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Summary/ Abstract 

Parkinson’s disease (PD) is a common neurodegenerative disease affecting up to 2 % of 

the population older than 65 years. Most PD cases are sporadic with unknown cause, and 

about 10 % are familial inherited. PD is a progressive neurodegenerative disease 

characterized by loss of predominantly dopaminergic neurons, leading to typical symptoms 

like rigidity and tremor. Commonly involved pathogenic pathways are linked to 

mitochondrial dysfunction, e.g. increased oxidative stress, disruption of calcium 

homeostasis, decreased energy supply and mitochondrial-controlled apoptosis. The 

mitochondrial outer membrane protein Miro1 is important for mitochondrial distribution, 

quality control and maintenance. To date Miro1 is not established as risk factor for PD. 

Using a comprehensive mutation screening of RhoT1 in German PD patients we dissected 

the role of the first PD-associated mutations in RhoT1, the gene encoding for Miro1. Three 

mutations in RhoT1 have been identified in three PD patients with positive family history for 

PD. For analysis of mitochondrial phenotypes patient-derived fibroblasts from two of the 

three patients were available. As independent cell model served the neuroblastoma cell line 

M17 with stable knockdown of endogenous RhoT1 and transiently overexpression of the 

RhoT1 mutant variants.  

Investigation of yeast with knockout of endogenous Gem1 (the yeast orthologue of Miro1) 

and overexpression of Gem1-R298Q (the orthologue of Miro1-R272Q) revealed that growth 

on non-fermentable carbon source was impaired. These findings suggest that Miro1-R272Q 

is a loss of function mutation. Interestingly, the Miro1 protein amount was significantly 

reduced in Miro1-R272Q and Miro1-R450C mutant fibroblast lines compared to controls. 

Functional analysis revealed that mitochondrial mass was decreased in Miro1-R450C, but 

not in Miro1-R272Q fibroblasts, whereas mitochondrial biogenesis was increased in Miro1-

R450C fibroblasts, as indicated by elevation of PGC1α. A similar phenotype with reduction 

of mitochondrial mass was also observed in M17 cells overexpressing Miro1-R272Q or 

Miro1-R450C. Additionally, spare respiratory capacity was reduced in Miro1-R272Q 

fibroblasts compared to Ctrl 1 fibroblasts. In contrast, Miro1-R450C fibroblasts showed 

increased respiratory activity compared to Ctrl 1, despite citrate synthase activity was 

significantly reduced. Both alterations of respiratory activity lead to mitochondrial 

membrane hyperpolarization in Miro1-R272Q and Miro1-R450C fibroblasts, a phenotype 

which was also found in M17 cells with knockdown of RhoT1. Both Miro1 mutant fibroblasts 

lines displayed different problems with cytosolic calcium buffering: in Miro1-R272Q 

fibroblasts histamine treatment increased cytosolic calcium concentration significantly 
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compared to Ctrl 1 fibroblasts, indicating that calcium homeostasis was impaired, whereas 

in Miro1-R450C fibroblasts the buffering capacity for cytosolic calcium was impaired. 

The results indicate that mutations in Miro1 cause significant mitochondrial dysfunction, 

which are likely contributing to neurodegeneration in PD and underline the importance of 

Miro1 for mitochondrial maintenance. 
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1 Introduction  

1.1 Parkinson’s disease (PD) 

Parkinson’s disease is a progressive neurodegenerative disease that affects approximately 

1-2 % of the population older than 65 years worldwide (von Campenhausen, Bornschein et 

al. 2005). The symptoms are very heterogeneous and can be classified in motor symptoms 

and non-motor symptoms. Already years before PD is diagnosed the patients suffer from 

non-motor symptoms like depression, constipation, sleep disturbances, anxiety and 

disturbance of the olfactory sense (Jankovic 2008). PD typically is diagnosed at a mean 

age of 65 years (de Rijk, Launer et al. 2000) when motor symptoms become more obvious. 

The cardinal motor symptoms of PD are tremor, hyperkinesia, rigidity, postural instability 

and a mask-like facial expression. Although the motor symptoms are more prominent it 

seems that PD patients suffer more from the non-motor symptoms (Breen and Drutyte 

2013) as they severely affect the quality of life. 

The emergence of the clinical symptoms correlates with the progression of the disease. In 

2004 Braak and colleagues presented the stages of PD pathology (Braak, Ghebremedhin 

et al. 2004). They found that Lewy bodies and Lewy neurites, which are intraneuronal 

inclusion bodies of aggregated fibrillar α-synuclein (Spillantini, Schmidt et al. 1997) and 

represent the pathological hallmark of PD, start their spreading throughout the nervous 

system from specific sites in a predictable pattern. In early stages of PD, before the 

diagnosis, Lewy bodies are first present in the medulla oblongata/ pontine tegmentum, the 

olfactory bulb and the anterior olfactory nucleus. From there the pathology spreads further 

to the substantia nigra and other regions of the midbrain and forebrain. At this stage first 

motor symptoms occur. The neocortex gets affected in the late stages of PD, leading to the 

full clinical manifestation (Braak, Ghebremedhin et al. 2004). 

PD motor symptoms arise from loss of dopaminergic neurons (DA neurons), predominantly 

in the substantia nigra pars compacta. When approximately 30 % of the DA neurons are 

gone clinical symptoms start to manifest (Bernheimer, Birkmayer et al. 1973). The resulting 

loss of the inhibitory dopaminergic innervation leads to an over-activity of the subthalamic 

nucleus and the globus pallius, which triggers the motor symptoms (Obeso, Rodriguez-

Oroz et al. 2000). To date there is no causative or preventive treatment for PD available 

because the exact mechanisms leading to the underlying neurodegeneration are not fully 

understood. Therefore it is of great interest to identify involved genes and pathways that 

contribute to the progression of PD. 
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1.2 Aetiology of PD 

PD can be divided in idiopathic forms, where the underlying cause of the disease is 

unknown, and familial forms, caused by genetic mutations or genetic risk factors. The major 

risk factor for the development of idiopathic, or sporadic PD is aging (Bowling and Beal 

1995). With about 11 % only a small portion of all PD patients have a positive family history 

(Shino, McGuire et al. 2010). Nevertheless it is of great interest to understand the disease 

causing mechanism of familial PD because these mechanisms are likely to be involved in 

the development of sporadic PD as well.  

To date, there have been 21 genes identified, which can cause PD (http://www.omim.org/ 

entry/616361) and about 28 risk factors that are involved in the pathogenesis of PD (Nalls, 

Pankratz et al. 2014), amongst them α-synuclein, Parkin, PINK1, DJ-1, LRRK2 and 

Omi/HtrA2. 

1.2.1 α-synuclein – PARK1 

Aggregates of α-synuclein are the main component of Lewy bodies (Anderson, Walker et 

al. 2006) (Fujiwara, Hasegawa et al. 2002) (Spillantini, Schmidt et al. 1997) and so far it is 

still obscure whether the formation of those aggregates is toxic or protective in PD. Several 

mutations in α-synuclein are known to cause PD. The missense mutations A53T and A30P 

have been shown to enhance the formation of α-synuclein protofibrils (Caughey and 

Lansbury 2003). To date the function of α-synuclein is still not fully understood. The protein 

has been shown to affect mitochondrial morphology and to bind specifically to the 

mitochondrial membrane (Li, Yang et al. 2007) (Nakamura, Nemani et al. 2011) (Nakamura, 

Nemani et al. 2008). Other functions have been indicated in the ubiquitin-proteasome 

system, the maintenance of synaptic function and response to oxidative stress (Clayton and 

George 1998) (Greten-Harrison, Polydoro et al. 2010) (Nemani, Lu et al. 2010) (Tompa 

2005). Its ability to modulate the activity of tyrosine hydroxylase raises the possibility that 

α-synuclein might also be involved in dopamine metabolism (Perez, Waymire et al. 2002) 

(Tabrizi, Orth et al. 2000). 
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1.2.2 Parkin – PARK2 and PINK1 – PARK6  

Together with mutations in PINK1 (phosphatase and tensin homologue (PTEN)-induced 

putative kinase 1), Parkin mutations are the most frequent causes of early onset PD 

(Valente, Salvi et al. 2004) (Abou-Sleiman, Muqit et al. 2006). Furthermore heterozygous 

mutations in the parkin gene with reduced penetrance represent a risk factor for sporadic 

PD and are therefore likely to contribute to typical late-onset PD (Klein, Lohmann-Hedrich 

et al. 2007) (Hedrich, Kann et al. 2001) (West, Maraganore et al. 2002). PINK1 and Parkin 

have major roles in mitochondrial quality control and subsequent degradation. PINK1 

accumulates at depolarized membranes of dysfunctional mitochondria and recruits Parkin 

from the cytosol (Geisler, Holmstrom et al. 2010). Subsequently, Parkin ubiquitinates 

proteins at the outer mitochondrial membrane to label them for proteasomal degradation 

(Wang, Winter et al. 2011), which is possibly the first step to initiate degradation of 

dysfunctional mitochondria via the autophagosom-lysosomal pathway, so called mitophagy 

(Weihofen, Thomas et al. 2009). Parkin also has an anti-apoptotic function independent of 

its interaction with PINK1, as it decreases the location of the pro-apoptotic protein Bax at 

the mitochondrial membrane (Johnson, Berger et al. 2012) and increases the threshold for 

release of cytochrome c from mitochondria (Berger, Cortese et al. 2009). 

1.2.3 DJ-1 – PARK7 

Mutations in DJ-1 are rare and cause autosomal recessive early-onset Parkinsonism (van 

Duijn, Dekker et al. 2001). Several studies suggested multiple functions for DJ-1, amongst 

them chaperone activity (Shendelman, Jonason et al. 2004), protease activity (Koide-

Yoshida, Niki et al. 2007) (Olzmann, Brown et al. 2004), influence of transcription (Taira, 

Iguchi-Ariga et al. 2004), e.g. for tyrosine hydroxylase (Xu, Zhong et al. 2005), changing 

dopamine receptor transmission (Goldberg, Pisani et al. 2005), suppression of apoptosis 

(Junn, Taniguchi et al. 2005) (Sekito, Koide-Yoshida et al. 2006) (Kim, Peters et al. 2005) 

and peroxiredoxin function (Andres-Mateos, Perier et al. 2007). Furthermore, DJ-1 was 

found to interact with PINK1 (Tang, Xiong et al. 2006) and Parkin (Moore, Zhang et al. 

2005) and to be involved in the regulation of mitochondrial fusion (Krebiehl, Ruckerbauer 

et al. 2010). DJ-1 plays an important role in mitochondrial maintenance as it acts as sensor 

for oxidative stress via the highly conserved cysteine 106, which gets oxidized to form 

sulfinic acid (Honbou, Suzuki et al. 2003) (Lee, Kim et al. 2003) (Wilson, Collins et al. 2003). 

Oxidized DJ-1 is translocated to mitochondria to accomplish its mitoprotective activity 

(Canet-Aviles, Wilson et al. 2004) in a proposed parallel pathway to the PINK1/Parkin 
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pathway (Thomas, McCoy et al. 2011). This activity probably explains the neuroprotective 

function of DJ-1, which is mediated by cysteine 106 (Meulener, Xu et al. 2006). 

1.2.4 LRRK2 – PARK8 

Mutations in the Leucine-rich repeat kinase 2 (LRRK2) have been identified in up to 5-6 % 

of PD cases with positive family history. This makes mutations in LRRK2 the most common 

cause for hereditary PD (Singleton, Farrer et al. 2013). Most interestingly, variants in 

LRRK2 are also found in 1.6 % of sporadic PD cases (Gilks, Abou-Sleiman et al. 2005), 

because polymorphisms in LRRK2 are associated with an increased PD risk (Nalls, 

Pankratz et al. 2014). LRRK2 encodes a kinase, which is likely to be associated with the 

outer mitochondrial membrane (OMM) (West, Moore et al. 2005) and was found to interact 

with Parkin (Smith, Pei et al. 2005). The physiological function of LRRK2 remains unknown, 

but the protein was associated with different pathways, amongst them the Mitogen 

Activated Protein Kinase pathways (MAPK). Within these pathways LRRK2 was found to 

activate MAP2K 3-4-6 and 7 (Hsu, Chan et al. 2010) (Gloeckner, Schumacher et al. 2009), 

sequentially leading to the activation of JNK and p38, which in turn regulate cell proliferation 

and differentiation, apoptosis, inflammation and immune responses (Milosevic, Giovedi et 

al. 2011). LRRK2 is also involved in the Wingless signalling pathway (wnt), which activates 

the transcription of β-Catenin, a transcription factor that is regulating about 400 genes 

(Milosevic, Giovedi et al. 2011) responsible for cell growth, apoptosis, immune response, 

inflammation, synaptic development and synaptic maintenance. Amongst other suggested 

functions, LRRK2 seems to be involved in mitochondrial maintenance as well (Wang, Yan 

et al. 2012) (Niu, Yu et al. 2012) (Su and Qi 2013), with overexpression of the pathogenic 

G2019S mutant LRRK2 causing mitochondrial uncoupling and depolarization of the 

mitochondrial membrane in SH-SY5Y cells (Papkovskaia, Chau et al. 2012) and increased 

mitophagy in primary mouse neurons (Cherra, Steer et al. 2013), while wild type LRRK2 

protected HEK293 and SH-SY5Y cells against H2O2 induced cell-death (Liou, Leak et al. 

2008). 
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1.2.5 Omi/HtrA2 – PARK13 

Loss of function mutations or knockout of the mitochondrial protease Omi/ high temperature 

requirement A2 (HtrA2) leads to neurodegeneration in mice, which causes a remarkable 

parkinsonian phenotype, including trembling and early death (Martins, Morrison et al. 2004) 

(Jones, Datta et al. 2003). In PD patients six different heterozygous mutations in the 5’ and 

3’ regulatory region of the Omi/HtrA2 gene have been found, which suggests a crucial role 

of transcriptional regulation of Omi/HtrA2 in neurodegeneration (Bogaerts, Nuytemans et 

al. 2008). In 2005 a genetic screen for mutations in the Omi/HtrA2 gene identified German 

PD patients with the heterozygous mutation G399S and furthermore the risk allele A141S, 

which resulted in impaired protease activity and subsequent mitochondrial dysfunction, 

ultimately leading to neurodegeneration (Strauss, Martins et al. 2005). Later, the same 

mutation was found in a large Turkish family with inherited PD and essential tremor (Unal 

Gulsuner, Gulsuner et al. 2014). Omi/HtrA2 is a serine protease (Strauss, Martins et al. 

2005), which is localized in the mitochondrial intermembrane space. Upon mitochondrial 

damage Omi/HtrA2 is localized to the cytosol where it activates proapoptotic proteins 

(Hegde, Srinivasula et al. 2002) (van Loo, van Gurp et al. 2002). Still, Omi/HtrA2 is not 

considered as proapoptotic driver, as deletion of Omi/HtrA2 in mice caused loss of DA 

neurons and severe motor dysfunction (Martins, Morrison et al. 2004). These findings 

suggest that Omi/HtrA2 has pro-survival as well as pro-apoptotic functions, depending on 

its localization inside mitochondria or in the cytosol (Dagda and Chu 2009). 

1.3 Mitochondria and PD 

In 1983 Langston and colleagues described cases of drug abusers that developed an 

irreversible parkinsonian syndrome upon exposure to 1-methyl-4-phenyl-1,2,3,4-

tetrahydropyridine (MPTP) (Langston, Ballard et al. 1983). The active metabolite of MPTP, 

MPP+, inhibits complex I of the respiratory chain and is further more able to enter DA 

neurons via the dopamine transporter (DAT). Inhibition of complex I causes neurotoxicity 

and finally cell death (Nicklas, Vyas et al. 1985) by subsequent increased production of 

ROS and decreased ATP supply. Additionally MPP+ leads to enhanced release of 

dopamine, which causes more oxidative damage (Fiskum, Starkov et al. 2003). These 

findings provided the first evidences for an involvement of mitochondrial dysfunction in the 

development of PD. 

Interestingly, many of the genes involved in the development of familial PD are associated 

with mitochondrial function, like intramitochondrial production of reactive oxygen species 
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(ROS), mitochondrial membrane potential (MMP) and mitochondrial oxygen consumption, 

e.g. PINK1, Parkin, DJ-1 or Omi/HtrA2. 

Mitochondria are important organelles not only as main source to provide ATP, but they are 

also involved in supplying intermediates for metabolic pathways, they are the main source 

for ROS production in cells, they are involved in cell differentiation, control of the cell cycle 

and cell growth and can initiate apoptosis (McBride, Neuspiel et al. 2006), serve as major 

calcium buffer and regulate lipid metabolism (Karbowski and Youle 2003). Therefore 

mitochondrial integrity is crucial for neurons, and mitochondrial dysfunction easily results in 

neurodegeneration (Mandemakers, Morais et al. 2007), as neurons have a need of constant 

ATP supply at synapses (DiMauro 2004) for the release and recycling of neurotransmitters 

(Hollenbeck 2005). Due to this energy demand the brain uses up ~20 % of the resting 

energy production of the whole body (Attwell and Laughlin 2001). 

1.3.1 Mitochondrial electron transport chain 

A number of studies showed a decrease of complex I in substantia nigra, skeletal muscle 

and platelets of PD patients (Mizuno, Ohta et al. 1989) (Parker, Boyson et al. 1989) 

(Schapira, Cooper et al. 1989) (Orth and Schapira 2002). Betarbet et al. treated rats with 

the specific complex I inhibitor rotenone. The rats subsequently developed a syndrome 

resembling typical features of PD, including neurodegeneration and inclusion bodies of 

aggregated α-synuclein (Betarbet, Sherer et al. 2000). 

Complex I and III of the respiratory chain produce ROS, which damages proteins, lipids and 

DNA (Van Houten, Woshner et al. 2006). Damage of mtDNA in turn leads to malfunctioning 

of complex I and III, in turn generating more ROS and leading to increased oxidative stress 

(Van Houten, Woshner et al. 2006) (Voets, Huigsloot et al. 2012) (Alexeyev 2009). Finally 

ROS damage leads to inhibition of the respiratory chain complexes and the tricarboxylic 

acid cycle (TCA) and in consequence to a collapse of mitochondrial metabolism (Ghezzi 

and Zeviani 2012). 

Thirteen proteins of the respiratory chain are encoded by the mitochondrial DNA (mtDNA), 

meaning that most mitochondrial proteins are encoded by nuclear genes and therefore 

need to be transported across the mitochondrial membranes after translation in the cytosol. 

A study in 2000 identified mtDNA mutations, e.g. in the 12SrRNA gene, which cause 

maternally-inherited Parkinsonism (Thyagarajan, Bressman et al. 2000). It was 

hypothesized that DA neurons have higher levels of oxidative stress, probably caused by 

auto-oxidized dopamine, making DA neurons in the substantia nigra pars compacta more 
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prone to accumulate mtDNA mutations. In line with this hypothesis, a higher load of mtDNA 

deletions was found in PD patients compared to age-matched controls (Bender, Krishnan 

et al. 2006) (Kraytsberg, Kudryavtseva et al. 2006). Cell death of DA neurons probably 

increases when a critical threshold of about 60 % mutated mtDNA accumulates over time 

(Rossignol, Faustin et al. 2003). Once this threshold is reached the remaining intact mtDNA 

cannot compensate the impairment of mitochondrial function by producing enough proteins 

to sustain the function of the electron transport chain. 

Overexpression of Parkin had a protective effect on mitochondria by either directly or 

indirectly enhancing complex I activity. In this way the overexpression of Parkin decreased 

the formation of ROS and increased the MMP (Kuroda, Mitsui et al. 2006). On the other 

side, parkin deficient mice showed a reduction of complex I and complex IV subunits with 

subsequent increase of protein oxidation and lipid-peroxidation due to increased ROS 

formation (Palacino, Sagi et al. 2004). 

Another PD-related gene with connection to the respiratory chain is DJ-1. In mouse 

embryonic fibroblasts (MEFs) of DJ-1 knockout mice the observed reduction of complex I 

activity was sufficient to cause an impairment of the energy metabolism (Krebiehl, 

Ruckerbauer et al. 2010). Therefore DJ-1 was implicated to be involved in the integrity of 

complex I, further supported by studies that showed an intramitochondrial localization of 

DJ-1 (Zhang, Shimoji et al. 2005) (Hayashi, Ishimori et al. 2009). 

The displayed studies implicate that dysfunction of the respiratory chain plays a significant 

role in the development of PD, by depleting neurons from energy supply and by increasing 

the load of oxidative stress.  

1.3.2 Oxidative stress 

Although the brain has a very high metabolic activity due to its high energy demand, its 

resources for ROS defence, e.g. by superoxide dismutase (SOD), are limited. Therefore 

vulnerability to oxidative stress is increased, as the brain also contains high amounts of 

polyunsaturated fatty acids which are highly vulnerable to ROS damage (reviewed by (Bhat, 

Dar et al. 2015)). Oxidative stress seems to cause specific damage to areas that are 

affected in neurodegeneration, that is in Alzheimer’s disease the cortex and hippocampus 

and in PD the substantia nigra (Hensley, Maidt et al. 1998) (Butterfield, Castegna et al. 

2002) (Dexter, Carter et al. 1989) (Good, Hsu et al. 1998) (Aoyama, Matsubara et al. 2000).  

PD is characterized by a loss of DA neurons in the substancia nigra. This type of neurons 

is especially susceptible to oxidative stress because of the dopamine metabolism. The 
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unstable dopamine undergoes auto-oxidation very easily and thereby produces ROS 

(Slivka and Cohen 1985). Enzyme-dependent [e.g. by cyclooxygenase (Hastings 1995), 

cytochrome C (Rosei, Blarzino et al. 1998), xanthine oxidase (Foppoli, Coccia et al. 1997), 

monoamine oxidase and peroxidase (d'Ischia and Prota 1997)] or enzyme-independent 

degradation of dopamine in the cytosol also produces ROS as by-products (Fasano, 

Bergamasco et al. 2006) (Sulzer and Zecca 2000).  

Impairment of the electron transport chain, like inhibition of complex I, leads to increased 

ROS production, exposing cells to increased oxidative stress. Several PD-associated 

genes have been identified, which influence pathways involved in oxidative stress.  

One of these genes encodes for α-synuclein. It was found that oxidative stress is closely 

related to aggregation of α-synuclein in PD (Spillantini, Schmidt et al. 1997) (Conway, 

Rochet et al. 2001). Protofibrils of α-synuclein bind to synaptic vesicles and may form pores 

that release dopamine into the cytosol (Lashuel, Hartley et al. 2002). The formation and 

stability of protofibril pores is enhanced by dopamine quinones, which result from the 

oxidation of dopamine. This mechanism is one possible explanation for the specific toxicity 

of α-synuclein in the substantia nigra (Conway, Rochet et al. 2001). It was also found that 

the function of neuronal mitochondria was indirectly affected by dysfunctional α-synuclein. 

When mutant α-synuclein was over expressed, neurons became more prone to oxidative 

stress induced by dopamine and MPP+, causing enhanced protein carbonylation and 

peroxidation of lipids (Orth and Tabrizi 2003) (Tabrizi, Orth et al. 2000). 

Cultured primary neurons of PINK1 knockout mice showed a depolarization of the 

mitochondrial membrane with increased ROS levels and the same phenotype was 

observed in human midbrain neurons derived from fetal mesencephalon stem cells with 

knockdown of PINK1 (Wood-Kaczmar, Gandhi et al. 2008). The phenotype was caused by 

a dysregulation of the mitochondrial Na+/Ca+ exchanger and subsequent 

intramitochondrial calcium overload, which resulted in enhanced formation of ROS via the 

NADPH oxidase (Gandhi, Wood-Kaczmar et al. 2009). 

DJ-1 is involved in oxidative stress response. Mutations in DJ-1 are rare and cause eraly-

onset, autosomal recessive forms of PD (Bonifati, Rizzu et al. 2003). After oxidative stress 

overexpressed DJ-1 was found to be recruited from the cytosol to the OMM (Canet-Aviles, 

Wilson et al. 2004). There, DJ-1 functions as a scavenger of ROS, by preventing the 

accumulation of ROS produced by the respiratory chain (Kim, Smith et al. 2005). Loss of 

DJ-1 function causes mitochondrial impairment and increased vulnerability to complex I 

inhibition (Meulener, Xu et al. 2006) (Kim, Smith et al. 2005) (Andres-Mateos, Perier et al. 
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2007). Furthermore, DJ-1 knockout mice showed a higher susceptibility to MPP+ 

neurotoxicity (Kim, Smith et al. 2005). 

The numerous studies showing a link between PD-associated genes and oxidative stress 

suggest that this could be a common mechanism involved in various PD-related pathways 

(Abou-Sleiman, Muqit et al. 2006). Oxidative damage of proteins, lipids and DNA is 

increased in idiopathic and in familial PD patients, indicating that oxidative stress is a major 

cause for the development of PD (Bosco, Fowler et al. 2006) (Nakabeppu, Tsuchimoto et 

al. 2007) (Zeevalk, Razmpour et al. 2008). 

1.3.3 Ubiquitin-proteasome system (UPS) 

Additionally, results of several studies implicated a link between mitochondrial function and 

the ubiquitin-proteasome system (UPS). 

For example it was shown that decreased proteasome activity can result from defects of 

complex I (Hoglinger, Carrard et al. 2003) (Sullivan, Dragicevic et al. 2004). One possible 

reason for this link is the fact that the UPS needs ATP for proper function. In this regard it 

is likely that impaired mitochondrial function and decreased ATP supply also cause 

dysfunction of the UPS (Abou-Sleiman, Muqit et al. 2006). This hypothesis was supported 

by a study of Shamoto-Nagai et al., in which the neuroblastoma cell line SH-SY5Y was 

treated with the specific complex I inhibitor rotenone. The cells consequently not only 

displayed an increase in ROS production and accumulation of oxidized proteins, but also a 

depletion of ATP of about 20 % and a significant decrease of proteasome activity (Shamoto-

Nagai, Maruyama et al. 2003).  

Another link between mitochondrial function and the UPS was provided by Valente et al., 

who showed that inhibition of the proteasome induced depolarization of the MMP and 

apoptosis in SH-SY5Y cells transfected with G309D-mutant PINK1, a phenotype that was 

not observed in cells transfected with wild-type PINK1 (Valente, Abou-Sleiman et al. 2004). 

Moreover, UPS impairment can induce secondary dysfunction and damage of 

mitochondria. This was shown in primary rat cortical neurons treated with proteasome 

inhibitors. In these cells the MMP was depolarized, resulting in release of cytochrome c 

from mitochondria to the cytosol and subsequent apoptotic cell death (Qiu, Asai et al. 2000). 

The observed link between UPS inhibition and mitochondrial induced apoptosis could be 

due to the fact that pro-apoptotic proteins, like p53 and members of the BCL2 protein family 

are degraded by the UPS under normal conditions (Jesenberger and Jentsch 2002). 

Inhibition of the proteasome leads to the accumulation of pro-apoptotic proteins, which 
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cause opening of the mitochondrial permeability transition pore, depolarization of the 

mitochondrial membrane and induction of apoptosis (Jesenberger and Jentsch 2002). 

PD-associated DJ-1 is a multi-functional protein, which is also implicated in the link between 

mitochondria and UPS. It was shown that RNAi induced knockdown of DJ-1 increased 

susceptibility of neurons to inhibition of the proteasome (Yokota, Sugawara et al. 2003). 

DJ-1 was identified as a regulator of the transcription of the pro-apoptotic protein p53 and 

in this way might be able to connect UPS and mitochondrial stress response (Shinbo, Taira 

et al. 2005). 

1.3.4 Mitochondrial quality control via PINK1 and Parkin 

Many cell types contain a large network of interconnected mitochondria. This is not the case 

in neuronal processes because mitochondria have to be transported into distal parts of 

axons and dendrites. Therefore mitochondria in axons typically are discrete organelles with 

a size of 1 - 3 µm (Chang, Honick et al. 2006). These peripheral mitochondria need to be 

supplied with mitochondrial proteins that are synthesized in the soma. Mitochondrial 

maintenance occurs by fission and fusion events to mix and exchange mitochondrial 

content (Amiri and Hollenbeck 2008). The importance of mitochondrial fission and fusion 

for the maintenance of healthy mitochondria was underlined by studies showing that 

disruption of mitochondrial fusion causes peripheral neuropathy (Zuchner, Mersiyanova et 

al. 2004) and progressive loss of mtDNA integrity and depolarization of the MMP (Chen, 

McCaffery et al. 2007). 

When maintenance of aged mitochondria cannot be obtained or mitochondria get damaged 

due to pathological insults, they need to be degraded. One possible mechanism for 

degradation proposed that depolarized mitochondria are transported back to the soma for 

degradation (Miller and Sheetz 2004) (Cai, Zakaria et al. 2012). However, other studies 

failed to verify a link between MMP and direction of mitochondrial transport (Verburg and 

Hollenbeck 2008), indicating that depolarized mitochondria are not preferentially 

transported to the soma. Instead, there is growing evidence supporting the idea that 

mitochondrial degradation by the lysosomal pathway also occurs in axons and dendrites: 

i) different studies were able to show functional mature lysosomes in axons (Lee, Sato et 

al. 2011) (Maday, Wallace et al. 2012) and ii) aged mitochondrial proteins were found to 

remain in neuronal processes, likely for local degradation instead of being transported back 

to the soma (Ferree, Trudeau et al. 2013). Recently, Ashrafi and colleagues showed that 

mitophagy of damaged mitochondria in axons depends on the PINK1/ Parkin pathway 

(Ashrafi, Schlehe et al. 2014). Local degradation prevents fusion of damaged mitochondria 
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with the healthy network and the spreading of oxidative damage throughout the cell (Wang, 

Winter et al. 2011).  

PINK1 is constantly recruited from the cytosol to healthy mitochondria where it gets cleaved 

(Greene, Grenier et al. 2012). However, when the membrane of damaged mitochondria 

gets depolarized PINK1 is stabilized at the OMM. PINK1 then recruits Parkin to the 

mitochondrial surface (Geisler, Holmstrom et al. 2010). Subsequently PINK1 and Parkin 

bind to the target protein and Parkin is phosphorylated by PINK1 to activate its function as 

E3 ubiquitin ligase (Wang, Winter et al. 2011). As a result, ubiquitination of the target 

proteins at the OMM leads to proteasomal degradation, which likely is the initial step for 

mitophagy (Wang, Winter et al. 2011). 

Studies in drosophila showed that due to their close interplay in the mitophagy-inducing 

pathway PINK1 and Parkin knockout flies display a very similar phenotype of mitochondrial 

dysfunction, including flight muscle degeneration, reduced ATP levels, male sterility and, 

most interestingly, loss of DA neurons (Clark, Dodson et al. 2006) (Park, Lee et al. 2006). 

1.3.5 Mitochondrial transport 

Neurons have a highly polarized morphology with extended dendritic and axonal processes. 

As mitochondrial biogenesis occurs mainly in the cell soma, mitochondria have to be 

transported to distal sites of the cell (Hollenbeck and Saxton 2005). Therefore, transport of 

mitochondria is crucial for neuronal maintenance and function. For this reason it is not 

surprising that mutations in motor proteins cause neurological diseases in humans (Baloh 

2008) (De Vos, Grierson et al. 2008). 

Experimental work on mitochondrial trafficking revealed that in axons approximately the 

same fraction of 15 % of mitochondria are moving in the anterograde and in the retrograde 

direction and ~70 % of mitochondria are stationary for a certain time (Wang and Schwarz 

2009). 

Impaired mitochondrial transport was observed in loss of function PINK1 mutants in 

drosophila, which lead to selective loss of DA neurons (Liu, Sawada et al. 2012). In this 

regard impaired mitochondrial trafficking could play a significant role in the development of 

PD. 
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1.3.6 Mitochondrial membrane potential and calcium homeostasis control cell 

death 

Calcium is an important secondary messenger involved in many cell mechanisms. 

Therefore tight regulation of calcium concentration in the cytosol is crucial. Mitochondria 

provide an important calcium buffering capacity (Starkov 2010). Calcium enters the 

mitochondrial matrix through the mitochondrial calcium uniporter (MCU), driven by the 

mitochondrial membrane potential (MMP) (reviewed by (Rizzuto, De Stefani et al. 2012). 

The MMP is generated when protons are pumped through the proton pumps of the 

respiratory chain (complexes I, III, IV and V) across the inner mitochondrial membrane from 

the matrix into the intermembrane space. The re-entry of protons through complex V 

provides the energy necessary to convert ADP to ATP. The MMP fluctuates under normal 

conditions between -108 and -159 mV (Li, Fang et al. 2013) (Valko, Leibfritz et al. 2007) 

(Radak, Chung et al. 2008). Low MMP values normally are associated with high ATP 

production and oxygen consumption, because the MMP is discharged by ATP synthesis. 

In contrast, high MMP values under normal conditions arise from a reduction of respiratory 

activity and a low oxygen consumption and ATP production (Arvier, Lagoutte et al. 2007) 

(Bagkos, Koufopoulos et al. 2014). 

Both, MMP and mitochondrial calcium uptake are closely linked and under certain 

conditions related to dysregulation of homeostasis, thereby inducing necrotic and/ or 

apoptotic cell death. It was found that staurosporine induces cell death dependent on 

calcium influx into mitochondria and mitochondrial membrane hyperpolarization. 

Staurosporine leads to calcium over-load of mitochondria (Kruman and Mattson 1999), 

thereby most likely increasing the activity of the respiratory chain and subsequently 

increasing MMP (Poppe, Reimertz et al. 2001). Hyperpolarization of the mitochondrial 

membrane was sufficient to cause release of cytochrome c from mitochondria, finally 

inducing apoptosis (Poppe, Reimertz et al. 2001) (Vander Heiden, Chandel et al. 1997).  

Cell death was also induced by depolarization of MMP. Treatment with the potassium-

ionophore Valinomycin caused depolarisation of the mitochondrial membrane and 

increased the influx of potassium ions into the mitochondrial matrix, causing the entry of 

anions and water. Therefore mitochondria swell until the membrane gets ruptured (Poppe, 

Reimertz et al. 2001) (Vander Heiden, Chandel et al. 1997). Subsequently, cytochrome c 

was released into the cytosol, but without activation of the caspase cascade that induces 

apoptosis. The resulting cell death therefore was characterized as necrotic instead of 

apoptotic (Poppe, Reimertz et al. 2001).  
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Poppe et al. concluded that mitochondrial membrane hyperpolarization likely is the active 

physiological trigger for release of cytochrome c, whereas depolarization of the 

mitochondrial membrane leads to a passive release of cytochrome c due to rupture of the 

membrane (Poppe, Reimertz et al. 2001). 

However, the mechanisms behind the regulation of MMP, calcium homeostasis and 

apoptosis remain not fully clarified. A decrease in MMP can also cause opening of the 

mitochondrial transition pore (Zoratti and Szabo 1995), which enables the release of pro-

apoptotic proteins (Zamzami, Susin et al. 1996) (Lemasters, Nieminen et al. 1998). On the 

other hand, other groups reported that MMP depolarization prevented apoptosis by 

inhibiting calcium uptake through the mitochondrial calcium uniporter (MCU) (Nicholls and 

Akerman 1982) (Andreyev, Fahy et al. 1998), thereby preventing calcium over-load and 

ROS production (Castilho, Hansson et al. 1998) (Stout, Raphael et al. 1998). Iijima 

proposed that hyperpolarization of the mitochondrial membrane could be an intermediate 

state when the mitochondrial transition pore is not jet opened and calcium influx into the 

mitochondrial matrix has not started (Iijima 2006). 

To date it is still not clear which intrinsic, physiological signals trigger mitochondria-induced 

apoptosis. A number of studies generated contradicting results regarding the involvement 

of depolarization or hyperpolarization of the mitochondrial membrane in different cell types, 

but it is apparent that pathological changes of MMP and mitochondrial calcium 

concentration are involved in cell death. 

1.4 Miro – more than just an adaptor for mitochondrial transport 

Miro is present in nearly all eukaryotes, except of Micosporidia, Entamoeba spp., Giardia 

intestinalis and Trichomonas vaginalis which have either mitosomes or hydrogenosomes 

instead of classical mitochondria. Furthermore, Miro is absent from Myzozoa, green algae 

of the order Mamiellales, the haptophyte Emiliania huxleyi and the stramenopile alga 

Aureococcus anophagefferens, which do have aerobic mitochondria, but probably lost Miro 

during the course of their evolutionary development (Vlahou, Elias et al. 2011). The fact 

that most eukaryotes possess Miro proteins underlines the importance of this protein for 

the functionality of mitochondria. 

Miro was classified as mitochondrial Rho GTPase, giving the protein its name, because the 

N-terminal GTPase domain of Miro shows sequence similarity to small Rho GTPases 

(Fransson, Ruusala et al. 2003). Typically Rho GTPases are involved in the organization 

of the actin cytoskeleton (Takai, Sasaki et al. 2001), but several studies failed to 
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demonstrate a role of Miro in the organization of the actin or microtubule cytoskeleton 

(Fransson, Ruusala et al. 2003) (Aspenstrom, Fransson et al. 2004). 

Miro is ubiquitously expressed in vertebrate tissue. The expression level varies, depending 

on mitochondrial density and energy demand, for example high expression levels were 

observed in heart, brain and skeletal muscle (Fransson, Ruusala et al. 2003). In yeast and 

drosophila only one Miro protein exists (Guo, Macleod et al. 2005), but in mammals two 

isoforms, called Miro1 and Miro2, have been identified. Both proteins are 60 % identical, 

are co-expressed in most tissue and localized at the OMM (Fransson, Ruusala et al. 2003).  

Experimental work suggested significant differences in Miro1 and Miro2 function. In yeast 

overexpression of Miro1 or Miro2 caused mitochondrial clustering, but only in Miro1 over-

expressing yeast mitochondria were interconnected, which was not observed in Miro2 over-

expressing yeast (Fransson, Ruusala et al. 2006). In T cells mitochondrial redistribution 

was affected by knockdown of Miro1, although endogenous expression of Miro2 remained 

unchanged (Morlino, Barreiro et al. 2014). Even Miro1 knockout mice showed a severe 

neurological phenotype including neurodegeneration and premature death, although Miro2 

expression was intact (Nguyen, Oh et al. 2014). However, still to date the different functions 

of Miro1 and Miro2 are not exactly defined.  

Overexpression of drosophila Miro (dMiro) in drosophila caused a specific loss of DA 

neurons (Liu, Sawada et al. 2012). A knockout on the other hand lead to slimness and 

lethality of the third instar larvae. Furthermore, synaptic boutons were found to have 

abnormal morphology and tend to cluster together in big cauliflower-like structures, while 

axons and presynaptic synapses were devoid of mitochondria (Guo, Macleod et al. 2005) 

(Tsai, Course et al. 2014). Similar results were obtained in studies with mutations in 

mammalian Miro and dMiro that caused defective transport of mitochondria into neuronal 

axons and dendrites of drosophila (Fransson, Ruusala et al. 2003) (Fransson, Ruusala et 

al. 2006) (Guo, Macleod et al. 2005).  

Miro is involved in many mitochondrial pathways that have already been introduced in the 

pathology of PD, which are not only mitochondrial transport, but also cellular calcium 

homeostasis and mitochondrial dynamics and quality control. 
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1.4.1 The structure of Miro proteins 

The first description of a Miro protein was the one of the yeast orthologue Gem1, which  

was identified as open reading frame (ORF) YAL048c on chromosome 1 of saccharomyces 

cerevisiae (Bussey, Kaback et al. 1995), and already in 1986 two studies, by Woolford et 

al. and Ammerer et al. described the protein encoded by YAL048c as polypeptide of 662 

amino acids with a molecular mass of 75,137 kDa. The polypeptide was predicted to contain 

two putative ATP/GTP-binding site motifs with weak similarity to small GTPases and a 

transmembrane domain at the carboxyterminal (C-terminal) end (Woolford, Daniels et al. 

1986) (Ammerer, Hunter et al. 1986). 

The first study on the 3D structure of Miro protein, including the crystal structure was 

described in 2013 (Klosowiak, Focia et al. 2013). In this study dMiro was described as 

monomeric protein, with a compact linear conformation.  

Miro proteins contain a N-terminal GTPase domain, followed by the two EF hand domains, 

a second C-terminal GTPase domain and the transmembrane domain (TMD) (Figure 1). 

 

 

The GTPase domains have been reported to be involved in the organisation of 

mitochondrial trafficking. Whereas loss of function mutations of both GTPase domains did 

not affect the recruitment of TRAK2, an important binding partner of Miro for mitochondrial 

transport, constitutively active mutations of the N-terminal GTPase disrupted the 

recruitment of TRAK2 to Miro, thereby affecting mitochondrial transport (MacAskill, Brickley 

et al. 2009). The C-terminal GTPase domain was found to rather modulate the retrograde 

transport of mitochondria in axons, whereas the functionality of the N-terminal GTPase 

domain was more crucial for cell survival, because loss of function mutations in this domain 

disrupted the kinesin- as well as dynein-driven axonal transport of mitochondria and 

subsequently the proper distribution of mitochondria in axons and dendrites (Babic, Russo 

et al. 2015). The N-terminal GTPase domain was supposed to accomplish this function by 

driving the shift from immobile to mobile mitochondria (Babic, Russo et al. 2015). 

 

Figure 1: Structure of Miro protein 

Protein structure of Miro proteins showing the N-terminal GTPase domain, both EF hand domains, the C-

terminal GTPase domain and the C-terminal transmembrane domain (TMD). 
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Miro’s GTPase domains are unique, because they lack the typical CAAX-box motif that 

targets Rho GTPases to membranes (McTaggart 2006). Instead Miro possesses a C-

terminal TMD which anchors the protein in the outer mitochondrial membrane and exposes 

it to the cytosol (Fransson, Ruusala et al. 2006) (Frederick, McCaffery et al. 2004). In COS-

7 cells deletion of the TMD of Miro1 and Miro2 caused a mislocalization of Miro proteins 

from mitochondria to the cytoplasm, indicating that the TMD indeed is required for proper 

mitochondrial targeting (Fransson, Ruusala et al. 2006). The TMD is composed of 

hydrophobic amino acid residues, flanked by positively charged amino acids, which is a 

common feature of TMDs of OMM proteins (Wattenberg and Lithgow 2001). 

A rather unusual feature of Miro proteins is the presence of calcium binding embryonic 

fibroblast (EF) hand domains. These domains are highly conserved calcium binding motifs, 

which are also present in other calcium buffering proteins (Gifford, Walsh et al. 2007). The 

EF hand domain contains a helix-loop-helix motif that exposes the calcium-binding amino 

acids on the protein surface (Gifford, Walsh et al. 2007). Calcium binding to EF hand 

domains typically leads to a conformational shift of the protein structure to initiate a certain 

function (Hoeflich and Ikura 2002). The EF hand domains of Miro were found to be highly 

conserved amongst Miro proteins of different species and are unique to the Miro protein 

family (Finn, Mistry et al. 2010), because each of the both canonical EF hand motifs is 

accompanied by a non-canonical EF hand domain, which are in turn followed by a helix 

that mimics a ligand (ligand mimic, LM1 and LM2) for the EF hand motif and a linker region 

(Klosowiak, Focia et al. 2013). Due to the linker regions the canonical EF hands are 

positioned side-by-side with the C-terminal GTPase domain, creating a unique direct 

interaction of EF hand and GTPase, which was reported for the first time in Miro (Klosowiak, 

Focia et al. 2013). 

Surprisingly, nucleotide or ion binding at the GTPase or EF hand domains did not cause a 

great conformational shift of the protein structure, nor was an oligomerization of Miro 

observed (Klosowiak, Focia et al. 2013). 
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1.4.2 Miro as adaptor for mitochondrial transport 

Miro protein functions as adaptor for mitochondrial transport by connecting the OMM via a 

second adaptor protein called Milton to motor proteins (Wang and Schwarz 2009) 

(Koutsopoulos, Laine et al. 2010). In mammals two isoforms of Milton homologues are 

known: O-GlcNAC-transferase (OGT)-interacting proteins 106 and 98 (OIP106 and OIP98) 

(Iyer, Akimoto et al. 2003), which are also called huMilt1 or TRAK1 (refers to OIP106) and 

huMilt2 or TRAK2 or GABAA receptor-interacting factor (GRIF-1) (Beck, Brickley et al. 2002) 

(refers to OIP98), respectively (in the following text summarized as Milton proteins). In 

contrast to the mitochondria restricted localization of Miro, the Milton proteins are also 

localized in the cytosol and on other organellar cargo (MacAskill, Brickley et al. 2009). Milton 

proteins bind at the N-terminal GTPase domain of Miro (Fransson, Ruusala et al. 2006), an 

interaction that is regulated by the GTP-loading of the GTPase domain (MacAskill, Brickley 

et al. 2009). The Miro/Milton complex recruits both, kinesin (Wang and Schwarz 2009) and 

dynein motors (Morlino, Barreiro et al. 2014) for retrograde as well as anterograde transport 

of mitochondria. Whereas huMilt1 was found to interact with both, kinesin and dynein (van 

Spronsen, Mikhaylova et al. 2013) and is found predominantly in axons for anterograde and 

retrograde mitochondrial transport, huMilt2 preferentially binds to dynein to mediate 

retrograde transport in dendrites (van Spronsen, Mikhaylova et al. 2013). The observation 

that most mitochondria are able to change direction quickly indicates that different motor 

proteins are tethered to the OMM at the same time (Miller and Sheetz 2004) (Pilling, 

Horiuchi et al. 2006) (Russo, Louie et al. 2009). To date it is not fully understood how 

mitochondrial transport is regulated in terms of directionality. Several interaction partner of 

the Miro/ Milton complex have been found to influence mitochondrial transport, e.g. Alex3, 

Mitofusin2, HUMMR and DISC1. 

Alex3 and Miro – Nucleus-dependent control of mitochondrial distribution? 

Recently, members of the Armcx gene family have been identified to interact with Miro and 

huMilt2 (Lopez-Domenech, Serrat et al. 2012). The Armcx genes encode for Alex1, 2 and 

3 (arm-containing protein lost in epithelial cancers linked to the X chromosome). Alex3 is 

expressed mainly in the nervous system and interacts with the transcription factor Sox10 

(Mou, Tapper et al. 2009). Furthermore, Alex3 localizes to mitochondria and increases 

Sox10 association to mitochondria, which raises the possibility of a yet undescribed 

Sox10/Alex3-mediated signalling cascade between mitochondria and the nucleus (Mou, 

Tapper et al. 2009). Alex3 was found in three cellular compartments of neurons: at the outer 

mitochondrial membrane, in the nucleus and in the cytosol (Lopez-Domenech, Serrat et al. 

2012). Overexpression of Alex3 in HEK293T cells caused an aggregation of the 
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mitochondrial network, which was independent of Miro1 function, but also a severe 

impairment of mitochondrial trafficking. Downregulation of Alex3 expression caused a 

reduction of mitochondrial transport as well (Lopez-Domenech, Serrat et al. 2012). The 

reason for the alteration of mitochondrial trafficking is likely caused by the direct interaction 

of Alex3 with Miro1, Miro2 and huMilt2 (Lopez-Domenech, Serrat et al. 2012). Similar to the 

regulation of Miro/Milton interaction via calcium binding to the EF hand domains, the 

interaction with Alex3 is also regulated by calcium: 2 mM calcium was found to reduce the 

interaction of Alex3 with the Miro proteins and with huMilt2 (Lopez-Domenech, Serrat et al. 

2012). Further investigations will reveal whether the interaction of Alex3 with Miro is 

sufficient to mediate regulation of mitochondrial distribution by signalling from the nucleus. 

Mitofusin2 and Miro – Co-regulation of mitochondrial fusion and transport 

Mitochondrial fusion is mediated by a protein complex of the Mitofusins1 and 2 on the OMM 

and Opa1 on the inner mitochondrial membrane (IMM) (Rojo, Legros et al. 2002) (Chen, 

Detmer et al. 2003) (Eura, Ishihara et al. 2003) (Cipolat, Martins de Brito et al. 2004). All 

involved proteins belong to the dynamin GTPase family and work together to tether 

membranes of two mitochondria to promote their fusion. Studies with Mitofusin2 mutations, 

which are associated with Charcot-Marie-Tooth Neuropathy Type 2A, 0showed impaired 

mitochondrial transport in cultured neurons (Baloh, Schmidt et al. 2007) and abnormal 

mitochondrial distribution in motor neurons (Detmer, Vande Velde et al. 2008). Misko et al. 

were able to demonstrate an interaction of Mitofusin2 with the Miro/Milton complex and 

even declared Mitofusin2 to a key component of the complex (Misko, Jiang et al. 2010). 

This hypothesis was supported by the observation that loss of Mitofusin2 function caused 

impaired mitochondrial transport, a phenotype that was independent of the role of 

Mitofusin2 in mitochondrial fusion and that was not rescued by overexpression of Miro2 

(Misko, Jiang et al. 2010). The interplay of Mitofusin2 and Miro seems to be important to 

adapt the recruitment of anterograde moving kinesin and retrograde moving dynein to the 

cell requirements (Russo, Louie et al. 2009). Moreover, the interaction of Mitofusin2 and 

Miro could partially explain the frequently observed influence of Miro on mitochondrial 

morphology (Fransson, Ruusala et al. 2006) (MacAskill, Brickley et al. 2009) (Saotome, 

Safiulina et al. 2008). As mitochondrial transport requires distinct, single organelles and as 

moving increases the likelihood for mitochondria to fuse (Liu, Weaver et al. 2009) it is 

reasonable to conclude that mitochondrial fusion and transport are closely linked for a 

coordinated regulation (Misko, Jiang et al. 2010). 
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HIF-1α, HUMMR and Miro 

Hypoxia-inducible factor 1 α (HIF-1α) is a transcription factor that is predominantly activated 

and stabilized during hypoxic conditions, which require a fast cellular response to increase 

oxygen and energy supply (Semenza 2000). This cellular response involves HIF-1α-

induced alteration of mitochondrial respiration in a way that reduces mitochondrial ROS 

production (Kim, Tchernyshyov et al. 2006) (Papandreou, Cairns et al. 2006) and 

modulates the electron transport (Fukuda, Zhang et al. 2007). In 2009 a study identified a 

new protein involved in the HIF-1α-mediated mitochondrial response to hypoxia: hypoxia 

up-regulated mitochondrial movement regulator (HUMMR) (Li, Lim et al. 2009). HUMMR 

protein expression in neurons and astrocytes was strongly induced by HIF-1α during 

hypoxia. The protein consists of an N-terminal TMD and a following mitochondrial targeting 

sequence (MTS) and is localized at mitochondria (Li, Lim et al. 2009). HUMMR appeared 

to be anchored with its TMD in the OMM, positioning the C-terminus of the protein in the 

intermembrane space. The same study established an interaction between HUMMR and 

Miro, as well as a HUMMR-facilitated recruitment of huMilt2 to mitochondria (Li, Lim et al. 

2009). HUMMR and Miro most likely interact at their TMDs (Li, Lim et al. 2009). The results 

of the study indicate that HUMMR promotes mitochondrial transport in the anterograde 

direction by recruiting preferentially huMilt2 to mitochondria, which in turn facilitates the 

engagement of kinesin (Li, Lim et al. 2009). This hypothesis is supported by another study 

showing that mitochondria are enriched in synapses after ischemia (Briones, Suh et al. 

2005), which is important for neuronal and synaptic plasticity that is observed in brains after 

stroke-induced ischemia (Carmichael 2003). But HUMMR-expression is also regulated by 

HIF-1α under normoxia conditions, e.g. in testes, ovary and corneal epithelium (Kinouchi, 

Kinouchi et al. 2006), but also in Alzheimer’s disease (Soucek, Cumming et al. 2003), 

probably as compensatory mechanism in neurodegeneration (Li, Lim et al. 2009). These 

findings suggest that the directionality of mitochondrial transport is likely regulated 

according to the cell needs by additional binding and interaction partner of the Miro/Milton 

protein complex. 

DISC1 and Miro 

Mitochondria are not only known to be involved in the pathophysiology of PD, but also in 

many other neurological disorders, one of them being schizophrenia (Ben-Shachar and 

Laifenfeld 2004). Analysis of post-mortem brains of schizophrenia patients revealed 

impaired oxidative phosphorylation (Maurer, Zierz et al. 2001) and alteration of 

mitochondrial morphology and quantity (Kung and Roberts 1999). About 80 % of 

schizophrenia cases are familial inherited (Cardno and Gottesman 2000). One of the genes 
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causing inherited schizophrenia is Disrupted-in-schizophrenia 1 (DISC1) (Mackie, Millar et 

al. 2007). The protein DISC1 is related to neurodevelopment, neurite outgrowth, neuronal 

migration, neurogenesis (Kamiya, Kubo et al. 2005) (Ozeki, Tomoda et al. 2003) (Duan, 

Chang et al. 2007) (Mao, Ge et al. 2009) and cAMP signalling (Millar, Pickard et al. 2005). 

DISC1 was also linked to mitochondrial function by a study that showed localization of 

DISC1 at the inner mitochondrial membrane, as well as a reduction of mitochondrial NADH 

dehydrogenase activity and ATP production and impaired calcium dynamics induced by 

DISC1 disruption (Park, Jeong et al. 2010). The same study established a direct interaction 

of DISC1 and the inner mitochondrial membrane protein Mitofilin (Park, Jeong et al. 2010). 

Furthermore, DISC1 was shown to regulate axonal transport of mitochondria (Atkin, 

MacAskill et al. 2011), an interesting result that was confirmed by establishing an interaction 

of DISC1 with Miro1/huMilt1 (Ogawa, Malavasi et al. 2014). In this study huMilt1 was shown 

to influence the recruitment of DISC1 to mitochondria. Additionally, overexpression of 

DISC1 caused an increase of anterograde mitochondrial movement (Ogawa, Malavasi et 

al. 2014). These findings support the idea that additional binding partner of the Miro/Milton 

complex influence mitochondrial transport according to current needs of the cell. 

 

 Schematic overview of the multiple protein interactions involved in 

mitochondrial transport. Miro interacts with Milton and the motor 

proteins Kinesin or Dynein. The interaction with Mfn2 allows for 

coordinated regulation of mitochondrial fusion and transport. The 

interaction of the Miro/ Milton complex with Alex3 probably 

facilitates control of mitochondrial distribution. HUMMR likely 

promotes mitochondrial transport into the anterograde direction. 

The same function was proposed for DISC1. Interestingly, DISC1 

and HUMMR are located in the intermembrane space, therefore 

raising the possibility of intramitochondrial signals in regulating 

mitochondrial transport.  

IMM: inner mitochondrial membrane. IMS: intermembrane space. 

OMM: outer mitochondrial membrane. Mfn2: Mitofusin2. MCU: 

mitochondrial calcium uniporter. MICU: mitochondrial calcium 

uptake (Perocchi, Gohil et al. 2010). MCU: mitochondrial calcium 

uniporter (Baughman, Perocchi et al. 2011) (De Stefani, Raffaello 

et al. 2011). MCUR1: mitochondrial calcium uniporter regulator 1 

(Mallilankaraman, Cardenas et al. 2012). 

Figure 2: Schematic overview of the mitochondrial transport protein complex 
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In summary, it seems that mitochondrial transport is facilitated by a multi-protein complex, 

with a set of different proteins, which are required for regulation of transport. Miro is a core 

component of this complex and it is likely to assume that in future more interaction partner 

will be identified. Furthermore, it seems that mitochondrial transport is not only regulated 

by signals outside of mitochondria, but also by intrinsic mitochondrial signals. Miro seems 

to be located at the centre of the complex, connecting the complex members of the OMM 

(e.g. Mfn2, Alex3, Milton, Kinesin/Dynein) to proteins in the intermembrane space 

(HUMMR, DISC1) and the IMM (Mitofilin, MCU). 

1.4.3 Miro as calcium binding protein 

Proper distribution of mitochondria to sites of high energy consumption is most important 

for the function and maintenance of cells and especially of highly polarized and big neurons. 

Therefore, mitochondrial transport requires a switch to turn off transport at the destination 

site where mitochondria are currently needed. Confirmed by the observations of a number 

of different studies, the signal to switch off mitochondrial transport most likely is an increase 

of cytosolic calcium concentration (Chang, Honick et al. 2006) (Hollenbeck and Saxton 

2005) (Szabadkai, Simoni et al. 2006). Calcium enters the cell at sites of high energy 

demands like synapses where ATP is needed for transmitter release and recycling. The 

protein that mediates the calcium-dependent transport stop is Miro. Interestingly, it seems 

that the molecular mechanism by which Miro mediates the arrest of transport is different in 

drosophila and vertebrates:  

The group of Wang and Schwarz investigated mitochondrial motility in drosophila and found 

that calcium binding to Miro leads to a direct interaction of Miro with kinesin heavy chain, 

causing the motor protein to disconnect from microtubules and in this way stopping 

mitochondrial transport, while the Miro/Milton/kinesin complex remains intact at the OMM 

(Wang and Schwarz 2009).  

In contrast to the drosophila model, it seems that in vertebrates kinesin is not interacting 

with Milton, but binds directly to Miro (Macaskill, Rinholm et al. 2009). As soon as calcium 

binds to the EF hands of Miro, kinesin disconnects from Miro and in this way mitochondria 

are derailed from the microtubule tracks (Macaskill, Rinholm et al. 2009).  

Calcium binding to the EF hand domains was only sufficient to mediate arrest of transport 

when both EF hand domains and both GTPase domains were intact (Saotome, Safiulina et 

al. 2008). Calcium-mediated stop of mitochondrial transport is dose dependent, with a 

calcium concentration of ~1 µM (Macaskill, Rinholm et al. 2009) to 50 µM (Wang and 
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Schwarz 2009) inhibiting ~50 % of mitochondrial movement. These concentrations are 

within the physiological range as calcium influx into synapses through NMDA receptors can 

increase calcium concentration to 6 µM and more at repeated stimuli (Noguchi, Matsuzaki 

et al. 2005). The calcium-dependent arrest of mitochondrial transport is especially important 

to protect neurons from glutamate excitotoxicity as shown in a study in drosophila 

expressing loss of function mutants of Miro in which neuronal survival was significantly 

impaired due to excitotoxicity (Wang and Schwarz 2009).  

One recent study suggested that not only cytosolic calcium regulates mitochondrial traffic 

but also calcium influx into the mitochondrial matrix through the MCU (Chang, Niescier et 

al. 2011). The speed of mitochondrial movement was negatively correlated to mitochondrial 

matrix calcium concentration. Additionally, influx of calcium into mitochondria required 

functional EF hand domains of Miro (Chang, Niescier et al. 2011). Chang and colleagues 

proposed a model, in which elevated cytosolic calcium concentration leads to rapid increase 

of mitochondrial matrix calcium via the MCU, controlled by Miro, which in turn leads to stop 

of mitochondrial transport (Chang, Niescier et al. 2011). 

1.4.4 Miro is involved in ER-mitochondrial interaction 

Single mitochondria and the endoplasmic reticulum (ER) are tethered by a big protein 

complex called ER-mitochondrial encounter structure (ERMES) in yeast (Kornmann and 

Walter 2010). The yeast orthologue of Miro, Gem1 was identified as regulatory component 

of the ERMES complex, meaning Gem1 is not crucial for the assembly and stability of the 

complex, but for its proper organization and function (Kornmann, Osman et al. 2011). 

Localization of Gem1 to ERMES requires the second EF hand domain and the first GTPase 

domain, whereas the second GTPase domain controls ERMES function (Kornmann, 

Osman et al. 2011). Because the affinity of Miro to bind calcium was relatively low (Kd 

~50 µM) (Wang and Schwarz 2009) it is possible that the ER-mitochondria connection sites 

create a sub-compartement in which local calcium concentration can reach much higher 

concentrations, enabling calcium to bind to the EF hands and mediate exchange of 

metabolites, calcium and signalling between both organelles (Kornmann, Osman et al. 

2011).  

ERMES foci are mostly located at mitochondrial restriction sites, where mitochondrial DNA 

(mtDNA) is replicated (Hobbs, Srinivasan et al. 2001) (Hanekamp, Thorsness et al. 2002) 

and mitochondria are subsequently dividing (Murley, Lackner et al. 2013). Gem1 plays an 

important role to separate the newly divided mitochondrial tips and distribute the 

synthesized mtDNA alongside with the mitochondria (Murley, Lackner et al. 2013). These 
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findings may explain the observation why gem1∆ yeast lines lose mtDNA over time 

(Frederick, McCaffery et al. 2004), because the co-transport of newly synthesized mtDNA 

to the newly divided mitochondrial tips is disrupted in gem1∆ yeast. In mammalian cells 

Miro1 was also observed to localize in discrete puncta at ER-mitochondrial contact sites 

(Kornmann, Osman et al. 2011). To date some members of a potential ER-mitochondrial 

encounter structure are identified in mammalian cells, amongst them are Mitofusin2 (de 

Brito and Scorrano 2008), VDAC1 and Grp75 (Rapizzi, Pinton et al. 2002) (Szabadkai, 

Bianchi et al. 2006) and Miro (Kornmann, Osman et al. 2011), which is interesting because 

the interaction of Miro and Mitofusin2 was also suggested to be important for a co-ordinated 

regulation of mitochondrial fusion and transport. 

1.4.5 Miro is targeted by the PINK1/Parkin pathway for mitochondrial quality control 

In 2009 Weihofen and colleagues identified PINK1 and Parkin as interaction partner of the 

Miro/Milton complex (Weihofen, Thomas et al. 2009). This interaction was initiated by 

depolarization of the mitochondrial membrane (Wang, Winter et al. 2011). Weihofen and 

colleagues further proposed that ubiquitination by Parkin and subsequent proteasomal 

degradation of Miro and mitofusin might be the initial step to isolate damaged mitochondria 

from the mitochondrial network and to prevent the fusion and subsequent spreading of the 

toxic insult, e.g. oxidative stress, to other healthy mitochondria. The resulting immobile and 

fragmented mitochondria are ready for autophagosomal uptake and lysosomal clearance 

(Weihofen, Thomas et al. 2009). The quarantine of damaged mitochondria for subsequent 

degradation seems to be very important for the maintenance of neuronal integrity. As 

mentioned before, disruption of the PINK1/ Parkin-induced clearance of dysfunctional 

mitochondria in PINK1 or Parkin knockout flies lead to loss of DA neurons (Park, Lee et al. 

2006) (Clark, Dodson et al. 2006). On the other hand, disruption of Miro, Milton or kinesin 

heavy chain (KHC) function was able to rescue PINK1 mutant phenotypes, whereas 

overexpression of Miro1 caused a similar phenotype, including enlargement of 

mitochondria and loss of DA neurons (Liu, Sawada et al. 2012), supporting the idea that 

the arrest of mitochondrial movement is necessary for mitophagy. These findings support 

the relevance of mitochondrial quality control for neurons and the important interaction of 

PINK1/ Parkin and Miro within this mechanism. 
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1.4.6 BDNF and Miro – Synaptic maintenance and plasticity 

The brain-derived neurotrophic factor (BDNF) is crucial for neuronal survival and the 

development and plasticity of synapses. BDNF signalling is operated via two different cell 

membrane receptors: TrkB and p75. TrkB receptor activation in turn drives the activation of 

the MAPK-PI3K-pathway that ultimately leads to release of calcium from internal stores 

(Numakawa, Suzuki et al. 2010). Beyond that, BDNF was reported to increase 

mitochondrial respiration in the brain, but the mechanism behind this function remained 

elusive (Markham, Cameron et al. 2004). The idea of a possible link between BDNF and 

Miro protein arose from the observation that BDNF activity causes an impairment of 

retrograde and anterograde axonal transport (Su, Ji et al. 2014). This BDNF-mediated 

influence on mitochondrial transport seems to be operated by the activation of PI3K and 

PLCɤ via the TrkB receptor. This pathway ultimately leads to release of calcium from 

intracellular stores through IP3 receptors (Su, Ji et al. 2014). Subsequently, increased 

cytosolic calcium concentration enables calcium to bind to the EF hands of Miro and stops 

moving mitochondria at synapses. In this way the interplay of BDNF with Miro causes the 

accumulation of mitochondria at presynaptic sites, which is required for BDNF-induced 

release of neurotransmitters (Su, Ji et al. 2014). 

1.4.7 VopE and Miro – Mitochondria-mediated immune response 

A recent study linked Miro1 and Miro2 to the innate immune response. Mitochondria are 

already known to contribute to the innate immune response (Cloonan and Choi 2013), as 

many bacterial infection pathways target mitochondria (Arnoult, Carneiro et al. 2009). An 

important effector of the Vibrio cholera type III secretion system (T3SS) is VopE. (Alam, 

Miller et al. 2011). A recent study identified a mitochondrial targeting sequence (MTS) at 

the N-terminus and a toxic GTPase-activating protein (ToxGAP) domain at the C-terminus 

of VopE (Suzuki, Danilchanka et al. 2014). ToxGAP domains are often found in bacterial 

T3SS effector proteins, like SptP and ExoS, and have been reported to cause the collapse 

of the actin cytoskeleton of infected cells (Aktories, Schmidt et al. 2000). In contrast, the 

ToxGAP domain of VopE was found to influence mitochondrial morphology (Suzuki, 

Danilchanka et al. 2014). This function was mediated by the direct binding of VopE to the 

N-terminal GTPase domain of Miro1, which caused a 5-fold increase of the GTPase activity 

of Miro1 (Suzuki, Danilchanka et al. 2014). The results of this study suggest that VopE 

inhibits the calcium-dependend regulation of mitochondrial transport by increasing Miro’s 

GTPase activity. In this way VopE is able to influence the mitochondrial-mediated innate 

immune response (Suzuki, Danilchanka et al. 2014). Moreover, VopE is the first described 



   
Introduction 

 

25 
 

GAP that regulates Miro GTPase activity. As the GTP hydrolysis rate of Miro is relatively 

low, it is likely that Miro GTPase activity is regulated by GAPs and guanine nucleotide 

exchange factors (GEFs) (Kornmann, Osman et al. 2011) (Koshiba, Holman et al. 2011), 

but still to date endogenous GAPs and GEFs that influence Miro proteins remain unknown. 

 

The combined information of studies throughout the recent years suggests that Miro is not 

simply an adaptor protein to link mitochondria to motor proteins for regulation of 

mitochondrial transport. Instead, Miro’s ability to interact with kinesin and dynein to mediate 

transport along microtubules likely developed in metazoans, because other interaction 

partners of that complex, like Milton or PINK1 are not existent in D. discoideum (Vlahou, 

Elias et al. 2011), yeast or plants (Yamaoka and Leaver 2008). The primary function of Miro 

proteins could therefore be involved in mitochondrial homeostasis rather than transport 

(Vlahou, Elias et al. 2011). All eukaryotic lineages possess Miro proteins, whereas no 

homologs could be identified in prokaryotes (Vlahou, Elias et al. 2011). These findings 

suggest that Miro evolved very early in the evolution of eukaryotes, most likely together with 

the development of mitochondria  (Vlahou, Elias et al. 2011).  

While summarizing the obtainable information about Miro proteins, it is striking in how many 

pathways Miro is involved around mitochondrial maintenance. Taking together the available 

pieces of the puzzle most of the numerous functions of Miro can be boiled down to the 

following:  

i) Miro regulates mitochondrial transport by multiple direct or indirect interactions of its N-

terminal GTPase domain with different other adaptor proteins like Milton, Mitofusin, kinesin, 

dynein, HUMMR, DISC1, Alex3;  

ii) Miro’s interaction with other proteins, like Milton, Mitofusin, Alex3 and kinesin is regulated 

by calcium binding to the EF hand domains and at least in part by the C-terminal GTPase 

domain.  

However, it remains elusive how many other direct and indirect interaction partner of Miro 

proteins exist, which differential functions Miro1 and Miro2 exactly have and how the 

different interplays are executed in a stress-response and tissue specific manner.  
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1.5 Patient-derived fibroblasts as cell model  

Patient-derived fibroblasts are a cell model that is frequently used in PD research. The cells 

harbour the whole genetic background of the PD patient and express the disease-relevant 

protein at endogenous levels. This is an advantage compared to other cell models, in which 

the protein of interest is artificially over-expressed to an extent that does not always reflect 

the situation in the patient cells. This was for example the case in a study investigating the 

E64D mutation in DJ-1 by Krebiehl and colleagues (Krebiehl, Ruckerbauer et al. 2010). 

Fibroblasts from the homozygous mutation carrier revealed that DJ-1 protein was actually 

significantly decreased in vivo. The mitochondrial phenotype therefore arose from the loss 

of DJ-1 protein rather than from the DJ-1-E64D mutant protein itself (Krebiehl, Ruckerbauer 

et al. 2010). 

Although energy production in fibroblasts is based mainly on glycolysis rather than on 

mitochondrial respiration, still mitochondrial phenotypes can be robustly assessed in 

fibroblasts as shown by a number of different studies throughout the last years. 

Patient-derived fibroblasts harbouring the homozygous nonsense mutation W437X in 

PINK1 displayed a reduction in respiratory activity and increase in mitochondrial ROS 

production (Piccoli, Sardanelli et al. 2008). 

Another study characterized the effects of homozygous PINK1 mutations Q456X and 

V170G. Interestingly, the mutations caused different phenotypes on mitochondrial function 

and morphology: PINK1-V170G caused an increased ROS production in enlarged and 

swollen mitochondria, whereas PINK1-Q456X caused reduction of ATP production 

(Grunewald, Gegg et al. 2009).  

Parkin mutations were found to cause mitochondrial phenotypes in patient-derived 

fibroblasts as well. Mortiboys et al. found a reduction of complex I activity and ATP-

production, accompanied by an alteration of mitochondrial morphology (Mortiboys, Thomas 

et al. 2008). The same workgroup applied the Parkin mutant fibroblasts on a screen for 

compounds that might improve the mitochondrial phenotype and were able to identify 

ursocholanic acid and ursodeoxycholic acid, which markedly rescued the phenotypes and 

are therefore regarded as promising compounds for neuroprotective treatment (Mortiboys, 

Aasly et al. 2013). 

In another study it was also possible to detect severe mitochondrial phenotypes in Parkin 

mutant fibroblasts, like structural changes of mitochondria, disruption of the energy 
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metabolism and increase of mitochondrial ROS production, a phenotype caused by deletion 

of exon 2-3 in Parkin (Pacelli, De Rasmo et al. 2011).  

Impaired mitochondrial function, reflected by decreased mitochondrial membrane potential, 

increased oxygen consumption and decreased ATP-production was also a phenotype 

observed in LRRK2-G2019S mutant fibroblasts (Papkovskaia, Chau et al. 2012). 

Taken together, fibroblasts represent a good cellular model that display relevant 

mitochondrial phenotypes, which are involved in the pathological development of PD, 

including decreased complex I activity, lack of ATP, increased oxidative stress and 

depolarization of mitochondrial membrane potential. These changes in mitochondrial 

function are often accompanied by alteration of mitochondrial morphology, which also can 

be robustly assessed in fibroblasts.  

Fibroblasts from PD patients with mutations in mitochondria-related genes therefore 

represent a good model for first characterization of the effects of mutations on mitochondrial 

function.  

1.6 Aim of the study 

Of all PD cases only about 11 % are familial inherited (Shino, McGuire et al. 2010), meaning 

that the majority of PD cases are sporadic with unknown cause for the disease. Still, 

mitochondrial pathways, e.g. dysfunction of the mitochondrial respiratory chain, oxidative 

stress, dysfunction of mitochondrial quality control and transport, or disruption of calc ium 

homeostasis, play an important role in the pathogenesis of both, sporadic and familial cases 

of PD. Investigation of the underlying mechanisms in PD patients with specific mutations 

allows insight into the development of the disease. This knowledge supports also the 

investigation of the disease causing mechanisms in sporadic PD as the same cellular 

pathways seem to be involved.  

Although during recent years numerous studies underlined the importance of the Miro 

protein family for mitochondrial maintenance and distribution, especially for the health and 

integrity of neuronal function, a first effort to establish an association between RhoT1 or 

RhoT2, the genes encoding for Miro1 and Miro2, and the development of PD in 2012 by 

Anvret and colleagues failed (Anvret, Ran et al. 2012). In this study, a Swedish case-control 

cohort was screened for single nucleotide polymorphisms (SNP) in order to assess, 

whether they were associated with PD or the age of onset of PD. No association was 

established, however, the authors admitted that their study cannot rule out the presence of 
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rare disease-associated mutations not captured by the SNPs and therefore Miro1 or Miro2 

are still promising candidates to cause PD. 

For the present study the first PD-associated Miro1 mutations were investigated with regard 

to their pathogenic potential. The main aim of the study was the characterization of 

mitochondrial phenotypes in patient-derived fibroblasts to investigate whether mutations in 

Miro1 can lead to mitochondrial dysfunction that is sufficient to cause neurodegeneration in 

PD. The results of the investigations emphasize the important role of Miro1 for mitochondrial 

maintenance and function and adds Miro1 as potential novel risk gene to the pathogenic 

pathways leading to PD. 
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2 Materials and Methods 

2.1 Chemicals, Kits, Equipment and Software 

2.1.1 Chemicals and reagents 

Table 1: Chemicals and reagents 

Chemical Supplier Order number 

10x buffer red for restriction 

enzymes 

Thermo Fisher Scientific, 

Braunschweig, Germany 

BR5 

4’,6-Diamidino-2-phenylindole 

dihydrochloride (DAPI) 

Thermo Fisher Scientific, 

Braunschweig, Germany 

D3571 

5,5’-Dithiobis(2-nitrobenzoic) acid 

(DNTB) 

Sigma Aldrich Chemie GmbH, 

Munich, Germany 

D8130 

Acetyl-CoA Sigma Aldrich Chemie GmbH, 

Munich, Germany 

A2056-25MG 

Acrylamide/ Bis-acrylamide 30 % 

solution 

Sigma Aldrich Chemie GmbH, 

Munich, Germany 

A3699-100ML 

Agarose Sigma Aldrich Chemie GmbH, 

Munich, Germany 

A9539 

Amersham™ ECL™ Prime 

Western Blotting Detection 

Reagent 

GE Healthcare, Freiburg, 

Germany 

RPN 2232 

Amersham™ ECL™ Select 

Western Blotting Detection 

Reagent 

GE Healthcare, Freiburg, 

Germany 

RPN 2235 

Amonium persulfate (APS) Sigma Aldrich Chemie GmbH, 

Munich, Germany 

A3678 

Ampicillin sodium salt Sigma Aldrich Chemie GmbH, 

Munich, Germany 

A9518-25G 

Annexin V, Alexa Fluor® 568 

conjugate 

Thermo Fisher Scientific, 

Braunschweig, Germany 

A13202 

Antimycin A Sigma Aldrich Chemie GmbH, 

Munich, Germany 

A8674-25MG 
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bicarbonate-free basal DMEM 

powder 

Sigma Aldrich Chemie GmbH, 

Munich, Germany 

D5030 

Blasticidin S HCl Invitrogen GmbH, Karlsruhe, 

Germany 

R210-01 

Bovine serum albumin (BSA) AppliChem GmbH, Darmstadt, 

Germany 

A6588,0100 

Bradford solution Bio-Rad Laboratories, Munich, 

Germany 

5000201 

Bromphenole blue Sigma Aldrich Chemie GmbH, 

Munich, Germany 

B0126-25G 

Carbonyl cyanide 4-

(trifluoromethoxy) 

phenylhydrazone (FCCP) 

Sigma Aldrich Chemie GmbH, 

Munich, Germany 

C2920-10MG 

Complete Protease Inhibitor Roche Applied Science, 

Mannheim, Germany 

04693124001 

D(+)-Sucrose Sigma Aldrich Chemie GmbH, 

Munich, Germany 

84100 

D-Glucose Sigma Aldrich Chemie GmbH, 

Munich, Germany 

D8375 

Dimethyl sulfoxide (DMSO) Sigma Aldrich Chemie GmbH, 

Munich, Germany 

D8418 

DL-Dithiothreitol (DTT) Sigma Aldrich Chemie GmbH, 

Munich, Germany 

D-9163-25G 

DMEM without Glucose Thermo Fisher Scientific, 

Braunschweig, Germany 

11966-025 

DMEM/Ham’s-F12 

[-] L-Glutamine 

Thermo Fisher Scientific, 

Braunschweig, Germany 

21331-046 

DNA T4 ligase New England Biolabs GmbH, 

Frankfurt, Germany 

M0202T 

DPBS/ Modified [+] Ca2+, [+] Mg2+ 

(DPBS+/+) 

Thermo Fisher Scientific, 

Braunschweig, Germany 

SH30264.01 

Dulbeco’s modified Eagle 

medium (DMEM)  

[+] 4,5 g/L D-Glucose, [+] L-

Glutamine, [-] Pyruvate 

Thermo Fisher Scientific, 

Braunschweig, Germany 

41965-062 
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EcoRI restriction enzyme Thermo Fisher Scientific, 

Braunschweig, Germany 

ER0271 

Ethylene Glycol-bis(2-

aminoethylether)-N,N,N',N'-

tetraacetic acid (EGTA) 

Sigma Aldrich Chemie GmbH, 

Munich, Germany 

E3889 

Fetal bovine serum (FBS) Thermo Fisher Scientific, 

Braunschweig, Germany 

10270106 

Glycerin Sigma Aldrich Chemie GmbH, 

Munich, Germany 

G6279 

Glycine AppliChem GmbH, Darmstadt, 

Germany 

A3707,1000 

Goat Serum Sigma Aldrich Chemie GmbH, 

Munich, Germany 

G9023 

HEPES Sigma Aldrich Chemie GmbH, 

Munich, Germany 

H3375 

Histamine  Sigma Aldrich Chemie GmbH, 

Munich, Germany 

H7125-1G 

Hydrogen peroxide (H2O2) AppliChem GmbH, Darmstadt, 

Germany 

A1134,0250 

LB broth Sigma Aldrich Chemie GmbH, 

Munich, Germany 

L7275 

LB broth with agar Sigma Aldrich Chemie GmbH, 

Munich, Germany 

L7025 

L-Glutamine Thermo Fisher Scientific, 

Braunschweig, Germany 

35050-038 

LysoTracker® red Thermo Fisher Scientific, 

Braunschweig, Germany 

L-7528 

LysoTracker® yellow HCK-123 Thermo Fisher Scientific, 

Braunschweig, Germany 

L-12491 

Magnesium chloride (MgCl2) Sigma Aldrich Chemie GmbH, 

Munich, Germany 

M8266 

Mannitol Sigma Aldrich Chemie GmbH, 

Munich, Germany 

M4125 

Midori Green Advance DNA stain Biozym Scientific, Hessisch 

Oldendorf, Germany 

617004 
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MitoSOX™ Red Mitochondrial 

Superoxide Indicator 

Thermo Fisher Scientific, 

Braunschweig, Germany 

M36008 

MitoTracker® green FM Thermo Fisher Scientific, 

Braunschweig, Germany 

M-7514 

MitTracker® deep red FM Thermo Fisher Scientific, 

Braunschweig, Germany 

M224426 

N,N,N’,N’-Tetramethyl- 

ethylenediamine (TEMED) 

Sigma Aldrich Chemie GmbH, 

Munich, Germany 

T9281-25ML 

Non-essential amino acids Thermo Fisher Scientific, 

Braunschweig, Germany 

K0293 

Nonidet P 40 substitute (NP40) VWR International, 

Pennsylvania, USA 

492016-100 

nuclease-free water Qiagen GmbH, Hilden, Germany  

Oligomycin A Sigma Aldrich Chemie GmbH, 

Munich, Germany 

75351-5MG 

One Shot® TOP10 Chemically 

competent E. coli 

Thermo Fisher Scientific, 

Braunschweig, Germany 

c4040-03 

OPTI-MEM 

[+] HEPES, [+] 2,4 g/L Sodium 

Bicarbonate, [+] L-Glutamine 

Thermo Fisher Scientific, 

Braunschweig, Germany 

31985-062 

Oxaloacetic acid Sigma Aldrich Chemie GmbH, 

Munich, Germany 

O7753 

PageRuler Plus Prestained 

Protein Ladder 

Thermo Fisher Scientific, 

Braunschweig, Germany 

26620 

Paraformaldehyde (PFA) Sigma Aldrich Chemie GmbH, 

Munich, Germany 

1.04005.1000 

Penicillin-Streptomycin Thermo Fisher Scientific, 

Braunschweig, Germany 

15140-122 

Phosphate buffered saline (PBS) Thermo Fisher Scientific, 

Braunschweig, Germany 

14190-169 

Piericidin A Santa Cruz, Dallas, Texas sc-202287 

Polybrene® Sigma Aldrich Chemie GmbH, 

Munich, Germany 

107689 

Potassium bicarbonate (KHCO3) Sigma Aldrich Chemie GmbH, 

Munich, Germany 

60339 
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Potassium chloride (KCl) Sigma Aldrich Chemie GmbH, 

Munich, Germany 

P9541 

Rotenone Sigma Aldrich Chemie GmbH, 

Munich, Germany 

R8875-5G 

Skim Milk Powder Sigma Aldrich Chemie GmbH, 

Munich, Germany 

70166-500G 

Sodium chloride (NaCl) Sigma Aldrich Chemie GmbH, 

Munich, Germany 

S3014 

Sodium dodecyl sulfate (SDS) 

solution 

Sigma Aldrich Chemie GmbH, 

Munich, Germany 

71736 

Staurosporine Sigma Aldrich Chemie GmbH, 

Munich, Germany 

S5927-1MG 

SV 40 large T antigene lentivirus Applied Biological Materials Inc., 

Richmond, Canada (Biocat) 

G203 EVOAMB 

Tetramethylrhodamine methyl 

ester (TMRE) 

Thermo Fisher Scientific, 

Braunschweig, Germany 

T-669 

TransIT®-2020 transfection 

reagent 

Mirus Bio LLC, Madison, USA MIR 5400 

Triton X-100 Sigma Aldrich Chemie GmbH, 

Munich, Germany 

X100 

Trizma base Sigma Aldrich Chemie GmbH, 

Munich, Germany 

T1503 

Trizma hydrochloride Sigma Aldrich Chemie GmbH, 

Munich, Germany 

5941 

Trypsin-EDTA (0,05 %), phenol 

red 

Thermo Fisher Scientific, 

Braunschweig, Germany 

25300-054 

Trypsin-EDTA (0,25 %), phenol 

red 

Thermo Fisher Scientific, 

Braunschweig, Germany 

25200-056 

Tween-20 Sigma Aldrich Chemie GmbH, 

Munich, Germany 

P1379 

Valinomycin Sigma Aldrich Chemie GmbH, 

Munich, Germany 

V0627-25MG 

Vectashield Vector Laboratories Inc., 

Burlingame, USA 

H-1000 

XF-calibrant solution Seahorse Bioscience, 

Massachusetts, USA 
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2.1.2 Kits 

Table 2: Kits 

Kit Supplier Order number 

BLOCK-iT Inducible Pol II 

miR RNAi Expression 

Vector Kit with EmGFP 

Invitrogen GmbH, 

Karlsruhe, Germany 

K4939 

Complex I Enzyme Activity 

Dipstick Assay Kit 

Abcam, Cambridge, UK ab109720 

Fluo-4 Direct™ Calcium 

Assay Kit 

Thermo Fisher Scientific, 

Braunschweig, Germany 

F10471 

High Fidelity complimentary 

DNA Synthesis Kit  

Roche Applied Science, 

Mannheim, Germany 

PE-401-4001 

High pure RNA isolation Kit Roche Applied Science, 

Mannheim, Germany 

11828665001 

LookOUT® Mycoplasma 

PCR Detection Kit 

Sigma Aldrich Chemie 

GmbH, Munich, Germany 

MP0035-1KT 

QIA Blood and Tissue DNA 

kit 

Qiagen GmbH, Hilden, 

Germany 

69506 

Qiagen Plasmid Midi/Maxi 

Kit 

Qiagen GmbH, Hilden, 

Germany 

12143 / 12663 

QIAprep spin MiniPrep Kit Qiagen GmbH, Hilden, 

Germany 

27106 

QIAquick Gel Extraction Kit Qiagen GmbH, Hilden, 

Germany 

28704 

QIAquick PCR purification 

Kit 

Qiagen GmbH, Hilden, 

Germany 

28104 

  

XhoI restriction enzyme Thermo Fisher Scientific, 

Braunschweig, Germany 

ER0695 

β-Mercaptoethanol Thermo Fisher Scientific, 

Braunschweig, Germany 

31350-010 



   
Materials and Methods 

 

35 
 

2.1.3 Equipment 

Table 3: Equipment 

Equipment Supplier 

Agarosegel tank VWR International, Pennsylvania, USA 

Bacterial incubator Binder, Tuttlingen, Germany 

BD LSR Fortessa Becton, Dickinson and Company©, 

Erembodegem, Belgium 

Biofuge pico and fresco Thermo Fisher Heraeus, Hanau, Germany 

Centrifuge 5810R Eppendorf, Hamburg, Germany 

Centrifuge Evolution Rc Thermo Fisher Sorvall, Hamburg, Germany 

Centrifuge Micro 22R Hettich, Tuttlingen, Germany 

Confocal microscope Axiovert 2000, 

with ApoTome, CO2 humidifier, plan-

apochromate objectives, AxioCam MRc 

Carl Zeiss Microimaging GmbH, Jena, 

Germany 

Confocal microscope Axiovert 2000, 

with spinning disc, CO2 humidifier, plan-

apochromate objectives, Hamamatsu 

camera C11440 

Carl Zeiss Microimaging GmbH, Jena, 

Germany 

Countess II cell counter Life Technologies/ Thermo Fisher Scientific, 

Braunschweig, Germany 

CyAn ADP Analyzer Beckman Coulter, California, USA 

Geldoc system T:Genius Syngene, Cambridge, UK 

iBlot 2 Invitrogen GmbH, Karlsruhe, Germany 

Incubator Panasonic Biomedical, London, UK 

Microtiter plate reader Bio-Rad laboratories GmbH, Munich, 

Germany 

Milli-Q Synthesis Millipore Corporation, Darmstadt, Germany 

NanoDrop (ND1000) Peqlab, Erlangen, Germany 

ODYSSEY chemiluminescence 2800 Fc LI-COR, Lincoln, USA 

Pipetboy Integra Bioscience, Fernwald, Germany 

Power pack Bio-Rad Laboratories, Munich, Germany 

Spectrophotometer SPECORD 210Plus Analytic Jena AG, Jena, Germany 

Stereo microscope MZ7 Leica, Solms, Germany 

Sterile bench Herasafe Thermo Fisher Heraeus, Hanau, Germany 
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Synergy Mx microplate Reader BioTek Instruments, Inc., Bad Friedrichshall, 

Germany 

Thermocycler TP Professional standard 

gradient 96 

Biometra, Analytic Jena AG, Jena, Germany 

Thermomixer comfort Eppendorf, Hamburg, Germany 

WB TANK Bio-Rad Laboratories, Munich, Germany 

XFe96 extracellular flux Analyzer Seahorse Bioscience, Massachusetts, USA 

 

2.1.4 Consumables 

Table 4: Plastic ware 

Plastic ware Supplier Order number 

cell culture consumables BD Biosciences, Heidelberg, Germany; Corning, 

Kaiserslautern, Germany; Greiner Bio-One GmbH, 

Frickenhausen, Germany; Thermo Fisher Scientific, 

Braunschweig, Germany 

coverslips Carl Rhoth GmbH, Karlsruhe, Germany 

iBlot 2 NC Regular/ Mini 

Stacks (Nitrocellulose 

membrane) 

Invitrogen GmbH, 

Karlsruhe, Germany 

IB23001 /  

IB23002 

Nunc™ Lab-Tek™ 

Chamber slides 

Thermo Fisher Scientific, 

Braunschweig, Germany 

155382 /  

155409 

PCR reaction tubes Eppendorf, Hamburg, Germany 

pipette tips Eppendorf, Hamburg, Germany 

reaction tubes Eppendorf, Hamburg, Germany 

XFe96 assay cartridge Seahorse Bioscience, 

Massachusetts, USA 

102416-100 

XFe96 cell culture 

microplate 

Seahorse Bioscience, 

Massachusetts, USA 

101085-004 
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2.1.5 Software 

Table 5: Software 

Software Purpose Supplier 

Flowjo 10 evaluation of FACS data Flowjo LLC, Oregon, USA 

ImageJ  evaluation of microscopy 

images 

Wayne Rasband, NIH 

Primer3 primer design freeware 

Prism 6 statistical analysis GraphPad Software, Inc., 

La Jolla, USA 

Summit 4.3.02b2451 evaluation of FACS data Beckman Coulter, 

California, USA 

ZEN Blue evaluation of microscopy 

images 

Carl Zeiss Microimaging 

GmbH, Jena, Germany 

FinchTV visualization of DNA 

chromatograms 

Geospiza Inc., Seattle, 

USA 
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2.2 In silico prediction of pathogenic effects of RhoT1 mutations 

In silico prediction of the pathogenic effects of the identified RhoT1 mutations was 

performed by Patrick May (LCSB, University of Luxembourg, Belvaux, Luxembourg). The 

RhoT1 mutations were analysed with the analysis tools shown in (Table 6). 

 

Table 6: Applied analysis tools for in silico prediction of pathogenic effects of RhoT1 mutations 

Analysis tool Database/ source 

SIFT (Sorting Intolerant from 

Tolerant), sift.jcvi.org 

Polyphen2  

(Polymorphism Phenotyping v2), 

genetics.bwh.harvard.edu/pph2/ 

Mutation taster,  

www.mutationtaster.org 

Mutation assessor, 

www.mutationassessor.org 

FATHMM (Functional Analysis 

through Hidden Markov Models), 

fathmm.biocompute.org.uk 

http://www.ncbi.nlm.nih.gov/pubmed/21520341 

http://annovar.openbioinformatics.org/en/latest/ 

http://sites.google.com/site/jpopgen/dbNSFP 

LRT pred. (Likelihood ratio test) http://www.genetics.wustl.edu/jflab/lrt_query.ht

ml (Chun and Fay 2009) 

radial SVM pred. 

LR pred. 

(Dong, Wei et al. 2015) 

 

  

http://www.sift.jcvi.org/
http://www.genetics.bwh.harvard.edu/pph2/
http://www.mutationtaster.org/
http://www.mutationassessor.org/
http://www.ncbi.nlm.nih.gov/pubmed/21520341
http://annovar.openbioinformatics.org/en/latest/
http://sites.google.com/site/jpopgen/dbNSFP
http://www.genetics.wustl.edu/jflab/lrt_query.html
http://www.genetics.wustl.edu/jflab/lrt_query.html
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2.3 Homology modelling of Miro1 

To date, there is no crystal structure for human Miro1 available. Klosowiak et al. established 

the first partial crystal structure for the drosophila ortholog dMiro (Klosowiak, Focia et al. 

2013). Based on the crystal structure of dMiro a homology model for human Miro1 was 

created by Enrico Glaab (LCSB, University of Luxembourg, Belvaux, Luxembourg). 

A multiple sequence alignment for the amino acid sequences of human Miro1 (Swiss-Prot 

accession: Q8IXI2) and dMiro (Swiss-Prot accession: Q8IMX7) was performed using the 

Clustal Omega software (Sievers, Wilm et al. 2011) and SIAS software 

(http://imed.med.ucm.es/Tools/sias.html), with BLOSUM62 substitution matrix for similarity 

estimation. The alignment revealed a sequence similarity of 60.51 % of both orthologs. 

I-TASSER software for protein structure prediction with default parameters (Zhang 2008) 

was then used to derive the crystal structure of human Miro1 from the dMiro structure (PDB: 

4COJ). 

The resulting model was used to determine the amino acid sequence conservation scores 

by ConSurf software (UNIREF90 database and MAFFT program) (Ashkenazy, Erez et al. 

2010).  

Protein stability of the Miro1 mutant proteins were calculated for physiological conditions of 

37°C and a pH of 7 with the neural-network based Network Enthalpic Modelling (NeEMO) 

prediction method (Giollo, Martin et al. 2014) and the support vector machine approach I-

MUTANT 2.0 (Capriotti, Fariselli et al. 2005). 
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2.4 Genotyping of cohorts for RhoT1 mutations  

Existing genetic databases including 1500 genomes available on a whole exome server 

were analyzed by Manu Sharma (Hertie-Institute for Brain Research, University of 

Tübingen, Tübingen). 

Further analysis of 61486 unrelated individuals available from different databases (snp138, 

Avsnp138, cosmic70, cosmic68wgs, nci60, esp6500si, esp6500siv2, cg46, cg69, 

1000g2014oct, exac02, exac alleles, popfreq) were done by Peter Lichtner (Helmholtz 

Centre, Munich, Germany).  

A large independent cohort of DNA samples of 1238 German PD patients and 662 healthy 

controls from the KORA cohort (KORA-Study Group consists of A. Peters, J. Heinrich, R. 

Holle, R. Leidl, C. Meisinger, K. Strauch, and their co-workers, who are responsible for the 

design and conduct of the KORA studies) was genotyped by the laboratory of Peter Lichtner 

(Helmholtz Centre, Munich, Germany) as well.  

2.5 Cell Culture 

All fibroblast and M17 cells were grown in cell culture approved flasks and dishes (BD 

Bioscience, Heidelberg, Germany; Corning, Kaiserslautern, Germany; Greiner Bio-One 

GmbH, Frickenhausen, Germany; Thermo Fisher Scientific, Braunschweig, Germany). The 

cells were incubated at 37°C and 5 % CO2. For long term storage stocks were frozen in 

freezing medium (Table 7) and stored in liquid nitrogen or at -150°C. When thawed, cells 

were resuspended in medium and plated into appropriate cell culture flasks. The medium 

containing DMSO (Sigma Aldrich Chemie GmbH, Munich, Germany) was replaced with 

fresh medium on the next day. 

All cells were tested regularly for contamination with Mycoplasma using the LookOUT® 

Mycoplasma PCR Detection Kit (Sigma Aldrich Chemie GmbH, Munich, Germany) 

according to manufacturer’s instructions. 
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Table 7: Freezing medium 

Cell line Proportion Chemical 

Native fibroblasts 90 % FBS 

10 % DMSO 

Immortalized fibroblasts 50 %  DMEM +/+ 

40 % FBS 

10 % DMSO 

M17 cells 50 % DMEM/Ham´s-F12 +/+ 

40 % FBS 

10 % DMSO 

 

2.5.1 Fibroblast cell culture 

2.5.1.1 Skin biopsy for cultivation of fibroblasts 

Prior to the skin biopsies, informed consent was obtained from each patient in this study 

(Table 8). The informed consent was approved by the Ethics Committee of the Medical 

faculty and the University Hospital Tübingen, Germany. 

Skin biopsy was taken from patients, transferred to a 50 mL falcon containing DMEM+/+ 

(Table 9) and processed immediately. First, the biopsy was transferred to a 6 cm dish and 

washed 3x in PBS (Thermo Fisher Scientific, Braunschweig, Germany). Fatty tissue and 

hair was removed from the skin. Skin biopsy was then cut into 8 – 12 pieces and 3 – 4 of 

these biopsy pieces were placed into a T25 flask with 2 mL DMEM+/+ (Table 9). By shaking 

gently the skin pieces were distributed equally inside the flask, not too close to the edges. 

The flasks were incubated for at least one week without moving them to allow cells to attach 

and grow. After one week, half of the medium was replaced with fresh medium. From this 

point on, medium was changed twice every week. When fibroblasts started growing out 

from the skin samples and were confluent in the flask, cells were trypsinated and stocks 

were frozen. This procedure was repeated several times. 
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Table 8: Healthy control and patient-derived fibrob lasts 

Name Internal ID Gender Year of birth Age at biopsy 

Ctrl 1 18156 female 1954 57 

Ctrl 2 15243 male 1956 55 

Ctrl 3 18075 female 1939 72 

Miro1-R272Q  female 1935 78 

Miro1-R450C  female 1958 54 

 

2.5.1.2 Immortalization of fibroblasts 

Fibroblasts were immortalized with a pLenti-III-SV40 construct (Applied Biological Materials 

Inc., Richmond, Canada), expressing the Large T Antigen of SV40, to be able to maintain 

cells to higher passage numbers and to expand cells more easily. 

For immortalization 100.000 cells per well were seeded into 6 well plates and allowed to 

attach to the well surface overnight. The medium was replaced with 1 mL of fresh DMEM+/+ 

(Table 9) per well. Prior to transduction Polybrene® (Thermo Fisher Scientific, 

Braunschweig, Germany) was diluted in medium to a concentration of 10 µg/ mL and added 

to the cells. Then, 1 mL of SV40 lentiviral vector solution was added drop wise to the cells. 

Fibroblasts were incubated for 14 hours at 37°C, 5 % CO2. After the incubation time 

medium was changed and cells were grown until they reached confluency. Successfully 

immortalized fibroblasts were selected from non-immortalized fibroblasts by serial splitting 

of 1:10 and monitored based on cell morphology. After successful immortalization s tocks 

of fibroblasts were frozen down and maintained further for experiments. 

2.5.1.3 Cell Culture maintenance of native and immortalized fibroblasts 

Native and immortalized fibroblasts were grown in DMEM+/+ medium (Table 9). For 

splitting fibroblasts were washed with PBS once and Trypsin-EDTA (0,25 %), phenol red 

(Thermo Fisher Scientific, Braunschweig, Germany) was added for 2 min at room 

temperature. When cells were detached DMEM+/+ medium was added to inactivate the 

Trypsin and the cell suspension was collected. The cell number was determined with the 

Countess II automated cell counter (Life Technologies/ Thermo Fisher Scientific, 

Braunschweig, Germany) and the appropriate cell number was seeded into cell culture 

flasks or dishes. Native fibroblasts were used until passage number 10 – 12, whereas 

immortalized fibroblasts were used until passage number 30 – 35. 
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2.5.2 M17 cell culture 

2.5.2.1 Cell Culture maintenance of M17 cells  

The human neuroblastoma M17 cell line was grown in DMEM/F12 +/+ medium (Table 9). 

For splitting, cells were washed once with PBS and Trypsin-EDTA (0,05 %), phenol red 

(Thermo Fisher Scientific, Braunschweig, Germany) was added for 2 min at room 

temperature. Detached cells were resuspended in medium to inactivate the Trypsin. The 

cell suspension was collected and seeded into appropriate cell culture flasks or dishes. 

 

Table 9: Cell culture media 

Medium Cell line Amount Chemical 

DMEM +/+ Fibroblasts 84 % DMEM 

+ 4,5 g/L D-Glucose 

+ L-Glutamine 

- Pyruvate 

15 % FBS 

1 % Penicillin-Streptomycin 

DMEM/Ham´s-F12 +/+ M17 cells 82 % DMEM/F12 

- L-Glutamine 

15 % FBS 

1 % L-Glutamine 

1 % non-essential amino acids 

1 % Penicillin-Streptomycin 

 

2.5.2.2 Generation of M17 cells with stable knockdown of RhoT1 

In the M17 cell line a stable knockdown of RhoT1 was introduced using the BLOCK-iT 

Inducible Pol II miR RNAi Expression Vector Kit with EmGFP (Invitrogen GmbH, Karlsruhe, 

Germany) according to the manufacturer’s instructions. The single-stranded nucleotide 

oligos were designed to target different regions of RhoT1 (Table 10) and cloned into the 

pcDNA6.2-GW/EmGFP-miR vector provided by the kit. The EmGFP tag was removed 

according to the kit protocol. One Shot® TOP10 Chemically competent E. coli (Thermo 

Fisher Scientific, Braunschweig, Germany) were transformed (see 2.4.1.) with either 

pcDNA6.2-GW/EmGFP-miR vector containing one of the RhoT1-targeting miRNA’s or the 
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pcDNA6.2-GW/EmGFP-miR-neg control plasmid, also provided by the kit. The plasmids 

were purified from the bacteria (see 2.4.2.) and used to transfect the M17 cells (see 2.6.). 

Positively transfected M17 cells were then selected with DMEM-F12 +/+ medium containing 

6 µg/mL Blasticidin S HCl (Invitrogen GmbH, Karlsruhe, Germany). After successful 

selection the knockdown of RhoT1 was verified by Western Blot analysis and the miRNA 

construct with the most efficient knockdown was selected for further experiments. 

 

Table 10: Targeting sequences of nucleotide oligos 

Oligo name Sequence 5’ to 3’ target 

region 

524_top TGCTGTTTATGAGAGGAATCCATCGAGTTTTGGCCACTG

ACTGACTCGATGGACCTCTCATAAA 

ORF 

524_bottom CCTGTTTATGAGAGGTCCATCGAGTCAGTCAGTGGCCA

AAACTCGATGGATTCCTCTCATAAAC 

1335_top TGCTGTAAATAAGTCGTGAGCGTCCAGTTTTGGCCACT

GACTGACTGGACGCTCGACTTATTTA 

ORF 

1335_bottom CCTGTAAATAAGTCGAGCGTCCAGTCAGTCAGTGGCCA

AAACTGGACGCTCACGACTTATTTAC 

2471_top TGCTGTATGCTAGCCAATACTGCAGTGTTTTGGCCACTG

ACTGACACTGCAGTTGGCTAGCATA 

5’ UTR 

2471_bottom CCTGTATGCTAGCCAACTGCAGTGTCAGTCAGTGGCCA

AAACACTGCAGTATTGGCTAGCATAC 
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2.6 Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) analysis 

2.6.1 Quantification of DNA and RNA samples 

DNA and RNA samples were quantified using the NanoDrop ND1000 (Peqlab, Erlangen, 

Germany). 

2.6.2 Isolation of DNA from eukaryotic cells 

Genomic DNA was isolated from cultured fibroblasts using the QIA Blood and Tissue DNA 

kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions. 

2.6.3 Measurement of mitochondrial DNA (mtDNA) damage and mtDNA copy 

number 

Native Fibroblasts were grown in 6 well plates under standard conditions until they were 

confluent. Cells were then either treated with 5 mM H2O2 for 5 min, 10 µM Rotenone for 

20 min or a combination of 5 mM H2O2 (for 5 min) and 10 µM Rotenone (for 20 min) to 

induced ROS-mediated mtDNA damage.  

Total DNA and mtDNA was isolated from cell pellets of fibroblasts with the QIA Blood and 

Tissue DNA kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s 

instructions. The elution step was performed twice with 30 µL of Elution buffer to obtain a 

minimum concentration of 10 ng/µL of total DNA.  

Mitochondrial DNA damage and copy number were measured at the DNA Damage & 

Repair Unit Tübingen (Tübingen, Germany), using a high-sensitivity long-run real-time PCR 

technique for DNA-damage quantification (LORD-Q). While undamaged DNA is 

successfully amplified, different types of DNA modification or lesions result in delayed or 

disrupted PCR elongation, which can be detected as reduction of fluorescence intensity 

(Lehle, Hildebrand et al. 2014).  

2.6.4 Isolation of RNA  

For semi-quantitative measurement of RhoT1 mRNA levels fibroblasts were grown in 

appropriate dishes and harvested by trypsinizing. The cell pellet was washed twice with 

PBS and stored at -80°C until RNA was isolated. 
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RNA isolation from the cell pellets was performed with the High pure RNA isolation Kit 

(Roche Applied Science, Mannheim, Germany) following the manufacturer’s instructions. 

RNA samples were stored at -80°C until further processing.  

2.6.5 Reverse transcription PCR for cDNA synthesis 

The High Fidelity complimentary DNA (cDNA) Synthesis Kit (Roche Applied Science, 

Mannheim, Germany) was used for reverse transcription of isolated RNA from fibroblasts 

(2.6.4). Complementary DNA was synthesised using 200 ng of RNA per reaction and with 

anchored-oligo(dT) primers provided by the kit. As negative control served a reaction 

without reverse transcriptase. For the reaction mix see (Table 11) and for polymerase chain 

reaction (PCR) program (Table 12). Complementary DNA samples were stored at -20°C 

until the semi-quantitative measurement of cDNA was performed using rtPCR. 

 

Table 11: Reaction mix for cDNA synthesis 

Reagent Volume 

reaction buffer 4 µL 

RNAse inhibitor 0.5 µL 

dNTPs 2 µL 

DTT 1 µL 

reverse transcriptase 1.1 µL 

RNA  200 ng 

 

Table 12: PCR program for cDNA synthesis 

Temperature Time 

29°C 10 min 

42°C 60 sec 

85°C 5 min 

4°C 60 min 
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2.6.6 Semi-quantitative measurement of RhoT1 mRNA level by rtPCR 

The level of RhoT1 mRNA was measured by rtPCR using the cDNA synthesized from 

isolated RNA (2.6.4). Primers were designed with Primer3 software (freeware) (Table 13). 

TBP was used as housekeeping gene to quantify RhoT1 mRNA level. The reaction mix is 

shown in (Table 14) and the PCR programme is shown in (Table 15). The PCR product 

was loaded on a 2 % agarose gel (Biozym Scientific, Hessisch Oldendorf, Germany) 

containing 7 µL/100 mL Midori Green Advance DNA stain (Biozym Scientific, Hessisch 

Oldendorf, Germany) to visualize the results. Intensity of the cDNA bands were measured 

using ImageJ (Wayne Rasband, NIH) and the results were used to quantify the relative 

mRNA amounts. 

 

Table 13: Primer sequences for rtPCR 

Primer Sequence (5’ – 3’) Supplier 

RhoT1-1 forward CTGCTTTCCATGCCCGGTT Metabion international 

AG (Steinkirchen, 

Germany) 
RhoT1-1 reverse ACTGCAAAAACAGTAGCACCAA 

TBP forward GAAGTTGGGTTTTCCAGCTAA 

TBP reverse GGAGAACAATTCTGGGTTTGA 

 

Table 14: Reaction mix for rtPCR 

Reagent Volume 

5x buffer 5 µL 

dNTP mix 1 µL 

MgCl2 2 µL 

forward primer 0.5 µL 

reverse primer 0.5 µL 

H2O 5.9 µL 

Taq polymerase 1 µL 
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Table 15: PCR program for rtPCR 

Temperature Time Cycles 

94°C 1 min  

94°C 10 sec 25 x 

56°C 5 sec 

60°C 10 sec 

60°C 4 min  

4°C ∞  

 

2.6.7 Sequencing of RhoT1 cDNA 

RNA was isolated from immortalized fibroblasts (2.6.4) and used for cDNA synthesis 

(2.6.5). The cDNA was further used to amplify the RhoT1 gene containing the nucleotides 

at positions c.815 and c.1348 by PCR (Table 18). The resulting PCR product was purified 

with QIAquick PCR purification Kit (Qiagen GmbH, Hilden, Germany). Sanger sequencing 

of the purified cDNA PCR product was performed by Seqlab (Seqlab Sequence 

Laboratories Göttingen GmbH, Göttingen, Germany), using the same primers (Table 17) 

as for PCR amplification of RhoT1. The chromatograms from sequencing results were 

visualized using FinchTV software (Geospiza Inc., Seattle, USA). 

 

Table 16: PCR reaction mix for RhoT1 amplification from cDNA 

Reagent Volume 

5x buffer 5 µL 

dNTP mix (10 mM) 1 µL 

MgCl2 (25 mM) 2 µL 

forward primer (Table 17) 1 µL 

reverse primer (Table 17) 1 µL 

H2O 12.9 µL 

Taq polymerase 0.1 µL 

sample 3 µL 

 

 

 



   
Materials and Methods 

 

49 
 

Table 17: Primer for RhoT1 amplification of cDNA and sequencing 

Primer Primer sequence (5’ – 3’) Supplier 

RhoT1 cDNA - forward TGATGGTGTGGCTGACAGTG Eurogentec (Liège, 

Belgium) RhoT1 cDNA - reverse CCGATTCTGAGATATCATGCAACA 

 

Table 18: PCR program for RhoT1 amplification from cDNA 

Temperature Time Cycles 

95°C 2 min  

95°C 30 sec 30 x 

60°C 30 sec 

72°C 1:30 min 

72°C 6 min  

10°C ∞  

 

2.7 Cloning 

2.7.1 Transformation of bacteria  

One Shot® TOP10 Chemically competent E. coli (Thermo Fisher Scientific, Braunschweig, 

Germany) were transformed using plasmid DNA (pDNA) as instructed by the manufacturer.  

2.7.2 Plasmid DNA (pDNA) purification 

Plasmid DNA was isolated using the QIAprep spin MiniPrep Kit or Qiagen Plasmid Midi/ 

Maxi Kit (Qiagen GmbH, Hilden, Germany), according to the needed amount of pDNA, 

following the manufacturers’ protocol. The pDNA was eluted in elution buffer and stored at 

-20°C. 

2.7.3 Cloning of RhoT1 into pcDNA3.1/V5-HisA 

For the study the RhoT1 gene was purchased as TrueORF cDNA clone in a pCMV6-Entry 

vector from Origene Technologies (Rockville, USA) and subcloned into a pcDNA3.1/V5-

HisA vector (Invitrogen GmbH, Karlsruhe, Germany). 

One Shot® TOP10 Chemically competent E. coli were transformed with the pCMV6-Entry 

vector, containing RhoT1 as described before (2.4.1.). E. coli containing the empty vector 
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pcDNA3.1/V5-HisA were grown from a frozen glycerol stock in sterilized LB medium (Sigma 

Aldrich Chemie GmnH, Munich, Germany), containing the appropriate concentration of 

antibiotics. Both pDNAs were isolated from E. coli as described before (2.4.2.). 

Both purified pDNAs were digested for 3 hours at 37°C with the restrictions enzymes EcoRI 

and XhoI (Thermo Fisher Scientific, Braunschweig, Germany) following the manufacturers 

protocol to linearize the pcDNA3.1/V5-HisA vector and to cut out the RhoT1 insert from the 

pCMV6-Entry vector (Table 19). The digested pDNA was separated in a 1 % agarose gel 

containing 7 µL/100 mL Midori Green Advance DNA stain. The linearized pcDNA3.1/V5-

HisA vector and the RhoT1 insert were cut out from the agarose gel. The DNA was purified 

from the gel using the QIAquick Gel Extraction Kit (Qiagen GmbH, Hilden, Germany) 

according to manufacturer’s protocol.  

The RhoT1 insert was then ligated into the pcDNA3.1/V5-HisA vector using DNA T4 ligase 

(New England Biolabs GmbH, Frankfurt, Germany) over night at 16°C as instructed by the 

manufacturer. The amount of RhoT1 insert and linearized pcDNA3.1/V5-HisA vector was 

calculated with the equation shown below. 

 

Table 19: Restriction digest reaction 

Amount Reagent Supplier 

10 U/ µg DNA restriction enzyme 

EcoRI/ XhoI 

Thermo Fisher Scientific (Braunschweig, 

Germany) 

1x 10 x buffer red Thermo Fisher Scientific (Braunschweig, 

Germany) 

add to 25 µL nuclease-free water Qiagen GmbH (Hilden, Germany) 

2 µg RhoT1-pCMV6-Entry Origene Technologies (Rockville, USA) 

2 µg pcDNA3.1/V5-HisA Invitrogen GmbH (Karlsruhe, Germany) 

 

𝑛𝑔  𝑖𝑛𝑠𝑒𝑟𝑡  × 𝑏𝑝 𝑣𝑒𝑐𝑡𝑜𝑟

𝑏𝑝 𝑖𝑛𝑠𝑒𝑟𝑡  ×3
 = 𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟  

Equation for calculation of insert and vector ratio for ligation 

 

Table 20: Ligation reaction for cloning RhoT1 into pcDNA3.1/V5-HisA 

Amount Reagent Supplier 

5 ng RhoT1 insert Origene Technologies (Rockville, USA) 
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1 ng pcDNA3.1/V5-HisA Invitrogen GmbH (Karlsruhe, Germany) 

0.33 µL DNA T4 ligase New England Biolabs GmbH (Frankfurt, Germany) 

1x 10x buffer New England Biolabs GmbH (Frankfurt, Germany) 

 

 

The ligation reaction was used to transform One Shot® TOP10 Chemically competent 

E. coli as described before (2.4.1.). E. coli were subsequently plated on LB agar (Sigma 

Aldrich Chemie GmnH, Munich, Germany) plates containing the appropriate amount of 

Ampicillin (Sigma Aldrich Chemie GmnH, Munich, Germany) and grown over night at 37°C 

in a CO2-free incubator. Colonies were picked and grown in 8 mL LB medium containing 

Ampicillin over night at 37°C in a CO2-free incubator at 300 rpm agitation. Plasmid DNA 

was isolated using the QIAprep spin MiniPrep Kit as described before (2.4.2.). 

To verify the successful ligation of insert and vector an analytical restriction digestion with 

EcoRI and XhoI was performed for 1 hour at 37°C and the fragments were separated and 

visualized on a 1 % agarose gel containing 7 µL/100 mL Midori Green Advance DNA stain.  

The successfully generated pcDNA3.1/V5-HisA vector containing the RhoT1 insert was 

then used for transformation of One Shot® TOP10 Chemically competent E. coli as 

described before (2.4.1.) to purify larger amounts of pDNA using the Qiagen Plasmid Midi 

Kit as described before (2.4.2.) for further use. 

2.8 Mutagenesis of RhoT1 in pcDNA3.1/V5-HisA 

For analysis of the previously identified RhoT1 mutations mutagenesis of the RhoT1 insert 

in the pcDNA3.1/V5-HisA vector was performed by GenScript (Hong Kong) to obtain 

pcDNA3.1/V5 constructs expressing Miro1-R272Q, Miro1-R450C or Miro1-F676V, 

respectively. 

2.9 Transfection of M17 cells 

For transfection with RhoT1 constructs (Table 21) M17 cells with stable knockdown of 

RhoT1 were seeded in appropriate cell culture plates under standard growth conditions. 

Cells were then transfected with RhoT1 constructs (Table 21) using TransIT®-2020 

transfection reagent (Mirus Bio LLC, Madison, USA) according to the manufacturers’ 

protocol.   
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Table 21: RhoT1 constructs 

Construct name Vector Supplier 

 pcDNA3.1/V5-HisA Invitrogen GmbH, Karlsruhe, Germany 

Miro1-WT pcDNA3.1/V5-HisA self-made 

Miro1-R272Q pcDNA3.1/V5-HisA GenScript (Hong Kong) 

Miro1-R450C pcDNA3.1/V5-HisA GenScript (Hong Kong) 

Miro1-F676V pcDNA3.1/V5-HisA GenScript (Hong Kong) 

Miro1-WT-myc pRK-5 myc kind gift from Prof. P. Aspenström 

(Karolinska Institute, Stockholm, 

Schweden); (NCBI: AJ517412.1) 

(Fransson et al., 2003) 

 

2.10 Microscopy 

2.10.1 Live cell imaging 

Native human fibroblasts were cultured under standard growth conditions and seeded into 

Nunc™ Lab-Tek™ Chamber slides (Thermo Fisher Scientific, Braunschweig, Germany) for 

imaging. Live cell imaging was performed with the Live Cell Microscope Axiovert 2000 (Carl 

Zeiss Microimaging GmbH, Jena, Germany) or a Live Cell Microscope Axiovert 2000 with 

spinning disc (Carl Zeiss Microimaging GmbH, Jena, Germany) in a humidified atmosphere 

containing 5 % CO2 at 37°C. 

2.10.2 MitoTracker staining for analysis of mitochondrial morphology and 

mitochondrial mass 

To visualize mitochondria irrespective of their membrane potential, native human fibroblasts 

were stained with 0.1 nM MitoTracker® green FM for 20 min (Thermo Fisher Scientific, 

Braunschweig, Germany) and 0.5 µg/mL DAPI for 5 min (Thermo Fisher Scientific, 

Braunschweig, Germany) in DMEM +/+ at 37°C and 5 % CO2. Then, fibroblasts were 

washed 3x with PBS and fresh DMEM +/+ was added for imaging.  

Mitochondrial morphology was analysed on single cell level. Therefore mitochondria were 

defined with ImageJ software (Wayne Rasband, NIH) and automatically analysed for the 

parameters perimeter, area, major axis and minor axis using the “analyse particles” tool of 

ImageJ. These parameters were used to calculate Form Factor, indicating mitochondrial 
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branching, and Aspect Ratio which is an indicator for mitochondrial length as described 

below: 

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟^2

4 ∗ 𝑃𝐼 ∗ 𝑎𝑟𝑒𝑎
= 𝐹𝑜𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟 

𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠

𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠
= 𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 

 

Mitochondrial mass was assessed using the same staining. For this measurement images 

of stained mitochondria and bright field images were obtained from the same cells. Cell size 

was measured from bright field images and mitochondrial area from MitoTracker images 

using ImageJ software (Wayne Rasband, NIH). To calculate mitochondrial mass, 

mitochondrial area was normalized to cell size (ratio of mitochondrial area to cell size). 

2.10.3 Co-staining of MitoTracker and LysoTracker for co-localization analysis of 

mitochondria and lysosomes 

Native human fibroblasts were stained with 0.1 nM MitoTracker® green FM or 

MitoTracker® deep red (Thermo Fisher Scientific, Braunschweig, Germany) and 0.1 nM 

LysoTracker® red or LysoTracker® yellow (Thermo Fisher Scientific, Braunschweig, 

Germany) for 20 min and 0.5 µg/mL DAPI for 5 min in DMEM +/+ at 37°C and 5 % CO2. 

Fibroblasts were washed 3x with PBS and fresh DMEM +/+ was added for imaging. Co-

localization of mitochondria and lysosomes was automatically analysed on single cell level 

using the JACoP plugin of ImageJ software (Wayne Rasband, NIH). 

2.10.4 Co-staining of Fluo4 and MitoTracker for analysis of cytosolic calcium flux 

Native human fibroblasts were stained with 0.1 nM MitoTracker® deep red FM (Thermo 

Fisher Scientific, Braunschweig, Germany) for 20 min and 0.5 µg/mL DAPI for 5 min in 

DMEM +/+ at 37°C and 5 % CO2. Fibroblasts were washed 3x with PBS and fresh 

DMEM +/+ was added. Then, Fluo-4 (Thermo Fisher Scientific, Braunschweig, Germany) 

was added to the cells according to manufacturer’s instructions. Baseline fluorescence 

intensity of Fluo4 was measured for 5 min with an interval of 700 ms between each image 

using a Live cell imaging microscope (Axiovert with spinning disc, Carl Zeiss Microimaging 

GmbH, Jena, Germany). Fluorescence of Fluo4 and MitoTracker® deep red FM were 

measured using the 488 nm and the 638 nm laser, respectively. A 1 mM Histamine (Sigma 

Aldrich Chemie GmbH, Munich, Germany) solution was diluted in DMEM +/+ to a 



 
Materials and Methods 
 

54 
 

concentration of 60 µM. The 60 µM Histamine solution, prewarmed to 37°C was added to 

the chamber slide to obtain a final concentration of 30 µM to release calcium from 

intracellular calcium stores. The cell response was measured for 5 min with an interval of 

700 ms between each image.  

The fluorescence intensity of Fluo4 was analysed with ZEN Blue software (Carl Zeiss 

Microimaging GmbH, Jena, Germany). Therefore, regions of interest (ROI) were defined in 

each cell within one field of view. Fluorescence intensity data were calculated for each time 

point. The fluorescence of each ROI at time point 1 was defined as 1 and used to normalize 

all other values. The resulting relative fluorescence data were plotted in a curve over time 

using Graph Pad Prism 6 software. 

2.10.5 Immunofluorescence (IF) 

For immunofluorescence staining M17 cells were grown under standard conditions and 

seeded into Chamber slides. Cells were transfected with pcDNA3.1/V5-HisA-RhoT1 

constructs using TransIT®-2020 transfection reagent (Mirus Bio LLC, Madison, USA) as 

described before (2.9) and incubated for 24 hours. After this incubation time the medium 

was aspirated and cells were washed with PBS. Cells were fixed in 4 % Paraformaldehyde 

(PFA; in PBS) (Sigma Aldrich Chemie GmbH, Munich, Germany) over night at 4°C. The 

fixed cells were washed 3x in DPBS+/+ (Thermo Fisher Scientific, Braunschweig, 

Germany) and permeabilised in permeabilisation buffer (Table 22) for 1 hour at room 

temperature. Then, cells were washed 3x with DPBS+/+ and incubated in primary antibody 

solution (Table 22) over night at 4°C.  

The primary antibody solution was washed off 3x with DPBS+/+ and afterwards cells were 

incubated in secondary antibody solution (Table 22) for 3 hours at room temperature. The 

secondary antibody solution was then washed off 3x with DPBS+/+ and cells were stained 

with 0.5 µg/mL DAPI in PBS for 15 min at room temperature. DAPI was then washed off 3x 

with PBS and the fixed and stained cells were mounted with a coverslip in a drop of 

Vectashield mounting medium (Vector Laboratories Inc., Burlingame, USA). 

Automated co-localization analysis were done using the “JACoP” plugin of ImageJ.  
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Table 22: Solutions for Immunofluorescence staining 

Solution Amount Chemical 

permeabilisation buffer  DPBS+/+ 

0.4 % Triton X-100 

10 % Goat Serum 

2 % BSA 

primary antibody solution  DPBS+/+ 

1:500 primary antibody 

0.1 % Triton X-100 

1 % Goat Serum 

0.2 % BSA 

secondary antibody solution  DPBS+/+ 

1:1000 secondary antibody 

0.1 % Triton X-100 

1 % Goat Serum 

0.2 % BSA 

 

2.11 Western Blot (WB) analysis 

Immortalized fibroblasts and M17 cells for Western Blot analysis were grown under 

standard conditions and treated as appropriate for the readout. Lysis of all applied cell types 

was done in lysis buffer (Table 23). Cells were harvested by trypsination and washed once 

with PBS. Cells were spined down at 1500 rpm for 5 min at 4°C. The cell pellet was mixed 

with an appropriate volume of lysis buffer and incubated on ice for 30 min. The cell debris 

was centrifuged at 3000x g for 10 min at 4°C. The supernatant was transferred to a new 

1.5 mL tube. The protein concentration of the lysate was measured with Bradford solution 

(Bio-Rad Laboratories, Munich, Germany) according to manufacturer’s instructions. The 

lysate was mixed with 5x Laemmli buffer (Table 23), heated to 96°C for 6 min and 

afterwards cooled on ice prior to loading on the acrylamide gel. 

For detection of intact complexes of the respiratory chain with the OXPHOS antibody 

cocktail (Abcam, Cambridge, UK) (Table 24) the cell lysate was not heated to 96°C, but 

mixed with 5x Laemmli buffer and incubated for 15 min at room temperature.  

The appropriate amount of lysate was loaded on a self-made 10 % polyacrylamide-SDS 

gel with a 4 % stacking gel (Table 23) (Bio-Rad Laboratories, GmbH, Munich, Germany) 
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together with PageRuler Plus Prestained Protein Ladder (Thermo Fisher Scientific, 

Braunschweig, Germany) as size standard. Samples were resolved by one-dimensional 

discontinuous sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), 

running at 80 V in the stacking gel and at 120 V in the running gel. Proteins were blotted 

from the gel on nitrocellulose membrane (Invitrogen GmbH, Karlsruhe, Germany) with the 

iBlot 2 device (Invitrogen GmbH, Karlsruhe, Germany) for 7 min at 20 V.  

The membrane was blocked in 5 % Milk (Table 23) for 1 hour at room temperature and 

subsequently incubated in primary antibody solution (Table 24) either for 1 hour at room 

temperature or overnight at 4°C under agitation. The membrane was then washed 3x for 

10 min in TBS-T (Table 23) and subsequently incubated in secondary antibody (Table 24) 

either for 1 hour at room temperature or overnight at 4°C under agitation. The membrane 

was then washed for 3x in TBS-T for 10 min and the labelled proteins were visualized with 

Amersham ECL Western Blotting Detection Reagent (GE Healthcare, Freiburg, Germany) 

according to the protocol of the manufacturer. Luminescence was detected with ODYSSEY 

chemiluminescence 2800 Fc (Li-COR, Lincoln, USA). 

 

 

Table 23: Composition of buffers required for Western Blot 

Buffer Chemical Amount 

lysis buffer HEPES 10 mM 

MgCl2 1,5 mM 

KCl 10 mM 

DTT 0,5 mM 

NP40 0,05 % 

Complete Protease inhibitor add fresh 

Triton X-100 add fresh 1 % 

10x TBS 

pH 7.5 

Tris 50 mM 

NaCl 150 mM 

1x TBS-T 1x TBS in VE water  

Tween 20 1 % 

5 % Milk Skim Milk powder 5 g 

TBS-T 100 mL 

5 % BSA BSA 5 g 

TBS-T 100 mL 
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5x running buffer Tris 45 g 

Glycine 216 g 

SDS 150 mL (10 %) 

VE water add to 3 L 

4 % polyacrylamide-SDS 

stacking gel 

VE water 1,15 mL 

Acrylamide/ Bis-acrylamide 

30 % solution 

0,33 mL 

0,5 M Tris 0,5 mL 

10 % SDS 0,02 mL 

TEMED 0,002 mL 

10 % APS 0,02 mL 

10 % polyacrylamide-SDS 

running gel 

VE water 2 mL 

Acrylamide/ Bis-acrylamide 

30 % solution 

1,7 mL 

0,5 M Tris 1,3 mL 

10 % SDS 0,05 mL 

TEMED 0,002 mL 

10 % APS 0,05 mL 

5x Laemmli buffer Trizma hydrochloride 62.5 mM, pH 6.8 

β-mercaptoethanol 5 % 

Glycerin 10 % 

SDS 2 % 

Bromphenol blue 1 spatula tip 

DTT 50 µM 
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Table 24: Antibodies for WB and IF 

Antibody Species 

reactivity 

Dilution Solution Supplier Order 

number 

Anti-RhoT1 mouse 1:500 5 % Milk Sigma Aldrich WH0055 

288M1 

Anti-RhoT1 rabbit 1:500 5 % Milk Sigma Aldrich HPA010687 

V5 mouse 1:1000 5 % Milk Sigma Aldrich R960-25 

β-Actin mouse 1:3000 5 % Milk Thermo 

Scientific 

MA1-744 

LC3I/II rabbit 1:1000 5 % BSA Cell Signalling 2775 

Tom20 rabbit 1:1000 5 % BSA Santa Cruz sc-11415 

Total OXPHOS 

Rodent WB 

Antibody cocktail 

mouse 1:1000 5 % Milk Abcam ab110413 

Citrate Synthase rabbit 1:1000 5 % Milk Gene Tex GTX110624 

MnSOD (SOD 2) rabbit 1:1000 5 % Milk Abcam ab13533 

Mitofusin1 (Mfn1) mouse 1:1000 5 % Milk Abcam ab57602 

PGC1α rabbit 1:1000 5 % Milk Novus 

Biologicals 

NBP1-

04676 

Goat anti-mouse 

IgG, horseradish 

peroxidase 

conjugate 

 1:10000 TBS-T Novex A24524 

Goat anti-rabbit 

IgG, horseradish 

peroxidase 

conjugate 

 1:5000 TBS-T Novex A24537 

Alexa Fluor 488 

Goat anti-mouse 

IgG  

 1:1000 2nd 

antibody 

solution 

(Table 

22) 

Life Techn. A-11029 

Alexa Fluor 568 

Goat anti-rabbit 

IgG 

 1:1000 Life Techn. 

 

A11036 
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The antibodies for detection of Miro1 have been chosen to bind at epitopes which are 

located distinct from the amino acids R272 and R450 (Figure 3). Therefore it can be 

excluded that the mutations R272Q and R450C interfere with antibody binding so that the 

antibodies also detect mutant proteins.  

 

 

Figure 3: Epitopes of Miro1 antibodies 

Amino acid sequence of Miro1 protein. The amino acids R272 and R450 are highlighted in red. The epitope 

for the Miro1 antibody anti-RhoT1 (Sigma Aldrich, produced in rabbit, HPA010687) is highlighted in green. 

The epitope for the Miro1 antibody anti-RhoT1 (Sigma Aldrich, produced in mouse, WH0055 288M1) is 

highlighted in yellow. The epitopes of both antibodies are located distant of both mutations R272Q and 

R450C. Therefore the mutations are not likely to interfere with antibody binding. 
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2.12 Flow cytometry 

Flow cytometry measurement was performed to functionally analyse mitochondrial 

membrane potential, mitochondrial production of reactive oxygen species (ROS) and early 

apoptosis of cells.  

Flow cytometry measurement was performed with the CyAn ADP Analyzer (Beckman 

Coulter, California, USA) or with the BD LSRFortessa (Becton, Dickinson and Company©, 

Erembodegem, Belgium). At least 10000 events per sample were measured and analysed 

using the Summit 4.3.02b2451 software (Beckman Coulter, California, USA) or the Flowjo 

software (Flowjo LLC, Oregon, USA). 

2.12.1 MitoSOX staining 

MitoSOX™ Red Mitochondrial Superoxide Indicator (Thermo Fisher Scientific, 

Braunschweig, Germany) specifically stains mitochondria in living cells and gets oxidised 

by superoxide, which results in an increase of fluorescence signal. 

Immortalized fibroblasts were grown under standard conditions. For the experiment 200000 

cells per well were seeded into 6 well plates and grown for 24 hours. Cells were either 

treated with 20 nM Piericidin A (Santa Cruz, Dallas, Texas), a specific inhibitor of the 

ubiquitin acceptor site of Complex I, which increases mitochondrial ROS production, or with 

low Glucose medium (DMEM + 1g/L D-Glucose, 15 % FBS, 1 % P/S) for 14 hours.  

Cells were harvested with 0.25  % Trypsin-EDTA. Then, cells were stained with 2,25 µM 

MitoSOX™ Red and 0.1 nM MitoTracker® green FM in PBS for 20 min at 37°C in a CO2-

free incubator. Cells were centrifuged for 5 min at 900 rpm, 4°C, the cell pellet was washed 

in PBS and resuspended in 500 µL PBS containing 1 % FBS for the measurement. 

Fluorescence of MitoSOX™ Red and MitoTracker® green FM were measured using the 

561 nm and the 488 nm laser, respectively.  

The relative level of mitochondrial superoxide was calculated as ratio of MitoSOX™ Red 

fluorescence intensity to MitoTracker® green FM fluorescence intensity to take the 

mitochondrial mass into account. 
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2.12.2 Tetramethylrhodamine methyl ester (TMRE) staining 

Active mitochondria are able to sequester TMRE (Thermo Fisher Scientific, Braunschweig, 

Germany) which results in a membrane potential-dependent fluorescence signal. 

For measurement of mitochondrial membrane potential (MMP) cells were grown under 

standard conditions. One day before the measurement, 200000 cells per well were seeded 

into 6 well plates. After one day of growing, immortalized fibroblasts were treated with 5 nM 

Valinomycin (Sigma Aldrich Chemie GmbH, Munich, Germany) for 14 hours and M17 cells 

were treated with 10 µM CCCP (Abcam, Cambridge, UK) for 20 min. Valinomycin and 

CCCP were used to decrease the MMP to verify that changes in MMP can be observed 

using the applied method. 

Cells were harvested with Trypsin-EDTA and stained with 20 µM TMRE and 0.1 nM 

MitoTracker® green FM for 20 min at 37°C, 5 % CO2. Cells were centrifuged for 5 min at 

900 rpm, 4°C, the cell pellet was washed in PBS and afterwards the pellet was resuspended 

in 500 µL PBS containing 1 % FBS for measurement. Fluorescence of TMRE and 

MitoTracker® green FM were measured using the 561 nm and the 488 nm laser, 

respectively.  

The relative MMP level was calculated as ratio of TMRE fluorescence intensity to 

MitoTracker fluorescence intensity to include the mitochondrial mass into the results. 

2.12.3 Annexin V staining 

Annexin V is a phospholipid-binding protein that specifically binds phosphatidyl serine (PS) 

when PS is present at the outer leaflet of the plasma membrane during apoptosis 

(Koopman, Reutelingsperger et al. 1994).  

To assess early apoptosis and cell death, immortalized fibroblasts were grown under 

standard conditions. For each cell line 200000 cells per well were seeded into 6 well plates. 

After two days of growth cells were treated with 1 µM Staurosporine (Sigma Aldrich Chemie 

GmbH, Munich, Germany) for 2 hours. Cells were harvested by thrypsination and stained 

with Annexin V, Alexa Fluor® 568 conjugate (Thermo Fisher Scientific, Braunschweig, 

Germany) for apoptosis detection according to the protocol of the manufacturer. When cells 

were resuspended in annexin-binding buffer (provided by the Annexin V kit) after staining, 

0.5 µg/mL of DAPI was added to each sample to discriminate living and dead cells.  
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Samples were kept on ice and measured immediately on the BD LSRFortessa (Becton, 

Dickinson and Company©, Erembodegem, Belgium) using the 561 nm and the 405 nm 

laser. 

2.13 Biochemical measurement of Citrate Synthase activity 

Citrate Synthase is the key enzyme of the tricarboxylic acid cycle (TCA) in the mitochondrial 

matrix, catalysing the reaction of oxaloacetate and acetyl CoA. The formed free 

Coenzyme A reacts with DTNB. The resulting colour change was measured at 412 nm 

using the monochromatic spectrophotometer SPECORD 210Plus (Analytic Jena AG, Jena, 

Germany). 

The described method was primarily published by (Janssen, Trijbels et al. 2007) and further 

adapted by Iain Hargreaves (Neurometabolic Unit, The National Hospital for Neurology and 

Neurosurgery, Queen Square, London, UK) and Julia Fitzgerald (Hertie-Institute for Clinical 

Brain Research, University of Tübingen, Tübingen, Germany) in collaboration with 

Boehringer Ingelheim GmbH (Ingelheim am Rhein, Germany). 

2.13.1 Subfractionation of mitochondria from immortalized fibroblasts  

Immortalized fibroblasts were grown under standard conditions in 10 cm dishes until they 

reached confluency. Cells were harvested using 0.25 % Trypsin/EDTA and centrifuged for 

5 min at 1200 rpm, 4°C. The resulting cell pellet was homogenized in 100 µL mitochondrial 

isolation buffer (MIB) (Table 25). Additional 900 µL of MIB buffer were added and the lysate 

was centrifuged for 10 min at 1000x g, 4°C. The supernatant was transferred to a new 

1.5 mL tube. The supernatant was centrifuged again at 9000x g for 15 min at 4°C. The 

resulting supernatant of this centrifugation step was separated from the pellet into a new 

1.5 mL tube. The pellet was resuspended in 50 µL of MIB buffer and 5 µL of this lysate were 

used to measure the protein concentration of the lysate with Bradford solution. The 

remaining lysate was centrifuged again at 10000x g for 10 min, 4°C. The resulting pellet 

was resuspended in 50 µL of MIB buffer containing 0.5 % BSA. All samples were kept on 

ice and used immediately for measurement of citrate synthase activity (see 2.13.2). 
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Table 25: Composition of mitochondrial isolation buffer (MIB) 

Mitochondrial isolation buffer (MIB) 

Chemical Concentration 

Sucrose 70 nM 

Mannitol 210 mM 

HEPES 5 mM 

EGTA 1 mM 

BSA (add fresh after protein estimation) 0.5 % 

 

2.13.2 Citrate Synthase activity assay 

For measurement of Citrate Synthase activity the reagents shown in (Table 26) were 

prepared prior to the experiment and used to prepare the reaction mix as shown in (Table 

27). The stable baseline activity was measured on the spectrophotometer SPECORD 

210Plus (Analytic Jena AG, Jena, Germany) at 412 nm for 2 min. To initiate the reaction 

10 µL of 10 mM Oxaloacetate (Table 26) were added to each sample and measured for 

2 min. Finally, 10 µL of 10 % Triton X-100 (Table 26) were mixed in the sample and the 

reaction was measured for 2 min. Triton X-100 permeabilized the mitochondrial membrane 

and leads to release of citrate synthase, thereby allowing to measure the total enzyme 

activity.  

 

Table 26: Composition of Reagents for Citrate Synthase activity assay 

Chemical Concentration Preparation 

Tris 200 mM in Aquadd, pH 8.0 

Acetyl-CoA 100 mM in Aquadd 

DNTB 100 mM (4 mg/ mL) add pinch of KHCO3 to dissolve in Aquadd 

Oxaloacetate 10 mM adjust pH to 7.0 with Tris, in Aquadd 

Triton X-100 10 % in PBS 
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Table 27: Reaction mix per sample for Citrate Synthase activity assay 

Reagent Amount 

Tris 500 µL 

Acetyl-CoA 20 µL 

DNTB 20 µL 

mitochondrial protein 50 µg 

Aquadd add to 1 mL 

 

2.13.3 Calculation of Citrate Synthase activity 

Citrate Synthase activity was calculated from the optical density (OD) measured on the 

Spectrophotometer SPECORD 210Plus (Analytic Jena AG, Jena, Germany) (2.10.2.) using 

the formula as described below. Values of OD were displayed on a scatter blot using Excel. 

For the calculation OD values were used from the beginning (OD1) and the end (OD2) of 

the linear increase of optical density over time.  

 

𝑂𝐷2 − 𝑂𝐷1

𝑡𝑖𝑚𝑒
=  ∆ 𝐴𝑏𝑠/𝑚𝑖𝑛 

 

 

∆𝐴𝑏𝑠/𝑚𝑖𝑛

𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
= 𝑚𝑜𝑙𝑒/𝑚𝑖𝑛/𝐿 

 

(extinction coefficient = 13600) 

 

𝑚𝑜𝑙𝑒/𝑚𝑖𝑛/𝐿

1000
= 𝑚𝑜𝑙𝑒/𝑚𝑖𝑛/𝑚𝐿 

 

 

𝑚𝑜𝑙𝑒/𝑚𝑖𝑛/𝑚𝐿

𝑝𝑟𝑜𝑡. 𝑐𝑜𝑛𝑐.
= 𝑒𝑛𝑧𝑦𝑚𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑚𝑜𝑙𝑒/𝑚𝑖𝑛/𝑚𝐿/µ𝑔) 
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2.14 Measurement of complex I activity 

Complex I activity was measured in immortalized fibroblasts using the complex I Enzyme 

Activity Dipstick Assay Kit (Abcam, Cambridge, UK). The active Complex I gets immune-

precipitated from the cell lysate on the Dipstick. The activity buffer, provided by the kit, 

contains NADH as substrate for complex I and nitrotetrazolium blue (NBT) as electron 

acceptor. When NADH gets oxidized by complex I NBT, gets reduced by the resulting H+ 

and turns into a blue-purple form. The intensity of the colour reaction is directly correlated 

to complex I activity (User Manual: ab109720 – Complex I Enzyme Activity Dipstick Assay 

Kit, Abcam, Cambridge, UK). 

For measuring complex I activity immortalized fibroblasts were grown in 10 cm dishes under 

standard conditions until they reached confluency in the dish. Half of the cells were lysed 

for Western Blot (2.8.) and the other half of the cells from the same dish was used to 

measure complex I activity as instructed by the kit protocol. The intensity of reduced purple 

NBT on the dipsticks was quantified with ImageJ software. 

Western Blot was performed to assess the citrate synthase (Table 24) protein level (see 

2.8.) from the same sample. The Citrate synthase protein level was used to normalize 

complex I activity to mitochondrial abundance. 

2.15 Measurement of oxygen consumption rate (OCR) 

Mitochondrial oxygen consumption rate (OCR) in immortalized fibroblasts was analysed 

using the XFe96 extracellular flux assay kit measured on the XFe96 extracellular flux 

Analyzer (Seahorse Bioscience, Massachusetts, USA). The XFe96 extracellular flux 

Analyzer allows real-time measurement of the concentration of dissolved oxygen in the 

medium, which is a direct result of cellular oxygen consumption and correlates with the 

activity of the respiratory chain. 

Immortalized fibroblasts were grown under standard conditions and one day prior to 

measurement cells were seeded into XF96 cell culture microplates (Seahorse Bioscience, 

Massachusetts, USA) at an appropriate cell density to obtain an even cell monolayer. 

Freshly seeded cells were kept at room temperature for 30 min before incubation at 37°C, 

5 % CO2 overnight.  

The assay cartridge (Seahorse Bioscience, Massachusetts, USA) was hydrated with 

200 µL of XF-calibrant solution (Seahorse Bioscience, Massachusetts, USA) per well and 

incubated at 37°C in a CO2-free incubator, 24 hours prior to the experiment.  
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On the day of the measurement, Seahorse assay media, composed of bicarbonate-free 

basal DMEM (Sigma Aldrich Chemie GmbH, Munich, Germany), 1 % L-Glutamine (Sigma 

Aldrich Chemie GmbH, Munich, Germany) and 4.5 g/L D–Glucose (Sigma Aldrich Chemie 

GmbH, Munich, Germany), was incubated at 37°C in a non-CO2 incubator for at least 

1 hour. Then, the DMEM+/+ was removed from the cells, without scratching the cell 

monolayer, and cells were rinsed twice with Seahorse assay media. The XF96 cell culture 

microplate was then filled with 175 µL Seahorse assay media and incubated in a non-CO2 

incubator for at least 1 hour to equilibrate.  

The ports of the Seahorse utility plate (Seahorse Bioscience, Massachusetts, USA) were 

loaded with 25 µL per well of Oligomycin (Sigma Aldrich Chemie GmbH, Munich, Germany), 

FCCP (Sigma Aldrich Chemie GmbH, Munich, Germany) or a mixture of Rotenone (Sigma 

Aldrich Chemie GmbH, Munich, Germany) and Antimycin A (Sigma Aldrich Chemie GmbH, 

Munich, Germany), each at appropriate concentrations prepared in Seahorse assay media 

[for optimization of the compound concentrations see (Figure 35)]. 

The Seahorse utility plate, loaded with Oligomycin, FCCP and Rotenone/ Antimycin A, and 

the equilibrated XF96 cell culture microplate were loaded to the XFe96 extracellular flux 

Analyzer and OCR was measured as shown in (Table 28). 

 

Table 28: Program for measurement of OCR 

Basal 
Injection 1 

(Oligomycin) 

Injection 2 

(FCCP) 

Injection 3 

(rot. + antim.A) 

cycles mix measure cycles mix measure cycles mix measure cycles mix measure 

5 3 3 3 3 3 3 3 3 3 3 3 

30 min 18 min 18 min 18 min 

 

After measurement was finished, total protein concentration in each well of the XF96 cell 

culture microplate was determined using the Bradford assay (Bio-Rad Laboratories, 

Munich, Germany). Therefore, medium was aspirated from the wells and cells were 

incubated with 10 µL of lysis buffer (Table 23) for 10 min at room temperature. 200 µL per 

well of Bradford buffer was added and optical density was measured on the Synergy 

Mx microplate reader. The calculated protein concentration was used to normalize the OCR 

raw data to total protein amount. The obtained OCR data were used to calculate the levels 

of basal respiration, ATP production, proton leak, maximal respiration, spare respiratory 

capacity and non-mitochondrial respiration as shown in (Table 29; Figure 4). 
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Table 29: Equations for calculation of OCR parameters 

parameter equation 

non-mitochondrial respiration minimum rate measurement after 

rotenone/antimycin A injection 

basal respiration (last rate measurement before first injection) – 

(non-mitochondrial respiration) 

ATP production (last rate measurement before oligomycin injection) 

– (minimum rate measurement after oligomycin 

injection) 

proton leak (minimum rate measurement after oligomycin 

injection) – (non-mitochondrial respiration) 

maximal respiration (maximum rate measurement after FCCP injection) 

– (non-mitochondrial respiration) 

spare respiratory capacity (maximal respiration) – (basal respiration) 

 

  



 
Materials and Methods 
 

68 
 

A)  

B) 

A) Overview of inhibition of respiratory chain complexes by Rotenone, Antimycin A and Oligomycin and 

uncoupling of respiration by FCCP. Rotenone inhibits complex I and Antimycin A inhibits complex III, which 

leads to a complete inhibition of mitochondrial respiration. The remaining respiratory activity is the non-

mitochondrial respiration resulting from side reatcions. Oligomycin inhib its ATP production by complex V, 

which enables calculation of the capacity for ATP production by complex V. The remaining OCR arises from 

the proton leak. FCCP uncoupling enables measurement of maximal respiration and calculation of spare 

respiratory capacity B) Schematic overview of OCR measurement and the calculation of basal respiration, 

ATP production, proton leak, maximal respiration, spare respiratory capacity and non -mitochondrial 

respiration.  

 

  

Figure 4:Schematic overview of OCR measurement 
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2.16 Growth assay of Gem1 deficient yeast 

A yeast strain deficient of Gem1 (gem1∆) was generated in collaboration with Doron 

Rapaport and Kai Dimmer (Interfakultäres Institut für Biochemie, IFIB, University of 

Tübingen, Germany). The gem1∆ strain was transfected with wild type gem1 or gem1-

R298Q and the cells applied to a drop dilution assay on YPD and YPG media at 30°C or 

35°C. YPD medium contains dextrose and peptose for optimal growing. YPG medium in 

contrast contains glycerol as non-fermentable carbon source. This assay allows to assess 

the ability of yeast to grow when energy production by fermentation is inhibited due to lack 

of a fermentable substrate. Growth on a non-fermentable carbon source then relies on 

energy production by mitochondrial respiration. 
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3 Results 

3.1 PD patients with mutations in RhoT1 have a positive family history 

In direct preparation of the present study a German cohort of 760 PD patients and 280 

healthy, age matched controls was screened for mutations in RhoT1, the gene encoding 

for Miro1, using SNaPshot technology (done by David Scheibner) in our laboratory. Three 

PD patients were identified carrying novel heterozygous mutations in RhoT1 (Figure 6).  

All three patients have a positive family history for PD. The fathers of the patients carrying 

the Miro1-R272Q and the Miro1-R450C mutations had tremor dominant PD and the brother 

of the patient carrying the Miro1-F676V mutation was diagnosed with PD (Figure 5). All 

three PD patients with mutations in RhoT1 displayed a tremor dominant clinical phenotype. 

Due to their positive family history, the patients also have been tested for mutations in GBA 

(N370S, L444P) and LRRK2 (exon 7 and 41, which covers the mutations G2019S and 

I2020T), and the patient with the mutation F676V was furthermore tested for mutations in 

Parkin, PINK1, DJ-1 and SNCA. All three PD patients were negative for the mentioned 

mutations, indicating that mutations in these genes can be excluded as PD-causing. 

 

A)  B)  C) 

Figure 5: Family pattern of PD patients with mutations in RhoT1 

The family patterns of three identified PD patients carrying mutations in RhoT1. Individuals with motor symptoms 

and individuals that have been diagnosed with PD are highlighted in black. Arrows indicate the index patients 

identified with mutations in RhoT1. All three PD patients have a positive family history for PD-related symptoms. 

 

The PD-associated mutations of RhoT1 are located in different exons, encoding for different 

conserved functional domains of the Miro1 protein (Figure 6). The mutation R272Q is 

located within the ligand mimic motif of the first EF hand domain (Klosowiak, Focia et al. 
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2013), R450C is found in the C-terminal GTPase domain and F676V lies within the 

transmembrane domain of Miro1.  

 

 

 

As the proper function of the domains is essential to ensure the full functionality of Miro1 

protein and as Miro1 function is essential for mitochondrial homeostasis, mutations in or 

close to the functional domains are likely to cause mitochondrial dysfunction.  

Fibroblasts were obtained from the patients carrying the mutations R272Q and R450C. The 

fibroblasts were used for characterization of mitochondrial phenotypes. 

 

  

Nucleotide change Exon Amino acid change Location 

c.815 G > A 11 p.R272Q first EF hand 

c.1348 C > T 16 p.R450C second GTPase 

c.2026 T > G 21 p.F676V TMD 

 

Protein structure of Miro proteins showing the N-terminal GTPase domain, both EF hand domains, the C-

terminal GTPase domain and the C-terminal transmembrane domain (TMD). The mutations R272Q, R450C 

and F676V are indicated at their respective locations within the protein domains. 

Figure 6: PD-associated mutants of Miro1  
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3.2 In silico analysis predict pathogenic effects of RhoT1 mutations 

The identified PD patients with mutations in RhoT1 had a positiv family history. In order to 

assess the pathogenic relevance in silico analysis of the Miro1 variants were done by Patric 

May. Miro1-R272Q was predicted to be disease causing by eight out of the nine applied 

analysis tools. Miro1-R450C was predicted to be disease causing by SIFT, Polyphen2 

HDIV, LRT, and Mutation taster prediction tool, whereas Polyphen2 HVAR and Mutation 

assessor prediction tools predicted that the mutation was probably disease causing. Miro1-

F676V was predicted to be disease causing by LRT and Mutation taster. 

All three mutations have a score of 0.164 for haplo-insufficiency, refelcting a medium 

likelihood (with a score of 0.3 predicting a high likelihood). All three mutations are expressed 

in the brain. 
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R272Q D D D D D H T D D 0.164 

R450C D D P D D M T T T 0.164 

F676V T B B D D N T T T 0.164 

Figure 7: In silico prediction of pathogenic effects of Miro1 mutations 

Summary of in silico prediction of the pathogenic effects of the Miro1 mutations R272Q, R450C and F676V.  

Legend: D = disease causing. H = high. P = probably disease causing. M = medium. B = benign. T = tolerable. 

N = normal. 

Miro1-R272Q was predicted to be disease causing by eight of the nine applied analysing tools, whereas the 

prediction was less clear for Miro1-R450C and Miro1-F676V. The role of Haplo insufficiency in all three Miro1 

variants was predicted with a medium score of 0.164 (a value of ≥  0.3 predicts a high likelihood of haplo- 

insufficiency).  
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3.3 A homology model of human Miro1 shows that amino acids R272 and 

R450 are highly conserved and exposed at the protein surface 

A homology model of the protein was computerized by Enrico Glaab (LCSB, University of 

Luxembourg, Esch-sur-Alzette) to further assess the effect of the identified mutations on 

the protein structure. Do date there was only part of the crystal structure of dMiro published 

by Klosowiak et al. (2013). This crystal structure (Figure 8 A) was used to construct a 

homology model of the human Miro1 protein (Figure 8 B). Sequence alignment with 

BLOSUM62 substitution matrix software revealed a sequence similarity of dMiro and 

human Miro1 protein of ~60.51 %. The amino acid F676 is not conserved in drosophila and 

was therefore not included in the homology model for human Miro1 (Figure 10). Analysis 

showed that both amino acids R272 and R450 are highly conserved and exposed to the 

cytosol on the protein surface (Figure 8).  

Figure 8: Crystal structure of dMiro and homology model of Miro1 

Based on the crystal structure of dMiro (A) a homology model of human Miro1 (B) was constructed. The colour 

scale indicates the protein surface conservation scores from a multiple sequence alignment.  

 

The influence of the mutations on the protein stability was predicted with NeEMO and I-

MUTANT 2.0 methods. Both mutations R272Q and R450C cause only a slight decrease of 

protein stability:  

Miro1 variant NeEMO I-MUTANT 2.0 

R272Q 0.32 Kcal/mol 0.4 Kcal/mol 

R450C 0.39 Kcal/mol 0.07 Kcal/mol 

Figure 9: Impact of mutations on Miro1 protein stab ility 

A)

 

B)
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PhosphoSitePlus analysis showed that the closest phosphorylation sites to R272Q and 

R450C are residues T298 and Y463, both phosphorylation sites are not located adjacent 

to the mutations in the 3D structure that was predicted by I-TASSER.  

  

 

Figure 10: Multiple alignment for mutated Miro1 sites in different species 

The multiple sequence alignment was created with NCBI. Sections of the amino acid sequence of Miro1 

containing the amino acids R272, R450 and F676 are highlighted in yellow. The amino acid R272 is highly 

conserved in all shown species and R450 and F676 are conserved in vertebrates.  

(http://www.ncbi.nlm.nih.gov/homologene?cmd=Retrieve&dopt=MultipleAlignment&list_uids=56803) 

 

  



   
Results 

 

75 
 

3.4 Data mining and genotyping of cohorts reveals the rareness of PD-

associated RhoT1 mutants 

Analysis of existing genetic databases was performed by Manu Sharma and Peter Lichtner 

to further substantiate the association of the Miro1 variants R272Q, R450C or F676V with 

PD. On the whole exome server which includes 1500 genomes these Miro1 variants were 

not found. Furthermore the R272Q and F676V variant were not found in genetic information 

of a total of 67486 unrelated individuals available from the following databases: snp138, 

avsnp138, cosmic70, cosmic68wgs, nci60, esp6500si, esp6500siv2, cg46, cg69, 

1000g2014oct, exac02, exac alleles, popfreq. Only the R450C variant was found in 

cosmic70, a database for somatic cancer mutations. There was no further information 

available about neurological diagnosis of this individual (Table 30). 

To further validate the genetic data another genotyping of an independent cohort with DNA 

samples of 1238 German PD patients and 662 healthy unrelated individuals (KORA-Study) 

was done by the laboratory of Peter Lichtner. In this cohort the F676V variant was identified 

in one healthy control sample of a 63 year old male without PD diagnosis (Table 30). 

Based on these results it is likely that the identified Miro1 mutantions R272Q and R450C 

are rare pathogenic variants. 

 

Table 30: Screen for Miro1 variants 

*) different databases: snp138, avsnp138, cosmic70, cosmic68w gs, nci60, esp6500si, esp6500siv2, cg46, cg69, 
1000g2014oct, exac02, exac alleles, popfreq 

  

Data origin Sample size Type of analysis Variants 

Whole Exome Server on 

neurodegenerative diseases 

(Tübingen, Munich) 

1500 genomes database -- 

662 healthy controls (KORA 

cohort) 

1238 German PD patients 

1900 samples genotyping F676V in control 

different databases* 67486 unrelated 

individuals 

database R450C in 

cosmic70 
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3.5 Gem1-R298Q is not sufficient to rescue the growth defect of gem1∆ yeast 

on a non-fermentable carbon source 

Several studies reported a growth defect of yeast, which was devoid of Gem1, the yeast 

orthologue of Miro, on medium containing a non-fermentable carbon source (Frederick, 

McCaffery et al. 2004) (Kornmann, Osman et al. 2011). Therefore it was of great interest 

whether the Miro mutants display the same phenotype. The residue R272 is conserved in 

yeast on position R298, whereas residues R450 and F676 are not conserved in yeast 

(Figure 11). 

 

Figure 11: Alignment of human RhoT1 and yeast gem1 sequence 

Alignment of human Miro1 sequence and yeast Gem1p sequence using the blast tool of NCBI. Amino acids 

R272 (R298 in yeast) and R450C are highlighted in yellow. R272 is conserved in yeast a t position R298, 

whereas R450 and F676V are not conserved in yeast. 
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On YPD medium containing a fermentable carbon source the gem1∆ yeast and gem1∆ 

yeast transfected with Gem1-R298Q showed similar growth as the wild type strain at 30° 

as well as at 35°C.  

Consistent with previous studies (Frederick, McCaffery et al. 2004) (Kornmann, Osman et 

al. 2011) the gem1∆ yeast strain generated by the laboratory of Prof. Doron Rapaport 

(Interfakultäres Iinstitut für Biochemie, IFIB, University of Tübingen, Germany) showed poor 

growth on non-fermentable YPG medium (Figure 12). Transfection of gem1∆ yeast with 

wild type gem1 (WT) successfully rescued the growth defect (Figure 12 B). 

Interestingly, transfection with Gem1-R298Q was not sufficient to rescue the growth defect 

of gem1∆ yeast (Figure 12 B). 

Wild type Gem1 and Gem1-R298Q constructs with HA tag displayed similar growth patterns 

as the untagged proteins (Figure 12 A). 

The results indicate that gem1∆ causes a deficiency of oxidative phosphorylation in yeast 

and that Gem1-R298Q causes a similar phenotype, which argues for a loss of function of 

Gem1-R298Q. 
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A) 

 

B)  

Figure 12: Yeast growing on different media at 30°C and 35°C 

A) Drop dilution assay of a yeast Saccharomyces cerevisiae strain with deletion of gem1 (gem1∆) on YPD 

medium and YPG medium at 30°C and at 35°C.  

B) Densitometry quantification of colony size of yeast grown on non-fermentable YPG medium at 30°C. The 

gem1∆ yeast strain grows less efficient on non-fermentable YPG medium, whereas a transfection of Gem1-

WT sufficiently rescues the growth phenotype. In contrast, retransfection of the gem1∆ yeast strain with 

Gem1-R298Q is not sufficient to restore the growth. 

Legend: WT = wild type yeast strain. gem1∆ = gem1 deficient yeast strain. gem1∆ + Gem1 = gem1 deficient 

strain retransfected with wild type gem1. gem1∆ + Gem1(R298Q) = gem1 deficient strain retransfected with 

Gem1-R298Q. 

 



   
Results 

 

79 
 

3.6 Miro1 protein level is reduced in Miro1 mutant fibroblasts 

Analysis of the homology model of Miro1 revealed a slightly decreased protein stability 

caused by the mutations (Figure 8). Furthermore, results of gem1∆ yeast transfected with 

Gem1-R298Q (Figure 12) indicated that at least Miro1-R272Q could be a loss of function 

mutation. Therefore first interest was focused on the protein level of Miro1 in patient-derived 

fibroblasts. 

The mitochondrial membrane protein Tom20 served as marker for mitochondrial mass. As 

Miro1 is anchored in the outer mitochondrial membrane (Fransson, Ruusala et al. 2006), 

Miro1 protein level was normalized to Tom20 protein.  

The applied Miro1 antibodies bind at epitopes, which are located distinct from the amino 

acids R272 and R450C (Figure 3), therefore avoiding the possibility that mutant Miro1 was 

not detected due to impaired antibody binding. 

The data revealed that Miro1 protein level was significantly reduced to less than half in both 

patient-derived immortalized fibroblast lines compared to Ctrl 1 fibroblasts. In Miro1-R272Q 

fibroblasts Miro1 protein level was reduced to ~0,2 fold and in Miro1-R450C fibroblasts to 

~0,4 fold of Miro1 protein level in the Ctrl 1 fibroblast line (Figure 13). 

 

A) 

 

Figure 13: Western Blot for Miro1 protein level 

B) 

A) Representative image of Western Blot showing Miro1 and Tom20 protein. B) Densitometry evaluation of 

Western Blot analysis. Miro1 protein level normalized to Tom20 protein, relative to Control 1 , is significantly 

reduced in both Miro1 mutant fibroblast lines . Data indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 

*** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 4 
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3.6.1 RhoT1 mRNA level is decreased in Miro1-R450C mutant fibroblasts 

Miro1 protein level was significantly decreased in Miro1-R272Q and Miro1-R450C mutant 

fibroblasts (Figure 13). Therefore, semi-quantitative rtPCR was used to shed light on the 

possible reason behind the reduced protein level.  

Evaluation of semi-quantitative rtPCR results obtained from mRNA showed that RhoT1 

mRNA level was significantly reduced in Miro1-R450C fibroblasts to ~0.5 fold of the level 

of RhoT1 mRNA in Ctrl 1 fibroblasts. Although Miro1 protein level was significantly reduced 

in Miro1-R272Q fibroblasts as well (Figure 13), RhoT1 mRNA level was not changed in this 

cell line. 

 

A) B)  

A) Representative image of agarose gel of semi quantitative rtPCR. Bands are visible for the house-keeping 

gene TBP and for RhoT1 cDNA level. RhoT1 bands were normalized to TBP bands. The primers for RhoT1 

were also applied on the pcDNA3.1/V5-RhoT1-WT construct to verify the primer specificity for RhoT1. The 

DNA ladder indicates bands ranging from 100 to 750 bp. B) Quantification of RhoT1 mRNA level. Signal 

intensity of bands of RhoT1 were normalized to the signal of TBP bands. The mRNA level of RhoT1 was 

significantly reduced in Miro1-R450C fibroblasts compared to Ctrl 1 and Miro1-R272Q fibroblasts . Data 

indicated as mean ± SEM, * p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple 

comparison correction. n = 5. 

  

Figure 14: semi quantitative measurement of RhoT1 mRNA level  
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3.6.2 RhoT1 mutant RNA is expressed in Miro1-R272Q and Miro1-R450C fibroblasts 

The amount of Miro1 protein was significantly reduced in both Miro1 mutant fibroblast lines 

(Figure 13) and semi-quantitative PCR revealed that mRNA levels of RhoT1 were reduced 

in Miro1-R450C fibroblasts (Figure 14). These findings lead to the question whether the 

heterozygous RhoT1 variants leading to Miro1 mutant protein are expressed in Miro1 

mutant fibroblast lines.  

Sequencing of cDNA synthesized from mRNA of Ctrl 1 fibroblasts confirmed that these 

fibroblasts are homozygous wild type for the nucleotides at position c.815 and at position 

c.1348 of the cDNA (Figure 15 A, B).  

In contrast, the chromatogram of cDNA from Miro1-R272Q fibroblasts showed the 

heterozygous expression of Guanine (G) and Adenine (A) at position c.815 (Figure 15 C). 

The exchange of G>A at position c.815 leads to the exchange of the amino acid Arginine 

(R) to Glutamine (Q).  

In Miro1-R450C fibroblasts sequencing of RhoT1 cDNA revealed the heterozygous 

expression of Cytosine (C) and Thymine (T) at position c.1348 (Figure 15 D). The 

substitution of C>T at position c.1348 leads to a change of the amino acid Arginine (R) to 

Cysteine (C). 

Thus, sequencing of RhoT1 cDNA showed that heterozygous RhoT1 variants are 

expressed on mRNA level in Miro1-R272Q fibroblasts and in Miro1-R450C fibroblasts. 

 

A) Chromatogram of RhoT1 cDNA at position c.815 – Ctrl 1 fibroblasts 

 

B) Chromatogram of RhoT1 cDNA at position c.1348 – Ctrl 1 fibroblasts 
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C) Chromatogram of RhoT1 cDNA at position c.815 – Miro1-R272Q fibroblasts 

 

D) Chromatogram of RhoT1 cDNA at position c.1348 – Miro1-R450C fibroblasts 

Chromatograms of cDNA from fibroblast lines. RNA was isolated from all three fibroblast lines and 

subsequently used to synthesize cDNA. Sanger sequencing was performed on cDNA and the resulting 

chromatograms were visualized with FinchTV software. A) B) Chromatograms of RhoT1 cDNA from Ctrl 1 

fibroblasts. Nucleotides at position c.815 and c.1348 are highlighted in blue. Ctrl 1 fibroblasts are 

homozygous wild type for both positions. C) Chromatogram of RhoT1 cDNA from Miro1-R272Q fibroblasts 

showed that the cells were heterozygous at position c.815, expressing wild type Guanine (G) as well as 

mutant Adenine (A). D) Chromatogram of RhoT1 cDNA from Miro1-R450C fibroblasts revealed heterozygous 

expression of wild type Cytosine (C) and mutant Thymine (T) at position c.1348. 

 

  

Figure 15: Chromatograms of RhoT1 cDNA 
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3.6.3 Rescue of Miro1 protein by inhibition of the proteasome 

Due to the observation that reduction of Miro1 protein in Miro1-R272Q fibroblasts was 

apparently not accompanied by decreased RhoT1 mRNA levels, we wondered whether it 

was possible to rescue Miro1 protein levels by specific inhibition of proteasomal 

degradation using 10 µM MG132. Previous studies reported that Miro1 is degraded 

predominantly via the proteasomal pathway rather than by the lysosomal pathway (Wang, 

Winter et al. 2011) (Birsa, Norkett et al. 2014). Immortalized fibroblasts were treated with 

10 µM MG132 for 14 h and afterwards protein levels were analysed by Western Blot. Miro1 

bands running at ¬75 kDa were considered to be not ubiquitinated, whereas bands running 

higher were considered as ubiquitinated Miro1 ((Ub)n-Miro1) (Birsa, Norkett et al. 2014). 

Analysis showed that MG132 treatment increased Miro1 protein in Ctrl 1 fibroblasts as well 

as in Miro1-R272Q and Miro1-R450C fibroblasts (Figure 16 A, B). However, only in Ctrl 1 

fibroblasts the Miro1 protein level after MG132 treatment was significantly higher compared 

to Miro1 protein in untreated cells.  

Mean values of Miro1 protein were used to calculate the ~fold increase of Miro1 protein 

after inhibition of the proteasome, expressed as ratio of Miro1 protein after MG132 

treatment/ Miro1 amount in untreated cells. In Ctrl 1 fibroblasts inhibition of the proteasome 

increased Miro1 protein levels to ~3 fold, whereas in Miro1-R272Q and Miro1-R450C 

fibroblasts Miro1 was increased to ~4.6 - 4.7 fold. This revealed that inhibition of the 

proteasome increased Miro1 protein ~1.6 fold more in Miro1 mutant fibroblasts lines 

compared to Ctrl 1 fibroblasts. 
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A) 

 

B)  

 

C)  

Figure 16: Rescue of Miro1 protein by inhib ition of the proteasome 

A) Representative Western Blot showing Miro1 protein in lysates from immortalized fibroblasts treated with 

10 µM MG132 for 14 h. Inhibition of the proteasome leads to increase of Miro1 protein of ¬75  kDa. Higher 

molecular bands of Miro1 were considered to be ubiquitinated Miro1 ((Ub)n-Miro1). B) Densitometry evaluation 

of total Miro1 protein amount showed that inhibition of the proteasome rescues Miro1 protein level in all three 

fibroblast lines. C) Ratio of Miro1 protein after MG132 treatment to Miro1 protein in untreated cells indicates 

~fold increase of Miro1 protein amount upon proteasome inhibition. The increase of Miro1 protein is higher in 

Miro1-R272Q and Miro1-R450C fibroblasts compared to Ctrl 1 fibroblasts. Data indicated as mean ± SEM. * p 

≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 5 
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3.7 Miro1-R450C causes reduction of mitochondrial mass in fibroblasts 

Miro1 protein level was assessed together with Tom20 protein, which served as marker for 

mitochondrial mass. Interestingly, the Western Blot analysis of Tom20 protein revealed that 

mitochondrial mass was significantly reduced in Miro1-R450C fibroblasts to ~0,4 fold of the 

mitochondrial mass of Ctrl 1 fibroblasts (Figure 17). Also mitochondrial mass in Miro1-

R450C fibroblasts was significantly lower compared to Miro1-R272Q fibroblasts. 

 

A) 

 

Figure 17: Western Blot for Tom20 protein level 

B)   

A) Representative image of Western Blot showing Tom20 protein. B) Densitometry evaluation of Western 

Blot analysis. Tom20 protein level normalized to β-Actin protein. Tom20 protein level is significantly reduced 

in Miro1-R450C mutant fibroblast lines compared to Control 1. Data indicated as mean ± SEM. * p ≤ 0.05 

** p ≤ 0.01 *** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 9 

 

To verify that Tom20 was a reliable marker for mitochondrial mass and not reduced 

independently of mitochondrial content, live cell imaging microscopy was used as 

independent approach to assess mitochondrial mass. Therefore, native fibroblasts were 

stained with MitoTracker green FM to analyse mitochondrial content. Bright field images of 

the same cells were used to measure the cell size for normalization of mitochondrial area. 

The resulting ratio of mitochondrial area to cell size served to indicate mitochondrial mass.  

Evaluation of the obtained microscopy data showed that mitochondrial mass was indeed 

significantly reduced in Miro1-R450C fibroblasts compared to Ctrl 1 fibroblasts (Figure 18), 

thereby verifying Tom20 as indicator for mitochondrial mass.  
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A) B) 

Live cell imaging of native fibroblasts to analyse mitochondrial mass. A) Representative images of native 

fibroblasts stained with MitoTracker green to assess mitochondrial area. Bright field images were used to 

assess the cell size. Mitochondrial mass was calculated as ratio of mitochondrial area normalized to cell size. 

Miro1-R450C fibroblasts were compared to two age matched control fibroblast lines (Ctrl  1 and Ctrl 2). 

Images taken at x40 magnification. Scale bars indicate 20 µm. B) Evaluation of mitochondrial area 

normalized to cell size in native fibroblasts revealed that mitochondrial m ass in Miro1-R450C fibroblasts was 

significantly lower compared to Ctrl 1 fibroblasts. Data indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 *** p 

≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 2 

 

  

Figure 18: Live cell imaging of native fibrob lasts for mitochondrial mass 
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3.7.1 Miro1 mutants cause reduction of mitochondrial mass in M17 cells 

An independent cell model was established to investigate whether the Miro1 mutants are 

causative for the phenotypes observed in patient-derived fibroblasts. For this purpose a 

stable knockdown of endogenous RhoT1 was established in the human neuroblastoma cell 

line M17. 

3.7.1.1 Characterisation of M17 cells with stable knockdown of endogenous RhoT1 and 

overexpression of RhoT1 constructs 

The knockdown of RhoT1 was introduced using the BLOCK-iT Inducible Pol II miR RNAi 

Expression Vector Kit with EmGFP (Invitrogen GmbH, Karlsruhe, Germany). Different 

miRNA constructs were generated and transfected into M17 cells. After subsequent 

selection of positively transfected cells with Blasticidin S HCl (Invitrogen GmbH, Karlsruhe, 

Germany), the knockdown of RhoT1 was verified by Western Blot analysis for Miro1 protein. 

Western Blot showed that the miRNA-2471 construct in the 5’UTR of RhoT1 induced the 

strongest downregulation of Miro1 protein to ~50 % compared to cells transfected with 

miRNA-Ctrl.  

 

 

Figure 19: Western Blot analysis for RhoT1 knockdown in M17 cells 

Western Bot analysis for Miro1 protein in M17 cells transfected with miRNA-Ctrl, miRNA-524, miRNA-1335 and 

miRNA-2471. The negative control miRNA-Ctrl caused no downregulation of Miro1 protein. The miRNA-2471 in 

the 5’ÚTR of RhoT1 caused a significant reduction of Miro1 protein.  
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3.7.1.2 M17 cells with stable knockdown of endogenous RhoT1 successfully express 

Miro1-V5 constructs 

For further analysis M17 cells were transfected with the miRNA-2471 construct and 

subsequently maintained under constant selection with 6 µg/ mL Blasticidin S HCl to 

generate a polyclonal M17 cell line with stable knockdown of endogenous RhoT1. The 

miRNA-2471 targets the 5’UTR of RhoT1 and therefore allows the overexpression of 

RhoT1/V5 constructs while expression of the endogenous RhoT1 is down regulated. This 

cell line was transfected with Miro1-V5 constructs overexpressing Miro1-WT, Miro1-R272Q, 

Miro1-R450C or Miro1-F676V with a V5 tag, respectively, for subsequent experimental 

analysis.  

Western Blot showed that M17 cells with stable knockdown of endogenous RhoT1 

successfully overexpressed Miro1/V5 protein from the different applied constructs (Figure 

20). 

 

Figure 20: Western Blot for over expressed Miro1-V5 protein in M17 cells with knock down of endogenous Miro1 

M17 cells with stable knockdown of endogenous RhoT1 were transfected with the Miro1/V5 constructs Miro1-WT, 

Miro1-R272Q, Miro1-R450C or Miro1-F676V. Western Blot analysis showed the overexpression of the Miro1 

protein with V5 tag.  

3.7.1.3 Over expressed Miro1/V5 protein is localized at mitochondria 

M17 cells with stable knockdown of endogenous RhoT1 were transfected with Miro1-WT, 

Miro1-R272Q, Miro1-R450C or Miro1-F676V in pcDNA3.1/V5-HisA constructs, respectively 

(see 2.9). Cells were fixed and immunostained for microscopy (see 2.10.5) to verify the 

expression of Miro1/V5 constructs and the localization of the overexpressed protein on 

mitochondria. 

Microscopy of fixed M17 cells stained with V5-antibody (Sigma Aldrich Chemie GmbH, 

Munich, Germany) and anti-RhoT1 antibody (Sigma Aldrich Chemie GmbH, Munich, 
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Germany) showed a clear overlap of V5 signal and Miro1 signal, proofing the specificity of 

Miro1 antibody (Figure 21). 

 

 

Figure 21: Expression of Miro1-V5 in M17 cells 

M17 cells with stable knockdown of endogenous RhoT1 were transfected with Miro1-R272Q, Miro1-R450C and 

Miro1-F676V constructs. Cells were fixed and stained with V5-antibody and Miro1-antibody and subsequently 

imaged. Microscopy analysis showed an overlap of V5-antibody stain and Miro1-antibody stain, indicating the 

specific targeting of both antibodies. Images taken at x63 magnification. Scale bars indicate 20 µm. 

 

Microscopy images of fixed M17 cells stained with V5-antibody (Sigma Aldrich Chemie 

GmbH, Munich, Germany) and Tom20 antibody (Santa Cruz, Dallas, Texas, USA) (Figure 

22 A) were furtheron used to analyse the co-localization of overexpressed Miro1 protein 

and mitochondria. The Pearson’s coefficient for Miro1/V5 and Tom20 signal was calculated 

with approximately 0,6 for all Miro1/V5 proteins (Figure 22 B). This value indicates a partially 

overlap of Miro1/V5 and mitochondria, indicating that Miro1-WT/V5, Miro1-R272Q/V5, 

Miro1-R450C/V5 and Miro1-F676V/V5 are all partially localized to mitochondria. 
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A)  

B) 

Figure 22: Co-localization of Miro1/V5 protein and mitochondria 

A) M17 cells with stable knockdown of RhoT1 were transfected with the Miro1/V5 constructs Miro1-WT, 

Miro1-R272Q, Miro1-R450C and Miro1-F676V. Cells were fixed and stained with V5-antibody and Tom20 

antibody, which served as mitochondrial marker. Immunofluorescence signals were a nalysed with 

microscopy. Images taken at x63 magnification. B) Co-localization analysis of Miro1/V5 and Tom20 with 

ImageJ software revealed a Pearson’s coefficient of approximately 0,6 for all Miro1 -V5 constructs, indicating 

a partially overlap of Miro1 and mitochondria. Scale bars indicate 20 µm. Data indicated as mean ± SEM. * 

p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 by Students t-Test. n = 3 
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3.7.2 Overexpression of Miro1 mutant protein causes reduction of mitochondrial 

mass in M17 cells 

M17 cells with stable knockdown of endogenous RhoT1 were transiently transfected with 

pcDNA3.1/V5-HisA constructs overexpressing Miro1-WT, Miro1-R272Q, Miro1-R450C or 

Miro1-F676V. Cells were then used for Western Blot analysis of Tom20 protein to assess 

mitochondrial mass. Analysis of three independent experiments revealed that knockdown 

of RhoT1 (RhoT1-KD) had no effect on Tom20 protein level. Overexpression of Miro1-WT 

likewise did not result in reduced Tom20 protein level. In contrast, overexpression of Miro1-

R272Q, Miro1-R450C or Miro1-F676V resulted in significantly reduced Tom20 protein 

amount compared to M17 cells without knockdown of RhoT1 (miRNA-Ctrl) (Figure 23), 

indicating that Miro1 mutations cause reduction of mitochondrial mass.  

 

A) B) 

Figure 23: Western Blot for Tom20 protein level in M17 cells with RhoT1-KD 

A) Representative Western Blot of M17 cells with stable knockdown of endogenous RhoT1 (RhoT1-KD) and 

overexpression of Miro1-WT, Miro1-R272Q, Miro1-R450C or Miro1-F676V protein. B) Densitometry evaluation 

of Western Blot for Tom20 protein level. M17 cells with stable knockdown of endogenous RhoT1 (RhoT1-KD), 

over-expressing Miro1-R272Q, Miro1-R450C or Miro1-F676V showed significantly less levels of Tom20 protein 

compared to M17 cells without knockdown of RhoT1 (miRNA-Ctrl). Data indicated as mean ± SEM. * p ≤ 0.05 

** p ≤ 0.01 *** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 3 
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3.8 Mitochondrial morphology is not changed in Miro1 mutant fibroblasts 

Mitochondrial mass was found to be significantly reduced in Miro1 mutant fibroblasts. One 

possible reason could be an increased clearance of damaged mitochondria via mitophagy. 

Mitochondrial dysfunction can influence mitochondrial morphology as fusion with other 

mitochondria is an important factor for mitochondria maintenance (Amiri and Hollenbeck 

2008) (Chen, McCaffery et al. 2007), whereas fission serves as initial step towards 

clearance (Weihofen, Thomas et al. 2009). 

For analysis of mitochondrial morphology native fibroblasts were stained with the MMP-

independent mitochondrial dye MitoTracker green FM (Figure 24) and analysed for Form 

Factor as indicator of mitochondrial branching and Aspect Ratio, which indicates 

mitochondrial length.  

Analysis revealed that mitochondrial morphology was not altered in both mutant fibroblasts 

lines under standard growth conditions (Figure 25). Mitochondria showed neither a hyper 

fusion, nor a fragmentation phenotype, as assessed by From Factor and Aspect Ratio. 
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Figure 24: Live cell imaging of patient derived fibrob lasts 

Representative images of Live cell microscopy of native fibroblasts. Fibroblasts were stained with DAPI and 

MitoTracker green FM. Images taken at x40 magnification. Scale bars indicate 20 µm. 

A) B) C) D) 

Figure 25: Mitochondrial morphology in patient-derived native fibrob lasts 

The Live cell microscopy images of native fibroblasts were analysed with ImageJ software for the parameters 

perimeter, area, major axis and minor axis of the defined mitochondria, which were used to calculate Form 

Factor and Aspect Ratio. Mitochondrial morphology was  not altered in Miro1-R272Q and Miro1-R450C 

fibroblasts. n = 3-4 
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3.9 Mitophagy is impaired in Miro1 mutant fibroblasts 

3.9.1 Co-localization of mitochondria and lysosomes is not increased in Miro1 

mutant fibroblasts 

 

Figure 26: Live cell imaging of native fibrob lasts for mitochondria and lysosomes 

Representative images of Live cell microscopy of native fibroblasts. Fibroblasts were stained with MitoTracker 

and LysoTracker. Images taken at x40 magnification. Scale bars indicate 20 µm. 
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One approach to analyse mitophagy was done by live cell imaging of native fibroblasts 

stained with MitoTracker and LysoTracker (Figure 26) and subsequent co-localization 

analysis of mitochondria and lysosomes (Figure 27). An increased co-localization indicates 

higher levels of mitophagy. Co-localization of mitochondria and lysosomes was not 

increased in Miro1-R272Q and Miro1-R450C fibroblast lines under standard growth 

conditions, as assessed by Pearson’s Coefficient (Figure 27). 

 

A) B) 

Figure 27: Co-localization of mitochondria and lysosomes 

The Live cell microscopy images of native fibroblasts were analysed with ImageJ software. Co-localisation of 

mitochondria and lysosomes was not altered in A) Miro1-R272Q and B) Miro1-R450C fibroblasts compared to 

their respective age matched controls . Data indicated as mean ± SEM. n = 3 – 4 

 

3.9.2 Analysis of LC3II protein levels revealed impaired autophagic flux in Miro1 

mutant fibroblasts 

Mitophagy is a form of autophagy, specifically degrading mitochondria via the lysosomal 

pathway. Proteins and organelles are engulfed by autophagosomes, which fuse with 

lysosomes for subsequent degradation. Microtubule-associated protein 1A/1B-light chain 3 

(LC3) exists as soluble isoform LC3 I in the cytosol and gets recruited to autophagosome 

membranes, where it forms the LC3-phosphatidylethanolamine conjugate LC3 II. LC3 II is 

degraded in autolysosomes together with the other engulfed proteins and/ or organelles. 

Therefore, LC3 II turnover is considered as marker to monitor autophagic flux (Tanida, 

Ueno et al. 2008). 

Immortalized fibroblasts were treated with 10 nM Bafilomycin A1, a specific inhibitor of 

autophagy, for 24 h. Samples were taken after 3 h, 6 h and 24 h of treatment and the LC3 II 

turnover investigated using Western Blot analysis. In Ctrl 1 fibroblasts LC3 II accumulated 
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significantly after 3 h, 6 h and 24 h (Figure 28 A, D). In contrast, LC3 II did not significantly 

increase in Miro1-R272Q fibroblasts after 3 h or 6 h treatment. Only after 24 h treatment 

LC3 II protein level increased significantly compared to the untreated control, but this value 

was significantly lower compared to 24 h treatment in Ctrl 1 fibroblasts (Figure 28 B, D). In 

Miro1-R450C a significant accumulation of LC3 II was not observed (Figure 28 C, D). To 

induce autophagy, cells were starved in medium without FBS. This treatment resulted in no 

obvious increase of LC3 II over time in Ctrl 1 fibroblasts, likely because LC3 II is constantly 

degraded (Figure 28 A, E). In Miro1-R272Q and Miro1-R450C LC3 II protein did not 

increased upon FBS starvation as well (Figure 28 B, C, E). The results indicate that 

autophagy, and therefore most likely mitophagy as well, is impaired in Miro1-R272Q and 

Miro1-R450C mutant fibroblasts. 

 

A) Ctrl 1 Representative Western Blot image of 

immortalized fibroblasts treated with 

10 nM Bafilomycin A1 to inhibit 

autophagy and with FBS-starvation to 

induce autophagy. Treatment was done 

over a time course of 24 h, samples 

were collected after 3 h, 6 h and 24 h.  

A) In Ctrl 1 fibroblasts LC3 II 

significantly increased over a time 

course of 24 h treatment with 

Bafilomycin A1, indicating that 

autophagy was successfully blocked. 

Starvation of immortalized fibroblasts in 

medium without FBS did not result in 

LC3 II accumulation, indicating that 

autophagy turnover occurs. 

In B) Miro1-R272Q and C) Miro1-

R450C fibroblasts accumulation of 

LC3 II upon inhibition of autophagy was 

not observed, suggesting that 

mitophagy might be impaired. 

 
B) Miro1-R272Q 

 
C) Miro1-R450C 
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D) LC3 II protein under Bafilomycin A1 treatment D) Densitometry evaluation of 

Western Blot for LC3 II protein 

under inhibition of autophagy 

using Bafilomycin A1. In Ctrl 1 

fibroblasts LC3 II accumulated 

significantly after 3 h, 6 h and 

24 h of treatment. In Miro1-

R272Q fibroblasts LC3 II was 

significantly increased after 24 h 

of Bafilomycin A1 treatment, but 

the value was much lower 

compared to 24 h treatment in 

Ctrl 1 fibroblasts. In Miro1-

R450C fibroblasts LC3 II did not 

accumulate even after 24 h 

treatment, indicating that 

autophagic flux was impaired in 

Miro1 mutant fibroblasts. 

E) Densitometry evaluation of 

Western Blot for LC3 II protein 

under FBS starvation. In Ctrl 1 

fibroblasts LC3 II levels did not 

change, indicating a turnover of 

LC3 II by lysosomal degradation. 

In Miro1-R272Q and Miro1-

R450C fibroblasts a slightly 

increase of LC3 II upon FBS 

starvation was observed, 

indicating that lysosomal 

clearance might be affected. 

Data indicated as mean ± SEM. 

* p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 

by multiple t-test, Holm-Sidak 

multiple comparison correction. 

n = 3 - 4 

E) LC3 II protein under FBS starvation 

 

  

Figure 28: Western Blot for autophagy marker LC3 II 
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3.10 Mitochondrial biogenesis is increased in Miro1-R450C fibroblasts 

Western Blot analysis for Tom20 revealed a significantly reduced mitochondrial mass in 

Miro1-R450C fibroblasts. Mitophagy analysis of the autophagy marker LC3 II in patient-

derived Miro1 mutant fibroblasts indicated that mitochondrial degradation via the lysosomal 

pathway might be impaired (Figure 28). To further investigate the reason for the reduced 

mitochondrial mass mitochondrial biogenesis was analysed with two different approaches, 

Western Blot analysis of PGC1α and analysis of mtDNA copy number. 

3.10.1 Protein level of PGC1α is increased in Miro1-R450C fibroblasts 

One of the applied approaches to analyse mitochondrial biogenesis was the assessment 

of PGC1α protein level. PGC1α is a co-activator for transcription, which induces 

mitochondrial biogenesis and is therefore upregulated prior to biogenesis (Kelly and 

Scarpulla 2004) (Lin, Handschin et al. 2005). Western Blot analysis showed that PGC1α 

protein level in Miro1-R272Q was comparable to Ctrl 1 fibroblasts (Figure 29). Miro1-R450C 

fibroblasts, that have a significantly reduced mitochondrial mass (Figure 17), showed a 

significant increase of PGC1α protein level to the ~3,5 fold of PGC1α protein in Ctrl 1 

fibroblasts (Figure 29). 

 

A) 

 

Figure 29: Western Blot for PGC1α 

B)  

A) Representative image of Western Blot showing PGC1α and β-Actin protein. B) Densitometry evaluation 

of Western Blot analysis. PGC1α protein level normalized to β-Actin protein, relative to Control 1, was 

significantly increased in Miro1-R450C mutant fibroblast lines. Data indicated as mean ± SEM. * p ≤ 0.05 ** 

p ≤ 0.01 *** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 8 
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3.10.2 mtDNA copy number is not changed in Miro1-R450C fibroblasts 

Analysing mtDNA copy number in the patient-derived fibroblasts was used as additional 

approach to investigate mitochondrial biogenesis. Amongst other functions PGC1α induces 

the replication of mtDNA, an important requirement for mitochondrial biogenesis (Kelly and 

Scarpulla 2004) (Lin, Handschin et al. 2005).  

Under basal conditions mtDNA copy number of Miro1-R272Q and Miro1R450C was 

indistinguishable from the mtDNA copy number of three different control fibroblast lines. 

Induction of oxidative stress by treatment with H2O2, Rotenone or a combination of both 

induced a tendency for an increase of mtDNA copy number in Miro1-R272Q and Miro1-

R450C fibroblasts, but not in the control fibroblast lines from healthy donors. The slightly 

increased mtDNA copy number under oxidative stress did not reach statistical significance. 

 

 

 

Analysis of mtDNA copy number in native fibroblasts  under standard growth conditions and after treatment with 

H2O2 and Rotenone to induce oxidative stress. Mitochondrial DNA copy number was  statistically not significant 

increased in fibroblasts carrying the Miro1-R450C mutation, whereas in three control lines mtDNA copy number 

was not increased by induction of oxidative stress . Data indicated as mean ± SEM. n = 2 - 3  

 

  

Figure 30: mtDNA copy number in native fibrob lasts 
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3.11 Mitochondrial respiration is altered in Miro1 mutant fibroblasts 

Mitochondrial respiratory function is immensely important for the functionality of neurons as 

mitochondria provide ATP, that is needed at synapses (DiMauro 2004) for the release and 

recycling of neurotransmitters (Hollenbeck 2005). Investigation of the respiratory function 

in Miro1 mutant fibroblasts therefore was of great interest, because the reduced 

mitochondrial mass in Miro1-R450C fibroblasts (Figure 17) and the growth defect of gem1∆ 

and gem1∆+R298Q yeast strains observed on medium containing a non-fermentable 

carbon source (Figure 12) provided first evidence for a possible impairment of energy 

metabolism or energy supply. 

3.11.1 Citrate synthase activity is reduced in Miro1-R450C mutant fibroblasts 

Citrate synthase is the key enzyme of the tricarboxylic acid cycle (TCA) that provides NADH 

and FADH2 as proton donors for the enzymes of the respiratory chain. Measuring the 

activity of citrate synthase therefore was the first approach to assess the functionality of 

mitochondrial respiration in patient-derived fibroblasts.  

Citrate synthase activity was measured in mitochondrial fractions of immortalized 

fibroblasts under standard growth conditions. The enzyme activity of citrate synthase was 

significantly reduced in Miro1-R450C fibroblasts and not changed in Miro1-R272Q 

fibroblasts compared to Ctrl 1 fibroblasts (Figure 31 A).  

To further analyse the reason for the altered activity, Western Blot for citrate synthase 

protein was done. Citrate synthase protein amount was normalized to Tom20 protein 

amount. Analysis revealed a significant increase of citrate synthase protein level in Miro1-

R450C fibroblasts compared to Ctrl 1 fibroblasts, which was not observed in Miro1-R272Q 

fibroblasts (Figure 31 B).  
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A)   B) C) 

 

Figure 31: Citrate synthase activity and protein level 

A) Biochemical measurement of citrate synthase activity in immortalized fibroblasts. Citrate synthase activity 

was significantly reduced in Miro1-R450C fibroblasts. Data indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 *** 

p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 3 B) Representative image of 

Western Blot showing citrate synthase, β-Actin and Tom20 protein. C) Densitometry evaluation of citrate 

synthase protein level. Citrate synthase protein level was normalized to mitochondrial mass. C itrate synthase 

protein level was significantly increased in Miro1-R450C fibroblasts, compared to Ctrl 1 fibroblasts. Data 

indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison 

correction. n = 8 

 

3.11.2 Complex I activity is not changed in Miro1 mutant fibroblasts 

Due to the observed alteration of citrate synthase activity and protein level in Miro1-R450C 

fibroblasts the function of the mitochondrial respiratory chain was further investigated in 

patient-derived fibroblasts. 

The activity of the respiratory chain complex I was measured in immortalized fibroblasts 

with the Complex I Enzyme Activity Dipstick Assay Kit (Abcam, Cambridge, UK).  

Citrate synthase protein level (Figure 31 C) was used for normalization to indicate complex I 

activity on mitochondria level. The results obtained showed that complex I activity was only 

slightly, but not statistically significant increased in Miro1-R272Q and not changed in Miro1-

R450C fibroblasts (Figure 32). 
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Complex I activity was measured using the Complex I Enzyme Activity Dipstick Assay Kit. Densitometry data 

from the Complex I Enzyme Activity Dipstick Assay Kit were normalized to citrate synthase protein level. 

Complex I activity was not changed in Miro1-R272Q and in Miro1-R450C fibroblasts compared to Ctrl 1 

fibroblasts. Data indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 by multiple t-test, Holm-Sidak 

multiple comparison correction. n = 3 

 

3.11.3 Abundance of complex V is increased in Miro1-R272Q mutant fibroblasts 

Complex I activity was found to be only moderately increased in Miro1-R272Q fibroblasts. 

As a result analysing the protein amounts of the complexes of the respiratory chain was the 

next step in characterizing mitochondrial respiratory function.  

The amount of intact protein complexes of the respiratory chain was measured in 

immortalized fibroblasts under standard growth conditions by Western Blot analysis using 

the Total OXPHOS antibody cocktail (Abcam, Cambridge, UK). Normalized to mitochondrial 

mass, complex II was slightly increased in Miro1-R272Q and complex IV was moderately 

increased in Miro1-R272Q and Miro1-R450C fibroblasts. Complex V was significantly 

increased in Miro1-R272Q fibroblasts to ~4,5 fold compared to Ctrl 1 fibroblasts (Figure 33). 

Figure 32: Complex I activity in immortalized fibrob lasts 
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A)  

  

B)  

 

Protein abundance of respiratory chain complexes was measured with Western Blot analysis using the Total 

OXPHOS antibody cocktail (Abcam, Cambridge, UK) which detects only intact protein complexes. 

A) Representative image of Western Blot showing the Complexes I, II, III, IV and V of the respiratory chain, 

and Tom20 protein. B) Densitometry analysis of Western Blot results, normalized to Tom20 showed that 

complex IV was tendentially increased in Miro1-R272Q and Miro1-R450C fibroblasts and complex V was 

significantly increased in Miro1-R272Q fibroblasts compared to the control fibroblast line. 

Data indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple 

comparison correction. n = 4 

 

 

Figure 33: Protein level of respiratory chain complexes 
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3.11.4 Mitochondrial respiration is different in Miro1-R450C and in Miro1-R272Q 

mutant fibroblasts 

Citrate synthase activity was decreased in Miro1-R450C fibroblasts, whereas complex I 

activity was not changed in Miro1-R272Q or Miro-R450C fibroblasts (Figure 32, Figure 33). 

Measuring the oxygen consumption rate (OCR) with the XFe96 extracellular flux Analyzer 

is a powerful tool to further assess the functionality of the respiratory chain. 

3.11.4.1 Optimization of cell density for OCR measurement 

To measure the OCR with the XFe96 extracellular flux Analyzer cells are required to grow 

in a monolayer that evenly covers the bottom of the well of the XFe96 cell culture microplate. 

Therefore immortalized Ctrl 1 fibroblasts were seeded into a XFe96 cell culture microplate 

at different cell densities to establish the optimal cell density. Analysis of the obtained OCR 

data showed that a cell density of 16000 cells per well produces most robust data (Figure 

34). All other measurements of OCR were therefore done using this cell density. 

 

 

Figure 34: Optimization of cell density for OCR measurement 

OCR data for the immortalized fibroblast line Ctrl 1 seeded at different cell densities. Best results were 

obtained at a cell density of 16000 cells per well. Data indicated as mean ± SEM. n = 5 
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3.11.4.2 Optimization of Oligomycin and FCCP concentration for OCR measurement 

To measure the extracellular oxygen flux with the XFe96 extracellular flux Analyzer cells 

were treated with oligomycin to inhibit the ATP synthase complex of the respiratory chain. 

The resulting decrease of OCR allows conclusions on ATP production and proton leak of 

the respiratory chain. Following treatment with FCCP leads to uncoupling of the respiratory 

chain. The subsequent increase of OCR is used to calculate the maximal respiration. For 

establishing the optimal concentrations of oligomycin and FCCP cells were treated with 

different concentrations of the respective compounds. OCR measurement showed that 

2 µM of Oligomycin resulted in decrease of OCR below the basal OCR, indicating inhibition 

of complex V (Figure 35 A, B). Uncoupling of the respiratory chain using 250 nM of FCCP 

caused an increase of OCR above the basal OCR (Figure 35 C, D). The optimal 

concentrations were used for further analysis of OCR of immortalized fibroblasts. 

 
A) Ctrl 1 + different concentrations of Oligomycin 

 

 
B) Miro1-R450C + different concentrations of Oligomycin 
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C) Ctrl 1 + different concentrations of FCCP   

 

 
D) Miro1-R450C + different concentrations of FCCP 

Figure 35: Optimization of Oligomycin and FCCP concentration for OCR 

measurement 

 

OCR data for the immortalized fibroblast lines Ctrl 1 and Miro1-R450C. Cells were treated with different 

concentrations of Oligomycin (A, B) and different concentrations of FCCP (C, D) to establish the optimal 

concentrations. A) B) For Oligomycin a concentration of 2 µM was optimal to inhibit ATP synthase of the 

respiratory cahin. C) D) FCCP was most efficient to uncouple the respiratory chain at a concentration of 

250 nM. Data indicated as mean ± SEM. n = 3 
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3.11.4.3 The oxygen consumption rate was changed in Miro1 mutant fibroblasts 

 

Figure 36: Oxygen consumption rate of patient-derived fibroblasts 

OCR data of immortalized fibroblasts. Basal respiration is increased in Miro1-R450C fibroblasts compared 

to Ctrl 1 and Miro1-R272Q fibroblasts, as well as maximal respiration. Data indicated as mean ± SEM. 

n = 5 - 6 

 

The OCR data (Figure 36) were used to calculate different parameters to assess 

mitochondrial respiratory function (Figure 4). Respiration was found to be significantly 

different between Miro1-R272Q and Miro1-R450C fibroblasts: Basal respiration (Figure 37 

A), capacity for ATP production (Figure 37 B) and maximal respiration (Figure 37 D) were 

significantly increased in Miro1-R450C fibroblasts compared to Miro1-R272Q fibroblasts. 

Proton leak was significantly decreased in Miro1-R272Q fibroblasts compared to Ctrl 1, and 

slightly but not significantly increased in Miro1-R450C fibroblasts (Figure 37 C). Spare 

respiratory capacity was significantly decreased in Miro1-R272Q and significantly increased 

in Miro1-R450C fibroblasts compared to Ctrl 1 fibroblasts (Figure 37 E). Non-mitochondrial 

respiration, which arises from oxygen consumption caused by side reactions of substrates 

in the cell, was increased in Miro1-R450C fibroblasts compared to Ctrl 1 and Miro1-R272Q 

fibroblasts (Figure 37 F). 
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A)  B)  C)  

D)  E)  F)  

Figure 37: Evaluation of respiratiory function of immortalized fibrob lasts 

A) Basal respiration was significantly higher in Miro1-R450C fibroblasts compared to Miro1-R272Q. B) Capacity 

for ATP production was significantly higher in Miro1-R450C compared to Miro1-R272Q. C) Proton leak in Miro1-

R272Q fibroblasts was significantly lower compared to Ctrl 1. D) Maximal respiration was significantly increased 

in Miro1-R450C fibroblasts  compared to Miro1-R272Q. E) Spare respiratory capacity in Miro1-R272Q 

fibroblasts was significantly decreased and in Miro1-R450C fibroblasts significantly higher than in Ctrl 1 

fibroblasts. F) Non-mitochondrial respiration was increased in Miro1-R450C fibroblasts. Data indicated as mean 

± SEM. * p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 5 
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3.12 Mitochondrial membrane potential is increased in Miro1 mutant 

fibroblasts 

The mitochondrial membrane potential arises from complexes I, III, IV and V that pump 

protons from the mitochondrial matrix across the inner membrane into the intermembrane 

space. The resulting proton gradient is subsequently used to produce ATP. In this regard 

the mitochondrial membrane potential is an important indicator for mitochondrial function. 

Immortalized fibroblasts were treated with 5 nM Valinomycin for 14 hours to decrease 

MMP. Cells were afterwards stained with the MMP-dependent dye TMRE and the MMP-

independent dye MitoTracker green FM. The MMP was analysed by measuring the intensity 

of TMRE and MitoTracker green FM and calculation of the intensity of TMRE in relation to 

MitoTracker intensity. The resulting values indicate MMP with regard to mitochondrial mass. 

Treatment with Valinomycin significantly reduced the MMP in all cell lines. In Miro1-R272Q 

and Miro1-R450C fibroblasts the MMP was significantly increased to ~2 fold under baseline 

conditions compared to Ctrl 1. (Figure 38 A). The difference between the reduced MMP 

after Valinomycin treatment and baseline MMP in untreated cells was not altered in Miro1 

mutant fibroblasts compared to Ctrl 1, indicating that Miro1 mutant fibroblasts are equally 

susceptible to Valinomycin than the Ctrl 1 fibroblast line (Figure 38 B). 

A)  B) 

Figure 38: Mitochondrial membrane potential of immortalized fibrob lasts 

Mitochondrial membrane potential was measured by FACS analysis. A) Immortalized fibroblasts were treated 

with 5 nM Valinomycin for 14 hours and afterwards stained with TMRE and MitoTracker green FM. 

Valnimomycin treatment significantly reduced the MMP. MMP was significantly increased in Miro1-R272Q and 

in Miro1-R450C fibroblasts. Data indicated as mean ± SEM. B) Evaluation of the delta between baseline MMP 

and reduced MMP after Valinomycin treatment. The reduction of the MMP induced by Valinomycin was  

comparable in all fibroblast lines. Data indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 by multiple 

t-test, Holm-Sidak multiple comparison correction. n = 6  
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3.12.1 Knockdown of RhoT1 causes mitochondrial hyperpolarisation in M17 cells 

The mitochondrial membrane potential (MMP) was measured in M17 cells with stable 

knockdown of endogenous RhoT1 (RhoT1-KD) with FACS analysis. Cells with stable 

knockdown of RhoT1 were transfected with Miro1/V5 constructs Miro1-WT, Miro1-R272Q, 

Miro1-R450C or Miro1-F676V, respectively. M17 cells were treated with 10 µM CCCP for 

20 min to decrease MMP and afterwards stained with TMRE. Treatment with CCCP 

reduced the MMP.  

M17 cells with stable RhoT1-KD showed a significant increase of MMP to ~1,5 fold 

compared to M17 cells without knockdown of RhoT1 (M17 + miRNA-Ctrl). M17 cells with 

knockdown of endogenous RhoT1 overexpressing Miro1-WT, Miro1-R272Q, Miro1-R450C 

or Miro1-F676V constructs, respectively, also showed an increase of MMP, which was only 

significant in cells expressing Miro1-WT when compared to M17 + miRNA-Ctrl (Figure 39).  

Thus, the M17 RhoT1-KD cell model resembles the phenotype of increased MMP that was 

observed in Miro1 mutant immortalized fibroblasts (Figure 38).  

The remaining cells left over from FACS analysis were used to verify the expression of V5-

tagged Miro1 protein. Expression of Miro1-WT/V5, Miro1-R272Q/V5, Miro1-R450C/V5 and 

Miro1-F676V/V5 was verified in all three experiments, although Miro1-WT/V5 was hardly 

detectable in experiment 1 due to insufficient cell amount left as can be seen by the also 

faint band for β-Actin (Figure 40). 
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Mitochondrial membrane potential was measured by FACS analysis. M17 cells with stable knockdown of 

RhoT1 and retransfection with RhoT1 constructs. Cells were treated with 10 µM CCCP for 20 min and stained 

with TMRE. FACS data showed an increase of MMP in the RhoT1-KD cell line and in cells with RhoT1-

KD + Miro1-WT/V5 compared to M17 + miRNA-Ctrl. MMP was slightly increased in cells with RhoT1-KD 

expressing Miro1-R272Q/V5, Miro1-R450C/V5 or Miro1-F676V/V5, respectively. Data indicated as mean ± 

SEM. * p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 3 

 

 

Figure 40: Expression of RhoT1-V5 in M17+miRNA used for FACS measurement 

Western Blot showing expression of RhoT1-V5 constructs in M17 cells with stable knockdown of endogenous 

RhoT1. All four constructs containing either wild type RhoT1 (RhoT1-WT/V5), RhoT1-R272Q/V5, RhoT1-

R450C/V5 or RhoT1-F676V/V5 were expressed in all three experiments. 

  

Figure 39: Mitochondrial membrane potential of M17 cells with RhoT1-KD 
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3.13 Mitochondrial reactive oxygen species (ROS) level was not changed in 

Miro1 mutant fibroblasts 

Mitochondrial superoxide is a by-product of oxidative phosphorylation and is produced by 

reduction of molecular oxygen. Impaired function of the respiratory chain increases 

production of superoxide by complex I and complex III. Superoxide levels were measured 

by FACS analysis in immortalized fibroblasts stained with MitoSOX and MitoTracker. 

Miro1 mutant fibroblasts showed no alteration of mitochondrial superoxide level compared 

to Ctrl 1 fibroblasts. Treatment with 20 nM of Piericidin A for 14 h significantly increased 

mitochondrial superoxide levels in all fibroblast cell lines (Figure 41 A). The difference 

between increased superoxide level after Piericidin A treatment and baseline superoxide 

level in untreated cells was also not altered in Miro1 mutant fibroblasts compared to Ctrl 1 

fibroblasts, indicating that Miro1 fibroblasts are equally prone to produce superoxide during 

complex I inhibition than Ctrl 1 fibroblasts (Figure 41 B). 

 

A)  

Figure 41: Mitochondrial ROS production in immortalized fibroblasts 

B)  

A) Immortalized fibroblasts were treated with 20 nM Piericidin A and afterwards stained with MitoSOX-Red 

and MitoTracker green FM. Mitochondrial superoxide level was measured by FACS analysis. MitoSOX signal 

was normalized to MitoTracker signal. Under baseline conditions mitochondrial superoxide level was not 

changed in Miro1-R272Q and Miro1-R450C compared to Ctrl 1 fibroblasts. Treatment with Piericidin A 

increases mitochondrial superoxide production significantly in all fibroblast lines. B) The delta of increased 

mitochondrial ROS signal induced by Piericidin A and the baseline ROS signal in untreated cells was 

indistinguishable in all fibroblast lines. Data indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 by 

multiple t-test, Holm-Sidak multiple comparison correction. n = 4 
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3.13.1 mtDNA damage was not increased in Miro1 mutant fibroblasts 

Analysing mtDNA damage in the patient-derived fibroblasts was used as additional 

approach to investigate the possible load of oxidative stress, because high levels of ROS 

can damage mtDNA by inducing lesions.  

Under basal conditions mtDNA damage load of Miro1-R272Q and Miro1R450C was 

indistinguishable from the mtDNA damage load of three different age matched control 

fibroblast lines (Ctrl 1, Ctrl 2, Ctrl 3). Induction of oxidative stress by treatment with H2O2, 

Rotenone or a combination of both induced a slight, yet not significant increase of mtDNA 

damage in Ctrl 1, Ctrl 3 and Miro1-R450C native fibroblast lines, but not in Ctrl 2 and Miro1-

R272Q fibroblasts.  

 

 

Figure 42: mtDNA damage in native fibrob lasts 

 

Analysis of mtDNA damage in native fibroblasts under standard growth conditions and after treatment with H2O2 

and Rotenone to induce oxidative stress. Treatment with H2O2 and Rotenone induced an increase of mtDNA 

damage load in fibroblasts, but mtDNA damage was not higher in Miro1-R272Q or Miro1-R450C fibroblasts 

compared to the three control lines. Data indicated as mean ± SEM. n = 2 - 3  
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3.13.2 Miro1-R272Q and Miro1-R450C cause reduction of Manganese superoxide 

dismutase (MnSOD) protein level 

Because mitochondrial superoxide levels were not increased in Miro1 mutant fibroblasts 

(Figure 41 A) the question was raised whether ROS levels were successfully quenched by 

antioxidant enzymes. MnSOD is a key enzyme that quenches reactive oxygen species in 

mitochondria.  

3.13.2.1 MnSOD protein is reduced in Miro1-R450C fibroblasts 

Western Blot analysis revealed that MnSOD protein level was reduced to 0.1 fold in Miro1-

R450C fibroblasts compared to Ctrl 1 (Figure 43 B), indicating that the unchanged 

superoxide levels in those fibroblasts measured by FACS (Figure 41 A) are not a result of 

increased MnSOD protein. In Miro1-R272Q fibroblasts MnSOD protein level was not 

significantly changed. 

 

A) B) 

A) Representative image of Western Blot showing MnSOD and Tom20 protein. B) Densitometry evaluation 

of Western Blot for MnSOD. MnSOD protein was normalized to mitochondrial mass, indicated by Tom20 

protein level. Miro1-R272Q showed a slightly reduced MnSOD protein level, whereas MnSOD was 

significantly redcued in Miro1-R450C fibroblasts. Data indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 

*** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 3 

 

  

Figure 43: MnSOD protein level 
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3.13.2.2 MnSOD protein was reduced in M17 cells with RhoT1 knockdown, overexpressing 

Miro1-R272Q or Miro1-R450C 

M17 cells with stable knockdown of endogenous RhoT1, overexpressing Miro1-WT/V5, 

Miro1-R272Q/V5, Miro1-R450C/V5 or Miro1-F676V/V5 protein were analysed for MnSOD 

protein levels. In M17 cells with knockdown of RhoT1 (RhoT1-KD; Figure 19) MnSOD 

protein level were not changed, which was also true for M17 cells with RhoT1-KD over-

expressing wild type Miro1 protein (RhoT1-KD + Miro1-WT-myc; RhoT1-KD + Miro1-WT-

V5). On the other hand, M17 cells with RhoT1-KD over-expressing Miro1-R272Q/V5 or 

Miro1-R450C/V5 showed significantly less MnSOD protein level to ~0.6 fold compared to 

M17 cells without knockdown of endogenous RhoT1 (Figure 44 B). 

 

A)  B)  

Figure 44: MnSOD protein level in M17 cells with stab le knockdown of RhoT1 

A) Representative image of Western Blot showing MnSOD protein. B) Densitometry evaluation of Western 

Blot for MnSOD protein level. M17 cells with stable knockdown of endogenous RhoT1 (RhoT1-KD), over-

expressing Miro1-R272Q/V5 or Miro1-R450C/V5 showed significantly less levels of MnSOD protein compared 

to M17 without knockdown of RhoT1 (miRNA-Ctrl). Data indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 

*** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison correction. n = 3 
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3.14 Calcium buffering capacity is altered in Miro1 mutant fibroblasts 

Apart from the ER, mitochondria provide the major capacity for intracellular calcium 

buffering. This function in taking up and accumulating calcium from the cytosol is most 

important to maintain cellular calcium homeostasis (Szabadkai and Duchen 2008). Miro 

was found to be involved in the regulation of calcium uptake by the mitochondria via it’s EF 

hand motifs (Chang, Niescier et al. 2011). Also it was found that the functionality of both 

GTPase domains is required for proper calcium homeostasis (Saotome, Safiulina et al. 

2008) (Kornmann, Osman et al. 2011). The mutation R272Q is located within the first EF 

hand domain and the mutation R450C within the C-terminal GTPase domain (Figure 6). 

Hence, investigation of the calcium buffering ability of the Miro1 mutant fibroblasts 

contributes to get further insight in the pathogenic mechanisms of the mutations. 

Fluo-4 fluorescence intensity, which is proportional to the cytosolic calcium concentration, 

was used to visualize the cytosolic calcium flux. Treatment with 30 µM histamine induced 

the release of calcium from intracellular stores, like the ER and mitochondria, and 

subsequently increased cytosolic calcium concentration in all applied fibroblast lines. The 

increase in calcium concentration after histamine treatment was not significantly elevated 

in Ctrl 1 and Miro1-R450C fibroblasts (Figure 45 A, C), but in Miro1-R272Q fibroblasts 

cytosolic calcium concentration after histamine treatment was significantly increased 

(Figure 45 B). Elevation of cytosolic calcium concentration after histamine treatment was 

significantly lower in Miro1-R450C fibroblasts compared to Miro1-R272Q fibroblasts (p = 

0.0046) (Figure 45 B, C).  

Time laps microscopy after histamine treatment revealed the subsequent buffering of 

calcium by the ER and mitochondria. In Ctrl 1 fibroblasts cytosolic calcium concentration 

after Histamine treatment decreased during the 5 min imaging and by the end of the 

imaging nearly reaches the initial level (Figure 45 A). In Miro1-R272Q fibroblasts. The 

following time laps imaging revealed that cytosolic calcium concentration was decreased 

rapidly and finally reached the base line level (Figure 45 B). Interestingly, Miro1-R450C 

fibroblasts did not display a great release of calcium after histamine treatment (significantly 

lower than calcium release in Miro1-R272Q, p = 0.0046) and cytosolic calcium 

concentration did not decrease after the initial release during 5 min of imaging (Figure 

45 C).  
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A)  Cytosolic calcium was measured in 

immortalized fibroblasts stained with 

Fluo-4 Direct Calcium assay Kit. Time 

laps microscopy imaging was done in 

living immortalised fibroblasts. Treatment 

with 30 µM histamine was used to release 

calcium from intracellular calcium 

storage. The resulting increase of Fluo-4 

intensity and the following decrease was 

measured with time laps microscopy in A) 

Ctrl 1 fibroblasts, B) Miro1-R272Q and C) 

Miro1-R450C fibroblasts. Evaluation of 

Fluo-4 intensity indicates that histamine 

induces the highest elevation in cytosolic 

calcium concentration in Miro1-R272Q 

fibroblasts (B). 

Data indicated as mean ± SEM. * p ≤ 0.05 

** p ≤ 0.01 *** p ≤ 0.001 by Students t-

Test. n = 3 

B) 

C) 

Figure 45: Cytosolic calcium flux 
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Ctrl 1 fibroblasts: Representative images for live cell microscopy of immortalized fibroblasts stained with 

MitoTracker DeepRed and Fluo-4. Cells were imaged for 5 min (untreated start point – end point). Calcium release 

from intracellular calcium stores was triggerd by treatment with 30 µM histamine (30 µM histamine start point). 

Cells were imaged for 5 min after adding histamine (30 µM histamine end point). Images taken at x40 

magnification. Scale bars indicate 20 µm. 
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Miro1-R272Q fibroblasts: Representative images for live cell microscopy of immortalized fibroblasts stained with 

MitoTracker DeepRed and Fluo-4. Cells were imaged for 5 min (untreated start point – end point). Calcium release 

from intracellular calcium stores was triggerd by treatment with 30 µM histamine (30 µM histamine start point). 

Cells were imaged for 5 min after adding histamine (30 µM histamine end point). Images taken at x40 

magnification. Scale bars indicate 20 µm. 
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Miro1-R450C fibroblasts: Representative images for live cell microscopy of immortalized fibroblasts stained with 

MitoTracker DeepRed and Fluo-4. Cells were imaged for 5 min (untreated start point – end point). Calcium release 

from intracellular calcium stores was triggerd by treatment with 30 µM histamine (30 µM histamine start point). 

Cells were imaged for 5 min after adding histamine (30 µM histamine end point). Images taken at x40 

magnification. Scale bars indicate 20 µm. 
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3.15 Staurosporine-induced apoptosis was increased in Miro1-R272Q mutant 

fibroblasts 

Fransson et al. found an increased apoptosis rate in COS 7 cells transfected with 

constitutively active Miro1 or Miro2 mutants (Fransson, Ruusala et al. 2003). Amongst other 

important functions mitochondria also induce apoptosis cascades when mitochondrial 

function is irreversibly impaired (McBride, Neuspiel et al. 2006) (Tatton, Chalmers-Redman 

et al. 2003). As mitochondrial dysfunction was observed in Miro1 mutant fibroblast, e.g. 

decreased mitochondrial mass (Figure 17) and altered mitochondrial respiration (Figure 

37), cells were also analysed for early apoptosis using FACS analysis. Therefore, 

immortalized fibroblasts were stained with Annexin V Alexa Fluor 568 conjugate and DAPI 

to discriminate living and dead cells from cells that undergo early apoptosis. Treatment with 

1 µM Staurosporine for 2 hours was used to induce apoptosis.  

Untreated immortalized Miro1-R272Q and Miro1-R450C mutant fibroblasts showed no 

increase in early apoptosis rate or number of dead cells compared to Ctrl 1 fibroblasts. 

Staurosporine treatment significantly increased apoptosis in all fibroblast lines compared to 

the respective untreated cells. Staurosporine-induced apoptosis was significantly higher in 

Miro1-R272Q fibroblasts compared to Ctrl 1 and Miro1-R450C fibroblasts (Figure 46).  
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Early apoptosis and cell death was measured in immortalized 

fibroblasts by FACS analysis. Cells were treated with 1 µM 

Staurosporine for 2 hours to induce apoptosis and afterwards 

stained with Annexin V Alexa Fluor 568 conjugate and DAPI.  

Under baseline conditions Miro1 mutant fibroblasts neither 

showed increased apoptosis, nor increased cell death. 

Staurosporine treatment induced apoptosis in all fibroblast lines. 

Staurosporine-induced apoptosis was significantly higher in 

Miro1-R272Q fibroblasts compared to Ctrl 1 and Miro1-R450C 

fibroblasts. Data indicated as mean ± SEM. * p ≤ 0.05 ** p ≤ 0.01 

*** p ≤ 0.001 by multiple t-test, Holm-Sidak multiple comparison 

correction. n = 3 

Figure 46: Early apoptosis in immortalized fibrob lasts 
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4 Discussion 

4.1 Mutations in Miro1 are rare causes for PD 

Miro proteins have multiple functions on mitochondrial maintenance and their function in 

distributing mitochondria is crucial for the organization of the mitochondrial network 

(Fransson, Ruusala et al. 2003) (Fransson, Ruusala et al. 2006) as well as for cellular 

calcium homeostasis (Wang and Schwarz 2009) (Chang, Niescier et al. 2011). Proper 

mitochondrial function is especially important for DA neurons, which are predominantly lost 

in PD. Interestingly, it was reported that overexpression of Miro caused significant loss of 

DA neurons in drosophila (Liu, Sawada et al. 2012) and a knockout resulted in absence of 

mitochondria from axons and synapses, thereby severely impairing neuronal function (Guo, 

Macleod et al. 2005) (Tsai, Course et al. 2014). As a consequence, it was assumed that 

dysfunction of Miro can cause PD. However, a first attempt to correlate SNPs in RhoT1 with 

PD or the age of onset of PD was not successful (Anvret, Ran et al. 2012). SNPs are 

common variants with a frequency of >5 %. Rare variants with a stronger effect and a 

frequency of <0.5 % cannot be detected by this approach (Pritchard 2001) (McCarthy and 

Hirschhorn 2008) but can be captured e.g. by sequencing [reviewed by (Manolio, Collins et 

al. 2009)]. Accordingly, exome sequencing of the promising candidate gene RhoT1 enabled 

us to identify the first disease-associated Miro1 mutations in PD patients from a German 

cohort of PD patients and age matched healthy controls. Co-segregation analysis could not 

be conducted due to the fact that the affected fathers of the patients harbouring the Miro1-

R272Q and Miro1-R450C mutations are deceased and the brother of the Miro1-F676V 

mutation carrier was not available for the present study. The identified three PD patients 

displayed a similar clinical phenotype of tremor dominant symptoms.  

In order to determine the potential pathological relevance of the mutations genetic 

databases have been searched. In different databases containing information about 67486 

unrelated individuals only one individual was identified harbouring the R450C mutation. 

This individual was included in the somatic cancer database cosmic70 (Table 30). In 

contrast to germline mutations, somatic mutations only affect a small fraction of cells, 

possibly leading to cancer. Therefore, we considered the identified carrier of the somatic 

Miro1-R450C mutation as not relevant for the present study. Furthermore, an additional 

cohort of 1238 German PD patients and 662 healthy controls (KORA cohort) was screened 

for mutations in RhoT1, but only one healthy control person was identified carrying the 

F676V mutation (Table 30). This result makes a PD causing effect of Miro1-F676V unlikely.  
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Taken together, these findings suggest that the identified PD-associated mutations in 

RhoT1 are rare de novo mutations, which is in line with the unsuccessful genetic screen for 

PD-associated SNP’s in RhoT1 done by Anvret and colleagues (Anvret, Ran et al. 2012). 

As the identified PD patients harbour heterozygous mutations in RhoT1, we hypothesize 

that these rare variants have a significant impact on health, as reviewed by Manolio 

(Manolio, Collins et al. 2009). 

 

 

Figure 47: Risk allele frequency and effect size 

Schematic overview of allele frequency and effect size of the variant. Rare variants with a strong impact on 

health typically have a Mendelian inheritance pattern and can therefore be identi fied by co-segregation 

studies. Low-frequency variants with a less strong, but significant impact do not show a Mendelian 

inheritance and are neither detectable by linkage analysis because the effect is not strong enough, nor by 

genome-wide association studies (GWAS) because these variants are too rare. These variants account for 

the missing heritability in PD. We propose that the identified PD-associated variants of RhoT1 are low-

frequency variants with significant effect on health. Common variants with a low effect are typically detected 

by GWAS. 

 

A multiple set of bioinformatical prediction tools have been applied to predict possible 

pathogenic effects of the identified Miro1 mutations (2.2). These in silico analyses revealed 

that especially Miro1-R272Q, the mutation located in the EF hand domain, has a high 

likelihood for negative effects on the protein function, with eight of the nine applied analysis 
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tools predicting a disease causing effect. For Miro1-R450C four of the nine tools predicted 

a disease causing effect, and for Miro1-F676V two (Figure 7).  

Taken both into consideration, the bioinformatical prediction and the genetic data, we 

hypothesize, that the mutations Miro1-R272Q and Miro1-R450C have a significant impact 

on the functionality of Miro1 protein, whereas the effect of Miro1-F676V seemed to be less 

deleterious. 

4.1.1 Impact of Miro1 mutations on Miro1 protein structure and functionality 

The identified mutations are located within highly conserved protein domains, R272Q within 

the ligand mimic motif of the first EF hand domain (Klosowiak, Focia et al. 2013), R450C 

within the C-terminal GTPase domain and F676V within the TMD (Figure 6). Surprisingly, 

calcium binding to the EF hand domains or nucleotide binding to the GTPase domains did 

not significantly change the structural conformation of Miro (Klosowiak, Focia et al. 2013). 

Although the mutations R272Q and R450C are not likely to cause major alterations of the 

protein structure, still subtle influences could have a significant impact on the functionality 

of Miro1 as apparently major conformational shifts are not present in the wild type protein. 

As the homology model of human Miro1 was based on the 3D structure of dMiro F676V 

could not be included because the amino acid is not conserved in dMiro.  

The amino acids R272 and R450 are located at the surface of Miro1, being exposed to the 

cytosol. Both amino acids are not located in immediate proximity to predicted 

phosphorylation sites T298 and Y463 (PhosphoSitePlus analysis), nor to the published 

possible phosphorylation site Ser156 of PINK1 (Wang, Winter et al. 2011) (Tsai, Course et 

al. 2014). Therefore, the phosphorylation of Miro1 at known sites, e.g. by PINK1 at Ser156 

for subsequent proteasomal degradation was predicted to be not affected. The possible 

target site for PINK1, Ser156 was under debate because another study failed to verify an 

influence of this amino acid on Miro1 degradation by the PINK1/Parkin pathway (Birsa, 

Norkett et al. 2014). Instead, it was proposed that PINK1 phosphorylates and thereby 

activates Parkin (Kondapalli, Kazlauskaite et al. 2012) and that Parkin in turn ubiquitinates 

Miro for subsequent degradation. Parkin ubiquitinates Miro1 at highly conserved amino 

acids Lys153, Lys230, Lys235, Lys330 and Lys572 (Kazlauskaite, Kelly et al. 2014). These 

amino acids are not in close proximity to R272 or R450. But interestingly, Miro1 undergoes 

a rather unusual mono-ubiquitylation at the mentioned amino acids, which are located in 

the N-terminal GTPase domain (Lys153), the second EF hand domain (Lys330) or close to 

the TMD (Lys572), raising the possibility that mono-ubiquitylation by Parkin could alter 



 
Discussion 
 

126 
 

GTPase activity, calcium binding ability and/ or translocation of Miro1 to mitochondria under 

certain conditions (Kazlauskaite, Kelly et al. 2014). However, the identified mutations 

R272Q and R450C are not likely to affect the proposed phosphorylation by PINK1, nor the 

ubiquitylation by Parkin, but the question remained whether the respective mutations affect 

calcium binding, GTP hydrolysis or mitochondrial localization.  

4.2 Reduction of total Miro1 protein and Miro1 mutations both contribute to 

mitochondrial dysfunction in PD patients 

In the present study, results obtained from patient-derived fibroblasts were supported by 

results from an independent cell model in M17 cells with stable knockdown of endogenous 

RhoT1 and transiently overexpression of Miro1-R272Q, Miro1-R450C or Miro1-F676V 

mutant protein. Although the M17 cells partially resemble the phenotypes observed in 

fibroblasts, there were also differences (Table 31):  

In M17 cells with stable knockdown of endogenous RhoT1 Tom20 protein amount was 

comparable to M17 cells without knockdown of RhoT1. In contrast, overexpression of 

Miro1-R272Q, Miro1-R450C or Miro1-F676V protein in M17 with RhoT1-KD caused a 

significant reduction of mitochondrial mass, indicated by reduced Tom20 protein amount 

(Figure 23). In M17 cells with RhoT1-KD overexpressing Miro1-R272Q or Miro1-R450C 

protein, MnSOD protein level was significantly decreased compared to wild type M17 cells 

(Figure 44), which means that overexpression of Miro1-R272Q in M17 cells caused 

reduction of Tom20 and MnSOD protein level, which could not be observed in Miro1-R272Q 

fibroblasts (Table 31). The observation that Tom20 and MnSOD protein amount were also 

significantly decreased in M17 cells with RhoT1-KD overexpressing Miro1 mutant protein 

supports the idea that Miro1 mutants directly cause mitochondrial dysfunction, indicating 

that the mitochondrial phenotypes observed in Miro1 mutant fibroblasts were not caused 

by additional mutations in the PD-patients harbouring the Miro1-R272Q or Miro1-R450C 

mutation. Furthermore, the knockdown of RhoT1 in M17 cells also induced a significant 

elevation of MMP compared to cells without knockdown of RhoT1 (Figure 39) like was 

observed in Miro1-R272Q and Miro1-R450C fibroblasts. Overexpression of Miro1-WT did 

not rescue the mitochondrial hyperpolarization. Several previous studies reported that 

overexpression of wild type Miro also induces mitochondrial dysfunction (Russo, Louie et 

al. 2009) (Fransson, Ruusala et al. 2006) that was even sufficient to cause loss of neurons 

(Liu, Sawada et al. 2012). Overexpression of Miro1-R272Q, Miro1-R450C or Miro1-F676V 

slightly increased MMP, but without reaching statistical significance. Given these results, it 

is possible that a change of Miro1 protein level in general (either by knockdown or 
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overexpression) leads to mitochondrial dysfunction that subsequently causes mitochondrial 

hyperpolarization. 

 
Table 31: Summary of phenotypes obtained from fibroblasts and M17 cells 

immortalized fibroblasts M17 cells 

phenotype 
Miro1-

R272Q 

Miro1-

R450C 
RhoT1-KD 

RhoT1-KD + 

overexpression 

Miro1-WT 
Miro1-

mutants 

not 

changed 
reduced 

not 

changed 

not 

changed 
reduced 

mitochondrial 

mass (Tom20) 

not 

changed 
reduced 

not 

changed 

not 

changed 
reduced 

MnSOD 

protein 

increased increased increased increased 

not 

significantly 

increased 

MMP 

 

The M17 cell model with knockdown of endogenous RhoT1 and transiently overexpression 

of Miro1 protein is an artificial model, which does not fully resemble the situation in patient-

derived fibroblasts. The knockdown of endogenous RhoT1 corresponds to the reduction of 

total Miro1 protein amount observed in Miro1-R272Q and Miro1-R450C fibroblasts (Figure 

13), but the patients are heterozygous, thus expressing Miro1-WT and Miro1 mutant 

proteins. Because overall Miro1 protein (wild type and mutant protein) is reduced in both 

patient-derived fibroblasts lines, overexpression of mutant Miro1 protein in cells with 

knockdown of endogenous Miro1 does not exactly reflect the in vivo situation. 

Overexpression of wild type Miro1 was reported to induce mitochondrial phenotypes in 

several studies (Russo, Louie et al. 2009) (Fransson, Ruusala et al. 2006) (Liu, Sawada et 

al. 2012). Therefore it is possible that an artificial overexpression of Miro1-WT, Miro1-

R272Q or Miro1-R450C induces mitochondrial phenotypes in M17 cells, which cannot be 

observed in Miro1 mutant fibroblasts. Still, mitochondrial phenotypes observed in fibroblasts 

could be successfully replicated in the M17 cell model, e.g. MMP hyperpolarization, 

reduction of mitochondrial mass and reduced MnSOD protein level, which is in line with the 
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hypothesis that Miro1 mutations as well as reduction of total Miro1 protein amount causes 

mitochondrial dysfunction. 

4.3 Miro1-R272Q and Miro1-R450C cause distinct mitochondrial phenotypes 

Although both fibroblast lines obtained from PD-patients harbour mutations in the same 

gene, the cell lines display different mitochondrial phenotypes. A similar observation was 

made for LRRK2. Different mutations in this gene have different consequences for LRRK2 

function, but cause the same disease. The mutation G2019S in the kinase domain of 

LRRK2 is the most common pathogenic mutation in LRRK2 (Singleton, Farrer et al. 2013) 

and causes a detrimental increase of LRRK2 kinase activity (West, Moore et al. 2007). The 

mutations R1441C, R1441G and R1441H in the GTPase domain of LRRK2 interfere with 

the GTP hydrolysis ability of LRRK2 (Lewis, Greggio et al. 2007) (Liao, Wu et al. 2014), 

thereby inducing cellular toxicity (Chan, Chua et al. 2014) (West, Moore et al. 2005). Still, 

all the identified mutation carriers suffer from PD.  

The Miro1 mutations R272Q and R450C likewise cause distinct mitochondrial phenotypes, 

interestingly despite the fact that overall Miro1 protein amount was significantly reduced in 

both mutant fibroblasts lines. The reason for the reduction of Miro1 protein seems to be 

different in both fibroblast lines as RhoT1 mRNA level was only observed to be reduced in 

Miro1-R450C fibroblasts, but not in Miro1-R272Q fibroblasts. 

Miro1-R450C fibroblasts showed a number of alterations, which were not observed in 

Miro1-R272Q fibroblasts. Miro1-R450C specific alterations were reduction of mitochondrial 

mass, increased mitochondrial biogenesis, while MnSOD protein was reduced, reduced 

citrate synthase enzyme activity, increased citrate synthase protein level and decreased 

calcium buffering capability. Miro1-R272Q fibroblasts also displayed an impaired cytosolic 

calcium homeostasis, but distinct from the disrupted calcium-buffering observed in Miro1-

R450C fibroblasts. We hypothesize that the mutation R272Q disrupts calcium binding to 

Miro1 and therefore the calcium homeostasis by mitochondria, as observed by (Stephen, 

Higgs et al. 2015) and (Chang, Niescier et al. 2011), in turn probably making cells more 

susceptible to calcium-induced apoptosis (Figure 46). The R450C mutation in contrast 

could interfere with the ER-mitochondrial contact regulation, which is regulated by the C-

terminal GTPase domain of Miro1 (Saotome, Safiulina et al. 2008) (Kornmann, Osman et 

al. 2011) and therefore disrupt cytosolic calcium buffering.  

Mitochondrial spare respiratory capacity was significantly lower in Miro1-R272Q compared 

to Ctrl 1 fibroblasts, whereas OCR was significantly increased in Miro1-R450C fibroblasts, 
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but still both phenotypes cause MMP hyperpolarization. We hypothesize that alteration of 

respiration caused the changes of the MMP, which in turn evokes certain cell responses for 

compensation or quality control. Considering the results from gem1∆ yeast displaying a 

severe growth defect on medium containing glycerol as non-fermentable carbon source and 

the insufficient rescue of the growth defect by Gem1-R298Q (the yeast orthologue of Miro1-

R272Q), at least Miro1-R272Q was classified as loss-of-function mutation. Because the 

heterozygous fibroblast lines Miro1-R272Q and Miro1-R450C display significant different 

phenotypes both mutations were considered to have dominant negative effects, which will 

be further discussed in detail in the following sections.  

 

 

Figure 48: Overview of mitochondrial phenotypes in patient-derived fibroblasts 

Overview of mitochondrial phenotypes observed in Miro1-R272Q and Miro1-R450C fibroblasts. 

Mitochondrial membrane potential was increased in Miro1-R272Q and Miro1-R450C fibroblasts. Complex V 

protein amount was increased in Miro1-R272Q fibroblasts. Mitochondrial respiration was significant lower in 

Miro1-R272Q fibroblasts compared to Miro1-R450C fibroblasts. MnSOD protein level was reduced in Miro1-

R450C fibroblasts. Citrate synthase activity was decreased in Miro1-R450C fibroblasts, whereas protein level 

was increased. Mitochondrial mass was reduced in Miro1-R450C fibroblasts. Calcium buffering was impaired 

in Miro1-R272Q and in Miro1-R450C fibroblasts. Mitophagy was impaired in Miro1-R272Q and Miro1-R450C 

fibroblasts. MMP: mitochondrial membrane potential. OMM: outer mitochondrial membrane. IMM: inner 

mitochondrial membrane. IMS: intermembrane space. TCA: tricarboxylic acid cycle. MICU: mitochondrial 

calcium uptake. (Perocchi, Gohil et al. 2010) MCU: mitochondrial calcium uniporter. (Baughman, Perocchi et 

al. 2011) (De Stefani, Raffaello et al. 2011) MCUR1: mitochondrial calcium uniporter regulator 1. 

(Mallilankaraman, Cardenas et al. 2012). 
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4.4 Functional implications for the mutation Miro1-R272Q  

Fibroblasts were obtained from a female PD patient carrying the heterozygous point 

mutation c.815 G>A in the RhoT1 gene, leading to the amino acid change R to Q at position 

272 in the amino acid chain. This mutation is located within the highly conserved N-terminal 

EF hand domain of Miro1, which is one of two calcium binding domains of the protein. From 

the obtained results of the present study we hypothesize that Miro1-R272Q is a loss-of-

function mutation. 

4.4.1 Miro1 protein stability 

Compared to control fibroblasts (Ctrl 1) the total protein amount of Miro1 was reduced to 

less than half in Miro1-R272Q fibroblasts (Figure 13). Because RhoT1 is biallelic expressed 

(Gimelbrant, Hutchinson et al. 2007) and the fact that the PD patients were heterozygous 

for the RhoT1 mutations, it was justified to analyse the mRNA level of RhoT1, because 

reduced protein level could arise from reduced transcription of the mutant allele, but 

apparently mRNA level were not reduced in Miro1-R272Q fibroblasts (Figure 14) and 

sequencing of RhoT1 cDNA revealed that wild type and mutant alleles are expressed on 

RNA level (Figure 15). Therefore mechanisms for reduction of Miro1 protein are likely 

different from mRNA levels.  

In silico analysis predicted that the mutation R272Q had only a minor impact on protein 

stability [0,32 Kcal/mol (NeEMO) and 0,4 Kcal/mol (I-MUTANT)] (3.3). Still, these minor 

effects on predicted protein stability in silico can have unexpected high impact on protein 

stability in vivo, as was also recently reported in a study about DJ-1-M26I mutant protein. 

This mutation was also predicted to have only minor effects on protein stability, but in vivo 

the protein amount was significantly reduced (Milkovic, Catazaro et al. 2015). Milkovic and 

colleagues found that despite the pico- to nanosecond dynamics of DJ-1 wild type and DJ-

1-M26I were similar, the mutant DJ-1-M26I was thermodynamically more flexible on longer 

time-scales, consequently generating transiently instable protein conformations, which 

resulted in loss of mutant protein in vivo (Milkovic, Catazaro et al. 2015).  

Another study reported that the ability of the first EF hand domain of Miro1 to bind calcium 

is crucial for protein stability. A loss of function mutation in the N-terminal EF hand domain, 

which interfered with calcium binding, caused a complete loss of the mutant Miro1 protein 

in vivo (Koshiba, Holman et al. 2011). This finding suggests that protein stability of Miro1-

R272Q was impaired due to a loss-of-function-character of the mutation. This finding further 

indicates that also minor changes on protein structure and thermal stability can have a 
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relevant impact in vivo and was further substantiated by the successful rescue of Miro1 

protein by inhibition of the proteasome. Blocking the proteasomal protein degradation by 

MG132 increased total Miro1 protein levels by ~1.6 fold more than in Ctrl 1 fibroblasts. 

Previous studies reported that Miro1 is predominantly degraded by the proteasome before 

mitophagy occurs (Birsa, Norkett et al. 2014) (Wang, Winter et al. 2011). However, RhoT1 

is biallelic expressed (Gimelbrant, Hutchinson et al. 2007), meaning that the wild-type and 

the mutant alleles are expressed in the heterozygous patient-derived fibroblasts, which 

could be confirmed by sequencing RhoT1 cDNA (Figure 15). Therefore, it can be assumed 

that the accumulated Miro1 protein after inhibition of the proteasome consists of Miro1-WT 

and Miro1-R272Q, supported by the observation that RhoT1 mRNA level was not 

decreased in Miro1-R272Q fibroblasts. We conclude that the mutation R272Q disrupts 

calcium binding to Miro1, which leads to protein instability and subsequent degradation, 

further leading us to investigate the relevance of Miro1-R272Q for mitochondrial calcium 

homeostasis. 

4.4.2 Calcium homeostasis 

The calcium binding ability of Miro is not only relevant for mitochondrial transport, but also 

for influx of calcium from the cytosol into the mitochondrial matrix (Chang, Niescier et al. 

2011). The exposed localisation of the amino acid R272 within the N-terminal EF hand 

domain (Figure 8) raises the possibility that the mutation R272Q affects the calcium binding 

ability and subsequent operation of Miro1.  

In Miro1-R272Q fibroblasts cytosolic calcium concentration raised significantly after 

histamine treatment, whereas in Ctrl 1 fibroblasts the calcium peak was much lower (Figure 

45). In Ctrl 1 and Miro1-R272Q fibroblasts calcium concentration in the cytosol decreased 

during the 5 min imaging after histamine-evoked calcium release and nearly reached the 

initial level, indicating that the cells are able to somehow buffer cytosolic calcium under 

these conditions, either by mitochondria and/ or by the ER. 

In a recent study, primary rat astrocytes with endogenous Miro1 and overexpression of 

Miro1 with mutant EF hand domains (Miro1∆EF) showed a similar phenotype: upon 

stimulation with ATP calcium release from internal stores was significantly increased 

compared to control astrocytes, in terms of amplitude, frequency and duration of the calcium 

peaks (Stephen, Higgs et al. 2015). The authors conclude, that disruption of the EF hand 

domains of Miro1 might alter the regulation of intracellular calcium concentration, which 

could result in higher vulnerability to calcium overload (Stephen, Higgs et al. 2015). 
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Furthermore, the disruption of EF hand domains in this study also had a dominant negative 

effect, like was observed in Miro1-R272Q fibroblasts. 

The hypothesis of disrupted mitochondrial calcium homeostasis caused by Miro1-R272Q 

was also supported by another study in 2011, showing that loss of function mutations of 

Gem1 EF hand domains in yeast resulted in failed localization of Gem1 to ERMES, 

consequently leading to impairment of phospholipid and calcium exchange between 

mitochondria and the ER (Kornmann, Osman et al. 2011). Furthermore, it was shown, that 

loss of function mutations of the EF hand domains significantly impaired calcium uptake 

into the mitochondrial matrix in drosophila neurons (Chang, Niescier et al. 2011).  

We conclude that Miro1-R272Q interferes with intracellular calcium homeostasis, possibly 

increasing the risk of calcium overload. 

4.4.3 Mitochondrial respiration and MMP 

Calcium influx into mitochondria is also important to enhance the activity of calcium-induced 

enzymes of the TCA cycle and the respiratory chain to increase mitochondrial ATP 

production (Wan, LaNoue et al. 1989) (McCormack, Halestrap et al. 1990) (Chan, Gertler 

et al. 2009). It was reported that Miro is involved in the regulation of calcium influx into 

mitochondria (Chang, Niescier et al. 2011). Gem1 is the yeast orthologue of Miro1 and 

Miro2. Previous studies reported that gem1∆ yeast display a significant growth defect on 

non-fermentable carbon source (Frederick, McCaffery et al. 2004) (Kornmann, Osman et 

al. 2011). A phenotype with impaired growth was not only observed in yeast, but also in 

gemA deficient Dictyostelium discoideum (Vlahou, Elias et al. 2011). In the present study 

the same severe phenotype was observed in yeast growing on medium containing a non-

fermentable carbon source, where energy metabolism and therefore growth relies on 

mitochondrial function (Figure 12). 

The hypothesis that mitochondrial calcium homeostasis is involved in the growth defect of 

gem1∆ yeast was supported by observations in yeast devoid of VDAC. VDAC was 

previously suggested as member of the protein complex facilitating ER-mitochondrial 

contact sites, where VDAC is required for mitochondrial calcium uptake (Szabadkai, Bianchi 

et al. 2006). Yeast without VDAC expression also display severe growth defects when 

growing on medium containing a non-fermentable carbon source (Wu, Sampson et al. 

1999) (Xu, Decker et al. 1999), thereby indicating that impaired mitochondrial calcium 

homeostasis could be involved in the phenotype.  
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Interestingly, knockdown of DISC1 or its interaction partner Mitofilin resulted in similar 

disruption of mitochondrial metabolism, as published by (Park, Jeong et al. 2010). DISC1 

was described to interact with the Miro/Milton complex for regulation of mitochondrial 

transport (Ogawa, Malavasi et al. 2014). The knockdown of DISC1 or Mitofilin led to 

reduced activity of NADH dehydrogenase of the electron transport chain with subsequent 

reduction of ATP production in murine CNS-tumour CAD cells and in primary mouse 

neurons. Ionomycin was used to rise cytosolic calcium levels in CAD cells. Time laps 

imaging revealed a disruption of mitochondrial calcium buffering when DISC1 or Mitofili n 

was knocked down (Park, Jeong et al. 2010). These findings suggest that DISC1/ Mitofilin 

might not only be involved in the mitochondrial transport-involved function of Miro, but also 

in Miro1-mediated mitochondrial calcium homeostasis, which makes sense when 

considering the localization of DISC1 in the mitochondrial intermembrane space and of 

Mitofilin in the IMM (see Figure 2). Apparently, disruption of the protein complex around 

Miro1 affects mitochondrial metabolism, probably by disruption of mitochondrial calcium 

homeostasis. 

The exact reason for the growth defect of gem1∆ yeast on non-fermentable carbon source 

is not finally clarified yet, but existing publications provide multiple hints that gem1/ gemA 

deficiency impairs mitochondrial respiration (Frederick, McCaffery et al. 2004) (Vlahou, 

Elias et al. 2011). Another explanation was provided by the observation that gem1∆ yeast 

have a problem to pass mtDNA to the next generation of daughter cells (Frederick, 

McCaffery et al. 2004) (Frederick, Okamoto et al. 2008), likely because distribution of newly 

replicated mtDNA relies on Gem1 (Murley, Lackner et al. 2013). Decreased mtDNA content 

in daughter yeast cells results in decreased respiratory activity, thereby probably impairing 

energy metabolism on non-fermentable carbon source. However, measurement of total 

mtDNA copy number in Miro1-R272Q fibroblasts under baseline conditions, as well as 

under oxidative stress induced by H2O2 or rotenone treatment, revealed no decrease of 

mtDNA copy number (Figure 30). The contribution of decreased mtDNA copy numbers in 

the growth defect was therefore considered to be unlikely. 

Growth on non-fermentable carbon source could be restored by expression of Gem1-WT 

in gem1∆ yeast, but not by expression of Gem1-R298Q. The amino acid R272 is conserved 

in yeast as amino acid R298. As the mutation R298Q is located in the first EF hand domain 

of Gem1, it is tempting to speculate that Gem1-R298Q (or Miro1-R272Q respectively) could 

affect mitochondrial respiration by insufficient mitochondrial calcium concentration, thereby 

indicating that R298Q, and likely its human counterpart R272Q as well, is a loss of function 

mutation.  
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In Miro1-R272Q immortalized fibroblasts basal respiration, capacity for ATP production and 

maximal respiration were indistinguishable compared to Ctrl 1 fibroblasts, whereas spare 

respiratory capacity was significantly lower in Miro1-R272Q fibroblasts compared to Ctrl 1 

fibroblasts (Figure 37). These results are in line with the results obtained from gem1∆ yeast 

expressing Gem1-R298Q and led us to the hypothesis that Miro1-R272Q impairs 

mitochondrial respiration by impaired mitochondrial calcium homeostasis.  

It has long been noticed that under normal conditions cells are able to provide the necessary 

energy at a basal respiratory activity, which is below the maximal possible respiratory 

activity. The difference is defined as spare respiratory capacity and is important to provide 

higher levels of ATP in case of higher demand [reviewed by (Desler, Hansen et al. 2012)]. 

A long-lasting overstressing of spare respiratory capacity was linked to aging (Desler, 

Hansen et al. 2012) and neurodegeneration (Nicholls 2008) (Yadava and Nicholls 2007). 

This was particularly interesting in a model of primary rat neurons treated with low 

concentrations of rotenone (5 nM or 20 nM). Increased calcium entry via NMDA receptors 

demanded so much ATP for the maintenance of calcium homeostasis that the diminished 

spare respiratory capacity (induced by rotenone) caused increased susceptibility towards 

glutamate excitotoxicity (Yadava and Nicholls 2007). However, complex I activity was not 

decreased in Miro1-R272Q and therefore likely not the cause for the observed diminished 

spare respiratory capacity. Spare respiratory capacity can also be regulated by different 

factors, e.g. inhibition of complex IV by ATP (Ramzan, Staniek et al. 2010) (Kadenbach, 

Ramzan et al. 2010) as well as by the membrane potential, with a high MMP usually 

reflecting a high spare respiratory capacity (Piccoli, Scrima et al. 2006) (Dalmonte, Forte et 

al. 2009), or by nitric oxide (NO) (Poderoso, Carreras et al. 1996) (Riobo, Clementi et al. 

2001) (Diers, Broniowska et al. 2011). A high MMP induces NO production by the 

mitochondrial enzyme nitric oxide synthase (mtNOS) and in turn leads to inhibition of 

complex III and IV (Valdez, Zaobornyj et al. 2006). A chronic decrease of spare respiratory 

capacity was therefore linked to aging and neurodegeneration as neurons are 

predominantly depending on the ability to cope with increased ATP demand under stress 

conditions [reviewed by (Desler, Hansen et al. 2012). We therefore propose that the 

observed reduction of spare respiratory capacity in Miro1-R272Q cause an increased 

vulnerability towards stress and subsequently can cause a crisis of energy metabolism 

under demanding conditions.  

Despite the fact that complex V protein amount was significantly increased in Miro1-R272Q 

compared to Ctrl 1 fibroblasts (Figure 33), capacity for ATP production was not increased 
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in Miro1-R272Q fibroblasts, but spare respiratory capacity was significantly lower compared 

to Ctrl 1 fibroblasts (Figure 37). These results indicate that the ATPase (complex V) might 

be not be working sufficiently in Miro1-R272Q fibroblasts.  

Under physiological conditions the reflux of protons through complex V, which is the force 

that provides the energy for ATP production, prevents pathological membrane 

hyperpolarization. An impaired reflux of protons into the mitochondrial matrix could 

consequently cause mitochondrial hyperpolarization. This hypothesis was supported by the 

observation that the complex V inhibitor oligomycin induces mitochondrial hyperpolarization 

(Di Lisa and Bernardi 1998). Under physiological conditions the MMP has a mean value of 

-139 mV and fluctuates between -108 and -159 mV, depending on respiratory activity (Li, 

Fang et al. 2013) (Valko, Leibfritz et al. 2007) (Radak, Chung et al. 2008). Usually MMP 

values are high when the respiratory function, ATP production and oxygen consumption 

are low. The MMP gets discharged to increase ATP production, reflected by increased 

oxygen consumption. To recharge the MMP the electron transport chain activity is 

increased to pump protons across the inner mitochondrial membrane back into the 

intermembrane space (Arvier, Lagoutte et al. 2007) (Bagkos, Koufopoulos et al. 2014). Our 

observation of consistently increased MMP in Miro1-R272Q fibroblasts further supports the 

hypothesis that Miro1-R272Q cells display a problem with energy metabolism. As 

measurement of OCR only allowed to assess the theoretical capacity for ATP production, 

it will be necessary to measure the actual ATP content in the cells, e.g. by a luminescent 

method, to draw conclusions for energy supply in the cells. 

 

In cancer development mitochondrial hyperpolarization seems to protect cells against 

apoptosis (Hardonniere, Huc et al. 2015). Nevertheless, hyperpolarization within a certain 

range can also induce apoptosis. Mitochondrial damage induced in CHO-K1, MRC-5 or 

HeLa cells caused mitochondrial hyperpolarization-triggered cell death even without 

increased ROS production (Leal, de Queiroz et al. 2015). In cultured rat hippocampal 

neurons treatment with Staurosporine induced mitochondrial hyperpolarization and 

subsequent cytochrome c release, thereby inducing apoptosis (Poppe, Reimertz et al. 

2001). The authors of the study hypothesized that Staurosporine leads to a calcium-

dependent increase of mitochondrial respiration that causes mitochondrial membrane 

hyperpolarization (Poppe, Reimertz et al. 2001). Other studies also observed calcium-

dependent apoptosis induced by Staurosporine treatment (Kruman and Mattson 1999) 

(Prehn, Jordan et al. 1997), while another study showed that hyperpolarization of 

mitochondria does not always cause apoptosis (Iijima 2006). Taken together, it seems that 
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Staurosporine induces an increase of cytosolic calcium concentration, which in turn leads 

to increased calcium influx into mitochondria that stimulates activity of mitochondrial 

respiration, thereby inducing hyperpolarization of the mitochondrial membrane and in turn 

activating mitochondrial membrane permeability transition and subsequent release of 

cytochrome c (Kruman and Mattson 1999). Mitochondrial hyperpolarization that is not 

induced by Staurosporine likewise increases influx of calcium into mitochondrial matrix, 

which triggers release of cytochrome c (Kruman and Mattson 1999). 

Considering the calcium-depending action of Staurosporine on MMP and the observed 

mitochondrial dysfunction and MMP hyperpolarization in Miro1 mutant fibroblasts, it was 

reasonable to use this compound to induce apoptosis, as Miro1 is critically involved in 

calcium homeostasis and mitochondrial maintenance.  

Under baseline conditions, the apoptosis rate was comparable between Ctrl 1 and Miro1 

mutant fibroblasts (Figure 46). This certainly means that the observed hyperpolarization of 

Miro1 mutant fibroblasts (Figure 38) alone was not sufficient to induce apoptosis in 

fibroblasts. Staurosporine significantly induced apoptosis in all three fibroblast lines (Figure 

46), likely by further increasing MMP hyperpolarization. In Miro1-R272Q fibroblasts 

apoptosis induced by Staurosporine was significantly higher compared to Ctrl 1 (and to 

Miro1-R450C) fibroblasts (Figure 46). In combination with the observed impaired calcium 

homeostasis in Miro1-R272Q fibroblasts, we conclude that Miro1-R272Q fibroblasts are 

more susceptible to calcium overload and subsequent apoptosis. 

4.4.4 Mitophagy 

Given the observed alterations of mitochondrial function in Miro1-R272Q fibroblasts, like 

calcium homeostasis, mitochondrial respiration and membrane potential, we wondered 

whether these phenotypes induce clearance of dysfunctional mitochondria as means of 

mitochondrial quality control. 

Previous studies identified the stop of mitochondrial movement by reduction of Miro protein 

levels as initiation step for mitophagy, either by knockdown of Miro in neurons (Liu, Sawada 

et al. 2012) or by increased PINK1/ Parkin-mediated degradation of Miro in rat hippocampal 

neurons (Wang, Winter et al. 2011). Reduced Miro1 protein levels in Miro1-R272Q 

fibroblasts were apparently not linked to a decrease of total mitochondrial mass under 

baseline conditions. Still, as Miro1 degradation was increased in Miro1-R272Q fibroblasts 

and this was previously implicated as initial step for mitophagy (Liu, Sawada et al. 2012) 

(Wang, Winter et al. 2011), we wondered if mitophagy was either induced or affected.  
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Fragmentation of the mitochondrial network was considered as prerequisite for degradation 

of mitochondria as uptake of mitochondria by autophagosomes requires distinct single 

organelles. An increased overlap of mitochondria and lysosomes consequently indicates 

mitochondrial degradation. In Miro1-R272Q fibroblasts mitochondrial morphology was not 

changed compared to two control fibroblast lines from healthy age matched donors, 

meaning that the mitochondrial network was not fragmented and consistently, co-

localization of lysosomes and mitochondria was not increased under baseline growth 

conditions (Figure 25).  

A similar observation was recently made by Stephen and colleagues, who used astrocytes 

overexpressing EF hand mutant Miro1 (Miro1∆EF). Under baseline conditions, 

overexpression of Miro1∆EF had no influence on mitochondrial morphology, but when 

astrocytes were stimulated with glutamate, mitochondrial length was increased in Miro1∆EF  

overexpressing cells, whereas mitochondrial size was decreased in control cells, indicating 

that mitochondrial morphology is depending on the functionality of the EF hands under 

certain conditions (Stephen, Higgs et al. 2015). A similar observation was also made in a 

previous study by Saotome et al. Overexpression of EF hand mutant Miro1 in primary 

cortical neurons from rats led to increased mitochondrial length in processes upon neuronal 

stimulation with 90 mM KCl (Saotome, Safiulina et al. 2008).  

Both EF hand domains of Miro1 mediate the stop of mitochondrial transport upon calcium 

binding (Wang and Schwarz 2009) (MacAskill, Brickley et al. 2009). Disruption of calcium 

binding by mutation of one EF hand impairs the calcium-mediated stop of mitochondria, 

resulting in mobile mitochondria, that are more likely to fuse with other mitochondria and 

therefore probably causing enlarged mitochondria (Liu, Weaver et al. 2009). Enlarged 

mitochondria in turn could interfere with mitophagy, as was indicated in studies where 

overexpression of Miro1 lead to enlarged mitochondria and loss of DA neurons (Liu, 

Sawada et al. 2012), a similar phenotype like observed in PINK1 or Parkin knockout flies 

(Park, Lee et al. 2006) (Clark, Dodson et al. 2006). The observations of these studies 

suggest, that stimulation of Miro1-R272Q fibroblasts, e.g. by using histamine could reveal 

a phenotype of altered mitochondrial morphology that was not observed under baseline 

conditions. Further analysis under stress conditions (e.g. inhibition of complex I with 

Piericidin A to increase ROS production or decreasing MMP with Valinomycin) could reveal 

alterations of mitochondrial quality control and turn over induced by impaired Miro1 function.  

To further investigate whether mitophagy was affected in Miro1-R272Q fibroblasts the 

autophagy marker LC3 II was investigated. The results indicate that autophagic flux was 

impaired in Miro1-R272Q fibroblasts, because upon inhibition of autophagy using 
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Bafilomycin A1 LC3 II did not accumulate significantly. Moreover, also FBS starvation did 

not induce the formation of LC3 II, thereby indicating that formation of the autophagosome 

is affected. As mitophagy is a special form of autophagy to degrade mitochondria, we 

propose that mitophagy is impaired in Miro1-R272Q fibroblasts.  

Recently, it was shown that autophagosomes preferentially form at ER-mitochondrial 

contact sites (Hamasaki, Furuta et al. 2013). The so called omegasome was identified to 

be the origin of the isolation membrane, which is derived from the ER to form 

autophagosomes (Axe, Walker et al. 2008). Hamasaki and colleagues proposed that the 

ER is the origin of autophagosome formation and the close contact to mitochondria ensures 

supply of components and energy for the process. Disruption of the ER-mitochondria 

contact by knockdown of Mfn2, which was shown to facilitate the contact of both organelles 

(de Brito and Scorrano 2008), led to impaired autophagosome formation (Hamasaki, Furuta 

et al. 2013). Mfn2 was found to interact with Miro1 in the same complex, not only to facilitate 

mitochondrial transport, but also to regulate mitochondrial calcium uptake (Misko, Jiang et 

al. 2010) at ER-mitochondrial contact sites (de Brito and Scorrano 2008) (Kornmann, 

Osman et al. 2011) (Chang, Niescier et al. 2011). For this reason we speculate that the 

mutation of the calcium binding domain of Miro1-R272Q impairs calcium binding and 

therewith disrupts the function of ER-mitochondria contact sites, subsequently impairing 

autophagosome formation and probably autophagy in general. 
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In summary, we propose that the mutation R272Q disrupts the calcium binding ability of 

Miro1 and therewith cellular calcium homeostasis and Miro1 protein stability. This 

dysfunction likely impairs mitochondrial respiration. As a consequence mitochondrial 

membrane is hyperpolarized and cells become more vulnerable to calcium overload and 

calcium-mediated apoptosis. Furthermore, insufficient mitochondrial quality control via 

mitophagy adds to mitochondrial dysfunction. 

 

 

Figure 49: Overview of mitochondrial phenotype found in Miro1-R272Q fibroblasts 

We hypothesize that the mutation R272Q in the EF hand interferes with calcium binding, which in turn impairs 

protein stability and mitochondrial calcium buffering ability, which also impairs respiratory activity. Impaired 

respiration leads to hyperpolarization of mitochondrial membrane. Autophagic flux is impaired by the 

increased MMP and the impaired calcium buffering. Mitochondrial hyperpolarization, impaired autophagy 

and calcium buffering leads to increased vulnerability to apoptosis. 

OMM: outer mitochondrial membrane. IMM: inner mitochondrial membrane. IMS: intermembrane space. 

MMP: mitochondrial membrane potential. 
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4.5 Functional implications for the mutation Miro1-R450C 

The second investigated mutation in the RhoT1 gene described in this study is the 

heterozygous point mutation c.1348 C>T, causing the amino acid change R to C at position 

450 of the amino acid chain of Miro1. This mutation lies within the C-terminal GTPase 

domain, which is highly conserved across different species and modulates not only 

anterograde transport of mitochondria (Babic, Russo et al. 2015) and the calcium binding 

ability of Miro1 (Klosowiak, Focia et al. 2013) (Saotome, Safiulina et al. 2008) (Kornmann, 

Osman et al. 2011), but also the interaction of Miro with other proteins. 

4.5.1 Calcium buffering  

Whilst the mutation R450C is not located within the calcium binding EF hand domains, it 

was shown that the EF hand domains (including R272Q) and the C-terminal GTPase 

domain (including R450C) form a unique side-by-side 3D structure that facilitates a close 

interplay of the domains (Klosowiak, Focia et al. 2013). Therefore it is possible that both 

mutations independently affect calcium homeostasis. Indeed, we were able to define a 

phenotype related to disrupted calcium homeostasis in Miro1-R450C fibroblasts. 

Histamine was used to release calcium from mitochondria and the ER, resulting in slightly 

elevated cytosolic calcium concentrations compared to the calcium peak in Ctrl 1 

fibroblasts. During 5 min of imaging following the histamine treatment cytosolic calcium 

concentration decreased in Ctrl 1 and in Miro1-R272Q fibroblasts, but in Miro1-R450C 

fibroblasts cytosolic calcium concentration did not decrease at all within the same time 

frame (Figure 45). This observation suggests that buffering of cytosolic calcium is impaired 

in this cell line.  

Previous studies found that functionality of both GTPase domains of Miro1 are required for 

calcium-mediated function of Miro in H9c2 cells and in primary cortical neurons of rats 

(Saotome, Safiulina et al. 2008). Similar observations were made in a gem1∆ yeast strain 

expressing different mutant forms of Gem1, displaying impaired metabolite and calcium 

exchange between ER and mitochondria: Disruption of the N-terminal GTPase domain of 

Gem1 disturbed localization of mutant Gem1 to the ERMES complex, which connects the 

ER and mitochondria and facilitates exchange between both organelles, whereas loss of 

function mutants of the C-terminal GTPase domain localized properly to ERMES, but also 

failed to rescue the gem1∆ phenotype (Kornmann, Osman et al. 2011). These results 

further substantiated our hypothesis, that also the mutation R450C located in the C-terminal 

GTPase domain is able to affect mitochondrial calcium homeostasis.  
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As a next step to validate our hypothesis, we suggest to investigate how mitochondria in 

Miro1-R450C mutant cells are able to cope with repeated stimuli, e.g. by triggering calcium 

release from ER and mitochondria using histamine or ATP and inhibition of calcium uptake 

by the ER using Thapsigargin, a commonly used specific inhibitor of sarco-endoplasmic 

reticulum calcium-ATPases [(SERCA), reviewed by (Treiman, Caspersen et al. 1998)]. Due 

to the observed diminished calcium buffering capacity of Miro1-R450C fibroblasts, it is 

possible that these cells are more vulnerable to excitotoxicity, caused by disrupted cytosolic 

calcium homeostasis.  

4.5.2 Mitochondrial mass 

Regarding Miro1 protein level, Miro1-R450C fibroblasts displayed the same effect on 

overall Miro1 protein levels like observed in Miro1-R272Q fibroblasts. Miro1 protein level 

was reduced to approximately half of the protein amount compared to Ctrl 1 fibroblasts 

(Figure 13).  

Inhibition of the proteasome using MG132 elevated total Miro1 protein level in Miro1-R450C 

fibroblasts. Given the fact, that the same observation was made in Ctrl fibroblasts, this was 

not surprising, as it was shown that also Miro1-WT gets constantly degraded by the 

proteasome (Wang, Winter et al. 2011) (Birsa, Norkett et al. 2014). As RhoT1 is bi-allelic 

expressed (Gimelbrant, Hutchinson et al. 2007), it cannot be ruled out, that the reduced 

RhoT1 mRNA level observed in Miro1-R450C fibroblasts result from decreased expression 

of the mutant allele. Sequencing of RhoT1 cDNA showed that wild type and mutant alleles 

of RhoT1 are expressed in Miro1-R272Q fibroblasts (Figure 15), thereby suggesting that 

Miro1-R450C protein is expressed in Miro1-R450C fibroblasts. Mitochondrial mass was 

also reduced by approximately half of the amount in Miro1-R450C fibroblasts compared to 

Ctrl 1 fibroblasts (Figure 17). 

This result was in line with previous studies, which reported that knockdown of Miro1 and 

Miro2 in CHO, HeLa or HEK293T cells (Suzuki, Danilchanka et al. 2014) or knockout of 

GemA in D. discoideum (Vlahou, Elias et al. 2011) resulted in decreased mitochondrial 

mass. However, in the M17 cell model with stable RhoT1-KD Tom20 and MnSOD protein 

were not reduced, but overexpression of Miro1-R450C lead to significant decrease of 

Tom20 and MnSOD protein levels, like was also observed in Miro1-R450C fibroblasts. 

These results indicate that the mutant protein Miro1-R450C is expressed to some extent in 

Miro1-R450C fibroblasts and has a dominant negative effect. 
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As mitochondrial mass was reduced in Miro1-R450C mutant fibroblasts mitochondrial 

biogenesis was investigated. PPARɤ coactivator-1α (PGC1α) is a coactivator of 

transcription, e.g. for genes related to ROS defence (like SOD1, MnSOD, catalase and 

glutathione peroxidase-1) (St-Pierre, Drori et al. 2006) and the main driver for mitochondrial 

biogenesis and mitochondrial respiration [reviewed by (Corona and Duchen 2015)]. PGC1α 

is induced, amongst others, by energy deficit (Nemoto, Fergusson et al. 2005) (Jeninga, 

Schoonjans et al. 2010), which can be a result of reduced mitochondrial mass. In Miro1-

R450C fibroblasts PGC1α protein level was increased to ~3.5 fold compared to Ctrl 1 

fibroblasts (Figure 29). Expression of nuclear-encoded genes for complexes of the 

respiratory chain is also activated by PGC1α (Zheng, Liao et al. 2010). In line with this 

report, indeed the protein amount of complex IV of the respiratory chain was slightly 

increased in Miro1-R450C fibroblasts (Figure 33) and citrate synthase protein amount was 

significantly increased in Miro1-R450C (Figure 31). We speculate that PGC1α is 

upregulated to compensate the reduction of mitochondrial mass in Miro1-R450C 

fibroblasts.  

Mitochondrial biogenesis requires synthesis of mtDNA. Therefore an increase of mtDNA 

copy number points to induced biogenesis. However, in Miro1-R450C mutant fibroblasts 

mtDNA copy number was not increased under baseline conditions and oxidative stress 

induced by treatment with H2O2, Rotenone or a combination of H2O2 and Rotenone caused 

minor elevation of mtDNA copy number, which did not reach statistical significance 

compared to three age matched control lines (Figure 30). These results have not been 

normalized to mitochondrial mass. So it is possible that mtDNA copy number is elevated 

when the reduced mitochondrial mass was considered. The observation of slightly 

increased mtDNA copy number despite severely reduced mitochondrial mass (Figure 17) 

in Miro1-R450C fibroblasts argues for induced mitochondrial biogenesis as well. 

 

Surprisingly, at the same time protein level of MnSOD, which is one protein induced by 

PGC1α (St-Pierre, Drori et al. 2006), was significantly reduced in Miro1-R450C, compared 

to Ctrl 1 fibroblasts (Figure 43). MnSOD is a homotetrameric enzyme located in the 

mitochondrial matrix (Borgstahl, Parge et al. 1992) (Wispe, Clark et al. 1989) at the site of 

superoxide production. MnSOD catalyzes the dismutation of superoxide to hydrogen 

peroxide and oxygen (2O2·- + 2H+  H2O2 + O2) (Abreu and Cabelli 2010). 

In Miro1-R272Q fibroblasts MnSOD protein level were comparable to Ctrl 1 fibroblasts and 

both cell lines showed clear, easily detectable protein bands on Western Blots from three 

independent experiments (Figure 43). Measurement of mitochondrial superoxide levels 
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showed that superoxide was not elevated in Miro1 mutant fibroblast lines. In contrast to 

Ctrl 1 and Miro1-R272Q fibroblasts, MnSOD protein was hardly detectible in Miro1-R450C 

in three independent experiments. This result allows the conclusion that MnSOD protein is 

present in cells although ROS level seems not to be pathologically increased. The 

significant reduction of MnSOD protein was also not explained by the reduced mitochondrial 

mass in Miro1-R450C fibroblasts, because MnSOD protein level was normalized to Tom20 

protein level.  

A similar observation was made in another study in fibroblasts of PD-patients with mutations 

in parkin. PGC1α was significantly increased in the parkin-mutant fibroblasts, but the 

downstream genes for mitochondrial biogenesis NRF1, NRF2, TFAM, ATPaseβ were 

unchanged and the target genes GPX1 and MnSOD were even significantly lower 

expressed (Pacelli, De Rasmo et al. 2011). Another study reported that under ischemic 

conditions PGC1α was upregulated as well without subsequent upregulation of 

mitochondrial genes (Shoag and Arany 2010). The reason for the failed induction of target 

genes despite upregulation of PGC1α remained elusive in both studies. An explanation was 

suggested by another study, which reported that transcription of MnSOD can be disturbed 

by mitochondrial oxidative stress. In this study DJ-1 was described to inhibit the 

SUMOylation of protein-associated splicing factor (PSF) and thereby preventing the 

interaction of PSF with PGC1α, which in turn leaves PGC1α free to induce the transcription 

of MnSOD. Under oxidative stress conditions DJ-1 gets oxidized and consequently is not 

able to inhibit the SUMOylation of PSF anymore. SUMOylated PSF then binds to PGC1α 

and thereby inhibits activation of MnSOD transcription (Zhong and Xu 2008).  

Interestingly, another workgroup recently observed a different connection between 

reduction of MnSOD protein amount and increase of biogenesis: in rat kidney cells siRNA-

induced knockdown of MnSOD caused increased ROS levels, subsequently leading to 

induction of mitochondrial biogenesis, as indicated by increased PGC1α protein levels 

(Marine, Krager et al. 2014). These observations raise the question of cause and effect in 

the Miro1-R450C fibroblasts: mitochondrial dysfunction in Miro1-R450C fibroblasts could 

increase ROS levels, which in turn could impair MnSOD expression despite increased 

PGC1α, like was observed by Zhong and colleagues. Or MnSOD protein is reduced by 

another, yet unknown reason, leading to increased ROS levels, which induces PGC1α and 

thereby mitochondrial biogenesis, like observed in the study by Marine et al. Further 

investigations will be needed to dissect cause and effect in Miro1-R450C cells. 

 



 
Discussion 
 

144 
 

To further enlighten the reason for the reduction of mitochondrial mass in Miro1-R450C 

fibroblasts mitochondrial morphology and co-localization of mitochondria and lysosomes 

were assessed in native fibroblasts (2.10.2, 2.10.3). Mitophagy requires isolation of 

dysfunctional mitochondria from the mitochondrial network to allow the single mitochondria 

to be engulfed by autophagosome, meaning that increased mitophagy is accompanied by 

fragmentation of the mitochondrial network. However, the same observation like in Miro1-

R272Q fibroblasts was made: mitochondrial morphology was not changed (Figure 25), and 

co-localization of mitochondria and lysosomes was not increased in Miro1-R450C 

fibroblasts under standard growth conditions (Figure 27).  

Knockout of gemA in D. discoideum also did not affect mitochondrial morphology, although 

mitochondrial respiration was increased, but apparently working insufficiently, as indicated 

by reduced ATP production (Vlahou, Elias et al. 2011), thereby suggesting that 

mitochondrial dysfunction must not be accompanied by significant changes of mitochondrial 

morphology.  

The fact that mitochondrial dysfunction in Miro1-R450C fibroblasts did not affect 

mitochondrial morphology nor co-localization of mitochondria and lysosomes lead us to 

further investigate the autophagy marker LC3 II. Analysis revealed that autophagic flux was 

impaired in Miro1-R450C fibroblasts, because in contrast to Ctrl 1 fibroblasts, LC3 II did not 

accumulate in Miro1-R450C fibroblasts upon inhibition of the lysosomal degradation 

pathway, while FBS starvation was not sufficient to induce LC3 II accumulation, either. As 

Miro1-R450C showed a possible problem of calcium buffering, one could speculate that 

disruption of ER-mitochondrial contact sites might also be involved in disturbance of 

autophagosome formation, like was discussed for Miro1-R272Q fibroblasts.  

Mitophagy is more complex than previously described and consists of at least three different 

types. The different types vary on whether or not mitochondrial membrane depolarization 

occurs, the involvement of the PINK1/Parkin pathway and on the action of LC3. But the 

final step for mitochondrial degradation within lysosomes is the same in all three types of 

mitophagy. Bafilomycin A1 is an inhibitor of the vacuolar proton ATPase, thereby preventing 

the fusion of autophagosomes with lysosomes (Yamamoto, Tagawa et al. 1998). 

Consequently, using Bafilomycin A1 seems to inhibit all three types of mitophagy as well as 

all other types of autophagy. LC3 is involved in Type 1 and Type 2 mitophagy and in other 

types of organellar autophagy, but apparently not in Type 3 mitophagy.  

Type 1 mitophagy occurs upon nutrient starvation, leading to fission of damaged 

mitochondria for subsequent engulfment by LC3 II-labeled autophagosomes (Tanida, Ueno 

et al. 2008) and finally lysosomal degradation. In this pathway it seems that damaged 
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mitochondria only depolarize when they are engulfed by the acidified autophagosome, 

meaning that mitochondrial membrane depolarization is not required for initiation of 

mitophagy [reviewed in (Lemasters 2014)] and therefore Type 1 mitophagy occurs in a 

PINK1/Parkin-independent manner (McLelland, Soubannier et al. 2014).  

In contrast, Type 2 mitophagy is induced by mitochondrial membrane depolarization and 

therefore involves the PINK1/Parkin pathway (Nieminen, Saylor et al. 1995) (Narendra, 

Tanaka et al. 2008). Interestingly, microscopy experiments revealed that mitochondrial 

fission was not detectable and also no formation of cup-shaped isolation membranes, which 

normally occur upon engulfment by autophagosomes (Lemasters 2014). Instead, single 

LC3 aggregates surround the mitochondria and fuse together to form a LC3-membrane 

around the mitochondria (Lemasters 2014). The finally enclosed mitochondria are then 

fused with lysosomes for degradation. 

Type 3 mitophagy is the so called micromitophagy. Oxidized or otherwise damaged 

proteins and lipids are sequestered from the mitochondria into mitochondria-derived 

vesicles (MDV), without involving mitochondrial fission (Soubannier, Rippstein et al. 2012). 

The mitochondrial membrane is not depolarized, but it seems that the MDV’s are 

depolarized, thus involving the PINK1/Parkin pathway (McLelland, Soubannier et al. 2014). 

MDV’s then are incorporated into multivesicular bodies and subsequently degraded by the 

lysosomal pathway (Soubannier, McLelland et al. 2012). 

The involvement of the PINK1/Parkin pathway should be considered when investigating 

mitophagy in Miro1 mutant cells. It was reported that upon depolarization of the 

mitochondrial membrane, PINK1 accumulates at mitochondria and recruits Parkin (Geisler, 

Holmstrom et al. 2010). PINK1 apparently phosphorylates Parkin to activate its E3 ligase 

activity (Kazlauskaite, Kelly et al. 2014). Then, Parkin ubiquitinates Miro1 for proteasomal 

degradation (Birsa, Norkett et al. 2014) (Sarraf, Raman et al. 2013), which was proposed 

to be the initial step for mitophagy by isolating damaged mitochondria from the healthy 

mitochondrial network (Liu, Sawada et al. 2012). Also Sarraf et al. identified Miro1/2 as 

targets of Parkin depending on mitochondrial membrane depolarization (Sarraf, Raman et 

al. 2013). However, in Miro1-R450C fibroblasts (and Miro1-R272Q fibroblasts as well) 

mitochondrial membrane was rather hyperpolarized and Miro1 protein levels were already 

decreased. Probably this phenotype interferes with initiation of mitophagy via PINK1/Parkin. 

Further investigations will be necessary to assess the impact of Miro1-R450C (and Miro1-

R272Q) on PINK1/Parkin mediated mitochondrial quality control, e.g. by further co-

localization analysis of mitochondria and lysosomes under stress conditions, or e.g. by 

analysing the ability of mutant Miro1 to interact with PINK1 and Parkin, because although 
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PINK1 is likely not phosphorylating Miro1 (Birsa, Norkett et al. 2014) it was still found to 

interact with the Miro/Milton complex (Weihofen, Thomas et al. 2009).  

4.5.3 Mitochondrial respiration, ROS and MMP 

The observed severe reduction of mitochondrial mass in Miro1-R450C fibroblasts justified 

the question whether this phenotype could cause a shortcoming of energy supply and 

therefore evoke compensatory mechanisms. 

Analysis of mitochondrial functionality revealed that both Miro1 mutant fibroblast lines 

showed very different phenotypes in terms of mitochondrial respiration. Overall, Miro1-

R450C showed a significant higher mitochondrial OCR, compared to Miro1-R272Q 

fibroblasts. In Miro1-R450C fibroblasts basal respiration, capacity of ATP production, proton 

leak and maximal respiration were slightly, but not significantly higher compared to Ctrl 1 

fibroblasts. The values of the parameters spare respiratory capacity and non-mitochondrial 

respiration were significantly elevated compared to Ctrl 1 fibroblasts (Figure 37). In 

combination with the data of citrate synthase activity (Figure 31) it is possible that the 

respiratory chain is hyperactive in Miro1-R450C fibroblasts to ensure energy supply despite 

the decreased mitochondrial mass, but at the same time the respiratory chain is not working 

efficiently.  

The key enzyme of the TCA cycle providing NADH and FADH2 as proton donors for the 

enzymes of the respiratory chain is citrate synthase. Biochemical measurement of citrate 

synthase activity showed that enzyme activity was significantly reduced in Miro1-R450C 

fibroblasts compared to Ctrl 1 fibroblasts (Figure 31). The activity data were normalized to 

mitochondrial protein amount used for the measurement, such resembling citrate synthase 

activity on mitochondrial level. Therefore, it can be concluded that activity was not reduced 

due to the reduction of mitochondrial mass observed in Miro1-R450C fibroblasts. It is likely 

to speculate that the diminished activity of citrate synthase is even more severe on cellular 

level due to the decreased mitochondrial mass observed in Miro1-R450C fibroblasts.  

The reason for the reduced activity of citrate synthase remained obscure in the present 

study. Yet, it is possible that oxidative damage can decrease enzyme activity. In a mouse 

model with heterozygous knockout of MnSOD, oxidative damage caused inhibition of 

aconitase, which is another enzyme of the TCA (Williams, Van Remmen et al. 1998). 

Furthermore, a recent study in neuron-like NSC-34 cells with overexpression of a loss-of-

function mutant SOD1 displayed malfunction of the TCA upon oxidative stress, as assessed 

by chromatography coupled with mass spectrometry (Veyrat-Durebex, Corcia et al. 2015). 
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The direct inhibition of citrate synthase enzyme activity was shown in isolated mitochondria 

exposed to 2,2’-azobis(2-amidinopropane)dihydrochloride (AAPH). AAPH generates 

peroxyl and alkoxyl radicals and thereby oxidative stress, which led to inhibition of citrate 

synthase enzyme activity by changing biochemical properties of the protein (Chepelev, 

Bennitz et al. 2009). Taken together, the findings of these studies led us to the hypothesis 

that oxidative damage could reduce activity of citrate synthase in Miro1-R450C fibroblasts, 

as significant reduction of MnSOD was also observed. Because ROS is damaging several 

enzymes in an unspecific manner, also measurement of aconitase enzyme activity should 

be considered for future analysis to investigate whether the TCA functionality is more 

generally affected in Miro1-R450C fibroblasts. 

Aside from the results of diminished MnSOD protein amount and decreased citrate 

synthase enzyme activity, also the observed increase of non-mitochondrial respiration in 

Miro1-R450C fibroblasts could point to increased load of ROS. Non-mitochondrial 

respiration can arise from free radicals, which are produced by oxidases like NAD(P)H 

oxidase (Stokes 2007) (Frazziano, Champion et al. 2012) or xanthine oxidase (Chambers, 

Parks et al. 1985). It was furthermore shown that intracellular superoxide and hydrogen 

peroxide increase non-mitochondrial respiration (Chacko, Zhi et al. 2015). However, we did 

not find an increase of mitochondrial superoxide levels using the mitochondria specific 

superoxide indicator MitoSOX. The fluorescent probe called MitoSOX consists of 

mitochondrial-targeted dihydroethidium (Robinson, Janes et al. 2008). It is believed that 

superoxide reacts with MitoSOX to 2-hydroxymitoethidium (2-OH-Mito-E+). But MitoSOX 

can also form mito-ethidium (Mito-E+) as product of nonspecific oxidation. The fluorescence 

spectra of 2-OH-Mito-E+ and Mito-E+ are not distinguishable, making MitoSOX an 

unreliable superoxide marker (Kalyanaraman, Darley-Usmar et al. 2012). HPLC-

fluorescence or mass spectrometry have been recommended to directly identify 2-OH-Mito-

E+ (Kalyanaraman, Darley-Usmar et al. 2012). Beyond that, the stoichiometry of the 

reaction between dihydroethidium and superoxide is not clear, making the quantification of 

superoxide by measuring fluorescence impossible (Zielonka and Kalyanaraman 2010). 

Even the correct localization of superoxide production is challenging as superoxide has a 

short half-live and can diffuse away or into a compartment. For more reliable localization of 

superoxide production it will be necessary to assess probe oxidation in the cytosol and in 

mitochondria at the same time, to determine in which compartment the probe undergoes 

more oxidation compared to the other compartment (Winterbourn 2014). Given the 

limitations of our approach to detect superoxide production, further investigations will be 

necessary and results (decreased MnSOD protein, decreased citrate synthase activity, 
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increased MMP, increased non-mitochondrial respiration) point to increased ROS levels in 

Miro1-R450C fibroblasts, although we were not able to substantiate this hypothesis. 

 

Despite the decreased citrate synthase enzyme activity in Miro1-R450C fibroblasts, the 

protein amount of citrate synthase was significantly increased compared to Ctrl 1 fibroblasts 

(Figure 31). Citrate synthase protein level was also normalized to mitochondrial mass, such 

resembling protein amount on mitochondrial level. The data indicate that citrate synthase 

protein was significantly increased likely as compensatory effect in order to maintain the 

energy metabolism despite greatly reduced mitochondrial mass.  

Given these results, we propose to assess NADH and FAD ratio in Miro1 fibroblasts [e.g. 

by measuring the auto fluorescence of NADH at 360 nm and the auto fluorescence of FAD 

with an excitation at 454 nm (Bartolome and Abramov 2015)]. The results of this 

measurement will allow to assess the amount of substrate, which is provided by the TCA 

for oxidative phosphorylation. 

Complex I activity was biochemically measured in Miro1-R450C fibroblasts. When 

normalized to citrate synthase protein, complex I activity was unchanged in Miro1-R450C 

fibroblasts compared to Ctrl 1 fibroblasts (Figure 32). The normalization to citrate synthase 

protein allowed to assess complex I activity on mitochondrial level. This means that 

complex I activity could be lower on total cell level in Miro1-R450C fibroblasts due to the 

decreased mitochondrial mass. Indeed, in Miro1-R450C fibroblasts the protein amount of 

complexes I, II, III, IV and V were not significantly increased compared to Ctrl 1 fibroblasts 

(Figure 33), thus indicating that in Miro1-R450C fibroblasts the reduction of mitochondrial 

mass was not compensated by elevation of the respiratory complexes to maintain energy 

supply.  

It was previously reported, that PGC1α increases mitochondrial respiration. This effect was 

reported to be beneficial in cellular models of mutant α-synuclein by preventing cell death 

of DA neurons (Zheng, Liao et al. 2010), whereas overexpression of PGC1α in the 

nigrostriatal system of rats leads to loss of DA neurons (Ciron, Lengacher et al. 2012), 

probably because the mitochondrial hyperactivity was accompanied by increased 

production of ROS (Corona and Duchen 2015). Most characteristic was the increase of 

spare respiratory capacity in Miro1-R450C fibroblasts compared to Ctrl 1 fibroblasts. Long-

term regulation of spare respiratory capacity is mediated by PGC1α. Whereas NO produced 

by mtNOS in mitochondria decreases the activity of mitochondrial respiration (as we 

proposed for Miro1-R272Q fibroblasts), interestingly, NO production by the nuclear NO 

synthase was shown to increase respiratory activity and thereby spare respiratory capacity 
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by activation of PGC1α (Cerqueira, Cunha et al. 2012). Whether the elevation of PGC1α is 

beneficial or harmful for DA neurons in the Miro1-R450C model remains elusive in this study 

and will be addressed in future investigations.  

In Dictyostelium discoideum with knockout of gemA (the orthologue of Miro; gemA∆) a 

strikingly similar phenotype compared to Miro1-R450C fibroblasts was observed: i) gemA 

deficiency did not changed mitochondrial size or morphology, ii) overall mitochondrial mass 

was significantly reduced, iii) OCR was significantly increased. Although OCR was 

increased, the actual ATP level was much lower in gemA∆, a finding, which could not be 

explained by the reduction of mitochondrial mass (Vlahou, Elias et al. 2011). This raises 

the possibility that also in Miro1-R450C cells increase of OCR might not be sufficient to 

sustain ATP production. Measuring OCR with the Extracellular flux analyzer only allowed 

to assess the capacity for ATP production, but ATP content of the cells was not measured 

directly. Therefore measurement of the actual ATP content of the cells, e.g. using a 

luminescent assay, will be necessary to complete the results for assessing mitochondrial 

respiration and energy production.  

 

We hypothesize that the alteration of mitochondrial respiration observed in Miro1-R450C 

fibroblasts leads to hyperpolarization of the MMP. The MMP was increased by 2 fold 

compared to Ctrl 1 fibroblasts (Figure 38). The MMP is generated by protons that are 

pumped out of the mitochondrial matrix into the intermembrane space by complexes of the 

respiratory chain. The resulting proton gradient provides the energy to convert ADP into 

ATP when protons re-enter the matrix through complex V. Functionality of the respiratory 

chain and the MMP are therefore tightly linked and mutually dependent. In Miro1-R450C 

fibroblasts the respiratory function is rather hyperactive (Figure 37). This means that 

mitochondrial hyperpolarization could be generated by a large amount of protons, which 

are pumped out of the mitochondrial matrix into the intermembrane space. Consequently 

oxygen consumption and capacity of ATP production are increased, as was observed when 

measuring OCR (Figure 36, Figure 37). As previously described, the capacity of ATP 

production measured by OCR does not reflect the actual ATP content in the cell. In contrast, 

it was shown that even small changes of MMP of about 10 % reduces ATP production by 

90 %, at the same time increasing ROS production by 90 % (Ma, Cao et al. 2010). This 

observation further supports the hypothesis that the actual ATP production could be 

decreased in Miro1-R450C cells.  

Mitochondrial hyperpolarization is often observed in cancer cells and seems to increase cell 

survival by inhibition of apoptosis (Heerdt, Houston et al. 2006) (Hardonniere, Huc et al. 
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2015). Badgkos et al. recently proposed that the high MMP observed in cancer cells is the 

factor driving mitochondrial retrograde signalling that induces expression of nuclear 

encoded genes required for tumor development and survival (Bagkos, Koufopoulos et al. 

2015). In contrast, an elevation of MMP still in the physiological range of non-cancer cells, 

seems to induce mitochondrial biogenesis, e.g. by activation of PGC1α, to ensure 

mitochondrial energy metabolism (Bagkos, Koufopoulos et al. 2015), thus providing a 

possible link between MMP hyperpolarization and increase of PGC1α in Miro1-R450C 

fibroblasts. Mitochondrial retrograde signalling activates or inhibits expression of nuclear 

encoded genes depending on the wavelength of the electromagnetic field generated by the 

MMP. Therefore the level of MMP increase determines the outcome of cell metabolism and 

cell fate, either by driving cancer development, inducing mitochondrial biogenesis or by 

inducing or preventing apoptosis [reviewed by (Bagkos, Koufopoulos et al. 2015)]. 

As increased MMP is often observed in cancer cells (Heerdt, Houston et al. 2006) (Holme, 

Gorria et al. 2007) (Huc, Gilot et al. 2003), the concern was raised that the immortalization 

of fibroblasts with the pLenti-III-SV40 construct (Applied Biological Materials Inc., 

Richmond, Canada), expressing the Large T Antigen of SV40 (2.5.1.2) could induce a 

cancer-like phenotype leading to mitochondrial hyperpolarization. However, this was rather 

unlikely as a significant difference in MMP was observed between Ctrl 1 and mutant 

fibroblasts, which all have been immortalized in the same way (2.5.1.2) and knockdown of 

RhoT1 in M17 cells also lead to significant hyperpolarization of the mitochondrial membrane 

compared to M17 without knockdown of RhoT1. 
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We hypothesize that the Miro1-R450C mutation also interferes with calcium binding and 

thereby impairs mitochondrial calcium buffering capability. This could also disrupt 

mitochondrial respiration, subsequently leading to hyperpolarization of the mitochondrial 

membrane. This phenotype induces mitochondrial biogenesis via PGC1α. Disruption of 

mitochondrial respiration and elevation of the MMP could increase oxidative stress, which 

could explain the observed reduction of citrate synthase activity and reduced expression of 

MnSOD protein. However, mitochondrial superoxide levels were not elevated in our hands. 

Furthermore, mitochondrial mass was reduced despite increased PGC1α and impaired 

autophagic flux.  

 

 

Figure 50: Overview on mitochondrial phenotype found in Miro1-R450C fibroblasts 

We hypothesize that the mutation R450C in the GTPase domain interferes with calcium binding, which in 

turn also impairs respiratory activity. Impaired respiration leads to hyperpolarization of mitochondrial mem-

brane. Autophagic flux is impaired by the increased MMP and the impaired calcium buffering. We further 

hypothesize that increased MMP, decreased MnSOD protein levels and impaired respiration could increase 

oxidative stress, which could lead to the observed decreased activity of citrate synthase and the decreased 

amount of MnSOD protein. Mitochondrial membrane hyperpolarization leads to increased PGC1 α protein 

level, which increases mitochondrial respiration. Mitochondrial mass could be decreased due to an imbalance 

of autophagy and mitochondrial biogenesis. 

OMM: outer mitochondrial membrane. IMM: inner mitochondrial membrane. IMS: intermembrane space. 

MMP: mitochondrial membrane potential. TCA: tricarboxylic acid cycle 
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4.6 Outlook and perspectives 

4.6.1 Future investigations to further dissect the pathogenic mechanisms of Miro1 

mutations in PD 

The present study left some questions unanswered regarding calcium homeostasis, 

mitophagy, oxidative stress and mitochondrial transport. 

With the applied method it was not possible to distinguish the contribution of mitochondria 

and the ER to the decrease of cytosolic calcium levels. More investigations are needed to 

estimate the calcium buffering ability of mitochondria in Miro1-R272Q and Miro1-R450C 

cells, e.g. by inhibiting calcium uptake by the ER by using Thapsigargin. Inhibition of calcium 

uptake by the ER makes calcium buffering rely more on mitochondrial calcium uptake and 

therefore enables to assessed mitochondrial calcium buffering separately from ER calcium 

uptake.  

In future studies, we propose to investigate the impact of Miro1-R272Q and Miro1-R450C 

on ER-mitochondria contact sites, e.g. by live cell imaging of cells stained with MitoTracker 

and the ER specific live cell imaging dye ER-tracker (e.g. by Thermo Fisher Scientific, 

Braunschweig, Germany). Simultaneous staining of ATG5, which served as marker for 

early stages of autophagosome formation (Hamasaki, Furuta et al. 2013), enables to 

investigate the impact of the ER-mitochondria interaction on autophagy initiation at the 

same time. Furthermore, using the time-sensitive mitochondria-targeted fluorescent protein 

MitoTimer enables to assess the age profile of mitochondria by live cell imaging (Ferree, 

Trudeau et al. 2013). This approach will help to simultaneously dissect the impact of Miro1 

mutations on mitochondrial biogenesis and mitochondrial turnover.  

Our first attempt to assess the impact of Miro1 mutants on oxidative stress by measurement 

of mitochondrial superoxide production revealed no alteration in Miro1-R272Q or Miro1-

R450C fibroblasts. However, due to the observed reduction of MnSOD protein levels in 

Miro1-R450C fibroblasts and the alteration of cytosolic calcium buffering as well as 

alteration of mitochondrial respiration in Miro1-R272Q and Miro1-R450C fibroblasts with 

subsequent mitochondrial membrane hyperpolarization, we still wonder whether oxidative 

stress could play a role in mitochondrial dysfunction in these cells. As mentioned before, 

measuring ROS levels is not trivial and therefore needs further backup by an independent 

method. Therefore, cytosolic superoxide levels will be measured using the superoxide 

indicator dihydroethidium (e.g. by Thermo Fisher Scientific, Braunschweig, Germany) and 

by assessing the amount of oxidized proteins in cytosolic and mitochondrial fractions using 
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the OxyBlot Protein Oxidation Detection Kit (e.g. by Millipore Corporation, Darmstadt, 

Germany). The optimal growth conditions of immortalized fibroblasts in high glucose DMEM 

containing 15 % FBS could prevent pathogenic superoxide formation because under these 

conditions energy metabolism could rely more on glycolysis than on mitochondrial 

respiration. Using low glucose medium (1 g/ L instead of 4.5 g/ L glucose) was also not 

sufficient to increase superoxide production in the present study. For future analysis it could 

be applicable to use DMEM without glucose (containing galactose as carbon source) for a 

longer period of time to force fibroblasts to switch their metabolism from glycolysis to 

mitochondrial respiration and therefore drive ROS formation. 

Furthermore, mtDNA did not accumulate significant amounts of lesions upon oxidative 

stress under the applied conditions (Figure 42). The applied treatment of fibroblasts with 

H2O2 for 5 min or rotenone for 20 min could be insufficient to induce a significant amount of 

mtDNA damage in fibroblasts. A longer treatment could reveal whether compensatory 

mechanisms in Miro1 mutant cells might be overpowered faster than in control cells.  

In the present study, we investigated the impact of Miro1 mutants on mitochondrial function 

and homeostasis. But another important aspect of Miro1 function is the regulation of 

mitochondrial transport, which was not analysed in fibroblasts. For future studies Miro1 

mutant fibroblasts will be reprogrammed into induced pluripotent stem cells (iPSC) for 

further differentiation into DA neurons. These cells will be used to address the question of 

whether Miro1-R272Q or Miro1-R450C impair mitochondrial transport in neurons. 

4.6.2 Implications for Miro1 mutant neurons 

In neurons Miro plays an important role not only for mitochondrial maintenance but also for 

distribution of mitochondria to active synapses. There, mitochondria are important for 

calcium buffering and APT synthesis (Macaskill, Rinholm et al. 2009) (Chang, Niescier et 

al. 2011). Furthermore, Miro-dependent transport of mitochondria into dendrites and 

synapses allows the delivery of proteins synthesized in the soma to distant parts of the cell 

and maintenance of peripheral mitochondria (Amiri and Hollenbeck 2008). As a result, it is 

not surprising that different studies reported on impaired neuronal functions in Miro deficient 

models: Flies expressing mutant dMiro displayed impaired neuronal signalling due to 

defective vesicle release and abnormal synaptic morphology (Guo, Macleod et al. 2005), 

which was attributed to mitochondrial depletion in synapses caused by impaired 

mitochondrial transport (Guo, Macleod et al. 2005) (Babic, Russo et al. 2015). Interestingly, 

overexpression and knockout/ knockdown of dMiro resulted in a similar decrease of 

mitochondria in distal parts of axons; in neurons overexpressing dMiro this phenotype was 
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caused by alteration of mitochondrial movement kinetics (Russo, Louie et al. 2009). 

Impaired mitochondrial transport into axons and synapses was sufficient to cause loss of 

DA neurons in drosophila (Liu, Sawada et al. 2012) and loss of motor neurons in mice, even 

when mitochondrial respiration was not impaired (Nguyen, Oh et al. 2014). In mice (Nguyen, 

Oh et al. 2014) and drosophila (Russo, Louie et al. 2009) even heterozygous Miro depletion 

was sufficient to cause loss of neurons. 

These findings strongly support the hypothesis that Miro1 mutations identified in PD 

patients cause mitochondrial dysfunction that is sufficient to induce loss of DA neurons, 

subsequently leading to neurodegeneration in PD. Mitochondrial transport was not 

assessed in Miro1 mutant fibroblasts, but given the neuronal phenotypes induced by 

knockdown of Miro in drosophila (Babic, Russo et al. 2015) (Russo, Louie et al. 2009) (Guo, 

Macleod et al. 2005) (Liu, Sawada et al. 2012) and mice (Nguyen, Oh et al. 2014), it can 

be speculated that the observed reduction of total Miro1 protein levels in Miro1-R272Q and 

Miro1-R450C cells (Figure 13) alone is sufficient to cause neuronal impairment. 

Additionally, the mutations in Miro1 most likely contribute to mitochondrial dysfunction and 

therefore further decrease neuronal survival: the reduction of mitochondrial mass (Figure 

17) and reduction of MnSOD protein (Figure 43) observed in Miro1-R450C cells could 

cause insufficient ATP production and increase of oxidative stress, respectively, whereas 

results suggest an increased sensitivity of Miro1-R272Q fibroblasts towards elevated 

calcium concentration.  

DA neurons are especially prone to oxidative damage and naturally possess higher levels 

of ROS (Slivka and Cohen 1985) (Fasano, Bergamasco et al. 2006) (Sulzer and Zecca 

2000). The crucial function of MnSOD is well established. Knockout of MnSOD in drosophila 

led to early death 1 day after eclosion and heterozygous knockout flies showed a higher 

vulnerability to paraquat-induced oxidative stress, resulting in decreased viability (Duttaroy, 

Paul et al. 2003). Homozygous MnSOD knockout mice displayed severe cardiomyopathy, 

rapid fatigue during exercise and early death only 10 days after birth (Li, Huang et al. 1995). 

In contrast, heterozygous knockout mice survived longer, but accumulated oxidative 

damage of mitochondria over time, e.g. oxidative damage of the enzymes aconitase and 

NADH oxidoreductase, as well as mtDNA damage, while oxidative damage to proteins in 

the cytosol was not observed (Williams, Van Remmen et al. 1998) (Van Remmen, Ikeno et 

al. 2003). In the light of these results the decreased levels of MnSOD observed in Miro1-

R450C fibroblasts could lead to increased oxidative stress and subsequent loss of DA 

neurons. Furthermore, it is possible that due to the observed alterations of mitochondrial 

respiration in Miro1 mutant cells and the high energy demand of neurons, ROS production 

could be elevated in Miro1 mutant neurons, leading to oxidative stress. 
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We further speculate that the observed alterations in mitochondrial respiration (Figure 37), 

impaired calcium homeostasis and MMP hyperpolarization (Figure 38) additionally impairs 

neuronal cell survival. It is delicate to draw conclusions from the results of MMP and 

apoptosis obtained from immortalized fibroblasts for neurons, because the metabolism is 

very different in both cell types and with it consequently also ROS production, MMP, 

vulnerability to stress and stress response.  

Summarizing the results of impaired mitochondrial function in Miro1 mutant fibroblasts and 

in M17 cells with knockdown of RhoT1 overexpressing Miro1 mutant proteins, it can be 

concluded from this study, that the mutations R272Q and R450C in Miro1 are sufficient to 

cause neurodegeneration in PD. Beyond that, the results of this study emphasize the 

importance of Miro1 for mitochondrial homeostasis and maintenance. To our knowledge, 

this is the first study describing PD-associated mutations of RhoT1 and the resulting 

mitochondrial phenotypes. 
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Figure 51: Vector map of pCMV6-Entry 
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Figure 52: Vector map of pcDNA3.1/V5-His A 

 

 

 

 

 

Figure 53: Vector map of pLenti-III-SV40 

 



   
Appendix 

 

183 
 

 

Figure 54: Vector map of pcDNA6.2-GW/EmGFP-miR-neg control plasmid 

 

Figure 55: Vector map of pcDNA6.2-GW/EmGFP-miR 
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Figure 56: Vector map of pRK-5 myc/ RhoT1 

Constructed by: D. Dieckmann, MRC-LMCB, UCL, UK 

kind gift by P. Aspenström, karolinska-Institute, Upsalla, Schweden 

 

 

  


