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Abstract
During the last years the impact of systems biology has grown drastically. In contrast to
traditional biology, this interdisciplinary field comprises the investigation of biological
processes from a systems perspective. An example for a systems biology project is the
Virtual Liver Network, in which metabolic liver function is modeled computationally.
A mathematical model in systems biology provides a hypothesis that is testable by bio-
logical experiments. Data obtained from model simulation can thereby be compared to
experimental data possibly leading to the adaptation of the model. Experimental data is
also used to optimize a model, e.g., to estimate certain model parameters or to identify
connections between model components.

From the different kinds of computational models used in systems biology logical
models and kinetic ordinary differential equation (ODE) models are covered in this the-
sis. While logical models enable to describe biological processes qualitatively, kinetic
ODE models allow the dynamic description of these processes. Methods for the simula-
tion and optimization of both model types were developed and applied here.

The first part of the thesis contains the application of a specific logical modeling tech-
nique called fuzzy logic modeling. A previously published method based on prior knowl-
edge and experimental data was adapted to identify regulatory events responsible for the
downregulation of drug metabolism during inflammation. Further experiments backed
the hypothesis suggested by the model. The respective study conducted in collaboration
with biologists is a relevant part of the Virtual Liver Network.

In the following part of the thesis an algorithm for the simulation of models given in
the Systems Biology Markup Language (SBML) is described. SBML is the most impor-
tant standard for storing and exchanging systems biology models. It enables to describe
ODE models that can also contain other elements, such as rules for model components
and events representing sudden changes of components. Because of these additional el-
ements, simulation of SBML models is difficult and only few software tools support this
standard completely. The Systems Biology Simulation Core Library (SBSCL), which
contains an implementation of the developed algorithm, supports SBML completely.
Benchmark tests were used to prove the correctness of the library. The SBSCL can
be easily integrated into larger software tools. One example for this is SBMLsimulator,
which connects the SBSCL and the optimization toolbox EvA2 and is described in the
following chapter of this thesis. SBMLsimulator enables simulation and optimization of
SBML models and can be very helpful in systems biology studies.

At the end of the thesis SBMLsimulator is applied in a large study investigating the in-
fluence of experimental noise on the estimation of kinetic parameters for three published
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SBML models. The study shows the usefulness of the tool, but also suggests to take the
noise into account during estimation, which was previously only tested for a small toy
model. Furthermore, the chosen approach is a way of robustness analysis that can be
used to estimate how reliable the parameter estimates for a certain model are. Like the
other methods applied and developed in this thesis, it can be used for further systems
biology research.
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Kurzfassung
In den letzten Jahren hat die Systembiologie drastisch an Bedeutung gewonnen. Im Un-
terschied zur traditionellen Biologie werden biologische Prozesse in diesem interdiszi-
plinären Feld aus einer Systemperspektive heraus untersucht. Das Netzwerk Virtuelle
Leber, in dem die Funktionen der Leber am Computer modelliert werden, ist ein Bei-
spiel für ein großes systembiologisches Projekt. Ein solches mathematisches Modell in
der Systembiologie enthält eine Hypothese, die mit biologischen Experimenten über-
prüft werden kann. Die aus einer Modellsimulation erhaltenen Daten können dabei mit
experimentellen Daten verglichen werden, was möglicherweise zu einer Anpassung des
Modells führt. Experimentelle Daten werden auch zur Optimierung eines Modells ver-
wendet, was die Schätzung bestimmter Modellparameter oder die Bestimmung von Ver-
bindungen zwischen Modellkomponenten umfassen kann.

Von den verschiedenen für die Systembiologie geeigneten Modelltypen wurden in
dieser Arbeit logische Modelle und kinetische Differenzialgleichungsmodelle (ODE-
Modelle) benutzt. Während mit logischen Modellen biologische Prozesse qualitativ be-
schrieben werden können, ermöglichen kinetische ODE-Modelle die dynamische Be-
schreibung solcher Prozesse. Methoden für die Simulation und Optimierung beider Mo-
delltypen wurden im Rahmen dieser Arbeit entwickelt und angewendet.

Der erste Teil dieser Arbeit enthält die Anwendung einer speziellen Art der logischen
Modellierung, die als Fuzzy-Logik-Modellierung bezeichnet wird. Eine bereits publi-
zierte Methode, die auf Vorwissen und experimentellen Daten basiert, wurde hier an-
gepasst. Damit konnten dann regulatorische Ereignisse, die den Wirkstoffmetabolismus
herunterregulieren, identifiziert werden. Weitere Experimente stützten die im Modell ent-
haltene Hypothese. Die Arbeit, die in Kooperation mit Biologen durchgeführt wurde, war
Teil des Netzwerks Virtuelle Leber.

Im folgenden Teil der Arbeit wird ein Algorithmus zur Simulation von Modellen, die
in der Beschreibungssprache SBML gegeben sind, beschrieben. SBML ist der wichtigste
Standard zur Speicherung und zum Austasch systembiologischer Modelle. Die Sprache
ermöglicht die Beschreibung von ODE-Modellen, die zusätzliche Elemente wie Regeln
für Modellkomponenten und Events zur Repräsentation plötzlicher Veränderung solcher
Komponenten enthalten können. Aufgrund dieser zusätzlichen Elemente ist die Simula-
tion von SBML-Modellen schwierig und nur wenige Programme unterstützen den Stan-
dard vollständig. Die Systems Biology Simulation Core Library (SBSCL) enthält eine
Implementierung des entwickelten Algorithmus und unterstützt alle SBML-Elemente.
Mit Benchmark-Tests wurde die Korrektheit der Bibliothek bewiesen. Die SBSCL kann
leicht in größere Programme integriert werden. Der SBMLsimulator, der die SBSCL
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mit der Optimierungsbibliothek EvA2 verbindet, ist ein Beispiel dafür, das im folgenden
Kapitel der Arbeit beschrieben wird. Er ermöglicht die Simulation und Optimierung von
SBML-Modellen und kann damit in der systembiologischen Forschung sehr hilfreich
sein.

Am Schluss der Arbeit wird der SBMLsimulator in einer größeren Studie angewendet,
um den Einfluss von experimentellem Rauschen auf die Schätzung kinetischer Parame-
ter in drei SBML-Modellen zu untersuchen. Zusätzlich zur Nützlichkeit des Programms
zeigt die Studie, dass es sinnvoll ist, das experimentelle Rauschen bei der Parameter-
schätzung einzubeziehen. Dies wurde vorher nur für ein kleines Testmodell überprüft.
Außerdem ist der verwendete Ansatz eine Art Robustheitsanalyse, mit der die Zuver-
lässigkeit einer Parameterschätzung für ein bestimmtes Modell untersucht werden kann.
Wie die anderen Methoden, die in dieser Arbeit angewendet und entwickelt wurden, kann
der Ansatz für viele weitere systembiologische Untersuchungen verwendet werden.
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Chapter 1

Introduction

During the last decades researchers have increasingly tried to understand biological pro-
cesses from a systems perspective. The emerging field of systems biology does not pri-
marily focus on single biochemical reactions or interactions, but on the complex interplay
between different biological components like genes or proteins. Several biological com-
ponents interacting or reacting with each other constitute a biological network, which
can, e.g., process biological signals or transform toxic substances. A key question in
systems biology is how certain biological networks functioning properly in healthy hu-
mans are modified during a disease. Ultimately, such research can lead to new strategies
for disease treatment.

New experimental techniques that enable to measure many protein concentrations or
gene expression values in parallel have greatly enhanced the possibilities of biological re-
search. However, the resulting high-throughput data are usually complex and difficult to
interpret. Computational methods are therefore required to extract important information
from these data. In systems biology mathematical models that can simulate biological
network function are developed based on such data. Each mathematical model provides
a hypothesis for biological behavior that can be validated with adequate experimental
data. Models are usually developed in a bottom-up fashion, which means that different
model components are connected based on existing scientific knowledge from several
sources (literature or databases). Afterwards, the model is optimized with respect to the
available data. Dependent on the type of model, this optimization can involve changing
the interactions between the model components or the estimation of certain model pa-
rameters. For large networks, in which many interactions are unclear, logical modeling is
often applied. A logical model qualitatively describes how different model components
interact with each other. In contrast to that, kinetic ordinary differential equation (ODE)
models are used to investigate dynamic behavior of biological systems over time.

Standardized model formats have been developed to facilitate exchange and reuse of
models in systems biology. The most important format in this respect is the Systems
Biology Markup Language (SBML). SBML models can contain several model elements,
which makes full support of this format difficult to implement. Therefore, many systems
biology software solutions do not support the SBML standard completely.

The work covered in this thesis involves the development and application of meth-
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ods for the simulation and optimization of systems biology models. First an existing
method for the optimization of a logical model was adapted in order to identify impor-
tant regulatory events modifying detoxification in the human liver. Next an algorithm
for the simulation of SBML models that supports all SBML elements was developed and
implemented in the Systems Biology Simulation Core Library. This simulation library
was then connected with the optimization toolbox EvA2 in the program SBMLsimulator,
which enables optimization of SBML models. Finally, SBMLsimulator was applied in
a study to investigate the robustness of three published models against different magni-
tudes of experimental noise.

1.1 Contributions of the thesis

In order to obtain valid models in systems biology, routines for the simulation and op-
timization of such models are necessary. This thesis focuses on the development and
application of such methods considering logical models as well as kinetic ODE models.
While for logical models an existing optimization method was adapted to solve a spe-
cific biological question, for ODE models described by the SBML format a simulation
algorithm was developed, connected with optimization routines, and applied in a study
investigating the robustness of models against experimental noise. The work was part of
the Virtual Liver Network (Holzhütter et al., 2012), in which the main functions of the
human liver are investigated (grant numbers 0315755 and 0315756). Next the different
contributions of the thesis are described in more detail.

Application of fuzzy logic modeling for identification of regulatory events
responsible for an altered hepatic gene expression upon IL-6

Fuzzy logic modeling is a specific type of logical modeling. In contrast to the often ap-
plied Boolean models, which only allow states of 0 or 1 for model components, fuzzy
logic models enable continuous states for these components. We adapted a method to
develop an optimized fuzzy logic model based on scientific knowledge and experimental
data (Morris et al., 2011), which is implemented in the software CNORfuzzy (Terfve
et al., 2012). With this adapted routine we constructed a fuzzy logic model describing
downregulation of hepatic genes responsible for drug transformation during inflamma-
tion in the body (Keller et al., 2016). Such a downregulation might cause drug over-
dosing, which is why a better understanding of the regulatory events behind this down-
regulation is of clinical relevance. The model suggested that one regulatory event is
mainly causing the downregulation of genes. This hypothesis was supported by further
experiments.
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Development of an algorithm for the simulation of SBML models and its
implementation

The most important format for biological models is SBML, which is mainly used to
describe kinetic ODE models and in which model components (referred to as species) are
connected via reactions. Those reactions can contain kinetic rate laws, which describe the
dynamic behavior of the model. However, SBML models are also allowed to comprise
other elements influencing model dynamics, e.g., events leading to sudden changes of
model components. Those other elements make simulation of SBML models a very
complicated task, which is why most simulation tools do not support all SBML elements.
Therefore, we developed the Systems Biology Simulation Core Algorithm for simulation
of SBML models with full support of all elements (Keller et al., 2013). This algorithm
was implemented in the Systems Biology Simulation Core Library (SBSCL), which can
be easily integrated into other programs. Benchmark tests showed the correctness of the
algorithm.

Graphical simulation and optimization of SBML models with SBMLsimulator

Kinetic parameters of ODE models are often estimated with respect to biological data.
This estimation involves repeated model simulation with different parameter values. In
order to enable such an optimization as well as a graphical display of the simulation
results obtained with the SBSCL, SBMLsimulator (Dörr et al., 2014) was developed.
SBMLsimulator comprises the SBSCL for simulation of SBML models and the opti-
mization toolbox EvA2 for parameter estimation. In a small experiment with a pub-
lished model, the capability of SBMLsimulator to identify biochemical parameters was
demonstrated.

Applying SBMLsimulator to three published models and testing their robustness
to experimental noise in a parameter estimation study

The quality of experimental data has a great impact on the estimation of biochemical
parameters in dynamic models. How well such parameters can be identified depends on
the model structure and the quality of the experimental data such as the measured time
points. Those data are usually very noisy, which is why we used SBMLsimulator in a
simulation study to investigate how robust three published models with fixed measured
time points are to different magnitudes of experimental noise. For all three models a
mean noise of 20% led to several parameters not being reliably identifiable. By taking
the noise in the data into account during parameter estimation, which was previously
tested for a small toy model (Raue et al., 2013), we could significantly improve the
estimation results.
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Investigating robustness of 
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Chapters 3/4 

Simulation (Systems Biology 
Simulation Core Library) 

 
Chapter 5 

Kinetic models Logical models 

Figure 1.1: Structure of this thesis. The thesis contains chapters describing the development
and implementation of methods for simulation and optimization of models as well as chapters
covering the application of such methods. CNORfuzzy, which was developed elsewhere and
only slightly adapted for this thesis, is integrated into this structure for better clarity, as it was
applied in Chapter 4.

1.2 Thesis organization
The thesis is subdivided into eight chapters. In Chapter 2 the fundamentals of logical
and kinetic modeling, such as model formats and simulation of a model are explained.
Chapter 3 shows important steps during the construction of a model especially focusing
on methods for model optimization. The main results of this thesis are presented in
detail in Chapters 4 to 7. Besides the presentation of the applied methods and the results,
each of these chapters comprises a motivation of the topic as well as a discussion, a
summary, and a conclusion section. In Chapter 4 the elucidation of regulatory events
responsible for downregulation of hepatic drug detoxification upon IL-6 is described.
Chapter 5 contains the explanation of the algorithm for the simulation of SBML models
and its implementation in the Systems Biology Simulation Core Library. This library
was connected to the optimization toolbox EvA2 in the tool SBMLsimulator, which is
covered in Chapter 6. The application of SBMLsimulator in a parameter estimation
study investigating the robustness of models against experimental noise is presented in
Chapter 7. Chapter 8 concludes this thesis with a summarization of the main results
and a discussion. Figure 1.1 shows the structure of the thesis. Chapters 4 to 7 can be
subdivided into chapters describing methods and their implementation (Chapters 5 and
6) and chapters covering application of methods (Chapters 4 and 7).
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Chapter 2

Computational modeling approaches in
systems biology

Understanding complex biological networks requires integrated experimental and com-
putational research (Kitano, 2002). Computational models in systems biology can help
here by providing hypotheses for the explanation of biological behavior. Models predict
a certain behavior of a network, which can be compared to experimental data.

The biological networks modeled computationally often belong to one of the following
three types:

• cell signaling networks (Janes and Lauffenburger, 2013) comprising the processing
of certain signals, such as stimulation of the cell with a certain substance,

• metabolic networks (e.g., the citric acid cycle), which contain metabolites (i.e.,
intermediate products) connected via metabolic reactions and are necessary for
cell function (Kaplan et al., 2009), and

• gene regulatory networks, which contain genes and regulatory proteins interacting
with each other (Hecker et al., 2009).

If the prediction of a model differs substantially from experimental data, adaptations
of the model are necessary. Apart from explaining experimental data, models can also
suggest further experiments in order to refine a certain hypothesis. This might, e.g.,
involve a more detailed investigation of a certain dynamic process. In systems biology
an iterative cycle of model refinements and new experiments is common, during which
the understanding of the studied system is continuously improved.

Depending on the experimental data available and the biological network which is in-
vestigated, different types of computational models are developed. Two of the most fre-
quently used model types are logical models and ordinary differential equation (ODE)
models. This chapter gives an introduction on both modeling approaches, model simula-
tion, and the modeling formats used for both approaches.
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Chapter 2 Computational modeling approaches in systems biology

2.1 Logical models
Logical models can solve qualitative questions like whether stimulation of a specific
signaling cascade activates a certain transcription factor (Samaga and Klamt, 2013). In
such models logical species representing biological entities (e.g., proteins) are connected
via logic gates. A gate is associated with a combination of the logic functions AND, OR,
and NOT (Morris et al., 2010). Thus a gate describes how the state of a node depends on
the values of its input nodes.

Boolean models are the most widely used logical models. In them the species can
only have two values (also called states): 0 (meaning inactive) and 1 (active). An AND
function in a Boolean model returns 1, if all input nodes are active. For an OR function to
be 1, it suffices that one of the input nodes is 1. A NOT function has only one incoming
node and returns 0, if the input node is 1, and vice versa.

Boolean models are a big simplification of biological reality, but have in several cases
enabled to improve understanding of large signaling networks (Samaga et al., 2009;
Saez-Rodriguez et al., 2009; Ryll et al., 2011; Saez-Rodriguez et al., 2011).

2.1.1 Logical steady state
A typical question in logical modeling is the determination of the states of all the species
in a logical networks given that some species are stimulated or inactivated. This stim-
ulation or inhibition often involves the nodes in the network which are not activated or
inhibited by other nodes (i.e, the so-called source nodes). In order to compute the states
of the other nodes, the determination of a so-called logical steady state introduced previ-
ously (Klamt et al., 2006) is a straightforward method.

The first step of the algorithm is the fixing of the values of activated species to 1 and
those of inhibited species to 0. Then in each following step the states of nodes that are
activated/inhibited by the processed species are computed. If the state of one node has
just been determined for the first time or changed due to a new computation, the states
of nodes activated/inhibited by this node are recomputed. The algorithm proceeds until
the recomputations of all states do not cause changes any more.

If the states of all source nodes of the network are fixed and the network does not
contain feedbacks, the logical steady state can be determined uniquely. An example for
the computation of a logical steady state is shown for a toy network in Figure 2.1.

2.1.2 The SIF format
One important format for working with logical models is SIF (simple interaction file).
It is one of the main formats of the important software Cytoscape for visualization of
biological networks (Shannon et al., 2003).

The SIF format enables to set a relationship between two nodes of a network. Each
line of a SIF file contains such a relationship between two nodes, in which the first node
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Figure 2.1: Example for the determination of the logical steady state of a toy network. The net-
work contains species (rectangular nodes) as well as AND, OR and NOT gates (circular nodes).
We now assume that the value of node A is 0 (red color) and the values of B and C are 1 (green
color). Based on those settings the logical steady state can be computed in a step-wise fashion
(right part of the figure). Beginning with the fixing of the source nodes, in each following step
the states of the successors of the currently processed nodes are determined.

influences the second node. In this thesis we use "activates" (1) and "inactivates" (-1) as
relationships. If one node is activated/inhibited by several other nodes, we assume that
these other nodes are connected by the OR function. In order to define AND connections,
we introduce a so-called dummy node before the influenced node. This shows that the
SIF format is suitable for defining Boolean networks.

For the network in Figure 2.1 the SIF definition is as follows:

A 1 AND1
B 1 AND1
B 1 AND2
C 1 AND2
AND1 1 D
AND2 1 E
E -1 F
D 1 G
F 1 G

AND1 and AND2 are the dummy nodes for defining the AND connections. The input nodes
of D (A and B) as well as the input nodes of E (B and C) are thus by definition AND
connected In contrast, the input nodes of G (D and F) are OR connected.
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Chapter 2 Computational modeling approaches in systems biology

2.2 ODE models in systems biology

With ordinary differential equations (ODEs) one can describe how the derivatives of
biological network variables with respect to time can be calculated based on the values
of the variables. The ODEs of all variables are also referred to as an ODE system. The
variables in an ODE model in systems biology are most often species representing, e.g.,
proteins or biological metabolites. Those species are connected by reactions, whose
velocities are described by rate laws.

The ODE referring to a species can be determined from the velocities of all reactions
the species takes part in, which is explained below. If all ODEs as well as the initial
values of the variables are known, numerical integration routines can solve the ODE
system. This means that the values of all variables are determined over time leading to,
e.g., concentration curves of proteins.

2.2.1 The stoichiometric matrix

The stoichiometry of a species in a reaction is its relative turnover rate during the reac-
tion. In the reaction 2A+B→ 2C A and C have the stoichiometry 2, whereas B has
stoichiometry 1. The stoichiometric matrix N of a model comprises for all reactions ~R
(in columns) of a biological system the stoichiometries of the species ~S (in rows). If a
species is not affected by some reaction, the corresponding stoichiometry in the matrix
is 0.

Given the ODEs ~ν for all reactions and the stoichiometric matrix, one can derive the
ODEs for all species ~S:

d~S
dt

= N~ν (2.1)

This means that for a specific species Sk the ODE is determined as follows:

dSk

dt
=
|~R|
∑
i=1

(ni,k ·νi) (2.2)

2.2.2 Rate laws

A rate law is an ODE that describes how to determine the velocity of a reaction based
on species values and certain kinetic parameters. Based on the type of reaction, different
types of rate laws are used:

• Generalized mass-action kinetics are derived from the mass action law (Heinrich
and Schuster, 1996) and can be used to describe the kinetics of different types of
reactions.
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• Michaelis-Menten can describe reactions catalyzed by enzymes (Johnson and Goody,
2011), for which mass-action kinetics are often not appropriate.

• Convenience kinetics are a generalization of Michaelis-Menten kinetics especially
dedicated to enzyme-catalyzed reactions involving several substrates and products
(Liebermeister and Klipp, 2006).

2.2.3 Model simulation
We now assume that the ODEs dx(i)

dt = fi(x(1), . . . ,x(n)) of all variables x(i) of a biolog-
ical system as well as the initial values of the variables are given. Then one key problem
in ODE modeling is the determination of the values of all variables over time. The
simulation of such an ODE system solves this problem. Most ODE systems cannot be
simulated exactly, but several so-called integration routines (also referred to as solvers)
exist for approximating the values of the variables precisely.

A straightforward way to solve an ODE system is to continuously increase the value
of time by a certain step size h starting with the initial time. At each time point slopes
can then be determined based on the current values of the variables, starting with the
initial values at time point 0. The values of the variables xpred(i, tk+1) at the following
time point tk+1 are computed with the current values of the variables xpred(i, tk) and the
slopes fi(xpred(1, tk), . . . ,xpred(n, tk)):

xpred(i, tk+1) = xpred(i, tk)+h · fi(xpred(1, tk), . . . ,xpred(n, tk)) (2.3)

This algorithm is called Euler method (Press et al., 1993).
However, the Euler method with its constant step size h is not suitable for many kinds

of ODE systems. There are stiff ODE systems, for which an extremely small step size is
necessary within some (usually very short) periods of time in order to solve those systems
with a tolerable error. As an extremely small step size throughout the whole simulation
process would lead to an unacceptably high running time, integration methods need to be
able to adapt their step size for such time periods. Therefore, applying the Euler method
with a very small h to those ODE systems is not indicated. One method with an adaptive
step size that is able to solve stiff ODE systems is Rosenbrock’s method (Press et al.,
1993). It is used in this thesis. We leave out the complex details of Rosenbrock’s method
here, as they are not necessary for understanding the thesis.

2.2.4 The model format SBML
SBML (Hucka et al., 2004) is the most important format for describing and storing ODE
models in systems biology. There are several levels and versions of the SBML specifi-
cation, level 3 version 1 being the latest of them (Hucka et al., 2010). SBML is derived
from XML and also comprises parts of MathML 2.0 (Carlisle et al., 2001). Like XML
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elements, the elements of SBML are hierarchically structured. SBML comprises several
elements for the description of models in systems biology:

• species representing proteins or metabolites,

• reactions between those species,

• kinetic laws for these reactions allowing to declare the rate laws (in MathML),

• compartments (e.g., the cell), in which reactions can take place,

• parameters for definining variables in the system other than species,

• function definitions for defining functions that can be referred to in mathematical
expressions, such as, e.g., kinetic laws,

• initial assignments for defining how to determine the initial values of variables,

• assignment rules for defining how the values of variables are determined based on
other variables during the whole simulation time,

• rate rules for stating how the derivatives of certain variables (e.g., species not tak-
ing part in any reaction) are computed based on other variables,

• algebraic rules for expressing relationships between variables that have to be valid
during the whole simulation process, and

• events for stating sudden changes of variables of the biological system.

While SBML is still most often used for describing ODE models, during the last years
several extensions have been specified that enable to use SBML for other purposes. How
a model is supposed to be drawn can, e.g., be specified with the SBML layout extension
(Gauges et al., 2006). The SBMLqual extension (Chaouiya et al., 2013b) facilitates the
definition of qualitative models, which also involve logical models.

2.2.5 JSBML
SBML models need to be read in, modified and stored by systems biology software.
To this end, libraries were created that provide an application programming interface
(API) which facilitates the processing of SBML models. Those libraries can easily be
integrated into software supporting SBML.

The oldest library that completely supports all levels and versions of SBML is lib-
SBML (Bornstein et al., 2008). libSBML is written in C and C++, but there are also
wrappers for including libSBML into software tools written in other programming lan-
guages, such as Java.
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Using libSBML in software implemented in Java does not lead to fully platform inde-
pendent tools due to the internal C/C++ code. Furthermore, it is difficult to implement
Java Web Start applications with libSBML. Therefore, JSBML was developed, which is
completely written in Java (Dräger et al., 2011; Rodriguez et al., 2015). Its type hier-
archy closely resembles the hierarchy of SBML elements. JSBML contains a parser for
MathML, which transforms a formula into an abstract syntax tree that can be processed,
e.g., by simulation software.

2.3 Comparison of the two modeling approaches
ODE models explain dynamic mechanisms behind a behaviour of a biological system,
whereas logical models usually only describe the order, in which a certain process (e.g.,
a signal transduction through a certain pathway) proceeds. In order to construct an ODE
model, knowledge about some reactions and their rate laws is usually a pre-requisite.

Logical models are often adequate for the investigation of interactions between many
proteins (Morris et al., 2010). Prior knowledge about mechanistic details is not necessary
for constructing such models. Therefore, logical models are usually much larger than
ODE models.
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Chapter 3

The process of model construction

The creation of a logical model or an ODE model proceeds in several steps. This involves
obtaining information about model structure at first. At the end of the construction pro-
cess the model is often optimized with respect to biological data. To this end, heuristic
optimization routines can be applied. This chapter first gives an introduction about those
heuristic optimization routines. Then the model construction process is described for
logical models and ODE models. The most important repository for SBML models,
the BioModels database, is also introduced as well as the path2models project, which
involved generation of numerous pathway models in SBML.

3.1 Heuristic optimization methods for model
optimization

Many optimization problems involve a large solution space, which greatly hampers the
search for an optimal solution in acceptable running time. Therefore, heuristic optimiza-
tion methods are used that cannot guarantee to find the best global solution, but are able
to find a good solution of the problem within a tolerable amount of time. Many of these
algorithms involve random steps and are therefore stochastic. Several stochastic opti-
mization methods are derived from natural processes. Important examples are ant colony
optimization (Dorigo et al., 2006), which is based on the behaviour of ant colonies, and
particle swarm optimization (Kennedy and Eberhart, 1995; Clerc and Kennedy, 2002;
Clerc, 2005), which is inspired by movements of birds in a flock. Some nature-inspired
optimization algorithms have proven to be suitable for solving complex optimization
problems in systems biology (Dräger et al., 2009). In this thesis differential evolution,
which is a special type of evolutionary algorithm, is used for estimation of model pa-
rameters. Therefore, evolutionary algorithms in general and differential evolution are
explained in the following sections.
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3.1.1 Evolutionary algorithms
Evolutionary algorithms are based on the principles of biological evolution (Freitas,
2007). At the beginning of an evolutionary algorithm, a population of candidate so-
lutions is randomly initiated. Then the individual solutions of the population undergo
recombination, mutation, and selection in each so-called generation of the algorithm.
The quality of a solution is determined by a fitness function, whose value the algorithm
tries to improve over time. The algorithm terminates, e.g., after a certain number of
fitness evaluations or when the algorithm has converged to some fitness value.

Depending on the type of evolutionary algorithm, recombination, mutation, selection,
and the representation of the individual solutions are defined differently. For the widely
used genetic algorithm (Holland, 1975) the solution is represented by a vector of numbers
of fixed size. The definition of recombination and mutation is straightforward then: A
recombination between two candidate solutions is defined as a random exchange of a
part of the two respective vectors similar to chromosomal crossover during meiosis. A
mutation is a random change of a number in the vector of a candidate solution.

3.1.2 The toolbox EvA2
EvA2 (Kronfeld et al., 2010; Becker and Kronfeld, 2014) is a Java framework that com-
prises a large number of evolutionary algorithms as well as other heuristic optimization
routines. It has been successfully applied to optimization of biological systems in several
studies (Dräger et al., 2007b,a, 2009; Kronfeld et al., 2009; Raue et al., 2013).

The user can choose between a large number of algorithms, such as

• differential evolution (Storn, 1996; Storn and Price, 1997),

• hill climbing (Tovey, 1985),

• simulated annealing (Kirkpatrick et al., 1983),

• evolution strategies (Rechenberg, 1973; Schwefel, 1975),

• genetic algorithms (Holland, 1975), and

• particle swarm optimization (Kennedy and Eberhart, 1995).

Many of these methods contain specific parameters, which the user can specify in
EvA2 (see Figure 3.1).

3.1.3 Differential evolution
Differential evolution (Storn, 1996; Storn and Price, 1997) was one of the best-performing
methods in a study comparing the estimation of biochemical model parameters with dif-
ferent heuristic optimization algorithms (Dräger et al., 2009). In differential evolution a
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Figure 3.1: EvA2 window for selecting the optimization routine as well as specific and general
parameters. This window lets the user select one of numerous optimization methods provided
by EvA2. For a selected method EvA2 then enables setting several parameters. In this case
differential evolution is selected and the user can, e.g., set the values F and λ , which are specific
for differential evolution. General parameters, such as the population size, can also be specified
in this window.
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candidate solution consists of a vector of parameters. In the variant used in this thesis
(named current-to-best), in each generation G a vector v is generated for every candidate
solution xi,G as follows (Storn and Price, 1997):

v = xi,G +λ · (xbest,G− xi,G)+F · (xr1,G− xr2,G) (3.1)

xr1,G and xr2,G are vectors from the population which are different from each other as
well as from xi,G. xbest,G is the currently best candidate solution, whereas F and λ are
constants of the algorithm set by the user.

After v has been created, it is recombined with xi,G based on a crossover probability
CR ∈ [0,1] yielding a vector u. If the fitness of u is better than that of xi,G, it is included
in the population of the following generation. Otherwise this population still consists of
xi,G.

3.2 Retrieving information about model structure

Structural information for constructing logical models or dynamic ODE models can be
collected from a large number of literature sources. Especially for large logical models
this literature search can be a very tedious process. Some models are based on hundreds
of different literature sources (e.g., Ryll et al. (2011)).

An alternative to a literature search is the extraction of the structure of a model from
existing models. One example for that is HepatoNet1 (Gille et al., 2010), which is a
structural model containing large parts of the hepatocyte metabolism but lacking kinetic
information. If one has the aim to model parts of this metabolism dynamically, the
respective sub-model of HepatoNet1 can be a good starting point.

Alternatively, the structure of a pathway can be downloaded from KEGG (Kyoto En-
cyclopedia of Genes and Genomes) (Kanehisa and Goto, 2000). Numerous pathways
are contained in the PATHWAY section of this database (Kanehisa et al., 2012). The
standard format of downloaded KEGG pathways is KEGG Markup Language (KGML).
KGML can be converted into other formats like SBML and SBMLqual with a dedicated
software tool called KEGGtranslator (Wrzodek et al., 2011). Information from KEGG
can then be used for logical as well as for ODE modeling.

3.3 Optimization of logical models with
CellNetOptimizer

Having information about a possible model structure given, a logical model is usually
optimized with respect to experimental data. These experimental data usually comprise
different experimental conditions (i.e., stimulation or inhibition of certain components
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contained in the respective model). The stimulation and inhibition of components is
named perturbation in general.

The optimization of the network can involve computing a logical steady state (see
2.1.1) under each experimental condition and then comparing the predicted states of
the species to the data. As the model states are discrete, the data usually need to be
transformed to discrete values prior to comparison. If the model prediction differs from
the experimental data, one can think of model adaptations such as addition or removal of
certain species or the alteration of logical gates. The described approach was used, e.g.,
to create an IL-1 and an IL-6 signaling model (Ryll et al., 2011).

Instead of manually optimizing a logical model, a model can also be calibrated auto-
matically. Such a routine suitable for the optimization of Boolean models is implemented
in the MATLAB software CellNetOptimizer (CNO) (Saez-Rodriguez et al., 2009) and in
its variant in R CellNOptR (Terfve et al., 2012). The experimental data are transformed
into the interval [0,1] with a dedicated normalization function. Besides the experimental
data, the possible network structure has to be provided to CNO in the form of interac-
tions between model species. For CellNOptR this structure needs to be given in the SIF
format (see 2.1.2). This network structure is also called prior knowledge network (PKN)
by the creators of CNO.

CNO first compresses the PKN by trying to remove nodes that are neither experimen-
tally measured nor perturbed and fusing respective interactions. In the simplest case a
node with one incoming interaction edge from a measured or perturbed node and one
outgoing interaction edge to such a node is removed and the two interactions are fused.
Besides the measured or perturbed nodes the compression finally retains only nodes that
are necessary for preserving logical consistency. This involves nodes having several in-
coming and several outgoing interaction edges to measured or perturbed nodes.

After the compression of the PKN in an expansion step, Boolean models that fit to
this compressed PKN are combined into a superstructure. This set of Boolean models
should contain all combinations of possible logic gates resulting from the PKN. For a
node in the network with two incoming activating interactions, the logic gate can, e.g.,
be an AND connection of the respective two states or an OR connection. A NOT gate is
used for an inhibitory interaction. If a Boolean model comprises more then one incoming
interaction for some node, these inputs are by default OR connected (compare the defini-
tion of SIF in Section 2.1.2). Therefore, CNO adds AND gates to the superstructure. In
order to limit the size of the superstructure, only all AND gates consisting of some fixed
maximum number of interactions are created. This maximum number is by default 2 for
CellNOptR.

In the calibration step CNO now tries to find the model variant (i.e., a Boolean model
comprising a certain combination of logic gates) from the superstructure that has the
minimum fitness value with respect to the experimental data. The training is done with
a genetic algorithm, during which the fitness θ(P) of a model variant P is computed as
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follows (Saez-Rodriguez et al., 2009):

θ(P) = θ f (P)+α ·θs(P) (3.2)

In this formula θ f (P) stands for the mean squared error (MSE) between the normalized
experimental data and the predicted logical steady states for the different experimental
conditions. θs(P) is a term which penalizes large models. This MSE can be computed as
follows (adapted from Morris et al. (2011)):

MSE =
1
N

Nc

∑
i=1

Ns

∑
j=1

(xpred(i, j)− xm(i, j))2 (3.3)

xpred(i, j) and xm(i, j) represent the predicted value for experimental condition i and
species j or the respective normalized measured value, respectively. N stands for the
total number of measurements, Nc for the number of experimental conditions, and Ns for
the number of measured model species. If a measurement is missing for some experi-
mental condition and species, the corresponding quadratic term is usually ignored in the
computation of the MSE.

After the calibration step, the model variant with the best fitness is further processed.
In a reduction step CNO removes single interactions, if this does not lead to a worse
fitness value of the model.

3.4 Construction of dynamic ODE models
In contrast to logical models, for dynamic ODE models kinetic rate laws have to be
added to reactions. These rate laws can be taken from literature or dedicated databases
(like SABIO-RK). Another possibility is the automatic generation of kinetic equations
of a certain type with SBMLsqueezer. Some kinetic parameters in these equations are
often unknown, which makes their estimation necessary.

3.4.1 SABIO-RK: a database with kinetic information

SABIO-RK (Wittig et al., 2012) is an online database updated and maintained by the
Heidelberg Institute for Theoretical Studies. The database is continuously updated with
literature information, whereby the literature data are included manually into SABIO-
RK. SABIO-RK comprises kinetic equations for reactions as well as values of kinetic
parameters in those equations. The kinetic entries in the database are associated with
further information like the identifier of the reaction in the KEGG database (Kanehisa
et al., 2012), the organism the data came from, and environmental conditions (such as
pH and temperature) under which the kinetic parameters were determined. A modeller
can e.g., search in the SABIO-RK web interface for a specific reaction enzyme and an

18



3.4 Construction of dynamic ODE models

organism. Then the web interface returns the rate laws fitting the query (i.e., rate laws for
the reaction with kinetic parameters determined in the specified organism). The found
kinetic equations can be downloaded in an SBML file. SABIO-RK contains more than
45,000 entries. With the increasing number of kinetic data integrated, the database will
become even more important.

3.4.2 Automatic generation of kinetic equations with SBMLsqueezer
The addition of rate laws to SBML models by hand is very time-consuming and error-
prone. Therefore, SBMLsqueezer (Dräger et al., 2008, 2015) has been developed, which
facilitates this process. SBMLsqueezer enables to search for rate laws in SABIO-RK and
provides a dedicated wizard for this (see Figure 3.2). Alternatively, one can add specified
rate laws of different types with default kinetic parameters. SBMLsqueezer supports
several types of rate laws including mass-action kinetics, Michaelis Menten, convenience
kinetics (Liebermeister and Klipp, 2006), and modular rate laws (Liebermeister et al.,
2010).

A straightforward way to use SBMLsqueezer is as follows: For all reactions in an
SBML model an adequate rate equation is searched for in SABIO-RK. Typical search
criteria for a reaction could be its KEGG identifier and the organism to which the model
is associated. After this database search, the reactions lacking a rate law from SABIO-
RK can be equipped with appropriate rate equations by SBMLsqueezer. To this end,
SBMLsqueezer chooses a rate law for each reaction based on user settings and properties
of the reaction like the number of reactants and products as well as the reversibility of
the reaction. At the end of this process the user can look over the rate equations of
all reactions. If one of those rate equations does not seem appropriate, SBMLsqueezer
enables to process this single reaction individually. A search in SABIO-RK with new
search criteria can be started or a different type of rate law can be chosen for the reaction.

3.4.3 BioModels database and the path2models project
An important repository for biological models is the BioModels database (Le Novère
et al., 2006; Li et al., 2010), which contains hundreds of published models. These mod-
els can be downloaded in the SBML format and used for further research. Apart from
published models, the BioModels database also comprises a large collection of models
based on KEGG Pathway (Kanehisa et al., 2012). Those models were created in the
path2models project (Büchel et al., 2013).

The path2models project involved downloading metabolic and non-metabolic models
from KEGG, which were then processed with KEGGtranslator. The models were con-
verted into SBML with KEGGtranslator (compare 3.2). Non-metabolic pathways were
converted into qualitative models using the SBMLqual extension, whereas the metabolic
pathways were transformed into ODE models. The metabolic models converted with
KEGGtranslator were further processed with SBMLsqueezer, which first involved a

19



Chapter 3 The process of model construction

Figure 3.2: Wizard for SABIO-RK search in SBMLsqueezer. SBMLsqueezer lets the user specify
different terms available in SABIO-RK for searching rate laws for a certain reaction. These terms
comprise the KEGG identifier of the reaction, the name of the enzyme catalyzing the reaction,
and the pH value as well as the temperature, for which the kinetic parameters of the reaction were
determined.
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search for kinetic rate laws in SABIO-RK. Modular rate laws with default parameter
values were added to those reactions for which no kinetic law could be found in SABIO-
RK. So the path2models project is an example how large scale ODE models can be
constructed automatically.

3.4.4 Estimation of unknown parameters

Databases with kinetic information like SABIO-RK can help to derive kinetic parameters
for biochemical models. However, a common problem in systems biology is that kinetic
parameters are often not known or uncertain (Costa et al., 2011; Chen et al., 2012). Then
estimation or adjustment of these parameters with respect to time-resolved experimental
data is necessary (Dräger and Planatscher, 2013). This estimation of model parameters
is also called model fitting. As the search space for parameter estimation is usually
very large and complex, heuristic optimization routines like evolutionary algorithms are
applied for this task. They are able to find optima in the parameter space in acceptable
time while being robust to noisy environments (Sun et al., 2012).

The fitness function that is minimized in parameter estimation represents the distance
between the measured data xm and the data xpred obtained from simulation of the model
with the current parameter values. The end time of this simulation should be similar to
the latest time point in the experimental data. In order to enable such a simulation, all
initial values of variables need to be known. The initial value of a variable can either be
set to a specific value or it needs to be estimated together with the kinetic parameters. If
the variable is measured in the data at time point 0, the initial value can be taken from
the experimental data. Alternatively, there are often assumptions about an initial value
(e.g., the value is assumed to be 0 at time point 0).

A simple way to compute the distance of xpred and xm is adding the squared distances
of all similar data points (i.e., data points representing the same time point and model
variable in xpred and xm). However, this gives large measurement values a high impact on
the value of the fitness function, which is why the distances of the data points are usually
divided by some weighting factor to circumvent this problem.

3.4.5 The problem of parameter identifiability

When estimating unknown parameters with respect to experimental data, a major prob-
lem is often that the values of several parameters cannot be identified. This unidentifia-
bility can be due to the structure of the biochemical model (structural unidentifiability).
Another possible reason for unidentifiable parameters are the experimental data used
for parameter estimation (practical unidentifiability) (Raue et al., 2009). These data are
usually noisy and do not always contain a sufficient number of data points.

For detecting unidentifiable parameters, several methods are available (Bellu et al.,
2007; Quaiser and Mönnigmann, 2009; Balsa-Canto et al., 2010; Kreutz et al., 2013),
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of which only the latter is dedicated to practical unidentifiability. Apart from these ap-
proaches, one can also assess the identifiability of parameters by repeating the parameter
estimation multiple times (Schilling et al., 2009). In order to exclude results for which
only a local fitness optimum has been found only some of the best parameter sets (e.g.,
the 50% of all solutions with best fitness) are considered further. With those parameter
sets, one calculates the standard deviations for all parameters. Parameters with extremely
high standard deviations (e.g., more than 50% of the mean estimated parameter value)
can then be considered to be unidentifiable. The described approach approach will also
be applied in this work.

22



Chapter 4

Modeling IL-6 induced hepatic gene
regulation using fuzzy logic

The aim of the Virtual Liver Network (VLN) is the development of a model involving
the central functions of the human liver (Holzhütter et al., 2012). These functions com-
prise synthesis and storage of essential substances, but also the detoxification of various
substances such as, e.g., drugs. This drug detoxification can be impaired during an in-
flammation in the body, which might cause drug overdosing. In this chapter, which is
mainly based on Keller et al. (2016), work in the VLN is described that involved a special
type of logical modeling called fuzzy logic modeling. After an extensive literature search
and analysis of different experimental data, a fuzzy logic model was finally created in
order to identify regulatory events leading to a decreased drug detoxification. The main
hypothesis suggested by the model was backed by further experimentation.

4.1 Impaired drug clearance during acute phase
response in the liver

The human liver is the most important organ for detoxification of substances, such as
prescribed drugs, in the body. 60 to 80% of all drugs are extensively metabolized (i.e.,
chemically modified) in the liver (Zanger et al., 2008). Several proteins are responsible
for drug metabolization and transport:

• Cytochromes P450 (CYPs) catalyze phase I transformation of drugs, which mainly
involves oxidation of the drug molecules leading to a higher solubility (Zanger
et al., 2008; Zanger and Schwab, 2013).

• Phase II drug metabolizing enzymes (DMEs) consist of UDP-glucuronosyltransfe-
rases (e.g., UGT1A1, UGT2B7), sulfotransferases (e.g., SULT1A1, SULT1B1),
N-acetyltransferases (e.g., NAT1, NAT2), glutathione S-transferases (e.g., GSTP1,
GSTA2) and methyltransferases (e.g., TPMT) and transfer certain functional groups
to the drug molecules (Jancova et al., 2010).
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• ABC (ATP-binding cassette) transporters (e.g., MDR1/ABCB1, ABCC2, ABCG2)
are able to export drugs from cells (Petrovic et al., 2007).

• SLC transporters (e.g., SLC10A1, SLC22A7, SLCO1B1) are associated with the
uptake of drugs in cells (Petrovic et al., 2007).

Upon infection or injury and during many chronic diseases the acute phase response
(APR), which is part of the early defense system of the body, is initiated (Cray et al.,
2009; Gruys et al., 2005). It involves the release of pro-inflammatory cytokines (i.e.,
mediators of inflammation) like IL-6, IL-1β , and TNFα , which leads to a drastically
changed expression of several genes. Large amounts of acute phase proteins (APP) like
C-reactive protein (CRP) or Serum amyloid A (SAA) are eventually synthesized.

Under inflammatory conditions the drug clearance capacity of the liver can be de-
creased, because many genes encoding drug metabolizing enzymes and transporters
(DMET) are downregulated by the released pro-inflammatory cytokines (Aitken et al.,
2006; Morgan et al., 2008; Klein et al., 2014). This downregulation of DMET genes
might cause overdosing of a drug and lead to undesirable effects such as damage of liver
tissue (Morgan, 2009; Slaviero et al., 2003; Renton, 2005). Some drugs, e.g., many
chemotherapeutics are especially sensitive to overdosing, as their therapeutic indexes
(i.e., the ratios between the toxic drug doses and the doses for the proper drug reaction)
are comparably small (Harvey and Morgan, 2014). Therefore, the investigation of the
mechanisms behind the downregulation of DMET genes during acute phase response is
of clinical relevance. We focused on examining the regulation of DMET genes by IL-6,
which is the most important mediator of the acute phase response.

4.2 Regulation of DMET genes and IL-6 signaling:
previous knowledge

Transcription of genes is regulated by proteins called transcription factors. A specific
type of transcription factors are nuclear receptors, which bind to DNA and whose ac-
tivities are modulated by ligands binding to them (Perissi and Rosenfeld, 2005). An
important role in the regulation of DMET genes was suggested for several nuclear re-
ceptors involving the aryl hydrocarbon receptor (AhR), the constitutive androstane re-
ceptor (CAR), the pregnane X receptor (PXR), and the peroxisome proliferator-activated
receptor-α (PPARα) (Pascussi et al., 2008; Xie, 2009). These transcription factors often
act as sensors for xenobiotics (i.e., foreign substances, such as drugs), which leads to
a modified transcription factor activity and ultimately to an increased gene expression.
In contrast to this induced gene expression, other transcription factors like HNF-1α ,
HNF-4α , and CCAAT-enhancer binding proteins (C/EBPs) are responsible for a basal
expression of DMET genes (Jover et al., 2009; Zanger and Schwab, 2013).

There is evidence that the downregulation of DMETs by pro-inflammatory cytokines
involves several of the mentioned transcription factors for human as well as for mouse
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liver (Jover et al., 2002; Gu et al., 2006; Sun Kim et al., 2007; Congiu et al., 2009; Wang
et al., 2011). The respective studies suggested that a strong crosstalk between signaling
pathways and transcription factors is responsible for this downregulation. Whether one
specific signaling pathway is mainly causing the downregulation of many DMET genes
was not clear. However, a coordinated mechanism with a major role of the retinoid X
receptor (RXRα), which dimerizes with several nuclear receptors such as CAR, FXR,
LXR, PPAR, and PXR, was proposed (Ghose et al., 2004; Lefebvre et al., 2010).

While the signaling pathways contributing to a modified DMET activity were not
clearly identified, it is, however, known that IL-6 stimulates the JAK/STAT, MAPK/ERK,
and PI3K/AKT pathways (Eulenfeld et al., 2012; Ryll et al., 2011). According to pre-
vious work, the downregulation of the important drug metabolizing enzyme CYP3A4
by IL-6 does not depend on the JAK/STAT pathway (Jover et al., 2002), but this in-
dependence of JAK/STAT was not shown for other DMET genes. MAP kinases can
presumably phosphorylate nuclear receptors, which could cause an inhibiting relocal-
ization of the receptors (Ghose et al., 2004; Burgermeister et al., 2003) ultimately in-
fluencing DMET gene expression. Furthermore, PI3K/AKT might be responsible for
relocalization of NF-κB, which can inactivate nuclear receptor function, but also bind
to promoters (i.e., the regulatory regions of the DNA near which transcription of a gene
starts) of DMET genes (Zordoky and El-Kadi, 2009). Figure 4.1 summarizes the current
knowledge about possible DMET regulation induced by IL-6.

4.3 Constructing a prior knowledge network from
literature

Based on literature knowledge, a prior knowledge network (PKN) involving IL-6 signal
transduction and following gene regulation was developed. Figure 4.2 shows the struc-
ture of the PKN, which is available in the SIF format (see 2.1.2). The signal transduction
part of the PKN is based on a Boolean model by Ryll et al. (2011), which contains sev-
eral signaling pathways. For the sake of simplification, all feedback loops were removed
from this model, as our investigation was not targeted to secondary regulatory effects.
Additionally, several input and output nodes which were not relevant for us were elim-
inated. In order to simplify the PKN for further processing, we converted the AND,
OR, and NOT gates of the network into activating or inhibiting interactions from the
respective input species of the gate to the output species. Afterwards, a gene regulation
module was added to the PKN by integrating biological knowledge from databases (such
as BIOBASE TRANSFAC) and literature. A list of all the references the PKN is based
on is provided as an appendix of this thesis (Appendix A). The resulting PKN comprises
all DMET genes as well as the transcription factors STAT3, NF-κB, AhR, HNF-1α ,
HNF-4α , ELK1, GR, and cFOS. The complexes between RXRα and any of the nuclear
receptors known to dimerize with RXRα are summarized in the network by a species
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Figure 4.1: IL-6-stimulated pathways and their inhibition by selective inhibitors. The signal trans-
duction by IL-6 proceeds via a receptor complex consisting of glycoprotein 130 (gp130) and gp80
(IL-6Rα) and stimulates the Janus kinase (JAK)/signal transducer and activator of transcription
(STAT) pathway (Eulenfeld et al., 2012). Additionally, IL-6 also causes activation of the mitogen
activated protein kinase (MAPK)/ extracellular regulated kinase 1 and 2 (ERK1/2) (MAPK/ERK)
pathway as well as of the phosphatidyl-inositol-3-kinase (PI3K) pathway (Eulenfeld et al., 2012).
PI3K stimulation then activates AKT (PKB) serine/threonine kinases (Cox and Der, 2002). AKT
could then cause activation of IκB kinase (IKK) leading to stimulation of the NF-κB pathway
(Ozes et al., 1999; Romashkova and Makarov, 1999). This activation of NF-κB is, however,
controversial (Delhase et al., 2000). For the connection of the signaling pathways to DMET reg-
ulation, which is still not clear, several mechanisms were suggested. In the figure the PI3K/AKT
pathway is indicated by blue, the JAK/STAT pathway by green, and the MAPK pathway by red
color. Nuclear receptors (NRs) and transcription factors (TFs) regulating DMET genes are con-
tained in the grey box. Positive stimulation is represented by arrows, while flat-ended arrows
stand for inhibition. In experiments the pathways were inhibited by LY294002 (PI3K), Stattic
(STAT3), and U0126 (MAPK), which is indicated by red flat-ended arrows. The figure was mod-
ified from Eulenfeld et al. (2012) as well as from Castellano and Downward (2011) and is also
based on several other literature sources (see Appendix A).
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RXR/NR. This is due to the fact that the influence of those complexes between RXRα

and nuclear receptors on DMET genes is often similar. Furthermore, elucidating which
of those complexes has the biggest influence on DMET downregulation is only possible
with very specific experiments, which were beyond the scope of this investigation.

4.4 Experiments with primary human hepatocytes
The experiments in this work were conducted by the Dr. Margarete Fischer-Bosch-
Institute of Clinical Pharmacology (IKP) Stuttgart and the Natural and Medical Sciences
Institute (NMI) at the University of Tübingen with primary human hepatocytes (PHHs)
derived from different liver donors. PHHs were used, as they are seen as the "gold
standard" model for investigation of drug metabolism and its regulation in liver cells
(LeCluyse and Alexandre, 2010; Godoy et al., 2013). The cells were isolated from par-
tial liver resections and cultivated for at least 48 h. Afterwards, the PHHs were treated
further, which will be described next.

4.4.1 Treatments of the cells
In order to elucidate which signaling pathways regulate a certain biological process,
experiments involving inhibition of these pathways are common. As also shown in Fig-
ure 4.1, all three signaling pathways known to be stimulated by IL-6 were thus inhibited
by specific chemical substances:

• PI3K (PI3K/AKT pathway) was inhibited by LY294002, which was previously
shown to decrease the activity of PI3K by at least 90% at a concentration above 20
µmol

l (Blommaart et al., 1997).

• The MAPK/ERK pathway was inhibited by U0126, a selective inhibitor for MEK1/2
at a concentration between 20 and 100 µmol

l (Favata et al., 1998; Goueli et al.,
1998).

• Inhibition of the JAK/STAT pathway was possible with Stattic, which is an effec-
tive inhibitor of STAT3 at a concentration of approximately 5 µmol

l (Schust et al.,
2006).

In some experiments single inhibitions of the pathways were conducted, whereas in other
experiments two of the three pathways were inhibited in combination. The concentra-
tions of the chemical inhibitors in the experiments were 1 µmol

l , 5 µmol
l , or 10 µmol

l
(Stattic), 20 µmol

l or 50 µmol
l (LY294002 and U0126). In control experiments the cells

were treated with dimethyl sulfoxide (DMSO), which is often used in this case, instead
of the inhibitors. After the treatment with inhibitors or DMSO, respectively, the cells
were then treated with
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Figure 4.2: (Caption next page.)28
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Figure 4.2: (Previous page.) Prior knowledge network containing IL-6 signaling and following
gene regulation. The interactions involving IL-6 signal transduction were taken from the model
by Ryll et al. (2011). We simplified this model by deleting feedback loops as well as some input
and output nodes not relevant for this investigation. Furthermore, AND, OR, and NOT gates were
converted into activating or inhibitory interactions. The model was extended with some further
signal transduction steps as well as with a gene regulation module based on literature information
(see Appendix A). In the figure the light red boxes represent genes, whereas the grey boxes stand
for signaling molecules or complexes. IL-6 is displayed in dark red. Interactions with arrows
are activating, while inhibiting interactions are represented by flat-ended arrows. The figure was
created with Cytoscape (Shannon et al., 2003).

• 10 ng
ml IL-6 dissolved in phosphate buffered saline (PBS) with 0.1% bovine serum

albumin (BSA) or

• PBS with 0.1% BSA only for control.

In previous experiments with the specific IL-6 concentration used here STAT3 was acti-
vated and expression of the important acute phase response gene CRP was also induced
without having a toxing effect on the cells (Campbell et al., 2001; Vee et al., 2009).

In addition to the described treatments involving the inhibition of signaling pathways
by chemical inhibitors, other experiments were conducted in which RXRα was knocked-
down. This knock-down was based on small interfering RNA (siRNA), which is an RNA
binding to a complementary messenger RNA (mRNA). Once the siRNA binds to the
mRNA, it prevents the translation of the respective protein, in this case the translation of
RXRα . The activity of RXRα is thereby decreased drastically.

4.4.2 Proteomic measurements
Proteins in signaling cascades are usually activated by phosphorylation of specific amino
acids contained in the protein. In order to measure protein phosphorylations, the reverse
phase protein microarray (RPA) technology was applied by the NMI Reutlingen. RPA
involves immobilizing protein mixtures on small arrays and screening with the help of
primary antibodies which are highly selective for specific proteins (Poetz et al., 2005).
Secondary fluorescently labeled antibodies binding to the primary antibodies are then
used to quantify the amount of primary antibody bound to the respective protein. The
light intensity of a certain spot in the array is thereby measured and after a background
correction with a reference spot relative fluorescence intensities (RFI) are obtained for
each protein mixture and specific antibody (Braeuning et al., 2011). With RPA more
than 100 unphosphorylated and phosphorylated proteins (also called phosphoproteins)
can be measured in parallel (Braeuning et al., 2011).

After RPA, western blot analysis was conducted to confirm some findings. A western
blot involves gel electrophoresis for protein separation based on molecular weight, the
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transfer of the resulting protein mixture to a membrane (called blotting), and the applica-
tion of a protein-specific antibody afterwards (Mahmood and Yang, 2012). The presence
of a specific (phospho)protein in the protein mixture is then again detected by using a sec-
ondary fluorescently labeled antibody. Detection by an imaging system finally produces
a visible band in the western blot. RPA is more suited for high-throughput experiments
than western blotting, as for western blotting more resources (e.g., a higher amount of
protein) are necessary (Tibes et al., 2006).

4.4.3 Real-time quantitative PCR
Real-time quantitative polymerase chain reaction (qPCR) (Heid et al., 1996) is a com-
mon technique for measuring the amount of different RNAs in a cell, which represent the
activity of the respective genes. In the PCR a complementary DNA (cDNA) is first syn-
thesized from the RNA and afterwards this DNA is duplicated in each PCR cycle. This
means that the amount of DNA grows exponentially. In the TaqMan assay applied here
a Taq polymerase is used for the synthesis of a new DNA. Furthermore, oligonucleotide
probes which bind to a specific part of the DNA sequence and contain a fluorescence
label at one end are also necessary. The Taq polymerase cleaves these probes during
DNA synthesis thereby releasing the fluorescence label. This leads to an increased flu-
orescence signal. Therefore, the fluorescence signal for a certain RNA after a specific
PCR cycle is dependent on the amount of produced DNA. As the cDNA is synthesized
from the RNA and duplicated in each PCR cycle, the amount of DNA thus depends on
the amount of RNA present in the sample. The cycle threshold (Ct) value is the PCR
cycle in which the fluorescence signal exceeds a certain threshold value. A high gene
activity is associated with a low Ct value.

2,304 simultaneous real-time qPCRs are enabled by the Fluidigm platform allowing
high-throughput experiments (Spurgeon et al., 2008). Here the expression of 86 genes
was quantified for several different treatments and donors by the IKP Stuttgart. The Flu-
idigm Real-Time PCR Analysis Software enabled automatic determination of Ct values.

4.5 Activation of signaling pathways by IL-6
Activation of different phosphoproteins after IL-6 stimulation in primary human hepa-
tocytes is shown for several time-points in Figure 4.3. Part A of the figure comprises
the measurements of 32 phosphoproteins using the reverse phase protein microarray
technology (see 4.4.2). The data suggested phosphorylations of AKT S473, ERK1/2
T202/Y204, STAT1 Y701, and STAT3 Y705, where identifiers starting with "S", "T", and
"Y" stand for phosphorylations of serine, threonine, and tyrosine residues, respectively.
The relative fluorescence intensities (RFI) of these four phosphoproteins upon IL-6 stim-
ulation are also shown in comparison to the respective control experiments (Figure 4.3, B
– E, left panel). ERK1/2 and STAT3 were already phosphorylated within 5 minutes after
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Table 4.1: Primary hepatocytes and treatments. The different male (m) and female (f) donors and
their treatments with IL-6 and specific inhibitors are shown here. Inhibitors for PI3K (PI3Ki),
MEK1/2 (MAPKi), and STAT3 (STAT3i) were used for five of the six donors. For one donor
RXRα knock-down experiments with siRNA were conducted (siRXRα).

Donor number Age Sex Treatments

1 59 f IL-6, IL-6 + PI3Ki
2 47 f IL-6, IL-6 + MAPKi + PI3Ki
3 29 f IL-6, IL-6 + STAT3i
4 48 m IL-6, IL-6 + STAT3i + MAPKi
5 71-80 f IL-6, IL-6 + MAPKi, IL-6 + PI3Ki, IL-6 + STAT3i
6 21-30 m IL-6, siRXRα

stimulation with IL-6, whereas phosphorylation of AKT and STAT1 occured after 10 -
30 minutes. The increase in phosphorylation was highest for STAT3 (more than 20-fold).
The findings with RPA were confirmed by western blot analysis (Figure 4.3, B – E, right
panels), as the bands associated with the four phosphoproteins were contained in the
western blots. Therefore, the proteomic measurements demonstrate activation of AKT,
ERK1/2, STAT1, and STAT3 and thus the stimulation of all three pathways associated
with IL-6 signaling.

4.6 Analyzing the gene expression data
While activation of the three signaling pathways was shown with the proteomic data, the
key question which of those pathways contributes to DMET gene regulation cannot be
answered by those data. In order to investigate this in depth, gene expression of DMET
genes was measured 24 hours after IL-6 stimulation using real-time qPCR (see 4.4.3).
Besides DMET gene expression, the expression of genes confirming inflammation or ac-
tivation of a certain pathway was also measured. Specific chemical inhibitors for STAT3,
PI3K, and MAPK signaling were applied (see 4.4.1 and Figure 4.1). Primary human hep-
atocytes from five liver donors were used for gene expression measurements (Table 4.1,
donors 1-5). From the data involving inhibitions of signaling pathways only the fold
changes of experiments with the highest concentrations of each chemical inhibitor were
considered further. For these inhibitor concentrations we assumed complete inactivation
of the respective signaling pathway.

4.6.1 The ∆∆Ct method for determining fold changes

Real-time qPCR data comprise cycle threshold (Ct) values (see 4.4.3). For transforma-
tion of the Ct values into relative gene expression changes, the ∆∆Ct method (Livak and
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Figure 4.3: Activation of phosphoproteins after IL-6 stimulation in primary human hepatocytes.
(A) This heat map comprises the relative intensity changes (IL-6 vs. control) of 32 phosphopro-
teins at three time points. Reverse phase protein microarray (RPA) was used for measuring the
phosphoproteins. A positive log2FC (fold change) is indicated by red color, whereas blue color
stands for a negative log2FC. (B-E, left panel) The relative fluorescent intensities (RFIs) from the
RPA experiment of AKT pS473, ERK1/2 pT202/Y204, STAT1 pY701, and STAT3 pY705 at dif-
ferent time points after IL-6 stimulation (dark grey) are displayed together with their respective
controls (Ctrl, light grey). Standard deviations calculated from four technical replicates are repre-
sented by error bars. (B-E, right panel) Here the western blots of the respective phosphoproteins
are displayed. The western blot involving β -Actin is a positive control.
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Schmittgen, 2001) is often used. The first step involves normalization of the Ct values
of all genes to the Ct values of a housekeeping gene (HKG). This HKG, in our case
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), is an unregulated gene that is
constitutively expressed. From the mean Ct value Ct(G,T ) of the gene G for treatment
T , a ∆Ct value was calculated by subtracting the respective mean value for GADPH:

∆Ct(G,T ) =Ct(G,T )−Ct(GAPDH,T ) (4.1)

Afterwards, ∆∆Ct values were determined by subtraction of the ∆Ct value for the re-
spective control treatment C(T ) (e.g., PBS, 0.1% BSA-treated) from the ∆Ct of a certain
treatment T (e.g., IL-6-treated).

∆∆Ct(G,T ) = ∆Ct(G,T )−∆Ct(G,C(T )) (4.2)

As in each PCR cycle the amount of DNA is duplicated and a higher Ct value represents
a lower gene activity, fold changes f c(G,T ) were then calculated from the ∆∆Ct values
with the following formula:

f c(G,T ) = 2−∆∆Ct(G,T ) (4.3)

4.6.2 Clustering of the data
Having applied the ∆∆Ct method, each gene can now be represented by a vector of fold
changes for the different treatments. In order to compare the fold change values for the
genes and treatments, a heat map of the genes and treatments based on the logarithmized
fold changes was produced using the R function heatmap.2 (Warnes et al., 2013). This
function involves hierarchical clustering of the genes and the treatments. We used av-
erage linkage clustering (Hartigan, 1975) as clustering method. Beginning with clusters
containing only a single element, in each step the two clusters having the shortest Eu-
clidean distance are fused to one cluster until only one cluster remains. In the average
linkage method the distance D(C1,C2) of two clusters C1 and C2 is computed from the
distances between two elements d with the following formula:

D(C1,C2) =
1

|C1||C2| ∑
c1∈C1,c2∈C2

d(c1,c2) (4.4)

Figure 4.4 displays the resulting heat map. The heat map shows that with the exception
of CYP2E1 all CYPs as well as several ABC and SLC transporters were clearly down-
regulated by IL-6. CRP and SOCS3, which are known to be upregulated during acute
phase response (APR) or by IL-6, respectively, are contained in one major gene cluster.
Several measurements are missing for the third APR gene SAA making clustering of this
gene not reliable. Another upregulated gene is CYP2E1. Its upregulation was, however,
not seen in all donors, which is why this gene is separated from CRP and SOCS3 in the
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hierarchical clustering. One major cluster of the treatments on top of Figure 4.4 com-
prises all the treatments including a MAPK and/or a PI3K inhibitor. In this cluster most
of the effects induced by IL-6 were significantly reduced. Treatments involving only an
inhibition of STAT3 were clustered together with the IL-6 treatments without inhibitors.
Therefore, the data suggest that the JAK/STAT pathway plays a less important role in
the IL-6 induced regulation of DMET genes, whereas MAPK and PI3K signaling are
strongly involved in this regulation.

4.7 Fuzzy logic modeling for optimization of the prior
knowledge network

The clustering results indicate the impact of the signaling pathways on IL-6 induced
DMET gene regulation. However, the involved regulatory events remain to be identi-
fied. To this end, a fuzzy logic model was developed and calibrated based on the prior
knowledge network (Figure 4.2) and the gene expression data (see 4.6).

Different kind of modeling techniques have been used to improve understanding of
complex signaling pathways and transcription networks The input-output behavior of
signaling pathways can be characterized qualitatively by logical models (Samaga and
Klamt, 2013). Boolean models, which allow the model species only to be in an active or
inactive state, are the most frequently applied type of logical models. Very large Boolean
models can be developed, but they are often not sufficient to describe biological reality
(Morris et al., 2011). In contrast to that, the most precise modeling approach are ordinary
differential equation (ODE) models, which permit to simulate signaling dynamics over
time (Hug et al., 2013). For the calibration of ODE models time-resolved experimental
data and knowledge about the involved signal mechanisms are necessary, which is why
ODE modeling is often only adequate for small networks. Fuzzy logic modeling is an
intermediate approach between Boolean and ODE modeling. It allows species states to
be in a continuous interval, but the respective models are usually not dynamic, which is
why time-resolved data are not required for model optimization. Fuzzy logic modeling
has been used in studies comprising manual calibration of model parameters (Aldridge
et al., 2009), whereas in other studies the parameters of fuzzy logic models were esti-
mated with heuristic optimization routines (Morris et al., 2011; Bernardo-Faura et al.,
2014). Manual parameter estimation was not applicable for our work, as we did not have
prior knowledge about model parameters. Instead we adapted a method to train signal
transduction pathways to protein data (Morris et al., 2011) such that it could also be used
with respect to gene expression data. The method and the adaptations (concerning data
normalization) will be shown next.

34



4.7 Fuzzy logic modeling for optimization of the prior knowledge network

Figure 4.4: Heat map of DMET gene expression data. Both genes (in columns) and treatments (in
rows) are hierarchically clustered based on the logarithmized fold change values. The treatments
comprise IL-6 stimulation and chemical inhibitions of signaling pathways in five liver donors
(Table 4.1, donors 1-5, abbreviated with "D" here). Elements colored in black represent missing
measurements, while red stands for upregulation and blue for downregulation. One major gene
cluster contains SOCS3 and CRP, which are heavily upregulated by IL-6, whereas the second
major gene cluster contains all other genes. Clustering of the treatments produces one major
cluster involving all treatments with inhibitions of PI3K and/or MAPK. This heat map has been
created with R software package (R Development Core Team, 2011).
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4.7.1 State computation and model training in CNORfuzzy

For creation of an optimized model we used CellNOptR (Terfve et al., 2012), the R-
variant of CellNetOptimizer (see 3.3). The original method (Saez-Rodriguez et al., 2009)
only allows the model species to be in 2 states, 0 and 1. However, CellNOptR comprises
CNORfuzzy for fuzzy logic modeling as an add-on, which enables a continuous interval
[0,1] for the species states. CNORfuzzy was previously applied to proteomic data (Mor-
ris et al., 2011). In contrast to that, we use CNORfuzzy to develop a fuzzy logic model
based on normalized gene expression data. Normalization of the data will be discussed
later, while computation of the species states of a fuzzy logic model and the optimization
routine are explained next.

Computing the species states in a fuzzy logic model

The determination of the species states of a fuzzy logic model can be compared to logical
steady state computation for Boolean networks (see 2.1.1). However, as the states in the
fuzzy logic model are in the interval [0,1] instead of only being 0 or 1, the Boolean
functions need to be generalized. Adapted Hill functions (also called transfer functions),
which lead to values in the interval [0,1] for all possible inputs, are used for this purpose.
The value c of a node C depending only on node value A having value a is calculated as
follows (Morris et al., 2011):

c = (kn +1)
an

kn +an (4.5)

In this function, which produces values in the interval [0,1] for a∈ [0,1], k is the midpoint
of the function and n is the Hill coefficient. If in contrast C is inhibited by A, the Hill
function is subtracted from 1:

c = 1− (kn +1)
an

kn +an (4.6)

If in addition to A B with value b is input of C and A and B are OR connected, the value
c is obtained by taking the maximum value of the Hill functions based on A (with index
1) and B (with index 2):

c = max((kn1
1 +1)

an1

kn1
1 +an1

,(kn2
2 +1)

bn2

kn2
2 +bn2

) (4.7)

Correspondingly, in the case of an AND connection of A and B, the result of the logic
gate is defined as the minimum of the two Hill functions:

c = min((kn1
1 +1)

an1

kn1
1 +an1

,(kn2
2 +1)

bn2

kn2
2 +bn2

) (4.8)
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If the input of those gate functions are only Boolean values (i.e., 0 or 1), the result is the
same as in Boolean logic, which is why the functions are proper generalizations of the
Boolean functions.

Model optimization routine

The first two steps of the CNORfuzzy optimization method involve network compression
as well as expansion and are similar to those in the CNO routine (see 3.3): Initially the
network is compressed to all species that are either measured or perturbed in the data
or necessary for the preservation of logical consistency. In the next step CNORfuzzy
expands the compressed network by possible AND gates comprising a maximum number
of inputs (two by default).

The following model calibration step consists of running a genetic algorithm in or-
der to minimize the mean squared error (Equation (3.3)) between the values predicted
by the model and the normalized experimental data. In contrast to the CNO routine,
the calibration method of CNORfuzzy not only involves the determination of the logic
gates contained in the optimized model, but also the optimization of the respective Hill
functions (i.e., the parameters k and n). The search space is restricted to seven different
combinations of fixed values for k and n for each transfer function, which led to decent
fitting results (Morris et al., 2011). In addition to those seven transfer functions, the
corresponding logic gate can also be inactive.

As stimulation of input species (IL-6 in our model) is usually assumed to be complete,
these species are 1 by definition. This always leads to values of 1 in the Hill functions
containing those species (see Equation (4.5)). In order to avoid this, the Hill functions
based on those species are substituted by multiplications of the species value by factors
from the interval [0,1]. Those factors are then also determined in the genetic algorithm.
The number of possible values for such a factor is also seven here and again the corre-
sponding gate can be inactive.

Compared to the CNO routine, in which a gate can be active or inactive (i.e., con-
tained or not contained in the model), the genetic algorithm in CNORfuzzy thus involves
a much larger search space. The algorithm can get stuck in a local minimum of the fitness
function. Furthermore, there could be several different models yielding a similar fitness.
Therefore, multiple runs of the genetic algorithm are necessary for determining the rel-
evance of certain logic gates for fitting the model to the experimental data. A family of
fuzzy logic models is the result of such multiple calibration runs. From those models
logical redundancies are removed. A logical function "(A AND B) OR A" for a node
could, e.g., be substituted by "A", which is why in this case the corresponding AND gate
would be removed from the model.
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Model reduction and refinement

In the model reduction step gates from the optimized models are removed, if this does
not increase the MSE by more than a defined reduction threshold. This adaptation of
the models decreases the number of model parameters. Several reduction thresholds are
tested yielding a different model family for each reduction threshold. The following
refinement step then involves finding a local optimum for the model parameters near the
"discrete" optimum obtained from the genetic algorithm. In CNORfuzzy the Subplex
algorithm (Rowan, 1990) implemented in the R package nloptr (Johnson, 2014) is used
for that purpose. In the end a selection threshold is chosen from the tested reduction
thresholds such that the number of parameters is as low as possible without significantly
increasing the mean MSE between model prediction and normalized experimental data.
How this selection threshold is chosen will get obvious in Section 4.8.

4.7.2 Data normalization

The optimization routines of CellNetOptimizer and CNORfuzzy require normalized data
in the interval [0,1]. This condition is neither fulfilled for the Ct values nor for the
calculated fold changes from our gene expression data. The fold change values from our
data therefore need to be transformed to the interval [0,1]. A normalization method is
provided by CNO, which is, however, based on phosphoproteomic data (Saez-Rodriguez
et al., 2009). This method involves determining fold changes with respect to the values
at time point 0 and applying a Hill function to these fold changes afterwards. For the
fold change values computed with the ∆∆Ct method, a similar Hill function with adapted
parameters can be directly used for transformation of those values (i.e., the ∆∆Ct values).

The following function, which depends on the Hill coefficient h and the value m rep-
resenting the midpoint of the normalization function, was thus applied to each such fold
change value f ci:

vi =
f ch

i

mh + f ch
i

(4.9)

For genes downregulated by IL-6 the fold change values are usually smaller than 1,
while these values are greater than 1 for upregulated genes. The fold change values of
control experiments are 1 by definition and represent a comparably low gene activity
level for upregulated genes, but a high activity level for downregulated genes. If the
same midpoint m of the Hill function was chosen for all genes, this control value of
1 would always be transformed to 0.5. The other fold change values would then be
transformed either to values in the interval [0.5,1] (for upregulated genes) or to values
in the interval [0,0.5] (for downregulated genes). In order to ensure a spread of the fold
change values throughout the whole interval [0,1] for different treatments, we therefore
chose a different m for both types of genes. The setting of m to 0.5 proved effective for
all genes downregulated by IL-6. Correspondingly, for the upregulated gene CYP2E1
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Figure 4.5: Reduction curve for model family resulting from optimization of the PKN. This figure
shows how the mean squared error (MSE) and the mean number of parameters of the model
family depend on the selection threshold. As the mean MSE heavily increases after 0.01, this
value is a good choice as selection threshold. The figure was created with CNORfuzzy (Terfve
et al., 2012).

a value of 2 was chosen for m. Because of the large fold change values upon IL-6
stimulation for the other upregulated genes (SAA, CRP, SOCS3) 2 was not a suitable
value for the midpoint of the Hill function. In contrast, m was set to half of the mean fold
change value of the IL-6 treatments over the data sets. Choosing 4 as value for h led to
a transformation of the control fold change to a value near 0 (for the genes upregulated
by IL-6) or 1 (for the downregulated genes). As desired, for each gene the transformed
values were then spread over the whole interval [0,1].

4.8 Results of optimizing the prior knowledge network

With the adapted routines of CNORfuzzy (Terfve et al., 2012) described in the previous
section we constructed an optimized fuzzy logic model from the gene expression data
and the prior knowledge network. The five gene expression data sets containing single
inhibitions of STAT3, PI3K, and MAPK as well as combinatorial inhibitions of two
pathways (Table 4.1, donors 1-5) were used for model training. We ran the genetic
algorithm for optimization and the following reduction procedure 100 times. We thus
obtained a family of optimized and reduced models. The selection threshold was set to
0.01 leading to an average MSE for the 100 models of 0.013 (see Figure 4.5).

39



Chapter 4 Modeling IL-6 induced hepatic gene regulation using fuzzy logic

4.8.1 Calibration results
The predictions of the model family using the described settings were compared with the
respective data points (see Figure 4.6). It is obvious from the figure that the normalized
fold change values had large standard deviations for some treatments and genes, such as
the values of CYP2E1 for the STAT3 inhibition treatment. This demonstrates that there
is a variability between the liver donors. For most of the genes and treatments, however,
the fold changes were similar throughout different donors.

Only for CYP2C8, CYP7A1, and SOCS3 the deviations between model predictions
and normalized experimental data were exceptionally high. This could be due to un-
known regulatory events not contained in the prior knowledge network, but influencing
expression of the genes.

4.8.2 The resulting optimized model
Figure 4.7 shows the model family after optimization of the PKN. As suggested by the
model, several events contribute to the downregulation of many DMET genes by IL-6:

• The most important event for this downregulation is presumably the inhibition of
the complexes between RXRα and the nuclear receptors by MAPK and Nf-κB.

• Another decisive event in this regard seems to be the inhibition of HNF-1α and
HNF-4α by MAPK.

• Furthermore, the model suggests that the downregulation of a few genes is due to
the inhibition of the glucocorticoid receptor (GR) by MAPK and the inhibition of
AHR by NF-κB, respectively.

For the described events the necessary logic gates are contained in nearly all of the 100
optimized models. This shows the importance of the events for explaining the data.

4.8.3 Validation of the role of RXRα

An important role of the complexes between RXRα and nuclear receptors was suggested
by the optimized fuzzy logic model. Knock-down of the RXRα gene and following
real-time qPCR (see 4.4.3) was conducted in order to confirm this result. Primary hu-
man hepatocytes from one donor (Table 4.1, donor 6) were used here. 48 hours after
the beginning of the knock-down the RXRα protein was not detectable on a western
blot (Figure 4.8, A), which demonstrates its proper knock-down. Figure 4.8 B shows
the gene expression changes in the primary human hepatocytes upon IL-6 stimulation
and RXRα knock-down. The heavy downregulation (more than 90%) of RXRA mRNA
upon RXRα knock-down again verifies the proper knock-down. After IL-6 stimulation,
the acute phase response genes were strongly upregulated and most DMET genes were
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4.8 Results of optimizing the prior knowledge network

Figure 4.6: (Caption next page.)
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Figure 4.6: (Previous page.) Comparison of the predictions of the optimized PKN with the re-
spective data points from the gene expression data. The figure shows the normalized data points
(in black) compared to the points predicted by the model family (in blue) for all genes (rep-
resented in the columns) and treatments (represented in the rows). Table 4.1 also contains the
respective treatments (donors 1-5). Vertical bars display the standard deviations of the normal-
ized data points throughout the different donors around the mean value. As gene expression
values for time point 0 were not given in the data, we here assume that the value at time point 0
corresponds to the value for the control treatment at time point 24. The figure was created with
an adapted method of CNORfuzzy (Terfve et al., 2012).

downregulated, which was similar to the expression data for the other donors (see 4.6).
Knock-down of RXRα showed comparable effects for the gene expression of the CYPs.
Only CYP1A1 expression was not decreased by the knock-down. The patterns of down-
regulation for the transporter genes ABCC2, ABCG2, SLC22A7, and SLCO1B1 were
comparable for RXRα knock-down and for IL-6 stimulation, whereas some phase II
metabolism genes (UGT1A1, UGT2B7, GSTP1) were not downregulated by the knock-
down. For GSTP1 this is in agreement with the modeling results, as the model sug-
gests its IL-6 induced downregulation via AHR (Figure 4.7). The genes AHR, HNF4A,
NR1|2/PXR, and NR1|3/CAR, which encode transcription factors with regulatory influ-
ences on DMET genes, were clearly inhibited after the knock-down of RXRα as well as
upon IL-6 stimulation. However, for the NR1|3 and HNF4A genes an influence of RXRα

was not suggested by the model. RXRα knock-down induced expression of acute phase
genes (CRP, SAA) and SOCS3 to a clearly lesser extent than IL-6 stimulation, which is
in agreement with the model.

The Pearson correlation coefficient can be determined to investigate whether two vari-
ables x and y are correlated. It is defined as follows:

r(x,y) =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2

√
∑

n
i=1(yi− ȳ)2

(4.10)

The possible values of r are from the interval [−1,1], where 1 represents full positive
correlation, -1 full negative correlation, and 0 stands for no correlation. In this case we
set x to the fold change values of the genes upon IL-6 stimulation and y to the respective
values after RXRα knockout. This produces a value of 0.33 for r. Now it remains to be
determined whether this value represents a significant correlation here. It is known that
under the null hypothesis of no correlation the following value is t-distributed with n−2
degrees of freedom (Lowry, 2015):

t = r

√
n−2
1− r2 (4.11)

The corresponding p-value for a specific value of t shows whether the respective corre-
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Figure 4.7: (Caption next page.)
43



Chapter 4 Modeling IL-6 induced hepatic gene regulation using fuzzy logic

Figure 4.7: (Previous page.) Model family obtained from optimizing the PKN with respect to
the gene expression data. The figure shows the resulting model family and includes only logic
gates that are contained in at least 30% of the 100 optimized models. By default multiple inputs
of a node are OR connected. In contrast to that, AND gates are specified with additional AND
nodes. Signaling molecules in the model are colored in red, genes in lighter red, AND nodes
in green. Some important transcription factors compressed by CNORfuzzy before optimization
(HNF-1α , HNF-4α , NF-κB, AhR) were added again here for better clarity. If this caused non-
uniqueness for some regulatory events, the respective logic gates are dotted (e.g., CYP7A1 is
regulated either by HNF-1α or by HNF-4α or by both factors, but the regulatory event cannot be
concluded from the compressed models). The line width of a gate corresponds to the percentage
of the 100 optimization runs, in which the gate was retained in the model. The figure was created
with Cytoscape (Shannon et al., 2003).

lation is significant. In our case a p-value smaller than 0.01 was obtained, which is why
the correlation between IL-6 stimulation and RXRα knock-down is highly significant.

Overall a coordinating role of RXRα in the downregulation of DMET genes is backed
by the knock-down experiments. However, a few genes for which the model suggests a
regulation by RXRα are not affected by RXRα knock-down, and vice versa. In order
to investigate whether this is specific to the donor used in the knock-down experiments
or whether another transcription factor plays a decisive regulatory role for those genes,
further experiments beyond the scope of this work are necessary.

4.9 Comparison of main hypothesis to previous
knowledge

As the major event for the IL-6 induced downregulation of most DMET genes the model
suggested the inhibition of the complexes of RXRα and nuclear receptors by MAPK and
Nf-κB. The function of several nuclear receptors including CAR, FXR, LXR, PPAR,
and PXR is known to depend on dimerization with RXRα (Lefebvre et al., 2010). A
role of MAPK and Nf-κB in the inhibition of these complexes was suggested previously
(Burgermeister et al., 2003; Zordoky and El-Kadi, 2009). A decisive impact of RXRα

in the downregulation of DMET genes was previously proposed (Ghose et al., 2004), but
the study involved only few mouse genes and the hypothesis has to our knowledge not
been tested for humans so far. In the study a loss of RXRα in the cell nucleus during
acute phase response induced by endotoxin was shown, while the gene expression of
RXRα was unchanged. This unaffected gene expression of RXRα corresponds to the
unchanged RXRα expression upon IL-6 shown in Figure 4.8. The molecular events
causing RXRα inhibition need to be investigated in more detail. Phosphorylation of
nuclear receptors could play a key role in this regard (Ghose et al., 2004).
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Figure 4.8: Validating the role of RXRα in the downregulation of DMET genes by knock-down
experiments. (A) Western blot analysis of RXRα after knock-down in primary human hepato-
cytes. The western blots of RXRα based on the proteins in primary human hepatocytes 48 h and
72 h after application of siCtrl (control) and siRXRα are displayed here. β -Actin was used as a
positive control. (B) Heat map comprising relative changes in gene expression (log2FC) for acute
phase response (APR) and DMET genes after IL 6 stimulation (IL-6 vs. control, 24 h) or RXRα

knock-down (siRXRα vs. siControl, 72 h). Upregulation is represented in red, downregulation in
blue color. Gene expression was normalized to GAPDH (compare 4.6.1). Note that a few genes
measured here are not contained in the model in Figure 4.7 (e.g., SULT1A1, SULT2B7).
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4.10 Summary and conclusions
A fuzzy logic model was developed to identify regulatory events responsible for the IL-6
induced regulation of DMET gene expression. Adaptation of an optimization routine
based on experimental data and a prior knowlege network (Morris et al., 2011) enabled
us to calibrate the model. The resulting model suggested that inhibition of the complexes
between RXRα and nuclear receptors is the main regulatory event leading to downregu-
lation of DMET genes. This hypothesis was supported by knock-down experiments.

Fuzzy logic modeling avoids the estimation of various kinetic parameters like in ODE
modeling, which is often not adequate for larger biological networks (Melas et al., 2011).
Furthermore, the species states in a fuzzy logic model do not need to show simple on-
off characteristics like in Boolean models. Therefore, the application of fuzzy logic
modeling is an approach between ODE modeling and Boolean modeling that can be
adequate for elucidating regulatory events behind a biological phenomenon.

The normalization of the gene expression data and the determination of the logic gate
values both involve Hill functions. One motivation for the application of Hill functions in
CNORfuzzy was that they are adequate for describing protein-protein interactions (Mor-
ris et al., 2011). But Hill functions can also describe gene regulations (Santillán, 2008),
which are included in our model. Whereas the parameters of the "gate equations" are
estimated by CNORfuzzy, the parameters of the Hill functions for data normalizations
need to be set in advance. The choice of those parameters is somewhat arbitrary and was
dependent on the respective gene. While the chosen modeling approach proved effective
for identifying important regulatory events, the biological meaning of the estimated pa-
rameters is questionable. Therefore, their values were not taken into account and instead
the main hypothesis suggested by the model was tested with further experiments.

The quality of the resulting model depends on the prior knowledge network. Here
the optimization produced a satisfactory fit between predictions of the optimized model
and experimental data. In contrast, important interactions could also be missing in the
PKN resulting in a poor fit. From analysis of the fitting results the modeller might get an
idea which interactions need to be added to the PKN. However, the missing interactions
could not be obvious, which is why an automatic method for identifying such interactions
would be a helpful alternative. For Boolean models such a method has been developed
(Eduati et al., 2012), which could be adapted for fuzzy logic models.

Several data sets were combined for model training and thus a "mean" model over
these data sets was constructed. A large variability in the gene expression data over
different donors could be a problem in this respect. However, in the experimental data
donor variability was low and only observed for few genes. The influence of IL-6 on
DMET gene expression was mostly similar for all liver donors.

The mechanisms behind inhibition of the RXRα/NR complexes upon IL-6 stimulation
remain to be investigated. Further experimentation targeting this question can lead to a
refinement of the model and thus to a refined hypothesis for explaining DMET downreg-
ulation after IL-6 stimulation.
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Chapter 5

The Systems Biology Simulation Core
Algorithm

For storing ODE models SBML (see 2.2.4) is the most important format. In order to
simulate SBML models computationally, a dedicated algorithm which involves interpre-
tation of SBML as well as following numerical simulation is necessary. In this chapter,
which is mainly based on Keller et al. (2013), we describe the Systems Biology Simu-
lation Core Algorithm and its implementation in the Systems Biology Simulation Core
Library.

5.1 Motivation
Models in SBML and other formats like CellML (Cuellar et al., 2006) can be interpreted
differently. If kinetic rate laws are given for the reactions of a model, this model is
often interpreted as an ordinary differential equation (ODE) system. In contrast to a
conventional ODE system, SBML and CellML models can contain additional structures
like events, algebraic rules, and assignment rules in the case of SBML. In order to analyze
and simulate such models, a numerical solver library that can be integrated into larger
software applications is of great help. The SBML (Hucka et al., 2003; Finney and Hucka,
2003; Finney et al., 2006; Hucka et al., 2008, 2010) and CellML (Cuellar et al., 2006)
language specifications describe the interpretation of models in great detail. However,
the implementation of a simulation algorithm for such models is far from straightforward.

We focus on a simulation algorithm for models in the SBML format because of two
reasons:

1. The SBML community provides a large number of benchmark tests (Keating et al.,
2013), which can be easily used to evaluate the performance of a simulation algo-
rithm. The reason for the creation of this SBML Test Suite were the different
results of simulation tools for similar SBML models (Bergmann and Sauro, 2008).
A similar test suite of this size is not available for CellML.

2. The number of supporting software tools is much larger for SBML than for CellML.
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With the Systems Biology Simulation Core Algorithm (SBSCA), we provide a method
for precisely interpreting and simulating ODE models given in SBML. We show how to
adapt existing numerical integration routines in order to enable simulation of SBML
models.

The SBSCA is implemented in the Systems Biology Simulation Core Library (SB-
SCL), a platform-independent open-source library in Java. With this reference imple-
mentation we demonstrate the correctness and usefulness of the algorithm. The SBSCL
does not comprise a graphical user interface and is especially dedicated to integration
into third-party programs.

The library consists of several ODE solvers as well as an SBML interpreter and is
the first simulation library based on JSBML (see 2.2.5). All existing levels and versions
of SBML are supported by the SBSCL. Furthermore, the library contains classes for
exporting simulation configurations to the SED-ML format (Waltemath et al., 2011b).
SED-ML (Simulation Experiment Description Markup Language) is an XML-derived
format for description of simulation experiments. It enables to reference the model that
was simulated as well as, e.g., the simulation time and the integration routine used for
simulation. This facilitates reproduction of simulation experiments.

In order to support other systems biology community formats in the future, the inter-
pretation of an SBML model is strictly separated from the numerical method for simula-
tion of the model. Thus development of an interpretation algorithm for a specific format
would be sufficient to enable simulation of models given in that format. The architecture
of the SBSCL has been especially designed for easy integration of a CellML module.

5.2 A formal representation of models in systems biology
in SBML

Prior to the description of the algorithm for the interpretation of SBML models, we here
define the mathematical equations implied by the SBML format. This general description
will provide the basis for explaining all steps of the algorithm precisely later.

When we simulate a model, we are interested in the changes of the amounts or con-
centrations of the species. Whether the following notation of the species’ values stands
for their amounts or their concentrations, is dependent on the units of the species and can
therefore be specified by the model creator.

The structure of a reaction network can be described mathematically by the stoichio-
metric matrix N with its rows representing the reacting species~S and its columns standing
for the reactions ~R (see 2.2.1). How the changes of the species’ values are determined
based on the reaction velocities ~ν and the stoichiometric matrix in general has already
been shown (Equation (2.1)). We now assume that the velocities of the reactions are de-
pendent on the species ~S, the time t, the stoichiometries in the stoichiometric matrix N, a
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modulation matrix W, and a parameter vector ~p. Then we derive the following formula:

d
dt
~S = N~ν(~S, t,N,W,~p) . (5.1)

The parameters in ~p can be rate constants, but also other quantities with an influence on
the reaction velocities. The modulation matrix in W has been defined previously (Lieber-
meister and Klipp, 2006; Liebermeister et al., 2010). It is of size |~R|× |~S| and stands for
the regulatory influences of species on the reactions, e.g., inhibition or stimulation. Stim-
ulation of a reaction by a species is represented by 1, inhibition correspondingly by -1.

In order to derive the predicted value of a species for a certain time point tT , the ordi-
nary differential equation system (5.1) needs to be integrated within the interval [t0, tT ]:

~S =
∫ tT

t0
N~ν(~S, t,N,W,~p)dt , (5.2)

For this equation we assume t0, tT ∈ R+ and t0 < tT .
This simple case allows to solve Equation (5.2) in a straightforward way by using

numerical differential equation solvers (see 2.2.3). The main difficulty when simulating
such a differential equation system are nonlinearities in the kinetic equations in the vector
function~ν , which might lead to stiff differential equation systems. As nonlinear kinetic
equations are common in biological reactions, it is usually recommendable to apply a
numerical integration routine with step size adaptation to an ODE system in systems
biology.

In general the mathematical description of biological network dynamics is more com-
plex than Equation (5.2). As SBML models can contain elements like events and rules
(see 2.2.4), an extended formula is necessary for describing these models:

~Q =
∫ tT

t0
N~ν(~Q, t,N,W,~p)+~g(~Q, t)dt +~fE(~Q, t)+~r(~Q, t) , (5.3)

Besides amounts (or concentrations) of reacting species, the vector ~Q of quantities also
comprises the sizes of the compartments ~C and the values of all global model parameters
~P. Furthermore, SBML models can contain local parameters ~p, which influence veloc-
ities of reactions. But these local parameters are constant over time and therefore not
included in the global parameter vector ~P and in ~Q.

All vector function terms might contain a delay function, which is an expression of the
form delay(e,τ) with τ > 0. This enables to include values of e, which can be simply a
variable as well as a complex mathematical expression computed at an ealier time point
t− τ . With such delay functions Equation (5.3) is transformed into a delay differential
equation (DDE).

In general the changes of some species’ values are not given by the product N~ν in
Equation (5.3), but by rate rules (function~g(~Q, t)). These rate rules also enable to define

49



Chapter 5 The Systems Biology Simulation Core Algorithm

the change rates of quantities other than species. The species whose change rates are
stated in rate rules are not allowed to participate in any reaction, which is why their
entries in the stoichiometric matrix N are zero for all reactions. Correspondingly, the
rate rule function ~g(~Q, t) returns the rates of change for the quantities defined in rate
rules and 0 for all other quantities.

Important elements of SBML models are events ~fE(~Q, t) and assignment rules~r(~Q, t).
Events enable to model sudden changes of quantities. Once a trigger condition is valid,
an event can directly change the value of one or more quantities, e.g., set some parameter
to a specific value. Assignment rules also define values of quantities directly, but are valid
at all times in contrast to events.

Algebraic rules are an alternative to assignment rules in SBML and allow to express
conservation relations or other complex interrelations conveniently. They have to evalu-
ate to zero at any time during model simulation. Based on bipartite matching (Hopcroft
and Karp, 1973) algebraic rules can often be transformed into assignment rules, which
enables their inclusion into the term~r(~Q, t). The transformation algorithm is explained
below and involves solving the algebraic rules by quantities whose values are not set by
other constructs (e.g., by assignment rules or reactions).

Biological systems can comprise processes at different time scales, i.e., fast and slow
subsystems. In order to solve such systems, separation of the fast and the slow sub-
systems is necessary. Then differential algebraic equations (DEA), i.e., ODE systems
coupled with additional constraints, are created.

5.3 The algorithm for simulation of SBML models
It was demonstrated in the previous section that determining a solution of Equation (5.3)
is significantly more complicated than just solving the simple Equation (5.2). In this
section we describe the necessary steps to solve the systems defined in Equation (5.3)
in detail. For an efficient computation of this solution multiple preprocessing steps are
required involving, e.g., the conversion of algebraic rules into assignment rules. Further-
more, repeated computation of intermediate results should be avoided, if possible.

5.3.1 Initialization
The first step of the simulation is setting the values of species, parameters, and compart-
ments to the initial values defined in the model. In order to avoid excessive reevaluation
of mathematical expressions, all rate laws of the reactions, assignment rules, transformed
algebraic rules (see the respective transformation algorithm below), initial assignments,
event assignments, rate rules, and function definitions are integrated into a single di-
rected acyclic syntax graph. In this graph the abstract syntax trees representing all those
elements are merged such that similar elements are only contained once. Therefore,
evaluation of this acyclic syntax graph is much faster than evaluating each syntax graph
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r1 r2

−

·

k+1 [F16BP]

·

k−1

[GA3P]

[DHAP]

−

·

k+2

·

k−2

Figure 5.1: Creation of an abstract syntax graph for a small model. This figure shows the abstract
syntax graph of kinetic equations from an example model with the following reactions:

R1 : F1,6BP 
 DHAP+GA3P
R2 : DHAP 
 GA3P

These reactions belong to the glycolysis. The involved molecules are fructose 1,6-bisphosphate
(F1,6BP), dihydroxyacetone phosphate (DHAP), and glyceraldehyde 3-phosphate (GA3P). With
SBMLsqueezer (Dräger et al., 2008) the following mass action kinetics were created:

νR1 = k+1 · [F1,6BP]− k−1 · [DHAP] · [GA3P]
νR2 = k+2 · [DHAP]− k−2 · [GA3P]

It is obvious from the figure that the nodes for [DHAP] and [GA3P] are only contained
once in the syntax graph, but connected to more than one multiplication node. The syntax graph
shown here is thus not a tree.

individually. As the evaluation of mathematical syntax graphs is necessary at each sim-
ulation step, using this single syntax graph significantly decreases simulation time. In
Figure 5.1 an example for such a syntax graph is given.

In the following initialization step the initial assignments and the assignment rules
(including transformed algebraic rules) are processed. In contrast to assignment rules,
initial assignments are only relevant for time point 0. At this specific time point both
constructs are equivalent and processing of them yields initial values for the respective
variables.
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5.3.2 Solving algebraic rules
In order to facilitate straightforward processing of algebraic rules, the algorithm trans-
forms them to assignment rules. After that, all algebraic rules are exactly treated like
assignment rules.

Every algebraic rule should contain one or more variables whose values are not defined
elsewhere in the model (e.g., by assignment rules). For each algebraic rule such a variable
must be determined in order to enable conversion of the rule to an assignment rule. The
first step of the transformation algorithm involves creating a bipartite graph as described
in the SBML specifications (Finney et al., 2006; Hucka et al., 2008, 2010). One set of
vertices in this graph comprises the variables of the model (variable vertices), whereas
the other set of vertices (equation vertices) consists of the equations (i.e., assignment
rules, rate rules, and algebraic rules) as well as of species occuring in a kinetic law of at
least one reaction. The edges of the graph now connect

• equation vertices representing species to variable vertices representing the same
species,

• vertices representing rate rules or assignment rules to vertices representing the
variables defined by the rules, and

• vertices representing algebraic rules to all variable vertices representing the vari-
ables contained in the respective rule.

With the algorithm by Hopcroft and Karp (Hopcroft and Karp, 1973) a maximal
matching between the variable vertices and the equation vertices is now determined.
In this maximal matching each vertex is connected to not more than one other vertex and
the number of connections (i.e., edges used for the matching) is maximal.

We begin with an initial greedy matching: Starting from an arbitrary equation vertex
this involves creating paths which only contain edges to vertices that have not been in-
cluded in any path so far. Once an edge has been added to a path, the respective target
vertex cannot be visited any more. When a path cannot be continued via edges to un-
visited vertices, the greedy algorithm tries to start from another equation vertex that has
not been visited. If such a vertex does not exist any more, the algorithm stops. In all the
paths the edges can now be alternatingly seen as matching edges (i.e., edges representing
a matching between the connected vertices) or non-matching edges.

The algorithm by Hopcroft and Karp now tries to increase this initial matching, which
is usually not maximal, by trying to augment paths. An augmenting path is a path ex-
tended by previously unmatched start and end nodes. The resulting path contains one
more matching edge than the original path. When no more augmenting paths can be
found, the algorithm stops. The result is by definition a maximal matching.

If some equation vertex remains unmatched after the algorithm by Hopcroft and Karp,
the model is overdetermined and not considered a valid SBML model (as declared in the
SBML specifications (Finney et al., 2006; Hucka et al., 2008, 2010)). We now assume
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the model is a valid SBML model. Then the derived maximal matching gives a unique
variable vertex for each algebraic rule. Every algebraic rule is now solved by the respec-
tive variable leading to an assignment rule. The described algorithm is summarized in
Figure 5.2 as a flow chart.

5.3.3 Event handling
An SBML event is a list of assignments that is executed once a trigger condition switches
from false to true. SBML also enables the definition of a delay, which can lead to ex-
ecution of the event assignments at a later time point. In SBML Level 3 Version 1 the
processing of events is even more complex than for previous levels and versions: In ear-
lier versions only the event trigger and its delay needed to be defined. In contrast to that,
Level 3 Version 1 contains a few new language elements, which have a strong influence
on event handling: Whereas the order in which different events at a certain time point are
processed could be chosen by the programmer in SBML Level 2, in Level 3 Version 1
this order is stated by the event’s priority element. Therefore, the correct sequence of
simultaneous events is now crucial in event handling. Furthermore, an event can now be
canceled within the time interval from trigger activation to the actual event execution.
Events for which such a cancellation is possible are called nonpersistent.

The events to be executed at some time step can be divided into two subsets:

• events with triggers activated at the current time and without delay, and

• events with delay triggered at some previous time point.

For every element of the resulting set of events its priority needs to be evaluated.
Then one of the events with highest priority is randomly chosen for execution. The
execution of an event can change the priorities or the trigger conditions of the events
that are still to be executed. This means that for nonpersistent events their triggers have
to be reevaluated. Furthermore, the priorities of all events waiting for execution are
to be recomputed. Then the event with highest priority is processed next. Execution
and following reprocessing of other events is repeated until no further event is left for
execution. The slightly simplified algorithm for event processing at a certain time point
is shown in Figure 5.3.

5.3.4 Time step adaptation considering events and the calculation of
derivatives

The time when events are triggered should be calculated precisely in order to obtain
exact results in the numerical integration process. An event could, e.g., be triggered
at time tτ , which is between the integration time points tτ−1 and tτ+1. If events are only
processed at time points tτ−1 and tτ+1, the trigger condition can possibly not be evaluated
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Start
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graph and

greedy matching

Find aug-
menting paths

At least
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Solve ith algebraic
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i := i + 1
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More
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Yes
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Figure 5.2: Algorithm for transforming algebraic rules to assignment rules. In the first major
step a maximal matching between the equations and the variables of a model is determined. This
involves constructing a bipartite graph, computing an initial greedy matching, and afterwards
constructing a maximal matching. A maximal matching is derived by augmenting paths and thus
extending the matching. The matching is maximal, if no more augmenting paths can be found.
All equation vertices in the maximal matching must be matched to a variable vertex. Otherwise,
the model is overdetermined and an exception is thrown by the algorithm. In the case of a valid
model an assignment rule is generated for each algebraic rule. The left-hand side of such a
transformed rule comprises the variable the respective algebraic rule has been matched to.
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Start
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Figure 5.3: (Caption next page.)
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Figure 5.3: (Previous page.) Processing of events: simplified algorithm (handling of delayed
events omitted). We define E as the set of all events in a model and EI as the set of events whose
trigger conditions have already been evaluated to true in previous time steps. Events within EI
are inactive. Their triggers need to switch from true to false before they can become active
again. EA is defined as the subset of E containing events with triggers switching from false to
true at the current time point t. At the beginning EA is empty. A persistent event is removed
from EA once all of its assignments have been evaluated. In contrast to that, a nonpersistent
event is also removed from EA when its trigger condition changes to false when processing other
events. The function trig(e) returns 1, if the trigger condition of event e ∈ E is satisfied, and
0 otherwise. Correspondingly, the function persist(e) returns 1, if event e is persistent, or 0, if
e is nonpersistent. The trigger conditions of active events ea ∈ EA that are not persistent are
recomputed in each iteration of the algorithm. If this leads to a change of the trigger from true (1)
to false (0), the event is removed from EA. In the next step the triggers of all events are evaluated.
If a trigger changes from false to true, an event becomes active and is added to EA. An event with
its trigger changed from true to false is not inactive any more and removed from EI. After the
processing of all event triggers, one event e with highest priority from EA is chosen for execution
by the function choose(EA). This choice is random, if there are several events with the highest
priority. Then the assignments of the chosen event are evaluated. After that, the triggers of all
events in E are evaluated again. The algorithm stops once the set EA is empty.

to true at any of these time points. Therefore, a numerical integration method with step
size adaptation is necessary in order to ensure event execution at the correct time points.
If events occur, Rosenbrock’s method (Press et al., 1993) can adapt its step size h (see
Figure 5.4). Given the current vector ~Q and a certain time interval [tτ−1, tτ ], Rosenbrock’s
method determines the new value of ~Q at a time point tτ−1 + h, with h > 0. If the error
tolerance is not satisfactory, h is reduced and the new value of ~Q is computed at the
changed time point tτ−1 +h.

After a successful step, the events as well as the assignment rules are processed at time
point tτ−1 + h, which can lead to a change in ~Q. In this case, the adaptive step size is
reduced by setting h to h/10 and ~Q is calculated again at time point tτ−1 + h. The step
size adaptation is repeated until either the minimum step size is reached or the event
and assignment rule processing does not change ~Q anymore. This algorithm leads to a
precise determination of the correct time for event execution.

Given the values ~Q at time point t, the current vector of derivatives ~̇Q is determined as
follows (also see Figure 5.5): In the first step the rate rules are processed: ~̇Q =~g(~Q, t).
The values of vector elements with no rate rule defined are 0 here. Next the velocity νi
of each reaction Ri is determined based on the abstract syntax graph (see 5.3.1). The
derivatives of all species participating in Ri need to be updated after the computation of
νi.
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Start

t := t0

~Q := ~Q0

h := h0

( ~Qnext, tnext) :=

Rosenbrock(t, ~Q, h)

~Qtmp :=
~Qnext+ ~fE( ~Qnext, tnext)+~r( ~Qnext, tnext)

~Qtmp =
~Qnext?

t := tnext

~Q := ~Qnext

h := adapt(h)

h ≥
hmin · 10? h := h

10

t ≥ tT ? Stop

Yes No

No

Yes

Yes

No

Figure 5.4: Refined step size adaptation for events. When simulating from time t0 to tT the Rosen-
brock solver continuously tries to increase time t by the current adaptive step size h and calculates
a new vector of quantities ~Qnext for time point t + h. The step size is adapted by the routine, if
the error tolerance is not satisfactory. After a step with an acceptable error tolerance, the events
and rules of the model are processed. If this changes ~Q, h is decreased and the Rosenbrock
solver calculates another ~Qnext for the new time point t +h. This process is repeated until either
the minimum step size hmin has been reached or ~Qnext is not changed by event and assignment
rule processing any more. hmin thus determines the precision of the event processing. The adapt
function is defined by Rosenbrock’s method (Press et al., 1993) and not explained in detail here.
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Start

Compute all assignment rules:
~̇Q := ~g( ~Q, t)

j := 1

Compute flux Jj through Rj :

Jj := νj( ~Q, t,N,W, ~p)

for each species i in Rj :

Q̇i := Q̇i + nij · Jj

j := j + 1

j > |R|?

Stop

Yes

No

Figure 5.5: Calculation of the derivatives at a specific point in time. The derivatives of all quan-
tities are stored in the vector ~̇Q, which is set to the null vector~0 at the beginning. After that, the
rate rules of the model are processed by applying the function ~g(~Q, t), which can change some
elements of ~̇Q. The next step involves for every reaction R j the computation of its velocity J j.
For each species (with index i) which participates in R j its derivative is updated by adding the
product of the stoichiometry ni j and J j. For the sake of simplicity, the stoichiometries ni j in the
matrix N are assumed to be constant here. However, these values can also be variable. SBML
provided StoichiometryMath elements for a direct computation of the stoichiometries before
Level 3. In Level 3, stoichiometries can be changed by assignment rules. If stoichiometries are
variable, the values for ni j have to be recomputed in each simulation step.
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5.3.5 Processing models with fast and slow subsystems

If the model to simulate comprises fast and slow subsystems, the SBSCA processes both
of these systems separately. For the system containing the fast reactions we assume
that it always reaches a steady state (i.e., a state in which the amounts of the species
do not significantly change when continuing simulation) within an extremely small time
frame. This quasi-steady state assumption was suggested in the SBML specification
(Hucka et al., 2010). The algorithm first computes a steady state for the fast reactions
and considers the reactions within the slow subsystem as inactive at this point. This
steady state computation involves simulation until all species values do not significantly
change any more. The resulting values of the species are then the simulated values for the
initial time point. Afterwards the SBSCA takes a simulation step with the fast reactions
being inactive and the slow reactions being active. Then another steady state computation
based on the fast reactions follows, which represents the adaptation of the fast subsystem
to changes within a very small time frame. In this way simulation of the slow subsystem
and steady state computation with the fast subsystem are alternatingly conducted until
the end time is reached.

For the Rosenbrock solver the processing of fast reactions is similar to that of events
and thus more accurate than for the other solvers. After each successful simulation step
involving the slow reactions, a steady state is computed. If this steady state computation
causes a change greater than a certain threshold in the amount of some species and the
step size h is not below a certain value, the step size is reduced and simulation is repeated
(compare Figure 5.4). Both the threshold and the value for the minimum step size for
considering changes by the fast reactions were fixed to 10−3. In principle this could lead
to inaccurate simulation results. However, the benchmark tests, which will be covered
later in this chapter, were all passed with the chosen settings.

5.4 Implementation of the algorithm in the Systems
Biology Simulation Core Library

The Systems Biology Simulation Core Library written in Java comprises an implemen-
tation of the the Systems Biology Simulation Core Algorithm. The software architecture
of this library is shown in Figure 5.6. It provides an extensible numerical backend, which
can be integrated into programs for systems biology research. The SBML interpretation
algorithm uses data structures provided by JSBML (Dräger et al., 2008).

As the library contains interfaces for differential equation systems, which are not spe-
cific for a particular type of model (e.g., SBML), support for other community standards,
such as CellML (Lloyd et al., 2004), can be easily implemented. To this end, an inter-
preter for such a model format is sufficient. An instance of this interpreter can then be
passed to any available solver.
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Figure 5.6: Architecture of the Systems Biology Simulation Core Library (simplified). In the
library numerical methods are strictly separated from differential equation systems. The upper
part of the figure shows the type hierarchy of all currently included numerical integration routines.
In the middle part the interfaces defining several special types of the differential equations to
be solved are displayed. All these interfaces are implemented by the class SBMLinterpreter

(bottom part), which is the main class for the interpretation of an SBML model. In order to
support other data formats, a similar interpreter needs to be implemented.
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5.4.1 Solver classes

The classes for all solvers are derived from the abstract class AbstractDESSolver (Fig-
ure 5.6). With the help of wrapper classes we included several solvers of the Apache
Commons Math library (version 3.0, Apache Software Foundation (2013)). In addition,
the library provides an implementation of Euler’s method (Press et al., 1993), the explicit
fourth order Runge-Kutta method (Press et al., 1993) as well as of Rosenbrock’s method.
The implementation of Rosenbrock’s method is a modification of a previously developed
class (Kotcon et al., 2011). This implementation was adjusted to enable a very precise
timing of the events (see 5.3.4). The results of a simulation with any of the numerical
integration methods are stored in objects of the class MultiTable, which contains Block
data structures. In one of those blocks the quantity values are stored, whereas in another
block the velocities of the reactions are saved.

5.4.2 SBML interpretation

Interpretation of SBML models can be divided into evaluation of events and rules, com-
putation of stoichiometric information, and computation of the current values for all
model components (e.g., species and compartments). The class SBMLinterpreter re-
turns the current set of time-derivatives of the variables for a given state of the ODE
system (i.e., the current values of its variables). SBMLinterpreter is connected to a
MathML interpreter for the mathematical expressions contained in kinetic laws, rules
and events (ASTNodeInterpreter). The respective nodes are all contained in the ab-
stract syntax graph created at the beginning of the simulation (see 5.3.1). As the values
of the nodes depend on the current state of the ODE system, they have to be recalculated,
if the state of the system has changed.

Representation of rules

Rules can be seen as events occuring at every time point. Therefore, they are processed
similar like events. Transforming algebraic rules to assignment rules involves for every
object of type AlgebraicRule the creation of a new AssignmentRule object with the
help of bipartite matching (see 5.3.2). These AssignmentRule objects are only created
for the simulation purpose and do not influence the content of the SBML model.

Representation of events

Events are stored in the SBMLinterpreter via an array containing one object of Event-
InProgress for every event of the model. These events can be divided into events
with and without delays (see 5.3.3). For events without delay the event assignments are
usually executed at the time point when the event has been triggered. The only exception
to this is the cancellation of an event by other events. Events with delay can produce

61



Chapter 5 The Systems Biology Simulation Core Algorithm

multiple additional assignments within the time interval from trigger time to execution
time. The class SBMLEventInProgressWithDelay, which is a subclass of the general
class SBMLEventInProgress, saves the time points at which a delayed event is to be
executed.

When processing events with priority, the events having the highest priority are stored
in a list until one of them is selected for execution. For the organization of such priority
queues a binary max heap data structure could be the method of choice. The largest
value in the heap is always contained in the root. Once this value is removed, the heap is
reorganized such that the next largest value is stored in the root. However, the execution
of an event can have an effect on the priority of the remaining events (see 5.3.3). If
several priorities change simultaneously, the standard method for storing the heap is
not applicable any more. Therefore, we did not use complex data structures for the
processing of events with priority.

Representation of function definitions

SBML Level 2 and Level 3 enable to define functions, which can be used in kinetic
laws of reactions. Such function definitions comprise a lambda expression optionally
containing a list of arguments and the mathematical expression of the function. Function
definitions are included into the abstract syntax graph during the initialization of the
algorithm and are represented by objects of the class FunctionValue. A syntax graph
node with a function definition is evaluated in several steps:

• The arguments are evaluated.

• The values of the arguments are given to the corresponding argument nodes in the
graph.

• The mathematical expression of the function is evaluated based on the current
arguments.

Different function definitions can have the same identifiers for arguments, as the iden-
tifiers of arguments are only valid within the corresponding function definition. There-
fore, naming conflicts in the abstract syntax graph have to be prevented.

The stoichiometry math construct

The StoichiometryMath construct enables to change the reaction’s stoichiometry dur-
ing simulation. However, it should be noted that in common biochemical reaction sys-
tems the stoichiometry is constant. In SBML Level 3 Version 1 the stoichiometry of a
reaction can be set directly by addressing the identifier of a SpeciesReference within
rules or events. A SpeciesReference object comprises the species taking part in a
reaction and its stoichiometry. SBMLinterpreter stores possibly changing stoichiome-
tries (i.e., stoichiometries with a StoichiometryMath construct or occuring in events
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or rules) during initialization. The corresponding abstract syntax nodes are reevaluated
once the stoichiometries have to be calculated.

Constraints

Constraints in an SBML model introduce assumptions about model behavior. The ab-
stract syntax graph of each constraint is evaluated at every time step. If a constraint is
violated, SBMLinterpreter generates an instance of ConstraintEvent, which is af-
terwards processed by the ConstraintListener class. The user is informed about the
constraint violation including the simulation time point and the constraint message via
the Java Logger.

5.4.3 SED-ML support

The standard MIASE (Minimum Information About a Simulation Experiment) (Wal-
temath et al., 2011a) involves minimum information that should be given to adequately
describe a simulation of a model. In order to support this standard, the SBSCL comprises
an interpreter of SED-ML files (Waltemath et al., 2011b). The user can thus store the
details about a specific simulation, which facilitates reproducing the simulation results
(compare 5.1). Furthermore, a simulation can be directly started by loading a SED-ML
file and passing it to the SED-ML interpreter. The solver for simulation is specified in the
SED-ML by its KiSAO (Kinetic Simulation Algorithm Ontology) term (Courtot et al.,
2011). This eases execution of SED-ML files.

5.4.4 Points of Control

The default settings for simulation of SBML models comprise the Rosenbrock solver
with an absolute error tolerance of 10−12 and a relative error tolerance of 10−6. With this
setup we were able to simulate most models used for testing the SBSCL. The Rosenbrock
solver with its adaptive step size is the numerical routine in the library dedicated for
simulating stiff ODE systems as well as for precisely timing events in a model (see 5.3.4).
If the user chooses another solver for integration, this can lead to a lower simulation
time due to, e.g., the lacking of a step size adaptation. However, it is then possible
that the model cannot be simulated accurately any more. The SBML specifications state
that model simulation is always started at time point 0.0. As the SBSCL is not limited
to SBML, other start times of the simulation are also accepted. The end time of the
simulation can also be specified by the user. If the relative and absolute error tolerance
is modified, this can influence the accuracy of the simulation and the computation time.
A higher accuracy usually comes with a higher computation time, and vice versa.
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5.5 Benchmark and application to published models
An Intel Core i5 CPU with 3.33 GHz and 4 GB RAM was used with Microsoft Win-
dows 7 (Version 6.1.7600) as operating system and Java Virtual Machine version 1.6.0_25
for testing the running time of the Systems Biology Simulation Core Library.

Furthermore, the SBSCL was successfully tested under Linux (Ubuntu version 10.4)
and Mac OS X (versions 10.6.8 and 10.8.2).

5.5.1 Application to the models of the SBML Test Suite

All of the models from SBML Test Suite version 2.3.2 (Keating et al., 2013) were first
simulated using the following settings:

• Rosenbrock solver as integration routine,

• 10−6 as relative error tolerance, and

• 10−12 as absolute error tolerance.

The relative tolerance had to be set to 10−8 for six models (numbers 863, 882, 893,
994, 1109, and 1121) in order to simulate them accurately. Precise simulation for three
other models (numbers 872, 987, 1052) was only possible when setting the relative tol-
erance to 10−12 and the absolute tolerance to 10−14.

Table 5.1 shows the total running times for simulation of the SBML Test Suite mod-
els. The simulation of all models together is possible within seconds. Therefore, the
simulation of one SBML model takes only milliseconds on average with regular desktop
computers.

For the models in SBML Level 3 Version 1 the total simulation time is considerably
higher than for the models in other SBML levels and versions. This is due to the fact
that the test suite comprises some models of this version whose simulation requires the
processing of a large number of events. The simulation of model number 966 of the
SBML Test Suite, which is only available in SBML Level 3 Version 1, takes 20 s, because
23 events need to be processed. The triggers of two events change from false to true every
10−2 time units, while the end time for simulation is 1,000 time units. The two events
thus need to be evaluated 100,000 times during a simulation, which also involves their
precise timing. The simulation of model number 966 consumes over 50 % of the total
simulation time for the models in SBML Level 3 Version 1.

5.5.2 Application to the models of the BioModels Database

The Systems Biology Simulation Core Library was successfully validated with the SBML
Test Suite. However, the models contained there are not explaining biological behavior,
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Level Version Models Correct simulations Total running time (in s)

1 2 252 252 2.9
2 1 885 885 6.8
2 2 1,041 1,041 6.8
2 3 1,041 1,041 6.8
2 4 1,043 1,043 6.8
3 1 1,077 1,077 38.5

Table 5.1: Simulation of the models from the SBML Test Suite using the Rosenbrock solver. This
table shows for all SBML levels and versions the number of tested models and the total running
times for the simulation of all models. The time for reading the SBML file is not included in the
running time. Therefore, the measured running time only comprises the CPU time needed for
model simulation.

but were created for testing purposes. Therefore, testing the SBSCL with realistic bio-
chemical models is necessary in order to show its usefulness. The BioModels Database
(Le Novère et al., 2006; Li et al., 2010) comprises a collection of published and curated
SBML models (see 3.4.3). For these models it currently contains neither reference data
nor any settings for the numerical computation (such as, e.g., the step size and the end
time). But for most of the models pre-computed plots of time courses are provided.
While the BioModels Database is not adequate for benchmark tests, it can still be used
to check whether the SBSCL is able to simulate published models containing diverse
features.

The 424 curated models from the BioModels Database (release 23, October 2012)
were simulated with identical settings, which was previously suggested (Bergmann and
Sauro, 2008). Our settings were:

• time interval [0,10],

• Rosenbrock solver as integration routine,

• 10−6 as relative error tolerance,

• 10−12 as absolute error tolerance, and

• a step size of 0.01 time units.

The absolute tolerance had to be changed to 10−10 in order to allow an accurate sim-
ulation for the models number 234 (Tham et al., 2008) and number 339 (Wajima et al.,
2009) from the BioModels Database.

Then the SBSCL was able to solve all curated models without any errors. This shows
the reliability of the library when simulating biochemical models given in SBML.
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5.5.3 Test with two specific models
Next we select two models with diverse features from the BioModels Database in order
to show the capabilities of the SBSCL: model number 206 (Wolf et al., 2000) and model
number 390 (Arnold and Nikoloski, 2011).

The model by Wolf et al. describes glycolytic oscillations observed in yeast cells.
It contains eleven reactions and nine reactive species. The simulated time courses for
the concentrations of 3-phosphogylcerate, ATP, glucose, glyceraldhyde 3-phosphate, and
NAD+ are shown in Figure 5.7. After approximately 15 s of only small concentration
changes, the concentrations of all metabolites start to oscillate rhythmically. The dynam-
ics of selected reaction velocities over time are displayed in Figure 5.7B.

Arnold and Nikoloski compared several models describing the Calvin-Benson cycle
and created a consensus model from them (Arnold and Nikoloski, 2011). This model
contains eleven species, six reactions, and one assignment rule. All kinetic equations
in the model comprise the calling of function definitions. The simulation results for the
species ribulose-1,5-bisphosphate, ATP, and ADP are shown in Figure 5.8. The SBSCL
can again reproduce the figures provided by the BioModels Database.

5.6 Comparison to existing simulation implementations
for SBML

Several other tools enable simulation of SBML models and are listed in the SBML soft-
ware matrix (Bergmann et al., 2012). From those programs we chose those fulfilling the
following criteria for comparison with our library:

• The last update of the tool was released after the final release of the SBML Level 3
Version 1 Core specification, i.e., after October 6th 2010.

• The program supports SBML Level 3.

• The software is open-source.

• The program is not dependent on commercial products not freely available (such
as MATLAB or Mathematica).

The following tools were selected:

• BioUML (Kolpakov et al., 2011),

• COPASI (Hoops et al., 2006),

• iBioSim (Myers et al., 2009),

• JSim (Raymond et al., 2003),
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Figure 5.8: Simulation of the Calvin-Benson cycle. The Systems Biology Simulation Core Li-
brary was used to solve model number 390 from the BioModels Database (Le Novère et al.,
2006; Li et al., 2010; Arnold and Nikoloski, 2011). The concentration dynamics of ribulose 1,5-
bisphosphate, which is a key metabolite for CO2 fixation in the reaction catalyzed by ribulose-
1,5-bisphosphate carboxylase oxygenase (RuBisCO), as well as those of ATP and ADP during
the first 35 s of the photosynthesis are shown in the figure. Simulation was possible using Euler’s
method (KiSAO term 30, Press et al. (1993)) with 200 integration steps.

• LibSBMLSim (Takizawa et al., 2013), and

• VCell (Moraru et al., 2008; Resasco et al., 2012).

The comparison of these programs with the most recent versions is given in Table
5.2. Benchmark tests with respect to the SBML Test Suite (Keating et al., 2013) are
also summarized for most of the compared SBML simulation tools in the continuously
updated SBML Test Suite Database (Bergmann, 2013).

Not all the compared programs have their main focus on solving ODE systems. iBioSim,
e.g., is especially dedicated to the stochastic analysis of SBML (Madsen et al., 2012).
For some tools, such as VCell or COPASI, SBML is not the native format.

Direct access to their application programming interfaces (API) is provided by most
programs. COPASI, LibSBMLSim, and the Systems Biology Simulation Core Library
are specially designed for the use as a solver backend. iBioSim can be executed via
a script, e.g., for batch processing of several models (illustrated by the checkmark in
brackets in the table).

As of January 2015 only two other tools pass the entire test suite for all SBML levels
and versions: BioUML, which is a program for modeling, simulation, and parameter
fitting, and iBioSim. The simulation library LibSBMLSim, which is written in C, only
supports models given in SBML Level 2 Version 4 and SBML Level 3 (illustrated by the
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checkmark in brackets in the table). COPASI is widely used due to its low running time.
However, algebraic rules and fast reactions are not supported by COPASI, whereas events
are generally supported, but this support does not involve all of the current constructs
(also illustrated by the checkmark in brackets).

Therefore, the Systems Biology Simulation Core Library is the only API simulation
library supporting all SBML elements.

5.7 Limitations of the algorithm and the library
The precise timing of events during model simulation is one key part of the derived
algorithm. This was achieved by modifying the Rosenbrock solver. However, the precise
event timing comes with a significant increase in running time when events are triggered
repeatedly within small time intervals, e.g., every 10−3 time units. This behavior can be
observed in the BioModels Database model number 408 (Hettling and van Beek, 2011),
which comprises three events. A solver other than Rosenbrock can be chosen when the
precise timing of events is not important and the ODE system is not stiff.

Rosenbrock’s method was specially designed for solving stiff ODE systems and is
therefore the method of choice in the Systems Biology Simulation Core Library for solv-
ing such systems. However, our experiments indicate that the Rosenbrock solver is some-
times inefficient for solving non-stiff ODE systems compared to other solvers. For large
models this can cause an increased simulation time. An example for this phenomenon
is the simulation of model number 235 of the BioModels Database, which comprises
622 species, that participate in 778 reactions and are distributed across three compart-
ments (Kühn et al., 2009). Changing the relative and absolute tolerance is sometimes
helpful, but for some systems the running time of Rosenbrock’s method is still limited.
A similar behavior can be seen for some other integration methods: The Runge-Kutta-
Fehlberg method (Fehlberg, 1970) (KiSAO term 86) included in iBioSim also shows a
high running time concerning the BioModels Database model number 235.

Some ODE solvers are more advanced than those by Runge-Kutta-Fehlberg and Rosen-
brock. CVODE from SUNDIALS (Hindmarsh et al., 2005) can, e.g., adapt to both
non-stiff and stiff ODE systems. Therefore, the SUNDIALS library, which is incorpo-
rated into BioUML, can simulate complicated ODE systems better than the Rosenbrock
solver. However, this library is not available under the LGPL and no open-source ver-
sion of this solver has been implemented in Java. Therefore, we did not use the CVODE
solver in our library.

The processing of algebraic rules is a major problem when simulating SBML mod-
els. Several tools do not support this element (see Table 5.2). The variable by which
to solve an algebraic rule can be determined via bipartite matching (Hopcroft and Karp,
1973). However, the transformation of such a rule into an assignment rule (i.e., solving
the rule by the respective variable) involves symbolic computation and is in some cases
not possible. While our algorithm supports all algebraic rules occuring in the models of
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the SBML Test Suite and the BioModels Database, it is therefore possible to construct
SBML models with algebraic rules that are not simulated correctly with the algorithm. If
an equation cannot be solved by the free variable, an alternative idea is the identification
of the value of the variable with nested intervals. But this would lead to a significantly
higher running time, as recomputation of the nested intervals would be required at every
time point during simulation. In contrast to that, the transformation approach processes
each algebraic rule only once during the initialization step of the algorithm. The compu-
tation of the value of the respective assignment rule done at every time point is then not
very time-consuming.

If a model contains small and fast subsystems, our algorithm processes both subsys-
tems alternatingly. For the fast subsystem a steady state is computed after each sim-
ulation step in the slow subsystem. As this steady state determination can involve an
arbitrary long simulation, the simulation times of such models are often long. In our ap-
proach we found settings that led to an adequate compromise between running time and
simulation accuracy for the tested models. However, this is not necessarily applicable to
all models involving different time scales.

5.8 Summary and conclusions
In the work described in this chapter we first explained SBML models mathematically
and afterwards derived an algorithm for an efficient simulation of these models. An
important design feature of the algorithm is the separation of SBML interpretation and
numerical integration, which is why combination of the algorithm with additional nu-
merical integration methods is easy. The Rosenbrock solver is the universal simulation
method that can deal with stiff differential equation systems and precisely solve models
containing diverse SBML elements.

We implemented the algorithm in the Systems Biology Simulation Core Library, which
is an efficient Java API for the simulation of differential equation systems used in sys-
tems biology. Integration of the library into larger applications is straightforward. Since
version 4.2 it is, e.g., integrated into CellDesigner (Funahashi et al., 2003), which is an
editor for biochemical models. SBMLsimulator (Dörr et al., 2014), which is described in
the following chapter, comprises a convenient graphical user interface for the simulation
and optimization of SBML models and uses the SBSCL as a computational backend.
In order to support further model formats like, e.g., CellML, it suffices to implement a
suitable interpreter class. The support of SED-ML by the SBSCL facilitates exchange
and reproduction of simulation experiments conducted with this library.

SBML enables adding additional model features by specifying extension packages
since Level 3. Those extension packages comprise the graphical representation (Gauges
et al., 2006), the description of qualitative networks (Chaouiya et al., 2013a), and many
more. The algorithm shown here is dedicated to processing the core elements of SBML.
For the different SBML packages separate interpretation algorithms are necessary.
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Chapter 5 The Systems Biology Simulation Core Algorithm

Therefore, further work on the Systems Biology Simulation Core Library can include
implementing interpreters for SBML extension packages. As previously discussed, the
support for CellML and the inclusion of further numerical integration routines are other
possibilities for improving the capabilities of the library.
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Chapter 6

Simulation and parameter estimation
of SBML models with SBMLsimulator
In the previous chapter the Systems Biology Simulation Core Library was introduced.
While it supports simulation of SBML models, the results cannot be displayed graphi-
cally. Such a graphical presentation of results often helps to understand the properties
of a biological system very quickly. Another important task in systems biology is the
estimation of unknown model parameters (see 3.4.4). In order to enable simulation with
a graphical display of the simulation results as well as parameter estimation for SBML
models, SBMLsimulator has been developed. It contains the SBSCL for simulation as
well as EvA2 (Kronfeld et al., 2010; Becker and Kronfeld, 2014) for parameter estima-
tion (see 3.1.2). This chapter, which is mainly based on Dörr et al. (2014), describes
SBMLsimulator.

6.1 Important features of SBMLsimulator compared to
other tools

For simulation and parameter estimation of biochemical models many programs are
available including AMIGO (Balsa-Canto and Banga, 2011), SBToolbox2, (Schmidt and
Jirstrand, 2006), COPASI (Hoops et al., 2006), and Potters-Wheel (Maiwald and Tim-
mer, 2008). SBMLsimulator is an easily usable parameter estimation tool that as one of
very few tools fully supports SBML for all levels and versions (due to the integration of
the Systems Biology Simulation Core Library). Software tools that cannot interpret all
SBML elements can have a smaller running time for some models. However, they do not
guarantee that all SBML models are simulated correctly.

The important features of SBMLsimulator are:

• It is platform-independent.

• It is open-source.

• It is independent of commercial software.
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• It provides full support of SBML.

• Its graphical user interface was specially designed for easy usability.

6.2 Implementation
SBMLsimulator contains two libraries within one tool. Therefore, it comprises all the
optimization algorithms provided by EvA2 (Kronfeld et al., 2010; Becker and Kronfeld,
2014) and the modeling languages (currently only SBML, but possibly more languages
in the future) and ODE solvers incorporated into the SBSCL. The modular design of
SBMLsimulator enables easy exchange of both libraries. SBMLsimulator thus prof-
its from improvements of these libraries. While the SBSCL already supports SBML
completely and contains several ODE solvers, interpreters for more modeling formats
and additional solvers may be added in the future (compare 5.8). Many nature-inspired
heuristic optimization algorithms are contained in EvA2 (see 3.1.2) and this selection
can also be extended in further versions of the toolbox.

6.2.1 Integration of SBSCL and EvA2
Simulation of a model in SBMLsimulator is conducted with the help of the SBSCL
(Keller et al., 2013). The SBSCL outputs the simulation results with a MultiTable

object (see 5.4.1), which is read by SBMLsimulator in order to plot the time course of
the model’s variables.

For the heuristic optimization routines provided by EvA2 a fitness function is nec-
essary (see 3.4.4). Given a set of parameter values and experimental data, this fitness
function returns a value to EvA2. This value represents the distance between the simu-
lation output with the current set of parameters and the experimental data. The fitness
function is thus a measure for how well a given set of parameters reproduces the exper-
imental data. Both the simulation results and the distance of simulated to experimental
data are computed by the SBSCL. The parameters of the model are optimized by EvA2
with respect to the fitness function. This means that EvA2 tries to find a parameter set
leading to the smallest possible deviation of simulation results and experimental data.
Optimization targets and search intervals need to be defined by the user prior to a param-
eter estimation.

6.3 Program details
SBMLsimulator can be used on every platform for which a Java Virtual Machine is
available. The graphical user interface (GUI) enables presentation of the simulation
curves for model elements, which the user can choose. During a parameter estimation
with EvA2, the current best simulation results are displayed in the GUI. Besides running
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6.3 Program details

a GUI, SBMLsimulator can also be started in command-line mode, which is especially
dedicated to facilitate running large optimization tasks on a cluster.

6.3.1 The graphical user interface of SBMLsimulator

The graphical user interface (see Figure 6.1) contains several sub-windows for the dis-
play of simulation results and for settings which the user can change: SBMLsimulator
enables choosing the numerical solver as well as setting the start point, end point, and
the step size of a simulation at the lower part of the GUI. Some integration routines (e.g.,
Rosenbrock’s solver) are based on a fixed error tolerance, which can be specified under
Edit/Preferences. Different quality functions for computing the distance between simu-
lated and experimental data are provided by SBMLsimulator (also in the lower part of
the GUI). In the upper left part of the window the model quantities to be plotted can
be chosen. SBMLsimulator allows the user to change initial values of species as well
as parameter and compartment values in the middle left part of the window. Once the
simulation button is clicked, simulation is started with the chosen settings.

Import of experimental data is facilitated by a dedicated dialog. The most intuitive
mapping of columns in the data to model quantities is suggested by SBMLsimulator.
The user can approve this suggestion or change the mapping for certain columns. After
uploading the experimental data, they are plotted together with the simulation results
(see right part of Figure 6.1). This enables a straightforward comparison of simulated
and experimental data. The distance of loaded experimental data to the simulated data is
computed after a simulation and displayed at the bottom of the GUI.

The main window of SBMLsimulator (with the name "Simulation") is dedicated to the
display of the simulation results and the modification of simulation settings. In addition
to this window, there are windows for displaying the simulation data ("Computed data")
as well as the experimental data ("Experimental data") in table form. Another window
enables the user to see the structure of the model ("Model").

Experimental data are not only used for comparison to simulation results. Addition-
ally, a parameter estimation with respect to the data can be started once experimental
data have been imported into SBMLsimulator. The parameters to be estimated and their
ranges need to be set by the user in a dedicated window or via importing a text file
which contains the required information. Afterwards, the type of evolutionary algorithm
is chosen, which can also involve changing specific settings of the method in EvA2.

When SBMLsimulator has finished processing a generation of parameter sets during
optimization, the current best simulation curves and the experimental data are plotted.
Such an intermediate result is displayed in Figure 6.1. The user can thus follow the
decrease of the distance between simulated and experimental data.
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Figure 6.1: The graphical user interface (GUI) of SBMLsimulator. The main window of SBML-
simulator after importing a model describing atorvastatin biotransformation (Bucher et al., 2011)
is displayed in this figure. The user can change initial quantities (middle left part of window)
and decide which quantities are to be plotted (upper left). In addition, settings for simulation,
such as the integration routine, the simulation start and end time, the simulation step size, and
the quality function for comparing the simulated data to experimental data, can be defined at the
bottom of the window. The window contains several buttons below the menu bar, which can be,
e.g., used to start a simulation or a parameter estimation with EvA2. In the right part of the figure
an intermediate solution of such a parameter estimation is shown. The experimental values (in
this case articifial values) are shown as shapes and the simulated values with the current set of
parameters are presented as curves. Here EvA2 already found a parameter set leading to a small
deviation between experimental and simulated data.
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6.3.2 The command-line mode for running time-consuming jobs on
a cluster

For each fitness evaluation during parameter estimation a simulation is necessary, which
is why the whole optimization process in EvA2 can take several hours or days for some
models. The running time of a parameter estimation is thus heavily influenced by the
time needed for conducting a single simulation. Parameter estimations with long running
times will often be performed in the command-line mode instead of using the GUI-
mode in which SBMLsimulator is started by default. The command-line mode facilitates
running time-consuming parameter estimation tasks on a computer cluster. Such tasks
are usually conducted multiple times, which is another reason for transferring them to a
cluster. The repetition of a parameter estimation is advisable, as an optimization run can
get stuck in a local optimum of the fitness function. Furthermore, with multiple runs of
a parameter estimation one can assess whether the estimated quantities are identifiable
(Schilling et al., 2009). This has already been explained at the beginning of this thesis
(see 3.4.5).

6.4 Example for using SBMLsimulator as a proof of
concept

We estimated the parameters of a model explaining the biotransformation of atorvastatin
(Bucher et al., 2011) in order to demonstrate the usefulness of SBMLsimulator. The
model is stored in the BioModels Database (Chelliah et al., 2013) under the accession
number BIOMD0000000328. First, an artificial data set was created by simulating the
model with the start and end time described in the publication. The simulated data were
saved and the values at time points similar to those used in the publication were extracted.
After the created data set had been read by SBMLsimulator, optimization with EvA2 was
started with respect to this data set using differential evolution (Storn and Price, 1997).
This optimization involved estimating the same parameters as in the publication, with
the intervals given in Table 6.1.

SBMLsimulator enables to define separate parameter intervals for their random initial-
ization (minimum/maximum initial value) and for the following optimization procedure
(minimum/maximum value). Here the same intervals were chosen for both cases. Sim-
ulation was performed with the Rosenbrock solver (Press et al., 1993) and an absolute
error tolerance of 10−12 as well as a relative error tolerance of 10−6, because this method
can solve stiff differential equation systems. The relative squared error (RSE), which has
been suggested previously (Dräger et al., 2009; Dräger, 2011), was used as quality func-
tion. As the exact definition of the RSE will be more relevant in the next chapter, it will
be provided there.

The parameters of the atorvastatin biotransformation model were estimated 100 times
on a computer cluster. In order to exclude parameter estimations stuck in a local op-
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6.4 Example for using SBMLsimulator as a proof of concept
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Figure 6.2: Distribution of parameters estimated with SBMLsimulator. SBMLsimulator was used
to run 100 parameter estimations for the atorvastatin biotransformation model (Bucher et al.,
2011) on a computer cluster. Shown here is the distribution of the 50 estimations with the best fit-
ness values. The estimated values were divided by the original parameter values prior to plotting
for the sake of their standardization. The plot demonstrates that all parameters were estimated
closely around their original values. The figure has been created with the R software package (R
Development Core Team, 2011).
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Chapter 6 Simulation and parameter estimation of SBML models with SBMLsimulator

timum of the fitness function, the 50 % of the estimated parameter sets with the best
fits were extracted from all resulting parameter sets. The distributions of the parame-
ters were then plotted based on these extracted parameter sets (see Figure 6.2). A high
standard deviation for the estimates of some parameter would have suggested that this
parameter could not be identified. However, for all estimated parameter values the stan-
dard deviation was low, which demonstrates that SBMLsimulator was able to identify
all parameters. These results demonstrate that the linkage of parameter estimation and
simulation in SBMLsimulator works well.

6.5 Summary and conclusions
SBMLsimulator is a platform-independent program for simulation and parameter esti-
mation of biochemical models, which completely supports the SBML standard. Two
powerful toolboxes are combined in one graphical interface: the SBSCL for simulation
and the optimization framework EvA2 for estimation of parameter values. SBMLsim-
ulator can be used for manual exploration of parameter space (by changing parameter
values in the GUI) and for automatic calibration of large biochemical models with opti-
mization routines. By modifying individual parameters manually the user possibly gets
new insight into the behavior of a model. With its command-line mode SBMLsimulator
enables transferring time-consuming optimizations to a computer cluster, which often
involves running a parameter estimation multiple times in parallel. A small parameter
estimation study with repeated optimizations was done based on a published model. The
capability of SBMLsimulator to identify parameters was thus demonstrated.

Future versions of SBMLsimulator could include the option to perform a parameter
estimation in log-scale. This can be advantageous, because the parameters are often of
different magnitudes (Raue et al., 2013). The following chapter describes a parameter
estimation study involving a beta version of SBMLsimulator which already enables such
a log-scale parameter estimation.

SBMLsimulator should also be able to simulate models of a format different from
SBML, such as CellML (Cooling, 2010). This has already been discussed for the SBSCL
(see 5.8). Once the SBSCL is extended with CellML support, after some small modifi-
cations SBMLsimulator will be able to simulate models in CellML like the CellMLSim-
ulator (Nickerson et al., 2008).
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Chapter 7

Investigating the influence of
experimental noise on parameter
estimation

In the last chapter parameter estimation with SBMLsimulator was successfully tested
based on time-resolved artificial data. These data, which were extracted from model
simulation results and therefore perfect, were adequate for demonstrating the capabilities
of SBMLsimulator. However, such perfect data is far from realistic and the quality of
experimental data can differ a lot. Besides the measured time points, this quality depends
on the magnitude of experimental noise in the data, which might hamper estimation of
unknown parameters. This leads to the question what variance in the data is tolerable
for available biochemical models, such that an acceptable parameter estimation is still
possible. This chapter therefore describes a study investigating the influence of noise
on parameter estimation with a beta version of SBMLsimulator supporting parameter
estimation in log-scale.

7.1 Uncertainty analysis and noise addition to data

When estimating parameters with noisy data, one is not only interested in the concrete
parameter values, but also in the reliability of the estimated parameters. Some parame-
ters may not be identifiable due to the model structure or the data available for parameter
estimation. Methods for investigating this parameter identifiability have already been
described at the beginning of this thesis (see 3.4.5). Related to identifiability testing is
the uncertainty analysis, which involves the determination of confidence intervals for
parameters. Different methods have been suggested for obtaining confidence intervals
(Rodriguez-Fernandez et al., 2006; Joshi et al., 2006; Kirk and Stumpf, 2009). The
approach by Rodriguez-Fernandez et al. is based on the computation of the Fisher in-
formation matrix. In contrast to that, the other two methods involve bootstrapping of
the experimental data and repeated parameter estimation with the bootstrapped data sets.
The method by Kirk et al. also comprises Gaussian regression of the experimental data.
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Chapter 7 Investigating the influence of experimental noise on parameter estimation

Repeated addition of noise to experimental data before parameter estimation is a key
principle of both latter approaches.

Furthermore, in systems biology studies noise is often added to artificial data (e.g.,
Guillén-Gosálbez et al. (2013)). In a small study with noisy artificial data different
fitness functions were compared for a small toy model (Raue et al., 2013). Here we
conducted a large study involving parameter estimation based on data which contained
different magnitudes of noise. Three already published models of different sizes from
the BioModels Database (Le Novère et al., 2006; Li et al., 2010) were included in this
work.

7.2 Data creation for the parameter estimation study
Perfect data were created by simulating the models with the known parameters. From
the obtained simulation data we extracted the respective data points which were also
contained in the original experimental data used by the model creators. The included
quantities and time points of our artificial data are thus similar to those in the data which
the model creators applied for parameter estimation. We added noise to the perfect data
in order to create data sets resembling real experimental data.

For the study an assumption was that the experimental noise was normally distributed,
which was also assumed in similar studies (Kirk and Stumpf, 2009):

xm(q, t) = x(q, t)+ ε(q, t), ε(q, t)∼ N(0,σ2(q, t)) (7.1)

From a perfect data point x(q, t) with the value of a quantity q determined at time point
t we thus created a noisy data point xm(q, t) by adding a value drawn from a normal dis-
tribution with mean 0 and variance σ2(q, t). Kirk and Stumpf assumed that the variance
was independent of x (Kirk and Stumpf, 2009). In contrast to that, our study addresses
the more general case, in which the variance can be dependent on x. Therefore, we as-
sumed that the standard deviation (i.e., the square root of the variance) for a specific data
point was a certain proportion of the value of that point. It could then be derived by
multiplying the value with a specific factor f (q):

σ(q, t) = f (q) · x(q, t) (7.2)

The noise added to a perfect data point is thus relative noise.
For setting of f (q) of a quantity q we drew a value from [0.5pmean,1.5pmean], where

pmean was a fixed mean factor (e.g., 5%). We thus obtained random factors for each
quantity around the fixed mean factor. With those different factors we took into account
that the variability of certain quantities is often greater than that of others. Experimental
replicates, which usually exist in experimental data, were created by repeating the pro-
cedure of adding noise to perfect data with the same values f (q) for each quantity. The
creation of the noisy data sets involved random steps (i.e., the setting of f (q) and the
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7.3 Models used for analysis

drawing from a normal distribution), which is why this step was repeated 20 times. A
higher number of repetitions would have been preferable, but was infeasible due to the
long running times of the parameter estimations.

7.3 Models used for analysis

Parameter estimations were conducted with three different models. The same quantities
as in the publications were estimated. Some quantity ranges were not given or had to be
adapted for our study (see below).

As already mentioned, the time points for the artificial data sets were chosen similar
to those in the respective publications. A special case is time point 0, because values
from this time point can be extracted from the data and taken as initial species values
for simulation of the model. In the atorvastatin biotransformation model this was done
for two of the species by the model creators. The other initial species values in the
three models were not extracted from the experimental data. They were instead based on
specific assumptions (e.g., the value being 0 at the beginning) or estimated together with
the other quantities. Values of 0 in the simulated data arising from such an assumption
are difficult to handle for our noise addition procedure, as it is based on multiplication
of a data point with a factor f (q) (see Equation (7.2)). For simplicity, we thus did not
include time point 0 in the data for the ERK signaling and the Epo receptor model.
When processing the atorvastatin biotransformation model, the initial values of the two
mentioned species were estimated around the respective values in the data at time point
0 (see below). The data for time point 0 were then excluded from the computation of the
fitness values.

7.3.1 Epo receptor model

The model describes information processing at the erythropoetin (Epo) receptor (Becker
et al., 2010). In the BioModels Database it is stored under the identifier BIOMD0000000271.
8 reactions, 6 species, and 8 kinetic parameters are contained in the model.

The data used for parameter estimation comprised measurements of three quantities,
two of which were sums of specific species values (Epo_medium, Epo_cell) and one
was a direct species value (Epo_EpoR). 10, 30, 60, 120, 180, 240, and 300 minutes were
the time points included in the data.

Prior to estimation the parameter Bmax was fixed by the model creators. The param-
eter koff depends on kon, which is why it was not estimated, but calculated based on
the estimated value for kon. Some other parameter (kt) was determined by the model
creators using an auxiliary model. In our study we therefore considered this parameter
as fixed. 6 quantities (5 parameters and the initial value of the species Epo) to estimate
remained and their ranges could be taken from the publication (see Table 7.1).
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Table 7.1: The table contains the estimated quantities and their ranges for the Epo receptor model
(Becker et al., 2010).

Quantity Minimum value Maximum value

kon 10−7 1000
ke 10−7 1000
kex 10−7 1000
kdi 10−7 1000
kde 10−7 1000
Epo (initial value) 1890 2310

7.3.2 Atorvastatin biotransformation model

The biotransformation of the drug atorvastatin in human hepatocytes is described by this
model (Bucher et al., 2011), which was already used in the previous chapter (see 6.4).
In the BioModels Database the model is stored with the identifier BIOMD0000000328.
This model contains some changes compared to the model described in the publication,
such as renaming of parameters. Here the model available at the BioModels Database,
which comprises 29 reactions, 18 species, and 30 parameters, was used.

Measurements for 12 of the model species (AS_m, ASL_m, ASoOH_m, ASLpOH_m,
ASpOH_m, ASLoOH_m, AS_c, ASL_c, ASpOH_c, ASoOH_c, ASLpOH_c, ASLoOH_c) were
contained in the data. An initial value of 0 was assumed by the model creators for
all but two of the species (AS_m, ASL_m). For AS_m and ASL_m we extracted in each
estimation run the values at time point 0 from the corresponding data (only one value
in the case of non-replicative data). The initial values of the two species were then
estimated between 90% of the minimum extracted value and 110% of the respective
maximum value (compare discussion at the beginning of this section). The time points
in the data were: 0 (only for AS_m and ASL_m), 10, 30, 60, 120, 180, 240, 300, 360, 480,
and 600 minutes. Calculation of the fitness function for a solution during the estimation
procedure was done based on the data of all 12 measured species at the time points
different from 0. In contrast to that, the data points at time point 0 for AS_m and ASL_m

were used for deriving the estimation ranges of their initial values (see above).

Several quantities were fixed by the model creators before estimation. The estimation
ranges of the remaining 21 quantities (see Table 7.2), all of them kinetic parameters,
were not given in the publication. We therefore set these ranges such that the estimation
procedure was reliably able to identify the global optimum: For all quantities a range of
[10−4,100] was applied during estimation. The chosen ranges were thus different from
those in the previous chapter (compare Table 6.1), as a logarithmic parameter space could
be used in this study.
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Table 7.2: The table comprises the estimated quantities for the atorvastatin biotransformation
model (Bucher et al., 2011) and short identifiers for these quantities.

Quantity Short identifier

Import_ASLpOH_k P1
Import_ASLoOH_k P2
Import_ASL_k P3
Import_ASpOH_k P4
Export_ASLpOH_k P5
Export_ASLoOH_k P6
Export_ASoOH_k P7
Export_AS_k P8
Export_ASL_k P9
Import_AS_k P10
Import_ASoOH_k P11
Export_ASpOH_k P12
CYP3A4_ASoOH_Vmax P13
CYP3A4_ASLpOH_Vmax P14
CYP3A4_ASLoOH_Vmax P15
CYP3A4_ASpOH_Vmax P16
UGT1A3_AS_Vmax P17
k_PON_OH_c P18
k_PON_ASL_c P19
fu_AS P20
fu_ASL P21
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7.3.3 ERK signaling model

This model describes the Epo induced ERK (extracellular signal-regulated kinase) sig-
naling cascade (Schilling et al., 2009). It is available in the BioModels Database (model
identifier BIOMD0000000270) and contains 42 reactions, 32 species, 24 parameters, 5
scaling factors, and 4 constraints.

Measurements of 8 quantities (rescaled_pEpoR, rescaled_ppMEK1,
rescaled_ppMEK2, rescaled_ppERK1, rescaled_ppERK2, rescaled_pJAK2,
rescaled_pSOS, rescaled_mSOS_SOS) were contained in the data. All of those quanti-
ties are derived in the model by multiplying a scaling factor with a certain species value.
The following time points were included in the data: 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7.5, 9, 10.5,
12, 13.5, 15, 16.5, 18, 20, 22, 25, 28, 31, 35, 40, 45, 50, 60, 65, and 70 minutes.

Parameter estimation and following identifiability tests were conducted repeatedly by
the creators of the model. Dependent quantities were fixed to values producing the best
fit after each round of such tests. Of the remaining 21 quantities to estimate, 17 were
parameters, 3 were scaling factors and one was the initial concentration of species SOS.
We took the ranges of the scaling factors and of the initial concentration from the publi-
cation. Estimation with the perfect data got frequently stuck in a local optimum, which
is why the parameter ranges were narrowed compared to those in the publication (see Ta-
ble 7.3). The global optimum could then be reliably reached by the estimation procedure
without raising the number of estimation repetitions or the number of fitness evaluations,
which both would have consumed much more running time.

7.4 Settings for optimization

We used a beta version of SBMLsimulator (Dörr et al., 2014) for simulation and param-
eter estimation. In addition to the version of SBMLsimulator described in the previous
chapter, a logarithmic parameter space can be selected in this beta version. This logarith-
mic parameter space was previously suggested (Raue et al., 2013) and proved effective
for our study. Rosenbrock’s solver (Press et al., 1993) with absolute tolerance 10−12 and
relative tolerance 10−6 was chosen as integration routine.

The performance of several heuristic optimization methods when estimating the pa-
rameters of a metabolic network was compared by Dräger et al. (2009). One of the
best performing methods was differential evolution (Storn, 1996; Storn and Price, 1997),
which has been explained at the beginning of the thesis (see 3.1.3). This method was
used with its standard settings in EvA2 (F = 0.8, CR = 0.6, λ = 0.6, population size of
50, DE type: DE/current-to-best) for the whole study.

There is no guarantee that evolutionary algorithms always find the globally optimal so-
lution. They get instead sometimes stuck in a local optimum. Estimation for each data set
(or combination of replicative data sets, respectively) was thus repeated 10 times when
optimizing the Epo receptor and the ERK signaling model and 20 times when optimizing
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7.4 Settings for optimization

Table 7.3: The table displays the estimated quantities, their ranges, and short quantity identifiers
for the ERK signaling model (Schilling et al., 2009).

Quantity Short identi-
fier

Minimum
value

Maximum
value

JAK2_phosphorylation_by_Epo P1 10−3 1
SHP1_activation_by_pEpoR P2 10−3 1
actSHP1_deactivation P3 10−3 1
pJAK2_dephosphorylation_by_actSHP1 P4 10−3 1
SOS_recruitment_by_pEpoR P5 10−3 1
mSOS_induced_Raf_phosphorylation P6 10−3 1
pRaf_dephosphorylation P7 10−3 1
First_MEK_dephosphorylation P8 10−3 1
pSOS_dephosphorylation P9 10−3 1
pEpoR_dephosphorylation_by_actSHP1 P10 10−3 10
First_MEK2_phosphorylation_by_pRaf P11 10−3 10
First_ERK2_phosphorylation_by_ppMEK P12 10−3 10
Second_ERK_dephosphorylation P13 10−3 10
mSOS_release_from_membrane P14 10−3 100
Second_ERK1_phosphorylation_by_ppMEK P15 10−3 100
First_ERK_dephosphorylation P16 10−3 100
Second_MEK1_phosphorylation_by_pRaf P17 10−3 1000
SOS (initial value) P18 0.1 100
scale_pEpoR P19 0.01 50
scale_pJAK2 P20 0.01 50
scale_ppERK P21 0.01 50
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the atorvastatin biotransformation model. The higher number of repetitions for the last
model is due to the fact that finding the global optimum appeared more difficult here than
for the other two models. For further analysis we extracted the solution yielding the best
fitness values from all 10 (or 20) quantity sets resulting from optimization.

In addition to the described settings, the number of fitness evaluations for an estimation
run was fixed to 150,000 for the Epo receptor and the ERK signaling model and 200,000
for the atorvastatin biotransformation model. Then differential evolution was always
able to identify the global optimum (i.e., a solution with a low deviation to the known
real quantity values) with respect to perfect data.

7.5 Fitness functions and estimation constraints
Parameter estimation was run with different fitness functions depending on whether
replicative or non-replicative data sets were used. All applied fitness functions are pre-
sented in this section. For the ERK signaling model constraints were given, which is
why we first explain how to incorporate constraints into the fitness function.

Quantity estimation for the ERK signaling model involved constraints given in the
following form:

max(q1)

max(q2)
= v (7.3)

This means that the fraction between the maximum values of two model quantities q1
and q2 should have the value v. Similar to the approach of the model creators, we added
the following term to the fitness function:(

max(q1)

max(q2)
− v
)2

(7.4)

For non-replicative data the relative squared error (RSE) was used as fitness function,
which was suggested, e.g., by Dräger et al. (2009). The definition of the RSE is as
follows:

ERSE = ∑
q∈Q

∑
t∈T

(
xpred(q, t)− xm(q, t)

xm(q, t)

)2

(7.5)

xpred(q, t) represents the simulated value for quantity q at time point t, while xm(q, t) is
the respective measured value.

In the previous formula we assumed that the data only contained one replicate of each
data point. The RSE for data comprising n replicates can be calculated by summing up
the RSE for each replicative data set and dividing by the number of replicates afterwards:

ERSE,n =
∑

n
i=1 ∑q∈Q ∑t∈T

(
xpred(q,t)−xm(q,t,i)

xm(q,t,i)

)2

n
(7.6)
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xm(q, t, i) is the measured value for quantity q at time point t in the replicate i. The
division by the number of replicates n is included in the formula in order to have a
similar influence of constraints for different values of n. In our study n was always 3 for
the replicative data, which is common in experimental measurements.

Instead of just computing the distance of the simulated data to each replicative data set,
one can also include the standard deviation of the data into the fitness function, which
was suggested, e.g., by Raue et al. (2013) and Vanlier et al. (2013). Then a data point
with a high standard deviation contributes less to the fitness. In our study the variance
depends on the data, which is why the formula is as follows:

ESD,n =
∑

n
i=1 ∑q∈Q ∑t∈T

(
xpred(q,t)−xm(q,t,i)

σ(q,t)

)2

n
(7.7)

This equation only differs from Equation (7.6) in the division by the standard deviation
σ of a data point instead of its value. A division by the number of replicates n is also
included here because of a possible addition of terms for constraints. We multiply those
added constraint terms with the factor 20 in order to give them a weight more similar
to that for the other fitness functions which do not involve a division by the standard
deviation.

Instead of computing the variances (or the standard deviations) from the data, they can
also be estimated, as suggested by Raue et al. (2013) and Vanlier et al. (2013). Here
we calculated the standard deviations based on just three data points (i.e., the number of
replicates). Therefore, the value of the fitness function is possibly very sensitive to noise
in the data. An estimation of the factors f (q) contained in Equation (7.2) together with
the estimated quantities could circumvent this problem.

Similar to Vanlier et al. we determine the probability density for observing the mea-
surement data given the estimated quantities. To this end, a key assumption is indepen-
dent additive Gaussian noise in the data. In contrast to Vanlier et al., the variance in
our study is specific for each metabolite q and time point t. With those assumptions the
probability density of the measured data xm comprising n replicates given the parameters
θ is computed as:

p(xm|θ) =
n

∏
i=1

∏
q∈Q

∏
t∈T

p(xm(q, t, i),θ) (7.8)

=
1

∏q∈Q ∏t∈T
(√

2πσ(q, t)
)n e
−∑

n
i=1 ∑q∈Q ∑t∈T

(
xpred(q,t)−xm(q,t,i)

√
2σ(q,t)

)2

(7.9)

Maximizing this likelihood is equivalent to minimizing the negative logarithm of the
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likelihood. This leads to the following formula:

−2ln(p(xm|θ)) = ∑
q∈Q

∑
t∈T

n · ln(2π(σ(q, t))2)+
n

∑
i=1

∑
q∈Q

∑
t∈T

(
xpred(q, t)− xm(q, t, i)

σ(q, t)

)2

(7.10)
With the assumption for the standard deviations (Equation (7.2)) and including the divi-
sion by the number of replicates n, we obtain this equation:

EML,n =
∑q∈Q ∑t∈T n · ln(2π

(
f (q) · x(q, t))2)+∑

n
i=1 ∑q∈Q ∑t∈T

(
xpred(q,t)−xm(q,t,i)

f (q)·xpred(q,t)

)2

n
(7.11)

Added constraint terms are again multiplied by 20, because the formula includes a divi-
sion by the (estimated) standard deviation.

If Equation (7.11) was used as fitness function, the estimation procedure involved ad-
ditional estimation of the factors f (q). In this case these factors were estimated between
10−3 and 0.5.

7.6 Results of optimization with respect to single
artificial data sets

Applying the procedure described in Section 7.2, we created 20 data sets for each of the
three models and for different magnitudes of relative noise (no noise, 5%, 10%, 15%,
and 20% noise).

In the absence of experimental noise, the estimated values of all unknown quantities
of the Epo receptor model were very accurate (see Figure 7.1). With a mean noise of
5% the quantities were estimated within ± 30% of the real values, which is acceptable.
When increasing the noise to 10%, with one exception (for parameter kex) the estimation
results were still within± 50% of the real values. The occurence of such an outlier could
also mean that the global optimum of the fitness function was not found for the respective
data set. When the noise was further increased to 15%, kex became clearly unidentifiable
(i.e., the respective interval of the estimation results spread to ± 100% of the real value).
One more quantity (kdi) could not be identified with 20% noise.

Regarding the atorvastatin biotransformation model, with perfect data all quantities
could be estimated close to their real values (see Figure 7.2), but increasing the noise to
5% noise already caused a spread of the estimation intervals beyond ± 50% of the real
values for three quantities. Such large intervals were present for two more quantities with
10% noise. A further increase of the noise gave rise to more than half of the quantity
intervals spreading beyond ± 50% of the real values with most of these quantities being
clearly unidentifiable.

The estimation results for the unknown quantities of the ERK signaling model were
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Figure 7.1: Distributions of the estimated quantities of the Epo receptor model with different
magnitudes of noise. The figure shows the distributions of the quantity estimates of the Epo
receptor model for 20 data sets and with different magnitudes of noise. The estimated values
were divided by the original quantity values before plotting. Like all the following figures in
this chapter and in Appendix B the figure has been created with the R software package (R
Development Core Team, 2011).
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Figure 7.2: Distributions of the estimated quantities of the atorvastatin biotransformation model
with different magnitudes of noise. The distributions of the quantity estimates of the atorvastatin
biotransformation model for 20 data sets with different magnitudes of noise are plotted. Short
identifiers are used for the quantities (see Table 7.2). Before plotting the estimated values were
divided by the original quantity values.
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within 15% of the original values in the absence of noise (see Figure 7.3). This deviation,
which is greater than for the other two models, is due to the fact that during estimation
we applied the relative squared error as fitness function for all three models. In contrast
to that, the authors of the model used a χ2 function. The values estimated by us are,
however, still acceptable. With a noise of 5% all quantity intervals were within ± 50%
of the original values. Clear unidentifiability of any quantity was still not present when
the noise was increased to 10%, although up to two outliers occurred for some quanti-
ties with deviations from the real values greater than ± 50%. A further increase of the
noise to 20% led to a larger spread of the quantity estimates. However, compared to the
atorvastatin biotransformation model, which comprises a similar number of unknown
quantities, the intervals of the estimation results were much smaller on average.

7.7 Results of optimization with respect to replicative
data sets

Artificial replicative data sets were created as described in Section 7.2, because biolog-
ical data usually consist of experimental replicates (frequently n = 3). We produced 20
noisy data sets containing three replicates each for the same magnitudes of relative noise
as before (no noise, 5%, 10%, 15% and 20% noise). Estimation with respect to those data
sets was then conducted using the different fitness functions defined in Section 7.5: the
mean relative squared error (Equation (7.6)), the function involving the standard devia-
tion calculated from the data (Equation (7.7)), and the function comprising the estimated
standard deviations (Equation (7.11)). The obtained results were compared to the esti-
mation results with single data sets (see previous section).

Figures 7.4 and 7.5 contain the distributions of the estimated quantities of the Epo
receptor model using the different fitness functions for a noise of 10% and 20%, respec-
tively. The distributions for 5% and 15% noise are given in Appendix B (Figures B.1
and B.2). Estimation with respect to replicative data is clearly advantageous, especially
for higher magnitudes of noise. Compared to the other fitness functions, estimation of
the standard deviations together with the unknown quantities led to intervals of estimated
quantities narrowest around the real values. Using this approach, with 20% noise all but
one of the quantities were estimated within ± 50% of the real values (with the exception
of one outlier). In contrast to that, the estimation results when computing the standard
deviations from the data prior to optimization were not clearly better than the results
when applying the mean relative squared error as fitness function.

Using the atorvastatin biotransformation model, estimation of the standard deviations
together with the parameters yielded clearly better estimation results for 10% and 20%
noise than using the other fitness functions (see Figures 7.6 and 7.7). In contrast to
the results when applying the other fitness functions, the intervals of all but one of the
estimated parameters were within approximately ± 50% of the real values with 10%
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Figure 7.3: Distributions of the estimated quantities of the ERK signaling model with different
magnitudes of noise. The figure shows the distributions of the quantity estimates of the ERK
signaling model for 20 data sets with different magnitudes of noise. Short identifiers are used for
the quantities (see Table 7.3). Prior to plotting the estimated values were divided by the original
quantity values.

94



7.7 Results of optimization with respect to replicative data sets

●

●

●

kon

ke

kex

kdi

kde

Epo

0.
0

0.
5

1.
0

1.
5

2.
0

S
in

gl
e 

re
pl

ic
at

e,
 r

el
at

iv
e 

sq
ua

re
d 

er
ro

r

estimated/original

●

● ●

kon

ke

kex

kdi

kde

Epo

0.
0

0.
5

1.
0

1.
5

2.
0

3 
re

pl
ic

at
es

, m
ea

n 
re

la
tiv

e 
sq

ua
re

d 
er

ro
r

estimated/original

●
●

kon

ke

kex

kdi

kde

Epo
0.

0

0.
5

1.
0

1.
5

2.
0

3 
re

pl
ic

at
es

, d
iv

is
io

n 
by

 S
D

 fr
om

 d
at

a

estimated/original

●

●

kon

ke

kex

kdi

kde

Epo

0.
0

0.
5

1.
0

1.
5

2.
0

3 
re

pl
ic

at
es

, l
ik

el
ih

oo
d 

fu
nc

tio
n 

w
ith

 e
st

im
at

ed
 S

D
s

estimated/original
Fi

gu
re

7.
4:

D
is

tr
ib

ut
io

ns
of

th
e

es
tim

at
ed

qu
an

tit
ie

s
of

th
e

E
po

re
ce

pt
or

m
od

el
w

ith
10

%
m

ea
su

re
m

en
tn

oi
se

us
in

g
di

ff
er

en
tfi

tn
es

s
fu

nc
-

tio
ns

.
T

he
fig

ur
e

sh
ow

s
th

e
di

st
ri

bu
tio

ns
of

th
e

qu
an

tit
y

es
tim

at
es

of
th

e
E

po
re

ce
pt

or
m

od
el

fo
r

20
no

is
y

da
ta

se
ts

us
in

g
di

ff
er

en
tfi

tn
es

s
fu

nc
tio

ns
fo

r
pa

ra
m

et
er

es
tim

at
io

n:
re

la
tiv

e
sq

ua
re

d
er

ro
r

fo
r

si
ng

le
re

pl
ic

at
es

an
d

tr
ip

lic
at

es
(E

qu
at

io
n

(7
.5

),
E

qu
at

io
n

(7
.6

))
,d

iv
is

io
n

by
th

e
st

an
da

rd
de

vi
at

io
n

of
ea

ch
da

ta
po

in
ti

n
th

e
fit

ne
ss

fu
nc

tio
n

(E
qu

at
io

n
(7

.7
))

,fi
tn

es
s

fu
nc

tio
n

co
m

pr
is

in
g

es
tim

at
ed

st
an

da
rd

de
vi

at
io

ns
(E

qu
at

io
n

(7
.1

1)
).

T
he

es
tim

at
ed

va
lu

es
w

er
e

di
vi

de
d

by
th

e
or

ig
in

al
qu

an
tit

y
va

lu
es

be
fo

re
pl

ot
tin

g.

95



Chapter 7 Investigating the influence of experimental noise on parameter estimation

●

●

kon

ke

kex

kdi

kde

Epo

0.
0

0.
5

1.
0

1.
5

2.
0

S
in

gl
e 

re
pl

ic
at

e,
 r

el
at

iv
e 

sq
ua

re
d 

er
ro

r

estimated/original

●

● ●

kon

ke

kex

kdi

kde

Epo

0.
0

0.
5

1.
0

1.
5

2.
0

3 
re

pl
ic

at
es

, m
ea

n 
re

la
tiv

e 
sq

ua
re

d 
er

ro
r

estimated/original

●●

●

● ●

●

kon

ke

kex

kdi

kde

Epo

0.
0

0.
5

1.
0

1.
5

2.
0

3 
re

pl
ic

at
es

, d
iv

is
io

n 
by

 S
D

 fr
om

 d
at

a

estimated/original

● ●

●●

●

kon

ke

kex

kdi

kde

Epo

0.
0

0.
5

1.
0

1.
5

2.
0

3 
re

pl
ic

at
es

, l
ik

el
ih

oo
d 

fu
nc

tio
n 

w
ith

 e
st

im
at

ed
 S

D
s

estimated/original

Fi
gu

re
7.

5:
D

is
tr

ib
ut

io
ns

of
th

e
es

tim
at

ed
qu

an
tit

ie
so

ft
he

E
po

re
ce

pt
or

m
od

el
w

ith
20

%
m

ea
su

re
m

en
tn

oi
se

us
in

g
di

ff
er

en
tfi

tn
es

sf
un

ct
io

ns
.

T
hi

s
fig

ur
e

sh
ow

s
th

e
es

tim
at

io
n

re
su

lts
w

ith
20

%
no

is
e

an
d

is
ot

he
rw

is
e

si
m

ila
rt

o
Fi

gu
re

7.
4.

96



7.8 Summary of the estimation results

noise (except one outlier) when estimating the standard deviations. The same also applies
for estimation with 15% noise (see Figure B.4 in Appendix B). This approach also caused
the ranges of 5 quantities to spread markedly beyond ± 50% of the real values with 20%
noise, whereas at least two more quantities could clearly not be identified when using
the other fitness functions. Calculating the standard deviations from the data prior to
estimation often gave rise to results worse than those obtained when applying the mean
relative squared error as fitness function.

Several outliers occured for two of the fitness functions with 5% noise (see Figure
B.3 in Appendix B). This could be due to all of the optimization runs missing the global
optimum for some data sets. With 5% noise the distribution of only one estimated quan-
tity spread clearly beyond ± 50% when using the mean relative squared error as fitness
function for the replicative data sets. Compared to that, the estimation of the standard
deviations together with the parameters even caused a larger spread here.

For the ERK signaling model estimation of the standard deviations was not distinctly
better than using the mean relative squared error as fitness function with 10% noise (see
Figure 7.8). This was also not the case for 5% and 15% noise (see Figures B.5 and B.6
in Appendix B). The results when estimating the standard deviations with 5% noise were
even slightly worse in comparison to applying the mean relative squared error. In contrast
to that, with 20% noise the first approach yielded clearly better estimation results than the
latter approach. The results when calculating the standard deviations prior to estimation
were worse than those when using the other approaches for all magnitudes of noise.

With 20% noise estimating the standard deviations together with the quantities caused
two quantities to spread clearly beyond ± 50% of the real values. The same approach
led to just one quantity being clearly unidentifiable with 15% noise (see Figure B.6).

7.8 Summary of the estimation results
In the study with 5% noise non-replicative data sets were often sufficient for deriving
good estimates of model parameters. However, the use of replicative data was necessary
in order to obtain good estimation results when the data contained higher noise magni-
tudes. Calculating the standard deviations of the data points before estimation was not
better than applying the mean relative squared error as fitness function. This can be ex-
plained by the poor precision using a small number of replicates. With a higher number
of experimental replicates the situation would probably be improved. A number of repli-
cates much greater than three is, however, often not feasible due to the limited number
of data points that can be measured in many experimental setups.

For data with a mean relative noise of at least 10% estimating the standard deviations
together with the unknown quantities proved advisable. With 5% noise the results apply-
ing that approach were sometimes worse than the results when using the mean relative
squared error. The additional quantities to estimate (i.e., the relative noise of each mea-
sured quantity) presumably complicate the estimation procedure. New local or global
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Chapter 7 Investigating the influence of experimental noise on parameter estimation

optima might occur in the fitness landscape with a low amount of experimental noise.
This effect obviously vanishes with higher noise values.

A quantity contained in one of the models was hard to identify even for 5% noise.
This demonstrates that a small amout of noise can already cause unidentifiability of some
quantities. The estimation results for such quantities need to be treated carefully.

Except for the mentioned quantity and few outliers, estimation of the quantities in the
three models worked well up to 10% noise when using replicative data and estimation
of the standard deviations. Applying that approach with 15% noise one quantity was
unidentifiable in most models. Increasing the noise level to 20% caused unidentifiability
of more quantities. However, the estimation results were still acceptable for most of the
quantities.

7.9 Limitations of the study

An assumption of our study was that the data contained only relative noise (i.e., the
standard deviation of a data point could be obtained by multiplying a quantity-specific
factor by the value of the data point). Some absolute noise independent of the value of the
data point is often also present in experimental data, which is why our assumption may be
too simplifying in some cases. Investigating the influence of absolute and relative noise
in combination (or just absolute noise) on parameter estimation was, however, beyond
the scope of this study and could be the target of further research.

Furthermore, we assumed that the measurement noise followed a normal distribution,
a frequent assumption for biological data. In contrast to that, a log-normal noise distribu-
tion was also assumed previously (Raue et al., 2013) and could lead to results different
from those in our study.

The long running times of parameter estimations is one key problem of studies like
ours. A parameter estimation run took more than a day for the ERK signaling model
with the chosen settings. For the other two models, however, estimation was considerably
faster. In order to enable a parameter estimation study within an acceptable time frame,
one has to run many parameter estimations in parallel. Therefore, multiple cluster nodes
are needed. We only created 20 data sets for each model and magnitude of noise and
conducted few estimation runs for each data set, as the running times for estimation were
long and the capacity of cluster nodes was limited. The present data sets and estimation
results already permitted us to compare the different fitness functions as well as to draw
conclusions about the effect of measurement noise on parameter estimation. With more
capacity for parallelization available, the study can be repeated increasing the number of
data sets and estimation runs.
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7.10 Summary and conclusions

7.10 Summary and conclusions
The aim of this study was to investigate the effect of different magnitudes of measure-
ment noise on estimation of model quantities (i.e., parameters or initial values of model
elements) for three published models. Furthermore, this study aimed at examining in
larger scale than previously (Raue et al., 2013), if including the standard deviations of
measurement points in the fitness function (by calculating them prior to estimation or by
estimating them together with the model quantities) leads to better estimation results.

The study suggests that the computation of the standard deviations before estimation
is not advisable for three experimental replicates, which is a common number in biolog-
ical experiments. However, estimation of the standard deviations (i.e., the relative noise
values for each measured quantity) together with the unknown quantities proved to be
effective in the presence of a higher magnitude of experimental noise (beginning from
10% noise). This approach enabled the estimation of nearly all unknown quantities with
respect to experimental data consisting of three replicates up to a mean relative noise of
15%. With respect to non-replicative data a lower magnitude of noise was tolerated (5 to
10%, depending on the model).

Additionally, this study shows an alternative approach for uncertainty analysis (see
7.1). Noise is added multiple times to data obtained from model simulation using the
estimated parameters. In contrast to bootstrapping noisy experimental data, we thus
bootstrap "perfect" data. After parameter estimation for each noisy data set, confidence
intervals for each parameter can be derived from the estimated parameter values.
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Chapter 8

Discussion and concluding remarks

Biochemical network models describe biological behavior and provide hypotheses testable
by experiments. This thesis covered methods for the simulation and optimization of such
models and their application. The types of models considered were logical models and
kinetic ordinary differential equation (ODE) models. While logical modeling is espe-
cially applied for describing large biological signaling networks qualitatively, kinetic
ODE models represent dynamic network behavior. Kinetic ODE models are usually
smaller than logical models and require at least some prior knowledge about mechanistic
details.

Logical models are often Boolean models in which the states of the model species can
only be 0 or 1. While this restriction is adequate for many signaling pathways, in some
cases it prevents a satisfactory description of biological reality. An example for this is
the modeling of IL-6 induced hepatic gene regulation conducted in this thesis. In order
to circumvent the shortcomings of Boolean models, we used fuzzy logic modeling which
allows the species states to be in a continuous interval. A method which was previously
employed for the calibration of a network with respect to prior literature knowledge and
proteomic data (Morris et al., 2011) was adapted to also enable optimization based on
gene expression data. The optimized model suggested the downregulation of RXRα as
the main event responsible for the downregulation of many genes encoding drug metab-
olizing enzymes and transporters (Keller et al., 2016). This hypothesis was supported
by further experiments. The described modeling approach is an example how important
regulatory events can be obtained from prior knowledge and data. However, the method
applied does not produce models describing dynamic behavior.

For the description of the dynamics of biological networks kinetic ODE models are
frequently used. In order to exchange and store such models, dedicated formats were
developed. SBML (Hucka et al., 2004) is the most important format in this respect. Its
main elements are species, compartments, and reactions whose assigned rate laws repre-
sent the differential equations. Simulation of SBML models is a difficult task, as these
models can also contain rules as well as events definining sudden changes of certain
values. Furthermore, different time scales are possible for reactions, which means that
the model can contain a fast and a slow subsystem. The SBML Test Suite (Bergmann
and Sauro, 2008) comprises numerous benchmark tests which need to be passed by a
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Chapter 8 Discussion and concluding remarks

simulation tool in order to fully support the SBML standard. Very few tools support the
whole standard and their algorithms have not been published. Therefore, we developed
the Systems Biology Simulation Core Algorithm and implemented it in the Systems Bi-
ology Simulation Core Library (SBSCL) (Keller et al., 2013). The SBSCL comprises
several solvers of ODE systems connected with an interpreter of the SBML format. Be-
cause of the strict separation between SBML interpretation and numerical simulation,
other solvers as well as other model formats can be easily integrated into the library.
The SBSCL enables the simulation of SBML models containing all elements defined in
the standard. While all models of the SBML Test Suite can be simulated correctly, for
simulation of some models our library is not as fast as some other tools, such as COPASI
which is implemented in C++. This is mainly due to the more efficient numerical inte-
gration routines available in C. However, COPASI does not support SBML completely
like the SBSCL. Once more efficient integration routines are implemented in Java, they
can be integrated in the SBSCL, which will presumably lead to a smaller running time
for several models.

Kinetic ODE models contain parameters whose values need to be set. Values for pa-
rameters can be obtained from literature or databases, such as SABIO-RK (Wittig et al.,
2012). But those values are often unknown and then need to be estimated with respect
to experimental data. This estimation involves repeated simulation with different com-
binations of parameter values. Due to the large parameter space heuristic optimization
routines like evolutionary algorithms are usually applied here. During an estimation the
fitness function representing the distance between simulated and experimental data is
continuously improved. EvA2 (Kronfeld et al., 2010; Becker and Kronfeld, 2014) is an
optimization toolbox that comprises several heuristic optimization routines. As the SB-
SCL has been specifically designed for a straightforward integration into other software
tools, we connected this simulation library with EvA2 into the program SBMLsimulator
(Dörr et al., 2014). SBMLsimulator comprises a graphical user interface for the display
of the results obtained by simulation with the SBSCL. For large parameter estimation
tasks it can also be run in command-line mode, which enables to start long model opti-
mizations on a cluster computer. The correctness of parameter estimation with SBML-
simulator was tested on such a cluster computer using a published model and artificial
data.

How well model parameters can be estimated (also referred to as parameter identifi-
ability), depends on the specific model structure, but also on the quality of the experi-
mental data used for model optimization. This quality involves the time points for which
measurements are available. Experimental data are always noisy and the magnitude of
experimental noise is also likely to have a large influence on parameter estimation. In
this thesis we used SBMLsimulator in a large simulation study testing robustness of the
parameter estimation against different magnitudes of noise for three published models.
Several fitness functions were compared one of them involving estimation of the exper-
imental noise together with the parameters. This approach, which was previously tested
for a small toy model (Raue et al., 2013), led for all three models to better estimation
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results with data comprising larger magnitudes of noise. A mean relative noise of 20%
caused unidentifiability of several quantities for each of the three models. While conclu-
sions for other models are difficult to draw, this study shows that a realistic magnitude of
experimental noise can greatly hamper parameter estimation. As absolute noise is usu-
ally also present in experimental data, but was for the sake of simplicity not included in
this study, the robustness of parameter estimation against experimental noise is expected
to be even worse.

In this thesis logical models and ODE models were treated as separate modeling ap-
proaches. Logical models, which were not dynamic, were calibrated with respect to data
comprising measurements for only a single time point. However, CellNOptR (Terfve
et al., 2012) also allows gates to be activate at different discrete time points. Gates active
at a later time point could, e.g., represent feedback loops. Such models are then "dis-
crete dynamic", because species states can be computed at several discrete time points.
Calibration of these models is possible with respect to time-resolved data. The method
for fuzzy logic modeling does currently not support model calibration with respect to
time-resolved experimental data, but could be similarly extended. A Boolean model can
even be transformed into a fully dynamic ODE model with the Odefy toolbox (Krumsiek
et al., 2010). This transformation involves the introduction of parameters whose values
need to be known. In order to estimate the parameters, detailed time-resolved experi-
mental data are needed. CellNOptR comprises an implementation of the Odefy method
and enables such a parameter estimation.

While the logical modeling covered in this thesis is mainly used for describing sig-
naling or gene regulatory networks, other techniques should be applied for modeling
large metabolic pathways. Kinetic ODE modeling of such large networks would require
a large amount of data for the estimation of unknown parameters, which limits use of
ODE modeling for the investigation of large metabolic pathways (Töpfer et al., 2015). A
widely used alternative are structural models, which comprise species and reactions, but
no kinetic rate laws. Such models can also be stored in the SBML format. One important
example is HepatoNet1, which qualitatively describes large parts of the metabolism of
the human liver (Gille et al., 2010). In order to examine the dynamics of structural mod-
els, dynamic flux balance analysis (DFBA) is an adequate method. DFBA (Mahadevan
et al., 2002) is related the original flux balance analysis (FBA) (Orth et al., 2010), which
finds a distribution of fluxes (i.e., velocities) of reactions under the assumption that the
amounts of the species in the network are unchanged (the so-called steady state assump-
tion). In contrast to FBA, DFBA does not assume a steady state and predicts species
concentrations and flux distributions over time. Thus the dynamics of a metabolic net-
work can be described without estimation of a large number of kinetic parameters like in
ODE modeling. Currently SBMLsimulator is extended to support dynamic flux balance
analysis.

The Systems Biology Simulation Core Library and SBMLsimulator can be the basis
for further research. This might involve the extension of the capabilities of both the li-
brary and the simulation software. Newer levels and versions of SBML could necessitate
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an update of the SBSCL in order to maintain full support of the standard. The developed
simulation and optimization methods can be applied in ODE modeling, for which the
parameter estimation study described here was an example. Another obvious application
of SBMLsimulator is its use during the optimization of newly constructed kinetic ODE
models.

The application of model simulation and optimization methods covered in this thesis
could be similar for comparable biological problems. Fuzzy logic modeling has been
demonstrated to be useful for the elucidation of regulatory events responsible for down-
regulation of genes. Utilization of the respective method for similar questions is advis-
able. The conducted parameter estimation study shows a way to test robustness of a
given ODE modeling approach. Furthermore, it can be concluded from the study that it
is recommendable to take experimental noise into account during parameter estimation.
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network in Chapter 4
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Symbols

α Weighting factor in CellNetOptimizer
~C Vector of sizes of compartments (e.g., the cell)
CR Crossover probability in differential evolution
Ct(G,T ) Mean Ct value of the gene G for treatment T
C(T ) Control treatment for treatment T
d(c1,c2) Distance between two individual cluster elements c1 and c2
D(C1,C2) Distance between two clusters C1 and C2
∆Ct(G,T ) Ct value for gene G and treatment T normalized to a reference

value
∆∆Ct(G,T ) ∆Ct value for gene G and treatment T normalized to the respective

control treatment C(T )
delay(e,τ) Delay function for expression e in an SBML model
E Set of all events in an SBML model
EA Set of currently active events in an SBML model
EI Set of currently inactive events in an SBML model
F Parameter for differential evolution
~fE(~Q, t) Event in an SBML model for the quantity vector ~Q at time t
f c(G,T ) Fold change of a gene G for a treatment T
G Some gene; generation in an evolutionary algorithm
~g(~Q, t) Vector of rate rules in an SBML model
h Step size for model simulation algorithm; coefficient in Hill func-

tion
hmin Minimum step size for model simulation algorithm with step size

adaptation
J j Current velocity of reaction R j of an SBML model
λ Specific parameter for differential evolution
m Midpoint of a Hill function
n Number of experimental replicates, Hill coefficient
N Total number of measurements in a data set
ni j Element in stoichiometry matrix representing the stoichiometry of

the species with index i in reaction R j
N The stoichiometric matrix of a model
Ns Number of measured model species in a data set
Nc Number of experimental condidtions in a data set
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Symbols

~ν Vector of reaction velocities of an ODE model
P A variant of a logical model obtained from a superstructure
~p Vector of local parameters in an SBML model
~P Vector of global parameters in an SBML model
~Q Vector of quantities (e.g., species and compartments) in an SBML

model
~R Vector of reactions in an ODE model
R j Reaction in an SBML model
~r(~Q, t) Vector of assignment rules (including transformed algebraic rules)

in an SBML model
~S Vector of species in an ODE model
t The time, value of the student’s t-distribution
tT A certain time point
T Experimental treatment of cells with specific substances
τ Delay for some SBML expression
θ(P) Fitness of a model variant P
θ f (P) Mean squared error between the normalized experimental data and

the predicted logical steady states in CellNetOptimizer
θs(P) Penalization term for large models in CellNetOptimizer
u Vector of parameters obtained after crossover during differential

evolution
v Intermediate parameter vector while creating a new generation in

differential evolution
W Modulation matrix comprising the regulatory influences of the

species in an ODE model on the reactions
x̄ Mean of the values in x
xm Measured data
xpred Simulated (predicted) data
xbest,G Parameter vector with best fitness in generation G of differential

evolution
xi,G Some parameter vector in generation G of differential evolution
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Abbreviations

ABC ATP-binding cassette
ADP Adenosine diphosphate
AhR Aryl hydrocarbon receptor
ATP Adenosine triphosphate
API Application programming interface
APP Acute phase protein
APR Acute phase response
BSA Bovine serum albumin
CAR Constitutive androstane receptor
cDNA Complementary DNA
CNO CellNetOptimizer
CNS Central nervous system
CRP C-reactive protein
Ct Cycle threshold
CYP Cytochrome P450
DFBA Dynamic flux balance analysis
DHAP Dihydroxyacetone phosphate
DAE Differential algebraic equation
DDE Delay differential equation
DME Drug metabolizing enzyme
DMET Drug metabolizing enzymes and transporters
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid
ERK Extracellular regulated kinase
F1,6BP Fructose 1,6-bisphosphate
FBA Flux balance analysis
FC Fold change
FXR Farnesoid X receptor
GA3P Glyceraldehyde 3-phosphate
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
GR Glucocorticoid receptor
GUI Graphical user interface
HNF Hepatocyte nuclear factor
IKP Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology
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Abbreviations

IL Interleukin
IL-6R Interleukin-6 receptor
JAK Janus kinase
JAR Java Archive
JDK Java Development Kit
JRE Java Runtime Environment
JVM Java Virtual Machine
KEGG Kyoto Encyclopedia of Genes and Genomes
KGML KEGG Markup Language
KiSAO Kinetic Simulation Algorithm Ontology
MIASE Minimum Information About a Simulation Experiment
MSE Mean squared error
NMI Natural and Medical Sciences Institute
mRNA Messenger RNA
LGPL GNU Lesser General Public License
NAD+ Nicotinamide adenine dinucleotide
NR Nuclear receptor
ODE Ordinary differential equation
PCR Polymerase chain reaction
qPCR Quantitative PCR
PBS Phosphate buffered saline
PHH Primary human hepatocyte
RuBisCO Ribulose-1,5-bisphosphate carboxylase oxygenase
RNA Ribonucleic acid
RPA Reverse phase microarray
SAA Serum amyloid A
SBML Systems Biology Markup language
SBSCA Systems Biology Simulation Core Algorithm
SBSCL Systems Biology Simulation Core Library
SED-ML Simulation Experiment Description Markup Language
SIF Simple Interaction Format
siRNA Small interfering RNA
VLN Virtual Liver Network
XML Extensible Markup Language

122



Bibliography

Agrawal, A., Cha-Molstad, H., Samols, D., and Kushner, I. (2001). Transactivation of C-
reactive protein by IL-6 requires synergistic interaction of CCAAT/enhancer binding
protein beta (C/EBP beta) and rel p50. Journal of Immunology, 166(4), 2378–2384.

Aitken, A. E., Richardson, T. A., and Morgan, E. T. (2006). Regulation of drug-
metabolizing enzymes and transporters in inflammation. Annual Review of Pharma-
cology and Toxicology, 46, 123–149.

Aldridge, B. B., Saez-Rodriguez, J., Muhlich, J. L., Sorger, P. K., and Lauffenburger,
D. A. (2009). Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-
induced signaling. PLoS Computational Biology, 5(4), e1000340.

Apache Software Foundation (2013). Commons Math: The Apache Commons Mathe-
matics Library. http://commons.apache.org/proper/commons-math/.

Arnold, A. and Nikoloski, Z. (2011). A quantitative comparison of Calvin-Benson cycle
models. Trends Plant Sci, 16(12), 676–683.

Balsa-Canto, E. and Banga, J. R. (2011). AMIGO, a toolbox for advanced model identi-
fication in systems biology using global optimization. Bioinformatics, 27(16), 2311–
2313.

Balsa-Canto, E., Alonso, A. A., and Banga, J. R. (2010). An iterative identification
procedure for dynamic modeling of biochemical networks. BMC Systems Biology, 4,
11.

Becker, F. and Kronfeld, M. (2014). EvA2 Documentation. Centre for Bioinformatics
Tübingen, University of Tübingen.

Becker, V., Schilling, M., Bachmann, J., Baumann, U., Raue, A., Maiwald, T., Tim-
mer, J., and Klingmüller, U. (2010). Covering a broad dynamic range: information
processing at the erythropoietin receptor. Science, 328(5984), 1404–1408.

Bellu, G., Saccomani, M. P., Audoly, S., and D’Angiò, L. (2007). DAISY: a new soft-
ware tool to test global identifiability of biological and physiological systems. Com-
puter Methods and Programs in Biomedicine, 88(1), 52–61.

123

http://commons.apache.org/proper/commons-math/


Bibliography

Bergmann, F. (2013). SBML Test Suite Database—Test results for SBML-compatible
software systems. http://sbml.org/Facilities/Database/Simulator.

Bergmann, F., Shapiro, B. E., and Hucka, M. (2012). SBML Software Matrix (October
8th 2012). http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix.

Bergmann, F. T. and Sauro, H. M. (2008). Comparing simulation results of SBML capa-
ble simulators. Bioinformatics, 24(17), 1963–1965.

Bernardo-Faura, M., Massen, S., Falk, C. S., Brady, N. R., and Eils, R. (2014). Data-
derived modeling characterizes plasticity of MAPK signaling in melanoma. PLoS
computational biology, 10(9), e1003795.

Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelárová, H., and Meijer,
A. J. (1997). The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002
inhibit autophagy in isolated rat hepatocytes. European Journal of Biochemistry /
FEBS, 243(1-2), 240–246.

Bolotin, E. (2010). HNF4α . Transcription Factor Encyclopedia.

Bornstein, B. J., Keating, S. M., Jouraku, A., and Hucka, M. (2008). LibSBML: an API
library for SBML. Bioinformatics, 24(6), 880–881.

Braeuning, A., Heubach, Y., Knorpp, T., Kowalik, M. A., Templin, M., Columbano, A.,
and Schwarz, M. (2011). Gender-Specific Interplay of Signaling through β -Catenin
and CAR in the Regulation of Xenobiotic-Induced Hepatocyte Proliferation. Toxico-
logical Sciences, 123(1), 113–122.

Büchel, F., Rodriguez, N., Swainston, N., Wrzodek, C., Czauderna, T., Keller, R., Mittag,
F., Schubert, M., Glont, M., Golebiewski, M., van Iersel, M., Keating, S., Rall, M.,
Wybrow, M., Hermjakob, H., Hucka, M., Kell, D. B., Müller, W., Mendes, P., Zell,
A., Chaouiya, C., Saez-Rodriguez, J., Schreiber, F., Laibe, C., Dräger, A., and Le
Novère, N. (2013). Path2Models: large-scale generation of computational models
from biochemical pathway maps. BMC Systems Biology, 7, 116.

Bucher, J., Riedmaier, S., Schnabel, A., Marcus, K., Vacun, G., Weiss, T. S., Thasler,
W. E., Nüssler, A. K., Zanger, U. M., and Reuss, M. (2011). A systems biology
approach to dynamic modeling and inter-subject variability of statin pharmacokinetics
in human hepatocytes. BMC Systems Biology, 5, 66.

Burgermeister, E., Lanzendoerfer, M., and Scheuer, W. (2003). Comparative analysis
of docking motifs in MAP-kinases and nuclear receptors. Journal of Biomolecular
Structure & Dynamics, 20(5), 623–634.

124

http://sbml.org/Facilities/Database/Simulator
http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix


Bibliography

Campbell, J. S., Prichard, L., Schaper, F., Schmitz, J., Stephenson-Famy, A., Rosenfeld,
M. E., Argast, G. M., Heinrich, P. C., and Fausto, N. (2001). Expression of suppres-
sors of cytokine signaling during liver regeneration. Journal of Clinical Investigation,
107(10), 1285–1292.

Carlisle, D., Ion, P., Miner, R., and Poppelier, N. (2001). Mathematical Markup Lan-
guage (MathML) 2.0. Technical report.

Castellano, E. and Downward, J. (2011). RAS interaction with PI3K. Genes & Cancer,
2(3), 261–274. 00112 PMID: 21779497.

Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L.,
Franklin, R. A., and McCubrey, J. A. (2003). Involvement of PI3K/Akt pathway in
cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer
chemotherapy. Leukemia, 17(3), 590–603.

Chaouiya, C., Keating, S. M., Berenguier, D., Naldi, A., Thieffry, D., van Iersel, M. P.,
and Helicar, T. (2013a). Qualitative Models. Technical report.

Chaouiya, C., Bérenguier, D., Keating, S. M., Naldi, A., van Iersel, M. P., Rodriguez, N.,
Dräger, A., Büchel, F., Cokelaer, T., Kowal, B., Wicks, B., Gonçalves, E., Dorier, J.,
Page, M., Monteiro, P. T., von Kamp, A., Xenarios, I., de Jong, H., Hucka, M., Klamt,
S., Thieffry, D., Le Novère, N., Saez-Rodriguez, J., and Helikar, T. (2013b). SBML
qualitative models: a model representation format and infrastructure to foster interac-
tions between qualitative modelling formalisms and tools. BMC Systems Biology, 7,
135.

Chelliah, V., Laibe, C., and Le Novère, N. (2013). BioModels Database: A Repository of
Mathematical Models of Biological Processes. In In Silico Systems Biology, volume
1021 of Methods in Molecular Biology, pages 189–199. Springer.

Chen, N., del, V. I., Kyriakopoulos, S., Polizzi, K., and Kontoravdi, C. (2012). Metabolic
network reconstruction: advances in in silico interpretation of analytical information.
Curr Opin Biotechnol, 23, 77–82.

Clerc, M. (2005). Particle Swarm Optimization. ISTE Ltd, London, UK.

Clerc, M. and Kennedy, J. (2002). The Particle Swarm—Explosion, Stability, and Con-
vergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary
Computation, 6(1), 58–73.

Congiu, M., Mashford, M. L., Slavin, J. L., and Desmond, P. V. (2009). Coordinate
regulation of metabolic enzymes and transporters by nuclear transcription factors in
human liver disease. Journal of Gastroenterology and Hepatology, 24(6), 1038–1044.

125



Bibliography

Cooling, M. T. (2010). A Primer on Modular Mass-Action Modelling with CellML. In
Systems Biology for Signaling Networks, volume 1 of Systems Biology, pages 721–
750. Springer.

Costa, R. S., Machado, D., Rocha, I., and Ferreira, E. C. (2011). Critical perspective
on the consequences of the limited availability of kinetic data in metabolic dynamic
modelling. IET Systems Biology, 5(3), 157–163.

Courtot, M., Juty, N., Knüpfer, C., Waltemath, D., Zhukova, A., Dräger, A., Dumontier,
M., Finney, A., Golebiewski, M., Hastings, J., Hoops, S., Keating, S., Kell, D. B.,
Kerrien, S., Lawson, J., Lister, A., Lu, J., Machne, R., Mendes, P., Pocock, M., Ro-
driguez, N., Villéger, A., Wilkinson, D. J., Wimalaratne, S., Laibe, C., Hucka, M.,
and Le Novère, N. (2011). Controlled vocabularies and semantics in systems biology.
Molecular Systems Biology, 7, 543.

Cox, A. D. and Der, C. J. (2002). Ras family signaling: therapeutic targeting. Cancer
Biology & Therapy, 1(6), 599–606.

Cray, C., Zaias, J., and Altman, N. H. (2009). Acute phase response in animals: A
review. Comparative Medicine, 59(6), 517–526.

Cuellar, A., Nielsen, P., Halstead, M., Bullivant, D., Nickerson, D., Hedley, W., Nelson,
M., and Lloyd, C. (2006). CellML 1.1 Specification. Technical report, Bioengineering
Institute, University of Auckland.

de Boussac, H., Ratajewski, M., Sachrajda, I., Köblös, G., Tordai, A., Pulaski, L., Bu-
day, L., Váradi, A., and Arányi, T. (2010). The ERK1/2-hepatocyte nuclear factor
4alpha axis regulates human ABCC6 gene expression in hepatocytes. The Journal of
Biological Chemistry, 285(30), 22800–22808.

Delhase, M., Li, N., and Karin, M. (2000). Signalling pathways: Kinase regulation in
inflammatory response. Nature, 406(6794), 367–368.

Dorigo, M., Birattari, M., and Stützle, T. (2006). Ant colony optimization – artificial ants
as a computational intelligence technique. IEEE Computational Intelligence Maga-
zine, 1, 28–39.

Dörr, A., Keller, R., Zell, A., and Dräger, A. (2014). SBMLsimulator: a Java tool for
model simulation and parameter estimation in systems biology. Computation, 2(4),
246–257.

Dräger, A. (2011). Computational Modeling of Biochemical Networks. Verlag Dr. Hut,
Sternstraße 18, München, Eberhard Karls University of Tübingen.

126



Bibliography

Dräger, A. and Planatscher, H. (2013). Encyclopedia of Systems Biology, chapter Param-
eter Estimation, Metabolic Network Modeling, pages 1627–1631. Springer-Verlag,
Springer New York Heidelberg Dorodrecht London.

Dräger, A., Kronfeld, M., Supper, J., Planatscher, H., Magnus, J. B., Oldiges, M., and
Zell, A. (2007a). Benchmarking Evolutionary Algorithms on Convenience Kinetics
Models of the Valine and Leucine Biosynthesis in C. glutamicum. In 2007 IEEE
Congress on Evolutionary Computation, pages 896–903, Singapore. IEEE Computa-
tional Intelligence Society, IEEE Press.

Dräger, A., Supper, J., Planatscher, H., Magnus, J. B., Oldiges, M., and Zell, A. (2007b).
Comparing Various Evolutionary Algorithms on the Parameter Optimization of the
Valine and Leucine Biosynthesis in Corynebacterium glutamicum. In 2007 IEEE
Congress on Evolutionary Computation, pages 620–627, Singapore. IEEE Compu-
tational Intelligence Society, IEEE Press.

Dräger, A., Hassis, N., Supper, J., Schröder, A., and Zell, A. (2008). SBMLsqueezer:
a CellDesigner plug-in to generate kinetic rate equations for biochemical networks.
BMC Systems Biology, 2(1), 39.

Dräger, A., Kronfeld, M., Ziller, M. J., Supper, J., Planatscher, H., Magnus, J. B.,
Oldiges, M., Kohlbacher, O., and Zell, A. (2009). Modeling metabolic networks in
C. glutamicum: a comparison of rate laws in combination with various parameter op-
timization strategies. BMC Systems Biology, 3, 5.

Dräger, A., Rodriguez, N., Dumousseau, M., Dörr, A., Wrzodek, C., Le Novère, N., Zell,
A., and Hucka, M. (2011). JSBML: a flexible Java library for working with SBML.
Bioinformatics, 27(15), 2167–2168.

Dräger, A., Zielinski, D. C., Keller, R., Rall, M., Eichner, J., Palsson, B. O., and Zell, A.
(2015). SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochem-
ical networks. BMC Systems Biology, 9, 68.

Eduati, F., De Las Rivas, J., Di Camillo, B., Toffolo, G., and Saez-Rodriguez, J. (2012).
Integrating literature-constrained and data-driven inference of signalling networks.
Bioinformatics, 28(18), 2311–2317.

Eulenfeld, R., Dittrich, A., Khouri, C., Müller, P. J., Mütze, B., Wolf, A., and Schaper,
F. (2012). Interleukin-6 signalling: more than jaks and STATs. European Journal of
Cell Biology, 91(6-7), 486–495.

Favata, M. F., Horiuchi, K. Y., Manos, E. J., Daulerio, A. J., Stradley, D. A., Feeser,
W. S., Dyk, D. E. V., Pitts, W. J., Earl, R. A., Hobbs, F., Copeland, R. A., Magolda,
R. L., Scherle, P. A., and Trzaskos, J. M. (1998). Identification of a novel inhibitor

127



Bibliography

of mitogen-activated protein kinase kinase. Journal of Biological Chemistry, 273(29),
18623–18632.

Fehlberg, E. (1970). Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung
mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Com-
puting, 6(1-2), 61–71.

Fessing, M. Y., Krynetski, E. Y., Zambetti, G. P., and Evans, W. E. (1998). Functional
characterization of the human thiopurine S-methyltransferase (TPMT) gene promoter.
European Journal of Biochemistry / FEBS, 256(3), 510–517.

Finney, A. and Hucka, M. (2003). Systems Biology Markup Language (SBML) Level
2: Structures and Facilities for Model Definitions. Technical report, Systems Biol-
ogy Workbench Development Group JST ERATO Kitano Symbiotic Systems Project
Control and Dynamical Systems, MC 107-81, California Institute of Technology.

Finney, A., Hucka, M., and Le Novère, N. (2006). Systems Biology Markup Language
(SBML) Level 2: Structures and Facilities for Model Definitions. Technical report.

Freitas, A. A. (2007). A review of evolutionary algorithms for data mining. In Soft
Computing for Knowledge Discovery and Data Mining, pages 61–93.

Funahashi, A., Tanimura, N., Morohashi, M., and Kitano, H. (2003). CellDesigner: a
process diagram editor for gene-regulatory and biochemical networks. BioSilico, 1(5),
159–162.

Gauges, R., Rost, U., Sahle, S., and Wegner, K. (2006). A model diagram layout exten-
sion for SBML. Bioinformatics, 22(15), 1879–1885.

Ghose, R., Zimmerman, T. L., Thevananther, S., and Karpen, S. J. (2004). Endotoxin
leads to rapid subcellular re-localization of hepatic RXRα: A novel mechanism for
reduced hepatic gene expression in inflammation. Nuclear Receptor, 2, 4.

Gille, C., Bölling, C., Hoppe, A., Bulik, S., Hoffmann, S., Hübner, K., Karlstädt, A.,
Ganeshan, R., König, M., Rother, K., Weidlich, M., Behre, J., and Holzhütter, H.-G.
(2010). HepatoNet1: a comprehensive metabolic reconstruction of the human hepato-
cyte for the analysis of liver physiology. Molecular Systems Biology, 6, 411.

Godoy, P., Hewitt, N., Albrecht, U., Andersen, M., Ansari, N., Bhattacharya, S., Bode,
J., Bolleyn, J., Borner, C., Böttger, J., Braeuning, A., Budinsky, R., Burkhardt, B.,
Cameron, N., Camussi, G., Cho, C.-S., Choi, Y.-J., Craig Rowlands, J., Dahmen,
U., Damm, G., Dirsch, O., Donato, M., Dong, J., Dooley, S., Drasdo, D., Eakins,
R., Ferreira, K., Fonsato, V., Fraczek, J., Gebhardt, R., Gibson, A., Glanemann, M.,
Goldring, C., Gómez-Lechón, M., Groothuis, G., Gustavsson, L., Guyot, C., Hallifax,
D., Hammad, S., Hayward, A., Häussinger, D., Hellerbrand, C., Hewitt, P., Hoehme,

128



Bibliography

S., Holzhütter, H.-G., Houston, Hrach, J., Ito, K., Jaeschke, H., Keitel, V., Kelm, J.,
Kevin Park, B., Kordes, C., Kullak-Ublick, G., LeCluyse, E., Lu, P., Luebke-Wheeler,
J., Lutz, A., Maltman, D., Matz-Soja, M., McMullen, P., Merfort, I., Messner, S.,
Meyer, C., Mwinyi, J., Naisbitt, D., Nussler, A., Olinga, P., Pampaloni, F., Pi, J.,
Pluta, L., Przyborski, S., Ramachandran, A., Rogiers, V., Rowe, C., Schelcher, C.,
Schmich, K., Schwarz, M., Singh, B., Stelzer, E., Stieger, B., Stöber, R., Sugiyama,
Y., Tetta, C., Thasler, W., Vanhaecke, T., Vinken, M., Weiss, T., Widera, A., Woods,
C., Xu, J., Yarborough, K., and Hengstler, J. (2013). Recent advances in 2D and 3D
in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-
parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity,
cell signaling and ADME, volume 87, pages 1315–1530. Springer Berlin Heidelberg.

Goueli, S. A., Hsiao, K., Lu, T., and Simposn, D. (1998). U0126: A novel, selective and
potent inhibitor of MAP kinase kinase (MEK). Promega Notes, (69), 6.

Gruys, E., Toussaint, M., Niewold, T., and Koopmans, S. (2005). Acute phase reaction
and acute phase proteins. Journal of Zhejiang University. Science. B, 6(11), 1045–
1056.

Gu, X., Ke, S., Liu, D., Sheng, T., Thomas, P. E., Rabson, A. B., Gallo, M. A., Xie, W.,
and Tian, Y. (2006). Role of NF-kappaB in regulation of PXR-mediated gene expres-
sion: a mechanism for the suppression of cytochrome P-450 3A4 by proinflammatory
agents. The Journal of Biological Chemistry, 281(26), 17882–17889.

Guillén-Gosálbez, G., Miró, A., Alves, R., Sorribas, A., and Jiménez, L. (2013). Iden-
tification of regulatory structure and kinetic parameters of biochemical networks via
mixed-integer dynamic optimization. BMC Systems Biology, 7, 113.

Hagihara, K., Nishikawa, T., Sugamata, Y., Song, J., Isobe, T., Taga, T., and Yoshizaki,
K. (2005). Essential role of STAT3 in cytokine-driven NF-kappaB-mediated serum
amyloid a gene expression. Genes to Cells: Devoted to Molecular & Cellular Mech-
anisms, 10(11), 1051–1063.

Hairer, E., Nørsett, S. P., and Wanner, G. (2000). Solving ordinary differential equations.
1, Nonstiff problems. Springer, Berlin, Germany.

Hartigan, J. A. (1975). Clustering Algorithms. John Wiley & Sons Inc., New York.

Harvey, R. D. and Morgan, E. T. (2014). Cancer, inflammation, and therapy: Effects on
cytochrome P450–mediated drug metabolism and implications for novel immunother-
apeutic agents. Clinical Pharmacology & Therapeutics, 96(4), 449–457.

Hayden, M. S. and Ghosh, S. (2004). Signaling to NF-κB. Genes & Development,
18(18), 2195 –2224.

129



Bibliography

Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., and Guthke, R. (2009). Gene
regulatory network inference: data integration in dynamic models-a review. Bio Sys-
tems, 96(1), 86–103.

Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996). Real time quantitative
PCR. Genome Research, 6(10), 986–994.

Heinrich, R. and Schuster, S. (1996). The Regulation Of Cellular Systems. Springer.

Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., and Mills, G. B. (2005). Exploiting
the PI3K/Akt pathway for cancer drug discovery. Nature Reviews. Drug Discovery,
4(12), 988–1004.

Hettling, H. and van Beek, J. H. G. M. (2011). Analyzing the functional properties of
the creatine kinase system with multiscale ’sloppy’ modeling. PLoS Computational
Biology, 7(8), e1002130.

Higgins, L. G. and Hayes, J. D. (2011). Mechanisms of induction of cytosolic and
microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory
agents. Drug Metabolism Reviews, 43(2), 92–137.

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E.,
and Woodward, C. S. (2005). SUNDIALS: Suite of nonlinear and differential/alge-
braic equation solvers. ACM T Math Software, 31(3), 363–396.

Hoesel, B. and Schmid, J. A. (2013). The complexity of NF-κB signaling in inflamma-
tion and cancer. Molecular Cancer, 12(1), 86.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI, USA.

Holzhütter, H.-G., Drasdo, D., Preusser, T., Lippert, J., and Henney, A. M. (2012). The
virtual liver: a multidisciplinary, multilevel challenge for systems biology. Wiley In-
terdiscip Rev Syst Biol Med, 4(3), 221–235.

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L.,
Mendes, P., and Kummer, U. (2006). COPASI–a COmplex PAthway SImulator. Bioin-
formatics, 22(24), 3067–3074.

Hopcroft, J. E. and Karp, R. M. (1973). An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J Comput, 2(4), 225–231.

Hoque, M. T., Robillard, K. R., and Bendayan, R. (2012). Regulation of breast can-
cer resistant protein by peroxisome proliferator-activated receptor α in human brain
microvessel endothelial cells. Molecular pharmacology, 81(4), 598–609.

130



Bibliography

Hösel, M., Quasdorff, M., Wiegmann, K., Webb, D., Zedler, U., Broxtermann, M., Ted-
jokusumo, R., Esser, K., Arzberger, S., Kirschning, C. J., Langenkamp, A., Falk, C.,
Büning, H., Rose-John, S., and Protzer, U. (2009). Not interferon, but interleukin-6
controls early gene expression in hepatitis B virus infection. Hepatology (Baltimore,
Md.), 50(6), 1773–1782.

Hucka, M., Finney, A., Sauro, H., and Bolouri, H. (2003). Systems Biology Markup
Language (SBML) Level 1: Structures and Facilities for Basic Model Definitions.
Technical Report 2, Systems Biology Workbench Development Group JST ERATO
Kitano Symbiotic Systems Project Control and Dynamical Systems, MC 107-81, Cal-
ifornia Institute of Technology, Pasadena, CA, USA.

Hucka, M., Finney, A., Bornstein, B. J., Keating, S. M., Shapiro, B. E., Matthews, J.,
Kovitz, B. L., Schilstra, M. J., Funahashi, A., Doyle, J. C., and Kitano, H. (2004).
Evolving a lingua franca and associated software infrastructure for computational sys-
tems biology: the Systems Biology Markup Language (SBML) project. Syst Biol,
1(1), 41–53.

Hucka, M., Finney, A., Hoops, S., Keating, S. M., and Le Novère, N. (2008). Sys-
tems Biology Markup Language (SBML) Level 2: Structures and Facilities for Model
Definitions. Technical report, Nature Precedings.

Hucka, M., Bergmann, F. T., Hoops, S., Keating, S. M., Sahle, S., Schaff, J. C., Smith,
L., and Wilkinson, D. J. (2010). The Systems Biology Markup Language (SBML):
Language Specification for Level 3 Version 1 Core. Technical report, Nature Preced-
ings.

Hug, S., Raue, A., Hasenauer, J., Bachmann, J., Klingmüller, U., Timmer, J., and Theis,
F. J. (2013). High-dimensional bayesian parameter estimation: case study for a model
of JAK2/STAT5 signaling. Mathematical Biosciences, 246(2), 293–304.

Israel, A. (2010). The IKK complex, a central regulator of NF-κb activation. Cold Spring
Harbor Perspectives in Biology, 2(3).

Jancova, P., Anzenbacher, P., and Anzenbacherova, E. (2010). Phase II drug metabo-
lizing enzymes. Biomedical Papers of the Medical Faculty of the University Palacký,
Olomouc, Czechoslovakia, 154(2), 103–116.

Janes, K. A. and Lauffenburger, D. A. (2013). Models of signalling networks - what cell
biologists can gain from them and give to them. Journal of Cell Science, 126(Pt 9),
1913–1921.

Johnson, K. A. and Goody, R. S. (2011). The Original Michaelis Constant: Translation
of the 1913 Michaelis–Menten Paper. Biochemistry, 50(39), 8264–8269.

131



Bibliography

Johnson, S. G. (2014). The nlopt nonlinear-optimization package. http://ab-initio.
mit.edu/nlopt.

Joshi, M., Seidel-Morgenstern, A., and Kremling, A. (2006). Exploiting the boot-
strap method for quantifying parameter confidence intervals in dynamical systems.
Metabolic Engineering, 8(5), 447–455.

Jover, R., Bort, R., Gómez-Lechón, M. J., and Castell, J. V. (2002). Down-regulation of
human CYP3A4 by the inflammatory signal interleukin-6: molecular mechanism and
transcription factors involved. FASEB journal: official publication of the Federation
of American Societies for Experimental Biology, 16(13), 1799–1801.

Jover, R., Moya, M., and Gómez-Lechón, M. J. (2009). Transcriptional regulation of
cytochrome P450 genes by the nuclear receptor hepatocyte nuclear factor 4-alpha.
Current Drug Metabolism, 10(5), 508–519.

Kanehisa, M. and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Research, 28(1), 27–30.

Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012). KEGG for inte-
gration and interpretation of large-scale molecular data sets. Nucleic Acids Research,
40(Database issue), D109–D114.

Kaplan, U., Türkay, M., Biegler, L. T., and Karasözen, B. (2009). Modeling and sim-
ulation of metabolic networks for estimation of biomass accumulation parameters.
Discrete Applied Mathematics, 157(10), 2483–2493.

Kast, H. R., Goodwin, B., Tarr, P. T., Jones, S. A., Anisfeld, A. M., Stoltz, C. M.,
Tontonoz, P., Kliewer, S., Willson, T. M., and Edwards, P. A. (2002). Regulation of
multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane
X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. The
Journal of Biological Chemistry, 277(4), 2908–2915.

Keating, S. M., Bergmann, F., Smith, L., Hucka, M., and Begley, K. (2013). SBML Test
Suite. http://sbml.org/Software/SBML_Test_Suite.

Keller, R., Dörr, A., Tabira, A., Funahashi, A., Ziller, M. J., Adams, R., Rodriguez, N.,
Le Novère, N., Hiroi, N., Planatscher, H., Zell, A., and Dräger, A. (2013). The systems
biology simulation core algorithm. BMC Systems Biology, 7(1), 55.

Keller, R., Klein, M., Thomas, M., Dräger, A., Metzger, U., Templin, M., Joos, T.,
Thasler, W. E., Zell, A., and Zanger, U. M. (2016). Coordinating role of RXRα in
downregulating hepatic detoxification during inflammation suggested by fuzzy-logic
modeling. PLoS Comput Biol, 12(1), e1004431.

132

http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://sbml.org/Software/SBML_Test_Suite


Bibliography

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Neural Networks,
1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–1948
vol.4, Perth, Australia. IEEE.

Kirk, P. D. W. and Stumpf, M. P. H. (2009). Gaussian process regression bootstrapping:
exploring the effects of uncertainty in time course data. Bioinformatics, 25(10), 1300–
1306.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598), 671–680.

Kitano, H. (2002). Systems biology: A brief overview. Science, 295(5560), 1662–1664.

Klamt, S., Rodriguez, J. S., Lindquist, J., Simeoni, L., and Gilles, E. (2006). A method-
ology for the structural and functional analysis of signaling and regulatory networks.
BMC Bioinformatics, 7(1), 56+.

Klein, M., Thomas, M., Hofmann, U., Seehofer, D., Damm, G., and Zanger, U. M.
(2014). A systematic comparison of the impact of inflammatory signaling on ADME
gene expression and activity in primary human hepatocytes and HepaRG cells. Drug
Metabolism and Disposition: The Biological Fate of Chemicals.

Kolpakov, F. A., Tolstykh, N. I., Valeev, T. F., Kiselev, I. N., Kutumova, E. O., Ryabova,
A., Yevshin, I. S., and Kel, A. E. (2011). BioUML–open source plug-in based platform
for bioinformatics: invitation to collaboration. In Moscow Conference on Computa-
tional Molecular Biology, pages 172–173. Department of Bioengineering and Bioin-
formatics of MV Lomonosov Moscow State University.

Kotcon, B., Mesuro, S., Rozenfeld, D., and Yodpinyanee, A. (2011). Final Report for
Community of Ordinary Differential Equations Educators. Harvey Mudd College
Joint Computer Science and Mathematics Clinic, 301 Platt Boulevard, Claremont, CA
91711.

Kreutz, C., Raue, A., Kaschek, D., and Timmer, J. (2013). Profile likelihood in systems
biology. The FEBS Journal, 280(11), 2564–2571.

Kronfeld, M., Dräger, A., Aschoff, M., and Zell, A. (2009). On the Benefits of Mul-
timodal Optimization for Metablic Network Modeling. In German Conference on
Bioinformatics, pages 191–200.

Kronfeld, M., Planatscher, H., and Zell, A. (2010). The EvA2 Optimization Framework.
In C. Blum and R. Battiti, editors, Learning and Intelligent Optimization Conference,
Special Session on Software for Optimization (LION-SWOP), number 6073 in Lecture
Notes in Computer Science, LNCS, pages 247–250, Venice, Italy. Springer Verlag.

133



Bibliography

Krumsiek, J., Pölsterl, S., Wittmann, D. M., and Theis, F. J. (2010). Odefy–from discrete
to continuous models. BMC Bioinformatics, 11, 233.

Kühn, C., Wierling, C., Kühn, A., Klipp, E., Panopoulou, G., Lehrach, H., and Poustka,
A. J. (2009). Monte Carlo analysis of an ODE Model of the Sea Urchin Endomeso-
derm Network. BMC Systems Biology, 3(3), 83.

Le Novère, N., Bornstein, B. J., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li,
L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J. L., and Hucka, M. (2006). BioMod-
els Database: a free, centralized database of curated, published, quantitative kinetic
models of biochemical and cellular systems. Nucleic Acids Research, 34, D689–D691.

Le Vee, M., Jouan, E., Stieger, B., and Fardel, O. (2013). Differential regulation of drug
transporter expression by all-trans retinoic acid in hepatoma HepaRG cells and human
hepatocytes. European Journal of Pharmaceutical Sciences: Official Journal of the
European Federation for Pharmaceutical Sciences, 48(4-5), 767–774.

LeCluyse, E. L. and Alexandre, E. (2010). Isolation and culture of primary hepatocytes
from resected human liver tissue. Methods in Molecular Biology, 640, 57–82.

Lee, H. Y., Suh, Y. A., Robinson, M. J., Clifford, J. L., Hong, W. K., Woodgett, J. R.,
Cobb, M. H., Mangelsdorf, D. J., and Kurie, J. M. (2000). Stress pathway activation
induces phosphorylation of retinoid X receptor. The Journal of Biological Chemistry,
275(41), 32193–32199.

Lefebvre, P., Benomar, Y., and Staels, B. (2010). Retinoid X receptors: common het-
erodimerization partners with distinct functions. Trends in Endocrinology & Metabo-
lism, 21(11), 676–683.

Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He,
E., Henry, A., Stefan, M. I., Snoep, J. L., Hucka, M., Le Novère, N., and Laibe,
C. (2010). BioModels Database: An enhanced, curated and annotated resource for
published quantitative kinetic models. BMC Systems Biology, 4, 92.

Li, D., Zimmerman, T. L., Thevananther, S., Lee, H.-Y., Kurie, J. M., and Karpen, S. J.
(2002). Interleukin-1 beta-mediated suppression of RXR:RAR transactivation of the
Ntcp promoter is JNK-dependent. The Journal of Biological Chemistry, 277(35),
31416–31422.

Liebermeister, W. and Klipp, E. (2006). Bringing metabolic networks to life: conve-
nience rate law and thermodynamic constraints. Theoretical Biology and Medical
Modelling, 3(42), 41.

Liebermeister, W., Uhlendorf, J., and Klipp, E. (2010). Modular rate laws for enzymatic
reactions: thermodynamics, elasticities and implementation. Bioinformatics, 26(12),
1528–1534.

134



Bibliography

Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data
using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San
Diego, Calif.), 25(4), 402–408.

Lloyd, C. M., Halstead, M. D. B., and Nielsen, P. F. (2004). CellML: its future, present
and past. Progress in Biophysics & Molecular Biology, 85(2-3), 433–450.

Lowry, R. (2015). Concepts and Applications of Inferential Statistics. http://

faculty.vassar.edu/lowry/webtext.html.

Madsen, C., Myers, C. J., Patterson, T., Roehner, N., Stevens, J. T., and Winstead, C.
(2012). Design and test of genetic circuits using iBioSim. Design Test of Computers,
IEEE, 29(3), 32–39.

Mahadevan, R., Edwards, J. S., and Doyle, F. J. (2002). Dynamic flux balance analysis
of diauxic growth in Escherichia coli. Biophysical Journal, 83(3), 1331–1340.

Mahmood, T. and Yang, P.-C. C. (2012). Western blot: technique, theory, and trouble
shooting. North American Journal of Medical Sciences, 4(9), 429–434.

Maiwald, T. and Timmer, J. (2008). Dynamical modeling and multi-experiment fitting
with PottersWheel. Bioinformatics, 24(18), 2037–2043.

Matys, V., Kel-Margoulis, O. V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A.,
Reuter, I., Chekmenev, D., Krull, M., Hornischer, K., Voss, N., Stegmaier, P., Lewicki-
Potapov, B., Saxel, H., Kel, A. E., and Wingender, E. (2006). TRANSFAC and its
module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids
Research, 34(Database issue), D108–110.

Melas, I. N., Mitsos, A., Messinis, D. E., Weiss, T. S., and Alexopoulos, L. G. (2011).
Combined logical and data-driven models for linking signalling pathways to cellular
response. BMC Systems Biology, 5(1), 107.

Migita, K., Miyashita, T., Maeda, Y., Nakamura, M., Yatsuhashi, H., Ishibashi, H., and
Eguchi, K. (2005). An active metabolite of leflunomide, A77 1726, inhibits the pro-
duction of serum amyloid A protein in human hepatocytes. Rheumatology, 44(4),
443–448.

Moraru, I. I., Schaff, J. C., Slepchenko, B. M., Blinov, M. L., Morgan, F., Lakshmi-
narayana, A., Gao, F., Li, Y., and Loew, L. M. (2008). Virtual Cell modelling and
simulation software environment. IET Systems Biology, 2(5), 352–362.

Morgan, E. T. (2009). Impact of infectious and inflammatory disease on cytochrome
P450-mediated drug metabolism and pharmacokinetics. Clinical Pharmacology and
Therapeutics, 85(4), 434–438.

135

http://faculty.vassar.edu/lowry/webtext.html
http://faculty.vassar.edu/lowry/webtext.html


Bibliography

Morgan, E. T., Goralski, K. B., Piquette-Miller, M., Renton, K. W., Robertson, G. R.,
Chaluvadi, M. R., Charles, K. A., Clarke, S. J., Kacevska, M., Liddle, C., Richard-
son, T. A., Sharma, R., and Sinal, C. J. (2008). Regulation of Drug-Metabolizing
Enzymes and Transporters in Infection, Inflammation, and Cancer. Drug Metabolism
and Disposition, 36(2), 205–216.

Morris, M. K., Saez-Rodriguez, J., Sorger, P. K., and Lauffenburger, D. A. (2010). Logic-
Based Models for the Analysis of Cell Signaling Networks. Biochemistry, 49(15),
3216–3224.

Morris, M. K., Saez-Rodriguez, J., Clarke, D. C., Sorger, P. K., and Lauffenburger, D. A.
(2011). Training signaling pathway maps to biochemical data with constrained fuzzy
logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Com-
putational Biology, 7(3), e1001099.

Myers, C. J., Barker, N., Jones, K., Kuwahara, H., Madsen, C., and Nguyen, N.-P. D.
(2009). iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics,
25(21), 2848–2849.

Nickerson, D. P., Corrias, A., and Buist, M. L. (2008). Reference descriptions of cellular
electrophysiology models. Bioinformatics, 24(8), 1112–1114.

Orth, J. D., Thiele, I., and Palsson, B. . (2010). What is flux balance analysis? Nature
Biotechnology, 28(3), 245–248.

Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., and Donner,
D. B. (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-
threonine kinase. Nature, 401(6748), 82–85.

Pascussi, J.-M., Gerbal-Chaloin, S., Duret, C., Daujat-Chavanieu, M., Vilarem, M.-J.,
and Maurel, P. (2008). The tangle of nuclear receptors that controls xenobiotic meta-
bolism and transport: crosstalk and consequences. Annual Review of Pharmacology
and Toxicology, 48, 1–32. 00184 PMID: 17608617.

Perissi, V. and Rosenfeld, M. G. (2005). Controlling nuclear receptors: the circular logic
of cofactor cycles. Nature Reviews Molecular Cell Biology, 6(7), 542–554.

Petrovic, V., Teng, S., and Piquette-Miller, M. (2007). Regulation of drug transporters
during infection and inflammation. Molecular Interventions, 7(2), 99–111.

Poetz, O., Ostendorp, R., Brocks, B., Schwenk, J. M., Stoll, D., Joos, T. O., and Tem-
plin, M. F. (2005). Protein microarrays for antibody profiling: specificity and affinity
determination on a chip. Proteomics, 5(9), 2402–2411.

136



Bibliography

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1993). Numerical
Recipes in FORTRAN; The Art of Scientific Computing. Cambridge University Press,
NY, USA.

Quaiser, T. and Mönnigmann, M. (2009). Systematic identifiability testing for unambigu-
ous mechanistic modeling–application to JAK-STAT, MAP kinase, and NF-kappaB
signaling pathway models. BMC Systems Biology, 3, 50.

R Development Core Team (2011). R: A language and environment for statistical com-
puting.

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U., and
Timmer, J. (2009). Structural and practical identifiability analysis of partially observed
dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923–
1929.

Raue, A., Schilling, M., Bachmann, J., Matteson, A., Schelke, M., Kaschek, D., Hug, S.,
Kreutz, C., Harms, B. D., Theis, F. J., Klingmüller, U., and Timmer, J. (2013). Lessons
learned from quantitative dynamical modeling in systems biology. PLoS One, 8(9).

Raymond, G. M., Butterworth, E., and Bassingthwaighte, J. B. (2003). JSIM: Free soft-
ware package for teaching physiological modeling and research. The Journal of Ex-
perimental Biology, 280, 102–107.

Rechenberg, I. (1973). Evolutionsstrategie : Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Number 15 in Problemata. Frommann-
Holzboog, Stuttgart-Bad Cannstatt.

Renton, K. W. (2005). Regulation of drug metabolism and disposition during inflamma-
tion and infection. Expert Opinion on Drug Metabolism & Toxicology, 1(4), 629–640.

Resasco, D. C., Gao, F., Morgan, F., Novak, I. L., Schaff, J. C., and Slepchenko, B. M.
(2012). Virtual Cell: computational tools for modeling in cell biology. Wiley Interdis-
ciplinary Reviews: Systems Biology and Medicine, 4(2), 129–140.

Rodriguez, N., Thomas, A., Watanabe, L. H., Vazirabad, I. Y., Kofia, V., Gómez, H. F.,
Mittag, F., Matthes, J., Rudolph, J., Wrzodek, F., Netz, E., Diamantikos, A., Eichner,
J., Keller, R., Wrzodek, C., Fröhlich, S., Lewis, N. E., Myers, C. J., Novère, N. L.,
Palsson, B. ., Hucka, M., and Dräger, A. (2015). JSBML 1.0: providing a smorgasbord
of options to encode systems biology models. Bioinformatics, 31(20), 3383–3386.

Rodriguez-Fernandez, M., Egea, J. A., and Banga, J. R. (2006). Novel metaheuristic for
parameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics,
7, 483+.

137



Bibliography

Romashkova, J. A. and Makarov, S. S. (1999). NF-kappaB is a target of AKT in anti-
apoptotic PDGF signalling. Nature, 401(6748), 86–90.

Rowan, T. (1990). Functional Stability Analysis of Numerical Algorithms. Ph.D. thesis,
Department of Computer Sciences, University of Texas at Austin.

Runge-Morris, M. and Kocarek, T. A. (2009). Regulation of sulfotransferase and
UDP-glucuronosyltransferase gene expression by the PPARs. PPAR Research, 2009,
728941.

Ryll, A., Samaga, R., Schaper, F., Alexopoulos, L. G., and Klamt, S. (2011). Large-
scale network models of IL-1 and IL-6 signalling and their hepatocellular specifica-
tion. Molecular BioSystems, 7, 3253–3270.

Saez-Rodriguez, J., Alexopoulos, L. G., Epperlein, J., Samaga, R., Lauffenburger, D. A.,
Klamt, S., and Sorger, P. K. (2009). Discrete logic modelling as a means to link pro-
tein signalling networks with functional analysis of mammalian signal transduction.
Molecular Systems Biology, 5(1).

Saez-Rodriguez, J., Alexopoulos, L. G., Zhang, M., Morris, M. K., Lauffenburger, D. A.,
and Sorger, P. K. (2011). Comparing Signaling Networks between Normal and Trans-
formed Hepatocytes Using Discrete Logical Models. Cancer Research, 71(16), 5400–
5411.

Samaga, R. and Klamt, S. (2013). Modeling approaches for qualitative and semi-
quantitative analysis of cellular signaling networks. Cell Communication & Signaling,
11(1), 1 – 19.

Samaga, R., Saez-Rodriguez, J., Alexopoulos, L. G., Sorger, P. K., and Klamt, S. (2009).
The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-
Throughput Data. PLoS Comput Biol, 5(8), e1000438.

Santillán, M. (2008). On the Use of the Hill Functions in Mathematical Models of Gene
Regulatory Networks. Mathematical Modelling of Natural Phenomena, 3, 85–97.

Schilling, M., Maiwald, T., Hengl, S., Winter, D., Kreutz, C., Kolch, W., Lehmann,
W. D., Timmer, J., and Klingmüller, U. (2009). Theoretical and experimental analy-
sis links isoform- specific ERK signalling to cell fate decisions. Molecular Systems
Biology, 5(1).

Schmidt, H. and Jirstrand, M. (2006). Systems Biology Toolbox for MATLAB: a com-
putational platform for research in systems biology. Bioinformatics, 22(4), 514–515.

Schust, J., Sperl, B., Hollis, A., Mayer, T. U., and Berg, T. (2006). Stattic: A Small-
Molecule Inhibitor of STAT3 Activation and Dimerization. Chemistry & Biology,
13(11), 1235–1242. 00320.

138



Bibliography

Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung. Dr.-Ing. The-
sis, Technical University of Berlin, Department of Process Engineering.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin,
N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Research, 13(11),
2498–2504.

Slaviero, K. A., Clarke, S. J., and Rivory, L. P. (2003). Inflammatory response: an
unrecognised source of variability in the pharmacokinetics and pharmacodynamics of
cancer chemotherapy. The Lancet Oncology, 4(4), 224–232. 00129.

Spurgeon, S. L., Jones, R. C., and Ramakrishnan, R. (2008). High Throughput Gene
Expression Measurement with Real Time PCR in a Microfluidic Dynamic Array. PLoS
ONE, 3(2), e1662. 00189.

Storn, R. (1996). On the Usage of Differential Evolution for Function Optimization.
In 1996 Biennial Conference of the North American Fuzzy Information Processing
Society, pages 519–523, Berkeley, CA, USA. IEEE, New York, USA.

Storn, R. and Price, K. (1997). Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces. J Glob Opt, 11(4), 341–359.

Sun, J., Garibaldi, J. M., and Hodgman, C. (2012). Parameter estimation using meta-
heuristics in systems biology: a comprehensive review. IEEE/ACM Transactions on
Computational Biology and Bioinformatics / IEEE, ACM, 9(1), 185–202.

Sun Kim, M., Sweeney, T. R., Shigenaga, J. K., Chui, L. G., Moser, A., Grunfeld, C., and
Feingold, K. R. (2007). TNF and IL-1 decrease RXRα , PPARα , PPARγ , LXRα , and
the coactivators SRC-1, PGC-1α , and PGC-1β in liver cells. Metabolism: Clinical
and Experimental, 56(2), 267–279.

Takizawa, H., Nakamura, K., Tabira, A., Chikahara, Y., Matsui, T., Hiroi, N., and Fu-
nahashi, A. (2013). LibSBMLSim: A reference implementation of fully functional
SBML simulator. Bioinformatics, 29(11), 1474–6.

Teng, S. and Piquette-Miller, M. (2005). The involvement of the pregnane X receptor in
hepatic gene regulation during inflammation in mice. The Journal of Pharmacology
and Experimental Therapeutics, 312(2), 841–848.

Terfve, C., Cokelaer, T., Henriques, D., MacNamara, A., Goncalves, E., Morris, M. K.,
van Iersel, M., Lauffenburger, D. A., and Saez-Rodriguez, J. (2012). CellNOptR: a
flexible toolkit to train protein signaling networks to data using multiple logic for-
malisms. BMC Systems Biology, 6, 133.

139



Bibliography

Tham, L.-S., Wang, L., Soo, R. A., Lee, S.-C., Lee, H.-S., Yong, W.-P., Goh, B.-C., and
Holford, N. H. G. (2008). A pharmacodynamic model for the time course of tumor
shrinkage by gemcitabine + carboplatin in non-small cell lung cancer patients. Clinical
Cancer Research, 14(13), 4213–4218.

Thomas, M., Burk, O., Klumpp, B., Kandel, B. A., Damm, G., Weiss, T. S., Klein, K.,
Schwab, M., and Zanger, U. M. (2013). Direct transcriptional regulation of human
hepatic cytochrome P450 3A4 (CYP3A4) by peroxisome proliferator-activated recep-
tor alpha (PPARα). Molecular Pharmacology, 83(3), 709–718.

Tibes, R., Qiu, Y., Lu, Y., Hennessy, B., Andreeff, M., Mills, G. B., and Kornblau,
S. M. (2006). Reverse phase protein array: validation of a novel proteomic technology
and utility for analysis of primary leukemia specimens and hematopoietic stem cells.
Molecular Cancer Therapeutics, 5(10), 2512–2521.

Tolson, A. H. and Wang, H. (2010). Regulation of drug-metabolizing enzymes by xeno-
biotic receptors: PXR and CAR. Advanced Drug Delivery Reviews, 62(13), 1238–
1249.

Tovey, C. A. (1985). Hill climbing with multiple local optima. SIAM Journal on Alge-
braic and Discrete Methods, 6(3), 384–393.

Töpfer, N., Kleessen, S., and Nikoloski, Z. (2015). Integration of metabolomics data into
metabolic networks. Frontiers in Plant Science, 6, 49.

Vanlier, J., Tiemann, C. A., Hilbers, P. a. J., and van Riel, N. a. W. (2013). Param-
eter uncertainty in biochemical models described by ordinary differential equations.
Mathematical Biosciences, 246(2), 305–314.

Vee, M. L., Lecureur, V., Stieger, B., and Fardel, O. (2009). Regulation of drug trans-
porter expression in human hepatocytes exposed to the proinflammatory cytokines
tumor necrosis factor-α or interleukin-6. Drug Metabolism and Disposition, 37(3),
685–693.

Wajima, T., Isbister, G. K., and Duffull, S. B. (2009). A comprehensive model for the
humoral coagulation network in humans. Clinical Pharmacology & Therapeutics,
86(3), 290–298.

Waltemath, D., Adams, R., Beard, D. A., Bergmann, F. T., Bhalla, U. S., Britten, R.,
Chelliah, V., Cooling, M. T., Cooper, J., Crampin, E. J., Garny, A., Hoops, S., Hucka,
M., Hunter, P., Klipp, E., Laibe, C., Miller, A. K., Moraru, I., Nickerson, D., Nielsen,
P., Nikolski, M., Sahle, S., Sauro, H. M., Schmidt, H., Snoep, J. L., Tolle, D., Wolken-
hauer, O., and Le Novère, N. (2011a). Minimum Information About a Simulation
Experiment (MIASE). PLoS Computational Biology, 7(4), e1001122.

140



Bibliography

Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M., Kolpakov, F., Miller, A. K.,
Moraru, I. I., Nickerson, D., Sahle, S., Snoep, J. L., and Le Novère, N. (2011b).
Reproducible computational biology experiments with SED-ML–the Simulation Ex-
periment Description Markup Language. BMC Systems Biology, 5, 198.

Wang, Z., Salih, E., and Burke, P. A. (2011). Quantitative Analysis of Cytokine-Induced
Hepatocyte Nuclear Factor-4α Phosphorylation by Mass Spectrometry. Biochemistry,
50(23), 5292–5300.

Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A., Lumley, T.,
Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., and Venables, B. (2013).
gplots: Various R programming tools for plotting data.

Wittig, U., Kania, R., Golebiewski, M., Rey, M., Shi, L., Jong, L., Algaa, E., Weidemann,
A., Sauer-Danzwith, H., Mir, S., Krebs, O., Bittkowski, M., Wetsch, E., Rojas, I., and
Müller, W. (2012). SABIO-RK–database for biochemical reaction kinetics. Nucleic
Acids Res, 40(Database issue), D790–D796.

Wolf, J., Passarge, J., Somsen, O. J. G., Snoep, J. L., Heinrich, R., and Westerhoff, H. V.
(2000). Transduction of intracellular and intercellular dynamics in yeast glycolytic
oscillations. Biophysical Journal, 78(3), 1145–1153.

Wrzodek, C., Dräger, A., and Zell, A. (2011). KEGGtranslator: visualizing and con-
verting the KEGG PATHWAY database to various formats. Bioinformatics, 27(16),
2314–2315.

Xie, W., editor (2009). Nuclear receptors in drug metabolism. John Wiley & Sons,
Hoboken, NJ.

Zanger, U. M. and Schwab, M. (2013). Cytochrome P450 enzymes in drug metabolism:
Regulation of gene expression, enzyme activities, and impact of genetic variation.
Pharmacology & Therapeutics, 138(1), 103–141.

Zanger, U. M., Turpeinen, M., Klein, K., and Schwab, M. (2008). Functional pharma-
cogenetics/genomics of human cytochromes P450 involved in drug biotransformation.
Analytical and Bioanalytical Chemistry, 392(6), 1093–1108.

Zhao, J., Liu, J., Pang, X., Wang, S., Wu, D., Zhang, X., and Feng, L. (2013). An-
giotensin II induces c-reactive protein expression via AT1-ROS-MAPK-NF-κb signal
pathway in hepatocytes. Cellular Physiology and Biochemistry: International Journal
of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 32(3), 569–
580.

Zordoky, B. N. M. and El-Kadi, A. O. S. (2009). Role of NF-kappaB in the regulation
of cytochrome P450 enzymes. Current Drug Metabolism, 10(2), 164–178.

141


	1 Introduction
	1.1 Contributions of the thesis
	1.2 Thesis organization

	2 Computational modeling approaches in systems biology
	2.1 Logical models
	2.1.1 Logical steady state
	2.1.2 The SIF format

	2.2 ODE models in systems biology
	2.2.1 The stoichiometric matrix
	2.2.2 Rate laws
	2.2.3 Model simulation
	2.2.4 The model format SBML
	2.2.5 JSBML

	2.3 Comparison of the two modeling approaches

	3 The process of model construction
	3.1 Heuristic optimization methods for model optimization
	3.1.1 Evolutionary algorithms
	3.1.2 The toolbox EvA2
	3.1.3 Differential evolution

	3.2 Retrieving information about model structure
	3.3 Optimization of logical models with CellNetOptimizer
	3.4 Construction of dynamic ODE models
	3.4.1 SABIO-RK: a database with kinetic information
	3.4.2 Automatic generation of kinetic equations with SBMLsqueezer
	3.4.3 BioModels database and the path2models project
	3.4.4 Estimation of unknown parameters
	3.4.5 The problem of parameter identifiability


	4 Modeling IL-6 induced hepatic gene regulation using fuzzy logic
	4.1 Impaired drug clearance during acute phase response in the liver
	4.2 Regulation of DMET genes and IL-6 signaling: previous knowledge
	4.3 Constructing a prior knowledge network from literature
	4.4 Experiments with primary human hepatocytes
	4.4.1 Treatments of the cells
	4.4.2 Proteomic measurements
	4.4.3 Real-time quantitative PCR

	4.5 Activation of signaling pathways by IL-6
	4.6 Analyzing the gene expression data
	4.6.1 The Ct method for determining fold changes
	4.6.2 Clustering of the data

	4.7 Fuzzy logic modeling for optimization of the prior knowledge network
	4.7.1 State computation and model training in CNORfuzzy
	4.7.2 Data normalization

	4.8 Results of optimizing the prior knowledge network
	4.8.1 Calibration results
	4.8.2 The resulting optimized model
	4.8.3 Validation of the role of RXR

	4.9 Comparison of main hypothesis to previous knowledge
	4.10 Summary and conclusions

	5 The Systems Biology Simulation Core Algorithm
	5.1 Motivation
	5.2 A formal representation of models in systems biology in SBML
	5.3 The algorithm for simulation of SBML models
	5.3.1 Initialization
	5.3.2 Solving algebraic rules
	5.3.3 Event handling
	5.3.4 Time step adaptation considering events and the calculation of derivatives
	5.3.5 Processing models with fast and slow subsystems

	5.4 Implementation of the algorithm in the Systems Biology Simulation Core Library
	5.4.1 Solver classes
	5.4.2 SBML interpretation
	5.4.3 SED-ML support
	5.4.4 Points of Control

	5.5 Benchmark and application to published models
	5.5.1 Application to the models of the SBML Test Suite
	5.5.2 Application to the models of the BioModels Database
	5.5.3 Test with two specific models

	5.6 Comparison to existing simulation implementations for SBML
	5.7 Limitations of the algorithm and the library
	5.8 Summary and conclusions

	6 Simulation and parameter estimation of SBML models with SBMLsimulator
	6.1 Important features of SBMLsimulator compared to other tools
	6.2 Implementation
	6.2.1 Integration of SBSCL and EvA2

	6.3 Program details
	6.3.1 The graphical user interface of SBMLsimulator
	6.3.2 The command-line mode for running time-consuming jobs on a cluster

	6.4 Example for using SBMLsimulator as a proof of concept
	6.5 Summary and conclusions

	7 Investigating the influence of experimental noise on parameter estimation
	7.1 Uncertainty analysis and noise addition to data
	7.2 Data creation for the parameter estimation study
	7.3 Models used for analysis
	7.3.1 Epo receptor model
	7.3.2 Atorvastatin biotransformation model
	7.3.3 ERK signaling model

	7.4 Settings for optimization
	7.5 Fitness functions and estimation constraints
	7.6 Results of optimization with respect to single artificial data sets
	7.7 Results of optimization with respect to replicative data sets
	7.8 Summary of the estimation results
	7.9 Limitations of the study
	7.10 Summary and conclusions

	8 Discussion and concluding remarks
	A References for the prior knowledge network in Chapter 4
	B Additional figures for the parameter estimation study in Chapter 7
	Symbols
	Abbreviations
	Bibliography

