n=22).* (p<0.05) indi-

cates statistically significant difference between AHF patients and healthy volunteers (Mann-Whitney 

test). (C). Original histogram of annexin V binding of erythrocytes from healthy volunteers after an expo-

sure to plasma from healthy volunteers (red shadow) and to plasma from AHF patients for 24 h (black 

line). M1 indicates the fluorescence of annexin V defining the percentage of annexin V binding erythro-

cytes. (D). Arithmetic means ± SEM of the percentage of annexin V binding erythrocytes from healthy 

volunteers exposed for 24 h to plasma from healthy volunteers (n=10, control, white bar) and from AHF 

patients (n=21, black bar).  * (p<0.05) indicates statistically significant difference from exposure to plas-

ma from healthy volunteers (unpaired t test) [284]. 

In order to measure the cell volume of erythrocytes, the forward scatter was determined 

by flow cytometry in freshly drawn blood from the control group and the AHF patients. 

The forward scatter of freshly drawn blood was significantly smaller in the AHF pa-
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tients (484.9 ± 7.9 a.u.) as compared to the healthy control group (503.4 ± 2.5 a.u.) (Fig. 

15 A and B). 

The forward scatter also tended to be lower after a 24 h exposure to plasma from the 

patients (477.6 ± 18.5 a.u.) as compared to the healthy volunteers (518.9 ± 12.9 a.u.), 

the difference did, however, not reach statistical significance (data not shown). 

 

Fig. 15: Forward scatter of erythrocytes drawn from healthy volunteers and AHF patients. (A). 

Original histogram of forward scatter of erythrocytes in freshly drawn blood from the healthy control 

group (red shadow) and from AHF patients (black line). (B). Arithmetic means ± SEM of the forward 

scatter of erythrocytes in freshly drawn blood from healthy volunteers (n=10, control, white bar) and 

AHF patients (n=22, black bar). * (p<0.05) indicates statistically significant as compared to healthy vol-

unteers (unpaired t test) [284]. 

 

In order to analyze intracellular Ca2+, Fluo3 fluorescence was determined in freshly 

drawn blood and after a 24 h plasma exposure. The Fluo3 fluorescence was similar in 

freshly drawn blood from the healthy volunteers (22.9 ± 1.6 a.u.) and the AHF patients 

(20.1 ± 1.2 a.u.). After a 24 h exposure to plasma from the patients, the Fluo3 fluores-

cence tended to be higher (24.5 ± 2.9 a.u.) as compared to the healthy volunteers (19.3 ± 

0.7 a.u.), an observation, however, not reaching statistical significance (data not shown). 

Eryptosis may further be induced by oxidative stress. In order to measure reactive oxy-

gen species, 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) was employed. As 

demonstrated in Fig. 16 A and B, the DCFDA fluorescence was significantly higher in 

freshly drawn blood from the patients (20.2 ± 1.7 a.u.) than in the healthy control group 
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(14.3 ± 0.9 a.u.). In order to identify if a plasma-borne component, for example an oxi-

dant, stimulates the eryptosis, the DCFDA fluorescence was as well determined in 

erythrocytes (blood group O-) after an exposure to both, plasma from the healthy volun-

teers and the patients. As shown in Fig. 16 C and D, the amount of reactive oxygen spe-

cies according to the 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence 

was significantly higher in the AHF patients (22.8 ± 2.0 a.u.) as compared to the healthy 

volunteers (15.4 ± 2.2 a.u.). 

 

Fig. 16: Reactive oxygen species of erythrocytes drawn from AHF patients and healthy volunteers 

(A-B) and after an exposure to plasma from the healthy volunteers and AHF patients for 24 h (C-

D). (A). Original histogram of 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence of 

erythrocytes in freshly drawn blood from healthy volunteers (red shadow) and from AHF patients (black 

line). (B). Arithmetic means ± SEM of the DCFDA fluorescence of erythrocytes in freshly drawn blood 

from healthy volunteers (n=7, control, white bar) and AHF patients (n=18, black bar). * (p<0.05) indi-

cates statistically significant difference to healthy volunteers (unpaired t test). (C). Original histogram of 

2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence of erythrocytes from healthy volun-

teers following a 24 h exposure to plasma from healthy volunteers (red shadow) and to plasma from AHF 

patients (black line). (D). Arithmetic means ± SEM of the DCFDA fluorescence of erythrocytes from 

healthy volunteers exposed for 24 h to plasma from healthy volunteers (n=7, control, white bar) and from 

AHF patients (n=15, black bar). * (p<0.05) indicates statistically significant difference from exposure to 

plasma from healthy volunteers (unpaired t test) [284]. 
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Another trigger of cell membrane scrambling without increasing intracellular Ca2+ is the 

formation of ceramide. Thus, additional experiments explored if the ceramide abun-

dance is different in the control and the AHF patients. The abundance of ceramide was 

detected by FITC-labelled antibodies using flow cytometry and was similar in freshly 

drawn blood from the AHF patients (14.6 ± 0.4 a.u.) and the healthy volunteers (13.1 ± 

0.4 a.u.). After a 24 hours plasma exposure, the ceramide abundance tended to be higher 

following exposure to plasma from the AHF patients (18.8 ± 3.6 a.u.) than to the 

healthy controls (13.3 ± 0.7 a.u.), the difference did, however, not reach statistical sig-

nificance (data not shown).  
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7.2 Eryptosis in mice 

7.2.1 Role of Gαi2 in erythrocytes 

The second part of this study addressed the influence of Gαi2 on erythrocyte survival in 

mice. For this reason, experiments were conducted in mice lacking functional Gαi2   

(Gαi2-/-) and their corresponding wild type littermates (Gαi2+/+).  

Firstly, immunoblotting was performed in order to explore whether Gαi2 is expressed in 

both murine and human erythrocytes. For this reason, whole blood from human and 

mouse was taken and the erythrocytes were isolated and purified. Equal amounts of pro-

tein lysates were made and subsequently, immunoblotting was performed. GAPDH was 

used as a loading control. As demonstrated in Fig. 17A, incubation with Gαi2 specific 

antibodies showed a single band of 40 kDa in mouse erythrocytes from Gαi2+/+ mice 

but not in erythrocytes from Gαi2-/- mice. Human erythrocytes displayed the same single 

band of 40 kDa. The bands appearing below 40 kDa may be the result of non-specific 

antibody binding. Densitometry analysis revealed that the Gαi2 protein is significantly 

less abundant in human erythrocytes as compared to murine erythrocytes (Fig. 17 B). 

Thus, it can be concluded that Gαi2 is expressed in both mouse and human erythrocytes. 

 

Fig. 17: Gαi2 expression in human and murine erythrocytes. (A). Original Western Blots showing 

Gαi2 (40 kDa) and GAPDH (37 kDa) expression in human erythrocytes (band 4) and in erythrocytes 

drawn from Gαi2+/+ (bands 1-3) and Gαi2-/- (bands 5-7) mice. The Western blot demonstrates the expres-

sion of Gαi2 and GAPDH in whole blood (bands 1 and 5), diluted whole blood (1:3.7 dilution; bands 2 

and 6) and isolated and purified erythrocytes (bands 3 and 7). (B). Means ± SEM of Gαi2 abundance in 

human and murine erythrocytes relative to the loading control GAPDH (n=3). * (p<0.05) indicates statis-

tically significant difference from murine RBC [285]. 
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Next, determination of the blood count in Gαi2+/+ and Gαi2+/+ mice was performed. 

Erythrocyte count, hemoglobin, hematocrit, mean corpuscular hemoglobin, mean cor-

puscular hemoglobin concentration and the percentage of reticulocytes were not signifi-

cantly different between Gαi2-/- and Gαi2+/+ mice (Fig. 18 A). The mean corpuscular 

volume was, however, significantly larger in Gαi2-/- mice as compared to Gαi2+/+ mice 

(41.1 ± 0.3 fl for Gαi2+/+  mice versus 42.8 ± 0.2 fl for Gαi2-/- mice, n=8, p<0.001). 

Thus, it can be concluded that Gαi2-/- erythrocytes are normochromic and moderately 

larger as compared to Gαi2+/+ erythrocytes. May-Grünwald staining revealed no rele-

vant changes in erythrocyte shape between Gαi2-/- and Gαi2+/+ erythrocytes (Fig. 18 B). 

The percentage of Ter119/CD71 positive cells were similar in both mice indicating that 

dynamic erythrocytes maturation in vivo is similar (Fig. 18 C). The plasma erythropoiet-

in (Fig. 18 D) and the platelet count (Fig. 18 F) of Gαi2-/- mice were not significantly 

different from Gαi2+/+ mice. The Gαi2-/- mice, however, had an increased number of 

white blood cells (Fig. 18 E), which is consistent with a previous report showing leuko-

cytosis in Gαi2-/- mice [286]. The leukocytosis is due to an increased production of pro-

inflammatory cytokines in Gαi2-/- mice [281].  
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Fig. 18: Blood parameters in Gαi2-/- and Gαi2+/+ mice. Means ± SEM (A) of erythrocyte count (RBC), 

hemoglobin concentration (HGB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscu-

lar hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and reticulocyte count 

(RTC, n=8) of Gαi2+/+ and Gαi2-/- mice. (B). May-Grünwald staining of erythrocytes from Gαi2+/+ and 

Gαi2-/- mice. (C). Percentage of Ter119/CD71 positive cells (n=6) of Gαi2+/+ and Gαi2-/- mice. Means ± 

SEM of plasma erythropoietin (EPO) levels (D, n=3-4), leukocyte count (E, n=8) and platelet count (F, 

n=8) determined in Gαi2+/+ and Gαi2-/- mice. *** (p<0.001) indicates significant difference from Gαi2+/+ 

mice [285]. 

 

A next series of experiments examined whether Gαi2 deficiency influences survival of 

erythrocytes. For this reason, annexin V binding, forward scatter and Fluo3 fluores-

cence were analyzed by flow cytometry in order to determine phosphatidylserine expo-

sure, cell shrinkage and cytosolic Ca2+ activity, respectively. As shown in Fig. 19A, 

freshly drawn erythrocytes were visualized using confocal microscopy and quantifica-

tion of multiple fields revealed a decreased ratio of annexin V binding cells to total cells 

(observed under transmission light) per field in Gαi2-/- erythrocytes (0.028 ± 0.007, n=4) 

as compared to Gαi2+/+ erythrocytes (0.069 ± 0.007, n=4). 
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Using FACS analysis, the percentage of annexin V binding cells of Gαi2-/- and Gαi2+/+ 

erythrocytes was quantified immediately after retrieval and following incubation in 

Ringer solution for 12 h. Similar to the obtained results in confocal microscopy, annexin 

V binding was significantly lower in erythrocytes of Gαi2-/- mice (0.37 ± 0.06%) as 

compared to Gαi2+/+ erythrocytes (0.58 ± 0.07%) measured immediately after retrieval 

(Fig. 19 B and C) and following 12 h incubation in Ringer solution (Gai2+/+: 2.43 ± 

0.33% ; Gai2-/-: 1.52 ± 0.15%) (Fig. 19 D).  

 

Fig. 19: Phosphatidylserine exposure in erythrocytes from Gαi2+/+ and Gαi2-/- mice. Confocal micros-

copy images (A) of annexin V fluorescence (right panels) and transmission light (left and middle panels) 

in freshly drawn erythrocytes from Gαi2+/+ and Gαi2-/- mice. Histogram overlay (B, blue line: Gαi2+/+ and 

red line: Gαi2-/-) and means ± SEM of annexin V binding in freshly drawn erythrocytes (C, n=24-40) and 

in erythrocytes incubated in Ringer solution for 12 h (D, n=11-17) retrieved from Gαi2+/+ and Gαi2-/- 

mice. M1 indicates the fluorescence of annexin V defining the percentage of annexin V binding erythro-

cytes. * (p<0.05) indicates significant difference from Gαi2+/+ mice [285]. 
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Quantification of forward scatter indicated that cell volume was slightly, but significant-

ly larger in Gαi2-/- erythrocytes (468.4 ± 4.17 a.u.) as compared to Gαi2+/+ erythrocytes 

(453.8 ± 2.81 a.u.) (Fig. 20 A and B). Both cell shrinkage and exposure of phosphati-

dylserine are dependent on cytosolic Ca2+ activity. The percentage of Fluo3 positive 

cells was slightly, but significantly lower in Gαi2-/- erythrocytes (1.39 ± 0.33%) as com-

pared to Gαi2+/+ erythrocytes (3.3 ± 0.60%) (Fig. 20 C and D). 

 

Fig. 20: Cell shrinkage and cytosolic Ca2+ activity in erythrocytes from Gαi2+/+ and Gαi2-/- mice. 
Histogram overlay (A and C; blue line: Gαi2+/+ and red line: Gαi2-/-) and means ± SEM of forward scat-

ter geomean (B, n=21-33) and percentage of Fluo3 positive erythrocytes (M1) (D, n=8-16) in freshly 

drawn erythrocytes retrieved from Gαi2+/+ and Gαi2-/- mice. * (p<0.05) and ** (p<0.01) indicate signifi-

cant difference from Gαi2+/+ mice [285]. 

 

In further experiments, the susceptibility of Gαi2+/+and Gαi2-/- erythrocytes to osmotic 

shock, a known stimulator of eryptosis and pathophysiological cell stressor, was ad-

dressed ex vivo. A 30 min exposure to hyperosmotic Ringer solution (addition of 550 

mM sucrose) significantly enhanced the phosphatidylserine exposure, an effect signifi-

cantly less pronounced in Gαi2-/- (21.9 ± 2.0%) as compared to Gαi2+/+ erythrocytes 

(31.8 ± 1.5%) (Fig. 21 A and B).  
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In order to determine hyperosmotic shock-triggered cell shrinkage, erythrocyte forward 

scatter was analyzed. Forward scatter was significantly lower following exposure to 

hyperosmolar shock in erythrocytes of both mice, the effect was, however, significantly 

thwarted in Gαi2-/- erythrocytes (440.5 ± 4.8 a.u.) as compared to Gαi2+/+ erythrocytes 

(420.0 ± 5.2 a.u.) (Fig. 21 C and D). 

 

Fig. 21: Effect of hyperosmotic shock on phosphatidylserine exposure and cell shrinkage in Gai2+/+ 

and Gai2-/- erythrocytes. Histogram overlay (A and C; red line: Gai2-/- and blue line: Gai2+/+) and means 

± SEM of the percentage of annexin V binding cells (B, n=11-14) and geomean of forward scatter (D, 

n=11-14) measured in Gai2-/- and Gai2+/+ erythrocytes after incubation in isosmotic (300 mOsm) or hy-

perosmotic (850 mOsm) Ringer solution for 30 min. M1 indicates the fluorescence of annexin V defining 

the percentage of annexin V binding erythrocytes. ### (p<0.001) indicates significant difference from 

isosmotic Ringer solution. * (p<0.05), ** (p<0.01) and *** (p<0.001) indicate significant difference from 

Gai2+/+ [285]. 

 

In order to elucidate the mechanism that contributed to the protective effect of Gαi2 

deficiency against the eryptosis triggered by hyperosmotic shock, erythrocyte Ca2+ ac-

tivity was determined. The percentage of Fluo3 positive cells following hyperosmotic 

shock was significantly increased in erythrocytes of both mice, but the effect was signif-
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icantly less pronounced in Gαi2-/- erythrocytes (13.4 ± 0.9%) as compared to Gαi2+/+ 

erythrocytes (17.6 ± 1.2%) (Fig. 22). 

 

Fig. 22: Effect of hyperosmotic shock on cytosolic Ca2+ activity in Gai2+/+ and Gai2-/- erythrocytes. 

Histogram overlay (A: Red line: Gai2-/- and blue line: Gai2+/+) and means ± SEM of the percentage of 

Fluo3 positive erythrocytes (M1) (B, n=11-14) analyzed in Gai2-/- and Gai2+/+ erythrocytes after incuba-

tion in isosmotic (300 mOsm) or hyperosmotic (850 mOsm) Ringer solution for 30 min. ### (p<0.001) 

indicates significant different from isosmotic Ringer solution. * (p<0.05) indicates significant difference 

from Gai2+/+ [285]. 

 

Additional experiments examined whether Gαi2 deficiency protects against ceramide 

induced suicidal erythrocyte death. Treatment of erythrocytes from Gαi2-/- and Gαi2+/+ 

mice with bacterial sphingomyelinase (0.01 U/ml) and C6 ceramide (50 µM) signifi-

cantly enhanced annexin V binding. The effects were significantly thwarted in erythro-

cytes from Gαi2-/- mice as compared to Gαi2+/+ erythrocytes (Fig. 23). Hence, it can be 

concluded that deficiency of Gαi2 has a slight effect on ceramide-induced suicidal 
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Fig. 23: Effect of sphingomyelinase and C6 ceramide on phosphatidylserine exposure of Gai2+/+ and 

Gai2-/- erythrocytes. Histogram overlay (A and C: Red line: Gai2-/- and blue line: Gai2+/+) and means ± 

SEM of annexin V binding determined after exposure to bacterial sphingomyelinase (A and B, 0.01 U/ml 

for 24 h; n=7-16) or following exposure to C6 ceramide (C and D, 50 µM for 12 h; n=11-17). M1 indi-

cates the fluorescence of annexin V defining the percentage of annexin V binding erythrocytes. ### 

(p<0.001) indicates significant difference from Ringer solution. * (p<0.05) indicates significant difference 

from Gai2+/+ [285]. 

 

Further experiments explored the resistance of Gαi2-/- and Gαi2+/+ erythrocytes to dif-

ferent extracellular osmolarities. The resistance of erythrocytes to graded decrease of 

osmolarity was significantly lower in Gαi2+/+ than in Gαi2-/- erythrocytes. Thus, Gαi2 

deficiency counteracts the sensitivity of erythrocytes to both hyper- and hyposmotic 

shock (Fig. 24). 
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Fig. 24: Osmotic resistance of erythrocytes from Gai2+/+ and Gai2-/- mice. Means ± SEM (n=3-5) of 

relative hemolysis as a function of extracellular osmolarity (% hyposmolar of isosmotic Ringer) deter-

mined in Gai2+/+ (blue line) and Gai2-/- (red line) erythrocytes. * (p<0.05) indicates significant difference 

from Gai2+/+ [285]. 
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8 DISCUSSION 

 

8.1 Eryptosis in patients 

8.1.1 Eryptosis in lung cancer  

The present study reveals that patients suffering from different stages and types of lung 

cancer (LC) suffer from anemia despite an increased number of reticulocytes. The ane-

mia further deteriorates under cytostatic treatment. These observations indicate that the 

anemia in LC is not due to impaired erythropoiesis but rather due to an accelerated de-

struction of erythrocytes. The anemia prevails obviously despite enhanced erythropoie-

sis and presumably leads to upregulation of erythropoietin, which, in turn, stimulates 

erythropoiesis [287]. Erythropoietin has previously been shown to inhibit eryptosis 

[288]. Under the influence of high erythropoietin levels, however, erythrocytes are ap-

parently generated with relatively high susceptibility to triggers of eryptosis [289]. 

Anemia has a profoundly negative impact on the quality of life and worsens not only 

fatigue of cancer patients [290] but is also associated with shorter survival rates [150] 

and can, thus, be considered as an independent prognostic factor for survival [150]. A 

patient with bronchogenic carcinoma who additionally suffers from anemia has a 19% 

higher relative risk of death [150]. Furthermore, the presence of anemia is associated 

with decreased survival in almost all cancer types studied [150]. These observations 

could be explained by the fact that anemia may lead to tumor hypoxia, which, in turn, is 

associated with enhanced tumor aggressiveness [155]. Hypoxia is also associated with 

resistance to both radiation therapy and chemotherapy [144]. 

The present observations may explain the phenomenon of accelerated erythrocyte clear-

ance by enhanced suicidal death, which might contribute to the development of anemia 

in LC patients. The percentage of phosphatidylserine exposing erythrocytes in LC of 

both groups was significantly enhanced. Exposed phosphatidylserine at the erythrocyte 

surface is recognized by phagocytes (e.g. macrophages), which subsequently engulf and 

degrade the erythrocytes [17, 71]. If the number of erythrocytes that are cleared from 

circulating blood exceeds the formation of new erythrocytes, anemia develops [54].  
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Hence, enhanced eryptosis could substantially contribute to the anemia of LC patients. 

Another key hallmark of eryptosis is cell shrinkage [31]. In the present study a slight, 

however, not statistically significant decrease in cell volume was observed only in the 

patient group without cytostatic treatment. The patients with cytostatic treatment, how-

ever, showed a significantly higher cell volume, which is discordant with the decrease 

of cell volume that is typical for suicidal erythrocyte death. Increased [Ca2+]i leads to 

activation of Ca2+-sensitive K+ channels that, in turn, leads to exit of K+, hyperpolariza-

tion of the cell membrane, exit of Cl-, and finally to cellular loss of KCl and water [49]. 

In the present study, the intracellular Ca2+ content was, however, not significantly dif-

ferent between erythrocytes from healthy volunteers and LC patients. Hence, the ab-

sence of cell shrinkage could be explained by the lack of increased [Ca2+]i. Furthermore, 

LC patients under cytostatic treatment per se had a higher MCV, which was further re-

flected by enhanced cell volume as shown by FACS analysis. 

Oxidative stress and ceramide are powerful stimulators of eryptosis [291, 292]. In the 

present study it was observed that both ceramide and oxidative stress were enhanced in 

the erythrocytes of LC patients under cytostatic treatment determined in freshly drawn 

blood. Previously, an antioxidant/oxidant imbalance has been shown in the blood of 

cancer patients [293]. Furthermore, an enhanced ceramide formation predisposes to lung 

cancer [294]. After exposing healthy erythrocytes to plasma from LC patients with and 

without cytostatic treatment, the percentage of annexin V binding cells was significantly 

increased after exposure to plasma of LC patients under cytostatic treatment. The en-

hanced phosphatidylserine externalization following exposure to plasma of this patient 

group was paralleled by significantly enhanced oxidative stress and ceramide abundance 

but not by increased [Ca2+]i. These results indicate that a component in plasma (or a 

wide variety of them) trigger the eryptosis observed in the LC patients under cytostatic 

treatment, an effect which may be due to the cytostatic treatment itself. Indeed, several 

cytostatics have been shown to enhance suicidal erythrocyte death in vitro, which were 

used for the LC patients enrolled in this study including cisplatin [295], docetaxel [296] 

or topotecan [297]. As a matter of fact, it was shown that patients under platinum-based 

chemotherapy have a higher risk for anemia as compared to patients with non-platinum 

based chemotherapy [149].  
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Furthermore, it would be worthwhile to investigate if other cytostatics used in this study 

e.g. etoposide, gemcitabine, vinorelbine and pembrolizumab have a similar effect on 

erythrocytes.  

Venous thromboembolisms (VTEs) are known to commonly occur in cancer patients 

[298]. Patients with LC show especially high incidence rates of VTE [299, 300]. Mech-

anisms that lead to the development of venous thrombosis in LC patients are poorly 

understood but the etiology is probably multifactorial [298]. It is assumed that cancer 

itself increases the risk for thromboembolic events. Additional risk factors for these 

events are surgery, chemotherapy, bed-rest, hormone therapy, venous catheters, infec-

tions and radiotherapy [298]. Eryptosis may not only contribute to anemia but is also 

assumed to interfere with the microcirculation [54]. Phosphatidylserine-exposing eryth-

rocytes not only bind to CXCL16/SR-PSOX [72] but also to other receptors expressed 

on endothelial cells [73, 74]. Hence, the enhanced eryptosis in LC patients could, thus, 

contribute to the development of thromboembolic events. Moreover, the susceptibility 

to eryptosis is further enhanced by iron deficiency [69], which may play a key role in 

the anemia of patients with malignancy [301]. In the present study, however, transferrin 

levels have not been determined. Thus, the contribution of iron deficiency to the ob-

served stimulation of suicidal erythrocyte death requires further investigation. 

In a previous study, enhanced suicidal erythrocyte death has been shown in mice carry-

ing a mutation in the APC (adenomatous-polyposis-coli, apcMin/+) gene [67] resulting in 

development of multiple intestinal tumors [302, 303]. The animals were also shown to 

be anemic [67, 304]. Similar to the observations in the present study, the anemia in 

those mice prevailed despite enhanced reticulocyte numbers indicating an accelerated 

erythrocyte turnover, which was shown to result from enhanced eryptosis [67]. 

Despite the known negative effects of anemia, anemia is still not optimally treated in 

cancer patients [305]. In the management of cancer, mild anemia has not been consid-

ered important enough to be improved [144] and hence, only moderate to severe anemia 

is corrected [306]. If the anemia is not due to iron deficiency, red blood cell transfusions 

and the application of Erythropoiesis Stimulating Agents (ESAs) are used to improve 

the level of hemoglobin [82].   
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ESAs increase the production of red blood cells in the bone marrow by the activation of 

the erythropoietin receptor (EpoR) on erythrocyte progenitor cells [207]. The three dif-

ferent recombinant erythropoietins, epoetin alfa, epoetin beta and darbepoietin alfa are 

commonly used for the treatment of anemia [307]. They all show a similar clinical effi-

cacy [307-309]. Erythropoietin not only prevents apoptosis of the erythrocyte progenitor 

cells [310] but also counteracts eryptosis by inhibition of the Ca2+-permeable cation 

channels [34, 311]. 

The main advantage of the use of ESAs is that the complications of red blood cell trans-

fusion can be avoided [82] and their use decreases the transfusion rates in cancer pa-

tients [312-314]. However, the application bears risks as it is associated with a de-

creased survival rate and an increased mortality rate [314-316]. There is also controver-

sy regarding the correlation between their use, enhanced tumor progression [317, 318] 

and the occurrence of cardiovascular complications [319]. Cancer patients are known to 

be at a higher risk for developing thrombosis even without receiving recombinant eryth-

ropoietin [320, 321] and may be at an even higher risk with the use of ESAs [82].  

Prior to the use of erythropoietin, the transfusion of red blood cells was the only option 

for the treatment of severe anemia in cancer patients [307] and continues to be a main-

stay for the treatment at present [322]. Transfusion provides a rapid increase of the 

hematocrit and hemoglobin levels and is, thus, the only option for patients who require 

an immediate correction of their anemia [82]. However, studies analyzing the benefits 

of transfusions have observed conflicting findings [323]. Potential complications in-

clude transfusion reactions, lung injury [324], allo-immunization, over-transfusion and 

transmission of infectious diseases [307]. Transfusion has even been linked with an in-

creased long-term risk for developing cancer [325-327]. Other studies have also ob-

served a correlation between transfusion and thrombosis [323, 328] and even decreased 

survival [323, 329]. Furthermore, patients often prefer to avoid blood transfusions 

[330].  

Indeed, the present study shows for the first time that anemia in lung cancer is at least in 

part due to enhanced suicidal erythrocyte death. In view of this fact, anemia in these 

patients could possibly be diminished by inhibition of eryptosis, which could counteract 

anemia.  
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Several natural components and drugs have been shown to be effective against eryptosis 

in vitro: resveratrol [331], zidovudine [332] or thymol [333]. It would be worthwhile to 

investigate if any of these compounds may be used in the treatment of anemia in cancer 

patients or other diseases. However, the possibility must be kept in mind that, at least 

theoretically, inhibitors of eryptosis may similarly counteract apoptosis of tumor cells 

and, thus, interfere with cytostatic treatment. On the other hand, correction of anemia 

would be expected to lower release of erythropoietin that has previously been shown to 

promote tumor angiogenesis and lymphangiogenesis [334]. 
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8.1.2 Eryptosis in acute heart failure 

The present study discloses that patients with acute heart failure (AHF) suffer from en-

hanced suicidal erythrocyte death. The findings confirm the observations of Mahmud et 

al. who previously showed an increased percentage of phosphatidylserine-exposing 

erythrocytes and a decreased cell volume in rodents with AHF [335]. 

Phagocytes recognize and eliminate phosphatidylserine-exposing cells from the blood 

stream [17, 71]. Thus, enhanced eryptosis might lead to anemia if the loss of erythro-

cytes is not compensated by the formation of new erythrocytes [33]. Consistent with the 

observations in rodents [335], the AHF patients suffered from anemia despite a higher 

percentage of reticulocytes as compared to the control group indicating that the anemia 

resulted from an enhanced destruction of erythrocytes rather than an alleviated produc-

tion of new erythrocytes.  

Furthermore, the present study investigated the mechanisms contributing to enhanced 

eryptosis in AHF patients. In contrast to the observations in the animal model showing 

an increased [Ca2+]i in erythrocytes after treatment with oxidative stress, hyperosmotic 

shock and energy depletion [335], [Ca2+]i was not significantly different between the 

healthy control group and the AHF patients in this study. Moreover, the enhanced eryth-

rocyte cell membrane scrambling observed in AHF patients was not due to increased 

ceramide abundance, another important trigger of eryptosis [54]. However, the en-

hanced cell membrane scrambling was paralleled by a significant higher level of oxida-

tive stress, which is known to stimulate eryptosis [292]. An enhanced cell membrane 

scrambling after treatment with the oxidant tert-butylhydroperoxide has also been 

shown in five patients suffering from AHF [335]. The present study particularly shows 

that phosphatidylserine exposure and oxidative stress are enhanced after exposing 

healthy erythrocytes to plasma from AHF patients as compared to healthy volunteers. 

This observation indicates that a component in plasma of the patients triggers eryptosis. 

Another possibility is that the enhanced eryptosis might be due to an altered concentra-

tion of a variety of components in the plasma. The observations do, however, not rule out 

altered properties of the erythrocytes of AHF patients. 
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The AHF patients showed significantly lower MCH values and 27% of the AHF pa-

tients enrolled in the study suffered from iron deficiency (ID). Previously, it has been 

shown that anemia due to ID does not only result from reduced erythropoiesis [336, 

337] but is also the result of a shortened lifetime of the iron-deficient erythrocytes 

[338]. The decreased lifespan of these erythrocytes might be explained by enhanced 

eryptosis [69]. In the present study, however, patients without ID suffered from anemia 

and as well as enhanced eryptosis, which excludes the possibility that ID per se ac-

counts for suicidal erythrocyte death in these patients.  

The AHF patients in this study also had significantly higher creatinine values, which 

indicate worsened renal function. Patients on dialysis in end stage renal disease show 

enhanced suicidal erythrocyte death [68]. However, none of the patients enrolled in this 

study were taking erythropoietin or were on dialysis. 

Suicidal erythrocyte death is increased  in several clinical conditions that are commonly 

associated with patients suffering from chronic and acute heart failure such as diabetes 

[339, 340], metabolic syndrome [341] and hepatic failure [342]. Thus, eryptosis in AHF 

is most probably multifactorial.  

Eryptosis is also triggered by a wide variety of xenobiotics [66]. Taking into account 

that these xenobiotics could worsen the enhanced suicidal erythrocyte death and the 

anemia in the AHF patients, their use should be avoided in the treatment of cardiac fail-

ure.  

No study has hitherto demonstrated that the use of ESAs in the treatment of anemia in 

acute heart failure improves survival rate [343]. Furthermore, the use of ESAs is associ-

ated with severe adverse effects and studies report the occurrence of thromboembolic 

complications after treatment of AHF by the administration of ESAs [344]. However, 

heart failure per se is associated with thrombosis [345] and it is recommended that oral 

anticoagulation should be routinely used [346]. As phosphatidylserine-exposing eryth-

rocytes adhere to the vascular wall [72] and trigger blood clotting [79], the thromboem-

bolic events with and without administration of erythropoietin in AHF might be, at least 

partially, explained by enhanced eryptosis.  
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The enhanced eryptosis in AHF may be a target for therapy. Because the increased sui-

cidal erythrocyte death in these patients seems to be mainly triggered by increased lev-

els of reactive oxygen species, antioxidants could be used in the treatment of these pa-

tients. Several antioxidants have been shown to counteract eryptosis in in vitro studies 

[331, 347, 348]. In the animal model, the antioxidant thymol, has indeed been shown to 

enhance hematocrit levels and thus counteracts anemia in the rodents [335].  

The present study shows that patients suffering from AHF suffer as well from anemia, 

which could, at least partly, be attributed to enhanced suicidal erythrocyte death. As 

anemia in those patients is associated with a worse prognosis [189], treatment of the 

anemia by inhibition of suicidal erythrocyte death could be beneficial for these patients 

[335] and may decrease the enhanced morbidity and mortality associated with anemia in 

AHF [189]. It is suspected that an underlying anemia may even be the primary cause for 

the genesis of HF [180]. As eryptosis contributes to anemia, suicidal erythrocyte death 

might even account for the development of HF and its inhibition gains even more im-

portance in the treatment of anemia. 
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8.2 Eryptosis in mice 

8.2.1 Role of Gαi2 in eryptosis 

The present study reveals the expression of Gαi2 in both murine and human erythro-

cytes and further discloses that Gαi2 deficiency is associated with a partial protection 

against eryptosis. The present data show that the percentage of phosphatidylserine ex-

posing cells in the blood stream is significantly lower in Gαi2-/- mice as compared to 

their wild type littermates, Gαi2+/+ mice. Although the difference between the percent-

age of annexin V binding cells in Gαi2+/+ and Gαi2-/- mice is subtle, it is yet statistically 

significant. In previous studies it was shown that spontaneous PS-exposure does not 

exceed 1% of the total number of erythrocytes circulating in the blood stream [31]. Fur-

thermore, no changes in the eryptosis-related blood parameters e.g. erythrocyte count, 

reticulocyte number, hemoglobin and hematocrit level, mean corpuscular hemoglobin, 

mean corpuscular hemoglobin concentration and plasma erythropoietin level were de-

tectable. The mean corpuscular volume was, however, significantly higher in Gαi2-/- 

mice. The impact of Gαi2 deficiency is unveiled in the presence of cell stressors such as 

C6 ceramide, bacterial sphingomyelinase or hyperosmolar shock. Under these stress 

conditions ex vivo, suicidal erythrocyte death is significantly less pronounced in Gαi2-/- 

erythrocytes as compared to Gαi2+/+ erythrocytes. 

C6 ceramide and sphingomyelinase are strong stimulators of eryptosis [55]. In erythro-

cytes, ceramide is produced by the breakdown of sphingomyelin, a process catalyzed by 

the enzyme sphingomyelinase [55]. In this study, the effect of C6 ceramide and sphin-

gomyelinase on eryptosis is attenuated in Gαi2-/- mice as compared to Gαi2+/+ mice. 

Ceramide sensitizes red blood cells to the eryptotic effect of enhanced intracellular Ca2+ 

concentration [55] and may be enhanced without appreciable upregulation of cytosolic 

Ca2+ activity [349]. Furthermore, ceramide modifies the interaction of the erythrocyte 

membrane with the cytoskeleton, thereby increasing membrane fragility [350]. In ac-

cordance to the blunted effect of C6 ceramide and sphingomyelinase in Gαi2-/- mice, the 

eryptosis was significantly less pronounced in Gαi2-/- following exposure to hyperos-

motic stress, another trigger of eryptosis that leads to the formation of ceramide [55]. 

Exposure of erythrocytes to hypertonic extracellular environment in vitro simulates the 
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osmotic conditions encountered in the kidney medulla [55]. In conditions such as acute 

renal failure, erythrocytes may enter eryptosis due to their entrapment in the kidney me-

dulla. Gαi2 deficiency may blunt eryptosis and thus favorably influence the respective 

clinical condition. The observations lead to the conclusion that Gαi2 may additionally 

mediate hyperosmotic shock-induced eryptosis by influencing ceramide signaling. In 

addition to diminishing the exposure of phosphatidylserine, the present data show that 

Gαi2-/- erythrocytes showed enhanced resistance to cell shrinkage after exposure to hy-

perosmotic shock. Accordingly, the mean corpuscular cell volume was significantly 

larger in Gαi2-/- erythrocytes. Along these lines, it is intriguing to speculate that Gαi2 

influences cell volume regulatory ion channels in erythrocytes. Furthermore it was ob-

served that following hyperosmotic shock of erythrocytes, Gαi2 deficiency fosters a 

slight but significant decrease of cytosolic Ca2+ entry, which, in turn, diminishes the 

exposure of phosphatidylserine. Gαi2 is an essential regulator of Ca2+ signaling in nu-

cleated cells and, thus, it is possible that the inhibitory effect of Gαi2 deficiency on 

erythrocyte death is at least partially mediated by its influence on cytosolic Ca2+ activi-

ty. 

Suicidal erythrocyte death is also inhibited by several catecholamines including dopamine 

[351]. Particularly interesting is the observation that the dopamine-dependent signaling 

involves pertussis toxin-sensitive Gαi2 [352]. In BHK cells, it was previously shown that 

Gαi2 induces caspase-3 activation and hence stimulates apoptosis [259]. Caspase-3 ac-

tivation is involved in the suicidal erythrocyte death that is induced by certain stimuli 

[28]. Whether caspase-3 mediated eryptosis signaling in erythrocytes is influenced by 

Gαi2, however, remains to be elucidated. As eryptosis is stimulated by several xenobiot-

ics [66] and diseases [70], Gαi2-/- mice could be resistant to several of these triggers and 

impairment of the microcirculation could be significantly less pronounced in these mice. 

Accordingly, pharmacological targeting of Gαi2 may further provide a new possibility in 

the treatment of conditions which are associated with anemia resulting from increased 

eryptosis [31]. Additionally, the modulation of Gαi2 may serve as a novel target for the 

treatment of malaria [353]. 

In conclusion, Gαi2 is expressed in both murine and human erythrocytes and partici-

pates in the regulation of erythrocyte survival.  
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