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Abstract

The introduction of high-throughput sequencing technologies has opened unprecedented op-
portunities for research on the regulation of ribonucleic acid (RNA) processing, which is
central to cellular information processing. By enabling accurate and extensive measurements
of various properties of cellular RNAs, these techniques allow to systematically investigate
the transcriptome and its regulation on a genome-wide scale. The development of computa-
tional methods to analyse the resulting data, however, is still lagging behind the advances in
experimental data generation.

In this thesis, we present novel approaches to leverage the potential of high-throughput se-
quencing technologies for studying the regulation of RNA processing. More specifically, we
focused on the following three research problems:

First, we investigated how to best extract information from RNA-sequencing (RNA-Seq) data
and how to design RNA-Seq experiments in order to maximise their utility for answering the
investigated question. For this purpose, we derived a probabilistic model to estimate the
utility of RNA-Seq experiments as a function of the experimental parameters for typical
analyses such as the identification of transcripts and the detection of differential splicing.
Application of our models provided fundamental, experimentally supported insights into how
particular experimental parameters influence the amount of information gained from an RNA-
Seq experiment. Based on these insights, we suggest strategies for an improved experimental
design of transcriptome analysis experiments.

The second investigated aspect was the detection of differential RNA processing based on
high-throughput sequencing data. Here, we proposed novel statistical tests to detect changes
in RNA processing for two distinct settings: When the gene annotation is complete (which is
often the case for model organism) and for the case where the gene annotation is incomplete or
unknown (as it is the case for non-model organism or pathological phenotypes). We showed
that both on realistically simulated and on experimental data our newly developed tests
out-competed state-of-the-art methods. Furthermore, we showed how our methods could be
extended to detect differential RNA secondary structure and to associate changes in RNA
processing with genetic variation. Finally, we successfully applied our methods to investigate
the role of splicing in human cancer cells, to understand mechanisms of nonsense mediated
decay in A. thaliana and to reveal regulatory structural motives of translation in human.

The third investigated aspect was the characterisation of changes in RNA processing. We
showed that combining RNA-Seq data with information on genomic variation and transcrip-
tion factor binding preferences explained causes of gene expression variation. For this, we first
performed a comprehensive analysis of gene expression landscape in an A. thaliana population.
Furthermore, we showed that there is a significant enrichment of genetic variants associated
with gene expression in predicted transcription factor binding sites. Finally, we showed that
alterations of transcription factor binding sites are a major driver of gene expression variation.

Overall, we addressed different aspects of the detection and characterisation of RNA pro-
cessing. Using our new methods we have gained novel insights into the regulation of RNA
processing. However, the work has also shown that there are still several open questions,
which should be addressed in future studies.
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Zusammenfassung

Die Regulierung der Ribonukleinsäure (RNS)-Prozessierung ist von zentraler Bedeutung für
die zelluläre Informationsverarbeitung. Die Einführung von Technologien zur Hochdurch-
satzsequenzierung (HTS) hat zur weiteren Erforschung dieses Gebietes neue Chancen eröffnet.
Da diese Techniken umfangreiche und genaue Messungen verschiedener Eigenschaften der
zellulären RNSs erlauben, ermöglichen sie die genomweite systematische Untersuchung des
Transkriptoms und dessen Regulierung. Die Entwicklung von Methoden zur Analyse der re-
sultierenden Daten ist jedoch nicht so fortgeschritten wie die experimentellen Datenerzeugung.

In unserer Arbeit präsentieren wir neue Ansätze, um das Potenzial der HTS zur Untersuchung
der Regulation der RNS-Prozessierung auszuschöpfen. Hierbei konzentrierten wir uns auf die
folgenden drei Aspekte:

Zum ersten, wie Informationen aus den RNS-Sequenzierungs (RNS-Seq)-Daten extrahiert wer-
den können und wie RNS-Seq-Experimente konzipiert werden müssen, um einen maximalen
Nutzen zu generieren. Zu diesem Zweck haben wir, abhängig von den Parametern des jew-
eiligen Experiments, probabilistische Modelle hergeleitet, um die Nützlichkeit der RNS-Seq-
Experimente für gängige Analysen, wie beispielsweise die Identifizierung von Transkripten und
die Erkennung von differentiellem Spleissen, zu bestimmen. Die Anwendung unserer Modelle
ermöglicht es, grundsätztliche, durch experimentelle Daten bestätigte Einsichten zu erlangen,
wie die experimentellen Parameter den Informationsgewinn von RNS-Seq-Experimenten bee-
influssen. Auf diesen Erkenntnissen basierend, schlagen wir verbesserte Versuchspläne für
Experimente zur Transkriptomanalyse vor.

Der zweite Aspekt war die Erkennung von Änderungen in der RNS-Prozessierung mit Hilfe
von HTS-Daten. Hier präsentieren wir neuartige statistische Tests, um in zwei verschiede-
nen Anwendungsgebieten Änderungen in der RNS-Prozessierung zu detektieren: (a) für den
Fall der vollständigen Genannotation, was oft bei Modellorganismen zutrifft, aber auch (b)
für den Fall dass die Genannotation unvollständig oder unbekannt ist. Letzteres ist häufig
bei Nicht-Modellorganismen oder pathologische Phänotypen der Fall. In dieser Arbeit konn-
ten wir zeigen, dass unsere neu entwickelten Tests anderen modernen Methoden überlegen
waren, sowohl bei Anwendung auf realistisch simulierten als auch auf experimentellen Daten.
Darüber hinaus zeigten wir, wie unsere Methoden erweitert werden können, um Unterschiede
in RNS-Sekundärstrukturen zu erkennen und auch um differentielle RNS-Prozessierung mit
genetischer Variation zu assoziieren. Schliesslich konnten wir zeigen, wie unsere Methoden
angewandt werden können, um erstens die Rolle des Spleissens in menschlichen Krebszellen
zu untersuchen, zweitens die dem Nonsense Mediated Decay zugrunde liegenden Mechanis-
men zu verstehen und drittens regulatorische Strukturmotive der Translation im Menschen
zu entdecken.

Der letzte Aspekt war die Charakterisierung von Änderungen der RNS-Prozessierung. Wir
konnten zeigen, dass die gemeinsame Verwendung von RNS-Seq-Daten mit Informationen
zur genomischen Variation und Transkriptionsfaktor (TF)-Bindungspräferenzen ermöglicht,
den Mechanismus der Veränderung der Genexpression besser zu verstehen. Dazu haben
wir zunächst eine umfassende Analyse der Genexpression in einer A. thaliana Population
durchgeführt. Ausserdem haben wir demonstriert, dass eine signifikante Anreicherung von mit
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Zusammenfassung

Genexpression assoziierten genetischen Varianten in vorhergesagten TF-Bindestellen (TFBS)
vorhanden war. Zuletzt haben wir gezeigt, dass Veränderungen in den TFBS in Promotoren
eine bedeutende Ursache von Genexpressionsvariation waren.

Zusammenfassend haben wir unterschiedliche Aspekte der Detektion und Charakterisierung
von RNS-Prozessierung untersucht. Mit Hilfe unserer neu entwickelten Methoden haben wir
neue Einsichten in die Regulation von RNS-Prozessierung erhalten. Unsere Arbeit zeigte
jedoch, dass es immer noch viele offene Fragestellungen gibt, welche in zukünftigen Unter-
suchungen behandelt werden sollten.
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1. Introduction

All living cells integrate genetic and external information to respond to the environment. The
cellular information processing that performs this integration comprises numerous pathways,
in which ribonucleic acids (RNA) play a central role. While acting as a carrier of genetic
information these molecules also regulate a multitude of pathways. Thus understanding RNA
processing and its regulation is a key to answering many fundamental questions in molecular
biology such as how cellular information flow is orchestrated and to understand how the
information that is encoded in the genome mediates the various phenotypes of the cells.
However, despite advances in understanding RNA biology, many aspects of RNA processing
and its regulation remain unclear.

Before the introduction of high-throughput sequencing technologies, detection and quantifi-
cation of RNA molecules on a large scale has represented a major bottleneck in biomedical
research. This was particularly hindering for systematically studying RNA regulation as it
typically requires measuring RNA under various conditions to generate hypotheses on the
cause of changes of RNA abundances, thus needing a substantial number of measurements.
But also the identification and quantification of the cellular RNA molecules, which are a ma-
jor determinant of the cellular identity, was challenging, thus making it difficult to map the
transcriptome.

This bottleneck has vanished with the recent introduction of high-throughput sequencing
technologies, which have radically transformed the research on RNA biology. These new
technologies allow the simultaneous detection and quantification of many RNA molecules with
unprecedented accuracy thus allowing to systematically detect variation of RNA abundances,
thereby providing the means to detect and characterise the underlying causative variation
in RNA processing. Therefore, these new transcriptome analysis technologies have enabled
a shift from hypothesis-driven to data-driven research and thus provide new perspectives on
common regulatory mechanisms.

The data resulting from these methods is challenging for several reasons: Firstly, due to
the huge number of produced data humans cannot any more analyse the results without
the help of computational methods. For example, if the sequences resulting from a typical
RNA-sequencing (RNA-Seq) experiment would be printed out in a book format, the resulting
text would require over 1.25 × 106 pages (and would weigh over 5 tons). Secondly, the data
are typically complex and information extraction from them is non-trivial. Finally, the data
are generally noisy and thus, its stochastic component has to be taken into account when
performing inference.

These challenges in the analysis of high-throughput sequencing data have made bioinformatics
methods that can efficiently process the resulting data and that can account for its stochastic
nature indispensable for interpreting the data.

However, even though high-throughput sequencing of RNA is now feasible since several years,
the robust detection of many aspects of differential RNA processing variation and its char-
acterisation still remains an open problem. In this work, we will present new methods to
address this open problem in data analysis of RNA-Seq experiments, the most popular high-
throughput transcriptome analysis technique. In particular, we developed new methods and
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1. Introduction

approaches to detect and characterise changes in RNA processing upon various types of per-
turbations. These methods were tested on simulated data as well as in appropriate biological
model organisms (the fly Drosophila melanogaster and the plant Arabidopsis thaliana). Fur-
thermore, we applied them to A. thaliana and human to investigate regulatory mechanisms
of RNA processing.

Thesis Structure and Contributions

Chapter 2 establishes the scientific framework of this thesis. We begin by presenting an
overview on RNA processing. Next, we will discuss high-throughput sequencing methods and
how the data they produce can be processed with existing bioinformatics approaches. The
chapter will also introduce selected concepts from statistics and machine learning that will be
used throughout this thesis.

In Chapter 3 we will address the information extraction from stochastic RNA-Seq data in the
context of experimental design for RNA-Seq experiments. Here, we will analyse how different
parameter choices of RNA-Seq experiments influence two types of transcriptome analyses
that are commonly performed: The identification of expressed transcripts and the detection
of differential transcript expression between two RNA samples. For this, we first will establish
the extraction of relevant information from RNA-Seq data for these two tasks. Based on these
insights we will derive probabilistic models for the information gain of these tasks and then
we will apply these models in order to assess the influence of various parameter choices on the
information gain. Finally, we will show that the insights from the modelling are supported by
experimental evidence and we will derive general guidelines for RNA-Seq experiments. The
probabilistic model for the transcript identification as well as the analysis of the experimental
data is part of the following publication:

• L. M. Smith, L. Hartmann, P. Drewe, R. Bohnert, A. Kahles, C. Lanz, G. Rätsch,
Multiple insert size paired-end sequencing for deconvolution of complex transcriptomes,
RNA Biology, 9 (5), 596-609, 2012

The author’s contributions to this work are stated in the publication. The probabilistic model
and the results for the detection of differential transcript expression are unpublished work by
Philipp Drewe and Gunnar Rätsch.

In Chapter 4, we will develop novel methods to detect changes in post-transcriptional RNA
processing of genes from RNA-Seq data and will discuss the application of these methods to
reveal modes of RNA processing regulation. Commonly, detecting differential RNA processing
for a gene between two conditions requires first quantifying the transcript abundances, which
represent a snapshot of the different products of the processing. Then a statistical test is
applied to detect whether these transcript abundances are significantly different between the
two conditions. The estimation of transcript abundances, however, is complex and inherently
unstable and thus subsequent testing for differences in the estimates is problematic. This
motivates the development of statistical tests that do not require prior quantification. Here,
we will propose a series of robust statistical tests (rDiff) to address this need.

In the first part of the chapter, we will derive a parametric test (rDiff.poisson) that uses the
gene annotation to test for differential regulation of transcripts. Next, we will show how the
nonparametric Maximum Mean Discrepancy (MMD) test can be applied to detect changes
when a gene annotation is not reliable or available. The elaboration of these two statistical
tests was a joint work of Oliver Stegle, Philipp Drewe, Regina Bohnert, Karsten Borgwardt
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and Gunnar Rätsch, which was published in:

• O. Stegle∗, P. Drewe∗, R. Bohnert, K. Borgwardt, G. Rätsch,
Statistical tests for detecting differential RNA-transcript expression from read counts,
Nature Precedings, http://dx.doi.org/10.1038/npre.2010.4437.1, 2010

Next, we will show how rDiff.poisson and the MMD-test can be extended to account for
biological variation while testing (rDiff.parametric and rDiff.mmd, respectively) and thus
provide more reliable detection of differential RNA processing. Besides these extensions,
we will present an approach to increase the sensitivity for detecting changes in alternative
splicing of the nonparametric testing strategies (rDiff.nonparametric). This work and the
author’s contributions to it were published in:

• P. Drewe, O. Stegle, L. Hartmann, A. Kahles, R. Bohnert, A. Wachter, K. Borgwardt,
G. Rätsch,
Accurate detection of differential RNA processing,
Nucleic Acids Research, 41 (10), 5189-5198, 2013

Beside the published contributions, we will also present unpublished alternative embeddings
for the nonparametric tests, which was a joint work by Philipp Drewe and Gunnar Rätsch. In
this chapter, we will furthermore derive a statistical test to detect changes in RNA secondary
structure (sDiff), which is work of Philipp Drewe and we will present a reformulation of
rDiff.mmd to allow association of RNA processing with genetic variation (rDiff.gmmd). The
latter contribution was joint yet unpublished work by Philipp Drewe, Heiko Strathmann, Dino
Sejdinovic and Gunnar Rätsch.

In the second part of Chapter 4, we will first assess the performance of our methods on
realistic simulations as well as on experimental data. Furthermore, we will show how these
methods can be applied to detect differential splicing in cancer, differential translation as well
as to study regulation of nonsense mediated decay. The work on differential splicing in cancer
was unpublished work by Philipp Drewe, Ahmet Zehir and Gunnar Rätsch. The other two
applications have been published in:

• A. Wolfe∗, K. Singh∗, Y. Zhong, P. Drewe, V. Rajasekhar, V. Sanghvi, K. Mavrakis,
J. Roderick, J. Van der Meulen, J. Schatz, C. Rodrigo, M. Jiang, C. Zhao, P. Rondou,
E. de Stanchina, J. Teruya-Feldstein, M. Kelliher, F. Speleman, J Porco, J. Pelletier,
G. Rätsch, G. Wendel,
RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer,
Nature, 513 (7516), 65-70, 2014

• G. Drechsel∗, A. Kahles∗, A. Kesarwani, E. Stauffer, J. Behr, P. Drewe, G. Rätsch, A.
Wachter,
Nonsense-mediated decay of alternative precursor mRNA splicing variants is a major
determinant of the Arabidopsis steady state transcriptome,
The Plant Cell, 25 (10), 3726-3742, 2013

The author’s contributions to these works were listed in the respective publications.

Finally, to provide easy access to selected methods of rDiff, we have created a Galaxy module
and integrated rDiff into the Oqtans online transcriptome analysis toolbox. This work was
published in:

• V. T. Sreedharan, S. J. Schultheiss, G. Jean, A. Kahles, R. Bohnert, P. Drewe, P.
Mudrakarta, N. Görnitz, G. Zeller, G. Rätsch,
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1. Introduction

Oqtans: The RNA-seq Workbench in the Cloud for Complete and Reproducible Quan-
titative Transcriptome Analysis,
Bioinformatics, 30 (9), 1300-1301, 2014

In Chapter 5, we will exemplify the characterisation of changes in RNA processing for gene
expression in an A. thaliana population. To lay the foundation for a comparison of the gene
expression between different A. thaliana strains, we will first establish how gene expression can
be reliably estimated in presence of genetic variation, i.e. when the sequences and structures
of genes can be different between strains. We will then quantify gene expression and perform
an analysis of the expression patterns in the population. This part of the chapter and the
author’s contribution to it were published in:

• X. Gan∗, O. Stegle∗, J. Behr∗, J. G. Steffen∗, P. Drewe∗, K. L. Hildebrand, R. Lyngsoe,
S. J. Schultheiss, E. J. Osborne, V. T. Sreedharan, A. Kahles, R. Bohnert, G. Jean, P.
Derwent, P. Kersey, E. J. Belfield, N. P. Harberd, E. Kemen, C. Toomajian, P. X. Kover,
R. M. Clark, G. Rätsch, R. Mott,
Multiple reference genomes and transcriptomes for Arabidopsis thaliana,
Nature, 477 (7365), 419-423, 2011

Next, we will analyse the extent to which alterations of transcription factor binding sites
underlie the observed changes in gene expression between different strains of the population.
This analysis was performed by Philipp Drewe, Oliver Stegle and Gunnar Rätsch and was
part of the following publication:

• M. T. Weirauch, A. Yang, M. Albu, A. Cote, A. Montenegro-Montero, P. Drewe, H.
S. Najafabadi, S. A. Lambert, I. Mann, K. Cook, H. Zheng, A. Goity, H. van Bakel, J.
Lozano, M. Galli, M. Lewsey, E. Huang, T. Mukherjee, X. Chen, J. S. Reece-Hoyes, S.
Govindarajan, G. Shaulsky, A. J. M. Walhout, F. Bouget, G. Rätsch, L. F. Larrondo,
J. R. Ecker, T. R. Hughes,
Determination and inference of eukaryotic transcription factor sequence specificity,
Cell, 158 (6), 1431-1443, 2014

Finally, we will present the fraction of the total variation in gene expression that can be
explained by genetic variation in predicted transcription factor binding sites. This was un-
published work by Philipp Drewe, Oliver Stegle and Gunnar Rätsch.

Supplemental work not included into this thesis

In this work, we will not discuss the author’s contributions to the following publications:

• S. Heinrich, E. Geissen, J. Kamenz, S. Trautmann, C. Widmer, P. Drewe, M. Knop,
N. Radde, J. Hasenauer, S. Hauf,
Determinants of robustness in spindle assembly checkpoint signalling,
Nature Cell Biology, 15 (11), 1328-1339, 2013

• C. Widmer, P. Drewe, X. Lou, S. Umrania, S. Heinrich, G. Rätsch,
GRED: graph-regularized 3D shape reconstruction from highly anisotropic and noisy
images,
arXiv preprint, arXiv:1309.4426, 2013,

• J. Behr, A. Kahles, Y. Zhong, V. T. Sreedharan, P. Drewe, G. Rätsch,
MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in
multiple samples,
Bioinformatics, 29 (20), 2529-2538, 2013
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• M. J. Dubin, P. Zhang, D. Meng, M. Remigereau, E. J. Osborne, F. P. Casale, P.
Drewe, A. Kahles, B. Vilhjalmsson, J. Jagoda, S. Irez, V. Voronin, Q. Song, Q. Long,
G. Rätsch, O. Stegle, R. M. Clark, M. Nordborg,
DNA methylation variation in Arabidopsis has a genetic basis and shows evidence of
local adaptation,
eLife, under revision, 2014
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2. Background

2.1. Overview

In this chapter, we will present the general scientific framework upon that this thesis is built.
In the first part of the chapter, we will introduce important concepts in RNA Biology. Next,
we will discuss experimental high-throughput sequencing techniques that allow examining
RNA processing on a system level. Following this, we will present existing bioinformatics
approaches to process the data that are generated by the high-throughput sequencing tech-
niques and present a small excursion on modelling of transcription factor binding affinities. In
the penultimate part of this chapter, we will present statistical methods to model and analyse
high throughput sequencing data. In the last part of this chapter, we will introduce general
concepts in machine learning and how they can be used to model RNA processing.

2.2. RNA Biology

Cells can alter their appearances and properties (phenotypes) and respond to many environ-
mental changes. The diversity of phenotypes that can be adopted by cells having the same
hereditary information (genetic information) becomes apparent in multi-cellular organisms,
where cells can adopt distinct roles. The basic building block of the genetic information is the
gene [79], which we define in this work as “locatable regions of genomic sequence, correspond-
ing to a unit of inheritance, which is associated with regulatory regions, transcribed regions
and/or other functional sequence regions” [131]. The genes are localised on large cellular
molecules, the chromosomes [120].

The genetic information in genes is encoded in an alphabet of four different nucleotide
bases [11]: adenine (A), cytosine (C), guanine (G) and thymine (T). These nucleotide bases
are a building block of the nucleotides that have first been characterised in 1869 by Friedrich
Miescher in Tübingen [118]. The nucleotides can be chained together and constitute the
deoxyribonucleic acid (DNA). These chains can form a double helix that is maintained by
Watson-Crick base pairing (hydrogen bonds between A and T as well as between C and G
nucleotides) of nucleic acids between two chains (strands) [184]. Two chains that bind in this
way are referred to as being complementary to each other.

The genetic information that is encoded in genes can be transferred, in a process called tran-
scription, to another class of nucleotide chains, the ribonucleic acids (RNA). These molecules
are long polymers composed of four nucleic acids: adenine, cytosine, guanine, and uracil (U).
RNA is chemically similar to DNA but has a lower melting point, thus being less stable. Be-
cause RNA molecules are less stable they can also take distinct shapes (secondary structures)
that play an important role in their function and regulation. During transcription, an enzyme
called RNA polymerase (RNAP) synthesises an RNA chain. In this process, the RNAP moves
along the DNA and determines (reads) the nucleotides in the sequence. It appends for each
read DNA nucleotide a corresponding RNA nucleotide to the growing RNA chain, i.e. an U
for an A, G for C, C for G, A for T. By having the one-to-one correspondence between the
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2. Background

nucleotides of the DNA and the produced RNA, the genetic information is copied from the
gene to the RNA.

There are different classes of RNA molecules that perform diverse functions and regulate many
cellular processes: The messenger RNA (mRNA) acts as an information carrier for protein
synthesis (translation) by a molecule complex (ribosome). This role of mRNAs in the directed
information flow from DNA over RNA to protein was first postulated by Francis Crick in
1958 [35] and is referred to as the central dogma of molecular biology. Besides their function
as information carrier, other classes of RNAs play a major role in the translational machinery,
such as ribosomal RNAs (rRNAs) that are part of the ribosome or transfer RNAs (tRNAs) that
transport amino acids to the ribosome during translation. There also exist RNAs that play
an active role in the regulation of other biological pathways, such as micro RNA (miRNA),
the recently discovered circular RNA (circRNA), long non-coding RNA (lncRNA) and small
interfering RNA (siRNA). In the remainder of this work we refer to the entirety of RNA
molecules in a cell as the transcriptome.

Overall, RNAs are central in cellular information processing and an integral part of many
pathways. In the following, we therefore discuss in more detail several aspects of the processing
of mRNAs and their regulation. We first revisit the transcription, then introduce splicing and
other post transcriptional modifications and finally discuss translation (see Fig. 2.1 for an
illustration of cellular RNA processing).

2.2.1. Transcriptional Regulation

The transcription of a gene can be divided into three successive steps: initiation, elongation
and termination [105]. Initiation of transcription starts at the core promoter, a region of
the DNA that contains distinct nucleotide patterns (sequence elements). Specific proteins
for transcription (general transcription factors) are recruited and bind to these sequence el-
ements. This defines a site where the transcription of a gene can start (transcription start
site (TSS)). The most frequent of these sequence elements for protein coding genes is the
TATA box, a sequence element that contains the four nucleotides TATA. However, also other
sequence elements and patterns, such as the B recognition element (BRE), downstream pro-
moter element (DPE) or CG-rich regions (CpG islands) can substitute the TATA box for
transcription initiation [105]. The binding of the general transcription factors is regulated
mainly by the accessibility of the DNA through methylation and the chromatin structure of
the DNA [105].

After binding to the DNA, the general transcription factors then guide the RNAP II to the
TSS, where they together form the DNA binding preinitiation complex (PIC). The general
transcription factors are always required to initiate transcription but their presence alone leads
only to a low (basal) level of transcription. In contrast to the general transcription factors,
other transcription factors (TF) are not sufficient to initiate transcription on their own, but in
presence of general transcription factors they can drastically alter the transcriptional efficiency.
These TFs have in general two or more domains, one that recognises specific sequences (DNA
binding domain), the transcription factor binding site (TFBS) and at least one other domain
(activation domain) that interact with other proteins [105].
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2.2. RNA Biology
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Figure 2.1.: Cellular processing of mRNA. The mRNA synthesis starts in the nucleus with the
recruitment of transcription factors and assembly of the preinitiation complex
(PIC) on the DNA. The RNA polymerase (RNAP) II then starts transcription to
produce the pre-mRNA. During transcription, the 5’cap is ligated to the nascent
RNA molecule and the spliceosome subunits start to bind to it. Transcription
ends when the RNAP II reaches the Poly(A)-site. Then, the pre-mRNA is re-
leased from the RNAP II. Following this, the spliceosome removes parts of the
pre-mRNA (introns) and covalently binds the remaining parts (exons) together.
Subsequently, the poly(A)-tail is added to pre-mRNA resulting in the mRNA.
Molecules that have not correctly been spliced or polyadenylated are degraded
by exonucleases. The other mRNAs are exported to the cytoplasm. There they
are translated. For this, first the ribosome assembles at the 5’ end of the mRNA.
Subsequently the ribosome moves along the mRNA and appends the amino acids
to the growing amino acid chain. Finally, the amino acid chain is released from
the ribosome and the ribosome disassembles. Translation can then repeated or
the mRNA can be degraded by exonucleases.
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2. Background

The TFs can be classified by their effect on transcription of a gene, i.e. whether they increase
transcription (activators) or decrease is (repressors). Activators and repressors can work syn-
ergistically, meaning that the change in transcription caused by two TFs can be more than the
sum of the changes that would be caused by each of the two TFs separately. The combination
of activators and repressors therefore allows differentiated regulation of transcription. This
makes well-defined responses to environmental changes possible.

Usually, the TFs bind in within 200 base pairs (bp) of the TSS. Together with the core pro-
moter, their binding sites constitute the promoter. The promoter, however is not the only
location that determines transcriptional regulation. TFBS can also be located in enhancers.
Enhancers are, similarly to promoters, bound by transcription factors that interact with the
PIC. In contrast to promoters, however, enhancers can act independently of their direction,
even when they are distant from the TSS. Thereby, enhancers can influence the transcrip-
tional activity of many genes. These enhancers further increase the richness of transcription
regulation and allow well-orchestrated cellular transcription, e.g. to establish tissue specific
regulation of gene expression [160].

After initiation of transcription, the elongation starts with the separation of the RNAP II from
the PIC. Following this, the RNAP II then moves along the DNA and produces the precursor
of the mRNA (Precursor mRNA (pre-mRNA)). During the elongation of the nascent RNA, a
terminal methylation cap (5’ cap) is linked to the first transcribed nucleotide. It prevents the
nascent transcript from degradation through exonucleases and is also critical for the ribosome
to recognise the transcript and subsequently initiate translation.

The transcription terminates at the polyadenylation (poly(A)) site, a nucleotide pattern con-
taining a long stretch of adenines. Finally, the pre-mRNA is released. Termination can also
take place at alternative locations, leading to nascent transcripts of different lengths. This
leads to distinct regulatory regimes for the transcripts, as the 3’-ends of them often harbour
binding sites for miRNAs that can induce degradation of the transcripts. However, the mech-
anisms that determine the alternative poly(A) usage and the implications of their different
usages are still not fully understood.

For a more detailed excerpt of transcription and its regulation we refer to [32, 105, 111, 147].

2.2.2. Post-transcriptional RNA Processing

After transcription the synthesised pre-mRNAs are further processed. Complexes of small
nuclear RNAs (snRNAs) and proteins, the spliceosomes, form at specific sites (splice sites) of
the nascent transcript. Subsequently, the spliceosomes remove parts of the transcript (introns)
and covalently bind the remaining parts (exons) together in a process that is referred to as
splicing. Recent findings suggest that splicing already starts during transcription [192].

After the splicing process, the nascent transcript is cleaved at the poly(A) site, which lies
at the 3’ end of the transcript. Following cleavage, a stretch of adenines is added to the
3’ end of the transcript. Similar to the 5’ cap, this polyadenylation prevents the transcript
from being targeted by certain cellular degradation mechanisms. The resulting transcript is
called mRNA transcript. The newly synthesised mRNA is then subject to quality control
mechanisms that degrade wrongly processed transcripts, e.g. those where the 5’cap or the
poly(A)-tail is missing. After the poly(A)-tail is added, the mRNA transcript is exported
from the nucleus to the cytoplasm, where it is translated to synthesise proteins.

In 1977, it was first discovered in Adenoviruses and shortly thereafter in eukaryotes that
different RNAs can be derived from a single gene [17, 31]. This can result from splicing of
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2.2. RNA Biology

different exon combinations (alternative splicing (AS)). The different types of transcripts that
are produced from a gene are called isoforms. The numbers of isoforms that can be produced
from a gene can be high. For example, the Drosophila melanogaster DSCAM gene up to
38, 016 isoforms can be generated [151]. It was recently revealed that alternative splicing is
involved in the processing of a large fraction of genes; up to 92-94 % of all Homo sapiens genes
are alternatively spliced [181]. It was furthermore shown that alternative splicing is tightly
regulated and can be tissue specific (e.g. [188]), suggesting that alternative splicing is central
for controlled RNA processing.

Alternative splicing leads, together with alternative TSS and poly(a) sites, to an increase in
the number of isoforms that can be generated from a gene. This increases the diversity of the
proteins that can be generated, without substantially increasing the size of the genome. Ad-
ditionally to the regulation of transcription, alternative splicing therefore constitutes another
layer of RNA processing regulation. The importance of this layer of regulation is reflected by
the abundance of diseases that are caused by disruption of splicing (e.g. see [47]).

Common alternative splicing patterns are shown in Fig. 2.2. These include the skipping
or inclusion of an exon (exon skip), the skipping of an exon that depends on the inclusion
of another exon (mutually exclusive exons), the inclusion of an intron (intron retention) or
the use of alternative 5’ and 3’ ends (alternative 5’ splice site and alternative 3’ splice site,
respectively). Although the use of alternative TSS and poly(A) sites is not splicing, in the
sense that are mediated by the spliceosome, they still lead to different transcripts. In the
following, we therefore refer to them for simplicity also as splice events.

For an extensive review of the post-transcriptional processing of the pre-mRNA and mRNA
we refer to [21, 30, 90, 133]

Exon skip Mutual exclusive
exons

Intron retention Alternative 5’ splice site Alternative 3’ splice site

Figure 2.2.: Shown are different types of alternative splicing events. The parts of the pre-
mRNA that are always contained in the mRNA are shown in red and the tran-
script parts that can be spliced in are shown in green. The parts that are never
contained are indicated by a thin black line. Pairs of exon-ends that can be
joined together during splicing are linked by thick black lines.

2.2.3. Mechanisms and Regulation of Translation

The mature mRNA transcripts are exported, after being spliced and polyadenylated, from
the nucleus to the cytoplasm. There they serve as a template for the synthesis of proteins
in a process called translation. The translation of the mRNA is mediated by ribosomes,
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which consist of two subunits: the small ribosomal subunit and the large ribosomal subunit.
Ribosomes are either free in the cytosol or bound to the membrane of the rough endoplasmatic
reticulum.

The process of translation can be, similar to transcription, divided into three steps: initiation,
elongation and termination. Initiation begins with the recognition of the 5’cap by the small
ribosomal subunit. In some rare cases the ribosome also recognises an RNA structural motif
that is called internal ribosome entry site (IRES) instead of the 5’cap. After the recognition,
the small ribosomal subunit binds to the mRNA. From there it scans the mRNA sequence
until it reaches the nucleotide triplet (codon) A-U-G, termed start codon. The region 5’ of the
start codon is not translated and is therefore referred to as the 5’ untranslated region (UTR).
After the small ribosomal subunit is positioned at the start codon, the large ribosomal subunit
binds it and the translation is initiated.

During the elongation phase, the ribosome reads one codon at a time and appends a specific
amino acid per codon to the nascent amino acid chain and subsequently moves to the next
codon where the same procedure is repeated. The ribosome elongates the nascent amino acid
chain until it reads a stop codon (TAG, TAA, TGA). It then terminates the translation and
releases the protein from the ribosome. Thereafter, the ribosome dissociates from the mRNA
and disassembles. As the region after the stop codon is not translated, it is called the 3’UTR.

Translation regulation occurs mainly in the initiation step. Known factors that regulate the
translation initiation are the availability of the translational cofactors as well as miRNAs
that bind the 5’UTR and secondary structures of the 5’UTR [74]. At the level of translation
there exist also various quality control mechanisms. If, for example, the ribosome encounters a
premature stop codon, the ribosome marks the mRNA for degradation by nucleases in a process
called nonsense mediated decay (NMD). But also the stalling of the ribosome during elongation
or the missing of a stop codon triggers decay pathways that mediate degradation of the
template mRNA. However, compared to the factors that regulate transcription and splicing,
the mechanisms that underlie translation regulation are still only partially understood.

For a detailed exposition of the subject we refer to [19, 74, 88, 108, 156].

2.3. High-Throughput Sequencing

2.3.1. DNA Sequencing

A major breakthrough in the analysis of genomes was the development of methods that allow
identifying the nucleotides in DNA sequences. This identification, which is commonly referred
to as sequencing, allowed to analyse how the genetic information is encoded in the genome.
The first two methods to sequence DNA were proposed in 1977 by Maxam and Gilbert [114]
and by Frederick Sanger [148]. Of these two methods, the chain-termination method developed
by Sanger became the predominantly used method, due to the easier protocol. This method
is nowadays often referred to as Sanger sequencing. The principle behind Sanger sequencing
is that the DNA of interest is replicated nucleotide by nucleotide. By subsequently adding
nucleotides that have distinct radioactive labels, the nucleotide that was incorporated in the
growing DNA chain can be identified

In the following twenty-five years after Sanger sequencing was proposed the protocol was
further refined. Advances, such as fluorescent labelling, capillary sequencing and automation
of the sequencing lead to a higher throughput of sequencing techniques [61], i.e. an increase

12



2.3. High-Throughput Sequencing

in the number of nucleotides that can be identified in a day. These developments paved
the way for the sequencing of the genomes of many model organisms such as Saccharomyces
cerevisiae [57] and Arabidopsis thaliana [7]. Finally, in 2001, the first two reconstruction of
the H. sapiens genome were presented [95, 179]. One major drawback of the Sanger capillary
sequencing is however the relatively low throughput of maximally 6 Mega bases (Mb) per day
and the high price of 500$ per 1 Mb [86].

In the last decade several new DNA sequencing methods have been introduced that allowed a
higher throughput in sequencing at much lower cost per sequenced base than Sanger capillary
sequencing, the most popular of these new methods, being Illumina sequencing [15], 454
sequencing [109] and SOLiD sequencing [176]. Using the Illumina HiSeq sequencer [1] it is
now possible to sequence up to 22 giga bases (Gb) in 7 hours. These methods are sometimes
referred to as next generation sequencing (NGS) methods, but given the fact that they are
already almost a decade old we refer to them in this work as high-throughput sequencing (HTS)
methods. The HTS methods all have in common that the amplification and the sequencing
is greatly parallelised compared to the first generation sequencing methods. In the following,
we illustrate the Illumina sequencing protocol as an example for high throughout sequencing
protocols. This sequencing approach is the most widely used one and the results presented in
this work are all based on data obtained using this protocol. For an extensive review of other
protocols, we refer for example to [115].

The general protocol for Illumina sequencing consists of two main steps, the preparation of a
library of DNA fragments from the DNA sample (library preparation) and the sequencing of
these fragments (see Fig. 2.3 for illustration) [15].

In the library preparation the first step is the fragmentation of the sample DNA using for
example sonication. This provides a random fragmentation of the DNA molecules. Then a
gel-based size selection of the fragments is performed to filter for DNA fragments of a certain
length (insert size). Subsequently, short DNA fragments (adapters) are ligated to the double
stranded fragments and then the double stranded DNA fragments are denatured. Finally,
the single stranded fragments are applied onto a surface (flow cell), where they bind via their
adapters.

The sequencing itself consists of two steps. In the first step, the fragments that are bound
to the flow cell are amplified. This is done by repeatedly adding nucleotides and DNA poly-
merases, to initiate polymerase chain reaction (PCR) bridge amplification and then denaturing
the resulting double stranded DNA fragments. This procedure leads to formation of clusters
of identical fragments on the flow cell. In the second step of sequencing, the fragments in
the cluster are sequenced. This is achieved by first adding labelled nucleotides, where each
nucleotide is linked to a distinct fluorescent dye. The fluorescent labels not only allow identi-
fying the incorporated nucleotide, but also serves as a terminator of the polymerization. This
guarantees that only a single nucleotide is incorporated. Then the fluorescent dye is excited
with laser light and the fluorescence emitted from all clusters is imaged. From the resulting
signal intensities of each cluster in each colour channel the incorporated nucleotide can then
be inferred. Finally, the fluorescence label is removed from the nucleotide. The second step of
the sequencing step can then be repeated to reveal the identity of the fragments base-by-base
from one end. The resulting sequences that are obtained from this procedure are called reads.
When the fragments are sequenced only from one end the reads are called single-end reads.
A popular modification of the sequencing protocol also allows sequencing the fragments from
both ends. The resulting read pairs are called paired-end reads.
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Figure 2.3.: Illustration of Illumina DNA sequencing protocol. First the DNA is fragmented
and the fragments are size selected. Then adapters are added ligated to the
double stranded DNA fragments and the fragments are denatured. The resulting
single stranded DNA fragments are then bound to the flow cell and subsequently
amplified until they form clusters. In the last step, the clusters are sequenced.
For this, first fluorescent-labelled nucleotides are added. A DNA polymerase
then adds the nucleotides to the complementary strand of the fragments. The
flow cell is then exited by a laser and fluorescence emitted from all clusters is
imaged. Lastly, the incorporated nucleotides are inferred from the image. The
cluster sequencing step is then repeated.
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After sequencing, the reads can be used to reconstruct the sequence of the DNA (sequence
assembly) that was in the sample. For this task, many bioinformatics software methods have
been proposed (e.g. [101, 125, 162]).

2.3.2. RNA Sequencing

Besides sequencing DNA, high-throughput sequencing methods can also be applied to se-
quence RNA. This is achieved by first converting the RNA into DNA using a reverse tran-
scriptase [121], a retroviral enzyme that generates a complementary DNA sequence (cDNA)
from a RNA transcript. The generated cDNA library can, subsequently, be sequenced using
standard HTS approaches. The resulting reads allow identification of the RNA molecules in a
sample and also allows to infer the relative quantity of these RNA in the sample. Therefore,
RNA-Seq allows to get a detailed picture of the transcriptome.

Compared to other methods such as microarrays [72] or real-time quantitative PCR (RT-
qPCR) [69], RNA-Seq has some desirable properties. Firstly, RNA-Seq has a similar through-
put as microarrays but the gene expression measurements obtained with RNA-Seq are far
more accurate. This has been shown in [126], where it was observed that RT-qPCR mea-
surements, the gold standard for measuring gene expression, and RNA-Seq gene expression
measurements had a Pearson correlation coefficient of 0.98. In contrast microarrays only had
a Pearson correlation coefficient of 0.72. Secondly, it was shown in [126] that the dynamic
range, defined as the highest measured value divided by the lowest measured value, was as
high as 8, 000. This is much higher than the dynamic range of microarrays, which was only
60. Therefore, RNA-Seq allows to detect differences in gene expression more accurately than
microarrays. Moreover, RNA-Seq has the advantages that it has a single nucleotide resolution
and can also be used when the genome is not known. Lastly, RNA-Seq typically needs less
starting material than microarrays [183] and is therefore more efficient than microarrays. For
these reasons, RNA-Seq is very suitable for genome-wide quantification of gene expression.

For practical applications another advantage is that different RNA libraries can be sequenced
together. This can be achieved by first ligating an identifier sequence (barcode) that is unique
for each library to every RNA in the library (multiplexing) and then pooling all libraries
together. After sequencing, the library of origin for each read can be recovered by the barcode.

A challenge with RNA-Seq is that typically the different classes of RNAs have different abun-
dances. Typically, rRNAs comprise a large fraction of the transcriptome. When study-
ing mRNAs, it is therefore beneficial to filter RNAs having a poly(A) tail using oligo(dT)
beads [121] and deplete rRNA, e.g. using the RiboMinus kit (Invitrogen) [186]. This in-
creases the number of mRNA reads when sequencing.

Following the publication of the RNA-Seq protocol, various extensions and modifications have
been proposed to gain an even more detailed view of the transcriptome. These extensions
and modifications focus on different aspects of the protocol. Some focus on the enrichment or
depletion of certain classes of RNA, such as developments to enrich for small RNAs (e.g. [96])
or specific mRNAs (e.g. [155]). Other extensions allow determining the parts of the RNA
molecules that are bound by other molecules such as ribosomes or splicing factors (e.g. [64,
73]). Another example for a modification is the use of enzymes that cleave RNA (RNase)
with different cleave preferences to map the locations where the RNA structure was single-
and double-stranded [84]. Overall, these extensions and modifications allow studying many
aspects of the transcriptome and laid the foundation for many insights.
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2.3.3. Impact of High Throughput Sequencing on Biomedical Research

The impact of HTS methods on research in biology can hardly be underestimated. This is
because these methods allow to get an unbiased view on the genome and transcriptome at a
low cost and with high throughput. Therefore, HTS methods allow determining the state of
cells on a systems-level. They enable researchers for example to genome-wide analyse genomic
variation [2, 52, 150], gene regulation [167] and transcriptome plasticity [38, 52], to name only
a few applications. Therefore, HTS methods help to understand cellular regulation and thus
can provide novel perspectives on mechanisms of diseases [29]. Consequently, HTS methods
have been established as standard tools in biology and increasingly also in medicine.

2.4. Bioinformatics

2.4.1. High-Throughput Sequencing Data Analysis

With the increasing popularity of RNA-Seq experiments, the analysis of the data that are
generated by these experiments has emerged as an important branch of bioinformatics. The
challenges in the analysis lie in the large amount of data to be processed and the stochastic
nature of the data. This requires efficient algorithms to extract the relevant information from
the read sequences. The typical analysis consists of several steps. The first step of the analysis
is the control of the quality of the reads in order to identify potential mistakes in the library
preparation and to filter out reads that have low quality. After quality control, a de novo
transcript prediction, using tools such as [59, 138], can be performed in order to reconstruct the
transcriptome. The reconstruction can be useful when working for example with incomplete
genomes or annotations. A more common approach however is to first determine the genomic
loci from which the sequenced read stem (read mapping). Since in most cases both the number
of reads and the size of the genome are large, efficient mapping is non-trivial. The mapping
is further complicated by the fact that non-continuous mapping positions must be considered
due to splicing. Another difficulty in the mapping stems from the fact that reads sometimes
do not perfectly map to the genome as they can have sequencing errors. Established tools to
perform the mapping of RNA-Seq reads include [39, 75, 172]. After mapping, reads can than
be used for example to identify expressed transcripts (see Sec.3 for details), to quantify gene
expression and transcript expression or to detect differential gene expression and differential
transcript expression (see Sec.4 for details).

For a comprehensive overview of tools to analyse RNA-Seq data, we refer to [4].

2.4.2. Models for Transcription Factor Binding

Many of the fundamental processes that control transcription are regulated by transcription
factors. These transcription factors can bind the DNA near the transcription start site and
can thereby be recruited for the transcription initiation process. According to the Michaelis-
Menten model [116], the probability of binding and thus the efficiency of recruitment is deter-
mined by two factors: The concentration of the transcription factor and the Gibbs free energy
of its binding to the DNA (binding affinity). Both, increases in protein concentration of a
transcription factor and an increase in its binding affinity, lead to an increased probability of
binding. Depending on the sequence specificity of the binding affinity of transcription factors,
two types of binding can be distinguished: Binding that requires a specific nucleotide pattern
(specific binding) and general binding to DNA independent of the nucleotide pattern of the
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DNA (unspecific binding). Especially the specific DNA-binding of transcription factors has
been studied intensively as it underlies the distinct gene expression profiles in different cellu-
lar contexts. In the following, we discuss the approaches that have been developed to study
specific binding. For this, we first present models that have been designed to characterise
the sequences that a transcription factor binds to and discuss bioinformatics approaches to
fit these models. Next, we present experimental approaches to measure transcription factor
binding.

Assume that a set of sequences S1, . . . , Sn, each having length k, is given that are bound by
a transcription factor. Assume furthermore that the transcription factor binds at the same
position in each sequence. Then, we denote by sji the j-th nucleotide of the sequence Si and
by f ji the frequency of nucleotide j at position i in all sequences. Under these assumptions,
the most simple model describes the binding sites of a transcription factor by a sequence
M = m1 . . .mk of length k, where mi, i ∈ {1, . . . , k} is the nucleotide that occurs most
often in the sequences S1, . . . , Sn at position i, i.e. mi := arg maxj∈{A,C,G,T} f

j
i . With this

model, potential transcription factor binding sites in a DNA sequence D can be predicted by
determining the location whereM is a subsequence of D. A drawback of this model, however,
is that it represents each position by only one nucleotide. Therefore, the model does not
account for the fact that different positions in a transcription factor binding site contribute
not equally to the binding affinity, i.e. positions in the binding site where the identity of the
nucleotide is not important are considered as being equally important as positions where a
certain nucleotide is required for binding. Furthermore, the model does not provide stable
predictions as subtle changes in the binding frequency can lead to substantially different
predictions, which is biochemically not plausible.

A more elaborate model of transcription factor binding sites describes these sites as the model
before but uses an extended alphabet, the IUPAC alphabet [34]. This alphabet has a letter
for all combinations of nucleotides (e.g. the letter M for nucleotides A or C) and thus allows
a more fine-grained description of the binding site. But also this model suffers to some extent
from the same shortcomings as the model described above.

A third model to describe transcription factor binding sites, that does not suffer from these
shortcomings, is the position weight matrix (PWM). This model describes a binding site by
the matrix P of nucleotide frequencies at each position as shown below:

P =


fA1 fA2 · · · fAk
fC1 fC2 · · · fCk
fG1 fG2 · · · fGk
fT1 fT2 · · · fTk


The PWM model of transcription factor binding preferences is also referred to as a motif. A
score P (S) for a putative binding site S = s1 . . . sk can then be obtained by P (S) =

∏k
i=1 f

si
i .

This model has the appealing property that its score is directly related to the binding affinity
as under the assumption that the contributions to the binding energy of all positions are
additive, the binding energy E is proportional to:

E ∝
∑
i

log
Pi,j
bj
,

where bj is the background frequency of nucleotide j in the genome [166]. This relation
between the binding energy and the normalised log transform of the frequencies (log

Pi,j
bj

)i,j

has motivated the use of P (S) =
∑k

i=1 log
Pi,si

bsi
as an alternative scoring function for a putative
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binding site S. The matrix (log
Pi,j
bj

)i,j is then referred to as the position specific scoring
matrix (PSSM). The PWM and PSSM models of TFBSs are often visualised using sequence
logos [152] that show the frequencies of each nucleotides and the information content at every
position (for see Fig. 2.4 an example).
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Figure 2.4.: Illustration of a sequence logo. Shown on the left are binding sites of a tran-
scription factor. Shown on the right is the logo that is inferred when assuming
an uniform background distribution of the nucleotide frequencies.

For learning of the models that were presented above, it was assumed that a set of known
binding sites is available. However, in many applications this is not the case. Such situations
arise for example if only the genes that are regulated by a TF are known. To determine pu-
tative binding sites in these cases, several bioinformatics approaches exist. These approaches
are usually based on distinct characteristics of transcription factor binding sites. The first of
these characteristics of transcription factor binding sites is that they are typically enriched in
the surrounding sequences of genes that are regulated by this transcription factor compared
to the surrounding sequences of other genes. A second characteristic of transcription factor
binding sites, which can be used to detect them, is that they are typically better conserved
than the surrounding sequence. The third characteristic that can be used is that binding
sites tend to cluster with binding sites of other transcription factors. Together these charac-
teristics can be used in order to determine putative transcription factor binding sites for a
transcription factor (e.g. [12, 51, 168]).

Besides bioinformatics approaches to identify transcription factor binding sites, also experi-
mental approaches have been proposed. An example for such an approach are protein binding
microarrays [16]. These arrays allow to investigate the binding specificity of a transcription
factor in vitro. In this approach the TF of interest is added to a microarray that contains
a large array of DNA fragments of a fixed length and different nucleotide patterns. Then
it is recorded to which DNA fragments the TF is bound, yielding a set of bound sequence
fragments. Another experimental procedure that allows investigating binding in vivo is Chro-
matin Immunoprecipitation Sequencing (ChIP-Seq) [80]. In this assay the protein of interest
is cross-linked to the DNA it binds using UV light or formaldehyde. Subsequently, the DNA
that is not bound by proteins is fragmented and the protein of interest with the cross-linked
DNA is purified using antibodies. Finally, the cross-link between the protein and the DNA is
broken and the DNA fragments that were bound are sequenced. From these fragments the in
vivo transcription factor binding sites can then be inferred.
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For many transcription factors the binding specificity has already been experimentally deter-
mined. Most of these binding profiles are available from the JASPAR [146] or the TRANS-
FAC [113] databases.

2.5. Statistics

One of the challenges in HTS data analysis is dealing with the noise in the data that is caused
by random processes in the library preparation and the sequencing. Moreover, these random
processes are not yet fully understood, which adds another layer of complexity to the analysis.
Therefore, it is non-trivial to draw conclusions from the data (i.e. to do inference), as it is not
clear which part of the data is due to random noise and which part is due to the underlying
signal of interest. Statistical methods are a well-established way to address this problem.
These methods allow to draw inference when noise is present in the data. In the following, we
discuss the different types of noise that are commonly encountered in HTS data and present
statistical methods that can be used for data analysis.

2.5.1. Fundamental Definitions

We begin by introducing fundamental concepts and basic definitions. The definitions and
derivations are adapted from [53], unless otherwise stated. In this work, we denote the set
of natural numbers {0, 1, 2, . . . } by N and the real numbers by R. For simplicity, we assume
that the space in which observations are represented is either a subset of N or Rn. We further
require that the set of observable random events for discrete spaces X ⊆ N is the power set of
X and for sets X ⊆ Rn it is the Borel σ-algebra of X . Therefore, we omit the set of random
events in the definitions for the remainder of this thesis.

In statistics, the data generation process is typically assumed to be a random experiment with
(random events) as possible outcomes. Formally, this is done by first defining the set X of
random events and then establishing a measure P on this space that assigns a probability of
occurring to a set of outcomes (probability measure). A probability measure P on a set of
events X can be defined in the following way:

Definition 2.1. (Probability distribution): Let P : X → [0, 1] be a function with the following
properties:

1. P (X ) = 1,

2. If A1, A2, · · · ⊂ X are pairwise disjoint random events, then

P
(⋃
i≥1

Ai

)
=
∑
i≥1

P (Ai).

Then P is called a probability measure or probability distribution and the tuple (X , P ) is called
a probability space.

In order to describe transformations of the events, functions on the set of random events X
(random variables) can be defined as follows:

Definition 2.2. (Random variable): Let X and Y be two sets and X : X → Y be a function
such that for each random event A ⊆ Y, X−1(A) is a random event on X . Then X is called
a random variable (RV).
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These random variables X : X → Y induce a probability distribution on the target space
Y by assigning to each random event A ⊆ Y the probability P (X−1(A)), where P is a
probability measure on X . Thereby, they provide a functional description of the probability
distribution under the assumptions explained below. This description of the probability space
by a random variable can be, depending on the application, more convenient to work with
than the description by a measure.

Definition 2.3. (Probability density function): Let (X , P ) be a probability space and
p : X → R+ be a random variable. Depending on X being discrete (X ⊆ N) or continuous
(X ⊆ Rn) there are two cases:

Discrete case If
∑

x∈X p(x) = 1 and P (A) =
∑

x∈A p(x) for all A ∈ X , then p is called a
probability density function (pdf) of P on X .

Continuous case If
∫
X p(x)dx = 1 and P (A) =

∫
A p(x)dx for all A ∈ X , then p is called a

probability density function (pdf) of P on X .

Probability density functions on a Borel space that satisfy the conditions in Def. 2.3 can also
induce a unique probability measure on X . Moreover, for each such pdf p there is one and
only one probability measure P such that p is the pdf of P [53].

2.5.2. Probability Distributions for High-Throughput Sequencing

Probability distributions allow to describe random processes. In the following, we therefore
introduce probability distributions that describe various aspects of HTS data.

Random Distributions

We begin by introducing distributions that describe the number of reads from an RNA tran-
script that are obtained by sequencing an RNA sample. Assume for this, that in the sam-
ple under investigation there are T different transcripts with Nt copies of each transcript
t ∈ {1, . . . , T}. If we assume furthermore, that after fragmentation and size selection there
are in total N fragments in the library and that from these K fragments contain a position P
of a transcript t. Then, if n, n ≤ N reads are sequenced, the resulting reads covering position
P can be modelled by a hypergeometric distribution HN,n,K . In statistics this distribution is
used to model sampling from a set without putting back the drawn sample to the set after
drawing it. The hypergeometric distribution can be defined as shown below.

Definition 2.4. (Hypergeometric distribution): Let X = {0, . . . , N} be a finite set and
n,K ∈ {0, . . . , N}. Then the distribution HN,n,K , with

HN,n,K(i) =

(
K
i

)(
N−K
n−i

)(
N
n

) , for all i ∈ {0, . . . , n}

is called hypergeometric distribution with parameters N , n and K.

One limitation of the hypergeometric distribution is that it has many parameters. This is
because for the probability of drawing a certain sample, the history of previous draws has to
be considered. However, there exist approximations of the hypergeometric distribution if the
number of drawn samples n is considerably smaller than the total number of samples N . In
this case, the probability of drawing a certain sample depends only little on the previously
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drawn samples. Therefore, the sampling without putting back the drawn sample can be
described by sampling with putting back the sample after drawing it [53]. A distribution
describing the drawing with putting back the samples that can be used to approximate the
hypergeometric distribution is the binomial distribution Bn,p with parameters n and p = K

N .
This binomial distribution can be defined in the following way:

Definition 2.5. (Binomial distribution): Let X = {0, . . . , n}, n ∈ N be a finite set and
p ∈ [0, 1]. Then the distribution Bn,p,with

Bn,p(i) =

(
n

i

)
pi(1− p)n−i, for all i ∈ {0, . . . , n}

is called binomial distribution with parameters n and p.

However, this formulation is numerically hard to compute accurately in cases where n is large
and p is small. In this case, the binomial distribution can be approximated as shown in
Theorem 2.1.

Theorem 2.1. (Limit of binomial distribution): For a λ > 0 and a series (pn)n≥1 with
npn → λ as n→∞, the limit limn→∞ Bn,pn(i) exists and is given by:

lim
n→∞

Bn,pn(i) =
e−λλi

i!
, for all i ∈ N.

Proof. See [53].

The distribution resulting from this approximation is known as the Poisson distribution Pλ
and can be defined as shown below.

Definition 2.6. (Poisson distribution): Let X = N be the natural numbers and λ > 0. Then
the distribution Pλ with

Pλ(i) =
e−λλi

i!
, for all i ∈ N,

is called Poisson distribution with intensity λ.

The Poisson distribution is commonly used to model the reads that are observed at a certain
position of a transcript or genome, due to the fact that it is easy to compute and handle.

The distributions that we have presented so far can be used in order to describe the noise
that arises as a consequence of the sequencing. However, they do not model that the RNA
sample that is used for sequencing is itself a random sample from a biological system, with its
own inherent variance. Specifically, it is not accounted for the fact that the abundance of a
transcript is not the same in each cell of a homogeneous cell population, but varies from cell to
cell. Therefore, the noise in the read counts is underestimated by the distributions presented
above [140]. In order to account for this variation that is induced by the sampling of the RNA
sample in modelling the read distribution, the distribution of transcript abundances in a cell
population has to be included in the model. This distribution can be well approximated by a
Gamma distribution Γα,r (see e.g. [50]), which can be defined in the following manner:

Definition 2.7. (Gamma distribution): Let X = R+ be the positive real numbers and
r, α > 0. Then the distribution Γα,r, with

Γα,r(i) =
αi

Γ(i)
ri−1e−αr for all i ∈ R+
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is called the Gamma distribution. The special case when r = 1, is called the exponential
distribution with parameter α.

Incorporating the variation of transcript abundances in methods that model the sequencing
can be achieved by assuming that the intensity λ of Pλ follows a Gamma distribution Γα,r,
i.e. λ ∼ Γα,r [81]. The resulting distribution of this is the negative binomial distribution
NBr, α

1+α
, which is defined below. This distribution has a long history in modelling count

data in biology [23].

Definition 2.8. (Negative binomial distribution): Let X = N be the positive numbers,
p ∈]0, 1[ and r > 0. Then the distribution NBr,p, with

NBr,p(i) =

(
−r
i

)
pr(p− 1)i for all i ∈ N

is called negative binomial distribution, where the general binomial coefficient
(−r
i

)
is defined

as: (
−r
i

)
:=

(−r)(−r − 1) · · · (−r − i+ 1)

i!

The negative binomial distribution can also be parametrised by its mean and variance [81],
which we use in this work when convenient.

Beside the negative binomial distribution, another distribution that can be used in order
to model read generation is the Gaussian distribution. This distribution can be defined as
shown below. Using this distribution has the advantage that there exists a large theoretical
framework around it and it has many theoretical properties that are appealing to work with.
In the setting of HTS data its disadvantage is, however, that it is not capable of capturing
the discrete nature of the reads.

Definition 2.9. (Gaussian distribution): Let X = R be the real numbers m ∈ R and v > 0.
Then the distribution Nm,v, with

Nm,v(x) =
1√
2πv

e−(x−m)2/2v for all x ∈ R

is called the Gaussian or normal distribution.

As already mentioned above, the choice of the distribution is influenced by its convenience to
work with. Examples of other distributions to model HTS data include the beta-binomial [134]
or beta negative binomial [171] distribution, which will not be discussed in detail in this work.

Characterisations of Probability Distributions

The probability distributions that we have introduced above can be characterised by properties
of the samples drawn from them, e.g. where the expected average of their samples lies and
how far they are spread around this average. These properties can be formally summarised
by the moments. For example, the first moment (expected value) of a probability distribution
determines where the mean of infinite samples is located and can be defined as described
below.
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Definition 2.10. (Expected value):

Discrete random variable Let (X , P ) be a discrete probability space and X : X → R be a
real valued random variable. Then, if

∑
x∈X(X ) |x|P (X = x) exists, we call

E(X) :=
∑

x∈X(X )

xP (X = x)

the expected value of X.

Continuous random variable Let (X , P ),X ⊆ Rn be a probability space and
X : X → R be a real valued random variable. Let furthermore p be the pdf of X. Then,
if
∫
X |X(x)|p(x)dx exists, we call

E(X) :=

∫
X
X(x)p(x)dx

the expected value of X.

Furthermore, we denote by L1(X ) the space of all random variables for which the expected
value is defined. The first moment E(X) is also called the mean of X and often abbreviated
by µX or simply µ.

As can be seen from the definition, there exist distributions for which the expected value is
not defined, such as for the Cauchy distribution [81]. This is because they have many values
that have a high value and a high probability such that

∑
x∈X(X ) |x|P (X = x) =∞. For the

distributions that have been presented before, however, the expected value exists.

Besides the mean, also higher order moments can be defined. This can be done in a similar
manner as for the first moment:

Definition 2.11. (r-th Moment of a random variable): Let (X , P ) be a probability space,
X : X → R be a real valued random variable and r ∈ N such that r ≥ 2. If Xr ∈ L1(X ) then
E((X − µX)r) is called the r-th moment of X. The second moment E((X − µX)2) is called
the variance of X and is abbreviated by σ2X or σ2.

A list of the first two moments of the probability distributions that we have presented above
is shown in Tab. 2.1.

Table 2.1.: First two moments of probability distributions

Probability distribution Mean µ Variance σ2

Binomial distribution Bn,p np np(p− 1)

Hypergeometric distribution HN,n,K nKN nKN
N−K
N

N−n
N−1

Poisson distribution Pλ λ λ

Negative binomial distribution NBr,p pr
1−p

pr
(1−p)2

Normal distribution Nm,v m v

Gamma distribution Γα,r
r
α

r
α2
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2.5.3. Statistical Hypothesis Testing

One of the main motivations for using statistical methods in the analysis of HTS data is
to make decisions based on the observed data. One statistical technique for doing this is
hypothesis testing. In this approach, first a hypothesis is stated and then it is decided whether
this hypothesis can be supported by the observed data. For example, if it has to be decided
whether the expression of a gene is the same in two conditions, the hypothesis that has to be
tested is whether the probability distribution of the two gene’s expression is the same in both
conditions. Given the data, the probability for all random events that support this hypothesis
can be computed and used to decide whether the expression was the same in both conditions.

Formally, this can be done as follows. First the set of all potential probability distributions
M = {Pω|ω ∈ Ω}, parametrised by Ω is defined. This setM is called a statistical model. The
set of probability distributions is then partitioned into two disjoint subsets. Into the subset N
of probability distributions that support the hypothesis and the subset A of those probability
distributions that do not support the hypothesis. The set N is called the Null hypothesis and
the set A Alternative hypothesis. Then, a statistical test that assigns a class to each sample
can be defined as shown below.

Definition 2.12. (Statistical test): LetM = N ∪ A be a statistical model where N and A
represent the Null and the Alternative hypothesis, respectively. Let furthermore Pω ∈ M be
a probability distribution on X and x be a sample of size n, n ∈ N+ drawn from Pω. Then, a
statistical test φ is a random variable φ : X n → [0, 1] that assigns to each sample x from X the
probability 1− φ(x) that it is an element of N and the probability φ(x) that it is an element
of A. The set φ−1(0) is called the acceptance region and the φ−1(1) the rejection region.

For simplicity we focus in the following part of this chapter on a subclass of statistical tests,
the non-randomised test. These are tests for which φ takes only the values zero or one. We
would also like to mention that in the context of hypothesis testing the random variable φ
is called a statistic. This term is introduced to emphasise the different interpretations of the
function φ. A random variable is thought of being the outcome of a random experiment,
whereas a statistic is a constructed function to measure aspects of observations [53].

Statistical tests can be categorised into two classes, based on the parameter space Ω: If the
parameter space Ω is finite dimensional, a test is called a parametric test and otherwise it
is called a nonparametric test. These two subclasses of tests differ by the assumptions they
make on the probability distributions that are tested. Parametric tests typically assume a
specific class of distributions and test for properties of these distributions, e.g. whether two
Gaussian distributions have the same mean. In contrast, non-parametric tests, in general,
pose far fewer assumptions on the distributions and avoid to use any particular property of
them [53].

We next discuss the errors a statistical test makes. Statistical tests, as defined above, decide
for a given sample x, whether it stems from the Null or the Alternative hypothesis. In this
decisions there can be two types of errors. The first is that the Null hypothesis is rejected
when it is true, that is Pω ∈ N and φ(x) = 1. This error is called error of the first kind
or Type I error. The second error is when the Null hypothesis is accepted even though it is
wrong, i.e. that Pω ∈ A and φ(x) = 0. This error is called error of the second kind or Type II
error [98].

In the design of a statistical test, the test statistic is usually chosen such that the probability
of a Type I error is less than a certain value (level of significance) α. In science, customary
choices are 0.05, 0.01 or 0.001 for the level of significance, although the choice is arbitrary.
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Additionally, how strong a sample x contradicts the Null hypothesis can be of interests, that
is the smallest significance level α(X) for which N is still rejected [98]. This value is called
the p-value of the sample x. If the p-value of a sample is less than the level of significance we
say that the test for this sample or the sample is significant. The p-value for a sample can be
obtained by integrating the probability of all test statistics that have a more extreme value
than the observed statistic of the sample.

A common problem, especially in the setting of nonparametric statistics, is however, that
the distribution of a statistic under the Null hypothesis is very hard to derive or sometimes
even unknown. Therefore, computing the p-values for even simple statistics, such as for the
identity of two distributions can be challenging, as it can involve integrating over exponentially
many examples. In those cases resampling strategies have proven themselves useful. The
idea of these resampling strategies is that the observed samples (empirical distribution) are
used to approximate the underlying Null distribution for computing the p-value. This is
commonly done by subsampling, with or without replacing, from the observed samples and
then computing test statistics from these subsamples. From these a p-value can be estimated
by counting the fraction of subsampled statistics that have a more extreme value than the
observed statistics. Popular resampling strategies are jackknife [174] and bootstrapping [44].
An advantage of these methods is that they tend to give accurate estimations of the p-value.
This, however, comes at the expense of high computational cost as typically the number of
iterations needs to be large in order to approximate the empirical Null distribution and thus
being able to compute small p-values.

We now discuss an issue that is important when multiple tests are performed, e.g. testing
whether the expression of all genes is the same between two conditions. In this case, one
has to be careful when interpreting the results as the fraction of significant tests in all tests
is, by definition of the level of significance, expected to be at least as high as the significant
level α of the employed test. This can be problematic if the number of true alternatives is
not very high because the fraction of true positives in the set of all tests that for which the
Null hypothesis has been rejected is low. Therefore, the positives are not representative for
the true positives. This situation often occurs in the analysis of HTS data where the number
of measurements is very high, e.g. for analyses that try to correlate genetic variants with
gene expression changes (association studies). In association studies for example, a test is
performed for each variant and the expression of each gene, leading to billions of tests. As
often the number of true causal variants is small, this means that they are hard to detect in
many associations that are significant only by chance and have no underlying biological cause.

A solution for this problem is to introduce alternative significance measures that account
for the large number of tests that are performed (multiple testing). One of these alternative
significance measure are the familywise error rates (FWER) that are determining the proba-
bility of making one or more Type I errors in the family of test. Examples of such controls
are the Bonferroni correction [25] or Holm’s step-down procedure [71]. These methods are in
general very conservative. A less conservative significance measure is the false discovery rate
(FDR) [165]. This is the expected fraction of false discoveries in all tests, i.e. the expected
fraction of cases where the Null hypothesis was wrongly rejected. The FDR is the significance
measure that is most commonly used in cases where the number of test is large, such as in
association studies.

In order to quantify how well a statistical test can decide whether the Null hypothesis is
true or not the power of a test can be computed. The power of a test is defined to be the
probability of correctly rejecting the Null hypothesis for a given significance level α. This
measure can also be used to compare how well tests can discriminate between the Null and
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the Alternative hypothesis. A test that has a bigger power for a given α than all other tests
is called a uniformly most powerful (UMP) test for the significance level α.

An example of a UMP test is the likelihood ratio test that can be applied in cases where there
are only two alternative distributions, P0 for the Null hypothesis and P1 for the Alternative
hypothesis. This test is constructed by comparing the quotient of the likelihood P (x | N ) of
P0 and the likelihood P (x | A) of P1 given the data x using the so called likelihood ratio r(x):

r(x) :=

{
∞ if P (x | N ) = 0
P (x | A)
P (x | N ) otherwise

The likelihood-ratio measures how much more likely it is for an observation x to come from
the alternative distribution than from the Null distribution. Based on this test statistic the
test φ for significance level α can then by constructed in the following manner [127]:

φ(x) :=

{
0 if r(x) ≤ c
1 if r(x) > c

,

where c is chosen such that P (r(x) < c | N ) = α.

2.5.4. Homogeneity Tests

A fundamental question that often arises is whether two distributions are identical. To answer
this question based on samples from these two distributions only, statistical homogeneity tests
can be applied. If the class of the underlying distributions is known, (e.g. to be Gaussian),
tests like Welch’s t-test can be applied. For this setting it is often straight forward to construct
a powerful test. However, in many applications the class of distributions is unknown. For
these cases nonparametric homogeneity tests can be applied. The most prominent of these
tests is the two-sample Kolmogorov-Smirnov (K-S) test [87]. This test can be applied to test
for identity of two continuous univariate probability distributions. It determines based on the
maximal distance between the two empirical cumulative distribution functions whether the
distributions are identical. More formally, if P and Q are two distributions and CP and CQ
are their respective empirical cumulative distribution functions, then the test statistic ∆ of
the K-S-test is given by:

∆(P,Q) := sup
x∈R
|CP (x)− CQ(x)|

The test statistic ∆ measures the L∞-norm, that is the maximal distance between the two
empirical cumulative distribution functions. For two samples from the same distribution this
test statistic converges to zero almost surely as the sample size increases, whereas for samples
from different distributions the test statistics converges to a positive value almost surely. It
has been shown that the distribution of ∆ is asymptotically given by the Kolmogorov-Smirnov
distribution, which can be used to compute p-values [87].

A shortcoming of the K-S test is that it can only be applied in the case when the probability
distributions are one dimensional. An alternative to the K-S test for testing the identity of
probability distributions that can also be applied to multivariate distributions is theMaximum
Mean Discrepancy (MMD) test [26].

This test exploits the fact that differences of the expected values of a random variable on two
distributions indicate differences of the distributions. Specifically, for two distributions P and
Q on a metric space X and a function f : X → R with ‖f‖2 <∞, the difference between the
expected values of the function on P and Q

df (P,Q) := |Ex∼P [f(x)]−Ey∼Q[f(y)]|
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induces a pseudometric on the set of probability measures on X , that is a metric except that
d(P,Q) = 0 does not imply P = Q.

However, this pseudometric depends strongly on the choice of the function f : For every two
distributions P andQ that are not identical there exists a function f with ‖f‖2 <∞, such that
df (P,Q) > 0. On the other hand, for every given function f there do exist two distributions
that are not the same but yield the same expected value for that function. Therefore, the
pseudometric df (·, ·) is only of limited use as a test statistic for a statistical test.

An extension of this pseudometric is the maximum mean discrepancy. For two distributions
P and Q and a set of functions F the MMD is defined by:

MMD(F , P,Q) := sup
f∈F
|Ex∼P [f(x)]−Ey∼Q[f(y)]|

As shown in [62], a biased empirical estimate M̂MDb of the MMD for two finite samples
X = {x1, . . . , xn} drawn from P and Y = {y1, . . . , ym} drawn from Q is given by:

M̂MDb(F , P,Q) := sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(xi)−
1

m

m∑
j=1

f(yj)

∣∣∣∣∣∣
It should be noted that the MMD critically depends on the richness of F . It has been shown,
for example, in [43] that if F is the set of all continuous functions on X then P and Q are
identical if and only if MMD(F , P,Q) = 0. A stronger categorisation has shown that in a
compact metric space X , it suffices for F to be a set of functions that is dense in the set of
bounded continuous functions on X with respect to the L∞-norm, for MMD(F , ·, ·) to be a
metric [62]. For the empirical estimate M̂MD, however, the class of all real valued functions
is too large, as the MMD for all non-identical samples is non-zero [26]. This shows that for
construction of a test the class of functions F must be rich enough in order to detect all
differences but must not be too rich as otherwise M̂MD overestimated MMD.

A class of functions F that has this property can be constructed as follows: Let H be the
complete inner product space (Hilbert space) of the set of functions {f | f : X → R} on a
compact metric space X . Then if the point evaluation f 7→ f(x) for a point x ∈ X is a
linear continuous function then H is called a reproducing Kernel Hilbert Space (RKHS). In
this case, by the Riesz’s representation theorem (see e.g. [145]), there exists a function, termed
feature map, φ : f : X → R such that for each function f ∈ H, f(x) =< φ(x), f >H, where
< ·, · >H is the inner product of H. The feature map, then induces the kernel k : X ×X → R
by k(x, y) =< φ(x), φ(y) >H. If k(x, ·) is continuous and H is dense in the set of bounded
continuous functions on X with respect to the L∞-norm, H is called a universal RKHS. If
this is the case, then the unit ball F ⊂ H has the property [62]:

MMD(F , P,Q) = 0⇔ P = Q

Moreover, if F is the unit ball of a RKHS H with a kernel k then an unbiased estimator M̂MD
of MMD(F , P,Q) can be obtained by:

M̂MD
2
(F , P,Q) =

1

n(n− 1)

n∑
i 6=j

k(xi, xj) +
1

m(m− 1)

m∑
i 6=j

k(yi, yj)−
2

nm

m,n∑
i,j=1

k(xi, yj)

With this test statistic a p-value can then be computed using a bootstrapping approach.
This can be done by repeatedly sampling without replacement, sets of size n and m from
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the combined samples from both distributions {x1, . . . , xn, y1, . . . , ym}. Under the Null hy-
pothesis (P = Q), this yields two samples from the Null distribution of the maximum mean
discrepancy. Therefore, the empirical Null distribution of the MMD can be estimated by re-
peatedly sampling two samples from the Null distribution and computing their MMD. From
the empirical Null distribution the p-value can then be obtained as explained before. A re-
cent development showed that when the sample size is large an analytic approximation of the
maximum mean discrepancy Null distribution exists [62], which allows a substantial speed-up
in computation.

2.6. Machine Learning

In recent years, machine learning has become an important field in data analysis. It is a
field that is closely related to statistics but with a slightly different focus. In statistics, the
focus lies on modelling the underlying processes to then perform inference from observations.
According to Murphy [123], in contrast, the aim of machine learning is to develop methods to
automatically learn structures in data and use the uncovered pattern to predict future data
or other outcomes of interest.

In cases where complex systems with many unknown factors are studied, focusing on gener-
alisation of data rather than on understanding the data generation process typically leads to
better prediction for unseen data and identification of the important factors. When studying
biological systems for example, this allows better identification of important regulators.

In machine learning there are several distinct settings [20]. Two important of these that are
the supervised learning and the unsupervised learning setting. In supervised learning the goal
is to learn from a labelled set of observations the labels for observations where the label is
unknown. If the set of labels is finite, supervised learning is called classification. If the set
of labels is infinite, supervised learning is typically called regression. In unsupervised learning
the aim is to uncover the structure of observations. In the case when the aim is to discover
groups of similar observations in all observations, unsupervised learning is called clustering.
In the case when the aim is to estimate the distribution that generates the data, unsupervised
learning is called density estimation.

In this work, we focus on the supervised learning setting. For an overview of unsupervised and
other machine learning settings we refer to [20, 67, 124]. In the following, we first introduce
general principles of supervised learning and then discuss methods for regression.

2.6.1. General Principles of Supervised Machine Learning

In the supervised learning setting typically a set of points (x1, . . . , xn) ∈ X from a space X
(feature space) together with their respective labels (y1, . . . , yn) ∈ Y from the space of labels
Y are given. The objective is then to learn a function (predictor) f : X → Y that predicts
for a data point x ∈ X its label y ∈ Y. For the remainder of this chapter we assume that the
labels for classification are Y = {0, . . . , N} and for regression Y = R.

Intuitively, a predictor f is a good predictor if its predicted label f(x) for a point x is close
to the true label y. This can be formalised by first introducing of loss function L(f(x), y)
that assigns a cost to the discrepancy between the predicted label f(x) and the true label
y. This loss allows judging the quality of a predictor for a given data point. The loss
function is usually chosen such that the cost is a monotone increasing function of the deviation
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discrepancy between the prediction and the ground truth. An example for a loss function that
is commonly used for classification is the 0 − 1 loss If(x)=y. For regression a common losses
are the squared loss ‖f(x)−y‖22 or the more general Ld losses ‖f(x)−y‖dd , d ∈ [0,∞] that are
based on the Ld norms ‖ · ‖d. Another common loss function that can be used when there are
many outliers is the epsilon insensitive loss max(0, ‖f(x)− y‖1− ε). For a given loss function
the overall quality can then be measured by the expected loss of f , termed the risk R(f).
This risk R(f) of f can be defined as follows:

R(f) :=

∫
X×Y

L(f(x), y)p(x, y) dx dy,

where p(x, y) is the probability of seeing x with label y. An optimal predictor f∗ from a set
of potential predictors F is then characterised by

f∗ = arg minf∈F R(f)

The predictor f∗ then has the property that there exists no other predictor that has a smaller
risk. In practical applications, however, the risk of a predictor can often not be computed
as the distribution p(x, y) is usually unknown and, therefore, the optimal predictor cannot
be determined. In this case, where p(x, y) is unknown, the risk of the predictor f on the
observations Rn(f) (empirical risk) can be used as a substitute. This empirical risk can be
defined as follows:

Rn(f) :=
1

n

n∑
i=1

L(f(xi), yi).

For the empirical risk the minimiser f∗n is then given by f∗n := arg minf∈F Rn(f). Determining
the predictor f∗n is commonly performed using optimisation methods.

It is important to note, however, that the predictor f∗n with the smallest empirical risk Rn
does not necessarily need to also have a minimal risk R(f∗n). This is especially important to
consider for a function class F that is rich enough such that it is always possible to find a
predictor that would perfectly fit the data, i.e. that has empirical risk 0. This is because such
a predictor would fit on nosy data the noise (overfitting) and would therefore have, in general,
a suboptimal performance on previously unseen data [27].

To prevent overfitting, different strategies have been proposed. These strategies all have in
common that they aim to find a simple function in order to explain the data (for a detailed
motivation of this approach we refer to [27]). The first strategy is to choose a reasonably small
class of functions F that is still big enough to approximate the minimiser of the risk. This
strategy is known as empirical risk minimisation [177, 178]. Another strategy is regularisation.
Here, the idea is to minimise the regularised empirical risk Rrn instead of the risk R, which
can be defined in the following way:

Rrn(f) := Rn(f) + λΩ(f),

where λ > 0 is the strength of the regularisation and Ω(f) is a regulariser of f that gives a high
value to complex functions, e.g. the norm of f or of the parameters of f . For regularisation,
the class of functions F can be larger (e.g. the class of continuous functions) than for the
empirical risk minimisation as the complexity of the function is implicitly reduced by the
regularisation [27]. The parameter λ determines the degree of regularisation of the solution.
Determining the optimal parameter λ can be performed using cross validation. In cross
validation the best choice of λ from a set of candidates (λi)i is determined in the following
manner: First, the data are randomly split up in two sets, the training set and the test set.
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Next, for each of a set of candidates (λi)i the best predictor is determined based on the data in
the training set and its performance is subsequently assessed on the test set. This procedure
is repeated for different splits of the data into training and test sets and the aggregated
performance over all splits is finally used to determine the best λi.

In the next section, we discuss how regularisation can be applied for regression.

2.6.2. Linear Models for Regression

In the regression setting the aim is to learn a function that can predict the labels of unseen
data, i.e. has minimal risk. In the following, we assume that the observations x ∈ RN are
real valued N -dimensional vectors and that their labels y ∈ R are real valued scalars. In this
situation, learning a predictor can be achieved by minimising the regularised empirical risk
Rrn(f). In the following, we exemplify how this can be done for one of the best established
cases of regression, the linear models.

In case of linear models, the set of potential predictors F is the set of functions that are linear
in their parameters, i.e. every function f ∈ F is given by:

f(x) = α0 +
m∑
i=1

αiφi(x),

where φi, i ∈ {1, . . . ,m} are fixed functions of x (basis functions) and α0 . . . αm ∈ R are the
parameters of f . It should be noted that the functions f in linear models are in general not
linear; they are only linear when the all the basis functions φi are linear in x. An advantage of
linear models is that they include many commonly known regression problems and are widely
applicable. If, for example, φi are the functions that map a vector x to its i-th coordinate x(i),
then the linear model reduces to linear regression. In the case when φi are the functions that
map a vector x to its i-th coordinate x(i), the resulting functions f are polynomial and thus
linear models can be used for polynomial regression. Linear models can be used with different
loss functions and regularisers. In the following, we present three of the most commonly used
combinations of loss functions and regularisers: The least square regression, ridge regression
and lasso regression. To simplify the notation, we define φ0 = 1 and we introduce a vector
notation where Y = (y1, . . . , yn) is the vector of labels, Φ = (φi(xj))j,i,i∈{0,...,m},j∈{1,...,n} is
called the design matrix and A = (α0, . . . αm) is the vector of parameters.

Least square regression The case when L is the squared loss and λ = 0 (i.e. there is no
regularisation), is called least square regression. In this case the minimiser of regularised
empirical risk can be obtained by solving the following optimisation problem for the
parameter A ∈ Rm+1:

A∗ = arg minA∈Rm+1 ‖Y −ΦA‖22
For this optimisation problem an analytic solution exists:

A∗ = (ΦTΦ)−1ΦTY,

where (ΦTΦ)−1ΦT is the Moore-Penrose pseudoinverse of the design matrix Φ [20]. It
is worthwhile noting that this solution is also the maximum likelihood solution for A∗

under the assumption that there is a Gaussian noise ε ∼ N (0, σ2) on the observations,
i.e. that y = f(x) + ε [20].

Ridge regression The case where L is the squared loss, λ > 0 and the regulariser is given by
the L2 norm of the parameter vector A is called ridge regression [170]. In this case, the
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optimal parameter for the regularised regression A∗ ∈ Rm+1 can be obtained by solving
the following optimisation problem :

A∗ = arg minA∈Rm+1 ‖Y −ΦA‖22 + λ‖A‖22

For this there also exists a closed form solution. This closed form solution is given by:

A∗ = (λI + ΦTΦ)−1ΦTY,

where I is the identity matrix [20]. This solution can be interpreted as the maximum
likelihood solution of A∗ when there is a Gaussian noise on the observations and addi-
tionally a Gaussian prior N (0, 1λI) on the parameters A [20]. The ridge regression is an
example of an estimator that minimises the parameters that are not important for the
regression (shrinkage), as the regulariser forces the parameters to become small if there
is no evidence in the data that they are relevant for prediction.

Lasso regression The case where L is the quadratic loss, λ > 0 and the regulariser is given
by the L1 norm of the parameter vector A is called the lasso regression [169]. Here, the
optimal parameter of the lasso regression A∗ can be obtained by minimizing:

‖Y −ΦA‖22 + λ‖A‖1

In contrast to the previous two methods however, there does not exist a general closed
form solution for this problem. To solve this optimisation problem nonetheless, algo-
rithms such as least angle regression [45] have been proposed. Compared to the L2

regularisation, the L1 regularisation of the lasso regression leads to a sparser estimation
of A, meaning that more of the parameters αi are zero. In cases where the true model
is sparse and there is little data, lasso regression tends to perform better than ridge
regression. The lasso regression also has a probabilistic interpretation, namely that it
is the maximum likelihood solution of A∗ when there is a Laplace distribution prior on
the parameters and Gaussian noise on the observations [67].

Besides the three cases that have been presented above, linear models allow for various other
choices of loss functions, regularisations and basis functions. For an overview of established
alternative choices we refer to [20, 67, 124, 159].

2.6.3. Mixed Models

Regression models have been successfully applied in genetics where it is of interest to model
the effect of genetic variants on a phenotype in a group of individuals. This idea has first
been proposed in 1919 by Fisher [48] and since then has been further developed. From these
developments, a special class of regression models, the mixed models, have emerged as method
of choice [190].

One reason for this is that they allow modelling the effects of genetic variants and also un-
observable factors on the phenotype, e.g. unwanted batch effects or different environmental
conditions. These models also allow accounting for the correlation of phenotypes that is
caused by individuals being related to some degree (population structure), which reduces the
false positive rate [190].

A mixed model consists of three components [77]. The first component models the effects
that are assumed to be non-random (fixed effects). The second component models the effects
that are assumed to be random (random effects). This component can be used to model the
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correlation structure between the traits of the individuals, e.g. to model population structure
or batch effects. The last component is a noise model, where the noise is not correlated
between individuals. Formally, the mixed model for a quantitative phenotype Y can be
stated as:

Y = Xα+ Zβ + ε,

where X is the design matrix for the fixed effects, α is a vector with unknown regression
coefficients, Z is the design matrix of random effect, β is a vector of random effects and ε is
a vector that models the noise [77].

In order to determine the regression coefficients α and β the model can be fitted to the data.
This can be done, for example, using algorithms that iteratively fit the different components
of the data such as the EM algorithm [102].

A special case of mixed models is the Gaussian mixed model. In this case the assumption
is that both, the random effects and the noise are normally distributed, with β ∼ N (0,K)
and with ε ∼ N (0, D), where K is the covariance matrix of the random effects and D is a
diagonal covariance matrix of the noise. An advantage of the Gaussian mixed models is that
modelling the random components as a Gaussian distribution provides confidence intervals for
the predictions. For fitting the Gaussian mixed models, efficient strategies have been proposed
(see, e.g. [103]).
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3.1. Motivation

RNA-Seq experiments have non-negligible costs. Therefore, to optimally invest the resources
for sequencing, it is advisable to clearly define the objective of the investigation and design
the experiment accordingly. Several factors have emerged to be important to be taken into
account when designing experiments. Some of them affect the overall layout of the experiment
(design layout) and others the sequencing itself (sequencing parameters). In the following, we
first introduce several factors related to the design layout and then continue by discussing the
most important sequencing parameters.

An important question that affects the overall experimental design is whether the purpose
of the transcriptome sequencing is to obtain qualitative or quantitative information. The
answer to this question determines which of the different aspects are to be considered and,
consequently, different design layouts apply. When only qualitative information is needed,
replicated independent measurements (replicates) are not necessary in general. In contrast,
when information of quantitative nature is needed (e.g., to quantify gene expression), stable
estimates are important; these typically require replicates. These replicates can be created
from the same RNA sample (technical replicates) or from different samples (biological repli-
cates). Replicates also provide the means to estimate the variance of the quantifications, thus
providing the basis for further robust statistical analysis.

There are many known and unknown biases during sequencing that systematically alter the
measurements [3, 121, 143]. These typically affect the quantitative measurements to a far
larger extent than qualitative ones. Some authors (e.g. [9]) suggest categorizing these biases
into two classes, those that are induced between the random fragmentation of the RNA
and its insertion into the flow cell (batch effects) and the others that arise after this (lane
effects [110]). Factors that can induce these distortions are different experimental conditions
during sequencing, differences in the chemicals that are used, barcodes for multiplexing, but
also lane differences of the sequencers itself [65, 121, 130]. If a comparison between multiple
samples is intended, it is important to design the experiment so that the effect of these biases
on the measurements is minimised and does not in turn bias the comparison. This can be
achieved by preparing the samples in parallel and by using the same reagents. An additional
option is to use a balanced block design [9, 142]. In this design the samples are prepared
such that the samples are distributed equally across different batches and lanes to avoid
systematically different sequencing for different groups of samples. In cases, where the number
of samples is small, this can be done by splitting up libraries followed by multiplexing and
pooling libraries from different samples [9]. Finally, it is advisable to quantify the remaining
distortion and estimate the variance induced by these effects using the information from
the dispersion of the replicated measurements. As an experimental means to estimate the
distortions that are induced in the sequencing, spike-ins have been proposed [78]. These are
synthetic RNAs that can be added at a known concentration to the RNA samples. The
differences in abundance of reads that are generated from these RNAs then allows inferring
the different distortions that apply to the samples.
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Besides the aforementioned design layout of the study, also the choices of sequencing pa-
rameters in the library preparation and sequencing protocol are important and should be
considered when designing the experiment. This aspect involves identifying the fraction of
the transcriptome that is intended to be sequenced and determining how to sequence it in
order to maximise the information yield for the question of interest. The former part typi-
cally invokes establishing filtering steps and choosing the appropriate sequencing protocol. If
mRNAs should be sequenced, it is advised to select RNA molecules with a poly(A)-tail and
having an insert size between 300 and 500 bp (pers. comm. Lisa Smith). For sequencing
miRNA for example it is suggested to filter for fragments that have a length similar to the
length of miRNAs [122]. Besides these examples there are numerous other selections and
filters that were proposed (e.g. selection for 5’ or 3’ ends) which will not be discussed here.

The role of sequencing parameters in the experimental design has been studied relatively
little; to our knowledge, a systematic conclusive analysis of the effect of parameters such
as the insert site, read type and library size does not exist. Anecdotal reports on these
effects have been made in [13, 83]. In the former study ([83]) it was shown that paired-end
read information and a small insert size variability facilitates the assignments of reads to
transcripts. This was done for selected representative gene models. However, a genome-wide
analysis was not performed yet. In the latter study ([13]) the effect of the insert size on the
detection of structural variation was investigated. The authors also performed a calculation
of the minimal number of reads to be sequenced (sequencing depth) to identify a certain
fraction of expressed transcripts (transcript identification). However, the authors assumed
unrealistically that there is only one transcript per gene and did not account for the effect of
the read type. Therefore, their results on transcript identification are not conclusive.

In this chapter we will derive a probabilistic framework to model the utility of RNA-Seq
experiments for the task of the identification of expressed transcripts (transcript identification
)when the gene annotation is known, which is an important task in order to determine the
cellular state and is fundamental for understanding the regulation of RNA processing We will,
therefore, analyse the combined effect of various parameters of RNA sequencing experiments
on the information gain of this analysis.

We will also discuss how this framework can be adapted in order to optimise parameter choices
for other tasks than transcript identification. In particular, we will adapt the framework
to model differential splicing and present results on how detection of differential splicing is
influenced by different parameter choices.

Finally, we will present experimental results that highlight the benefit of parameter optimi-
sation, we will show limitations of the commonly used sequencing approach for transcript
identification and we will discuss the detection limits of differential splicing.

3.2. Methods

3.2.1. Modelling of Transcript Identification

A key advantage of high-throughput sequencing is that it provides an unbiased view on the
transcriptome. In particular, it allows identifying and quantifying the expressed transcripts,
thus revealing the biological state of the sequenced cells. This can be achieved by first iden-
tifying the transcripts to which the sequenced reads map and then counting these reads.

Uniquely mapping a sequenced read to the corresponding transcript has varying complexity
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depending on the number of isoforms of the gene from which the read originates: If a gene that
does not overlap other genes has only one isoform, it is obvious that each read that maps to
the respective transcript shows that the isoform was expressed. However, in the case of genes
with multiple isoforms, several transcripts can stem from the same genomic locus and thus
share stretches (subsequences) of the same sequence. As a consequence, even if a read maps
uniquely to a gene, it can still map to several transcripts (i.e. the mapping can be ambiguous).
In this case we can categorise the reads into three classes: (1) A read that maps to all the
other transcripts in the gene indicates the expression of the gene it originates from, but cannot
be used to draw conclusions about the transcript it stems from (uninformative reads). (2)
One that maps only to a single transcript identifies the respective transcript (unique reads).
(3) Finally, the reads that are not in any one of the previous categories are called informative
reads. An informative read on its own cannot be used to identify a transcript but there are
approaches that use all reads in order to infer the expressed transcripts (e.g. [14, 24, 173]).
For simplicity we refer to the set of positions that these reads map to in the following, as
unique, informative respectively uninformative positions. Depending on the context, we also
refer to these positions as regions.

The ability to identify transcripts depends on the number of reads that can be mapped non-
ambiguously. This number is influenced by several parameters of the read generation process,
such as the type of reads (single-end or paired-end), the insert size and the length of the reads,
as well as the on the sequencing depth.

When transcript identification is intended in an experiment then the sequencing parameters
should be chosen that yield the highest number of identified transcripts. In order to determine
the optimal parameters, we therefore propose to systematically investigate the effect of the
sequencing parameters on transcript identification. For this, we formulate a probabilistic
model of the effect of sequencing parameters on transcript identification. As only the unique
reads provide direct evidence for the expression of a specific isoform, we focus on those in our
model.

An assumption that facilitates the probabilistic modelling significantly is that the reads are
sampled independently of each other. This assumption can be justified as in a typical RNA-
Seq experiment the amount of RNA transcripts in the sample is orders of magnitudes larger
than the number of reads that are sequenced. Therefore, it is unlikely that two reads stem from
the same RNA molecule, which could introduce dependences between reads. The advantage
of this assumption is that the probability of identification of a transcript is determined by the
probability of identification by a single randomly chosen read. Therefore a strategy to model
the probability that a transcript can be identified for given parameters is:

1. Establishing the necessary and sufficient property of a read to identify a transcript

2. Computing the probability that a randomly drawn read exhibits these properties

3. Deriving the probability that a transcript can be identified using all reads of a library

We formalise the problem as follows: Let g be a gene of length L at the genomic positions
I that has the sequence S = (si)i∈I . Assume furthermore that g has T isoforms t1, . . . , tT
having length L1, . . . , LT . By definition of a gene the sequence of each transcript Sj = (si)i∈J
is a subsequence of S, that is, J ⊆ I. Then, if Nt is the number of copies of a transcript t in
the sample under investigation, t is expressed if Nt > 0. For the remainder of this chapter we
also assume that only expressed transcripts can generate reads and that all reads are correctly
mapped. Finally, to simplify the notation, we omit the index for the gene when possible. We
begin by introducing a compact representation of the set of isoforms of a gene (gene structure)
to facilitate the notation of the model.
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Gene Structure Representations

The most commonly used representation of the gene isoforms is the splice graph [68]. This
is a directed graph G = (V,E) that represents the exons of a gene and their junctions (see
Fig. 3.1 for an example). Formally, this graph is defined as follows. If (ei1, . . . , e

i
Ei

) is the
ordered list of all Ei exons etj of transcript t, then the set of splice graph vertices V is given
by:

V :=

T⋃
t=1

Et⋃
j=1

etj

and the set of its edges E by:

E :=
T⋃
t=1

Et−1⋃
j=1

(etj , e
t
j+1).

In this graph a transcript t corresponds to a path from its first exon et1 to its last exon etEt .
The splice graph has the advantage that it provides a compact representation of the exons
and their junctions. It is therefore commonly used to represent the gene structure. However,
a limitation of this representation is that the transcripts cannot be reconstructed from it as
the long distance dependencies between the exons are not contained in this representation.

Transcript 1
Transcript 2
Transcript 3
Transcript 4

Transcripts

Splice Graph

Exon 1 Exon 2 Exon 3 Exon 4 Exon 5

 11111 0000 11111 0000 11111 0000 11111 0000 11111

 11111 0000 00000 0000 11111 0000 11111 0000 11111

 11111 0000 00000 0000 11111 0000 00000 0000 11111

 11111 0000 11111 0000 11111 0000 00000 0000 11111

Transcript 1
Transcript 2
Transcript 3
Transcript 4

Matrix Representation

Figure 3.1.: Illustrated are two representations of a gene structure. Shown on top is a gene
with four transcripts and five exons (green) that are spliced together in different
combinations. Exons 1, 3 and 5 are constitutive exons whereas exons 2 and 4
are alternatively spliced. Shown in the middle is the splice graph representation
(red), where exons constitute nodes and paths between them represent their
junctions. Shown below is the matrix representation. In this representations
positions that are included in a transcript are represented by a one and the others
by zero in the row of the matrix that corresponds to the respective transcript.

For transcript identification the splice graph is therefore not rich enough. This drawback can
be resolved by the use of a matrix representation of the gene structure (see for example [24]).
For a gene g this representation is given by a {0, 1}-valued matrix Ag ∈ {0, 1}L×T , where
the entry agi,t of Ag is 1 if and only if transcript t contains position i and 0 otherwise (see
Fig. 3.1 for an example). This representation contains all the positional information of the
transcripts and reconstruction of transcripts from it is trivial. We furthermore suggest using
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the same matrix representation for the reads. A read r is represented in the same manner as
the transcript by a matrix Ar ∈ {0, 1}L×1 with non-zero entries ari at the positions where it
maps to the genome.

Single-end Reads

We begin by establishing the necessary and sufficient property for a single-end read to identify
a transcript. We then derive the probability that a randomly drawn read has these properties.
For single-end reads we have two experimental parameters. The first one is the read length
and the second one is the number of reads to be sequenced. In the following we assume that
all reads have the same length l.

In order to identify a transcript t, a read r firstly has to stem from the transcript and secondly
must not map to any other transcript than t. This can be checked, using the matrix repre-
sentations, in the following way. Let irstart and irstop be the first and the last genomic position,
respectively, where r maps to. Then r can originate from t, if and only if the representations
of the read and the transcript agree in all position, between the start and the stop of the read:

agi,t = ari , ∀i ∈ N, irstart ≤ i ≤ irstop

or equivalently if:

min
irstart≤i≤irstop

δagi,t=ari = 1, (3.1)

where δx is the identity function. This function is one if x is true and zero otherwise. We say
that a single-end read agrees with a transcript if criterion 3.1 is full filed. Furthermore, we
introduce the notation as(t, r) to denote this property for single-end reads and define it by:

as(t, r) := min
irstart≤i≤irstop

δagi,t=ari .

Therefore, as(t, r) equals one if the read r agrees with t and otherwise zero. Using this, we
can determine whether a read can identify a transcript. As this is the case if and only if t is
the only transcript that r maps to we have that

as(t, r)
T∑
t′=1

as(t′, r) = 1 (3.2)

if and only if r identifies t. This can be seen, as the left hand side of Eq.3.2 is zero if r does
not stem from t and bigger than one if it maps to another transcript beside t. To furthermore
simplify the notation, we denote the property of a single-end read r to identify t by Is(t, r).
We define Is(t, r) to be 1 if the read r identifies t and 0 otherwise.

We then use this notation to derive the probability that a randomly drawn read r can identify
the transcript t. The probability of this depends on two factors. First, the probability p(r)
that r is drawn and secondly, whether r can identify t. Therefore, the probability that t can
be identified is given by:

P (t is identified) =
∑
r∈R

Is(t, r)p(r), (3.3)

where R is the set of all possible reads that can be generated from t. If we assume that
we have an uninformative distribution where all reads are equally likely, the probability 3.3
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can explicitly be computed. In this case the probability of read starts is uniform for all
positions but the last l − 1 where it is 0 (reads of length l that start at these last positions
would exceed the transcript and thus cannot exist). The set of reads R is therefore given by
R = {r1, . . . , rLt−l+1}, where ri denotes the read that starts at position i of t. The probability
is hence given by:

P (t is identified) =

∑Lt−l+1
i=1 Is(t, ri)

Lt − l + 1
(3.4)

This formula shows that the probability of identification depends on the fraction of unique
reads that identify t. The unique regions to which these reads map are typically alterna-
tively spliced parts or exon junctions. However, these regions may not always exist and their
existence depends on the read length. For example in Fig. 3.1, the transcripts only can be
identified when the read length is greater than the exon lengths. Only then reads can exist
that can identify the two alternative splice events that are separated by the middle exon.

The computation of the probability of identification 3.4 can be further simplified. For tran-
script identification the exact position of the reads is often not necessary and it suffices to
consider with which combination of exons a read overlaps, i.e. it does not matter where in
an exon a read maps in order to identify it. Therefore, all reads that map to the same set of
exons provide the same information for transcript identification. We use this observation to
motivate a reduced matrix representation. In this representation the columns do not represent
positions but combinations of exons. This representation can be derived in the following way:

In a first step, we group together all positions between two splice sites of any transcript,
thereby, defining K regions R = {R1, . . . , RK}, where K + 1 is the number of splice sites in
the gene. Here, we use a broad definition of splice site, meaning any genomic locus where an
exon starts or ends. These newly defined regions have the property that any two positions in
a region have the same matrix representation and that there is no splice site in a region. We
then determine all combinations cr of regions from R that can be covered by a single read
r. It should be noted that this definition also applies for paired-end reads. We furthermore
define for each of the combinations cr the length lcr of cr as the number of distinct reads
that map to this combination. Finally, we define C l = {c1, . . . , cnl} to be the set of all these
combinations of regions for reads of length l, where nl is typically much smaller than the
length of the gene L. A region of C l is characterised by its property that all reads that map
to it have the same capability of identifying transcripts, i.e. either all reads that map to it
identify a transcript or all reads cannot identify it.

Using the regions from C l we can define the reduced matrix representation. This representa-
tion is given by a matrix H ∈ {0, 1}nl×T , where its entries hi,j are one if reads from transcript
j map to the region combination ci and zero otherwise. We use the same notation as(t, r) as
for the matrix representation to denote that r can stem from t. However, instead of agreeing
in all positions, then a read has to agree in all regions cr ∈ C l between its start and stop. By
using this definition, the other notations can be defined analogously as before.

We can then use the reduced matrix representation to express the probability 3.4 in a simplified
way:

P (t is identified) =

∑nl

i=1 I
s(t, ci)lci

Lt − l + 1

Here, only summation over nl terms instead of |R| is necessary and thus this provides a more
efficient way of computing the probability. Moreover, this expression also provides a more
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comprehensive characterisation of the probability and the effect of parameters. It can be seen
that the size of the exon combinations that are unique for a transcript are the determinant of
the probability of transcript identification and also how this depends on the read length l.

Paired-end Reads

Establishing the necessary and sufficient properties for paired-end reads to identify a transcript
is, due to their complex structure, slightly different than for single-end reads. We begin by
first defining the structure of paired-end reads first and then discuss the properties of them
that allow identifying transcripts.

In the paired-end sequencing protocols the RNA fragments are sequenced from both ends,
resulting in two short single-end reads of length l from the same transcript. Furthermore,
since the fragments have been filtered for their length, also their expected lengths (insert size)
Li, are known. By this we can determine the distance between the two read-ends Li − 2l. In
the case where Li = 2l read-ends are adjacent and the paired-end read becomes a single-end
read of length 2l. The sequencing protocol also allows for reads to overlap: This is the case,
when the insert size is less than 2l and the reads become a single end read of length smaller
than 2l. In the following, we denote the left and the right end of a paired-end read r with rl

respectively rr.

Both ends of a paired-end read have on their own the same properties as single-end reads
and thus can identify transcripts individually. However, beyond this, the information that
they both stem from the same transcript allows also a joint identification by both ends. For
example when one of the ends shows that the read cannot stem from a certain transcript,
we can conclude that the other cannot as well, even though it alone does not provide the
information for this conclusion. Hence, a paired-end read r agrees with a transcript t only
when both ends agree, that is as(t, rl)as(t, rr) = 1. We denote by Ip(t, r) the property of a
paired-end read r to identify a transcript t. We, therefore, have that Ip(t, r) is only zero if
both Is(t, rl) and Is(t, rr) are zero as well.

Beyond the information contained in read-ends, paired-end reads also contain information on
the distance between the ends. This information can also be exploited to identify transcripts.
This can be illustrated in the example shown in Fig. 3.1. If the two read-ends map completely
to exon 1 respectively in exon 3 and it is known that the insert size is smaller than one exon,
then it can be concluded that the read stems from a transcript that does not contain exon 2.
Otherwise, the read would have to be longer than one exon. This shows that information on
the insert size can be used to exclude further potential transcripts of origin, thus increasing
the power of identification. Formally this can be achieved in the following way: Let imin and
imax denote the minimal and maximal insert size of the insert size distribution. Then a read
r does not agree with a transcript t based on the insert size if the distance between the read
start and read end on the transcript is not compatible with imin and imax. In the following,
we denote this property with ai(t, r). This information is especially useful if the insert size
variability is small because then, the two extreme values are close and allow excluding more
potential transcripts. When the insert size distribution is large also more strict cutoffs can be
chosen for imin respectively imax. In this case, one should be aware, however, that the false
positive rate is not zero any more as true potential transcripts of origin can be rejected. We
denote the property that a read r does not agree with t, based on one of the above mentioned
properties, by ap(t, r) and defined it as:

ap(t, r) := ai(t, r)as(t, rl)as(t, rr)
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In the same manner as for single-end reads we also define the property that a paired-end read
r identifies a transcript t by:

Ip(t, r) := ap(t, r)
T∑
t′=1

ap(t′, r),

where Ip(t, r) is one if r identifies t and zero otherwise. Given the reduced matrix representa-
tion the probability of identification can be computed in the same manner as shown for-single
end reads.

Parameter analysis

Given the above characterisations of properties and probabilities for reads, we can then com-
pute the probability that we can identify a transcript with a library of reads. Furthermore,
we show how this probability depends on the sequencing depth N . As established before, the
reads can be considered independent, thus the probability of identifying transcript t with a
randomly drawn read r depends on two quantities: Firstly, the probability p(I(t, r) = 1) that
a random read r from t can be used to identify t and secondly, the probability p(r|t) of a read
r to come from isoform t in the sequenced library The latter probability, p(r|t), is a function of
the overall abundance of isoform t in the library compared to all other isoforms. Consequently,
higher expressed transcripts are generally easier to identify than lowly expressed transcripts.
We can, therefore, derive the probability of t not being identified by a random read:

P (t is not identified) = (1− p(r|t)p(I(t, r) = 1))

and thus the probability that we can identify t with N reads as:

P (t is identified|N) = 1− (1− p(r|t)p(I(t, r) = 1))N

Therefore, if we assume that all isoforms are equally likely to generate a read (i.e. p(r|·) is a
uniform distribution), then we can compute the expected number of identified transcripts Et
for library size N :

Et =
∑
g∈G

∑
tgi∈Tg

1− (1− 1

T
p(I(t, r) = 1))N , (3.5)

where Tg are the transcripts of gene g and T is the total number of isoforms in the genome.
It should be noted that we in this derivation assumed that genes are non-overlapping. When
this is not the case overlapping genes can be merged to estimate the number of expected
number of identified transcripts.

For the identification as outlined above, it was required that there was at least one read that
confirmed that a transcript was identified. In some cases, however, it can be of advantage
to have a stricter criterion. This could be an absolute criterion for the identification, such
as a certain number of reads that must confirm the transcript or a relative criterion such
as a certain percentage. In both cases, the expected number of identified transcripts with
the respective identification criterion can be computed similarly as before. We can generalise
formula 3.5 by replacing P (t is identified|N) with C(x), where C is the CDF of the binomial
distribution BN, 1

T
p(I(t,r)=1). Then C(N − y) and C(N(100 − z)) yield the expected number

of transcripts having at least y and z% of the reads that map to a transcript, respectively.
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3.2.2. Models for Identification of Differentially Spliced Genes

Another task that is frequently performed when analysing the transcriptome is the detection
of genes for which splicing changes between two libraries (differential splicing). Typically,
changes in the regulation of alternative splicing lead to production of different transcripts,
but the total number of transcribed transcripts from a gene remains constant (see Sec. 4.1
for a detailed explanation). Therefore, only the abundances of transcripts from the gene
relative to another (relative abundance) changes. Genes that are differentially spliced between
two samples can, therefore, be determined by detecting changes in the relative abundance
of transcripts between the samples. For this task various approaches have been proposed
(see Sec. 4.1). However, as for the task of transcript identification, a systematic analysis of
the effect of various parameter choices on the detection of differential splicing has not been
performed yet.

To address this issue, we adapt the framework that we have derived in Sec. 3.2.1 to the
detection of differentially spliced genes. As is outlined in detail in Sec. 4.1, this is based
on one key observation: Besides the unique reads also the informative reads can indicate a
changes in splicing of a gene. Briefly, this is because every change in the splicing leads to a
change in the relative and absolute abundance between transcripts. Thus, this can lead to a
change in the number of reads of the regions, where the transcripts of a gene are different, i.e.
the informative and unique regions. In splicing events that have a simple architecture, such
as a gene with two isoforms that only differ by one skipped exon, the informative and the
unique regions coincide. This can be different in more complex splicing patterns, such as the
one illustrated in Fig. 3.1. In this example, some changes can still be detected, even though
there does exist a unique region (e.g. whether exon 2 is skipped more often). This highlights
the value of the informative region for detection of differential splicing. In the following, to
simplify the notation, we will consider informative regions to include the unique regions. We,
therefore, propose to adapt our framework by not only considering unique regions but also
informative regions.

For the detection of changes in splicing two aspects are important: The first is the direction
of the change, that is, how are the relative abundances changing. The second aspect is the
absolute expression of the transcripts.

We begin by first investigating the direction of the change. For this, denote by xC(t) the
relative abundance of transcript t in condition C and by xC the vectors of these relative
abundances. Let furthermore H be again the reduced matrix representation with entries
hi,j for region ci and transcript j. We then call the fraction of all reads from the gene
under investigation that map to region cj , the relative abundance of the region cj . Then, a
difference in the relative abundance of transcript t between two conditions A and B, leads to a
difference in the expected relative abundance of region cj of transcript t that is proportional to
hj,t(xA(t)− xB(t)). Consequently, a difference in the relative transcript abundances between
xA and xB, leads to a difference in the expected relative abundance of region j that is
proportional to < Hj ,xA−xB >. It should be noted that the entries of the vector of relative
abundances xC sum to one. Therefore, < Hj ,xA − xB > can only be non-zero if the region
cj is an informative region. Finally, we can derive a criterion for when a direction of change
xA − xB in the relative transcript abundance can be detected. As a change in any of the
expected relative abundance of the regions indicates differential splicing, a necessary and
sufficient criterion for its detection is:

‖HT (xA − xB)‖2 > 0 (3.6)
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This shows, that changes of direction xA − xB that are in the kernel of the matrix H cannot
be detected. However, because this result holds only for the expected number of reads, 3.6 is
only a sufficient criterion for infinite sequencing depth.

For finite numbers of reads, the relative abundances are random variables and thus also the
relative abundances of the informative regions are random variables. In order to determine
whether the difference in the relative abundances of regions is significant, it is therefore best
to use statistical tests. These account for the uncertainty in the relative abundance estimates
when determining the significance of a difference.

In order to model the detection of differential splicing, we use a Poisson homogeneity test
on the informative regions of a gene. Briefly, this method assumes that the number of reads
that map to a region follows a Poisson distribution. It then tests for differences in relative
abundance for each informative region and combines the resulting p-values by Bonferroni’s
correction (see Sec. 4.2.1 for details).

Under the assumption that the reads are distributed uniformly along the transcripts the
distribution of reads along the transcript that maps to a gene g in a condition C is given
by two parameters. The distribution nCg from which the total number of reads is sampled
and the relative transcript abundances xC . The probability of detecting a change in gene g
between two sample A and B can therefore be computed by:

P (g is detected|nAg , nBg ,xA,xB, α) (3.7)

Here, α is the confidence level of the statistical test. Depending on the assumption on the
distributions of nAg and nBg , analytical solutions for the probability may exist. When this is
not the case, a Monte Carlo estimation strategy can be used to estimate the probability 3.7.
In this strategy, reads are repeatedly sampled according to the gene expression distributions,
the relative transcript abundances and the uniform distribution of the reads along the tran-
scripts. Subsequently, the probability 3.7 can be estimated by the fraction of times the test
is significant.

Finally, using the probability 3.7 the expected number of detected changes in splicing can be
computed as:

Et =
∑
g∈G

P (g is detected|xA,xB, α),

The expected number of detected changes in splicing can then be used in order to determine
optimal parameters for sequencing. It should be noted that when the choice of the statistical
test should be optimised it is important to compare the tests at the same Type I error rate.
Otherwise, a test that calls all genes significant would be the best choice.

3.3. Results and Discussion

3.3.1. Transcript Identification

We applied our probabilistic model to assess the influence of the sequencing parameters on the
identification of transcripts. We did this for two organisms with differing splicing complexity
according to their gene annotations: H. sapiens, where almost 95% of the genes have multiple
isoforms and the nematode Caenorhabditis elegans, where only about 25% have more than
one annotated isoform. To fit the models, we used the WS199/200 genome annotation for C.
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elegans and the hg19 annotation for H. sapiens. We assumed that the probability of sequencing
a read from a transcript was uniform over all transcripts and also that the probability of
reads starting at a certain position was uniform in the sense that was introduced in the model
derivation. These uninformative distributions allow for an unbiased analysis of the effect of
parameter choices. For our analysis, we also assumed that for paired-end reads the sequenced
ends were 76 bp long and that for single-end reads the reads were 152 bp long (being the
same as a paired-end reads where the read-ends were next to each other). Furthermore, we
assumed that the insert size for paired-end reads had a deviation of at most ±12.5% of the
chosen library insert size.

We first analysed how many of the 5, 718 C. elegans and 66, 654 H. sapiens transcripts of genes
with multiple isoforms can be identified with single-end reads when the sequencing depth can
be arbitrarily high. For this analysis, we assumed infinite coverage in order to obtain an
upper bound on the expected number of transcripts. Therefore, we counted the number of
transcripts, where the probability of identification, p(I(t, r) = 1) was bigger than zero for any
read r. Thereby, we found that 4, 411 (77.1%) transcripts could be identified for C. elegans
and 61, 716 (92.6%) for H. sapiens.

We then analysed the utility of different insert sizes for transcript identification using paired-
end reads. We computed the expected number of transcripts for all insert sizes from 152 to
1, 152 bp (see Fig. 3.2). We found that for C. elegans the optimal insert size was 315 bp,
which is similar to the commonly used 300 bp. With this optimal insert size, 4, 468 (78.1%)
transcripts could be identified. For H. sapiens, we found that the optimal insert size was 241
bp, which is slightly shorter than the commonly used insert size. For this optimal insert size
62, 549 (93.8%) transcripts could be identified.

Next, we analysed the minimal distance between the read ends that is necessary for transcript
identification. The cumulative distribution of the expected number of identified transcripts
for these distances is shown in Fig. 3.3. We found that among the 260 isoforms of C. elegans
that are generated from genes with more than two annotated isoforms, 260 of them can be
identified with paired-end reads that have a total insert size between 77 bp and 1, 152 bp. Out
of those, 40 (15.4%) isoforms could be detected with overlapping read ends, another 73 (28.1%)
were identifiable with libraries of insert size up to 300 bp and 111 (42.7%) isoforms required
an insert size between 300 bp and 800 bp. For H. sapiens 1, 917 isoforms of 5, 688 (33.7%)
were identifiable with overlapping paired-end reads, while 2, 037 (35.8%) were identifiable by
reads that were at most 148 bp apart. For an insert size of between 300 bp and 800 bp 1, 460
(25.7%) were identifiable.

In the previous analyses, we assumed that we had unlimited sequencing depth and that one
read suffices for transcript identification. In practice, however, it is also important how ef-
ficient detection is. We, therefore, analysed how many of the transcripts can be detected if
we required that at least 10% of the isoform reads mapped to it. When requiring this, we
found that only 2, 704 (47.3%) and 47, 608 (71.4%) transcripts are expected to be found for
C. elegans respectively H. sapiens using single-end reads. Similarly, for paired-end reads a
much lower number of transcripts can be identified efficiently. For C. elegans, only 3, 053
(53.3%) transcripts can be identified for the optimal insert size (294 bp) and 3, 782 (66.1%)
if all insert sizes would be taken. For H. sapiens, only 52, 571 (78.9%) transcripts can be
identified for the optimal insert size (288 bp) and 60, 017 (90.0%) if all insert sizes would
be taken. We observed that for both organisms the decrease in efficiency, if a sub-optimal
insert size was chosen, was more pronounced (see Fig. 3.2) compared to the previous criterion.
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Figure 3.2.: Shown is the insert size utility for C. elegans and H. sapiens using two identifi-
cation criteria. Shown in blue is the expected number of identified transcripts
with all libraries of all insert sizes up to a given insert size and in green the ex-
pected number for a given insert size. The insert size utility for our choice of four
libraries is shown in red. This figure has been adapted from our publication [158].

In this analysis, information on the approximate distance between reads was used. To elu-
cidate how much information is contained in the specific distance between the read-ends we
further computed the expected number of identified transcripts in absence of the distance
information, when using all libraries. In this scenario, the same number of transcripts as
with distance information is expected to be identified for C. elegans. For H. sapiens 57, 839
(11.4% less) were expected to be identified. Interestingly, for C. elegans 3, 635 (3.9% less)
were expected to be identified efficiently and 49, 889 (5.1% less) for H. sapiens. This suggests
that particularly for organisms with high splicing complexities, the paired-end distance is a
valuable source of information for transcript identification.

The before mentioned criterion for efficient detection required that at least 10% of the reads
identified the transcripts. However, other criteria are available, such as requiring at least a
certain number of reads to identify transcripts. To investigate how these different criteria
affect transcript identification, we computed the expected number of identified transcripts
when requiring at least 2, 5 and 10 reads as a function of the number of reads that were
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Figure 3.3.: Shown is the cumulative fraction of identifiable isoforms from genes with three or
more annotated isoforms for C. elegans (A) and H. sapiens (B). Insert sizes on
the left size of the vertical bar at 0 indicate overlapping read-ends. This figure
has been adapted from our publication [158].

mapped per transcripts (see Fig. 3.4). We found that for both, C. elegans and H. sapiens,
the expected number of identified transcripts for all required read criteria converged to the
one, where only one read was required as the number of reads increased. For the original
length criterion the information gain saturated after the first 100 reads per transcripts, but
for higher read threshold saturation did occur only at higher coverage.
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Figure 3.4.: Shown is the expected number of identified transcripts for different numbers of
required reads for transcript identification for C. elegans (A) and H. sapiens (B).

Our model shows that some transcripts can only be identified, when two distant splice events
are jointly observed by the two read ends of a read. Therefore, only reads with a specific insert
side can identify these transcripts. This implies that even with the choice of the optimal insert
size, some transcripts cannot be identified that are identifiable with a another insert size. We,
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therefore, suggest sequencing multiple insert sizes for transcript identification. To investigate
the gain of having multiple insert sizes, we computed the expected number of transcripts if
all insert sizes up to a certain insert size were to be sequenced. This allows obtaining an
upper bound on the information gain that can be achieved with multiple insert sizes (see
Fig. 3.2). We, therefore, computed the fraction of transcripts that can be identified if all
insert sizes were to be used. We found that if all insert size were taken 4, 629 (81.0%) and
65, 313 (98.0%) could be identified for C. elegans and H. sapiens respectively, showing that
additional information can be gained when all insert sizes are used. In practice, sequencing
all insert sizes separately is prohibitive because of the resources required for sequencing. Also
mixing of libraries with different insert sizes to reduce the number of sequenced libraries is
also not an option, as thereby the distance information is lost and transcripts would not be
identifiable any more based on the distance of their events. Therefore, if the aim of the study
is to get a full picture of the transcriptome, we suggest using a small subset of different insert
sizes that are uniformly distributed to approximate the selection of all inserts sizes. The effect
of such a strategy is exemplified in Fig. 3.2. For this, we have shown the effect of using four
insert sizes (215 bp, 350 bp, 475 bp and 625 bp). It can be seen that this strategy allows
identifying almost as many transcripts, as if all insert sizes were taken. This can be achieved
with only a limited increase in the sequencing effort.

To further show that these theoretical considerations are indeed of practical importance, we
generated four libraries for C. elegans with the afore mentioned insert sizes and aligned the
reads using PALMapper [75] (for details on the experimental protocol we refer to [158]). We
predicted which exon skips and intron retentions could be detected using our libraries and
we also predicted novel isoforms (for details see [158]). We found surprisingly little overlap
between the annotated exon skips and intron retentions. Only 201 of the 1, 021 (16.4%) novel
intron retentions and 343 of 973 (35.3%) of the detected exon skips were annotated. When
combining all libraries we found 993 novel transcripts. However, only 441 (44%) of these
unannotated isoforms were supported by all libraries. We also found between 49 and 58 of
the transcripts being private to only one of those libraries. This shows that multiple insert
sizes can help to obtain a more complete catalogue of expressed transcripts.

A representative example for C. elegans that further illustrates the potential of multiple insert
sizes to get a broad view on splicing is shown in Fig. 3.5. This example shows the gene mdt-28
that has five annotated isoforms. As can be seen from the coverage in Fig. 3.5(B) roughly
6.5% of the transcripts contain the longer exon 3. According to the annotation all transcripts
that contain this exon contain the short exon 7. This is not contradicted by the two libraries
with the short insert sizes. However, examining the coverage of all reads from the longer
two insert sizes that contain exon 3 and exon 7 clearly shows that the longer exons 8 and 9
were used (see Fig. 3.5(C)) in these transcripts and thus showing that the gene annotation is
incomplete.

In summary, our aim was to study the combined effects of parameter choices on the information
gain of the experiment. To achieve this, we have derived a probabilistic model of the utility
of several parameters: read type, insert size, read length and sequencing depth. We have
applied it to two organisms with distinct splicing complexity in order to show that it is
generally applicable to guide experimental design.

Our framework provides several insights when a single library is used. Firstly, we have shown
that paired-end information helps in identifying transcripts. Furthermore, we have shown
that the fraction of transcripts that can be identified depends strongly on the chosen insert
size. This is especially the case if a strict criterion (e.g. requiring at least ten reads) is used.
Furthermore, using our model we were able to determine the optimal insert sizes for both
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Figure 3.5.: Example of utility of multiple insert sizes. (A) The Wormbase gene model WB-
Gene00007024 (mdt-28) splice graph (red) and its individual transcripts (dark
green). (B) Read coverage of the gene mdt-28 from libraries with average insert
sizes of 215 and 350 bp (purple) and 475 and 625 bp (light green). (C) Reads
from the 475 and 625 bp insert libraries where one pair of the read covers exon 3
and the second read extends beyond exon 7, indicating that they must originate
from exons 8 or 9. This figure has been adapted from our publication [158].

organisms and the number of reads per transcript for saturation of the identification. We,
therefore, believe that our model provides valuable information for improving the design of
RNA-Seq experiments.

Besides this, we could show that only a subset of the identifiable isoforms can be identified
with a given selection of parameters. This was shown both in a theoretical analysis and was
also experimentally confirmed. Based on this insight, we showed that if a combination of
four libraries with different insert sizes is sequenced, then a bigger fraction of the identifiable
isoforms can be identified, thus allowing a more comprehensive view on the transcriptome.

In our model we assumed uninformative distributions for the transcript abundance and also
for the read distribution along a transcript. This has the advantage of providing an unbiased
analysis. If, however, for specific analyses, prior information on the distribution of transcript
abundances and the positional distribution of reads is available, we suggest incorporating this
in to the model in order to adapt the analysis. For estimation of the expected number of
transcripts, we suggest to use a Monte Carlo estimation using the two distributions.
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3. Experimental Design for RNA-Seq experiments

Based on our results, we suggest different read-types depending on the organism and the
identification criterion. For organisms with a low splicing complexity, we observed that the
difference in information gain between single-end and paired-end reads of the same length
is minor. For organism with a high splicing complexity such as H. sapiens, there is a larger
difference when requiring efficient identification. This suggests that for these organism paired-
end reads can provide a significant in information gain compared to single end-reads.

3.3.2. Detection of Differential Exon Usage

We applied the probabilistic framework to reveal the dependence between the power of statis-
tical tests to detect differential splicing and various parameters, namely the sequencing depth,
the fold-change and the length of splicing events. Here, we only considered single-end reads of
length 80 and considered exon skips of exons with different lengths (25 bp, 50 bp, 100 bp, 134
bp, 200 bp, 300 bp, 500 bp and 750 bp). We determined for these skipped exons the coverages
and the minimal fold changes that are necessary for detection using a Poisson homogeneity
test (see Sec. 4.2.1). For this, we tested on the number of reads in the exon and assumed that
an event can be detected if the p-value was smaller than 0.05.

25

25

25

50

50

50

100

100

100

134

134

134

134

200

200

200

200

300

300

300

300

500

500

500
500

750

750

750
750

C
ov

er
ag

e

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

5

10

15

20

25

30

Fold change

Figure 3.6.: Shown are minimal lengths of detectable splicing events of various lengths given
the average coverage and the fold change of the event. Fold changes that are on
the right side of the respective curves are detectable.

We observed that as the coverage increased the minimal fold change for detection decreased
(see Fig. 3.6). For example for an exon of 134 bp length (the average length of a C. elegans
exon) at least a coverage of 4.6 was required to detect a 2-fold change, whereas with a coverage
of 15 an 1.5-fold changes could be detected.

Furthermore, we found that changes in longer exons are easier to detect than in smaller
regions. This can be explained longer regions have, for the same coverage, more reads that
map into it than shorter regions. Therefore, as there are more observations, the statistical
power to detect a change is higher. Interestingly, for very short exons the detectability was
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still reasonable. This is because for a short exon also all the reads that only partially overlap
are informative. Therefore, the effective length of the region where informative reads can
start is almost one read length longer than the exon itself.

As discussed in detail in Sec. 4.2.3, the used Poisson-based test does not account for biological
variance. Therefore, the detection boundaries can be optimistic in cases, where the biological
variance is not negligible.

3.4. Summary

The design of an experiment has a great influence on the success of the experiment. Therefore,
careful planning of the experiment is important. In this chapter, we have presented the first
genome-wide model to systematically assess the influence of parameters such as insert size,
the read type or library size on transcript identification. For this, we have developed a
probabilistic model to compute the effect of different parameter choices. Furthermore, we
have shown that this probabilistic model is very general and can easily be adapted to model
other tasks, such as the detection of differentially spliced genes. Using our model, we were able
to determine the optimal parameter choices for transcript identification and derive guidelines
for transcript identification. We have also shown that it is necessary to sequence multiple
insert sizes in order to identify all transcripts. Finally, we were able to gain insights on the
factors that influence the detection of differential splicing. This showed the value of this
approach in order to understand the effect of various parameters and to improve the design
of RNA-Seq experiments for the questions at hand.
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4. Detection of Differential RNA Processing

4.1. Motivation

The introduction of high-throughput sequencing technologies such as RNA-Seq allowed ex-
amining the transcriptome to an unprecedented extent. The richness of RNA-Seq data has
inspired the development of many new methods in order to fully exploit the potential of this
new data. These methods have in turn led to many fundamental insights on the mechanisms
that shape the transcriptome [130].

In this chapter we focus on the approaches to analyse post-transcriptional RNA processing
(e.g., alternative splicing or 3’ cleavage) using RNA-Seq data. However, although the analysis
of RNA processing is the focus of this chapter, we find it instructive to first discuss a closely
related problem, namely the analysis of gene expression regulation. The questions and chal-
lenges that arise in each of these analyses are fundamentally similar. Nevertheless, typically
the analysis of gene regulation is less complex than the analysis of RNA processing.

Among the processes shaping the transcriptome, one that was investigated first was the reg-
ulation of gene expression (e.g. [126]). In the beginning, the main challenge was to quantify
gene expression. This required the development of strategies for read mapping. The main
challenge here was efficiency, as typically there are millions of reads to be mapped. For this
task, several approaches have been proposed, e.g. PALMapper [75] or TopHat [172]. Using
the mapped reads, the expression of a gene was then usually defined as the number of reads
that map to this gene, corrected for library size.

However, quantifying the gene expression alone only provides a steady-state view on the
transcriptome, while to understand the regulation of gene expression, one needs to study the
dynamics of the transcriptome. A natural way to study these dynamics would be to detect
genes that change upon perturbation of the environment. These genes would then allow to
identify the involved pathways and to reveal the regulatory architecture of these genes. This
motivated the development of methods to detect changes in gene expression.

For this purpose, several statistical tests have been proposed. These tests rely on the assump-
tion that the number of reads that are expected to map to a gene is a monotone function of
the expression of this gene. Therefore, changes in gene expression are indicated by read count
changes. The statistical models that have initially been proposed to detect differential gene
expression model the number of mapped reads as either a binomial distribution or one of its
limits, the Poisson distribution [110, 132].

More recently, however, it has become clear that these methods underestimate the gene expres-
sion variability. This is because these models only account for the variability in the measure-
ments due to sequencing (shot noise) and do not account for additional biological variability
of gene expression. Therefore, they tend to have higher false positive rates than estimated,
especially among highly expressed genes. Consequently, novel methods have been proposed
that account for the additional variance to remedy this shortcoming (e.g. [5, 66, 139, 140]).
Most of these methods have in common that they assume that the counts are distributed
according to a negative binomial distribution.
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4. Detection of Differential RNA Processing

Besides providing a means to understand gene expression regulation, RNA-Seq furthermore
allows to examine other processes that shape the transcriptome, such as RNA processing.
In fact, the reactions that are part of RNA processing define which isoform is produced
and thus also determine cellular transcript abundance. These abundances in turn determine
the read distribution that results from sequencing. Therefore, the read distribution of a
gene provides information on the transcripts and thereby also on the reactions involved in
the RNA processing (see Fig. 4.1 for an illustration). However, compared to the relatively
straightforward quantification of gene expression, the quantification of transcript expression
is considerably more challenging. This difficulty stems from two issues: First, the transcripts
need to be reconstructed from the reads. Second, the transcript from which a read originates
can often not be uniquely identified (see Sec. 3.2.1) and thus the original abundances need
to be inferred. To address these problems, there have been numerous methods proposed
to either quantify annotated transcripts based on existing annotations or additionally also
to reconstruct transcripts that were not yet annotated (e.g. [14, 24, 55, 63, 76, 83, 136,
173]). These methods typically achieve the deconvolution of transcript abundances by either
explicitly or implicitly assigning the reads to the transcripts. Some of these methods, such as
MISO [83] or BitSeq [55] perform a full Bayesian inference to model the uncertainties in the
read assignments.
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Figure 4.1.: Mixture of two transcripts that results from different RNA processing reactions.
On the top, the two resulting transcripts of two RNA processing reactions are
shown together with the read density one would observe if they were sequenced
separately from each other (orange and green). On the bottom, the read densities
for two mixtures of the transcripts are shown. The intensity of the reactions for
the conditions A (blue) and B (red) is different, which is reflected by the difference
of the read densities.

Similar to the development of methods to analyse gene expression, the availability of quan-
tification approaches for transcript abundance motivated methods to detect differential tran-
script abundance, in order to shed light on the underlying regulatory processes. All of these
proposed methods exploit the fact that changes in RNA processing lead to the synthesis of
different transcripts and these changes are reflected by changes in read distributions of the
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corresponding genes (see Fig. 4.1 ). Therefore, changes in RNA processing can be detected by
changes in read distribution. The observed changes in transcript abundance can be factored
into two components: Into (1) a change in relative abundance and (2) a change in gene expres-
sion. In order to analyse RNA processing, it is advantageous to investigate changes in relative
abundance. This is, because changes in RNA processing tend only to influence the relative
abundance of transcripts. In contrast changes in gene expression regulation tend to change
the overall transcript expression but not the relative transcript expression. Therefore, focus-
ing on changes in relative abundance allows analysing RNA processing without confounding
from gene expression. In the following, we will thus concentrate on the changes in relative
transcript abundance.

In order to detect changes in relative abundance and, thereby, genes with differential RNA
processing, several approaches have been proposed. These approaches can be divided into two
groups. Firstly, the group of methods to detect changes that are restricted to a certain locus
in the transcript, e.g. the skipping of an exon or the retention of an intron. For this problem,
standard statistical tests have been proposed. For example in [181], the ratio of reads that
confirmed the two different splice forms was compared, using a 2x2 contingency table and
Fisher’s exact test. More elaborate approaches that have been proposed recently additionally
also account for biological variance and other confounding factors [6]. One shortcoming of
this group of methods is, however, that only one splicing event at a time can be examined
and that they thus are restricted to the study of single events. The second group of methods
tries to detect changes in relative abundance of entire transcripts. For this approach, typically
a gene annotation is used. This has the advantage that the knowledge on the dependence
of distant splice events that is encoded in the annotation can be exploited. Typically, these
methods quantify in a first step the abundances of transcripts and in a second step use these
estimates in order to detect differential relative abundance. This approach provides a high
interpretability as the changing isoforms can be easily identified. On the other hand, there
exist several shortcomings of this approach. One is the problem that there may exist several
optimal read assignments to different transcripts and thus optimal quantifications [70, 94].
Therefore, establishing meaningful distances between quantifications is challenging. Further-
more, variability of read densities can be amplified and propagated to the quantifications,
which leads to unstable estimates (see Fig. A.3 for an instructive example). This problem
can be partially overcome by estimating confidence intervals for the quantifications, such as
by conducting a Bayesian inference using Markov Chain Monte Carlo approaches [55, 83] or
evaluating the Fisher information matrix [76]. A drawback of these methods is , however,
that they are computationally expensive and they require many assumptions in their models,
which may not always be satisfied in practical applications. Therefore, there is still a need
for robust approaches to detect differential relative transcript abundances that do not require
the challenging transcript quantification.

In principle, it is beneficial to use the gene annotation for detecting differential transcript
abundance. However, it should be kept in mind that these annotations are derived from
existing experimental results. Hence, novel previously unseen transcripts, such as expected in
splicing factor knockdown mutants or cancer, are likely not to be included in the annotation.
In these situations, a comprehensive analysis of RNA processing is therefore not possible when
relying only on the gene annotations. The critical dependence on existing annotations of many
methods is especially cumbersome with newly sequenced organisms, where an annotation is
usually of poor quality. To detect differential RNA processing in cases where the genome
annotation is missing, a solution is to first infer the transcripts (e.g. using [14, 59, 154,
163, 173]) followed by quantification and testing for differential RNA processing. However, a
complex pipeline with many assumptions is statistically hard to track and the reliability of
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the obtained predictions is unclear.

But, there are also cases in which it is not established how a meaningful annotation could be
defined (e.g. for footprinting or antisense transcription data). In this situation the approach,
to first reconstruct the annotation, then quantify and finally test, cannot be applied. An
alternative to this complex approach is to use established nonparametric statistical tests such
as the Kolmogorov-Smirnov-test (K-S-test). However, this approach typically fails to account
for the high dimensional nature of the reads and for the biological variation. Therefore, prac-
tical methods that can detect changes in RNA processing without needing a gene annotation,
are still needed.

In summary, the approaches presented above are all either not capturing complex splicing
events or solving a much more complicated task to detect differential RNA processing than
necessary. Also there is still a lack of methods that can be applied, when the gene annotation
is incomplete or missing.

In this chapter, we will propose a novel approach to directly test for differences in relative
isoform abundance change without the need to quantify the transcripts. We will present
a series of tests for these two settings. For situations when a complete gene annotation
is available, we will present a novel test (rDiff.poisson). Furthermore, we will show how
the nonparametric MMD-test can be applied for testing without gene structure. A similar
approach has recently also been taken by [157] in order to detect differential splicing and
by [153] for detecting shape changes in ChIP-Seq data sets. We will then show how our two
tests can be extended to also account for biological variance (rDiff.parametric and rDiff.mmd)
and present an extension of rDiff.mmd to increase the power for detecting differential splicing
(rDiff.nonparametric). Besides this, we will also show that rDiff.mmd can be adapted to
detect differential RNA secondary structure (sDiff). Lastly, we will present a generalisation of
rDiff.mmd for an association testing setting (rDiff.gmmd). In this chapter we will furthermore,
present an evaluation of the proposed methods on simulated and experimental data. Finally,
we will show applications of our methods to reveal regulatory mechanisms of RNA processing.

4.2. Methods

4.2.1. Detection of Differential RNA Processing with Gene Annotation

As established before, changes in the relative abundance of transcripts translate to changes
in the read distribution of a gene. Therefore, these abundance changes can be detected by
studying changes in the read distribution. For this purpose, however, not all regions of a gene
are equally informative. For example, when there are two isoforms that only differ by an exon
skip, then a change in the relative abundance will lead to a change in the expected number of
reads in that skipped exon and the neighbouring exon junction. However, in the other parts
of the gene the expected number of reads will remain unchanged. These parts of the gene are
therefore not informative for detecting a change of relative transcript abundance. In general,
the regions that reflect the changes are the informative ones, i.e. those contained in at least
one but not all transcripts (see Sec. 3.2.1). It is therefore reasonable to focus on the change in
relative abundance of these regions, for detection of differential relative transcript abundance.
Based on the contained transcripts, the informative regions can be further grouped into larger
non-contiguous regions (alternative regions), as shown in Fig. 4.2. Thereby, all positions are
grouped together that have the same directionality of change upon a change in transcript
abundance. As will be shown later, this also has the advantage that the number of regions is
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reduced, which increases the power of tests based on these regions.

Read density
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Informative regions

Figure 4.2.: Illustration of alternative regions used by our methods, rDiff.poisson and
rDiff.parametric. Shown on top is the coverage in two conditions, condition
A (blue) and condition B (red) and the exonic regions (thick black lines). Shown
below is the gene structure (green). The informative regions of this gene are
shown as coloured regions in the gene structure (light violet, light orange, light
blue and light green). Informative regions that emerge from the same transcript
combinations are shown in the same colour. The derivation of the alternative
regions is shown below. They are obtained by grouping together the informa-
tive regions with the same colouring. Differences in the read distribution of
non-alternative regions are only due to shot noise.

This distinction between different regions of genes can be used to derive statistical tests for
the detection of differential relative transcript abundance, as we will show below. This can
be done for each gene independently as follows: As the testing is carried out for each gene
g individually, we omit its index for simplicity of the notation whenever possible. Assume
that we would like to determine whether a gene g has differential relative transcript abun-
dance between two conditions A and B. Assume furthermore that Rg = {r1, . . . , rng} are
its alternative regions and that NA

r and NB
r are the number of reads that map to these re-

gions in condition A and B respectively. Assume finally that EAg and EBg is the expression of
the gene g in condition A respectively B (computed as the number of reads mapping to all
non-alternative regions).

When the biological variance is small it is plausible to assume that the number of reads
at given loci follows a Poisson distribution. We therefore assume that NA

r ∼ P(λAr ) and
NB
r ∼ P(λBr ) are distributed according to a Poisson distribution with (unknown) intensities

λAr and λBr respectively. Under these assumptions the Null hypothesis H0 for testing is then
that the ratio of the intensities equals the ratio of the gene expressions, i.e. the change in
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intensities can be explained by a changed gene expression:

H0 :
λAr
λBr

=
EA

EB

Accounting for differences in library size is hereby not necessary as both ratios are equally
affected by it. It has been established [135] that for this test conditioning on the total number
of reads observedNA

r +NB
r does not change the ratio and thus the probabilities of the observed

counts under the Null hypothesis is given by:

P (H0|NA
r , N

B
r , E

A, EB) = B
NA
r +NB

r ,
EA

EB

(NA
r )

Using this distribution the p-value pr for the alternative region r can be computed as:

pr = 2

min(NA
r ,N

B
r )∑

i=0

B
NA
r +NB

r ,
EA

EB

(i)

This testing approach is optimal in the sense that it is a uniformly most powerful test for an
alternative region [98]. For large number of reads the computation can be sped up using the
de Moivre-Laplace approximation [37] of a binomial distribution with a normal distribution:

Bn,p ≈ Nnp,np(1−p)

For this approximation, an analytic expression for the p-value can be obtained by integrating
the tails of the Gaussian distribution.

Finally, in order to obtain a p-value pg for the gene, the p-values from the alternative regions
can be combined using the Bonferroni correction [25]:

p = |Rg| min
ri∈Rg

pri

This correction provides a conservative estimate of the p-value for the gene g. It is also possible
to combine the evidence from the alternative regions using other methods such as Holm’s step-
down method [71]. In this work we will refer to this testing approach as rDiff.poisson.

4.2.2. Gene Annotation Free Detection of Differential RNA Processing

When the gene annotation is not available, parametric methods such as rDiff.poisson or
quantification-based approaches cannot be directly applied. This is because rDiff.poisson de-
pends on the annotation in order to determine the alternative regions and the quantification-
based approaches need the annotated isoform in order to assign reads to them. Another more
elegant solution in this situation is to reformulate the problem as a testing for the identity of
the compared read distributions, i.e. as homogeneity testing. As the parametrisation of the
read distributions is typically unknown, nonparametric tests such as the K-S test can be ap-
plied. However, this test has the limitation that it is only defined for one-dimensional spaces
and thus the higher dimensional structure of the reads cannot be captured. To overcome this
limitation we suggest to use the Maximum Mean Discrepancy (MMD) test (see Sec. 2.5.4) to
detect differential RNA processing. This can be done as follows.

Let again g be a gene with length lg, X the space of all reads that map to it and XA =
{xA1 , . . . , xANA} ⊆ X and XB = {xB1 , . . . , xBNB} ⊆ X be the reads mapping to g in condition A
respectively B. As discussed in Sec. 2.5.4, we need to establish a reproducing kernel Hilbert
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space (RKHS) H and a mapping φ : X → H of the reads into it. For this we choose H to be
Rlg with the Euclidean scalar product. The image φ(Xi) for a read xi is defined to be vector
the φ(xi) ∈ Rlg , where φ(xi)[j] is the j-th entry of φ(xi) such that φ(xi)[j] = 1 if xi maps to
the j-th position and 0 otherwise. Therefore, the resulting kernel k(·, ·) is the linear kernel
on the embedding defined by φ. We can then compute for each sample C ∈ {A,B} the mean
embedding:

µC =
1

NC

NC∑
i=1

φ(xi)

The test statistic D is then the distance between these means of A and B (discrepancy) in H:

D := ‖µA − µB‖2

When using the linear kernel, the mean µC is the mean coverage at each position. Therefore,
the discrepancy is the L2-norm of the difference of the two mean coverages. One advantage
of this embedding is that the discrepancy can be computed in linear time compared to the
quadratic time that is in general necessary when using other kernels. However, as the linear
kernel is not universal (in the sense defined in [164]), the mapping into the RKHS is not
injective and therefore some differences in read distributions that do not lead to changes of
the coverage cannot be detected. However, since these types of changes are rare (data not
shown) the benefit of faster computation outweighs this limitation.

The observed discrepancy between the two means alone does not allow concluding how un-
likely it is to observe it under the Null hypothesis. In order to obtain a p-value for the
observed discrepancy D we therefore perform bootstrapping. This is done by comparing D to
discrepancies from two means that are sampled from the Null hypothesis. As under the Null
hypothesis the two distributions from which the reads are drawn are the same, the mixture
of them is also the same. We therefore can sample from the union XA ∪ XB of the reads
two new samples of size NA respectively NB from the Null distribution and compute the
discrepancy Dt between the means of those two random samples. This Null discrepancy can
then be compared to D to determine whether the discrepancy between the observed samples
is bigger than the discrepancy observed by chance. This can be done T times to obtain a
stable empirical discrepancy distribution under the Null hypothesis, with which a p-value p
can be computed:

p =
1

T

T∑
i=1

δ(D ≤ Di),

where Di is the discrepancy i-th random permutation of the reads. For the pseudocode of the
algorithm see Alg. 4.1.
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Algorithm 4.1 MMD-test for read distributions
S ← 0
D ← ‖coverage(XA)− coverage(XB)‖2
X ← XA ∪XB

for i← 1, T do
Xp ← permute(X)
XA
p , X

B
p ← split(Xp, size(XA), size(XB))

D′ ← ‖coverage(XA
p )− coverage(XB

p )‖2
if D ≤ D′ then

S ← S + 1
end if

end for
p← S

T

Alternative Mean Embeddings

One of the key advantages of using MMD to test for differential RNA processing is that it
provides flexibility in how to represent reads and how to define the similarity between them.
Therefore, more expressive representations can be easily incorporated such as embeddings
that contain information on where mismatches and introns are located or the insert size for
paired-end reads. We propose the following kernels to exemplify how this can be done.

A kernel that leverages the splice information can be constructed in the following way. Assume
that the observable junctions (Ji)i∈L are enumerated by an index set L. Then we can define
an embedding φS : X → R|L| by φS(r)i = 1 if read r supports junction Ji and 0 otherwise.
This induces a positive-semi-definite kernel kS(r, r′) :=< φS(r), φS(r′) >, where < ·, · > is the
Euclidean scalar product on R|L|. This kernel has the advantage over the kernel k presented
before, that differential splicing events that cause only a small or no difference in coverage
(e.g. slightly shifted acceptor sites) can be better detected.

If paired end reads are used, it is can be of advantage to consider the insert size information
during testing (see Sec. 3.2.1) and therefore a kernel that accounts for this information is
desirable. Assume that P is the distribution of the insert sizes as obtained for example from
reads that map to genes with only one isoform or measured during library preparation. Then
a kernel that compares the distance between reads can be obtained as follows. Denote the
genomic distance between the read-ends of a read r by d(r). Then the embedding φI : X → RN

of a read r can be defined as the convolution of the empirical insert size distribution P and
the Dirac delta function δ(d(r)): φI(r)i = δ(d(r)) ∗ P . The induced kernel k(·, ·)I for this
function is then given by kI(x, y) :=< φI(r), φI(r

′) >, where < ·, · > is the Euclidean scalar
product on RN. This kernel then allows comparing the empirical insert size distribution from
the samples, while accounting for the overall variability in the insert size.

Different kernels can also be easily combined as positive linear combinations of kernels form
again a kernel. For this, we suggest to scale the kernels for each gene such that the empirical
Null distributions of the kernels have the same variance and mean in order to make them
comparable. The weighting of the individual contributions can be made prior to testing. For
this we suggest a constant weighting of the kernels as results from our preliminary studies
show that this provides better results than any using each kernel individually (see Sec. A.3.1).
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4.2.3. Extensions

For the variance of gene expression σ2total it has been established that it is composed of two
components [5, 66, 140, 141]:

σ2total = σ2shotnoise + σ2biological,

the so called shot noise σ2shotnoise that arises from the random sampling of the sequencing
procedure. This noise typically has a Poisson linear mean-variance relationship. The second
type of noise is the biological variation σ2biological. This over-dispersion, compared to a Poisson
variance, arises from variation in transcript abundance before sequencing and therefore has
a quadratic mean-variance relationship. This latter variation can be caused by cell-to-cell
variation of transcript abundances but despite the name can be also due to changes in the
experimental condition or the use of different barcodes. These two distinct types of noises
are dominant in different regimes of gene expression. The technical variation is typically
dominant for low counts, whereas the biological variation is the major source of variation for
high read counts. Since the biological variance is a phenomenon that is not restricted to gene
expression but also occurs for of transcript abundances, the read counts in alternative regions
and the coverage can also be over-dispersed. Therefore, in order to account for overdispersion
when testing for differential RNA processing it is important to estimate the variance.

The strategy to estimate the distinct variance components depends on the number of replicates
at hand. In cases where a large number of replicates is available, such as the case for association
studies, the variance can be estimated by the empirical variance within the sample. However,
in typical controlled experiments the number of replicates is much smaller. In this case the
empirical variance is not stable enough to estimate the variation. An alternative in this case
is to pool the individual estimates from multiple genes in order to obtain stable variance
estimates [5]. For this it is assumed that the variance σ2total of read counts is a function of
the mean µ number of read counts. This allows to estimate the function σ2(·) by fitting
a local polynomial throughout the empirical mean expressions and variances (µ̂g, σ̂g) of all
genes. This variance function σ2(·) can then be used to predict a stable estimate of the gene
expression variation for each gene based on the observed mean. In cases where no replicates
are at hand a workaround is to consider the second sample as a replicate when estimating
the variance function [5]. The assumption hereby is that the number of true differentially
expressed genes is small and that the rest behaves as replicate data. Then the influence
on the former genes on the variance estimation is small and the estimate variance is only
a slight overestimation of the actual biological variance. This approach therefore leads to a
conservative call off differential expression.

One of the crucial assumptions of rDiff.poisson and the MMD-test is that the biological
variation (see Sec. 2.5.2) is small. If this assumption is not fulfilled, then these tests are
oversensitive for genes that are high expressed as they underestimate their variance. Conse-
quently, we propose two extensions of these tests that account for biological variance. These
extensions work by first estimating the extra variation and then accounting for this during
testing, thus providing better-calibrated test statistics.

We first show how the biological variance can be estimated and then present the two exten-
sions. For this we follow the approach established by [5] for detection of differential gene
expression.
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4. Detection of Differential RNA Processing

Biological Variance Modelling

We propose to estimate the biological variance for each sample separately. In the following
we will assume that G denotes the set of all genes and assume that the biological sample R
for which the variance is to be estimated consists of a set of replicates r ∈ R. Furthermore,
we will assume that for each of the alternative regions j ∈ Jg of gene g, crg,j are the read
counts and that N r

g are estimations of the gene expressions. We then estimate a variance
function f(µ) = σ2total(µ), which describes the mean-variance relationship, using the replicate
information in the following way: We first compute a normalising constant srg to capture the
variation caused by changes in gene expression and library size:

srg :=
|R|N r

g∑
r′∈RN

r′
g

As we would like to detect changes in the relative abundance of transcripts and not those that
are due to a changed gene expression, we then use the derived normalising constants in order
to compute normalised counts

ĉrg,j :=
crg,j
srg

This provides counts that are comparable across replicates. Differing from the approach
presented in [5], we do not need to correct for changes of the library size separately as these
are modelled as changes in gene expression. With these normalised counts we then compute
for each region j ∈ Jg the empirical mean

µRg,j =
1

|R|
∑
r∈R

ĉrg,j

and the empirical variance

σ2
R
g,j =

1

|R| − 1

∑
r∈R

(ĉrg,j − µRg,j)2.

In the last step we perform a local regression on the tuples ((µRg,j , σ
2R
g,j)j∈Jg)g∈G in order to

estimate the variance function (see Fig. 4.3 for example). For this we use the Locfit [104]
package that is part of Chronux 2.00 (obtained from http://chronux.org), using local poly-
nomials of degree two, Mallows’s CP criterion for bandwidth selection and the and gamma
distribution as local likelihood function.

rDiff.parametric

We will now present how rDiff.poisson can be extended to also account for additional variance.
One limitation of the Poisson assumption on the read counts is that extra variance cannot be
modelled. We therefore propose to model the read counts using a negative binomial distri-
bution. This class of distributions can be seen as a generalisation of the Poisson distribution
(see Sec. 2.5.2).

In the following we assume again that we have two samples A = {A1, . . . , Au} and B =
{B1, . . . , Bv}, where u and v are the number of replicates in condition A and B, respectively.
To simplify the notation we omit again the index for the gene g whenever possible.

60

http://chronux.org
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Figure 4.3.: Example of variance function fit. Shown are the observed mean variance tuples
(light blue), the variance of the Poisson distribution (green), the sliding-average
smoothed empirical variance (purple) based on a 5 bp sliding window and the
fitted variance function (red).

Similar to the Poisson case we propose as Null hypothesis H0 that the two means of the
distributions of counts µAj and µBj are the same, when accounting for differences in gene
expression. We then can calculate the expected expression under the Null hypothesis by first
averaging the normalised read counts in both samples:

qj :=
1

|A|+ |B|
∑

r∈A∪B

crj
N r

,

where N r is the gene expression in replicate r and crj is the number of reads mapping to region
j in replicate r. Using this average we then calculated the expected number of counts µAj we
expect to see under H0:

µAj =
qj
|A|

∑
r∈A

N r

and µBj analogously. These expected values then can be used to identify the probability
distributions NBµAj ,fA(µAj ) and NBµBj ,fB(µBj ) from which the counts are drawn. For any pair
of counts (k, l) we can therefore compute the probability of observing them:

p(k, l) = NBµAj ,fA(µAj )(k) · NBµBj ,fB(µBj )(l)

This probability in turn, can be used to compute the p-value for the observed counts in region
j. For this let CAj = d 1

|A|
∑

r∈A c
r
je and CBj = d 1

|B|
∑

r∈B c
r
je be the rounded up average

number of observed reads in a region j. Denote furthermore the total read counts in region j
as Cj = CAj + CBj . Then the p-value pj of the observed counts CAj and CBj under the Null
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4. Detection of Differential RNA Processing

hypothesis H0 is given by:

pj
(
CAj , C

B
j |H0

)
=

∑
k+l=Cj

δp(k,l)≤p(CAj ,CBj )p(k, l)∑
k+l=Cj

p(k, l)

where δT is an indicator function that is 1 if T is true and 0 otherwise. Here we condition
again, as for the Poisson case, on the total number of counts observed Cj in order compute
the p-value. Finally, we combined the p-values across regions into a p-value for the gene g of
relative transcript abundance variability using the Bonferroni correction [25]:

pg = |Jg| min
j∈Jg

pj
(
CAj , C

B
j |H0

)
.

In this work we will refer to this testing approach as rDiff.parametric.

Alternatively to combining the test for all alternative regions, the information as to which
specific testing region is differentially expressed can be used directly, which is similar as the
approach taken in [6].

rDiff.mmd

The MMD test is well suited to detect differences in read distributions when the biological
variation is minor. However, despite being nonparametric it still suffers from the same over-
sensitivity for highly expressed genes as rDiff.poisson. This is again because even between
two identical cells there will be a variation and therefore the expectation discrepancy of the
sample means of two finite samples is strictly larger than zero. However, as a consequence
of the strong law of large number (e.g. [53]) the variation of the means that are drawn dur-
ing bootstrapping will tend towards zeros as the number of reads increases. Hence, also the
discrepancy between two random samples from the Null distribution will tend towards zeros
as the number of reads increases. This means that the observed discrepancy will be almost
certainly bigger than most of the discrepancies expected under the Null hypothesis if the num-
ber of reads is high. Thus, highly expressed genes will be prone to be detected as strongly
significant independent of their true difference (for an illustration see Fig. 4.4). Therefore,
accounting for extra variability during testing is crucial in order to obtain a well-calibrated
statistical test.

To achieve this we propose to correct for the excess variation during the computation of the
empirical Null distribution by sampling random samples with a realistic variance. As the
variance of the mean is a function of the subsample size, the subsample size can be chosen
such that the variance of the subsample equals the expected biological variance.

For this we first compute the variance of the subsample σ2rsubsample as a function of the sample
size n. As the drawing of a subsample is a drawing without replacement, the counts can be
well described by a hypergeometric distribution (see Sec. 2.5.2). Therefore, when drawing a
subsample of n reads from the total of N r reads the distribution of the coverage at a position
p follows a hypergeometric distribution HN (N r, nr, Crp), where Crp is the fraction of reads
covering the position p, N r is the number of reads in the sample r and nr is the size of a
subsample. Consequently, the variance σ2rsubsample of the coverage of a subsample of size nr is
given by:

σ2
r

subsample = nr
Crp
N r

N r − Crp
N r

N r − nr

N r − 1
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Figure 4.4.: Illustration of variance of the discrepancy between random samples from the Null
distribution for lowly and highly expressed genes. The density of the discrepancy
between two biological samples is shown as a dashed black curve, the one between
two random samples when not correcting for biological variance in red and when
correcting for biological variance in blue. The resulting p-value for rDiff.mmd
corresponds to the area of the grey surface, which is the expected number of
random samples that have a larger discrepancy than the observed discrepancy
between the two conditions. The density difference between random samples
converges to zero for highly expressed genes, thus leading to an unrealistically
small P-value. Drawing samples while correcting for the biological variance leads
to a better approximation and therefore to better p-value estimates.

Therefore, the variance of the read density is given by:

σ2
r

subsample-density = nr
Crp
Nr

Nr−Crp
Nr

Nr−nr
Nr−1

(nr)2

=
fr(1− fr)
N r − 1

N r − nr

nr
,

where fr :=
Crp
Nr is the fraction of reads covering position p.

After computing the dependence of the sub-sampling variance on the sample size as described
above, we next determine the sample size for which the biological variance σ2biological variance,
as estimated using a fitted variance function, equals the sub-sampling variance σ2rsubsampleat
position p. We therefore solve the following equation for nr:

σ2
r

biological variance =σ2
r

subsample-density

f(Crp)

(N r)2
=
fr(1− fr)
N r − 1

N r − nr

nr

For simplification of the notation we further define cr := fr(1−fr)
Nr−1 , which leads to the desired

sample size nr:

nr =
crfr

cr +
f(medianp(Crp))

(Nr)2
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4. Detection of Differential RNA Processing

In order to match the variances at multiple levels of the total coverage C = CA+CB we perform
this matching in 10 equally sized bins defined by the position bj , j ∈ {1, . . . , 10} where the
coverage is in the same 10% quantile of positive coverage. This matching is performed for
each of those bins and all samples r in order to obtain subsample rates nrj The new random
sample from the Null distribution can then be computed as:

µr =
10∑
j=1

∑
pCp|bj∑
pCp

1

nj

nrj∑
r=1

φ(xrσ(r)|bj),

where σ is a permutation of 1, . . . , NA + NB. We refer to the resulting statistical test as
rDiff.mmd. It should be noted that rDiff.mmd is a general test for differences in read dis-
tributions. It can therefore also be applied to other data than RNA-Seq and we show an
example of the application of this test to ribosome footprinting data in Sec. 4.3.4.

rDiff.nonparametric

The power of Diff.mmd to detect differential RNA processing can further be increased by ap-
plying contrasting, an extension that is described in the following. This extension is motivated
by the observation that the power of rDiff.mmd increases when only considering regions where
the total coverage in all samples is less than half of the maximal total coverage in the gene.
This counter-intuitive heuristic can be explained by the fact that regions that are maximally
covered tend to be contained in all transcript, as otherwise regions that are contained in more
transcripts would have a higher coverage, thus contradicting the assumption that the former
regions where maximally covered. These regions tend to be uninformative, as established in
Sec. 4.2.1, and therefore not considering them during testing decreases the noise. The risk
in this strategy is however, that changes in highly covered regions cannot be detected as
efficiently.

We therefore propose a heuristic to which we refer to as contrasting, where we exploit the
aforementioned heuristic but also consider changes in highly covered regions, by performing
a series of tests using rDiff.mmd on regions below an increasing threshold. Formally, this is
done by first applying rDiff.mmd test on the 10% of the positions that have the lowest positive
coverage, leading to a p-value p10. Next, we repeat the same procedure on the lowest 20% of
the positions that have the lowest positive coverage and so forth until we have 10 p-values,
p10, . . . , p100. These are then combined using the Bonferroni correction resulting in the final
p-value. In the following we will refer to this extension of rDiff.mmd as rDiff.nonparametric.

When the ranking of genes is important we propose to take the lexicographic order of the sorted
p-values p10, . . . , p100 in order to resolve ties. This captures also the information contained
in the other p-values besides the strongest one for tie breaking. Alternatively, also a small
quantity maxj=1,...,10 pj∗10

number of permutations+1 can be added to each p-value which has a similar effect in
practice.

4.2.4. Biases in the Detection of Differential RNA Processing

A challenge in the analysis of RNA-Seq data is that there can be systematic differences in the
probability of seeing a read from a fragment (biases) between libraries (e.g. [65, 100, 137]).
This means that fragments generate reads at a different rate in different libraries. Therefore,
transcripts that have the same abundance can have different numbers of reads, even after
correcting for library size. There are two types of biases: The ones that cause differences in
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comparisons between libraries (inter-library biases) and the ones that cause differences when
comparing read counts in a library (intra-library biases). The latter biases are typically not
of importance for detection of differential RNA processing, as they do not affect the Null
hypothesis, i.e. a gene that is not differential will also not have different read distributions.
However, inter-library biases can affect the Null hypothesis, as these biases can lead to changes
in the read distributions between libraries even though the gene is not differential. These
biases are typically caused by different barcodes or different experimental conditions but also
by differing bioinformatics pre-processing steps (e.g. different alignment approaches [46]). To
our knowledge there exist no approaches that can reliably model these biases and thus can be
used to remove the contribution of biases to quantifications. Therefore, experiments should
be designed and performed such that samples all libraries are treated in the same way in order
to minimise inter-library biases (see Sec. 3.1 for a discussion of this subject).

4.2.5. Detection of Changes in RNA Secondary Structure

Aside from RNA-Seq there exist further sequencing based assays to study other aspects of
the transcriptome. RNA secondary structure for example can be examined using sequenc-
ing protocols such as the parallel analysis of RNA structure (PARS) [84], FragSeq [175] or
ShapeSeq [107]. For PARS this is achieved by splitting the RNA sample under investigation
up into two samples. Next, the two resulting samples are treated with different structure
specific enzymes; one is treated with a nuclease that preferentially cuts single stranded RNA
(S1 nuclease) while the other one is treated with a nuclease (RNase V1) that preferentially
cuts double stranded RNA. The resulting libraries then have fragments that start where the
prevalent structure was single-stranded and double-stranded, respectively. These libraries can
then be sequenced and aligned. Finally, the prevalent local secondary structure in the tran-
scripts can be inferred by determining which of the two coverages is higher. As a quantitative
measure of this prevalence the log ratio of the coverages has been proposed (PARS score) [84].

To detect changes in secondary structure prevalence between samples an extension of the
PARS score, StrucDiff, has been suggested [180]. If V A

i and V B
i are the two double-strand

library size normalised coverages at a position i and SAi and SBi are the single stranded ones
of two conditions A and B then this score in its general form is given by:

StrucDiff :=
1

n

n∑
i=1

∣∣∣∣log2
V A
i + 5

SAi + 5
− log2

V B
i + 5

SBi + 5

∣∣∣∣ ,
where n is the length of the transcript. This score was used by [180] in order to detect
the most differential region by choosing n = 5. One of its advantages is that it is very
efficient in computation. However, major disadvantages of it are that it neither does provide
a probabilistic interpretation nor does it account for the discrete nature of the reads.

We, therefore, propose an adaptation of the MMD-test to robustly detect changes in secondary
structure that does not suffer from disadvantages of StrucDiff. Assume for this that V A and
V B are the read densities for the V1 nuclease and SA and SB the ones for the S1 nuclease for
condition A and B respectively. Furthermore, let µV A , µV B , µSA and µSB be their respective
RKHS embeddings. We then propose to measure the difference in structure using the following
measure (sDiff):

sDiff(µV A , µV B , µSA , µSB ) := ‖(µV A − µSA)− (µV B − µSB )‖H (4.1)

This measure has, similar to StrucDiff, the property that changes in the read distributions
are not considered as long as it is the same in both libraries, thus making it more robust than
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simply testing for changes in any of the four distributions. The difference to StrucDiff is that
changes that have the same difference aren’t considered whereas for StrucDiff changes that
have the same ratio aren’t considered.

Similar to MMD, sDiff can be computed using a kernel expansion (see Lemma A1 for a proof):

sDiff(µV A , µV B , µSA , µSB )2 = ‖(µV A − µSA)− (µV B − µSB )‖2H
= EvA,v′A∼V A,k(vA, v′A)− 2EvA∼V A, sA∼SAk(vA, sA)

+ EsA,s′A∼SAk(sA, s′A) + EvB ,v′B∼V Bk(vB, v′B)

− 2EvB∼V B , sB∼SBk(vB, sB) + EsB ,s′B∼SBk(sB, s′B)

+ 2[EvA∼V A, sB∼SBk(vA, sB)− EvA∼V A, vB∼V Bk(vA, vB)

− EsA∼SA, sB∼SBk(sA, sB) + EvB∼V B , sA∼SAk(vB, sA)],

where we denote by x, x′ ∼ X that x and x′ are two independent identical distributed random
variables that are distributed as X. For this test statistic an estimator ŝDiff can be obtained
analogously as for the MMD estimator (see Lemma A2). To compute the significance for a
test statistic we propose to use bootstrapping. However, differing from the computation of the
MMD p-value, we suggest permuting reads only between the samples of the same nucleases
as the Null hypothesis is that the distributions for each of the nucleases are the same and
not that all distributions have to be identical. This is thereby a statistically robust and well
calibrated estimation. In order to account for biological variance we suggest following the
approach outlined for rDiff.mmd and to estimate a variance function for each sample and
each nucleases. Realistic samples for the Null distribution can then be computed in the same
manner as described for rDiff.mmd. In the following we will refer to this approach as sDiff.

4.2.6. Association of Changes in RNA Processing

As already mentioned before, estimating the biological variance by sharing information across
genes allows stable estimation of the biological variance when the number of replicate is small.
In cases where many samples that are at hand, such as it is often the case in association
studies, alternative approaches are possible. In this case the variance estimate of each gene is
sufficiently stable and thus sharing information across genes is not necessary. This allows to
more accurately account for the individual variances of genes during testing. We here show,
how rDiff.mmd can be generalised naturally to incorporate information from a large number
of replicates to estimate biological variance for each gene individually. For this, we propose
to first restate the problem setting and then derive a model of the data generation for which
we finally outline an RKHS embedding. To simplify the notation we omit as before the index
for the gene.

In the following, we assume that we have two populations of cells or individuals X and Y .
From these populations m respectively n samples are drawn that are subsequently sequenced.
Our aim is then to determine based on the reads in all libraries whether the RNA processing
in the two populations was different.

If we assume that RNA processing of a cell can be parametrised by a parameter θ ∈ Θ (repre-
senting for example transcript abundances and other cellular characteristics) and that P and
Q are the two probability distributions on Θ that describe the two populations X and Y , then
data generation procedure can be formalised by the following generative process (see Fig. 4.5):
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Figure 4.5.: Plate diagram of genera-

tive process.

1. From the population P and Q the parame-
ters θ1, . . . , θn ∼ P and η1, . . . , ηn ∼ Q are
drawn. For simplicity, we assume that the num-
ber of parameters that are drawn are the same
for both populations. These parameters cor-
respond to the parameters of the cells in the
samples and are not observable.

2. For each of the sampled parameters, N ob-
servations (reads) are drawn (sequenced) to
create the sets of observations xi1, . . . , xiN and
yj1, . . . , y

j
N , for i, j ∈ {1, . . . , n}. We again

assume for simplicity that a constant number
of N reads is drawn for all parameters and
that the sequencing is described by the sam-
pling from a distribution S(·|θ) parametrised

by θ ∈ Θ.

We can then define an embedding in an RKHS for the model that we have defined above
in the following manner: Assume that H is a universal kernel reproducing Hilbert space
that is induced by the kernel k. Assume furthermore that µp and µq are the kernel mean
embeddings of the marginal distributions of the two populations p(x) =

∫
S(x|θ)P (θ) dθ and

q(x) =
∫
S(x|θ)Q(θ) dθ. The problem is then to test whether P = Q, based on the read

samples xi1, . . . , xim and yj , . . . , yjn, i, j ∈ {1, . . . , n}. Unfortunately, this is not possible in
general as it could be that two identical mean embeddings stem from different parameter
distributions. In this case we can only test for identity of the marginal distributions. This
can be the case if the sequencing distribution does not capture all the properties that are
determined by the parameter space, e.g. some transcripts are filtered out during the fragment
length filtering or the solution to the transcript abundance estimation has multiple solutions.
Therefore, we can only test for observable changes in the reads distribution. If, however, the
mapping from the marginal distribution to the population densities is injective, then testing
for identity of the mean embeddings is a test for the identity of the populations. We therefore
have that p = q if their maximum mean discrepancy is 0.

If we write the mean embeddings as expected values of the conditional mean embeddings µθ
for the parameter θ, then we have:

MMD[H, p, q]2 := ‖µp − µq‖2H
= ‖Eθµθ −Eηµη‖2H
= Eθ,η [〈µθ, µθ〉H + 〈µη, µη〉H − 2〈µθ, µη〉H]

= Eθ,η

[
Ex|θ
x′|θ

k(x, x′) + E y|θ
y′|η

k(y, y′)− 2Ex|θ
y|η
k(x, y)

]
(4.2)

The inner part of the bracket is also a valid kernel h(θ, η) as shown in [26]. For the inner
kernel the estimator presented in Sec. 4.2.2 can be used but also a linear time estimator ĥ(θ, η)
can be derived [62]:

ĥ(θ, η) :=
1

n2

[
n2∑
i=1

k(x2i−1, x2i) +

n2∑
i=1

k(y2i−1, y2i)−
n2∑
i=1

k(x2i−1, y2i)−
n2∑
i=1

k(x2i, y2i−1)

]
,
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where n2 := bN2 c and xi and yj are the samples from θ respectively η. This estimator
can be computed significantly faster than the originally proposed one and has a comparable
performance if the number of samples is large [62]. In the setting where many replicates are
available this can be of advantage as the runtime is only linear in the number of reads. We
therefore suggest using this estimator, when kernels other than the linear kernel are used.
The outer expectation of Eq. 4.2 can then be estimated as:

M̂MD[H, p, q]2 :=
1

n2

n∑
i,j=1

ĥ(θi, ηj) (4.3)

in order to derive a test statistic. The significance for the observed test statistic can be
computed using a two step bootstrapping approach, wherein the first bootstrapping step is
performed for the reads of pairs of replicates and then second is performed for the outer
expectation. In cases where time efficiency is of importance and the number of samples is
large, the Null distribution can be approximated by performing only the outer bootstrapping.
For the application in association studies a variation of the bootstrapping approach can be
employed to account for confounding effects such as population structure or gene expression.
This consists of not randomly assigning the replicates to the samples but to assign them
according to randomly selected variants, i.e. to assign all replicates to the sample that have
the same allele at a given randomly selected variant.

Preliminary experiments have shown that differential gene expression is a major confounding
factor when testing for differential RNA processing in an association study setting (data not
shown). We therefore suggest to account for confounding gene expression by matching the
gene expression between the replicates comparable. This can be done by subsampling reads
from replicates where the gene expression is high in order to obtain samples with a similar
number of reads per gene in all libraries. For this number, we suggest the minimal median gene
expression in both samples. In the following, we will refer to the generalisation of rDiff.mmd
that is outlined above as rDiff.gmmd.

4.2.7. Data Simulation

A systematic evaluation of methods to detect differential RNA processing requires a large
number of genes that have been experimentally validated. The state-of-the-art validation
technique for this is RT-qPCR. This technique, however, only allows validating a few dozens
of genes with reasonable resources, which falls short of the requirements for robust evaluation.
In order to assess our methods on a dataset for which the ground truth is known, we therefore
simulated data. We designed the simulation strategy such that many key properties of realistic
datasets were reflected. The insights we obtained are therefore transferable to experimental
datasets for which no ground truth is known.

Differential Relative Transcript Abundance

To assess methods to detect differential alternative splicing we simulated reads. We did this
for all 5, 875 mRNA coding genes with multiple annotated isoforms of A. thaliana using the
TAIR10 genome annotation. In order to evaluate the performance for different strengths of
biological variation we simulated two datasets: One for low and the other one for a large
biological variance. For each of these datasets, we simulated two samples (referred to as A
and B in the following) consisting of two replicates. For a realistic simulation of the datasets
we proceeded in the following way:
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First, we measured gene expression and transcript variability on a real dataset that we have
generated (see Sec. 4.2.8). For gene expression, this was done by counting the number of reads
in the non-informative regions of all genes. We obtained two estimates, one from seedlings
grown with 0 h light exposition and the other from seedlings grown with 1 h light exposition.
The transcript variability was estimated from the read counts in alternative regions. In
order to study the effect of different strengths of biological variance on the performance of
methods to detect differential RNA processing we obtained two variability estimates: One for
when biological variability is small such as for individuals grown in a laboratory where the
environment and the sample preparation time point is controlled. For this we used the two
seedlings grown with 0 h light exposure. The second estimate was obtained from a sample
with 0 h light exposure and one from a sample that was exposed to light for 1 h. These were
considered as replicates in order to mimic uncontrolled environments and collection, such as
it is the case for studies involving H. sapiens.

Second, we determined the transcript abundances for both samples of the two settings as
follows. We began by choosing the pairs of gene expression for both samples from the empirical
distributions. We then sampled for each gene g and each transcript tj ∈ {t1, . . . , tTg}, where
Tg is the number of transcripts of gene g, relative transcript abundances e ∈ [0, 1] from a
uniform distribution and normalised them to sum to one. These relative transcript abundances
provided the basis for the generation of the data for two samples. For half of the genes, we
then perturbed the relative transcript abundance. This was done by first choosing for both
samples a vector vA,Bj ∈ [−0.5, 0.5]k that determined the directions of change and the strength
of the change cj ∈ [0, 1]. Both the strength and the change vector were drawn from uniform
distributions in the respective spaces. For the sample A we perturbed ej by adding cvAj to it
and for the gene in sample B by adding cvBj to it. If any eji was negative we set it to zero and if
all eji were negative we repeated the procedure above until we obtained valid relative transcript
abundances. The final relative transcript abundances for the samples were obtained by again
normalising the transcript abundances to sum to one. From those relative abundances we
calculated the mean transcript abundances by multiplying the relative transcript abundances
with the gene expressions.

Third, we sampled the transcript abundances for each replicate. This was done such that
the resulting read counts followed a negative binomial distribution that was in accordance
with the estimated biological variances. This was achieved by first sampling the transcript
abundances from the gamma distribution:

Γ e2
j

f(ej)−ej
,
f(ej)−ej

ej

These abundances were then used to simulate the Poisson noise generating read simulation
thus leading to negative binomial distributed reads [23]. The read generation was performed
with FluxSimulator [63] (build 20100611), a tool that simulates all the sample preparation
and sequencing steps, thus providing realistic simulated dataset. For the read simulation, we
used the default parameters to simulate 26 million reads of length 70 bp per replicate.

Differential Relative Transcript Abundance for Association

To simulate RNA-Seq data for an association testing setting, we followed an approach similar
as in Sec. 4.2.7. First, we randomly selected 500 genes together with their transcript abun-
dance from the genes used for the previous simulation (see Sec. 4.2.7), such that 250 genes
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were differential. These genes were subsequently used to simulate the replicates for each sam-
ple. For this we sampled for each of the two conditions 100 replicates. Differing from the
strategy described above we used for each gene g a different variance function for the variance
of the transcript abundance:

σ = µ+ agµ
2,

where ag was sampled for each gene g from the uniform distribution on [0, 0.1]. This gener-
alisation poses fewer assumptions on the biological variance of genes than the variance model
that was previously assumed (see Sec. 4.2.3). It allows genes to have distinct levels of stability
in expression that are independent of the strength of expression. We finally simulated reads
using FluxSimulator [63] (build 20100611) to generate 1 million reads of length 70 bp per
replicate.

Differential Secondary Structure Prevalence

As for the assessment of differential alternative splicing events to our knowledge there does
not exist a gold-standard dataset to evaluate detection of differential secondary structures
from high-throughput sequencing data. We therefore simulated a dataset that allows this
analysis. For this dataset we assumed that the biological variance is negligible and that the
nucleases have no sequence specificity. We generated data for 1000 randomly selected genes
from the TAIR10 genome annotation of A. thaliana. For each of these genes, we predicted
for one of its transcripts the ten secondary structures with the lowest free energy. This
was done using the RNAfold package v.1.6 [106]. The base abundance of the ten distinct
secondary structures was then sampled from the uniform distribution between 0 and 1, 000.
To simulate the cleavage by the single-strand-cleaving nuclease we sampled for each position
in the transcript the read-starts for each secondary structure from a Poisson distribution.
For this, we used a Poisson distribution that had intensity 0 if the respective position of the
transcript was double-stranded and otherwise had an intensity of the base abundance of the
structure divided by the transcript length. We simulated the read-starts for the double-strand-
cleaving nuclease analogously. Finally, we joined the read-starts for all secondary structures
of a gene and computed reads of length 30 from the read-starts.

4.2.8. Preparation of Sequencing Data

To demonstrate that our methods are also generally applicable in practical situations and
provide novel insights, we applied them to real datasets from different species. These were
obtained and prepared as described below.

A. thaliana

We used libraries that were generated from A. thaliana seedlings that were grown in darkness
and then exposed to white light for 0, 1 and 6 hours. We furthermore used an additional
library from a cry1cry2 light receptor knockdown seedling grown under the same conditions
as the 0 h wild type (wt) seedling. These libraries were sequenced with Illumina GAIIx
platform that provided per lane on average ∼ 3.9 × 107 reads of length 80 bp. The libraries
were then aligned to the A. thaliana genome using the TAIR10 genome annotation. For details
we refer to our publication [42].
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D. melanogaster

We furthermore used an existing dataset [28] from D. melanogaster consisting of two samples,
one wild type and the other from Pasilla knockdown mutants, each containing two paired-end
libraries and a single-end library. We downloaded the paired-end read libraries (GSM461177,
GSM461178, GSM461180, GSM461181) from the NCBI Gene Expression Omnibus. In order
to get a small variance in the read counts, we refrained from using the single end-library.
Before aligning the reads we trimmed them down from the end to have a common length of
36. We then aligned the reads using TopHat v.1.3.1 [172] and the following parameters:
–segment-length 18
–max-insertion-length 0
–max-deletion-length 0
-g 10
For this we used Flybase, r5.22 genome annotation. After the alignment we treated the both
ends of the read-pairs as independent single-end reads for a simplification of the analysis.

H. sapiens

We also used a third dataset consisting of two samples. A sample from H. sapiensmesenchymal
stem cells and a sample from patient derived Ewing’s sarcoma cells (pers. comm. Ahmet
Zehir). Each sample consisted of three replicates. For these replicates ∼ 4.0× 107 paired-end
reads of length 50 bp per read-end were generated. We performed a variant aware alignment
for the reads using PALMapper [75] against the human hg19 genome and allowed for at most
1 mismatch. Finally, we filtered out reads that mapped optimally to more than one locus.
During the alignment we allowed for at most one mismatch and one insertion or deletion
(indel). Doing this, we obtained between 3.0× 107 reads and 3.8× 107 read-pairs.

4.2.9. Application of Methods

Unless not mentioned otherwise, we applied all methods using their default parameters.

Application to simulated data

We applied MISO [83], CuffDiff [173] and our methods to the simulated and experimental A.
thaliana datasets described above as follows.

rDiff.parametric We used all reads that were in concordance with the gene annotation for
differential testing. We estimated the variance function on the counts in the alternative
regions. For the analysis of the A. thaliana dataset we estimated one variance function using
the two samples from 0 h and used this variance function for all samples.

rDiff.poisson We applied rDiff.poisson in the same way as rDiff.parametric except that the
replicates were merged instead of used separately.

rDiff.nonparametric We estimated the variance function for rDiff.nonparametric by consid-
ering each nucleotide as an alternative region and estimating the gene expression using all
reads that mapped to the gene. To speed up the computation on the real data we used at
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most 10, 000 reads per gene. If more were present we sub-sampled down to that number. For
the computation of the p-values we performed 1, 000 permutations. Furthermore, we added
to each p-value a small quantity maxj=1,...,10 pj

number of permutations+1 in order to resolve ties for genes that
have the same p-value. This value is always smaller then the absolute difference between two
of the untied p-values and therefore does not affect the ranking of genes that have different
p-values

rDiff.mmd We applied rDiff.mmd in the same way as rDiff.nonparametric.

CuffDiff For all experiments we used CuffDiff from cufflinks-1.3.0 for differential testing.
Contrary to the observation in [55] that version 0.9.3 performed better than version 1.3.0
in identifying differential transcript expression, we found that version 0.9.3 performed worse
than version 1.3.0 for identifying differential relative transcript expression. The experiments
were carried out using the default parameters except for the following ones:
–num-bootstrap-samples 200
–num-importance-samples 10000
–max-mle-iterations 50000
For these, we increased the default values to get better estimated for the p-values. The re-
sulting p-values of the computation for each transcript were then combined using Bonferroni’s
correction to obtain a p-value per gene.

MISO We used the MISO [83] package that we downloaded from the MISO website on
8/6/2011. For all our experiments we used the default parameters. The ranking of the
genes was computed with the Bayes factor as ranking criterion. As MISO cannot account for
replicates we merged all the replicates into one sample.

rDiff.gmmd For computation of the significance we performed bootstrapping only for the
outer expectation (see Sec. 4.2.6). For this bootstrapping we performed 10, 000 permutations.
In order to reduce the confounding effect of gene expression, we sampled in each replicates
the number of reads down to the minimal median gene expression in both samples.

sDiff For the computation of the p-values we performed 1, 000 permutations.

Detecting Differential Translation

rDiff.mmd Instead of the default 1, 000 permutations during bootstrapping we performed
10, 000 permutations to increase the detection power.

4.3. Results and Discussion

4.3.1. Detection of Differential Alternative Splicing

Evaluation on Synthetic Data

We assessed the performance of our methods on the two simulated datasets with distinct
strengths of biological variance (see Sec. 4.2.7). Furthermore, we also compared our methods
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to MISO [83] and CuffDiff [173], two state-of-the-art quantification-based methods. For a de-
tailed description how the methods were applied see Sec. 4.2.9. We did not include FDM [157]
in this comparison as preliminary results (data not shown) showed that it performed consid-
erably worse than all other methods.

In a first experiment we investigated the performance of the different methods to detect dif-
ferential RNA processing. We computed for each method the receiver operator characteristic
(ROC) using the p-values respectively the Bayes factor for MISO, as ranking criterion. This
curve shows the true positive rate (TPR) for given false positive rates (FPR). As typically
the predictions for a low false positive rate (the genes where predictions are reliable), are
of interest in experiments, we compared the TPRs for genes with an FPR smaller than 0.2
(see Fig. 4.6). We quantified the performance using the area under the ROC curve (auROC)
between 0 and 0.2, which will be denoted by auROC20 in the remainder of this work.
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Figure 4.6.: ROC curves for rDiff, CuffDiff and Miso. Shown on the left are the ROC curves
in the interval [0, 0.2] for the simulated dataset with small biological variance
and on the right for the simulated dataset with the larger biological variance.

These resulting auROC20 values are shown in Tab. 4.1. Overall, we found that the per-
formances of all methods decreased dramatically for the dataset with the bigger biological
variance compared to those with the small biological variance. This was expected as the bio-
logical variance induces noise and therefore changes are harder to detect when the biological
variance increases. In the dataset with the smaller variance we found that the best two meth-
ods were rDiff.parametric and, with a comparable performance, rDiff.poisson, followed by
MISO, CuffDiff and rDiff.nonparametric. On this dataset rDiff.mmd performed considerably
worse than the other methods, showing the effectiveness of contrasting for detection of differ-
entially processed RNA. In the second dataset rDiff.parametric showed the best performance.
However, in this dataset the performance of rDiff.poisson was, although being still second
best, inferior to the one of rDiff.parametric. Differing, from the previous dataset the third
best method was rDiff.nonparametric, which performed better than the quantification-based
methods when the biological variance was large. The next best method was MISO followed by
rDiff.mmd and CuffDiff. In summary, we saw a decrease in performance of the methods that
cannot account for biological variance, especially for the most significant predictions, reflected
by the lower TPRs for small FPRs. This highlights the importance to account for biological
variance during testing. To our surprise, also CuffDiff appeared to suffer more strongly from
the increased biological variance than MISO even though accounting for it. We believe that
this is due to unsatisfied modelling assumptions in the estimation of the variance.
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The comparison on the two datasets showed that testing without prior quantification is indeed
a promising approach as on both datasets rDiff.parametric outperformed all other methods.
Furthermore, the performance of rDiff.nonparametric was comparable to MISO and CuffDiff
even though not needing the gene annotation. This observation also holds when considering
all FPRs (see Tab. A.1 and Fig. A.1), showing that testing without gene annotation is feasible.
We also excluded the possibility that the difference in performance is due to differential gene
expression. For this we sampled for each gene the same number of reads in each replicate,
thus removing differential gene expression. This, however, did not change the qualitative
performance (data not shown).

Table 4.1.: Area under the ROC-curve in the interval [0, 0.2] (auROC20) for rDiff, CuffDiff
and MISO. The comparison is shown on the two simulated datasets with small
and large biological variance (see Sec. 4.2.7).

Method auROC20

small biological variance large biological variance

rDiff.mmd 0.062 0.054

rDiff.nonparametric 0.077 0.073

rDiff.parametric 0.101 0.093

rDiff.poisson 0.099 0.082

CuffDiff 0.085 0.055

MISO 0.089 0.061

A second, often neglected aspect of the performance of statistical tests is their calibration. This
describes whether the predicted significance of a test is reflecting the true (usually unknown)
significance. To study the calibration we, therefore, computed the false discovery rate (FDR)
and compared it to the empirical FDR (see Fig. 4.7). We computed the FDR as described
in [165] and the empirical FDR as the fraction of genes below a certain threshold that are
false positives. As MISO only provides the Bayes factor and no p-value, we could not compute
the FDR for MISO. When comparing the FDR and the empirical FDR of the methods, we
observed that the distance to the diagonal was much lower for high biological variance than
for a low biological variance. For the low variance dataset we found that rDiff.mmd was
closest to the diagonal, indicating a very good calibration. The next two methods closest to
the diagonal were rDiff.parametric, being too conservative, and rDiff.nonparametric that was
too optimistic. The two remaining methods were both overly optimistic with CuffDiff having
an empirical FDR of 0.08 while in the limit of the true FDR going to 0. This again indicates a
tendency for false positives. For the high variance dataset rDiff.parametric exhibited the best
calibration, even though being to conservative. Except for rDiff.nonparametric, the empirical
FDR did not converge to 0 as the FDR did. On this dataset, the empirical FDR of CuffDiff and
rDiff.poisson both converged to about 0.2 as the FDR decreased. This shows that even under
the most significant genes predicted by these methods a large fraction are false positives, when
the biological variance is large. Overall, these results shows that our methods were better
calibrated than existing methods. The calibration of all methods, however, has still room for
improvement and further research on the calibration of tests is needed.
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Figure 4.7.: Calibration of rDiff, CuffDiff and MISO. Shown on the left is a comparison of
the empirical FDR with the predicted FDR in the interval [0, 0.2] for the dataset
with small biological variance. On the right this is shown for the dataset with
the larger biological variance. The grey dashed line indicates the diagonal.

Evaluation on Experimental Data

To show that our proposed methods also perform well on experimental data, we evaluated
their performance to detect differential splicing on a dataset from A. thaliana and one from
D. melanogaster.

Evaluation on A. thaliana We first applied rDiff.parametric, rDiff.nonparametric as well
as CuffDiff to a dataset from A. thaliana (see Sec. 4.2.8). Briefly, this dataset consisted of
samples derived from A. thaliana seedlings that were grown in darkness and were exposed to
0 h, 1 h resp. 6 h of light. For the sample with 0 h light exposure a replicate was available.
Preliminary analyses indicated that rDiff.poisson showed a strong oversensitivity for highly
expressed genes as shown in Fig. 4.8. We therefore excluded it from the remaining analyses.
We also did not consider rDiff.mmd since rDiff.nonparametric showed in the analysis of the
artificial data to have a much better performance for detection of differential splicing (see
Sec. 4.3.1).

In a first experiment, we assessed how the predicted significance of the events relates to the
actual relative fold change (see Fig. 4.9). For this, we measured the relative fold change
between conditions using RT-qPCR. We did this for 5 randomly chosen genes that were
predicted to be significant from rDiff.nonparametric between the samples for all three time
points (for details on the procedure we refer to our publication [42]). We then computed the
correlation ρ for the log p-values and the fold change. In order to obtain a comparison that is
robust to extreme values and monotone transformations we used Spearman’s rank correlation.
We found that rDiff.parametric had the highest correlation with the determined strength of
change (ρ = 0.84) and that both rDiff.nonparametric and CuffDiff had a similar correlation
of ρ = 0.66 resp. ρ = 0.68. This was well in line with the observation on the synthetic
dataset that rDiff.parametric is the most accurate method in detecting differential alternative
splicing and that rDiff.nonparametric and CuffDiff have a comparable similar performance.
This results also show that the genes detected by our methods are indeed differentially spliced.
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Figure 4.8.: Shown on top (A) is the read density for the gene AT1G70830 in 0 h (orange)
and 1 h (light green) together with its splice graph (red) and transcripts (dark
green). This gene is predicted to be highly significant between 0 h and 1 h by
rDiff.poisson (p ≤ 2.67× 10−7) but not by rDiff.parametric (p ≤ 0.897). Shown
below (B) is the log-mean expression of the top genes with the lowest p-value for
rDiff.poisson (light blue) and rDiff.parametric (dark blue) between wt 0 h and
wt 6 h. The x-axis shows the number of genes that were used to compute the
log-mean.

In a second experiment, we investigated how many genes were detected as differentially pro-
cessed between the three conditions using rDiff.parametric and rDiff.nonparametric. We fur-
thermore examined the overlap between the significant genes found by both methods (see
Tab. 4.2). For this, we computed from the p-values of both methods the FDR as described
in [165] and called genes significant differential if their FDR was smaller than 0.1. We ob-
served that both methods found most changes between 0 h and 6 h of light exposure, which
is expected, since the difference in experimental conditions were largest for this comparison.
Furthermore, we observed that rDiff.nonparametric detected substantially more genes than
rDiff.parametric but that the overlap between their predictions was modest. For the genes
detected by rDiff.parametric, this can be explained as rDiff.parametric is more powerful than
the nonparametric test and therefore, more of the events that are tested can be detected. This
was confirmed by the lower p-values of rDiff.parametric compared to rDiff.nonparametric for
the validated genes (see Fig. 4.9). Further, in order to understand, why there were many
genes detected only using rDiff.nonparametric, we examined these. We found that ∼ 60% of
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Figure 4.9.: Plot of the estimated -log p-values against the measured log fold change for
rDiff.parametric (blue), rDiff.nonparametric (red) and CuffDiff (green). The
Spearman’s correlation coefficient ρ for the methods is given in the legend.

the genes had only one annotated isoform, which explains a large fraction of the difference
between the numbers of detected genes. Visual inspection of these events suggested that they
are truly unannotated events (see Fig. 4.11 for examples) that are not tested for by methods
that rely on the gene annotation. This underlines the value of rDiff.nonparametric to get an
unbiased view on changes in alternative splicing and in situations were the gene annotation
is incomplete.

Table 4.2.: Overlap in detected genes (FDR ≤ 0.1) between methods for 0 h vs. 1 h / 0 h vs.
6 h/ 1 h vs. 6 h. The events written in bold are the number of events predicted
by the respective methods.

Method rDiff.parametric rDiff.nonparametric

rDiff.parametric 39 / 80 / 54

rDiff.nonparametric 18 / 29 / 16 213 / 219 / 138

To further analyse the nature of the changes, we classified where in the gene the unannotated
events occurred. For this, we computed for all of the significant genes the window of 100 bp
that contributed the most to the test statistic of rDiff.nonparametric and then determined
into what type of region this window bp fell (see Tab. 4.3). We found that most of the changes
resided in intronic regions. However, we did not find any evidence for a time point specific
enrichment of certain class of events between different comparisons (p = 1 using Fisher’s exact
test and Bonferroni correction). When normalising the counts by the length of the sequence,
we found that the highest fraction of reads was still in the intronic regions but almost the
same fraction could be observed in 5’UTR and in the 3’UTR (see Fig. 4.10).
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Table 4.3.: Categorization of the regions that contained the most differential 100 bp detected
by rDiff.nonparametric (FDR≤ 0.1). This is shown for wild type (wt) for all three
comparisons between the three samples.

Event 0 h vs 1 h 0 h vs 6 h 1 h vs 6 h

Intronic 118 126 77
regions

5’ UTR 30 36 23

3’ UTR 46 47 23

First exon 29 22 13

Last exon 30 32 13

Other exons 18 10 14

1000 bp

5ʼ UTR
First Exon

Other exons

Intronic region

3ʼ UTR
Last exon

30

29 

18

118

46

30

Figure 4.10.: Shown is the number of the most differential 100 bp detected by
rDiff.nonparametric (FDR≤ 0.1) between 0 h and 1 h. The width of the bars
indicates the average length of these regions in all genes. The area of the bars is
proportional to the number of hits and the height is proportional to detection
intensity.
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Figure 4.11.: Examples of gene AT4G03280 (A) and gene AT4G39260 (B) detected by
rDiff.nonparametric between 0 h and 6 h. Shown are the read densities for
the two respective conditions in orange resp. purple and the gene structures in
green. The grey area indicates the regions where the change was detected and
the black bar shows the window of 100 bp length that contributed the most to
the test statistic of rDiff.nonparametric.
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Evaluation on D. melanogaster We also evaluated the performance of rDiff.parametric and
rDiff.nonparametric on a publicly available dataset from D. melanogaster [28] (see Sec. 4.2.8).
In a previous study for this dataset, 323 genes were found to be differentially alternatively
spliced and 16 of these events were further validated [28]. In this study, these genes were
detected using a Fisher’s exact test based testing strategy, similar to the one used in [182].
When applying rDiff.parametric and rDiff.nonparametric, we detected 71 respectively 278
genes with differential relative isoform expression (FDR≤ 0.1) on this dataset. Next, we
determined the fraction of the validated events from [28] that we could detect. To account
for the different calibrations of the methods, we also considered the top 323 genes of our
predictions. The 323 most significant genes from rDiff.parametric contained 12 of the validated
genes and 11 for rDiff.nonparametric. For three of the remaining validated genes the read
coverage was too low to make statistical statements, due to our string alignment strategy.
This large fraction of detected validated genes that could be detected, again shows that our
methods allow robust detection of differential RNA processing.

4.3.2. Detecting Changes in Secondary Structure

We evaluated the performance of sDiff on a simulated dataset (see Sec. 4.2.7). In order to
put the performance of sDiff into perspective, we compared it to two alternative approaches.
The first is the straightforward approach of applying rDiff.mmd to the sets of reads of the two
nucleases and then adding the two rDiff.mmd test statistics. We refer to this approach here as
rDiff.mmd. The second approach that we compared against was the general form of StrucDiff
(see Sec. 4.2.5). As we did not simulate biological variation in the dataset, we did not perform
subsampling correction of rDiff.mmd and sDiff to account for biological variance. To compare
the performance of these three approaches, we computed their auROC (see Fig. 4.12 (A)). We
found that sDiff had the highest auROC (0.74) followed by rDiff.mmd (0.70). The original
StrucDiff had the lowest auROC (0.58). We believe that this low score is due to the un-tuned
pseudo count parameter in the original formulation and that optimal choice can provide better
performances.

sDiff       [auROC=0.74]
rDiff.mmd [auROC=0.70]
StrucDiff   [auROC=0.58]
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Figure 4.12.: Shown on the left is the ROC curve for sDiff (purple), rDiff.mmd (yellow) and
StructDiff (brown). The auROC for the ROC curves is given in the legend.
Shown on the right are the p-value distributions of sDiff for the non-differential
genes (green) and the differential genes (orange).
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Furthermore, we examined the sDiff p-value distribution of the differential and non-differential
genes (see Fig. 4.12 (B)). We found that for the non-differential genes the p-values appeared
uniformly distribute, showing that the test is well calibrated. The p-values of the differential
genes were clearly enriched for small values, showing further that the test is powerful in
detecting differences in secondary structure between samples. Overall, these results suggest
that sDiff is a powerful tool for detecting differential secondary structure.

4.3.3. Association of Changes in RNA Processing

To evaluate the potential of rDiff.gmmd to associate changes in RNA processing to genetic
variants, we evaluated it on simulated data (see Sec. 4.2.7). Briefly, this dataset consisted of
two samples, each having 100 replicates for 500 genes, half of which were differential. On this
dataset, we evaluated the performance of rDiff.gmmd and compared it to the performance
of rDiff.mmd in order to determine how well associations with an allele frequency of 0.5 can
be detected. Specifically, we measured the auROC of the methods, when using an increasing
number (5, 10, 20, 30, . . . , 100) of replicates per sample (sample size) (See Fig. 4.13 (A)). Al-
though the auROC estimates were slightly unstable we found that for less than 70 replicates
per sample, rDiff.mmd had consistently a higher auROC, whereas for bigger sample sizes the
opposite was true.
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Figure 4.13.: Shown on the left is the auROC of rDiff.mmd (pink) and rDiff.gmmd (brown)
for various sample sizes. Shown on the right is the median computation time
per gene for rDiff.mmd (pink) and rDiff.gmmd (brown) for different number
of replicates per samples. Shown in dashed brown is the median computation
time for the bootstrapping for rDiff.gmmd.

Besides analysing the power to detect differential genes we also examined the calibration of
the methods. For this, we compared the empirical FDR with the FDR of both methods
for a representative subset of the sample sizes (see Fig. 4.14). We observed that rDiff.mmd
consistently underestimated the FDR, whereas for rDiff.gmmd the empirical FDR was well in
accordance with the FDR, except for the smallest sample sizes. We believe that this reflects
the different variance estimation approaches of the two methods: rDiff.mmd estimates the
variance function globally, which is more stable and particularly well suited for small sample
sizes. In contrast, rDiff.gmmd estimates the variance for each gene independently, which is
not as stable for small sample sizes. This disadvantage, however, is out-weighted for larger
numbers of replicates by the ability to get more accurate estimates of the biological variance
and thus obtain a better-calibrated test statistic.
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Figure 4.14.: Shown is the comparison of the empFDR and FDR of rDiff.mmd on top and
rDiff.gmmd below. The comparison is shown for a subset (5, 10, 20, 40, 60, 80
and 100) of the sample sizes.

A critical aspect of association tests is the computation time, as typically for each gene
thousands of variants have to be tested. We, therefore, compared the median computation
time of all genes for both methods (see Fig. 4.13 (B)). For the times for rDiff.mmd we did do
not include the time needed to estimate the variance functions, which are therefore optimistic
estimates. We found that rDiff.gmmd is for 50 replicates per sample 7 times faster and for
a sample size of 100 still 3 times faster than rDiff.mmd. However, for testing the most time
consuming part is computation of the kernel matrix, which only has to be done once per gene
for rDiff.gmmd. Thus, for other tested associations only the permutation step needs to be
repeated. As can be seen in Fig. 4.13 (B), this is much more efficient in computation. For
subsequent tested associations, rDiff.gmmd is for 50 replicates per sample 255 times faster
and for a sample size of 100 even 298 times faster than rDiff.mmd.

In summary, our results showed that rDiff.gmmd has a similar power to detect differential RNA
processing as rDiff.mmd. Furthermore, it has a better calibration and also considerably lower
computational complexity. It is therefore, well suited for association studies to investigate the
genetics of RNA processing

4.3.4. Applications of rDiff

Besides the evaluations presented before, we used the methods that we have developed in
order to investigate other aspects of RNA processing. These range from the investigating
mechanisms that alter translation, nonsense mediated decay, but also identification of novel
oncogenes in cancer. We will briefly describe, how we have applied our methods in these
studies and our findings.

82



4.3. Results and Discussion

Detecting Differential Translation

The nonparametric tests that we have developed provide the means to detect changes in read
distribution while accounting for biological variation. As discussed before, they are also well
suited to study changes in RNA processing for which there is no obvious parametrisation.
To show this, we applied rDiff.mmd to investigate ribosome binding to mRNA. This was
done using a ribosome foot printing dataset that we generated [187], which consisted of the
sequenced H. sapiensmRNA fragments that were bound by ribosomes. The dataset comprised
two samples, one collected after 45 minutes of treatment with the drug silvestrol (a drug
specifically reduces translation of many oncogenes) and an untreated control. The short time
span between administration of the drug and the collection of the RNA allowed investigating
changes in translation without the confounding by changed isoform abundances. Both samples
had three biological replicates. For details on the procedure we refer to [187]. To this dataset
we applied rDiff.mmd in order to detect differential RNA processing by the ribosomes. We
did this using the H. sapiens hg19 genome annotation to determine the mRNA locations and
10, 000 permutations for the bootstrapping procedure. We found that 847 (p ≤ 0.0001) genes
had a significant change in their ribosome distribution. Further inspection of these genes that
showed a significant change showed an accumulation of reads in their 5’UTR. To understand
the cause of this accumulation of reads in the 5’UTR, we searched for motifs in these regions.
This was done using the discriminative Motif finder DREME [12]. By this, we found a 12-
mer motif CGGCGGCGGCGG (see Fig. 4.15) that was significantly overrepresented in the
detected genes (p = 2.2× 10−16). From the 641 of 847 genes that had an annotated 5’UTR,
232 had at least one 12-mer motif. The motif, which we found, resembles closely a secondary
structure inducing G-quadruplex (GQS) motif that consists of at least four repeats of the
nucleotide triplet GGC.
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Figure 4.15.: Shown in (A) is logo of the detected 12-mer motif. An illustration of the
G-quadruplex structure formed by the motif is shown in (B). The Hoogsteen-
hydrogen bonding is depicted by the grey squares.
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To validate that the motif is indeed linked to the GQS we examined the colocalisation of the
motif and predicted GQS. For this we predicted GQS using the tool RNAfold (v. 2.1.0) [106].
We confirmed that the motif we found overlaps a GQS 38.4% of the times. Besides the 12-
mer motif, we also found three 9-mer motifs that also were predicted to colocalise with GQS
(data not shown). We, therefore, hypothesise that the motif induces a GQS in the 5’UTR
and that administration of the drug reduces the efficiency of the ribosome to resolve this
GQS-structure, which in turn reduces the initiation rate of translation. Therefore production
of proteins of genes with a GQS in their 5’UTR is reduced upon administration of silvestrol.
This hypothesis is further supported by validation experiments that showed that translation
efficiency is decreased, when this motif is cloned into a reporter construct (for details see [187]).
This finding shows again that our tests perform well in practical application and provide the
community with novel strategies to investigate the mechanisms RNA processing.

Nonsense Mediated Decay Another application of rDiff.parametric includes a study, in
which the alternative splicing coupled nonsense mediated decay in A. thaliana was investi-
gated [41]. As a first step of this study a detection of unannotated splice events was carried
out. Following this each splicing event was tested independently using rDiff.parametric. For
the testing, also the direction of change was determined. For this study a A. thaliana wild
type samples treated with the translation inhibitor cycloheximide and two samples from NMD
factor homologs UP FRAMESHIFT1 (UPF1) and UPF3 (see our publication [41] for details)
knockdowns were used. In this study, it was shown that 92.3% of the NMD-responsive mR-
NAs exhibit known classical NMD-inducing features. Furthermore, it could be shown that
also many noncoding RNAs and transcripts derived from intergenic regions are subject to
NMD. Overall, it was shown that nonsense mediated decay is a central pathway in quality
control of the transcriptome and that it has a fundamental role in gene expression regulation.

Testing for Differential Splicing

Application to Cancer Specific Splicing We applied rDiff.parametric to understand the
role of splicing in Ewing’s Sarcoma, a rare small-round-blue cell tumour in human. For
this, we used a dataset (see Sec. 4.2.8) consisting of a control and a cancer sample, each
comprising three replicates. For each replicate between 3.0 × 107 reads and 3.8 × 107 read-
pairs were available. Using rDiff.parametric, we found in total 3, 675 genes (FDR≤ 0.1)
that were differentially spliced. This large number of genes that were detected suggests that
RNA processing is disturbed in Ewing’s Sarcoma. When analysing the detected genes, we
found many known oncogenes. The analysis of the top 10 genes showed that 6 out of 10
genes are known cancer associated genes (TPM4 [97], PRSS23 [85], PDE3A [49], RTN4 [144],
KIAA1199 [117], PCSK7 [18]). This indicates that many of the remaining genes that we found
are indeed oncogenes that could be potential targets for a treatment.

4.4. Software and Webservice

To provide researchers access to our methods and facilitate their use, we have packaged
the methods together with an extensive documentation. The methods are available under
then GNU General Public License (https://www.gnu.org/copyleft/gpl.html) and can be
downloaded from: http://www.bioweb.me/rdiff.

Furthermore, we provided a wrapper for the Galaxy web platform [22, 54, 56], which can be
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downloaded from: https://github.com/ratschlab/rDiff/tree/master/galaxy. We also
integrated rDiff into Oqtans [161], the first online transcriptome analysis platform, which we
developed and that can be obtained from http://oqtans.org.

4.5. Summary

The mechanisms that underlie RNA processing are still enigmatic. High-throughput sequenc-
ing of transcriptomes provides the data for a better understanding of these mechanisms.
However, there is still a lack of robust methods to mine this data. In this chapter, we have
proposed several statistical tests for detection of differential RNA processing to address this
need.

The tests that we propose can be distinguished by their use of the gene annotation. The
two tests, rDiff.poisson and rDiff.parametric, use the gene annotation in order to define the
regions where to test. The counts in these regions are modelled using a Poisson respectively
Negative binomial distribution. The latter of these two tests, additionally allows accounting
for biological variance during testing.

The other tests that we have proposed, namely rDiff.mmd, rDiff.nonparametric, rDiff.gmmd
and sDiff, do not depend on the gene annotation for testing. These tests are nonparametric
tests that are based on an RKHS embedding of the read distribution. They provide great
flexibility in their application, in the integration of different information sources and they also
can account for biological variation during testing. Furthermore, their independence from
an annotation for testing allows their application, when an annotation is not available. This
allows reliable detection of differential RNA processing on non-model organisms, where in
general the annotation quality is poor. Besides, it also allows their application in situations,
when it is not clear how to define an annotation such as for secondary structure or for ribosome
footprinting. Finally, we have proposed the first statistical test that can be applied to associate
genome-wide RNA processing variation (rDiff.gmmd).

We have thoroughly evaluated our methods on realistically designed and real datasets. On
these datasets, we have shown that the parametric tests outperform state-of-the-art quantification-
based approaches and we have shown that the nonparametric approaches are on a par with
these quantification-based methods. Furthermore, we have shown that our methods are better
calibrated than existing approaches, thus providing more reliable predictions.

Lastly, we have applied our developed methods in several studies. Using our methods we were
able to describe changes in the transcriptome and shed light on the underlying mechanisms.
This shows that our new methods are a valuable contribution and provide means to advance
the study of RNA processing.
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5. Genetic Determinants of Gene Expression
Changes in A. thaliana

5.1. Motivation

Natural populations are shaped by a process of variation and selection. As a consequence of
this process, a natural population typically exhibits a broad spectrum of phenotypic variation.
This phenotypic variation in the population is largely driven by underlying variations in the
genomes of the population; these genetic variants impact parts of the cellular regulation and
thus can induce variation in phenotypes.

A perturbation of the genome by a genetic variant can act in numerous ways on molecular
and non-molecular phenotypes. For molecular phenotypes of genes, such as its expression,
genetic variants can be distinguished by whether they act directly (cis) on the gene (e.g. by
changing its expression) or indirectly (trans) if they affect regulators of the gene. For non-
molecular phenotypes that lack genetic localisation this distinction cannot be made. But not
all genetic variants necessarily induce a change of phenotypes. Typically, genetic variants in
non-functional regions do not cause any changes in phenotype.

A genetic variant can be classified by whether it increases (beneficial), decreases (deleterious)
or does not affect (neutral) the fitness of an organism. In natural populations, the frequency
of a variant in a population (allele frequency) is linked to its effect: On a long-term run,
beneficial variants have a selection advantage and thus typically have a higher frequency. In
contras deleterious variants have a selection disadvantage and thus have lower allele frequen-
cies. However, the frequencies of variants are not independent. This is because variants that
are close to each other on the genome are unlikely to be separated during meiosis by chromoso-
mal crossovers. Hence, these variants tend to be inherited together [119]. This co-inheritance
of variants that are close is commonly referred to as linkage. Therefore, slightly deleterious
variants in linkage with beneficial variants can be selected for on a short term.

The study of genetic variation in natural populations provides several opportunities: Firstly,
it allows to shed light on the evolutionary history of populations by analysing the variant
distribution in a population. Individuals or groups that are closely related have a greater
overlap in their genetic variants than distant ones. Therefore, the extent of variant sharing can
be used to infer the degree of relatedness and thus to retrace the phylogeny of the population.
Besides this, allele frequencies that are higher than expected by chance also allow to identify
phenotypes (traits) that have been selected for in a population and thus to understand the
process of adaption.

Secondly, the study of natural populations allows to reveal regulatory mechanisms that are
responsible for phenotype variation in the populations and to understand their genetic archi-
tectures. This can be done by identifying the candidate variants whose presence correlates with
a change in a phenotype (association mapping). Thereby, potential stretches of the genomes
can be identified that affect the trait under investigation (quantitative trait loci (QTL)). For
a molecular phenotype such as gene expression, this allows for example to identify potential
regulatory elements of transcription.
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To map the QTLs, several approaches have been proposed (e.g. [10, 58]). These approaches
typically regress a linear model on the phenotype and the genetic variants to identify associ-
ations. Many of these approaches also account for confounding factors (e.g. batch effects or
population structure).

A major challenge in the analysis of the QTLs is, however, that often not a single variant
is associated with a trait, but rather a block of variants. This is because variants that are
close to each other on the genome are in linkage. Therefore, these variants will be strongly
correlated with each other, meaning that if a variant is correlated with a trait also the other
variants in linkage with this variant tend to be correlated with the trait. Consequently, the
resolution of QTL mapping is limited to the scale of linkage, which thereby restricts the precise
identification of causal variants. Therefore, revealing the true regulators of the genes is still
one of the major challenges in QTL analyses.

In this chapter, we will first perform a comprehensive analysis of the gene expression vari-
ability in a population of A. thaliana of 19 accessions (strains) that are part of the 1001
Genome Project [129]. For this, we develop a strategy to robustly estimate gene expression,
when the genomes are not identical. We will then characterise the observed expression and
differential gene expression patterns in this population. After this, we will investigate how
the combination of transcription factor binding information and associations helps to deter-
mine the regulatory factors that cause the variability of the gene expression. For this, we
use an extensive collection of experimentally derived A. thaliana transcription factor binding
profiles. Using these profiles we show that a large fraction of the highly significant variants
act by changing the transcriptional regulation of genes. Finally, we will quantify the extent
of gene expression change that is caused by changing transcriptional regulation in a set of
Multiparent Advanced Generation Inter-Cross (MAGIC) lines [92] that are derived from the
19 A. thaliana strains.

5.2. Methods

5.2.1. Data Preparation

Multiparent Advanced Generation Inter-Cross

Natural populations are a useful resource for studying the regulation of various phenotypes.
In contrast to F2-intercrosses, which are created by repeatedly crossing the offspring of two
parents, natural populations have the advantage that they have a higher number of vari-
ants [92]. Therefore, on one hand, they provide a broader spectrum of genetic perturbations
of the regulatory elements and thus offer a better resolution to detect regulatory elements.
On the other hand, they have the disadvantage that usually the minor allele frequencies are
low, which reduces the statistical power to detect an association [33, 92]. Recently, a novel
approach has been proposed that combines the advantage of both of the previously mentioned
populations for genetic mapping in A. thaliana. This approach consists of using a popula-
tion of so called Multiparent Advanced Generation Inter-Crosses [92] for genetic analyses.
These crosses are obtained by first crossing a natural population of 19 A. thaliana inbred
lines (founder lines) with one another. Next, the offspring are repeatedly crossed with each
other for several generations, to create mosaic genomes. The last generation of the offspring
are finally inbred in order to obtain the homozygous lines, the MAGIC lines. Through the
recombination of the founder population, the resulting strains have parts of the genome from
many of the MAGIC founders (see Fig. 5.1). These MAGIC lines have the advantage that the
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expected minor allele frequency is at least 1
19 while they still have a high density of genetic

variants.

MAGIC Founder 
Genomes

F1 Crosses

MAGIC Lines

Crossing

Repeated crossing
+ selfing 

Figure 5.1.: Shown is the MAGIC design. From a population of inbred founder strains (shown
on top) first, F1-crosses are derived (shown in the middle). The offspring of these
F1-crosses are subsequently crossed for several generations such that genomes of
the last generation of crosses are a mosaic of the founder’s genomes. Lastly, the
strains of the last generation are inbred to obtain the homozygous MAGIC lines
(shown on the bottom). This figure has been adapted from an illustration in [91].

MAGIC Founders We sequenced, assembled and annotated the genomes of all the MAGIC
founder strains except Col-0 (for details see [52]). In the following, we refer to the novel
genes that were detected during annotation of the genomes as new genes. Furthermore, we
performed transcriptome sequencing of all 19 founder strains. For these strains, we obtained
RNA-samples from root-tissue of 10 days old seedlings (for details see [52]). For each of the
lines two biological replicates were sequenced. By this, we generated on average 5.0 × 106

single-end reads of length 78 bp per library. From these reads we could align on average
4.7 × 106 (95.0%) per library against their respective genome using PALMapper [75] (for
details see [52]).

MAGIC Lines We also analysed the transcriptome of 208 MAGIC lines. For this, the
transcriptome of samples generated from seedlings were sequenced. This yielded on aver-
age 13.6 × 106 paired-end reads of length 100 bp per library. For these libraries a variant
aware alignment was performed using PALMapper [75] (pers. comm. Andre Kahles). For the
alignment of the reads, at most three mismatches and no gaps were allowed. Furthermore,
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all TAIR10 junctions as well as all junctions and variants from the MAGIC founder genomes
were used for the alignment. Additionally, the genomes of the MAGIC lines was imputed
using the RNA-Seq libraries (pers. comm. Robert Greenhalg).

Transcription Factor Binding Data

For the analyses that involved the transcription factor binding profiles, we used a collection of
254 positional weight matrices from A. thaliana transcription factors that were experimentally
determined using protein binding arrays [16] (pers. comm. Matthew Weirauch and Timothy
Hughes). These transcription factors were selected in order to sample a broad range of binding
profile in A. thaliana and thus are representative for the entirety of transcription factors in
A. thaliana.

5.2.2. Gene Expression Quantification Strategies for Populations

One of the most basic tasks for the analysis of RNA-Seq is the estimation of gene expression.
These estimates provide the foundation for many subsequent analyses, such as the calling
of differential gene expression, network analyses or association studies to name only a few.
The estimation of gene expression is usually accomplished by counting the number of reads
that map to a gene. When comparing the gene expression estimates of two or more libraries,
these counts are typically normalised by the library size in order to account for changes that
are caused by differences in library sizes. Some authors propose, to further normalise the
expression for differences in gene length in order to derive estimates that correlates better
with the abundance of RNA molecules, leading to the so called measure reads per kilo base
per million mapped reads (RPKM) [121]. Even more elaborated approaches first estimate
the transcript expressions and then use these expressions, to estimate the gene expression
(e.g. [55, 173]). This provides a certain degree of robustness against changes in the number
of reads due to inclusion of introns or skipping exons.

These distinct approaches to quantify gene expression all have in common that they critically
rely on the assumption that the gene expression is a monotone increasing function of the
number of reads mapping to the respective gene. In particular, they all assume that if the
library size is constant, the expected number of reads only changes if the gene expression
does. However, in RNA-Seq experiments, this is not always the case: Reads can map to mul-
tiple locations or stem from unannotated loci, thereby mixing the gene expression estimates
of different genes. Furthermore, biases can influence the estimation of gene expression [137].
Another factor that can affect the estimation when comparing gene expression between sam-
ples, is genomic variability in some samples (structural variation). This is illustrated by the
following example: Assume that the expression of a gene is to be compared between two
individuals and that for one individual the gene is partially deleted. Then, when abundance
of transcripts in both individuals is the same, we still expect to observe fewer reads for the
individual with the deletion in the gene under investigation. In this case, the fallacy is that
not the expression of the same gene is compared, but rather the expression of two slightly
different genes.

Therefore, it is advantageous to use a gene expression estimation strategy that is robust against
biases and structural variation, in order to avoid drawing wrong conclusions on the cause of
the change. This is especially important when the transcriptomes of different individuals or
species are compared. However, to our knowledge, such estimation strategies are still not
available.
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To remedy this lack of strategies, we therefore propose a read filtering procedure that can
be applied prior to the estimation of gene expression. In this procedure, reads are filtered in
several steps to remove reads that can potentially confound the estimation of gene expression.
For this, we propose to apply the following filtering strategy (see Fig. 5.2 for an illustration
of selected filters):

Exonic regions Discard all reads that either map to a region that is intronic in any transcript
or disagree with the gene structure. This filter prevents changes in the relative transcript
abundance to influence the read counts. This is because changes in relative transcript
abundance only lead to changes in informative regions, i.e. regions that are intronic in
at least one transcript. When comparing different individuals or species with differing
gene annotations we suggest extending this filter. In this case, we suggest to discard all
reads that that map to regions that are intronic in any of the genomes.

Overlapping regions Discard all reads that map completely into a region that overlaps an-
other gene in order to prevent mixing expression estimates of overlapping genes.

Ambiguous mapping Only retain reads that map non-ambiguously, in the sense that their
second best alignment has at least two insertions or deletion (indels) or mismatches
more then the best alignment. This prevents reads that originate from another location
to map wrongly to the gene under consideration and thereby affecting the estimation,
even when the mis-mapping is caused by sequencing errors. An alternative to this filter
is to filter for reads that map into regions that have no repeat of at least a read length
in the genome. However, this approach fails to account for repetitive spliced reads and
sequencing errors in reads.

Deletion and Insertions When estimating the gene expression of multiple individuals or species,
where deletions and insertion with respect to the reference are known, we furthermore
propose to discard all reads that start in insertions. This eliminates the effect of these
surplus reads on the expression estimation.

Genomic Uncertainty When reconstructed genomes are available we propose to discard any
reads that map to regions where in any of genomes the assembly is not reliable. This
filter prevents the inclusion of reads that map to regions that are potentially deleted in
some genomes but not identified as being so.

Applying these filters before gene expression estimation removes unwanted confounding effects
and, thus, increases reliability of the estimate for subsequent analyses. However, this gain in
reliability comes at the cost of loosing reads. Therefore, depending on the intended use of the
estimates, a trade-off between the strictness of the filters and the number of remaining reads
can be reasonable.
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Figure 5.2.: Illustration of read filtering. Shown on top are the two genomes and predicted
gene structures for two individuals A (red) and B (blue). In this example there
is a deletion (light green) and an uncovered region (light purple) in the genome
A. In genome B there is a disruption of the splice site (light green) that leads
to a gene structure change. Shown in the middle are the individual filters: The
filter for regions that are deleted or inserted (Deletions/Insertions). The filter
for regions, where the gene structure changes (Structural changes). The filter
for regions, where the genome assembly is unreliable (Uncovered regions) and
the filter for regions that are not constitutively exotic (Exonic regions). Shown
below the individual filters is the combination of the filters (Combined filter) and
the read distribution from A (red) and B (blue). The quantification is based on
reads that map to regions that are not filtered for (not shown as grey).

Statistical Test for Gene Expression

When analysing a transcriptome, an immediate question is, which genes are expressed. To
answer this question, it is a common approach to define a minimal number of reads a gene
needs to have. However, this cutoff is often arbitrary and it is not clear how to choose the
cutoff when comparing libraries of different sizes. To provide a statistically sound definition of
expressed genes, we therefore propose the following statistical test to determine these genes.

For this test, we define as Null hypothesis that the gene is not expressed. We assume that
the number of reads that map to a non-expressed gene follows a Poisson distribution Pλ that
models sequencing noise. Therefore, to construct the p-value for a gene we need to estimate
the intensity λ in order to determine the Null distribution. For this we propose to assume
that the number of expressed gene that have zero read counts is negligible.
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We can then estimate λ using the fraction f0 of genes that have zeros read counts in the
not-expressed genes:

Pλ(0) = e−λ = f0

This leads to the estimate λ̂ of λ:
λ̂ := − log f0

With the estimate λ̂ we can finally compute the p-value p for a gene with n read counts to
be expressed:

p = 1−
n−1∑
i=0

Pλ̂(i)

Since, however, the unexpressed genes are not known, we estimate f0 as fraction f0 of genes
that have zeros read counts in all genes. In the case where many genes are not expressed,
this leads to a slightly more conservative test for the expression of genes. In the case where
almost all genes are expected to be expressed, this approach is overestimating λ and thus
leads to overly conservative p-values. In this case, we propose to estimate f0 on read counts
of random intergenic regions that have a similar length as the genes that are tested.

Overall, the proposed test can be used to determine expressed genes while providing a statis-
tical estimate of the significance. Furthermore, the number of expressed genes is also robust
to changes of library sizes. The test we propose is therefore particularly well suited when the
number of expressed genes are to be compared between libraries.

5.2.3. Detection of Differential Gene Expression

To test for differential gene expression between libraries we used DESeq [5]. For the testing,
this software first fits two variance functions on the observed read counts for each of the two
sample that are to be compared, in order to estimate the biological variance (similar to the
approach described in Sec. 4.2.3). Subsequently, the variance functions are then used to cali-
brate the variance of the Null distribution during testing. In order to obtain a stable estimate
of biological variance for our analysis we estimated the variance functions on the protein cod-
ing genes only, as these typically they have a better genome assembly and annotation. We
then used these variance functions for differential testing.

The estimated variance function were furthermore used in order to compute variance stabilised
counts. This is a transformation of the counts that results in counts whose variance across
the replicates is independent of the mean expression. The variance stabilised counts allow
their modelling with methods that assume the same variance for all genes, as it is often the
case for linear models or mixed models.

5.2.4. Transcription Factor Binding Site Prediction

To examine the extent to which genetic variants influence gene expression by changing tran-
scription factor binding sites (TFBS), we predicted these binding sites in the promoters of all
genes in all 19 MAGIC founder strains (see Sec. 5.2.1). The prediction was performed on the
first 2, 000 bp upstream of the TSS using FIMO [60], using the default parameters of FIMO.
To avoid biasing the prediction of TFBS towards the core promoter we accounted for the
high CG-content near the TSS. For this, we used the nucleotide frequencies in the first 200
bp upstream of the TSS from all genes as background distribution as a background model in
TFBS calling.
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For the MAGIC lines (see Sec. 5.2.1), we predicted the TFBS in the following way: As the
genome of the MAGIC lines is a mosaic of the genomes of the MAGIC founder strains (see
Fig. 5.1), we imputed the TFBS for the MAGIC lines from the predicted TFBSs of the
respective MAGIC founders.

5.2.5. Binding Affinity Computation

We quantified the overall binding affinity of transcription factors to promoters in order to
investigate how the affinity changed between different genomes. This was done by first com-
puting the binding affinity of a TF to a TFBS and then deriving from these affinities for single
TFBSs the affinity of a TF to a promoter. We did this in the following manner:

Let S = s1, . . . , sL be a promoter sequence of length L, where si ∈ {A,C,G, T} for all
i ∈ {1, . . . , L}. Let T be a transcription factor PWMs that is given by T ∈ [0, 1]4×l, where l
is the length of the PWM T (see Sec. 2.4.2). Finally, let P, P ∈ [0, 1] be a pseudo count and
bA, bC , bG and bT the nucleotide frequencies of a background model.

First, we defined the affinity for a single putative TFBS similar to [191]. Assume for this that
s = sj , . . . , sl+j−1 is a putative binding site of length l starting at position j ≤ L− l+ 1 in S.
We then defined the affinity a+(T, slj) of T and the putative TFBS slj on the forward strand
to be:

a+(T, slj) := exp

 1

l

l∑
p=1

log
T (sj+p−1, p) + P bsj+p−1

bsj+p−1 + P


=

 l∏
p=1

T (sj+p−1, p) + P bsj+p−1

bsj+p−1 + P

 1
l

We defined the affinity a−(T, slj) for the negative strand analogously, i.e. by computing the
affinity of the reverse complement of slj . With these two affinities for the both strands we
define the combined affinity of both strands a(T, slj) as the maximum of both scores:

a(T, slj) := max(a+(T, s), a−(T, s))

Based on this affinity for a TFBS, we finally computed the affinity A(S, T ) of a PWM T for
a promoter S as:

A(S, T ) :=

L−l+1∑
p=1

a(T, slp),

where slp = sp, . . . , sp+l−1 denotes the subsequence of length l starting at position p of S.

5.2.6. Gene Expression Variance Decomposition

To determine the fraction of the gene expression variance that can be explained by changes in
the promoter affinity, we performed a variance decomposition of the gene expression variance
into the variance that can be explained by the changes in promoter affinity and into a noise
component. For this, we fitted a mixed model (see Sec. 2.6.3) on the gene expressions. The
fitting of the model was performed for each gene in the following way:
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We first computed the covariance matrix of the promoter affinities in the MAGIC lines. To
simplify notation we again omitted the index for the gene whenever possible. We assumed
that we had n transcription factors T1, . . . , Tn and m strains M1, . . . ,Mm. If we denote by
Aj ∈ Rn the vector of promoter affinities of the transcription factors for the promoter in strain
j, then we defined the unnormalised affinity covariance matrix A′ ∈ Rm×m by:

A′ :=

 cov(A1, A1) · · · cov(A1, Am)
...

. . .
...

cov(Am, A1) · · · cov(Am, Am)


We further performed a trace normalisation of the unnormalised affinity covariance matrix:

A :=
m

tr(A′)
A′

This normalisation causes the sum of eigenvalue A to be the same for all genes, thus making
their scales comparable.

Finally, we fitted the following mixed model to the vector of standardised (i.e. having mean
zero and variance one) variance stabilised read counts Y ∈ Rm (see Sec. 5.2.3):

Y = αX + βε (5.1)

For this model we assumed that X ∼ N (0,A) is a random effect that is normally distributed
with mean 0 and covariance A. Furthermore, we assumed that the noise ε ∼ N (0, I) is also
normally distributed with mean 0, the identity matrix as covariance matrix and that α and
β are the coefficients of the two random effects. The fraction of variance that is explained
by the covariate X is then given by α

α+β . For the fitting of the model we used the LIMIX
package (pers. comm. Oliver Stegle) with default parameters, a method that maximises the
log-likelihood of the parameters α and β. We refer to this model in the following as the affinity
variance model.

We furthermore investigated the genetic variants alone has the same explanatory power for
gene expression as the promoter affinities. For this we fitted a second model on the gene
expressions Y that was based on the similarities between the promoters. To derive this
model, we first represented for each strain j the genetic variants as a vector sj ∈ R2000,
where an entry sj(k) of sj that was non-zero represented a genomic variant at position k in
the promoter with respect to Col-0. We then computed, analogously as for the affinity, a
normalised promoter covariance matrix S. Finally, we fitted the model 5.1, except that we
used covariance matrix S for the random effect X. We refer to this model in the following
as the promoter variance model. For both models we did not account for the population
structure in the model. We refrained from this as in the MAGIC founders the effect of
population structure is only minor [52].

5.3. Results and Discussion

5.3.1. MAGIC Founder Transcriptome Variability

Gene expression is a fundamental molecular phenotype that underlies many other phenotypes.
Therefore, characterisation of this molecular phenotype in a natural population allows to shed
light on the genetic architecture that underlies phenotypic variation in natural populations.
Here, we analysed and characterised the variability of gene expression in the 19 A. thaliana
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MAGIC founders. For this, we first filtered the reads to remove the ones that could confound
the gene expression estimation. After this, we estimated the gene expression and characterised
the variability of it in the MAGIC founders. Finally, we analysed the differences in gene
expression patterns for genes of different functional roles.

Gene Expression Quantification with Genomic Variation and Uncertainty

We estimated the gene expression for the 19 A. thaliana MAGIC founders (see Sec. 5.2.1). For
this, we first filtered the reads to remove the ones that could confound the analyses described
in Sec. 5.2.2. We applied the filters as follows:

(1) We discarded all reads that mapped ambiguously, meaning that their second best align-
ment had fewer than two mismatches or indels than the best alignment. On average, this
removed 19% of the reads per sample that could potentially confound the estimation.

(2) To minimise the direct effects of polymorphisms on the number of reads, we excluded
all reads that started in regions that were insertions or deletions in any of the 19 strains.
We furthermore, removed all reads from the expression estimation that mapped to regions
where the genome assembly was not reliable, i.e. for regions where there was a lack of reads
to support the assembly (uncovered regions). This effectively removed 20.425 Mb, that is
26.0%, from the total 75.476 Mb of exonic regions that were considered for gene expression
quantification.

(3) We also accounted for the effects of polymorphisms that act indirectly by changing the gene
structure. We did this by discarding reads that map to regions where the gene annotation
differed between strains. This further reduced the size of the considered exonic regions to
54.870 Mb (99.7%). Overall, the filtering reduced the considered exonic region for 457 protein-
coding genes (4, 550 when including transposable elements) to zeros.

(4) We discarded all reads that mapped to intronic regions, disagreed with the gene structure
or that mapped completely to regions where two genes overlapped.

We finally counted in each replicate for all strains the numbers of filtered reads that mapped
to the genes. For this, in total between 1.2× 106 and 4.9× 106 reads per replicate were used
to estimate gene expression.

Expression Analysis

To determine the number of expressed genes in each strain, we summed the read counts
of both replicates and then applied our statistical test to detect the expressed genes (see
Sec. 5.2.2). As a significance threshold, we used an FDR ≤ 0.05. By this, we found that
between 18, 598 and 19, 593 protein coding genes were expressed in the individual strains and
20, 173 (73.6%) genes were expressed in at least one strain (see Tab. 5.1). This was slightly
less than the number of expressed genes reported in [149]. This slight discrepancy was likely
due to the larger number of tissues used in [149]. From the 1, 167 non-coding RNAs and 914
pseudogenes were 215 (21.7%) respectively 147 (21.2%) expressed. For the newly predicted
genes, the analysis revealed that 314 of 447 (70.2%) of them were expressed.

Next, we analysed the gene expression variability in the MAGIC founder population. For
this, we used the gene expression estimates in order to detect genes, whose expression changes
significantly (see Sec. 5.2.3). With an FDR≤ 0.05 we found that 9, 015 (44.7%) expressed
protein-coding genes were differentially expressed between at least one pair of strains and that

96



5.3. Results and Discussion

Table 5.1.: Effect of filtering on genes of different types.

Gene type Expressed genes Difference

without filtering with filtering

Protein-coding genes 20, 550 20, 173 377 (1.8%)

ncRNA genes 253 215 38 (15.0%)

Novel genes 314 274 40 (12.7%)

Transposable elements 452 257 195 (43.1%)

Transposable element genes 88 36 52 (59.1%)

Pseudogenes 196 147 49 (25.0%)

95 (1.1%) of them had more than a 100-fold change (see Tab. 5.2). Furthermore, we observed
that ∼ 60% of the differentially expressed genes had more than five strains contributing to
the differential expression, suggesting that for these genes variability in gene expression is not
under negative selection.

Furthermore, we examined the effect of filtering on gene expression quantification and the de-
tection of differentially expressed genes. For this, we performed the gene expression without
prior read filtering. We first investigated the effect of filtering on gene expression quantifi-
cation. Here, we focused on two aspects: First the number of genes that were lost due to
filtering and second, the overall difference in the gene expression estimates.

We examined how many genes could not be detected anymore due to filtering. We observed
that the filtering of the reads affected the gene expression of different categories of genes to
different degrees (see Tab. 5.1). For protein-coding genes, the filtering lead to a decrease of
377 (1.8%) genes being expressed. The effect of filtering was more pronounced for non-coding
RNAs and pseudogenes. Here, 38 (15.0%) respectively 49 (25.0%) genes were not significantly
expressed any more. For the novel genes, filtering reduced the number of expressed genes by
38 (15.0%).

We then quantified the changes in gene expression estimates that were caused by the filtering.
For this, we tested for differential gene expression between the quantifications obtained when
using the filtered and the unfiltered reads. Overall, the filtering for reads that map to multiple
locations, multiple genes or non-exonic regions prior to quantification, lead to significant
changes in gene expression in at least one strain for 631 genes (FDR ≤ 0.05). Further filtering
for structural variation lead to a change in at least one strain for another 425 genes (264
protein-coding genes) at an FDR ≤ 0.05.

Next, we investigated the effect of filtering on the detection of differential gene expression (see
Sec. 5.2.3). Here, we found that using the filtered reads decreased the number of detected
protein coding genes by 345 (3.7%). For the non-coding RNAs and pseudogenes 35 (41.7%)
respectively 25 (30.9%) were found fewer. For the novel genes, the number of differentially
expressed genes was reduced by 36 (29.8%). Particularly, we found that for genes with a fold
change larger than 100 were considerably more often affected by the filtering than the other
genes.
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Table 5.2.: Effect of filtering for differentially expressed genes and differentially expressed
genes with a maximal fold-change larger than 100. The effect is shown for different
gene types.

Gene type Differential genes Genes with fold-change > 100

unfiltered filtered Difference unfiltered filtered Difference

Protein- 9,360 9,015 345 (3.7%) 142 95 47 (33.1%)
coding genes

ncRNA genes 84 49 35 (41.7%) 5 3 2 (40.0%)

Novel genes 121 85 36 (29.8%) 2 1 1 (50%)

Transposable 85 32 53 (62.4%) 3 2 1 (33.3%)
elements

Transposable 47 18 19 (40.4%) 3 1 2 (66.7%)
element genes

Pseudogenes 81 56 25 (30.9%) 6 5 1 (16.7%)

In summary, filtering of the reads prior to quantification of gene expression lead to a reduction
of a small number of protein-coding genes that could be detected as expressed. In contrast, the
reduction in the number of expressed genes was for the other categories more pronounced. The
same trend could also be observed for the number of genes that were differentially expressed,
with the notable exception that protein-coding genes that had a high maximal fold change in
expression were also strongly affected by filtering.

As our filtering strategy was conservative, in the sense that we aimed to exclude all reads
that could potentially confound the gene expression estimation, the main concern is that we
discarded too many reads from the analysis. Here we have shown, however, that the loss
of genes that were detected as expressed or differentially expressed was minor. This showed
that the filtering approach is practicable. Furthermore, our findings show that there are big
differences between the quantifications obtained using the filtered and unfiltered reads (e.g.
in the genes with high fold-changes). As our filtering strategy only slightly affects expression
quantifications of genes with no potential source of confounding reads, this suggests that the
observed differences were caused by reads of unknown origin. Consequently, this showed that
filtering these reads provided more accurate gene expression estimates.

Functional Analysis of Gene Expression

Conservation of gene regulation has been shown to vary for genes with different functional
roles (e.g. see [36, 40]). To systematically describe this pattern of conservation for genes of
distinct functional roles in A. thaliana, we analysed their gene expression variance.

For this, we first analysed the functional role of genes using a functional annotation of genes,
the gene ontologies (GO) [8]. For this, we determined the significantly enriched GO-categories
in the differentially expressed genes. We found a significant enrichment of differentially ex-
pressed genes (p ≤ 0.001 using Fisher’s exact test) in 18 GO-terms (see Tab. A.2). Notably,
from these GO-terms all but one were related to response to the biotic environment (e.g.
pathogen defence). We hypothesise, that variability in gene expression in these categories
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reflects the need of the population to adapt to environmental changes.
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Figure 5.3.: Pattern of gene expression for different gene types and selected gene ontology
categories. Shown on the left is the fraction of expressed and differentially ex-
pressed genes, in the middle their fold change distribution and on the right the
fraction of accessions in which they are differential with respect to the strain
Col-0. The numbers on the sides indicated the number of genes of each type and
category. This figure has been adapted from our publication [52].

We furthermore analysed for different GO-term categories the distribution of gene expression
variability (see Fig. 5.3). Here, we analysed three main aspects of the distribution of this
variability: (1) The fraction of expressed and differentially expressed genes for a category. (2)
The strengths of changes and (3) in how many strains the expression changed. We found that
the patterns of variability were distinct for different gene functions. For example, 74% of the
defence related NB-LRR genes were differentially expressed and had up to a 400-fold change
in expression. Furthermore, we found that the expression of the NB-LRR was in general
also variable in a large fraction of the population. In contrast, the housekeeping genes (e.g.
ribosomal proteins, transcript factors or kinesins) showed different characteristics: Although
a large fraction was expressed, gene expression was mostly stable and changes were generally
restricted to a few strains. This showed that there are distinct patterns of gene expression
variability for genes in different functional roles.

5.3.2. Dissection of A. thaliana Gene Regulation Variance

The cis-regulation of gene expression is one of the main factors of transcriptional regulation.
In order to understand the mechanisms that drive the variation of gene expression, we inves-
tigated the extent to which genetic variation affects cis-regulation of gene expression For this,
we first analysed the distribution of transcription factor binding sites in A. thaliana promoter
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regions. We then showed that a large fraction of genetic variants that had a significant associ-
ation with gene expression variation was located in TFBSs. We showed, how this fact helped
to derive functional interpretations of association studies. Finally, we quantified the extent of
gene expression variation that can be attributed to genetic perturbations of cis-regulation.

Transcription Factor Binding Landscape

To picture the binding landscape of transcription factors in A. thaliana, we first predicted
potential TFBS (see Sec. 5.2.1). For this we used a set of 254 experimentally determined
binding profiles of A. thaliana transcription factors. This set contained more than twice as
many binding profiles than previously available and thus allowed us to get a picture of the
binding landscape of TFs at an unprecedented level of detail. We then used the binding
profiles to predict potential TFBSs in the promoters of all genes (see Sec. 5.2.4). As typically
the majority of promoters is included in the 2 kb upstream of the TSS [93], we used these
regions as promoter regions. We found that we could predict for 220 TF binding profiles with
high specificity TFBSs (p ≤ 10−5, provided by FIMO). For the remaining 34 TFs the TFBSs
were not specific enough to provide a basis for subsequent analyses.

Using the predicted binding sites, we then analysed the density of the regulatory network
(see Fig. 5.4). For this, we first determined the number of TFBS in the promoters and the
number of genes the TFs regulate. We found on average 7.3 TFs bound a promoter. This
is less than the numbers reported in [89]. In their work, the authors predicted on average
16.6 TFBS in 500 bp promoter regions. For this they used 144 TF consensus sequences.
We believe that this difference in the number of predicted binding sites can be explained by
two reasons: Firstly, that our set of motifs does not contain some core promoter regulatory
elements (e.g the TATA-binding protein), which are typically predicted in most genes. The
second reason is that for their predictions, the authors used consensus sequences as short as
5 bp length. This leads to many unspecific predictions, which is reflected by the fact that in
their predictions, the 5 consensus sequences with the highest numbers of predicted TFBS are
all 5 or 6 nucleotides long and account for 37.2% of all predictions. We therefore believe that
the lower number of predictions we obtained results from a higher specificity of our predictions
and the focus on non-core-promoter elements. Besides investigating the numbers of motifs
per promoter, we also examined the number of promoters a TF regulates. Here, we found
that each of the TFs, for which binding sites could be predicted, bound on average to 741.4
promoters.

Transcription Factor Binding Spacial Preferences

We investigated the spatial binding preference for the TFs. For this, we determined for each
TF its binding frequency at all positions in the promoter, i.e. how often the TF bound at a
certain distance of the TSS. We then performed a spatial smoothing of the binding frequencies
by sliding a window of 25 bp width along the vector of binding frequencies and averaging the
frequencies in the window. Next, in order to uncover the predominant classes of binding
preferences we performed a hierarchical clustering of these binding frequencies. For this, we
applied average linkage clustering, using the Euclidean distance between the binding frequency
estimates. Finally, we analysed the top 5 clusters.

We found that these clusters varied substantial (see Fig. 5.5). While the largest cluster was
composed of more than 100 binding profiles, the smallest cluster contained only two profiles.
Furthermore, we observed that although most clusters had the strongest enrichment of TFBS
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Figure 5.4.: Shown on the left is the histogram of the number genes that are regulated by
each transcription factor. Shown on the right is the histogram of the number of
TFs that bind the promoters.

in the first 200 bp upstream of the TSS, the profiles showed distinct spatial preferences. One
profile had the highest density immediately next to the TSS while the others either had it
further upstream or had no apparent spatial preference.
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Figure 5.5.: Shown on the left is the hierarchical clustering of the spatial binding distribution
of the TFs. The five colours indicate the top-five clusters. Shown on the right is
the average spatial preference of the five clusters for the first 300 bp upstream
of the TSS.

In summary, we predicted TFBS for the promoters. We found that the there is a dense
network of TF-promoter interactions. Furthermore, we found that the TFBS clustered as
expected close to the TSS and that they had distinct spatial binding preferences. This is well
in line with previous observations. We are, therefore, convinced that our predictions contain
many functional TFBS.
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Association Enrichment

The mechanism by which genetic variants affect the expression of genes are still a topic of
intense research. Due to the central role of transcription factors in the regulation of gene
expression, one possible mechanism is that genetic variants act on transcription by reshaping
regulatory elements in the promoters of genes. We hypothesise that if alteration of regulatory
elements is underlying the observed phenotypic variation, then there should be an enrichment
of significantly associated genetic variants in regulatory elements. Here, we examined, whether
genetic variants act on transcription by altering TFBSs. For this, we studied the enrichment
of significant associations in the TFBSs that we predicted.

We obtained significant genetic associations from an expression QTL (eQTL) study that de-
termined the genetic variants that affected gene expression in the MAGIC founder strains [52].
For our enrichment analysis we only considered genetic variants where we could localise the
association in the promoter regions. For this we restricted the set of genetic variants from
eQTL study in the following way:

1. We only considered genetic variants where the genome was reliable for all 19 MAGIC
founder strains, i.e. that were not uncovered in any of the strains.

2. We only considered variants in genes, where there was a strong association, compared
to the associations in a 30 kb window around the TSS that excludes the promoter,
was in first 1 kb of promoter regions. More specifically, if p1 kb is the p-value of the
strongest association in the promoter and p30 kb is the strongest association in a 30 kb
window around the TSS that excludes the promoter, then we only included variants in
our analysis for which 0.9 ∗ log10(p30 kb) > log10(p1 kb).

3. We only considered genetic variants in promoters with no more than five genetic variants
fulfilling criteria (1) and (2).

This resulted in a set of 8, 063 variants in 2, 065 genes that we used for our analysis.

Next, we examined the dependence between the significance of the association and the enrich-
ment in TFBSs. For this, we computed for all p-value cutoffs the fraction of significant genetic
variants that overlapped with predicted TFBS. We, furthermore, estimated the enrichment
that would be expected only due to the common enrichment of significant associations and
the TFBSs near the TSS [52]. We estimated the enrichment that is expected by chance by
computing for all p-value cutoffs the fraction of significant genetic variants that overlapped
TFBS when the promoters are permuted among genes, i.e. computing the enrichment of sig-
nificant associations in TFBS of a randomly chosen promoter. For the estimate, we further
computed the variance using a bootstrapping approach with 100 permutations.

We then analysed, how the enrichment depends on the significance of the observations. We
found that as the associations became more significant they were stronger enriched in TF-
BSs (see Fig. 5.6). For the 10 most significant associations we found that more than 40%
were overlapping TFBSs. The enrichment that we observed for highly significant associations
(p ≤ 10−10) was significantly higher (p ≤ 0.05) than expected by chance. This high enrich-
ment suggest that many of the highly significant genetic variants act on gene expression by
disrupting TFBS.

An example of how a genetic variant can act on gene expression is shown in Fig. 5.7. In the
promoter of the AT5G47250 gene we found a SNP that changed in two strains a guanine (G)
to an adenine (A). This lead to a loss of a TFBS of VNI2, a transcription factor that is known
to act negatively on gene expression (see e.g. [189]). Interestingly, the strains that have lost
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Figure 5.6.: Shown is the overlap of significant associations in TFBS. The enrichment for
different significance cutoffs is shown in red. The number of significant associ-
ations for a given significance cutoff is shown in green. The blue line indicates
the enrichment that is expected by chance and the shaded blue area indicates
the 95% quantile of this estimate. This figure has been adapted from our publi-
cation [185].

this TFBS show an increased gene expression compared to the strains with the reference allele.
This example suggested that TFBSs could also be useful in obtaining a functional annotation
of genetic variants. This could provide an interpretation of possible effects of genetic variants
and therefore help in identifying and thereby can help identifying causal variants.

In summary, we have shown that significant associations are enriched in TFBS. For strongly
significant association more than 40% were overlapping TFBSs. This suggests that indeed
alteration of TFBS is a main mechanisms of promoting phenotypic variance. Furthermore, we
have shown that TFBS-information can help to understand the mechanisms by which genetic
variation act on gene expression as shown for the gene AT5G47250.

Variance Decomposition

In the previous section, we have showed that significant associations are enriched in TFBSs,
indicating that genetic variants act on gene expression by changing the transcriptional reg-
ulation. This observation motivates the question, what fraction the total variance of gene
expression (total variance) can be explained by genetic variation in the promoter region and
what fraction is caused by alterations of TFBSs.

To investigate this, we formulated two models for the gene expression variance: One that used
only information from genetic variants TFBSs in promoters (affinity variance model) and a
standard model that used information from all genetic variants in the promoters (promoter
variance model). Specifically, the first model describes the total variance using the affinity
covariance of the promoters and a noise (see Sec. 5.2.6). This model effectively uses on average
only 8.4% of the promoter positions. The second model considers all positions in the promoter
as equally informative. This model describes the total variance by the promoter covariance
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and a noise (see Sec. 5.2.6).

We fitted these two models for all 14, 362 genes of the 208 MAGIC lines (see Sec. 5.2.1) that
had no uncovered region their promoters. The gene expressions estimates that were used to
fit these models were obtained as described in Sec. 5.2.2.

In order to compare how informative the two models are for the gene expression variation we
first computed their predictive power. For this, we determined how well the two models can
discriminate, based on the fraction of the total variance they explain, genes with a known
genetic cis-association in a 30 kb window around their TSS from genes without association.
The associations for this experiment, were obtained from an association study that used the
same MAGIC lines and gene expression estimates as we did (pers. comm. Oliver Stegle).
For the comparison, we determined four sets of genes with significant associations; those with
associations that had a p-value less than p < 10−5 (n = 2, 755), p < 10−10 (n = 1, 064),
p < 10−15 (n = 516) and p < 10−20 (n = 292). Using these four sets of genes we then
compared for the two models the enrichment of genes with an association in the genes where
the largest fraction of variance could be explained. To quantify the enrichment we computed
for both variance models and for each of the four significances thresholds the area under the
precision recall curve (auPRC), a measure of the predictive power that is commonly used for
unbalanced datasets. For the computation we defined the significant genes as the positive sets
and the remaining genes as the negative set.

We found a higher auPRC for the affinity variance model than for the promoter affinity model
for genes with a p-value that is smaller than 10−10, whereas for less significant p-values the
opposite was true (see Tab. 5.3). Furthermore, we noted that the precision for low recall
thresholds (recall≤ 0.1) was always higher for the affinity model than for the promoter model
(see Fig. 5.8). This shows that the affinity variance model is informative for predicting the
gene expression variance. Since the number of positions that are considered in the affinity
variance model is almost 12 times less than the number of positions that are considered in
the promoter variance model, this also suggest that genetic variants in TFBSs are highly
informative for predicting gene expression changes.
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Table 5.3.: Area under the precision recall curve (auPRC) for the promoter variance model
and the affinity variance model.

Variance model auPRC

p < 10−5 p < 10−10 p < 10−15 p < 10−20

Promoter 0.75 0.54 0.36 0.28

Affinity 0.65 0.52 0.40 0.33
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Figure 5.8.: Shown are the precision recall curves (auPRC) for the promoter variance model
and the affinity variance model for four different significance thresholds. For the
computation of the auPRC, genes with an association that had a p-value less
than p < 10−5, 10−10, 10−15 and 10−20 were considered as positive set and the
other genes as negative sets.
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5. Genetic Determinants of Gene Expression Changes in A. thaliana

After investigating the predictive power of the models, we compared the fraction of the total
variance that could be explained by the two models. We found that both, the promoter
variance model and the affinity variance model could explain less than 10% of the total
variance for the majority of genes (for 10, 198 (71.0%) respectively 11, 361 (79.1%) genes).
Overall, the average percentage of the total variance that could be explained for all genes was
similar for the promoter variance model (11.1%) and the affinity variance model (10.8%).

When we compared, however, the distributions of the fraction of total variance explained, we
found that they differed substantially between the two models (see Fig. 5.9). The density for
the promoter variance model was decreasing for an increasing fraction of variance explained.
In contrast, the density for the affinity variance model was bimodal, with one mode at 0
and the other close to 1. This was reflected by the higher fraction of variance that could be
explained by the affinity variance model for the genes where at least 10% of the total variance
was explained. We found that for these genes, the average percentage of the explained total
variance was 47.1% for the affinity variance model and only 33.7% for the promoter variance
model. We also observed that the number of genes for which a large percentage (> 90%) of
the total variance can be explained differed: The affinity variance model could explain for
only 426 genes more than this fraction of the variance, whereas the promoter variance model
could explain this for 106 genes.
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Figure 5.9.: Shown is the distribution of the fraction of the explained total variance. This
is shown on the left for the promoter variance model and on the right for the
affinity variance model. Shown in different shades of red is the distribution of
the fraction of the total variance that is explained for genes with significant
associations.

To further investigate the differences between the two models, we compared how they explain
the variance of genes with a known genetic cis-association in a 30 kb window around their
TSSs. For this analysis, we used again the sets of genes having at least one association with a p-
value small than p < 10−5, p < 10−10, p < 10−15 and p < 10−20. For these variants, we found
that the affinity variance model explained more than 90% of the variance for 134 (45.0%) of
292 genes with a p-value smaller than 10−20 (see Fig. 5.9). This number is in accordance with
the number that we have observed for the association enrichment in Sec. 5.3.2. In contrast,
the promoter affinity model could only explain that fraction of the variance for 36 (12.7%)
of these significant genes. Overall, we observed that the fraction of genes with an association
that had more than 50% respectively 90% of the total variance explained was higher for the
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affinity variance model than for the promoter variance model (see Tab. 5.4). The opposite
was only the case for the percentages of genes that had more than 10% of the total variance
explained.

Table 5.4.: Percentage of genes with a significant association for different fractions of variance
explained. The percentages are shown for the affinity variance model and the
promoter variance model.

Significance Method Fraction of variance explained

> 0.1 > 0.5 > 0.9

p < 10−5
Promoter 90.1% 25.4% 3.4%

Affinity 64.3% 35.0% 13.8%

p < 10−10
Promoter 98.1% 45.7% 6.5%

Affinity 82.8% 55.0% 27.6%

p < 10−15
Promoter 98.6% 57.0% 8.9%

Affinity 88.8% 65.3% 37.8%

p < 10−20
Promoter 99.7% 70.2% 12.7%

Affinity 92.5% 70.9% 45.9%

Overall, this showed that the fraction of variance that can be explained by alterations of
TFBSs is in the same order as the fraction that can be explained when considering the entire
promoter. Since the number of positions that are considered when modelling the variance
in the affinity variance model is much smaller than the number considered for the promoter
variance model, this suggests that a large extent of the gene expression variation in A. thaliana
that is caused by variations in the promoter, is due to alterations of TFBSs. Moreover, the
fact that a large fraction of the total variance could be explained by the variance affinity model
for many genes that have a significant association in a 30 kb window around the TSS, suggest
that in general a large extent of the cis-variation in A. thaliana is caused by alterations of
TFBSs. Since we used only a subset of all transcription factors of A. thaliana in our analysis
and also did not consider tissue specific binding, we believe that these estimates of the fraction
of the explained total variance is likely an underestimation of the true extent.

5.4. Summary

In this chapter, we have studied the gene expression in a natural population of A. thaliana.
For this, we have developed a robust quantification approach that accounts for the various
effects of genetic variants can have on gene expression estimation. We have shown that
this approach provides stable quantifications of gene expression and thus allowed getting a
clear picture of gene expression variation and the regulators of gene expression. Using the
quantification strategy, we have performed a comprehensive analysis of the expressed genes,
how gene expression varies in the population and discussed potential evolutionary constraints
of the A.thaliana population.
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Furthermore, we have investigated the role that the transcriptional machinery plays in trans-
lating genetic variability into changes in gene expression. For this, we have used an extensive
collection of transcription factor binding profiles in order to understand how TFBSs are dis-
tributed in the promoter regions of genes. By doing this, we obtained a description of TF
binding preferences in A. thailana. We have, furthermore, shown that this information could
be used in order to get a functional interpretation of association studies and that it can be
used to get an explanation for the gene expression changes. Additionally, we have shown
that alterations of TFBSs explain the variance better than the commonly used similarity of
the promoter regions for genes with strongly significant associations. In summary we have
shown that the integration of transcription factor binding information and genetic variation
is a promising approach in revealing the mechanisms that underly phenotypic variation.
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In this thesis, we have derived novel approaches to detect and characterise changes in RNA
processing using high-throughput sequencing data, by applying state-of-the-art techniques
from machine learning, statistics and bioinformatics.

We have first established how information can be extracted from RNA-Seq data for tasks such
as transcript identification or detection of differential splicing (Ch. 3). Based on these insights,
we have formulated for the identification of transcripts and the detection of differential splic-
ing two probabilistic models to systematically assess the influences of various experimental
parameters on the expected information gain of a particular experiment. Application of our
models provided insights into the optimal choice of experimental parameters in order to max-
imise the utility of the experiment. The application of our models further revealed limitations
of the commonly used experimental design and consequently we have proposed alternative
designs to remedy these shortcomings.

Based on the insights obtained from modelling the information gain of RNA-seq experiments,
we have derived statistical tests to detect various aspects of differential post-transcriptional
RNA processing from high-throughput sequencing data (Ch. 4). These include the detection
of changes in alternative splicing, secondary structure or translation. Furthermore, we have
derived a statistical test that allows associating changes in RNA processing to genetic vari-
ants. To prove that our methods are of practical relevance, we have evaluated our methods
on realistically simulated as well as on experimental data and showed that they outperform
various existing state-of-the-art methods. Additionally, we have applied our methods to study
different aspects of RNA processing such as alternative splicing, RNA degradation and trans-
lation.

Finally, we have characterised the variation of gene expression in an A. thaliana population
(Ch. 5). To this end, we have combined information on gene expression, genetic variation
and transcription factor binding preferences in a linear mixed model to describe the variation
in gene expression that is due to alterations in regulatory elements. By doing this, we were
able to show that a large fraction of genetic variants that can be linked to changes in gene
expression act by perturbing regulatory elements in promoters.

The contributions of this thesis show that while the large amount of data generated in current
biological research poses challenges for its analysis, it also allows to generate and validate
general hypotheses on the regulation of RNA processing and thus can inspire new insights
into the functioning of cells. We have demonstrated that approaches that combine ideas from
bioinformatics, machine learning and statistics can be utilised to tap the full potential of the
increasing amount of available data for understanding the fundamentals of RNA regulation.
There are, however, still some limitations and open problems that we have not yet had the
time to address. In the following we will discuss some of these:

Statistical models for count data The discrete Poisson or negative binomial distributions
have been shown to more accurately describe RNA-Seq data than continuous Gaussian
distributions. We, therefore, have used these two discrete read distributions in this
work to derive statistical tests for differential RNA processing. However, the theoretical
framework for working with these distributions is less developed than for Gaussian dis-
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tributions. As a consequence, fitting complex models is non-trivial and computationally
challenging. Therefore, these distributions are restricted to modelling problems of mod-
est complexity. This motivates research on efficient fitting and inference techniques for
the Poisson or negative binomial distributions. This extension to more complex appli-
cations would thus allow the construction of more accurate models of RNA processing.

Integration of heterogeneous data Besides deriving better techniques to work with discrete
data another point that would advance understanding of RNA processing is the in-
tegration of heterogeneous data. In this thesis we have shown, for example, that an
integrative model of gene expression, genetics and transcription factor binding reveals
how genetic variants act on gene expression through modification of transcriptional reg-
ulation. In the light of the amount of new high-throughput analysis techniques that
have been and still are published (e.g., to investigate polyadenylation, RNA secondary
structure or protein occupancy, to name only a few), general approaches to jointly anal-
yse these distinct information sources therefore promise to provide novel insights into
RNA processing. As we have shown in Ch. 3, determining appropriate representations
of the data is non-trivial and time-consuming. With the increasing number of different
data types this is likely to become a bottleneck. Therefore, for integrative approaches
to be successful in general, it will be necessary to develop methods that can learn rep-
resentations for these different data types. For this purpose, a nonparametric extension
of our RKHS embeddings (Ch. 4) may be a viable option.

Structured data In most parts of this thesis we have considered the typical case-control type
of experiments, where two conditions were compared. This approach is promising when
a particular biochemical process is investigated under controlled conditions. However,
in other applications the assumption of having only two conditions is too restrictive and
does not allow capturing the full complexity of the experiment. For example, complex
experimental designs such as time series cannot be represented in this setup. In addition,
this setup does also not allows taking into account the structure of the samples being
studied (such as population structure, batch effects or other phenomena that confound
the analysis). Therefore, there is a need for approaches that allow the analysis of more
complex experimental setups and are able to account for different confounding factors.

Quantitative models for RNA processing Our methods to detect changes in RNA process-
ing have been shown to be particularly useful for exploratory data analysis. In particu-
lar, we have shown how these methods can be used to reveal basic mechanisms of RNA
processing regulation and provide a qualitative assessment of their effect sizes. In order
to obtain a characterisation of complex changes, however, our models are of limited use.
To address this limitation of our methods we, therefore, suggest further research on
quantitative models of RNA processing. This could be done for example by developing
predictive models for RNA regulation, based on features such as the RNA sequences
and molecular markers. These models would help to derive testable hypotheses and to
get a quantitative understanding of the regulatory mechanisms and their functioning.

Overall, we have developed new approaches to analyse RNA-Seq data. Our new methods
have enabled novel insights into the regulation of RNA processing, have identified several
open questions and, thereby, stimulated future studies.
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A.1. Theorems

Lemma A1. : Let H be a reproducing kernel Hilbert space that is induced by the ker-
nel k(·, ·). Assume furthermore that four distributions V A, V B, SA, SB are given and let
µV A , µV B , µSA , µSB be their mean embedding in H. Then a kernel expansion for sDiff is
given by:

sDiff(µV A , µV B , µSA , µSB )2 = EvA,v′A∼V A,k(vA, v′A)− 2EvA∼V A, sA∼SAk(vA, sA)

+ EsA,s′A∼SAk(sA, s′A) + EvB ,v′B∼V Bk(vB, v′B)

− 2EvB∼V B , sB∼SBk(vB, sB) + EsB ,s′B∼SBk(sB, s′B)

+ 2[EvA∼V A, sB∼SBk(vA, sB)− EvA∼V A, vB∼V Bk(vA, vB)

− EsA∼SA, sB∼SBk(sA, sB) + EvB∼V B , sA∼SAk(vB, sA)]

Proof: We take the square of sDiff and use a linear expansion of the calar product. This
yields:

sDiff(µV A , µV B , µSA , µSB )2 = ‖(µV A − µSA)− (µV B − µSB )‖2H
=< (µV A − µSA)− (µV B − µSB ),

(µV A − µSA)− (µV B − µSB ) >H

=< µV A , µV A >H −2 < µV A , µSA >H + < µSA , µSA >H

+ < µV B , µV B >H −2 < µV B , µSB >H + < µSB , µSB >H

+ 2(< µV A , µSB >H − < µV A , µV B >H

− < µSA , µSB >H + < µV B , µSA >H)

= EvA,v′A∼V A,k(vA, v′A)− 2EvA∼V A, sA∼SAk(vA, sA)

+ EsA,s′A∼SAk(sA, s′A) + EvB ,v′B∼V Bk(vB, v′B)

− 2EvB∼V B , sB∼SBk(vB, sB) + EsB ,s′B∼SBk(sB, s′B)

+ 2[EvA∼V A, sB∼SBk(vA, sB)− EvA∼V A, vB∼V Bk(vA, vB)

− EsA∼SA, sB∼SBk(sA, sB) + EvB∼V B , sA∼SAk(vB, sA)]

Lemma A2. : Let V A = {v1A, · · · , v
nAV
A }, V B = {v1B, · · · , v

nBV
B }, SA = {s1A, · · · , s

nAs
A } and

SB = {s1B, · · · , s
nBs
B } be four sets of reads that contain nAV , n

B
V , n

A
S , n

B
S reads. Let furthermore

H be a reproducing kernel Hilbert space that is induced by the kernel k(·, ·) and denote by
µV A , µV B , µSA , µSB the four embeddings of the reads sets in H. Then an unbiased estimator
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ŝDiff for sDiff is given by:
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B
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B)

− 1
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B
S
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B
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i,j=1
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j
B) +

1

nBV n
A
S

nBV , n
A
S∑

i,j=1

k(vjB, s
j
A))

Proof: The proof is analogous to the proof of ([62], Lemma 6). The estimator ŝDiff can be
obtained by replacing the population expectations in Lemma A1 with their corresponding
U-statistics and sample averages.

ŝDiff(µV A , µV B , µSA , µSB )2 = ‖(µV A − µSA)− (µV B − µSB )‖2H

=
1

nAV (nAV − 1)
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i,j=1, i 6=j
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j
A)− 2
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A
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Following the argumentation in [62], this shows that ŝDiff is an unbiased estimator of sDiff.

A.2. Tables
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Table A.1.: Area under the ROC-curve in the interval [0, 0.2] (auROC20) and auROC for
rDiff, CuffDiff and MISO. The comparison is shown on the two artificial
dataset with a small and large biological variance.

Method auROC20 auROC

small biological large biological small biological large biological
variance variance variance variance

rDiff.nonparametric 0.077 0.073 0.686 0.677

rDiff.parametric 0.101 0.093 0.763 0.734

rDiff.poisson 0.099 0.082 0.752 0.719

rDiff.mmd 0.062 0.054 0.652 0.627

CuffDiff 0.085 0.055 0.669 0.585

MISO 0.089 0.061 0.692 0.614
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Table A.2.: GO-term enrichment. GO-terms tat are written in Bold are defense related. This
table has been adapted from our publication [52].

GO-Term P-value Number of genes
associated with GO-term

Defense response 8.05× 10−15 68

Response to stress 5.50× 10−13 87

Response to stimulus 8.69× 10−11 168

Apoptosis 9.53× 10−9 34

Programmed cell death 1.54× 10−8 35

Cell death 2.16× 10−8 35

Death 2.16× 10−8 35

Immune system process 1.04× 10−6 26

Immune response 3.00× 10−6 25

Innate immune response 3.00× 10−6 25

Response to biotic stimulus 5.68× 10−6 29

Multi-organism process 6.30× 10−6 27

Response to other organism 1.14× 10−5 26

S-glycoside metabolic process 8.58× 10−5 5

Glucosinolate metabolic process 8.58× 10−5 5

Glycosinolate metabolic process 8.58× 10−5 5

Defense response to fungus 5.74× 10−4 7

Response to fungus 5.74× 10−4 7

Table A.3.: auPRC for two models for genes where the fraction of explained variance > 10%
in both models

Variance model auPRC

p < 10−5 p < 10−10 p < 10−15 p < 10−20

Promotor 0.86 0.62 0.41 0.31

Affinity 0.86 0.63 0.46 0.37
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Figure A.1.: ROC curves for rDiff, CuffDiff and Miso for the dataset described in Sec. 4.2.7.
Shown on the left are the ROC curves for the dataset with small biological
variance and on the right for the dataset with the larger biological variance.
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Figure A.2.: QQ plots for rDiff on the dataset described in Sec. 4.2.8.

0 50 100 150 200 250
Number of TF’s

10-9

10-8

10-7

10-6

10-5

10-4

M
in

im
al

 p
-v

al
ue

Figure A.4.: Shown is the cumulative distribution of minimal p-values of different TFs.
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Figure A.3.: Error amplification of quantification. Shown on top are the coverages of a gene
with two transcripts T1 and T2 in two conditions A (red) and B (blue). Between
the two conditions the differences of the relative transcript abundance of T1
and T2 is 1%. Shown below is the delta-plot of the transcript quantifications
when simulating these relative abundances 100 times. It can be seen that the
quantifications change up to 10%. This plot has been adapted from a personal
communication of Oliver Stegle.
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Figure A.5.: TFBS statistics for different minimal p-values of TFBSs. Shown on the left
is the cumulative distribution function of the number genes that are regulated
by each transcription factor. Shown on the right is the cumulative distribution
function of the number of TFs that bind the promoters.
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A.3.1. Combinations of kernels
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Figure A.6.: Ternary plot of the performance (auROC) of linear combinations of MMD, MMD
one splice sites and MD on insert sizes.
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Figure A.7.: Ternary plot of the performance (auROC20) of linear combinations of MMD,
MMD one splice sites and MD on insert sizes.

117



A. Appendix

A.3.2. Running rDiff

Requirements

rDiff requires a UNIX environment as well as the following packages:

• Octave [128] (64 bit version, version 3.4 or higher) or Matlab [112] (version 7.6 or higher)

• Python (version 2.6.5 or higher)

• Scipy [82] (version 0.7.1 or higher)

• SAMTools [99] (version 0.1.7 or higher)

• wget

Command line options

The rDiff standalone software package provides many options to adapt the parameters to the
task at hand. The available parameters are:.

-h Display the help

-o This option takes as argument the output directory where the input files are saved. This
is also where rDiff will save the other output files.

-d This specifies the directory where the bam-files are located. If they are in different direc-
tories this can be also / . The the path to the BAM files can then be given as part of
the bam-file names.

-a This argument specifies which sample should be used for sample 1. It takes as argument
a comma-separated list of bam-files for sample 1. It is important not to have spaces
between the files. The input should be of the form: File1.bam,File2.bam,...

-b This argument specifies which sample should be used for sample 2. It takes as argument
a comma-separated list of bam-files for sample 2. It is important not to have spaces
between the files. The input should be of the form: File1.bam,File2.bam,...

-g Path to GFF3 gene structure

-L Read length used for rDiff.parametric to compute the alternative regions. The default is
75 bp. For reads that are longer or shorter than the specified length rDiff will try to
find the best match to an alternative region.

-m This option takes as argument the method that should be used for testing. The options
for this parameter are:

param for rDiff.parametric (default)

nonparam for rDiff.nonparametric

poisson for rDiff.poisson

mmd for MMD

-M Minimal read length required for a red to be considered. The default is 30 bp. The reads
that are shorter are not used for the analysis.

-e Skip the gene expression estimation. If the gene expression estimation step should be
skipped enter 0. The default is 1.
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-E Only estimate the gene expression and variance function estimation but do not perform
testing. If you want to exit after the variance function estimation enter 0. The default
is 1.

-A This parameter takes as argument the path to variance function for sample 1. This option
can be used for example, if a previously computed variance function should be used.

-B This parameter takes as argument the path to variance function for sample 2. This option
can be used for example, if a previously computed variance function should be used.

-S Filename under which variance function for sample 1 will be saved.

-T Filename under which variance function for sample 2 will be saved.

-P Using this option, one can specify a given parametric variance function for sample 1 of
the form f(x) = a+ b ∗ x+ b ∗ x2. The argument for this option is a,b,c.

-Q Using this option one can specify a given parametric variance function for sample 2 of the
form f(x) = a+ b ∗ x+ b ∗ x2. The argument for this option is a,b,c.

-y This parameter allows to use only the gene start and stop for the rDiff.nonparametric
variance function estimation. Enter 1 if this should be done and 0 otherwise.

-s This option allows to sample the reads down to a certain number. This increases the speed
for highly covered genes. The argument is number of reads per gene to which should be
sampled. The default is 10, 000.

-C Number of bases to clip from each end of each read. This reduces the false mappings of
spliced read ends. The default is 3 bp.

-p Number of permutations performed for rDiff.nonparametric. The default is 1, 000.

-x Merge sample 1 and sample 2 for variance function estimation. Type 1 to merge the
samples. The default is 0.

Examples

rDiff.parametric

When the gene structure is known we recommend using rDiff.parametric. This method tests
for difference in the relative abundance of annotated transcripts. rDiff.parametric requires
as input the BAM files for both sample, as well as a GFF3 gene structure. In the following
example we show how to apply rDiff.parmetric in order to test for differences between the two
samples "1" and "2", which have replicates bam1_r1.bam, bam1_r2.bam resp. bam2_r1.bam,
bam2_r2.bam. In our example we assume that the BAM files are located in the directory
bamdir and that the reads are 75 bp long. Furthermore, we assume that our gene structure
is saved in the file genes.gff3 in the GFF3 format. The test can then be started by first
changing into the directory bin:
cd bin
and then typing:
./rdiff -o outdir -d bamdir -a bam1_r1.bam,bam1_r2.bam -b bam2_r1.bam,bam2_r2.bam
-g genes.gff3 -m param -L 75 -m 30
Here, we required furthermore that a read has to be at least 30 bp long in order to be included
in the analysis. A

The output files can be then found in outdir after rDiff is completed. The output files are
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described in the following list:

P_values_rDiff_parametric.tab This file contains the p-values of rDiff.parametric. The file
is tab-delimited and has three columns. The first column contains the gene names, the
second the p-values and the third the test status.

Gene_expression.tab This file contains the gene expression estimations for all the replicates.
The file is tab-delimited. The first column contains the gene names and the remaining
columns the read counts for each gene for all replicates.

Alternative_region_counts.mat This file contains the counts for the alternative regions.
The format is the binary mat format.

genes.mat This file contains the gene structure. The format is the binary mat format.

variance_function_1.mat This file contains the saved variance function for sample "1". It
is a locfit-structure saved in the binary mat format.

variance_function_2.mat This file contains the saved variance function for sample "2". It
is a locfit-structure saved in the binary mat format.

rDiff.nonparametric

When the gene structure is incomplete we recommend using rDiff.nonparametric. This test de-
termines significant differences in read coverages between two samples. To run rDiff.nonparametric
requires as input the BAM files for both samples as well as a GFF3 gene structure. rDiff.nonparametric
tries to estimate the biological variance on the annotated gene structure. Therefore, it is of ad-
vantage to have an as complete gene structure as possible. For the testing rDiff.nonparametric
uses only the gene starts and gene stops. In the following example we show how rDiff.nonparametric
can be used to test for differences between the two samples "1" and "2", which have replicates
bam1_r1.bam, bam1_r2.bam resp. bam2_r1.bam, bam2_r2.bam. In our example we assume
that the BAM files are located in the directory bamdir and that the reads are 75 bp long.
Furthermore, we assume that our gene structure is saved in the file genes.gff3 in the GFF3
format. The test can then be started by first changing into the directory bin:
cd bin
and then typing:
./rdiff -o outdir -d bamdir -a bam1_r1.bam,bam1_r2.bam -b bam2_r1.bam,bam2_r2.bam
-g genes.gff3 -m nonparam -L 75 -m 30
Here, we required furthermore that a read has to be at least 30 bp long in order to be included
in the analysis.

The output files can be then found in outdir after rDiff is completed. The output files are
described in the following list:

P_values_rDiff_nonparametric.tab This file contains the p-values of rDiff.nonparametric.
The file is tab-delimited and has three columns. The first column contains the gene
names, the second the p-values and the third the test status.

Gene_expression.tab This file contains the gene expression estimations for all the replicates.
The file is tab-delimited. The first column contains the gene names and the remaing
columns contain the read counts for each gene in all replicates.

Nonparametric_region_counts.mat This file contains the counts for the alternative regions
used to estimate the variance functions. The format is the binary mat format.

genes.mat This file contains the gene structure. The format is the binary mat format.
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variance_function_1.mat This file contains the saved variance function for sample "1". It
is a locfit-structure saved in the binary mat format.

variance_function_2.mat This file contains the saved variance function for sample "2". It
is a locfit-structure saved in the binary mat format.

Working without replicates

When there is only one replicate available available in a sample we suggest merging all repli-
cates for the estimation of the variance function. This can be achieved using the option -x
when starting rDiff.
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