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Zusammenfassung 

Der Fibroblast Growth Factor (FGF23) ist ein Hormon, das im Knochen gebildet wird 

und die Phosphatausscheidung steigert. Es ist ein wichtiger Regulator des Vitamin D-

Stoffwechsels und des Phosphathaushalts. Es wird im Knochen gebildet und wirkt 

hauptsächlich in der Niere. FGF23 hemmt das Enzym 25-Dihdroxyvitamin D 1α-

hydroxylase und reduziert somit die blidung des biologisch aktiven Vitamin d-Hormones 

und stimuliert dessen Abbau durch die 25-Dihydroxyvitamin D 24-hydroxylase. Es 

blockiert die renale Phosphatreabsorption im proximalen Nierentubulus und erniedrigt 

damit die Serumphosphatkonzentration sowie die Konzentration von aktivem Vitamin D. 

Die Glykogensynthasekinase (GSK3) ist eine ubiquitär exprimierte Serin-

/Threoninkinase. Sie ist in eine Vielzahl von zellulären Prozessen eingebunden, z.B. in 

den Glykogenstoffwechsel, die Transkription und Translation, Proliferation und 

Überleben der Zellen, die Regulation des Zell-Zyklus, die reorganisation des 

Zytoskeletts und die Apoptose. Die GSK3 ist ein Signalmolekül des PI3Kinase- 

Stoffwechsels. Sie wird durch den Insulin-abhängigen PKB/Akt-Signalweg 

phosphoryliert und dadurch blockiert. Transgene Mäuse, welche PKB-insensitives 

GSK3α/β (gsk-3kI) exprimieren, zeigen erhöhte Aktivität des sympathischen 

Nervensystems und Phosphaturie sowie erniedrigte Knochendichte. Es ist bereits 

bekannt, dass der Sympathikus die FGF23-Sekretion fördert. Im ersten Teil der Studie 

wurde die Rolle der GSK-kontrollierten Sympathikusaktivität für die Bildung von FGF23 

und die Regulation des Phosphatstoffwechsels untersucht. Serum FGF23, 

Adrenalinausscheidung im urin, Vanillinmandelsäure, Phosphat und 

Kalziumausscheidung waren signifikant höher in gsk-3kI Mäusen im Vergleich zu gsk-

3WT Mäusen. Die Serum-FGF23 und 1,25(OH)2D3-Konzentrationen waren niedriger in 

gsk-3KI Mäusen als in gsk-3WT Mäusen. Die Mäuse wurden eine Woche mit einem β-

Blocker (propranolol) im Trinkwasser behandelt. Die Propranololbehandlung erniedrigte 

den Serum-FGF23, den renalen Phosphat-und Kalziumverlust und erhöhte die Serum 

Phosphatkonzentration in gsk-3KI Mäusen. Damit wurde gezeigt, dass die PI3Kinase-

insensitive GSK3 an der Regulation der FGF23-Bildung, des Vitamin D Metabolismus 

und somit auch des Mineralstoffwechsels durch das sympathische Nervensystem 

mitwirkt. Im zweiten Teil der Studie Rolle der Reorganisation des Aktin-Zytoskeletts für 
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die Kontrolle der FGF23 Produktion untersucht. Es ist bekannt, dass 1,25(OH)2D3 und 

NF-κB die FGF23-Bildung steigern. Um die Rolle der 1,25(OH)2D3-induzierten 

Aktinpolymerisation für die Fgf23 Transkription in UMR 106 Osteoblasten ähnlichen 

Zellen zu untersuchen, wurde die Dynamik der Aktinpolymerisation durch Western Blot 

und konfokale Mikroskopie verfolgt und die Fgf23-Transkription mit quantitativer RT-

PCR gemessen. Es konnte gezeigt werden, dass die Induktion der FGF23-Produktion 

durch 1,25(OH)2D3 in Aktinpolymerisation resultiert. Dieser Effekt wurde durch die 

pharmakologische Hemmung des NF-kB durch Wogonin blockiet. Cytochalasin B, eine 

Substanz, welche Aktinfilamente depolymerisiert, hat die 1,25(OH)2D3  induzierte Fgf23 

Transkription behindert. Dieses Resultat deuten auf eine entscheidende Rolle des 

Aktinzytoskeletts für die Fgf23-Transkription hin. Zur Identifikation der 

zugrundeliegenden Signaltransduktion wurden die Zellen mit dem Rac1-inhibitor NSC 

23766 und den PAK-inhibitor IPA3 behandelt. Beide Inhibitoren blockierten die 

1,25(OH)2D3 induzierte FGF23 Expression, so dass der Rac1/PAK-Signalweg an dem 

Effekt beteiligt ist. Die vorliegenden Ergebnisse liefern einen starken Beweis dafür, dass 

die Rac1 regulierte Aktinreorganisation einen wichtigen Beitrag für die 1,25(OH)2D3-

induzierte FGF23-Bildung liefert.  
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Summary 

Fibroblast growth factor (FGF) 23 is a bone derived phosphaturic hormone. It is a potent 

regulator of vitamin D metabolism and phosphate homeostasis. FGF23 is secreted from 

the bone and exerts its function on the kidney. Further, it inhibits 25-dihydroxyvitamin D 

1α-hydroxylase and reduces formation of active vitamin D and stimulates 25-

dihydroxyvitamin D 24-hydroxylase, which in turn favors degradation of vitamin D. 

FGF23 inhibits renal phosphate reabsorption in the proximal tubules, thereby lowering 

serum phosphate and active vitamin D. To exert its renal function, FGF23 requires 

klotho as a co-receptor. Both FGF23 and klotho deficiency, lead to vascular 

calcification, hyperphosphatemia, hypercalcemia, muscular atrophy and profound aging 

like phenotypes. Glycogen synthase kinase (GSK) 3 is a serine-threonine kinase, which 

is ubiquitously expressed and involved in a variety of cellular process including; 

glycogen metabolism, transcription, translation, proliferation, survival, cell cycle 

regulation, cytoskeleton reorganization and apoptosis. GSK3 is a downstream signaling 

molecule of phosphoinositide-3 kinase (PI3 kinase)/PKB/Akt pathway. Mice expressing 

PKB insensitive GSK3α/β (gsk-3ki) show enhanced sympathetic nervous activity and 

phosphaturia with low bone density. The sympathetic nervous system was shown to 

stimulate FGF23 release. In this thesis, I investigated the role of GSK3-controlled 

sympathetic activity in the production of FGF23 and phosphate metabolism. Serum 

FGF23, urinary epinephrine, Vanillylmandelic acid (VMA), phosphate and calcium 

excretion were significantly higher in gsk-3ki mice compared to gsk-3WT mice. Serum 

FGF23 and 1,25(OH)2D3 concentrations were lower in gsk3KI mice than in gsk-3WT mice. 

Mice were treated with β-blocker (propranolol) for one week resulted in decreased 

serum FGF23 and renal phosphate and calcium loss and elevated serum phosphate 

concentration in gsk-3KI mice. Thus, these data suggest that PI3K insensitive GSK3 

participates in the regulation of FGF23 formation, vitamin D metabolism and, thereby 

mineral metabolism by sympathetic nervous system. 

Next, I explored the role of actin cytoskeleton reorganization in controlling FGF23 

production. Previous findings have suggested that 1,25(OH)2D3 and NF-κB stimulates 

FGF23 production. Therefore, the role of 1,25(OH)2D3-induced actin polymerization on 

Fgf23 expression in UMR 106 osteoblast-like cells was explored. Actin polymerization 
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dynamics was determined by Western blotting and confocal imaging and Fgf23 

transcript levels was measured by qRT-PCR. Western blotting and confocal imaging 

data showed 1,25(OH)2D3 induces actin polymerization in UMR 106 osteoblast-like 

cells. Thus induction of FGF23 production by 1,25(OH)2D3 resulted in actin 

polymerization, an effect blocked by the pharmacological inhibitor of NF-κB wogonin 

(100 µM). Cytochalasin B (100 nM) is a actin microfilament disrupting agent which 

abolished 1,25(OH)2D3-induced Fgf23 gene transcription, pointing a role of actin 

cytoskeleton in Fgf23 expression. Both Rac1 inhibitor NSC23766 (50 µM) and IPA3 (10 

µM) blocked 1,25(OH)2D3-induced Fgf23 expression, suggesting the mechanism 

involved in actin cytoskeleton- controlled Fgf23 expression in UMR 106 cells involves 

Rac1 small GTPase signaling. These results provide strong evidence that actin 

reorganization regulated by Rac1 signaling contributes to 1,25(OH)2D3-induced Fgf23 

gene transcription.   

 

 

 

 

 

                                                                

 

 

 

 

 

 

 

 



Table of contents 

 

ix 

 

Table of contents 

 

Acknowledgements….………………………………………………………………........ iii 

Zusammenfassung….……………………………………………………………………. v 

Summary..………………………………………………………………………………… vii 

Table of contents…….……………………………………………………………………. ix 

List of figures………………………………………………………………………………. xii 

List of tables……………………………………………………………………………….. xiv 

Abbreviations…..………………………………………………………………………….. xv 

1. Introduction….………………………………………………………………………….. 1 

1.1 FGF23………………………………………………………………………………….. 1 

1.2 Discovery of FGF23………………………………………………………………….. 2 

1.3 Source of FGF23……………………………………………………………………… 3 

1.4 Phenotypes of Fgf23 mice…………………………………………………………… 3 

1.4.1 Fgf23 deficient mice………………………………………………………………... 3 

1.4.2 Fgf23 transgenic mice……………………………………………………………… 4 

1.5 Function of FGF23……………………………………………………………………. 5 

1.5.1 FGF23 and klotho………………………………………………………………….. 5 

1.5.2 Renal function of FGF23………………………………………………………...... 6 

1.5.3 Vitamin D metabolism…..…………………………………………………………. 6 

1.5.4 Phosphate metabolism…………………………………………………………….. 7 

1.6 FGF23 and diseases.………………………………………………………………... 8 

1.6.1 Possible role of FGF23 in the premature aging……………………………........ 8 

1.6.2 Hypervitaminosis-D and premature aging in FGF23 mutant mice……………. 9 

1.6.3 Hyperphosphatemia and aging…………………………………………………… 9 

1.6.4 FGF23 and chronic kidney disease (CKD)………………………………………. 10 

1.6.5 FGF23 and cardiovascular diseases (CVD)……………………………………... 12 

1.6.6 Inflammation and oxidative stress……………………………………………….... 12 

1.6.7 FGF23 and vascular calcification…………………………………………………. 12 



Table of contents 

 

x 

 

1.7 Regulation of FGF23……………………………………………………………….... 13 

1.7.1 Regulation by 1,25(OH)2D3……………………………………………………….. 13 

1.7.2 Regulation by phosphate………………………………………………………….. 14 

1.7.3 Regulation by PTH………………………………………………………………..... 15 

1.7.4 Regulation by bone-derived factors………………………………………………. 15 

1.7.5 Other regulators……………………………………………………………………... 15 

1.8 GSK3 signaling……………………………………………………………………….. 16 

1.8.1 GSK3………………………………………………………………………………… 16 

1.8.2 Regulation of GSK3 by insulin and growth factors……………………………… 16 

1.8.3 GSK3 and sympathetic nervous activity.………………………………………… 17 

1.9 Actin cytoskeleton…………………………………………………………………… 18 

1.9.1 Rho GTPase and actin cytoskeleton……………………………………………. 19 

1.9.2 Rho GTPase and PI3K…………………………………………………………… 20 

1.9.3 Actin cytoskeleton and diseases………………………………………………… 20 

2. Aim of the study…..……………………………………………………………………. 21 

3. Materials and methods……..…………………………………………………………. 22 

3.1 Materials……………………………………………………………………………….. 22 

3.1.1 Chemicals and reagents…………………………………………………………… 22 

31.2 Kits……………………………………………………………………………………. 24 

3.1.3 Equipments…………………………………………………………………………. 24 

3.2 Methods……………………………………………………………………………….. 25 

3.2.1 Cells…………………………………………………………………………………. 25 

3.2.2 Quantification of mRNA expression……………………………………………… 26 

3.2.3 Confocal microscopy……………………………………………………………….. 27 

3.3 Mice……………………………………………………………………………………. 27 

3.3.1 Propranolol treatment……………………………………………………………… 28 

3.3.2 Blood chemistry…………………………………………………………………….. 28 

3.3.3 Serum c-term FGF23 measurement……………………………………………... 28 

3.3.4 Calcitriol measurement………………………………………………………......... 29 

3.3.5 Plasma PTH measurement……………………………………………………….. 29 

3.3.6 Serum calcium, phosphate and creatinine………………………………………. 29 



Table of contents 

 

xi 

 

3.3.7 Metabolic cage study………………………………………………………………. 30 

3.3.8 Urinary phosphate, calcium and creatinine……………………………………… 30 

3.3.9 Measurement of urinary VMA and epinephrine………………………………….. 30 

3.4 Blood pressure measurement………………………………………………………. 31 

3.5 Measurement of F/G actin ratio by Triton X-100 fractionation…………………… 31 

3.6 Western blotting………………………………………………………………………. 32 

3.6.1 Solutions…………………………………………………………………………….. 33 

3.7 Statistics……………………………………………………………………………….. 34 

4. Results…...……………………………………………………………………………… 35 

4.1.1 Enhanced serum FGF23 in gsk-3ki mice ……………………………………….. 35 

4.1.2 Renal klotho abundance in gsk-3ki mice………………………………………… 36 

4.1.3 Sympathetic nervous activity in gsk-3ki mice ………………………………….... 37 

4.1.4 High blood pressure in gsk-3ki mice…………………………………………....... 38 

4.1.5 Glomerular filtration rate (GFR)…………………………………………………… 39 

4.1.6 β-blocker normalized enhanced production of FGF23 in gsk-3ki mice……….. 40 

4.1.7 The effect of propranolol on Fgf23 gene transcription in UMR 106 

cells…………………………………………………………………………………………. 

 

42 

4.1.8 Reduced 1,25(OH)2D3 in gsk-3ki mice...…………………………………………. 43 

4.1.9 Hypophosphatemia and phosphaturia in gsk-3ki mice…………………………. 44 

4.2.1 Hypoparathyroidism in gsk-3ki mice…………………………………………........ 45 

4.2.2 Calciuria in gsk-3ki mice……………………………………………………………. 46 

4.3 The effect of 1,25(OH)2D3 on actin cytoskeleton reorganization in UMR 106 

cells…………………………………………………………………………....................... 

 

47 

4.4 1,25(OH)2D3-induced actin polymerization is abolished by NF-κB inhibitor 

wogonin……………………………………………………………………………………... 

 

50 

4.5 The effect of cytochalasin B on Fgf23 mRNA expression in UMR 106 cells…… 51 

4.6 Rac1 and PAK1 inhibitor blocked vitamin D-induced Fgf23 mRNA expression 

in UMR 106 cells…………………………………………………………………………… 

 

52 

5. Discussion……………………………………………………………………………..... 55 

6. Conclusion….…………………………………………………………………………… 62 

7. References..…………………………………………………………………………….. 63 



List of figures 

 

xii 

 

List of figures 

 

Fig. 1: Structure of FGF23, adapted from Saito T et al, Int J Pediatr Endocrinol. 

2009. 

2 

Fig. 2: Formation of heterotrimer complex of FGF23 with FGFR and klotho to 

transmit signal, adapted from Saito T et al, Int J Pediatr Endocrinol.2009. 

 

6 

Fig. 3: Schematic illustration for the functions of FGF23 in kidney and extra renal 

organs, adapted from Martin A et al, Physiol Rev. 2012. 

 

8 

Fig. 4: Various factors involved in CKD-MBD, adapted from Silver J et al, Nephrol 

Dial Transplant, 2012. 

 

11 

Fig. 5: Schematic diagram showing relationship between FGF23, vitamin D, PTH, 

calcium, and phosphorus, adapted from Liu S et al, J Am Soc Nephrol. 2006. 

 

14 

Fig. 6: Inhibition of GSK3 by insulin signaling pathway which regulate glycogen 

synthesis and protein synthesis, adapted from Cohen P et al, Nat. Rev. Mol. Cell 

Biol. 2001. 

 

17 

Fig. 7: Signal transduction to the actin cytoskeleton triggers a variety of cell. 

response, adapted from Papakonstanti EA and Stournaras C, FEBS let, 2008. 

 

19 

Fig. 8: The serum FGF23 level is elevated in gsk-3KI mice compared to gsk-

3WT mice. 

 

35 

Fig. 9: Renal α-Klotho abundance in gsk-3KI mice and gsk-3WT mice. 36 

Fig. 10: Enhanced urinary excretion of epinephrine and vanillylmandelic acid 

(VMA) in gsk-3KI mice compared to gsk-3WT mice. 

 

37 

Fig. 11: β-blocker propranolol lowers systolic blood pressure in gsk-3KI mice. 38 

Fig. 12: Effects of β-blocker propranolol on GFR in gsk-3KI mice. 39 

Fig. 13: β-blocker propranolol reduces the serum C-term FGF23 level in gsk-

3KI mice. 

40 

Fig. 14: Effects of β-blocker propranolol on the serum intact FGF23 level in 

gsk-3KI mice. 

41 

Fig. 15: β-blocker propranolol down-regulates Fgf23 transcription in UMR 

106 cells. 

42 

Fig. 16: Effects of β-blocker propranolol on the serum calcitriol level in gsk-

3KI mice. 

43 

Fig. 17: β-blocker propranolol decreases the renal phosphate wasting of gsk-3KI mice 44 

Fig. 18: Effects of β-blocker propranolol on the plasma PTH level in gsk-3KI 

mice. 

45 

Fig. 19: β-blocker propranolol decreases the renal calcium excretion of gsk-3KI mice. 46 

Fig. 20: 1,25(OH)2D3 induces polymerization of the actin cytoskeleton in 

UMR106 cells. 

48 



List of figures 

 

xiii 

 

Fig. 21: Confocal microscopy image illustrating 1,25(OH)2D3-induced actin 

stress fiber formation in UMR 106 cells. 

49 

Fig. 22: 1,25(OH)2D3-induced actin polymerization is blocked by NF-κB 

inhibitor wogonin in UMR 106 cells. 

50 

Fig. 23:  1,25(OH)2D3-induced Fgf23  transcription is inhibited by actin-disrupting 

agent cytochalasin B 

51 

Fig. 24: 1,25(OH)2D3-induced Fgf23 transcription is inhibited by Rac1 and PAK1 

inhibitor. 

53 

Fig. 25: 1,25(OH)2D3-induced actin polymerization is blocked by Rac1and PAK1 

inhibitors. 

54 

Fig. 26: GSK3-controlled sympathetic activity in FGF23 production. 58 

Fig. 27: Fgf23 gene regulation by actin cytoskeleton reorganization. 61 

 



List of tables 

 

xiv 

 

List of tables 

 

Table 1. Running buffer 10X 33 

Table 2. Transfer buffer 10X 33 

Table 3. TBS 10X 33 

Table 4. Solution A for ECL (200ml) 33 

Table 5. Solution B for ECL (10 ml) 33 

Table 6. Working solution for ECL 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abbreviations 

 

xv 

 

Abbreviations 

 

ABP                  Actin binding protein 

ADHR Autosomal dominant hypophosphatemic rickets 

AOPP Advanced oxidation protein products 

BMD Bone mineral density 

CKD Chronic kidney disease 

CVD Cardiovascular disease 

Cyp24a1 1,25-dihydroxyvitamin D3 24-hydroxylase 

Cyp27b1 25-hydroxyvitamin D 1- α hydroxylase 

DT Distal tubules 

Egr-1 Early growth response gene-1 

ERK Extracellular signal-regulated kinase 

Es RAGE Endogenous soluble receptor of advance glycation end product 

ESRD End stage renal disease 

FGF23 Fibroblast growth factor 23 

FGFR Fibroblast growth factor receptor 

GSK3 Glycogen synthase kinase 3 

hsCRP High-sensitivity C reactive protein 

IL Interleukin 

IRS1 Insulin receptor substrate 1 

IRS2 Insulin receptor 2 

LPS Lipopolysaccharide 

LVH Left ventricular hypertrophy 

MAPK Mitogen-activated protein kinase 

NADPH Nicotinamide adenine dinucleotide phosphate 

NaPi2a Sodium-dependent phosphate cotransporter 2a 

NaPi2c Sodium-dependent phosphate cotransporter 2c 

NF-κB Nuclear factor kappa B 

PCT Proximal convoluted tubule 

PDK Phosphoinositide-dependent kinase 



Abbreviations 

 

xvi 

 

PH Pleckstrin homology 

PHEX Phosphate regulating endopeptidase homolog, X-linked 

PI3K Phosphatidylinositol 3 kinase 

PKB Protein kinase B 

PTG Parathyroid gland 

PTH Parathyroid hormone 

RAS Renin-angiotensin system 

Rac1 Ras-related C3 botulinum toxin substrate 1 

ROS Reactive oxygen species 

SH2 Src-homology domain 

SGK Serum and glucocorticoid inducible kinase 

SPC Subtilisin-like proprotein convertase 

TGF-β                 Transforming growth factor beta 

TIO Tumor-induced osteomalacia 

TNF Tumor necrosis factor 

VDR Vitamin D receptor 

  

  

  

                  

                     



Introduction 

 

 

1 

 

1. Introduction   

 

Fibroblast growth factors (FGF) are a large family of secreted proteins. There are 22 

members of this family which have been found in both human and mice (1). FGFs 

function by binding to FGF receptors (FGFR) and transduce signals by different 

pathways which are involved in the regulation of many cellular processes including 

differentiation, cell proliferation or migration (2). 

 

1.1 FGF23 

 

Fibroblast growth factor (FGF) 23, a member of the FGF19 subfamily of the fibroblast 

growth factor, has been proposed as a potent regulator of mineral ion homeostasis (3-

6). FGF23 is a ~ 32 kDa secreted protein of 251 amino acids, which has a hydrophobic 

signal sequence (~24 amino acids), a N-terminal FGF core homology domain (155 

amino acids), and a C-terminal domain (72 amino acids). Human cDNA encoding 

FGF23 (251 amino acids) highly resembles (~72% amino acid identity) to mouse 

FGF23. Human Fgf23 gene is localized on the chromosome 12p13 and is mainly 

expressed in osteocytes (7-10). The C-terminal domain is necessary for the interaction 

with the FGFR. The proteolytic cleavage site (176RXXR179) is found between N- and 

C-terminal domain (11) (Fig.1). The FGF23 protein is proteolytically cleaved and this 

processing occurs intracellularly, either before or during the secretion of FGF23 (12). 

Abnormalities of bone and mineral metabolism are associated with increased risk of 

mortality in chronic kidney diseases (CKD) including; hyperphosphatemia (13, 14), 

hypo- and hypercalcemia (15), hypo and hyperparathyroidism (16) and 

hyperphosphatasemia (17). Inorganic phosphate is an important factor in intracellular 

signaling, DNA synthesis and metabolism. In spite of its biological significance, 

regulation of phosphate homeostasis is not clear. A mutation in phosphate regulating 

endopeptidase homolog, X-linked (PHEX) causes X-linked hypophosphatemia (XLH) 

(18) and autosomal dominant hypophosphatemic rickets (ADHR) is caused by mutation 
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in FGF23 (19, 20), have been considered important regulators of phosphate 

homeostasis.    

 

 

 
Fig. 1: Structure of FGF23. FGF23 is a secreted protein consists of 251 amino acids. C-terminal FGF23 

is the inactive form which is proteolytically cleaved between Arg
179 

and Ser
180

 from intact FGF23 which is 

the biologically active form, adapted from Saito T et al, Int J Pediatr Endocrinol. 2009 (21). 

 

1.2 Discovery of FGF23 

 

Hypophosphatemic diseases in the many parts of the world have been caused by 

malnutrition and vitamin D deficiency. The most common cause of vitamin D resistant 

rickets is X-linked hypophosphatemic rickets (XLH) and other diseases, include 

autosomal dominant hypophosphatemic rickets (ADHR) and tumor-induced 

osteomalacia (TIO) with similar phenotypes (22). The murine analogue of human 

(FGF23) was cloned for the first time in 2000 in mice (7). It has been shown that ADHR 



Introduction 

 

 

3 

 

is caused by mutation on chromosome 12p13.3 and the mutated gene encodes the 251 

amino acid human FGF23 protein (6, 19, 20). Analysis of the structure revealed that 

mutations occurred in ADHR were situated within a subtilisin-like proprotein convertase 

(SPC) cleavage site in FGF23 that renders the protein resistant to degradation, resulting 

in increased serum levels of active FGF23 and hypophosphatemia due to increasing 

urinary Pi loss in ADHR patients (6, 12, 23). Tumor-induced osteomalacia (TIO) was 

thought as a vitamin D resistant osteomalacia causing hypophosphatemia which was 

cured by the removal of tumor (22, 24). Transplantation of these tumors into wild type 

mice caused hypophosphatemia with a production of a phosphaturic factor that can 

suppress 1,25(OH)2D3 and decrease renal Pi reabsorption (25, 26). Further, a mutation 

in FGF23 is responsible for ADHR, at the same time the FGF23 protein was shown to 

be produced in TIO (20, 27, 28).  

 

 

1.3 Source of FGF23 

 

FGF23 is expressed primarily in bone, thymus, brain, lymph nodes and to a lesser 

extent in heart, skeletal muscle, spleen, thyroid/parathyroid gland, lung and testis (4, 7, 

8, 10, 28). In bone, FGF23 is mainly localized to osteocytes and osteoblasts (8, 10). In 

the brain, expression of FGF23 was found in the ventrolateral thalamic nuclei (7).  

 

1.4 Phenotypes of Fgf23 mice 

 

1.4.1 Fgf23 deficient mice  

 

To interpret the physiological roles of FGF23 in mice, Fgf23 knockout mice were 

generated by Shimada et al., in 2004 (3). FGF23 is produced from bone (29, 30) and its 

biological function depends on the interaction with a cofactor protein called Klotho (31-

33). Fgf23 knockout mice suffer from severe hyperphosphatemia and elevated levels of 
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1,25(OH)2D3 due to enhanced renal 1α-hydroxylase expression and abnormalities in 

skeletal muscle (4). Genetic deletion of Fgf23 results in aging like phenotypes similar to 

human premature aging, including growth retardation, infertility, atherosclerosis, 

massive soft tissue calcifications, atrophy of multiple organ systems together with 

hypoglycemia and increased peripheral insulin sensitivity, disorder of phosphate and 

vitamin D metabolism, pulmonary emphysema, osteoporosis, and a severely shortened 

lifespan (3, 4, 34).  

 

 

1.4.2 Fgf23 transgenic mice 

 

A previous study suggested that recombinant FGF23 was able to enhance urinary 

phosphate excretion and lower serum 1,25(OH)2D3 when given in vivo (3). 

Overexpressing human wild-type FGF23 in transgenic mice exhibited  

hypophosphatemia and enhanced renal phosphate excretion which was accompanied 

by reduced expression of the sodium-dependent phosphate cotransporter types IIa 

(NaPi-2a) and IIc (NaPi-2c) in the kidney (35). Renal phosphate loss resulted in skeletal 

abnormalities and reduced bone mineral density (BMD) in these transgenic mice (35, 

36). Similarly, transgenic mice over expressing mutant form of FGF23 (human 

(R176Q)), which is resistant to degradation by furin-like proteases, displayed more 

pronounced hypophosphatemia and rickets/osteomalacia compared to animals 

expressing the wild-type FGF23 (37-39).  
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1.5 Function of FGF23 

 

1.5.1 FGF23 and Klotho 

 

FGF23 is produced by the bone and acts on kidney and transduces signals through 

FGF receptors (FGFR) (4, 10, 40, 41). There are four FGFRs and several subtypes 

formed as a result of alternative splicing. Although FGFRs differ in tissue expression, 

activity and ligand binding, all members of the receptor belong to tyrosine kinase family 

(42). However, binding affinity of FGF23 to its receptors (FGFRs) is poor (32). Following 

administration of recombinant FGF23 in mice, it was found that FGF23 binds to klotho, 

an aging counteracter, membrane-bound protein and induces the early growth response 

gene -1 (Egr-1) expression and ERK phosphorylation in the kidney, the parathyroid and 

pituitary gland (32). Klotho deficient mice and Fgf23 deficient mice both display high 

1,25(OH)2D3 levels, hyperphosphatemia, a shortened life span and severe aging 

phenotypes (3, 4, 43). Kurosu et al. have shown that Klotho complexed with FGFR1c, 

3c and 4, FGF23 bound tightly and transduce signal to the target organ (31). An in vivo 

study demonstrated that Klotho converted the FGFR1c to a functional FGF23 receptor 

and Klotho acts as a co-receptor for FGF23 signaling (32). The importance of the 

FGFR1 in FGF23 signaling has further been supported by in vivo studies of FGFR3/4 

null mice and conditional knock-out of FGFR1 mice (44). FGF23 signaling, requires 

FGFR1c and Klotho form a complex with FGF23 (Fig. 2), which is trimerized and 

stabilized by heparin sulphates as seen in other FGFR signaling complexes (45) 
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Fig. 2: Formation of heterotrimer complex of FGF23 with FGFR and klotho to transmit signal. To 

mediate renal effects, FGF23 bind to its receptor which requires Klotho as a co-receptor and form a 

complex, adapted from Saito T et al, Int J Pediatr Endocrinol. 2009 (21). 

 

1.5.2 Renal functions of FGF23 

 

Excessive FGF23 leads to hypophosphatemia, abnormal vitamin D metabolism, 

impaired growth and rickets/osteomalacia (35, 38, 46). Fgf23 deficient mice results in 

hyperphosphatemia, excess 1,25(OH)2D3 and calcification of soft tissues (3, 8). The 

kidney is the major target organ of FGF23 actions, deregulation of FGF23 can lead to 

various disorders. Renal functions of FGF23 are given below:  

 

1.5.3 Vitamin D metabolism 

 

FGF23 functions as counter regulatory hormone of vitamin D (47). Cyp27b1 and 

Cyp24a1 are key renal enzymes which are responsible for the synthesis of the bioactive 

form of vitamin D and degradation of the bioactive form of vitamin D respectively (21, 

40). FGF23 can influence circulating vitamin D levels through suppression of 25-
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hydroxyvitamin D 1-α-hydroxylase (Cyp27b1) and stimulation of 1,25-dihydroxyvitamin 

D 24-hydroxylase (Cyp24a1) in the proximal tubules which results in decreased serum 

concentration of 1,25(OH)2D3, the biologically-active form of vitamin D (28, 35, 38, 48-

50). FGF23 stimulates 1,25-dihydroxyvitamin D 24-hydroxylase Cyp24a1 expression 

(50) that leads to the reduction of serum 1,25(OH)2D3 levels are vitamin D receptor 

(VDR) dependent (51). Recombinant FGF23 injected into wild type mice reduces renal 

expression of Cyp27b1 dose-dependently and its effect on Cyp27b1 gene expression is 

ERK1/2 dependent (52). On the other hand, up regulation of Cyp27b1 mRNA 

expression is associated with higher FGF23 levels (53, 54). These studies suggest that 

the effect of FGF23 on the enzymes that are responsible for synthesis and degradation 

of 1,25(OH)2D3 depends on the circulatory FGF23 concentrations (3, 38, 50, 55). 

 

1.5.4 Phosphate reabsorption 

 

Cross-organ communication between kidneys, intestine and bones play a central role in 

phosphate homeostasis (56). It adjusts intestinal absorption of phosphate from the diet 

and renal reabsorption / excretion of phosphate that typically regulate phosphate 

balance. Phosphate reabsorption is taken place in the renal proximal tubule (Fig. 3) 

(40). The intestinal absorption and renal reabsorption of phosphate is mediated  by 

sodium-dependent phosphate transporter system that includes NaPi-2a (kidney), NaPi-

2b (intestine) and NaPi-2c (kidney) (57-61). It has been reported that FGF23 inhibits the 

expression of NaPi-2a and NaPi-2c which induces renal phosphate excretion (44, 50). 

Transgenic mice over expressing Fgf23 have severe hypophosphatemia due to the 

reduction of renal NaPi co transporters expression (36, 38). On the other hand, Fgf23 

knockout mice suffer from hyperphosphatemia and soft tissue calcification with 

enhanced renal NaPi-2a abundance (4, 62). Reduced renal NaPi-2a expression 

restores the biological effects of FGF23 in Fgf23 null mice significantly reversed 

hyperphosphatemia to hypophosphatemia and prevent calcification (63) 

. 
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Fig. 3: Schematic illustration for the functions of FGF23 in kidney and extra renal organs. (A) 

FGF23 activates FGFR/Klotho complex which lead to the inhibition of tubular phosphate reabsorption by 

inhibiting Npt2a. FGF23 inhibits Cyp27b1 in the proximal convoluted tubule (PCT), a key enzyme 

responsible for 1,25(OH)2D3 synthesis and stimulate Cyp24a1 which favor catabolism of 1,25(OH)2D3. 

Therefore, both phosphate and 1,25(OH)2D3 levels are decreased. (B) Extra renal targets of FGF23 are 

those tissue or organ which express FGFR and klotho i.e Bone, heart, brain, thymus, spleen and 

parathyroid gland (PT) which mediate possible effects of FGF23 , adapted from Martin A et al, Physiol 

Rev. 2012 (40). 

 

1.6 FGF23 and diseases 

 

1.6.1 Possible role of FGF23 in the premature aging 

 

Pathophysiology of aging is a complex biological process that involves multi-organ and 

multi-system pathologies (64-66). Klotho mutant mice display multiple aging-like 

features including shortened lifespan, infertility, skin atrophy, soft tissue calcification, 

atherosclerosis, muscles wasting, disorder of mineral ion metabolism and aberrant 

vitamin D metabolism (67, 68). A recent study suggests that aging like phenotypes in 
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klotho knockout mice are the consequence of abnormal mineral metabolism due to 

inability of Fgf23 gene function in these mice (69). Ablation of Fgf23 shares same 

phenotypes as found in the klotho null mice (70). Thus, common phenotypes of these 

mice are due to either absence (Fgf23 null mice) or lack of FGF23 activity (klotho 

mutant mice) (71).  

 

1.6.2 Hypervitaminosis-D and premature aging in Fgf23 mutant mice 

 

Both klotho and Fgf23 deficient mice show up-regulation of 25-hydroxyvitamin D 1-α-

hydroxylase (Cyp27b1) in the kidney and thereby increased serum levels of 

1,25(OH)2D3 (3, 4, 72), which are associated with aging like-features. The premature 

aging like-phenotypes in these mutants were rescued by feeding a vitamin-D deficient 

diet (73, 74) or genetically disrupting vitamin-D activities from Fgf23 mice (70, 73). By 

deleting 1-α hydroxylase gene from Fgf23 null mice, which is responsible for calcitriol 

synthesis, most of the phenotypes were ameliorated in Fgf23/1-α hydroxylase double 

knockout mice (70, 75). Thus, most of the aging like-features in Fgf23 and klotho null 

mice are due to abnormal mineral metabolism caused at least in part by 

hypervitaminosis-D (70, 76, 77). 

 

1.6.3 Hyperphosphatemia and aging 

 

Renal NaPi2a regulates plasma and urinary phosphate balance (60, 62). Renal 

abundance of NaPi2a is up-regulated by the stimulation of 1,25(OH)2D3 and is 

decreased by FGF23 and PTH (60, 78). Similarly NaPi2b expression in the intestine is 

increased by 1,25(OH)2D3 (79). It has already been shown that NaPi2a renal expression 

is increased in Fgf23 mutant mice (72) and similar results were also found in klotho 

deficient mice (80). Accelerated aging directly or indirectly depend on the 

hyperphosphatemia in experimental animals, as feeding them a low-phosphate or low-

vitamin D diet greatly expands their life span (81). The klotho deficient mice show 

excessive phosphate retention which cause hyperphosphatemia and thereby reduced 

survival (67, 68, 82-87). Age-related phenotypes of klotho deficient mice could be 
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suppressed and thereby extending lifespan by reducing phosphate burden via inhibiting 

renal NaPi2a activities by generating NaPi2a/klotho double knockout mice (86). When 

these mice were fed a with high phosphate diet these mice experienced accelerated 

aging like phenotypes, as seen in the klotho deficient mice (86, 88). The klotho deficient 

mice are infertile. Phosphate restriction of these mice regained fertility, as evidenced in 

NaPi2a/klotho double knockout mice (88). When these mice were given high phosphate 

diet, they became infertile, pointing that phosphate may affect reproductive abilities and 

thereby accelerate aging process (86).  

 

1.6.4 FGF23 and chronic kidney disease (CKD) 

 

Elevated levels of FGF23 is one of the earliest indications of abnormal bone-mineral 

metabolism in CKD (89). Serum FGF23 levels increase as a result of progressive loss 

of renal function and this level can be increased by 100-1000 fold times higher than in 

healthy controls by the time patients require dialysis (90). A recent study revealed that 

FGF23 levels increase as glomerular filtration rate (GFR) declines during the 

progression of CKD (91) and this report demonstrated that the elevation of FGF23 

develops before that of parathyroid hormone (PTH) and serum phosphate (89). Even 

though with elevated levels of FGF23, CKD patients do suffer from hyperphosphatemia 

(92). Patients with CKD can develop secondary hyperthyroidism due to failure of FGF23 

to maintain normal serum phosphate levels. However, the mechanism of increased 

FGF23 levels in patients with CKD is not fully known. Elevated FGF23 levels in patients 

with CKD could results from reduced renal clearance of FGF23 (93) and enhanced 

production of FGF23 that counteract hyperphosphatemia. This hypothesis is supported 

by phosphate loading which results in increased FGF23 levels (94). Calcitriol therapy in 

patients with CKD might also lead to increasing levels of FGF23 (95). It has been 

reported that both phosphorous and calcitriol could increase serum FGF23 levels (76). 

As elevated FGF23 levels are associated with increased excretion of phosphate and 

low vitamin D (47, 96), therefore, the elevated levels of FGF23 in patients with CKD can 

develop secondary hyperthyroidism by decreasing 1,25(OH)2D3 (96, 97). The interaction 

of FGF23 and parathyroid hormone is a complex process that has not yet been clearly 
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understood. Several studies have demonstrated that PTH stimulates FGF23 production 

(98, 99), however FGF23 was also shown to reduce PTH synthesis (100, 101). 

 

 

 

Fig. 4: Various factors involved in CKD-MBD. In advanced CKD, dietary phosphate and PTH stimulate 

FGF23 release and FGF23 decreases serum calcitriol that is which in turn secrete PTH. The higher level 

of PTH also releases low-molecular weight FGFs through parathyroid hormone receptor (PTHR) that act 

on canonical FGFRs to increase FGF23. The high FGF23 levels act on FGFRs in the heart activating 

PLCγ calcineurin contributing to the left ventricular hypertrophy (LVH) in these patients. 

Hyperphosphatemia and reduced soluble klotho are factors involved in vascular calcification of soft tissue 

of CKD patients, adapted from Silver J et al, Nephrol Dial Transplant, 2012 (102). 
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1.6.5 FGF23 and cardiovascular diseases (CVD) 
 

Elevated FGF23 levels are associated with CVD, including left ventricular hypertrophy 

(LVH), arterial stiffness, vascular calcifications, endothelial dysfunction and increased 

levels of inflammatory markers (103-107). LVH is a common cardiovascular disorder 

and the major risk factor for cardiovascular death in patients with end stage renal 

disease (ESRD) (108-110). FGF23 is associated with LVH (104). However, it is still ill-

defined, whether the effect is direct or indirect on heart. An in-vivo study has shown that 

FGF23 directly induces LVH through the activation of FGF receptors (103) and the 

effect was klotho independent, as myocardial cells do not express klotho, a co-receptor 

of FGF23. However, Agarwal et al. have shown that klotho deficient mice did not have 

LVH in comparison to 1-α hydroxylase deficient mice (111). Several other studies have 

raised question if there is a direct effect of FGF23 on the myocardium (112-114). 

Further studies are required to answer this question.  

 

1.6.6 Inflammation and oxidative stress  

 

Inflammatory markers are known risk factors for cardiovascular diseases in CKD 

patients. In vivo experiments have reported that FGF23 increases the production of 

inflammatory markers i.e lipocalin-2, TGF-β and TNF (115). It has been shown that 

FGF23 is strongly correlated  with interlukin-6, TNF-α, high-sensitivity C-reactive protein 

(hsCRP), endogenous soluble receptor of advanced glycation end products (esRAGE), 

advanced oxidation protein products (AOPP) in CKD patients (106, 116). 

 

1.6.7 FGF23 and vascular calcification 

 

Vascular calcification is the accumulation of phosphate and calcium in the blood vessels 

and soft tissue. The major factor of mortality in CKD is cardiovascular diseases and 

vascular calcification (117, 118). Accumulating evidence suggests that high serum 

phosphate levels associated with vascular calcification in CKD patients (119, 120). 

Transport of Pi by Na-dependent phosphate transporter (NaPiII) up-regulates 
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osteogenic genes and causes vascular calcification (121, 122). High serum FGF23 is 

associated with declining kidney function. Clinical observations in a several studies 

have found a positive association with serum FGF23 and vascular calcification in 

patients with CKD and ESRD (123-125)  

 

1.7 Regulation of FGF23 

 
In normal individuals, low levels of FGF23 are detected in the circulation, but levels are 

increased in response to phosphate loading, vitamin D administration, renal failure, and 

in several hereditary and acquired hypophosphatemic disorders (20, 76, 89, 126) 

 

1.7.1 Regulation by 1,25(OH)2D3  

 

1,25(OH)2D3 is the most important regulator of FGF23.  In vivo studies, have shown 

1,25(OH)2D3 increases circulating FGF23 levels. 1,25 (OH)2D3 increases the 

transcription of FGF23 in osteoblasts ⁄ osteocytes and this action is mediated by a 

vitamin D receptor (VDR), while disturbance of 1,25(OH)2D3 pathway decreases 

circulating FGF23 in mice (47, 76, 95). It has been suggested that FGF23 acts as a 

counter regulatory hormone for 1,25(OH)2D3, which maintains phosphate balance by 

vitamin D-mediated suppression of PTH and increased intestinal phosphate absorption 

(127). In the gastrointestinal tract 1,25(OH)2D3 enhances calcium and phosphate 

absorption (Fig. 5). Increases in calcium, as well as 1,25(OH)2D3 itself suppress PTH in 

the parathyroid gland, which in turn acts on the kidney and enhance renal calcium 

excretion to maintain neutral calcium balance (40, 47, 127). However, reduced PTH 

levels, limits kidney function to excrete increased phosphate absorbed from the 

gastrointestinal tract (47). FGF23 expression can be regulated by both VDR-dependent 

and VDR-independent signaling pathway. VDR null mice exhibited undetectable FGF23 

levels, pointing the importance of VDR in the regulation of FGF23 (48, 128). On the 

other hand, dietary phosphate increased FGF23 levels in VDR null mice, suggesting 
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that regulation of FGF23 is also mediated by a VDR-independent pathway (35, 36, 50, 

129).  

 

1.7.2 Regulation by phosphate 

 

The effect of dietary phosphorus on serum FGF23 levels and production by osteocytes 

⁄osteoblasts are conflicting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Schematic diagram showing relationship between FGF23, vitamin D, PTH, calcium and 

phosphorus. 1,25(OH)2D3 causes suppression of PTH and increases intestinal calcium absorption. 

1,25(OH)2D3 also stimulates phosphate absorption. Regulation of FGF23 production by dietary phosphate 

in bone likely occurs through unknown intermediate steps, because hyperphosphatemia per se does not 

directly stimulate FGF23 production by osteoblasts, adapted from Liu S et al, J Am Soc Nephrol. 2006 

(47).  

 

Several observations have been shown that phosphate loading increases serum FGF23 

levels in mice and in human subjects (76, 130, 131), whereas, two other studies have 

failed to demonstrate increased in serum FGF23 levels in response to phosphate 

loading (90, 132). Phosphate restriction has been shown to decrease circulating FGF23 

levels (133). Based on current understanding it appears that the mechanism of FGF23 

regulation by phosphate may be complex and indirect.  
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1.7.3 Regulation by PTH 

 

In a mice model of primary hyperparathyroidism, FGF23 levels are increased (98), while 

decreased FGF23 has been shown after parathyroidectomy (134). PTH increased 

FGF23 mRNA levels directly in rat osteoblast-like UMR 106 cells (135). However, PTH 

failed to increase FGF23 production in ROS 17/2.8 osteoblast-like cells (47) or in 

calvarial culture (136). Patients with hypoparathyroidism (137) and PTH null mice (138) 

exhibit increased levels of FGF23. On the other hand vitamin D deficient mice display 

extremely low levels of FGF23, despite elevated levels of PTH (51, 139) and PTH null 

mice can restore FGF23 production after injection of vitamin D (47). Thus, regulation of 

FGF23 by PTH may be dependent on vitamin D.      

 

1.7.4 Regulation by bone-derived factors 

 

Bone is the main site of expression of FGF23 pointing the probability of important local 

regulators of FGF23. PHEX is expressed mainly by osteoblasts and osteocytes in bone 

(40). Increased production of FGF23 by osteocytes, has been found in a study due to 

inactivating mutations of PHEX (8), indicating that PHEX may somehow regulate the 

biosynthesis of FGF23. Initially, FGF23 was presumed to be a substrate for PHEX but 

recent findings suggest that FGF23 is not a direct substrate for PHEX, rather PHEX  

can regulate Fgf23 gene expression possibly through the action of unknown PHEX 

substrates or other downstream effectors (10). Like PHEX, dentin matrix protein (DMP) 

1 is also predominantly expressed by osteoblast and osteocytes in bone. DMP1 

regulates extracellular matrix mineralization (140). Inactivation mutation of DMP1 

displays increased FGF23 production in bone (141).  

 

1.7.5 Other regulators 

 

Recently, iron has been considered a regulator of FGF23. But still it’s role is enigmatic 

(142-146). Sympathetic nervous system is also involved in the regulation of FGF23, 

since FGF23 expression is triggered by sympathetic activation (147).  
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1.8 GSK3 signaling 

 

1.8.1 GSK3 

 

Glycogen synthase kinase-3 (GSK3) is a downstream signaling molecule of PI3K and 

PKB/Akt and is a serine/threonine protein kinase that participates in the regulation of 

glycogen metabolism (148). GSK3 was first identified as a protein kinase that 

phosphorylates and thus inactivates glycogen synthase, the key enzyme in glycogen 

biosynthesis (149). GSK3 was isolated and purified from rabbit skeletal muscle (150). 

Woodgett JR et al. have found by cloning that GSK3 has two closely related isoforms, 

GSK3α and GSK3β, which are expressed ubiquitously in mammalian tissues (151, 

152). Besides  glycogen metabolism, GSK3 has important roles in the regulation of 

cellular processes including; cell proliferation, differentiation microtubule dynamics, cell 

cycle and apoptosis (153). Aberrant GSK3 signaling plays roles in the pathophysiology 

of diabetes, cancer, inflammation, neurological disorders and cancer (154, 155).   

 

1.8.2 Regulation of GSK3 by insulin and growth factors 

 

It was first thought that inhibition of GSK3 might be the cause of insulin-induced 

dephosphorylation of glycogen synthase (156) and later on it was confirmed that insulin 

stimulates the dephosphorylation of glycogen synthase at sites where phosphorylated 

by GSK3 (157) and as a result insulin inhibits GSK3 acutely (158, 159). Well known 

mechanism through which GSK3 is inhibited by insulin results from its phosphorylation 

at Ser9 in GSK3β  and Ser21 in GSKα and that is catalyzed by PKB (160). Insulin 

stimulates PI3K which, in turn activate PKB/Akt and serum and glucocorticoid inducible 

kinase (SGK) isoforms (161, 162). In a cascade of signal transduction GSK3 is 

phosphorylated and thus inactivated by PKB (163) and SGK1 (164). By activating 

protein phosphatase insulin may stimulates dephosphorylation of glycogen synthase 

(165) (Fig. 6).  
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Fig. 6: Inhibition of GSK3 by insulin signaling pathway which regulate glycogen synthesis and 

protein synthesis. Insulin binds to its receptor and activates the intrinsic protein tyrosine kinase activity 

of the receptor. Phosphotyrosine (pY) residue interacts with insulin receptor substrate proteins 

(IRS1 and IRS2) and recruiting them to the plasma membrane. Then, insulin receptor substrate (IRS) 

interacts with p85 subunit of PI3K and recruits them to the plasma membrane. PI3K catalyses the 

formation of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) from PtdIns(4,5)P2. 

PtdIns(3,4,5)P3 binds to PDK1 and PKB/Akt, engage  them at the membrane and allowing PDK1 to 

activate PKB/Akt. Once PKB/Akt is activated, in turn, phosphorylates and inhibits GSK3, adapted from 

Cohen P et al, Nat. Rev. Mol. Cell Biol. 2001 GSK3 (148). 

 

 

1.8.3 GSK3 and sympathetic nervous activity 

 

Insulin regulates glucose metabolism. It also plays a role in renal phosphate handling 

(166). Cellular insulin effects are mediated by PI3K dependent PKB/SGK isoform 

activation (161, 162). To reveal physiological importance of PKB/SGK dependent 

regulation of GSK3, gene-targeted mice were generated in which serine residue was 

replaced by alanine (GSK3α21A/21A, GSK3ß9A/9A) within the PKB/Akt phosphorylation 
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site. GSK3α/β mice carrying this mutation make the kinase insensitive to the inhibitory 

effect of PKB/Akt. Therefore, gsk-3KI mice carrying mutations are protected from the 

inhibitory effect of insulin (167). In mice carrying these mutations (gsk-3KI), plasma 

phosphate concentration was significantly lower and urinary phosphate excretion 

significantly higher than in the corresponding wild type mice (gsk-3WT) (168). It has been 

reported that arterial blood pressure is enhanced in gsk-3KI mice as compared to wild 

type mice (169, 170) and by the treatment with α-adrenergic antagonist prazosin 

enhanced blood pressure could be lowered which indicate to having sympathetic nerve 

activity (171). Epinephrine is a marker of sympathetic nervous activity. Gsk-3KI mice 

show increased levels of plasma and urine epinephrine levels (172).  

 

1.9 Actin cytoskeleton 

 

Actin cytoskeleton is a cellular network within the cytoplasm which provides the cell 

shape, functional support and mechanical strength (173, 174), directs locomotion, 

regulates chromosome separation during mitosis and meiosis, intracellular transport of 

organelles in cells (175, 176). There are three main components of actin cytoskeleton in 

eukaryotic cells (actin microfilaments, microtubules and intermediate filaments). Actin 

microfilament is composed of monomeric (G-actin) and filamentous (F-actin) actin that 

constitute actin cytoskeleton along with ABP (actin-binding protein) (177). Actin 

microfilament consisting of highly polarized plus (barbed) end and minus (pointed) end. 

Actin exists within the cells in a dynamic transition of polymerization and 

deploymerization. At steady state F-actin grows fast at the barbed end by the adding of 

ATP-bound G-actin than does the pointed end where depolymerization occur by 

dissociation of ADP-bound G-actin. Actin can be polymerized or depolymerized by 

exchange of ATP or hydrolysis of ATP (178, 179).  
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1.9.1 Rho GTPase and actin cytoskeleton 

 

Rho GTPase is a crucial regulator in the actin signaling pathway that links extracellular 

or intracellular signals to the assembly of actin cytoskeleton. Actin reorganization, 

following the modification of actin polymerization is a cellular response initiated by 

various signals including growth factors, cytokines and hormones (Fig. 7) which transmit 

signal through Rho-family GTPase in particular Rho, Rac and Cdc42 (180, 181). Actin 

cytoskeleton dependent cellular process including cytokinesis (182), cell migration (183) 

and endo/exocytosis (184) is severely impaired during dominant negative mutation in 

Rho-GTPase. Cofilin is phosphorylated by LIM kinase which reduces its actin-binding 

activity. LIM kinase is phosphorylated by ROCK that is regulated by Rho-GTPase (185, 

186).  

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 7: Signal transduction to the actin cytoskeleton triggers a variety of cell response. 

Extracellular stimuli lead to the activation of membrane receptors which transmits signals to the actin 

cytoskeleton by specific actin signaling molecules. Alternation of actin cytoskeleton dynamics have been 

implicated in cellular outcomes including survival, secretion, proliferation and apoptosis and motility, 

Adapted from Papakonstanti EA and Stournaras C, FEBS let, 2008(187). 
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1.9.2 Rho GTPase and PI3K 

 

Importance of PI3-kinase in cell survival and in actin restructuring has been described 

(188, 189). Rho GTPase associates with PI-kinase and control actin cytoskeleton 

reorganization. PI3K phosphorylates inisitol and forms the lipid products PIP2 and PIP3. 

These lipids then activate the signaling cascade of downstream effectors PKB/Akt or 

small GTPase Cdc42 and Rac1 (188). Rac1, in turn, promotes actin polymerization and 

changes cell morphology (190, 191)  

 

 

1.9.3 Actin cytoskeleton and diseases 

 

The dynamic reorganization of actin cytoskeleton is very crucial for cellular processes. 

During infection many pathogens hijack host cell actin cytoskeleton and disrupt 

cytoskeleton rapidly (192). Alternation in the actin cytoskeleton dynamics govern cellular 

outcomes which have been linked to human diseases, including muscular dystrophy 

(193, 194), liver diseases (195) and cancer metastasis and invasion (196, 197). Altered 

regulation of actin cytoskeleton is associated with neurological disorders and ischemic 

kidney disease. In Alzheimer’s disease deregulation of ADF/cofilin was observed (198, 

199).
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2. Aim of the study 

 

FGF23 is a phosphaturic hormone which regulates mineral homeostasis and vitamin D 

metabolism. Mice expressing PKB/Akt resistant gsk-3ki show hypophosphatemia, renal 

phosphate loss and sympathetic nervous activation. It has been reported that insulin 

dependent PI3K signaling involved in the regulation of phosphate transport. 

Phosphaturia in these mice could be due to the inhibitory effects of GSK3 on the renal 

phosphate transporter NaPi2a, but in addition, FGF23 could be involved. Sympathetic 

activation of the nervous system and vitamin D stimulate FGF23 secretion. Vitamin D 

has been implicated in actin cytoskeleton reorganization. Based on this hypothesis, the 

present study was conducted to investigate 

 

1. Whether GSK3-controlled sympathetic activity is involved in the regulation of 

FGF23 production. 

2. Whether FGF23 gene transcription is regulated by actin cytoskeleton. 
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3. Materials and methods 

 

3.1 Materials 

 

3.1.1 Chemicals and reagents 

 

Name Company name and country of origin 

1,25(OH)2D3 Enzo life science, New York, USA 

30% Acrylamide Carl Roth, Karlsruhe, Germany 

Amersham hyperfilm GE Healthcare, München, Germany 

Ammonium persulfate Sigma Aldrich, St. Louis, USA 

Anti-Klotho (rat polyclonal IgG 

antibody)      

Kyowa Hakko Kirin Co., Ltd., Japan  

Anti-GAPDH                                               Cell Signaling Technology, USA 

Anti-rabbit HRP- conjugate antibody Cell Signaling Technology, USA 

Anti-rat HRP conjugate linked 

antibody 

Cell Signaling Technology, USA 

Bradford protein assay Bio-Rad, München, Germany 

Bovine serum albumin (BSA) Carl Roth, Karlsruhe, Germany 

Chloroform Carl Roth, Karlsruhe, Germany 

Cytochalasin B TOCRIS, Bristol, UK 

Diethylether    Roth, Karlsruhe, Germany 

DMEM   Invitrogen, Darmstadt, Germany 

DTT Invitrogen, Darmstadt, Germany 

EDTA Sigma Aldrich, St. Louis, USA 

Ethanol Roth, Karlsruhe, Germany 

EGTA Sigma Aldrich, St. Louis, USA 

Enhanced chemiluminescence (ECL)       GE Healthcare, München, Germany 

FBS  Gibco, Life Technologies, Darmstadt, Germany 
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Glucose, corn sugar                                  Sigma Aldrich, St. Louis, USA   

Glycine Carl Roth, Karlsruhe, Germany 

Glycerol Carl Roth, Karlsruhe, Germany 

IPA3 Tocris, Bristol, UK 

Isopropyl alcohol Carl Roth, Karlsruhe, Germany 

Methanol    Carl Roth, Karlsruhe, Germany 

Sodium chloride (NaCl) Carl Roth, Karlsruhe, Germany 

Nitrocellulose membranes Whatman, Maidstone, UK 

Non-fat milk powder                                  Carl Roth, Karlsruhe, Germany 

NP-40 Carl Roth, Karlsruhe, Germany 

PBS PAA Laboratories, Cölbe, Germany 

Penicillin/Streptomycin                             PAA Laboratories, Cölbe, Germany 

PeqGold protein marker                           PeqLab, Erlangen, Germany 

peqGold TriFast  PeqLab, Erlangen, Germany 

PMSF Sigma Aldrich, St. Louis, USA 

Propranolol Sigma Aldrich, St. Louis, USA 

Protease inhibitor cocktail                       Roche Diagnostics, Mannheim, Germany 

PVDF  membrane ThermoScientific,Waltham,Massachusetts,USA  

Roti Loading Dye (4x) Carl Roth, Karlsruhe, Germany 

Rac1 inhibitor NSC 23766 Tocris, Bristol, UK 

Phalloidin Life Technologies, USA 

RIPA lysis buffer Cell Signaling Technology, USA 

SDS Carl Roth, Karlsruhe, Germany 

Sodiumdeoxycholate Sigma Aldrich, St. Louis, USA 

Sodium fluride Carl Roth, Karlsruhe, Germany 

Sodium pyrophosphate Sigma Aldrich, St. Louis, USA 

Sodium ortho vanadate Sigma Aldrich, St. Louis, USA 

Stripping buffer Carl Roth, Karlsruhe, Germany 

TEMED Carl Roth, Karlsruhe, Germany 

Tris-base Sigma Aldrich, St. Louis, USA 
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Trypsin-EDTA PAA Laboratories, Cölbe, Germany 

TritonX100 Carl Roth, Karlsruhe, Germany 

Tween 20 Carl Roth, Karlsruhe, Germany 

Wogonin Enzo life science 

 

3.1.2 Kits 

 

1. 1,25(OH)2D3 EIA Kit (Immunodiagnostic Systems, Boldon, UK). 

2. FGF23 (c-term) ELISA Kit (Immutopics International, California, USA). 

3. Intact FGF23 ELISA kit (Kainos Laboratories, Tokyo, Japan). 

4. Creatinin PAP,enzymatic (LT-SYS, Labor Technik, Germany). 

5. Creatinine Jaffe, Kinetic (LT-SYS, Labor Technik, Germany). 

6. Phos (inorganic phosphorus) (Roche Diagnostics, Mannheim, Germany). 

7. Mouse PTH 1-84 ELISA Kit (Immunotpics International, California, USA). 

8. Vanillylmandelic acid (VMA) ELISA Kit (IBL international, Hamburg, Germany). 

9. Epinephrine ELISA kit (LDN, Germany). 

10. SuperScript III First-Strand Synthesis kits (Invitrogen, Darmstadt, Germany). 

 

3.1.3 Equipments 

 

Name Company name and country of origin 

CFX96 real-time system Bio-Rad Laboratories, München, Germany 

BioPhotometer Eppendorf, Hamburg, Germany 

Biorad chemidoc XRS                       Bio-Rad Laboratories, München, Germany 

Electrophoresis cell                            Bio-Rad Laboratories, München, Germany 

Electrophoresis power supply            Bio-Rad Laboratories, München, Germany 

Electrophoretic transfer cell                Bio-Rad Laboratories, München, Germany 

Eppendorf centrifuge 5417c Eppendorf, Hamburg, Germany 

Eppendorf thermomixer 5436 Eppendorf, Hamburg, Germany 

ELISA plate reader (Power Wave XS2) BioTek, Winooski, VT, USA 
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Heraeus cell culture hood Thermo Fisher Scientific, Waltham MA, USA 

Heraeus cell culture incubator Thermo Fisher Scientific, Waltham MA, USA 

Homogenize rotor   Carl Roth, Karlsruhe, Germany 

Non-Invasive blood pressure amplifier   IITC life sciences, Los Angeles, USA 

pH meter Sartorius, Göttingen, Germany 

Power labs dual bio amps (ML135) ADInstruments GmbH, Germany 

Metabolic cage Techniplast, Hohenpeissenberg, Germany 

Flame photometry (ELEX 6361) Eppendorf, Hamburg, Germany 

Primus PCR instrument 25 Peqlab, Erlangen, Germany  

Zeiss LSM 5 EXCITER confocal 

microscopy 

Carl Zeiss, Germany 

               

  

3.2 Methods 

 

3.2.1 Cells 

 

Rat osteosarcoma cells UMR 106 were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) containing 4,5 g/l glucose, supplemented 10% fetal bovine serum FBS (Gibco, 

Life Technologies, Darmstadt, Germany), 50 U/ml penicillin and 50 µg/ml streptomycin 

(Gibco, Life Technologies, Darmstadt, Germany) at 5% CO2 and 370 C . UMR 106 cells 

were pretreated with 100 nM 1,25(OH)2D3. After 42 h cells were treated with 100 nM 

cytochalasin B, 50 µM Rac1 inhibitor NSC 23766 and 10 μM IPA3 (TOCRIS, Bristol, 

UK), or with vehicle only for 6 h, and thereafter were harvested for RT-PCR. For some 

experiments, cells were treated with or without 150 µM propranolol (Sigma Aldrich, St. 

Louis, USA) over night (14-16 h) in the presence of 100 nM 1,25(OH)2D3. For Western 

blotting cells were treated with 100 nM 1,25(OH)2D3 for 15 min, 30 min and 24 h. For 

some experiments, cells were incubated with or without 100 µM NFκB inhibitor wogonin 

(Enzo Life Sciences, Germany) for 24 h and in addition treated with 100 nM 

1,25(OH)2D3 or with vehicle for another 15 min. Alternatively, cells were treated with 50 
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µM Rac1 inhibitor NSC 23766 and 10 µM PAK1 inhibitor IPA3 in presence or absence  

of 100 nM 1,25(OH)2D3 for 15 min. 

 

3.2.2 Quantification of mRNA expression 

 

Total RNA was isolated using peqGOLD TriFast (PeqLab Biotechnologie GmbH, 

Erlangen, Germany) reagent, a method which is based on a chloroform extraction 

protocol. The mRNA was transcribed with SuperScriptIII Reverse Transcriptase 

(Invitrogen, Darmstadt, Germany) using random hexamers (Invitrogen, Darmstadt, 

Germany). Quantitative RT-PCR was performed on a BioRad iCycler iQTM Real-Time 

PCR Detection System (Bio-Rad Laboratories, München, Germany) using the following 

primers: 

Tbp (TATA box-binding protein): 

Forward primer (5'-3'): ACTCCTGCCACACCAGCC 

Reverse primer (5'-3'): GGTCAAGTTTACAGCCAAGATTCA 

Fgf23 

Forward primer (5'-3'): TGGCCATGTAGACGGAACAC 

Reverse primer (5'-3'): GGCCCCTATTATCACTACGGAG 

 

The final volume of the PCR reaction mixture was 20 µl and contained: 2 µl cDNA, 1 µM 

of each primer, 10 µl GoTaq qPCR Master Mix (Promega, Mannheim, Germany) and 

sterile water up to 20 µl. qPCR conditions were 95°C for 3 min, followed by 40 cycles of 

95°C for 10 s and 58°C for 30 s. Calculated mRNA expression levels were normalized 

to the expression levels of Tbp of the same cDNA sample as internal reference. All 

PCRs were performed in duplicate. Relative quantification of gene expression was 

performed using the ΔΔct method. 
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3.2.3 Confocal microscopy 

  

For actin staining, UMR 106 cells were cultured on glass chamber slides (BD 

biosciences) for 24 h and treated with or without 1,25(OH)2D3  (100 nM) for 15 min, 30 

min and 24 h. After washing twice with PBS, cells were fixed with 4% PFA for 15 min at 

room temperature and then permeabilized with 0.03% Triton-X100 for 10 min. The cells 

were blocked with 3% BSA in PBST and incubated with rhodamine-phalloidin (1:200, 

Life Technologies, USA) for F-actin staining and with DRAQ-5 dye (1:3000, Biostatus, 

Leicestershire, UK) for nuclei staining for 30 min in the dark. After three washing steps, 

slides and coverslips were mounted with ProLong Gold antifade reagent (Life 

Technologies, USA). Images were taken on a Zeiss LSM 5 EXCITER confocal laser 

scanning microscope (Carl Zeiss, Germany) with a water immersion Plan-Neofluar 

40/1.3 NA DIC. 

 

3.3 Mice 

 

All animal experiments were conducted according to the German law for the welfare of 

animals and were approved by local authorities (Baden-Württemberg). Experiments 

have been performed with gene-targeted mice carrying a mutant GSK3α,β, in which the 

codon encoding Ser9 of GSK3ß gene was changed to encode nonphosphorylable 

alanine (GSK3ß9A/9A), and simultaneously the codon encoding Ser21 of GSK3α was 

changed to encode the nonphosphorylable GSK3α21A/21A thus yielding the 

GSK3α/β21A/21A/9A/9A double knock in mouse (gsk-3KI) as described previously (167). The 

mice were compared to corresponding wild type mice (gsk-3WT). In this study, I have 

used gsk-3KI mice and gsk-3WT mice. The animals were genotyped by PCR using 

standard method. If not stated otherwise, mice were fed a control diet (Altromin 1310) 

and adlib access to drinking water. 
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3.3.1 Propranolol treatment 

 

GSK3 wild type (gsk-3WT) and GSK3 knock in (gsk-3KI) mice were treated with 

propranolol at dose of 500 mg/L for 7 days in drinking water. Blood was drawn before 

and after treatment with propranolol. Mice were fed a control diet (Altronin 1310). The 

mice were studied at the age of 2-5 months. 

 

3.3.2 Blood chemistry 

 

To obtain serum or plasma, animals were lightly anesthetized with diethyl ether (Roth, 

Karlsruhe, Germany) and about 50 - 200 μl of blood were drawn by puncturing the retro-

orbital plexus with capillaries before and after treatment with β-blocker propranolol at 

the dose of 500mg/L in drinking water for one week. Serum or plasma was separated by 

centrifugation of blood at 7000 rpm for 10 min at 40C and kept at -80°c until 

measurement. 

 

3.3.3 FGF23 measurement 

 

Serum FGF23 was measured by ELISA (Immutopics International, San Clemente, USA) 

according to the manufacturer´s instructions. Briefly, for the measurement of C-term 

FGF23 25 µl standard, control or samples were loaded into the designated or mapped 

well coated with anti-FGF23. Biotinylated antibody and HRP-conjugated antibody were 

added to each well in 1:1 ratio and the plate was sealed and then covered with 

aluminium foil to avoid exposure to light. After incubation at room temperature for 3 h on 

a rotator at 180-220 rpm, wells were washed three times with washing buffer. ELISA 

HRP substrate was added to each well and incubated another half an hour. After 

incubation period, stop solution was added and reading took at 450 nm against a 

reagent blank. 
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3.3.4 Calcitriol measurement 

 

An EIA kit was employed to determine plasma concentrations of 1,25(OH)2D3 (IDS, 

Boldon, UK). All experiments have done according to the manufacturer’s instructions.  

 

 

3.3.5 Plasma PTH measurement 

 

Plasma PTH concentration was measured by using mouse PTH 1-84 ELISA kit 

(Immutopics International, San Clemente, USA). Manufacturer’s instructions were 

followed. Briefly, 20µl of plasma samples, standard and control were used into the 

designated antibody coated well. After that, mouse PTH 1-84 biotinylated antibody and 

mouse PTH 1-84 HRP conjugated antibody were added in 1:1 ratio into each well. The 

plate was covered with plate sealer and then wrapped with aluminium foil and incubated 

for 3 h at room temperature on a horizontal rotator at the speed of 180-220 rpm. Wells 

were washed five times with wash buffer and added 100 µl of ELISA HRP substrate into 

each well and incubated another half an hour. After adding ELISA stop solution into 

each of the wells, absorbance was measured by ELISA plate reader.   

 

3.3.6 Serum calcium, phosphate and creatinine 

 

Following serum parameters were measured. Serum Ca2+ was determined by flame 

photometry. Inorganic phosphate was measured by photometric method (Roche, 

Mannheim, Germany) and serum creatinine concentration by using an enzymatic 

colorimetric method (Labor & Technik, Berlin, Germany). All experiments have done 

according to the manufacturer’s instruction.  
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3.3.7 Metabolic cage study 

 

Both gsk-3KI mice and gsk-3WT mice were placed individually in metabolic cages 

(Techniplast, Hohenpeissenberg, Germany) for the collection of 24 h urine to evaluate 

renal excretion. Mice were allowed a 2-3 days habitation period and intake of food and 

drinking water, urinary flow rate and body weight were recorded regularly to make sure 

that the mice were adapted to the new environment. Subsequently, 24 h of urine was 

collected for 5 consecutive days to obtain the urinary parameters. Urine was collected 

under water-saturated oil and metabolic cages were siliconized to ensure smooth urine 

collection. After collecting base line urine mice were treated with propranolol in drinking 

water at the dose of 500 mg/L for 7 days and urine was collected. Mice were fed control 

diet. Urine aliquots were rapidly frozen and store at -80 until measurement. 

 

 

3.3.8 Urinary phosphate, calcium and creatinine 

 

The phosphate concentration was determined colorimetrically using commercial 

diagnostic kits (Roche Diagnostics, Mannheim, Germany). The urinary concentration of 

Ca2+ was measured by flame photometry (ELEX 6361, Eppendorf) or by a photometric 

method according to the manufacturer’s instructions (Dri-chem clinical chemistry 

analyzer FUJI FDC 3500i, Sysmex, Norsted, Germany). The creatinine concentration in 

urine was determined using the Jaffe reaction (LT-SYS, Labor Technik, Germany). 

 

3.3.9 Measurement of urinary vanillylmandelic acid (VMA) and epinephrine  

 

For the measurement of renal excretion both gsk-3KI mice and gsk-3WT mice were 

placed individually in the metabolic cages to adapt new environment on the first two 

days for collecting 24 h urine. Mice were again housed from day 2-day 5 of propranolol 

treatment. Small amount of 6N HCL were added to the urine collection tube to acidify 

the urine and next 24 h acidic urine was collected. To ensure smooth urine collection, 
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metabolic cages were siliconized and urine was collected under water-saturated oil. 

Urinary epinephrine (Labor Diagnostika Nord, Nordhorn, Germany) and vanillylmandelic 

acid (IBL international, Hamburg, Germany) concentration were determined by using 

ELISA kits  

 

3.4 Blood pressure measurement 

 

The arterial blood pressure was determined by a non-invasive tail-cuff system (IITC life 

Science, Woodlands Hills, CA, USA). To get the systolic blood pressure of mice, I took 

average of several days readings for the respective mouse. To reduce the stress of 

mice some precautions were taken. Mice were placed in clean plastic animal holder. 

Before taking reading mice were given proper training. Tail of the mouse was positioned 

inside a tail cuff with a photoelectric sensor.  We determined systolic blood pressure 

before and after treatment with β-blocker propranolol. All recordings and data analysis 

were obtained by using a computerized data acquisition system and software 

(PowerLab 4/26). 

 

3.5 Measurement of F/G actin ratio by Triton X-100 fractionation 

 

For measurements of the monomeric (Triton soluble) and polymerized (Triton insoluble) 

actin, UMR 106 cells were incubated for different time points with or without and/or with 

vitamin D (100 nM), wogonin (100 µM), Rac1 inhibitor NSC 23766 (50 µM) and PAK 

inhibitor IPA3 (10 µM) where indicated. Then, cells were harvested. Actin cytoskeleton 

determination by Triton X-100 was described previously (200). Briefly, cells were 

incubated with 130 µl of Triton extraction buffer containing (0.3% TritonX-100, 5 mM Tris, 

pH 7.4, 2 mM EGTA, 300 mM sucrose, 2 µM phalloidin, 1 mM PMSF, 10 µg/ml leupeptin, 

20 µ/ml aprotinin, 1 mM sodium orthovanadate, and 50 mM NaF for 5-7 min on ice. The 

supernatant (G-actin) containing soluble protein was removed. The Triton insoluble 

fraction remaining on the culture plate was scraped and lysed with RIPA buffer (Cell 

Signaling, Frankfurt, Germany). An equal amount of protein of each fraction was subjected 
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to 10% SDS-PAGE. The proteins were transferred onto PVDF membranes which were 

then blocked with 5% nonfat dry milk powder in TBS-T for 1 h at room temperature. Next, 

the membrane was incubated overnight at 4°C with pan-actin primary antibody (1:1000 in 

5% BSA with TBS-T, Cell Signaling) and washed 3-5 times with TBS-T. Then, incubation 

with secondary anti-rabbit horseradish peroxidase-conjugated antibody was carried out for 

1 h at room temperature (1:2000; Cell Signaling). Blots were developed by commercial 

ECL (Thermo Scientific) or home made ECL reagent and band intensities were quantified 

by chemidoc Quantity one software. 

 

3.6 Western blotting 

 

To determine protein abundance, mice were anesthetized with diethyl ether. The 

kidneys were removed and immediately snap-frozen in liquid nitrogen. The kidneys of 

mice were homogenized with an electric homogenizer at 4°C on ice in lysis buffer (54.6 

mM HEPES, 2.69 mM Na4P2O7, 360 mM NaCl, 10% [vol/vol] Glycerol, 1% [vol/vol] 

NP40) or RIPA (Cell signalling) containing phosphatase and protease inhibitors 

(Complete mini, Roche, Mannheim, Germany). Homogenates were kept on ice for 30 

minutes and homogenates were centrifuged at 14000 rpm for 30 min at 40C. Protein 

concentration was quantified by Bradford protein assay (Bio-Rad, München, Germany). 

40 µg tissue lysate was separated by SDS-PAGE (8% Tris-Glycine), transferred to 

PVDF membranes (Thermo scientific, Germany), blocked for 1 h in blocking buffer (5% 

fat-free milk in Tris-buffered saline (TBS) containing 0.1% Tween), and incubated 

overnight at 40c with rat anti-klotho (1:1000 in 5% fat free milk in TBST; kindly provided 

by Akiko Saito, Kyowa Hakko Kirin Co., Ltd., Japan) antibody. After incubation with a 

horseradish peroxidase-conjugated anti-rat or anti rabbit secondary antibody (1:2000 in 

5% fat free milk in TBST; Cell Signaling, Freiburg, Germany), the bands were visualized 

with enhanced chemiluminescence according to the manufacturer's instructions or by 

using home-made ECL solution. For loading control, the membrane was probed with 

GAPDH antibody (1:2000 in 5% BSA in TBST; Cell Signaling, Frankfurt Germany). 

Densitometric analysis of klotho was performed using Quantity One software (Bio-Rad 

Laboratories). 
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3.6.1 Solutions  

Table 1. Running buffer (10X) 

Tris base 250 mM 

Glycine 1.9 M 

SDS 1% 

dH2O Up to 1 litre 

 

 

Table 2. Transfer buffer (10X) 

Tris base 198 mM 

Glycine 1.5 M 

dH2O Up to 1 litre 

 

 

Table 3. TBS (10X) 

Tris base 200 mM 

NaCl 1.3 M 

dH2O Up to 1 litre, pH 7.6 

 

 

Table 4. Solution A for ECL (200 ml) 

Tris (0.1 M) 2.42 g 

Luminol 50 mg 

dH2O 200 ml 

Adjust pH 8.6 

 

Table 5. Solution B for ECL (10 ml) 

Para hydroxyl cumeric acid 11 mg 

DMSO 10 ml 
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Table 6. Working solution for ECL 

Solution A 1 ml 

Solution B 100 µl 

Hydrogen peroxide (H2O2) 0.3 µl 

 

 

3.7 Statistics 

 

Data are provided as means ± SEM, n represents the number of independent 

experiments. All data were tested for significance using unpaired Students t-test or 

ANOVA. Only results with p < 0.05 were considered statistically significant.
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4. Results 

 

Part 1 Results 

 

4.1.1 Enhanced serum FGF23 in gsk-3KI mice 

 

It has been shown that gsk-3KI mice suffer from hypophosphatemia and renal phosphate 

wasting as well as low serum levels of 1,25(OH)2D3 (168). FGF23 is derived from bone 

and exerts its phosphate wasting effect in the kidney and thereby reduces serum 

phosphate. Thus, the serum C-terminal FGF23 and intact FGF23 concentration was 

measured. Both C-terminal FGF23 and intact FGF23 were significantly higher in gsk-3KI 

mice compared to gsk-3WT mice (Fig. 8). 

 

 

 

Fig. 8: The serum FGF23 level is elevated in gsk-3
KI 

mice compared to gsk-3
WT 

mice. 

Arithmetic means ± SEM of the serum C-terminal FGF23 (A; n=5) and intact FGF23 (B; n=6) concentration 

determined in gsk-3
WT

 mice (white bars) and gsk-3
KI

 mice (black bars). * p<0.05, **p<0.01. 
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4.1.2 Renal klotho abundance in gsk-3KI mice 

 

FGF23 binds to its receptor to exert renal function. FGFR receptor requires α-klotho as 

a co-receptor. It has been reported that reduced expression of α-klotho is associated 

with high serum concentration of FGF23 (201) in klotho knock out mice. Therefore, 

renal abundance of klotho was determined by Western blotting. I did not find any 

difference in renal α-klotho expression between the genotypes (Fig. 9). Hence, α-klotho 

does not account for elevated serum FGF23 in gsk-3KI mice. 

 

 
 
Fig. 9: Renal α-Klotho abundance in gsk-3

KI 
mice and gsk-3

WT 
mice. 

A. Original Western blots demonstrating renal Klotho (upper panel) and GAPDH (lower panel) abundance. 

B. Densitometric analysis of the Western Blot. Arithmetic means ± SEM (n = 6). 
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4.1.3 Sympathetic nervous activity in gsk-3KI mice 

 

Recently, it has been reported that sympathetic activation is a trigger of FGF23 release 

(147). Epinephrine and norepinephrine are the neurotransmitters of sympathetic 

nervous system (202). Vanillylmandelic acid (VMA) is an end-stage metabolite of the 

catecholamines, epinephrine and norepinephrine. Therefore, urinary VMA is a 

biomarker of sympathetic activation. To this end, I determined urinary epinephrine and 

VMA excretion by ELISA. In keeping with a previous report (172), I found significantly 

higher urinary epinephrine and VMA excretion in gsk-3KI mice compared to gsk-3WT 

mice (Fig. 10), which indicating increased activity of the sympathetic nervous system in 

gsk-3KI mice. 

 

Fig. 10: Enhanced urinary excretion of epinephrine and vanillylmandelic acid (VMA) in gsk-3
KI 

mice 

compared to gsk-3
WT 

mice. 

Arithmetic means ± SEM (n = 7) of the urinary 24 h-epinephrine (A) and 24 h-VMA (B) excretion of gsk-3
WT

 

mice (white bar) and gsk-3
KI

 mice (black bar). * p<0.05, ** p<0.01.  
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4.1.4 High blood pressure in gsk-3KI mice  

 

In the next series of experiments, systolic blood pressure was measured in gsk-3kI mice 

and gsk-3WT mice by tail-cuff method. As a consequence of higher sympathetic nerve 

activation, blood pressure was significantly higher in gsk-3kI mice compared to gsk-3WT 

mice. β-blocker propranolol treatment significantly reduced blood pressure of gsk-3KI 

mice to the level of gsk-3WT mice (Fig. 11). 

 

Fig. 11: β-blocker propranolol lowers systolic blood pressure in gsk-3
KI 

mice. 

Arithmetic means ± SEM of systolic blood pressure (n=12) in gsk-3
WT

 mice (white bars) and gsk-3
KI

 mice 

(black bars) determined before (left bars) and after one week of treatment with β-blocker propranolol (500 

mg/L) (right bars). *** (p<0.001) indicate significant difference between the genotypes, ### (p<0.001) 

indicates significant difference from the absence of propranolol treatment. 
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4.1.5 Glomerular filtration rate (GFR) 

 

As blood pressure may influence glomerular filtration rate of kidney (GFR), I measured 

creatinine clearance to determine GFR. Before propranolol treatment GFR was 

significantly higher in gsk-3KI mice than in gsk-3wt mice. Propranolol reduced GFR 

between the genotypes, a difference not reaching statistical significance (Fig. 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Effects of β-blocker propranolol on GFR in gsk-3
KI 

mice. 

Arithmetic means ± SEM of GFR (n=19) in gsk-3
WT

 mice (white bars) and gsk-3
KI

 mice (black bars) 

determined before (left bars) and after one week of treatment with β-blocker propranolol (500 mg/L) (right 

bars). * (p<0.05) indicates significant difference between the genotypes. 
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4.1.6 β-blocker propranolol normalized enhanced production of FGF23 in gsk-3kI 

mice 

Next, I investigated whether sympathetic activation is responsible for increased FGF23 

production and leads to phosphaturia in gsk-3KI mice. To verify this, gsk-3KI mice and 

gsk-3WT mice were treated with β-blocker propranolol for one week at dose of 500 mg/L 

in drinking water. The serum C-terminal FGF23 concentration was significantly higher in 

gsk-3KI mice compared to gsk-3WT mice before propranolol treatment (Fig. 13). Elevated 

serum C-terminal FGF23 in gsk-3KI mice was reduced significantly by β-blocker 

propranolol treatment (500 mg/L) and abrogated the difference in serum FGF23 

between the genotypes (Fig. 13). Serum intact FGF23 was also significantly higher in 

gsk-3KI mice than in gsk-3WT mice. Propranolol treatment also reduced intact FGF23 in 

lesser extent and mimics the difference between the genotypes (Fig. 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: β-blocker propranolol reduces the serum C-term FGF23 level in gsk-3
KI 

mice. 

 Arithmetic means ± SEM of the serum C-terminal FGF23 (n=20) concentration in gsk-3
WT

 mice (white bars) 

and gsk-3
KI

 mice (black bars) measured before (left bars) and after one week of treatment with β-blocker 

propranolol (500 mg/L) (right bars). *** (p<0.001) indicate significant difference between the genotypes, ## 

(p<0.01) indicates significant difference from the absence of propranolol treatment. 
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Fig. 14: Effects of β-blocker propranolol on the serum intact FGF23 level in gsk-3
KI 

mice 

Arithmetic means ± SEM of the serum intact FGF23 (n=12) concentration in gsk-3
WT

 mice (white bars) and 

gsk-3
KI

 mice (black bars) measured before (left bars) and after one week of treatment with β-blocker 

propranolol (500 mg/L) (right bars). * (p<0.05) indicates significant difference between the genotypes. 
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4.1.7 The effect of propranolol on Fgf23 gene transcription in UMR 106 

cells 

These data suggests that sympathetic nervous activation is responsible for elevated 

FGF23 levels in gsk-3KI mice. In a recent study, Kawai M et al, have shown that β-

receptor agonist isoproterenol up-regulates Fgf23 gene transcription in UMR 106 cells 

(147). Thus, to define the molecular mechanism, UMR 106 osteoblast-like cells were 

treated with β-blocker propranolol overnight (14 h) to determine whether propranolol 

affects Fgf23 gene transcription by qRT-PCR. Overnight incubation with 150 µM 

propranolol significantly down regulated Fgf23 mRNA transcription compared to control 

cells (Fig. 15). Thus, propranolol inhibits FGF23 formation both in vivo and in vitro. 

 

Fig. 15: β-blocker propranolol down-regulates Fgf23 transcription in UMR 106 cells. 

 Arithmetic means ± SEM of Fgf23 mRNA expression in UMR 106 cells treated with or without 150 µM 

propranolol for 16 h in the presence of 1,25(OH)2D3 (n=15) Ctr. (white bars) and Propranolol (black bars). * 

(p<0.05) indicates significant difference from the absence of propranolol treatment. 
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4.1.8 Reduced 1,25(OH)2D3 in gsk-3KI mice 

 

FGF23 down-regulates renal 1α hydroxylase (Cyp27b1), key enzyme responsible for 

active vitamin D (1,25(OH)2D3) synthesis and up-regulates 25-hydroxyvitamin D 24-

hydroxylase (Cyp24a1) thus reducing the formation and enhancing the inactivation of 

1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Therefore, the serum 1,25(OH)2D3 

concentration was measured by ELISA. As expected, elevated serum levels of FGF23 

was paralleled by low serum levels of 1,25(OH)2D3 in gsk-3KI mice before propranolol 

treatment. However, propranolol treatment did not change the serum 1,25(OH)2D3 

concentration (Fig. 16). 

 

Fig. 16: Effects of β-blocker propranolol on the serum calcitriol level in gsk-3
KI 

mice. 

Arithmetic means ± SEM of 1,25(OH)2D3 (n=11-12) concentration in gsk-3
WT

 mice (white bars) and gsk-3
KI

 

mice (black bars) measured before (left bars) and after one week of treatment with β-blocker propranolol 

(500 mg/L) (right bars). * (p<0.05) indicates significant difference between the genotypes. 
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4.1.9 Hypophosphatemia and phosphaturia in gsk-3KI mice 

 

High serum FGF23 inhibits tubular phosphate and increases renal phosphate wasting 

(phosphaturia). Therefore, I measured serum phosphate and renal phosphate excretion 

before and after treatment with propranolol. Consistent with previous reports (168), we 

found serum phosphate was significantly lower in gsk-3KI mice compared to gsk-3WT 

mice before treatment with propranolol (Fig. 17A). In spite of low serum phosphate 

(Hypophosphatemia), gsk-3KI mice had significantly higher renal phosphate excretion 

than gsk-3WT mice before propranolol treatment (Fig. 17B). I treated gsk-3KI mice and 

gsk-3WT mice with propranolol for one week in drinking water (500 mg/L). Propranolol 

treatment significantly alleviated hypophosphatemia of gsk-3KI mice (Fig. 17A) and at 

the same time reduced renal phosphate excretion (Fig. 17B). Interestingly, treatment 

with β-blocker propranolol significantly increased the serum phosphate level and 

decreased renal phosphate excretion in gsk-3WT mice (Fig 17). 

 

Fig. 17: β-blocker propranolol decreases the renal phosphate wasting of gsk-3
KI 

mice. 

Arithmetic means ± SEM of the serum phosphate concentration (A; n=19) and renal phosphate excretion (B; 

n=19) in gsk-3
WT

 mice (white bars) and gsk-3
KI

 mice (black bars) measured before (left bars) and after one 

week of treatment with β-blocker propranolol (500 mg/L) (right bars). *,** (p<0.05, p<0.01) indicate significant 

difference between the genotypes, #,### (p<0.05, p<0.001) indicate significant difference from the absence 

of propranolol treatment. 
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4.2.1 Hypoparathyroidism in gsk-3KI mice 

 

PTH inhibits renal tubular phosphate reabsorption in the kidney. Therefore, 

phosphaturia could be caused by suppressing renal phosphate reabsorption by PTH. 

PTH also regulates calcium and vitamin D. Therefore, I measured plasma PTH levels in 

gsk-3KI mice and gsk-3WT mice by ELISA before and after treatment with propranolol 

(500 mg/L). In the line with a previous report (168), I found low plasma PTH levels in 

gsk-3KI mice compared to gsk-3WT mice. However, propranolol treatment did not affect 

plasma PTH concentration (Fig. 18). 

Fig. 18: Effects of β-blocker propranolol on the plasma PTH level in gsk-3
KI 

mice. 

Arithmetic means ± SEM of PTH (n=11-12) concentration in gsk-3
WT

 mice (white bars) and gsk-3
KI

 mice 

(black bars) measured before (left bars) and after one week of treatment with β-blocker propranolol (500 

mg/L) (right bars). * (p<0.05) indicates significant difference between the genotypes 
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4.2.2 Calciuria in gsk-3KI mice 

 

Gsk-3KI mice have been reported to suffer from calciuria (168). In the next series of 

experiments, I explored whether propranolol influences serum calcium and renal 

calcium wasting in gsk-3KI mice and gsk-3WT mice. Prior to propranolol treatment I did 

not find any difference between gsk-3KI mice and gsk-3WT mice in serum calcium 

concentration (Fig. 19A). However, renal calcium excretion was higher in gsk-3KI mice 

compared to gsk-3WT mice (Fig. 19B). Propranolol treatment had no effects on serum 

calcium concentration in both genotypes. But propranolol significantly reduced renal 

calcium excretion (calciuria) in gsk-3KI mice (Fig. 19B). At the same time, renal calcium 

excretion moderately enhanced in gsk-3WT mice by the treatment with propranolol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19: β-blocker propranolol decreases the renal calcium excretion of gsk-3
KI 

mice. 

Arithmetic means ± SEM of the serum calcium concentration (A; n=16-17) and renal calcium excretion (B; 

n=19) in gsk-3
WT

 mice (white bars) and gsk-3
KI

 mice (black bars) measured before (left bars) and after one 

week of treatment with β-blocker propranolol (500 mg/L) (right bars). *(p<0.05) indicates significant 

difference between the genotypes, # (p<0.05) indicates significant difference from the absence of propranolol 

treatment. 
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Part 2 Results 

 

4.3 The effect of 1,25(OH)2D3 on actin cytoskeleton reorganization in UMR 106 

cells 

 

This study addressed the role of the organization of the actin cytoskeleton in Fgf23 

transcription in UMR 106 osteoblast-like cells. 1,25(OH)2D3 is a well known stimulator of 

FGF23 formation. In the first series of experiments, UMR 106 cells were incubated with 

1,25(OH)2D3 (100 nM) and analyzed the changes in the actin cytoskeleton by Western 

blotting and confocal imaging. Fig. 20A and 20B illustrate that treatment with 

1,25(OH)2D3 resulted in a polymerization of the actin cytoskeleton in UMR 106 cells as 

indicated by a decrease of the G-actin over F-actin ratio. This effect was evident upon 

15 min treatment (Fig. 20A) and persisted for at least 24 h (Fig. 20B), indicating an early 

but persistent effect of 1,25(OH)2D3  on actin reorganization. 
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Fig. 20: 1,25(OH)2D3 induces polymerization of the actin cytoskeleton in UMR 106 cells. 

A: Original Western blot demonstrating G-actin and F-actin abundance in UMR 106 cells left untreated 

(Ctr.) or treated for 15 or 30 min with 1,25(OH)2D3 (100 nM). Lower panel: Arithmetic means ± SEM (n=6) 

of the ratio of filamentous (F) over soluble (G) actin in UMR 106 cells. 

B: Original Western blot demonstrating G-actin and F-actin abundance in UMR 106 cells left untreated 

(Ctr.) or treated for 24 h with 1,25(OH)2D3 (100 nM). Lower panel: Arithmetic means ± SEM (n=15) of the 

ratio of filamentous (F) over soluble (G) actin in UMR 106 cells. *p ˂ 0.05. 
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Confocal microscopy imaging also fully supported these findings and demonstrated a 

profound effect of 1,25(OH)2D3 on actin cytoskeleton reorganization with the formation 

of stress fibers (Fig. 21). 

Fig. 21: Confocal microscopy image illustrating 1,25(OH)2D3-induced actin stress fiber 

formation in UMR 106 cells. 

Confocal microscopy images demonstrating actin staining (upper images), nucleus staining (middle 

images) or the merged staining (lower images) in UMR 106 cells left untreated or treated with 

1,25(OH)2D3 (100 nM) for 15 min, 30 min, or 24 h (n=3). 
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4.4 1,25(OH)2D3-induced actin polymerization is abolished by NF-κB inhibitor 

wogonin 

Recently, it has been demontrated that proinflamatory cytokines are involved in the 

release and expression of Fgf23 which is transcription factor NF-κB dependent (203). 

On the other hand, NF-κB signaling has been shown to be involved in TNFα (204) and 

steroid hormones (205)-induced actin reorganization in various cell models. Therefore, 

in order to test whether inhibition of FGF23 expression by NF-κB inhibition also affects 

actin cytoskeleton I analyzed Western blot. As illustrated in (Fig. 22) NF-κB inhibitor 

wogonin (100 µM) totally blocked 1,25(OH)2D3-induced polymerization of actin 

cytoskeleton. 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

Fig. 22: 1 NF-κB inhibitor wogonin blocked 1,25(OH)2D3-induced actin polymerization in UMR 106 

cells 

Original Western blot showing G-actin and F-actin abundance in UMR 106 cells left untreated (Ctr.) or 

treated for 15 min with 1,25(OH)2D3 (100 nM) in the presence or absence of NF-κB inhibitor wogonin (100 

µM).  Arithmetic means ± SEM (n=6) of the ratio of filamentous (F) over soluble (G) actin in UMR 106 

cells (lower panel). ** p<0.01, ## indicates significant difference from 1,25(OH)2D3 alone (p<0.01). 
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4.5 The effect of cytochalasin B on Fgf23 mRNA expression 

 

Cytochalasin B is a mycotoxin which block actin polymerization. Therefore, the effect of 

cytochalasin B on the mRNA expression of Fgf23 was analyzed by qRT-PCR. As shown 

in (Fig. 23), 1,25(OH)2D3-induced up-regulation of Fgf23 gene transcription largely 

inhibited when cells were incubated with cytochalasin B (100 nM) for 6 h that block actin 

reorganization. 

 

Fig. 23: 1,25(OH)2D3-induced Fgf23  transcription is inhibited by actin-disrupting agent 

cytochalasin B.  

Arithmetic means ± SEM (n = 6) of Fgf23 mRNA expression in UMR 106 cells following a 6 h treatment 

with vehicle alone or with 1,25(OH)2D3 (100 nM) without or with cytochalasin B (100 nM). ** p<0.01, # 

indicates significant difference from 1,25(OH)2D3 alone (p<0.05). 
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4.6 Rac1 and PAK1 inhibitor blocked 1,25(OH)2D3-induced Fgf23 mRNA 

expression 

 

This result reveals the role of actin cytoskeleton in FGF23 transcription regulation. Rac1 

regulates actin cytoskeleton restructuring (206). To elucidate underlying mechanism I 

treated UMR 106 cells with a Rac1 inhibitor NSC 23766 (50 µM) that blocks actin 

polymerization and Fgf23 transcript levels were determined. As illustrated in Fig. 24A, 

1,25(OH)2D3 stimulated up-regulation of Fgf23 gene transcription significantly 

decreased by Rac1 inhibitor. Rac1 has been known to activate downstream PAK1, 

which in turn regulate actin cytoskeleton reorganization. As shown in Fig. 24B, PAK 

inhibitor IPA3 (10 µM) treatment was followed by a significant decrease of Fgf23 

transcription to control levels, further implies that Rac1 controlled actin reorganization is 

directly involved in 1,25(OH)2D3-induced modulation of Fgf23 gene transcription.  
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Fig. 24: 1,25(OH)2D3-induced Fgf23 transcription is inhibited by Rac1 and PAK1 inhibitors. 

A: Arithmetic means ± SEM (n=7) of Fgf23 mRNA abundance in UMR 106 cells following a 6 h treatment 

with vehicle alone or with 1,25(OH)2D3 (100 nM) without or with Rac1 inhibitor NSC 23766 (50 µM). 

B: Arithmetic means ± SEM (n=6) of Fgf23 mRNA abundance in UMR 106 cells following a 6 h treatment 

with vehicle alone or with 1,25(OH)2D3 (100 nM) without or with PAK1 inhibitor IPA3 (10 µM). 

*, *** p<0.05, p<0.001 #, ### indicate significant difference from 1,25(OH)2D3 alone (p<0.05, p<0.001). 
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Rac1 inhibitor blocked 1,25(OH)2D3-induced actin polymerization (Fig. 25), suggesting 

that actin restructuring via polymerization upon 1,25(OH)2D3 treatment could control 

Fgf23 gene transcription in UMR 106 cells. On the other hand, the effect of IPA3 was 

moderate and did not reach to the statistical significance (Fig. 25 ). 

 

Fig. 25: 1,25(OH)2D3-induced actin polymerization is blocked by Rac1and PAK1 inhibitors 

Original Western blot illustrating G-actin and F-actin abundance in UMR 106 cells left untreated (Ctr.) or 

treated for 15 min with 1,25(OH)2D3 (100 nM) without or with PAK1 inhibitor IPA3 (10 µM) or with Rac1 

inhibitor NSC 23766 (50 µM). Lower panel: Arithmetic means ± SEM (n=5) of the ratio of filamentous (F) 

over soluble (G) actin in UMR 106 cells. * p<0.05 # indicates significant difference from 1,25(OH)2D3 

alone (p<0.05). 
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5. Discussion 

 

The present observations reveal that protein kinase B (PKB/Akt)-sensitive GSK3 is critical 

for the formation of FGF23 by regulating the activity of the sympathetic nervous system 

and further demonstrated that the role of actin cytoskeleton on the formation of FGF23 

in the UMR 106 osteoblastic cells. 

 

In this study, I analyzed gsk-3KI mice and compared with corresponding wild type mice. 

GSK3 is a downstream signaling molecule of PI3K signaling pathway. It is serine-

threonine kinase which is phosphorylated and thus, inactivated by insulin through 

PKB/Akt/SGK signaling. Gsk-3KI mice carrying a GSK3α/β mutation that makes the kinase 

insensitive to the inhibitory effect of PKB/Akt (gsk-3KI mice), as a result, it is not 

phosphorylated by either PKB/Akt or SGK1. Though inactivation of GSK3 is mediated by 

the action of insulin through PI3K/PKB/Akt-dependent mechanism, gsk-3KI mice are 

viable and do not suffer from insulin resistance and insulin action on muscle glycogen 

synthase is abolished in gsk-3KI mice (167). However, gsk-3KI mice have previously 

been reported to suffer from phosphaturia, calciuria and lower bone density (168). 

These effects were in part due to a direct inhibitory effect of GSK3 on the main 

phosphate transporter of the kidney, NaPiIIa and reduced activity of phosphate 

transporter in gsk-3KI mice (168). These results further provide evidence that the renal 

phosphate wasting of gsk-3KI mice may be in addition because of the elevated serum 

FGF23 level in these mice, as FGF23 is a phosphatonin and it inhibits renal phosphate 

reabsorption by reducing phosphate transporter (NaPi2a) and causes phosphaturia.  

 

FGF23 ELISA was employed to measure either C-terminal FGF23 or only intact FGF23. 

Intact FGF23 is the biologically active form of FGF23. The C-terminal FGF23 is a 

inactive form and results from furin-dependent degradation of intact FGF23 (207). In this 

study, both the C-terminal and intact FGF23 concentrations were measured by using 

ELISA kits. I found that both C-terminal and intact FGF23 is elevated in gsk-3KI mice as 

compared to gsk-3WT mice. 
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FGF23 binds to its receptor (FGFR) to exert its renal function. It requires α-klotho as a 

co-receptor. Klotho deficiency is associated with elevated serum FGF23 level (201). It 

suggests that klotho can act as a regulator of FGF23. Therefore, I determined renal 

klotho expression. However, I did not find any difference between the genotype. Thus, 

pointing that klotho is not relevant for enhanced serum FGF23 in gsk-3KI mice. 

The neurotransmitter epinephrine and norepinephrine are biomarkers for sympathetic 

nerve activity. Gsk-3KI mice exhibit higher sympathetic nerve activation than in gsk-3WT 

mice. Consequently, the gsk-3KI mice suffer from high blood pressure and they have 

higher heart rate as well than gsk-3WT mice (172). In this study, I could confirm 

enhanced sympathetic activation of gsk-3KI mice compared to gsk-3WT by detecting 

urinary epinephrine and VMA as a measure of sympathetic nervous activation. I found 

significantly higher 24 h urinary excretion of epinephrine and VMA in gsk-3KI mice than 

in gsk-3KI mice. VMA is the main metabolite of epinephrine and norepinephrine. Since, it 

has recently been shown that sympathetic activation to induce FGF23 release; I aimed 

to define the role of the higher sympathetic activity for enhanced production of FGF23 in 

gsk-3KI mice. Therefore, I treated gsk-3KI mice and gsk-3WT mice with the widely used β-

blocker propranolol in drinking water for one week (500 mg/L) and analyzed the 

consequence for serum FGF23 and phosphate metabolism. One week treatment with 

propranolol markedly reduced serum FGF23 level of gsk-3KI mice to the level of gsk-3WT 

mice. Therefore, enhanced sympathetic activation accounted for the excess FGF23 

formation of gsk-3KI mice. Treatment with β-blocker propranolol reduced blood pressure 

in gsk-3KI mice and abrogated the difference between the genotypes, suggesting that 

hypertension of gsk-3KI mice was because of enhanced sympathetic nervous activity, 

since propranolol treatment significantly reduced blood pressure.  Similarly, β-blocker 

propranolol treatment inhibits fgf23 mRNA expression in UMR 106 osteoblast-like cells. 

As a consequence of reduced serum FGF23 level by propranolol treatment, both the 

hypophosphatemia and phosphaturia of gsk-3KI mice were ameliorated by β-blocker 

treatment. The data presented here provide strong evidence that the renal phosphate 

wasting of gsk-3KI mice was, at least in part, the direct effect of elevated serum FGF23 

concentration. FGF23 and PTH are the main regulators of 1,25(OH)2D3. Treatment with 

propranolol did not affect the low serum 1,25(OH)2D3 level in gsk-3KI mice despite its 
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profound effect on FGF23. However, the other main regulator of 1,25(OH)2D3 is PTH 

which stimulates 1,25(OH)2D3 formation, was also low in gsk-3KI mice compared to gsk-

3WT mice and not significantly affected by propranolol, an effect likely to contribute to 

their low serum 1,25(OH)2D3 concentration. Apart from this, GSK3 signaling may 

influence directly on vitamin D metabolism or VDR signalling. Recently, it has been 

published that mice treated with GSK3 inhibitor lithium chloride increased serum FGF23 

concentration and decreased serum 1,25(OH)2D3 concentration (208). To rule out the 

direct effects of GSK3 on vitamin D metabolism further research is needed. 

 

In keeping with previous reports, I found that glomerular filtration rate (GFR) was 

significantly higher in gsk-3KI mice compared to gsk-3WT mice (171). β-blocker 

propranolol reduced blood pressure of gsk-3KI mice. Blood pressure lowering effect of 

propranolol may affect glomerular filtration rate (GFR). Therefore, I measured GFR after 

treatment with propranolol. The effect of β-blocker to lower blood pressure was 

associated with decline GFR in gsk-3KI mice too. This results indicating that mild 

reduction of phosphaturia and calciuria in gsk-3KI mice following propranolol treatment 

was, at least in part, also because of decline of GFR. 

 

β-blockers such as propranolol are a widely prescribed class of drugs all over the world. 

It is used for the treatment of hypertension, heart failure and atrial fibrillation (209-211). 

It is tempting to speculate that the FGF23-lowering effect of β-blockers observed in gsk-

3KI mice may have an implication for millions of patients treated with β-blockers. These 

drugs clearly reduce the cardiovascular mortality of high-risk patients. Interestingly, a 

high FGF23 level also positively correlates with cardiovascular mortality (103, 104, 107). 

Therefore, it appears possible that the benefit of β-blocker therapy is at least in part also 

related to its ability to lower the blood FGF23 concentration. Clearly, further studies are 

needed to test this hypothesis. 
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Fig. 26: GSK3-controlled sympathetic activity in FGF23 production: Insulin phosphorylates and 

inhibits GSK3. In gsk-3
KI

 mice serine residue was replaced by alanine. Thus, GSK3α/β
21A/21A/9A/9A 

renders 

the kinase insensitive to the inhibitory effects of insulin. Gsk-3
KI

 mice have higher sympathetic nervous 

activity and elevated FGF23 levels which leads to phosphaturia. β-blocker propranolol normalized 

elevated FGF23 and reduced phosphaturia. 

   

In second part of the study I investigated the role of reorganization of actin cytoskeleton 

in the regulation of FGF23 formation in UMR 106 osteoblast-like cells. The present 

observations reveal an impact of reorganization of actin cytoskeleton is required for the 

production of FGF23 as actin microfilament disrupting agent cytochalasin B blocked 

transcription of the Fgf23 gene. Here, this study demonstrated that stimulation of FGF23 

formation with 1,25(OH)2D3 resulted in actin polymerization. Furthermore, the effect of 

1,25(OH)2D3 on the reorganization of actin was blocked by NF-κB inhibitor wogonin (100 
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µM) that suppressed Fgf23 mRNA expression. During early and / or late actin 

reorganization, actin polymerization is induced by various signals including hormones 

(212), growth factors and cytokines (213, 214) and ions (215). 1,25(OH)2D3 is a known 

trigger for Fgf23 expression. FGF23 is also stimulated by NF-κB signalling (203, 216). It 

has been shown previously that both 1,25(OH)2D3  and NF-κB (217) plays a vital role in 

actin reorganization. 1,25(OH)2D3  is implicated in osteoblast maturation, matrix 

calcification and overall bone metabolism (218). These results provide novel mechanistic 

evidence for 1,25(OH)2D3-induced regulation of Fgf23 gene transcription by revealing the 

involvement of the actin specific Rac1 and PAK1 signaling. As NF-κB has an implication 

on actin polymerization, in a series of experiments, I used NF-κB inhibitor wogonin and 

observed, 1,25(OH)2D3-induced actin polymerization was totally blocked. On the other 

hand, 1,25(OH)2D3-induced up-regulation of Fgf23 was also abolished by actin 

depolymerising agent cytochalasin B. Hence, 1,25(OH)2D3-stimulated Fgf23 expression is 

at least in part regulated by actin cytoskeleton reorganization. Rac1/PAK1 is a key 

regulatory molecule in the actin signalling pathway in various cell models (212, 219, 220). 

In this study, I used Rac1 and PAK1 specific inhibitor NCS 23766 (50 µM) and IPA3 (10 

µM) respectively, to block actin cytoskeleton and questioned whether it affects gene 

transcription of Fgf23. Indeed, blocking of Rac1 and PAK1 activities lead to the 

suppression of Fgf23 mRNA transcription in UMR 106 cells. This study demonstrated that 

1,25(OH)2D3-induced actin cytoskeleton reorganization regulates Fgf23 gene expression 

by Rac1/PAK1 signaling. 

Early or late actin cytoskeleton reorganization, following modification of actin 

polymerization is initiated by various signals and regulated by distinct signalling pathway 

which has been implicated in the control of gene transcription (221, 222). It has been 

shown that early actin polymerization by various signals may release transcription factor 

such as myocardin-related transcription factor (MRTF) (221, 223, 224), which may in turn 

regulate transcription of various genes (221). Likewise, early actin restructuring, following 

modification of actin polymerization regulates activation of RhoB-gene (225) as well as 

alpha smooth muscle actin (alpha SMA) gene (226) and guanine nucleotide exchanger 

factors (GEF’s) including Net1/Net1A (227). These studies suggested that early actin 

restructuring may regulate transcription of genes encoding specific regulatory effectors 
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(221, 223) and may link early modification of actin cytoskeleton to late cell responses 

controlled by gene activation (221). These results further support this hypothesis. Indeed, 

actin polymerization induced by 1,25(OH)2D3 in UMR 106 osteoblast-like cells seems to 

regulate 1,25(OH)2D3-induced Fgf23 gene expression, as inhibition of actin polymerization 

either by actin microfilament disrupting agent cytochalasin B or by inhibition of specific 

actin signalling molecules (Rac1/PAK1) that govern actin cytoskeleton dynamics, blunted 

1,25(OH)2D3-induced up-regulation of Fgf23 mRNA expression. 

 

Rac1 is a member of small GTPase Rho family. This is a major signalling molecule of actin 

cytoskeleton signalling pathway which act to the downstream of PI3K/FAK1 signaling 

pathway (228). Rac1 may itself stimulate actin polymerization, or it may associate with 

PAK1 that in turn is implicated in actin restructuring (200, 229). These results provide 

strong evidence that Rac1/and PAK1 are mainly involved in both, actin reorganization and 

Fgf23 gene transcription, which support previous studies describing an important role of 

Rac1 in osteoblastic cells (230). In fact, this study cannot exclude the involvement of other 

small Rho-GTPase signaling, may be these signaling involve as well. These findings 

strongly indicate that the Rac1/PAK1-stimulated actin redistribution is required for the 

1,25(OH)2D3-induced production of Fgf23 in UMR 106 osteoblast-like cells. Apart from 

this, as suppression of Fgf23 production by inhibiting NF-κB signaling with wogonin 

resulted in a blockade of actin network reorganization, these findings further support 

previous studies establishing the involvement of NF-κB signaling in actin cytoskeleton 

rearrangements (204, 205, 231). 

 

Rac1/PAK1 signaling may turn out to be a potent regulator of renal phosphate and vitamin 

D metabolism by controlling FGF23 formation through reorganization of actin cytoskeleton. 

Further studies are needed to define its exact role. 
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Fig. 27: Fgf23 gene regulation by actin cytoskeleton reorganization: 1,25(OH)2D3 stimulates Fgf23 

gene transcription in UMR 106 cells. 1,25(OH)2D3-induced Fgf23 expression is inhibited by Rac1 inhibitor 

NSC 23766 and cytochalasin B. Rac1 inhibitor NSC 23766 and PAK inhibitor IPA3 also blocked 

1,25(OH)2D3-induced actin polymerization. Black arrows indicate stimulation and red arrows indicate 

inhibition. 
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6. Conclusion 

 

The present observations reveal that PKB/Akt-resistant GSK3 signaling controls 

sympathetic nervous activity which is an important regulator of FGF23 production and 

phosphate metabolism. Hence, gsk-3KI mice exhibit a high serum FGF23 level, 

phosphaturia, and hypophosphatemia, normalized by β-blocker propranolol.  

 

1,25(OH)2D3-induced Fgf23 gene transcription in UMR 106 cells requires reorganization of 

the actin network, govern by NF-κB and Rac1/PAK1 signaling. These observations reveal 

that actin cytoskeleton reorganization may be implicated in the control of gene 

transcription. 
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