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Abstract

This thesis is concerned with the approximation of various problems related to the stochastic
Landau-Lifshitz-Gilbert equation (SLLG), which models the dynamics of a ferromagnetic
body at elevated temperatures. The SLLG is a nonlinear stochastic partial differential equa-
tion which possesses an inherent non-convex side constraint. Firstly, the time discretization
of the stochastic partial differential equation is addressed, where we study the convergence
behavior of a structure-preserving discretization. Secondly, the approximation and simula-
tion of the stochastic optimal control problem subject to the SLLG is studied by means of
the necessary first order optimality conditions.

The thesis is split into three parts. In the first part we focus on the time discretization of
the SLLG. We show convergence in probability with rate of order 1/2 for a time discretized
scheme which is based on the midpoint rule and preserves the sphere constraint. Main
difficulties were the analytical and numerical treatment of the nonlinear and stochastic
terms. Computational studies carried out in this part support this convergence rate.

The second and the third part are contributed to the stochastic optimal control problem. In
the second part, we prove strong convergence with optimal rates for a spatial discretization
of the forward-backward stochastic heat equation which describes the stochastic optimal
control problem subject to the stochastic heat equation. As an intermediate step, we show
optimal rates for a spatial discretization of the backward stochastic heat equation. A full
discretization which is based on the implicit Euler method for a temporal discretization and
a least squares Monte-Carlo method is then proposed. Next to an iterative solution strategy
which is based on a well-known Picard-type algorithm, the new stochastic gradient method
turns out to be much more flexible. Concluding computational experiments compare the
efficiency of different discretization approaches.

The third part combines the methodology of the second part with the SLLG. Here, we
control the dynamics of a fixed number of ferromagnetic spins at elevated temperatures
by minimizing a quadratic functional subject to the SLLG. Existence of a minimum of the
stochastic optimal control problem with control constraints is shown. The related first order
optimality conditions consist of a coupled forward-backward SDE system, which is numeri-
cally solved by a structure-inheriting discretization, the least squares Monte-Carlo method
to approximate related conditional expectations, and the stochastic gradient method. Com-
putational experiments are reported which motivate optimal controls in the case of inter-
acting anisotropy, stray field, exchange energies, and acting noise.
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Zusammenfassung

Ziel dieser Arbeit ist es, numerische Approximationen verschiedener Problemstellungen, die
sich mit der stochastischen Landau-Lifshitz-Gilbert-Gleichung (kurz SLLG) befassen, zu
untersuchen. Die SLLG ist eine nichtlineare stochastische partielle Differentialgleichung mit
einer nichtkonvexen Zwangsbedingung (Sphärenbedingung) und wird bei der Modellierung
ferromagentischer Dynamiken eingesetzt.

Die Dissertation ist in drei wesentliche Teile untergliedert. Der erste Teil untersucht das
Konvergenzverhalten einer auf dem Mittelpunktverfahren basierenden Zeitdiskretisierung
der SLLG in einer Raumdimension, welche die Sphärenbedingung erhält. Für diese Zeit-
diskretisierung wird Ratenkonvergenz in Wahrscheinlichkeit mit Ordnung 1/2 bewiesen. Zu
den Hauptschwierigkeiten, die zu überwinden sind, gehören sowohl die analytische, als auch
die numerische Behandlung der Nichtlinearitäten, sowie des stochastischen Integralterms.
Durchgeführte Simulationen unterstützen die nachgewiesene Konvergenzordnung.

Die beiden weiteren Teile der vorliegenden Dissertation befassen sich mit der Approximation
stochastischer optimaler Steuerungsprobleme. Im zweiten Teil wird ein System stochasti-
scher partieller Differentialgleichungen (kurz FBSHE) untersucht, welches aus einer vor-
wärtsgerichteten, sowie einer rückwärtsgerichteten stochastischen Wärmeleitungsgleichung
(kurz BSHE) besteht, und aus den Bedingungen erster Ordnung eines stochastischen op-
timalen Steuerungsproblems motiviert ist. Ratenkonvergenz mit optimaler Ordnung für
eine Raumdiskretisierung basierend auf P1-finiten Elementen wird für die BSHE sowie das
System FBSHE nachgewiesen. Anschließend wird eine Volldiskretisierung der FBSHE vor-
geschlagen, welche zusätzlich auf dem impliziten Eulerverfahren basiert. Dabei auftretende
bedingte Erwartungen werden mit der least squares Monte-Carlo method approximiert. Für
die Simulation der FBSHE wird neben einer Picard-Iteration ein stochastisches Gradienten-
verfahren vorgeschlagen, welches sich in durchgeführten Simulationen als flexibler erweist.

Im dritten Teil werden die Methoden des zweiten Teils mit der SLLG verbunden. Ziel ist es,
die optimale Kontrolle der Dynamik einer fixierten Anzahl ferromagentischer Partikel bei er-
höhten Temperaturen zu untersuchen. Das stochastische optimale Steuerungsproblem setzt
sich dabei aus der Minimierung eines quadratischen Funktionals unter der Nebenbedingung,
dass die SLLG erfüllt ist zusammen. Existenz eines solchen Minimums wird nachgewiesen.
Damit verbundene Bedingungen erster Ordnung welche aus einem System von gekoppelten
vorwarts-rückwärtsgerichteten stochastischen Differentialgleichungen besteht werden unter
Verwendung einer strukturerhaltenden Zeitdiskretisierung, der least squares Monte-Carlo
method, sowie des stochastischen Gradientenverfahrens diskretisiert sowie simuliert. In com-
putergestützten Experimenten wird der Einfluss der optimalen stochastischen Kontrolle im
Falle des Zusammenwirkens von Anisotropie, Streufeld, Austauschenergie und Rauschen
untersucht.
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Introduction

Magnetism is of fundamental importance for modern civilization: For example, compasses
greatly simplified navigation on the sea, loudspeaker are part of every modern audio equip-
ment and of every mobile phone, magnetic recording is the key technology for mass storage,
and magnetic resonance imaging is used in medical diagnosis. Magnetization processes are
described by ferromagnetic models. Their study leads to a deeper understanding of this
process and provides information which is experimentally inaccessible or which is linked to
unnecessary costs.

One well-accepted physical model describing the magnetization of a ferromagnetic body has
been proposed in the pioneering works of Landau and Lifshitz [LL35] and of Gilbert [Gil55,
Gil04]. The time evolution in [0, T ] of the magnetization of a ferromagnetic body D ⊂ Rd,
d = 1, 2, 3 is modeled by the function

m : [0, T ]×D →
{
x ∈ R3; |x|R3 = Ms

}
, (SPHERE)

where Ms > 0 denotes the saturation magnetization. The vector m(t,x) is the direction of
the magnetization at time t ∈ [0, T ] and at position x ∈ D. Since we consider the equation
without any physical dimensions, it is natural to set Ms ≡ 1. The Landau-Lifshitz-Gilbert
equation (LLG)

mt = −αm×
(
m×Heff) +m×Heff,

where 0 < α � 1, describes the dynamics of the magnetization in the presence of an
effective field Heff = Heff(m). The first term on the right-hand-side of the LLG is a
phenomenological term which was introduced by Landau and Lifshitz in [LL35] and accounts
for the damping of the magnetization m towards the effective field Heff. The second term
in the LLG is commonly referred to as precession term and describes the rotation of the
magnetizationm around the effective field Heff. The dynamics of these terms are visualized
in Figure I.

The effective field Heff in the LLG acting on ferromagnetic particle ensembles is the negative
of the gradient of the total magnetic energy E which consists of several contributions:

Heff = Hexch + Hext + Hani + Hd.

The first contribution is the exchange energy, which penalizes spatial changes in the mag-
netization and is usually modeled by Hexch = ∆m. The second part Hext is an external
magnetic field (so called Zeeman contribution) and favors the alignment with an external
field. It is modeled according to Hext = u, for some u : [0, T ] × D → R3. Crystallo-
graphic properties of the ferromagnetic material are taken into account by the anisotropy
energy Hani, where the magnetization m prefers to align with the (crystallographic) easy

1



2 Introduction

(a) precession (b) precession/damping (c) precession/damping

Figure I. Dynamics of the precession and damping term in the LLG, respectively SLLG.

axis e ∈ R3; its contribution is modeled by Hani = −∇φ(m), where φ : S2 → R denotes
the anisotropy density. The fourth contribution is the demagnetization field (also called
stray-field), which takes the interaction with a surrounding magnetic field into account and
is usually modeled using Maxwell’s equations.

The partial differential equation LLG is strongly nonlinear and its solutions must satisfy
the non-convex side constraint (SPHERE). Existence of a solution has been analyzed in
the literature: for d = 2, 3 existence of weak solutions is shown for the prototype case
Heff = ∆m, see e.g. [AS92,GH93]. Numerical studies carried out in [BBP08,BP06] show
that in this setup possible finite time blow-up from smooth initial data may be expected.
For d = 1 however, existence of a weak solution with improved regularity properties is well
known.

The solution of the LLG cannot be expressed by an explicit formula in general. Computer-
based simulations are necessary to get insights concerning the behavior and properties of the
solution of this equation, requiring fast and reliable numerical schemes, see [BP06,Cim08,
Pro01] and references therein for an overview of numerical schemes for the LLG.

Thermal fluctuations Hthm are included into the LLG by perturbing the effective field
Heff to describe random changes which occur by the interaction of the ferromagnet with a
surrounding heat bath. The study of random fluctuations in the dynamics of magnetism has
been proposed by Néel [Née46] and later been studied by Brown Jr. [Bro63] where the focus
is on a single nanomagnetic particle. After that, the stochastic equation has been considered
by physicists; see e.g. [BMS09,BKM+99,CL93,GPL98] among others. The random thermal
fluctuations are usually modeled by Hthm = Ẇ which has to be understood in the sense
of Stratonovich in order to satisfy the saturation magnetization. Here W is a Q-Wiener
process; see Chapter 2 of Part I. The stochastic version of the Landau-Lifshitz-Gilbert
equation (SLLG) takes the form

mt = −αm×
(
m×Heff

)
+m×

(
Heff + Hthm

)
,

where fluctuations in the damping part are neglected due to α � 1, see [GPL98], and
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the works [BBNP13, BMS09, GPL98] for further background of the physical model. The
influence of the fluctuations in the equation is visualized in Figure I.

The modeling, analysis, and numerics of the stochastic Landau-Lifshitz-Gilbert equation is
an active field of research: In recent works [AdBH14,BBNP13,BBNP14,BGJ12,BGJ13] the
existence of a weak martingale solution of the SLLG is established. In [BGJ13], where a
rigorous mathematical treatment of the SLLG is initiated, the existence of a weak martingale
solution in the case of scalar-valued noise is provided using a standard Faedo-Galerkin
approximation and compactness arguments. By similar arguments existence of a weak
martingale solution is shown in [BGJ12] for one-dimensional domains, and moreover, by
pathwise uniqueness which holds in one space dimension, existence of a strong solution is
proven.

Numerical approximation schemes for the SLLG are studied in [AdBH14,BBNP13,BBNP14]
in two and three space dimensions. In [BBNP13, BBNP14] a finite element method, a
midpoint scheme, and a random walk approximation of Wiener increments are combined
to obtain a fully practical discretization of the SLLG, whereas in [AdBH14] a semi-discrete
scheme which extends the projection algorithm of [AJ06] to the stochastic case is used to
construct a weak martingale solution.

The time discretization of the SLLG used in [BBNP13,BBNP14] takes the form

mj+1 = mj − αkmj+ 1
2 ×

(
mj+ 1

2 ×Hj+1
eff
)

+ kmj+ 1
2 ×Hj+1

eff +mj+ 1
2 ×∆jW ,

(SLLG-MID)

where Ik := {tj}Jj=0 is a uniform partition of [0, T ] of equi-distant mesh size k > 0, ∆jW :=
W (tj+1) −W (tj) denotes the stochastic increment, and mj+ 1

2 := 1
2(mj+1 + mj). The

diffusive term is evaluated atmj+ 1
2 according to the definition of the Stratonovich integral,

the first terms of the damping and precession term are evaluated at mj+ 1
2 in order to

maintain the sphere constraint (in the P-a.s. sense). Finally and the evaluation of the
effective field Heff at time tj+1 allows for an estimate for the discrete energy (q ∈ N)

E
[

sup
r=0,...,J−1

(
‖∇mr+1‖2qL2 +

r∑
j=0
‖∇[mj+1 −mj ]‖2L2 + k

r∑
j=0
‖mj+ 1

2 ×∆mj+1‖2L2

)]
≤ CT,q

for Heff = ∆m. This bound is essential in [BBNP13,BBP13] for the construction of a weak
martingale solution and below to conduct the error analysis for the scheme (SLLG-MID).
Schemes of the type (SLLG-MID) were already used for the LLG in [BP06], and, moreover,
for the SLLG in [BBNP13,BBP13] to perform numerical studies.

In the case of a finite ensemble of nanomagnetic particles (SDE case) a midpoint type
scheme is often used as a benchmark for accuracy, see e.g. [MTF+10]. In this particular
case, the strong order of convergence 1/2 is shown in [MRT02, NP13]. However, for the
SPDE no order of convergence is available so far. Part I of this thesis fills this gap.

In the first part an error analysis for the scheme (SLLG-MID) approximating the SLLG
is carried out, which is limited to one-dimensional domains where strong solutions with
improved regularity exist. The main tools for the error analysis are reformulations of the
damping term in the SLLG as well as in the semi-discrete scheme (SLLG-MID). Local
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strong rates of convergence with order 1/2 are shown on a subset Ω̃k ⊂ Ω, where P
[
Ω̃k

]
→ 1

for k → 0. The restriction to this subset is needed, since terms of the form

Ck
J∑
j=0
‖∇mj‖4L2‖m(tj+1)−mj+1‖2L2

occur amongst others in the error analysis. These terms emerge due to nonlinear drift
terms which are only locally Lipschitz. The factor ‖∇mj‖4L2 prevents a direct application
of a Gronwall argument. The idea is to restrict the error analysis to subsets Ω̃k ⊂ Ω,
where this factor is bounded such that a Gronwall argument is applicable, and then to
show that P

[
Ω̃k

]
→ 1 for k → 0 using the bound for the discrete energy above and further

estimates. By Chebychev’s inequality this implies convergence in probability with rate 1/2.
Computational studies are conducted indicating a strong rate of order 1/2 and a weak rate
of order 1. This part is based on the publication [Dun15]. In [CP12] a similar approach is
used in a different context.

In many applications it is relevant to control the dynamics of the stochastic Landau-Lifshitz-
Gilbert equation, using the external field Hext, so that its solution is in some sense close
to a given desirable target. For this purpose, we search for an external field u, known as
control, which minimizes the functional

JSLLG = 1
2E
[∫ T

0

(
δ‖m(t)− m̃(t)‖2 + λ‖u(t)‖2

)
dt+ κ‖m(T )− m̃(T )‖2

]

subject to the stochastic Landau-Lifshitz-Gilbert equation, with Hext = u. This functional
has three components which are scaled by δ ≥ 0, κ ≥ 0, and λ > 0. The first and third
measure the distance of the magnetization m to a given deterministic desirable target
magnetization m̃. The second component measures the cost of the control u.

This stochastic control problem is of practical interest, e.g. in data recording, where fast
and reliable ways to switch the magnetization are of great importance. Here one asks for
an external field which switches the magnetization with minimal costs.

Controlling a ferromagnetic body has been addressed in the literature. However, the text-
book [BMS09] admits on page 145:

“One of the central problems in the research on precessional switching is the
design of magnetic field pulses that will guarantee the magnetization reversal.
In the literature, this problem has been mostly addressed experimentally or
numerically by using a trial-and-error approach.”

The problem of switching a single nanomagnetic particle optimally is studied mathemati-
cally in [AB09]. There an optimal control is derived for a special cost functional. Control-
lability of a finite ensemble of nanomagnetic particles is shown in [ACLP11]. In [DKPS15]
existence of a minimum, and a characterization of this minimum by the first order necessary
conditions is shown in the case of the one-dimensional LLG. Moreover, a convergent semi-
discretization in time (semi-implicit Euler scheme) is proposed and computational studies
using this scheme and a further modification by an additional projection step are carried
out there.
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In contrast to the previous work in this area, the third part of the thesis, which is based
on the manuscript [DP16] submitted for publication, focuses on minimizing JSLLG subject
to a finite ensemble of nanomagnetic particles where (random) thermal fluctuations are
taken into account. Our particular interest is to develop a fully practicable method which
approximatively computes the explicit structure of the control. Figure II shows the behavior
of one path of the optimal state and the direction of the optimal control in the case of a
single nanomagnetic particle.

(a) deterministic target
profile

(b) deterministic optimal
control problem

(c) stochastic optimal
control problem

Figure II. The target profile m̃ (green), one trajectory of the optimal state (red) and the
direction of the control (blue) in the case of a stochastic control problem and the
corresponding deterministic control problem for a single nanomagnetic particle.

First, we prove the existence of a minimum of the cost functional JSLLG in terms of a weak
control

(
Ω,F ,F,P,W ,u

)
of the stochastic optimal control problem. We propose a fully

practicable method to approximatively solve the generalized Hamiltonian system which is
formally linked to the optimal stochastic control problem. The generalized Hamiltonian
system consists of the state equation SLLG, the adjoint equation, which is a backward
stochastic differential equation, and an optimality condition. This forward-backward prob-
lem is discretized using adequate time discretizations. Emerging conditional expectations
are approximated by a least squares Monte-Carlo method, which returns the (deterministic)
regression functions

(
PjR(mj),QjR(mj)

)
for the stochastic backward equation.

By a combination of the optimality condition, the (deterministic) regression functions,
and a certain least squares Monte-Carlo method, a stochastic gradient method to resolve
the forward-backward character of this problem is developed. This method is of crucial
importance, since a Picard type algorithm, which is so far only reported in the literature
to deal with this kind of problems (see e.g. [BZ08]), is only applicable for very limited
time durations T > 0. We employ this stochastic gradient method in our computational
experiments to study the stochastic optimal control of spin switching in the case of a single
particle, and of a finite particle ensemble.

The second part is of independent relevancy, though it lays the fundaments to the numerical
setup of the third part. This part is based on the manuscript [DP15] accepted for publication
in SIAM Journal on Scientific Computing. Here the focus is on controlling the dynamics of
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the stochastic heat equation (SHE)

dX(t) =
[
∆X(t) + U(t)

]
dt+

n∑
i=1

νi(t)X(t) dW i(t),

X(0) = x0,

with homogeneous Dirichlet boundary conditions. For this purpose, we search for an F-
adapted stochastic control U which minimizes

JSHE = E
[∫ T

0

1
2
(
‖X(t)− X̃(t)‖2L2 + λ‖U(t)‖2L2

)
dt+ g

(
X(T )

)]
,

subject to the SHE. Following the work [Ben83,Zho93] the first order necessary conditions
consist of the state equation SHE, the adjoint equation which is the backward stochastic
heat equation (BSHE)

dY (t) =
[
−∆Y (t)−

n∑
i=1

νi(t)Zi(t)−
(
X(t)− X̃(t)

)]
dt+

n∑
i=1

Zi(t) dW i(t),

Y (T ) = Dg
(
X(T )

)
,

with homogeneous Dirichlet boundary conditions, and the optimality condition Y (t) +
λU(t) = 0. By inserting the optimality condition in the SHE, we obtain the coupled system
of forward and backward stochastic heat equations (FBSHE)

dX(t) =
[
∆X(t)− 1

λ
Y (t)

]
dt+

n∑
i=1

νi(t)X(t) dW i(t),

dY (t) =
[
−∆Y (t)−

n∑
i=1

νi(t)Zi(t)−
(
X(t)− X̃(t)

)]
dt+

n∑
i=1

Zi(t) dW i(t),

X(0) = x0, Y (T ) = Dg
(
X(T )

)
.

These equations are studied in the second part, where the focus is on the approximation
and simulation of the BSHE and the FBSHE.

Backward stochastic partial differential equations naturally extend backward stochastic dif-
ferential equations (BSDE) and usually appear as adjoint equations in several stochastic
optimal control problems. The field of backward stochastic differential equations is fastly
growing; various numerical methods to solve and simulate backward stochastic differential
equations have been developed. PDE based methods, e.g. [DMP96,MT06], yield very pre-
cise numerical results for low-dimensional BSDEs. For high-dimensional BSDEs a direct
discretization in time, see e.g. [BT04, Zha04], combined with an approximation of the oc-
curring conditional expectations, see e.g. [BD07,BT04,CM12,GLW05,GT14], seems to be
more applicable.

To the best of our knowledge, the results in Part II firstly address the numerical approxi-
mation and simulation of a backward stochastic partial differential equation. We start with
a spatial discretization using P1-finite elements of the BSHE and, in particular, of the FB-
SHE motivated above. We prove optimal strong rates of convergence for the BSHE using



7

a result on improved regularity of the strong solution from [DT12]. By a combination of
this result and a Picard-iteration, we show optimal strong rates of convergence in the case
of the FBSHE for short time durations T > 0.

Fully implementable algorithms to simulate the BSHE and the FBSHE are discussed, which
are based on a direct discretization in time of the spatially discretized BSHE using the im-
plicit Euler scheme, and a partition estimation method to approximate conditional expec-
tations, which is a special case of the least squares Monte-Carlo method; see e.g. [GLW05].
The latter method for the approximation of E

[
·
∣∣Xj

h

]
is based on a partition of the range of

Xj
h, where Xh is the solution of the spatially discretized SHE. This is a high-dimensional

task since the dimension of Xj
h depends on the spatial discretization parameter h > 0. To

accurately resolve Xj
h, we propose two partitioning strategies, which depend on the law of

Xj
h: the Binary Tree Cuboids (BTC), which is built on the idea that the constructed regions

should be equally likely; and the Voronoi Partition Method (V), where a nearest neighbor
clustering with respect to additional realizations of Xj

h is used to define the partition. By
these approximations, we have an implementable algorithm to simulate the deterministic
regression functions

(
Yjh(Xj

h),Z i,jh (Xj
h)
)
which approximatively solve the BSHE.

Computational experiments are carried out to study the behavior of both partition strategies
in the case of the BSHE. The convergence behavior of the space-discretization of the BSHE
is experimentally studied supporting the analytically obtained rates.

Three different schemes are considered to resolve the forward-backward character of the
necessary optimality conditions: The first is a Picard-type iteration, where the optimality
condition is inserted in the forward equation; see the FBSHE above. Similarly to [BZ08],
the solution of the backward stochastic heat equation at the previous Picard iteration step
is then used in the (forward) stochastic heat equation. However, this scheme converges only
for restrictive choices of the data (small time durations T > 0). To overcome this restric-
tions we propose a new stochastic gradient method, which uses the optimality condition
combined with the representation of the solution of the backward equation by (determin-
istic) regression functions. For stochastic LQ problems where g(·) in JSHE is quadratic,
we propose a third scheme which avoids the computation of conditional expectations by
exploiting linearity of the problem.

These schemes are employed in computational experiments to study their convergence be-
havior: the stochastic gradient method returns the same approximation as the Picard-type
iteration for those choices of the data, where the Picard-type iteration converges. In this
case the Picard-type iteration is less time consuming than the stochastic gradient method.
In the other case, the stochastic gradient method converges and returns an approximation
of the control with a significant reduction in the cost functional JSHE. For stochastic LQ
problems this approximation almost matches the approximation which is obtained by the
scheme which avoids the computation of conditional expectations.

The simulation methodology of the second part is applied in the third part to the SLLG
constrained stochastic control problem, where the corresponding optimality condition is
slightly more difficult. The stochastic gradient method can be adapted to this framework
by a further approximation exploiting the properties of the Voronoi Partition method.





Part I.

Convergence with rates for a time
discretization of the stochastic
Landau-Lifshitz-Gilbert equation

9





1. Introduction

This part1 considers a system of equations describing the magnetization of a ferromagnetic
wire D := (x, x) ⊂ R with periodic boundary conditions. Let DT := (0, T ) × D with
0 < T < ∞, and (Ω,F ,F,P) be a filtered probability space. The aim is to find a process
m : DT × Ω → S2 := {x ∈ R3; |x|R3 = 1}, which satisfies the stochastic Landau-Lifshitz-
Gilbert equation (SLLG)

mt(t, x, ω) = −αm(t, x, ω)×
(
m(t, x, ω)×∆m(t, x, ω)

)
+m(t, x, ω)×∆m(t, x, ω)

+m(t, x, ω)× ◦Ẇ (t, x, ω) ∀(t, x, ω) ∈ DT × Ω, (1.1)
m(0, ·) = m0.

See the works [BMS09,KP06] and references therein for a detailed description of the deter-
ministic Landau-Lifshitz-Gilbert equation and the recent works [BBNP13,BBNP14,BMS09,
BGJ12,BGJ13] for a description of the stochastic version.
The right-hand-side of equation (1.1) consists of three terms: The first term is a phe-
nomenological damping term (relaxation term) to model dissipation effects, which is scaled
by 0 < α � 1. The second term is commonly referred to as precession term. The third
term describes thermal fluctuations by multiplicative colored Gaussian noise m(t, x, ω) ×
◦Ẇ (t, x, ω), where the stochastic integral is understood in Stratonovich sense.

The stochastic Landau-Lifshitz-Gilbert equation is of interest in recent research: In [BGJ13]
the existence of a weak martingale solution of problem (1.1) (for D ⊂ Rd with d = 2, 3
and Neumann boundary conditions) in the case of scalar noise is proven using a standard
Faedo-Galerkin approximation and compactness methods. In [BGJ12], scalar noise in both,
the precession and the damping term is considered for the special case D ⊂ R. A weak
martingale solution is constructed similarly as in [BGJ13], and by pathwise uniqueness
which holds in 1d, the existence of a strong solution is proven. The works [BBNP13,
BBNP14] use a fully practicable finite element scheme to construct a weak martingale
solution of (1.1) (for D ⊂ Rd with d = 2, 3 and Neumann boundary conditions). The
used scheme consists of P1-finite elements for the spatial discretization, and the midpoint
scheme for the time discretization. In [BBNP13,BBP13], this scheme is used in order to
computationally study possible blow-up behavior of the solution in 2d. Further results in
this direction, including long-time dynamics, are contained in [BBNP13].

The focus of the present part lies on the numerical solution of problem (1.1) on the circle
D ⊂ R. We prove rates of convergence for the following time discretized scheme:

1Part I is based on the publication [Dun15] in IMA Journal of Numerical Analysis published by Oxford
University Press.
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Algorithm 1.1
Consider a uniform partition Ik := {tj}Jj=0 covering [0, T ] with equi-distant mesh-size k =
T/J > 0, where t0 := 0 and tJ := T . Let m0 := m0. For every j ≥ 0 and ∆jW :=
W (tj+1) −W (tj) ∼ N (0, kQ) determine the W1,2(D;R3)-valued random variable mj+1,
such that P-a.s.

mj+1 = mj − αkmj+ 1
2 × (mj+ 1

2 ×∆mj+1) + kmj+ 1
2 ×∆mj+1 +mj+ 1

2 ×∆jW .

The scheme has been studied in [BP06] in the deterministic and in [BBNP14] in the stochas-
tic context: iterates are S2-valued and satisfy a discrete energy bound (see Lemma 3.4).
In [BBNP13] it is pointed out, that preserving the sphere constraint is essential to obtain
a proper long-time behavior of the scheme.

The main result of the present part is strong convergence with rate 1/2 (cf. Theorem 4.1)

E
[
1Ω̃k

sup
j=0,...,J−1

‖m(tj+1)−mj+1‖2L2

]
≤ Ck1−ε (ε > 0) (1.2)

on a subset Ω̃k ⊂ Ω, such that P[Ω \ Ω̃k] → 0 for k → 0. It is due to the non-Lipschitz
nonlinear terms, that this local estimate is needed to single out those solution paths where a
Gronwall argument can be accomplished. A simple consequence of (1.2) is the convergence
in probability with rate 1/2 for iterates of Algorithm 1.1. Here, the work [CP12] is followed,
where a similar strategy was first proposed for the stochastic incompressible Navier-Stokes
equation to account for nonlinear effects in the problem.

The computational studies detailed in Chapter 5 suggest a strong rate of order 1/2, and a
weak rate of order 1 in both cases: for infinite dimensional colored noise, and also in the
case of space-time white noise where no theoretical result even with respect to solvability
exists. Those results are consistent with the work [NP13], where the strong rate of order
1/2 and the weak rate of order 1 is proven for a similar time discretization in the case of a
finite ensemble of spins.

The main tool which we use is to reformulate the damping term for both, equation (1.1),
and Algorithm 1.1: For the analytical problem, formula a× (b× c) = 〈a, c〉R3b− 〈a, b〉R3c
gives

m× (m×∆m) = 〈m,∆m〉R3m− |m|2R3∆m,

and since the constraint |m(t,x, ·)|2R3 = 1 Leb-a.e. in D for all t ∈ [0, T ] P-a.s. holds, it can
be further reformulated as

m× (m×∆m) = −|∇m|2R3m−∆m (1.3)

to achieve a semilinear problem. This reformulation of the cubic nonlinearity allows us
to show improved regularity results in space for the strong solution, by assuming more
regularity on the initial value m0 and the Q-Wiener process W (see Propositions 3.2
and 3.3).
On the other hand, if the above formula for the corresponding term in Algorithm 1.1 is
employed, we obtain

mj+ 1
2 × (mj+ 1

2 ×∆mj+1) (1.4)
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=〈mj+ 1
2 ,∆mj+1〉R3mj+ 1

2 − |mj+ 1
2 |2R3∆mj+1

=− |∇mj+1|2R3mj+ 1
2 − 1

2〈m
j+1 −mj ,∆mj+1〉R3mj+ 1

2 − |mj+ 1
2 |2R3∆mj+1.

However, this reformulation does not allow for better regularity results, as for the limiting
problem the prefactor may degenerate, since |mj+ 1

2 |R3 = 0 may be valid at places where
mj+1 = mj , which prevents the property of a strongly elliptic operator, which justifies a
regularity shift.

The reformulation in equation (1.4) will be the starting point for the error analysis below.
It is the lack of control of {∆mj ; j ≥ 0} uniformly in k > 0 which is a main impediment
to derive rates of convergence for the corresponding fully discrete schemes.

We consider equation (1.1) with periodic boundary conditions, in order to avoid technical
problems due to boundary effects in the analysis below. The one-dimensionality is needed
at several places: First, the existence of a strong solution of the SLLG in two or three
space dimensions is an open problem. Second, to verify the improved regularity results in
Section 3.1, and to derive the error estimates in Chapter 4, we frequently use the Gagliardo-
Nirenberg inequality, where the dimension one is relevant.

This part of the thesis is organized as follows: We first collect some preliminaries in Chap-
ter 2, including some notation, the definition of the stochastic integral and the needed
assumptions on equation (1.1). In Chapter 3, we show a-priori bounds on both, the strong
solution {m(t); t ∈ [0, T ]} and the iterates of the semi-discrete scheme {mj ; j = 0, . . . , J}.
We then use these results in Chapter 4 to prove the main result given in Theorem 4.1,
the rate of convergence in probability for Algorithm 1.1. Computational studies are finally
detailed in Chapter 5.





2. Preliminaries

First, we introduce some notation. The norm and the scalar product in R3 are denoted
by | · |R3 and 〈·, ·〉R3 , while ‖ · ‖L2 and (·, ·) denote the norm and the scalar product in
L2(D;R3) respectively, which is the standard Lebesgue space of (equivalence classes of)
square integrable functions u : D → R3. The norm in Wk,2(D;R3) for k = 1, 2, 3, the space
of functions u ∈ L2(D;R3) where the weak derivative up to the k-th order also belongs to
L2(D;R3), is denoted by ‖ · ‖Wk,2 .
A standard reference which is used in this section is [DPZ92]. Let (Ω,F ,F,P) be a complete
probability space with a filtration F := {Ft; t ∈ [0, T ]}, and let us consider a sequence
{βl(t); t ∈ [0, T ]}l∈N of i.i.d. R-valued Brownian motions on the given filtered probability
space (Ω,F ,F,P). Let K and H be Hilbert spaces. By S1(K) we denote the space of trace
class operators on K. Let Q ∈ S1(K) be symmetric and non-negative, and let {el}l∈N be
an orthonormal basis of K consisting of eigenfunctions of Q with R+-valued eigenvalues
{ql}l∈N. The K-valued Q-Wiener process W = {W (t); t ∈ [0, T ]} is defined by

W (t) =
∞∑
l=1

√
qlelβl(t) ∀t ∈ [0, T ].

For p ≥ 1 we denote the space of equivalence classes of F-progressively measurable processes
X : [0, T ]× Ω→H such that E[

∫ T
0 ‖X(t)‖pH dt] <∞ by Mp([0, T ],F; H).

The space L(K,H) contains all linear bounded operators from K to H, and the space
S2(K,H) consists of linear Hilbert-Schmidt operators from K to H. The stochastic integral
{
∫ t
0 φ(s) dW (s); t ∈ [0, T ]} for any φ ∈ M2([0, T ],F;L(K,H)) is defined as the continuous

H-valued F-martingale, such that
∫ t

0
φ(s) dW (s) =

M∑
m=1

φ(tm−1)
(
W (t ∧ tm)−W (t ∧ tm−1)

)
∀t ∈ [0, T ],

for all step processes φ. This stochastic integral satisfies the Itô-isometry, i.e., for each
φ ∈M2([0, T ],F;L(K,H)) there holds

E
[
‖
∫ t

0
φ(s) dW (s)‖2H

]
= E

[∫ t

0
‖φ(s)Q

1
2 ‖2S2(K,H) ds

]
∀t ∈ [0, T ].

The following assumptions on data W , Q and m0 are needed below:

Assumption A1
Let K ⊂W3,2(D;R3) and the embedding is continuous.

Assumption A2
Let W =

{
W (t, ·); t ∈ [0, T ]

}
be a Q-Wiener process with values in K and Q

1
2 ∈ S1(K) is

a symmetric, non-negative operator.

15
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Assumption A3
Let m0 ∈W3,2(D;S2).

Remark 2.1
Assumptions A1 and A3 are necessary to show additional regularity properties for the
strong solution (see Chapter 3). We need assumption Q

1
2 ∈ S1(K) in the error estimate

(see Chapter 4), as well as for most of the a-priori estimates in Chapter 3.

The following remark will be frequently used later, see [Ich82, Corollary 1.1].

Remark 2.2
The Q-Wiener process W satisfies for all r ∈ N and all 0 ≤ s < t

E
[
‖W (t)−W (s)‖2rK

]
≤ C(r)(TrQ)r|t− s|r.

By Assumption A1, there exists C > 0, such that ‖u‖W3,2 ≤ C‖u‖K for all u ∈ K, and
thus

E
[
‖W (t)−W (s)‖2rW3,2

]
≤ C(r)(TrQ)r|t− s|r.



3. A-priori estimates

In this chapter, we motivate important a-priori estimates for the strong solution of equa-
tion (1.1) and the iterates of Algorithm 1.1. These estimates will be useful for the error
analysis in Chapter 4.

3.1. Strong solution

The following definition is deduced from [BGJ12].

Definition 3.1 (Strong solution to equation (1.1))
Let T > 0 andP = (Ω,F ,F,P) be given and let Assumptions A1–A3 hold. An W1,2(D;R3)-
valued F-adapted stochastic process {m(t); t ∈ [0, T ]} on (Ω,F ,F,P) is a strong solution
of equation (1.1), if

1. P-a.s. there holds m(·, ·, ω) ∈ C
(
[0, T ]; L2(D;R3)

)
∩ L8(0, T ; W1,2(D;R3)

)
;

2. P-a.s. there holds |m(t, ·, ω)|2R3 = 1 a.e. in D for all t ∈ [0, T ];

3. P-a.s. there holds for every t ∈ [0, T ] and all φ ∈W1,2(D;R3)

(
m(t), φ

)
−
(
m0, φ

)
= α

∫ t

0

(
∇[φ×m(s)]×m(s),∇m(s)

)
ds

−
∫ t

0

(
∇φ×m(s),∇m(s)

)
ds+

∫ t

0

(
φ,m(s)× ◦ dW (s)

)
.

The existence of a strong solution of problem (1.1) can be shown similarly as in [BGJ12],
where the existence is shown in the scalar noise case. The following proofs in this sub-
section are formal and can be done rigorously by using an appropriate finite dimensional
approximation of problem (1.1), and tending the related approximation to the limit. For
the sake of readability, in this subsection, the notation ∂ix· for the i-th derivative in space is
used. In the proofs of Propositions 3.2 and 3.3 small constants δ, δ̃ > 0 are used for terms
which will be absorbed to the left-hand-side, and inequalities are understood in the P-a.s.
sense.
Below, we reformulate the Stratonovich integral as Itô integral together with a Stratonovich
correction term,
∞∑
l=1

√
ql

∫ t

0
m(s)× el ◦ dβl(s) =

∞∑
l=1

(√
ql

∫ t

0
m(s)× el dβl(s) + 1

2ql
∫ t

0

(
m(s)× el

)
× el ds

)
.

17
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Moreover, by using |m(t, ·)|2R3 = 1 P-a.s., the argumentation around equation (1.3) allows
us to restate equation (1.1) as follows

mt − α∂2
xm = α|∂xm|2R3m+m× ∂2

xm+m× ◦Ẇ on DT × Ω. (3.1)

Proposition 3.2
Let {m(t); t ∈ [0, T ]} be a strong solution of equation (1.1). There holds for all 0 < t ≤ T
and p ≥ 2:

a) E
[

sup
0≤s≤t

‖∂xm(s)‖2pL2 + α

∫ t

0
‖m(s)× ∂2

xm(s)‖2L2 ds
]
≤ C(T, p,TrQ

1
2 ,m0, D);

b) E
[

sup
0≤s≤t

‖∂2
xm(s)‖2pL2 + α

∫ t

0
‖∂3

xm(s)‖2L2 ds
]
≤ C(T, p,TrQ

1
2 ,m0, D);

c) E
[

sup
0≤s≤t

‖∂3
xm(s)‖2pL2 + α

∫ t

0
‖∂4

xm(s)‖2L2 ds
]
≤ C(T, p,TrQ

1
2 ,m0, D).

Proof
a) The first assertion follows by the application of Itô’s formula for the functional m 7→
‖∂xm‖2L2 applied to equation (1.1) and Burkholder-Davis-Gundy’s inequality, see for in-
stance [BGJ13, Theorem 3.5].

b) Fix 0 ≤ r ≤ t ≤ T . We apply Itô’s formula for the functional m 7→ ‖∂2
xm‖2L2 to

equation (3.1):

‖∂2
xm(r)‖2L2 − ‖∂2

xm(0)‖2L2

= 2α
∫ r

0

(
∂2
x[∂2

xm(s)], ∂2
xm(s)

)
ds+ 2α

∫ r

0

(
∂2
x[|∂xm(s)|2R3m(s)], ∂2

xm(s)
)

ds

+ 2
∫ r

0

(
∂2
x[m(s)× ∂2

xm(s)], ∂2
xm(s)

)
ds+

∞∑
l=1

ql

∫ r

0

(
∂2
x[(m(s)× el)× el], ∂2

xm(s)
)

ds

+ 2
∞∑
l=1

√
ql

∫ r

0

(
∂2
x[m(s)× el], ∂2

xm(s)
)

dβl(s)

+ 21
2

∞∑
l=1

ql

∫ r

0

(
∂2
x[m(s)× el], ∂2

x[m(s)× el]
)

ds

=: I + II + III + IV + 2
∞∑
l=1

√
ql

∫ r

0

(
∂2
x[m(s)× el], ∂2

xm(s)
)

dβl(s) + V.

First, the terms I–V are simplified. For the first term I, by integration by parts (where we
benefit from ∂D = ∅), we obtain

I = −2α
∫ r

0
‖∂3

xm(s)‖2L2 ds.

The second term II can be simplified using integration by parts and the triangle inequality:

2α
∣∣∣(∂2

x[|∂xm(s)|2R3m(s)], ∂2
xm(s)

)∣∣∣
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= 2α
∣∣∣(∂x[|∂xm(s)|2R3m(s)], ∂3

xm(s)
)∣∣∣

≤ 2α
∣∣∣(|∂xm(s)|2R3∂xm(s) + 2〈∂xm(s), ∂2

xm(s)〉R3m(s), ∂3
xm(s)

)∣∣∣
≤ 2α

∣∣∣(|∂xm(s)|2R3∂xm(s), ∂3
xm(s)

)∣∣∣+ 4α
∣∣∣(〈∂xm(s), ∂2

xm(s)〉R3m(s), ∂3
xm(s)

)∣∣∣
=: IIA + IIB.

For the first part IIA, we obtain using Young’s and Gagliardo-Nirenberg’s inequalities,
i.e., ‖∂xm(s)‖L∞ ≤ C‖∂xm(s)‖

1
2
L2‖∂xm(s)‖

1
2
W1,2 , which holds in 1d. Let δ > 0, then

IIA ≤ δ‖∂3
xm(s)‖2L2 + C‖∂xm(s)‖4L∞‖∂xm(s)‖2L2

≤ δ‖∂3
xm(s)‖2L2 + C‖∂xm(s)‖2W1,2‖∂xm(s)‖4L2

≤ δ‖∂3
xm(s)‖2L2 + C

(
‖∂2

xm(s)‖2L2 + ‖∂xm(s)‖2L2

)
‖∂xm(s)‖4L2 .

We deduce ‖∂2
xm(s)‖2L2 = |(∂2

xm(s), ∂2
xm(s))| ≤ ‖∂xm(s)‖L2‖∂3

xm(s)‖L2 using integration
by parts, such that

IIA ≤ δ‖∂3
xm(s)‖2L2 + C‖∂3

xm(s)‖L2‖∂xm(s)‖5L2 + C‖∂xm(s)‖6L2

≤ 2δ‖∂3
xm(s)‖2L2 + C‖∂xm(s)‖10

L2 + C‖∂xm(s)‖6L2 .

Similarly, we obtain for the second term IIB the estimate

IIB ≤ 3δ‖∂3
xm(s)‖2L2 + C‖∂xm(s)‖10

L2 + C‖∂xm(s)‖6L2 .

The third term III can be estimated using integration by parts, the identity 〈a×b, b〉R3 = 0,
Young’s inequality and ‖∂xm(s)× ∂2

xm(s)‖L2 ≤ C‖∂xm(s)‖L∞‖∂2
xm(s)‖L2 by∣∣∣(∂2

x[m(s)× ∂2
xm(s)], ∂2

xm(s)
)∣∣∣ ≤ δ‖∂3

xm(s)‖2L2 + C‖∂xm(s)‖2L∞‖∂2
xm(s)‖2L2 .

Again by the estimate ‖∂2
xm(s)‖2L2 ≤ ‖∂xm(s)‖L2‖∂3

xm(s)‖L2 as well as Young’s and
Gagliardo-Nirenberg’s inequalities, we obtain∣∣∣(∂2

x[m(s)× ∂2
xm(s)], ∂2

xm(s)
)∣∣∣ ≤ 3δ‖∂3

xm(s)‖2L2 + C‖∂xm(s)‖10
L2 + C‖∂xm(s)‖6L2 .

For the fourth term IV , we arrive using el ∈W1,∞(D;R3) and similar arguments as in the
steps before at∣∣∣(∂2

x[(m(s)× el)× el], ∂2
xm(s)

)∣∣∣ =
∣∣∣(∂x[(m(s)× el)× el], ∂3

xm(s)
)∣∣∣

≤ δ‖∂3
xm(s)‖2L2 + C‖∂xm(s)‖2L2 + C.

Similarly, we obtain

‖∂2
x[m(s)× el]‖2L2 = ‖∂2

xm(s)× el + 2∂xm(s)× ∂xel +m(s)× ∂2
xel‖2L2

≤ C‖∂2
xm(s)‖2L2 + C‖∂xm(s)‖2L2 + C

for the last term V using ‖u × v‖L2 ≤ C‖u‖L2‖v‖L∞ and el ∈ W2,2(D;R3). Thus, we
arrive at

‖∂2
xm(r)‖2L2 − ‖∂2

xm(0)‖2L2 + 2α
∫ r

0
‖∂3

xm(s)‖2L2 ds
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≤ C
∫ r

0
‖∂xm(s)‖10

L2 ds+ C + C

∫ r

0
‖∂2

xm(s)‖2L2 ds

+ 2
∞∑
l=1

√
ql

∫ r

0

(
∂2
x[m(s)× el], ∂2

xm(s)
)

dβl(s).

Neglecting the third term on the left-hand-side, taking everything to the power p ≥ 2, and
then taking the supremum over 0 ≤ r ≤ t leads us to

sup
0≤r≤t

‖∂2
xm(r)‖2pL2 ≤ C‖∂2

xm(0)‖2pL2 + C

∫ t

0
‖∂xm(s)‖10p

L2 ds+ C

∫ t

0
‖∂2

xm(s)‖2pL2 ds+ C

+ C(TrQ
1
2 )p−1

∞∑
l=1

√
ql sup

0≤r≤t

∣∣∣∫ r

0

(
∂2
x[m(s)× el], ∂2

xm(s)
)

dβl(s)
∣∣∣p,

where we have used Young’s and Hölder’s inequalities. Applying expectations, we obtain

E
[

sup
0≤r≤t

∣∣∣∫ r

0

(
∂2
x[m(s)× el], ∂2

xm(s)
)

dβl(s)
∣∣∣p] ≤CE[∣∣∣∫ t

0

∣∣∣(∂2
x[m(s)× el], ∂2

xm(s)
)∣∣∣2 ds

∣∣∣ p2 ]
for the last term using Burkholder-Davis-Gundy’s inequality. Similarly as for term V above,
by applying 〈a× b, b〉R3 = 0, we obtain the estimate∣∣∣(∂2

x[m(s)× el], ∂2
xm(s)

)∣∣∣2 ≤ C‖∂2
xm(s)‖4L2 + C‖∂xm(s)‖4L2 + C.

Putting things together leads us to

E
[

sup
0≤r≤t

‖∂2
xm(r)‖2pL2

]
≤CE

[
‖∂2

xm(0)‖2pL2

]
+ C

∫ t

0
E
[

sup
0≤r≤s

‖∂2
xm(r)‖2pL2

]
ds+ C ≤ C,

after the use of Gronwall’s inequality and Assumption A3.

c) This assertion follows by Itô’s formula for the functionalm 7→ ‖∂3
xm‖2L2 applied to equa-

tion (3.1). Here, the assumptions el ∈W3,2(D;R3) and m0 ∈W3,2(D;R3) are needed. �

The following result on Hölder regularity in time of the strong solution is relevant to later
conclude strong rates of convergence for iterates of the corresponding discretization.

Proposition 3.3
Let {m(t); t ∈ [0, T ]} be a strong solution of equation (1.1). There holds for all 0 ≤ s ≤ t
and p ∈ N:

a) E
[
sups≤r≤t ‖m(r)−m(s)‖2pL2

]
≤ C(T, p,TrQ

1
2 ,m0, D)|t− s|p;

b) E
[
sups≤r≤t ‖∂x[m(r)−m(s)]‖2pL2

]
≤ C(T, p,TrQ

1
2 ,m0, D)|t− s|p;

c) E
[
sups≤r≤t ‖∂2

x[m(r)−m(s)]‖2L2

]
≤ C(T, p,TrQ

1
2 ,m0, D)|t− s|.
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Proof
c) Fix 0 ≤ s ≤ t ≤ T . By taking the norm ‖∂2

x · ‖2L2 on both sides of equation (1.1), taking
supremum and expectation, we obtain

E
[

sup
s≤r≤t

‖∂2
x[m(t)−m(s)]‖2L2

]
≤ CE

[
sup
s≤r≤t

∥∥∥∫ r

s
∂2
x

[
m(z)×

(
m(z)×∆m(z)

)]
dz
∥∥∥2

L2

]
+ CE

[
sup
s≤r≤t

∥∥∥∫ r

s
∂2
x

[
m(z)×∆m(z)

]
dz
∥∥∥2

L2

]
+ CE

[
sup
s≤r≤t

∥∥∥ ∞∑
l=1

ql

∫ r

s
∂2
x

[(
m(z)× el

)
× el

]
dz
∥∥∥2

L2

]
+ CE

[
sup
s≤r≤t

∥∥∥ ∞∑
l=1

√
ql

∫ r

s

(
m(z)× el

)
dβl(z)

∥∥∥2

W2,2

]
=: I + II + III + IV. (3.2)

The first and the second term can be estimated in a similar way. For the sake of simplicity,
we focus only on the first one, where we arrive at

I ≤ C|t− s|E
[∫ t

s
‖∂2

x

[
m(z)×

(
m(z)×∆m(z)

)]
‖2L2 dz

]
≤ C|t− s|

(∫ t

s
E
[
‖∂2

xm(z)‖2L∞‖∂2
xm(z)‖2L2‖m(z)‖2L∞

]
dz

+
∫ t

s
E
[
‖∂4

xm(z)‖2L2‖m(z)‖4L∞
]

dz

+
∫ t

s
E
[
‖∂3

xm(z)‖2L2‖∂2
xm(z)‖2L∞‖m(z)‖2L∞

]
dz
)

≤ C|t− s|
(
C|t− s|+ C

)
, (3.3)

by using Hölder’s and Gagliardo-Nirenberg’s inequality, the property ‖m(z)‖L∞ = 1 P-a.s.,
and Proposition 3.2. Similarly, we obtain for the third term III the estimate

III ≤ C
(
TrQ

)
E
[ ∞∑
l=1

ql sup
s≤r≤t

∥∥∥∫ r

s
∂2
x

[(
m(z)× el

)
× el

]
dz
∥∥∥2

L2

]
≤ C

(
TrQ

) ∞∑
l=1

ql
∣∣t− s∣∣ ∫ t

s
E
[
‖∂2

x

[(
m(z)× el

)
× el

]
‖2L2

]
dz

≤ C
(
TrQ

)2|t− s|2. (3.4)

By applying Burkholder-Davis-Gundy’s inequality and Proposition 3.2, we arrive at

IV ≤ C TrQ
1
2

∞∑
l=1

√
qlE
[

sup
s≤r≤t

∥∥∥∫ r

s

(
m(z)× el

)
dβl(z)

∥∥∥2

W2,2

]
≤ C TrQ

1
2

∞∑
l=1

√
ql

∫ t

s
E
[
‖m(z)× el‖2W2,2

]
dz

≤ C
(
TrQ

1
2
)2|t− s|. (3.5)



22 3. A-priori estimates

Thus, we obtain the assertion by combining estimates (3.2)–(3.5).

a) This assertion can be shown similarly as in c) by using the norm ‖ · ‖2pL2 on both sides of
equation (1.1).

b) This assertion can be shown similarly as in c) by using the norm ‖∂x · ‖2pL2 on both sides
of equation (1.1). �

3.2. Semi-discretization in time

In this section, we derive a-priori bounds for the iterates of the semi-discretized scheme
given in Algorithm 1.1.

Lemma 3.4
Let Assumptions A1–A2 be fulfilled and the timestep size k > 0 be sufficiently small.

a) There exists an adapted sequence of W1,2(D;R3)-valued random variables, which
satisfy P-a.s. the scheme given in Algorithm 1.1.

b) The iterates of Algorithm 1.1 take values in S2, i.e., there holds for each j ∈ N P-a.s.
‖mj‖L∞ = 1.

c) Let m0 ∈W1,2(D; S2). There holds

E
[

sup
r=0,...,J−1

(
‖∇mr+1‖2L2 +

r∑
j=0
‖∇[mj+1 −mj ]‖2L2 + k

r∑
j=0
‖mj+ 1

2 ×∆mj+1‖2L2

)]
≤ CT .

d) Let m0 ∈W1,2(D; S2). There holds for q ∈ N

E
[

sup
r=0,...,J−1

(
‖∇mr+1‖2qL2 +

r∑
j=0

∣∣∣‖∇mj+1‖2q−1

L2 − ‖∇mj‖2q−1

L2

∣∣∣2)] ≤ CT,q.
e) There holds P-a.s.

‖mj+1 −mj‖4L2 ≤ Ck2(α2 + 1)‖mj+ 1
2 ×∆mj+1‖2L2 + C‖∆jW ‖4L2 .

Proof
a) This assertion can be shown similarly as in [DBD04] with the tools obtained in [BBNP14].

b) Multiplying the equation in Algorithm 1.1 for one fixed ω ∈ Ω withmj+ 1
2 (ω) in R3-sense,

and using 〈a,a× b〉R3 = 0 leads to the equality

〈mj+1 −mj ,
1
2(mj+1 +mj)〉R3 = 0.

Since 〈a − b,a + b〉R3 = |a|2R3 − |b|2R3 is valid, we obtain |mj+1|2R3 = |mj |2R3 P-a.s., which
concludes the proof.
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c) The first assertion follows analogously to the proof of Lemma 4.1 in [BBNP14] by mul-
tiplying the equation in Algorithm 1.1 for one ω ∈ Ω with −∆mj+1(ω) and afterwards
integrating in space. There, we obtain P-a.s.

1
2
(
‖∇mj+1‖2L2 − ‖∇mj‖2L2

)
≤
(
∇[mj ×∆jW ],∇mj

)
+
(
C‖∇mj‖2L2 + C

)(
‖∆jW ‖2L2 + ‖∆jW ‖2L∞ + ‖∇[∆jW ]‖2L2

)
, (3.6)

which is the starting point for assertion d). After summation, taking supremum over iterates
j = 0, . . . , J − 1 and taking expectations, the first term on the right-hand-side can be esti-
mated using a Burkholder-Davis-Gundy argument, for the second term we use Remark 2.2,
and finally assertion c) follows by the discrete version of Gronwall’s inequality.

d) In order to show the second assertion, we use an inductive argument: To obtain the result
for q = 2, we multiply inequality (3.6) by ‖∇mj+1‖2L2 . By using the identity (a − b)a =
1
2(a2 − b2) + 1

2(a − b)2, Young’s inequality, estimate ‖u × v‖L2 ≤ C‖u‖L2‖v‖L∞ , and
‖mj‖L∞ = 1 P-a.s., we arrive at

1
4
(
‖∇mj+1‖4L2 − ‖∇mj‖4L2 +

∣∣∣‖∇mj+1‖2L2 − ‖∇mj‖2L2

∣∣∣2) (3.7)

≤
(
∇[mj ×∆jW ],∇mj

)
‖∇mj‖2L2 + C

(
‖∇mj‖4L2 + C

)
×
(
‖∆jW ‖4L2 + ‖∆jW ‖4L∞ + ‖∇[∆jW ]‖4L2 + ‖∆jW ‖2L2 + ‖∆jW ‖2L∞ + ‖∇[∆jW ]‖2L2

)
.

After summation, taking supremum over iterates j = 0, . . . , J − 1 and taking expectations,
the first term on the left-hand-side of inequality (3.7) can be estimated using Burkholder-
Davis-Gundy’s inequality and the other terms by using independence and Remark 2.2.
To obtain the result for q = 3, we multiply inequality (3.7) by ‖∇mj+1‖4L2 and obtain it as
above. By repeating this procedure, we obtain the result for each q ∈ N.

e) Multiplication of the equation in Algorithm 1.1 for one ω ∈ Ω with mj+1(ω) −mj(ω)
then yields that P-a.s.

‖mj+1 −mj‖2L2 ≤ Ck2(α2 + 1)‖mj+ 1
2 ×∆mj+1‖2L2 + C‖∆jW ‖2L2 . (3.8)

Multiplication of both sides of inequality (3.8) by ‖mj+1 −mj‖2L2 and using the P-a.s.
estimate ‖mj+1 −mj‖2L2 ≤ C yields the assertion. �





4. Error estimate for the semi-discretization
in time

In this chapter we state the main theorem and prove rates of convergence in probability
for the iterates {mj ; j = 0, . . . , J} from Algorithm 1.1 and the strong solution {m(t); t ∈
[0, T ]} of equation (1.1).

Theorem 4.1
Suppose that Assumptions A1–A3 hold. Let {m(t); t ∈ [0, T ]} be the strong solution
of (1.1) and {mj ; j = 0, . . . , J} be the iterates of Algorithm 1.1. For every ε > 0, the set

Ω̃k :=
{
ω ∈ Ω : sup

j=0,...,J−1
‖∇mj‖4L2 + sup

s∈[0,tJ−1]
‖∇m(s)‖4L2

+ sup
s∈[0,tJ−1]

‖∇m(s)‖2W1,2 ≤ log(k−
ε
2 )
}

satisfies

P[Ω̃k] ≥ 1 + C

ε log(k) ,

and there holds the local error estimate

E
[
1Ω̃k

sup
j=0,...,J−1

‖m(tj+1)−mj+1‖2L2

]
≤ Ck1−ε.

By Theorem 4.1 we obtain strong convergence for the semi-discretized scheme with rate
0 < ν < 1

2(1 − ε) for every ε > 0 on arbitrary large subsets of the probability space. This
implies convergence in probability [Pri01, Definition 2.7] with rate ν.

Corollary 4.2
Let the assumptions of Theorem 4.1 be fulfilled. The iterates {mj ; j = 0, . . . , J} of the semi-
discretized scheme given in Algorithm 1.1 converge in probability with order 0 < ν < 1

2(1−ε)
for every ε > 0, i.e., there exists a constant C̃ > 0, such that

lim
k→0

P
[

sup
j=0,...,J−1

‖m(tj+1)−mj+1‖L2 ≥ C̃kν
]

= 0.

Proof
Due to Theorem 4.1, there exists a subset Ω̃k ⊂ Ω, such that, by using Chebychev’s in-
equality, the following holds:

P
[

sup
j=0,...,J−1

‖m(tj+1)−mj+1‖L2 ≥ C̃kν
]

25
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≤ P
[{

sup
j=0,...,J−1

‖m(tj+1)−mj+1‖L2 ≥ C̃kν
}
∩ Ω̃k

]
+ P[Ω \ Ω̃k]

≤
E
[
1Ω̃k

sup
j=0,...,J−1

‖m(tj+1)−mj+1‖2L2

]
C̃2k2ν

+
(
1− P[Ω̃k]

)
≤ Ck1−ε

C̃2k2ν
− C

ε log(k) .

Since 2ν < 1− ε, we obtain

lim
k→0

P
[

sup
j=0,...,J−1

‖m(tj+1)−mj+1‖L2 ≥ C̃kν
]

= 0.

Proof (Proof of Theorem 4.1)
The proof is based on the reformulation (1.4) of the equation in Algorithm 1.1. Hölder
regularity statements (Proposition 3.3) for the strong solution are exploited to pathwisely
control temporal discretization errors. Nonlinear effects are accounted for by regularity
results (Proposition 3.2 and Lemma 3.4). Due to the occurrence of mixed terms a subset
argument is needed to apply Gronwall’s inequality.

The error below is defined by zj := m(tj)−mj ∀j = 0, . . . , J . We subtract equation (3.1)
and the equation in Algorithm 1.1 where the damping term is reformulated according
to (1.4), and test with zj+1.

Since a usual application of Gronwall’s inequality is not possible on the whole probability
space Ω (see therefore inequality (4.25) below), we restrict the error analysis to the subset
Ω̃κ,j ⊂ Ω, defined for a fixed κ > 0 by

Ω̃κ,j :=
{
ω ∈ Ω : sup

r=0,...,j
‖∇mr‖4L2 + sup

t0≤s≤tj
‖∇m(s)‖4L2 + sup

t0≤s≤tj
‖∇m(s)‖2W1,2 ≤ κ

}
for all j = 0, . . . , J − 1. There holds Ω̃κ,j+1 ⊂ Ω̃κ,j . We arrive at

1Ω̃κ,j

(
zj+1 − zj , zj+1

)
− α1Ω̃κ,j

∫ tj+1

tj

(
∆m(s)−∆mj+1, zj+1

)
ds

≤ 1Ω̃κ,j

∣∣∣αk([|mj+ 1
2 |2R3 − 1]∆mj+1, zj+1

)∣∣∣
+ α1Ω̃κ,j

∫ tj+1

tj

(
|∇m(s)|2R3m(s)− |∇mj+1|2R3mj+1, zj+1

)
ds

+ αk

2 1Ω̃κ,j

(
|∇mj+1|2R3(mj+1 −mj), zj+1

)
+ αk

2 1Ω̃κ,j

∣∣∣(〈mj+1 −mj ,∆mj+1〉R3mj+ 1
2 , zj+1

)∣∣∣
+ 1Ω̃κ,j

∫ tj+1

tj

(
m(s)×∆m(s)−mj+1 ×∆mj+1, zj+1

)
ds

+ k

21Ω̃κ,j

(
(mj+1 −mj)×∆mj+1, zj+1

)
+ 1Ω̃κ,j

(∫ tj+1

tj

m(s)× ◦ dW (s)−mj+ 1
2 ×∆jW , zj+1

)
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=: I + II + III + IV + V + V I + V II. (4.1)

The left-hand-side of equation (4.1) consists of seven terms, which are considered separately
in the following: The first four terms I–IV correspond to the damping term, the terms V –
V I to the precessional term, and the last one V II attributes error effects of the stochastic
integral term.

During the whole proof, small constants δ, δ̃ > 0 are used for terms which are in the end
absorbed to the left-hand-side and inequalities are understood in the P-a.s. sense.
First Step: Estimate for the left-hand-side and terms I–V I.
LHS (first term): Using the identity 2〈a− b,a〉R3 = |a|2R3 − |b|2R3 + |a− b|2R3 , we obtain

1Ω̃κ,j

(
zj+1 − zj , zj+1

)
= 1Ω̃κ,j

1
2
(
‖zj+1‖2L2 − ‖zj‖2L2 + ‖zj+1 − zj‖2L2

)
.

LHS (second term): This term can be rewritten using integration by parts as

− 1Ω̃κ,j

∫ tj+1

tj

(
∆[m(s)−mj+1], zj+1

)
ds

= 1Ω̃κ,j

∫ tj+1

tj

(
∇[m(s)−mj+1],∇zj+1

)
ds

= 1Ω̃κ,j
k‖∇zj+1‖2L2 + 1Ω̃κ,j

∫ tj+1

tj

(
∇[m(s)−m(tj+1)],∇zj+1

)
ds.

The second part of this equation is bounded by Young’s inequality, i.e.,

1Ω̃κ,j

∫ tj+1

tj

∣∣∣−(∇[m(s)−m(tj+1)],∇zj+1
)∣∣∣ ds

≤ C
∫ tj+1

tj

‖∇[m(s)−m(tj+1)]‖2L2 ds+ δ1Ω̃κ,j
k‖∇zj+1‖2L2 .

(4.2)

RHS (first term I): We decompose the first term I using integration by parts into

I ≤ α1Ω̃κ,j
k
∣∣∣(∇mj+1, [|mj+ 1

2 |2R3 − 1]∇zj+1
)∣∣∣+ α1Ω̃κ,j

k
∣∣∣(∇mj+1, zj+1∇[|mj+ 1

2 |2R3 − 1]
)∣∣∣

=: IA + IB.

For the first term IA, we use the parallelogram identity together with the fact, that iterates
mj are S2-valued, in order to conclude

|mj+ 1
2 |2R3 − 1 = |12m

j+1 + 1
2m

j |2R3 − 2
(
|12m

j+1|2R3 + |12m
j |2R3

)
= −|12m

j+1 − 1
2m

j |2R3 .
(4.3)

This yields ‖|mj+ 1
2 |2R3 − 1‖L∞ ≤ C‖mj+1 −mj‖2L∞ ≤ C‖mj+1 −mj‖L∞

(
‖mj+1‖L∞ +

‖mj‖L∞
)
, and thus by using ‖mj‖L∞ ≤ 1 P-a.s., we obtain

IA = C1Ω̃κ,j
k
∣∣∣(∇mj+1, [|mj+ 1

2 |2R3 − 1]∇zj+1
)∣∣∣

≤ C1Ω̃κ,j
k‖∇mj+1‖L2‖mj+1 −mj‖L∞‖∇zj+1‖L2 .
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By Young’s and Gagliardo-Nirenberg’s inequalities, i.e., by ‖mj+1 −mj‖L∞ ≤ C‖mj+1 −
mj‖

1
2
L2‖mj+1 −mj‖

1
2
W1,2 in 1d, we obtain

IA ≤ Ck‖∇mj+1‖2L2‖mj+1 −mj‖W1,2‖mj+1 −mj‖L2 + δ1Ω̃κ,j
k‖∇zj+1‖2L2 . (4.4)

Using again identity (4.3), and Gagliardo-Nirenberg’s and Young’s inequalities, we obtain

IB = 1Ω̃κ,j
k

1
4

∣∣∣(∇mj+1, zj+1∇[|mj+1 −mj |2R3 ]
)∣∣∣

= 1Ω̃κ,j
k

1
2

∣∣∣(∇mj+1, zj+1〈∇[mj+1 −mj ],mj+1 −mj〉R3

)∣∣∣
≤ C1Ω̃κ,j

k‖∇mj+1‖L2‖zj+1‖L∞‖∇[mj+1 −mj ]‖L2‖mj+1 −mj‖L∞

≤ C1Ω̃κ,j
k‖∇mj+1‖L2‖zj+1‖

1
2
L2‖zj+1‖

1
2
W1,2‖∇[mj+1 −mj ]‖L2‖mj+1 −mj‖

1
2
W1,2

× ‖mj+1 −mj‖
1
2
L2

≤ δ1Ω̃κ,j
k‖zj+1‖2W1,2 + C1Ω̃κ,j

k‖∇mj+1‖4L2‖zj+1‖2L2

+ Ck‖∇[mj+1 −mj ]‖2L2‖mj+1 −mj‖L2‖mj+1 −mj‖W1,2 . (4.5)

RHS (second term II): We obtain

II ≤ α1Ω̃κ,j

∫ tj+1

tj

(
|∇m(s)|2R3(m(s)−m(tj+1)), zj+1

)
ds

+ α1Ω̃κ,j

∫ tj+1

tj

(
|∇m(tj+1)|2R3(m(tj+1)−mj+1), zj+1

)
ds

+ α1Ω̃κ,j

∫ tj+1

tj

(
(|∇m(s)|2R3 − |∇m(tj+1)|2R3)m(tj+1), zj+1

)
ds

+ α1Ω̃κ,j

∫ tj+1

tj

(
(|∇m(tj+1)|2R3 − |∇mj+1|2R3)mj+1, zj+1

)
ds

=: IIA + IIB + IIC + IID.

The first term IIA can be simplified to

IIA ≤ C1Ω̃κ,j

∫ tj+1

tj

‖∇m(s)‖2L∞‖m(s)−m(tj+1)‖L2‖zj+1‖L2 ds

≤ C1Ω̃κ,j

∫ tj+1

tj

‖∇m(s)‖L2‖∇m(s)‖W1,2‖m(s)−m(tj+1)‖L2‖zj+1‖L2 ds,

using Gagliardo-Nirenberg’s inequality, i.e., ‖u‖L∞ ≤ C‖u‖
1
2
L2‖u‖

1
2
W1,2 in 1d. By Young’s

and triangle inequalities, we further conclude

IIA ≤ Ck sup
tj≤s≤tj+1

‖∇m(s)‖2L2‖∇m(s)‖2W1,2 sup
tj≤s≤tj+1

‖m(s)−m(tj+1)‖2L2

+ C1Ω̃κ,j
k‖zj+1‖2L2 .

(4.6)

For the second term IIB, there holds

IIB ≤ 1Ω̃κ,j

∫ tj+1

tj

‖∇m(tj+1)‖2L∞‖zj+1‖2L2 ds
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≤ C1Ω̃κ,j
k‖∇m(tj+1)‖L2‖∇m(tj+1)‖W1,2‖zj+1‖2L2

≤ C1Ω̃κ,j
k‖∇m(tj+1)‖2L2‖zj+1‖2L2 + C1Ω̃κ,j

k‖∇m(tj+1)‖2W1,2‖zj+1‖2L2 (4.7)

using Gagliardo-Nirenberg’s and Young’s inequalities. For the terms IIC and IID the
identity

|a|2R3 − |b|2R3 =
(
|a|R3 + |b|R3

)(
|a|R3 − |b|R3

)
≤
(
|a|R3 + |b|R3

)
|a− b|R3 (4.8)

is used. For the first term IIC,1 corresponding to the |a|R3(|a|R3 − |b|R3) part in equa-
tion (4.8), we obtain using ‖mj+1‖L∞ = 1 P-a.s., Gagliardo-Nirenberg’s, and Young’s
inequalities

IIC,1 ≤ C1Ω̃κ,j

∫ tj+1

tj

‖∇m(tj+1)‖L2‖∇[m(tj+1)−m(s)]‖L2‖zj+1‖
1
2
L2‖zj+1‖

1
2
W1,2 ds

≤ Ck sup
tj≤s≤tj+1

‖∇[m(tj+1)−m(s)]‖2L2 + C1Ω̃κ,j
k‖∇m(tj+1)‖4L2‖zj+1‖2L2

+ δ1Ω̃κ,j
k‖zj+1‖2W1,2 . (4.9)

Using the same arguments for the second term IIC,2, we get

IIC,2 ≤ Ck sup
tj≤s≤tj+1

‖∇[m(tj+1)−m(s)]‖2L2 + C1Ω̃κ,j
k‖∇mj+1‖4L2‖zj+1‖2L2

+ δ1Ω̃κ,j
k‖zj+1‖2W1,2 . (4.10)

Again, by using identity (4.8), Gagliardo-Nirenberg’s and Young’s inequalities as well as
‖mj+1‖L∞ = 1 P-a.s., we obtain for the first part of IID

IID,1 ≤ C1Ω̃κ,j
k‖∇m(tj+1)‖4L2‖zj+1‖2L2

+ δ1Ω̃κ,j
k‖∇zj+1‖2L2 + δ1Ω̃κ,j

k‖zj+1‖2W1,2 , (4.11)

and, similarly

IID,2 ≤ C1Ω̃κ,j
k‖∇mj+1‖4L2‖zj+1‖2L2 + δ1Ω̃κ,j

k‖∇zj+1‖2L2 + δ1Ω̃κ,j
k‖zj+1‖2W1,2 . (4.12)

The term II requires to later restrict to the subset Ω̃κ,j , see estimates (4.7), (4.11) and (4.12)
since we obtain mixed terms, e.g. ‖∇mj+1‖4L2‖zj+1‖2L2 , which prevents a direct use of a
discrete version of Gronwall’s inequality.

RHS (third term III): We use again Gagliardo-Nirenberg’s and Young’s inequalities to
conclude

III ≤ k1Ω̃κ,j
‖∇mj+1‖2L2‖mj+1 −mj‖L∞‖zj+1‖L∞

≤ C1Ω̃κ,j
k‖∇mj+1‖2L2‖mj+1 −mj‖

1
2
L2‖mj+1 −mj‖

1
2
W1,2‖zj+1‖

1
2
L2‖zj+1‖

1
2
W1,2

≤ Ck‖∇mj+1‖4L2‖mj+1 −mj‖W1,2‖mj+1 −mj‖L2

+ C1Ω̃κ,j
k‖∇mj+1‖4L2‖zj+1‖2L2 + δ1Ω̃κ,j

k‖zj+1‖2W1,2 . (4.13)
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RHS (fourth term IV ): For the fourth term IV , integration by parts, the product formula,
and the identities

〈
〈a, b〉R3c,d

〉
R3 =

〈
〈c,d〉R3a, b

〉
R3 and mj+ 1

2 = mj+1 − 1
2(mj+1 −mj)

are used to obtain

IV ≤ C1Ω̃κ,j
k
∣∣∣(∇[(mj+1 −mj)〈mj+1 −mj , zj+1〉R3 ],∇mj+1

)∣∣∣
+ C1Ω̃κ,j

k
∣∣∣(∇[(mj+1 −mj)〈mj+1, zj+1〉R3 ],∇mj+1

)∣∣∣
≤
(
C1Ω̃κ,j

k
∣∣∣(∇[mj+1 −mj ]〈mj+1 −mj , zj+1〉R3 ,∇mj+1

)∣∣∣
+ C1Ω̃κ,j

k
∣∣∣((mj+1 −mj)〈∇[mj+1 −mj ], zj+1〉R3 ,∇mj+1

)∣∣∣)
+ C1Ω̃κ,j

k
∣∣∣((mj+1 −mj)〈mj+1 −mj ,∇zj+1〉R3 ,∇mj+1

)∣∣∣
+ C1Ω̃κ,j

k
∣∣∣(∇[mj+1 −mj ]〈mj+1, zj+1〉R3 ,∇mj+1

)∣∣∣
+ C1Ω̃κ,j

k
∣∣∣((mj+1 −mj)〈∇mj+1, zj+1〉R3 ,∇mj+1

)∣∣∣
+ C1Ω̃κ,j

k
∣∣∣((mj+1 −mj)〈mj+1,∇zj+1〉R3 ,∇mj+1

)∣∣∣
=: IVA + IVB + IVC + IVD + IVE ,

where IVA represents the first two summands. Those first two summands contained in IVA
can be simplified using Gagliardo-Nirenberg’s inequality to

IVA ≤ C1Ω̃κ,j
k‖∇[mj+1 −mj ]‖L2‖mj+1 −mj‖L∞‖zj+1‖L∞‖∇mj+1‖L2

≤ C1Ω̃κ,j
k‖∇[mj+1 −mj ]‖L2‖mj+1 −mj‖

1
2
L2‖mj+1 −mj‖

1
2
W1,2

× ‖zj+1‖
1
2
L2‖zj+1‖

1
2
W1,2‖∇mj+1‖L2 .

By Young’s inequality, we arrive at

IVA ≤ δ1Ω̃κ,j
k‖zj+1‖2W1,2

+ Ck sup
r=0,...,j+1

‖∇mr‖2L2‖mj+1 −mj‖L2‖mj+1 −mj‖W1,2

+ C1Ω̃κ,j
k‖∇mj+1‖4L2‖zj+1‖2L2 . (4.14)

For the term IVB, we obtain using Gagliardo-Nirenberg’s and Young’s inequalities

IVB ≤ C1Ω̃κ,j
k‖mj+1 −mj‖2L2‖mj+1 −mj‖2W1,2‖∇mj+1‖2L2

+ δ1Ω̃κ,j
k‖∇zj+1‖2L2 . (4.15)

For the term IVC , Gagliardo-Nirenberg’s and Young’s inequalities again yield

IVC ≤ C1Ω̃κ,j
k‖∇[mj+1 −mj ]‖L2‖mj+1‖L∞‖zj+1‖L∞‖∇mj+1‖L2

≤ Ck‖∇[mj+1 −mj ]‖2L2 + C1Ω̃κ,j
k‖∇mj+1‖4L2‖zj+1‖2L2

+ δ1Ω̃κ,j
k‖zj+1‖2W1,2 . (4.16)
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Similarly, we obtain for the term IVD

IVD ≤ C1Ω̃κ,j
k‖mj+1 −mj‖L∞‖zj+1‖L∞‖∇mj+1‖2L2

≤ Ck‖mj+1 −mj‖L2‖mj+1 −mj‖W1,2‖∇mj+1‖2L2

+ C1Ω̃κ,j
k‖∇mj+1‖4L2‖zj+1‖2L2 + δ1Ω̃κ,j

k‖zj+1‖2W1,2 , (4.17)

and for IVE ,

IVE ≤ C1Ω̃κ,j
k‖mj+1 −mj‖L∞‖mj+1‖L∞‖∇zj+1‖L2‖∇mj+1‖L2

≤ Ck‖mj+1 −mj‖L2‖mj+1 −mj‖W1,2‖∇mj+1‖2L2 + δ1Ω̃κ,j
k‖∇zj+1‖2L2 . (4.18)

RHS (fifth term V ): In order to simplify the fifth term V , we consider

m(s)×∆m(s)−mj+1 ×∆mj+1

=
(
m(s)−m(tj+1)

)
×∆m(s) +m(tj+1)×∆

[
m(s)−m(tj+1)

]
+
(
m(tj+1)−mj+1)×∆m(tj+1) +mj+1 ×∆

[
m(tj+1)−mj+1],

and, due to 〈a× b,a〉R3 = 0, we are able to rewrite the term V in the form

V = 1Ω̃κ,j

∫ tj+1

tj

(
(m(s)−m(tj+1))×∆m(s), zj+1

)
ds

+ 1Ω̃κ,j

∫ tj+1

tj

(
m(tj+1)×∆[m(s)−m(tj+1)], zj+1

)
ds

+ 1Ω̃κ,j

∫ tj+1

tj

(
mj+1 ×∆zj+1, zj+1

)
ds

=: VA + VB + VC .

Each term is now considered separately. Using Gagliardo-Nirenberg’s and Young’s inequal-
ities, we obtain for the first term VA

VA ≤ 1Ω̃κ,j

∫ tj+1

tj

‖m(s)−m(tj+1)‖L2‖∆m(s)‖L2‖zj+1‖L∞ ds

≤ Ck sup
tj≤s≤tj+1

‖m(s)−m(tj+1)‖2L2 sup
tj≤s≤tj+1

‖∆m(s)‖2L2 + C1Ω̃κ,j
k‖zj+1‖2L2

+ δ1Ω̃κ,j
k‖zj+1‖2W1,2 . (4.19)

The second term VB can be simplified using 〈b, c× a〉R3 = 〈a× b, c〉R3 and integration by
parts to

VB ≤ 1Ω̃κ,j

∫ tj+1

tj

∣∣∣(∇[m(s)−m(tj+1)],∇zj+1 ×m(tj+1) + zj+1 ×∇m(tj+1)
)∣∣∣ ds

=: VB,1 + VB,2.

First, Gagliardo-Nirenberg’s and Young’s inequalities and ‖m(tj+1)‖L∞ = 1 P-a.s. yield

VB,1 ≤ Ck sup
tj≤s≤tj+1

‖∇[m(s)−m(tj+1)]‖2L2 + δ1Ω̃κ,j
k‖∇zj+1‖2L2 . (4.20)
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Similarly, we obtain

VB,2 ≤ Ck sup
tj≤s≤tj+1

‖∇[m(s)−m(tj+1)]‖2L2 + C1Ω̃κ,j
k‖∇m(tj+1)‖4L2‖zj+1‖2L2

+ δ1Ω̃κ,j
k‖zj+1‖2W1,2 . (4.21)

The third term VC simplifies using integration by parts, Gagliardo-Nirenberg’s and Young’s
inequality to

VC ≤ 1Ω̃κ,j
k‖∇zj+1‖L2‖∇mj+1‖L2‖zj+1‖L∞

≤ C1Ω̃κ,j
k‖∇mj+1‖4L2‖zj+1‖2L2 + δ1Ω̃κ,j

k‖∇zj+1‖2L2 + δ1Ω̃κ,j
k‖zj+1‖2W1,2 . (4.22)

The part VC of term V also makes again a restriction of the error analysis on the subset
Ω̃κ,j necessary.

RHS (sixth term V I): Using 〈a×b, c〉R3 = 〈b, c×a〉R3 and integration by parts, we obtain

V I ≤ 1Ω̃κ,j
k

2

∣∣∣(∆mj+1, zj+1 × (mj+1 −mj)
)∣∣∣

≤ 1Ω̃κ,j
k

2

∣∣∣(∇mj+1,∇zj+1 × (mj+1 −mj)
)∣∣∣

+ 1Ω̃κ,j
k

2

∣∣∣(∇mj+1, zj+1 ×∇[mj+1 −mj ]
)∣∣∣

=: V IA + V IB.

For the first term V IA, by Gagliardo-Nirenberg’s and Young’s inequalities, we arrive at

V IA ≤ 1Ω̃κ,j
k‖∇mj+1‖L2‖∇zj+1‖L2‖mj+1 −mj‖L∞

≤ Ck‖∇mj+1‖2L2‖mj+1 −mj‖W1,2‖mj+1 −mj‖L2 + δ1Ω̃κ,j
k‖∇zj+1‖2L2 , (4.23)

and the second term V IB can be similarly simplified to

V IB ≤ 1Ω̃κ,j
k‖∇mj+1‖L2‖∇[mj+1 −mj ]‖L2‖zj+1‖L∞

≤ Ck‖∇[mj+1 −mj ]‖2L2 + C1Ω̃κ,j
k‖∇mj+1‖4L2‖zj+1‖2L2

+ δ1Ω̃κ,j
k‖zj+1‖2W1,2 . (4.24)

So far, estimates for the terms I–V I in inequality (4.1) are derived. If we combine the
obtained estimates (4.4)–(4.24) of the first step, we arrive at

1Ω̃κ,j
1
2
(
‖zj+1‖2L2 − ‖zj‖2L2 + ‖zj+1 − zj‖2L2

)
+ α1Ω̃κ,j

k‖∇zj+1‖2L2

≤ C1Ω̃κ,j
k‖zj+1‖2L2

+ C1Ω̃κ,j
k
(
‖∇mj+1‖4L2 + ‖∇m(tj+1)‖4L2 + ‖∇m(tj+1)‖2W1,2

)
‖zj+1‖2L2

+ Ck‖∇[mj+1 −mj ]‖2L2

+ kAj+1 sup
tj≤s≤tj+1

‖∇[m(s)−m(tj+1)]‖2L2 + kBj+1‖mj+1 −mj‖W1,2‖mj+1 −mj‖L2
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+ kDj+1 sup
tj≤s≤tj+1

‖m(s)−m(tj+1)‖2L2 + kEj+1‖mj+1 −mj‖2L2

+
(∫ tj+1

tj

m(s)× ◦ dW (s)−mj+ 1
2 ×∆jW , zj+1

)
. (4.25)

In inequality (4.25) above, the term Aj+1 is constructed by (4.2), (4.9), (4.10), (4.19), (4.20),
and (4.21), such that

Aj+1 := C + C sup
tj≤s≤tj+1

‖∆m(s)‖2L2 .

The definition of term Bj+1 is motivated from (4.4), (4.5), (4.13), (4.14), (4.17), (4.18),
and (4.23)

Bj+1 := C sup
r=0,...,j+1

‖∇mr‖2L2 + C‖∇mj+1‖4L2 .

The following term Dj+1 comes from (4.6) and (4.19)

Dj+1 := C sup
tj≤s≤tj+1

‖∆m(s)‖2L2 + sup
tj≤s≤tj+1

‖∇m(s)‖2L2‖∇m(s)‖2W1,2 ;

term Ej+1 is motivated by estimate (4.15)

Ej+1 := C‖mj+1 −mj‖2W1,2‖∇mj+1‖2L2 .

The terms Aj+1 to Ej+1 share a common property. It is due to Proposition 3.2 and
Lemma 3.4, that E[(Aj+1)p] ≤ C, E[(Bj+1)p] ≤ C, E[(Dj+1)p] ≤ C and E[(Ej+1)p] ≤ C for
p ≥ 1 hold.
We first sum over j = 0, . . . , r and then take the supremum over r = 0, . . . , J − 1 and
finally take expectations in inequality (4.25). The lines 2 to 4 on the right-hand-side of
inequality (4.25) can now be estimated by using Hölder’s inequality and the results in
Proposition 3.3 and Lemma 3.4, and we obtain at least rate 1 for those terms.
On the left-hand-side of (4.25), we use Ω̃κ,j+1 ⊂ Ω̃κ,j for all j = 0, . . . , J − 2 to obtain

E
[

sup
r=0,...,J−1

r∑
j=0

1Ω̃κ,j

(
‖zj+1‖2L2 − ‖zj‖2L2

)]

= E
[

sup
r=0,...,J−1

(
1Ω̃κ,r

‖zr+1‖2L2 +
r∑
j=0

(1Ω̃κ,j−1
− 1Ω̃κ,j

)‖zj‖2L2

)]
≥ E

[
sup

r=0,...,J−1
1Ω̃κ,r

‖zr+1‖2L2

]
.

Thus, we arrive at

E
[

sup
r=0,...,J−1

1Ω̃κ,r
‖zr+1‖2L2 +

J−1∑
j=0

1Ω̃κ,j
‖zj+1 − zj‖2L2 + αk

J−1∑
j=0

1Ω̃κ,j
‖∇zj+1‖2L2

]
(4.26)

≤ Ck + Ck
J−1∑
j=0

E[1Ω̃κ,j
‖zj+1‖2L2 ] + Ck

J−1∑
j=0

E
[
1Ω̃κ,j

‖∇mj+1‖4L2‖zj+1‖2L2

]
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+ Ck
J−1∑
j=0

E
[
1Ω̃κ,j

‖∇m(tj+1)‖4L2‖zj+1‖2L2

]
+ Ck

J−1∑
j=0

E
[
1Ω̃κ,j

‖∇mj+1‖2W1,2‖zj+1‖2L2

]

+ E
[

sup
r=0,...,J−1

r∑
j=0

1Ω̃κ,j

(∫ tj+1

tj

m(s)× ◦ dW (s)−mj+ 1
2 ×∆jW , zj+1

)]
.

Before starting to estimate the stochastic integral term, the three mixed terms (first and
second line on the right-hand-side of inequality (4.26)) are considered: For the third term
on the right-hand-side of (4.26), there holds

1Ω̃κ,j
‖∇mj+1‖4L2‖zj+1‖2L2 ≤ 1Ω̃κ,j

(
‖∇mj+1‖4L2 − ‖∇mj‖4L2

)
‖zj+1‖2L2

+ 1Ω̃κ,j
‖∇mj‖4L2‖zj+1‖2L2

=: Î + ÎI.

The first part Î yields

kE
[J−1∑
j=0
|Î|
]
≤ kE

[(J−1∑
j=0

∣∣∣‖∇mj+1‖4L2 − ‖∇mj‖4L2

∣∣∣2) 1
2

×
(J−1∑
j=0

1Ω̃κ,j
‖zj+1‖2L2

(
‖mj+1‖2L2 + ‖m(tj+1)‖2L2

)) 1
2

]

≤ CkE
[J−1∑
j=0

∣∣∣‖∇mj+1‖4L2 − ‖∇mj‖4L2

∣∣∣2]

+ CkE
[J−1∑
j=0

1Ω̃κ,j
‖zj+1‖2L2

(
‖mj+1‖2L2 + ‖m(tj+1)‖2L2

)]

≤ Ck + Ck
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
,

by using Lemma 3.4 d), the P-a.s. estimate supj
(
‖mj+1‖2L2 + ‖m(tj+1)‖2L2

)
≤ C, and

Hölder’s inequality. For the second part, we obtain ÎI ≤ Cκ1Ω̃κ,j
‖zj+1‖2L2 . Thus, we get

for the first mixed term in inequality (4.26)

k
J−1∑
j=0

E
[
1Ω̃κ,j

‖∇mj+1‖4L2‖zj+1‖2L2

]
≤ Ck + Ck(κ+ 1)

J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
.

The second mixed term in inequality (4.26) can be simplified in a similar way, just with the
use of Proposition 3.2 b) instead of Lemma 3.4 d). Here, we finally obtain

k
J−1∑
j=0

E
[
1Ω̃κ,j

‖∇m(tj+1)‖4L2‖zj+1‖2L2

]
≤ Ck2 + Ckκ

J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
.

In order to simplify the term 1Ω̃κ,j
‖∇m(tj+1)‖2W1,2‖zj+1‖2L2 , we rewrite ‖∇m(tj+1)‖2W1,2

to ‖∇m(tj+1)‖2L2 + ‖∆m(tj+1)‖2L2 , where the first part can be handled as before. For the
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second part 1Ω̃κ,j
‖∆m(tj+1)‖2L2‖zj+1‖2L2 , we arrive by similar arguments as before using

supj ‖zj+1‖2L2 ≤ C P-a.s. at

1Ω̃κ,j
‖∆m(tj+1)‖2L2‖zj+1‖2L2

≤
(
1Ω̃κ,j

C‖∆[m(tj+1)−m(tj)]‖2L2 + 1Ω̃κ,j
C‖∆m(tj)‖2L2

)
‖zj+1‖2L2

≤ 1Ω̃κ,j
C‖∆[m(tj+1)−m(tj)]‖2L2‖zj+1‖2L2 + 1Ω̃κ,j

Cκ‖zj+1‖2L2

≤ C‖∆[m(tj+1)−m(tj)]‖2L2 + 1Ω̃κ,j
Cκ‖zj+1‖2L2 .

After summation and taking expectations, we obtain

k
J−1∑
j=0

E
[
1Ω̃κ,j

‖∇m(tj+1)‖2W1,2‖zj+1‖2L2

]
≤ Ck + Ck(κ+ 1)

J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
using Proposition 3.3 c). As a consequence, inequality (4.26) can be rewritten as

E
[

sup
r=0,...,J−1

1Ω̃κ,r−1
‖zr‖2L2 +

J−1∑
j=0

1Ω̃κ,j
‖zj+1 − zj‖2L2 + αk

J−1∑
j=0

1Ω̃κ,j
‖∇zj+1‖2L2

]

≤ Ck + Ck(1 + κ)
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]

+ E
[

sup
r=0,...,J−1

r∑
j=0

1Ω̃κ,j

(∫ tj+1

tj

m(s)× ◦ dW (s)−mj+ 1
2 ×∆jW , zj+1

)]
, (4.27)

where the last term will be estimated in the second step below. From inequality (4.27), we
observe, that the terms I–V I in equation (4.1) yield a convergence rate of order close to one.

Second Step: Stochastic term V II.
An estimate for the last expression in inequality (4.27) is derived. Therefore, we first rewrite
the Stratonovich integral term and consider the Itô correction:∫ tj+1

tj

m(s)× ◦ dW (s) =
∞∑
l=1

√
ql

∫ tj+1

tj

m(s)× el ◦ dβl(s)

=
∞∑
l=1

√
ql

∫ tj+1

tj

m(s)× el dβl(s) + 1
2

∞∑
l=1

ql

∫ tj+1

tj

(m(s)× el)× el ds

=
∫ tj+1

tj

m(s)× dW (s) + 1
2

∞∑
l=1

ql

∫ tj+1

tj

(m(s)× el)× el ds.

On the other hand, by using mj+ 1
2 = mj + 1

2(mj+1 −mj), we obtain

mj+ 1
2 ×∆jW =

∞∑
l=1

√
ql∆jβ

lmj × el + 1
2

∞∑
l=1

√
ql∆jβ

l(mj+1 −mj)× el

=
∞∑
l=1

√
ql∆jβ

lmj × el + 1
2k

∞∑
l=1

ql(mj+ 1
2 × el)× el +Aj ,
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where the term Aj is defined by

Aj := 1
2

∞∑
l=1

√
ql∆jβ

l(mj+1 −mj)× el −
1
2k

∞∑
l=1

ql(mj+ 1
2 × el)× el.

The equation in Algorithm 1.1 is used in order to restate the increment mj+1 −mj , such
that

Aj = 1
2

∞∑
l=1

ql(|∆jβ
l|2 − k)(mj+ 1

2 × el)× el

+ 1
2k

∞∑
l=1

√
ql∆jβ

l
[
mj+ 1

2 ×∆mj+1 − αmj+ 1
2 × (mj+ 1

2 ×∆mj+1)
]
× el

+ 1
2

∞∑
l1=1

∞∑
l2 6=l1

√
ql1
√
ql2∆jβ

l1∆jβ
l2(mj+ 1

2 × el2)× el1 .

This argument, together with the identity

m(s)× el −mj × el =
[
m(s)−m(tj)

]
× el + zj × el

is used to decompose

1Ω̃κ,j

(∫ tj+1

tj

m(s)× ◦ dW (s)−mj+ 1
2 ×∆jW , zj+1

)
=
(∫ tj+1

tj

1Ω̃κ,j
(m(s)−m(tj))× dW (s), zj+1

)
+ 1Ω̃κ,j

(
zj ×∆jW , zj+1

)
+ 1

2

∞∑
l=1

ql

∫ tj+1

tj

1Ω̃κ,j

((
(m(s)−mj+ 1

2 )× el
)
× el ds, zj+1

)
+ 1

2

∞∑
l=1

1Ω̃κ,j
ql(|∆jβ

l|2 − k)
(
(mj+ 1

2 × el)× el, zj+1
)

+ 1
2k

∞∑
l=1

1Ω̃κ,j
√
ql∆jβ

l
([
mj+ 1

2 ×∆mj+1 − αmj+ 1
2 × (mj+ 1

2 ×∆mj+1)
]
× el, zj+1

)
+ 1

2

∞∑
l1=1

∞∑
l2 6=l1

1Ω̃κ,j
√
ql1
√
ql2∆jβ

l1∆jβ
l2
(
(mj+ 1

2 × el2)× el1 , zj+1
)

=: Ĩ + ĨI + ĨII + ĨV + Ṽ + Ṽ I.

In the following, each term is treated separately, starting with the first term Ĩ.

Term Ĩ: Here, by using zj+1 = (zj+1 − zj) + zj , we obtain:

Ĩ ≤
(∫ tj+1

tj

1Ω̃κ,j
(m(s)−m(tj))× dW (s), zj+1 − zj

)
+
(∫ tj+1

tj

1Ω̃κ,j
(m(s)−m(tj))× dW (s), zj

)
=: ĨA + ĨB.
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For the first term corresponding to term ĨA, we conclude using Young’s inequality, Itô
isometry, and finally Hölder’s inequality

E
[

sup
r=0,...,J−1

r∑
j=0

(∫ tj+1

tj

1Ω̃κ,j
(m(s)−m(tj))× dW (s), zj+1 − zj

)]

≤ E
[J−1∑
j=0

(
C‖

∫ tj+1

tj

1Ω̃κ,j
(m(s)−m(tj))× dW (s)‖2L2 + δ1Ω̃κ,j

‖zj+1 − zj‖2L2

)]

= δ
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]

+ C
J−1∑
j=0

E
[
‖
∞∑
l=1

√
ql

∫ tj+1

tj

1Ω̃κ,j
(m(s)−m(tj))× el dβl(s)‖2L2

]

≤ δ
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]

+ C TrQ
1
2

J−1∑
j=0

∞∑
l=1

√
qlE
[
‖
∫ tj+1

tj

1Ω̃κ,j
(m(s)−m(tj))× el dβl(s)‖2L2

]

≤ δ
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]

+ C TrQ
1
2

J−1∑
j=0

∞∑
l=1

√
ql

∫ tj+1

tj

E
[
1Ω̃κ,j

‖(m(s)−m(tj))× el‖2L2

]
ds.

By using ‖u × v‖L2 ≤ C‖u‖L2‖v‖L∞ together with Assumption A1 and Proposition 3.3,
we arrive at

E
[

sup
r=0,...,J−1

r∑
j=0

(∫ tj+1

tj

1Ω̃κ,j
(m(s)−m(tj))× dW (s), zj+1 − zj

)]

≤ δ
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]
+ C(TrQ

1
2 )2

J−1∑
j=0

∫ tj+1

tj

E
[
‖m(s)−m(tj)‖2L2

]
ds

≤ δ
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]
+ C(TrQ

1
2 )2k.

The second term ĨB can be handled using Burkholder-Davis-Gundy’s inequality:

E
[

sup
r=0,...,J−1

r∑
j=0

(
1Ω̃κ,j

∫ tj+1

tj

(m(s)−m(tj))× dW (s), zj
)]

= E
[

sup
r=0,...,J−1

r∑
j=0

∞∑
l=1

√
ql
(
1Ω̃κ,j

∫ tj+1

tj

(m(s)−m(tj))× el dβl(s), zj
)]

≤
∞∑
l=1

√
qlE
[

sup
r=0,...,J−1

∣∣∣ r∑
j=0

∫ tj+1

tj

1Ω̃κ,j

(
(m(s)−m(tj))× el, zj

)
dβl(s)

∣∣∣]
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≤ C
∞∑
l=1

√
qlE
[∣∣∣J−1∑
j=0

∫ tj+1

tj

1Ω̃κ,j

∣∣∣((m(s)−m(tj))× el, zj
)∣∣∣2 ds

∣∣∣ 1
2
]
.

By using ‖u × v‖L2 ≤ C‖u‖L2‖v‖L∞ together with Assumption A1, Young’s inequality,
making the supremum, and Proposition 3.3 a), we continue with

E
[

sup
r=0,...,J−1

r∑
j=0

(
1Ω̃κ,j

∫ tj+1

tj

(m(s)−m(tj))× dW (s), zj
)]

≤
∞∑
l=1

√
qlE
[∣∣∣J−1∑
j=0

∫ tj+1

tj

1Ω̃κ,j
‖m(s)−m(tj)‖2L2‖zj‖2L2 ds

∣∣∣ 1
2
]

≤
∞∑
l=1

√
qlE
[

sup
r=0,...,J−1

(
1Ω̃κ,r

‖zr‖L2
)∣∣∣J−1∑
j=0

∫ tj+1

tj

1Ω̃κ,j
‖m(s)−m(tj)‖2L2 ds

∣∣∣ 1
2
]

≤ δ̃
∞∑
l=1

√
qlE
[

sup
r=0,...,J−1

1Ω̃κ,r
‖zr‖2L2

]
+ C

∞∑
l=1

√
qlE
[J−1∑
j=0

∫ tj+1

tj

1Ω̃κ,j
‖m(s)−m(tj)‖2L2 ds

]
≤ δ̃TrQ

1
2E
[

sup
r=0,...,J−1

1Ω̃κ,r
‖zr‖2L2

]
+ C TrQ

1
2k.

Here the property Ω̃κ,r ⊂ Ω̃κ,r−1 is used, which yields 1Ω̃κ,r
≤ 1Ω̃κ,r−1

. The first part can
be absorbed later in inequality (4.27).

Term ĨI: Using 〈a× b,a〉R3 = 0, we obtain

ĨI = 1Ω̃κ,j

(
zj ×∆jW , zj+1

)
= 1Ω̃κ,j

(
zj ×∆jW , zj+1 − zj

)
,

thus, using Young’s inequality together with the independence of all, ‖∆jW ‖2L∞ , ‖zj‖2L2 ,
and 1Ω̃κ,j

, we conclude

E
[J−1∑
j=0
|ĨI|

]
≤ E

[J−1∑
j=0

1Ω̃κ,j

∣∣∣(zj ×∆jW , zj+1 − zj
)∣∣∣]

≤ E
[J−1∑
j=0

1Ω̃κ,j
‖zj‖2L2‖∆jW ‖2L∞

]
+ δ

J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]

≤ Ck
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
+ δ

J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]
,

where we have used again 1Ω̃κ,j
≤ 1Ω̃κ,j−1

.

Term ĨII: The third term ĨII can be decomposed usingm(s)−mj+ 1
2 = m(s)−m(tj+1)+

zj+1 + 1
2(mj+1 −mj) into three parts:

ĨII = 1
2

∞∑
l=1

ql

∫ tj+1

tj

1Ω̃κ,j

((
(m(s)−m(tj+1))× el

)
× el ds, zj+1

)
+ 1

2

∞∑
l=1

ql

∫ tj+1

tj

1Ω̃κ,j

(
(zj+1 × el)× el ds, zj+1

)
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+ 1
4

∞∑
l=1

ql

∫ tj+1

tj

1Ω̃κ,j

((
(mj+1 −mj)× el

)
× el ds, zj+1

)
=: ĨIIA + ĨIIB + ĨIIC .

Starting with the first part, we obtain by using ‖u× v‖L2 ≤ C‖u‖L2‖v‖L∞ together with
Assumption A1, and Hölder’s and Young’s inequalities,

|ĨIIA| ≤ 1Ω̃κ,j
‖
∫ tj+1

tj

∞∑
l=1

ql
(
(m(s)−m(tj+1))× el

)
× el ds‖L2‖zj+1‖L2

≤ C1Ω̃κ,j

∞∑
l=1

qlk
1
2
(∫ tj+1

tj

‖m(s)−m(tj+1)‖2L2 ds
) 1

2 ‖zj+1‖L2

≤ C TrQ
∫ tj+1

tj

‖m(s)−m(tj+1)‖2L2 ds+ C TrQ1Ω̃κ,j
k‖zj+1‖2L2 .

Summation, taking expectations, and using Proposition 3.3 a) yield

E
[J−1∑
j=0
|ĨIIA|

]
≤ C

J−1∑
j=0

∫ tj+1

tj

E
[
‖m(s)−m(tj+1)‖2L2

]
ds+ Ck

J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]

≤ Ck + Ck
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
.

For the second term ĨIIB, by ‖u × v‖L2 ≤ C‖u‖L2‖v‖L∞ together with Assumption A1,
we obtain that

|ĨIIB| ≤ 1Ω̃κ,j

∣∣∣12
∞∑
l=1

qlk
(
(zj+1 × el)× el, zj+1

)∣∣∣ ≤ C TrQ1Ω̃κ,j
k‖zj+1‖2L2 .

After summation and taking expectation, we obtain

E
[J−1∑
j=0
|ĨIIB|

]
≤ Ck

J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
.

Finally, for the last term ĨIIC , we conclude

|ĨIIC | ≤ 1Ω̃κ,j
k
∣∣∣ ∞∑
l=1

ql
((

(mj+1 −mj)× el
)
× el, zj+1

)∣∣∣
≤ C(TrQ)2k‖mj+1 −mj‖2L2 + C1Ω̃κ,j

k‖zj+1‖2L2

as before. This yields

E
[J−1∑
j=0
|ĨIIC |

]
≤ Ck + Ck

J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
using inequality (3.8) and Lemma 3.4.



40 4. Error estimate for the semi-discretization in time

Term ĨV : The fourth term has to be rewritten again using zj+1 = (zj+1 − zj) + zj into
the parts ĨV A and ĨV B. For the first part ĨV A corresponding to (zj+1 − zj), we obtain

|ĨV A| =
1
2

∣∣∣ ∞∑
l=1

1Ω̃κ,j
ql(|∆jβ

l|2 − k)
(
(mj+ 1

2 × el)× el, zj+1 − zj
)∣∣∣

≤ C
∞∑
l=1

1Ω̃κ,j
ql
∣∣∣|∆jβ

l|2 − k
∣∣∣‖zj+1 − zj‖L2

using the estimate ‖u × v‖L2 ≤ C‖u‖L2‖v‖L∞ together with Assumption A1. Taking
expectations, summing up over j = 0, . . . , J − 1, using Hölder’s inequality and the equality
E
[∣∣∣|∆jβ

l|2 − k
∣∣∣2] = 2k2, which holds due to ∆jβ

l ∼ N (0, k), we arrive at

E
[J−1∑
j=0
|ĨV A|

]
≤ C

J−1∑
j=0

∞∑
l=1

ql
(
E
[∣∣∣|∆jβ

l|2 − k
∣∣∣2]) 1

2
(
E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]) 1
2

≤ C(TrQ)2k + δ
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]
.

For the second part ĨV B, we simplify using mj+ 1
2 = mj + 1

2(mj+1 −mj), thus

ĨV B = 1
2

∞∑
l=1

1Ω̃κ,j
ql(|∆jβ

l|2 − k)
(
(mj × el)× el, zj

)
+ 1

4

∞∑
l=1

1Ω̃κ,j
ql(|∆jβ

l|2 − k)
(
((mj+1 −mj)× el)× el, zj

)
=: ĨV B,1 + ĨV B,2.

To get an estimate for ĨV B,1, we define

Xj := 1Ω̃κ,j

∞∑
l=1

ql(|∆jβ
l|2 − k)

(
(mj × el)× el, zj

)
∀j = 0, . . . , J − 1;

Yr :=
r−1∑
j=0

Xj ∀r = 1, . . . , J.

Since Xj is Ftw -measurable (j < w), we obtain that Yr is Ftr -measurable. By E[|Yr|] <∞
and P-a.s.

E
[
Yr|Ftr−1

]
= Yr−1 + 1Ω̃κ,r−1

∞∑
l=1

ql
(
(mr−1 × el)× el, zr−1)E[(|∆r−1β

l|2 − k
)
|Ftr−1

]
= Yr−1

for every r = 1, . . . , J , we obtain that the process {Yj}j is a {Ftj}j-martingale.
Thus, we are able to apply Doob’s inequality

E
[

sup
r=0,...,J−1

r∑
j=0

ĨV B,1
]
≤ E

[
sup

r=1,...,J

∣∣r−1∑
j=0

Xj

∣∣]
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≤
(
E
[(

sup
r=1,...,J

∣∣r−1∑
j=0

Xj

∣∣)2]) 1
2

≤ C
(
E
[(∣∣J−1∑

j=0
Xj

∣∣)2]) 1
2

≤ C
(J−1∑
j=0

E
[
|Xj |2

]
+ 2

∑
j<w

E
[
XjXw

]) 1
2
.

Since j < w, we obtain

E
[
XjXw

]
= E

[
XjE[Xw|Ftw ]

]
=
∞∑
l=1

qlE
[
Xj1Ω̃κ,w

(
(mw × el)× el, zw

)
E
[(
|∆wβ

l|2 − k
)
|Ftw

]]
= 0,

and thus, using Young’s inequality and independence of |∆jβ
l|2 and ‖zj‖2L2 , again estimate

E
[∣∣|∆jβ

l|2 − k
∣∣2] = 2k2, and finally 1Ω̃κ,j

≤ 1Ω̃κ,j−1
, we arrive at

E
[

sup
r=0,...,J−1

r∑
j=0

ĨV B,1
]
≤ C

(J−1∑
j=0

E
[
1Ω̃κ,j

∣∣∣ ∞∑
l=1

ql(|∆jβ
l|2 − k)

(
(mj × el)× el, zj

)∣∣∣2]) 1
2

≤ C
(J−1∑
j=0

TrQ
∞∑
l=1

qlE
[
1Ω̃κ,j

(|∆jβ
l|2 − k)2‖zj‖2L2

]) 1
2

≤ Ck
(J−1∑
j=0

E
[
1Ω̃κ,j

‖zj‖2L2

]) 1
2

≤ Ck + Ck
J−1∑
j=0

E
[
1Ω̃κ,j−1

‖zj‖2L2

]
.

For the terms corresponding to ĨV B,2, we use ‖u × v‖L2 ≤ C‖u‖L2‖v‖L∞ together with
Assumption A1 to obtain

|ĨV B,2| ≤ 1Ω̃κ,j
1
2

∣∣∣( ∞∑
l=1

ql(|∆jβ
l|2 − k)

(
((mj+1 −mj)× el)× el, zj

)∣∣∣
≤ C1Ω̃κ,j

∞∑
l=1

ql
∣∣∣|∆jβ

l|2 − k
∣∣∣‖((mj+1 −mj)× el)× el‖L2‖zj‖L2

≤ C1Ω̃κ,j

∞∑
l=1

ql
∣∣∣|∆jβ

l|2 − k
∣∣∣‖mj+1 −mj‖L2‖zj‖L2 .

Thus summation over j = 0, . . . , J − 1, taking expectations, and using Hölder’s inequality,
as well as E

[∣∣|∆jβ
l|2 − k

∣∣4] ≤ Ck4, since ∆jβ
l ∼ N (0, k), yield

E
[J−1∑
j=0
|ĨV B,2|

]
≤ C

J−1∑
j=0

∞∑
l=1

ql
(
E
[∣∣|∆jβ

l|2 − k
∣∣4]E[‖mj+1 −mj‖4L2

]) 1
4
(
E
[
1Ω̃κ,j

‖zj‖2L2

]) 1
2
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≤ C
J−1∑
j=0

∞∑
l=1

qlk
(
E
[
‖mj+1 −mj‖4L2

]) 1
2 + C

J−1∑
j=0

∞∑
l=1

qlkE
[
1Ω̃κ,j

‖zj‖2L2

]
.

By Hölder’s inequality, Lemma 3.4 c), e) and 1Ω̃κ,j
≤ 1Ω̃κ,j−1

, we may conclude that

E
[J−1∑
j=0
|ĨV B,2|

]
≤ C TrQk

1
2
(J−1∑
j=0

E
[
‖mj+1 −mj‖4L2

]) 1
2 + C TrQk

J−1∑
j=0

E
[
1Ω̃κ,j

‖zj‖2L2

]

≤ Ck
1
2
(J−1∑
j=0

C
(
k2E

[
‖mj+ 1

2 ×∆mj+1‖2L2

]
+ E

[
‖∆jW ‖4L2

])) 1
2

+ Ck
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj‖2L2

]

≤ Ck + Ck
J−1∑
j=0

E
[
1Ω̃κ,j−1

‖zj‖2L2

]
.

Term Ṽ : Let r > 0 be fixed. For term Ṽ , we arrive by using ‖u × v‖L2 ≤ C‖u‖L2‖v‖L∞
together with ‖mj+ 1

2 ‖L∞ ≤ 2 P-a.s. and Young’s inequality at

|Ṽ | = 1Ω̃κ,j

∣∣∣k([mj+ 1
2 ×∆mj+1 − αmj+ 1

2 × (mj+ 1
2 ×∆mj+1)

]
×∆jW , zj+1

)∣∣∣
≤ C1Ω̃κ,j

k‖mj+ 1
2 ×∆mj+1‖L2‖∆jW ‖L∞‖zj+1‖L2

≤ Ck‖mj+ 1
2 ×∆mj+1‖

2+r
1+r
L2 ‖∆jW ‖

2+r
1+r
L∞ + C1Ω̃κ,j

k‖zj+1‖2+r
L2

≤ Ck‖mj+ 1
2 ×∆mj+1‖

2+r
1+r
L2 ‖∆jW ‖

2+r
1+r
L∞ + C1Ω̃κ,j

k‖zj+1‖2L2‖zj+1‖rL2 .

Since ‖zj+1‖rL2 ≤ C P-a.s. holds, we obtain

E
[J−1∑
j=0
|Ṽ |
]
≤ Ck

(J−1∑
j=0

E
[
‖mj+ 1

2 ×∆mj+1‖2L2

]) 2+r
2+2r

(J−1∑
j=0

E
[
‖∆jW ‖

2+ 4
r

L∞
]) r

2+2r

+ Ck
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]

≤ Ck
2+r

2+2r + Ck
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]

≤ Ck1−ε̃ + Ck
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
,

by using Hölder’s inequality, Lemma 3.4 c), Remark 2.2, and setting ε̃ := r
2+2r > 0. For

small choices of r > 0, ε̃ gets small, and we obtain a rate close to one.

Term Ṽ I: Finally, the estimates obtained for the term Ṽ I are similar to those for term ĨV .
Analogously, using zj+1 = (zj+1 − zj) + zj , we decompose term Ṽ I into two parts Ṽ IA
and Ṽ IB. For part Ṽ IA, we obtain using Young’s inequality and Assumption A1

|Ṽ IA| ≤ C(TrQ
1
2 )2

∞∑
l1=1

∑
l2 6=l1

1Ω̃κ,j
√
ql1
√
ql2 |∆jβ

l1 |2|∆jβ
l2 |2‖(mj+ 1

2 × el2)× el1‖2L2
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+ δ1Ω̃κ,j
‖zj+1 − zj‖2L2 .

By using Assumption A1, the estimate ‖u × v‖L2 ≤ C‖u‖L2‖v‖L∞ in addition with
‖mj+ 1

2 ‖2L∞ ≤ 2 P-a.s., independence of ∆jβ
l1 and ∆jβ

l2 for l1 6= l2, and taking expec-
tations and summing up over j = 0, . . . , J − 1 yield

E
[J−1∑
j=0
|Ṽ IA|

]
≤ C(TrQ

1
2 )2k + δ

J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]
.

For the second part Ṽ IB, we use again mj+ 1
2 = mj + 1

2(mj+1 −mj) to conclude

Ṽ IB = 1Ω̃κ,j
1
2

∞∑
l1=1

∑
l2 6=l1

√
ql1
√
ql2∆jβ

l1∆jβ
l2
(
(mj × el2)× el1 , zj

)

+ 1Ω̃κ,j
1
4

∞∑
l1=1

∑
l2 6=l1

√
ql1
√
ql2∆jβ

l1∆jβ
l2
(
((mj+1 −mj)× el2)× el1 , zj

)
=: Ṽ IB,1 + Ṽ IB,2.

Similar arguments as in ĨV B,1 and ĨV B,2 yield

E
[

sup
r=0,...,J−1

r∑
j=0

Ṽ IB,1
]
≤ C TrQ

1
2k + C TrQ

1
2k

J−1∑
j=0

E
[
1Ω̃κ,j−1

‖zj‖2L2

]

for term Ṽ IB,1, and for Ṽ IB,2

E
[J−1∑
j=0
|Ṽ IB,2|

]
≤ Ck + Ck

J−1∑
j=0

E
[
1Ω̃κ,j−1

‖zj‖2L2

]
.

Combining the results obtained in the second step, we arrive at

E
[

sup
r=0,...,J−1

r∑
j=0

1Ω̃κ,j

(∫ tj+1

tj

m(s)× ◦ dW (s)−mj+ 1
2 ×∆jW , zj+1

)]

≤ δ
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1 − zj‖2L2

]
+ δ̃E

[
sup

j=0,...,J−1
1Ω̃κ,j−1

‖zj‖2L2

]

+ Ck
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
+ Ck + Ck1−ε̃. (4.28)

Third Step: Gronwall argument
Finally combining the results (4.27) and (4.28) from the previous steps, we arrive at

E
[

sup
j=0,...,J−1

1Ω̃κ,j
‖zj+1‖2L2 +

J−1∑
j=0

1Ω̃κ,j
‖zj+1 − zj‖2L2 + αk

J−1∑
j=0

1Ω̃κ,j
‖∇zj+1‖2L2

]

≤ Ck + Ck1−ε̃ + Ck(1 + κ)
J−1∑
j=0

E
[
1Ω̃κ,j

‖zj+1‖2L2

]
,
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where we have absorbed the first two terms of the right-hand-side of inequality (4.28). The
discrete Gronwall inequality finally leads us to

E
[

sup
j=0,...,J−1

1Ω̃κ,j
‖zj+1‖2L2 +

J−1∑
j=0

1Ω̃κ,j
‖zj+1 − zj‖2L2 + αk

J−1∑
j=0

1Ω̃κ,j
‖∇zj+1‖2L2

]
≤ C exp(CtJκ)k1−ε̃.

Set κ := log(k−
ε
2 ) for a ε > 0 and ε̃ := ε

2 . Thus using Ω̃κ,J−1 ⊂ Ω̃κ,j ∀j = 0, . . . , J − 1, we
obtain

E
[
1Ω̃κ,J−1

sup
j=0,...,J−1

‖zj+1‖2L2

]
≤ E

[
sup

j=0,...,J−1
1Ω̃κ,j

‖zj+1‖2L2

]
≤ Ck1−ε.

Define Ω̃k := Ω̃κ,J−1. Thus

Ω̃k =
{
ω ∈ Ω; sup

j=0,...,J−1
‖∇mj‖4L2 + sup

s∈[0,tJ−1]
‖∇m(s)‖4L2

+ sup
s∈[0,tJ−1]

‖∇m(s)‖2W1,2 ≤ log(k−
ε
2 )
}
,

and there holds

P
[
Ω̃κ,J−1

]
≥ 1−

E
[
sup ‖∇mj‖4L2

]
+ E

[
sup ‖∇m(s)‖4L2

]
+ E

[
sup ‖∇m(s)‖2W1,2

]
log(k−

ε
2 )

≥ 1 + C

ε log(k)

due to Proposition 3.2 and Lemma 3.4. �



5. Computational studies

In this chapter we focus on numerical studies concerning the strong and weak convergence
order of the time discretized scheme given in Algorithm 1.1 as well as the performance of
different nonlinear solvers for different types of noise. Computational studies, using this
scheme, are already presented in [BBNP13,BBP13], where possible blow-up and switching
behavior in two space dimensions is studied. However, detailed numerical studies about
convergence behavior are not reported in [BBNP13,BBP13].

For spatial discretization, the finite element space Vh ⊂W1,2(D;R3) is defined by

Vh :=
{
Φ ∈ C(D̄;R3); Φ|K ∈ P1(K;R3) ∀K ∈ Th

}
,

where Th denotes a regular triangulation of D into intervals K with a maximum mesh-size
h := max{diam(K); K ∈ Th} > 0. For each element K ∈ Th, let P1(K;R3) denote the
space of all R3-valued polynomials of degree one.
The nodal interpolation operator Ih : C(D̄;R3)→ Vh is defined by

Ih[Φ](xr) := Φ(xr) ∀Φ ∈ C(D̄;R3),

for all nodes {xr; r = 1, . . . , R}. The bilinear form (·, ·)h : C(D̄;R3) × C(D̄;R3) → R is
defined via

(Φ,Ξ)h :=
∫
D
Ih[〈Φ(x),Ξ(x)〉R3 ] dx =

R∑
r=1

βr〈Φ(xr),Ξ(xr)〉R3 ∀Φ,Ξ ∈ C(D̄;R3),

‖Φ‖2h := (Φ,Φ)h ∀Φ ∈ C(D̄;R3)

for certain weights βr > 0. The mapping ‖ · ‖h is a norm on Vh. The discrete Laplace
operator ∆̃h : Vh → Vh is defined by

−(∆̃hΦh,Ξh)h = (∇Φh,∇Ξh)L2 ∀Φh,Ξh ∈ Vh.

The finite element formulation of Algorithm 1.1 reads as follows.

Algorithm 5.1
Let M0 = Ih[m0]. For every j = 0, . . . , J − 1 and ∆jW := W (tj+1)−W (tj) ∼ N (0, kQ)
determine the Vh-valued random variable M j+1, such that P-a.s.(

M j+1 −M j ,Φ
)
h

+ αk
(
M j+ 1

2 × [M j+ 1
2 × ∆̃hM

j+1],Φ
)
h

− k
(
M j+ 1

2 × ∆̃hM
j+1,Φ

)
h

=
(
M j+ 1

2 ×∆jW ,Φ
)
h

∀Φ ∈ Vh.
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We consider a simple fixed point method (SFM), Newtons method (DNM), where the
Jacobian is approximated by finite differences, and a modification of Powell’s hybridmethod
(PHM) in order to solve the nonlinear equation in Algorithm 5.1. For a more detailed
description of these methods, we refer to [BBNP13] for SFM and DNM, and to [Bre73] for
PHM.
First, different effects according to the different solvers are studied by simulating one path
of Algorithm 5.1 on D = (0, 1) with periodic boundary conditions up to final time T = 5.
The initial value m0(x) := (0, sin(2πx), cos(2πx))T ∈ S2, the damping parameter α = 0.25,
the noise intensity ν = 1.0, and the spatial discretization parameter h = 0.05 are fixed. For
all methods, the thresholding condition is set to be TOL = 10−10, and the maximal amount
of iterations is set to be 10.000.

Table 5.1. Average, minimum and maximum amount of iterations to perform one time
iteration. Different types of noise, colored noise (cn) and approximate white
noise (st), are compared with the deterministic case (det). The elapsed time (in
seconds) to simulate one path with timestep size k = 2−14 is compared.

k 2−14 2−13 2−12 2−11 2−10 2−9 time
av iter av iter av iter av iter av iter av iter

det 1.3 1-2 1.3 1-3 1.4 1-3 1.5 1-3 9.7
SFM cn 3.0 3-4 4.0 3-5 6.0 4-8 20.2 5-28 26.5

st 5.0 5-5 7.0 6-7 11.2 10-12 39.2 32-44 35.8

det 1.5 1-2 1.5 1-3 1.6 1-4 1.6 1-4 1.7 1-33 46.5
DNM cn 2.0 2-3 2.0 2-3 2.0 2-3 2.1 2-3 2.7 2-3 3.0 2-3 73.8

st 3.0 2-3 3.0 3-3 3.0 3-4 3.0 3-4 3.3 3-4 4.0 3-4 94.9

det 1.5 1-4 1.5 1-6 1.6 1-7 1.7 1-6 1.7 1-10 1.8 1-16 42.4
PHM cn 2.7 2-5 3.0 2-4 3.2 3-4 3.9 3-5 4.5 4-7 5.3 4-9 54.7

st 4.0 3-5 4.7 4-5 5.5 5-6 6.9 6-8 8.3 7-10 10.0 8-12 54.7

Table 5.1 shows the average, the minimum and the maximum amount of iterations to
compute one timestep of the path for the three different methods for different timestep sizes
k. Here one can observe, that the SFM needs more iteration steps, but has the advantage to
be faster compared to both, DNM and PHM. However, SFM has the disadvantage, that it
does not converge for larger timestep sizes, e.g. k = 2−10 or k = 2−9, while DNM and PHM
does. The DNM and PHM even work for larger timestep sizes k = 2−8, 2−7, 2−6, 2−5, 2−4.
Another observation is, that due to noise, the amount of iteration steps as well as the
simulation time increase. This increase is for SFM significantly more pronounced compared
to DNM and PHM.

In the following convergence studies, PHM is used, since it allows larger timestep size and
it is almost twice as fast as DNM. Here, one considers equation (1.1) on D = (0, 1) with
periodic boundary conditions up to final time T = 2. Again, the initial value m0(x) :=
(0, sin(2πx), cos(2πx))T ∈ S2 for all x ∈ D, the damping parameter is set to be α = 0.25,
and the maximal mesh-size h = 0.05 is fixed.

To compute the convergence order for the time discretization of Algorithm 1.1, different ap-
proximations {M j

i ; j = 0, . . . , J} for different timestep sizes ki = 2−(8+i) for i ∈ {1, 2, 3, 4}
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are simulated and compared with a finer simulated approximation {M j
ex; j = 0, . . . , J}

using timestep size kex = 2−14. The strong and weak errors are defined by

se(i) :=
(
E
[

max
j=0,...,J

‖M j
ex −M

j
i‖

2
L2

]) 1
2
,

we(i) :=
(

max
j=0,...,J

‖E[M j
ex]− E[M j

i ]‖
2
L2

) 1
2
.

In all simulations, the amount of 3000 paths is used to approximate the expectation values.
One path of the solution using colored noise described below is illustrated in Figure 5.1.

5.1. Colored noise

The colored noise term is simulated by

∆jW (x) = ν
L∑
l=1

3∑
r=1

√
q3(l−1)+r

√
2 sin(πlx)er∆jβ

3(l−1)+r ∀x ∈ D, (5.1)

where ∆jβ
z are independent increments of a R-valued Wiener process for z = 1, . . . , 3L,

and er for r = 1, 2, 3 is a basis of R3. The parameter ν = 1.0 is fixed. Figure 5.2 shows
the convergence behavior using the sequence qr = r−2.5 and fix L = 20. This simulation
fits to the setting considered in this work. The experimental strong order is 0.44, and the
experimental weak order is 1.07, which is close to the results obtained in Theorem 4.1.
Increasing parameter L does not change the convergence behavior.

tj = 0.0

tj = 0.25

tj = 0.03

tj = 0.5

tj = 0.06

tj = 1.0

tj = 0.125

tj = 2.0

Figure 5.1. One trajectory tj 7→M j(ω) of the solution of equation (1.1) with colored noise.
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Figure 5.2. Colored noise where qr = r−2.5 and L = 20: The time evolution of tj 7→
‖∇M j(ω)‖L2 ( ) and corresponding expectation value ( ) is shown in
(a). Strong ( ) and weak ( ) rates of convergence and the reference slopes
0.5 ( ) and 1.0 ( ) are illustrated in (b).

5.2. Approximate white noise

Experiments corresponding to space-time white noise, which is motivated physically are
considered. However, mathematical results for equation (1.1) with space-time white noise
are currently not available, even in the case of one-dimensional domains.
A similar approach as in [BBNP13,BBP13] (without adaptive mesh refinement) is consid-
ered, where the space-time white noise is approximated using

∆jW (x) := ν
R∑
r=1

Φr(x)√
1
2 |suppΦr|

∆jβ
r ∀x ∈ D, (5.2)

where Φr(x) are the basis functions of Vh, and ∆jβ
r are independent increments of the

R-valued Wiener process βr for r = 1, . . . , R. The parameter ν = 0.5 is fixed. Note that,
as it is depicted in [BSDDM05], approximation (5.2) has a finite numerical correlation in
space. An additional adaptive mesh refinement would be necessary to capture effects of
space-time white noise more correctly. Figure 5.4 illustrates the obtained experimental
strong convergence order of 0.34 and an experimental weak convergence order of 0.98.
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tj = 0.06

tj = 1.0

tj = 0.125

tj = 2.0

Figure 5.3. One trajectory tj 7→M j(ω) of the solution of equation (1.1) with approximate
white noise.
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Figure 5.4. Approximate white noise: The time evolution of tj 7→ ‖∇M j(ω)‖L2 ( )
and corresponding expectation value ( ) is shown in (a). Strong ( ) and
weak ( ) rates of convergence and the reference slopes 0.5 ( ) and 1.0 ( )
are illustrated in (b).
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6. Introduction

Let D ⊂ Rd be a bounded domain with C2 boundary, and 0 < T < ∞ be the terminal
time. The aim of this part1 of the thesis is to formulate and study a fully implementable
scheme to simulate the backward stochastic heat equation (0 ≤ t ≤ T )

dY (t) =
[
−∆Y (t)−

n∑
i=1

νi(t)Zi(t)− F (t)
]

dt+
n∑
i=1

Zi(t) dW i(t), Y (T ) = Ψ, (6.1)

with homogeneous Dirichlet boundary conditions. Here, {W (t); t ∈ [0, T ]} denotes an Rn-
valued Wiener process W (t) = (W 1(t), . . . ,Wn(t)), and F an external free forcing term,
both of it supported on the stochastic basis (Ω,F ,F,P).
This backward stochastic partial differential equation (BSPDE) serves as a prototype ex-
ample for more general cases where the drift involves a linear second order elliptic operator
(see [DT12]) to which most of the results below apply as well. While of independent interest,
the BSDPE (6.1) also appears as first order adjoint equation in the first order optimality
conditions of the following prototype linear-convex stochastic optimal control problem (see
also [Ben83]): given a deterministic profile {X̃(t, ·); t ∈ [0, T ]}, find an F-adapted process
{U(t, ·); t ∈ [0, T ]} which minimizes the cost functional

J (X,U) = E
[1
2

∫ T

0

(
‖X(t)− X̃(t)‖2L2 + α‖U(t)‖2L2

)
dt+ g(X(T ))

]
(α > 0), (6.2)

subject to the controlled (forward) stochastic heat equation (0 ≤ t ≤ T )

dX(t) =
[
∆X(t) + U(t)

]
dt+

n∑
i=1

νi(t)X(t) dW i(t), X(0) = x0, (6.3)

with homogeneous Dirichlet boundary conditions. This part of the thesis is a first step to
access this problem numerically by dealing with the adjoint equation (6.1) as part of the
corresponding optimality system (6.3), (7.3)–(7.4). Figure 6.1 displays one approximate
path of the optimal control U? as well as the related optimal state X?; see Section 10.2 for
further details.

Backward stochastic partial differential equations (BSPDEs for short) naturally extend
backward stochastic differential equations (BSDEs for short), which is a subject of increas-
ing interest in the last two decades. Various numerical methods to approximate BSDEs
have been developed: references for procedures which exploit the connection of BSDEs and
corresponding deterministic (parabolic) PDEs include [DMP96,MT06], which are efficient
for low-dimensional problems. A different approach is realized in [BT04, Zha04], where

1Part II is based on the manuscript [DP15] accepted for publication in SIAM Journal on Scientific Com-
puting. Copyright c© by SIAM. Unauthorized reproduction of this article is prohibited.
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(b) tj 7→ U?,jh (ω)

Figure 6.1. One path of the optimal state X?,j
h and the optimal control U?,jh for (6.2)–(6.3),

see Setup D in Table 10.3 for further details.

the backward equation is discretized directly by using an explicit/implicit time stepping
scheme which involves conditional expectations. In order to compute the occurring condi-
tional expectations, several techniques have been developed: methods based on Malliavin
calculus [BT04], cubature method [CM12] or the least squares Monte-Carlo method; see
e.g. [BD07, GLW05, GT14]. A combination of the implicit Euler method and the least
squares Monte-Carlo method is used in this work to simulate the BSPDE (6.1), and the
first order optimality conditions of the stochastic optimal control problem (6.2)–(6.3), which
is a forward-backward stochastic partial differential equation (FBSPDE); see (6.3), (7.3)–
(7.4).

From a numerical viewpoint, the computational setup and resources required to approx-
imate the solution (Y,Z) of a BSPDE such as (6.1) is substantially more demanding
than simulating a SPDE. Even further, computational demands increase to approximate a
triple (X,Y, Z) of (F-adapted) processes which solve a FBSPDE such as (6.3), (7.3)–(7.4).
In Section 8 we consider the spatial discretization based on P1-finite elements for both prob-
lems; see equations (8.1) and (8.4)–(8.5). The main theoretical results are on optimal strong
rates of convergence with respect to the (spatial) mesh parameter h > 0: see Theorem 8.2
for the BSPDE (6.1), whose proof uses (simple) variational arguments, resting on improved
regularity properties of the solution of (6.1), Itô’s formula, and approximation results for
the finite element method; and Theorem 8.4 for the FBSPDE, where we use Theorem 8.2
in combination with a contraction argument to show strong convergence with optimal order
for Y as well as Z for short time durations T > 0.

In the second part, we discuss fully implementable algorithms to simulate the BSPDE (6.1)
resp. the FBSDPE (6.3), (7.3)–(7.4): an algorithm is proposed for problem (6.1), which is
based on the implicit Euler method for the BSDE (8.1), and the one-step forward dynamic
programming scheme ((ODP) for short); see Scheme 9.1. This scheme requires to compute
conditional expectations E[ · |Ftj ] in each time step, which is the reason for the significant
computational complexity of the problem. For its approximation we use the representation(
Y j
h , Z

i,j
h

)
=
(
Yjh(Xj

h),Z i,jh (Xj
h)
)
of iterates of Scheme 9.1 with the help of deterministic
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functions Yjh(·) and Z i,jh (·), which is evaluated on the iterates of the (forward) explanatory
process

{
Xj
h; j = 0, . . . , J

}
. Those functions will be computed via conditional expectations

of the form E[ · |Xj
h], which in turn will be approximated with the help of the partitioning

estimation method as a special case of the least squares Monte-Carlo method. This method
partitions the imageXj

h[Ω] into R regions, which here is a set of finite element functions, and
then approximates E[ · |Xj

h] by a function which for any given realization Xj
h(ω) returns the

sample mean for the corresponding region in which Xj
h(ω) is contained. The choice of how

to construct such a partitioning in crucial: for small systems of BSDEs, usually a uniform
mesh (so-called hypercubes (HC)) is used, see e.g. [GLW05,GT14]. However, this strategy
is not practicable for the approximation of a BSPDE as (6.1) where a high dimensional
state space is involved. To resolve Xj

h[Ω] more accurately, two further partitioning methods
are discussed where the partitioning is chosen according to the sampling for Xj

h:

• the Voronoi partition method (V), which uses R (additional) realizations of Xj
h in

combination with nearest neighbor clustering;

• the Binary Tree Cuboids (BTC), where every region is equally visited by Xj
h.

To realize both (a-posteriori) approaches only requires to be able to simulate Xj
h, while the

explicit knowledge of the distribution of Xj
h is not needed; see Chapter 9 for a detailed de-

scription. Computational studies which quantify different approximation effects throughout
the simulation of BSPDEs are carried out in Chapter 10. The studies support the conver-
gence rates of Theorem 8.2, and show that the implicit Euler method is exempted from a
restrictive CFL condition, which is in turn needed for the explicit Euler method.

A series of computational studies motivate uniform dependence of the spatial mesh-size of
the time discretization error of order O(

√
k), which complements the theoretical result on

BSDEs in [Zha04], where involved stability constants in related error estimates depend on
the dimension of the state space. The given algorithmic setup is general and may be adopted
to more general (nonlinear) BSPDEs. However, for restricted terminal data in (6.1), we
propose a simpler scheme which avoids the computation of conditional expectations by
exploiting linearity of the problem and thus leads to a significant speed-up in computation
time; cf. Remark 9.3.

These results on how to simulate problem (6.1) provide the basis for a proper approximation
of the FBSPDE (6.3), (7.3)–(7.4), and here we consider two schemes. The first combines
Scheme 9.1 with a Picard type iteration as suggested in [BZ08]; see Scheme 9.4. We combine
this scheme with the methods (BTC) and (V), and compute related coefficients as well
as the basis functions in Y(v−1),j

h (·) for the computation of X(v),j
h according to the law of

X
(v−1),j
h , rather than X(v),j

h in (9.12). Computational studies confirm that Picard iterates
only converge for short time durations T > 0. A significant reduction of iterations may be
obtained when the related deterministic control problem is solved in a precursory step to
provide good initial data; further computational savings may be achieved when the forward
equation yieldingX(v),j

hF
is discretized using a comparably rougher spatial discretization than

for the adjoint equation yielding (Y (v),j
hB

, Z
(v),i,j
hB

), i.e. hB < hF . In contrast to the Picard
type iteration, the newly proposed stochastic gradient method exploits the structure of
the approximation of the deterministic functions, and computational studies here suggest
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convergence for general terminal times T > 0; see Scheme 9.5. The stochastic gradient
method provides a general strategy to solve stochastic optimal control problems. For the
restricted setting of stochastic LQ problems (where g(·) is quadratic in (6.2)) we may
exploit linearity of (6.3) and use successive substitution of iterates to arrive at a semi-
explicit discretization of the stochastic Riccati equation, which enables an explicit formula
for optimal feedback control; cf. Remark 9.6. While of independent interest, we focus in
the computational studies in Section 10.2 on the study of the stochastic gradient method
because of its broader applicability.

This part of the thesis is organized as follows: We first collect preliminary results in Chap-
ter 7, including a discussion to ensure existence of a strong solution for the BSPDE (6.1),
and for the FBSPDE (6.3), (7.3)–(7.4). In Section 8.1, we focus on the spatial discretization
of (6.1) using P1-finite elements, and a corresponding error analysis; see Theorem 8.2, while
Section 8.2 is devoted to a space discretization and a corresponding error analysis for the
FBSPDE (6.3), (7.3)–(7.4); see Theorem 8.4. Fully implementable algorithms to simulate
problems (6.1) and (6.3), (7.3)–(7.4) as well as different partitioning approaches are detailed
in Chapter 9. Computational studies are reported in Chapter 10.



7. Preliminaries

7.1. Notation

Let K be a separable Hilbert space. By ‖·‖L2 resp. (·, ·) we denote the norm resp. the scalar
product in L2 := L2(D;R). The norm in Wk,p := Wk,p(D;R) for k = 1, 2 is denoted by
‖·‖Wk,2 . Let

(
Ω,F , {Ft}t∈[0,T ],P

)
be a complete filtered probability space, where {Ft}t∈[0,T ]

is the filtration generated by the n-dimensional Wiener process W = {W (t); t ∈ [0, T ]},
augmented by all the P-null sets. The σ-algebra of predictable sets on Ω× [0, T ] is denoted
by P. The space of all predictable K-valued processes X : Ω × [0, T ] → K satisfying
E
[∫ T

0 ‖X(t)‖2K dt
]
< ∞ is denoted by L2

P
(
Ω;L2(0, T ;K)

)
. The space of all predictable K-

valued continuous processes X : Ω × [0, T ] → K satisfying E
[
supt∈[0,T ] ‖X(t)‖2K

]
< ∞ is

denoted by L2
P
(
Ω;C([0, T ];K)

)
.

7.2. Strong solution of the backward stochastic heat equation

Let Ψ ∈ L2(Ω;FT ,W1,2
0 ), F ∈ L2

P
(
Ω;L2(0, T ;L2)

)
, and νi ∈ L∞(0, T ;W1,∞) for i = 1, . . . , n

be given. The strong solution of (6.1) is a pair of square integrable adapted processes (Y,Z)
such that the analytically weak form of (6.1) is satisfied. The following theorem states its
existence, uniqueness, and regularity, and is adapted from [DT12, Theorem 3.1].

Theorem 7.1
Let 0 < T <∞. There exists a unique strong solution(

Y,Z
)
∈ L2

P
(
Ω;C([0, T ];W1,2

0 ) ∩ L2(0, T ;W1,2
0 ∩W2,2)

)
× L2

P
(
Ω;L2(0, T ;W1,2

0 (D;Rn))
)

of (6.1), i.e., for a.e. (ω, t) ∈ Ω× [0, T ] there holds∫
D
Y (t)φ dx =

∫
D

Ψφ dx−
∫ T

t

∫
D
∇Y (s)∇φ dx ds+

n∑
i=1

∫ T

t

∫
D
νi(s)Zi(s)φ dx ds

−
∫ T

t

∫
D
F (s)φ dx ds−

n∑
i=1

∫ T

t

∫
D
Zi(s)φ dx dW i(s) ∀φ ∈W1,2

0 ,

and there exists a constant C ≡ C(D,T, νi) > 0 such that

E
[

sup
t∈[0,T ]

‖Y (t)‖2W1,2 +
∫ T

0

(
‖Y (t)‖2W2,2 +

n∑
i=1
‖Zi(t)‖2W1,2

)
dt
]

≤ CE
[
‖Ψ‖2W1,2 +

∫ T

0
‖F (t)‖2L2 dt

]
. (7.1)
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7.3. Stochastic maximum principle for (6.2)–(6.3)

Let x0 ∈ L2(Ω;F0,W1,2
0 ) be given, T > 0, and g ∈ C2(L2,R) be bounded from below,

convex, and there exists C > 0 such that for all x ∈ L2

‖Dg(x)‖Wα,2 ≤ C(1 + ‖x‖Wα,2) (α ∈ {0, 1}) and ‖D2g(x)‖L(L2,L2) ≤ C. (7.2)

By [Ben83], the optimum of (6.2)–(6.3) (X?, U?) with (unique) solution (Y ?, Z?) solves the
state equation (6.3), the adjoint equation (0 ≤ t ≤ T )

dY ?(t) =
[
−∆Y ?(t)−

n∑
i=1

νi(t)Z?,i(t)−
(
X?(t)− X̃(t)

)]
dt+

n∑
i=1

Z?,i(t) dW i(t),

Y ?(T ) = Dg
(
X?(T )

)
,

(7.3)

with homogeneous Dirichlet boundary conditions, and the maximum principle

0 = αU?(t) + Y ?(t). (7.4)

Inserting (7.4) into the state equation (6.3) yields the FBSPDE which is denoted below
by (FBSHE) and consists of (6.3), (7.3)–(7.4).

7.4. Strong solution of the forward-backward stochastic heat
equation

Throughout this part of the thesis, let X̃ ∈ L2(0, T ;L2) in (7.3) be given. Consider the
Banach space

ML2 [0, T ] :=
[
L2
P
(
Ω;C([0, T ];L2)

)]2
× L2

P
(
Ω;L2(0, T ;L2(D;Rn))

)
,

which is endowed with the norm

‖(X,Y, Z)‖2ML2 [0,T ] := E
[

sup
t∈[0,T ]

‖X(t)‖2L2 + sup
t∈[0,T ]

‖Y (t)‖2L2

]
+ E

[ n∑
i=1

∫ T

0
‖Zi(t)‖2L2 dt

]
.

A triple (X,Y, Z) ∈ML2 [0, T ] is called strong solution of (FBSHE), if it satisfies P-a.s. the
analytically weak form of the system (FBSHE).

Our goal for the numerical treatment of the problem in Section 8.2 is to approximate its
strong solution via (space-time approximations of) the following Picard iteration method:
Let Y (0) ≡ 0. Iterate v = 1, 2, . . .

dX(v)(t) =
[
∆X(v)(t)− 1

α
Y (v−1)(t)

]
dt+

n∑
i=1

νi(t)X(v)(t) dW i(t), (7.5)

dY (v)(t) =
[
−∆Y (v)(t)−

n∑
i=1

νi(t)Z(v),i(t)−
(
X(v)(t)− X̃(t)

)]
dt+

n∑
i=1

Z(v),i(t) dW i(t),

(7.6)
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X(v)(0) = x0, Y (v)(T ) = Dg
(
X(v)(T )

)
,

with homogeneous Dirichlet boundary conditions for X(v) and Y (v). For every v ∈ N,
the existence of a strong solution X(v) ∈ L2

P
(
Ω;C([0, T ];L2)

)
of (7.5), resp. (Y (v), Z(v)) ∈

L2
P
(
Ω;C([0, T ];L2)

)
× L2

P
(
Ω;L2(0, T ;L2(D;Rn))

)
e.g. follows from [Cho07, Chapter 6.7],

resp. Theorem 7.1.

Theorem 7.2
Let 0 < T ≤ T̃0 be sufficiently small. Then {Θ(v) ≡ (X(v), Y (v), Z(v)); v ∈ N} of (7.5)–(7.6)
converge to the unique strong solution Θ? ≡ (X?, Y ?, Z?) ∈ML2 [0, T ] of (FBSHE).

Proof
The proof is based on a fixed point argument for the scheme (7.5)–(7.6). We follow the ar-
guments detailed in the proof of Theorem 8.3, by there replacingMVh [0, T ] withML2 [0, T ]
and by considering instead the fixed point map T :ML2 [0, T ]→ML2 [0, T ] for (7.5)–(7.6).
Accordingly, we can establish the existence of a unique strong solution for small time dura-
tions 0 < T ≤ T̃0 by contraction property. Moreover, we obtain the following estimate with
0 < q < 1 similarly to (8.10),

‖Θ(v) −Θ?‖2ML2 [0,T ] ≤
qv−1

1− q‖Θ
(2) −Θ(1)‖2ML2 [0,T ]. (7.7)





8. Spatial discretization and rates of
convergence

Let Th be a regular triangulation of D ⊂ Rd into intervals K with a maximum mesh size
h := max{diam(K); K ∈ Th}. For each element K ∈ Th, let P1(K) denote the set of all
polynomials of degree less or equal to one. We define the finite element space Vh ⊂ W1,2

0
by

Vh :=
{
φ ∈ C0(D); φ|K ∈ P1(K) ∀K ∈ Th

}
.

The L2-projection Πh : L2 → Vh is defined by

(Πhξ − ξ, φh) = 0 ∀φh ∈ Vh,

and satisfies

‖Πhξ − ξ‖L2 + h‖∇[Πhξ − ξ]‖L2 ≤
{
Ch‖∇ξ‖L2 ∀ξ ∈W1,2

0 ,

Ch2‖∇2ξ‖L2 ∀ξ ∈W1,2
0 ∩W2,2.

The Ritz-projection Rh : W1,2
0 → Vh is defined by

(∇[Rhξ − ξ],∇φh) = 0 ∀φh ∈ Vh.

We define the discrete Laplace operator ∆h : Vh → Vh by

−(∆hξh, φh) = (∇ξh,∇φh) ∀φh, ξh ∈ Vh.

8.1. Backward stochastic heat equation

Suppose F ≡ 0 throughout this section. The spatially discrete version of (6.1) reads as
follows: For all t ∈ [0, T ], there holds P-a.s.

(
Yh(t), φh

)
=
(
Ψ, φh

)
−
∫ T

t

(
∇Yh(s),∇φh

)
ds+

n∑
i=1

∫ T

t

(
νi(s)Zih(s), φh

)
ds

−
n∑
i=1

∫ T

t

(
Zih(s), φh

)
dW i(s) ∀φh ∈ Vh.

(8.1)

For every fixed h > 0, equation (8.1) is a linear backward stochastic differential equa-
tion, and existence and uniqueness of a strong solution (Yh, Zh) ∈ L2

P
(
Ω;C([0, T ];Vh)

)
×

L2
P
(
Ω;L2(0, T ;Vnh)

)
e.g. follow from [MY07, Chapter 1, Theorem 4.2]. In particular, the

martingale representation theorem states that the processes Zih have to be Vh-valued.
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Lemma 8.1
The strong solution (Yh, Zh) of (8.1) satisfies

(i) sup
t∈[0,T ]

E
[
‖Yh(t)‖2L2

]
+ E

[∫ T

0

(
‖∇Yh(t)‖2L2 +

n∑
i=1
‖Zih(t)‖2L2

)
dt
]
≤ CE

[
‖Ψ‖2L2

]
;

(ii) sup
t∈[0,T ]

E
[
‖∇Yh(t)‖2L2

]
+ E

[∫ T

0

(
‖∆hYh(t)‖2L2 +

n∑
i=1
‖∇Zih(t)‖2L2

)
dt
]
≤ CE

[
‖∇Ψ‖2L2

]
,

where C ≡ C(D,T ) > 0 does not depend on h > 0.

Proof
Statement (i): Fix t ∈ [0, T ]. Using Itô’s formula with x 7→ ‖x‖2L2 for equation (8.1) yields
P-a.s.

‖Yh(T )‖2L2 − ‖Yh(t)‖2L2 = 2
∫ T

t
‖∇Yh(s)‖2L2 ds− 2

n∑
i=1

∫ T

t

(
Πh[νi(s)Zih(s)], Yh(s)

)
ds

+ 2
n∑
i=1

∫ T

t

(
−Zih(s), Yh(s)

)
dW i(s) +

n∑
i=1

∫ T

t
‖Zih(s)‖2L2 ds.

By taking expectations, using Gronwall’s inequality and stability of Πh, we arrive at

E
[
‖Yh(t)‖2L2

]
+ E

[ n∑
i=1

∫ T

t
‖Zih(s)‖2L2 ds

]
+ E

[∫ T

t
‖∇Yh(s)‖2L2 ds

]
≤ CE

[
‖ΠhΨ‖2L2

]
.

Statement (ii) may be obtained using Itô’s formula with x 7→ ‖∇x‖2L2 for equation (8.1). �

Theorem 8.2
Let (Y,Z) be the strong solution of (6.1) and (Yh, Zh) be the strong solution of (8.1). Then

E
[

sup
t∈[0,T ]

‖Y (t)− Yh(t)‖2L2 +
∫ T

0

(
‖∇[Y (t)− Yh(t)]‖2L2 +

n∑
i=1
‖Zi(t)− Zih(t)‖2L2

)
dt
]
≤ Ch2.

Moreover, there holds

E
[∫ T

0
‖Y (t)− Yh(t)‖2L2 dt

]
≤ Ch4.

Proof
Define Y(t) := Y (t)−Yh(t) and Z i(t) := Zi(t)−Zih(t). Subtracting equation (8.1) from (6.1)
leads to (0 ≤ t ≤ T )

dΠhY(t) =
[
−∆hRhY(t)−

n∑
i=1

Πh[νi(t)Z i(t)]
]

dt+
n∑
i=1

ΠhZ i(t) dW i(t),

ΠhY(T ) = 0.
(8.2)

Step 1: By using Itô’s formula with x 7→ ‖x‖2L2 for equation (8.2) and taking expectations
we obtain

E
[
‖ΠhY(t)‖2L2

]
+ E

[ n∑
i=1

∫ T

t
‖ΠhZ i(s)‖2L2 ds

]



8.1. Backward stochastic heat equation 63

≤ −2E
[∫ T

t

(
∇Y(s),∇ΠhY(s)

)
ds
]

+ 2E
[ n∑
i=1

∫ T

t
‖ΠhY(s)‖L2‖Πh[νi(s)Z i(s)]‖L2 ds

]
.

In order to simplify the last term, we get

‖Πh[νi(s)Z i(s)]‖L2 ≤ ‖νi(s)‖L∞
(
‖ΠhZ i(s)‖L2 + ‖[Id−Πh]Z i(s)‖L2

)
,

such that

E
[
‖ΠhY(t)‖2L2

]
+ E

[ n∑
i=1

∫ T

t
‖ΠhZ i(s)‖2L2 ds

]
≤ −2E

[∫ T

t
‖∇Y(s)‖2L2 ds

]
+ 2E

[∫ T

t

(
∇Y(s),∇[Id−Πh]Y(s)

)
ds
]

+ CE
[∫ T

t
‖ΠhY(s)‖2L2 ds

]
+ 1

2E
[ n∑
i=1

∫ T

t
‖ΠhZ i(s)‖2L2 ds

]
+ Ch2E

[ n∑
i=1

∫ T

t
‖∇Zi(s)‖2L2 ds

]
.

By interpolation estimates, Theorem 7.1, and Gronwall’s inequality we arrive at

E
[
‖ΠhY(t)‖2L2

]
+ E

[∫ T

t
‖∇Y(s)‖2L2 ds

]
+ 1

2E
[ n∑
i=1

∫ T

t
‖ΠhZ i(s)‖2L2 ds

]
≤ Ch2. (8.3)

Step 2: Taking the supremum over t ∈ [0, T ] in the beginning of Step 1 before applying
expectations leads to

sup
t∈[0,T ]

‖ΠhY(t)‖2L2

≤ C
n∑
i=1

∫ T

0

∣∣∣(Πh[νi(s)Z i(s)],ΠhY(s)
)∣∣∣ ds+

∫ T

0

∣∣∣(∆hRhY(s),ΠhY(s)
)∣∣∣ ds

+
n∑
i=1

∣∣∣∫ T

0

(
ΠhZ i(s),ΠhY(s)

)
dW i(s)

∣∣∣+ n∑
i=1

sup
t∈[0,T ]

∣∣∣∫ t

0

(
ΠhZ i(s),ΠhY(s)

)
dW i(s)

∣∣∣,
where the stochastic integral term is decomposed into the last two terms in order to apply
the Burkholder-Davis-Gundy inequality below. Now we take expectations and apply the
results in (8.3), interpolation estimates, and Theorem 7.1 for the first three terms on the
right-hand-side to arrive at

E
[

sup
t∈[0,T ]

‖ΠhY(t)‖2L2

]
≤ CE

[ n∑
i=1

∫ T

0
‖ΠhZ i(s)‖2L2 ds

]
+ CE

[∫ T

0
‖ΠhY(s)‖2L2 ds

]
+ E

[∫ T

0

∣∣(∇RhY(s),∇Y(s)
)∣∣ ds]

+ CE
[ n∑
i=1

∫ T

0
‖[Id−Πh]Zi(s)‖2L2 ds

]
+ 2

n∑
i=1

E
[

sup
t∈[0,T ]

∣∣∣∫ t

0

(
ΠhZ i(s),ΠhY(s)

)
dW i(s)

∣∣∣]
≤ Ch2 + I + II.
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By Theorem 7.1 we obtain I ≤ Ch2. The last term II may be estimated according to

II ≤
n∑
i=1

E
[∣∣∣∫ T

0
‖ΠhY(s)‖2L2‖ΠhZ i(s)‖2L2 ds

∣∣∣ 1
2
]

≤ δE
[

sup
t∈[0,T ]

‖ΠhY(s)‖2L2

]
+ CδE

[ n∑
i=1

∫ T

0
‖ΠhZ i(s)‖2L2 ds

]
using Burkholder-Davis-Gundy’s, Hölder’s, and Young’s inequalities (δ > 0). Thus, by
using estimate (8.3), we arrive at E

[
supt∈[0,T ] ‖ΠhY(s)‖2L2

]
≤ Ch2.

Step 3: Standard interpolation estimates and Theorem 7.1 justify

E
[

sup
t∈[0,T ]

‖Y(t)‖2L2

]
≤ CE

[
sup
t∈[0,T ]

‖ΠhY(t)‖2L2

]
+ CE

[
sup
t∈[0,T ]

‖[Πh − Id]Y(t)‖2L2

]
≤ Ch2,

and E
[∑n

i=1
∫ T

0 ‖Z i(s)‖2L2 ds
]
≤ Ch2 accordingly.

Step 4: Use Itô’s formula with x 7→ ‖∇∆−1
h x‖2L2 for equation (8.2). Then, P-a.s.

− ‖∇∆−1
h ΠhY(t)‖2L2

=
∫ T

t

[
2
(
−∇∆−1

h ∆hRhY(s),∇∆−1
h ΠhY(s)

)
− 2

n∑
i=1

(
∇∆−1

h Πh[νi(s)Z i(s)],∇∆−1
h ΠhY(s)

)

+
n∑
i=1
‖∇∆−1

h ΠhZ i(s)‖2L2

]
ds+ 2

n∑
i=1

∫ T

t

(
∇∆−1

h ΠhZ i(s),∇∆−1
h ΠhY(s)

)
dW i(s).

Taking expectations, using Young’s inequality and the definition of ∆h yields

E
[
‖∇∆−1

h ΠhY(t)‖2L2

]
+ E

[ n∑
i=1

∫ T

t
‖∇∆−1

h ΠhZ i(s)‖2L2 ds
]

+ 2E
[∫ T

t

(
RhY(s),ΠhY(s)

)
ds
]

≤ E
[ n∑
i=1

∫ T

t
ε1‖∇∆−1

h Πh[νi(s)Z i(s)]‖2L2 ds
]

+ Cε1E
[∫ T

t
‖∇∆−1

h ΠhY(s)‖L2 ds
]

for a ε1 > 0. In order to estimate the last term on the right-hand-side, write V (s) :=
∆−1
h Πh[νi(s)Z i(s)] and consider the problem

(
∆hV, φh

)
=
(
νiZ i, φh

)
∀φh ∈ Vh. By

Galerkin orthogonality, the definition of ∆h, interpolation estimates, stability of Πh, and
Poincare’s inequality, there holds

ε1‖∇V ‖2L2

= ε1
(
ΠhZ i, νiV

)
+ ε1

(
[Id−Πh]Zi, νiV

)
= ε1

(
∆h∆−1

h ΠhZ i, νiV
)

+ ε1
(
[Id−Πh]Zi, [Id−Πh]νiV

)
≤ ε1

∣∣∣(∇∆−1
h ΠhZ i,∇Πh[νiV ]

)∣∣∣+ ε1‖[Id−Πh]Zi‖L2‖[Id−Πh]νiV ‖L2

≤ 1
2‖∇∆−1

h ΠhZ i‖2L2 + Cε2h
4‖∇Zi‖2L2 + ε21

(
C + ε2

)(
‖νi∇V ‖2L2 + ‖V∇νi‖2L2

)
≤ 1

2‖∇∆−1
h ΠhZ i‖2L2 + Cε2h

4‖∇Zi‖2L2 + ε21
(
C + ε2

)(
‖νi‖2L∞ + C‖∇νi‖2L∞

)
‖∇V ‖2L2
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for any ε2 > 0. For sufficiently small ε1 > 0, we absorb the last term of the right-hand-side,
and hence, there exists a constant 0 < δ̃ < 1, such that

ε1‖∇V ‖2L2 ≤ δ̃‖∇∆−1
h ΠhZ i‖2L2 + Cε2h

4‖∇Zi‖2L2 .

We obtain using inequality (7.1) and the equality(
RhY(s),ΠhY(s)

)
= ‖Y(s)‖2L2 +

(
[Rh − Id]Y(s),ΠhY(s)

)
+
(
[Πh − Id]Y(s),Y(s)

)
such that

E
[
‖∇∆−1

h ΠhY(t)‖2L2

]
+ (1− δ̃)

n∑
i=1

E
[∫ T

t
‖∇∆−1

h ΠhZ i(s)‖2L2 ds
]

+ 2E
[∫ T

t
‖Y(s)‖2L2 ds

]
≤ CE

[∫ T

t
‖∇∆−1

h ΠhY(s)‖2L2 ds
]

+ Ch4E
[ n∑
i=1

∫ T

t
‖∇Zi(s)‖2L2 ds

]
+ CE

[∫ T

t
‖[Rh − Id]Y(s)‖2L2 ds

]
+ CE

[∫ T

t
‖[Πh − Id]Y(s)‖2L2 ds

]
.

Standard approximation results, Theorem 7.1, and Gronwall’s inequality validates the as-
sertion. �

8.2. Forward-backward stochastic heat equation

For the sake of simplicity, suppose νi ≡ 1 throughout this section. However, the results
can be shown for νi specified in Section 7.4. We use Theorem 8.2 to derive strong rates of
convergence for the following spatial discretization of (FBSHE): Find Θ?

h ≡ (X?
h, Y

?
h , Z

?
h)

such that (0 ≤ t ≤ T )

dX?
h(t) =

[
∆hX

?
h(t)− 1

α
Y ?
h (t)

]
dt+

n∑
i=1

X?
h(t)

]
dW i(t), (8.4)

dY ?
h (t) =

[
−∆hY

?
h (t)−

n∑
i=1

Z?,ih (t)−
(
X?
h(t)−ΠhX̃(t)

)]
dt+

n∑
i=1

Z?,ih (t) dW i(t), (8.5)

X?
h(0) = Πhx0, Y ?

h (T ) = Πh

[
Dg
(
X?
h(T )

)]
.

Below we use the Banach space

MVh [0, T ] :=
[
L2
P
(
Ω;C([0, T ];Vh)

)]2
× L2

P
(
Ω;L2(0, T ;Vnh)

)
,

which is endowed with the norm ‖(Xh, Yh, Zh)‖2MVh [0,T ] := ‖(Xh, Yh, Zh)‖2ML2 [0,T ].

System (8.4)–(8.5) may be interpreted as first order optimality system of the finite element
discetization of the stochastic optimal control problem (6.2)–(6.3), for which [YZ99, Chap-
ter 3, Theorem 3.2] ensures solvability. However, we are here interested in using the prac-
tical solution strategy via (discrete) Picard iterates, which solve the following system of
equations: Let Y (0)

h ≡ 0. Iterate v = 1, 2, . . .

dX(v)
h (t) =

[
∆hX

(v)
h (t)− 1

α
Y

(v−1)
h (t)

]
dt+

n∑
i=1

X
(v)
h (t) dW i(t), (8.6)
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dY (v)
h (t) =

[
−∆hY

(v)
h (t)−

n∑
i=1

Z
(v),i
h (t)−

(
X

(v)
h (t)−ΠhX̃(t)

)]
dt (8.7)

+
n∑
i=1

Z
(v),i
h (t) dW i(t),

X
(v)
h (0) = Πhx0, Y

(v)
h (T ) = Πh

[
Dg
(
X

(v)
h (T )

)]
.

Let Y (v−1)
h ∈ L2

P
(
Ω;L2(0, T ;Vh)

)
be given. There exists a unique strong solution X

(v)
h ∈

L2
P
(
Ω;C([0, T ];Vh)

)
of the stochastic differential equation (8.6), while solvability of (8.7)

follows from [MY07, Chapter 1, Theorem 4.2].

Theorem 8.3
Let 0 < T ≤ T̂0 be sufficiently small and independent of h. Then iterates {Θ(v)

h ≡
(X(v)

h , Y
(v)
h , Z

(v)
h ); v ∈ N} of equations (8.6)–(8.7) converges to the unique strong solution

Θ?
h ≡ (X?

h, Y
?
h , Z

?
h) ∈MVh [0, T ] of (8.4)–(8.5).

Proof
We show a contraction property for the (fixed point) mapping T :MVh [0, T ]→MVh [0, T ]
which maps Θ(v−1)

h to Θ(v)
h according to equations (8.6)–(8.7). Suppose that Θ(v−2)

h , Θ(v−1)
h ∈

MVh [0, T ] are given, and both satisfy system (8.6)–(8.7). For w ∈ {v − 1, v} we define the
differences(

X (w)
h ,Y(w)

h ,Z(w)
h

)
:=
(
X

(w)
h −X(w−1)

h , Y
(w)
h − Y (w−1)

h , Z
(w)
h − Z(w−1)

h

)
,

and consider the forward difference process (0 ≤ t ≤ T )

dX (v)
h (t) =

[
∆hX

(v)
h (t)− 1

α
Y(v−1)
h (t)

]
dt+

n∑
i=1
X (v)
h (t) dW i(t),

X (v)
h (0) = 0.

By applying Itô’s formula with x 7→ ‖x‖2L2 , using the Burkholder-Davis-Gundy inequality
and Gronwall’s lemma, there exists a constant C > 0 independent of h and v, such that

E
[

sup
t∈[0,T ]

‖X (v)
h (t)‖2L2

]
≤ exp(CT ) 2

α2E
[∫ T

0
‖Y(v−1)

h (t)‖2L2 dt
]
. (8.8)

The equation for the backward difference process is (0 ≤ t ≤ T )

dY(v)
h (t) =

[
−∆hY

(v)
h (t)−

n∑
i=1
Z(v),i
h (t)−X (v)

h (t)
]

dt+
n∑
i=1
Z(v),i
h (t) dW i(t),

Y(v)
h (T ) = Πh

[
Dg
(
X

(v)
h (T )

)
−Dg

(
X

(v−1)
h (T )

)]
.

Applying again Itô’s formula with x 7→ ‖x‖2L2 , and using (7.2) leads to

sup
t∈[0,T ]

E
[
‖Y(v)

h (t)‖2L2
]

+ E
[ n∑
i=1

∫ T

0
‖Z(v),i

h (t)‖2L2 dt
]

≤ exp(CT )
(
E
[∫ T

0
‖X (v)

h (t)‖2L2 dt
]

+ CE
[
‖X (v)

h (T )‖2L2
])
, (8.9)
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and with the Burkholder-Davis-Gundy inequality (see Step 2 in the proof of Theorem 8.2)

E
[

sup
t∈[0,T ]

‖Y(v)
h (t)‖2L2 +

n∑
i=1

∫ T

0
‖Z(v),i

h (t)‖2L2 dt
]

≤
(
C exp(CT ) + C

)(
E
[∫ T

0
‖X (v)

h (t)‖2L2 dt
]

+ E
[
‖X (v)

h (T )‖2L2
])
.

Combining this estimate with (8.8) leads to

‖(X (v)
h ,Y(v)

h ,Z(v)
h )‖2MVh [0,T ] ≤ q‖(X

(v−1)
h ,Y(v−1)

h ,Z(v−1)
h )‖2MVh [0,T ],

where q < 1 (independent of h) for 0 < T ≤ T̂0 small enough. Thus we obtain that the
mapping T is contractive. As a consequence, there exists a fixed point (X?

h, Y
?
h , Z

?
h) ∈

MVh [0, T ] for T . Moreover,

‖Θ(v)
h −Θ?

h‖2MVh [0,T ] ≤
qv−1

1− q‖Θ
(2)
h −Θ(1)

h ‖
2
MVh [0,T ]. (8.10)

The following theorem asserts rates of convergence for the solution (X?
h, Y

?
h , Z

?
h) of (8.4)–

(8.5) towards (X?, Y ?, Z?) from (FBSHE) with respect to h > 0 for terminal times T ≤
min{T̃0, T̂0}. Its proof combines an error analysis for the approximation (8.6)–(8.7) of (7.5)–
(7.6) for every v ∈ N with a fixed point argument, and a verification of improved regularity
properties for solutions of (7.5)–(7.6). For this purpose, we consider the Banach space

N [0, T ] :=
[
L2
P

(
Ω;C

(
[0, T ];W1,2

0
)
∩ L2(0, T ;W1,2

0 ∩W2,2))]2
× L2

P

(
Ω;L2(0, T ;W1,2

0 (D;Rn)
))
⊂ML2 [0, T ],

which is endowed with the norm

‖(X,Y, Z)‖2N [0,T ] := E
[

sup
t∈[0,T ]

‖X(t)‖2W1,2 + sup
t∈[0,T ]

‖Y (t)‖2W1,2

]
+ E

[∫ T

0

(
‖X(t)‖2W2,2 + ‖Y (t)‖2W2,2 +

n∑
i=1
‖Zi(t)‖2W1,2

)
dt
]
.

We recall the numbers T̃0, T̂0 > 0 from Theorems 7.2 and 8.3.

Theorem 8.4
Let Θ? ≡ (X?, Y ?, Z?) solve (FBSHE), and Θ?

h ≡ (X?
h, Y

?
h , Z

?
h) be the solution of (8.4)–

(8.5). There exists a 0 < T0 ≤ min{T̃0, T̂0}, such that for every 0 < T ≤ T0 holds∥∥(X?, Y ?, Z?
)
−
(
X?
h, Y

?
h , Z

?
h

)∥∥2
ML2 [0,T ] ≤ Ch

2.

For g(·) quadratic we additionally have

E
[∫ T

0

(
‖X?(t)−X?

h(t)‖2L2 + ‖Y ?(t)− Y ?
h (t)‖2L2

)
dt
]
≤ Ch4.
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Proof
Step 1: We show improved regularity properties of the solution of (7.5)–(7.6) for every
v = 1, 2, . . . . There exist T1 > 0 such that {Θ(v) ≡ (X(v), Y (v), Z(v)); v ∈ N} ⊂ N [0, T ] for
all T ≤ T1, and a constant C > 0 such that

max
v=1,2,...

∥∥(X(v), Y (v), Z(v))∥∥
N [0,T ] ≤ C. (8.11)

It is sufficient to verify the bound (8.11). For equation (7.5) we obtain

E
[

sup
t∈[0,T ]

‖X(v)(t)‖2W1,2

]
+ E

[∫ T

0
‖X(v)(t)‖2W2,2 dt

]
≤ exp(C̃T )

(
C̃ + C̃

α2E
[∫ T

0
‖Y (v−1)(t)‖2L2 dt

])
,

for some C̃ > 0 depending only on the data of the limiting problem (FBSHE). For equa-
tion (7.6) we use Theorem 7.1 to establish

E
[

sup
t∈[0,T ]

‖Y (v)(t)‖2W1,2

]
+ E

[∫ T

0

(
‖Y (v)(t)‖2W2,2 +

n∑
i=1
‖Z(v),i(t)‖2W1,2

)
dt
]

≤ C̃ exp
(
C̃T

)
(T 2 + T )

(
C̃ + 1

α2E
[∫ T

0
‖X(v)(t)‖2L2 dt

])
+ +C̃E

[
‖X(v)(T )‖2W1,2

]
.

By Poincare’s inequality and a contraction argument for 0 < T ≤ T1 ≡ T1(C̃) small enough,
we obtain estimate (8.11).

We now start with the error analysis. Each component of the error is split into three parts,
for example

E
[

sup
t∈[0,T ]

‖X?(t)−X?
h(t)‖2L2

]
≤ E

[
sup
t∈[0,T ]

‖X?(t)−X(v)(t)‖2L2

]
+ E

[
sup
t∈[0,T ]

‖X(v)(t)−X(v)
h (t)‖2L2

]
+ E

[
sup
t∈[0,T ]

‖X(v)
h (t)−X?

h(t)‖2L2

]
, (8.12)

and accordingly for (Y ?, Z?) and (Y ?
h , Z

?
h). In Step 2 below, the second term on the right-

hand-side of (8.12) will be estimated, while the remaining errors are dealt with in Step 3.

Step 2: Let 0 < T ≤ T1. Fix v ∈ N and define(
X (v),Y(v),Z(v)) :=

(
X(v) −X(v)

h , Y (v) − Y (v)
h , Z(v) − Z(v)

h

)
,

subtract system (7.5)–(7.6) from (8.6)–(8.7) and apply Itô’s formula with x 7→ ‖x‖2L2 . Stan-
dard estimates together with the uniform estimate (8.11), the Burkholder-Davis-Gundy and
Gronwall’s inequality then lead to the following estimate,

E
[

sup
t∈[0,T ]

‖ΠhX (v)(t)‖2L2
]
≤ exp(ĈT ) 1

α2E
[∫ T

0
‖ΠhY(v−1)(t)‖2L2 dt

]
+ Ch2, (8.13)
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with Ĉ, C > 0 depending only on the data, but not on h and v. By Theorem 8.2 and adding
additional errors at the terminal time T using (7.2) we obtain

E
[

sup
t∈[0,T ]

‖ΠhY(v)(t)‖2L2
]

≤ Ĉ exp(ĈT )(T + T 2)
(
E
[∫ T

0
‖ΠhX (v)(t)‖2L2 dt

]
+ E

[
‖ΠhX (v)(T )‖2L2

])
+ Ch2. (8.14)

Thanks to (8.13) we then arrive at

E
[

sup
t∈[0,T ]

‖ΠhY(v)(t)‖2L2
]

≤ Ĉ exp(ĈT )T + T 2

α2

(
TE
[

sup
t∈[0,T ]

‖ΠhY(v−1)(t)‖2L2
]

+ E
[
‖ΠhX (v)(T )‖2L2

])
+ Ch2.

Again, there exists 0 < T2 ≤ T1, such that q̂ := Ĉ exp(ĈT2)T
2
2 +T 3

2
α2 < 1, and hence

E
[

sup
t∈[0,T2]

‖ΠhY(v)(t)‖2L2
]
≤ q̂v sup

t∈[0,T2]
E
[
‖ΠhY(0)(t)‖2L2

]
+ Ch2 1− q̂v

1− q̂ ≤ Ch
2 1− q̂v

1− q̂ , (8.15)

since Y(0) ≡ 0. By (8.13), (8.15), approximation estimates, and (8.11), we arrive at

max
v=1,2,...

E
[

sup
t∈[0,T2]

‖X (v)(t)‖2L2 + sup
t∈[0,T2]

‖Y(v)(t)‖2L2 +
n∑
i=1

∫ T2

0
‖Z(v),i(t)‖2L2 dt

]
≤ Ch2. (8.16)

Step 3: Set 0 < T ≤ min{T2, T̂0, T̃0}. According to the proofs of Theorems 7.2 and 8.3, the
first and third error contributions in (8.12) can be estimated by (7.7) and (8.10), such that
both terms vanish for v → ∞, while the second is bounded according to (8.16) (uniformly
in v). This implies the first assertion in Theorem 8.4.

Step 4: The second assertion of Theorem 8.4 can be obtained by using Itô’s formula with
x 7→ ‖∇∆−1

h x‖2L2 in Step 2, and exploiting Dg(·) being affine in (8.14). �





9. Simulation

We present fully implementable algorithms to simulate the semi-discrete backward stochas-
tic heat equation (8.1), and the semi-discrete forward-backward stochastic heat equation
considered in (8.4)–(8.5).

9.1. Backward stochastic heat equation

Consider (8.1). Assume that Ψ = g
(
Xh(T )

)
, where the Vh-valued process {Xh(t); t ∈ [0, T ]}

is the solution of a spatially discretized (forward) stochastic partial differential equation
driven by W . Its time discretization is denoted by {Xj

h; j = 0, . . . , J}. We use an im-
plicit version of a time discretization for the forward and backward equation to avoid the
restrictive mesh constraint k ≤ Ch2 otherwise; see Figure 10.1.

Scheme 9.1 (One-step forward dynamic programming (ODP), Implicit Euler)
Let k = tj+1 − tj be the uniform time step for a net {tj}Jj=0 which covers [0, T ].

(i) Simulate Y J
h = Πh[g(XJ

h )].

(ii) For each j = J − 1, . . . , 0, simulate the Vh-valued random variables Zi,jh and Y j
h such

that ∀φh ∈ Vh (
Zi,jh , φh

)
= 1
k
E
[
∆jW

i(Y j+1
h , φh

)∣∣∣Ftj] ∀i = 1, . . . , n, (9.1)

(
Y j
h , φh

)
+ k

(
∇Y j

h ,∇φh
)

= E
[(
Y j+1
h , φh

)∣∣∣Ftj]+ k
n∑
i=1

(
νi(tj)Zi,jh , φh

)
. (9.2)

Equations (9.1)–(9.2) may be interpreted as a projection of the solution onto the available
information in each step while going backward in time; see also [BT04].

Scheme 9.1 is restated as an algebraic problem: Let φ`h ∈ Vh for ` = 1, . . . , L be ba-
sis functions of Vh. Consider Xj

h(x) =
∑L
`=1[−→Xj

h]`φ`h(x), Y j
h (x) =

∑L
`=1[−→Yj

h]`φ`h(x) and
Zi,jh (x) =

∑L
`=1[−→Z i,j

h ]`φ`h(x) with coefficient vectors −→Xj
h,
−→Yj
h,
−→Z i,j
h ∈ RL, where [·]` denotes

the `-th coordinate of the vector. Let−→ΥVh : Vh → RL be the mapping which returns for each
element in Vh the unique vector of coefficients according to the basis {φ`h; ` = 1, . . . , L}.

We denote by Stiff the stiffness matrix consisting of entries
(
∇φ`h,∇φwh

)
, where φ`h, φwh ∈ Vh

are basis functions of Vh, while Mass resp. Massj
νi

denote the mass matrices consisting of
entries

(
φ`h, φ

w
h

)
resp.

(
νi(tj)φ`h, φwh

)
. The equations (9.1)–(9.2) in Scheme 9.1 may then be

reformulated as follows:

71
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Scheme 9.2
(i) Compute Mass−→YJ

h = −→g h, where
[−→g h

]
`

=
(
g(XJ

h ), φ`h
)
for each basis function φ`h of

Vh.

(ii) For j = J − 1, . . . , 0, find the RL-valued random variables −→Z i,j
h and −→Yj

h such that

Mass−→Z i,j
h = 1

k
E
[
∆jW

i Mass−→Yj+1
h

∣∣Ftj ] ∀i = 1, . . . , n, (9.3)

and

(Mass +k Stiff)−→Yj
h = E

[
Mass−→Yj+1

h

∣∣Ftj ]+ k
n∑
i=1

Massj
νi
−→Z i,j
h . (9.4)

Due to the linearity of the problem and the tower property of conditional expectations, we
may reformulate equation (9.3) to

−→Z i,j
h = E

[
∆jW

i

k

J−1∏
r=j+1

((
Mass +k Stiff

)−1(Mass +
n∑

i′=1
∆rW

i′ Massr
νi′
))−→YJ

h

∣∣∣∣∣Ftj
]
, (9.5)

and equation (9.4) to

−→Yj
h = E

[
J−1∏
r=j

((
Mass +k Stiff

)−1(Mass +
n∑

i′=1
∆rW

i′ Massr
νi′
))−→YJ

h

∣∣∣∣∣Ftj
]
. (9.6)

This reformulation avoids nested conditional expectations thus a related error propaga-
tion.
The key ingredient for the simulation of the conditional expectations is the representation of
the coefficient vectors

(−→Yj
h,
−→Z i,j
h

)
of equations (9.5)–(9.6) at time tj by deterministic func-

tions
(−→
Y j
h(−→Xj

h),−→Z i,j
h (−→Xj

h)
)
evaluated at the approximation of the (forward) state equation

−→Xj
h, via

−→
Y J
h(−→x h) = Mass−1−→g h(−→x h), and

−→
Y j
h(−→x h) = E

[
J−1∏
r=j

((
Mass +k Stiff

)−1(Mass +
n∑

i′=1
∆rW

i′ Massrνi′
))−→

Y J
h(−→XJ

h)
∣∣∣−→Xj

h = −→x h

]
(9.7)

−→
Z i,j
h (−→x h) = E

[
∆jW

i

k
(9.8)

×
J−1∏
r=j+1

((
Mass +k Stiff

)−1(Mass +
n∑

i′=1
∆rW

i′ Massrνi′
))−→

Y J
h(−→XJ

h)
∣∣∣−→Xj

h = −→x h

]

for all j = 0, . . . , J − 1 and i = 1, . . . , n. These relations can be shown by induction, the
Markov chain property of {Xj

h; j = 0, . . . , J}, and a corollary of the monotone class theorem;
see also [GT14, Lemma 4.1] and [BM10, Theorem 2.1]. Hence it remains to approximate or
compute the deterministic functions −→Y j

h(·) and −→Z i,j
h (·) in (9.7)–(9.8). An explicit formula

for −→Y j
h(·) and −→Z i,j

h (·) may be obtained in the special case where the terminal datum uses a
linear map g(·).
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Remark 9.3
If the forward SPDE is the stochastic heat equation (6.3) (without control) which is dis-
cretized in time by the implicit Euler method, and moreover the function used for the
terminal condition is g(x) = cx with c ∈ R \ {0}, we can use

−→Xj+1
h = Qj,j+1

h (−→Xj
h) =

(
Mass +k Stiff

)−1(Mass−→Xj
h +

n∑
i′=1

Massj
σi′
−→Xj
h∆jW

i′
)

to express the coefficient vector
(−→Yj

h,
−→Z i,j
h

)
of equations (9.3)–(9.4) at time tj by

−→
Y j
h(−→Xj

h) = AY j
−→Xj
h, and −→

Z i,j
h (−→Xj

h) = AZi,j
−→Xj
h,

with (deterministic) matrices AY j ,AZi,j ∈ RL×L, which can be determined by the recur-
sion:

1. Set AY J := cI.

2. For j = J − 1 to 0 compute

AZi,j := AY j+1
(
Mass +k Stiff

)−1 Massj
σi
,

AY j :=
(
Mass +k Stiff

)−1 MassAY j+1
(
Mass +k Stiff

)−1 Mass

+ k
n∑

i′=1

(
Mass +k Stiff

)−1 Massj
νi′
AY j+1

(
Mass +k Stiff

)−1 Massj
σi′
.

Thus no conditional expectations need to be computed in this case to determine the deter-
ministic functions −→Y j

h(·) and −→Z i,j
h (·).

General terminal conditions g(·) however require to compute the conditional expectations
in (9.7)–(9.8). Several techniques exist for general BSDEs to estimate the elements of the
vectors in (9.7)–(9.8). In this thesis, the focus is on partitioning estimation, which is a
special case of the least squares Monte-Carlo method. Let the R-valued Θj denote an entry
of the vectors in (9.7)–(9.8). Then the least squares Monte-Carlo method (approximately)
evaluates v(−→x h) = E

[
Θj |
−→Xj
h = −→x h

]
based on the representation

v = argminφ(·) E
[
|φ(−→x h)−Θj |2

]
, (9.9)

among all Ftj -measurable functions φ : RL → R such that E
[
|φ(−→x h)|2

]
< ∞. In order

to allow for the computation of v(·), problem (9.9) is replaced by a finite-dimensional
minimization problem where the measurable function v : RL → R is replaced by a function
vR : RL → R in a finite dimensional linear subspace span{ηjr(·); r = 1, . . . , R} of L2(Ω;P).
As a consequence, coefficients {ajr; r = 1, . . . , R} in the representation vR(·) =

∑R
r=1 ajrηjr(·)

are then determined by minimizing the following least-squares problem

1
M

M∑
m=1

∣∣∣ R∑
r=1

ajrηjr(
−→Xj,m
h )−Θj,m

∣∣∣2, (9.10)

using M (where M � R) independent samples
{
(Θj,m,

−→Xj,m
h ); m = 1, . . . ,M

}
of (Θj , Xj

h).
In the case of partitioning estimates, the basis functions ηjr are given as indicator functions
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ηjr(·) := 1
Cjr

(·) for disjoint regions Cjr which partition Xj
h[Ω]. The minimizing coefficients

αjr in (9.10) are of the form

ajr = 1
#{−→Xj,m

h ∈ Cjr}

M∑
m=1

1
Cjr

(Xj,m
h )Θj,m ≈ E

[
Θj
∣∣∣−→Xj,m

h ∈ Cjr
]
,

where the convention 0
0 = 0 is used. Thus, the conditional expectation E

[
Θj |
−→Xj,m
h = −→x h

]
is approximated by

E
[
Θj
∣∣∣−→Xj,m

h = −→x h

]
≈

R∑
r=1

( 1
#{−→Xj,m

h ∈ Cjr}

M∑
m=1

1
Cjr

(−→Xj,m
h )Θj,m

)
· 1

Cjr
(−→x h). (9.11)

To sum up, for every −→x h ∈
−→Xj,m
h [Ω], the partitioning estimator returns the local average of

those Θj,m whose−→Xj,m
h has been in the same region Cj· as−→x h. Note that this approach is less

time and memory consuming in comparison with a usual least squares Monte-Carlo method,
where a singular value decomposition of a M × R matrix has to be computed and stored
at each time-step. Here, we need only two vectors, one indicating which region Cjr contains
the realization of −→Xj,m

h , and a second that stores the amount of visits #{−→Xj,m
h ∈ Cjr} for

each region Cjr .

In order to verify convergence (see [GKKW02]) of the partitioning estimator (9.11) in the
computation of the vectors in (9.7) resp. (9.8), truncation criteria were specified there which
were never met in the simulations below. In addition, the condition E

[
|Θj |2

]
<∞ is needed

and can be verified for each entry in the argument of the conditional expectations in (9.7)
resp. (9.8). For a detailed summary and error analysis of the least squares Monte-Carlo
method for BSDEs see the works [BD07,GLW05,GT14], the work [GKKW02] for a error
analysis and a summary of partitioning estimates.

Partitioning estimates for BSDEs are discussed in [GLW05], including local hypercube basis
functions or local Voronoi basis functions. Since the (forward) SPDE is a high dimensional
problem (L dimensions with L ∼ h−d for a discretization of a d-dimensional domain), a
usual hypercube basis approach (HC) is not practicable, where each entry is discretized
using e.g. a uniform mesh.

In the simulations which are carried out below, the (forward) SPDE (6.3) is driven by a
discretization of colored (in space) noise, which acts on all L entries of the coefficient vector
−→Xj
h, see e.g. Figure 9.1. The values at (neighboring) nodes show dependencies in those

cases. We use numerical strategies which take advantage of the related spatial regularity
of the solution and discretizes −→Xj

h[Ω] according to a partition of the space of functions Vh,
such as the Voronoi partition basis approach (V).

Voronoi Partition Basis (V):

(I) Simulate R additional paths {X̂j
h,r; j = 0, . . . , J} of the (forward) SPDE.

(II) Define for each time-step j = 1, . . . , J − 1:
Cjr :=

{
Φ ∈ Vh; ‖Φ− X̂j

h,r‖L2 < inf
r 6=v
‖Φ− X̂j

h,v‖L2
}
.

(III) Define the local basis function ηjr(
−→Φ h) := 1

Cjr

(−→Υ−1
Vh(−→Φ h)

)
for −→Φ h ∈

−→Xj
h[Ω].
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(a) Setup A (n = 1, ν1(x) ≡ 1)
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(b) Setup B (n = 5, νi(x) = 1
i sin(πxi))

Figure 9.1. Realizations of the approximation of the (forward) SPDE Xj
h at time tj = 0.2

for Example 10.1 using Setups A and B.

As a second strategy we partition the set of functions −→Xj
h[Ω] into regions which are equally

likely. This strategy is similar to the “adaptive local basis approach” in [BW12], but
different in the construction. Suppose we want to construct R = 2amount many regions in
RL. Suppose we construct R = 2amount many regions in RL.

Binary Tree Cuboids (BTC):

(I) Simulate V = P · 2paths, P ∈ N many additional paths {X̂j
h,v; j = 0, . . . , J} of the

(forward) SPDE (V � R should hold).

(II) For each time-step j = 1, . . . , J − 1 do:

(1) Define Sj0,1 consisting of {X̂j
h,v; v = 1, . . . , V }.

(2) For p = 1, . . . , amount + 1 do:
For q = 1, . . . , 2p−1 do:

• Define Sj := Sjp−1,q consisting of {X̂j
h,v′ ; v′ = 1, . . . , 21−p · V }.

• Find the entry ` = 1, . . . , L in the coefficient vector−→ΥVh(X̂j
h,v′) for X̂

j
h,v′ ∈ Sj

which possesses the largest standard deviation; denote it by `p,q.

• Compute the median medp,q of
[−→ΥVh(X̂j

h,v′)
]
`p,q

.

• Divide the (sub-) sample Sj into two parts Sj = Sjp,q∪S
j
p,2p−1+q according to

whether
[−→ΥVh(X̂j

h,v′)
]
`p,q

> medp,q holds or not. Note that both subsamples
Sjp,q and S

j
p,2p−1+q contain the same amount of realizations X̂j

h,v′ ∈ S
j
p−1,q.

(3) Set R := 2amount. Construct the region Cjr which contains all realizations of
Sjamount+1,r using the information (`p,q, medp,q).

(III) Define the local basis function ηjr(
−→Φ h) := 1

Cjr

(−→Φ h

)
for −→Φ h ∈

−→Xj
h[Ω].
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The first two steps in the construction of the (BTC) mesh are illustrated in Figures 9.2
and 9.3.

This algorithm divides the initial sample Sj0,1 into R many subsamples each containing
the same amount of realizations X̂j

h,v. In order to identify the region Cjr where a new
realization of Xj

h has taken its value, we have to analyze the current binary tree. Therefore,
only amount many checks are necessary. The crucial point of the approach (BTC) is to
decide which entry ` = 1, . . . , L of the coefficient vector should be divided into two parts. In
the proposed procedure above and in all performed simulations, the entry which possesses
the maximum standard deviation is taken, but other criteria are also possible.

1 2 3 4 5
0

0.5
med1,1

1.0

nodes

Binary Tree - Level 1

node 3
if [−→Φh]3 > med1,1 if [−→Φh]3 ≤ med1,1

Figure 9.2. First step in the construction of the (BTC) mesh: The additional realizations
of Xj

h ( ) are divided according to the value at node 3 and the median
med1,1 ( ) into two subsets Sj1,1 ( ) and Sj1,2 ( ).

1 2 3 4 5
0

0.5

med2,1

1.0

nodes

Binary Tree - Level 2

node 3

node 4

if [−→Φh]3 > med1,1 if [−→Φh]3 ≤ med1,1

if [−→Φh]4 > med2,1 if [−→Φh]4 ≤ med2,1

Figure 9.3. Second step in the construction of the (BTC) mesh: The realizations in
Sj1,1 ( ) are divided according to the value at node 4 and the median
med2,1 ( ) into two subsets Sj2,1 ( ) and Sj2,2 ( ).

The Voronoi partition basis (V), as well as the Binary Tree Cuboids (BTC) construct the
regions according to the distribution ofXj

h by evaluating additional independent simulations
of Xj

h. The main difference is that the method (V) constructs one region based on a single
additional realization, while (BTC) concentrates several realizations and constructs then
one region for an ensemble of realizations: this makes the partition more robust. Despite
of their success in simulations, a disadvantage of both “adaptive strategies” is the lack of
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theoretical support, which exists for (HC); see e.g. [GLW05]. For a general convergence
analysis of partitioning estimation procedures similar to (V), (BTC) and (HC) to estimate
a single conditional expectation we refer to [GKKW02, Chapter 13].

A computational study of Scheme 9.1 in combination with (BTC) or (V) is performed in
Section 10.1, where the scheme in Remark 9.3 is used to provide reference solutions in the
special case of terminal data g(x) = cx.

9.2. Forward-backward stochastic heat equation

We consider two algorithms to simulate the FBSPDE (8.4)–(8.5) by approximating the
deterministic functions via least squares Monte-Carlo. The first algorithm combines the
Picard iteration (8.6)–(8.7) with Scheme 9.1. In practical studies the algorithm only termi-
nates for moderate terminal times T > 0, which reflects the use of a contraction property in
the proof of Theorem 7.2. To overcome this limitation, the new stochastic gradient method
is proposed as a second algorithm in Subsection 9.2.2. The implicit Euler method is applied
to both, the forward equation (8.4) as well as the backward equation (8.5).

A third strategy exploits the linearity of the problem and uses iterative substitution to arrive
at representations of involved deterministic functions. This new scheme (see Remark 9.6)
is restricted to stochastic linear-quadratic problems, and hence serves here as a source for
reference data for the two algorithms above in this special case.

9.2.1. Picard type algorithm

We consider the following Picard type algorithm to resolve the forward-backward character
of the system (8.4)–(8.5):

Scheme 9.4 (Picard type (ODP) scheme for stochastic control)
(1) Set Y(0),j

h (·) ≡ −αU j,init
h for each j = 0, . . . , J − 1.

(2) Iterate v = 1, 2, . . . until a stopping criterion is met:

(i) FSPDE: Compute X(v),0
h = Πhx0. For each j = 0, . . . , J − 1, simulate the

Vh-valued random variables X(v),j+1
h such that ∀φh ∈ Vh(

X
(v),j+1
h , φh

)
+ k

(
∇X(v),j+1

h ,∇φh
)

=
(
X

(v),j
h , φh

)
− k

( 1
α
Y(v−1),j
h (X(v),j

h ), φh
)

+
n∑
i=1

(
νi(tj)X(v),j

h , φh
)
∆jW

i.
(9.12)

(ii) BSPDE: Set Y (v),J
h = Πh

[
Dg(X(v),J

h )
]
. For each j = J − 1, . . . , 0, simulate the

Vh-valued random variables Z(v),i,j
h and Y (v),j

h such that ∀φh ∈ Vh

(
Z

(v),i,j
h , φh

)
= 1
k
E
[
∆jW

i(Y (v),j+1
h , φh

)∣∣∣Ftj] ∀i = 1, . . . , n, (9.13)
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and(
Y

(v),j
h , φh

)
+ k

(
∇Y (v),j

h ,∇φh
)

(9.14)

= E
[(
Y

(v),j+1
h , φh

)
+ k

(
X

(v),j
h − X̃(tj), φh

)∣∣∣Ftj]+ k
n∑
i=1

(
νi(tj)Z(v),i,j

h , φh
)
.

Set Y(v),j
h (X(v),j

h ) = Y
(v),j
h .

This scheme is proposed in [BZ08] for general FBSDEs. If compared to the Picard itera-
tion used in the proof of Theorem 8.4, the term Y

(v−1),j
h in the state equation is replaced

by Y(v−1),j
h (X(v),j

h ) to guarantee that the dimension of the underlying Markovian process
X

(v)
h does not increase with the amount of Picard iterations. Computational experiments

show that constructing the basis of Y(v−1),j
h (·) according to the law of X(v−1),j

h while being
evaluated by X(v),j

h in (9.12) does not seriously affect the simulation results. Similarly to
Remark 9.3, a scheme may also be constructed from Scheme 9.4 for stochastic LQ prob-
lems, where the linearity in Xh of the drift in the adjoint equation (7.3) can be exploited
to express the solution of (9.13)–(9.14) explicitly in terms of a deterministic function of
the forward SPDE avoiding the approximation of conditional expectations (see also Re-
mark 9.6). For general g(·) however the deterministic functions −→Y (v),j

h (·) and −→Z (v),i,j
h (·)

have to be approximated by −→Y (v),j
h,R (·) and −→Z (v),i,j

h,R (·) using the partition estimation together
with the approaches (V) and (BTC). Here we may again exploit linearity of the backward
equation to reformulate equation (9.13)–(9.14) similarly to the reformulation (9.5)–(9.6) in
order to avoid nested conditional expectations.

9.2.2. Stochastic gradient algorithm

This algorithm constructs iterates which successively decrease the functional (6.2), by using
the maximum principle (7.4), where control iterates (after discretization in space and time)
are approximated by the deterministic function U jh,R(·) =

∑R
r=1 ujh,r1Cjr (·) with the Voronoi

partition method (V). The formulation of the stochastic gradient method then uses the
coefficients ujh,r, and can be formulated as follows:

Scheme 9.5 (Stochastic gradient method)
(1) Set u(0),j

h,r ≡ U
j,init
h for each basis region r = 1, . . . , R and each j = 0, . . . , J − 1.

(2) Iterate v = 1, 2, . . . until a stopping criterion is met:

(i) FSPDE: Compute X(v),0
h = Πhx0. For each j = 0, . . . , J − 1, simulate the

Vh-valued random variables X(v),j+1
h such that ∀φh ∈ Vh(

X
(v),j+1
h , φh

)
+ k

(
∇X(v),j+1

h ,∇φh
)

=
(
X

(v),j
h , φh

)
+ k

(
U (v−1),j
h,R (X(v),j

h ), φh
)

+
n∑
i=1

(
νi(tj)X(v),j

h , φh
)
∆jW

i.
(9.15)
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(ii) BSPDE: Set Y (v),J
h = Πh

[
Dg(X(v),J

h )
]
. For each j = J − 1, . . . , 0 simulate the

Vh-valued random variables Z(v),i,j
h and Y

(v),j
h according to (9.13)–(9.14) and

the partition estimation method. Obtain the approximation of the regression
function Y(v),j

h,R (·) =
∑R
r=1 y(v),j

h,r 1
C

(v),j
r

(·).

(iii) Gradient step: Compute the coefficients u(v),j
h,r of the function U (v),j

h,R (·) =∑R
r=1 u(v),j

h,r 1
C

(v),j
r

(·) through

u(v)
h = u(v−1)

h − σ(v)g(v−1)
h , (9.16)

where g(v−1)
h := −

(
αu(v−1)

h + y(v)
h

)
.

Note that the objects u(v)
h , g(v−1)

h , and y(v)
h in equation (9.16) involve all regions and relevant

time steps {C(·),j
r ; r = 1, . . . , R, j = 0, . . . , J − 1}. The basis regions C(v),j

r change in each
iteration, since they depend on the law of X(v),j

h . However, the same increments {∆jW
i
r}

are used in the construction of the additional paths and thus in the construction of the
basis regions C(v),j

r . In (9.16) we use the coefficient u(v−1)
h,r corresponding to the region

C
(v−1),j
r as precursory coefficient to update the coefficient u(v)

h,r corresponding to the region
C

(v),j
r . Computational experiments show that the regions C(v),j

r only slightly change and
that this approximation does not seriously influence the simulation results. If compared to
Scheme 9.4, the Scheme 9.5 terminates for arbitrary times T > 0 in all studies. For the
computation of the step size σ(v) in equation (9.16) we consider an adaption of the Armijo
method (AR):

1. Approximate the current functional J (v−1) using u(v−1),j
h,r .

2. Iterate s = 0, 1, 2, . . . until a stopping criterion is met:

• Compute u(v),s
h = u(v−1)

h − σ?βsg(v−1)
h .

• Approximate the functional J (v−1),s using u(v),s
h .

• Stop if J (v−1),s − J (v−1) ≤ −σσ?βs
J−1∑
j=0

R∑
r=1
‖g(v−1),j,r

h ‖2L2 .

3. Set u(v)
h := u(v),s

h .

This scheme offers a general strategy to solve stochastic optimal control problems. For
the stochastic LQ problem (6.2)–(6.3) we may substitute iterates successively to obtain a
formula for an approximation of the optimal feedback control without computing conditional
expectations. This leads to restricted huge computational savings, and improved resolution,
thus providing a convenient platform for comparative computational studies for the more
general schemes above.

Remark 9.6
1. Suppose g(x) := 1

2‖x−X̃(T )‖2L2 in the cost functional (6.2). Consider equations (9.12)–
(9.14) in the limit (i.e., without Picard iteration). The coefficient vectors

(−→Y?,j
h ,
−→Z ?,i,j
h

)
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at time tj of its corresponding reformulation as algebraic problems can be expressed
using

−→X?,j+1
h =

(
Mass +k Stiff

)−1(Mass−→X?,j
h −

k

α
Mass

(
AY ?,j

−→X?,j
h +−→V Y ?,j

)
+

n∑
i′=1

Massj
σi′
−→X?,j
h ∆jW

i′
) (9.17)

by
−→
Y ?,j
h (−→X?,j

h ) = AY ?,j
−→X?,j
h +−→V Y ?,j , (9.18)

with (deterministic) AY ?,j ∈ RL×L and −→V Y ?,j ∈ RL, which can be determined by the
recursion:

a) Set AY ?,J := I and −→V Y ?,J := −
−→
X̃J

h .
b) For j = J − 1 to 0 compute

AY ?,j :=
(
I + k

α

(
Mass +k Stiff

)−1 MassAY ?,j+1
(
Mass +k Stiff

)−1 Mass

+ k2

α

(
Mass +k Stiff

)−1 Mass
(
Mass +k Stiff

)−1 Mass
)−1

·
((

Mass +k Stiff
)−1 MassAY ?,j+1

(
Mass +k Stiff

)−1 Mass

+ k

n∑
i′=1

(
Mass +k Stiff

)−1 Massj
νi′ AY ?,j+1

(
Mass +k Stiff

)−1 Massj
σi′

+ k
(
Mass +k Stiff

)−1 Mass
(
Mass +k Stiff

)−1 Mass
)
,

and

−→
V Y ?,j :=

(
I + k

α

(
Mass +k Stiff

)−1 MassAY ?,j+1
(
Mass +k Stiff

)−1 Mass

+ k2

α

(
Mass +k Stiff

)−1 Mass
(
Mass +k Stiff

)−1 Mass
)−1

·
((

Mass +k Stiff
)−1 Mass

−→
V Y ?,j+1 − k

(
Mass +k Stiff

)−1 Mass
−→
X̃j+1
h

)
.

We motivate the first and the second step of this recursion: By −→Y?,J
h =

(−→X?,J
h −

−→
X̃J

h

)
and step a), we obtain (9.18) for j = J .
Now, use (9.18) and (9.17) to compute −→Z ?,i,J−1

h

−→Z ?,i,J−1
h = 1

k
E
[−→Y?,J

h ∆J−1W
i|FtJ−1

]
= 1
k
E
[(
AY ?,J

−→X?,J
h +−→V Y ?,J

)
∆J−1W

i|FtJ−1

]
= AY ?,J

(
Mass +k Stiff

)−1 MassJ−1
σi
−→X?,J−1
h .
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Using this in −→Y?,J−1
h yields

−→Y?,J−1
h = E

[(
Mass +k Stiff

)−1 Mass
(−→Y?,J

h + k
(−→X?,J

h −
−→
X̃J

h

))∣∣FtJ−1

]
+ k

n∑
i′=1

(
Mass +k Stiff

)−1 MassJ−1
νi′
−→Z ?,i′,J−1
h

= E
[(

Mass +k Stiff
)−1 Mass

(
AY ?,J

−→X?,J
h +−→V Y ?,J + k

(−→X?,J
h −

−→
X̃J

h

))
|FtJ−1

]
+ k

n∑
i′=1

(
Mass +k Stiff

)−1 MassJ−1
νi′

AY ?,J
(
Mass +k Stiff

)−1 MassJ−1
σi′
−→X?,J−1
h

!= AY ?,J−1
−→X?,J−1
h +−→V Y ?,J−1 .

Inserting (9.17) for −→X?,J
h and then identifying AY ?,J−1 and −→V Y ?,J−1 yields the result.

Note that (9.18) in combination with the discrete version of (7.4) yield

−→
U ?,j
h (−→X?,j

h ) := − 1
α

−→
Y ?,j
h (−→X?,j

h ) = − 1
α

(
AY ?,j

−→X?,j
h +−→V Y ?,j

)
, (9.19)

which is a discrete version of the optimal feedback law.

2. A different approach to approximate the optimal feedback control of the stochastic LQ
problem (6.2)–(6.3) would be via (space-) time discretization of the stochastic Riccati
equation; see [YZ99] for the stochastic LQ problem involving an SDE, and [KK91] for
the deterministic LQ problem involving a PDE. The latter strategy leads to a discrete
version of the optimal control law which approaches but is different from (9.19), which
rests on the time discretization Scheme 9.4 and successive substitution as detailed in 1.





10. Computational studies

We report on computational studies for Schemes 9.1 and 9.4 which utilize the different
mesh strategies from Chapter 9. We study discretization effects for the BSPDE (6.1) in
Section 10.1. Section 10.2 addresses the simulation of the FBSPDE (FBSHE) focussing on
the Picard type method and the stochastic gradient method.

10.1. Backward stochastic heat equation

Our focus is on stability properties of computed iterates, behavior of the different partition-
ing approaches, as well as empirical rates of convergence w.r.t. space and time discretization.
The studies for Example 10.1 evidence that

• a CFL condition is needed for the explicit Euler scheme, but not for its implicit
variant;

• the (BTC) method yields improved results if compared with the (V) method;

• (space) the empirical order of convergence is slightly better if compared with the
results in Theorem 8.2;

• (time) the empirical order of convergence is 0.5, which is stable w.r.t. the dimension
of the discretized state space;

• a rougher resolution of the triangulation of the forward equation (10.1) (hF > hB)
yields a comparable approximation of the backward equation (10.2) while saving com-
putational time.

Example 10.1
Let D ⊂ R. Consider (0 ≤ t ≤ T )

dX(t) = µ∆X(t) dt+
n∑
i=1

σi(t)X(t) dW i(t), X(0) = x0, (10.1)

and

dY (t) =
[
−δ∆Y (t)−

n∑
i=1

νi(t)Zi(t)
]

dt+
n∑
i=1

Zi(t) dW i(t), Y (T ) = g(X(T )), (10.2)

with homogeneous Dirichlet boundary conditions for both, X and Y .

83
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Example 10.1 is studied for different choices of parameters, see Table 10.1: Setups A and C
focus on multiplicative scalar noise, Setup B on a rough approximation of colored noise. If
not specified differently, Scheme 9.1 together with the approaches (V) and (BTC) is used
to simulate Example 10.1, where both equations (10.1)–(10.2) are discretized by P1-finite
elements on the same triangulation with h = 0.05 and k = 0.02. For Setups A and B, the
scheme from Remark 9.3 is used to provide reference solutions

(
Ŷjh(·), Ẑ i,jh (·)

)
.

Table 10.1. Parameter Setups A, B, and C for Example 10.1.

D T µ δ x0(x) g(x) n σi(t, x) νi(t, x)

Setup A (0, 1) 0.50 0.20 0.20 sin(πx) 5x 1 1.0 1.0
Setup B (0, 1) 0.50 0.20 0.20 sin(πx) 5x 5 1

i sin(πxi) 1
i sin(πxi)

Setup C (0, 1) 0.50 0.20 0.20 sin(πx) 2x3 1 1.0 1.0

Scheme 9.1 is based on the implicit Euler method, which is more stable if compared with the
explicit Euler method: the implicit and the explicit Euler method yield matchable results
only in case the relation k ≤ h2 is met for the latter; see Figure 10.1 (a) which shows the
difference diff IE := suptj

(
E
[
‖Yj,IEh,R (Xj

h(ω)) − Yj,EEh,R (Xj
h(ω))‖2L2

])1/2. Moderate values of
the time discretization parameter k are preferred, due to the high computational demands,
which is why the implicit Euler method is chosen below. Figures 10.1 (b), (c) show how
sampled realizations distribute in the regions Cjr . A proper sampling is important since in
each region Cjr a (local) expectation value has to be approximated.
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(b) (V) R = 64

1 25 50 64

0.10
0.20
0.30
0.40
0.48

basis function

tim
e

1.5

1.55

1.6
·10−2

(c) (BTC) R = 64

Figure 10.1. Empirical stability of the explicit Euler scheme using Setup A together with
(V), R = 32, and M = 1.0 · 106 is shown in (a). Frequency of the regions Cjr
during the computation of Setup A with R = 64 is shown in (b) and (c).

Figure 10.2 shows that an accurate approximation of the BSDPE (10.2) can be achieved
by using Scheme 9.1 and the partition estimation method. Moreover it shows that by
increasing both, the amount of paths M as well as the amount of basis functions R,
Scheme 9.1 with approaches (V) or (BTC) converge to the reference solution. This
is quantified by analyzing the errors errYh := suptj

(
E
[
‖Ŷjh(Xj

h) − Yjh,R(Xj
h)‖2L2

])1/2 and
errZh :=

(
E
[
k
∑J−1
j=0

∑n
i=1 ‖Ẑ

i,j
h (Xj

h)−Zi,jh,R(Xj
h)‖2L2

])1/2. The studies show that increasing
the amount of pathsM only improves the approximation of Yjh(·) and Z i,jh (·) up to a certain
degree, which may then only be improved by increasing the number R of basis functions
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and the amount of paths M simultaneously.
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Figure 10.2. Behavior of the errors errYh and errZh of the approximation of Example 10.1
using the approach (BTC) R = 64 ( ), R = 128 ( ), R = 256 ( ), the
approach (V) with R = 32 ( ), R = 64 ( ), and R = 128 ( ).

Next, we study the convergence behavior of (Yh, Zh) with respect to the space discretization
parameter. For this purpose, we simulate paths to approximately solve Example 10.1

a) in the case of Setup B with the help of the formulas in Remark 9.3 using different
space discretization parameters h ∈ { 1

10 ,
1
15 ,

1
20 ,

1
25 ,

1
30 ,

1
50 ,

1
60} and compare them with

a reference solution
(
Ŷjh(·), Ẑ i,jh (·)

)
which is simulated using h? = 1/300;

b) in the case of Setup C with the help of method (V) (R = 128, M = 1.0 · 107) using
different space discretization parameters h ∈ { 1

10 ,
1
15 ,

1
20 ,

1
25 ,

1
30} and compare them

with a reference solution
(
Ŷjh,R(·), Ẑ i,jh,R(·)

)
which is simulated using h? = 1/60.

Calculated errors which use 20.000 paths are illustrated in Figure 10.3. The empirical
rate of convergence for

(
E
[
k
∑J
j=0 ‖Ŷ

j
h(Xj

h)− Yjh(Xj
h)‖2L2

])1/2 is 2.01, which coincides with
Theorem 8.2. Surprisingly, the rate for Z obtained in the computational study is twice the
rate that is given in Theorem 8.2.

The convergence behavior of (Yh, Zh) with respect to the time discretization parameter k is
displayed in Figure 10.3 (c). We simulate Example 10.1 in the case of Setup B with the help
of the formulas in Remark 9.6 using different choices ki = T/Ni (Ni ∈ {10, 20, 25, 50}), and
compare them with a reference solution

(
Ŷjh(·), Ẑ i,jh (·)

)
which is simulated with N? = 100.

We obtain an empirical rate close to 0.5 for both, the error in Y and in Z, which is stable
w.r.t. refined spatial meshes. This observation complements the theoretical studies on time
discretization in [Zha04], which motivates dependence on the dimension of the state space.
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Figure 10.3. Rates of convergence of the space discretization (a), (b) and time dis-
cretization (c) indicating the behavior of (E

[
k
∑J
j=0 ‖Ŷ

j
h(Xj

h)−Yjh(Xj
h)‖2L2

]
)1/2

( ), (E
[
suptj ‖Ŷ

j
h(Xj

h) − Yjh(Xj
h)‖2L2

]
)1/2 ( ), (E

[
k
∑J
j=0 ‖∇[Ŷjh(Xj

h) −
Yjh(Xj

h)]‖2L2
]
)1/2 ( ), (E

[
k
∑J−1
j=0 ‖Ẑ

j
h(Xj

h) − Zjh(Xj
h)‖2L2

]
)1/2 ( ), as well

as reference slopes h1 ( ), h2 ( ), k1/2 ( ).

In the simulations discussed so far, the same triangulation is used for both, the space
discretization of the forward and for the backward equation. However, by choosing a rougher
triangulation for the forward equation hF > hB, a significant amount of simulation time
as well as memory can be saved, while simulations are comparable. This is pointed out in
Table 10.2 for Setups A,B, and C which displays the differences

diffY :=
(
E
[

sup
j=0,...,J

‖Yj(hF ,hB),R(Xj
hF

)− YjhB ,R(Xj
hB

)‖2L2

‖YjhB ,R(Xj
hB

)‖2L2

])1/2

,

diffZ :=
(
E
[
k
J−1∑
j=0

∑n
i=1 ‖Z

i,j
(hF ,hB),R(Xj

hF
)−Z i,jhB ,R(Xj

hB
)‖2L2∑n

i=1 ‖Z
i,j
hB ,R

(Xj
hB

)‖2L2

])1/2

for (hF , hB) = ( 1
10 ,

1
20), (BTC), and (V) using M = 2.0 · 107 paths.

Table 10.2. Different mesh sizes in the triangulation of the forward paths: Differences diffY

and diffZ , as well as the absolute simulation time computed on an Intel Core
i5-4670 3.40GHz processor with 16GB RAM in double precision arithmetic.

diffY diffZ hB time (hF , hB) time

Setup A (BTC) R = 256 0.0069 0.0014 5h 38min 3h 07min
(V) R = 128 0.0069 0.0014 10h 21min 5h 44min

Setup B (BTC) R = 256 0.0145 0.0147 12h 07min 6h 58min
(V) R = 128 0.0551 0.0064 16h 49min 9h 34min

Setup C (BTC) R = 256 0.0204 0.0041 5h 35min 3h 07min
(V) R = 128 0.0204 0.0042 10h 20min 5h 42min
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10.2. Forward-backward stochastic heat equation

In this section, we present computational studies for the forward-backward stochastic heat
equation (FBSHE), which use the Picard type (ODP) scheme (i.e., Scheme 9.4, in combina-
tion with (V)), the stochastic gradient method (i.e., Scheme 9.5), and a direct computation
avoiding the computation of the conditional expectations (Remark 9.6) in the case of the
stochastic LQ problem.

The studies carried out for Example 10.2 show that

• to use the deterministic optimal control U?,deth as initial value U init
h significantly reduces

the number of iterations for both schemes;

• Scheme 9.5 returns the same solution as Scheme 9.4 in cases where Scheme 9.4 con-
verges. Scheme 9.4 only converges for short durations T > 0, while Scheme 9.5
terminates for general T ;

• the use of the regions C(v−1),j
r for the computation of the forward equation X(v),j

h in
the v-th Picard iteration step or gradient iteration step does not crucially affect the
simulations in both Schemes 9.4–9.5.

• (space) the empirical order of convergence is slightly better if compared with the
results in Theorem 8.4;

• (time) the empirical order of convergence is slightly less then 0.5.

Example 10.2 (Stochastic optimal control problem)
Let D ⊂ R. Denote by µ > 0 a constant in front of the Laplacian in the state equation (6.3).
Find a minimum of (6.2) subject to (6.3).

We consider three different approaches for its simulation: the Picard type (ODP) scheme
(Scheme 9.4) with the partition estimation method, the stochastic gradient method in
Scheme 9.5, both schemes using R = 128 Voronoi regions and M = 1.0 · 106 paths, and
the scheme from Remark 9.6 in the case of the stochastic LQ problem (i.e., g(·) quadratic
in (6.2)–(6.3)). In each approach, we use P1-finite elements and the same triangulation
for both, the state and adjoint equation. If not specified differently, we choose h = 1/20,
k = T/15, and g(x) := κ

2‖x−X̃(T )‖2L2 in our simulations. In all simulations, we approximate
the cost functional J (Xh, Uh) with the help of M̃ = 100.000 paths, and the parameters of
the Armijo rule are set to σ = 0.01, β = 0.5, and σ? ∈ {5, 10, 100}, depending of the
setup.

Table 10.3. Parameter Setups D, E, F, and G for Example 10.2.

D T µ x0(x) n νi(t, x) (δ, α, κ) X̃(t, x)

Setup D (0, 1) 0.40 0.15 2 sin(πx) 20 sin(πxi)
(
1, 1

10000 , 0
)

Πh[T−t
T x0]

Setup E (0, 1) 0.05 0.20 2 sin(πx) 5 2
i sin(πxi)

(
1, 1

5000 , 0
)

Πh[2]
Setup F (0, 1) 0.25 0.15 2 sin(πx) 5 2

i sin(πxi)
( 1

2 ,
1

5000 ,
1
2
)

Πh[T−t
T x0]

Setup G (0, 1) 0.25 0.15 2 sin(πx) 5 2
i sin(πxi)

(
0, 1

5000 , 1
)

Πh[1]
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We consider different choices of parameters, see Table 10.3: Setup E focusses on a stochastic
optimal control problem for small time durations s.t. the Picard algorithm terminates.
Setups F andG reflect a more general setting, in which only the stochastic gradient method
or the direct computation terminate.

One trajectory of the approximation of the optimal stochastic control U?,jh (ω) and the corre-
sponding optimal state X?,j

h (ω) is illustrated in Figure 6.1 using the formulas in Remark 9.6
for Setup D with h = 1/60 and k = T/40.

10.2.1. Simulations for short time durations T > 0

We choose the scheme from Remark 9.6 to compute a reference solution for Setup E; its
cost functional is J (X?

h, U
?
h) = 0.01374, where E

[
δ
2k
∑J
j=0 ‖X

?,j
h −X̃(tj)‖2L2

]
= 0.00932, and

E
[
α
2 k
∑J
j=0 ‖U

?,j
h ‖2L2

]
= 0.00442.

The first method under consideration is the Picard type (ODP) scheme. The Picard itera-
tion stops if the distance of two consecutive cost functionals drops below a given tolerance
TOL = 5.0 · 10−6. Figure 10.4 shows the decay v 7→ J (X(v)

h ,U (v)
h,R(X(v)

h )) as the number of
iterations increases. Two different initial controls U j,inith are used for the simulation: the
trivial control (U j,inith ≡ 0), and the optimal deterministic control (U j,inith ≡ U?,j,deth ) which
we first compute by a steepest descent method; see e.g. [HPUU08]. Both initial values of the
Picard iteration return almost the same approximation of the stochastic optimal control,
which is close to the reference solution. However, to use the optimal deterministic control
as initial value for U?h significantly reduces required Picard iterations (for Setup F: 7 steps
compared with 22 steps).
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Figure 10.4. The behavior of the cost functional J (X(v)
h ,U (v)

h,R(X(v)
h )) ( ), its parts

E
[
δ
2k
∑J
j=0 ‖X

(v),j
h −X̃(tj)‖2L2

]
( ), and E

[
α
2 k
∑J
j=0 ‖U

(v),j
h,R (X(v),j

h )‖2L2
]
( )

in the simulation of Setup E by Scheme 9.4. The distance V(v)
D is shown in

part (c) for both initial controls (( ) for U?,j,deth ; ( ) for the trivial con-
trol).

The stochastic gradient method (Scheme 9.5) returns a similar result as Scheme 9.4, and
iterates monotonically decrease the functional value (Figure 10.5). The gradient iteration
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stops if the “squared norm of the gradient” G(v) := 1
R

∑R
r=1 k

∑J
j=0 ‖g

(v−1),j
h,r ‖2L2 is less than

a given tolerance TOL = 1.0 · 10−6.
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Figure 10.5. The behavior of the cost functional, its parts, and the distance V(v)
D in the

simulation of Setup E by Scheme 9.5.

Smallness of the variation between two consecutive Voronoi partitions is motivated in Fig-
ures 10.4 (c) and 10.5 (c) by quantifying V(v)

D :=
( 1
R

∑R
r=1 k

∑J−1
j=1 ‖X̂

(v),j
h,r −X̂

(v−1),j
h,r ‖2L2

)1/2:
we observe that constructing the coefficients and the basis functions in Y(v−1),j

h,R , resp. U (v−1),j
h,R ,

according to the law of X(v−1),j
h in (9.12), resp. (9.15), rather than X(v),j

h does not seriously
affect the simulation results.

10.2.2. Simulations for general settings

Next we consider the linear-convex stochastic optimal control problem (6.2)–(6.3) for Se-
tups F and G, where the Picard type (ODP) scheme (Scheme 9.4) diverges. Table 10.4
contains the resulting cost functionals and parts in the case of Setup F simulated using the
stochastic gradient method and the formulas of Remark 9.6. The approximation by using
stochastic gradient method improves by increasing the amount of regions R.

Table 10.4. Comparison of the resulting cost functionals using different controls and meth-
ods for Setup F.

J (X?
h, U

?
h) E

[
δk
2
∑
j ‖X

?,j
h − X̃(tj)‖2

L2

]
E
[
αk
2
∑
j ‖U

?,j
h ‖2

L2

]
E
[
g(X?,J

h )
]

U?h ≡ 0 0.112709 0.013530 0.0 0.099170
U?h ≡ U

?,det
h 0.085636 0.011064 0.000055 0.074518

Scheme 9.5 R = 32 0.011940 0.003437 0.000391 0.008112
Scheme 9.5 R = 64 0.011681 0.003353 0.000386 0.007942
Scheme 9.5 R = 128 0.011407 0.003371 0.000375 0.007661
Remark 9.6 0.009969 0.002004 0.000681 0.007284

Consider Setup G where g(x) := κ
(∫
D(1 + |(x(r)− X̃(T, r)|2)p/2 dr− 1

)
with p = 1.5. This

problem is not of LQ-type, and thus excludes its numerical approximation by the scheme
from Remark 9.6. The terminal time T > 0 is large such that Scheme 9.4 fails to converge,
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while Scheme 9.5 does. One path of the (approximate) optimal solution, and a plot of the
decay of the functional along the computed iterates are shown in Figure 10.6.
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Figure 10.6. One path of the optimal state X?,j
h and the optimal control U?,jh,R(X?,j

h (ω)) for
Setup G using the stochastic gradient method. The cost functional and its
parts is shown in part (c), where E

[
g(X(v),J

h )
]
is visualized by ( ).

Rates of convergence

We study the convergence behavior of (X?
h, Y

?
h , Z

?
h) with respect to time and space dis-

cretization using Example 10.2 with Setup D and fixed k = T/100. We simulate paths to
approximately solve Example 10.2 with the help of the formulas in Remark 9.6 using differ-
ent space discretization parameters h ∈ { 1

10 ,
1
15 ,

1
20 ,

1
25 ,

1
30}, and compare them with a refer-

ence solution
(
X̂?,j
h , Ŷ?,jh (X̂?,j

h ), Ẑ?,i,jh (X̂?,j
h )

)
, which is simulated using h? = 1/60. Calculated

errors which use 20.000 paths are illustrated in Figure 10.7. We find second order of con-
vergence for

(
E
[
k
∑J
j=0 ‖Ŷ

?,j
h (X?,j

h )−Y?,jh (X?,j
h )‖2L2

])1/2 and
(
E
[
k
∑J
j=0 ‖X̂

?,j
h −X

?,j
h ‖2L2

])1/2
as is stated in Theorem 8.4. Similarly as in the case of the BSHE, the observed rate for Z?
is twice the rate of what is given in Theorem 8.4.

Finally, we turn to time discretization errors which so far lack a theoretical analysis. For
empirical evidence of related rates, we fix h = 1/40 and simulate paths to approximately
solve Example 10.2 with the help of the formulas in Remark 9.6 using different discretization
parameters ki = T/Ni with Ni ∈ {10, 20, 25, 50}, and compare them with a reference solution(
X̂?,j
h , Ŷ?,jh (X̂?,j

h ), Ẑ?,i,jh (X̂?,j
h )

)
, which is simulated using N? = 100. We observe a rate close

to 0.5 for both, state and adjoint equation, while the rate improves for Z?.
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Figure 10.7. Rates of convergence of the space discretization (a), (b) and time discretiza-
tion (c) indicating the behavior of (E

[
k
∑J
j=0 ‖X̂

?,j
h − X?,j

h ‖2L2
]
)1/2 ( ),

(E
[
suptj ‖X̂

?,j
h −X

?,j
h ‖2L2

]
)1/2 ( ), (E

[
k
∑J
j=0 ‖∇[X̂?,j

h −X
?,j
h ]‖2L2

]
)1/2 ( ),

(E
[
k
∑J
j=0 ‖Ŷ

?,j
h (X?,j

h ) − Y?,jh (X?,j
h )‖2L2

]
)1/2 ( ), (E

[
suptj ‖Ŷ

?,j
h (X?,j

h ) −
Y?,jh (X?,j

h )‖2L2
]
)1/2 ( ), (E

[
k
∑J
j=0 ‖∇[Ŷ?,jh (X?,j

h )−Y?,jh (X?,j
h )]‖2L2

]
)1/2 ( ),

(E
[
k
∑J−1
j=0 ‖Ẑ

?,j
h (X?,j

h ) − Z?,jh (X?,j
h )‖2L2

]
)1/2 ( ), as well as reference slopes

h1 ( ), h2 ( ), k1/2 ( ), k1 ( ).
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11. Introduction

We consider the magnetization process m := (m1, . . . ,mN ) : [0, T ] × Ω → (S2)N within
the finite network of N ∈ N interacting ferromagnetic particles in the presence of thermal
fluctuations. A relevant application of this setting are single-molecule nanomagnets [FS10]
where the dynamics of each particle is described by the magnetizationmi : [0, T ]×Ω→ S2,
which is coupled with the remaining ones via the SDE system (α > 0; ν ≥ 0)

dmi =
(
mi ×Heff,i(m,ui)− αmi ×

(
mi ×Heff,i(m,ui)

))
dt+ νmi × ◦ dW i,

mi(0) = m0,i.
(11.1)

where Heff,i(m,ui) = Hani,i(mi)+Hd,i(mi)+Hexch,i(m)+Hext,i(ui) denotes the effective
field, which combines forces related to

• the anisotropy energy where Hani,i(mi) = CaniAmi, with A ∈ R3×3
diag, to favor mag-

netizations mi which are (anti-)parallel to the easy axis e ∈ R3,

• the stray field, which prefers magnetizationsmi without surface charges; for simplicity
we choose Hd,i(mi) = −CdBimi, with Bi ∈ R3×3

diag; c.f. [AB09,ACLP11],

• the exchange energy which penalizes non-alignment of (neighboring) magnetizations
via Hexch,i(m) = Cexch

(
Cm

)
i
, for some positive definite C ∈ R3N×3N

sym , and

• the external force Hext,i(ui) = ui.

The constants Cani, Cd, Cexch ≥ 0 account for the strength of these forces. We refer
to [BBNP13,BMS09,NP13] for further details on the model. In (11.1), letW := (W 1, . . . ,WN )
denote an (R3)N -valued Wiener process on the filtered probability space (Ω,F ,F,P) to rep-
resent uncontrolled thermal fluctuations from a surrounding heat bath. A practically rele-
vant task is to control switching dynamics of ferromagnetic spins; for example, controlled
precessional switching requires to properly adjust the intensity and duration to initially
overcome anisotropic forces of magnetizations which are aligned with the easy axis, and to
later reduce this field to eventually allow relaxation forces to take over; see Figure 15.1,
and [BMS09] for further details on this problem. This crossing of energy barriers is allevi-
ated at positive temperatures which in the model is represented by the stochastic forcing
term.

First studies concerning the deterministic optimal control of ferromagnetic dynamics are
carried out in [AB09,ACLP11] in the case of an finite ensemble of nanomagnetic particles,
and in [DKPS15] for infinitely many particles, i.e. (11.1) for ν = 0 is a PDE. To our
knowledge, this is the first work which deals with the related stochastic control problem to
optimally control magnetization dynamics in the presence of thermal noise.
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Problem 11.1 (Stochastic control problem)
Let δ, κ, ν ≥ 0, T, α, λ > 0, and N ∈ N. Let U ⊂ (R3)N , m̃ ≡ (m̃1, . . . , m̃N ) ∈
L2(0, T ; (S2)N

)
, h ∈ C1((S2)N ;R

)
, and m0 ≡ (m0,1, . . . ,m0,N ) ∈ (S2)N be given. Let

(Ω,F ,F,P) be a filtered probability space, and W an (R3)N -valued Wiener process. Find
a tuple

(m?,u?) :=
(
m?

1, . . . ,m
?
N ;u?1, . . . ,u?N

)
∈ L2

F

(
Ω;C

(
[0, T ]; (S2)N

)
× L2(0, T ;U

))
which minimizes

Jsto(m,u) := 1
2E
[∫ T

0

(
δ‖m(s)− m̃(s)‖2(R3)N + λ‖u(s)‖2(R3)N

)
ds+ κh

(
m(T )

)]
(11.2)

subject to equation (11.1).

The dependence on the control in the functional is quadratic, while it is linear in the drift
part of the SDE. This observation is relevant in Chapter 12, where we sketch the standard
construction of a weak solution π :=

(
Ω,F ,F,P,W ,u?

)
of Problem 11.1 for Assump-

tion C1 via relaxation using Young measure-valued F-adapted controls. The computational
simulation algorithm in Chapter 14 then bases on a discretization of the related necessary
optimality conditions with (S2)N -valued magnetization iterates, which is a coupled system
of forward-backward stochastic differential equations. The stochastic gradient method (see
Part II of the thesis) is then adopted to the present nonlinear SDE (11.1) to decrease the
energy Jsto along a finite sequence of controls, where updated search directions are obtained
via representations by approximate regression functions, which in turn are computed by a
least squares Monte-Carlo method to approximate involved conditional expectations. Com-
putational studies in Chapter 15 are reported which control switching dynamics of single
resp. multiple ferromagnetic chains in a surrounding heat bath to e.g. evidence different
high- vs. low-dimensional optimal controls.



12. Optimal control of a ferromagnetic
N-particle system

We prove existence of a weak stochastic control which solves Problem 11.1 via studying
the relaxed stochastic control problem, following the general setup in [YZ99]. Therefore we
need the following assumption.

Assumption C1
Let 0 ∈ U ⊂ (R3)N be compact.

Let (X, ‖ · ‖X) be the Polish space
(
C([0, T ]; (R3)N ), ‖ · ‖sup

)
or
(
L2(0, T ; (R3)N ), ‖ · ‖L2

)
.

Below, let LpF(Ω;X) denote the space of all F-adapted X-valued random variables X, such
that E[‖X‖pX

]
< ∞. We denote by V(T ;U) the space of all non-negative Radon measures

λ on [0, T ]× U such that

λ(B × U) = |B| ∀B ∈ B([0, T ]).

Then, λ ∈ V(T ;U) can be represented by λ( dt, du) = ν(t, du) dt for almost all t ∈ [0, T ],
where ν(t, ·) ∈ P(U) denotes the Radon-Nikodym derivative of λ. By Assumption C1,(
V(T ;U), ?⇀

)
is a compact Polish space.

A weak stochastic admissible control for Problem 11.1 is defined as follows:
Definition 12.1 (Weak stochastic admissible control)
The 6-tuple π :=

(
Ω,F ,F,P,W ,u

)
is called a weak stochastic admissible control, if

1. (Ω,F ,F,P) is a filtered probability space satisfying the usual assumptions;

2. W is an F-adapted (R3)N -valued Wiener process on (Ω,F ,F,P);

3. u is an F-adapted control, such that u ∈ L2
F
(
Ω;L2(0, T ;U)

)
;

4. there exists an F-adapted unique strong solution m ∈ L2
F
(
Ω;C([0, T ]; (R3)N )

)
of the

state equation (11.1) under u and m0;

5.
(
m,u

)
satisfies Jsto(m,u) <∞.

By Uad(m0;T ) we denote the space of all weak stochastic admissible controls.

Then we can precise Problem 11.1: Find π? ∈ Uad(m0;T ) which minimizes

Jsto(π) := 1
2E
[∫ T

0

(
δ‖m(s)− m̃(s)‖2(R3)N + λ‖u(s)‖2(R3)N

)
ds+ κh

(
m(T )

)]
. (12.1)
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Theorem 12.2 (Existence of a weak stochastic control)
Let T > 0 and m0 ∈ (S2)N be fixed and Assumption C1 be fulfilled. There exists a weak
optimal control π? ∈ Uad(m0;T ), i.e.

Jsto(π?) = inf
π∈Uad(m0;T )

Jsto(π).

Proof
The proof follows the general setup of [YZ99, Chapter 2, Theorem 5.3], which is not di-
rectly applicable since assumption (SE3), known as “Roxin’s convexity condition”, is not
valid here.
Choose a filtered probability space (Ω,F ,F,P) and let W be an F-adapted (R3)N -valued
Wiener process on it. We have Uad(m0;T ) 6= ∅, since for u ≡ 0 there exists an F-adapted
unique strong solution m ∈ L2

F
(
Ω;C([0, T ]; (R3)N )

)
of equation (11.1).

Let now πn =
(
Ωn,Fn,Fn,Pn,W n,un

)
be a minimizing sequence of weak admissible con-

trols for (12.1), that is

lim
n→∞

Jsto(πn) = inf
π∈Uad(m0;T )

Jsto(π) =: M > −∞.

We first rewrite equation (11.1). The noise term in equation (11.1) is in Stratonovich form,
which can be reformulated to (1 ≤ i ≤ N)

νmi × ◦ dW i = ν2

2

3∑
l=1

(
mi × el

)
× el dt+ νmi × dW i, (12.2)

where el ∈ R3 are unit vectors for l = 1, 2, 3. Then equation (11.1) can be rewritten as

dmn =
(
bI(mn) + bII(mn,un)

)
dt+ σ(mn) dW n, mn(0) = m0, (12.3)

where bI(·) combines the drift terms of (11.1) together with the Itô correction term from (12.2),
which all are independent of the control u. The control dependent terms are composed in
bII(·, ·), such that for all i = 1, . . . , N

bI,i(mn) + bII,i(mn,un) = mn
i ×

(
Heff,i(mn,uni )− αmn

i ×Heff,i(mn,uni )
)

+ ν2

2

3∑
l=1

(
mn

i × el
)
× el.

The matrix σ(·) in (12.3) consists of the 3×3 blocks on the diagonal containing σil(mn) =
ν
(
mn

i × el
)T for each i = 1, . . . , N and l = 1, 2, 3. We obtain Pn-a.s.

‖mn(t)‖2(R3)N = ‖m0‖2(R3)N for all t ∈ [0, T ] (12.4)

by applying Itô’s formula using the functional x 7→ ‖x‖2(R3)N . By using this property and
Assumption C1, we conclude that bI, bII, resp. σ are Lipschitz continuous functions on
(S2)N × U resp. (S2)N . Thus there exists an Fn-adapted unique continuous global strong
solution mn ∈ L2

Fn
(
Ωn;C([0, T ]; (R3)N )

)
of (11.1) under un ∈ L2

Fn
(
Ωn;L2(0, T ;U)

)
on the

filtered probability space (Ωn,Fn,Fn,Pn). We define next

Bn
I (t) :=

∫ t

0
bI(mn(s)) ds, Bn

II(t) :=
∫ t

0
bII(mn(s),un(s)) ds,
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Σn(t) :=
∫ t

0
σ(mn(s)) dW n(s),

Fn(t) :=
∫ t

0

(
δ‖mn(s)− m̃(s)‖2(R3)N + λ‖un(s)‖2(R3)N

)
ds.

Because of property (12.4) and Assumption C1, a simple argument then shows for

Xn :=
(
mn,Bn

I ,Bn
II,Σn,W n,Fn)

the existence of a constant C > 0 such that for all p ≥ 2

sup
n≥1

(
En
[
‖Xn(t)−Xn(s)‖2p·

])
≤ C|t− s|p for all s, t ∈ [0, T ]. (12.5)

By the stochastic version of the Arzela-Ascoli theorem, which is applicable to {Xn; n ∈ N},
and the compactness of V(T ;U), we obtain that the sequence of laws for (Xn, δun) is tight on([
C
(
[0, T ]; (R3)N

)]5×C([0, T ];R)
)
×V(T ;U)-valued random variables. By Prohorov’s lemma

and Skorokhod’s theorem, there exist a probability space
(
Ω,F ,P

)
, and a subsequence{(

Xnr ,λ
nr); r ∈ N

}
as well as (X,λ

)
on it, such that for r ≥ 1

PnrXnr = PXnr , and Pnrδunr
= Pλnr , (12.6)

and, moreover, P-a.s.

mnr →m in C
(
[0, T ]; (R3)N

)
, (12.7a)

Bnr
I → BI, Bnr

II → BII, Σnr → Σ in C
(
[0, T ]; (R3)N

)
, (12.7b)

W
nr →W in C

(
[0, T ]; (R3)N

)
, (12.7c)

Fnr → F in C
(
[0, T ];R

)
, (12.7d)

λ
nr ?
⇀ λ in V(T ;U) (12.7e)

holds for r →∞. By following the proof of [YZ99, Chapter 2, Theorem 5.3], filtrations Fnr

and F can be constructed such that W nr is an Fnr -adapted Wiener process on
(
Ω,F ,P

)
.

By using (12.6) we obtain the following stochastic differential equation

mnr(t) = Bnr
I (t) + Bnr

II (t) + Σnr(t)

= m0 +
∫ t

0
bI(mnr(s)) ds+

∫ t

0

∫
U

bII(mnr(s),u)νnr(s, du) ds

+
∫ t

0
σ(mnr(s)) dW nr(s)

(12.8)

on
(
Ω,F ,P

)
. The results in (12.7a)–(12.7b) may now be used to pass to the limit in the drift

term which involves bI, while (12.7e) allows to pass to the limit in the relaxed formulation
of the drift that involves bII. We obtain as limiting equation

m(t) = m0 +
∫ t

0
bI(m(s)) ds+

∫ t

0

∫
U

bII(m(s),u)ν(s, du) ds+ Σ(t). (12.9)

Moreover, we obtain by using (12.6) the following cost functional

E
[
Fnr(T )

]
= 1

2E
[∫ T

0

(
δ‖mnr(s)− m̃(s)‖2(R3)N + λ

∫
U
‖u‖2(R3)N ν

nr(s, du)
)

ds
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+ κh
(
mnr(T )

)]
= Jsto(πnr).

By using that {πnr ; r ∈ N} is a minimizing sequence, and (12.7a), (12.7e), employing the
compactness of U, passing to the limit in all terms yields

E
[
F(T )

]
= 1

2E
[∫ T

0

(
δ‖m(s)− m̃(s)‖2(R3)N + λ

∫
U
‖u‖2(R3)Nν(s, du)

)
ds+ κh

(
m(T )

)]
= M. (12.10)

Following further the proof of [YZ99, Chapter 2, Theorem 5.3], it can be shown that Σ(t) and(
Σ ΣT (t) −

∫ t
0 σσ

T (m(s)) ds
)
are both F-martingales. Using a martingale representation

theorem we can then extend the filtered probability space
(
Ω,F ,F,P

)
to
(
Ω̂, F̂ , F̂, P̂

)
and

obtain an F̂-adapted Wiener process Ŵ on it, such that

Σ(t) =
∫ t

0
σ(m(s)) dŴ (s). (12.11)

Using the extension on m and λ in (12.9) and (12.10), and inserting equation (12.11),
we have a filtered probability space

(
Ω̂, F̂ , F̂, P̂

)
, an F̂-adapted Wiener process Ŵ , and an

F̂-adapted V(T ;U)-valued relaxed control λ, minimizing the cost functional (12.10), and,
moreover, m is a solution of (12.9), where (12.11).
Finally, it remains to show that there exists an F̂-adapted U-valued optimal control u.
Therefore, we consider the control term in (12.10) and obtain using Jensen’s inequality

λ

2

∫ T

0

∫
U
‖u‖2(R3)N ν(s, du) ds ≥ λ

2

∫ T

0

∥∥∫
U

uν(s, du)
∥∥2

(R3)N ds ≥ λ

2

∫ T

0

∥∥u(s)
∥∥2

(R3)N ds,

where we define u(s) :=
∫
U uν(s, du). Thus, (m,u) minimizes the cost functional, moreover

(m,u) is admissible: due to the linearity in u of bII(m,u) = AII(m(s))·u, where AII(m(s))
is matrix-valued, we obtain∫

U
bII(m(s),u)ν(s, du) =

∫
U

AII(m(s)) · uν(s, du) = AII(m(s)) ·
∫
U

uν(s, du)

= AII(m(s)) · u(s) = bII
(
m(s),u(s)

)
.

As a consequence, m is a strong solution of the state equation (11.1) on
(
Ω̂, F̂ , F̂, P̂

)
un-

der u. �



13. Characterization of the optimal control
problems

We start with the generalized Hamiltonian system as necessary optimality conditions for
the deterministic and stochastic optimal control problems. Below, we consider the following
exchange field Hexch, stray field Hd, and anisotropy energy Hani in (11.1).

Assumption C2
Let

Hexch,i(m) = Cexch
(
mi−1 − 2mi +mi+1

)
,

with m0 := mN and mN+1 := m1. Moreover, combine

Hd,ani,i(mi) := Hani,i(mi) + Hd,i(mi) = CaniAmi − CdBimi = −Cd,aniDimi,

with Di ∈ R3×3
diag and Cd,ani ∈ R.

13.1. Deterministic optimal control

We start with the necessary optimality conditions for the corresponding deterministic opti-
mal control problem (Problem 11.1 with ν ≡ 0). By Pontryagin’s maximum principle there
exists a triple

(
m?,p?,u?

)
∈
[
C([0, T ]; (R3)N )

]2 × L2(0, T ;U) with

p? :=
(
p?1, . . . ,p

?
N

)
∈ C

(
[0, T ]; (R3)N

)
which satisfies the (deterministic version of the) state equation (11.1) together with

dp?i = −
(
fi(m?,u?i ,p

?)− δ(m?
i − m̃i)

)
dt,

p?(T ) = −κ∂h
∂x

(
m?(T )

)
,

(13.1)

where (1 ≤ i ≤ N)

fi(m,ui,p) := −pi ×
(
Heff,i(m,ui)− αmi ×Heff,i(m,ui)

)
+ α

(
pi ×mi

)
×Heff,i(m,ui)

− Cd,aniDi
(
pi − α(pi ×mi)

)
×mi

− Cexch
[
mi−1 × (pi−1 − αpi−1 ×mi−1)− 2mi × (pi − αpi ×mi)

+mi+1 × (pi+1 − αpi+1 ×mi+1)
]
,

(13.2)
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and the maximum condition

Hdet
(
m?(t),u?(t),p?(t)

)
= max

u∈U
Hdet

(
m?(t),u,p?(t)

)
for a.e. t ∈ [0, T ] (13.3)

holds, where

Hdet(m,u,p) :=
N∑
i=1

(〈
pi,mi ×

(
Heff,i(m,ui)− αmi ×Heff,i(m,ui)

)〉
R3

− 1
2
(
δ‖mi − m̃i‖2R3 − λ‖ui‖2R3

))
.

(13.4)

13.2. Stochastic optimal control

Existence of a weak stochastic control π :=
(
Ω,F ,F,P,W ,u?

)
is proven in Chapter 12

by abstract arguments. For the simulations of the stochastic optimal control problem
below, however, we assume a complete filtered probability space

(
Ω,F ,F,P

)
, where that

the filtration F is generated by the (R3)N -valued Wiener process W =
{
W (t); t ∈ [0, T ]

}
.

By applying the stochastic maximum principle, see e.g. [YZ99, Chapter 3, Theorem 3.2],
we then obtain the first order optimality conditions of Problem 11.1: Find (m?,u?) ∈
L2
F
(
Ω;C

(
[0, T ]; (R3)N )

)
× L2

F
(
Ω;L2(0, T ;U)

)
and moreover

(p?, q?) :=
(
p?1, . . . ,p

?
N ; q?1, . . . , q?N

)
∈ L2

F

(
Ω;C

(
[0, T ];

(
R3)N)× L2

(
0, T ;

(
R3×3N)N)),

such that (11.1) and the adjoint equation (1 ≤ i ≤ N)

dp?i = −
(
fi(m?,u?i ,p

?) + ν2

2

3∑
l=1

el ×
(
el × p?i

)
− ν

3∑
l=1
q?i,3(i−1)+l × el − δ(m?

i − m̃i)
)

dt

+ q?i dW , (13.5)

p?(T ) = −κ∂h
∂x

(
m?(T )

)
are satisfied, where f was given in (13.2). Moreover, the maximum condition holds P-a.s.

Hsto
(
m?(t),u?(t),p?(t), q?(t)

)
= max

u∈U
Hsto

(
m?(t),u,p?(t), q?(t)

)
for a.e. t ∈ [0, T ], (13.6)

where

Hsto(t,m,u,p, q) :=
N∑
i=1

(〈
pi,mi ×

(
Heff,i(m,ui)− αmi ×Heff,i(m,ui)

)〉
R3

(13.7)

− ν2

2

3∑
l=1
‖el × pi‖2R3 + tr[qTi σii(m)]

− 1
2
(
δ‖mi − m̃i‖2R3 − λ‖ui‖2R3

))
.



14. Simulation of the optimal control
problems

We discretize and simulate the generalized Hamiltonian systems which are related to the
deterministic optimal and the stochastic optimal control problem. Throughout this work,
we consider a uniform time-grid {tj}Jj=0 of mesh size k := tj − tj−1 > 0 which covers [0, T ].
For the simulations, we allow general controls to avoid the control constraint above, which
would otherwise require a projected gradient method to approximate (13.6). Under these
assumptions, the maximum condition in (13.6) then reduces to P-a.s. solving

−α
(
pi(t)×mi(t)

)
×mi(t) + pi(t)×mi(t)− λui(t) = 0 for a.e. t ∈ [0, T ]. (14.1)

Note that this condition causes optimal admissible pairings {(mi,ui); 1 ≤ i ≤ N} to be
P-a.s. orthogonal to each other.

14.1. Stochastic optimal control

In order to account for the forward-backward character of the generalized Hamiltonian sys-
tem (11.1), (13.5), (14.1), the following Picard type algorithm is motivated from [BZ08]:

Scheme 14.1 (Picard-scheme for the stochastic control problem)
(1) Set u(1),j ≡ ujinit ∈ U for each j = 0, . . . , J in the first Picard iteration step.

(2) Iterate v = 1, 2, . . . until a stopping criterion is met:

(i) FSDE: Set m(v),0 = m0. For each j = 1, . . . , J , compute u(v),j−1 using
p(v−1),j−1 and m(v),j−1 according to (14.1). Simulate the (R3)N -valued random
variable m(v),j by a time discretization of (11.1) using u(v),j−1 and m(v),j−1.

(ii) BSDE: Set p(v),J = −κ ∂h∂x(m(v),J). For each j = J − 1, . . . , 0, compute first
u(v),j+1 from (14.1) using p(v),j+1 and m(v),j+1. Simulate the R3N×3N and
(R3)N -valued random variables q(v),j and p(v),j by a time discretization of (13.5)
using u(v),j+1, p(v),j+1, q(v),j+1, m(v),j+1 and m(v),j .

(iii) Evaluate if a stopping criterion is met.

Note that the control u(v) =
(
u(v),0, . . . ,u(v),J) in Scheme 14.1 is treated as known quantity

in the state equation (FSDE) as well as in the adjoint equation (BSDE), and is computed
via (14.1). Moreover, the solution of the adjoint equation p(v−1) =

(
p(v−1),0, . . . ,p(v−1),J) of

the previous Picard iteration step v− 1 is used in the state equation. Precise formulas how
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to compute a single time-step of the state and adjoint equation are given in Schemes 14.2
and 14.3 below.

We use the following scheme to approximate the state equation (11.1) in the v-th step of
the Picard iteration which corresponds to the semi-implicit Scheme B from [MTF+10].

Scheme 14.2 (Time discretization of the FSDE)
Let u(v),j−1 and m(v),j−1 be given. Compute m(v),j ∈ L2

Ftj

(
Ω; (S2)N

)
by the following

two-step method: Compute first w(v),j ∈ L2
Ftj

(
Ω; (S2)N

)
using for each i = 1, . . . , N

w
(v),j
i = m

(v),j−1
i

+ k
m

(v),j−1
i +w(v),j

i

2
×
(
Heff,i

(
m(v),j−1,u

(v),j−1
i

)
− αm(v),j−1

i ×Heff,i
(
m(v),j−1,u

(v),j−1
i

))
+ ν

m
(v),j−1
i +w(v),j

i

2 ×∆j−1W i,

where ∆j−1W i := W i(tj)−W i(tj−1) ∼ N
(
0, k13×3

)
.

Set z(v),j := 1
2
(
m(v),j−1 +w(v),j), and compute then for each i = 1, . . . , N

m
(v),j
i = m

(v),j−1
i

+ k
m

(v),j−1
i +m(v),j

i

2
×
(
Heff,i

(
z(v),j ,u

(v),j−1
i

)
− αz(v),j

i ×Heff,i
(
z(v),j ,u

(v),j−1
i

))
+ ν

m
(v),j−1
i +m(v),j

i

2 ×∆j−1W i.

The use of the semi-implicit Scheme B from [MTF+10] has the advantage that the sphere
constraint is preserved, i.e., m(v),j takes values in (S2)N . Moreover, its computation can
be performed without the application of any root-finding method, which makes this scheme
more preferable for our purposes of simulating finitely many particles, if e.g. compared with
the midpoint scheme; see [NP13] and Part I.

We apply an explicit time discretization together with the one-step dynamic programming
scheme for the simulation of the backward SDE (13.5); see e.g. [Zha04].

Scheme 14.3 (Time discretization of the BSDE)
Let u(v),j+1,m(v),j+1, p(v),j+1, and q(v),j+1 be given. Compute q(v),j

l ∈ L2
Ftj

(
Ω; (R3)N

)
and

p(v),j ∈ L2
Ftj

(
Ω; (R3)N

)
by the following method: For each i = 1, . . . , N , compute

q
(v),j
i,l = 1

k
E
[
p

(v),j+1
i ∆jWl

∣∣∣Ftj] ∀l = 1, . . . , 3N, (14.2)
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and

p
(v),j
i = E

[
p

(v),j+1
i + kfi

(
m(v),j+1,u(v),j+1,p(v),j+1)− ν2

2 k
3∑
l=1

el ×
(
el × p

(v),j+1
i

)
+ δk

(
m

(v),j+1
i − m̃i(tj+1)

)∣∣∣Ftj]+ νk
3∑
l=1
q

(v),j
i,3(i−1)+l × el.

(14.3)

Again, an explicit time-stepping scheme is chosen to reduce the computational effort. A
nonlinear equation in (14.3) is omitted by the explicit treatment of the control, where
u(v),j+1 can be computed according to (14.1) using p(v),j+1 and m(v),j+1.

By using the Markov chain property of the time discretization {m(v),j ; j = 0, . . . , J} at
Picard iteration step v we can represent the solution of (14.2)–(14.3) by two measurable,
deterministic, but unknown functions P(v),j : (S2)N → (R3)N and Q(v),j

l : (S2)N → (R3)N
for all l = 1, . . . , 3N , such that

q
(v),j
l = Q(v),j

l (m(v),j), p(v),j = P(v),j(m(v),j), (14.4)

where for each i = 1, . . . , N

Q(v),j
i,l (x) = 1

k
E
[
P(v),j+1
i (m(v),j+1

|j,x )∆jWl

]
∀l = 1, . . . , 3N, (14.5)

P(v),j
i (x) = E

[
P(v),j+1
i (m(v),j+1

|j,x ) + kfi
(
m

(v),j+1
|j,x ,u(v),j+1,P(v),j+1(m(v),j+1

|j,x )
)

(14.6)

− ν2

2 k
3∑
l=1

el ×
(
el × P

(v),j+1
i (m(v),j+1

|j,x )
)

+ δk
(
m

(v),j+1
i|j,x − m̃i(tj+1)

)]

+ νk
3∑
l=1
Q(v),j
i,3(i−1)+l(x)× el.

Here, m(v),j+1
|j,x denotes the value of the Markov chain at time tj+1, which has started at

tj at state x ∈ (S2)N . The control u(v),j+1 in (14.6) is computed using m(v),j+1
|j,x and

P(v),j+1(m(v),j+1
|j,x ) according to equation (14.1).

We approximate the measurable, deterministic functions
(
P(v),j(·),Q(v),j

l (·)
)
using the parti-

tioning estimation method, which is a special case of the least squares Monte-Carlo method,
see e.g. [BZ08,GLW05]. The idea of the least squares Monte-Carlo method is based on the
representation E

[
Θ
∣∣m(v),j = x

]
= v(v),j(x), which minimizes E

[∣∣v(v),j(x) − Θ
∣∣2] among

all Ftj -measurable functions v(v),j : (S2)N → R, such that E
[
|v(v),j(x)|2

]
< ∞. The func-

tion v(v),j(·) is approximated in two steps: Firstly, we approximate it by a function

v
(v),j
R (·) =

R∑
r=1

a(v),j
r η(v),j

r (·)

in the finite dimensional subspace span
{
η

(v),j
r (·); r = 1, . . . , R

}
of L2(Ω;P). Secondly, we

approximate the coefficients {a(v),j
r ; r = 1, . . . , R} of v(v),j

R (·) by {a(v),j
r ; r = 1, . . . , R},
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which can be computed from the following least squares problem

argmin
a(v),j∈RR

1
M

M∑
m=1

∣∣∣ R∑
r=1

a(v),j
r η(v),j

r (xm)−Θm

∣∣∣2, (14.7)

where M � R many independent samples (xm,Θm) of (x,Θ) are used. In the case of
partitioning estimation we construct the finite dimensional subspace span

{
η

(v),j
r (·); r =

1, . . . , R
}
by indicator functions η(v),j

r (·) = 1
C

(v),j
r

(·) generated from a disjoint decomposition

of the state space
⋃R
r=1C

(v),j
r = (R3)N , i.e., since iterates of Scheme 14.2 are S2-valued, we

have to partition
⋃R
r=1C

(v),j
r = (S2)N . By this choice of basis functions, we can compute

the coefficients in problem (14.7) according to

a(v),j
r = 1

#
{
xm ∈ C(v),j

r
} M∑
m=1

1
C

(v),j
r

(xm)Θm ≈ E
[
Θ
∣∣∣x ∈ C(v),j

r

]
, (14.8)

where the convention 0
0 = 0 is used, and the partition estimation function v(v),j

R (·) can be
expressed as

v
(v),j
R (x) ≈

R∑
r=1

( 1
#
{
xm ∈ C(v),j

r
} M∑
m=1

1
C

(v),j
r

(xm)Θm

)
1
C

(v),j
r

(x).

In other word, for every x ∈ (S2)N , the partition estimation function v(v),j
R (x) returns the

local average of those Θm whose xm has been contained in the same region C(v),j
· as x.

We use Voronoi meshes for the partition
⋃R
r=1C

(v),j
r = (S2)N , where the idea of the con-

struction uses a sample based approximation of the distribution of m(v),j :

(1) Simulate R additional realizations
{
m̂(v),j

r ; r = 1, . . . , R
}
of the (S2)N -valued random

variable m(v),j .

(2) Define the region C(v),j
r by

C(v),j
r :=

{
x ∈ (S2)N ; ‖x− m̂(v),j

r ‖(R3)N < inf
r 6=s
‖x− m̂(v),j

s ‖(R3)N
}
.

(3) Define the local basis function η(v),j
r (·) := 1

C
(v),j
r

(·).

This strategy resolves the state space (S2)N according to the distribution of m(v),j , and
creates more regions in areas wherem(v),j is more likely to take values, and may be quickly
realized in actual simulations. This property is important since a new partition according
to m(v),j has to be constructed for each Picard-iteration step v.

The procedure to approximate the conditional expectations
(
P(v),j(·),Q(v),j

l (·)
)
in (14.5)–

(14.6) by
(
P(v),j
R (·),Q(v),j

R,l (·)
)
which are applied to Schemes 14.1, 14.3 is summarized in

Algorithm 1.
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Algorithm 1 Picard type (ODP) scheme for the stochastic control problem

1: Simulate and store the increments ∆Ŵ :=
{
(∆jŴ r)J−1

j=0 ; r = 1, . . . , R
}
for the con-

struction of the basis regions.
2: Set v = 0. For the first iteration step, fix the initial control u(1),j ≡ ujinit for each
j = 0, . . . , J .

3: while Stopping criterion fails do
4: Set v = v + 1.
5: Construct the basis regions {C(v),j

r ; r = 1, . . . , R} using ∆Ŵ .
6: Set P(v),J(x) = −κ ∂h∂x(x).
7: for j = J − 1 to 0 do
8: Simulate M independent paths of the state equation and store m(v),j

m and
m

(v),j+1
m .

9: Compute the vector α(v),j with entries α(v),j
r := #

{
m

(v),j
m ∈ C(v),j

r
}
.

10: Compute the vector β(v),j with entries β(v),j
m :=

{
r; C(v),j

r 3m(v),j
m

}
.

11: for l = 1 to 3N do
12: Compute the vector H with entries Hm := P(v),j+1

R (m(v),j+1
m )∆jW l,m

k .
13: Compute for each r = 1, . . . , R the coefficients

b(v),j
l,r := 1

α
(v),j
r

M∑
m=1

1{r}(β(v),j
m )Hm.

14: Define Q(v),j
R,l (x) :=

R∑
r=1

b(v),j
l,r 1

C
(v),j
r

(x).
15: end for
16: Compute the control u(v),j+1

m using P(v),j+1
R (·) and m(v),j+1

m by equation (14.1).
17: Compute the vector H with entries

Hm := P(v),j+1
R (m(v),j+1

m ) + kf
(
m(v),j+1

m ,u(v),j+1
m ,P(v),j+1

R (m(v),j+1
m )

)
− ν2

2 k
3∑
l=1

el ×
(
el × P

(v),j+1
R (m(v),j+1

m )
)

+ δk
(
m(v),j+1

m − m̃(tj+1)
)
.

18: Compute for each r = 1, . . . , R the coefficients

a(v),j
r := 1

α
(v),j
r

M∑
m=1

1{r}(β(v),j
m )Hm.

19: Define P(v),j
R (x) :=

R∑
r=1

[
a(v),j
r + νk

3∑
l=1

b(v),j
l,r × el

]
1
C

(v),j
r

(x).

20: end for
21: Evaluate the cost function J (v)

sto (·) and its parts to decide whether to stop or not.
22: end while

As a result of Algorithm 1, we obtain the control function U (v),j(m(v),j) according to equa-
tion (14.1) for each i = 1, . . . , N of the form

U (v),j
i (m(v),j) = 1

λ

(
−α
(
P(v),j
R,i (m(v),j)×m(v),j

i

)
×m(v),j

i + P(v),j
R,i (m(v),j)×m(v),j

i

)
.

(14.9)
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By evaluating this function, we have an optimal response (forcing) for a observed realization
of the state m(ω).

However, this algorithm works only for very restrictive choices of the parameters (small
final times T accompanied by large cost constants λ) and hence is not suitable to study
switching dynamics of ferromagnetic particles, in particular. To overcome this problem, a
stochastic gradient method was proposed in Part II of this thesis: in the present context,
the idea is based on the following approximation of U (v),j in (14.9) by a function U (v),j

R

in the linear subspace span
{
1
C

(v),j
r

(·); r = 1, . . . , R
}
. By approximating the state m(v),j

in (14.9) by means of the (additional) Voronoi realization which assembles the region C(v),j
r

where the realization take values, we obtain the expression

U (v),j
R (x) = 1

λ

(
−α
(
P(v),j
R (x)×

R∑
r=1

m̂(v),j
r 1

C
(v),j
r

(x)
)
×

R∑
r=1

m̂(v),j
r 1

C
(v),j
r

(x)

+ P(v),j
R (m(v),j)×

R∑
r=1

m̂(v),j
r 1

C
(v),j
r

(x)
)

= 1
λ

[
−α

R∑
r=1

(([
a(v),j
r + νk

3∑
l=1

b(v),j
l,r × el

]
× m̂(v),j

r

)
× m̂(v),j

r

)
1
C

(v),j
r

(x)

+
R∑
r=1

([
a(v),j
r + νk

3∑
l=1

b(v),j
l,r × el

]
× m̂(v),j

r

)
1
C

(v),j
r

(x)
]

=:
R∑
r=1

u(v),j
r 1

C
(v),j
r

(x), (14.10)

using

P(v),j
R (x) :=

R∑
r=1

p(v),j
r 1

C
(v),j
r

(x) =
R∑
r=1

[
a(v),j
r + νk

3∑
l=1

b(v),j
l,r × el

]
1
C

(v),j
r

(x), (14.11)

m(v),j ≈
R∑
r=1

m̂(v),j
r 1

C
(v),j
r

(m(v),j) (14.12)

with the coefficients a(v),j , b(v),j defined in Algorithm 1. The representation in approxi-
mation (14.10) is the starting point for a stochastic gradient method to approximatively
solve Problem 11.1. The control u(v),j in the forward equation, the backward equation,
and in the cost functional are replaced by U (v),j

R (m(v),j) =
∑R
r=1 u(v),j

r 1
C

(v),j
r

(m(v),j), and
the focus is now on approximating the (deterministic) coefficients u(v). By inserting the
representations (14.10), (14.11), and (14.12) in the maximum condition (13.6) and differen-
tiating according to the coefficients u(v) (neglecting effects of C(v),j

r ), we obtain the descent
direction g(v−1)

g(v−1) := −∇uHsto(t, m̂(v),u(v−1),p(v),q(v))
= α

(
p(v) × m̂(v))× m̂(v) − p(v) × m̂(v) + λu(v−1).

(14.13)

Note that the objects u(v), p(v), m̂(v), and g(v−1) in (14.13) involve all regions and time
steps

{
C

(v),j
r ; r = 1, . . . , R, j = 0, . . . , J

}
.
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Scheme 14.4 (Stochastic gradient method for the stochastic control problem)
(1) Set u(0),j

r ≡ ujinit for each j = 0, . . . , J , and for each basis region indexed by r =
1, . . . , R in the first gradient iteration step.

(2) Iterate v = 1, 2, . . . until a stopping criterion is met:

(i) FSDE: For each j = 0, . . . , J−1, compute U (v−1),j
R (m(v),j) according to (14.10).

Simulate the (R3)N -valued random variablem(v),j+1 by a time discretized scheme
of (11.1) using U (v−1),j

R (m(v),j) and m(v),j .

(ii) BSDE: Set P(v),J(x) = −κ ∂h∂x(m(v),J). For each j = J − 1, . . . , 0, approximate
Q(v),J(·) and P(v),J(·) from (14.5)–(14.6) using the least squares Monte-Carlo
method, U (v−1),j+1

R (·), P(v),j+1
R (·), m(v),j+1, and m(v),j .

Obtain P(v),j
R (x), resp. Q(v),j

R (x) with coefficients p(v),j , resp. q(v),j .

(iii) Gradient step: The coefficients u(v) of the regression function U (v),·
R (·) =∑R

r=1 u(v),·
r 1

C
(v),·
r

(·) are computed according to

u(v) = u(v−1) − σ(v)g(v−1), (14.14)

using a suitable step size σ(v).

(iv) Evaluate the cost function Jsto(·) or the gradient g(v−1) to decide if a stopping
criterion is met.

For the computation of the step size σ(v) in equation (14.14) we use a modification of
Armijo’s rule:

• Approximate the current cost function J (v−1)
sto using the coefficients u(v−1).

• Iterate s = 0, 1, 2, . . . until a stopping criterion is met:

– Compute u(v),s = u(v−1) − σ?βsg(v−1).

– Approximate the cost function J (v−1),s
sto using the coefficients u(v),s.

– Stop, if J (v−1),s
sto − J (v−1)

sto ≤ −σσ?βs
∑J
j=0

∑R
r=1 ‖g

(v−1),j
r ‖2(R3)N .

Algorithm 1 and 2 return a similar approximation in cases where Algorithm 1 is applicable.
However, Algorithm 2 provides an approximation of the solution for less restrictive choices
of the parameters and will therefore be used in Chapter 15.
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Algorithm 2 Stochastic gradient method for the stochastic control problem

1: Simulate and store the increments ∆Ŵ :=
{
(∆jŴ r)J−1

j=0 ; r = 1, . . . , R
}
for the con-

struction of the basis regions.
2: Set v = 0. For the first iteration step, fix the initial control u(1),j ≡ ujinit for each
j = 0, . . . , J .

3: while Stopping criterion fails do
4: Follow lines 4–20 of Algorithm 1 using U (v−1),j

R (m(v),j
m ), resp. U (v−1),j+1

R (m(v),j+1
m )

in the computation of the forward, resp. backward equation.
5: Evaluate the cost function J (v−1)

sto using the coefficients u(v−1).
6: Set s = 0.
7: Compute g(v−1) via

g(v−1),j
r := α

([
a(v),j
r + νk

3∑
l=1

b(v),j
l,r × el

]
× m̂(v),j

r

)
× m̂(v),j

r

−
[
a(v),j
r + νk

3∑
l=1

b(v),j
l,r × el

]
× m̂(v),j

r + λu(v−1),j
r .

8: while Stopping criterion fails do
9: Compute u(v),s = u(v−1) − σ?βsg(v−1).

10: Evaluate the cost function J (v−1),s
sto using the coefficients u(v),s.

11: Stop, if J (v−1),s
sto − J (v−1)

sto ≤ −σσ?βs
∑J
j=0

∑R
r=1 ‖g

(v−1),j
r ‖2(R3)N .

12: Set s = s+ 1.
13: end while
14: Fix u(v) := u(v),s and define U (v),j

R (x) :=
∑R
r=1 u(v),j

r 1
C

(v),j
r

(x).

15: Evaluate the cost function J (v)
sto (·) and its parts to decide whether to stop or not.

16: end while

14.2. Deterministic optimal control

Similarly to Scheme 14.3, the explicit Euler method is used for the time discretization of
the (backward) ODE in equation (13.1).

Scheme 14.5 (Time discretization of the BODE)
Let u(v),j+1, m(v),j+1, and p(v),j+1 be given. Compute p(v),j ∈ (R3)N by the following
method: For each i = 1, . . . , N , compute

p
(v),j
i = p

(v),j+1
i + kfi

(
m(v),j+1,u(v),j+1,p(v),j+1)+ δk

(
m

(v),j+1
i − m̃i(tj+1)

)
. (14.15)

For time discretization, we consider the deterministic version of Scheme 14.2. Then a
(standard) gradient method is used to solve the (deterministic) optimal control problem.
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We present numerical experiments concerning the deterministic and the stochastic optimal
control problem. Therefore, two different scenarios are considered: First, the behavior of
the deterministic and stochastic control for the switching of a single nanomagnetic particle
is under investigation, where we consider the case of a restricted control, that is a control
which only can attain values in some submanifold of R3, i.e., R2 or R1. In the second part
our focus is on controlling the magnetization of a finite ensemble of nanomagnetic particles.
Here, different scenarios are considered which involve exchange energies and the case where
a concrete time evolution of the desired target profile m̃ is of interest.

In order to simulate both settings we approximate the necessary optimality conditions (11.1),
(13.5), (14.1), by the stochastic gradient method (Algorithm 2) using the stopping criterion
1
R

∑R
r=1 k

∑J
j=0 ‖g

(v−1),j
r ‖2(R3)N ≤ TOL. The parameters (β, σ?, σ, TOL) of the Armijo rule are

adjusted to each specific configuration to avoid unnecessary iteration steps and to save sim-
ulation time. In the following, we denote by u(v),j

sto := U (v),j
R (m(v),j

sto ) resp. u?,jsto := U?,jR (m?,j
sto)

the approximation of the optimal control.

15.1. Single nanomagnetic particle

Consider a single nanomagnetic particle (N ≡ 1). Our interest lies in the optimal magne-
tization switching from m0 (at initial time) to (−m0) at final time T :

Example 15.1
Fix T > 0, α, λ, κ > 0, and set δ = 0, N = 1. Solve Problem 11.1 where h

(
m(T )

)
=

‖m(T ) − (−m0)‖2R3 in (11.2). The effective field Heff in equation (11.1) consists of the
external field Hext, and a demagnetization as well as an anisotropy field in Hd,ani.

Table 15.1. Parameter Setups A and B for the stochastic control problem considered in
Example 15.1.

T α ν (λ, κ) m0 Cd,ani (dx1 , dx2 , dx3)

Setup A 0.5 0.1 0.3 (0.001, 1.0) e1 0.0 –
Setup B 0.5 0.1 0.3 (0.001, 1.0) e1 5.0 (−1.0, 0.2, 0.7)

We consider two different parameter setups which are proposed in Table 15.1 for the sim-
ulation of Example 15.1. Setup A avoids the demagnetization and anisotropy energy
(Cd,ani ≡ 0.0), moreover in Setup B the axis x1 where m0 is located is more likely; see

111
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Figure 15.1, where the trajectory of a path of equation (11.1) without control and initial
value m0 = (

√
0.5, 0.1, 0.7)T is shown. Figure 15.1 (a) shows asymptotic alignment with

the easy axis (e1 ∈ R3) due to anisotropy effects. Starting withm0 = (−1, 0, 0)T an appro-
priate switching strategy might be to move the magnetization to the northern hemisphere,
and then allow anisotropy effects to complete alignment with e1. In this framework, if
the final time T is fixed or noise due to an existing heat bath is relevant, a corresponding
optimal switching strategy is quite complex, which is why we solve/simulate the stochastic
optimal control problem (Example 15.1).

(a) t 7→mdet in [0, 5] (b) t 7→msto in [0, 0.5] (c) t 7→msto in [0, 5]

Figure 15.1. One solution pathmdet resp.msto of equation (11.1) without control (u ≡ 0),
starting in m0 = (

√
0.5, 0.1, 0.7)T and Setup B using T ∈ {0.5, 5}.

For the simulation of the stochastic optimal control problem we use Algorithm 2 with the
parameters given in Table 15.2, where M̃ = 1.0 ·106 independent paths for the evaluation of
the cost function Jsto (also independent of the M paths which are used in the computation
of the stochastic backward equation) are considered.

Table 15.2. Discretization parameters used to simulate Example 15.1.

J M M̃ R

50 5.0 · 106 1.0 · 106 100

We start with an optimal control of the corresponding deterministic control problem for
Setups A and B (with ν ≡ 0). For both Setups A and B, we obtain comparable cost
functionals: for Setup A, the cost functional is J ?det = 0.0099, with k

∑J
j=0 ‖u

?,j
det‖2R3 = 19.85

and ‖m?,J
det + m0‖2R3 = 3.494 · 10−5; in Setup B, we allow for less control, and hence

k
∑J
j=0 ‖u

?,j
det‖2R3 = 15.82 while obtaining a similar accuracy ofmJ at the final time (‖m?,J

det+
m0‖2R3 = 3.108 · 10−5) and thus a slightly smaller cost functional J ?det = 0.0079. There, the
time evolution of the deterministic control differs: in the beginning more external force is
necessary to escape the easy axis and initiate switching; in the end less control is needed
due to the attraction of the easy axis; see Figure 15.2(A).
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The optimal control u?det for the deterministic control problem seems to be a promising
candidate as initial value u(0)

sto of the stochastic gradient method. For Setup B, we hence
start with J (0)

sto = 0.0799. Then, most optimal trajectories realize a movement of the
state m(0)

sto to the northern hemisphere x1 > 0 (i.e., 99.978% of the simulated paths);
however the magnetization of the particle might at final time not be close to (−m0); see e.g.
Figure 15.3(A), where the distribution of the (x2,x3) coordinates ofm(0),J

sto are illustrated.
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time

(a) tj 7→ ‖u?,jdet‖2
R3
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time

(b) tj 7→ E
[
‖u?,jsto‖2

R3

]
0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

·10−2

time

(c) tj 7→� u?,j· ,m?,j
· �

Figure 15.2. Intensities tj 7→ ‖u?,jdet‖2R3 , resp. tj 7→ E
[
‖u?,jsto‖2R3

]
for Setup A ( )

and B ( ). Time evolution of the angle tj 7→� u?,j· ,m
?,j
· � for the deter-

ministic ( ) and stochastic ( ) problem using Setup A.
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(a) Distribution of m(0),J
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(b) Distribution of m?,J
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Figure 15.3. Distribution of the (x2,x3) values of m(0),J
sto resp. m?,J

sto for Example 15.1 and
Setup B (if x1 ≥ 0).

By applying Algorithm 2 we are able to find an optimal control U?,jsto(·), which for Exam-
ple 15.1 with SetupB returns a cost function J ?sto = 0.0100 with parts k

∑J
j=0 E

[
‖u?,jsto‖2R3

]
=

17.09, and E
[
‖m?,J

sto +m0‖2R3
]

= 0.0028. Here, the behavior of the control process differs
if compared with the deterministic case; see Figure 15.2 (b): in the beginning it behaves
in average like the deterministic control function; but close to the terminal time T more
control is used to ensure that especially at the final time the state is close to the desired
direction. The improvement at terminal time is pointed out in Figure 15.3 (b), where the
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distribution of the (x2,x3) coordinates of m?,J
sto are displayed.

Equation (14.1) states that the optimal control m?
· is orthogonal to u?· . Figure 15.2 (c)

indicates this behavior for the iterates of the time discretization. There, the temporal
evolution

tj 7→� u?,j· ,m
?,j
· � := E

[ |〈u?,j· ,m?,j
· 〉R3 |

‖u?,j· ‖R3‖m?,j
· ‖R3

]
of the angle of u?,j· and m?,j

· is illustrated, showing that control and state are almost
orthogonal for Setup A; this relation also holds for Setup B.

(a) tj = 0.1 (b) tj = 0.2 (c) tj = 0.3 (d) tj = 0.4

Figure 15.4. Density of the direction of the optimal control u?,jsto‖u
?,j
sto‖−1

R3 at certain time
points tj ∈ {0.1, 0.2, 0.3, 0.4} for Example 15.1 and Setup B.

Figure 15.4 displays the density of the direction of the stochastic optimal control, showing
that for Setup B the direction of the optimal control is close to the x2–axis, with variations
close to final time T .

Next, we study Example 15.1 with Setup B and reduced (low dimensional) control, i.e., the
cases where the control can only attain values in the x1–x2 plain (denoted by 2d control), or
only values in the x2-direction (denoted by 1d control). Changes in the cost functional and
its parts are shown in Table 15.3 for Setup B, indicating that for the deterministic optimal
control problem only slight differences occur by restricting the control to the x2-axis resp.
the x1–x2 plain.

Table 15.3. Comparison of the resulting cost functionals for different dimensions of the
control for Example 15.1 and Setup B.

Deterministic Control Problem: Stochastic Control Problem:

J ?det k
∑

j
‖u?,jdet‖

2
R3 ‖m?,J

det +m0‖2
R3 J ?sto k

∑
j
E
[
‖u?,jsto ‖2

R3

]
E
[
‖m?,J

sto +m0‖2
R3

]
1d 0.0103 20.59 3.699 · 10−5 0.0184 24.15 0.0127
2d 0.0096 19.23 3.786 · 10−5 0.0142 21.02 0.0075
3d 0.0079 15.82 3.108 · 10−5 0.0101 17.49 0.0027

The time evolution of the deterministic optimal state and the deterministic optimal control
are shown in Figure 15.5. The intensity of the optimal control differs: in the 1d case a
large intensity of control is needed in the beginning to transfer the state to the northern
hemisphere, where then a combination of anisotropy and control steer the state in the
desired target position. This behavior is similar for the 2d and 3d cases, where the control
is free to choose different directions of the control, and thus a less intense control is needed.
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For ν 6= 0, we observe again a sharp increase of the control at terminal times in all three
cases. The increase in the intensity of the control is accompanied with changes in the
direction of the control close to the final time; see Figure 15.6.

(a) 1d, trajectories (b) 2d, trajectories (c) 3d, trajectories
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(f) 3d, tj 7→ ‖u?,jdet‖2
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Figure 15.5. Time evolution of the optimal state tj 7→ m?,j
det (red) and the direction

of the optimal control tj 7→ u?,jdet‖u
?,j
det‖

−1
R3 (blue), its magnitude of control

tj 7→ ‖u?,jdet‖2R3 ( ) for different dimensions of the control (1d,2d,3d) using
Example 15.1 and Setup B in the deterministic case (ν ≡ 0).

The characteristics of the stochastic gradient method is illustrated in Figure 15.7 where the
evolution of the cost functional and its parts are shown in (a)–(b), indicating convergence
of the stochastic gradient method. The distance of two consecutive Voronoi partitions is
quantified by V(v)

D :=
( 1
R

∑R
r=1 k

∑J−1
j=1 ‖m̂

(v),j
sto − m̂

(v−1),j
sto ‖2R3

) 1
2 , where we observe that the

construction of the basis functions in U (v−1),j
R according to the law of m(v−1),j while being

evaluated at m(v),j does not affect the results.
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(a) 1d, trajectories (b) 2d, trajectories (c) 3d, trajectories
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(f) 3d, tj 7→ ‖u?,jsto‖2
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Figure 15.6. One trajectory of the optimal state tj 7→ m?,j
sto (red) and the direction of

the optimal control tj 7→ u?,jsto‖u
?,j
sto‖−1

R3 (blue), its magnitude of control tj 7→
‖u?,jsto‖2R3 ( ) and expectation ( ) for different dimensions of the control
(1d,2d,3d) using Example 15.1 and Setup B.
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Figure 15.7. Behavior of the cost functional J (v)
sto ( ) and its parts

E
[
λ
2k
∑J
j=0 ‖u

(v),j
sto ‖2R3

]
( ) and E

[
κ
2‖m

(v),J
sto + m0‖2R3

]
( ) in the

simulation of Example 15.1. Distance V(v)
D of two consecutive Voronoi

partitions for Setups A ( ) and B ( ).
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15.2. Finite ensemble of nanomagnetic particles

Next, we focus on the behavior of an ensemble of N = 3 nanomagnetic particles, which
additionally are subjected to exchange forces. Our interest lies again in the switching control
for one (i = 2) of these particles from m0,2 (at initial time) to (−m0,2) at given final time
T :
Example 15.2
Let T > 0, α, δ, κ ≥ 0, and λ > 0 be fixed. Solve Problem 11.1, where h

(
m(T )

)
:=

‖m(T ) − m̃(T )‖2(R3)N in (11.2). The effective field Heff in equation (11.1) consists of the
external field Hext, the exchange Hexch, and a demagnetization as well as an anisotropy in
Hd,ani.

Corresponding parameter setups are given in Table 15.4, with varying values of Cexch.
Setups C, D, and E only differ in the considered parts of the cost functional Jsto: In
Setup C (δ = 0, κ = 1) the ensemble of particles is only required to be close to the desired
target profile at terminal time; however, in Setup D (δ = 1, κ = 0) we control the whole
evolution of the state, and Setup E (δ = 0.5, κ = 0.5) is a combination of both goals.
The additional influence of the exchange is illustrated in Figure 15.8, where the trajectory
of a path of equation (11.1) without control and initial value m0,1 = m0,3 = e1, m0,2 =
(
√

0.5, 0.1, 0.7)T is shown. It is due to exchange m2 processes faster to e1, while m1 and
m3 rotate out of e1.

Table 15.4. Parameter Setups C, D, and E for the stochastic control problem considered
in Example 15.2.

T α ν (δ, λ, κ) m0 Cd,ani (dx1 , dx2 , dx3)

Setup C 0.5 0.1 0.3 (0.0, 0.001, 1.0) (e1,−e1, e1) 5.0 (−1.0, 0.2, 0.7)
Setup D 0.5 0.1 0.3 (1.0, 0.001, 0.0) (e1,−e1, e1) 5.0 (−1.0, 0.2, 0.7)
Setup E 0.5 0.1 0.3 (0.5, 0.001, 0.5) (e1,−e1, e1) 5.0 (−1.0, 0.2, 0.7)

For the control problem, we use again Algorithm 2 for the discretization parameters given
in Table 15.5, and start the stochastic gradient method with u?det for ν = 0.

Table 15.5. Discretization parameters used to simulate Example 15.2.

J M M̃ R

50 5.0 · 106 5.0 · 105 100

We start with the case of no exchange Cexch = 0.0. In the corresponding deterministic
problem (i.e., ν = 0) the same result as in the single particle case (Example 15.1, Setup B)
is obtained (J ?det = 0.0078), since there is no interaction between the particles and the first
and third particle starts already in the desired state, thus there is no need to control these
particles. This behavior changes for ν 6= 0: control is needed also for the first and the
third particle due to the noise. This control is in the x1–x2 plain and balances the random
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Figure 15.8. Time evolution of the solutionmsto of equation (11.1) without control (u ≡ 0),
starting from m0,1 = e1, m0,2 = (

√
0.5, 0.1, 0.7)T , and m0,3 = e1 for Setup C

with exchange (Cexch = 1.0, blue), and without exchange (Cexch = 0.0, red).

influence. The control of the second particle is similar to the single spin case. Again,
relevant control is needed at terminal time to steer the state into the desired target state;
see Figure 15.9.

This behavior only slightly changes in the presence of exchange forces (Cexch = 1.0); see
Figure 15.10: Here, more control is needed especially for the first and the third particle to
match the target state.

Next, we study Setups D and E with deterministic target profile m̃ : [0, T ]→ (S2)N defined
by

m̃1(t) ≡ e1, m̃2(t) =


− cos(π t

T )
sin(π t

T )
0

 , m̃3(t) ≡ e1,

which (continuously) rotates the magnetization of the second particle from (−e1) to e1 in
[0, T ]. Since the state m? is now required to stay close to the desired target profile m̃, the
optimal control acts in the whole time interval and not only with a high intensity at the
end; see Figure 15.11.

Table 15.6. Comparison of the resulting cost functionals for different parameter setups of
Example 15.2.

Cexch J ?sto k
∑

j
E
[
‖m?,j

sto − m̃
j‖2

(R3)3

]
k
∑

j
E
[
‖u?,jsto ‖2

(R3)3

]
E
[
‖m?,J

sto − m̃
J‖2

(R3)3

]
Setup C 0.0 0.0221 − 20.53 0.0237
Setup C 1.0 0.0238 − 21.61 0.0260
Setup D 1.0 0.0195 0.0162 22.75 0.0642
Setup E 1.0 0.0228 0.0270 27.35 0.0153
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(a) tj 7→m?,j
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Figure 15.9. Time evolution of the optimal state tj 7→ m?,j
sto,i (red) and the direction of

the optimal control tj 7→ u?,jsto,i‖u
?,j
sto,i‖

−1
R3 (blue), the magnitude of control

tj 7→ ‖u?,jsto,i‖2R3 ( ), and the expectation ( ) for each particle i = 1, 2, 3
using Example 15.2 and Setup C in the case where no exchange is considered
(Cexch = 0.0).
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Figure 15.10. Time evolution of the optimal state tj 7→ m?,j
sto,i (red) and the direction of

the optimal control tj 7→ u?,jsto,i‖u
?,j
sto,i‖

−1
R3 (blue), the magnitude of the control

tj 7→ ‖u?,jsto,i‖2R3 ( ), and the expectation ( ) for each particle i = 1, 2, 3
using Example 15.2 and Setup C in the case where exchange is considered
(Cexch = 1.0).
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Figure 15.11. Time evolution of the optimal state tj 7→ m?,j
sto,i (red) and the direction of

the optimal control tj 7→ u?,jsto,i‖u
?,j
sto,i‖

−1
R3 (blue), its magnitude of control

tj 7→ ‖u?,jsto,i‖2R3 ( ) and expectation ( ) for each particle i = 1, 2, 3
using Example 15.2 and Setup D in the case where exchange is considered
(Cexch = 1.0).
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(a) tj 7→m?,j
sto,i and tj 7→ u?,jsto,i‖u

?,j
sto,i‖

−1
R3

0 0.1 0.2 0.3 0.4 0.5
0

50

100

time

(b) tj 7→ ‖u?,jsto,1‖2
R3

0 0.1 0.2 0.3 0.4 0.5
0

50

100

time

(c) tj 7→ ‖u?,jsto,2‖2
R3

0 0.1 0.2 0.3 0.4 0.5
0

50

100

time

(d) tj 7→ ‖u?,jsto,3‖2
R3

Figure 15.12. Time evolution of the optimal state tj 7→ m?,j
sto,i (red) and the direction of

the optimal control tj 7→ u?,jsto,i‖u
?,j
sto,i‖

−1
R3 (blue), as well as the magnitude of

the control tj 7→ ‖u?,jsto,i‖2R3 ( ) and its expectation ( ) for each particle
i = 1, 2, 3 using Example 15.2 and Setup E in the case where exchange is
considered (Cexch = 1.0).
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