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Introduction

“Data! Data! Data!” he cried impatiently.
“I can’t make bricks without clay.”

Sir Arthur Conan Doyle
The Adventures of Sherlock Holmes (1892)

Language is a fascinating phenomenon. Without much effort, we commu-
nicate with others about the world we live in. We know how to refer to
countless objects and events using many different words and phrases, and
understand others when they provide us with similar linguistic symbols.
How does this impressive communication system come into place? How
do we learn which linguistic symbols describe which objects and events?
What insights does the way we acquire this knowledge provide us about
how we use language as adults?!

This dissertation is an attempt to better understand the adult lan-
guage processing system by investigating it from a learning perspective.

In three chapters, I evaluate the performance of a language processing

1 (see Ramscar et al., 2010, for a comprehensive discussion of these issues)



1 Introduction

model that is based on a general human learning algorithm. The three
chapters make use of three different psycholinguistic data sets: word
naming latencies, eye-movements patterns during compound reading and
the ERP signal in a picture naming task. Before turning to these data
sets, however, I introduce the discrimination learning model that forms
the conceptual and computational core of the language processing model
proposed here. Furthermore, I provide a short overview of some of the
applications of similar learning models in psycholinguistic studies that
inspired the work presented here, as well as in recent studies that I

contributed to, but that are not included integrally in this dissertation.

1.1 Learning language

Language is based on symbolic thought. Symbols like words, signs or
pictures shape the way in which we perceive and communicate about the
objects and events in the world around us. An important question for
computational models of language processing, therefore, is how linguistic
symbols are represented in our mind. Broadly speaking, there are two
types of language processing models: symbolic models and sub-symbolic
models.

As noted by Chalmers (1992), in symbolic theories of language learn-
ing, each computational unit represents a discrete linguistic symbol — such
as a letter or a word. The level of computation and representation, there-
fore, is the same in symbolic models of language learning. By contrast,
sub-symbolic theories hold that the level of computation is lower than the
level of representation. Rather than being represented as discrete compu-
tational units, linguistic symbols are represented as activation patterns
of sets of computational units. In other words: in symbolic models the
words “table” and “chair” are represented by different computational units,
whereas in sub-symbolic models these words are represented by different
activation patterns of the same computational units (see Chalmers (1992)
for a comprehensive discussion of the differences between symbolic and

sub-symbolic approaches).



1.1 Learning language

The most typical example of sub-symbolic models of language pro-
cessing are connectionist models (cf. Fodor & Pylyshyn, 1988; Rumelhart
& McClelland, 1986). Connectionist models have had a substantial influ-
ence in computational psycholinguistics over the last decades and have
been applied with considerable success in a variety of psycholinguistic
studies (see, e.g., Seidenberg & McClelland, 1989; Harm & Seidenberg,
2004). Nonetheless, sub-symbolic approaches to language processing are
associated with a number of problems. A first problem concerns the fact
that connectionist models learn through back-propagation of error. In
back-propagation learning, the weights between input units and output
units are adjusted based on a comparison of the model output to the
target output. As noted by Perry et al. (2007), back-propagation learning
is implausible from a neurobiological perspective (see, e.g., Crick, 1989;
Murre et al., 1992; O’Reilly, 1998, 2001). Second, sub-symbolic models
tend to be less transparent than symbolic models. The interpretability
of activation patterns over a large set of units tends to be reduced as
compared to the interpretability of activations of individual units. Fur-
thermore, most connectionist models are multi-layer networks, in which
a layer of hidden units connects the input units and the output units
(see, however, Harm & Seidenberg, 2004 for a two-layer connectionist
network without hidden layer units). Layers of hidden units reduce the
transparency of sub-symbolic models of language processing.

Symbolic models of language learning are associated with problems
of their own. Most prominently, discrete linguistic symbols are an over-
simplification of reality. As pointed out by Ramscar et al. (2010, p. 911),
“the kinds of things that people represent and think about symbolically
do not fall into discrete classes, or categories, of Xs and Ys [...]; symbolic
categories do not possess discrete boundaries (i.e., there are no fixed
criteria for establishing whether an entity is an X or a Y); and entities
are often assigned to multiple symbolic classes (i.e., they are sometimes
Xs; sometimes Ys)”. As a result, representations in symbolic models of
language learning are by definition limited to approximations of more

complex representations in our mental lexicon.
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Nonetheless, symbolic models of language learning tend to provide
excellent learning performance and increased transparency as compared
to sub-symbolic language processing models. The increased transpar-
ency of symbolic models offers important insights into the probabilistic
patterns in the linguistic environment that drive behavioral patterns
in psycholinguistic experiments. In my attempt to better understand
the adult language processing system by investigating it from a learning
perspective, I therefore opted to use a simple two-layer symbolic network

model of language learning.

1.2 Discrimination learning

The learning model adopted here is a discrimination learning model: the
Rescorla-Wagner model (Rescorla & Wagner, 1972). The description of
discrimination learning below is an adapted version of the presentation
of the naive discrimination learning approach in Baayen et al. (2011)
and Baayen et al. (2013). For further information we refer the interested
reader to these papers.

The Rescorla-Wagner equations describe a two-layer symbolic network
model that operates on the basis of cues, outcomes and the associations
between them. Formally, the association strength Vf“ between a cue C}

and an outcome O at time ¢ + 1 is defined as:

‘/it+1 _ ‘/it + A‘/;t (11)
with:
0 if ABSENT(C;, )
;1 (/\ — ZPRESENT(C’j,t) Vj) if PRESENT(Cj,t) &
AV = PRESENT(O, t)

;B2 (0 — ZPRESENT(Cj,t) Vj) if PRESENT(Cj,t) &
ABSENT(O, t)
(1.2)
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The parameters a and (8 refer to the salience of the cue and outcome,
respectively. By default, all a’s are equal, and 8; = #5. The parameter
A refers to the maximum association strength and is typically set to 1.

As can be seen in Equation 1.2, the association strength between a
given cue and outcome is modified in two cases. First, whenever a cue
and outcome occur together, the association strength between the cue
and outcome increases. Second, when a cue occurs in the absence of an
outcome, the association strength between a cue and outcome decreases.
As such, “the learning process is driven by discrepancies between what
is expected and what is observed” (Ramscar et al., 2010, p. 913). The
Rescorla-Wagner equations are therefore described as an instantiation of
error-driven learning.

The idea that learning is driven by the differences between predictions
and expectations is well-established in the learning literature. Gallistel
(2003), for instance, argues that learning is possible only when the ob-
served entropy of an event diverges from the maximum entropy. The
concept of error-based learning is further supported by a number of
neurobiological studies. Waelti et al. (2001), for instance, showed that
dopamine responses for expected and unexpected outcomes in monkeys
comply with the predictions of error-driven learning models (see, e.g.,
Daw & Shohamy, 2008; Schultz, 2002; Hollerman & Schultz, 1998) for
further neurobiological studies on error-driven learning).

For any given linguistic input only a small set of cues is present in
the input. The activation aj of an outcome Oy given the set of cues in
the input C is defined as:

ap = Zij (1.3)

Jjec

with j ranging over the active cues and Vj;, being the association strength
between cue C; and outcome Oy. This activation is a measure of the
amount of bottom-up support for outcome O, given cues C' and is typic-
ally inversely proportional to processing times, such that more bottom-up

support corresponds to faster processing latencies.
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As noted by Baayen et al. (2011), the instantiation of error-based
learning in the Rescorla-Wagner model is one that has a rich tradition in
the cognitive psychology literature (cf. R. R. Miller et al., 1995; Siegel &
Allan, 1996). The model is highly similar to a perceptron (Rosenblatt,
1958) and to the delta rule (Widrow & Hoff, 1960). In a broader sense,
Baayen et al. (2011) continue, the Rescorla-Wagner equations can be
thought of as a general-purpose probabilistic learning algorithm (see
Chater et al., 2006; Hsu et al., 2010). Baayen (2011a), for, instance,
demonstrated that the Rescorla-Wagner equations perform as well as
state-of-the-art machine learning techniques for predicting the dative
alternation in English.

Recently, the Rescorla-Wagner learning model has been applied in
a number of psycholinguistic studies. For child language acquisition,
Ramscar and Yarlett (2007) found that the typical U-shaped development
that characterizes the acquisition of irregular plural forms is predicted
by a discrimination learning model (see Ramscar, Dye & McCauley,
2013). Hsu et al. (2010) showed that in first language learning many of
the phenomena typically attributed to innate language-specific biases
are alternatively explained by prediction-based learning. For second
language learning, Ellis (2006) demonstrated that many of the problems
and limitations that second language learners encounter are predicted by

discrimination learning.

1.3 The adult language processing system

The language acquisition studies mentioned above simulate the time-
course of learning through the iterative Rescorla-Wagner equations. Ini-
tially, the association strengths in the Rescorla-Wagner model are subject
to substantial fluctuations as a function of linguistic experience. The res-
ults from the studies above indicate that these initial fluctuations provide
a good characterization of the learning process in language acquisition.
Over time, however, the association strengths in the Rescorla-Wagner
model asymptote towards an equilibrium state. This equilibrium state

can be used as a proxy for the adult language processing system.



1.8 The adult language processing system

The equilibrium state of the Rescorla-Wagner model is formalized in
the equilibrium equations provided by Danks (2003). The equilibrium
equations, as implemented in the NDL R package (Shaoul, Arppe et al.,
2013), define the connection strength (V1) between cue (C;) and outcome
(Oy) as:

Pr(Ok|C;) = > Pr(C4|Ci)Vjr =0 (1.4)

j=0

where Pr(C;|C;) is the conditional probability of cue C; given cue Cj,
Pr(Oy|C;) is the conditional probability of outcome Oy, given cue C; and

n + 1 is the number of different cues.

For computational efficiency, the association strengths from cues to a
specific outcome Oy, are estimated separately and independently of all
other outcomes. This assumption of independence is a simplification of
reality that is conceptually similar to the independence assumption in
the naive Bayes classification algorithm and inspired Baayen et al. (2011)
to refer to the discrimination learning algorithm used throughout this

dissertation as naive discrimination learning.

In Baayen et al. (2011), we first used the equilibrium equations for
the Rescorla-Wagner model to explore the adult language processing
system. The naive discrimination learning (henceforth NDL) model in
Baayen et al. (2011) takes as input cues letters and letter combinations
and as outcomes lexico-semantic representations. The model is a full-
decomposition model of morphological processing, in which there are
no separate representations for morphologically complex words. We
demonstrated that this discrimination learning model captures a wide
range of effects observed in the experimental psycholinguistic literature,
including morphological family size effects, inflectional entropy effects,
constituent and whole-form frequency effects for complex words and

paradigmatic entropy effects.

In a follow-up study (Baayen et al., 2013), we found that the same full-
decomposition NDL model captures the phrase frequency effects described
by Arnon and Snider (2010). Arnon and Snider (2010) demonstrated that
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)

phrasal decision latencies for frequent phrases such as “all over the place’
were shorter as compared to phrasal decision latencies for infrequent
phrases such as “all over the city”. These effects could not be reduced to
frequency effects of single words or component n-grams.

As noted by Baayen et al. (2013), phrase frequency effects are often
interpreted as evidence for phrase-level representations. This interpreta-
tion fits well with theories of language processing that assume storage
of and computation over large numbers of stored phrase-level represent-
ations, such as data-oriented parsing (Bod, 2006) and memory-based
learning (Daelemans & Bosch, 2005). The NDL model, however, success-
fully captures the phrase frequency effect in Arnon and Snider (2010),
without assuming any representations beyond the word level. As such,
the NDL model provides a simpler and more economical account of phrase

frequency effects as compared to storage-based alternatives.

1.4 Cognitive aging

A particularly fruitful application of naive discrimination learning in the
context of the adult language processing system concerns the topic of
cognitive aging. In a series of papers, we investigated the consequences
of additional experience with a language on the performance in a variety
of linguistic tasks. By providing an NDL model with varying amounts
of linguistic input, we demonstrated that many of the findings typic-
ally attributed to cognitive decline are a straightforward consequence of
increased linguistic experience.

A typical finding in the experimental psycholinguistic literature, for
instance, is that older people have longer lexical decision latencies than
younger people, particularly for low frequency words. This age by fre-
quency interaction follows straightforwardly from a discrimination learn-
ing model. High frequency words are encountered regularly, which leads
to a constant reinforcement of the associations between the letters and
letters combinations in these high frequency words and their lexemes.
Low frequency words, however, are encountered on a much less regular

basis.
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As noted by Baayen (2014), low frequency words are initially “pro-
tected” by the fact that they tend to consist of less frequent letter
combinations than high frequency words. The word “qatar”, for instance,
contains the low frequency word-initial letter bigram “qga”. For many
young participants, “qatar” may be the only word with a word initial
“qa” bigram in their mental lexicon. For these participants, “qa” is an
excellent cue for the lexeme “qatar”, which allows for relatively fast lexical
decision latencies. Older participants, by contrast, may have experienced
other words that start with “qa”, such as “qanat” (i.e., “a gently sloping
underground channel or tunnel constructed to lead water from the interior
of a hill to a village below”), “qat” (i.e., “the leaves of an Arabian shrub,
which are chewed as a stimulant” or “qaid” (i.e., “Muslim tribal chief”).
For these participants, the letter combination “qa” is a less reliable cue
for the word “qgatar”, which results in longer lexical decision latencies
(example adapted from Baayen, 2014).

In simulations reported in Ramscar et al. (2014), we demonstrated
that an NDL model replicates the age by frequency interaction described
above for the lexical decision data made available by Balota et al. (1999)
when provided with different amounts of linguistic input that reflect the
linguistic experience of older and younger participants. In other words:
using the exact same computational architecture and hardware, increased
experience with a language leads to exactly the type of problems with
low frequency words that we observe in older participants.

A second finding in the experimental psycholinguistic literature that
is typically attributed to cognitive decline, Ramscar et al. (2014) continue,
is the decreased performance of older participants in the paired associate
learning task. In paired associate learning participants are asked to
memorize pairs of words such as “north-south” or “jury-eagle”. In the
recall phase the first word of a pair is presented (e.g., “north”, “jury”) and
participants are asked to produce the second word (e.g., “south”, “eagle”).
Older people perform less well on this task as compared to younger
people. This age effect is more prominent for harder word pairs such as

9

“Jury”-“eagle” than it is for easier word pairs such as “north”-“south”.
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Again, Ramscar et al. (2014) argue, cognitive decline is an unlikely
explanation for the decreased performance of older people in the paired
associate learning task. Logically, older participants might perform worse
than younger participants due to a general decrease in cognitive ability
as a function of age. If this interpretation of the age effect were correct,
however, it is unclear why older people should perform worse on hard
word pairs, but not on easier word pairs. From a discrimination learning
perspective, by contrast, we expect exactly the type of age by item
difficulty interaction that is typically observed in paired associate learning
studies.

While the experience of older participants with the words “north” and
“south” may be somewhat more diverse, both younger and older people
are aware of the high co-occurrence rate of these words. For both groups
of participants “north” is an excellent cue for “south”. Older and younger
participants therefore show comparable performance for items like “north-
south”. In discrimination learning models, however, expectations are
shaped not only by positive, but also by negative evidence. Through
a lifetime of linguistic experience older participants have learned that
words like “north” and “south” often occur together, but also that words
like “jury” and “eagle” do not. The “decreased performance” of older
participants for harder items in paired associate learning, Ramscar et al.
(2014) argue, might therefore reflect increased awareness of the fact that
the word “jury” is an uninformative cue for the word “eagle”.

In Sun et al. (2015), we demonstrate that a re-analysis of the Rosiers
and Ivison (1986) normative data using a (beta regression) generalized
additive mixed-effect model supports such an interpretation of the age by
item difficulty interaction in paired associate learning. Figure 1.1% shows
this interaction, with warmer colors representing poorer performance.
As can be seen in Figure 1.1, the performance of older participants for
pairs with a high co-occurrence frequency is on par with that of younger
participants. Only when the words in a pair do not occur together very
often, we see a clear “decrease” in performance for older participants. As

such, older participants show increased sensitivity to the co-occurrence

2 This figure is a slightly adapted version of the figure in Sun et al. (2015)
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frequency of the words in a pair. This pattern of results is hard to explain
from a cognitive decline perspective (which would expect a decrease in
performance for older participants across the co-occurrence frequency
range), but follows straightforwardly from the principles of discrimination

learning outlined above.

60
50
40
30
20

Age

Co—occurrence freq.

Figure 1.1. Effects of (log-transformed) Co-Occurrence Frequency by Age on

Paired Associate Learning performance.

A third phenomenon interpreted as evidence for cognitive decline
is the fact that older people have problems remembering names and
retrieving names from memory (see, e.g., G. Cohen & Faulkner, 1986).
Through a series of simulations (Ramscar et al., 2014; Ramscar, Smith et
al., 2013), we show that these name retrieval problems are a natural con-
sequence of two aspects of changes in the linguistic distribution of names
over the lifetime. First, the perplexity of the English name system has
increased almost exponentially over the last 50 years. The processing load
imposed by names has therefore increased dramatically during the lives of
older people. Second, older people have experienced more names simply
because they are older and have met and communicated about greater
numbers of people. Even if we do not assume cognitive decline, therefore,
older people should be expected to have a harder time remembering and
retrieving names.

The results described above demonstrate that many of the experi-
mental findings that are typically interpreted in terms of cognitive decline
can alternatively be explained by increased experience with the language.
Indeed, in simulations reported in Ramscar, Hendrix et al. (2013) and

Ramscar et al. (2014), we demonstrate that it is exactly this increased
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experience that leads to improved performance of older people in exper-
imental paradigms like the FAS subtest of the Controlled Oral Word
Association Test (Spreen & Strauss, 1998), where people are asked to
generate words starting with the letters “F”, “A” or “S”. Depending on
the nature of the task, therefore, increased linguistic experience can lead
to either improved or decreased performance in tests of cognitive ability.

The studies on cognitive aging discussed above do not attempt to
provide conclusive evidence against the notion of cognitive decline. It
is well possible that certain aspects of human behavior inevitably suffer
from a general decrease in cognitive functioning over the lifetime. For
the lexical learning tasks described above, however, there is surprisingly
little evidence for age-related cognitive decline once linguistic experience
is controlled for. Instead, the behavior of older participants in a variety
of tasks suggests an increased sensitivity to the distributional properties
of the language. As such, traditional views on cognitive aging may con-
siderably overestimate the degree to which cognitive functioning declines
with age. A more informed understanding of (lexical) processing over the
lifetime that takes into account the consequences of learning will help

better understand the costs and benefits associated with cognitive aging.

1.5 Data, data, data!

This dissertation began with a citation from The Adventures of Sherlock
Holmes (Doyle, 1982): “‘Data! Data! Datal’; he cried impatiently. ‘I
can’t make bricks without clay.””. Ever since Harald Baayen introduced
me to the work of Michael Ramscar, I have thought of discrimination
learning as an exciting and promising new approach to language pro-
cessing. Having the privilege of being involved in the first explorations
of the adult language processing system from a (naive) discrimination
learning perspective in a collaboration with Harald Baayen, Petar Milin,
Dusica Filipovi¢ Durdevié, and Marco Marelli (Baayen et al., 2011) fur-
ther increased my enthusiasm for the subject. The successful simulation of
many of the effects observed in the experimental morphological literature

in Baayen et al. (2011) resulted in an almost irresistible urge to further
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explore the explanatory power of a discrimination learning approach for
a variety of psycholinguistic data sets. “Data! Data! Datal”.

In the three chapters that follow this introductory chapter, I will
describe the results of an evaluation of the naive discrimination learning
(henceforth NDL) approach to adult language processing for three different
psycholinguistic data sets. Each data set evaluates the performance of
the NDL approach for a different psycholinguistic measure and a different
linguistic phenomenon. Chapter 2 presents an NDL model that simulates
reaction times for the reading aloud of monosyllabic words and non-words.
Chapter 3 gauges the explanatory power of NDL measures for eye-fixation
patterns on noun-noun compounds in a new large-scale database of eye-
movements that were recorded while participants read a collection of
fictional texts, the Edmonton-Tiibingen eye-tracking corpus (ET corpus).
Chapter 4 evaluates the performance of an NDL approach in accounting
for the ERP signal in a primed picture naming task.

Taken together, Chapters 2, 3 and 4 highlight the potential of a naive
discrimination learning approach for understanding the adult language
processing system for a variety of behavioral measures and experimental
paradigms, and bring to light some of the limitations of the naive discrim-
ination learning approach and the implementation of this approach in the
NDL simulations described here. In the final chapter of this dissertation
I will briefly evaluate the overall performance of the NDL approach for
the data sets presented here. Furthermore, I will outline some of the
challenges that lie ahead in future research that adopts a discrimination

learning approach to the adult language processing system.
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Word naming

2.1 Introduction

Both M. Coltheart et al. (2001) and Perry et al. (2007) open what have
become canonical papers in the reading literature with the observation
that tremendous advances have been made in the development of reading
models over the last decades. They note note that early cognitive models
in psychology provided mainly verbal descriptions of hypothesized cog-
nitive architectures. These models took the form of flowchart diagrams
in which boxes were used to depict mental representations, which were
manipulated by cognitive processes represented as arrows that connected
the various boxes (see, e.g., Morton, 1969) for an application of box-
and-arrow models to reading). Although such “verbal” models provide
descriptions of behavioral data, their lack of specificity meant that they
could only be related to the psychological and neurobiological reality of
language processing at a very abstract level.

The recent development of more formal, computationally implement-
able models of reading (see, e.g., M. Coltheart et al., 2001; Harm &
Seidenberg, 2004; Perry et al., 2007, 2010) has done much to address this
shortcoming. As M. Coltheart et al. (2001) remark, the development of

a computational model requires a precise specification of any processes
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and representations that are to be implemented. As a result, compu-
tational models offer a clear improvement in specificity over informal
“verbal” models of reading. Because computational models generate pre-
cise and explicit predictions, M. Coltheart et al. (2001) continue, it is
possible to evaluate them against existing behavioral data, and even
falsify them through later findings. In addition, recent advances in cog-
nitive and computational neuroscience have provided opportunities to
complement this approach with even more stringent tests that investigate
the neurobiological plausibility of a model’s architecture and processing

mechanisms.

Since the initial implementation of the Dual-Route-Cascaded model
by M. Coltheart et al. (2001), a decade-and-a-half of recursive implement-
ation and assessment of computational models have provided valuable
insights into the successes of and the challenges for models of reading
aloud. Consequently, the qualitative and quantitative performance of
current state-of-the-art models of reading aloud is orders of magnitude

better than that of previous generations of models.

Although current state-of-the-art models of reading aloud (see, e.g.,
M. Coltheart et al., 2001; Harm & Seidenberg, 2004; Perry et al., 2007,
2010) differ with respect to the exact mechanisms they propose, they all
divide the process of reading aloud into two “routes” (i.e., sub-processes).
The first route is a “lexical route”, in which mappings from orthography
to phonology are mediated by lexical representations. This allows the
reading of known words such as “wood” and “blood” to be simulated. The
second route is a “sub-lexical” route that directly maps orthographic units
onto phonological units and allows for the simulation of reading poten-
tially unknown words, such as “snood”. As such, the general consensus
seems to be that reading aloud is best modeled through a dual-route
architecture. To cite M. Coltheart et al. (2001, p.303), “Nothing ever
guarantees, of course, that any theory in any branch of science is correct.
But if there is no other theory in the field that has been demonstrated
through computational modeling to be both complete and sufficient,

resting on laurels is a reasonable thing to do until the emergence of such
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a competitor - that is, the emergence of a different theory that has also
been shown to be both complete and sufficient.”

In what follows, we hope to breath new life into the single versus
dual-route debate by presenting a new single-route model of reading
aloud, the Naive Discriminative Reading aloud (NDR,) model. The NDR,
is an extension of the NDR model for silent reading by Baayen et al. (2011),
in which both words and non-words are read through a single lexical
architecture. Following the fruitful tradition described above, we will
evaluate the performance of the NDR, model for a wide range of effects
documented in the experimental word and non-word naming literature.
We show that the NDR,, successfully captures the linear and non-linear
characteristics of these effects, as well as a hitherto unobserved frequency
effect for non-words. We further demonstrate that the addition of a
sub-lexical route to the NDR,, is redundant, in that it does not improve

the performance of the model.

2.2 Existing models

In the reading aloud task, participants are presented with printed words
on a computer screen and asked to pronounce these words as quickly and
accurately as possible. Orthography and phonology play an important
role in this process. These roles are undisputed in all current models
of reading aloud, which contain both orthographic and phonological
representations in one form or another. The role of semantics has been
subject to a little more debate. While previous single-route models of
reading aloud mapped orthography directly onto phonology, however, the
consensus in more recent models is that the orthography-to-phonology
mapping is mediated by semantic representations at least some of the time.
Dual-route models of reading aloud have posited that while non-words
are read through a direct orthography-to-phonology mapping, reading
real words involves lexico-semantic representations.

Below, we discuss some of the existing state-of-the-art models of read-
ing aloud. First, the triangle model (see, e.g., Seidenberg & McClelland,
1989; Plaut et al., 1996; Harm & Seidenberg, 2004) will be introduced.
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Next, we discuss the Dual-Route Cascaded Model (M. Coltheart et al.,
2001). We conclude with a description of the model of reading aloud
that currently yields the best simulation results: the Connectionist Dual
Process model (Zorzi et al., 1998b; Perry et al., 2007, 2010).

2.2.1 The triangle model

The triangle model (see, e.g., Seidenberg & McClelland, 1989; Plaut et
al., 1996; Harm & Seidenberg, 2004) is a model comprising of three levels
of description: orthography, phonology and meaning. Mappings between
these levels of description are implemented as three-layer connectionist

networks. The architecture of the model is presented in Figure 2.1.

phonology

orthography semantics

8
Ir‘

Figure 2.1. The basic architecture of the triangle model.

In the original version of the triangle model only the direct map-
ping from orthography to phonology was implemented (Seidenberg &
McClelland, 1989). This original model therefore was a single-route
model of reading aloud that directly mapped orthography onto phonology.
Representations consisted of triplets of orthographic and phonological fea-
tures (Wickelgren, 1969).! Associations between these orthographic and
phonological units were learned through a 3-layer connectionist network.

Harm and Seidenberg (2004) added semantics to the triangle model.
The latest version of the model therefore has two routes from orthography
to phonology. The first route is a direct mapping from orthography to
phonology, as in Seidenberg and McClelland (1989). In the second route
the mapping from orthography to phonology is mediated by semantic

1 These Wickelfeatures were replaced by more localist representations in Plaut et
al. (1996)
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representations. The addition of a second route to the model allowed
Harm and Seidenberg (2004) to simulate a number of effects in the
experimental literature that were not captured by previous versions of the
triangle model, including effects of homophones and pseudo-homophones.

Being a connectionist model, the triangle model operates on the
basis of a general learning mechanism. As such, the triangle model
has increased plausibility over models that posit task-specific processing
mechanisms (see Seidenberg, 2006). Connectionism, however, has its own
share of disadvantages. First, most connectionist networks are multi-
layer networks, in which the mapping between input and output units
is mediated by one or more layers of hidden units.? The contents of
these hidden layer units are opaque. This reduces the transparency and
interpretability of connectionist models (see, e.g., Baayen et al., 2011). In
addition, connectionist models learn through back-propagation of error.
In back-propagation learning the model output is compared to the target
output. The model weights are then updated on the basis of the difference
between the model output and the target output (Rumelhart et al., 1986;
Seidenberg, 2006). As noted by Perry et al. (2007), back-propagation
learning has been criticized for being neurobiologically implausible (Crick,
1989; Murre et al., 1992; O’Reilly, 1998, 2001).

2.2.2 The Dual-Route Cascaded model

A different class of models was developed in parallel to the different
versions of the triangle model. While later versions of the triangle model
did include a second, lexical route (Harm & Seidenberg, 2004), the Dual-
Route Cascaded model (henceforth DrC, M. Coltheart et al., 2001) was
the first computational implementation of a dual-route architecture. The
architecture of the DRC model is displayed in Figure 2.2.

The first stage of the model is shared by both routes and consists of an
interpretation of the visual input in terms of visual features (Rumelhart
& Siple, 1974) that activate letter units. From this orthographic level

the phonological representations required for speech can be accessed

2 Harm and Seidenberg (2004) implemented a 2-layer orthography to phonology
mapping that does not contain hidden units.
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Figure 2.2. The basic architecture of the DRC model.

through two routes. The sub-lexical route maps letter units directly onto
phonemes, whereas in the lexical route this mapping is mediated by a

lexico-semantic system.

The sub-lexical route of the DRC model is based on grapheme-to-
phoneme conversion rules (Rastle & Coltheart, 1999). This route, which
is posited to be necessary for reading non-words, operates serially in an
all-or-none fashion. This sub-lexical route also underlies the successful
simulation of the increased processing costs associated with words with ir-
regular orthography to phonology mappings (i.e., mappings not predicted
by the set of rules in the model). As a result of the all-or-none operation
of the grapheme-to-phoneme conversion rules, however, the model has
problems simulating the results of graded consistency experiments in
which the number and frequency of words with consistent (i.e., the same)
and inconsistent (i.e., different) orthography-to-phonology mappings is
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taken into account. Furthermore, the rule-based implementation of the
sub-lexical route is psychologically and biologically less plausible than the
learning algorithms that underlie the direct orthography to phonology
mapping in other models.

The lexical route of the DRC model is based on the interactive activa-
tion model of McClelland and Rumelhart (1981) and is parallel rather
than serial in nature. Like the rule-system in the sub-lexical route, the
interactive activation model in the lexical route of the DRC model is fully
hard-coded and ignores the problem of learning. A further problem is that
it does not capture a number of important findings in the experimental
literature (see, e.g., Andrews, 1996; Ziegler & Perry, 1998, see Perry et
al., 2007 for a comprehensive discussion of the shortcomings of the DRC
model).

2.2.3 The Connectionist Dual Process model

The latest dual-route model is the Connectionist Dual Process model
(henceforth cpp, Zorzi et al., 1998b; Perry et al., 2007, 2010). Similar to
the DRC, the different versions of the CDP model consist of a lexical and
a sub-lexical route. The basic architecture of the CDP model is presented
in Figure 2.3.

The major advancement of the CDP over the DRC model is the imple-
mentation of a two-layer associative learning network in the sub-lexical
route (Zorzi et al., 1998b, 1998a). To learn the connection strengths
between orthographic and phonological units the network uses the delta
rule (Widrow & Hoff, 1960), which is a general algorithm for human learn-
ing (Siegel & Allan, 1996). As such, the implementation of the sub-lexical
route of the CDP models is an important step towards a neurobiologically
plausible model of reading aloud. In the most current versions of the
CcDP model this learning network was complemented with a graphemic
buffer in the sub-lexical route (Perry et al., 2007). This graphemic buffer
organizes the orthographic information into a graphosyllabic template
that uses the most frequent graphemes as representational units (Perry
et al., 2010; Houghton & Zorzi, 2003).
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Figure 2.3. The basic architecture of the CDP+ model.

In the original ¢CDP model the lexical route was, in the words of Perry
et al. (2007, p.297), “not implemented beyond the provision of frequency-
weighted lexical phonological activation” (see Zorzi et al., 1998b). The
¢DP+ model (Perry et al., 2007) implemented the lexical route of the
DRC model to overcome this problem. In doing so, however, the latest
versions of the CDP model inherited the problems of interactive activation
models. As such, one of the problems of the cDP+ model is that there is
no learning in the lexical route (see Perry et al., 2007, p.303).

The lexical and sub-lexical routes of the cDP+ model are connected
at the orthographic input and phonological output levels. On the input
side of the model the visual input (i.e., the printed word) is first decoded
into features with a slightly altered version of the McClelland and Rumel-
hart (1981) feature detectors. These features are then translated into

letters. At the output side of the model the information from the lexical
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2.8 The Naive Discriminative Reading Aloud model

and sub-lexical routes is integrated in a phonological decision system.
Naming latencies in the cDP+ model are based on a settling criterion
that terminates processing when the network is in a stable state (see
Zorzi et al., 1998b).

In a comprehensive study Perry et al. (2007) demonstrated that the
cDP+ model accounts for a wide range of experimental findings and
shows item-level correlations with observed naming latencies that are an
order of magnitude higher than those in the DRC and the triangle model.
We therefore consider the ¢CDP+ model the leading model of reading

aloud.

In a recent extension of the CDP+, Perry et al. (2010) extended the
model to bi-syllabic reading aloud. This cDP+4+ model correctly captures
a number of experimental effects that are specifically relevant for multi-
syllabic words, including effects of stress and the number of syllables. For
mono-syllabic words, the cCDP+4+ model behaves very similar to the cDP+
model, with minor changes in parameter settings and the assignment of

graphemes to slots in the graphemic buffer.

2.3 The Naive Discriminative Reading Aloud model

The Naive Discriminative Reading Aloud (NDR,) model differs from
existing models of reading aloud in two ways. First, the computational
implementation of the NDR,, is entirely based on the general principles of
human learning described by the Rescorla-Wagner equations (Rescorla
& Wagner, 1972). These equations are similar to the delta rule that is
used in the sub-lexical network of the cDP+ model. As such, the NDR,
stands in sharp contrast to the lexical route of the CDP+ model, which is
based on the interactive activation model of McClelland and Rumelhart
(1981). The computational engine of the NDR, also differs substantially
from the connectionist networks that underlie the triangle model. It uses
simple, transparent two-layer learning networks that directly map input
units onto output units. In contrast to connectionist networks, these

networks do not rely on the often uninterpretable hidden layer units or
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back-propagation of error. A detailed description of the Rescorla-Wagner

learning principles was provided in Chapter 1 of this dissertation.

Second, unlike all of the models discussed in the previous section, the
NDR, consists of a single lexical architecture. The most recent version of
the triangle model and the DRC and CDP models assume the use of both
a lexical and a sub-lexical route in reading aloud, whereas the earlier
single-route implementations of the triangle model were sub-lexical in
nature. By contrast, NDR, applies a single lexical mechanism in both

word and non-word reading.

The architecture for word reading in the NDR, is straightforward and
similar to the processes underlying word reading in the lexical routes
of existing models. Visual stimuli activate orthographic units. These
orthographic units activate lexical representations of target words. In
addition, they spread activation to lexical representations of orthograph-
ically similar words. The lexical representations of both the target word

and the orthographic neighbors then activate phonological output units.

We propose that the reading of non-words occurs in a similar fashion.
For non-words, however, no lexical representations exist. Therefore,
instead of activating the lexical representations of both the target word
and orthographically similar words, non-word orthographies only activate
the lexical representations of orthographic neighbors and only these lexical

representations subsequently activate phonological units.

In what follows we demonstrate that a wide range of non-word reading
effects documented in the experimental literature follow straightforwardly
from this simple architecture. This architecture also accounts for a novel
finding, namely a non-word frequency effect in reading aloud. This non-
word frequency effect suggests that the distinction between words and
non-words may not be as black and white as previously thought and
provides independent evidence for the involvement of lexical processes
in non-word reading, as well as for the single route architecture of the
NDRg.-
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2.8 The Naive Discriminative Reading Aloud model

2.8.1 Model architecture

The architecture of the NDR, model is presented in Figure 2.4. The
model assumes that reading aloud involves three processing stages. In the
first stage, the visual input is interpreted and decoded into orthographic
units. In the second stage, these orthographic units activate lexical
representations in the mental lexicon that we will refer to as lexemes
(i.e., lexical targets that link orthographic, phonological and semantic
properties of words (Aronoff, 1994). In the third stage these lexemes
activate phonological output units. The second and third stages of the
model are implemented as two-layer associative learning networks, using

the Rescorla-Wagner learning rule.

orthography

N

visual input
interpretation

print

Figure 2.4. The basic architecture of the NDRa model.
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2.3.2 Visual input interpretation

Prior to linguistic processing a decoding of the visual input is necessary.
Both the DRC and the ¢cDP+ use feature detection mechanisms that are
similar in nature to the features detection mechanism in McClelland and
Rumelhart (1981). The visual input interpretation mechanism in the
NDR, is a quantitative implementation of a feature decoding mechanism
that is based on the idea that more complex visual patterns should take
longer to decode.

We used a variant of the Manhattan city-block distance measure (see,
e.g., Han & Kamber, 2000) to quantify the complexity of a letter in Eng-
lish. First, we constructed vector representations of the bitmaps of all 26
letters as written in black Lucida typewriter font on a white background
(font size: 16). Each vector contained 400 elements representing the bit
values for 20 horizontal and 20 vertical pixels. Black pixels were encoded
as 1, white pixels as 0. Given the vector B of bit values, the complexity C
of a given letter i was defined as the summed difference in pixels between

that letter and the other letters ji . . o6:

26 400

Ci=> > |Bir — Byl (2.1)

j=1k=1

where ki 2 100 are the indexes of the pixels.

Equation 2.1 quantifies the prototypicality of the visual features of
a letter. Values of C; are low for letters that are similar to many other
letters, such as o and ¢, and high for letters that are dissimilar to most
other letters, such as y or w. To obtain the complexity of the visual input

for a word w we summed over the complexities C' of the letters i:

Complexity,, = Z C; (2.2)
i=1

where n is the number of letters in the word.
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2.8 The Naive Discriminative Reading Aloud model

The Complexity measure is an obvious simplification of the complex
processes involved in the uptake of visual information and merely serves
as an approximation of the processing costs associated with the decom-
position of a visual word form into orthographic features. Given that the
uptake of visual information is not part of the linguistic core of the model
this approximation suffices for the current purposes. In the discussion
section of this chapter we will briefly discuss alternative implementations

of a visual input interpretation mechanism.

2.8.83 Orthography to lexemes

The first part of the linguistic core of the NDR, model consists of a
Rescorla-Wagner network that maps orthographic units onto lexical rep-
resentations. The orthographic input cues in this network are letters and
letter bigrams. For instance, for the word bear the input units are the
letters b, e, a, r and the letter bigrams #b, be, ea, ar and r#. Richer
encodings could be used, but the one adopted here is simple and proved
sufficient for the present purposes.

The outcomes of the orthography to lexeme learning network are lex-
ical representations. For the word bear, for instance, the outcome is the
lexeme BEAR. In addition to the lexeme of the target word, we allowed
the orthographic input units to co-activate the lexemes corresponding to
other words. The orthographic word form bear, for instance, co-activates
the lexemes YEAR and FEAR. The co-activation of orthographic neigh-
bors predicts neighborhood and consistency /regularity effects and allows
for lexical route processing of non-words. The number of co-activated
words taken into consideration is a technical parameter of the model.
In all simulations reported in this study this parameter was set to 20.
Simulation accuracy is highly similar across a wide range of parameter
settings and asymptotes for higher values.

The activation of a word’s lexeme given its orthographic represent-
ation is defined as the sum over the weights from the letters and letter
bigram cues to the lexeme outcome (see Equation 1.3) and will hence-
forth be referred to as ActLexeme. All activations were transformed to

positive values by adding the absolute value of the minimum activation.
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Furthermore, we back off from zero by adding a small back-off parameter
(b, set to 0.10) to the activations. This prevents division by zero when

we generate simulated naming latencies.

2.3.4 Lexemes to phonology

The mapping from lexical representations to phonology occurs through
a similar Rescorla-Wagner learning network. This network maps lexical
representations onto phonological units. As before, lexical representations
are lexemes. The phonological units are demi-syllables (Klatt, 1979). The
target word bear, for instance, consists of two demi-syllables: b8 and 8R
(using the DISC notation from the CELEX lexical database, see Baayen et
al., 1995).3 Again, it is important to note that demi-syllables are merely
a practically convenient approximation of the acoustic gestures necessary
for speech production. We return to this issue in the discussion section

of this chapter.

While the activation flow in the NDR,, is from lexemes to demi-syllables,
we trained the model with demi-syllables as input cues and lexemes as
outcomes. This training regime optimizes discriminative learning, because
it uses a one-to-many rather than a many-to-one mapping (Ramscar et
al., 2010).

The activation of a demi-syllable is obtained by summing over the
weights on incoming connections from the active lexemes. The majority
of activation spreads from the target word lexemes. We refer to this activ-
ation from the target lexeme as a;. Additional activation a; .., spreads
to a target demi-syllable from the lexical representations of orthographic
neighbors. Given the orthographic input bear, for instance, the activations
of lexemes of the orthographic neighbors YEAR and FEAR are 0.044
and 0.027. We weighted the contribution of co-activated lexemes to a

demi-syllable for the amount of activation they received from the target

3 Note that these representations are approximations of the demi-syllables used in
the speech recognition literature. In our demi-syllables vowels are repeated, whereas

in acoustic applications they are split at maximum intensity.
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word orthography (w;). Thus, the activation of a demi-syllable k is given
by:

ActPhong, = wiey * a¢ + Z wW; * a; (2.3)
i=1

where n is the number of lexical neighbors taken into account (set to
20 in the current simulations). In the current simulations, co-activated
neighbors were selected from a restricted set of mono-syllabic and mono-
morphemic words that can be used as nouns (for more information, see
the Simulations section). As before, activations were transformed to
positive values by adding the absolute value of the minimum activation
and a small back-off parameter (0.10) was added to all activations to
prevent division by zero when generating simulated naming latencies.

The parameter w;.,, indicates the relative weight of the activation from
the target lexeme as compared to the activation from lexical neighbors
and was set to 4.20 in the current simulations. As such, the activation
of a demi-syllable from the target lexeme has a greater weight than the
activation from the lexemes of co-activated orthographic neighbors. This
is possible only if the language processing system is able to verify that the
target lexeme corresponds to the orthographic input, whereas the lexemes
of co-activated neighbors do not. Importantly, this assumption is not
unique to the NDR,. Instead, it is a general assumption of discrimination
learning that is necessary to evaluate if the outcome of a learning event is
predicted correctly and, consequently, to update the association strengths
between the cues that are present in the input and all outcomes.

The fact that the NDR, performs optimally when the relative weight
of the activation from the target lexeme is greater than the relative weight
of the activation from the lexical neighbors suggests that while lexical
neighbors spread activation to demi-syllables during initial bottom-up
processing, this activation is suppressed during subsequent processing
stages due to top-down verification of the activated lexemes vis-a-vis the
current orthographic input. As such, the architecture of the NDR, is

consistent with the idea that successful processing may be characterized
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by a bi-directional pass of information between higher and lower level
cortical representations (Friston, 2005). As we demonstrate below, the
bottom-up pass of information through the principles of discrimination
learning captures a wide range of effects observed in naming latencies.
The principles underlying the verification processes in the backward top-
down information pass, by contrast, are much less well-understood. We
return to this issue when discussing the pronunciation performance of

the NDR, model.

Two demi-syllables need to be activated for the mono-syllabic words in
this study. We refer to the activation of these demi-syllables as ActPhon,
and ActPhony. The activation of two demi-syllables introduces a choice
problem: one of the activated demi-syllables has to be articulated first.
The more dissimilar the activations of the demi-syllables, the harder it
may be to produce the right demi-syllable at the right time. A relatively
high activation of the second demi-syllables, for instance, may interfere
with the production of the first demi-syllable. We model the difficulty
of the selection of the appropriate demi-syllable by taking the Shannon
entropy (Shannon, 1948) over the activations (transformed into probab-
ilities p; and p2) of the first and second demi-syllable. We refer to this

measure as H, which is defined as:

p1 = ActPhon;/(ActPhon; + ActPhons),
p2 = ActPhony/(ActPhon; + ActPhons),

H o= = (p+1og (p) (24

2.8.5 Simulating naming latencies

Together, the measures Complexity, ActLexeme, ActPhony, ActPhons
and H describe the total amount of bottom up support for the target
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pronunciation.* Simulated naming latencies in the NDR, are modeled

through a multiplicative integration of these measures:

Complexity"!
RT « ActLexeme®2xActPhon(? «ActPhony*«H"5 (2:5)

where w5 are weight parameters that establish the relative contribu-

tion of each source of information.

Model parameters were chosen to optimize the quantitative and qual-
itative performance of the model. For the current simulations, we used
the following parameter settings: w; = 2.26, wy = 0.48, ws = 0.43, wy:
0.49 and ws: 1.07. Parameter settings were identical in all simulations
reported in this study. Including the two technical parameters described
earlier (i.e., the back-off parameter that prevents division by zero (0.10)
and the number of co-activated neighbors taken into consideration (20)),
as well as the parameter for the relative importance of demi-syllable activ-
ations from the target word lexeme and the lexemes of lexical neighbors

(4.20), the NDR, has a total of 8 free parameters.

2.4 Simulations

2.4.1 Training and test data

For all simulations described below we trained the orthography-to-lexeme
network of the NDR, on the input lexicon described by Baayen et al.
(2011). This training set contains a large number of two and three word
phrases from the British National Corpus (Burnard, 1995) that consist
of words in a precompiled list of nouns, verbs, adjectives and function
words in the CELEX lexical database (Baayen et al., 1995). The lexeme-

to-phonology network was trained on 3,908 lowercase mono-morphemic

4 Lexeme activations for non-words were, by definition, not available. For non-
words, ActLexeme was therefore set to 0.10 (0 plus the back-off constant b that was

added to all lexeme activations for words).
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mono-syllabic words in CELEX that consisted of at least 3 letters® and
for which frequency counts were available in the English Lexicon Project
(henceforth ELP, Balota et al., 2004).

For the word naming simulations, we used a data set consisting of
the 2,524 mono-morphemic mono-syllabic words present in our training
data that can be used as nouns and for which naming latencies are
available in the ELP. Prior to analysis we inverse transformed (—1000/RT)
the observed naming latencies to remove a rightward skew from the
distribution of latencies. In addition, to allow for a comparison of effect
sizes, we standardized observed and simulated latencies by converting

them to z-scores.

No large-scale database of naming latencies is available for non-words.
We therefore extracted a set of non-words from the ARC non-word data-
base (Rastle et al., 2002). We restricted the range for non-word length
to that observed in our set of real words and extracted non-words with
orthographically existing onsets and bodies only. Furthermore, we restric-
ted the non-words to the words for which both demi-syllables existed in
our training lexicon. This resulted in a non-word data set that consisted

of 1,822 non-words: 912 regular non-words and 910 pseudo-homophones.

We looked at the effects of 16 linguistic predictors, related to the
length, frequency, neighborhood characteristics, regularity/consistency,
morphology and semantics of a word or non-word. Predictor values were
extracted from the ELP and the english data set in the languageR package
(Baayen, 2011b). Whenever necessary, a more detailed description of
each predictor will be provided prior to the description of the results for

that predictor.

5 Although it is not inconceivable that full-form orthographic representations exist
for very short words, we decided to follow Baayen et al. (2011) in excluding 1 and 2
letter words (1.48 % of all monosyllabic word types in the CELEX lexical database)
from the simulations reported below to prevent biasing the results in favor of a coding
scheme that adopts bigram representations at the orthographic level, such as the one

used here.
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2.4.2 Model evaluation

Model evaluation in cognitive psychology typically involves comparing a
model’s performance to both observed naming latencies and alternative
model architectures. The observed data used in our simulations are
the ELP naming latencies for the set of 2524 mono-morphemic nouns
described above. We compare the NDR, model not only to the observed
naming latencies, but also the dual-route cbP+ model, which, as noted
above, represents the current state of the art in dual route models. Perry
et al. (2007) showed that the cDP+ model drastically outperforms other
existing models, such as the cDP, the DRC and the triangle model.

The successor of the cDP+ model for bi-syllabic words, the cDP++
model (Perry et al., 2010), has the same architecture for mono-syllabic
word reading as the cDP+ model. Due to small changes in parameter
settings, the cDP++ shows a small improvement over the CDP+ model
in terms of item-level correlations. This, however, comes at the cost of
failing to simulate the effect of body neighborhood density. We chose to
compare the NDR, to the cDP+ rather than the cDP++4 model, because
the former was specifically designed for monosyllabic word reading and
its performance in this domain is better documented than that of the
CDP++ model. We therefore simulated naming latencies for both the
NDR, and ¢DP+ model for the set of 2, 524 mono-morphemic nouns under

investigation.

2.4.8 Simulation approach

The adequacy of a model can be investigated by comparing its predictions
against observed data. This comparison typically focuses on two levels
of description. The first level is the overall fit of the model to a set of
observed data. Typically, this overall fit is gauged through the regression
approach. In the regression approach item-level correlations between
simulated and observed naming latencies are compared for a large-scale
database of words. Here, we follow this approach by looking at the item-
level correlations between the ELP naming latencies and the latencies
simulated by the NDR, and CDP+ models. We also look at the posterior
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probability of the models as gauged through the Aikake Information
Criterion (henceforth A1c, Akaike, 1974). To further probe the overall
performance of both models we furthermore conduct a regression analysis
on the principal components extracted from the multidimensional space
described by all predictors in our simulations. This provides more insight
into how well each model captures the overall structure in the observed
data.

The second level at which the performance of a model can be invest-
igated concerns the effects of individual predictors on observed naming
latencies. The approach that is most typically used to do this is the
factorial approach. In the factorial approach patterns of results related
to predictors are simulated on an experiment-by-experiment basis (for
an application, see, e.g., M. Coltheart et al., 2001; Perry et al., 2007).
As noted by Adelman and Brown (2008), however, there are a number of
problems with the factorial approach.

First, the data gathered in single experiments tend to provide an
incomplete picture of the effect of a predictor. The experimental data that
models of reading aloud are assessed on are often acquired in experiments
with a limited number of carefully selected items and under different
experimental conditions. As a result, optimizing the parameter set of a
model on the basis of individual experiments may lead to local over-fitting.
The model then becomes overly sensitive to the potentially idiosyncratic
experimental conditions, item lists and predictor combinations in indi-
vidual experiments, which comes with the cost of a suboptimal overall
model fit (see, e.g., Seidenberg & Plaut, 2006).

Second, modeling on an experiment-by-experiment basis makes it
hard to compare the relative effect sizes of different predictors. Due to
variations in item lists, experimental conditions and participant popula-
tions, the effect sizes for a given predictor can vary substantially between
experiments. Given this variance in the effect sizes for a given predictor,
it is hard to compare effects sizes between predictors in the factorial

approach.

34



2.4 Simulations

Third, a large number of experiments are based on factorial contrasts.
This leads to a potential distortion of non-linear patterns of results that
can range from a simplification of a non-linear effect to masking a pre-
dictor effect completely. Applying a median-split dichotomization to a
predictor that has a U-shaped effect on response latencies, for instance,
would yield a null effect.

To overcome these problems with the factorial approach we adopt a
different simulation philosophy. Instead of looking at predictor effects
on an experiment-by-experiment basis we will investigate the effects of
all relevant predictors in the naming latencies for the set of 2,524 words
in the ELP. All of the ELP naming latencies were obtained in the same
task, under very similar experimental conditions and for a homogenous
participant population. The presence of an effect in the ELP is a clear
indication that computational models should account for this effect. In
addition, using ELP naming latencies allows for a comparison of effect
sizes between predictors. Furthermore, it allows us to look at the effects
of different predictors in a setting where parameters should not be allowed
to vary. Finally, because we have access to naming latencies for individual
items we can get away from the dichotomization of numeric predictors

and start investigating non-linear predictor effects.

2.4.4 Predictor simulations

We investigated a large number of effects that have been documented in
the experimental reading aloud literature. For each effect under investig-
ation, we first verified whether an effect was present in the ELP naming
latencies. For a large majority of the effects documented in the literature
this was indeed the case. Whenever an effect was not present in the ELP
naming latencies we explicitly mention its absence. For those effects that
were present in the ELP naming latencies we proceeded with an analysis
of the effect for the simulated latencies of the NDR, and CDP+ models.
To investigate the effects of predictors we used the implementation
of generalized additive models (henceforth Gams; Hastie & Tibshirani,
1986) provided by the R package mgcv (Wood, 2006). GAMs are an

extension of generalized linear models that allow for the modeling of
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non-linearities. For each predictor effect we fitted both a linear and
a non-linear GAM. The linear GAM is mathematically equivalent to a
simple linear regression model. This linear model provides a conventional
assessment of the presence or absence of predictor effect. In addition
it provides an effect size measure that allows for the comparison of the

relative magnitude of effects of different predictors.

The non-linear caMs allow us to capture non-linearities. The smooth
functions in GAMs do not presuppose particular non-linear structures
and can therefore model a wide range of predictor-related non-linearities.
Furthermore, tensor products allow us to model two-dimensional non-
linear interactions of numerical predictors. As a result, we do not have
to dichotomize predictors even when inspecting interaction effects. We
allowed all predictor smooths to describe up to 6th order non-linearities
(k = 6) and did not impose any restrictions on tensor products. We
removed predictor values further than 3 standard deviations from the
predictor mean in all non-linear GAMs to prevent smooth estimates from
being overly influenced by extreme predictor values. To establish the
significance of tensor product interactions, we compared the AIC score
(Akaike, 1974) of a tensor product GAM to that of a GAM with additive
non-linear effects of both predictors (i.e., separate predictor smooths).
Unless explicitly stated otherwise, we considered interactions only when
the AIC score of the tensor product GAM was significantly lower than that

of a GAM with an additive non-linear effect of both predictors.

Many of the predictors under investigation are strongly correlated.
As a result introducing a model term to or removing it from a model
that contains all predictors could have a strong effect on the effects of the
other terms in the model. To side-step this problem of multicollinearity
we decided to fit separate models for each predictor. Fitting separate
models for each predictor comes at the cost of masking potential effects of
covariates. We addressed this problem in two ways. First, we simulated
only effects that have been documented in experimental studies with
carefully controlled item lists. Second, to ensure that our model captures

the joint effects of the predictors we conducted a principal components
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regression analysis for both observed and simulated latencies on the
multidimensional input space described by all 16 predictors.

For word naming we fitted models to the observed naming latencies,
as well as to the simulated naming latencies for the NDR, and CDP+
models. As mentioned earlier, no large-scale database of non-word naming
latencies exists. To simulate the non-word effects documented in the
literature we therefore could not compare our model to observed naming
latencies. We did, however, have the possibility of comparing non-word
naming performance in the NDR, and CDP+ models. This allows us
to establish whether or not the single-route architecture of the NDR,
model captures the experimental effects of non-word naming that are
successfully simulated by the cDP+ model. Furthermore, it allows us
to identify whether and where predictions for non-word naming differ
between the NDR, and CDP+ models. These differences describe explicit
test-cases for the performance of both models that can be addressed in

future non-word naming experiments.

2.5 Simulation results

2.5.1 Non-word naming disadvantage

Before we turn to the discussion of predictor-specific effects, there is an
overall difference between word and non-word naming that requires our
attention. Several studies have documented that words are named faster
than non-words (McCann & Besner, 1987; Weekes, 1997; Ziegler et al.,
2001). Both models correctly predict this effect (NDR,: ¢ = -13.090, 3
= -0.395; cppP+: t = -74.142, 8 = -1.514). There is, however, a large
difference in the relative magnitude of the predicted effects. In the cDP+
model, mean naming latencies for non-words are 57% slower than those
for words (159 vs 101 cycles). In the NDR,, the difference is only 26%
(mean inverse activation units non-words: 2,275,498, words: 1,809,877).

Although a direct comparison to the effect size in observed data is
not possible, we compared the processing disadvantage for non-words
predicted by the NDR,, and CDP+ models to that observed in the studies of
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McCann and Besner (1987) and Ziegler et al. (2001). The average naming
latency for words in McCann and Besner (1987) was 454 ms, whereas that
for non-words was 579 ms. The processing disadvantage for non-words
in this study was therefore 29%. In Ziegler et al. (2001), average naming
latencies across eight conditions were 611 ms for non-words and 521 ms
for words, for a non-word processing disadvantage of only 17%. These
data suggest that the cDP+ model overestimates the processing costs for

non-words, while the NDR, provides a more reasonable estimate.

2.5.2 Length effects

2.5.2.1 Word length. The effect of word length on naming latencies
has been documented in a large number of studies, with longer naming
latencies for words that consist of more letters (see, e.g., Richardson,
1976; Frederiksen & Kroll, 1976; Henderson, 1982; Balota & Chumbley,
1985; Jared & Seidenberg, 1990; Seidenberg & McClelland, 1990; Spieler
& Balota, 1997; Weekes, 1997). This length effect is present in the ELP
naming latencies (t = 20.047, 8 = 0.371), as well as in the NDR, (¢t =
46.315, § = 0.678) and cDP+ simulations (¢ = 20.061, § = 0.371). The
results of a non-linear model are presented in Figure 2.5 and indicate
that this effect is slightly non-linear for the observed naming latencies
and the latencies simulated by the NDR,, but not for those of the cbp+

model.

observed NDR, CDP+

-1 0 1 2 3 “10 1 2 3 -1 0 1 2 3
Length

Figure 2.5. The effect of length in word naming.
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The effect size of the length effect is larger in the NDR, model than
in the observed data. The length effect in the NDR, model is primarily
driven by the complexity of the visual input. In all reported simulations,
the visual complexity parameter is set to 2.08. The overall fit of the data,
however, is quite robust to changes in this parameter setting (e.g., overall
data fit: r > 0.45 for parameter values between 0.98 and 3.16). There
are two reasons we decided to use the current parameter setting. First,
we believe that the overall fit of the model should be optimal. This is
the case for the current parameter settings. Second, because the model
operates under noise-free conditions, the effect sizes in the NDR,, tend to
be somewhat larger than those in the observed data. As we will show in
the overall model fit section of this chapter, the effect size of length in
the current simulations is of the correct relative magnitude compared to

the effect sizes of the other predictors.

In addition to a length effect for words, a length effect for non-words
has also been observed. Non-word naming latencies increase linearly for
each additional letter (Weekes, 1997; Ziegler et al., 2001). Both the NDR,
(t = 130.845, 5 = 0.951) and the cDP+ (¢t = 21.236, 8 = 0.446) capture
the effect of length in non-word naming. As can be seen in Figure 2.6,
both models predict a linear (CDP+) or near-linear (NDR,) effect for
non-words. Furthermore, consistent with the experimental findings of
Weekes (1997) and Ziegler et al. (2001), both models predict a larger
effect size for length in non-word naming than in word naming (NDR,:
AB =0.273, cop+: AS = 0.075) . The relative magnitude of the length
effect for non-words as compared to that for words is somewhat larger in

the NDR, (22 = 1.402) than in the cop+ (&= = 1.201).

In addition to the effects of word length reported above, Weekes (1997)
also reported an interaction of length with frequency, with a stronger
length effect for low frequency words. In a reanalysis of the Weekes (1997)
data, Perry et al. (2007), however, demonstrated that this interaction
was not significant. For the current set of observed naming latencies the
interaction was not supported either: a model with additive non-linear
terms of frequency and length resulted in a lower AIC score than a GAM

with a tensor product of frequency and length.
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observed NDR, CDP+
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Figure 2.6. The effect of length in non-word naming. The panel for the
observed data is left blank, because no large-scale database of non-word naming

exists.

2.5.3 Neighborhood effects

2.5.8.1 Orthographic Neighborhood Size. Although the unique variance
accounted for by neighborhood measures is small (Baayen et al., 20006),
these effects have played a central role in the assessment of models of
reading aloud. The experimental naming literature has consistently docu-
mented that words with many orthographic neighbors are processed faster
than words with fewer neighbors (Andrews, 1989, 1992, 1997; Grainger,
1990; V. Coltheart et al., 1988). In interactive activation models, however,
the inhibitory links between lexical items lead to more competition for
words with many orthographic neighbors. As a result, the DRC model,
which uses the interactive activation model of McClelland and Rumelhart
(1981) as its lexical route, could only model the effect of orthographic
neighborhood density with altered parameter settings. Although the
CcDP+ model uses the same interactive activation architecture for its
lexical route, it captures the orthographic neighborhood density effect,
presumably through its non-lexical route. Nonetheless, the authors ac-
knowledge that the interactive activation model in their lexical route may
have inherent problems with neighborhood density effects and that there
may be better alternatives for the lexical route of the cDP+ model (Perry
et al., 2007, p.303).
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The NDR, model predicts orthographic neighborhood density facilit-
ation as a consequence of the co-activation of orthographically similar
words. Each co-activated orthographic neighbor activates its lexeme,
from which in turn activation spreads to the corresponding demi-syllables.
The target word band, for instance, co-activates the lexical representa-
tions of words like bank, bang and ban, which spread activation to the
target demi-syllable b{. In addition, band co-activates land, hand and
sand, which spread activation to the target demi-syllable {nd. The more
orthographic neighbors a word has, the more activation will spread from
co-activated lexemes to the target demi-syllables and the faster a word
will be named.

A linear model on the ELP naming latencies shows the predicted
facilitatory effect of orthographic neighborhood density (¢t = -19.173, 8
= -0.357). Both the NDR,, (¢t = -25.080, 5 = -0.447) and the cDP+ (¢t = -
19.211,  =-0.357) capture this linear effect of orthographic neighborhood
density. The non-linear effect of orthographic neighborhood density is
shown in Figure 2.7. The NDR, model predicts a quadratic curve that
is highly similar to that in the observed data, whereas CDP+ captures
the linear trend of the effect, but somewhat underestimates its quadratic

component.

observed NDR, CDP+

051\
0.0 -
—05 4
—1.0

Orthographic Neighbors

Figure 2.7. The effect of orthographic neighborhood density in word naming.

In addition to an effect of orthographic neighborhood density on word
naming, a non-word naming effect has also been documented (see e.g.,
Andrews, 1997). As for real words, the effect is facilitatory in nature, with

faster naming latencies for non-words with many orthographic neighbors
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as compared to non-words with frew orthographic neighbors. A linear
model on the simulated naming latencies shows that both the NDR, (¢
= -27.595, 8 = -0.160) and the cDP+ model (¢t = -14.014, § = -14.014)
correctly simulate this effect. Furthermore, as can be seen in Figure 2.8,
the NDR,, predicts a quadratic non-linearity that is similar to the observed
effect of orthographic neighborhood density in word naming. The cDP+
predicts a qualitatively similar, but somewhat more wriggly non-linear
effect.

observed NDR, CDP+

RT

—2 T T T \\ T T T ‘\
0 1 2 3 0 1 2 3

Orthographic Neighbors

Figure 2.8. The effect of orthographic neighborhood density in non-word

naming.

2.5.8.2 Phonological and Body Neighborhood Size. The effect of ortho-
graphic neighborhood density is not the only neighborhood density effect
that has been documented. As noted by Perry et al. (2007), several
studies have argued that phonological neighborhood density (Mulatti et
al., 2006) or body neighborhood density (Brown, 1987; Jared et al., 1990;
Ziegler et al., 2001) may be more adequate measures of neighborhood
density effects in reading aloud. The linear effect of phonological neigh-
borhood density (observed: ¢ = -12.760, 8 = -0.246; NDR,: t = -16.440,
B = -0.311; cop+: t = -15.332, 8 = -0.292), as well as that of body
neighborhood density (observed: ¢ =-5.751, § =-0.114; NDR,: t = -4.793,
B =-0.095; cpp+: t =-13.991, 8 = -0.268) is captured by both the NDR,
and the cbP+ model. The NDR, model somewhat underestimates the

magnitude of the body neighborhood density effect relative to that of the
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orthographic and phonological neighborhood density effects. By contrast,
the cDP+ model overestimates the effect of body neighborhood density.

The non-linear effect of phonological and body neighborhood density
is presented in Figure 2.9. The top panel of this figure shows that both
the NDR,, and the CDP+ correctly simulate the overall quadratic nature
of the phonological neighborhood density effect in the ELP, although the
simulated effect in the NDR,, is more similar to the observed effect than is
the simulated effect in the cDP+ model. The bottom panel of Figure 2.9
shows that the effect of body neighborhood density is u-shaped in nature,
with particular difficulties for words with few body neighbors. Both
models have trouble capturing the non-linear effect of body neighborhood
density, but the deviations of the simulated effect from the observed effect

are greater for the NDR,, than for the CDP+ model.

observed NDR, CDP+

10 1 2 3 10 1 2 3 10 1 2 3
Phonological Neighbors

observed NDR, CDP+

-1 0 1 2 -1 0 1 2 -1 0 1 2
Body Neighbors

Figure 2.9. The effects of phonological neighborhood density and body

neighborhood density in word naming.
In addition to a word naming effect, both the NDR, and the cDP+

model predict a non-word naming effect of both phonological (NDR,: ¢
= -16.724, § = -0.034; cpP+: t = -9.238, 8 = -0.020) and body neigh-
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borhood density (NDR,: t = -7.560, 8 = -0.032; cDP+: t = -9.168,
= -0.039). As for the effect of orthographic neighborhood density, the
non-linear estimates of these effects are qualitatively similar in both mod-
els, although the quadratic component of the phonological neighborhood
density effect is more pronounced in the NDR,, whereas the quadratic
component of the body neighborhood density effect is more pronounced
in the cDP+ (see Figure 2.10).

observed NDR, CDP+
: 051,
0.0 |
i
—0.5 .
-1 0 1 2 3 10 1 2 3
Phonological Neighbors
observed NDR, CDP+
|_
@

0o 1 2 3 0o 1 2 3
Body Neighbors

Figure 2.10. The effects of phonological neighborhood density and body

neighborhood density in non-word naming.

2.5.8.8 The interplay of neighborhood density measures. As noted above,
the NDR,, predicts that the effect of neighborhood density is primarily an
orthographic neighborhood density effect, whereas several studies have
argued that phonological or body neighborhood density characteristics
may underlie the effect of orthographic neighborhood density. To in-
vestigate which neighborhood density measure drives the neighborhood
effects, we entered all three predictors into a single linear regression
model. Table 2.1 shows t-values and [ coefficients for the neighborhood
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Table 2.1. The linear interplay of orthographic, phonological and body neigh-
borhood density. Listed are t-values and 3 coefficients for each of the predictors

in an additive linear model

observed NDR., CDP+
t 8 t 8 t B8
Orthographic N -13.859 -0.368 -19.389 -0.490 -8.151 -0.214
Phonological N -0.948 -0.023 -1.170 -0.027 -5.059 -0.122
Body N 2.790  0.058 6.690 0.133 -6.942 -0.144

density measures in this model. When taking the effect of orthographic
neighborhood density into account, phonological neighborhood density
no longer has a significant effect on the observed naming latencies and
body neighborhood density shows a small inhibitory effect, which may
be due to suppression (L. Friedman & Wall, 2005).

The NDR, model captures the general pattern of results: orthographic
neighborhood density remains highly significant, the effect of phonolo-
gical neighborhood density disappears and body neighborhood density
becomes inhibitory. As in the individual models for the three predictors,
however, the NDR, somewhat underestimates the effect of body neighbor-
hood density, which is reflected in an overly large positive t-value. The
CDP+ model has more problems with the interplay of the neighborhood
density predictors. It underestimates the contribution of orthographic
neighborhood density and incorrectly predicts strong inhibitory effects
for both body and phonological neighborhood density.

To further explore the interplay of the neighborhood density meas-
ures, we fitted two GAMs to assess the potential non-linear interplay of
orthographic neighborhood density with phonological and body neighbor-
hood density. The first GAM included a tensor product of orthographic
neighborhood density and phonological neighborhood density, the second
a tensor product of orthographic neighborhood density and body neigh-
borhood density. Both models provide a better account of the data than
models with separate smooths for both predictors, as indicated by lower
AIC scores.
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The results of the tensor product models are shown in Figure 2.11. In
the observed naming latencies a strong facilitatory effect of orthographic
neighborhood density characterizes both models. Both phonological and
body neighborhood density show an effect only for words with many
orthographic neighbors. For these words, the effect of phonological neigh-
borhood density is inhibitory, whereas that of body neighborhood density
is facilitatory. The NDR, model correctly simulates both numerical inter-
actions and shows a pattern of results that is highly similar to that in the
observed data. The simulations of the cDP+ model show more deviation
from the observed data. For words with many orthographic neighbors
the cDP+ model incorrectly predicts a facilitatory effect of phonological
neighborhood density. Furthermore, the cDP+ model underestimates
the effect of orthographic neighborhood density for words with few body

neighbors or few phonological neighbors.

observed NDR, CDP+
3
z 2
2 1
2 0
o -1
0o 1 2
Orthographic Neighbors
NDR, CDP+
z
)
e}
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m

Orthographic Neighbors

Figure 2.11. The interplay of orthographic, phonological and body neighbor-
hood density in tensor product GAMs.
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Two conclusions can be drawn from the results of these simulations.
First, the neighborhood density effect seems to primarily be an effect of
orthographic neighborhood density. This argues against an interpretation
of neighborhood effects as being driven by phonological or body neigh-
borhood density. Second, the tensor product GAMs on the observed data
show that the effect of orthographic neighborhood density is modulated
by phonological and body neighborhood density for words with many
orthographic neighbors. This effect is facilitatory for body neighborhood
density and inhibitory for phonological neighborhood density. The correct
characterization of this pattern by the NDR, suggests that the model is
sensitive to the neighborhood similarity structure that characterizes the

English lexical space.

It is worth taking a moment to consider why the NDR, model captures
the complex interplay of the neighborhood density measures. Neigh-
borhood effects in the NDR, arise due to bottom-up co-activation of
orthographic neighbors of the target word. When the orthographic
word bear is presented, for instance, not only the corresponding lexeme
BEAR is activated, but lexemes of orthographic neighbors such as PEAR,
WEAR, HEAR and YEAR receive activation as well. The more lexemes
are co-activated, the more activation spreads from these co-activated
lexemes to the phonological level. The fact that the neighborhood density
effects seem to primarily be driven by orthographic neighborhood density
therefore follows straightforwardly from the architecture of the NDR,

model.

From an orthographic perspective, all co-activated lexical representa-
tions are equal. In the context of the reading aloud task, however, some
co-activated lexical representations are more equal than others. When
the word bear is presented, the co-activated lexeme HEAR does not
share a phonological demi-syllable with the target word lexeme BEAR.
The fact that HEAR is co-activated by the orthographic presentation
of bear, therefore, does not help activate the phonology the target word
bear faster. By contrast, PEAR and WEAR share the phonological
rhyme with BEAR and therefore help reduce the time it takes to activate
the second demi-syllable 8R of the target word bear. This explains the
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facilitatory effect of body neighborhood density for words with many
orthographic neighbors. Body neighbors are words that share both the
orthographic and the phonological rhyme with the target word. The
more of the orthographic neighbors are body neighbors, the faster the
second demi-syllable of the target word is activated and the faster that
target word is named.

The effect of phonological neighborhood density is opposite to that of
body neighborhood density. For words with many orthographic neighbors
the observed naming latencies show an inhibitory effect of phonological
neighborhood density: words with many phonological neighbors are
named slower than words with few phonological neighbors. As counter-
intuitive as this inhibitory effect of phonological neighborhood density
might seem, it follows straightforwardly from the architecture of the NDR,
model. In contrast to body neighbors, the lexemes of phonological neigh-
bors are not necessarily co-activated by the orthographic presentation
of the target word. The orthographic presentation of the word bear, for
instance, does not co-activate the lexical representations HAIR and AIR.
HAIR and AIR therefore cannot help activate the target word phonology,
despite the fact that these lexemes share the second demi-syllable with
BEAR. The model, however, has learned to associate HAIR and AIR with
the word-final demi-syllable 8R. The higher the number of lexemes that
share a demi-syllable, the less well the association between each lexeme
and that demi-syllable will be learned. The existence of the phonological
neighbors HAIR and AIR therefore lead to a lower connection strength
from the lexeme BEAR to the demi-syllable 8R. This results in a longer
naming latency for the word bear than would be the case if no such

phonological neighbors existed.

2.5.3.4 Pseudo-homophones. As noted by M. Coltheart et al. (2001),
the neighborhood density effects reported above are complemented by
a pseudo-homophone effect in non-word naming (McCann & Besner,
1987; Taft & Russell, 1992; Seidenberg et al., 1996). Naming latencies
for non-words that can be pronounced as real words (e.g., bloo) are

shorter as compared to naming latencies for normal non-words. This
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pseudo-homophone effect is correctly predicted by both models, albeit
with relatively small effect sizes (NDR,: t = -4.348, § = -0.203; CDP+:
t = -2.679, 8 = -0.125). In addition, there has been some debate as
to whether or not there is a base word (e.g., blue) frequency effect for
pseudo-homophones. In a review of the evidence, Reynolds and Besner
(2005, p.623) conclude that “the published data are most consistent with
the conclusion that there is no base word frequency effect on reading aloud
when pseudohomophones are randomly mixed with control nonwords”.
In pure non-word blocks, however, an effect of base word frequency has
been observed (Borowsky et al., 2002; Marmurek & Kwantes, 1996). In
our non-word simulations, both the NDR,, (t = -3.630, 5 = -0.119) and
the cpp+ (¢t = -2.668, 5 = -0.092) yielded a subtle base word frequency
effect. The limited size of the predicted base word frequency effect in our
large-scale simulations, however, suggests that the effect may be hard to

detect in single experiment studies.

2.5.8.5 Orthographic Neighborhood by Frequency. A further important
neighborhood density effect concerns the interaction of orthographic
neighborhood density with frequency. Several studies found that low
frequency, but not high frequency words are read faster when they have
many neighbors (Andrews, 1989, 1992; Balota et al., 2004). We fitted
tensor product GAMs to look at the interaction of frequency and neighbor-

hood density in the observed and simulated naming latencies. The results

observed NDR, CDP+

Frequency
o N

10 1 2 3 -1 0 1 2 3
Orthographic Neighbors

Figure 2.12. The interaction of frequency with orthographic neighbors and
phonological neighbors in tensor product GAMs.
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of this model are shown in Figure 2.12. The observed data show the
expected pattern of results: a facilitatory effect of neighborhood density
for low frequency words only. Both the NDR, and the cDP+ model cap-
ture this frequency by orthographic neighborhood density interaction and
show the longest latencies for low frequency words with few orthographic

neighbors.

2.5.4 Consistency/Regularity effects

2.5.4.1 Regularity. The relation between the orthography and phonology
of a word has been a hotly debated topic in the word naming literature.
M. Coltheart et al. (2001) focused on the concept of regularity and
defined a word as regular “if its pronunciation is correctly generated by
a set of grapheme to phoneme conversion rules” (M. Coltheart et al.,
2001, p.231). The DRC model predicted that regular words should be
pronounced faster than irregular words. This was confirmed by a number
of experimental findings (Seidenberg et al., 1994; Taraban & McClelland,
1987; Paap et al., 1987; Paap & Noel, 1991). We therefore consider
the effect of regularity a good starting point for the investigation of
the relation between orthography and phonology. In our simulations we
defined regularity as a two-level factor, based on the regularity of a word
given the grapheme to phoneme (henceforth Gpc) rules underlying the
sub-lexical route of the DRC model. A linear model on the ELP naming
latencies shows the predicted facilitation for regular words (¢ = -8.864,
B = -0.389). This effect is somewhat underestimated by the NDR, (¢
= -5.762, § = -0.255) and somewhat overestimated by the cDP+ (t =
-14.578, B = -0.624).

2.5.4.2 Position of irreqularity. The size of the regularity effect depends
on the position at which the irregularity occurs. A number of studies
(M. Coltheart & Rastle, 1994; Rastle & Coltheart, 1999; Roberts et
al., 2003) found larger irregularity effects for words with early-position
irregularities as compared to words with late-position irregularities. A
similar effect of position of irregularity is present in the ELP naming
latencies (¢t = -5.043, 8 = -0.746) and the cDP+ simulation (¢ = -3.039,
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B = -0.546). The NDR, model, however, failed to capture this effect (¢
= 1.192, § = 0.177). The inability of the NDR, to model the position
of irregularity effect is not surprising given that the model is insensitive
to the sequential nature of the orthographic input and the phonological

output. We return to this issue in the discussion section of this chapter.

2.5.4.83 Consistency. In a number of studies, it has been argued that
regularity may be a measure that is too simplistic to fully describe the
relationship between the orthography and the phonology of a word. Fol-
lowing Glushko (1979), a number of studies therefore investigated the
effect of consistency, rather than regularity. Originally, Glushko (1979)
defined consistency as a two-level factor, for which words were defined
as inconsistent if their orthographic body mapped on to more than one
phonemic sequence. For instance, while the pronunciation of the word
wave is correctly predicted by the GPC rules of the DRC model it is
inconsistent, because its word body is pronounced differently in the word
have. Further research indicated that consistency is better conceptualized
as a continuous variable (Jared et al., 1990; Plaut et al., 1996; Jared,
1997; Rastle & Coltheart, 1999).

We tested a number of consistency measures and found the proportion
of consistent word tokens to explain most variance in the ELP naming
latencies (t = -8.212, 8 = -0.169). This linear effect of consistency was
accurately captured by the NDR, (t = -7.354, § = -0.150), as well as

observed NDR, CDP+

Consistency

Figure 2.13. The effect of consistency of the orthography to phonology

mapping in word naming.
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the cDP+ model (¢t = -9.685, § = -0.188). Figure 2.13 shows the non-
linear effect of consistency. The consistency effect was stronger for low
predictor values in the observed naming latencies. The NDR, somewhat
underestimates the non-linear component of this effect, whereas the CDP+
somewhat overestimates it. Given the width of the confidence interval for
the observed effect of consistency, however, it is unclear how pronounced
the non-linearity of the consistency effect in the observed data is.

In addition to a word naming effect of consistency, a consistency effect
has also been observed in non-word naming (Glushko, 1979; Andrews &
Scarratt, 1998) For our set of non-words, both the NDR,, (t = -8.049,
= -0.185) and the cDP+ (t = -12.607, 5 = -0.283) predict a facilitatory
effect of consistency. As can be seen in Figure 2.14, this effect resembles
the non-linear effect in the observed data for the NDR,, whereas the
CDP+ shows a more uniform facilitatory effect. Given the width of the
confidence intervals for the non-word effect in both models, however, this

difference is not statistically robust.

observed NDR, CDP+

RT

-1 0 1
Consistency

Figure 2.14. The effect of consistency on non-word naming.

Both models predict a larger magnitude of the consistency effect
in non-word naming than in word naming, with a somewhat greater
difference in the relative magnitudes in the cDP+ model (ﬁﬁ’# = 1.507)
than in the NDR, (ﬂﬁ"—ww = 1.235). The prediction that the consistency
effect should be larger in non-word naming as compared to word-naming
stands in contrast with the findings in Glushko (1979), who found a 29 ms
facilitatory effect for consistent words in both word and non-word naming.

In the absence of a large-scale database of non-word naming latencies
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or further experimental findings, however, any conclusions regarding the
simulation of the relative effect sizes of the effects of consistency in word

and non-word naming in the NDR, and CDP+ models are tentative.

2.5.4.4 Consistency by Regularity. Now that we established the existence
of both a consistency and regularity effect, we return to the question
of which measure best characterizes the effect of the orthography to
phonology mapping on naming latencies. It would be problematic for
the DRC model if an independent graded consistency effect were present
on top of the regularity effect, because its non-lexical route is based
on hard-coded rules that operate in an all-or-none fashion (Andrews &
Scarratt, 1998; Zevin & Seidenberg, 2006). In contrast, the CDP+ model
is sensitive to the probabilistic characteristics of orthography to phonology
mappings (Zorzi et al., 1998b; Zorzi, 1999). This model therefore allows
for the possibility that graded consistency might be a better measure
than regularity.

In the NDR, model, regularity and consistency effects originate from
the co-activation of lexical items with similar orthographies. The word
band co-activates the lexical representations of phonologically consistent
words like bank, bang and ban. These words provide additional support
for the target demi-syllable {nd and hence speed up naming latencies.
In contrast, bough co-actives the lexemes of phonologically inconsistent
neighbors, such as tough, rough and cough. The lexemes corresponding
to these inconsistent neighbors activate the non-target demi-syllable Vf
and therefore do not facilitate the pronunciation of the target word bough.
The amount of support for the target demi-syllables directly depends on
the number of co-activated lexemes of orthographically consistent and
inconsistent words. The NDR,, therefore explicitly predicts that graded
consistency should be a better measure of orthography to phonology
mapping effects than regularity.

Inspection of the naming latencies in the ELP revealed not only an
independent contribution of both regularity and consistency, but also
a significant interaction between regularity and consistency. Table 2.2

shows the results of a linear model that includes regularity, consistency
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Table 2.2. The interplay of regularity and consistency. Listed are t-values

and [ coefficients for each of the predictors in an additive linear model

observed NDR. CDP+
t B8 t B8 t B
Consistency -6.174 -0.253 -5.846 -0.239 -5.940 -0.227
Regularity (factor) -2.982 -0.153 -0.499 -0.026 -6.994 -0.336
Interaction 3.016 0.144 2.739 0.131 2.441 0.109

and a regularity by consistency interaction term. For the observed naming
latencies, the strongest effect is that of consistency. The effect of regu-
larity becomes weaker in a model that includes consistency, but remains
significant. Furthermore, there is a significant interaction of regularity
with consistency. The NDR, captures the main effect of consistency and
the interaction term, but fails to capture the independent contribution of
regularity. In the CDP+ model all three effects are significant. In contrast
to the NDR,, however, it overestimates the independent contribution of
regularity.

Figure 2.15 shows the non-linear interaction of consistency with regu-
larity, which sheds further light on the issue. Regular words (top row)
show a subtle linear effect in the observed data, as well as in the simu-
lations of the NDR, and CDP+ models. For irregular words, however, a
non-linear curve characterizes the ELP naming latencies, with particularly
long reaction times for inconsistent irregulars. The general shape of this
curve is captured fairly well by both models, although the NDR, reduces
the third-order effect to a second-order curve and the CDP+ overestimates

the processing difficulties for inconsistent irregulars.

2.5.4.5 Consistency by Friends-Enemies. Consistency has also been
shown to interact with the number of friends (words with the same body
and rime pronunciation) and enemies (words with a different body and
rime pronunciation) a word has. Jared (1997, 2002), for instance, found
an effect of consistency that was limited to words with more enemies than
friends. Different friend-enemy measures have been proposed. Here, we

use the measure that explained most of the variance in the ELP naming
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Figure 2.15. The interplay of consistency and regularity in word naming.

Top row shows results for regular words, bottom row for irregular words.

latencies, which is the number of friends minus the number of enemies (¢
= -6.160, 8 = -0.128). Both the NDR, (t = -3.779, 8 = -0.078) and the
CDP+ (t = -8.715, 8 = -0.170) showed a significant main effect of this
friend-enemy measure on the simulated naming latencies, although the
NDR, somewhat underestimates its effect size.

More interestingly, the observed data support a tensor product GAM
with an interaction between consistency and our friend-enemy measure.
This interaction is displayed in Figure 2.16. Consistent with the findings
by Jared (2002), the consistency effect in the observed data is stronger
for words with more enemies. As can be seen in the middle and right
panels of Figure 2.16, both the NDR, and the CDP+ capture the complex

nature of this interaction.

2.5.4.6 Consistency by Frequency. A final effect of consistency /regularity
that warrants some discussion is the interaction of frequency with these

measures. Jared (1997, 2002) did not find evidence for an interaction of
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observed

Consistency

Figure 2.16. The interaction of consistency with friends minus enemies in
tensor product GAMs.

either regularity or consistency with frequency. As noted by Perry et al.
(2007), these null results stand in contrast to previous studies (Seidenberg
et al., 1994; Taraban & McClelland, 1987; Paap et al., 1987; Paap & Noel,
1991) that reported longer naming latencies for irregular or inconsistent
low-frequency words, but not for high-frequency words. The ELP naming
latencies showed very similar AIC scores for a model with a tensor product
interaction of consistency and frequency (AIC: 5015.91) and a model with
separate smooths for consistency and frequency (A1c: 5015.59). The
evidence for a consistency by frequency interaction in the ELP naming
latencies, therefore, is subtle at best. For completeness, we nonetheless
show the results of the tensor product GAM in Figure 2.17. The panel for

the observed data shows a subtle interaction in the expected direction,

observed CDP+

Consistency

Frequency

Figure 2.17. The interaction of frequency with consistency in tensor product
GAMs.
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with a consistency effect that is more prominent for low frequency than
for high frequency words. Both the NDR, and CDP+ simulations show a
qualitatively similar subtle interaction. The current simulations therefore
suggest that both models are capable of explaining the subtle interplay

between consistency and frequency.

2.5.5 Frequency effects

2.5.5.1 Frequency. We have not yet discussed the main effect of the
predictor that correlates most strongly with observed naming latencies:
word frequency. The effect of frequency is the most well-established
effect in the word naming literature (see, e.g., Forster & Chambers, 1973;
Balota & Chumbley, 1985; Weekes, 1997; Jared, 2002) and is highly
significant in the observed naming latencies (¢t = -25.523, 8 = -0.453). As
expected, both models capture the frequency effect (NDR,: ¢ = -40.202, 3
= -0.625; cpp+: ¢ = -40.457, 8 = -0.627). As can be seen in Figure 2.18
the effect is linear or near-linear in the observed data, as well as in the

simulations for both models.

observed NDR, CDP+

RT

4 4
a

Frequency

Figure 2.18. The effect of frequency in word naming.

2.5.5.2 Familiarity. In addition to the frequency effect, we also invest-
igated the effect of familiarity on the ELP naming latencies. As can be
seen in Figure 2.19, the effect of familiarity in the observed data is linear
and highly similar to that of frequency (t = -17.893, 8 = -0.347). Both
models capture the general linear trend (NDR,: t = -23.098, 5 = -0.424;
CDP+: t =-29.091, 8 = -0.484). While the observed data show a slightly
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observed NDR, CDP+

Familiarity

Figure 2.19. The effect of familiarity in word naming.

convex effect, however, the NDR, and CDP+ models predicts linear or

near-linear effects.

2.5.5.8 Bigram frequency. Both models accurately capture the frequency
effect at the word level. Frequency effects, however, also exists at a
finer grain size. Baayen et al. (2006), for instance, showed an effect of
bigram frequency on word naming latencies. In the NDR,, bigrams have
explicit representations both at the orthographic level, and many of the
demi-syllable representations at the phonological level are diphones. In
the CDP+, no explicit bigram representations are present. We therefore
hypothesized that there might be an advantage for the NDR, over the
CDP+ model for these effects.

Here, we explore the effect of two measures of orthographic bigram
frequency: summed bigram frequency and mean bigram frequency. Both
of these measures were predictive for the ELP naming latencies (summed
bigram frequency: t = 7.434, = 0.146; mean bigram frequency: ¢t =
11.309, 8 = 0.229). The NDR,, simulated the linear effect of both summed
(t = 15.675, 8 = 0.298) and mean bigram frequency (t = 26.341, 5 =
0.469). Consistent with the effect of word frequency, the effect sizes in the
NDR,, are larger than those in the observed data. As we will clarify in the
section on the overall fit of the model, however, the effects of the bigram
frequency measures in the NDR, have the correct relative magnitude as
compared to other lexical predictors. The CDP+ also captures the effect

of mean bigram frequency (¢ = 9.765, 8 = 0.190) and summed bigram
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frequency (¢t = 3.093, 8 = 0.061), although it underestimates the effect
size of the summed bigram frequency effect.

Figure 2.20 shows the results of a non-linear model for mean (top
row) and summed (bottom row) bigram frequency. In the observed
naming latencies, there is a facilitatory effect of mean bigram frequency
that increases in size for larger values of bigram frequency. The NDR,
correctly captures this pattern of results, but somewhat underestimates
the non-linear component of the effect. The ¢cDP+ correctly simulates the
overall facilitatory trend of the effect, but shows great uncertainty about
the nature of the effect for extreme values of mean bigram frequency.
The effect of summed bigram frequency is linear in the observed naming
latencies. Both models correctly predict facilitation for the lowest values
of summed bigram frequency, but the CDP+ and, to a lesser extent, the
NDR, model incorrectly predict that the effect would level off for higher

summed bigram frequencies.

observed NDR, CDP+
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Summed bigram frequency

Figure 2.20. The effects of mean bigram frequency (top row) and summed

bigram frequency (bottom row) in word naming.
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In addition to the effect of orthographic bigram frequency, we also
investigated the effect of phonological bigram frequency. The observed
naming latencies showed a facilitatory linear effect of the frequency of
the initial diphone (¢ = -6.733, 8 = -0.139). The NDR,, (t =-4.201, 8 =
-0.087) and the cpP+ (t = -6.641, § = -0.130) both capture this linear
effect, although the NDR,, underestimates the size of the effect. As can
be seen in Figure 2.21, the non-linear effect is u-shaped in nature, with
greater naming latencies for words with low-frequency initial diphones
and - to a lesser extent - words with high frequency initial diphones.
Both the NDR,, and the ¢DP+ model successfully capture the non-linear
nature of the effect. The NDR,, however substantially overestimates the
difficulty for words with high frequency initial diphones, whereas the
CDP—+ somewhat underestimates the time required to name these words.
Given the sparsity of data points at the high end of the predictor range
and the resulting increased width of the confidence intervals, however,
strong conclusions about the performance of both models for words with

high frequency initial diphones would be premature.

observed NDR, CDP+

RT

-2 0 2 -2 0 2 -2 0 2
Frequency initial diphone

Figure 2.21. The effect of the frequency of the initial diphone in word naming.

2.5.6 Semantic effects

A final class of effects we investigated are semantic effects. First, we
looked at the effect of the number of synonym sets that a word appeared
in (as listed in WordNet G. A. Miller, 1990). The more different meanings
a word has, the more synsets it appears in and the faster it is named
(Baayen et al., 2006). Following Baayen et al. (2006), we consider two
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related measures: the number of simplex synsets and the number of
complex synsets. The number of simple synsets simply refers to the
number of synsets a word occurs in. The number of complex synsets is
defined as the number of synsets in which a word is part of a compound

or phrasal unit.

observed NDR, CDP+

Simplex synsets

observed NDR, CDP+

Complex synsets

Figure 2.22. The effect of number of simplex (top row) and complex (bottom

row) synsets in word naming.

Both measures have an inhibitory effect on the observed naming
latencies, which is slightly larger for the number of complex synsets (¢t =
-13.368, 8 = -0.268) than for the number of simplex synsets (t =-11.277, 8
=-0.229). The NDR,, (number of simplex synsets: t = -13.541, 3 = -0.268;
number of complex synsets: -19.407, 5 = -0.368) correctly simulates this
pattern of results, although it overestimates the difference in effect sizes
between both effects. In the ¢DP+4 model, on the contrary, both effects
are nearly identical in size (number of simplex synsets: ¢t = -20.359,
= -0.368; number of complex synsets: -20.654, 8 = -0.372). Figure 2.22
presents the effect of both predictors, which are linear or near-linear in

the ELP naming latencies, as well as in the simulated naming latencies
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in both models. The NDR, model shows some non-linearity for words
that appear in few simplex synsets, but, again, given the sparsity of data
points at the lower end of the predictor range and the resulting wide
confidence interval, this predicted non-linearity is not statistically robust.

A third semantic variable we looked at is morphological family size.
Morphological family size is defined as the number of morphologically com-
plex words in which a word occurs as a constituent (see, e.g., Schreuder
& Baayen, 1997). Words that occur in many complex words (such as
work) are named faster than words that occur in fewer complex words
(Baayen et al., 2006). This facilitatory effect of family size was confirmed
in the ELP naming latencies (¢ = -15.468, § = -0.306). Both the NDR, (¢
=-19.999, 8 = -0.378) and the cppP+ (¢t = -24.372, = -0.425) correctly
simulated this effect of family size. As can be seen in Figure 2.23, the
effect of family size in a non-linear GAM is similar in the observed naming

latencies and the simulations with the NDR, and ¢DP+ models.

observed NDR, CDP+
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-1 0 1 2 3 -1 0 1 2 3 -1 0 1 2 3
Family size

Figure 2.23. The effect of family size in word naming.

A final semantic measure is derivational entropy (Moscoso del Prado
Martin, 2003). Derivational entropy is the entropy (Shannon, 1948) over
the probabilities of a word’s morphological family members. As such, it
provides an alternative to the family size measure, with family members
weighted for their token frequency. Similar to the effect of family size,
derivational entropy showed a facilitatory effect in the observed naming
latencies (t = -8.876, § = -0.182) that was correctly simulated in both
the NDR,, (¢t =-9.603, 8 = -0.194) and the cpP+ (¢t = -9.437, 8 = -0.183).

In contrast to family size, however, a non-linear model of derivational
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entropy on the observed naming latencies showed a fairly complex non-
linear pattern. As can be seen in Figure 2.24, however, both the NDR,
and the cDP+ models capture this non-linear pattern with remarkable

accuracy.

observed NDR, CDP+

0.0 Ny
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Derivational entropy

Figure 2.24. The effect of derivational entropy in word naming.

2.5.7 Overall model fit

Now that we discussed the effects of individual predictors it is time to
consider the overall fit of the NDR, model. A first issue to address is the
item-level performance (see, e.g., Spieler & Balota, 1997) of the models.
For the current set of 2,524 monosyllabic nouns, the correlations between
the observed naming latencies and the naming latencies simulated by the
NDR,, (r = 0.500) and cDP+ (r = 0.492) were similar. The CDP+ uses 25
parameters to obtain this performance. By contrast, the NDR, has only
8 free parameters. Therefore, the AIC (Akaike, 1974) score of the NDR,
(6453.48) is much lower than that of the cDP+ model (6515.81). These
AIC scores indicate that the NDR, model is 93,018,468,769,241 times more
probable than the cDP+ model (Akaike, 1980).

2.5.7.1 Predictor effect sizes. A second issue that concerns the overall
fit of the model are the relative effect sizes of the different predictors.
Figure 2.25 plots the modeled predictor coefficients (8s) in the linear
regression models for each predictor in the observed data against the
coefficients in the naming latencies simulated by the NDR, (top panel)

and cDP+ (bottom panel) models. Ideally, the points in these graphs
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Figure 2.25. Comparison of predictor coefficients for the observed data and
the simulations of the NDRa (top panel) and CDP+ (bottom panel) models.
Predictors from bottom to top: Freq (frequency), Orth (orthographic neighbor-
hood density), FAM (familiarity), FS (family size), NCS (number of complex
synsets), Phon (phonological neighborhood density), NSS (number of simplex
synsets), DE (derivational entropy), REG (regularity), Cons (consistency),
FID (frequency initial diphone), FE (friends-enemies measure), Body (body
neighborhood density), BG (summed bigram frequency), BGM (mean bigram
frequency), L (length).
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are on a straight line. This would indicate that the relative effect sizes
in the simulated data are identical to those in the observed data. In the
plot for the NDR,, simulated coefficients deviate very little from this ideal
pattern of results. The accuracy of the predictor effect size in the NDR,
is confirmed by a correlation of r = 0.997 between the coefficients for the
observed data and the coefficients in the NDR,, simulations. The cbDpP+
simulated coefficients also show a high correlation with the coefficients
for the observed data (r = 0.972). Nonetheless, the relative effect sizes
deviate more from those in the observed data for the cDP+ model than
for the NDR,.

The cDP+ model coefficients show two particular problems with the
relative effect sizes in the CDP+ simulations. First, the effect sizes of the
neighborhood density measures are too similar in the cDP+. There is an
overestimation of the effect of body neighborhood density and an under-
estimation of the effect of orthographic neighborhood density. Second,
the effect of regularity is substantially larger than that of consistency.
This stands in contrast to the observed data, where both effects are
very similar in size. These observations indicate that the cDP+ model
puts too much importance on processes underlying the effects of body
neighborhood density and regularity.

The effect sizes for the NDR, and, to a lesser extent, the cDP+, are
larger than those for the observed data. Importantly, this does not imply
that the models are overfitting predictor effects. As noted by Adelman
and Brown (2008), the standard deviation for modeled naming latencies
is smaller than that for observed latencies. The reason for this is that
models operate under perfect noise-free conditions. This stands in sharp
contrast to the observed naming latencies, even when those observed
latencies are averaged over participants. We normalized the observed
and simulated latencies prior to our simulations. As a consequence,
the smaller standard deviation in the simulated data results in larger
estimated effect sizes. The increased effect sizes in the NDR,, as compared
to the observed data, therefore, are a result of the noise-free conditions

in the model simulations.
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2.5.7.2 Principal components regression analysis. A third issue regarding
the overall model fit is how well the model characterizes the multidi-
mensional structure described by the predictors under investigation. In
the predictor simulations we fitted separate models for each predictor.
Although this allowed us to get away from the multicollinearity problem,
it implies that the effect for any given predictor may be confounded with
that of another predictor. We therefore sought to verify that the overall
characterization of the multidimensional predictor space by the NDR,, is

correct.

Table 2.3 shows the results of a linear regression model fit on the
first eight principal components of the 16-dimensional space described
by our predictors. Together, these eight principal components explained
86% of the variance in the input space. The NDR, predicts the right sign
for 7 of the 8 principal components. The only component the NDR,, has
problems with is PC4, which has high positive loadings for neighborhood
density measures as well as bigram frequency measures. For this principal
component the NDR,, incorrectly predicts an inhibitory effect, while the
observed data show no such effect. Consistent with the effect sizes for
the predictors themselves, the effect sizes of the principal components are
larger for the NDR,, simulated latencies than for the observed data. Again,
however, the relative magnitude of the effect sizes (3s) is highly similar
for the simulated and observed data (r = 0.94). This demonstrates that

the NDR, simulations capture the overall input space quite well.

The ¢cbP+ model does not capture the input space as well as the
NDR,. This is reflected in a somewhat lower correlation with observed
principal components coefficients (r = 0.86). The cDP+ model correctly
predicts that there should be no effect of PC4, but incorrectly predicts
an inhibitory effect for PC3, which has strong negative loadings for
consistency and friends minus enemies. Furthermore, the CDP4 model
fails to capture the inhibitory effect of PC7, which contrasts regularity
(high positive loading) with consistency and the frequency of the initial

diphone (high negative loadings).
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Table 2.3. Results of a principal components analysis on the 16 dimensional
space described by the predictors. Listed are t-values and [ coefficients for the

first 8 principal components.

observed NDR, CDP+

t B t B t B
PC1 -26.827 -0.235 -52.651 -0.312 -43.922 -0.304
PC2  -6.985 -0.070 -20.345 -0.139  -3.659 -0.029
PC3  -1.745 -0.020 -15.654 -0.123 3.435 0.031
PC4  -0.059 -0.001 8.058  0.078 0.014  0.000
PC5 2.864 0.050 10.858 0.128 11.677 0.160
PC6 7.396 0.141 9.780 0.126 8.459 0.127
PC7 7.052 0.139 19.376 0.259 1.079 0.017
PC8 3.329 0.078 10.169  0.161 5.302  0.098

2.5.8 Comparison to a dual-route architecture

The single route architecture of the NDR, model provides a good fit to
observed reading aloud data. It could be the case, however, that adding
a non-lexical route would improve the model’s performance. This issue is
particularly relevant given the fact that the non-lexical route of the cDP+
model has a significant contribution in terms of explained variance, both
in word and non-word naming (Perry et al., 2007). To resolve this issue we
implemented a sub-lexical route by means of a Rescorla-Wagner network
that learned to associate orthographic input cues (letters and letter
bigrams) with phonological outcomes (demi-syllables). We trained this
non-lexical Rescorla-Wagner network on the same set of training data as
the NDR,. This resulted in three additional model components, describing
the activation of the first (ActPhonSub;) and second (ActPhonSubs)
demi-syllable through the non-lexical route and the entropy over these
activations (HSub). We then fitted two linear regression models to
the (inverse transformed) observed naming latencies. The first linear
model included as predictors the (log-transformed) components of the
original NDR, model. The coefficients of this linear model were similar to

the parameter settings used in the simulations throughout this chapter
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Table 2.4. Results of a linear model predicting observed reaction times from

model components. Listed values are component t-values.

NDR, NDRZ
Lexical route
ActLexeme 5.011 3.231
ActPhon; 5.989 6.003
ActPhons 12.259  11.499
H 7.520 7.077

Complexity 18.019 16.851

Non-lexical route

ActPhonSub; NA 0.398
ActPhonSub; NA 1.114
HSub NA 1.246

(r = 0.987). The second linear model included as predictors not only
the components of the NDR, model, but also the 3 additional measures
derived from the sub-lexical route.

Table 2.4 presents the t-values associated with each component in
the linear model containing the lexical components of the NDR, and the
linear model containing both lexical and sub-lexical components. This
dual-route model will henceforth be referred to as the NDR2. Table 2.4
shows that the relative contributions of the lexical components are sim-
ilar in the NDR, and NDR2. Adding a sub-lexical route to the model
architecture, therefore, does not affect the contribution of the lexical
model components much. In addition, the sub-lexical components in the
NDR2 do not improve the explanatory power of the model. Neither the
activation of the demi-syllables from the orthography, nor the entropy
over these activations reaches significance in the linear model for the
NDR2. Furthermore, the predicted values of the NDR,, and NDR? linear
models are highly similar (r = 0.997), and both models show similar
correlations with the observed naming latencies (NDR,: r = 0.483; NDR2:
r = 0.484).
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The results for the linear models presented here demonstrate that the
addition of a non-lexical route does not improve the performance of the
NDR, in word naming. In addition, the simulations for the individual
predictors demonstrated that the effects documented in the non-word
naming literature are adequately captured by the single lexical route
architecture of the NDR,. The current simulations therefore suggest that
a single-route architecture is sufficient to capture the patterns of results

observed in both word and non-word naming experiments.

2.5.9 Non-word frequency effect

A reanalysis of the McCann and Besner (1987) naming latencies for non-
words provides independent evidence for the use of a lexical architecture
in non-word naming. For each of the 154 non-words in the study, we
obtained unigram frequencies from the Google 1T n-gram corpus (Brants
& Franz, 2006). The database of google unigram frequencies only includes
words with a frequency of 200 or greater. It is striking therefore, that only
14 of the 154 non-words did not appear in the Google unigram corpus. A
Google web search for these 14 words showed that even the least frequent
of these words still appeared on 7,700 web pages. Furthermore, the
average google unigram frequency of non-words (197,396) is comparable
to that of low frequency English words like scrum (frequency: 196, 879)
or minstrel (frequency: 196,617). This suggests that the distinction
between words and non-words is not as absolute as is commonly believed.
As for real words, any given non-word therefore may or may not have a
representation in the mental lexicon of an individual language user. The
probability of such a representation existing is a function of the frequency
of the word or non-word.

Given these observations we investigated whether there was a fre-
quency effect of non-words in the naming latencies for experiment 1
in McCann and Besner (1987). We found a highly significant effect of
non-word frequency (¢t = -6.054, = -0.441). This effect of non-word
frequency existed over and above the effects of word length, orthographic
neighborhood density, base word frequency and non-word type (regular

or pseudo-homophone). Non-word frequency was the most powerful pre-
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dictor of non-word naming latencies and showed a correlation to observed
naming latencies (r = 0.44) similar to that of the word frequency measure
in the ELP naming latencies for real words (r = 0.45).

To verify that the architecture of the NDR, supports non-word fre-
quency effects, we retrained the model on an input set that contained
the non-words nouns from the McCann and Besner (1987) study with
appropriate relative frequencies. We embedded these non-words in word
trigrams through frequency weighted sampling from trigrams that con-
tained nouns and replacing the nouns in these trigrams with the non-word
nouns. The resulting model is a truly lexical model of non-word naming,
in which non-words are read in exactly the same way as real words. With
parameter settings identical to those in all previously reported simula-
tions, this model correctly simulated the non-word frequency effect (¢
= -7.880, 8 = -0.539). As expected, the cDP+ model does not capture
this effect (¢t = -1.744, 8 = -0.140), although we do see a non-significant
trend in the expected direction, presumably due to the strong correlation
between non-word length and non-word frequency (r = —0.480).

The results of a non-linear model for non-word frequency are presented
in Figure 2.26. The observed naming latencies show a facilitatory effect
that levels off for the highest frequency non-words. The NDR, captures
the facilitatory trend, but predicts the effect is somewhat concave rather
than convex in nature, with an effect that levels off for the 14 non-words
that did not appear in the Google unigram corpus. Given the limited

size of the current set of non-words, we are hesitant to draw strong

observed NDR, CDP+
=
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Figure 2.26. The effect of frequency in non-word naming.
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conclusions regarding this discrepancy. If future research were to indicate
that the observed effect is robust and that the NDR, systematically un-
derestimates its non-linearity, we hypothesize that revised, more carefully
selected training data might lead to better simulation results. The cDpP+

simulations, finally, show the non-significant trend mentioned above.

The non-word frequency effect suggests that the dichotomous distinc-
tion between words and non-words is perhaps better thought of as a
difference on a gradient scale, with high frequency words on one end of
the scale and low frequency words on the other. Such a gradient scale fits
well with the architecture of the NDR,, in which the difference between
word and non-word processing is quantitative rather than qualitative
in nature: words and non-words are processed by the same cognitive
architecture, with differences only in the amount of activation flowing

through the system.

We conclude this section on a note about the quantitative performance
of the NDR,, and ¢DP+ models for the McCann and Besner (1987) naming
latencies. The predicted naming latencies of both the NDR,, (r = 0.092)
and the ¢DpP+ model (r = 0.101) correlate poorly with the observed
naming latencies. One potential explanation for the poor quantitative
performance of both models may be the fact that the stimulus list of
experiment 1 of McCann and Besner (1987) consisted of non-words only.
Task strategies, therefore, may substantially differ from experiments
in which mixed stimulus lists are used. Alternatively, the visual input
interpretation mechanism used in the current implementation of the
NDR, may be too simplistic. The predicted values of a simple linear
model including a frequency-weighted version of the visual complexity
measure (Complexity/(LogFrequency + back-off constant)) rather than
the original complexity measure boosted the correlation with the observed
non-word naming latencies to r = 0.489, a correlation similar to the
correlation between the word naming latencies in the ELP and the word
naming latencies simulated by the NDR,. We return to the issue of

familiarity with the visual input in the discussion section.
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2.5.10 Pronunciation performance

The processes by which responses are learned are relatively well under-
stood and large-scale linguistic corpora provide us with realistic input to
these processes. As demonstrated in the simulations reported thus far,
the discriminative learning algorithm that underlies the NDR,, provides
a precise and powerful explanation of these bottom-up processes and
their behavioral manifestations in observed naming latencies. What the
discriminative learning core of the NDR,, model does not do, however, is
generate actual pronunciations.

The selection of the appropriate target response is perhaps best
thought of as a response conflict resolution task. In the words of Ramscar,
Dye, Gustafson and Klein (2013), “Response conflict will arise whenever
the requirements in a specific task conflict with an equally or more
strongly learned pattern of responding that is prompted by the same
context. To successfully resolve this conflict, an individual must be able
to effectively override the biased response in favor of a less well-learned
(or less well-primed) response that is more appropriate to the context”
(see also Yeung et al., 2004; Novick et al., 2010). In the NDR,, model a
response conflict arises whenever a non-target demi-syllable receives a
higher activation than the target demi-syllables.

Response conflicts are typically resolved by a top-down verification
mechanism that integrates the activated responses with the context of
the current task. Dell (1986) and Levelt et al. (1999), for instance, pro-
posed such top-down verification mechanisms in their models of language
production. In reading aloud, the task of a top-down checking mechan-
ism is to find out which of the activated phonological units should be
pronounced given the visual presentation of a word or non-word. What
we suggest, therefore, is that there is a functional separation between
the bottom-up linguistic support for phonological units that arises in
the discrimination learning networks that form the linguistic core of the
NDR, model and the top-down verification mechanism that evaluates the
appropriateness of these phonological units given the task of naming the

presented word or non-word.
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There is a wealth of evidence in both the neuroscience and reading
literatures to support a functional separation of this kind (see, e.g., Yeung
et al., 2004). In particular, the anterior cingulate cortex (AcC) and the
pre-frontal cortex (PFC) seem to play an important role in resolving
competition between different potential responses (see, e.g., Botvinick
et al., 2004). Functionally, the ACC appears to serve as a detector,
monitoring conflict between candidate responses and activating areas in
the PFC that facilitate the selection of the appropriate target response

when conflicts arise.

The Stroop task, in which subjects have to name the text color of an
orthographic representation of a conflicting color word neatly illustrates
the dynamics of this process in a reading task. When the word “blue” is
printed in red, the correct response is “red”. In literate adults, however,
the orthographic activation of “blue” interferes with the correct response.
In the Stroop task, activation in the PFC, and in particular the left inferior
frontal gyrus has been shown to reflect the effort required to produce
the text color “red” rather than the strongly activated competitor “blue”
(Milham et al., 2003). As noted by Novick et al. (2010), the PFC plays a
functionally similar role when response conflict arises in a range of more
straightforward lexical tasks, including lexical decision (see e.g., Grindrod
et al., 2008), verb generation (Thompson-Schill et al., 1997), picture
naming (Kan & Thompson-Schill, 2004), and phonological and semantic
judgment tasks (Snyder et al., 2007), as well as when interpretative

conflicts arise during normal reading (Novick et al., 2010).

As we noted above, the processes by which responses are learned are
relatively well understood. By contrast, a lot of uncertainty remains
about how exactly the top-down verification processes in the pre-frontal
cortex that select the appropriate response from a set of activated po-
tential responses work. The main objective of the present study is to
demonstrate that the discrimination learning networks in the NDR, model
capture important aspects of the bottom-up learning processes and their
manifestations in observed naming latencies, much like the original NDR
model captures a wide range of reaction time effects in the lexical de-

cision task. Given the increased prominence of the actual response in the
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reading aloud task as compared to the lexical decision task, however, it
is important to explicitly demonstrate that the architecture of the NDR,
model is fully compatible with a top-down checking mechanism that
generates concrete and plausible pronunciations. We therefore present an
implementation of such a verification mechanism, as well as the word and
non-word naming performance of the NDR, model when such a checking
mechanism is added on top of the discrimination learning networks of
the model.

2.5.10.1 Response conflict resolution in the NDRa. Given our limited
understanding of the functional architecture of the PFC, a considerable
amount of uncertainty remains with respect to the optimal implement-
ation of a verification mechanism. The checking mechanism proposed
here is a crude first approximation of what we think the architecture of
a checking mechanism might look like. The basic rationale behind this
checking mechanism is that the PFC filters the set of lexical representations
that activate demi-syllables to only include the subset of lexemes that
share orthographic features with the target word or non-word. As such,
the checking mechanism used here limits response conflict monitoring
to the lexical level: the pre-frontal cortex monitors the set of activated
lexemes and removes from this set those lexical representations that are
inappropriate given the context of the orthographic input. No further

response monitoring takes place at the phonological level.

Our implementation of the checking mechanism builds on the idea that
a lexeme points to letters and letter order information (which is required,
for instance, for writing). This information is then compared on-line
against the orthographic features in the input. As pointed out earlier,
the assumption that language users are able to compare the orthographic
features associated with a lexeme to the orthographic features in the
input is not unique to the verification mechanism proposed here. Instead,
it is a general assumption of discrimination learning that is necessary
to evaluate whether or not the outcome of a learning event is predicted

correctly, and that is consistent with theories of cortical processing that
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propose a bi-directional pass of information between higher and lower

levels of information (Friston, 2005).

How exactly does the checking mechanism work? Consider the ex-
ample word bear. When the orthographic string bear is presented on the
screen, activation spreads to a large number of lexical representations.
The set of activated lexemes includes orthographic neighbors of BEAR
such as PEAR, HEAR and FEAR as well as the target lexeme BEAR
itself. For a correct pronunciation of the word bear, however, it is suf-
ficient to consider only those demi-syllables that are activated by the
target lexeme BEAR. The checking mechanism therefore limits activation
of demi-syllables to those units that are activated by this target word
lexeme. In the case of bear, the initial demi-syllable that receives most
activation from the lexeme BEAR is b8, whereas the most active second
demi-syllable is 8R. The model therefore correctly pronounces the word
bear as bSR.

For a vast majority of all words, the most active word-initial and
word-final demi-syllables are compatible in the sense that the vowel in
the initial and final demi-syllables is identical. For 8 out of the 2,524
monosyllabic words in our data set, however, the vowel in the most active
first and second demi-syllable are different. In these cases the checking
mechanism gives preference to the vowel in the second demi-syllable. This
implementational decision corresponds to the fact that the activation of
the second demi-syllable has a somewhat higher weight in the NDR, as
compared to the activation of the first demi-syllable (weight ActPhon,:
0.43, weight ActPhons: 0.49) and to the increased perceptual prominence

of rhymes as compared to onset plus vowel sequences.

For a non-word such as braint no lexical representation exists. Limit-
ing the phonological units that influence pronunciation to those activated
by the target word lexeme therefore does not work for non-words. Instead,
the checking mechanism needs to identify which lexical representations
share relevant orthographic features with the non-word braint. Only
the phonological activation generated by these lexemes should influence
non-word pronunciation. The question then becomes how to define the

term “relevant orthographic features”. One option is to include all lexemes
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whose orthographic representations share at least n orthographic bigrams
with the non-word presented on the screen. The problem with such a
definition is that the checking mechanism would be relatively insensitive
to the serial nature of the non-word naming task.

We propose an alternative definition that takes into account the
left-to-right nature of the non-word naming task by varying the set of
lexemes that influence pronunciation in a serial manner. For the first
demi-syllable, the checking mechanism proposed here ensures that the
initial demi-syllables considered for pronunciation are restricted to the set
of initial demi-syllables that receive activation from lexemes that share
the orthographic onset with the presented non-word. For the non-word
braint, for instance, only those initial demi-syllables that are activated
by one of the 69 lexemes that share the orthographic onset br with
the lexeme BRAINT are considered for pronunciation (e.g., BRACE,
BRONZE, BRUSH, ...).

As for existing words, the checking mechanism gives preference to the
vowel in the second demi-syllable over the vowel in the first demi-syllable.
To allow for a correct pronunciation of non-words the checking mechanism
therefore considers the combination of the orthographic vowel and coda
when selecting the appropriate second demi-syllable (i.e., it limits the
set of word-final demi-syllables considered for pronunciation to the set
of word-final demi-syllables that receives activation from lexemes that
share the orthographic rhyme with the presented non-word).® For the
non-word braint, for instance, only those word-final demi-syllables that
are activated by the lexemes FAINT, PAINT, PLAINT, SAINT and
TAINT are considered for pronunciation.

Consistent with the architecture of the NDR,, we weighted the contribu-
tion of lexical representations to demi-syllable activations for the amount
of activation they received from the visual presentation of the non-word
(see Equation 2.3). For the non-word braint the initial demi-syllable

that received the highest activation from the co-activated lexical repres-

6 This assumes that the system is sensitive to the distinction between vowels and
consonants. A similar assumption is made in the non-lexical route of the cCDP+ model,

which parses the visual input into consonant and vowel slots in a grapheme buffer.
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entations was brl, whereas the highest activated second demi-syllable
was 1nt. Together, these demi-syllables yield the correct pronunciation
of the non-word braint, which is brlnt. The same procedure was used
to resolve ties for existing words for which the activation of a demi-
syllable from the target word lexeme was equally high for two or more
demi-syllables (i.e., for 64 word-initial demi-syllables (2.54%) and 184
word-final demi-syllables (7.29%)).

For a vast majority of the 2,524 words and 1,822 non-words under
consideration, the algorithm described above yields a single most highly
activated first and second demi-syllable. For 65 words (2.58%) and 68 non-
words (3.73%), however, two or more potential word-final demi-syllables
still receive equal activation. For these non-words the checking mechanism
resorts to the phonological activations generated by the set of lexical
representations that share only the orthographic coda with the non-word
to resolve the tie, considering only those word-final demi-syllables that
share the phonological coda with one of the demi-syllables involved in
the tie. Ties are much less common for word-initial demi-syllables than
for word-final demi-syllables: for 0 words and 2 (0.11%) non-words two
or more potential word-initial demi-syllables receive equal activation.
Given that initial demi-syllables were already selected on the basis of
orthographic overlap with the onset only, we resolved these two ties by
comparing the overall activation of initial demi-syllables that shared the
phonological onset with one of the demi-syllables involved in the tie in
the system as a whole (i.e., for all lexemes in the lexicon) given the
orthographic features of the non-word. This backup procedure eliminates
all ties and ensures that the model yields unique pronunciations for all

words and non-words.

For the naming latency simulations reported thus far, we used a train-
ing corpus that consisted of a little under 9 million two and three word
phrases from the British National Corpus (BNC). While this corpus proved
sufficiently large to obtain a good quantitative fit to the observed naming
latencies it covered only 3,209 of all 3,908 uninflected mono-morphemic
words in our phonological training lexicon (82.11%). A complete coverage

of the mono-morphemic word space, however, is essential for optimal
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non-word pronunciation performance in the NDR,: the more orthographic
neighbors of a non-word are in the training data, the higher the chance
that the model will arrive at the correct pronunciation of that non-word.
To improve the coverage of the training data we therefore retrained the
NDR, on all trigrams from a 1,000,000,000 word Usenet corpus that
consisted of words from a precompiled list of 240, 534 English words and
proper nouns, using orthographic bigrams as input cues. This resulted in
a training set that comprised 134,684 word types, which covered 3,901
of the 3,908 uninflected mono-morphemic words in the CELEX lexical
database (99.82%).

Furthermore, the training data for the lexeme-to-phonology network
used in the simulations were restricted to lowercase mono-morphemic,
mono-syllabic words that were present in the CELEX lexical database,
that consisted of at least 3 letters and for which word frequencies were
available in the ELP. These restrictions led to the exclusion of the mono-
syllabic words that are crucial for the correct pronunciation of non-words
beginning with ps- (s) or ending with -ach ({k), -if (If), -ewn (5n),
-eich (1J) or -udd (Vd). We therefore added the words psalm (only
plural present in CELEX), if (less than 3 letters), mach, reich and ludd
(capitalized in CELEX), and the past tense forms hewn, sewn, strewn and
shewn (not mono-morphemic) to the training data for the lexeme-to-
phonology network with their respective frequencies in the ELP. No other
mono-morphemic, mono-syllabic words beginning with ps- or ending
with -ach, -if, -ewn, -eich or -udd that were not already in the training
data were present in the CELEX lexical database. Finally, whereas in the
naming latency simulations reported above we limited the set of lexical
neighbors to words that can be used as nouns for computational efficiency,
we allowed all words for which lexemes were present in the lexeme-to-
phonology network to enter the equation when generating simulated
pronunciations. As such, the current training data provided the model

with the optimal conditions for correct pronunciation performance.
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2.5.10.2 Simulation results. The NDR, model generated correct pro-
nunciations for 2,504 of the 2,524 monosyllabic words in our database,
resulting in a word pronunciation performance of 99.21%. A majority
of the pronunciation errors (14 out of 20) concerned words that have
more than one pronunciation in the CELEX lexical database, such as tear
or wind. For these words the model chooses the more frequent pronun-
ciations t8R and wind over the less frequent pronunciations t7R and
w2nd, as would participants in a reading aloud task. Of the remaining 6
erroneous pronunciations in the NDR,, 5 were based on position-specific
grapheme-to-phoneme conversions that exist in other English words:
blouse is pronounced as bl6s rather than bl6z (analogous to house (h6s)),
smith as smID rather than smIT (analogous to with (wID)), draught
as dr#t rather than dr#ft (analogous to fraught (fr$t)), and queer and
weir are pronounced without the final R: kw7 and w7 (analogous to their
(D8)). The remaining erroneous pronunciation contains a grapheme-to-
phoneme conversion that is not attested in English: the NDR,, pronounces

zone as z5ks.

The pronunciations of the ¢cDP+ model differed from those in the
CELEX lexical database for 300 out of the 2,524 words in our database
of monosyllabic words. Importantly, however, a substantial number of
these differences may be due to differences in the training data. While
the sub-lexical route of the ¢cDP+ model was trained on the British
pronunciations in the CELEX lexical database, the training data for the
interactive activation model in the lexical route are not explicitly specified
in Perry et al. (2007). The pronunciations of the CDP+ model, however,
suggest that the lexical route was trained on a variety of American
English, rather than British English.

Nearly half the differences (140 out of 300) between the pronunciation
of the cDP+ model and the phonological representation of these words
in CELEX, for instance, concern the use of the vowel { rather than the
vowel # (e.g., dance pronounced as d{ns rather than d#ns or the use of
the vowel 9 rather than the vowel $ (e.g., pork pronounced as p9k rather
than p$k). Similarly, a large number of differences (103) concerns the

omission of a word-final R in the pronunciation (e.g., beer is pronounced
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as b7 rather than b7R). Furthermore, 13 “mispronunciations” concern
the use of Z rather than _ at the end of words (e.g., range is pronounced
as rinZ rather than rin_). Given the fact that these pronunciations
are likely to reflect differences in training data rather than differences
in model performance, we decided to not consider these pronunciations

erroneous.

After discounting the differences in pronunciation that may be due
to differences in the training data, 44 pronunciation errors remain for
the cDP+ model. The pronunciation performance of the model therefore
is 98.26%. As for the NDR, model, a substantial part of these errors
concerned words that have more than one pronunciation in CELEX (14
out of 44 errors). For 18 out of the 30 remaining mispronunciations,
pronunciations generated by the cDP+ model used position-specific ex-
isting grapheme-to-phoneme conversions (e.g; cyst was pronounced as
klst rather than slst, dough was pronounced as d5f rather than d5). The
final 12 errors contained grapheme-to-phoneme conversions that are not
attested in English (e.g., steppe was pronounced as stEpt rather than

stEp, ewe was pronounced as jju rather than ju).

In summary, both models yield accurate pronunciations for words.
After discounting for potential differences in training data and words
with more than one pronunciation, the NDR, model mispronounced only
6 words while the cDP+ model made 30 pronunciation errors. Word
pronunciations, however, are generated by lexical architectures in both
the NDR, and cDP+ model. By contrast, for non-word pronunciations
the CDP+ uses a learning network that directly maps orthographic units
onto phonological units, whereas the NDR, relies on co-activation of
orthographic neighbors in a lexical architecture. Much more than word
pronunciation, therefore, non-word pronunciation provides a litmus test
for the single-route lexical architecture of the NDR, model.

The NDR, model generated pronunciations identical to those in the
ARC non-word database (Rastle et al., 2002) for 1,289 of all 1,822 non-
words in our non-word data set (70.75%). The cDP+ model performed
similarly and yielded pronunciations identical to those in the ARC database
for 1,278 of all 1,822 non-words in our data set (70.14%).
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As for word pronunciations, a simple comparison of the pronunciations
of both models with the pronunciations in the ARC non-word database,
however, may not be the best way to evaluate non-word pronunciation
performance. Differences exist between the phonological encoding in
the ARC non-word database and the training data of both models. This
results in pseudo-erroneous responses, in which the model generates a
pronunciation that differs from the pronunciation in the ARC non-word
database, but that is correct given the model’s learning experience. In
addition, multiple possible pronunciations exist for a substantial percent-
age of non-words. The non-word zeaf, for instance, can be pronounced as
zif (analogous to leaf, CELEX frequency: 270) or as zEf (analogous to
deaf, CELEX frequency 183). This ambiguity is reflected in the consider-
able between-subject variation in non-word pronunciation experiments.
Following Perry et al. (2007) we therefore adopted a lenient error scoring
criterion similar to that proposed by Seidenberg et al. (1994), according
to which a non-word pronunciation is correct if it is based on grapheme-
to-phoneme conversions that exist in real English words. The lenient
scoring criterion used here, however, is a bit stricter than that proposed
by Seidenberg et al. (1994), in the sense that we considered non-word
pronunciations as correct if and only if the orthography-to-phonology
mapping for the onset, vowel and coda existed for a monosyllabic word

in CELEX.

Using the lenient scoring criterion, the NDR, mispronounced only 38
non-words, for a non-word pronunciation performance of 97.91%. Out of
these 38 erroneous responses, 5 concerned mispronunciations of the onset
(e.g., lafe pronounced as T1f rather than l1f), 6 concerned mispronunci-
ations of the vowel (e.g., beik pronounced as bUk rather than b1k) and
27 concerned mispronunciations of the coda (e.g., brelte pronounced as
brEt rather than brElt).

By contrast, 250 pronunciations of the CDP+ model are classified
as erroneous when the lenient scoring criterion is used. The non-word
pronunciation performance of the cDP+ model, therefore, is 86.28%.
Consistent with the observations of Perry et al. (2007), a large percentage

of the pronunciation errors displayed the pattern that a phoneme was
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missing from the pronunciation. Perry et al. (2007) state that reducing
the naming activation criterion (i.e., the threshold activation for pronoun-
cing a phoneme) from 0.67 to 0.50 substantially reduces the number of
erroneous pronunciations in the model. Indeed, changing the naming
activation criterion parameter from 0.67 to 0.50 results in correct pro-
nunciations for 64 out of the 250 mispronounced non-words (25.60%).
Nonetheless, even with this change in the naming activation criterion
parameter, 55 words are pronounced incorrectly due to missing phonemes

in the output.

Of the remaining 131 errors in the pronunciations of the cDP+ model,
58 concerned the pronunciation of a word-initial ps— as p. This seems to
suggest that similar to the original training data for the NDR,,, the training
data for the cDP+ model did not contain the orthography-to-phonology
conversion from ps- to s. In addition, the CDP+ model incorrectly inserted
a word-final -d in 13 cases, most likely due to competition from paste
tense forms (e.g., rhuin pronounced as rund rather run). The NDR,
was not susceptible to these types of errors, because no past tense forms
were present in the training data for the lexeme-to-phonology network.
Furthermore, as for real words, word-final -nge was pronounced as Z
rather than _ for 14 non-words. After adjusting the naming activation
criterion parameter downwards and excluding errors that were likely due
to differences in the training data, 46 erroneous responses remain for the
cDP+ model, for an adjusted non-word naming performance of 97.48%.
Most commonly, word-final -nc¢ clusters were mispronounced (20 cases,

e.g., rhanc pronounced as r{nk rather than r{Nk).

Overall, the NDR, model performs at least as well at non-word pro-
nunciation as does the cDP+. Both the number of pronunciations that
are identical to those in the ARC non-word database and the number
of correct pronunciations when a more lenient scoring criterion is used
are slightly higher in the NDR, model than in the cDP+ model. This
demonstrates that the single-route architecture of the NDR,, allows for

highly competitive non-word pronunciation performance.
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2.6 Discussion

2.6.1 Single-route architecture

The use of a single, rather than a dual-route architecture is perhaps
the most important aspect of the current work. The DRC (M. Coltheart
et al., 2001), cDP (Zorzi et al., 1998b; Perry et al., 2007, 2010) and
triangle model (Seidenberg & McClelland, 1989; Plaut et al., 1996; Harm
& Seidenberg, 2004) all are dual-route models of reading aloud. Here,
we presented a new single-route model of reading aloud that is based on
the equilibrium equations (Danks, 2003) for the learning algorithm of
Rescorla and Wagner (1972). We demonstrated that this single route
model replicates a wide range of effects that have been documented in the
experimental literature and shows an overall fit to the data comparable to
or better than that of the most successful dual-route model. Furthermore,
we showed that adding a sub-lexical route to the model did not improve

its performance.

While the single versus dual route debate remains as open in the
neuroscience literature as it is in the functional level linguistics and
cognitive science literature, the single-route architecture of the NDR,, is
consistent with the results of a large number of studies in the neuroscience
literature. These studies found activation of the same brain regions in
word and non-word reading, with no unique brain regions that are active
in non-word reading only (see Wydell et al., 2003; Wilson et al., 2005;
Church et al., 2011; Rumsey et al., 1997; cf. Jobard et al., 2003 for
examples of conflicting evidence). These findings do not fit very well with
dual-route models, in which qualitatively different processes underlie word
and non-word reading. Rather than physically different architectures for
word and non-word naming, differences in the timing (Cornelissen et al.,
2003; Wilson et al., 2005; Juphard et al., 2011) and intensity (Wilson
et al., 2005) of the activation of the same brain regions were observed
between word and non-word reading. As noted by Wilson et al. (2005,
p.1), for instance, “relative to words, pseudo-words elicit more robust

activation in the left inferior temporal gyrus (ITG, see e.g., Price et al.,
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1996; Brunswick et al., 1999; Paulescu et al., 2000; Xu et al., 2001) and
the left inferior frontal gyrus (IFG, see e.g., Herbster et al., 1997; Rumsey
et al., 1997; Brunswick et al., 1999; Fiez et al., 1999; Hagoort et al., 1999;
Paulescu et al., 2000; Xu et al., 2001; Binder et al., 2003)”.

There are, however, some outstanding issues that warrant further
discussion. First, the NDR, assumes that processing is strictly parallel,
while a number of experimental findings suggest that at least some serial
processing occurs when preparing to read aloud words and non-words.
Second, we made decisions regarding the grain size of representations
at both the orthographic (letters and letter bigrams) and the phonolo-
gical (demi-syllables) level that proved adequate for the current purposes
but that are likely to be an oversimplification of more complex neural
structures. Third, the NDR, assumes that consistency and regularity
effects arise in a single-route lexical architecture. This stands in contrast
to traditional theories that assume the necessity of a sub-lexical route
to simulate these effects. Fourth, the leading dual-route model uses an
interactive activation network in its lexical route, whereas the NDR,, is
build on the basis of discriminative learning principles. In what follows,

we discuss each of these topics in more detail.

2.6.2 Serial versus parallel processing

The serial or non-serial nature of processing has been a central debate in
the reading aloud literature (see M. Coltheart et al., 2001). Two types
of experimental results are typically interpreted as evidence for serial
processing. First, Weekes (1997) found a length by lexicality interaction,
with a stronger effect of length in non-word reading than in word reading.
Second, a number of studies (M. Coltheart & Rastle, 1994; Rastle &
Coltheart, 1999; Roberts et al., 2003) found a position of irregularity effect
with a larger processing cost when grapheme-to-phoneme irregularities
occurred in early positions (e.g., chef) than when irregularities occurred
in later positions (e.g., blind). These results have been taken as evidence
for a dual-route architecture. In the dual route architectures of the cDp+
and DRC model the sub-lexical route operates in a serial manner: the

uptake of orthographic information occurs in a letter-by-letter fashion.
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The serial nature of the sub-lexical route is conceptually linked to a
left-to-right moving window of spatial attention (Facoetti et al., 2006;
Perry et al., 2007). By contrast, the lexical route of the cDP+ model
processes the entire orthographic input at once and is therefore parallel
in nature. In this framework, the interaction of length with lexicality
results from the fact that non-word naming exclusively involves the serial
sub-lexical route, whereas word naming also involves the parallel lexical
route. In non-word naming additional letters lead to additional stages of
information uptake and therefore longer naming latencies. This effect is
diminished in word naming, because the parallel lexical route is insensitive

to differences in word length (Perry et al., 2007).
Alternatively, length effects may be peripheral to the task of reading

aloud and arise from extra-linguistic sources, such as processes related
to articulation (Seidenberg & Plaut, 1998; Perry et al., 2007) or visual
input decoding. In its current implementation, length effects in the NDR,,
arise primarily as a result of visual input interpretation, which is consist-
ent with an extra-linguistic interpretation of these effects. Nonetheless,
the NDR, correctly predicts that the length effect should be larger for
words as compared to non-words. As noted by Perry et al. (2007), a
potential source for the length by lexicality interaction in parallel mod-
els is dispersion. Non-words tend to have less common orthographic
and phonological bigrams than real words. The larger length effect for
non-words may therefore be a product of the increased likelihood of
encountering a low frequency orthographic or phonological bigram in
longer non-words. When a low frequency orthographic bigram occurs in a
word, less activation is spread to orthographic neighbors, whereas when it
contains a low frequency phonological bigram the activated neighbors will
send less activation to the target demi-syllables. As such, low frequency
orthographic and phonological bigrams both result in longer naming

latencies.

While we believe that the length effect in word naming is at least
partially driven by extra-linguistic processes, the non-serial nature of
the NDR, in its current form does not reflect a conceptual preference in

the serial versus parallel processing debate. Indeed, the inability of the
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current implementation of the NDR,, to simulate the position of irregular-
ity effect suggests that a serial uptake of information may be beneficial
to the performance of the NDR, model. In a serial implementation, the
position of irregularity effect would follow naturally from the increased
availability of earlier orthographic input and phonological output units.
Furthermore, Perry et al. (2007) demonstrated that the serialization of
their sub-lexical route boosted item-level correlations significantly.
Sensitivity to the serial nature of the reading process already proved
pivotal in the implementation of a verification mechanism for the pronun-
ciation performance simulations. When selecting the first demi-syllable
for pronunciation the checking mechanism ensures that only those phono-
logical units are considered that are activated by semantic representations
that share word-initial orthographic representations with the target word
or non-word, whereas when selecting the second demi-syllable only those
phonological units are considered that are activated by lexical represent-
ations that share word-final orthographic representations with the target
word or non-word. This left-to-right nature of the checking mechanism
at the lexical level showed improved performance over a similar parallel

verification mechanism, particularly for the pronunciation of non-words.

2.6.3 Visual input interpretation

In the NDR,, estimations of the time it takes to interpret the visual input
are based on a rudimentary measure of the complexity of the visual input.
When we developed the model we considered visual input interpretation
peripheral to the linguistic core of the model and primarily implemented
it as a convenient analogy to the feature detection systems in the DRC
and cDP models. In our simulations, however, it became clear that
the correct simulation of the length effect in the NDR, depends on the
interpretation of the visual input. Given the importance of the length
effect in the reading aloud literature, some further thought about the
issue is warranted.

In its current form the visual input interpretation mechanism is insens-
itive to differences between words and non-words. Words and non-words

alike are decomposed into letters and letter bigrams, which in turn ac-
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tivate lexical representations. Evidence from the neuroscience literature,
however, suggests that the early visual processing in occipital brain re-
gions varies not only as a function of word length (Wydell et al., 2003;
Tarkiainen et al., 1999; Indefrey et al., 1997), but also as a function
of lexicality (e.g., Fiez et al., 1999; Xu et al., 2001, cf. Dehaene et al.,
2002; Wydell et al., 2003 for studies that did not find lexicality-related
differences of visual occipital region activations). Importantly, the visual
occipital system is insensitive to linguistic properties of the input, which
suggests that the observed effects of lexicality in this region reflect a
difference in familiarity with the visual input across words and non-words.

A post-hoc analysis on the observed ELP naming latencies showed
that a refinement of the visual input interpretation mechanism in the
NDR, that takes into account the familiarity of the visual input at the
word level leads to a substantial improvement in item-level correlations.
The predicted values of a simple linear model using as predictors the
components of the NDR, model, but replacing the complexity meas-
ure with a frequency-weighted alternative (i.e., Complexity divided by
log(Frequency) + backoff constant) showed a correlation of r = 0.544 to
the observed naming latencies. Simply adding this frequency-weighted
alternative to the NDR, model, however, led to a poor qualitative perform-
ance of the model. Nonetheless, a visual input interpretation mechanism
that takes into account the familiarity of the visual input in a more subtle
manner, may well lead to further improvements in the performance of
the NDR, model. Such a visual complexity measure would fit well with
the results of familiarization studies with objects and faces, in which
greater occipital activation was found for unfamiliar objects and faces
(Van Turennout et al., 2003; Rossion et al., 2003).

2.6.4 Orthographic input units

In the current implementation, orthographic representations in the NDR,
model are limited to letters and letter bigrams. Evidence from the neur-
oscience literature, however, suggests that this simple encoding scheme
might be an oversimplification of the neurobiological reality of language
processing. Vinckier et al. (2007) and Dehaene et al. (2005), for instance,
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found that visual word recognition is sensitive to a hierarchy of increas-
ingly complex neuronal detectors, ranging from letters to quadrigrams.
From a discrimination learning perspective the richness of the encod-
ing scheme is an empirical issue. Language users extract those pieces of
information from the input that provide valuable cues to the outcome.
The current simulation results suggest that an encoding scheme based
on letters and letter bigrams is sufficiently rich to capture a wide range
of experimental findings in the reading aloud literature. If future ex-
perimental work indicates that higher order n-grams provide valuable
additional information, however, we have no a priori objections against
enriching the orthographic encoding scheme of the NDR,. One possibility
would be to include high frequency, but not low frequency letter n-grams
as cues. Such a frequency-dependent coding scheme would help address

the familiarity of the input issue raised above.

2.6.5 Phonological output representations

As for the orthographic input level, we also made a decision regarding
the grain size of representations at the phonological output level of the
NDR,. At this level we decided to use demi-syllables (Klatt, 1979). The
use of demi-syllables, however, is not free of problems. In its current
implementation, for instance, the NDR, is not able to correctly simulate
the reading aloud of non-words that contain non-existent demi-syllables.
For instance, the predominant pronunciation of the non-word filced is
[fIlst], which includes the non-existing demi-syllable [Iist/. Without a cor-
responding representation, the model cannot simulate the pronunciation
of this demi-syllable.

Demi-syllables offered an easy-to-implement approximation of acoustic
gestures that proved adequate for the current purposes. While this
approximation worked well in the simulations reported here and shows
that phoneme representation are superfluous for modeling reading aloud,
we believe that an implementation of acoustic gestures at a finer grain size
that more accurately reflects the biological reality of producing speech
would further improve the performance of the NDR, and help develop

an extension of the model to auditory language processing. One option
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worth exploring in future research is the use of time-sensitive gestural
scores as used in articulatory phonology (see, e.g., Browman & Goldstein,
1986, 1989, 1990, 1992).

2.6.6 Consistency effects in a lexical architecture

The effects of consistency and regularity have been important benchmark
effects for models of reading aloud. The DRC model (M. Coltheart et
al., 2001) successfully simulated the factorial effect of regularity (see,
e.g., Seidenberg et al., 1994; Taraban & McClelland, 1987; Paap et al.,
1987; Paap & Noel, 1991) through the grapheme-to-phoneme conversion
rules in its sub-lexical route. These rules, however, operate in an all-
or-none fashion. As a result, the DRC model did not capture graded
consistency effects (Jared et al., 1990; Plaut et al., 1996; Jared, 1997;
Rastle & Coltheart, 1999), which require the activation of not only the
most common grapheme to phoneme mappings, but also that of other,
less common mappings.

To overcome the difficulties of the DRC model, the cDP model uses the
TLA sub-lexical network (Zorzi et al., 1998a; Zorzi, 1999) in its non-lexical
route. As noted by Perry et al. (2007), the TLA sub-lexical network is
a simple two-layer learning network that operates on the basis of the
delta rule (Widrow & Hoff, 1960). One advantage of learning models
over rule-based models is that they allow non-target words to influence
the naming process (Treiman et al., 1995). As such, the TLA network
allows for the successful simulation of graded consistency effects. In the
cDP+ model the successful simulation of consistency effects, therefore, is
a result of the associative learning in the sub-lexical route (Perry et al.,
2007).

By contrast, M. Coltheart et al. (2001) suggested that consistency
effects might arise in the lexical route as a result of neighborhood char-
acteristics. Perry et al. (2007, p.276) contested this claim, stating that
“such influences are too weak to account for the majority of the con-
sistency effects reported in the literature”. They support this claim by
showing that consistency effects are still captured by a purely feedforward

version of the CDP+ in which the activation of orthographic neighbors is
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completely disabled. The fact that a sub-lexical network can generate
consistency effects, however, does not provide conclusive evidence for the

claim that a lexical network cannot.

To demonstrate this point we implemented a purely sub-lexical ver-
sion of the NDR,, in which orthographic units are mapped directly onto
phonological outcomes. This sub-lexical version of the NDR,, captured
the linear effects of consistency (t = —2.849, 8 = —0.063), regularity (¢
= —8.542, f = —0.375) and friends minus enemies (t = —2.382, § =
—0.052). The simulations with the original NDR, model, however, showed
that all these effects can be captured in a lexical architecture as well.
The fact that a sub-lexical network can capture the effects of consistency
therefore does not imply that such a sub-lexical network is a necessary
component of a model of reading aloud. The necessity for a sub-lexical
route in the CDP+ model may not reflect the psychological reality of such
a route, but instead display the shortcomings of the interaction activation
model (McClelland & Rumelhart, 1981) that underlies the lexical route
of the cDP+ model. We come back to this point in the next section.

In the lexical architecture of the NDR,, regularity and consistency ef-
fects arise due to the co-activation of lexical items with similar orthograph-
ies. The co-activated lexical representations of consistent/regular words
help co-activate the target word phonology, whereas the co-activated
lexical representations of inconsistent /irregular words activate non-target
phonological features. As a result, co-activated words help target word
naming for consistent, but inconsistent words do not. In line with the
suggestions of M. Coltheart et al. (2001), consistency effects in the NDR,
therefore arise through neighborhood characteristics. These neighborhood
characteristics did not only prove sufficient to simulate the observed effects
of regularity and consistency in isolation, but also captured the complex
interplay of these predictors as well as the interaction of consistency with
friend-enemy measures (Jared, 1997, 2002) and frequency (Seidenberg et
al., 1994; Taraban & McClelland, 1987; Paap et al., 1987; Paap & Noel,
1991). Furthermore, the NDR,, captures the graded consistency effect for
non-words (Glushko, 1979; Andrews & Scarratt, 1998). As such, the

NDR, correctly simulates the complex and challenging pattern of results
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for various orthography-to-phonology consistency measures through a

purely lexical architecture.

2.6.7 Learning

The ¢DP+ model is a hybrid model that was built from a nested modeling
perspective. The idea behind nested modeling is that a new model should
be based on its predecessors (Jacobs & Grainger, 1994). Perry et al.
(2007) therefore evaluated the strengths and weaknesses of the different
components of the DRC and the ¢DP models. They found the rule-based
sub-lexical route of the DRC model to be suboptimal and replaced it with
the learning network of the ¢DP model (Zorzi et al., 1998b). On the other
hand, the lexical route of the CDP model was not fully implemented and
based on a simple frequency-weighted activation of a lexical phonology
(Zorzi, 1999). They therefore replaced this with interactive activation
network of the DRC model (M. Coltheart et al., 2001; McClelland &
Rumelhart, 1981).

While we see the merit of a nested modeling approach, we are less
convinced about the hybrid nature of the cDP+ model that resulted
from it. Even if a dual-route model were conceptually correct one would
expect that the lexical and non-lexical route operate on the basis of
similar neuro-computational mechanisms. The implementation of the
lexical route of the CDP+ seems particularly implausible given the fact
that interactive activation models avoid the issue of learning (see, e.g.,
Baayen et al., 2011). Perry et al. (2007, p.303-304) acknowledge this
problem and mention the lack of learning in the lexical route of the cDP+
model as one of its limitations. In addition, (Perry et al., 2007) state,
the interactive activation model has been shown to fail to account for a
number of findings in the lexical decision literature (see, e.g., Andrews,
1996; Ziegler & Perry, 1998). We therefore believe that a learning network
implementation of the lexical route of the CDP+ model would be an option
worth exploring.

A learning implementation of the lexical route would help establish
the necessity for a dual-route architecture in the cbpP+. In the current

implementation of the CDP+ model the sub-lexical route has a substan-
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tial independent contribution (Perry et al., 2007). This independent
contribution, however, could have two sources. First, it could reflect
the correctness of a dual-route architecture in which both routes reflect
different parts of the language processing that occurs in the reading
aloud task. Alternatively, however, the independent contribution of the
sub-lexical route of the CDP+ model could be a result of the suboptimal
performance of the interactive activation model in its lexical route, the
contribution of which is currently limited to that of a frequency-weighted
lexical phonology. In this case, the variance that is currently explained
by the sub-lexical route of the cDP+ could also be explained by a better
optimized lexical route. The finding that the addition of a non-lexical
learning network did not improve the performance of the NDR, supports

such an interpretation.

2.7 Conclusions

We presented the NDR,, a single-route model for reading aloud based
on the fundamental principles of discriminative learning. The NDR,
is an extension of the NDR model by Baayen et al. (2011) for silent
reading. We showed that the NDR,, provides a good overall fit to observed
naming latencies. Through the use of generalized additive models we also
demonstrated that the NDR, successfully simulates not only the linear,
but also the non-linear characteristics of a wide range of predictor effects
and interactions documented in the experimental literature. As such, the
NDR, provides an alternative to leading models of reading aloud, such as
the cpP+ (Perry et al., 2007) and cDP++ (Perry et al., 2010) models.

The NDR, model is a major advancement over existing models of
reading aloud in two ways. First, the computational engine of the
NDR, is based on the well-established learning algorithm provided by
the Rescorla-Wagner (Rescorla & Wagner, 1972) equations. Given that
the Rescorla-Wagner equations have been characterized as a general
probabilistic learning mechanism (Chater et al., 2006; Hsu et al., 2010),

the computational core of the model has increased biological plausibility
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over models that assume language-specific processing mechanisms (see
Baayen et al., 2011, 2013).

The learning architecture of the NDR,, stands in contrast to the lexical
route of the cDP+ model, which is based on the interactive activation
model of McClelland and Rumelhart (1981). In the current implementa-
tion of the cDP+ model the contribution of the lexical route is “limited
to the provision of frequency-weighted lexical phonology” (Perry et al.,
2007, p.303). Perry et al. (2007, p.303-304) acknowledge the problems
associated with the interactive activation model in their lexical route and
name the lack of learning in the lexical route of the CDP+ as one of its
shortcomings.

The discriminative learning mechanism underlying the NDR, also
differs substantially from the connectionist principles that form the com-
putational basis of the different versions of the triangle model (see, e.g.,
Seidenberg & McClelland, 1989; Harm & Seidenberg, 1999; Seidenberg
& Gonnerman, 2000; Harm & Seidenberg, 2004). As noted by Baayen
et al. (2013), the computational engine of the NDR, is much simpler
than that of connectionist models. The NDR, learning networks directly
map input units onto outcomes, without the intervention of one or more
layers of hidden units.” The NDR,, is therefore more transparent than
connectionist models, with activations of output units representing simple
posterior probability estimates of outcomes given input units. In addi-
tion, in contrast to connectionist models the NDR, does not rely on the
neurobiologically implausible process of back-propagation learning.

The second major advancement of the NDR,, is that it uses a single
lexical route architecture for both word and non-word naming. We showed
that a single lexical route based on discriminative learning not only
provided a good overall fit to observed naming latencies, but also captured
a number of experimental results that are typically attributed to processes
in the sub-lexical route. The non-linear main effects and interactions of

consistency and regularity measures, for instance, are accurately captured

7 Note that the latest version of the triangle model does not contain hidden layer
units, but, instead, operates on the basis of a direct mapping between input units and
outcomes.(Harm & Seidenberg, 2004)
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by the NDR,. In addition, we showed that the NDR, makes predictions
for non-word naming that are highly similar to those of the dual-route
cDP+ model. Furthermore, we documented the existence of a strong
non-word frequency effect in the classic McCann and Besner (1987) non-
word reading latencies, which provides evidence for the involvement of a

lexical route architecture in non-word naming.

The single-route architecture stands in contrast to the dual-route ar-
chitectures of leading models of reading aloud, including both traditional
dual-route models such as the DRC (M. Coltheart et al., 2001; McClelland
& Rumelhart, 1981), cDP (Zorzi et al., 1998b), cbp+ (Perry et al., 2007)
and cDP++ (Perry et al., 2010) and the most recent versions of the tri-
angle model (see, e.g., Harm & Seidenberg, 2004). These models contain
both a direct orthography to phonology mapping and an orthography to
phonology route that is mediated by semantics. While the non-lexical
route of the CDP+ model has a significant contribution to the model
performance (see Perry et al., 2007), we demonstrated that the addition
of a non-lexical discriminative learning network does not improve the

performance of the NDR, model.

The current implementation of the NDR,, however, provides a highly
simplified window on reading aloud. At both the orthographic and the
phonological level we make use of discrete representations at a highly
restricted subset of possible grain sizes. Findings from the neuroscience
literature (see, e.g., Vinckier et al., 2007; Dehaene et al., 2005) suggest
that a more flexible system operating over multiple grain sizes may further

improve the performance of the model.

In addition, the current simulations focused on the unimpaired lan-
guage processing system. A substantial amount of work has been carried
out on impaired language processing in both surface and deep dyslexia
patients (see e.g., Patterson & Behrmann, 1997; Derouesne & Beauvois,
1985). It will be interesting to see to what extent selective lesioning of
the discriminative learning networks could capture the patterns of results
seen in these patients. One possibility is that the prefrontal structures
and conflict resolution skills that underlie target pronunciation selection

in the NDR, may not be as easily accessible when the system is lesioned,
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possibly due to capacity limitations. Such an interpretation would fit well
with the findings of Hendriks and Kolk (1997), who demonstrated that
the behavioral symptoms used to classify dyslexic patients into deep and
surface dyslexia arise not only as a result of deficiencies in the language
processing system, but also due to strategic choices in the context of the
task at hand.

Furthermore, similar to the CDP+ model, the current implementation
of the NDR,, processes mono-syllabic words only. Perry et al. (2010)
extended the cDP+ to allow for the processing of both mono- and bi-
syllabic words. The extension of the NDR, to reading beyond the single
syllable level is a further topic to explore in future research.

In its current state, however, the NDR,, provides a single-route altern-
ative to state-of-the-art dual route models of reading aloud that is based
on a simple general learning algorithm and that - with a parsimonious
architecture - accurately captures many of the linear and non-linear

patterns in experimental word and non-word reading data.
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Compound reading

3.1 Introduction

Ever since Rayner (1978), psycholinguists have been using eye fixation
patterns as a proxy for language processing costs during reading. While
traditional behavioral measures obtained from tasks such as lexical de-
cision or reading aloud generate unidimensional measures of the end-point
of processing, eye-tracking offers an on-line measure of linguistic pro-
cessing with a high temporal resolution. As such, the eye-tracking meth-
odology offers the opportunity to investigate how language processing
unfolds over time.

Large-scale databases for traditional behavioral measures offer a
wealth of information. The English Lexicon Project (Balota et al., 2007),
for instance, contains more than 2,700,000 reaction times for lexical
decision and over 1,100,000 naming latencies. Resources for eye-tracking,
however, are much more limited. The Potsdam Sentence Corpus (Kliegl
et al., 2006) contains around 150,000 fixations for 254 participants in a
sentence-reading task in German. The Dundee Corpus (Kennedy, 2003)
is the largest available corpus of eye-tracking fixations and contains over
400, 000 fixations per language on newspaper articles in both English and

French.
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In this chapter we use a new large-scale eye-tracking database: the
Edmonton-Tiibingen eye-tracking corpus (henceforth ET corpus). For the
ET corpus we recorded the eye movements of 6 participants as they read a
collection of fictional texts, consisting of the fiction section of the Brown
University Standard Corpus of Present-Day American English (henceforth
Brown Corpus; Francis & Kucera, 1979) as well as fictional texts by Lewis
Carroll (Alice in Wonderland and Through the Looking Glass) and Sir
Arthur Conan Doyle (The Adventures of Sherlock Holmes). For ecological
validity, all texts in the ET corpus experiment were presented as full pages
of text. The ET corpus contains 100 hours of eye movement data per

participant, for a total of 2,019,997 eye fixations.

The scale of the ET eye-tracking corpus enables us to investigate
language processing during reading with a high temporal resolution,
even when the frequency of occurrence of the linguistic phenomenon of
interest is relatively low. Here, we use the richness of the ET corpus data
to investigate morphological processing of noun-noun compounds in a

naturalistic reading task.

Compound processing has received considerable attention in the ex-
perimental psycholinguistic literature. A host of behavioral experiments
investigating how morphologically complex words are processed has been
carried out, including lexical decision experiments (see, e.g., Taft & For-
ster, 1975, 1976; Taft, 1979; Van Jaarsveld & Rattink, 1988; De Jong et
al., 2002; Dunabeitia et al., 2007; Marelli & Luzzatti, 2012), word naming
experiments (see, e.g., Juhasz et al., 2003; Baayen et al., 2010), priming
studies (see, e.g., Monsell, 1985; Zwitserlood, 1994; Jarema et al., 1999;
Libben et al., 2003) and masked priming studies (see, e.g; Giraudo &
Grainger, 2001).

More recently, the eye-tracking methodology has been used to provide
further insight into the time course of compound processing. While some
studies presented compounds in isolation (see, e.g., Kuperman et al.,
2009), most eye-tracking experiments embedded compounds in sentence
contexts in an attempt to improve the ecological validity of the data (see,
e.g., Hyoné & Pollatsek, 1998; Pollatsek et al., 2000; Bertram & Hyon4,
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2003; Juhasz et al., 2003; Andrews et al., 2004; Pollatsek & Hyoné, 2005;
Kuperman et al., 2008).

In this chapter, we look at the eye fixation patterns for noun-noun
compounds in the ET corpus. Using the ET corpus data offers increased
ecological validity over experiments that present compounds in isolated
sentence contexts. First, while sentence contexts provide a local context
for the embedded compounds, normal discourse structure is disrupted on
a trial-by-trial basis in these experiments. By contrast, the compounds
in the ET corpus appear in a sensibly developing flow of text. This
allows readers to form better-informed hypotheses about the upcoming
linguistic information, which could lead to substantial differences in the

way compounds are processed.

Second, the within-experiment frequency of compounds is, by defin-
ition, artificially high in experiments that are designed to investigate
compound processing. Even when compounds are embedded in sentences
and filler items are added to the experimental lists, participants may
consciously or subconsciously be aware of the increased prevalence of
morphologically complex words. By contrast, the frequency of occurrence
of compounds in the ET corpus better reflects the frequency of compounds
in the language as a whole. Unlike in compound experiments, therefore,
participants in the ET corpus experiment are unlikely to attribute atten-
tional resources to compounds that would not be recruited for compound
processing in everyday language use. As such, the ET corpus data offer
the possibility to look at compound processing in a highly naturalistic

linguistic environment.

Previous experimental work has led to a wide range of psycholin-
guistic theories about compound processing (see Kuperman et al., 2009
and Kuperman et al., 2008 for a comprehensive overview of compound
processing theories). According to sub-lexical models, compounds are
decomposed into the constituent morphemes and subsequently the full
form of the compound is accessed through these constituent morphemes
(see, e.g., Taft & Forster, 1975, 1976; Taft, 1979, 1991, 2004). Sub-lexical
models differ with respect to the relative importance they attribute to the

constituent morphemes. Some sub-lexical models deem the left constitu-
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ent pivotal for accessing the full form of the compound (Taft & Forster,
1976), while other sub-lexical models consider the right constituent essen-
tial for full-form access (Juhasz et al., 2003). In contrast to sub-lexical
theories, supra-lexical theories propose that full-form access temporally
precedes access to the constituent morphemes of a compound (see, e.g.,
Giraudo & Grainger, 2001; Diependaele et al., 2005).

While sub-lexical and supra-lexical theories assume that the activation
of a compound and its constituents is sequential in nature, parallel dual-
route models argue for the simultaneous activation of a compound and
its constituents. Most parallel dual-route models propose a horse race
between the full-form route and the decompositional route (see, e.g.,
Schreuder & Baayen, 1995; Baayen & Schreuder, 1999; Allen & Badecker,
2002), but dual-route models in which both routes are allowed to interact
exist as well (see, e.g., Baayen & Schreuder, 2000).

Finally, maximization of opportunity theories of compound processing
propose that readers use simultaneously all available information and
all available processing mechanisms to process compounds (Libben,
2005, 2006). On the basis of recent experimental findings, for instance,
Kuperman et al. (2009, p.887) concluded that:

Effectively, a model that meets these requirements is no longer
a dual route model, but rather a multiple route model that, in
morphological terms, allows access to full-forms, immediate con-
stituents, embedded morphemes and morphological families. More
generally, such a model will have as its basic principle maxim-
ization of all opportunities, both morphological, orthographic,
phonological, and contextual, for comprehension of the visual
input. We believe that probabilistic and information-theoretical
approaches to lexical processing developed recently in morpholo-
gical and syntactic research [...] hold promise for formalization of
those opportunities and for computational implementation of the

multiple-route model of compound recognition.
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A full-fledged maximization of opportunity model that uses all ortho-
graphic, morphological, phonological and contextual information available
to the reader presents a non-trivial computational challenge. Naive Dis-
crimination Learning (henceforth NDL) offers a simpler computational
implementation of a functional model of compound processing that allows
for the simultaneous activation and interaction of a large number of
lexemes, including the lexemic representations of a compound and its
constituents. Baayen et al. (2011) demonstrated the explanatory power
of the NDL framework for compound processing by successfully modeling
the effects of compound length, compound frequency, modifier frequency
and modifier family size in the lexical decision latencies for a large set of

compounds in the English Lexicon Project (Balota et al., 2007).

Here, we investigate the explanatory power of standard lexical pre-
dictors, as well as that of systemic measures derived from orthography-to-
lexeme and lexeme-to-lexeme NDL networks, for the eye fixation patterns
in the ET corpus. Lexical predictors provide insight into which lexical
properties of words correlate with behavioral measures of language pro-
cessing. A lexical predictor analysis, however, provides little insight into
why certain lexical predictors show a correlation with behavioral measures,
whereas others do not. By contrast, NDL measures are directly derived
from discrimination learning networks. As a result, these measures have
the potential to inform us about the properties of the learning system

that drive patterns of results for behavioral measures.

Discrimination learning has been demonstrated to successfully account
for a wide range of experimental effects in lexical decision studies (see,
e.g., Baayen et al., 2011, 2013; Ramscar et al., 2014), as well as for
word naming (see Chapter 2). The current study, however, is the first to
investigate to what extent the NDL model provides a systemic alternative

to standard lexical predictors for eye movement data.

There is one important difference between the simulations of lexical
decision latencies and word naming latencies on the one hand and the
simulation of eye movement patterns on the other hand. For lexical
decision and word naming, the studies mentioned above aimed at directly

modeling the response variable: reaction times. The information uptake
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process in natural discourse reading, however, is much more complex
than that in single word lexical decision or word naming studies. Eye
movement patterns are determined not only by lexical properties of the
linguistic input, but also by a host of visuomotor processes. The aim
of the current study, therefore, is not to generate simulated values for a
response variable, but to investigate to which extent systemic predictors
derived from discrimination learning networks can provide further insight

into the processes that underlie compound reading in natural discourse.

3.2 Methods

3.2.1 Participants

The data of the four participants in the Edmonton-T1ibingen eye-tracking
corpus (henceforth ET corpus) for which data preprocessing has been
completed were used. All participants were graduate students at the
University of Alberta. Two participants were male, two were female.
Both male participants and one female participant were native speakers of
English, whereas the other female participant was a near-native speaker
of English. The male participants were 32 and 27 years old, the female
participants were 29 and 25 years old. All participants had normal or
correct-to-normal vision. Participants received $20 per hour for their

participation.

3.2.2 Materials

For present purposes, we used the subset of the ET corpus that consisted
of the eye movement data for the fiction section of the Brown Corpus
(Francis & Kucera, 1979). The fiction section of the Brown Corpus
consists of 126 samples from fictional texts, subdivided into 6 genres:
general fiction (29 texts), mystery and detective (24 texts), science fiction
(6 texts), adventure and western (29 texts), romance and love stories
(29 texts) and humor (9 texts). The 126 fictional text samples in the
Brown Corpus consist of 253,092 word tokens. In total, the 4 participants
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included here fixated on these 253,092 word tokens 923,659 times, for
an average of 230,915 fixations per participant.

Here, we are interested in the set of noun-noun compounds that
appear in this fiction section of the Brown Corpus. On the basis of
the CELEX lexical database (Baayen et al., 1995) we therefore com-
piled a list of noun-noun compounds and their constituents. From the
data we then extracted all singular and plural forms of noun-noun com-
pounds that were present in this list of noun-noun compounds. We
initially included not only compounds that appeared as such in the
data (e.g., “airplane”), but also space-separated (e.g., “home plate”) and
hyphen-separated (e.g., “turtle-neck”) forms of these compounds. In
total, this procedure yielded 49 space-separated noun-noun compound
types (11.34%), 19 hyphen-separated compound types (4.40%) and 364
non-separated noun-noun compound types (84.26%). Given the small
proportion of hyphen-separated and space-separated compound types, we
decided to limit the data set to non-separated compounds. The remaining
364 compound types correspond to 844 compound tokens in the Brown
Corpus fiction section. In total, the 4 participants used here fixated 4747

times on these 844 compound tokens.

3.2.3 Design

3.2.83.1 Response variables. For each fixation on a noun-noun compound,
we extracted the fixation duration, the fixation position and whether or
not the compound was fixated on again. Fixation duration is the duration
in milliseconds of a given fixation of the eye. Fixation durations were
log-transformed to remove a rightward skew from the fixation duration
distribution. Outlier fixations shorter than 60 milliseconds (2.42%) or
longer than 500 milliseconds (0.34%) were removed from the data prior
to analysis.

Fixation position is the position of a fixation, measured in number
of pixels from the left boundary of the word. A visual inspection of the
fixation position data indicated that there was a substantial amount of
vertical drift in the data, particularly near the end of lines. To ensure

that the interest area associated with a fixation was reliable, a correction
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algorithm was used to correct for this vertical drift. The performance
of the correction algorithm was visually inspected for each fixation and
fixation positions were corrected manually when necessary. Fixation
positions further than 2.5 standard deviations from the fixation position
mean were removed from the data prior to analysis (1.60%).

The final response variable considered in this study is a binary variable
that encodes whether or not the compound was fixated on again after the
current fixation. If no additional fixations were necessary this indicates
that processing was completed to a sufficient extent to proceed to the
next word. By contrast, additional fixations indicate that readers were
unable to complete compound processing during the current fixation.
Thus, the probability of a refixation gauges how successful processing

during the current fixation was.

3.2.3.2 Ezxperimental predictors. For each fixation on a noun-noun com-
pound four control predictors were extracted from the ET corpus data: the
experimental session (Session), the page number within an experimental
session (Page), the line number within a page (Line) and the horizontal

position of a fixation on the page (X Page).

We furthermore more looked at the incoming saccade length. Due to
the full text reading task used here, however, the distribution of incoming
saccade lengths was strongly bimodal. This bimodal distribution was
characterized by a large peak at small to medium positive values for
normal rightward saccades and a smaller peak at large negative values
for saccades that involved moving the eye to the start of a new line.
The bimodal distribution of incoming saccade length was resistant to
normalization procedures. We therefore decided not to include saccade
length in statistical models reported below. We did, however, run post-
hoc analyses to verify that the results reported here remain significant
when saccade length is entered into the model. Whenever an effect no
longer reaches significance when saccade length is entered into the model,

this is reported in the discussion of that effect.
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8.2.8.8 Lexical predictors. Nineteen lexical predictors were included in
the design, all of which were scaled prior to analysis. Whenever a pre-
dictor was included in a statistical model, all predictor values further than
2.5 standard deviations from the mean were removed prior to analysis to

prevent artifactual outlier effects in the GAMMSs fitted to the data.

For each compound, the length in letters of the modifier (Modifier
Length), the head (Head Length) and the compound (Compound Length)
were included as lexical predictors. Furthermore, the frequency of the
modifier (Modifier Frequency), the head (Head Frequency) and the com-
pound as a whole (Compound Frequency) in the British National Corpus
(henceforth BNC; Burnard, 1995) were included as predictors. Compound
frequencies were token frequencies of the inflectional variant (as it ap-
peared in the Brown Corpus), rather than lemma frequencies (e.g., the
frequency of “snowflakes” was that of the form “snowflakes”, rather than
the summed frequency of the singular form “snowflake”, the plural “snow-
flakes” and the genitive forms “snowflake’s” and “snowflakes™ used by
for instance Kuperman et al., 2009). We log-transformed all frequency

measures to remove a rightward skew from the frequency distributions.

In addition to the frequencies of the modifier, head and compound,
the average letter bigram frequency for each of these components was
included as a lexical predictor. The resulting predictors Modifier Mean
Bigram Frequency, Head Mean Bigram Frequency and Compound Mean
Bigram Frequency were extracted from the English Lexicon Project
(henceforth ELP; Balota et al., 2007). From the ELP we also obtained two
measures of orthographic neighborhood density: N-Count (the number
of orthographic neighbors (M. Coltheart et al., 1977) and Orthographic
Levenshtein Distance 20 (henceforth oLD; the average string edit dis-
tance between a word and its 20 closest neighbors (Yarkoni et al., 2008).
Applied to the modifier, the head and the compound as a whole this
resulted in five additional lexical predictors: Modifier N-Count, Modi-
fier oD, Head N-Count, Head oLD, and Compound oLD. Compound
N-Count was not included in the analysis, because a large majority of

compounds tokens had 0 orthographic neighbors. The OLD measures

105



8 Compound reading

were log-transformed prior to analysis to remove a rightward skew from

the OoLD distributions.

Morphological family size is a measure of the number of compounds
both constituents occur in. For a given compound, the family size of
the modifier is defined as the number of compounds that have the same
left constituent as that compound. Similarly, the family size of the
head is defined as the number of compounds that have the same right
constituent as a given compound. For the compound “starlight”, for
instance, “stardust” and “starfish” are members of the morphological
family of the modifier, whereas “daylight” and “skylight” are members
of the morphological family of the head. The morphological family sizes
of the modifier and the head have been shown to influence compound
processing in a variety of tasks (see, e.g., De Jong et al., 2000, 2002;
Dijkstra et al., 2005; Moscoso del Prado Martin et al., 2004; Juhasz &
Berkowitz, 2011). We therefore added the Modifier Family Size and Head
Family Size as calculated from the CELEX lexical database to the set of
lexical predictors. Both family size measures were log-transformed prior

to analysis to remove a rightward skew from the family size distributions.

The final three lexical predictors concern the semantic similarity
of the modifier, the head and the compound as a whole, as gauged
through Latent Semantic Analysis (henceforth LsA) similarity scores (see
Landauer et al., 1998). LsA Similarity Modifier-Head is the term-to-
term LSA similarity of the modifier and the head, whereas LSA Similarity
Modifier-Compound and LSA Similarity Head-Compound refer to the Lsa

similarity of the compound to its modifier and head.

8.2.8.4 NDL predictors. To investigate the systemic correlates of com-
pound processing we trained two NDL networks on the 102, 268, 226 words
of the British National Corpus (Burnard, 1995). The first NDL network
maps orthographic features (cues) onto lexemes (outcomes). Bearing
in mind the maximization of opportunities hypothesis put forward by
Libben (2006), we followed Baayen et al. (2011) in allowing for contextual

learning by using not only the orthographic trigrams of the target word,
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but also the orthographic trigrams of the preceding two words as input

cues for the target lexeme.

Each three-word sequence in the British National Corpus (henceforth
BNC) was presented as a learning event to the orthography-to-lexeme
discrimination learning network. A learning event consists of the present-
ation of a set of input cues and the subsequent adjustment of the network
weights between these input cues and all outcomes based on the dis-
crepancy between the expected activation and the actual activation of
each outcome unit. The orthographic trigrams in a three-word sequence
were the cues for a learning event, while the lexemes corresponding to
each of the three words were the outcomes. The character “#” was
used to encode a spatial separation between subsequent cues. For the
three-word sequence “that delicious cocktail”, for instance, the cues would
be “#th”, “tha”, “hat”, “at#”, “t#d”, “#de”, “del”, “eli”, “ici”, “cio”, “iou”,
“ous”, “us#”, “s#c”, “#co”, “coc”, “ock”, “ckt”, “kta”, “tai”, “ail” and “il#”,
whereas the outcomes would be “THAT”, “DELICIOUS” and “COCKTAIL”.

Baayen et al. (2011) proposed a full-decomposition model of morpho-
logical processing in which no lexemic representations for morphologically
complex words exist. While such an approach works well for inflected
words and transparent compounds, opaque compounds such as “cocktail”
pose a challenge to this modeling strategy. We therefore use a holistic
modeling strategy, in which a separate lexemic representation is posited
for each compound. The outcome associated with a training event in
which the orthographic cues of a compound were encountered was this
compound lexeme, rather than the lexemes of the constituents of the
compound (see also Pham & Baayen, 2015, for a similar modeling strategy

for compounds in Vietnamese).

From a learning perspective a holistic training regime for compounds
makes sense. For each learning event, the weights from the set of cues in
the input to all outcomes are updated. Each occurrence of the word “cock-
tail”, for instance, reinforces the connections between the orthographic
cues in the word “cocktail” and the lexeme COCKTAIL. At the same
time, the absence of the outcomes COCK and TAIL when the orthographic

features of the word “cocktail” are present in the input allows the model
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to dissociate the lexemes COCK and TAIL from the orthographic cues in
“cocktail”. In other words: using a holistic training regime allows the
model to learn that the whole may be more than, and often quite different
from, the sum of the parts.

Importantly, the holistic training regime adopted here does not imply
that the lexemes of the compound constituents are not activated in a
bottom-up fashion when the orthographic form of a compound is en-
countered. Quite the contrary: due to the orthographic overlap between
the compound as a whole and its constituents, the constituent lexemes
generally receive a considerable amount of activation when the target
word is presented — even in a network that is trained holistically. When
we refer to the training regime used here as holistic we refer to the holistic
nature of the top-down adjustment of weights in the Rescorla-Wagner
network during learning, not to the bottom-up activation of lexemes.

The orthography-to-lexeme network resulted in 5 systemic estimates
of processing costs, all of which were straightforwardly derived from
Equation 1.3. First, the activation of the modifier given the orthographic
trigrams of the compound as a whole (NDL Activation Modifier), as
well as the activation of the modifier given the orthographic trigrams of
the modifier itself (NDL Self-Activation Modifier) were included as NDL
predictors. NDL Activation Modifier measures the degree to which the
orthographic presentation of the compound activates the lexeme of the
modifier, whereas NDL Self-Activation Modifier looks at the activation of
the modifier lexeme when only the modifier is present in the orthographic
input. The correlation between NDL Activation Modifier and NDL Self-
Activation Modifier was r = 0.414.

Similarly, the activation of the head given the orthographic features of
the compound as a whole (NDL Activation Head), as well as the activation
of the head given the orthographic features of the head itself (NDL Self-
Activation Head) were extracted from the orthography-to-lexeme NDL
network. The correlation between NDL Activation Head and NDL Self-
Activation Head was r = 0.582.
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In addition to the activation of the modifier and the head, we fur-
thermore extracted the activation of the compound lexeme given the
orthographic features of the compound. This simple measure of the
bottom-up support for the compound lexeme performed quite well. We
found, however, that a richer measure that integrates the bottom-up
support for the compound lexeme, the head lexeme and the modifier
lexeme in an additive fashion provided maximum explanatory power. We
therefore defined NDL Activation Compound as a weighted sum of the
activation of the compound, the head and the modifier lexemes given
the orthographic trigrams of the compound (see Baayen et al., 2011 for

further examples of such a weighted integration):
NDL Activation Compound = @modifier + Ghead + Wi *Qcompound (3.1)

With Gimodifier, Ghead a0d Gcompound being the activation of the modifier,
head and compound lexemes given the orthographic trigrams of the
compound and w; being a weight parameter for the relative contribution
of the compound lexeme as compared to the head and modifier lexemes.
For all analyses reported below, w; was set to 1.2.

The fact that an additive integration of the compound, head and
modifier lexeme activations proved optimal demonstrates that even when
using a holistic training scheme, the degree to which the orthographic
form of a compound activates not only the compound lexeme, but also
the constituent lexemes helps explain variance in eye movement data.
For English, a weighted additive integration of the compound lexeme
activation and the constituent lexeme activations suffices. As we shall
document below, a greater activation of the constituent lexemes leads
to faster and more successful compound processing. Importantly, this is
a consequence of the distributional properties of the English language,
rather than a general property of morphological processing. For Vi-
etnamese, for instance, Pham and Baayen (2015) showed that greater
activation of the compound constituents leads to longer, rather than

shorter processing times.
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The distributions of the NDL activation predictors described above
were characterized by a rightward skew. To remove this rightward skew,
we log-transformed all NDL activation predictors. Furthermore, a backoff
constant of 0.05 was added to all activations prior to this log-transform

to prevent taking the logarithm of a non-positive number.

The second NDL network used in the current simulation learns associ-
ation strengths between lexemes and lexemes. For each of the 102, 268, 224
word trigrams in the British National Corpus, we used the lexeme rep-
resentations of the first two words as cues and the lexeme of the third
word as outcome. For the trigram “that delicious cocktail”, for instance,
the cues would be “THAT” and “DELICIOUS”, whereas the outcome would
be “cOCKTAIL”. The second NDL network reflects contextual learning at
the lexeme level. As before, training was entirely holistic in nature, with

independent lexemic representations for each compound.

Four NDL predictors were derived from the lexeme-to-lexeme NDL
network. The first three predictors can be regarded as the NDL counter-
parts of the LSA lexical predictors and gauge the semantic similarity of
the head, the modifier and the compound as a whole. From the lexeme-
to-lexeme network we extracted the column vectors of weights for the
head, the modifier and the compound as a whole given all word types in
the training lexicon. We then calculated the correlations between these
vectors to obtain the similarity of the three components. NDL Similar-
ity Head-Modifier is the correlation between the weight vectors of the
head and the modifier, NDL Similarity Head-Compound the correlation
between the weight vectors of the head and the compound and NDL
Similarity Modifier-Compound the correlation between the weight vectors
of the modifier and the compound. To normalize the distributions of the
NDL similarity measures, we inverse-transformed each similarity measure
(f(2) = -1).

The fourth NDL predictor extracted from the lexeme-to-lexeme NDL
network is the median absolute deviation (henceforth MAD) of the vector
of compound weights given all word types in the training lexicon. The
median absolute deviation is a measure of dispersion that is more robust

to outliers than the standard deviation. Conceptually, it can be thought of

110



3.2 Methods

as a measure of network connectivity: the higher the MAD of a compound,
the greater its network connectivity and the easier it is to access its
lexeme. In other words, the NDL MAD measures provide a systemic
measure of the prior probability of a lexeme (see Milin et al., 2015 for an
application of the MAD measure in the context of discrimination learning).
We log-transformed NDL MAD compound to remove a rightward skew
from its distribution.

In total, the orthography-to-lexeme (5 predictors) and lexeme-to-
lexeme (4 predictors) networks resulted in 9 systemic measures of lexical
processing. All NDL measures were scaled. Predictor values further than
2.5 standard deviations from the predictor mean were considered outliers
and were removed from the data prior to analysis whenever the relevant
predictor was included in a statistical model.

For each response variable, we jointly removed outliers for the relevant
lexical predictors and NDL measures to obtain identical data sets for the
lexical predictor and NDL analyses. This allowed us to directly compare
the goodness-of-fit of both models. As a result of this procedure, 8.31%
of the data for the first-and-only fixation duration models, 2.15% of
the data for the probability of refixation models, 7.03% of the data for
the first-of-many fixation duration models, 1.82% of the data for the
second fixation duration models, 2.09% of the data for the second fixation
position models, 2.10% of the data for the probability of third fixation
models, 8.27% of the data for the third fixation duration models and
0.79% of the data for the third fixation position models were excluded
prior to analysis. No data points were excluded for the first-and-only

fixation position and first-of-many fixation position models.

3.2.4 Procedure

Eye movements in the ET corpus were recorded with an EyeLink 1000
system using a temporal resolution of 500 Hz. Stimuli were presented on
a 17-inch CRT monitor using a 1024 by 768 pixel resolution. Participants
read with the head positioned on a chin rest that was located at a distance
of 70 cm from the monitor. Prior to the experiment, participants were

trained for 1 hour to self-calibrate with a game pad using the 9 point
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calibration method. Participants were instructed to read at a natural
pace, but to limit eye blinking to a minimum throughout the experiment.

A fixation mark that was used for drift checking was shown prior to
each page of text at the location of the first letter of the text. Fixating on
the fixation mark triggered the presentation of a page of text. Participants
were instructed to read the page and press a button on a game pad
to move on to the next page of text. A 9-point self-calibration was
carried out after every 5 pages. Each experimental session consisted
of a minimum of 30 pages of text and a maximum of 43 pages of text
(mean: 36.29, sd: 2.52), presented in black 26 point Courier New Bold
font against a white background.

The total reading time for each participant in the ET corpus was 100
hours. For present purposes, we limited the data to the 63 hour subset
of the data from the fiction section of the Brown Corpus. This subset
of the data consisted of 126 experimental sessions. Each experimental
session had a duration of about 30 minutes, including a 5 minute break
in between sessions. Participants were instructed to take a 10 minute

break after each hour and to run no more than 4 sessions at a time.

3.3 Analysis

We fitted separate statistical models for the fixation position and fixa-
tion duration of first-and-only fixations, first-of-many fixations, second
fixations and third fixations. Furthermore, we analyzed the probability
of refixation for the first fixation and second fixation data. We also
investigated the fixation duration and position of fixations preceding the
first fixation of a compound, but found no statistically robust effects of
lexical predictors or NDL measures on these response variables.

For each subset of the data, we fitted a statistical model using stand-
ard lexical predictors and a model using NDL measures. Typically, the
results of lexical predictor models are used to inform the architecture of
interactive activation models of language processing similar to McClelland
and Rumelhart (1981), with effects of linguistic predictors being inter-

preted as evidence for mental representations related to the predictor(s)
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in question (see Baayen et al., 2013). The statistical models using stand-
ard lexical predictors thus are a proxy of the potential of interactive
activation accounts of compound processing, be they sub-lexical, supra-
lexical or dual-route models. By contrast, the statistical models using
NDL measures gauge to what extent the systemic approach proposed here
can provide further insight into the eye fixation patterns in compound
reading.

All analyses were carried out using generalized additive mixed-effect
models (henceforth GamMs, (see Hastie & Tibshirani, 1986), as imple-
mented in version 1.8-7 of the mgcv package for R (Wood, 2006, 2011).
Standard cAMMs were used to model the fixation duration and fixation
position data for first-and-only fixations, first-of-many fixations, second
fixations and third fixations. Logistic GAMMs were used to model the
probability of refixation for first and second fixations. By-participant and
by-item random intercepts were included when significant. Whenever
necessary, main effect smooths for lexical predictors and NDL predictors
were limited to 6 knots to prevent uninterpretable and in all likelihood
over-fitted effects. The relative performance of the lexical predictor
models and the NDL models was evaluated by comparing the restricted
maximum likelihood (henceforth REML) scores (standard GAMMS) or un-
biased risk estimator (henceforth UBRE) scores (logistic GAMMS) of both
models. For interpretability, visual presentations of main effect smooths

represent the partial effect of a predictor plus the model intercept.

3.4 Results

8.4.1 Single fization duration

Of all 3117 first fixations in the ET corpus compound data, 1911 fixations
were first-and-only fixations. In other words: 61.31% of all compounds
were only fixated on once. By comparison, a mere 18% of Dutch com-
pounds presented in isolation in Kuperman et al. (2008) required a single
fixation only, whereas only 28% of the (tri-morphemic) Finnish com-

pounds presented in sentential contexts in Kuperman et al. (2009) were
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processed during a single fixation. The high proportion of single fixations
in the current data demonstrates that a majority of compounds can be
processed during a single fixation when compounds are embedded in

natural discourse contexts.

8.4.1.1 Lezical predictor model. To investigate the lexical properties that
influence the duration of these first-and-only fixations, we fitted a GAMM
with random effect terms for Participant (F' = 11.812,p < 0.001) and
Word (F' = 0.113,p = 0.039) to the fixation durations. We found main
effects of Line (F = 9.341,p < 0.001), X Page (F = 14.267,p < 0.001)
and X Word (F = 3.236, p = 0.030). These main effects are visualized in
Figure 3.1. The left panel of Figure 3.1 presents the effect of Line and
shows that fixation durations become longer as the vertical position of a
compound on the page increases (i.e., as fixations are further down the
page). By contrast, the middle panel of Figure 3.1 shows that fixation
durations become shorter as the horizontal position of a compound on
the page increases. This effect of X Page suggests that more preceding
contextual information on the same line allows for faster processing. The
effect of X Word (i.e., the fixation position within a compound) plotted
in the right panel of Figure 3.1 indicates that more rightward fixations

on the compound lead to shorter fixation durations.
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Figure 3.1. Effects of Line (left panel), X Page (middle panel) and X Word

(right panel) on (log) Fixation Duration of first-and-only fixations.
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In addition to the main effects of Line, X Page and X Word, we ob-
served an interaction between Compound Frequency and LSA Similarity
Compound Head (F = 3.245,p = 0.003). This interaction is presented in
Figure 3.2. The z-axis shows predicted fixation durations, with warmer
colors representing longer fixation durations and colder colors represent-
ing shorter fixation durations. The early effect of the semantic similarity
of a compound and its head is in line with the early semantic effect
observed by Marelli and Luzzatti (2012). Fixation durations are shorter
for compounds that are semantically similar to their heads. As can be
seen in Figure 3.2, the effect of LSA Similarity Head-Compound is very
pronounced for low-frequency compounds, but much less prominent for
high-frequency compounds. This indicates that category congruence may
be important for low frequency compounds, but is much less relevant for
high frequency compounds. For a frequent compound like “nightmare”,
the fact that a “nightmare” is not a female horse has little to no impact
on amount of time required for successful processing. For an infrequent
compound like “sagebrush”, however, the semantic incongruence between

the compound and its head may slow down processing considerably.
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LSA Head—Comp.
o

Figure 3.2. Effect of the interaction between Compound Frequency and
LSA Similarity Head-Compound on (log) Fixation Duration of first-and-only

fixations.

For all but the lowest values of LSA Similarity Compound-Head,
the effect of Compound Frequency on first-and-only fixation durations is
inverse U-shaped in nature, with shorter fixation durations for compounds
with non-typical frequencies. Previously, a number of studies found weak

non-significant effects of compound frequency on first fixation duration
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(see, e.g., Zwitserlood, 1994; Bertram & Hyoni, 2003; Andrews et al.,
2004). More recently, Kuperman et al. (2009) were the first to observe a
robust significant effect of compound frequency on first fixation patterns.
The current effect of compound frequency provides further support for

the early emergence of full-form frequency effects for compounds.

None of the other lexical predictors had a significant effect on first-and-
only fixation durations. However, a factor that we have not taken into
account thus far is contextual information. In the ET corpus compounds
are presented in natural discourse contexts. These contexts potentially
contain valuable information that helps predict and identify compounds.
Unfortunately, quantifying the contribution of contextual information
to compound recognition is not straightforward for the current data
set. Compared to simple nouns, noun-noun compounds have a relatively
low frequency of occurrence. As a result, it is hard to obtain reliable
contextual predictability measures for the compounds in the ET corpus.
The Google 1T n-gram data (Brants & Franz, 2006) contain all word
trigrams with a frequency greater than or equal to 40 in a trillion word
corpus. Nonetheless, the Google 1T trigram frequency list contains
only 59.26% of all compound-final word trigram tokens in our data set.
Similarly, the Google 1T trigram frequency list contains no more than
32.85% of all compound-initial trigram tokens in our data and 44.05% of

all trigram tokens in which the compound is the middle word.

The fact that such a substantial proportion of the word trigrams
tokens in our data set do not reach the frequency threshold of 40 per tril-
lion in the Google 1T n-gram corpus suggests that trigram frequency may
provide little explanatory power for a majority of the compound tokens in
the ET corpus. Even if the average language user was to experience a bil-
lion words in her or his life, the binomial probability of ever encountering a
word trigram with a frequency of 40 in the Google 1T n-gram corpus would
be a mere 3.92% (1 — P(X = 0|n = 1,000, 000, 000, p = m))
and the chance of encountering such a word trigram more than once in
a lifetime is no more than 0.08% (1 — P(X = 0|n = 1,000, 000, 000,p =
W) — P(X = 1|n = 1,000,000,000,p = m)).
For a majority of the compounds in the ET corpus data set it is there-
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fore hard to see how contextual predictivity as gauged through trigram
frequency measures could provide explanatory power for eye fixation
patterns. To prevent a loss of statistical power due to missing data points
we therefore decided to not include trigram frequency in our set of lexical
predictors.

Nonetheless, contextual predictability may help compound recognition
for the subset of compound trigrams that individual language users may
have experienced. For the subset of word trigram tokens that appeared
with a frequency greater than or equal to 40 in the Google 1T n-gram
data, we therefore carried out a post-hoc analysis in which we included
(log-transformed) trigram frequency in the Google 1T n-gram corpus
as a fixed effect smooth in the lexical predictor GAMM reported above.
This post-hoc analysis revealed a significant facilitatory effect of trigram
frequency (F' = 7.453, p = 0.006) on first-and-only fixation durations
that was linear in nature.!

The effect of trigram frequency on first-and-only fixation durations
confirms that contextual predictability co-determines eye fixation pat-
terns during compound reading. The trigram frequency effect did not
interact with either compound frequency or the LSA similarity between
the compound and its head. The tensor product between Compound
Frequency and LSA Similarity Compound-Head did not reach significance
in this post-hoc analysis. A similar model on the full data set in which
we set trigram frequency to 0 for compound-final trigrams that had a
frequency smaller than 40 in the Google 1T n-gram data as well as for the
458 (10.10%) compound tokens that did not appear in compound-final
trigrams (e.g., compounds that appear in the first two words of a sen-
tence), however, showed a main effect of trigram frequency (F = 21.764,
p <0.001), as well as a significant tensor product interaction between

Compound Frequency and LSA Similarity Compound-Head that was

1 Similar post-hoc models on the subset of the data for which the compound-final
trigram frequency was equal to or greater than 40 in the Google 1T n-gram data
were fitted for all analyses reported below. In addition to the trigram frequency effect
reported here, we found a trigram frequency effect for probability of refixation, as well
as for first-of-many fixation position. We return to these effects when discussing the

relevant analyses. No other significant effects of trigram frequency were observed.
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quantitatively weaker (F' = 2.227, p = 0.041), but qualitatively highly
similar to the tensor product reported above.

8.4.1.2 NDL model. To find out how well Naive Discrimination Learning
(NDL) is able to predict first-and-only fixation durations, we fit a similar
GAMM with random effect terms for Participant (F' = 11.604,p < 0.001)
and Word (F' = 0.112,p = 0.040) to the first-and-only fixation data. The
model for the lexical predictors had shown main effects of Line, X Page
and X Word, as well as an interaction between Compound Frequency
and LSA Similarity Head-Compound. In the model based on the NDL
measures, we again found significant main effects of Line (F' = 10.448,p <
0.001), X Page (F' = 15.375,p < 0.001) and X Word (F = 2.860,p =
0.046). All these effects were highly similar to the effects in the model
with the lexical predictors. We therefore do not describe these effects in
more detail here.

In the NDL model, the interaction between Compound Frequency and
LSA Similarity Head-Compound is replaced by a simple main effect of
NDL Activation Compound (F = 4.485,p = 0.001). Importantly, NDL
Activation Compound is the integrative compound activation measure,
which consists of a weighted sum of activation of the compound as a
whole, the modifier and the head given the orthographic features of the
compound. The fact that this integrative measure provides maximum
explanatory power for the first-and-only fixation durations indicates
that successful compound processing involves a rapid integration of all
lexico-semantic information associated with the orthographic form of
the compound. This lexico-semantic information is not limited to the
compound lexeme, but includes the lexemes of the modifier and the head.

The main effect of NDL Activation Compound is presented in Fig-
ure 3.3. The effect of the NDL activation of the compound is inverse
U-shaped in nature, with shorter fixation durations for compounds with
either high or low activations in the NDL model. As such, the NDL activa-
tion of the compound shows an effect that is qualitatively similar to that

of Compound Frequency.
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Figure 3.3. Effect of the NDL Activation Compound on (log) Fixation

Duration of first-and-only fixations.

Neither the main effect of Compound Frequency (F = 1.294, p =
0.263), nor the main effect of LSA Similarity Head-Compound (F =
1.600, p = 0.156) reaches significance when the NDL activation of the
compound (F = 2.608, p = 0.032) is added to the model. Furthermore,
NDL Activation Compound interacts with neither Compound Frequency,
nor LSA Similarity Head-Compound. This suggests that the effect of the
LSA similarity between the compound and its head may not be purely
semantic in nature, but instead (partly) reflect certain aspects of the
bottom-up discriminability of a compound given its orthographic features.

Both models have similar REML scores (REML score lexical predictor
model: 382.70, REML score NDL model: 383.33). The NDL model, however,
uses 3 fewer degrees of freedom as compared to the lexical predictor model.
As such, the current analysis indicates that the NDL framework provides
a simpler, yet equally powerful account of the first fixation durations as
do standard lexical predictors.?

When the interaction between Compound Frequency and LSA Sim-
ilarity Head-Compound and the NDL activation of the compound are
added to the model simultaneously, both effects remain significant (Com-
pound Frequency by LSA Similarity Head-Compound: F' = 2.263, p =
0.038; NDL Activation Compound: F = 2.571, p = 0.036). The REML

score of this composite model (383.32), however, is similar to that of the

2 Note, however, that the NDL model uses 1 weight parameter to define the activa-
tion of the compound. As such, it could be argued that the NDL model uses only 2
fewer degrees of freedom as compared to the lexical predictor model.
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individual lexical predictor and NDL GAMMs. As such, adding both lexical
predictor and NDL measures to the model does not provide additional

explanatory value.

Given the significant effect of trigram frequency for the lexical pre-
dictor model, we carried out a post-hoc analysis in which we included
the frequency of the compound-final word trigram as a predictor in the
NDL model reported above. As before, we observed a significant effect
of trigram frequency (F' = 9.494, p = 0.002) for the subset of the data
for which word-final trigram frequencies were available in the Google
1T n-gram corpus. This effect was linear in nature and did not interact
with the effect of NDL Activation Compound. The main effect of NDL
Activation Compound did not reach significance in this post-hoc analysis.
A similar model on a larger data set with trigram frequency set to 0 for
compound-final trigrams that had a frequency lower than 40 in the Google
1T n-gram data as well as for compound tokens that did not appear in
compound-final trigrams, however, showed a significant main effect of
NDL Activation Compound (F = 2.888, p = 0.021) in the presence of
a trigram frequency effect (F' = 23.092, p <0.001). This effect of NDL
Activation Compound was qualitatively highly similar to the effect of

NDL Activation Compound reported above.

Much like NDL measures of the activation of the compound provide
a systemic alternative to lexical predictors that describe lexical proper-
ties of the compound, NDL measures of the contextual activation of the
compound given the preceding two words could provide a systemic altern-
ative to the trigram frequency measure. For the first-and-only fixation
duration data reported here, however, NDL measures of the contextual
predictability of the compound given the preceding two words did not
provide explanatory power over and above the effect of NDL activation
compound. Nonetheless, it is important to note that the architecture of
the NDL model is fully consistent with n-gram frequency effects.

The orthography-to-lexeme network was trained with the orthographic
features of the target word, as well as the orthographic features of the
preceding two words as cues for the compound lexeme to allow for con-

textual learning. A number of previous studies have demonstrated that
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this type of contextual learning allows discrimination learning networks
to replicate n-gram frequency effects (see, e.g., Baayen et al., 2011, 2013).
Furthermore, the lexeme-to-lexeme network allows for contextual learning
effects at the lexico-semantic level. The absence of contextual learning
effects in the NDL models reported here is likely to result from the limited
size of the training lexicon for the NDL networks. At 100 million words,
the British National Corpus may simply be too small to allow the NDL

networks to learn the predictability of noun-noun compounds in context.

3.4.2 Single fization position

The previous section described which lexical predictors and NDL measures
had an influence on how long participants fixated on a compound during
first-and-only fixations. Here, we investigate the influence of both types
of predictors on where participants fixate.

We fitted a ¢AMM with random effects for Participant (F =
46.857,p < 0.001) and Word (F = 0.128,p = 0.021) to the first-and-
only fixation positions. Similar to the model for first-and-only fixation
durations, we observed main effects of Line (F = 5.223,p < 0.001) and
X Page (F = 14.701,p < 0.001).

As expected, the effects of Line and X Page are in the opposite
direction of the effects reported for fixation duration (see Figure 3.4).
Participants move less far into the compound when the vertical position
of the compound on the page is lower (i.e., the line number is greater)
and move further into the compound when fixations are further to the
right. The effect of X Page is particularly prominent near the right edge
of the page, where a sharp increase in fixation position is seen. As for the
effect of X Page on first-and-only fixation duration, this suggests that
additional context on the same line helps read compounds more efficiently.
The effects of the experimental predictors Line and X Page indicate that
the preferred viewing position (Rayner, 1979) for first-and-only fixations
is co-determined to a considerable extent by the physical position of the

compound on a page.
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Position
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Figure 3.4. Effects of Line (left panel), X Page (middle panel) and Text (right

panel) on Fixation Position of first-and-only fixations.

In addition to the effects of Line and X Page, we found a main effect
of Text (F = 4.837,p = 0.028). As can be seen in the right panel of
Figure 3.4, first fixation positions initially are relatively far into the
compound. As the experiment proceeds, however, participants adapt
their reading strategy and fixate less far into compounds.

Finally, we observed a significant effect of Compound Length (F =
61.658,p < 0.001) on first-and-only fixation positions. The effect of
Compound Length is presented in Figure 3.5, which shows that the
longer a compound, the more rightward the position of the fixation on
that compound. This suggests that parafoveal preview (see, e.g., Rayner
et al., 1982) allows participants to gauge the length of a compound before
it is fixated on for the first time and to adjust the initial fixation position
on the basis of this information. As such, the effect of Compound Length

on first-and-only fixation position observed here fits well with the fact

80
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Position
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Figure 3.5. Effect of Compound Length on Fixation Position of first-and-only
fixations.
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that information about the length of a word acquired through parafoveal
preview co-determines incoming saccade lengths (see, e.g., Rayner, 1979).
We did not observe any effects of other lexical predictors or NDL measures

on first-and-only fixation positions.

8.4.8 Probability of refixation

Thus far we investigated what happens when participants are able to
process a compound in a single fixation. In the remainder of the Results
section we take a look at fixation patterns when additional fixations are
necessary. The current section forms a bridge between the single fixation
and multiple fixation analyses and evaluates when additional fixations

are necessary.

8.4.8.1 Lexical predictor model. We fitted a binomial GAMM with
random effects for Participant (x? = 19.401,p < 0.001) and Word
(x? = 79.791,p = 0.003) to the data. As can be seen in the left panel of
Figure 3.6, we observed a main effect of X Page (x? = 38.873,p < 0.001)
that was qualitatively similar to that observed for first-and-only fixation
durations. As before, this effect of X Page suggests that additional

preceding context on the same line allows for more efficient processing.
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Figure 3.6. Effects of X Page (left panel) and Text (right panel) on Probability
of Refixation.

In addition, we observed a main effect of Text (x? = 9.975, p = 0.009),
with fewer refixation as participants move through the experiment (see
right panel of Figure 3.6). This suggests that the leftward adjustment

of the initial fixation position later in the experiment (see the analysis
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of first-and-only fixation position above) helps process compounds more
efficiently.

Furthermore, we observed effects of two lexical predictors. First,
we observed a significant main effect of Compound Frequency (x? =
20.074,p < 0.001). This effect of Compound Frequency is presented in
the left panel of Figure 3.7. Although confidence intervals are wide near
the edges, the effect of compound frequency is facilitatory in nature, with
a lower probability of refixation for high frequency compounds.

Second, we found an interaction of Compound Length with X Word
(x? = 197.928,p < 0.001). This interaction is presented in the right panel
of Figure 3.7. For fixations near the left border of a compound the prob-
ability of a refixation depends on the length of the compound: the greater
the length of the compound, the greater the probability of a refixation.
Interestingly, the probability of a refixation is also somewhat greater
when participants fixate far into short compounds. The interaction of X
Word and Length presented in Figure 3.7 is therefore characterized by a
U-shaped curve along the main diagonal, in which the optimal fixation
position within a compound is a function of the length of that compound:
the greater the length of the compound, the more rightward the optimal
viewing position (see, e.g., O’Regan, 1992; O’Regan & Jacobs, 1992, for

optimal viewing position effects in isolated word reading)
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Figure 3.7. Effects of Compound Frequency (left panel) and the interac-
tion between Compound Length and X Word (right panel) on Probability of

Refixation.
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A post-hoc analysis for the subset of the data with a compound-
final trigram frequency of 40 or greater in the Google 1T n-gram data
furthermore revealed a significant main effect of trigram frequency (x?
= 4.398, p = 0.043). This effect is near-linear in nature, with a greater
probability of refixation for compounds that appear at the end of low-
frequency trigrams. Contextual predictability therefore co-determines
not only the duration of first fixations, but also the probability of an
additional fixation. The effect of trigram frequency did not interact with
Length or Compound Frequency.

While the effect of trigram frequency left intact the interaction of
Length and X Word (y? = 112.454, p < 0.001), it rendered the effect of
compound frequency insignificant for the subset of the data for which
trigram frequencies were available (x? = 7.798, p = 0.097). A model on
the full data set with a trigram frequency set to 0 when compound-final
trigram frequencies were not available, however, showed a significant main
effect of Compound Frequency (x? = 13.940, p = 0.005) in the presence
of a trigram frequency effect (x? = 10.210, p = 0.001). This effect of
Compound Frequency was qualitatively highly similar to the effect of
Compound Frequency reported above. As for first-and-only fixation
durations, therefore, the effect of trigram frequency on the probability of
a second fixation seems to exist relatively independently of the effects of

word-level lexical predictors.

3.4.3.2 NDL model. The lexical predictor model was characterized by a
main effect of Compound Frequency and an interaction of Compound
Length with X Word. To compare the performance of the NDL measures
to that of the lexical predictors, we fitted a similar binomial GAMM
with random effects for Participant (x? = 19.267,p < 0.001) and Word
(x? = 85.051,p = 0.001) to the data. The fixed effects for X Page
(x? = 39.355,p < 0.001) and Text (x> = 9.826,p = 0.009), as well as
the interaction between X Word and Length (x? = 197.465,p < 0.001)
remained significant in the NDL model and were qualitatively highly

similar to the effects reported for the lexical predictor model.
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The lexical predictor model had furthermore shown a main effect of
Compound Frequency. In the NDL model this effect is replaced by an
interaction between NDL Activation Compound and NDL MAD Compound
(x? = 21.512,p < 0.001).3 NDL MAD Compound quantifies the dispersion
of the vector of compound weights given all word types in the lexicon.
Conceptually, it can be thought of as a measure of the predictability
of a compound that is independent of the current input. As such, the
tensor product of NDL Activation Compound and NDL MAD Compound
reflects an interaction between the bottom-up support for a compound
and top-down knowledge about its prior probability.

The NDL model and the lexical predictor model have comparable UBRE
scores (UBRE score lexical predictor model: 0.2066, UBRE score NDL model:
0.2064). One the one hand, this suggests that lexical predictors provide
a simpler account of the data. On the other hand, upon closer inspection
the tensor product interaction between NDL Activation Compound and
NDL MAD Compound turns out to be a somewhat more precise measure
of lexical processing as compared to Compound Frequency. When Com-
pound Frequency and the interaction between NDL Activation Compound
and NDL MAD Compound are entered into the model simultaneously, the
tensor product remains significant (x? = 18.410, p = 0.040), whereas the
effect of Compound Frequency loses significance (x? = 8.397, p = 0.106).

The NDL model furthermore provides information that the lexical
predictor model does not. The interaction between NDL Activation
Compound and NDL, MAD Compound is presented in Figure 3.8. The
probability of a refixation is highest when the NDL activation of the
compound is high, but NDL MAD Compound is low — or, from an NDL
perspective, when the orthography provides a lot of bottom-up support
for a compound, but the prior probability of that compound is low. By
contrast, the probability of a refixation is lowest when NDL Activation
Compound and NDL MAD Compound are both high or — to a lesser extent
— when both measures are low. This is expected when both NDL Activation

Compound and NDL MAD Compound are high, which represents the ideal

3 The interaction between NDL Activation Compound and NDL MAD Compound
was restricted to 4 by 5 knots to prevent overfitting for extreme predictor values.
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case for optimal processing. Perhaps surprisingly, however, the probabil-
ity of a refixation also decreases when both NDL Activation Compound
and NDL MAD Compound are low. This suggests that limited bottom-up
support for a compound is unproblematic, as long as its prior probability
is low as well, and vice versa. In other words: the performance of the
language processing system is optimal when the information provided by
the orthographic input is consistent with prior expectations based on the

network connectivity of a compound.

NDL MAD Comp.

-2 -1 0 1
NDL Act. Compound

Figure 3.8. Effect of the interaction between NDL Activation Compound and
NDL MAD Compound on Probability of Refixation.

Given the effect of trigram frequency for the lexical predictor model,
we carried out a similar post-hoc analysis for the NDL model. In contrast
to the lexical predictor model, however, we observed a marginally signific-
ant effect of trigram frequency only (x? = 4.061, p = 0.057). Furthermore,
trigram frequency did not interact with NDL Activation Compound or

NDL MAD Compound.

8.4.4 First-of-many fization duration

While a majority of the compounds in our experiment were fixated on only
once, 38.69% of all compounds required one or more additional fixations.
In the next section we take a closer look at these additional fixations. In
this section we first investigate what characterizes first-of-many fixations,

by looking at their duration and position.
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83.4.4.1 Lezical predictor model. To investigate the duration of first-of-
many fixations we fitted a GAMM with a random effect for Participant
(F = 12.469,p < 0.001) to the data. The random effect of Word was
not significant and was therefore omitted from the model. As in the
lexical predictor model for the first-and-only fixation duration data, we
found significant main effects of Line (F = 9.531,p = 0.002), X Page
(F = 5.944,p = 0.002)* and X Word (F = 13.166,p < 0.001). As can
be seen in Figure 3.9, the effects of Line and X Word are in the same
direction as those observed for first-and-only fixation durations. By
contrast, while greater values of X Page resulted in shorter first-and-
only fixation durations, the effect is reversed for first-of-many fixation
durations — with longer fixation durations for greater values of X Page.
This effect, however, is no longer significant when incoming saccade length
is added to the model (F = 1.941, p = 0.164).
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Figure 3.9. Effects of Line (left panel), X Page (middle panel) and X Word

(right panel) on (log) Fixation Duration of first-of-many fixations.

Fixation patterns for first-and-only fixations were primarily determ-
ined by properties of the compound as a whole, such as Compound
Frequency and Compound Length. The lexical predictors that influence
first-of-many fixation durations, by contrast, are properties of the modi-
fier. In particular, we found significant main effects of Modifier Length
(F =11.375,p < 0.001) and Modifier Frequency (F' = 6.133,p = 0.013).
As can be seen in the left panel of Figure 3.10, the effect of Modifier

4 Even at 6 knots, the effect of X Page was characterized by an uninterpretable
sinusoid pattern. We therefore limited the number of knots for the main effect smooth
of X Page to 4.
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Length is linear in nature, with longer fixation durations for compounds
with longer modifiers. By contrast, the right panel of Figure 3.10 shows
that higher values of Modifier Frequency lead to shorter fixation durations.
This effect of Modifier Frequency, however, is only marginally significant
when the magnitude of the incoming saccade is added to the model (F
= 2.811, p = 0.089). As such, it is not clear how robust the effect of

Modifier Frequency on first fixation durations is.
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Figure 3.10. Effects of Modifier Length (left panel) and Modifier Frequency

(right panel) on (log) Fixation Duration of first-of-many fixations.

The fact that lexical properties of the modifier rather than those of the
compound as a whole co-determine first-of-many fixation durations gives
a clear indication about the processing problems that lead to additional
fixations. The results for first-and-single fixations suggest that optimal
processing is comprehensive in nature. By contrast, the effects observed
for first-of-many fixation durations are indicative of incomplete processing
on the basis of partial information.

In the analysis for the probability of a second fixation we saw that
lexical properties of the compound are one cause of incomplete pro-
cessing: compounds that require only one fixation are shorter than those
that require multiple fixations (8.54 characters versus 8.73 characters,
t = 3.823,p < 0.001) and have higher frequencies (raw BNC frequency:
1022.58 versus 872.12, t = —6.096,p < 0.001).°

5 The raw frequencies were log-transformed prior to statistical testing to remove a

rightward skew from their distributions.
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A second reason for suboptimal processing becomes clear from a closer
inspection of the fixation positions. First-and-only fixations are further
into the word than first-of-many fixations (59.94 pixels versus 50.79 pixels,
t = —6.994,p < 0.001). This difference is reflected in smaller average
forward saccade sizes for first-and-only fixations as compared to first-of-
many fixations (143.26 pixels versus 150.61 pixels, t = 2.923, p = 0.004).
As such, everything points towards an initial landing position that is
too early in the compound, as a consequence of which the information
necessary for efficient compound processing is not available.

The average fixation duration for first-of-many fixations is shorter
than that for first-and-only fixations (175.16 ms versus 195.13 ms,
t = —8.477,p < 0.001). This indicates that participants realize that
successful processing will not be possible during the current fixation and
rapidly move on in an attempt to complement the incomplete information
that becomes available during first-of-many fixations with additional

information that is obtained through a second fixation.

83.4.4.2 NDL model. To investigate the explanatory power of the NDL
measures for first-of-many fixation durations, we fitted a GAMM with a
random effect for Participant (F = 12.370,p < 0.001) to the data. As
in the lexical predictor model, we observed significant main effects of
Line (F =9.743,p = 0.002), X Page (F = 5.952,p = 0.002) and X Word
(F =13.313,p < 0.001). As for the lexical predictor model, too, the effect
of X Page is no longer significant when incoming saccade length is added
to the model (F = 1.267, p = 0.240). The effect of Modifier Length also
remained significant in the NDL model (F = 10.064, p = 0.002) and was
qualitatively highly similar to the effect of Modifier Length in the lexical
predictor model.

More interestingly, the effect of Modifier Frequency that was present in
the lexical predictor model is replaced by an effect of NDL Self-Activation
Modifier (F = 4.642,p = 0.031) in the NDL model. Similar to the effect
of Modifier Frequency, the effect of NDL Self-Activation Modifier is fa-
cilitatory in nature, with shorter first-of-many fixation durations when

the modifier has a higher activation (see Figure 3.11). Importantly, it
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is the NDL activation of the modifier given the orthographic features of
the modifier, rather than the activation of the modifier given the ortho-
graphic features of the compound as a whole that proved most predictive.
This fits well with the fact that fixation positions were more leftward
for first-of-many fixations as compared to first-and-only fixations and
suggests that the orthographic features of the head were not yet available

during first-of-many fixations on compounds.
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Figure 3.11. Effect of NDL Self-Activation Modifier on (log) Fixation Dura-

tion of first-of-many fixations.

A post-hoc analysis indicated that not all features of the modifier
may be available either during first-of-many fixations. For this post-hoc
analysis we calculated the NDL activation of the modifier lexeme given
the first trigram of the compound only (i.e., #ha for the compound
handbag). This measure turned out to be a highly significant predictor
of first-and-only fixation duration (F = 10.190,p = 0.001), showing a
linear effect that was qualitatively highly similar to that reported for NDL
Self-Activation Modifier above. The activation of the modifier lexeme
given the first orthographic trigram had increased explanatory power over
NDL Self-Activation Modifier. When both measures were entered into the
model simultaneously, the effect of NDL Self-Activation Modifier was no
longer significant (F' = 1.572, p = 0.210), whereas the activation of the
modifier given the first orthographic trigram remained highly significant
(F = 7.371, p = 0.007).

Furthermore, whereas the effect of NDL Self-Activation Modifier was
only marginally significant when incoming saccade length was added to
the model as a predictor (F = 3.467, p = 0.063), the significance of the
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activation of the modifier lexeme given the first orthographic trigram was
unaffected by incoming saccade length (F' = 7.850, p = 0.005). Similarly,
whereas the effect of modifier length remained marginally significant
when incoming saccade length was added to the original NDL model (F'
= 3.611, p = 0.058), it was no longer significant when incoming saccade
length was added to the post-hoc NDL model described here (F = 2.589,
p = 0.108). As such, the activation of the modifier lexeme given the first
orthographic trigram is a superior predictor of first-and-only fixation
duration as compared to NDL Self-Activation Compound. This suggests
that on average only a very limited subset of the orthographic features
of the compound is available during first-of-many fixations.

When comparing the lexical predictor model with the original NDL
model including NDL Self-Activation Modifier, both models show similar
explanatory power, with comparable REML scores for the lexical pre-
dictor model (325.92) and the NDL model (326.65). When both Modifier
Frequency and NDL Self-Activation Modifier were added to the model
simultaneously, neither Modifier Frequency (F = 1.900, p = 0.178), nor
NDL Self-Activation Modifier (F = 0.292, p = 0.589) reached signific-
ance. The marginal differences in performance between both models
are unsurprising given the fact that the Modifier Frequency and NDL
Self-Activation Modifier measures are highly correlated (r = 0.706).

When comparing the lexical predictor model to the NDL model that
includes the activation of the modifier given the first orthographic trigram,
rather than NDL Self-Activation Modifier, however, the REML score of
the NDL model is somewhat better than that of the lexical model (lexical
model: 314.75%; NDL model: 312.31). In addition, whereas the effect of
the NDL activation of the modifier given the first orthographic trigram
remained significant (F' = 6.496, p = 0.011) when both predictors were
entered into a model simultaneously, the effect of Modifier Frequency was

no longer significant (F' = 1.216, p = 0.270). As such, the NDL framework

6 Note that this REML score is different from the one reported above. This is a
consequence of simultaneously removing outliers for the NDL and lexical predictor
models. The original lexical predictor model did not include NDL Self-Activation
outliers, whereas the lexical predictor model reported here did not include outliers for

the activation of the modifier given the first orthographic trigram.
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Position

T T T
100 400 700
X Page

Figure 3.12. Effect of X Page on Fixation Position of first-of-many fixations.

provides a competitive theory for understanding the first-of-many fixation
duration data, particularly when the limited amount of orthographic

information that is available during these fixations is taken into account.

8.4.5 First-of-many fization position

A caMM with random effects for Participant (F' = 28.522,p < 0.001)
and Word (F = 0.245,p < 0.001), showed a significant effect of X Page
(F = 18.693,p < 0.001).” This effect of X Page is presented in Figure 3.12.
For first-and-only fixations, we saw an increase in first fixation position
when the horizontal position of a compound on a page was greater. For
first-of-many fixations, the effect is U-shaped in nature.

Similar to the effect of X Page for first-and-only fixation position,
participants fixate further into compounds near the right edge of the
page, presumably due to the increased amount of contextual information
on the same line. In addition, however, first-of-many fixation positions
are also further into compounds that appear near the left edge of the
page. Whereas sub-optimal initial fixation positions typically are not far
enough into the compound, the U-shaped effect of X Page observed here
suggests that sub-optimal initial fixation positions on compounds that
are at or near the beginning of a new line tend to be too far into the

compound.

7 As for the effect of X Page on first-of-many fixation duration, even at 6 knots
the effect of X Page on first-of-many fixation position was characterized by an unin-
terpretable sinusoid pattern. As before, we therefore limited the number of knots for

the main effect smooth of X Page to 4.
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The fixation position data for first-and-only fixations showed a signi-
ficant effect of the length of the compound. No such length effect was
observed for first-of-many fixation position. Furthermore, no other lexical
predictors or NDL measures were predictive for the fixation position of
first-of-many fixations. The absence of significant effects for fixation posi-
tion of first-of-many fixations fits well with the increased average saccade
size for first-of-many fixations as compared to first-and-only fixations
(150.61 pixels versus 143.26 pixels). While parafoveal preview enabled
participants to commence compound processing prior to first-and-only fix-
ations, the increased distance from the previous fixation to the compound
substantially reduced the extent to which parafoveal pre-processing was
possible prior to first-of-many fixations.

While we found no evidence for effects of lexical predictors or NDL
measures, we did find some support for an effect of trigram frequency.
Whereas the effect of trigram frequency was marginally significant only
for first-and-only fixation position (F = 3.547, p = 0.060), a post-hoc
analysis on the subset of the data for which trigram frequencies were
available in the Google 1T n-gram data showed a significant linear main
effect of trigram frequency (F = 3.900, p = 0.049) on first-of-many fixa-
tion position, with more leftward fixation positions for compounds that
appeared in more frequent compound-final trigrams. A similar model on
the full data set, in which we set trigram frequency to 0 for compounds
for which trigram frequencies were not available, however, did not show a
significant effect of trigram frequency (F' = 1.604, p = 0.234). The effect
of trigram frequency on first-of-many fixation position, therefore, is not

statistically robust.

8.4.6 Second fization duration

The analysis of first-of-many fixations indicated that additional fixations
are necessary when processing during the initial fixation has to proceed
on the basis of partial information. In this section, we investigate the
fixation durations and fixation positions of second fixations to gauge how
the situation of having insufficient information during the initial fixation

is corrected for.
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8.4.6.1 Lezical predictor model. In addition to a random effect for Parti-
cipant (F = 8.318,p < 0.001), the lexical predictor GAMM showed main
effects of Line (F = 13.843,p < 0.001) and X Page (F = 7.786,p < 0.001).
The main effects of Line and X Page are presented in Figure 3.13 and
are similar in nature to the effects of Line and X Page for first-of-many
fixation durations. As for first-of-many fixation durations, fixations near
the bottom of a page were characterized by longer fixation durations.
The effect of X Page is quadratic in nature and shows shorter fixation
durations for second fixations near the right of the page. As before, this

suggests that additional sentential context reduces fixation durations.

(log) Duration
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Figure 3.13. Effects of Line (left panel) and X Page (right panel) on (log)

Fixation Duration of second fixations.

The lexical predictor GAMM furthermore showed a significant main
effect of Compound Frequency (F = 7.848,p = 0.005). This effect of
Compound Frequency is presented in Figure 3.14, which shows that
second fixation durations are shorter for high frequency compounds than
for their low frequency counterparts.

While first-of-many fixation durations were determined by lexical
properties of the modifier, the only lexical predictor that proved signific-
ant for second fixation durations is a lexical property of the compound
itself. Similar to processing during first-and-only fixations, therefore, pro-
cessing during second fixations is driven by lexico-semantic information
associated with the compound as a whole. Second fixations, then, are
perhaps best conceived as a renewed attempt to process a compound
in an optimal, comprehensive fashion. Given that part of the required

information was already available through the first fixation, however, this
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Figure 3.14. Effect of Compound Frequency on (log) Fixation Duration of

second fixations.

second pass is completed substantially faster than processing during first-
and-single fixations, as indicated by shorter average fixation durations
(158.53 ms versus 195.13 ms, t = —14.451,p < 0.001).

8.4.6.2 NDL model. Similar to the lexical predictor model, the NDL
model for second fixation duration showed a significant random effect
for Participant (F' = 8.395,p < 0.001) as well as significant fixed effect
smooths for Line (F = 13.637,p < 0.001) and X Page (F = 7.810,p <
0.001). The effects of Line and X Page were qualitatively highly similar
to the effects of Line and X Page in the lexical predictor model.

In the NDL model, the effect of Compound Frequency is replaced by
a significant main effect of NDL MAD Compound (F = 8.639, p = 0.003).
As can be seen in Figure 3.15, the effect of NDL MAD Compound is linear
in nature and qualitatively highly similar to the effect of Compound
Frequency. This similarity is reflected in the comparable explanatory
power of the lexical predictor model and the NDL model. Both models had
highly similar REML scores (REML score lexical predictor model: 529.85,
REML score NDL model: 529.37) and when both predictors were added
to the model simultaneously, neither Compound Frequency (F' = 0.877,
p = 0.349), nor NDL MAD Compound (F = 1.655, p = 0.199) reached
significance. The comparable performance of both models is unsurprising
given the fact that Compound Frequency and NDIL, MAD Compound are
extremely highly correlated (r = 0.993) As for first-of-many fixation

durations, therefore, the results for second fixation durations indicate
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Figure 3.15. Effect of NDL MAD Compound on (log) Fixation Duration of

second fixations.

that the quantitative performance of NDL measures and standard lexical
predictors is similar when multiple fixations are required.

Despite the fact that the explanatory power of the lexical predictor
model and the NDL model is similar for the second fixation duration
data, the NDL model provides valuable information about the nature of
compound processing during second fixations that is not available from
the lexical predictor analysis. In the lexical predictor model we observed
an effect of Compound Frequency for both first-and-only fixation duration
and second fixation duration. The NDL model, however, demonstrates
that the processing mechanisms that underlie both effects of Compound
Frequency are markedly different. First-and-only fixation durations are
co-determined by NDL Activation Compound. This suggests that during
first-and-only fixations readers rely primarily on the bottom-up support
for a compound and its constituents from the orthographic features in
the visual input. For those compounds that require a second fixation,
however, the bottom-up information that was available during the first
fixation proved insufficient for successful compound processing. The
fact that NDL MAD Compound co-determines second fixation durations
indicates that rather than making a second attempt at processing the
compound in a bottom-up fashion, readers fall back on top-down best

guesses based on the prior probability of lexical candidates.
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8 Compound reading
3.4.7 Second fization position

Other than an effect of Compound Length for first-and-only fixations,
the fixation position models for first-and-only and first-of-many fixation
positions provided little evidence for effects of lexical predictors or NDL
measures. In this section we investigate whether or not lexical predictors

or NDL measures do co-determine second fixation positions.

8.4.7.1 Lexical predictor. A GAMM with random effects for Participant
(F =12.236,p < 0.001) and Word (F = 0.200,p = 0.004) again showed
a main effect of X Page (F = 28.467,p < 0.001). This effect of X Page
is presented in the left panel of Figure 3.16, which shows that fixations
are further into the word for compounds that appear near the right edge
of the page. Once more, this suggests that additional sentential context

allows for more efficient processing.
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Figure 3.16. Effect of X Page (left panel) and Compound Length (right

panel) on Fixation Position of second fixations.

In addition to the effect of X Page, we also observed an effect of Com-
pound Length (F = 24.991,p < 0.001) As can be seen in the right panel
of Figure 3.16, fixations are more towards the right for longer compounds.
This fits well with the X Word by Compound Length interaction observed
for probability of refixation. The optimal viewing position varies as a
function of compound length: the longer a compound, the more rightward
the optimal viewing position.

As for the effects on second fixation duration, the effect of Compound
Length on second fixation position indicates that properties of the com-

pound as a whole, rather than properties of (one of) the constituents
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determine fixation patterns for second fixations. As such, the second
fixation position data indicate that processing during second fixations
is to a larger extent driven by the compound lexeme as compared to
processing during first-of-many fixations. No other lexical predictors

showed a significant effect on second fixation position.

8.4.7.2 NDL model. A cAMM with random effects for Participant
(F = 12.031,p < 0.001) and Word (F = 0.154,p = 0.018), showed
main effects of X Page (F = 29.308,p < 0.001) and Compound Length
(F =28.423,p < 0.001). These effects were highly similar to the effects
of X Page and Compound Length reported for the lexical predictor model

above.

Position
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Figure 3.17. Effect of NDL Activation Head on Fixation Position of second

fixations.

In addition to the effects of X Page and Compound Length, we found
some evidence for an effect of NDL Activation Head (i.e., the activation of
the lexeme of the head given the orthographic features of the compound).
The effect of NDL Activation Head (F = 3.138,p = 0.021) is presented in
Figure 3.17. Near the middle of the NDL Activation Head range, there
is an upward trend, with second fixation position being further into the
word when the activation of the head is high. At the edges of the predictor
range, however, there is considerable uncertainty about the nature of the
effect. Furthermore, when incoming saccade length was added to the
model, the effect of NDL Activation Head no longer reached significance
(F = 2.271, p = 0.085). It is, therefore, unclear how robust the effect of
NDL Activation Head is.
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8 Compound reading
3.4.8 Probability of third fixation

The previous sections demonstrated that processing during first-of-many
fixations is based on partial bottom-up information and therefore subop-
timal, and that the additional information that becomes available during
second fixations allows for processing that is better optimized. Two
fixations were sufficient to process a vast majority of all compounds. For
285 (9.14%) compound tokens, however, a third fixation proved necessary.
In this section we investigate which lexical predictors and NDL measures

co-determine the probability of a third fixation.

8.4.8.1 Lexical predictor model. A cAMM with random effects for Par-
ticipant (x? = 25.336,p < 0.001) and Word (x? = 48.576,p = 0.013)
revealed a significant main effect of X Word (x? = 36.100,p < 0.001),
with a lower probability of a third fixation if second fixations were further
into the compound (see Figure 3.18). This effect of X Word demonstrates
again that incomplete information due to a fixation position that is too

far towards the left leads to additional fixations.
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Figure 3.18. Effect of X Word on Probability of Third Fixation.

The lexical predictor GAMM furthermore showed a significant inter-
action between Compound Length and Compound Frequency (x? =
22.198,p < 0.001). The interaction between Compound Length and Com-
pound Frequency is presented in the left panel of Figure 3.19, which shows
that the probability of a third fixation is increased only for compounds

that are both long and infrequent.
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Figure 3.19. Effects of the interaction between Compound Length and Com-
pound Frequency (left panel) and Modifier Mean Bigram Frequency (right
panel) on Probability of Third Fixation.

Finally, we found some evidence for an effect of Modifier Mean Bigram
Frequency (x? = 5.863,p = 0.015). As can be seen in the right panel of
Figure 3.19, a higher average frequency of the orthographic bigrams in
the modifier leads to more third fixations. When incoming saccade length
was added to the model, however, the effect of Modifier Mean Bigram
Frequency no longer reached significance (x? = 8.672, p = 0.127).

8.4.8.2 NDL model. As for the lexical predictor model, the NDL model
showed significant random effects for Participant (x? = 25.614,p < 0.001)
and Word (x? = 47.622, p = 0.015), as well as a main effect of X Word
(x? = 36.013,p < 0.001). In addition, the NDL model showed a main
effect of Modifier Mean Bigram Frequency that was significant in the
base model (x? = 5.882, p = 0.015), but that lost significance when the
incoming saccade size was added to the model (x? = 9.090, p = 0.117).

In the NDL model the interaction between Compound Length and
Compound Frequency is replaced by an interaction between Compound
Length and NDL MAD Compound (y? = 21.803,p < 0.001) As can be seen
in Figure 3.20, the interaction between Compound Length and NDL MAD
Compound is highly similar to the interaction between Modifier Mean
Bigram Frequency and Compound Frequency, with a greater probability

of a third fixation for long compounds with a low prior probability.
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8 Compound reading

Analogous to the NDL model for second fixation duration, the NDL
measure that replaced Compound Frequency was NDL MAD Compound,
rather than NDL Activation Compound. As before, this suggests that
while early fixation patterns are co-determined by the bottom-up support
for a compound given the orthographic cues in the input, later measures

are influenced by the prior probability of a compound.

NDL MAD Comp.

Compound Length

Figure 3.20. Effect of the interaction between Compound Length and NDL
MAD Compound on Probability of Third Fixation.

The explanatory power of the NDL model was comparable to that
of the lexical predictor model (UBRE score NDL model: -0.0594; UBRE
score lexical predictor model: -0.0594). When Compound Frequency
and NDL MAD Compound were entered into the model simultaneously,
the effect of NDL MAD Compound remained significant (y? = 3.877, p =
0.049), whereas the effect of Compound Frequency lost significance (>
= 2.945, p = 0.101). Conversely, the interaction of Compound Length
with Compound Frequency remained marginally significant (y? = 7.239,
p = 0.051), whereas the interaction with Compound Length with NDL

MAD Compound was no longer significant (x? = 1.609, p = 0.205).

3.4.9 Third fization duration

In the previous section we investigated when third fixations are necessary.
We saw that no more than 9.14% of compound tokens required a third
fixation. The statistical power for the third fixation data therefore, is
limited. Nonetheless, we decided to include the results for the third

fixation data in this write-up. The reader is advised, however, that the
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results reported here may not be as statistically robust as the effects
reported for first and second fixations above.

A GAMM model on the third fixation duration data showed no signi-
ficant random effects for Participant or Word. We did, however, observe
a significant effect of Text (F = 3.843,p = 0.014). As can be seen in
Figure 3.21, third fixation durations are shorter near the end of the
experiment. This suggests that throughout the experiment participants
learn to reduce the costs of having to fixate on compounds a third time.

Furthermore, we found a significant effect of LSA Similarity Modifier-
Compound (F = 5.472,p = 0.020): the more semantically similar a
modifier is to the compound as a whole, the shorter the duration of the
third fixation (see right panel of Figure 3.21).

Although the robustness of the effect of LSA Similarity Modifier-
Compound for the third fixation duration data is unclear given the limited
number of third fixation in the current data, a post-hoc analysis on the
next fixation data for single fixation cases (i.e., fixations following first-

and-only fixations) provided independent support for late semantic effects.

(log) Duration
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Figure 3.21. Effects of Text (left panel) and LSA Similarity Modifier-
Compound (right panel) on (log) Fixation Duration of third fixations.

A ¢AMM model on the next fixation duration data in which we con-
trolled for the length and frequency of the word that was fixated on
showed an effect of LSA Similarity Modifier-Compound (F = 16.844,
p < 0.001) that was qualitatively highly similar to the effect of LSA
Similarity Modifier-Compound reported here. In addition, both the next
fixation duration (F' = 4.488, p = 0.034) and next fixation position (F'
= 5.473, p = 0.019) for first-and-only fixations showed significant effects
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8 Compound reading

of LSA Similarity Modifier-Head. The current data therefore provide
some support for late semantic effects regarding the similarity between
the modifier on the one hand and the head and compound on the other
hand.

We found no other effects of lexical predictors or NDL measures on
third fixation duration. In the post-hoc analysis of the next fixation
duration for first-and-only fixations, however, we found a linear effect of
NDL Self-Activation Modifier (i.e., the activation of the modifier lexeme
given the orthographic features of the modifier only), with shorter fix-
ation durations for higher values of NDL Self-Activation Modifier (F =
6.825, p = 0.009). This effect of NDL Self-Activation Modifier provides
some additional evidence for the idea that properties of the modifier

co-determine later measures of compound processing.

8.4.10 Third fixation position

A gamM with a random effect of Participant (F' = 2.546,p = 0.014)
showed significant effects of X Page (F = 3.485,p = 0.004) and Com-
pound Length (F = 14.468,p < 0.001). As can be seen in Figure 3.22,
the effects of X Page and Compound Length are extremely similar to
the effects of both predictors for second fixation position. The processes
that guide the fixation position of second and third fixations therefore
seem to be highly similar. No other effects of lexical predictors or NDL

measures on third fixation position were observed.
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Figure 3.22. Effect of X Page (left panel) and Compound Length (right

panel) on Fixation Position of third fixations.
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3.5 General Discussion

We investigated eye fixation patterns for noun-noun compounds in the
Brown corpus fiction section of the Edmonton-Tiibingen eye-tracking
corpus. Despite the fact that compounds are relatively infrequent in
the English language, the over 920,000 fixations in this part of the ET
corpus allowed us to look at compound processing in discourse context
for 4747 fixations on 844 compound tokens. While compound processing
has received considerable attention in the experimental psycholinguistic
literature, to our knowledge the current work is the first to address
compound processing in discourse context on this scale.

Following previous work, we investigated the eye fixation patterns for
the ET corpus data using a wide range of lexical predictors, including
frequency measures, neighborhood density, morphological family size
and semantic similarity measures. Additionally, we investigated to what
extent systemic measures, derived from Naive Discrimination Learning
(henceforth NDL; Baayen et al., 2011) could help further understand
the eye fixation data in the ET corpus. Previously, the NDL model has
been applied primarily to unidimensional data obtained in behavioral
experiments (see, e.g., Baayen et al., 2011, 2013; Ramscar et al., 2014).
The current work is a first exploration of the explanatory power of NDL
measures for eye-tracking data.

Table 3.1 provides a summary of the results of the present investiga-
tions. In what follows, we first discuss the results of the lexical predictor
analysis, as well as the implications of this analysis for the different types
of compound processing models that have been proposed in the literature.
Next, we take a closer look at the results of the NDL analysis and the
additional insights this analysis provides into the nature of compound
processing.

The current findings indicate that presenting compounds in unnat-
ural experimental tasks has a considerable influence on the nature of
compound processing. In comparison to previous experimental work,
compound processing is much more efficient in the ET corpus data. For

all 4 participants in the subset of the ET corpus used here, a majority
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Table 3.1. Summary of lexical predictor and NDL analyses. Numbers indicate
p-values for the corresponding model terms. Round brackets show p-values

when trigram frequency is added to the model; square brackets show p-values

when incoming saccade length is added to the model.

lexical

NDL

first-and-only fixation duration

Comp. Freq. by LSA Head-Comp.
NDL Activation Compound

0.003 (0.041)

0.001 (0.021)

first-and-only fixation position

Compound Length <0.001 <0.001
probability of second fixation

Compound Frequency <0.001 (0.005)

Compound Length by X Word <0.001 <0.001
NDL Act. Comp. by MAD Comp. <0.001
first-of-many fixation duration

Modifier Length <0.001 0.002 [n.s.]
Modifier Frequency 0.013 [0.089]

NDL Act. Mod. given first trigram 0.001
second fixation duration

Compound Frequency 0.005

NDL MAD Compound 0.003
second fixation position

Compound Length <0.001 <0.001
NDL Activation Head 0.021 [0.085]
probability of third fixation

Mod. Mean Bigram Frequency 0.015 [n.s.] 0.015 [n.s.]
Comp. Length by Comp. Freq. <0.001

Comp. Length by NDL MAD Comp. <0.001
third fixation duration

LSA Modifier-Compound 0.020

third fixation position

Compound Length <0.001 <0.001
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of the compounds was processed using a single fixation (range: 54.06% -
66.71%, mean: 61.31%).

As can be seen in Table 3.1, fixations patterns for these first-and-only
fixations were characterized by lexical properties and NDL measures of
the compound as a whole, with early effects of compound length and
compound frequency (cf. Zwitserlood, 1994; Bertram & Hyoné, 2003;
Andrews et al., 2004; Kuperman et al., 2009). As we found out in a post-
hoc analysis on the subset of the data for which trigram frequencies were
available in the Google 1T n-gram data, there is a real possibility that
word trigram frequency also predicts first and only fixation durations, in
which case the evidence for any constituent involvement, coming from the
LSA compound-head similarity measure in interaction with compound

frequency, becomes much less convincing (p = 0.041).

The pattern of results for single fixation cases fits remarkably well
with non-decompositional theories of lexical processing (Butterworth,
1983; Janssen et al., 2008) and theories in which whole-word access
representations are claimed to play a role in lexical processing from the
very beginning (see, e.g., Kuperman et al., 2009). The results for first-
and-only fixations are also in line with supra-lexical models of compound
processing, which propose that full-form access precedes access to the

constituent morphemes (see, e.g., Giraudo & Grainger, 2001).

For words read with multiple fixations, modifier length and — to a
lesser degree — modifier frequency predicted the initial fixation duration.
By contrast, second fixation durations and positions were determined by
the length and frequency of the compound as a whole. For third fixations,
the fixation position is predicted again by compound length, whereas
duration may have been influenced by the LSA modifier-compound simil-
arity measure. Thus, the analysis based on lexical-distributional variables
suggests that multiple-fixation trials are initiated with modifier-driven
processing, followed by whole-word look-up, in turn followed by fur-
ther semantic integration. This scenario for the nearly 40% of cases
with multiple-fixation reading fits remarkably well with the stages in
lexical access proposed by left-dominant sub-lexical models of compound

processing, which hold that access to the modifier is essential for and
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temporally precedes access to the full-form (Taft & Forster, 1975, 1976;
Taft, 1979, 1991, 2004).

The combined evidence for single fixation trials and multiple fixation
trials, however, does not fit very well with the above-mentioned theories
of compound processing. Non-decompositional or supra-lexical models of
compound processing do not fit well with the modifier-driven processing
for multiple fixation trials. At best, therefore, non-decompositional or
supra-lexical models describe a best-case scenario. By contrast, neither
left-dominant, nor right-dominant (Juhasz et al., 2003; cf. Juhasz, 2007)
sub-lexical models can straightforwardly account for the whole-form

effects on first-and-only fixation duration and position.

The lexical predictor analysis also challenges dual route models. In
parallel dual-route models a compound and its constituents are activated
simultaneously. Typically, parallel dual-route models propose a horse
race between the full-form route and the decompositional route, which
operate in a simultaneous and independent fashion (see, e.g., Schreuder
& Baayen, 1995; Baayen & Schreuder, 1999; Allen & Badecker, 2002; cf.
Baayen & Schreuder, 2000, however, for a dual-route model that allows
for an interaction of both processing routes). The pattern of results
observed here provides little evidence for a horse race model, in which a
parallel pursuit of a decompositional and full-form route is the default

processing mechanism for compounds.

When compounds were processed in a single fixation, we did not
observe simultaneous effects of constituents and full-form properties and
found evidence for late semantic constituent effects only. For compounds
that required multiple fixations, we observed effects of lexical properties of
both the left constituent and the full form. The effects of left constituent
properties and compound properties, however, were strictly separated in
time, with left constituent effects characterizing first-of-many fixations
and full-form effects characterizing second fixations. Parallel dual-route
models, by contrast, would predict the effects of left constituent properties
and full-form properties to temporally coincide (see, however, Bertram &
Hyoné, 2003 for a dual-route model that allows for a head start of the

decompositional route).

148



3.5 General Discussion

The only statistical model in which we observed simultaneous effects
of constituent and full-form properties was that for the probability of a
third fixation. The effect of the average bigram frequency of the modifier,
however, was no longer significant when the size of the incoming saccade
was taken into account. Even if the effect of average bigram frequency
were statistically robust, however, we would, much rather interpret this
late co-occurrence of left constituent and full-form effects as an attempt at
a top-down integration of the incomplete first pass and the comprehensive
second pass at compound processing than as evidence for a bottom-up

dual-route architecture.

Libben (2006) argued that the architectures of existing models of
morphological processing may be too restrictive (cf. Kuperman et al.,
2009) and proposed a maximization of opportunity account of compound
processing, in which readers simultaneously use all opportunities for
compound processing that are available in the input. The lexical predictor
analysis is not incompatible with Libben (2006). When all orthographic
features are available in the input and the compound is not too long or
infrequent, a single fixation suffices to successfully process the compound.
When only a subset of the orthographic features is available during a
first fixation due to suboptimal fixation planning, additional fixations
are necessary. As indicated by the substantially shorter durations of
second fixations as compared to first-and-only fixations (158.53 ms versus
195.13 ms), however, participants still obtain as much information as
possible during first-of-many fixations and use this information to process

compounds more efficiently during second fixations.

Within the theoretical idea of a maximization of opportunities model
of compound processing, however, there is considerable room for different
implementations of a model. One potential implementation of a maximiz-
ation of opportunities model would be an interactive activation model in
which the proposed sub-lexical, supra-lexical and dual route architectures
of existing models are combined in a multiple route interactive activation
model. In the NDL framework proposed here, however, we propose that
compound processing is based on the information that becomes available

through a single probabilistic learning mechanism.
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The current NDL approach is based on two discrimination learning
networks: an orthography-to-lexeme network and a lexeme-to-lexeme
network. The orthography-to-lexeme network provides an estimate of the
bottom-up support for a compound given the orthographic information
in the visual input. The current pattern of results indicates that readers
use all orthographic information that is available in the spotlight of
visual attention to process compound words. The more complete the
orthographic information for a compound, the better readers’ chances

are to correctly identify the compound during a single fixation.

First-and-only fixations were co-determined by an effect of the lexico-
semantic information associated with a compound given the orthographic
features of the compound as a whole. When there is sufficient bottom-up
information to activate the lexemes of the compound and its constituents,
therefore, no further fixations are required. Evaluation of how these
lexemes contribute to the understanding of the discourse, however, is
not completed by the end of the first-and-only fixation, as witnessed by
a spill-over effect of the LSA similarity between the modifier and the

compound on the fixation duration for the next word.

First-of-many fixations are characterized by more leftward fixation
positions and longer incoming saccade lengths as compared to first-and-
only fixations. This results in decreased parafoveal pre-processing of the
compound and incomplete bottom-up information during initial fixations.
For first-of-many fixations on a compound at the start of a new line,
the pattern is reversed, with first-of-many fixation positions that are too
far into the compound as a result of overshooting an optimal viewing
position.

The suboptimal viewing position for first-of-many fixation durations
results in insufficient bottom-up information for successful single fixation
processing. The modifier-driven access suggested for the first-of-many
fixation durations by the lexical-distributional measures, is replaced by
a low-level effect in the NDL analysis: the weight on the connection
from the compounds’ initial trigram to the modifier lexeme. Since for
multiple-fixation compound reading, compounds tend to be longer and

to have lower frequencies, the initial fixation position is too early in the

150



3.5 General Discussion

word to allow the bottom-up information for the compound lexemes to
be effective. All that happens at this stage is that the modifier lexeme
receives support, limited to what its very first letter trigram can provide.
Rather than proposing two separate strategies, one involving holistic
processing and one involving decompositional processing, therefore, we
propose that compound processing is determined by the way a single
system responds to the input that it has at its disposal.

Clearly, the implementation of visual acuity in the information uptake
process for the current simulations is an oversimplification of reality.
Orthographic feature availability is an all-or-none phenomenon in the
current version of the NDL model, with orthographic features being either
present or absent in the input. Encoding feature availability over time
as a gradient rather than an all-or-none phenomenon is likely to further
improve the precision of the NDL model (see, e.g., Engbert et al., 2005).
Nonetheless, the crude approximation of visual acuity in the information
uptake process used here is an advancement over most existing models
of compound processing that allowed for satisfactory performance of the

NDL model when multiple fixations were required to process a compound.

At the second fixation, the eye moves further into the word, propor-
tional to the compound’s length. The primary predictor now, however,
is the prior probability of the compound’s lexeme. It seems likely that
during the first fixation, a hypothesis space is set up that anticipates the
compound lexemes with which the modifier lexeme co-occurs. At the
second fixation, we observe that top-down priors are validated against
the input. It is only when a compound is very long, and its lexemic
prior extremely low, that a third fixation is required. The effect of the
LSA similarity between the modifier and the compound on third fixa-
tion duration suggests that modifiers and compounds that have greater
topical co-occurrence probabilities require less time to sort out how they
contribute to the understanding of the discourse.

An important aspect of the discriminative approach to compound
reading is that multiple lexemes can be co-activated. Baayen, Shaoul et
al. (2015) work out this idea, taking as point of departure the point made

by Ferdinand de Saussure that in language everything is interdependent.
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De Saussure (1966) illustrated this point with an analogy to the game of
chess. What a given piece contributes to the game is determined not only
by what piece it is (a pawn or a rook), but also on where it is positioned
on the board, and on the positions of the other pieces on the board.
Thus, understanding a compound such as wheelchair requires knowledge
of chairs, wheelchairs, and the kind of wheels one finds on wheelchairs
(typically with a circular handgrip). From this perspective, the compound
activation measure that predicts first-and-only fixation durations is of
interest, as this measure is a weighted sum of the activations of modifier,
head, and compound, suggesting that all three lexemes become available
at the same time, and jointly drive the interpretation of the compound.®

When these three lexemes are considered as pieces on an interpreta-
tional chessboard, their mutual positions and strategic values are critical.
For the head and compound lexemes at issue in our data, the compound
lexeme typically discriminates a subclass of the experiences discriminated
by the head. The experiences the head discriminates are to a considerable
extent aligned. However, the modifier by itself discriminates very different
experiences: the wheel in wheelchair is not a chair. Even though there
is some systematicity in how specific modifiers relate to their heads, as
laid out by the conceptual relations of Competition Among Relations In
Nominals (CARIN) theory (Gagné & Shoben, 1997; Gagné & Spalding,
2014), this systematicity provides only the gist of an interpretation (e.g.,
not every chair that has wheels is a wheelchair). From this perspective, it
makes sense that, to the extent that there is a signal in the noise, the LSA
measure that appears to be predictive is the measure assessing modifier
and compound similarity, rather than modifier and head similarity.

A chess-board contains much more than three pieces. Similarly, the
mental lexicon contains thousands of lexemes. The approach described
here is a first attempt to demonstrate that an interpretation of maxim-
ization of opportunities along the lines of “using every tool to open the

lock” (i.e., to access the compound lexeme) is still an oversimplification

8 Note that a similar integrative measure of the modifier, head and compound fre-
quency provided substantially less explanatory power than the integrative NDL measure

(REML scores for first-and-only fixation duration GaMMs: 414.05 versus 409.02).
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of the real task at hand: generating a state of the full lexico-semantic
system that allows for an adequate understanding of a compound word

in the current linguistic context.

An interesting aspect of the current findings that we have not high-
lighted thus far is that the NDL analysis offers a more differentiated and
more precise perspective on frequency effects. The NDL framework distin-
guishes two types of frequency effects. The first type of frequency effect
reflects the amount of bottom-up support associated with a compound
and/or its constituents and is captured by NDL activation measures from
the orthography-to-lexeme network. This measure influences early meas-
ures of compound processing. The second type of frequency effect in the
NDL model taps into top-down knowledge about the network connectivity
of a compound through the MAD measure. This top-down information
enters the equation when the bottom-up support for a compound is
insufficient and additional fixations are required. In this case, readers
fall back on a guessing strategy based on a priori knowledge about the
prior probability of a compound, rather than attempting to process the

compound in a bottom-up fashion once more.

In the lexical predictor analysis we observed a late emergence of se-
mantic effects regarding the similarity of the modifier with the compound
and the head. In the corresponding NDL models, we found a significant
effect of the activation of the modifier on next fixation duration for
first-and-only fixations, as well as a marginally significant effect of the
activation of the modifier on third fixation duration (F = 3.385, p =
0.067). These effects, however, did not render the effects of the LSA
similarity of the modifier with the compound and the head obsolete. In
contrast to the effect of the semantic similarity of a compound to its head
on first fixation durations, therefore, these late semantic effects cannot
be explained through the bottom-up discriminability of a compound or
its constituents.

Furthermore, the similarity measures derived from the lexeme-to-
lexeme model that were included as systemic alternatives for the LSA
measures did not reach significance for late measures of compound pro-

cessing. In its current form, therefore, the NDL model proposed here
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does not accurately capture the late semantic effects observed in the
data. One potential explanation for this shortcoming may come from the
size of the training corpus used here, the BNC. The median frequency
of all 364 compound types in the BNC was no more than 100. As a res-
ult, the semantic similarity measures derived from the lexeme-to-lexeme
network are based on a rather small number of training instances per
compound. Consequently, the model may have been unable to accurately
learn associations between a compound lexeme and all other lexemes in
the lexicon.

Throughout this chapter we indicated that the NDL approach used
here does not come without limitations. The all-or-none nature of the
availability of orthographic information is a simplification of what is
actually available to the eye. In addition, the NDL measures used in the
current simulations are unable to capture both n-gram frequency effects
and semantic similarity effects due to the relatively infrequent occurrence
of compounds in the 100 million word BNC corpus on which the models
were trained.

Nonetheless, the analyses presented here demonstrate that a discrim-
ination learning approach to compound processing, in which readers
simultaneously use all information available to them at a given point
in time to generate a state of the lexico-semantic system that allows
for efficient processing and an adequate understanding of the compound
provides a highly competitive account of eye fixation patterns for the
compounds in the ET corpus as compared to an extensive set of lexical
predictors that underlie the architectures of existing sub-lexical, supra-
lexical and dual route models of compound processing. As such, the
informativeness of the NDL framework for the current data provides fur-
ther evidence for the explanatory power of discrimination learning models
of language processing - not only for reaction times in lexical decision
experiments (Baayen et al., 2011, 2013; Ramscar et al., 2014) or word
naming latencies (see Chapter 2), but also for the eye movements during

compound reading in natural discourse contexts.
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Picture naming

4.1 Introduction

Few effects in the psycholinguistic literature are better documented than
the word frequency effect: the more often a word occurs in the language,
the faster and more accurate people respond to that word in a wide
range of linguistic tasks, including lexical decision (see, e.g., Scarborough
et al., 1977; Balota et al., 2004) and word naming (see, e.g., Forster &
Chambers, 1973; Balota & Chumbley, 1985; Jared, 2002). Recently, a
number of studies have shown that word frequency effects are also present
in electroencephalograms (EEGs) following the onset of a (linguistic)
stimulus, which are commonly referred to as event-related potentials
(ERPS).

Typically, the effects of word frequency on ERPs arise rapidly after
the onset of the stimulus. Hauk et al. (2006), for instance, found an effect
of word frequency in a visual lexical decision task as early 110 ms after
stimulus onset. This early effect of word frequency was most prominent in
left-lateralized temporal and parietal areas. Similarly, Sereno et al. (1998)
found a word frequency effect in a visual lexical decision task that first
reached significance at 132 ms after stimulus onset, whereas Penolazzi et

al. (2007) observed an effect of word frequency in a sentence-reading task
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that started at 120 ms after written word onset. The topographically
widespread effect of word frequency in the picture naming task used by
Strijkers et al. (2010) arose somewhat later, with more positive voltages
for high frequency words than for low frequency word from 150 ms until

voice onset.

The effect of frequency, however, is not limited to the word level.
Arnon and Snider (2010) showed that phrasal decision latencies for high
frequency phrases such as “all over the place” are shorter than those
for low frequency phrases, such as “all over the city”. This effect did
not reduce to frequency effects of single words or smaller n-grams. The
n-gram frequency effect has been replicated in a number of recent studies,
showing n-gram frequency effects in sentence repetition (Bannard &
Matthews, 2008), sentence reading (Siyanova-Chanturia et al., 2011),
sentence recall (Tremblay et al., 2011) and frequency rating (Shaoul,
Westbury & Baayen, 2013) tasks. Tremblay and Baayen (2010) added
to these findings by observing an n-gram frequency effect in a free recall
ERP study. The temporal onset of this effect was similar to that of the
effects of word frequency described above, with n-gram probability first

being significant around 110 ms after stimulus onset.

The n-gram frequency effect is theoretically interesting. At the very
least, it “add[s] multi-word phrases to the units that influence processing
in adults” (Arnon & Snider, 2010, p.76), which suggests that language
users “seem to have [...] some experience-derived knowledge of specific
four-word sequences” (Bannard & Matthews, 2008, p.246). Much, how-
ever, remains unclear about how this knowledge is implemented, and,
therefore, about the implications of n-gram frequency effects for different

models of language processing.

One interpretation of n-gram frequency effects is to consider these ef-
fects as evidence for whole-phrase representations. As noted by Baayen et
al. (2013), such an interpretation fits well with theoretical approaches like
data-oriented parsing (Bod, 2006) or memory-based learning (Daelemans
& Bosch, 2005), in which large numbers of multiword sequences (or parse
trees for these sequences) are stored in memory and optimal performance

is ensured through on-line generalization over these stored sequences.
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In exemplar-based approaches, therefore, n-gram frequency effects are

directly related to the n-gram representations that are stored in memory.

Baayen et al. (2013), however, argued that storing each multiword
sequence and its associated frequency in memory is associated with a
number of problems. Given the Zipfian shape of frequency distributions,
the number of unique n-grams is extremely large. The British National
Corpus, for instance, contains 40 million unique word trigrams. Baayen
et al. (2013) continue their argument by stating that even if the storage
of gigantic numbers of word n-grams were neuro-biologically possible,
on-line processing over an instance space of this size would be very time-
consuming. To side-step this problem, the memory-based learning system
implemented in TiMBL (Daelemans et al., 2007) uses information gain
trees (Daelemans et al., 1997) as a compression algorithm to reduce the

computational demands of on-line searches.

An additional problem with n-gram representations described by
Baayen et al. (2013) is that it is not immediately clear what the function
of such representations would be. Positing representations as a locus for a
frequency “counter in the head” seems unconvincing (see, e.g., McClelland
& Rumelhart, 1981 and Norris & McQueen, 2008 for models that integrate
word unigram frequencies as a priori-probabilities). The application of
shortlists in interactive activation models (Norris, 1994) raises further
questions about the necessity of n-gram representations. These models
use shortlists of stored candidates as a computational shortcut that allows
for simulations with realistic input sizes. The success of shortlists in these
types of models indicates that at least some stored multiword sequences

are not relevant for on-line processing.

These concerns have led researchers to propose alternative explan-
ations for the effect of n-gram frequency. Tremblay et al. (2011) sug-
gest that n-gram frequency effects may reflect past experience with
(de)compositional processing. Such an interpretation fits well with evid-
ence from the learning literature demonstrating that “learning is a dy-
namic discriminative process” that is associative in nature (Ramscar
et al., 2010). Baayen et al. (2013) argued that holistic representations

may be beneficial at the earliest stages of learning (see, e.g., Dabrowska,
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2000; Tomasello, 2003), but that additional experience will reduce the
association strength between the linguistic components of these holistic
initial representations and lead to an increased importance of decomposed,
lower-level representations. Learning theory therefore predicts that the
adult language processing system is less likely to have separate repres-
entations for multiword units (see Dabrowska, 2000; Arnon & Ramscar,
2012).

Baayen et al. (2013) provided computational support for such an
interpretation of the n-gram frequency effect by successfully simulating
the findings of Arnon and Snider (2010) in a full-decomposition model
based on discrimination learning. The Naive Discriminative Reader (NDR)
model used in their simulations has no representations beyond the simple
word level. In the NDR model the n-gram frequency effect arises as a result
of the associative learning process that maps orthographic input units
(letters and letter combinations) to lexico-semantic units (word meanings).
A high frequency phrase such as “all over the place” is read faster than a
low frequency phrase such as “all over the city”, because the letters and
letter combinations in “all over the place” are more associated with the
lexico-semantic representations ALL, OVER, THE and PLACE than the
letters and letter combinations in “all over the city” are associated with
the lexico-semantic representations ALL, OVER, THE and CITY.

Thus far we discussed effects of the frequency of multi-word sequences.
The prototypicality of phrases is likewise reflected in behavioral measures
of language processing. Several studies have documented prototypicality
effects at the word level, using relative entropy to gauge the similarity of
an exemplar to its constructional prototype (Milin, Filipovi¢ Durdevi¢ &
Moscoso del Prado Martin, 2009; Milin, Kuperman et al., 2009; Kuper-
man et al., 2010). Above the word level, relative entropy effects have been
observed for English prepositional phrases (Baayen et al., 2011). Given
estimated probabilities p (relative frequencies) of prepositional phrases
for a given noun and estimated probabilities ¢ (relative frequencies) of

prepositions across all nouns, prepositional relative entropy is defined as:
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n

Relative Entropy = Z(pl x logy (pi/qi)) (4.1)

i=1
where n is the number of prepositions taken into account.

The relative entropy measure compares how similar the distribution
of prepositional phrase frequencies for a given noun is to the distribution
of preposition frequencies in the language as a whole. Values for relative
entropy are low when the prepositional phrase frequency distribution for
a given noun (exemplar) is similar to the overall prepositional phrase fre-
quency distribution (prototype) and high when the prepositional phrase
frequency distribution for a given noun differs substantially from the
overall prepositional phrase frequency distribution. Higher relative en-
tropies are typically associated with greater processing costs. Nouns
that use prepositions in an atypical way, for instance, take longer to
process than nouns that use prepositions in a typical way (Baayen et
al., 2011). The effect of prepositional relative entropy implies that the
language processing system is sensitive to the distributional properties of
a noun’s prepositional paradigm vis-a-vis the distribution of prepositional
frequencies in the language as a whole.

From an exemplar-based point of view, the relative entropy measure
may characterize part of the complexity of the exemplar space. How ex-
actly this knowledge would be implemented in an exemplar-based model
is unclear. One option would be on-line computation of the distance
between the prepositional phrase frequency distribution for a given noun
and the prepositional frequency distribution in the language as a whole.
This, however, would involve tremendous amounts of online computation.
Alternatively, the frequency distribution of the prototype (i.e., the fre-
quency distribution of prepositions across all nouns) — or the distance
between the frequency distributions for a given noun and the prototype
— could be stored. This, however, would further increase the memory
demands on the language processing system. In addition, it is unclear
what function prototype distribution representations would have beyond

accounting for the effect of relative entropy.
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Discrimination learning offers an alternative explanation for relative
entropy effects. Using a discrimination learning model without any rep-
resentations beyond the basic word level, Baayen et al. (2011) successfully
captured the fact that nouns with high prepositional relative entropies
(i.e., nouns that use prepositions in an atypical way) take longer to process
than nouns with low relative entropy. In the naive discrimination learn-
ing framework, the effect of relative entropy arises as a straightforward
consequence of the way the distributional properties of English shape
the associations between orthographic input cues and semantic outcomes

across sequences of words.

4.2 Experiment

In what follows we present the results of a primed picture naming ex-
periment that gauges the effects of word frequency, phrase frequency
and phrase prototypicality using event-related potentials (ERPs). The
current work seeks to extend previous findings in two ways. First, while
previous studies have investigated the effects of word frequency on ERPs
in a variety of tasks, the experimental results for phrase frequency and
relative entropy discussed thus far were mostly obtained in chronometric
studies. While these studies demonstrated that both frequency and relat-
ive entropy influence how (prepositional) phrases are processed, they offer
little information on the temporal details of these effects. The temporal
resolution of ERPs will allow us to gauge the millisecond-by-millisecond
temporal development of the phrase frequency and relative entropy effects
in a picture naming task. In addition, while the spatial resolution of ERPs
is limited, the current work may provide us with a general idea about
the topographical dynamics of these effects. The first goal of the current
study, therefore, is to obtain a more detailed picture of the effects of
word frequency, phrase frequency and relative entropy that arise during
prepositional phrase processing.

The second goal of the current work is to find out to what extent
measures derived from a naive discrimination learning model provide

further insight into the temporal and spatial dynamics of the ERP signal
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in a primed picture naming task. The discriminative learning approach
has been shown to successfully simulate a variety of behavioral measures,
including lexical decision latencies Baayen et al. (2011), word naming
latencies (see Chapter 2) and eye movements during natural discourse
reading (see Chapter 3). Predicting the ERP signal following the present-
ation of a prepositional phrase, however, involves predicting a signal as
it evolves over both time and space. This stringent test of the discrim-
ination learning approach will help gain more insight into the strengths
and shortcomings of the discriminative learning approach to language

processing.

In the present experiment, participants are presented with a preposi-
tion plus definite article prime, followed by a picture of a concrete noun
that they have to name as fast and accurately as possible. The use of a
primed picture naming paradigm offers a number of opportunities. First,
prepositional relative entropy is a measure of constructional prototypic-
ality: it describes how prototypical a given noun’s use of prepositions
is. The effect of relative entropy is best measured at the noun. In other
tasks, such as sentence reading, the temporal onset of noun processing is
hard to determine. The current primed picture naming task avoids this
problem and precisely defines the earliest possible point in time where
noun processing can take place as the moment the target noun picture

appears on the screen.

A related benefit using a primed picture naming paradigm is that it
reduces the temporal overlap between processes related to the preposition
and definite article and processes related to the noun. Experienced read-
ers are able to read prepositional phrases in a few hundred milliseconds.
Nonetheless, as will become apparent soon, ERP effects related to the
lexical properties of a given word can last many hundreds of milliseconds
(see, e.g., Kryuchkova et al., 2012). This implies that there is a temporal
overlap between processes related to the different words in the preposi-
tional phrase. In the current setup, the temporal distance between the
onset of the prime and the onset of the target is 2000 ms. This allows a
substantial part of the initial processing of the preposition and definite

article to complete prior to the presentation of the target noun.
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A third reason for using the current experimental setup is that the
proof of the pudding is in the eating as far as phrase frequency effects
are concerned. As noted above, the current paradigm does not guarantee
that the information in the preposition plus definite article primes is
integrated with the information in the target noun picture to obtain a
phrase-level understanding of the stimulus. Whether or not a phrase
frequency effect can be observed in the primed picture naming task used
here is an empirical issue. If we do observe an effect of phrase frequency,
however, this unequivocally entails that the stimuli were processed at the
phrase level.

The first part of what follows describes in more detail the experiment
outlined above, the statistical methods used to analyze the data and the
results of the experiment. In the second part, we present a simulation
study in which we explore to what extent the discriminative learning
framework can provide further insight into the temporal and spatial

dynamics of the ERP signal following picture onset.

4.3 Methods

4.3.1 Participants

Thirty participants took part in the experiment. All participants were
students of the University of Alberta in Edmonton and native speakers of
English. Their mean age was 20.43 (sd: 4.67). Nineteen participants were
female, eleven were male. All participants were right-handed, had normal
or corrected to normal vision and did not have a history of neurological

illness. Participants received partial course credit for their participation.

4.3.2 Materials

Sixty-eight concrete nouns were paired with photographs, depicting the
referent of these nouns on a beige background. For each of the nouns,
four three-word prepositional phrases were constructed, consisting of a
preposition, the definite article “the” and the noun itself (e.g., “with the

YA RN14

saw”, “against the strawberry”).
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Phrases were selected on the basis of trigram frequencies as available in
the Google 1T n-gram data (Brants & Franz, 2006). Trigram frequencies
for all prepositional phrases consisting of a preposition, an article and one
of the 68 concrete nouns were extracted. For a given noun, the phrases
at 25%, 50%, 75% and 100% of the phrase frequency distributions were
included as stimuli. For the noun “finger”, for instance, this procedure
generated the experimental items “over the finger” (25% of the phrase
frequency distribution), “off the finger” (50%), “in the finger” (75%) and
“with the finger” (100%). The total number of stimuli was 272.

Only prepositions from a pre-compiled list of 35 prepositions were in-
cluded in the trigram frequency list. Selecting the phrases at the quantiles
of the phrase frequency distribution led to 29 of these prepositions being
used in the experiment. As a result of this selection procedure, there
was a significant correlation between (log) preposition frequency and
number of times a preposition was used in the experiment (r = 0.85, p
< 0.001), with frequent prepositions such as “in” (44 times) or “on” (23
times) being included more often than infrequent prepositions such as
“under” (6 times) or “against” (5 times). The experience with prepositions
in the context of the current experiment therefore reflects the experience

with prepositions in the language as a whole.

4.3.3 Design

The experiment consisted of 272 picture naming trials. Prior to the exper-
iment, a practice phase was included, consisting of 10 items. The order in
which the stimuli were presented was randomized between participants.
The dependent variable was the ERP signal measured at 32 locations
on the scalp. The independent variables were Picture Complezity, Pre-
position Length, Word Length, Preposition Frequency, Word Frequency,
Phrase Frequency and Relative Entropy.

Picture Complexity is the size of the picture file in bytes. Preposition
Length and Word Length are the length of the preposition and the target
noun in letters. Preposition Frequency, Word Frequency and Phrase
Frequency are the frequency of the preposition (e.g., “with”), target noun
(e.g., “finger”) and phrase (e.g., “with the finger”) in the Google n-gram
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data. Picture Complezity, Preposition Length, Word Length, Preposition
Frequency, Word Frequency and Phrase Frequency were log-transformed
prior to analysis to remove a rightward skew from the predictor value
distribution. Relative Entropy was calculated on the basis of the Google
n-gram phrase frequencies for prepositional phrases with definite article
for all 68 nouns used in the experiment and all 35 prepositions in the
precompiled list of prepositions. Prepositional phrase frequencies were
converted to relative frequencies (i.e., estimated probabilities) for each
noun and across all nouns to obtain estimated probability distributions
p (for a given noun) and ¢ (across all nouns). Relative Entropy was
then calculated as the Kullback-Leibler divergence between p and ¢ (see
Equation 4.1).

Prior to analysis, we removed predictor outliers (i.e., predictor values
further than two standard deviations from the mean) from the data. This
resulted in the exclusion of 0.00% of predictor values for Preposition
Length, 1.54% of predictor values for Word Length, 1.92% of all predictor
values for Preposition Frequency, 4.62% of all predictor values for Word
Frequency, 5.77% of all predictor values for Phrase Frequency and 4.62%
of all predictor values for Relative Entropy. Table 4.1 shows the range
and adjusted range for all independent variables. In addition, it presents
the mean, median and standard deviation of the predictor distributions

after outlier removal.

The resulting data set is characterized by a considerable amount
of collinearity (k = 123.16). Word Frequency, for instance, correlates
positively with Phrase Frequency (r = 0.42) and negatively with Prepos-
ition Frequency (r = —0.40), Relative Entropy (r = —0.40) and Word
Length (r = —0.51). Similarly, Preposition Frequency correlates not only
with Word Frequency, but also shows a strong negative correlation with
Preposition Length (r = —0.76).

One approach for dealing with collinearity is predictor residualization.
In this approach, rather than entering the raw predictors into a regression
model, one or more of the predictors are residualized prior to analysis by
running a preliminary regression analysis with the predictor that is to be

residualized as the dependent variable and one or more other predictors as
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the independent variable(s). For the current data, for instance, it would
be an option to residualize Phrase Frequency from Word Length, Word
Frequency, Preposition Frequency and Relative Entropy. The resulting
Phrase Frequency measure would then no longer correlate with these

predictors.

Recently, however, Wurm and Fisicaro (2014) argued that residualiz-
ation is not a useful remedy for collinearity. Contrary to popular believe,
they state, residualization “does not change the results for the predictor
that was residualized [... and ...] does not create an improved, purified,
or corrected version of the original predictor” (Wurm & Fisicaro, 2014,
p-45). What residualization does do, the authors continue, is introduce
an additional statistical problem: depending on the correlation between
predictor X; and predictor X, and the correlations between the depend-
ent variable Y and predictors X; and X5, residualization of X results in
either underestimating or overestimating the statistical importance of the
non-residualized predictor X5. Given these considerations, they conclude
that, in the context of collinearity issues, “residualization of predictor

variables is not the hoped-for panacea” (Wurm & Fisicaro, 2014, p.47).

Not all is bad, however. While suppression is a serious problem when
it occurs, it may not be as common as previously thought. As noted
by Wurm and Fisicaro (2014), for instance, Darlington (1990, p.155)
states that “suppression rarely occurs in real data”, and J. Cohen et al.
(2003) argues that “it is more likely to be seen in fields like economics,
where variables or actions often have simultaneous equilibrium-promoting
effects”. Although the correlation threshold for potential suppression
depends on the correlation of the involved predictor with the dependent
variable, suppression artifacts are highly uncommon for weak or moderate

correlations.

For the current data set, these statements suggests that while suppres-
sion is not outside the realm of possibilities for the effects of Preposition
Length and Preposition Frequency, our analysis of the main predictors
of interest (Word Frequency, Phrase Frequency and Relative Entropy)
is unlikely to suffer from this problem. We therefore decided to use

the original, non-residualized measures Picture Complezity, Preposition
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Length, Word Length, Preposition Frequency, Word Frequency, Phrase
Frequency and Relative Entropy described above as predictors in our
analysis.

To ensure that the results from this analysis were robust, we carried
out a post-hoc analysis. For each of the predictor effects reported below,
we fitted a new model with an identical model structure, but omitting the
other lexical predictors. The results of this post-hoc analysis were qualit-
atively similar to the effects reported below. The problem of suppression

therefore appears to be limited for the current data set.

4.8.4 Procedure

Data were recorded from 32 Ag/AgCl active electrodes (Fp1, Fp2, AF3,
AF4, F7, F8, Fz, Fj, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5,
CP1, CP2, CP6, P7, P3, Pz P4, P8, PO3, PO/, O1, Oz 02), which
were mounted on an electrode cap (BioSemi, international 10/20 system).
Reference electrodes were placed at the left and right mastoids. The EoG
was recorded using electrodes below and above the left eye and at the
outer canthi of both eyes. Electrode cap sizes varied from 54 to 60 cm
between participants to allow for an optimal fit.

Data were sampled at 8,102 Hz using a BioSemi Active IT amplifica-
tion system. Prior to analysis, the signal was down-sampled to 256 Hz,
band-pass filtered from 0.5 to 50 Hz, baseline corrected (—200 to 0 ms
interval) and re-referenced to the average of the left and right mastoids
using Brain Vision Analyzer (version 1.05). In addition, the signal was
corrected for eye-movements and eye blinks using the icaOcularCorrection
package for R (Tremblay, 2010).

Verbal responses were recorded using a microphone (Sennheiser) and
response box including a voice key (Serial Response Box) for the E-Prime
experimental software package (version 2.0.1). The same package was
used to present the stimuli on a 17 inch CRT monitor using a 1024 by
768 resolution.

A fixation mark was shown for 1000 ms prior to each trial. Next,
participants were presented with a preposition plus definite article prime
(e.g., “in the”) for 1000 ms. This screen was followed by another 1000 ms
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fixation mark screen. We then presented the photograph depicting the
target noun (512 by 384 pixels) for 3000 ms. Participants were instructed
to name the target noun, as depicted by the photograph. They were
asked to respond as fast a possible, while retaining accuracy. In addition,
participants were instructed to limit eye blinking and body movements
to a minimum.

All fixation marks and texts were presented in white Courier New 24
point font. All fixation marks, texts and photographs were presented in
the center of the screen against a black background. Each photograph
was followed by a 2000 ms pause to allow the EEG signal to return to
baseline prior to the next stimulus. The experiment had a duration of
about 40 minutes, excluding a preparation phase of about 30 minutes.
Halfway through the experiment, participants were given a break to

prevent fatigue.

4.4 Analysis

Prior to analysis we removed 12 items (4.41%) corresponding to 3 prob-
lematic photographs from the data, as error rates were high for these
photographs across participants. In addition, we removed incorrect nam-
ing responses from the data (2.79%). Trials for which the maximum
absolute voltage after signal correction exceeded 100 uV at any channel
were removed from the data for all channels (5.25%). Furthermore, 39
trials (0.48%) were removed due to technical failure. This resulted in a
total data loss of 12.93%. No averaging over participants or items was

done prior to analysis.

4.4.1 Generalized Additive Models (GAMs)

This experiment examines the effect of numerical predictors over time.
These effects are potentially non-linear in both the predictor dimension
(at a given point in time) and the time dimension (for a given predictor
value). To allow for non-linearities in multiple dimensions, we used
generalized additive mixed-effect models (GaAMMs; Hastie & Tibshirani,
1986; Wood, 2006) as implemented in the R package mgcv (version 1.8.3)
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to analyze our data. GAMMSs have recently been used in a number of
ERP studies on language processing (Kryuchkova et al., 2012; Baayen,
Tremblay & Hendrix, 2015; Hendrix, 2008).

The use of regression models has become commonplace in experimental
studies investigating predictor effects on unidimensional dependent vari-
ables, such as reaction time studies. The application of regression type
models in ERP studies, however, is much less widespread. To allow for
a better understanding of the analysis technique used here and the ad-
vantages GAMMs offer in comparison to a traditional ERP analysis we
compare the current ERP analysis to a traditional ERP analysis for sim-
ulated data, as well as for some of the key predictor effects described

below in Appendix A.

4.4.2 Reaction time analysis

We fitted a GAMM with by-participant factor smooths for trial and a
random intercept for noun (e.g., “finger”) to the naming latency data.
Random intercepts for preposition (e.g., “with”) and phrase (e.g., “with
the finger”) were not significant and therefore omitted from the reported
model. Naming latencies further than 2 standard deviations from the
mean were removed from the data prior to analysis. A log transformation
was applied to the naming latencies to remove a rightward skew from the
naming latency distribution. We modeled the predictor effects of Picture
Complexity, Preposition Frequency, Word Frequency, Phrase Frequency
and Relative Entropy using smooth functions (k = 5). The effects of
Preposition Length and Word Length were modeled with a parametric
term, because of the limited number of unique values for these predictors.
As such, linearity was imposed for the effects of Preposition Length and
Word Length.

4.4.8 ERP analysis

For each electrode, we fitted a GAMM with a main effect smooth for
time, by-participant factor smooths for time and trial, as well as random

intercepts for preposition, noun and prepositional phrase to the ERP signal
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from 0 to 600 ms after picture onset. For each of the predictors Picture
Complexity, Preposition Frequency, Word Frequency, Phrase Frequency
and Relative Entropy we furthermore included a main effect smooth, as
well as a tensor product interaction with time (modeled through ti()
terms). We also included main effect smooths for Preposition Length
and Word Length. These main effect smooths for Word Length and
Preposition Length, however, reached significance at 1 electrode only
(Word Length: electrode C4, p = 0.023; Preposition Length: electrode
AF4, p = 0.020). Given the issue of multiple comparisons, these results
provide little evidence for a statistically robust effect of Word Length or
Preposition Length. We therefore decided not to include the main effect
smooths for Preposition Length and Word Length in the GAMMSs reported
in this chapter. Effects in the predictor dimension were limited to 5th
order non-linearities (k = 5), whereas effects in the time dimension were
to 20th order non-linearities (k = 20). To control for AR1 autocorrelation
processes, we included an autocorrelation parameter p in the GAMMS,
which was set to 0.75.

Figure 4.1 shows the predicted values of our GAMM at electrode C3
(black line). Predicted main trend values correlate highly with average
observed voltages (red dots): » = 0.999. This indicates that the GAMM
successfully captures the general trend of the ERPs over time. GAMM fits
correlated highly with averaged observed voltages across all electrodes,
with an average correlation of » = 0.997 between predicted values and

average observed values.
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Figure 4.1. Main trend in the ERP signal at electrode C3 as predicted by the

main trend GAMM (black line) and as observed (red dots).
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The average reaction time in the experiment was 854 ms (median:
800 ms). The earliest responses started coming in much earlier than
that. As can been seen in the left panel of Figure 4.2, articulation has
begun for a significant proportion of trials by the end of our 600 ms
analysis window (13.6%). As a consequence, electromyographic (EMG)
potentials arising from the facial, jaw and tongue muscles are present in
a substantial subset of our data. These EMG potentials could therefore
impoverish the signal-to-noise ratio (SNR) for this subset of the data.

There are two options for dealing with EMG activity in our data. First,
we could remove all data points after the onset of articulation. As noted
by Hillyard and Picton (1987), however, muscle artifacts may well be
present long before speech onset. Even if we were to remove all data points
following the onset of articulation, EMG artifacts would therefore remain
in the data. Second, as noted above, articulation has started for 13.6%
of all trials before the end of the 600 ms analysis window. Furthermore,
the voice key did not register naming latencies for a non-trivial number
of trials (for details, see the reaction time results section). Given that we
are unsure about whether or not articulation started before the end of
our analysis window, we would have to exclude these trials entirely avoid
articulation artifacts altogether. Removing these data points and trials

from the analysis would result in a substantial loss of statistical power.
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Figure 4.2. Left panel: proportion of data points after the onset of articulation
as a function of time. Right panel: average root mean square (RMS) of pV

across all electrodes from -200 to 800 ms after picture onset (0 ms).
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The second option for dealing with EMG activity is to include all data
points, even those for which articulation artifacts might be present. While
this approach ensures an equal amount of data for each point in time, it
does not necessarily solve the problem of reduced statistical power after
the onset of pronunciations. If EMG artifacts have a negative effect on the
SNR after pronunciation onset it becomes harder for statistical models
to identify predictor effects. To gauge the severity of this problem, we
calculated the root mean square (RMS) for all electrodes. The right panel
of Figure 4.2 shows the average RMS across all electrodes as a function
of time. In the pre-stimulus interval (—200 to 0 ms), the average RMS
across all electrodes and time points is 7.31, whereas in the post-stimulus
interval (0 to 600 ms) it is 9.96. As predicted, the RMS does increase as a
function of time. The increase, however, is fairly limited: the average RMS
is 8.98 in the 0-200 ms interval, 9.83 in the 200-400 ms interval and 10.13
in the 400-600 ms interval. Furthermore, the increase in RM S primarily
occurs in the first 400 ms after picture onset, but stabilizes in the 400-600
ms time window. Given that only 2.11% of the articulations began prior
to the 400 ms mark, the early increase in RMS values is unlikely to be
due to muscle artifacts following the onset of articulation.

To further inspect the potential problem of a decreased SNR due to
articulation artifacts we looked at the SNR across electrodes in the last
200 ms of our analysis window (i.e., 400-600 ms after picture onset). If
articulation introduces noise in the signal, we would expect this noise to
be most prominent at frontal electrodes, which are closest to the facial,
jaw and tongue muscles. RMS averages in the last 200 ms were indeed
elevated at frontal locations. While the average RMS across all electrodes
in the 400-600 ms time window was 10.13, the average RMS values in this
epoch at frontal electrodes were 15.02 (Fp1), 14.01 (Fp2), 13.13 (AF3),
11.67 (AF4), 12.51 (F7), 11.66 (F3), 8.62 (Fz), 9.72 (F4), 12.10 (F8),
10.32 (F'CY), 10.34 (FC1), 6.51 (FC2) and 9.50 (FC6). As such, the
average RMS values at frontal electrodes show an increase in the last 200

ms. This increase, however, is limited to the most frontal electrodes only.
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Despite the topographically limited and quantitatively moderate in-
crease in RMS values over time, articulation artifacts could nonetheless
be problematic if they vary systematically with our predictors of interest.
To rule out this possibility, we compared the results of an analysis on the
full data set to the results of an analysis on a subset of the data that
excluded all trials with naming latencies shorter than 600 ms, as well as
trials for which no naming latencies were available. As such, this analysis
excluded all potential muscle artifacts following articulation onset. The
results of this analysis were highly similar to the results of the analysis
on the full data set. We therefore decided to carry out our analysis on
the full data set, including data points after articulation onset and trials

for which no naming latencies were available.

4.5 Reaction time results

During the experiment there were some technical difficulties regarding
the sensitivity of the voice key. This resulted in response times not being
registered for 2 participants. These participants therefore could not be
included in the reaction time analysis. In addition, we removed all further
trials for which the voice key did not register a response (7.82%) from
the data prior to the reaction time analysis

The naming latencies showed a significant random intercept for the
target noun (F = 11.614, p < 0.001), and significant by-participant
factor smooths for trial (F' = 12.831, p < 0.001). Furthermore, we
observed a significant effect of Picture Complezity (F = 3.807, p =
0.017). The effect of Picture Complezity is depicted in Figure 4.3. For
ease of interpretation, predicted linear naming latencies are plotted rather
than the log transformed latencies used for modeling (through adding the
model intercept to the partial effect of Picture Complezity and applying
an exponential transformation before plotting).

As can be seen in Figure 4.3, the effect of Picture Complexity is quad-
ratic in nature, with low Picture Complezity leading to longer naming
latencies and the effect leveling off for high predictor values. This effect

of Picture Complexity is perhaps most easily interpreted by taking into

173



4 Picture naming

1000 -,
o .
£ 900
~ RN
E 800

92 98 10.4
Picture Complexity

Figure 4.3. Effect for (log) Picture Complexity on the naming latencies.

consideration that Picture Complezity is proportional to information: the
more complex a picture, the more information it contains. The longer
naming latencies for pictures with limited complexity, therefore, may be
a result of the fact that less complicated pictures do not contain enough
information for a rapid identification of the depicted object. No other

lexical predictors had a significant effect on the naming latencies.

4.6 ERP results

In this section, we discuss the results for the predictors Picture Com-
plexity, Preposition Frequency, Word Frequency, Phrase Frequency and
Relative Entropy. For each predictor, we visualize the partial effect of the
time by predictor tensor product, as well as the main effect over time at a
representative example electrode. Given the fact that GAMMs tend to be
somewhat unreliable near the edges, we selected representative example
electrodes that did not display potentially unreliable behavior near the

edges of the analysis window whenever possible.

4.6.1 Picture Complexity

Figure 4.4 shows the contour plot of the partial effect of the tensor
product interaction between time and Picture Complexity. The x-axis
represents time (in ms) at a representative example electrode. Picture
Complexity is on the y-axis. The contour plot represents voltages at

the depicted electrode, with warmer colors representing higher voltages.
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Contour lines are shown at intervals of 0.2 uV. The p-value for the effect
at the depicted electrode is presented in brackets in the figure title.
Figure 4.4 furthermore contains a picture inset. This picture inset
shows the topography of the effect, with dark red indicating significance
at an alpha level of 0.05 and bright red indicating significance at a
Bonferroni-corrected alpha level of (0.05/32 =) 0.0016. As can be seen
in the inset in Figure 4.4, the tensor product between time and Picture
Complexity is highly significant for a large number of electrodes across
the scalp. A visual inspection of the results, however, revealed that the

effect is most prominent in left and central parietal and occipital regions.

Complexity

time (ms)

Figure 4.4. Effect for the tensor product interaction between time and
(log) Picture Complezity at electrode P3. Color coding indicates voltages (in
uV), with warmer colors representing higher voltages. Picture insets show
the topography of the effect, with bright red indicating significance at the
Bonferroni-corrected alpha level (p < 0.0016) and dark red indicating signific-
ance at the non-corrected alpha level (p < 0.05).

For both high and low values of Picture Complezity, Figure 4.4 shows
that voltages are negative, then positive, then negative, then positive,
et cetera. In other words, oscillations tied to the complexity of the
presented picture are present in the ERP following picture onset. These
oscillations have an opposite phase for low and high values of Picture
Complexity: when complex pictures show high voltages, less complex
pictures show low voltages and vice versa. To determine the frequency
of the oscillations, we converted the time domain representation of the
ERP signal seen in Figure 4.4 to the frequency domain. Although the

frequency of the oscillations varies with time and predictor values, a peak
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in spectral intensity that corresponds to the early oscillations for highly
complex pictures and the oscillations for pictures with low complexity
in the middle of the analysis widow is reached at 7 Hz. As such, these
oscillations tied to Picture Complezity are in the upper part of the theta
range (3 to 7.5 Hz).

To gauge the temporal onset of time by predictor tensor products, we
calculated three sigma (99.7%) confidence intervals around the contour
surfaces. The first point in time at which 0 is not within this three
sigma confidence interval for high values of Picture Complerity is 46
ms after picture onset. The early positive voltages for low values of
Picture Complexity, however, are already significant right after picture
onset.! One potential explanation for the extremely early effect of Picture
Complexity is that GAMM estimates can be somewhat unreliable near the
edges of the analysis window. It could be the case that uncertainty about
the effect for low complexity pictures in the first 50 ms led to a temporal
overestimation of a positivity that started somewhat later in time. In the
context of the expectations set up by the preposition plus definite article
prime, however, the possibility of very early anticipatory responses to

simple pictures can not be ruled out.

For each predictor we also fit a main effect smooth. The partial effect
of this smooth term for Picture Complezity is presented in Figure 4.5,
which shows that voltages seem to be somewhat increased for pictures
with a higher visual complexity as compared to pictures with a lower
visual complexity. As can be seen in the picture inset in Figure 4.5,
however, the evidence for such an effect is anything but convincing:
the main effect smooth of Picture Complexity reaches significance at a

non-corrected alpha level at 2 electrodes only.

1 Note that for oscillatory effects the phase of an oscillation co-determines the
significance of an effect at a given point in time. Potential oscillations in the predictor
dimension further complicate the process of determining the exact onset of an effect.
As a result, the numbers reported for oscillatory effects here are conservative estimates
for the temporal onset of these effects. In addition, as a result of phase shifts across

the scalp these estimates are sensitive to the choice of the example electrode.
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Picture Complexity (P3: p = 0.0274)
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Figure 4.5. Effect for the main effect smooth of (log) Picture Complezity over
time at electrode P3. Picture insets show the topography of the effect, with
bright red indicating significance at the Bonferroni-corrected alpha level (p <
0.0016) and dark red indicating significance at the non-corrected alpha level (p

< 0.05).

4.6.2 Preposition Frequency

Figure 4.6 presents the tensor product interaction of time by Preposition
Frequency. The effect of Preposition Frequency is most prominent for low
predictor values, with higher voltages for low frequency prepositions as
compared to higher frequency preposition in the first 200 ms after picture
onset. The fact that we see a significant effect of Preposition Frequency
right after picture onset is unsurprising, given the fact that prepositions

temporally preceded pictures in the experimental paradigm adopted here.

Preposition Frequency (PO3: p < 0.0001)

Prep. Frequency

100 200 300
time (ms)

Figure 4.6. Effect for the tensor product interaction between time and (log)

Preposition Frequency at electrode PO3.
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After about 300 ms, the effect of Preposition Frequency reverses,
with lower voltages for low frequency prepositions as compared to high
frequency prepositions starting from 300 ms after picture onset. The
effect of Preposition Frequency is topographically widespread, but more
prominent in the left hemisphere than in the right hemisphere. The
greatest effect sizes, however, were observed at left-lateralized parietal
electrodes and bilateral occipital electrodes.

As for Picture Complezity, the results for the main effect smooth of
Preposition Frequency showed little evidence for a Preposition Frequency
effect over time. As can be seen in Figure 4.7, we found an effect at 2
electrodes at a non-corrected alpha level only, with slightly higher voltages
for high frequency prepositions than for low frequency prepositions. As
such, the effect of Preposition Frequency is much better described by a

time by predictor interaction than by a main effect smooth.

Preposition Frequency (PO3: p = 0.2861)

Preposition Frequency

Figure 4.7. Effect for the main effect smooth of (log) Preposition Frequency

over time at electrode POS3.

4.6.8 Word Frequency

Figure 4.8 shows the results for the time by Word Frequency tensor
product interaction. The effect is characterized by oscillations for both
high and low frequency words that are in opposite phrase and that
reach maximum spectral intensity at 3 Hz. As such, these oscillations
can be characterized as oscillations at the lower end of the theta range.
Previously, theta range activity has been observed in a number of lan-

guage processing studies and has been demonstrated to be related to,
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for instance, lexical-semantic retrieval (Bastiaansen et al., 2005, 2008),
syntactic processing (Bastiaansen et al., 2002) and translation (Grabner
et al., 2007). In a regression study using GAMMs, Kryuchkova et al. (2012)
recently reported theta range oscillations in auditory comprehension tied
to word frequency, phonological neighborhood density and morphological
family size. Theta range oscillations are thought to reflect (working)
memory demands in language processing that arise from the synchronous
firing of neurons in hippocampal areas (see Bastiaansen & Hagoort, 2003

for a comprehensive discussion of theta range oscillations).

Word Frequency

0 100 200 300 400 500 600
time (Ms)

Figure 4.8. Effect for the tensor product interaction between time and (log)
Word Frequency at electrode O1.

The effect of Word Frequency arises early. It is first significant at 95
ms after picture onset for medium to high predictor values. The early
onset of the frequency effect for high frequency words is in line with
previous findings (Hauk et al., 2006; Penolazzi et al., 2007; Sereno et
al., 1998), reporting frequency effects in visual word recognition that
arise between 110 and 132 ms after word onset. The oscillations for
low frequency words are somewhat more subtle in nature than those for
high frequency words, with smaller amplitudes and a later onset (for low
frequency words, the effect of word frequency first reaches significance at
183 ms after picture onset).

The time by Word Frequency tensor product is significant at a large
number of electrodes, with robust effects across frontal-to-occipital elec-
trodes in the left hemisphere. By contrast, we found little to no evidence

for a main effect of Word Frequency over time. Figure 4.9 shows that the
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Word Frequency (O1: p = 0.2695)

Word Frequency

Figure 4.9. Effect for the main effect smooth of (log) Word Frequency over

time at electrode O1.

main effect smooth for Word Frequency was significant at a non-corrected
alpha level at 2 of the most frontal electrodes only. At these electrodes, we
observed a small increase in voltages for higher values of Word Frequency,
similar to the non-significant effect depicted in Figure 4.9 for electrode O1.
As for the effect of Preposition Frequency, therefore, the effect of Word
Frequency is much better described by a time by predictor interaction

than by a main effect smooth.

4.6.4 Phrase Frequency

Figure 4.10 shows the tensor product interaction of time by Phrase Fre-
quency. At first glance, it seems like there is a strong early positivity

for high frequency phrases and a less pronounced early negativity for

Phrase Frequency (O1: p < 0.0001)

Phrase Frequency
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Figure 4.10. Effect for the tensor product interaction between time and (log)

Phrase Frequency at electrode O1.
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low frequency phrases, followed by a reversal of this pattern, with later
negative voltages for high frequency phrases and positive voltages for low
frequency phrases.

The main effect smooth of Phrase Frequency, however, reveals further
insight into the tensor product interaction of time by Phrase Frequency.
This main effect is presented in Figure 4.11. In comparison to Preposition
Frequency and Word Frequency, Phrase Frequency shows more evidence
for a main effect over time, with lower voltages for high frequency phrases
as compared to low frequency phrases at a number of electrodes across the
left hemisphere. The effect, however, reaches significance at a Bonferroni-
corrected alpha level at 2 electrodes only. The evidence for a main effect

over time for Phrase Frequency, therefore, is less than overwhelming.

Phrase Frequency (O1: p = 0.0008)

Phrase Frequency

Figure 4.11. Effect for the main effect smooth of (log) Phrase Frequency over

time at electrode O1.

As can be seen in Figures 4.10 and 4.11, the pattern of results for
the time by Phrase Frequency interaction at the start of the analysis
window is opposite to the main effect of Phrase Frequency over time,
such that the main effect of Phrase Frequency is initially cancelled out
by the time by Phrase Frequency interaction. To illustrate this point,
Figure 4.12 presents the additive contour surface (i.e., the sum of the
partial effect plots) for the main effect of Phrase Frequency (Figure 4.11)
and the tensor product interaction between time and Phrase Frequency
(Figure 4.10).
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Figure 4.12 shows that the effect of Phrase Frequency is best character-
ized as a near-linear effect, with more positive voltages for low frequency
phrases and more negative voltages for high frequency phrases. This
effect arises somewhat earlier for low frequency phrases than for high
frequency phrases and continues throughout the 600 ms analysis window.
As such, the effect of Phrase Frequency is qualitatively different from
the effect of Word Frequency, which was characterized by theta range

oscillations, rather than prolonged effects over time.
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Figure 4.12. Additive contour surface for the tensor product interaction
between time and (log) Phrase Frequency (Figure 4.10) and the main effect of
(log) Phrase Frequency over time (Figure 4.11) at electrode O1.

4.6.5 Relative Entropy

Figure 4.13 presents the tensor product interaction between time and
Relative Entropy. Similar to the effect of Word Frequency, the effect
of Relative Entropy is characterized by theta range oscillations (4 Hz).
These oscillations are most prominent for high values of Relative Entropy,
although opposite-phase oscillations with a lower amplitude are present
for medium-to-low values of Relative Entropy as well.

The effect of the tensor product interaction of time by Relative En-
tropy is topographically widespread, with significant effects across the
left - and to a lesser extent - the right hemisphere. The effect is most
prominent at parietal and occipital electrodes. For high values of Relative
Entropy, the effect is first significant at 95 ms after picture onset, whereas

for medium-to-low values of Relative Entropy the effect first reaches
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Relative Entropy (CP1: p < 0.0001)

Relative Entropy

time (ms)

Figure 4.13. Effect for the tensor product interaction between time and

Relative Entropy at electrode CP1.

significance at 104 ms after picture onset. As such, the temporal onset of
the Relative Entropy effect is highly similar to that of the Word Frequency
effect.

Reaction time studies reported increased response latencies for words
with high relative entropies (Milin, Filipovi¢ Durdevié¢ & Moscoso del
Prado Martin, 2009; Milin, Kuperman et al., 2009; Kuperman et al., 2010;
Baayen et al., 2011). The current pattern of results fits well with these
findings if we interpret the increased amplitude of the oscillations for
high values of Relative Entropy as evidence for increased processing costs.
The current results then indicate that additional processing is required
for nouns with atypical prepositional phrase frequency distributions as

compared to nouns that use prepositions in a more typical way.

For completeness, we conclude with the main effect smooth of Relative
Entropy. As can be seen in Figure 4.14, we found little evidence for an
effect of Relative Entropy over time. An effect at a non-corrected alpha
level was found at 2 electrodes only, with somewhat decreased voltages
for higher values of Relative Entropy. As for the effects of Preposition
Frequency and Word Frequency, however, it is clear that the effect of
Relative Entropy is best described by a tensor product interaction of time

by Relative Entropy.
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Relative Entropy (CP1: p = 0.5473)
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Figure 4.14. Effect for the main effect smooth of Relative Entropy over time
at electrode CP1.

4.7 Discussion

In the current experiment, we observed effects of both word-level and
phrase-level predictors in a primed picture naming paradigm. The effects
of Relative Entropy and Word Frequency showed remarkable similarities.
Both effects are characterized by oscillations at the lower end of the theta
range. In addition, both effects showed similar topographical distributions
and increased effect sizes in the left hemisphere as compared to the right
hemisphere. Furthermore, the temporal onset of the effects was similar,
with the onset of both effects being no more than 2 ms apart (Word
Frequency: 97 ms after picture onset, Relative Entropy: 95 ms after
picture onset). Neither Word Frequency, nor Relative Entropy showed a
statistically robust main effect over time.

Similar to the effects of the word-level predictors Word Frequency
and Relative Entropy, the effect for the phrase-level predictor Phrase
Frequency was most prominent in the left hemisphere. In contrast to
the effects of these word-level predictors, however, the effect for Phrase
Frequency was not characterized by theta range oscillations. Instead,
we observed a prolonged near-linear effect, with more negative voltages
for high frequency phrases as compared to low frequency phrases. How

should we interpret this pattern of results?
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Exemplar-based models correctly predict the presence of both word
frequency and phrase frequency effects in the current experiment. In
exemplar-based approaches such as data-oriented parsing (Bod, 2006) or
memory-based learning (Daelemans & Bosch, 2005), phrase frequency
effects are explained through the existence of phrase representations (see
Baayen et al., 2013). The frequency count associated with a phrase
representation determines how quickly that phrase representation can be
accessed, just like the frequency count associated with a word representa-
tion determines how quickly that word can be accessed.

Exemplar-based models are appealing because they account for phrase
frequency effects in a very straightforward manner. Nonetheless, these
types of models are associated with a few concerns in the context of phrase
frequency effects. First, if similar dedicated representations underlie both
word and phrase frequency effects, it is not immediately clear why the
effects of word and phrase frequency observed here are qualitatively very
different.

Second, as demonstrated by Baayen et al. (2013), exemplar sets very
quickly become very large when dedicated n-gram representations are
assumed. As a result, online processing over these exemplar sets would
be very time-consuming. This concern is also relevant in the context
of the relative entropy effect observed here. From an exemplar-based
perspective, the relative entropy measure may describe how complex the
exemplar space is. The fact that relative entropy shows robust effects on
the ERP signal as it develops over time indicates that this knowledge is
available to language users. How exactly this works, however, is unclear.
One possibility is online-computation over the set of prepositional phrase
exemplars. Given the size of this exemplar set, however, this would be
a computationally expensive option. Another possibility is that (the
distance between the prepositional phrase frequency distribution for a
given noun and) the prototype distribution is stored in a set of “counters
in the head”. This, however, would put further demands on the storage

capacity of the language processing system.
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Although the current results are not incompatible with an exemplar-
based approach, therefore, it is worth exploring alternative approaches
that might offer more parsimonious accounts of the current data. Discrim-
ination learning provides an alternative account for the effects of word
frequency, phrase frequency and relative entropy that does not assume
representations beyond the simple word level. Baayen et al. (2011) suc-
cessfully replicated chronometric effects of prepositional relative entropy
and phrase frequency in the Naive Discriminative Reader (NDR) model.
In what follows, we explore to what extent naive discrimination learning
(NDL) measures can provide further insight into the ERP signal in the
current primed picture naming study. First, we describe the details of an
NDL analysis on the basis of 4 predictors derived from two discrimination
learning networks. Next, we present the results of this analysis for each

of these discrimination learning measures.

4.8 NDL simulation

The NDL network in Baayen et al. (2011) maps orthographic units onto
lexemes using a single discrimination learning network. Measures derived
from this network afford good simulation results for silent reading. The
task in the current experiment involves much more than silent reading.
The orthographic presentation of the preposition and definite article is in
line with the nature of the orthography-to-lexeme network in Baayen et
al. (2011). By contrast, the target noun is depicted in a photograph. One
option, therefore, would be to implement an additional discrimination
learning network mapping visual features of the photograph onto the
word meaning of the target noun. The implementation of such a network,
however, is far from trivial. Furthermore, the focus of this simulation
is on gauging the explanatory power of lexical network learning, rather
than on describing the processes by which visual stimuli are recognized.

A second discrepancy between the current experimental setup and
the orthography-to-lexeme network described in Baayen et al. (2011)
concerns the nature of the task. While the orthography-to-lexeme net-

work provides a silent reading model, the task in the current experiment
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involves naming the target noun. In Chapter 2, we implemented the
NDR, model, an extension of the original NDR model in Baayen et al.
(2011) for reading aloud. The NDR,, consists of two networks: a network
mapping orthographic cues onto lexemes and a network mapping lexemes
onto acoustic features (demi-syllables). The NDR, correctly predicts a
number of findings that are specific to the reading aloud literature, such
as effects of the consistency of the orthography to phonology mapping

and a pseudo-homophone advantage for non-words.

Nonetheless, we decided to use a simple orthography-to-lexeme net-
work in the current simulation for two reasons. First, the current task is
somewhat of a hybrid between production and comprehension. At the
word level, the task very much resembles a reading aloud task, albeit
with visual rather than orthographic input. At the phrase level, however,
no overt response is required. The effect of phrase frequency is an effect
of implicit phrase-level comprehension, not of phrase-level production.
While ideal for word-level simulations, therefore, the architecture of the

NDR,, is less than optimal for phrase-level simulations.

Second, despite the fact that the orthography to phonology mapping
in English is inconsistent at times, there is considerable isomorphism
between the orthographic and the phonological representations of words.
As a result, there is a fair amount of overlap between the information
learned by a discriminative learning network from orthography to se-
mantics and the information learned by a discriminative learning network
from phonology to semantics. For the set of 2,524 monosyllabic words
used in Chapter 2 for instance, the (log and inverse transformed) activa-
tion of the target word meaning from the orthography is highly correlated
with the (log and inverse transformed) activation of the target word
meaning from the phonology (r = 0.48, p < 0.001). Before using a more
complex simulation approach that tries to model the pronunciation pro-
cess from A to Z, it is therefore useful to see how much explanatory power

a simple orthography-to-lexeme network can provide for the current data.

While we decided not to train a network mapping acoustic features
onto lexemes, we did use a different type of additional network in the

current simulations. In Chapter 3, we found that a lexeme-to-lexeme
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network provided explanatory value over and above an orthography-to-
lexeme network for the eye movement patterns on compounds in natural
discourse reading. As in Chapter 3 we therefore trained a lexeme-to-
lexeme discrimination learning network to gauge contextual learning at

the lexeme level.

As in Chapter 3, both the orthography-to-lexeme and lexeme-to-
lexeme networks were trained on the British National Corpus (henceforth
BNC; Burnard, 1995). For the orthography-to-lexeme network the input
cues were letter trigrams and the outcomes were lexemes. For the lexeme-
to-lexeme network, the input cues were lexemes n-2 and n-1 in a word

trigram and the outcome was lexeme n.

We extracted three systemic measures of language processing from the
orthography-to-lexeme network. These three measures are the activation
of (1) the preposition, (2) the definite article and (3) the target noun
given the presentation of the preposition, the definite article and the
target noun. We obtained these activations for all of the 272 phrases
that were used in the experiment by summing the associations between
all letter trigrams in the input phrase and the preposition, the definite
article and the target noun lexeme (see Equation 1.3). For the example
phrase “into the onion”, for instance, we calculated the activation of
the target noun “onion” by summing the associations between the letter
trigrams #in, int, nto, to#, o#t, #th, the, he#, e#o, #on, oni, nio,
ion and on# (hash marks indicate word boundaries) and the lexeme
ONION. Similarly, the simulated activations of the preposition “into” and
the definite article “the” were defined as the summed association between

these letter trigrams and the lexemes INTO and THE, respectively.

The simulated activations for the preposition, determiner and target
noun will henceforth be referred to as NDL Activation Preposition, NDL
Activation Determiner and NDL Activation Word. Following Baayen
et al. (2011), we applied an inverse and logarithmic transformation to
all activations prior to analysis to remove a rightward skew from the
data. As such, the activation measures are proportional to the system

complexity of the relation between form and meaning. Furthermore, we
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added a back off constant of 0.05 to all activations to prevent division by

zero when applying the inverse transformation.

As in Chapter 3, we derived a more general systemic property of
the target word lexeme from the lexeme-to-lexeme network: the median
absolute deviation (henceforth MAD) of the vector of target noun weights
given all word types in the training lexicon. We successfully applied the
MAD measure in the context of discrimination learning in Chapter 3 as a
measure of network connectivity: the greater the MAD of a lexeme, the
greater its network connectivity and the easier it is to access that lexeme.
As such, one could think of the MAD measure as a systemically motivated
account of frequency effects. The greater the frequency of a lexeme, the
better a discrimination learning network is able to learn which lexemes
are positively or negatively associated with that lexeme (and therefore
the greater the MAD). We will henceforth refer to the MAD measure as
NDL MAD. We log-transformed NDL MAD prior to analysis to remove
a rightward skew from the NDL MAD distribution.

As for the lexical predictor analysis, we removed predictor outliers
further than two standard deviations from the mean from the data prior
to analysis. As a consequence, we excluded 1.54% of predictor values for
NDL Activation Word, 5.00% of all predictor values for NDL Activation
Determiner, 6.92% of all predictor values for NDL Activation Preposition
and 4.62% of all predictor values for NDL MAD. Table 4.2 shows the
range, adjusted range, mean, median and standard deviation for all NDL

predictors.

As for the lexical predictor data set, the NDL predictors are char-
acterized by a considerable amount of collinearity (x = 59.97). Most
notably, there is a medium correlation between NDL MAD and NDL
Activation Word (r = 0.52). Nonetheless, suppression is unlikely given
this correlation. As for the lexical predictor analysis, we therefore decided
not to decorrelate the NDL predictors. As for the lexical predictor analysis,
we ensured that the effects reported below are robust through a post-hoc
analysis. For each NDL predictor, we fitted a new model with an identical

model structure, but omitting the other NDL predictors at the electrode
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Table 4.2. Summary of the independent variables (log) Picture Complexity, (log and inverse transformed) NDL Activation
Preposition, (log and inverse transformed) NDL Activation Determiner, (log and inverse transformed) NDL Activation Word and
(log) NDL MAD. Range is the original range of the predictors. Adjusted range is the range after removing predictor outliers.

Mean, median and sd are the means, medians and standard deviations after outlier removal.

predictor range  adjusted range mean median sd
Picture Complezity 8.53 - 11.13 8.69 - 10.83 9.88 9.91 0.50
NDL Act. Preposition —0.65 - —1.70 —0.19 - 0.58 0.04 0.00 0.13
NDL Act. Determiner —0.20 - 0.17 —0.12 - 0.04 —0.04 —0.04 0.02
NDL Act. Word 0.00 - 2.88 0.13 - 2.88 1.62 1.83 0.76
NDL MAD —15.12 - —8.88 —14.57- —9.56 —12.07 —12.15 1.26
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visualized below. The results of this post-hoc analysis were qualitatively
similar to the effects reported below.

Analogous to the analysis for the lexical predictors, we fitted a GAMM
with a main effect smooth for time, by-participant factor smooths for
trial and time, and random intercepts for preposition, noun and pre-
positional phrase to the ERP signal at each electrode. In addition, we
included a main effect smooth as well as a tensor product interaction
between time and predictor (modeled through ti() terms) for each of
the predictors Picture Complexity, NDL Activation Preposition, NDL
Activation Determiner, NDL Activation Word and NDL MAD. As be-
fore, non-linearities in the predictor dimension were limited to 5 knots,
non-linearities in the time dimension were limited to 20 knots and the

autocorrelation parameter p was set to 0.75.

4.9 NDL Simulation Results

In this section, we present the results for the predictors NDL Activation
Preposition, NDL Activation Determiner, NDL Activation Word and
NDL MAD. The effect of Picture Complexity was highly similar to that
reported in the lexical predictor analysis and is therefore not repeated

below.

4.9.1 NDL Activation Preposition

Figure 4.15 shows the contour plot of the tensor surface for NDL Activa-
tion Preposition at electrode P3. The partial effect of NDL Activation
Preposition is characterized by a positivity for prepositions with high
(log and inverse transformed) activation values in the first 200 ms after
picture onset, which is followed by a negativity for the same prepositions.
This effect is highly significant across the left hemisphere, and shows
peak amplitudes at left and central parietal and occipital electrodes.
Given that log and inverse transformed NDL activations are pro-
portional to naming latencies, whereas frequency measures are inversely
proportional to naming latencies, the effect of NDL Activation Preposition

is qualitatively and topographically similar to the effect of Preposition
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NDL Activation Preposition (P3: p < 0.0001)

NDL Act. Prep.

time (ms)

Figure 4.15. Effect for the tensor product interaction between time and (log

and inverse transformed) NDL Activation Preposition at electrode P3.

Frequency described for the lexical predictor analysis. Both predictors
show positivities in the first 200 ms followed by negativities at later
points in time for predictor values for which longer naming latencies
are expected (i.e., high (inverse-transformed) activation, low frequency).
In both cases, the effect is present across the left hemisphere, but is
most prominent in left-central parietal-occipital areas. The similarity of
the effects for Preposition Frequency and NDL Activation Preposition is
unsurprising given the correlation between both predictors (r = —0.60).

Consistent with the absence of a main effect of Preposition Frequency,
we found little evidence for a main effect smooth for NDL Activation
Preposition in the left hemisphere. In contrast to the main effect of Prepos-

ition Frequency, however, the main effect of NDL Activation Preposition

NDL Activation Preposition (F4: p = 0.0005)

[\

0.0 05
NDL Activation Preposition

Figure 4.16. Effect for the main effect smooth of (log and inverse transformed)

NDL Activation Preposition over time at electrode P3.
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did reach significance at some frontal and frontal-central electrodes in the
right hemisphere. Figure 4.16 shows the main effect of NDL Activation
Preposition over time at electrode F4, with more positive voltages for
predictor values that correspond to expected processing difficulties (i.e.,

longer naming latencies).

4.9.2 NDL Activation Determiner

Figure 4.17 presents the time by predictor tensor product interaction for
NDL Activation Determiner. This effect is characterized by a complicated
pattern of oscillatory activity in both the time and predictor dimensions.
For a substantial number of time values, the effect is mirrored with
respect to the middle of the NDL Activation Determiner range. We
see a concave effect in the predictor dimension that starts around 80
ms after picture onset and that returns from 220 to 300 milliseconds.
After that, the effect reverses, with a convex effect of NDL Activation
Determiner from 320 ms onwards. This effect is most prominent in left
and central parietal-occipital areas, but reaches significance across the

left hemisphere.

NDL Activation Determiner (PO3: p < 0.0001)

NDL Act. Determ.

time (Ms)

Figure 4.17. Effect for the tensor product interaction between time and (log

and inverse transformed) NDL Activation Determiner at electrode POS3.

Given the fact that the determiner is identical in all stimuli, the
presence of a statistically robust time by NDL Activation Determiner
tensor product interaction with a relatively large effect size may seem
surprising from a traditional point of view. From a discrimination learn-

ing perspective, however, the effect of NDL Activation Determiner is
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expected. The NDL Activation Determiner measure used here is defined
as the activation of the determiner lexeme given the orthographic cues of
not only the determiner, but also of the preposition that precedes it and
the target noun that follows it. The current effect therefore demonstrates
that the context in which a determiner appears has considerable influence
on how it is processed.

We furthermore found some evidence for a main effect of NDL Ac-
tivation Determiner. As can be seen in Figure 4.18, voltages tend to
be somewhat higher for higher values of NDL Activation Determiner at
left and central parietal-occipital electrodes. This effect, however, reach
significance at a Bonferroni corrected alpha level at 1 electrode only.
It is therefore unclear how statistically robust the main effect of NDL

Activation Determiner is.

NDL Activation Determiner (PO3: p = 0.0088)

_l - e
_2 a T - T T T T
-0.12 —0.09 —0.06 —0.03 0.00 0.03
NDL Activation Determiner

Figure 4.18. Effect for the main effect smooth of (log and inverse transformed)

NDL Activation Determiner over time at electrode PO3.

4.9.3 NDL Activation Word

The time by predictor tensor product interaction for NDL Activation
Word at example electrode FC1 is presented in Figure 4.19. The effect is
characterized by oscillations at the lower end of the theta range (3 Hz).
The oscillations are most prominent for high predictor values, but are also
present for lower predictor values. The effect of NDL Activation Word
is topographically widespread, with significant time by NDL Activation
Word tensor product interactions across the scalp. Peak amplitudes,

however, are reached in frontal and central areas in the left hemisphere
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and parietal and occipital areas in the right hemisphere. The effect of
NDL Activation Word first reaches significance at 149 ms after picture

onset for medium values of NDL Activation Word.

NDL Activation Word (FC1: p < 0.0001)

NDL Act. Word

time (ms)

Figure 4.19. Effect for the tensor product interaction between time and (log
and inverse transformed) NDL Activation Word at electrode FC1.

The time by NDL Activation Word interaction shows some similarities
with the time by Word Frequency interaction described earlier. The effect
is topographically widespread and characterized by oscillations in the
lower part of the theta range. The onset of the effect, however, is later
than that of the Word Frequency effect, which was first significant at
97 ms after picture onset. Furthermore, NDL Activation Word shows
clear non-linearities in the predictor dimension. By contrast, the time by
Word Frequency interaction was mostly characterized by simple linear
effects in the predictor dimension with alternating positive and negatives
slopes. The moderate similarities between the effect of NDL Activation
Word and the effect of Word Frequency are in line with the moderate
correlation between both predictors (r = -0.41).

For Word Frequency we found little evidence for a main effect over
time. For NDL Activation Word, we found a main effect at 6 electrodes
located in bilateral frontal areas only (see Figure 4.20), with somewhat
more positive voltages for high predictor values (i.e., for words with
longer expected naming latencies). The main effect of NDL Activation
Word did not reach significance at a Bonferroni-corrected alpha level at
any electrodes. In addition, the electrodes at which we saw significant

effects at a non-corrected alpha level were limited to frontal electrodes.
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Given the increased RMS values at these electrodes these effects need to
be interpreted with care. As such, we conclude that the evidence for a
main effect of NDL Activation Word is limited at best.

NDL Act. Word (FC1: p = 0.1550)

05 10 15 2.0 25
NDL Act. Word

Figure 4.20. Effect for the main effect smooth of (log and inverse transformed)
NDL Activation Word over time at electrode FC1.

4.9.4 NDL MAD

Whereas NDL Activation Word describes the bottom-up support for the
target noun lexeme, NDL MAD is top-down measure of the network
connectivity of a word that is perhaps best perceived of as a systemic
alternative to word frequency measures that captures the out-of-context
probability of a word. Indeed, NDL MAD correlates much more strongly
with Word Frequency (r = 0.90) than NDL Activation Word (r = —0.41).
As such, we would expect the effect of NDL MAD to be more similar to
the effect of Word Frequency than the effect of NDL Activation Word.
As can be seen in Figure 4.21, this prediction is borne out.

The effect of NDL MAD is characterized by 3 to 4 Hz oscillations for
both high and low predictor values. For high values of NDL MAD the
phase of these oscillations is highly similar to the phase of the oscillations
observed for Word Frequency. For low predictor values, there is a phase
mismatch with the oscillations in the first 250 ms. From 250 to 600 ms
after picture onset, however, the phase of the oscillations is highly similar

to that of the oscillations for Word Frequency once more.
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NDL MAD (O1: p < 0.0001)

NDL MAD

time (ms)

Figure 4.21. Effect for the tensor product interaction between time and (log)
NDL MAD at electrode O1.

The topographical distribution of the time by NDL MAD interaction
is similar to that of the time by Word Frequency interaction as well,
with a widespread effect that is significant across the left hemisphere, as
well as in central and right parietal-occipital areas. Furthermore, the
effect of NDL MAD at high predictor values is first significant at 100
ms after picture onset. As such, the temporal onset of the NDL MAD
effect is highly similar to that of the Word Frequency effect, which was
first significant at 97 ms after picture onset. In conclusion, therefore, the
effects of NDL MAD and Word Frequency show remarkable similarities.

For low values of NDL MAD, we see an early negativity that is first
significant at 20 ms after picture onset. Perhaps, this effect is an artifact
due to the unreliability of GAMMs near the edges of the analysis window.
As such, a negativity for low values of NDL MAD around 100 ms after
picture onset may incorrectly be present in the first 50 ms of the analysis
window as well. The NDL MAD measure, however, taps into the a priori
probability of a word. The early effect of NDL MAD may therefore well

reflect anticipatory predictions at or even before picture onset.

Figure 4.22 presents the main effect of NDL MAD over time. We found
no statistically significant evidence for a main effect of NDL MAD, neither

at a corrected, nor at an uncorrected alpha level. The effect of NDL
MAD is therefore best described by a time by NDL MAD interaction.
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NDL MAD (O1: p = 0.2294)

—14 —‘13 —‘12 —il —iO
NDL MAD

Figure 4.22. Effect for the main effect smooth of (log) NDL MAD over time
at electrode O1.

4.10 Discussion

The NDL simulation described above demonstrated that the ERP signature
of Preposition Frequency as it evolves over time is highly similar to that
of NDL Activation Preposition, with a qualitatively and topographically
similar effects for both predictors. The effects of Word Frequency and
NDL Activation Word showed some similarities as well, but the NDL
measure that most closely resembled the pattern of results for Word
Frequency was NDL MAD, a systemic measure of the prior probability
of a word. The time by predictor tensor product interactions for both
Word Frequency and NDL MAD showed theta range oscillations with
similar phases and similar topographical distributions. The prepositions
used in the primes were selected at the quantiles of the prepositional
phrase distribution for each target noun. The primes therefore provide
little information about the identity of the upcoming target noun. As
such, the fact that the Word Frequency effect is to a considerable degree
driven by the out-of-context probability of the target noun is less than
surprising.

The effect of Phrase Frequency was characterized by a prolonged
effect over time, with higher voltages for lower frequency phrases. The
fact that we found some evidence for main effects over time for NDL
Activation Preposition and — to a lesser extent — NDL Activation De-

terminer may indicate that these systemic measures pick up part of the
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prolonged effect observed for Phrase Frequency. The effects of both NDL
Activation Preposition and NDL Activation Determiner were inhibitory
in nature. Given the inverse transform applied to the activation measures,
voltages were therefore lower for prepositions and determiners with more
bottom-up support. As such, the qualitative nature of the main effects
of NDL Activation Preposition and NDL Activation Determiner is in
line with the fact that high frequency phrases give rise to more negative
voltages.2 The effect of Phrase Frequency was topographically widespread,
however, whereas the main effects of NDL Activation Preposition and

NDL Activation Determiner had much narrower topographies.

Baayen et al. (2013) simulated the phrase frequency effect in lexical
decision in the NDL framework through a simple additive integration of
the activations of the component words given the orthographic features
in a phrase. A post-hoc analysis at electrode O1, however, revealed that
the effect of a similar additive integration of NDL Activation Preposition,
NDL Activation Determiner and NDL Activation Word did not show a
similar prolonged linear main effect of Phrase Frequency. While systemic
measures of the bottom-up support for the preposition and the determiner
may pick up part of the effect, therefore, we conclude that the current
NDL approach is unable to account for the (full) effect of Phrase Frequency

documented here.

In Chapter 3, we similarly found that NDL measures derived from
orthography-to-lexeme and lexeme-to-lexeme networks were unable to
account for the effect of trigram frequency on the eye fixation patterns
during noun-noun compound reading. There, we suggested that the inab-

ility to account for n-gram frequency effects may have been a consequence

2 Note that some variation with respect to the reported main effects exists. At
electrode F8, for instance, the main effect of Phrase Frequency shows the opposite
pattern of results as compared to the effect reported for example electrode O1. For
all main effects, we selected example electrodes that give a good impression of the
overall nature of the effect. While the main effect of Phrase Frequency at electrode
F8 is qualitatively different from the main effect of Phrase Frequency at the reported
example electrode O1, for instance, the other electrodes that show a significant main
effect of Phrase Frequency over time (Fpl1, F3, T7, C3, P7, P3, PO3, Oz) show an
effect that is qualitatively similar to the reported effect at electrode O1.

199



4 Picture naming

of the limited frequency of compound-final trigram in the BNC. To some
extent, the same problem may underlie the failure of the NDL measures to
account for the phrase frequency observed here. The average frequency
of the prepositional phrases in the BNC was 16.65, and the median was
no more than 3. No less than 52 of the 272 prepositional phrases used in
this experiment (19.12%) never occurred in the BNC and only 15 phrases
had a BNC frequency greater than 50. As in Chapter 3, therefore, the
size of the BNC may simply be too small to allow discrimination learning
networks to pick up on the distributional patterns that underlie phrase
frequency effects.

Furthermore, the NDL activation measures capture the orthographic
bottom-up support for the lexemes in a prepositional phrase. The current
task, however, is not purely orthographic in nature. While the preposition
plus definite article primes are presented orthographically, the target noun
is presented visually through a photograph of the object that the noun
refers to. The phrase frequency effect observed here, therefore, is likely
to partly reflect processes related to the uptake of visual information and
the integration of this information with the preceding orthographic input.
Given that these processes are outside the scope of the lexical learning
approach used here, it is unsurprising that the systemic NDL measures

cannot (fully) explain the phrase frequency effect reported here.

4.11 Quantitative performance lexical predictors

and NDL measures

A final point of interest regarding the NDL simulation reported above
is the quantitative performance of the NDL measures as compared to
the lexical predictors Preposition Frequency, Word Frequency, Relative
Entropy and Phrase Frequency. Given the different size of the data
sets for both analyses after outlier removal, a direct comparison of the
quantitative performance of the models reported above through goodness-
of-fit measures was not possible. For the lexical predictor models, we

therefore constructed baseline models for the same data set as the ori-
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ginal lexical predictor models that had an identical model structure, but
that excluded the lexical predictors of interest (Preposition Frequency,
Word Frequency, Relative Entropy and Phrase Frequency). Similarly,
we constructed baseline models for the NDL models that excluded the
NDL predictors of interest (NDL Activation Preposition, NDL Activation
Determiner, NDL Activation Word and NDL MAD). We then looked at
the difference in deviance explained between the lexical predictor models
and the baseline lexical predictor models, as well as between the NDL
models and the baseline NDL models.

Generally speaking, the contribution of both the lexical variables and
the NDL measures to the deviance explained by the models was small,
with improvements in the overall percentage of deviance explained (i.e.,
deviance explained by full model minus deviance explained by baseline
model) being substantially smaller than 1%. The average additional
percentage of deviance explained across all electrodes was highly similar
for the lexical predictor models (0.100%) and the NDL models (0.098%),
with a paired t-test on the vectors of additional deviance explained for all
electrodes in the lexical predictor and NDL models showing no significant
difference (p = 0.512). As such, the quantitative performance of the
NDL measures in GAMMSs seems comparable to that of standard lexical
predictors.

To gain further insight into the relative contribution of the lexical
predictors and the NDL measures, we furthermore fit gradient boosting
machines (GBMs, see J. H. Friedman, 2001, 2002) as implemented in
version 2.1.1 of the gbm package for R (Ridgeway, 2015) to the ERP
signal at each electrode. Much like random forests, GBMs consist of a
large number of regression (or classification) trees. Unlike random forests,
however, the trees in GBMs are not independent. Instead, tree n is grown
on the basis of the residual error of trees 1 to n — 1. GBMs allow for
missing data through the use of surrogate splits. We could therefore
fit GBMs to the full data set without losing data points due to outlier

removal.
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For each electrode, we fitted a GBM with Time, Picture Complexity,
Preposition Frequency, Word Frequency, Phrase Frequency, Relative En-
tropy, NDL Activation Preposition, NDL Activation Determiner, NDL
Activation Word and NDL MAD as predictors to the ERP signal after
picture onset. Each GBM consisted of 2,500 trees and was fitted with
an interaction depth of 5 and — due to the size of the data set — a fairly
aggressive learning rate of 0.10. To prevent overfitting, we used 10-fold
cross-validation and set the minimum number of observations in a node
to 5, 000.

The mean relative influence across all electrodes for Time was 48.57%,
and the mean relative influence of Picture Complexity was 4.97%. The
summed mean relative influence for all 4 lexical predictors was 21.13%,
whereas that of the NDL measures was 25.33%. A paired t-test on the
summed relative influence of the lexical predictors and the NDL predictors
at all electrodes was highly significant (¢(31) = —12.255, p < 0.001).
As such, the GBM analysis indicates that the NDL measures are better
predictors of the ERP signal following picture onset as compared to the

lexical predictors.

Figure 4.23 presents the relative influence of the individual predict-
ors. The bottom-up measures of the support for the lexico-semantic
information associated with the preposition, the determiner and the noun
all showed substantial mean relative influences (NDL Activation Pre-
position: 8.46%, NDL Activation Determiner: 7.59%, NDL Activation
Word: 5.48%). The a priori probability of the noun had a more mod-
est contribution to the GBMs (NDL MAD: 3.80%). Among the lexical
predictors, Phrase Frequency had the largest mean relative influence
(7.84%), followed by Relative Entropy (6.18%), Word Frequency (3.63%)
and Preposition Frequency (3.49%).

The NDL measures of the bottom-up support for the preposition and
target noun lexemes outperform the corresponding frequency measures
by a substantial margin. Paired t-tests on the relative influence of Prepos-
ition Frequency and NDL Activation Preposition (t(31) = —12.363, p <
0.001) and the relative influence of Word Frequency and NDL Activation
Word (t(31) = —7.802, p < 0.001) were highly significant. The GBM ana-
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Pict. Complexity

Frequency Prep.
Frequency Word
Frequency Phrase
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NDL Act. Prep.
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Figure 4.23. Relative influence (%) of Picture Complezity (red bar), the
lexical predictors Preposition Frequency, Word Frequency, Phrase Frequency
and Relative Entropy (green bars) and the NDL predictors NDL Activation
Preposition, NDL Activation Determiner, NDL Activation Word and NDL
MAD (blue bars) in a gradient boosting machine.

lysis therefore suggests that systemic measures of the contextual support
for a lexeme are considerably more powerful predictors of the ERP signal

following picture onset as compared to simple frequency measures.

4.12 General Discussion

The first half of this chapter discussed the results of a primed picture
naming study on prepositional phrase processing. In this experiment
participants were presented with preposition plus definite article primes
(e.g., “on the”) followed by target photographs depicting concrete nouns
(e.g., “strawberry”). Participants were asked to name the target noun
as fast and accurately as possible. We recorded the ERP signal after
picture onset and analyzed the correlates of four linguistic predictors in
this signal using generalized additive mixed-effect models.

At the word level we observed significant time by predictor inter-
actions for the frequency of the preposition and the target word, as
well as for the prepositional relative entropy of the target word. For

word frequency, we observed oscillations in the time dimension with a
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frequency at the lower end of the theta range (3-7.5 Hz) across the left
hemisphere, as well as in bilateral occipital-parietal areas. As mentioned
above, theta range oscillations are thought to reflect (working) memory
demands in language processing that arise from the synchronous firing of
neurons in hippocampal areas (see Bastiaansen & Hagoort, 2003) and
have previously been observed in a variety of language processing tasks
(see, e.g., Bastiaansen et al., 2005, 2008; Grabner et al., 2007). The effect
of target word frequency was first significant at 97 ms after picture onset.
This early onset of the word frequency effect is in line with previous
studies that established the onset of word frequency effects (Hauk et al.,
2006; Penolazzi et al., 2007; Sereno et al., 1998) soon after the 100 ms

mark.

Of the word level effects, the effect of relative entropy is of particular
theoretical interest. Previously, relative entropy effects had only been
observed in reaction time studies (see, e.g., Milin, Filipovié Durdevié¢ &
Moscoso del Prado Martin, 2009; Milin, Kuperman et al., 2009; Kuper-
man et al., 2010; Baayen et al., 2011). The current study is the first
to document a relative entropy effect in an ERP study, with oscillations
near the lower edge of the theta range that were most prominent in
parietal and occipital areas. These oscillations had greater amplitudes
for high predictor values as compared to low predictor values. Similar to
the reaction time studies mentioned above, therefore, the current results
suggest that additional processing is necessary when a noun’s use of
prepositions is less prototypical. The effect of relative entropy emerged
early, showing a significant effect as early as 95 ms after picture onset.
The temporal onset of the relative entropy effect is therefore similar to

that of word frequency (97 ms after picture onset).

At the phrase level, we observed an effect of phrase frequency that
was qualitatively different from the effect of word frequency. While
the word frequency effect was characterized by oscillations in the time
domain, the phrase frequency effect is best described as a near-linear
prolonged effect over time with more positive voltages for low frequency
phrases and more negative voltages for high frequency phrases. This

effect was most prominent in left-lateralized parietal and occipital areas.
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As for the effect of relative entropy, the effect of phrase frequency is
well-documented in chronometric studies (see e.g., Bannard & Matthews,
2008; Arnon & Snider, 2010; Siyanova-Chanturia et al., 2011; Tremblay
et al., 2011; Shaoul, Westbury & Baayen, 2013). Recently, Tremblay and
Baayen (2010) documented a phrase frequency effect in an ERP study
for 4-word sequences using a free recall task. The current study adds to
these findings with a phrase frequency effect in a primed picture naming

paradigm.

Effects of n-gram frequency provide evidence for “some experience-
derived knowledge of specific [...] word sequences” (Bannard & Matthews,
2008, p.246). How this knowledge is implemented, however, is not clear.
One possibility is that phrase representations are stored holistically, much
like word representations. As noted by Baayen et al. (2013), such a
perspective on n-gram frequency effects fits well with the architecture
of exemplar-based approaches to language processing, such as data-
oriented parsing (Bod, 2006) or memory-based learning (Daelemans &
Bosch, 2005). Although the current results are not incompatible with
exemplar-based models, these models would have to assume storage of
(and computation over) many millions of n-gram representations to ac-
count for n-gram frequency and relative entropy effects (see Baayen et al.,
2013). Furthermore, if word representations and phrase representations
are stored and accessed in the same way we would expect the effects of
word frequency and phrase frequency to be highly similar. Here, however,

we found qualitatively different results for word and phrase frequency.

Discrimination learning offers an alternative interpretation of phrase
frequency and relative entropy effects. In the Naive Discriminative Reader
NDR model (Baayen et al., 2011) no representations beyond the simple
word level exist. Nonetheless, the NDR correctly predicts the chronometric
effect of phrase frequency (Baayen et al., 2013). The second part of this
chapter presents a simulation study in which we investigate the explanat-
ory power of the NDL framework for the current data. We constructed
statistical models similar to those for the lexical predictor analysis. The
lexical predictors, however, were replaced by 4 measures derived from

discrimination learning networks: 1 measure regarding the out-of-context
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4 Picture naming

probability of the target word, and 3 measures gauging the amount of
bottom-up support for the preposition, the determiner and the target

noun given the presence of all three words in the visual input.

The bottom-up support for the preposition showed an effect that
was qualitatively and topographically similar to the effect of Preposition
Frequency. We also observed some similarities between the effect for the
bottom-up support for the noun and the effect of Word Frequency. The
systemic measure that most closely resembled the effect, however, was a
top-down measure of the out-of-context probability of the target noun.
As indicated by an analysis using gradient boosting machines (GBMs), the
measures of the bottom-up support for the preposition and the noun had
increased explanatory power as compared to Preposition Frequency and
Word Frequency. Taking the systemic support for a word in its linguistic
context into account, therefore, helps better understand the linguistic

processes that underlie the ERP signal after picture onset.

Phrase frequency does not map 1-to-1 with any of the discrimination
learning measures used here. Nonetheless, there is some evidence that at
least part of the phrase frequency effect is captured by the discrimination
measures used here. The predicted values of a GAMM with Phrase Fre-
quency as the dependent variable and simple main effect smooths (k = 5)
of the four systemic measures described above as independent variables
show a moderate correlation of » = 0.56 with Phrase Frequency. Further-
more, we found some evidence for main effect smooths of the bottom-up
support for the preposition and — to a lesser extent — the determiner that

were qualitatively similar to the prolonged effect of Phrase Frequency.

It is clear, however, that the systemic measures used here do not
capture the full effect of Phrase Frequency in the current study. The
topographical distribution of the above-mentioned main effects of the
bottom-up support for the preposition and the determiner are much more
confined than that of Phrase Frequency. Furthermore, while Baayen et
al. (2013) showed that an additive integration of the bottom-up support
for all words in a phrase captured the qualitative nature of the phrase
frequency effect in lexical decision, a similar additive integration of the

bottom-up support for the preposition, the determiner and the noun
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4.12 General Discussion

did not yield a prolonged effect similar to the Phrase Frequency effect
reported here. These shortcomings of the NDL measures with respect to
the phrase frequency effect may originate from the limited size of the
training data for the NDL networks and/or the cross-modal experimental
paradigm adopted here.

A quantitive comparison of the lexical distributional variables and the
NDL measures indicated that the contribution of both sets of predictors
in GAMMs was highly similar. By contrast, a series of GBMs fit to each
electrode indicated that the NDL measures co-determined the ERP signal
following picture onset to a greater extent than did the lexical predictors.
We therefore conclude that discrimination learning offers a competitive
framework for understanding the ERP signal in the primed picture naming
paradigm. It is important to note, however, that the NDL framework —
much like an analysis based on lexical distributional variables — provides
a high-level functional window on lexical processing that tells us little
about the neuro-biological implementation of the discriminative learning
mechanism it posits. The discrete representations in the NDL framework
do not do justice to the complex architectural and topographical neuro-
biological reality of neural networks. Nonetheless, the current simulations
demonstrate that systemic measures derived from discrimination learning
networks provide further insight into the behavioral effects of lexical
predictors and advance our understanding of the language processing
system. When trying to understand the complex dynamic system that
language is, there is no harm in starting with the basic principles of

learning.
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Conclusions

Chapter 1 of this dissertation introduced the naive discrimination learn-
ing (NDL) framework as a symbolic approach to investigating the role of
learning in language processing and provided a brief overview of other
psycholinguistic studies that have investigated language processing from
a discrimination learning perspective, either prior to or in parallel with
the work presented here. The following three chapters consisted of
applications of the NDL approach to three psycholinguistic data sets,
each involving a different measure of language processing and a different
experimental task.

Chapter 2 explored to what extent an NDL model could provide further
insight into naming latencies in the reading aloud task. Leading models
of reading aloud, including the cDP+ model, are dual-route models
(see, e.g., M. Coltheart et al., 2001; Perry et al., 2007, 2010; Harm &
Seidenberg, 2004). Words are read through a lexical architecture, in
which the connection between orthographic and phonological units is
mediated by lexical representations. Non-words - or words unknown to
a reader - by contrast, are read through a non-lexical route in which

orthographic features are mapped directly onto phonological features.
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To simulate reading aloud in the NDL framework, I extended the
NDR model of Baayen et al. (2011) for silent reading with a lexeme-to-
phonology network. In contrast to dual-route models, the resulting NDR,
model consists of a single lexical route that is responsible for both word
and non-word naming. Whenever a word is presented, the orthographic
units in the input activate the lexical representation of the target word,
as well as the lexical representations of orthographic neighbors. These
lexical representations then activate phonological units, which allow for
the pronunciation of the word. For non-words or for words that were
not previously encountered by the reader, no lexical representation of
the target word exists. The pronunciation of these words therefore relies
entirely on the phonological units activated by the lexical representations

of orthographic neighbors of the target word.

The single-route NDR, model showed similar correlations with the
observed naming latencies as the leading dual-route model of reading
aloud, the cpP+ model (Perry et al., 2007), and accurately captured
a number of effects related to the consistency of the orthography to
phonology mapping that were previously interpreted as evidence for the
existence of a non-lexical route (see Perry et al., 2007). Furthermore,
the NDR, model correctly predicts a hitherto unobserved effect of non-
word frequency. As such, the NDR, model provides a highly competitive

single-route alternative to existing dual route models of reading aloud.

Chapter 2 furthermore demonstrates that the addition of a sub-lexical
route does not help further improve the performance of the NDR, model.
This finding stands in contrast to Perry et al. (2007), who found that the
sub-lexical route of the cDP+ model had a substantial contribution to
the performance of the model. Perry et al. (2007) implemented a learning
network in the sub-lexical route of the cDP+ model (see Zorzi et al.,
1998b, 1998a). The lexical route of the model, however, is based on the
interactive activation model of McClelland and Rumelhart (1981) and
therefore does not account for learning. The fact that a sub-lexical route
did not improve the performance of the NDR, model suggests that the
contribution of the sub-lexical network of the cDP+4 model may not be

evidence for the psychological reality of a sub-lexical route, but instead
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for the shortcomings of a less-than-optimal implementation of the lexical
route. As such, the findings discussed in Chapter 2 demonstrate that
investigating language processing from a systemic perspective may lead
to interesting insights into the nature of language processing that could

not be obtained through more traditional approaches.

Chapter 3 presented the results of an analysis of the eye movement pat-
terns during compound reading in natural discourse. Systemic measures
of the bottom-up support for noun-noun compounds and their a priori
probability were extracted from two discrimination learning networks: an
orthography-to-lexeme network and a lexeme-to-lexeme network. Across
different measures of the eye movement patterns, including the duration
and position of first, second and third fixations, these systemic measures
provided explanatory power that was comparable to that of an extensive

set of lexical predictors.

Fixation patterns during first fixations were primarily determined by
the bottom-up support for the relevant lexico-semantic information given
the orthographic features that were available to the reader. The duration
of first-and-only fixations was co-determined by a weighted sum of the
activation of the modifier, the head and the compound lexeme given
the orthographic features of the compound as a whole. Compared to
first-and-only fixations, first-of-many fixations were characterized by more
leftward fixation positions and larger incoming saccade sizes. As a result
of the suboptimal viewing position, not all orthographic features were
available to the reader. First-of-many fixations were therefore influenced
by the activation of the modifier lexeme given the first orthographic

trigram of the compound only.

The pattern of results for first fixation durations demonstrates that
fixation patterns are to a large extent determined by the amount of
information that is available in the spotlight of visual attention. The NDL
framework offers the opportunity to explicitly specify which orthographic
features are available to the readers. This allows for a more precise
understanding of first fixation patterns as compared to standard lexical

predictors. Nonetheless, the all-or-none availability of input features is
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an oversimplification of what is actually available to the eye (I will return
to this issue shortly).

In a standard lexical predictor analysis, both first-and-only and second
fixation durations showed an effect of compound frequency on fixation
duration. The NDL analysis, however, suggested that these frequency
effects are qualitatively different. Whereas first-and-only fixations dura-
tions showed an effect of the bottom-up support for the lexico-semantic
information associated with the compound and its constituents, second
fixation durations were co-determined by the a priori probability of the
compound. As such, readers seem to fall back on a top-down “best
guess” strategy when compound processing is suboptimal. The systemic
measures derived from NDL networks, therefore, provided a more precise
and more differentiated account of the eye fixation data as compared to

standard lexical predictors.

Chapter 4 discussed the analysis of the ERP signal following picture
onset in a primed picture naming task. Participants were presented
with preposition plus definite article primes (e.g., “in the”) followed by
photographs depicting concrete nouns (e.g., “strawberry”) and were asked
to name the target noun as quickly and accurately as possible. A standard
lexical predictor analysis of the data revealed an effect of preposition
frequency, as well as oscillatory activity tied to the frequency of the
target word and the prototypicality of the frequency distribution of the
prepositional paradigm of the target word. By contrast, the frequency of
the prepositional phrase as a whole showed a prolonged effect over time,

with lower voltages for high frequency phrases.

In an NDL analysis of the picture naming data, measures of the
bottom-up support for the preposition and the target word outperformed
frequency measures of these words. The effect of the bottom-up support
for the preposition was qualitatively highly similar to the effect of pre-
position frequency. Furthermore, the effect of the bottom-up support for
the target noun showed qualitative resemblances to the effect of word
frequency. The systemic measure that yielded a pattern of results most
similar to word frequency, however, was a top-down measure of the prior

probability of the compound. As in Chapter 3, therefore, the NDL analysis
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shed further light on the systemic source(s) of the word frequency effect.
Overall, the explanatory power of the NDL measures was comparable to
that of the lexical predictors in generalized additive models (GAMs) and
significantly better than that of lexical predictors in gradient boosting

machines (GBMs).

Taken together, the work presented here shows that a discrimination
learning approach is highly competitive with more traditional perspectives
on adult language processing, across a variety of experimental paradigms
and response variables. Furthermore, the NDL analyses of psycholinguistic
data sets presented throughout this dissertation uncover information
about the nature of the language processing system that is not available
through traditional analysis techniques. For the data sets presented here,
this information affords reconceptualizations of language processing that

are more intuitive and simpler than existing theories.

The discrimination learning approach used here, however, is in many
ways quite far removed from the Platonic ideal of a systemic model
of language processing. For one, in the simulations reported here the
temporal dimension of the information uptake process was largely ig-
nored. Typically, we assumed that all information in the visual input
was simultaneously available. Language processing, however, is critically
dependent on the information uptake process. By definition, therefore,
bottom-up information becomes available (and fades out of attention) in

a sequential fashion.

Chapter 3 addressed the temporal dimension of the information uptake
process to some extent. For first-of-many fixation durations on noun-
noun compounds, we found that the activation of the modifier lexeme
given the first orthographic trigram only provided maximum explanatory
power. This demonstrates that a closer inspection of the bottom-up
information that is available to a language user at a given point in time
can result in improved performance of discrimination learning measures.
Nonetheless, all-or-none availability of bottom-up information is a clear
oversimplification of the dynamic information uptake process. In reality,

at a given point in time, each piece of bottom-up information is available
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to a certain extent, ranging from zero availability to full availability on a

gradient scale (see, e.g., Engbert et al., 2005).
Second, both Chapters 3 and 4 demonstrated that the type of

orthography-to-lexeme and lexeme-to-lexeme NDL networks used in this
dissertation have trouble capturing n-gram frequency effects. This may
to a large extent be due to the limited size of the British National Corpus
(BNC), which was used to train these networks. At 100 million words, the
BNC may be too small to provide discrimination learning networks with
the opportunity to properly learn the lexical co-occurrence patterns that
underlie n-gram frequency effects. Future research may indicate that
more training data will allow the NDL framework to accurately capture
n-gram frequency effects. Alternatively, it may be the case that additional
(measures of ) processing mechanisms that integrate systemic measures
at the word level are necessary to fully capture the effects of n-gram

frequency a discrimination learning framework.

Third, looking at the bottom-up support for a specific lexico-semantic
representation provides a narrow window on a much broader and much
more complex system. Chapter 3 touched on this subject, showing that an
integrative measure of the bottom up support for not only the compound
lexeme, but also the modifier and head lexemes proved most predictive
for the eye fixation patterns on noun-noun compounds. Even integration
over the bottom-up support for multiple lexico-semantic representations,
however, involves an obvious simplification. Ultimately, what determines
the success of language processing is the extent to which the state of
the entire system allows for an adequate understanding of the current
— linguistic or non-linguistic — input. Exploring options for gauging the
overall state of discrimination learning networks is an interesting challenge

for future research.

Baayen et al. (2011) investigated the explanatory power of discrimin-
ation learning for the behavior of language users in the lexical decision
task. This dissertation consists of an application of the discrimination
learning approach to three further experimental tasks: silent reading,
reading aloud and picture naming. Together these studies demonstrate

that discrimination learning measures provide an insightful and compet-
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itive perspective on language processing across a variety of experimental
paradigms. Much more research, however, is required to acquire a compre-
hensive appreciation of the successes and shortcomings of a discrimination
learning approach to language processing. I therefore end this dissertation
with the words that started it: “Data! Data! Datal”.
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Comparison of GAMMs
and traditional ERP
analyses

We used generalized additive models (GAMMSs) to analyze the ERP data for
the current experiment (Hastie & Tibshirani, 1986; Wood, 2006). Unlike
traditional ERP analysis techniques, GAMMs allowed us to investigate the
non-linear effects of numerical predictors as they evolve over time. By
contrast, traditional ERP analyses typically operate on the basis of dicho-
tomized versions of numerical predictors such as word frequency, phrase
frequency or relative entropy. The average curves for the dichotomized
predictors values are then compared in by-item or by-subject analyses
(i.e., low frequency versus high frequency). In this appendix we compare
the performance of GAMMs to the performance of a traditional analysis
method for simulated data, as well as for some of the key predictor effects
documented in this paper. We demonstrate that the patterns of results
for both types of analyses converge in some cases, but that a traditional
analysis results in a loss of information and induces dichotomization

artifacts in other cases.
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A Comparison of GAMMs and traditional ERP analyses

First, consider the simulated predictor effect in the top left panel
of Figure A.1 The effect is characterized by a two-dimensional sinusoid,
with oscillations in both the time and the predictor dimension. White
noise with a mean of 0 and a standard deviation of 0.5 was added to each
simulated data point. The middle panel of the left column of Figure A.1
shows the results of a GAMM analysis on this simulated predictor effect.
The two-dimensional sinusoid in the simulated data is replicated in the
GAMM analysis. The frequencies of the oscillations in both directions and

the effect sizes match those in the simulated data.
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Figure A.1. Simulated predictor effect with an oscillation in both the time and
predictor dimension (top panels) and model fits for this effect in a GAMM ana-
lysis (middle panels) and a traditional analysis using predictor dichotomization

(bottom panels).
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The bottom left panel of Figure A.1 shows the results of a dichotom-
ization of the predictor into low and high predictor values based on a
split halfway the predictor range. No sinusoidal activity is seen for either
high or low frequency words and no difference is observed between high
and low frequency words at any point in time. Dichotomization of the
predictor therefore entirely masks the two-dimensional oscillatory activity

that is present in the simulated data.

The simulated data in the top left panel of Figure A.1 are symmetrical
with respect to the mid-point of the predictor range. For the top right
panel of Figure A.1 we shifted the effect upwards on the y-axis, such that
the simulated predictor effect is no longer symmetrical with respect to the
mid-point of the predictor range. The middle panel of the right column
of Figure A.1 demonstrates that this does not constitute a problem for
GAMMS. As before the two-dimensional sinusoid is replicated with the
correct frequency in both dimensions and the correct effect size. The
bottom right panel of Figure A.1 shows what happens if the predictor is
dichotomized into high and low predictor values with a split at the mid-
point of the predictor range. Due to the vertical shift of the oscillations
a traditional analysis now reflects some of the oscillatory activity in the
simulated data. The observed differences between high and low predictor
values, however, reflect the differences between medium and low predictor
values in the simulated data. All information about the fact that high
predictor values and low predictor values show a highly similar pattern

of results is lost.

More subtle examples of the problems associated with the dichotomiza-
tion of numerical predictors outlined above arise in the ERP data reported
here. In what follows, we examine the performance of a traditional ERP
analysis for the word frequency, phrase frequency and relative entropy
effects in the current data. For each of these three predictors, we compare
the GAMM analysis in this chapter to a traditional analysis of the data at

the same electrode.

The top panel of Figure A.2 shows the effect of Word Frequency at
electrode O1 in the GAMM analysis. The effect is characterized by 3 Hz

oscillations for both high and low frequency words with opposite phases.
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Figure A.2. The effect of Word Frequency at electrode O1 in a GAMM analysis
(top panel) and a traditional analysis in which Word Frequency is dichotomized
(bottom panel). Color coding at the bottom of the second panel indicates
significance of the Word Frequency effect in item and subject ANOvAs for each

point in time.

The dashed line indicates the mean value of Word Frequency. The bottom
panel of Figure A.2 shows the results of a traditional analysis in which we
dichotomized Word Frequency into high and low frequency words (split
with respect to the mean value of Word Frequency). In this analysis
we investigated the significance of the dichotomized Word Frequency
predictor for each sample point in the time domain by running subject
and item ANOVAs on a subset of the data that included all measurements
for that sample point, as well as for the previous sample point and the
next sample point. The significance of the Word Frequency effect in these
subject and item analyses is indicated by dark red (o = 0.05) and bright
red (Bonferroni-corrected alpha level; o = 0.0016) in the second panel of
Figure A.2.
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The grand mean curves for Word Frequency show a similar pattern of
results as compared to the GAMM analysis. The difference between high
and low frequency phrases first reaches significance at a non-corrected
alpha level at 117 ms after picture onset, with higher voltages for high
frequency phrases. As such, the temporal onset of the Word Frequency
effect is somewhat later than the temporal onset of the Word Frequency
effect in the GAMM analysis (97 ms after picture onset), presumably due
to a loss of statistical power as a result of the predictor dichotomization.
Overall, the patterns of results in the GAMM analysis and the dichotomiz-
ation analysis are highly similar, with higher frequency words showing
higher voltages from 180 to 260 ms after picture onset, lower voltages
from 260 to 400 ms and higher voltages once more from 400 to about 530
ms (as compared to lower frequency words). Both in the GAMM analysis
and in the traditional analysis, the effect of Word Frequency is most

pronounced from 180 to 400 ms after picture onset.

The comparison of the GAMM analysis and the traditional analysis
for the Word Frequency effect demonstrates that the oscillatory effect
of Word Frequency is reflected in the grand means curves for high and
low frequency words. Rather than being interpreted as theta range
oscillations, however, this effect would likely be described in terms of
ERP components in a traditional analysis - with an increased P200 and a
decreased P350 for high frequency words as compared to low frequency

words.

The effect of Word Frequency in the GAMM analysis is relatively simple
in nature, with oscillations for high and low frequency words that are
nicely separated with respect to the middle of the Word Frequency range
and that have opposite phases. This is close to an ideal scenario for
a traditional ERP analysis. The effect of Relative Entropy represents a
somewhat more complicated scenario. The top panel of Figure A.3 shows
the effect of Relative Entropy at electrode CPI in the GAMM analysis.

As can be seen in the top panel of Figure A.3, the effect of Relative
Entropy is characterized by oscillations in the time domain that arise
around 100 ms after picture onset. The oscillations are most prominent

for high predictor values, but lower amplitude oscillations are present for
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Figure A.3. The effect of Relative Entropy at electrode CP1 in a GAMM
analysis (top panel) and a traditional analysis in which Relative Entropy is

dichotomized (bottom panel).

medium-to-low and low predictor values as well. To complicate things
further, the phase difference between the oscillations for high predictor
values and the oscillations for low predictor values is not constant, due
to small differences in the frequencies of these oscillations.

The bottom panel of Figure A.3 shows the effect of Relative Entropy
at electrode CP1 in a traditional ERP analysis in which we dichotomized
Relative Entropy into high and low relative entropy on the basis of a
split at the mean (see dashed line in the top panel of Figure A.3). The
grand mean curves for high and low Relative Entropy capture the fact
that high values of Relative Entropy correspond to lower voltages from
150 to 220 ms, from 250 to 340 ms and from 420 to around 500 ms after
picture onset (as compared to low values of Relative Entropy), although

these effects reach significance at non-corrected alpha level only.
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The traditional analysis fails to pick up on the more positive voltages
for high values of Relative Entropy around 100 and 400 ms after picture
onset. Potentially, this is due to the fact that only Relative Entropy was
entered into the traditional analysis, whereas the GAMM analysis uses
a multiple regression approach. As such, the effects of other predictors
are not taken into account in the traditional analysis. The main effect
of phrase frequency, for instance, was marginally significant at electrode
CP1, p = 0.077). Given the nature of the phrase frequency effect (i.e.,
lower voltages for higher frequency phrases) and the negative correlation
between Relative Entropy and Phrase Frequency (r = —0.19), the grand
average curve for high values of relative entropy in Figure A.3 may be
somewhat lower than it would be if the effect of Phrase Frequency was

properly accounted for.

Whereas the qualitative nature of the effect of Word Frequency was
accurately captured by a traditional ERP analysis, a lot of detail is lost
about the effect of Relative Entropy through dichotomization. While it
might be possible to tell that the Relative Entropy effect is characterized
by theta range oscillations from the bottom panel of Figure A.3, for
instance, it would be impossible to tell that these oscillations are most
prominent for high predictor values. Furthermore, the nature of the effect
across the predictor dimension is lost through dichotomization. The
information that the effect of Relative Entropy is U-shaped in nature
around 320 ms, for instance, cannot be retrieved from the bottom panel
of Figure A.3.

Theta range oscillations in the time dimension characterized the effects
of Word Frequency and Relative Entropy. For Phrase Frequency, we found
a near-linear effect that persisted over time. The top panel of Figure A .4
shows the additive contour surface of the main effect smooth for Phrase
Frequency and the time by Phrase Frequency tensor product interaction
at electrode O1, with a long-lasting positivity for low frequency words

and a long-lasting negativity for high frequency words.

The bottom panel of Figure A.4 shows the results of a traditional ERP
analysis in which Phrase Frequency was dichotomized with respect to

the mean predictor value (see dashed line in the top panel of Figure A.4).
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Figure A.4. The effect of Phrase Frequency at electrode O1 in a GAMM
analysis (top panel) and a traditional analysis in which Phrase Frequency is

dichotomized (bottom panel).

The general nature of the Phrase Frequency effect is similar to that in
the cAMM analysis, with more positive voltages for low frequency words
as compared to high frequency words. Consistent with the top panel
of Figure A.4, the difference between high and low predictor values is
greatest around 300 ms after picture onset, with significant effects in
both the item and the subject analysis.

At other points in time, the grand mean curve for high frequency
phrases is below that for low frequency phrases as well, but this dif-
ference reaches significance for a limited number of sample points at a
non-corrected alpha level only. The inability of the subject and item
analyses to pick up on the phrase frequency effect throughout the analysis
window may be the result of a loss of statistical power in the traditional
analysis as compared to the GAMM analysis. This loss in statistical power
is a consequence of both the dichotomization of phrase frequency and
the fact that other parts of the ERP are not properly controlled for in
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the traditional analysis (e.g., trial-effects and random effects of subject,
preposition, target noun and prepositional phrase).

In this appendix we compared the GAMM analyses reported in this
chapter to traditional ERP analyses using predictor dichotomization for
simulated data, as well as for some of the key effects reported in this
chapter. Generally speaking, two conclusions can be drawn from this
comparison. First, the GAMM analyses reported here seem to provide
estimates of predictor effects that are compatible with the grand mean
curves. The results of a GAMM analysis and a traditional analysis typ-
ically converge as long as dichotomization of a predictor is relatively
unproblematic given the nature of a predictor effect. When this is not the
case, the differences that arise between the results from a GAMM analysis
and a traditional analysis are easily explained given the nature of the
predictor effect disclosed by the GAMM.

Second, a GAMM analysis provides much more information as com-
pared to a traditional analysis in which predictors are dichotomized. In a
dichotomization analysis, predictor values with very different patterns of
results are grouped together, which can result in a loss of statistical power,
especially when other sources of variance in the ERP signal are not (prop-
erly) taken into account. In addition, the nature of tri- or multipartite
predictor effects is - by definition - lost when a predictor is dichotomized.
This can lead to a loss of information or misguided conclusions about the
nature of an effect. By contrast, as seen in the analysis of the simulated
data, GAMM analyses accurately capture non-linear predictor effects as

they evolve over time.

Some of the problems associated with a traditional dichotomization
analysis can be overcome by choosing an experimental design that invest-
igates the effect of a single categorical predictor with carefully selected
predictor values that fall into two or more discrete categories. Many of
the questions in psycholinguistic research, however, are easier to answer in
multiple regression designs that allow for the simultaneous investigation of
the effect of multiple numerical predictors with continuous distributions.
The experimental design and analysis techniques presented here provide

an example of how the multiple regression techniques that have become
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commonplace in reaction time studies can be applied in ERP studies
through the use of cAMMs. As demonstrated in this appendix, the results
from such a GAMM analysis provide precise information about the linear
and non-linear nature of the effects of multiple numerical predictors as

they evolve over time.
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Summary

Every day, we use language to communicate about the world around us
in a seemingly effortless manner. Without any significant problems, we
understand others and others understand us as we convey information
about countless objects and events in this world. Rarely, if ever, do we
ask ourselves the question “How is this possible?”.

Psycholinguistics is a field of research that tries to answer this and
many more questions about the human language processing system.
Typically, data are collected through experiments in a lab, in which
participants are asked to complete a linguistic task while their behavior
is tracked in one form or another. Subsequently, the data from these ex-
periments are analyzed in an attempt to gain new insights into linguistic
processing.

Oftentimes, psycholinguistic researchers investigate the effects of
lexical distributional variables on behavioral measures of language pro-
cessing. Lexical distributional variables are measures that describe the
distributional properties of a linguistic stimulus, such as the frequency of
occurrence of a word or the number of words that are similar in form to a
word (e.g., “life” is similar to “wife”). The effects of lexical distributional
variables inform us about which properties of linguistic stimuli influence
language processing. They provide no information, however, about why
these properties - and not others - are important.

While lexical distributional variables provide different higher-level
windows on the language processing system, this dissertation is an at-
tempt to describe the language processing system itself. Unlike analyses
and linguistic models that are based on lexical distributional variables, it

takes into account the role of learning. The point of departure for the
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analyses of linguistic data sets presented here is a simple general-purpose
probabilistic learning algorithm (cf. Chater et al., 2006; Hsu et al., 2010,
see also Baayen et al., 2011): the Rescorla-Wagner equations (Rescorla
& Wagner, 1972). As a mathematical formalization of discrimination
learning, the Rescorla-Wagner equations describe how people learn to
respond differently to different stimuli, be they linguistic or non-linguistic
in nature.

The Rescorla-Wagner equations describe a two-layer network model,
in which both input units and outcomes are symbols. In the work presen-
ted here, these symbols are linguistic units, such as letters, phonemes
or words. As such, the symbolic approach used here stands in contrast
to sub-symbolic approaches, in which linguistic units are represented as
activation patterns over non-symbolic units (which, at a lower level of gran-
ularity, are again symbolic). Symbolic models are an oversimplification
of a more complex neurobiological reality (as are many implementations
of sub-symbolic models), but provide highly competitive performance
and an increased interpretability as compared to sub-symbolic models of
language processing.

More precisely, the foundation of the work presented here was laid
down in Baayen et al. (2011), who describe an implementation of — the
equilibrium equations for (Danks, 2003) — the Rescorla-Wagner equations
in a model for silent reading. Given that the associations between input
units and outcomes were estimated independently for each outcome -
an assumption similar to the independence assumption in a statistical
classification technique referred to as Naive Bayesian Classifiers - Baayen
et al. (2011) refer to their model as the Naive Discriminative Reader
(NDR). The NDR model accounted for a wide range of effects documented

in the experimental reading literature.

The NDR model, however, was limited to silent reading. To truly
gauge the potential of a computational approach to language processing,
it is pivotal to investigate its performance across a variety of experi-
mental tasks and the behavioral measures of language processing ob-
tained through these tasks. This dissertation provides a more extensive

evaluation of the possibilities offered by a discrimination learning ap-
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proach to language processing, by looking at the explanatory power of
discrimination learning networks in three different experimental tasks

and for three different dependent variables.

First, this thesis presents an extension of the NDR model for silent
reading to reading aloud. The resulting Naive Discriminative Reading
Aloud (NDR,) model consists of two discrimination learning networks.
The first network maps orthographic features onto lexico-semantic rep-
resentations, similar to the discrimination learning network for silent
reading described in Baayen et al. (2011). The second network maps

lexico-semantic representations onto phonological features.

Existing models of reading aloud typically consist of two routes: a
lexical route in which the orthography-to-phonology mapping is mediated
by lexico-semantic representations and a sub-lexical route, in which ortho-
graphic units are mapped directly onto phonological units. By contrast,
a single lexical architecture is responsible for both word and non-word
naming in the NDR, model presented here.

In word reading, the orthographic presentation of the target word
(e.g., “life”) activates the lexico-semantic representation of the target
word, as well as the lexico-semantic representations of orthographically
similar words (e.g., “wife”, “knife”). These lexico-semantic representations
then activate phonological units, which allow for the pronunciations
of the target word. For a non-word (e.g., “kife”), no lexico-semantic
representation exists. The activation of phonological units, therefore,
is driven exclusively by the activation of orthographic neighbors of the
non-word (e.g., “life”, “wife”, “knife”).

An extensive evaluation of the NDR, model demonstrates that the
single-route architecture of the NDR, model is capable of capturing a
wide range of effects documented in the reading aloud literature, both
for words and for non-words, including linear and non-linear effects of
neighborhood density measures and the consistency of the orthography
to phonology mapping, as well as a hitherto unobserved effects of non-
word frequency. Despite its much more parsimonious model architecture,
the overall performance of the NDR, model is highly similar to that of

a state-of-the-art dual-route model of reading aloud (see Perry et al.,
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2007). Furthermore, the addition of a sub-lexical route architecture does
not further improve the performance of the NDR, model. When using
a discrimination learning approach, therefore, a single lexical route is
sufficient to provide a highly competitive account of language processing

in the reading aloud task.

The second test-case for a discrimination learning approach presented
here is an investigation of the eye fixation patterns during noun-noun
compound reading in a new large-scale corpus of eye movements during
natural discourse reading, the Edmonton-T1iibingen eye-tracking corpus
(ET corpus). An analysis using distributional lexical variables indicates
that the fixation patterns on compounds in the ET corpus do not fit
straightforwardly with existing sub-lexical (constituent access precedes
full-form access), supra-lexical (full-form access precedes constituent ac-
cess) or dual-route (a holistic and a decompositional route are pursued
in parallel) models of compound reading. An analysis using predictors
derived from two naive discrimination learning (henceforth NDL) net-
works sheds further light on the processes that drive compound reading
and suggests that compound reading is perhaps better thought of as an
attempt to activate the lexico-semantic information associated with a
compound given all information available to the reader (cf. maximization
of opportunities, Libben, 2006).

Over 60% of the time, a single fixation on a compound suffices. During
single fixations, readers fixate far enough into a compound to make all
orthographic features of the compound available. These orthographic
features then activate all lexico-semantic information associated with
a compound: first-and-only fixation durations are co-determined by an
integrative measure of the bottom-up support for the lexico-semantic
representations of not only the compound as a whole, but also the modifier
and the head.

Nearly 40% of the time, readers need a second fixation to successfully
process a compound. An important cause of additional fixations is a
suboptimal fixation position during the first fixation. As a result, not all
orthographic features of a compound are available to the reader during

first-of-many fixations. Accordingly, the NDL measure that proved most
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predictive for first-and-only fixation duration is the activation of the
lexico-semantic representation of the modifier given the first orthographic
trigram of a compound only.

In the analysis using lexical distributional variables, both first-and-
only and second fixation durations were influenced by the frequency of the
compound. On the basis of a lexical predictor analysis one might therefore
be tempted to conclude that the processes underlying single fixations and
second fixations are similar. The NDL analysis of the compound reading
data, however, demonstrates that the frequency effects for first-and-only
fixations and second fixations are qualitatively different. Whereas first-
and-only fixation durations are characterized by the bottom-up support
for the lexico-semantic information associated with a compound, second
fixation durations are influenced by the out-of-context, a priori probability
of a compound. In other words: during second fixations readers resort to
a top-down “best guess” strategy.

Overall, the explanatory power of lexical distributional variables and
that of NDL measures was highly similar. As for the reaction times
in the reading aloud task, therefore, the NDL framework offers a highly
competitive perspective on eye fixation patterns during compound reading.
As demonstrated above, however, the NDL measures provide more detailed
and more differentiated insights into the processes that underlie these
fixation patterns.

Third, the perhaps most stringent test of the potential of discrimin-
ation learning in this dissertation is an exploration of the explanatory
power of NDL measures for the electroencephalographic correlates of lan-
guage processing in a primed picture naming task, as gauged through the
ERP signal following picture onset. In this primed picture naming task,
participants were presented with preposition plus definite article primes
(e.g., “on the”) and target pictures of concrete nouns (e.g., “STRAW-
BERRY?”). The data for this primed picture naming experiment show
an effect for preposition frequency, theta range oscillations for word fre-
quency and constructional prototypicality, and a prolonged near-linear

effect for phrase frequency.
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Summary

An NDL analysis of the ERP data shows an effect of the bottom-up
support for preposition that qualitatively and topographically resembles
the effect of preposition frequency. Furthermore, the effect for the bottom-
up support for the target word shows some similarities to the effect of
word frequency. Most similar to the effect of word frequency, however, is
the effect of top-down information about the a priori probability of the
target word. Again, therefore, the NDL analysis provides more detailed
insight into the nature of a frequency effect.

The quantitive performance of the NDL measures in explaining the ERP
signal after picture onset is at least as good as the performance of lexical
distributional variables. In a regression analysis NDL measures and lexical
predictors explain a very similar amount of the variance in the ERP signal.
According to an analysis with a tree-based machine learning technique,
however, NDL measures significantly outperform lexical distributional
variables.

In conclusion, this dissertation assesses the potential of discrimination
learning as a perspective on the adult language processing system. Across
three experimental tasks and three behavioral measures of language
processing, discrimination learning shows highly competitive performance
as compared to existing analysis techniques and models of language
processing, and allows for new or more refined insights into the systemic
properties that drive language processing through a general-purpose

learning mechanism that is remarkably simple and transparent.
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Zusammenfassung

Téglich verwenden wir Sprache scheinbar miihelos um uns tiber unsere
Umwelt auszutauschen. Ohne grofiere Probleme verstehen wir Andere
und Andere verstehen uns, wenn wir Informationen iiber zahllose Objekte
und Ereignisse in der Welt iibermitteln. Selten fragen wir uns: “Wie ist
das moglich?”.

Psycholinguistik ist ein Forschungsgebiet, welches diese und viele weit-
ere Fragen iiber das menschliche Sprachverarbeitungssystem zu beant-
worten versucht. Typischerweise geschieht das Sammeln von Daten durch
Experimente in einem Labor, wobei Versuchspersonen eine linguistische
Aufgabe durchfiihren, wéhrend auf die eine oder andere Weise ihr Ver-
halten beobachtet wird. Anschlielend werden die Daten aus diesen Ex-
perimenten ausgewertet, mit dem Ziel neue Einblicke in die linguistische
Verarbeitung zu gewinnen.

Oft untersuchen Psycholinguisten die Auswirkungen lexikalischer Vari-
ablen auf Verhaltensmafle der Sprachverarbeitung. Lexikalische Variablen
sind Messgroflen, welche die Verteilungseigenschaften eines linguistischen
Stimulus beschreiben, so wie die Worthaufigkeit oder die Anzahl an
Wortern, die von der Form her &hnlich sind (bspw. “life” und “wife”).
Sie werden deshalb auch lexikalische Verteilungsvariablen genannt. Die
Auswirkungen lexikalischer Verteilungsvariablen verraten uns, welche
Eigenschaften linguistischer Stimuli einen Einfluss auf die Sprachverarbei-
tung haben. Allerdings geben sie keinerlei Auskunft dariiber, weshalb
diese Eigenschaften — und nicht andere — wichtig sind.

Waihrend lexikalische Verteilungsvariablen verschiedene Einblicke in
die iibergeordneten Prozesse der Sprachverarbeitung ermoglichen, ver-

sucht diese Dissertation das Sprachverarbeitungssystem an sich zu mod-
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Zusammenfassung

ellieren. Im Gegensatz zu Analysen und linguistischen Modellen, die auf
lexikalischen Verteilungsvariablen beruhen, berticksichtigt diese Arbeit
die Rolle des Lernens. Der Ausgangspunkt fiir die Analyse linguistischer
Datensétze, wie sie hier vorgestellt wird, ist ein einfacher universeller
probabilistischer Lernalgorithmus (vgl. Chater et al., 2006; Hsu et al.,
2010, siehe auch Baayen et al., 2011): die Rescorla-Wagner-Gleichungen
(Rescorla & Wagner, 1972). Als mathematische Formalisierung des
“Discrimination Learning” beschreiben die Rescorla-Wagner-Gleichungen,
wie Menschen lernen, unterschiedlich auf unterschiedliche Stimuli zu
reagieren.

Die Rescorla-Wagner-Gleichungen beschreiben ein zweischichtiges
Netzwerk-Modell, in welchem sowohl die Eingabe als auch die Ausgabe
aus diskreten Symbolen besteht. In der hier vorgestellten Arbeit sind
diese Symbole linguistische Einheiten wie Buchstaben, Phoneme oder
Wérter. Damit steht der hier verwendete symbolische Ansatz im Kontrast
zu subsymbolischen Ansétzen, in welchen linguistische Einheiten durch
Aktivitdtsmuster iiber nicht-symbolischen Einheiten représentiert sind
(diese nicht-symbolischen Einheiten kénnen auf niedrigerer Ebene wieder
als symbolisch angesehen werden). Symbolische Modelle sind eine starke
Vereinfachung einer komplexeren neurobiologischen Realitéit (wie viele
Implementierungen von subsymbolischen Modellen), bieten dafiir aber
eine gute Performance und eine direktere Interpretierbarkeit im Vergleich
zu subsymbolischen Modellen.

Der Grundstein der hier vorgestellten Arbeit wurde durch Baayen et
al. (2011) gelegt, die eine Implementierung der Gleichgewichtsgleichungen
fiir die Rescorla-Wagner-Gleichungen (Danks, 2003) in einem Modell fiir
stilles Lesen beschreiben. Baayen et al. (2011) nennen ihr Modell den
“Naive Discriminative Reader” (NDR), in welchem vorausgesetzt wird, dass
die Assoziationen zwischen Eingabe und Ausgabe unabhéngig vonein-
ander fiir jede Ausgabe geschétzt werden — eine Annahme &hnlich der
Unabhéngigkeitsannahme in einer statistischen Klassifizierungstechnik
bekannt als Bayes-Klassifikator. Das NDR Modell erklirte eine grofle

Auswahl an Ergebnissen aus der Literatur des experimentellen Lesens.
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Allerdings war das NDR Modell auf stilles Lesen beschréinkt. Um das
Potential eines computergestiitzten Ansatzes fiir die Sprachverarbeitung
wirklich einschétzen zu kénnen, ist es entscheidend, dessen Leistung iiber
eine Vielfalt von experimentellen Aufgaben und die dabei erlangten Ver-
haltensmafle der Sprachverarbeitung, zu betrachten. Diese Dissertation
liefert eine umfassendere Einschitzung der Moglichkeiten, die ein “Dis-
crimination Learning” Ansatz der Sprachverarbeitung bietet, indem sie
die Aussagekraft von “Discrimination Learning” Netzwerken in drei unter-
schiedlichen Experimenten und fiir drei verschiedene abhéngige Variablen
betrachtet.

Zuerst stellt diese Arbeit eine Erweiterung des NDR Modells fiir stilles
Lesen auf lautes Lesen vor. Das resultierende “Naive Discriminative
Reading Aloud” (NDR,) Modell besteht aus zwei “Discrimination Learn-
ing” Netzwerken. Das erste Netzwerk bildet orthographische Merkmale
auf lexiko-semantische Reprisentationen ab, d&hnlich dem “Discrimina-
tion Learning” Netzwerk fiir stilles Lesen des NDR Modells. Das zweite
Netzwerk bildet lexiko-semantische Représentationen auf phonologische
Merkmale ab.

Existierende Modelle des lauten Lesens bestehen typischerweise aus
zwei Pfaden: einem lexikalischen Pfad, auf welchem die Abbildung von
Orthographie auf Phonologie {iber lexiko-semantische Repréasentationen
durchgefiihrt wird, und einem sublexikalischen Pfad, auf welchem or-
thographische Einheiten direkt auf phonologische Einheiten abgebildet
werden. Im Gegensatz dazu verwendet das hier vorgestellte NDR, Mod-
ell eine einzige lexikalische Architektur, die sowohl fiir Wort- als auch

Nonwort-Benennung verantwortlich ist.

Beim Lesen von Wértern aktiviert die orthographische Darstellung
des Zielwortes (z.B. “life”) sowohl die lexiko-semantische Représenta-
tion des Zielwortes als auch die lexiko-semantischen Reprisentationen
von orthographisch dhnlichen Wortern (z.B. “wife”, “knife”). Diese
lexiko-semantischen Repréasentationen aktivieren wiederum phonologische
Einheiten, welche die Aussprache des Zielwortes ermoglichen. Fiir ein
Nonwort (z. B. “kife”) existiert keine lexiko-semantische Repriisentation.

Die Aktivierung von phonologischen Einheiten wird daher ausschliellich
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Zusammenfassung

durch die Aktivierung von orthographischen Nachbarn des Nonwortes

(z. B. “life”, “wife”, “knife”) angetrieben.

FEine umfassende Betrachtung des NDR, Modells zeigt, dass die Ein-
Pfad-Architektur des NDR, Modells in der Lage ist eine Vielfalt von
Ergebnissen aus der Literatur zu lautem Lesen zu erfassen. Dies gilt
sowohl fiir Worter als auch fiir Nonworter und bezieht sich zum Beispiel
auf Effekte von “neighborhood density” Maflien und Effekte des Zusam-
menspiels von Ortographie und Phonologie. Zusétzlich sagt das NDR,
Modell bisher nicht berichtete Einfliisse von Nonwort-Haufigkeit vorher,
welche auch in am Menschen gemessenen Daten gefunden werden. Trotz
seiner sparsamen Modellarchitektur ist die quantitative Leistung des NDR,,
Modells der eines aktuellen Zwei-Pfad-Modells des lauten Lesens (see
Perry et al., 2007) sehr dhnlich. Des Weiteren verbessert das Hinzufiigen
einer sublexikalischen Pfad-Architektur die Leistung des NDR, Modells
nicht weiter. Daher ist, beim Verwenden eines “Discrimination Learning”
Ansatzes, ein einziger lexikalischer Pfad ausreichend, um eine mit anderen
aktuellen Ansétzen vergleichbare Beschreibung der Sprachverarbeitung

in der Aufgabe des lauten Lesens zu bieten.

Eine zweite hier vorgestellte Anwendung des “Discrimination Learn-
ing” Ansatzes in der Linguistik ist eine Untersuchung der Augenfix-
ationsmuster wihrend des Lesens von Nomen-Nomen-Komposita, die
innerhalb von langeren Prosatexten vorkamen. Die Eyetracking-Daten
wurden wihrend der hier vorgestellten Arbeit erhoben und bilden einen
Teil des Edmonton-Tiibingen eye-tracking corpus (ET corpus). Eine Ana-
lyse mit lexikalischen Verteilungsvariablen zeigt, dass die Fixationsmuster
fiir Komposita im ET corpus nicht direkt mit bestehenden sublexikalischen
(Teilwortzugriff vor Ganzwortzugriff), supralexikalischen (Ganzwortzu-
griff vor Teilwortzugriff) oder Zwei-Pfad-Modellen (ein ganzheitlicher
und ein dekompositioneller Pfad werden gleichzeitig verfolgt) des Lesens
von Komposita iibereinstimmen. Eine Analyse mit Pridiktoren, die
aus zwei “Naive Discrimination Learning” (NDL) Netzwerken abgeleitet
werden, gibt weiteren Aufschluss iiber die Prozesse, welche das Lesen von
Komposita lenken, und legt nahe, dass beim Lesen von Komposita alle

verfiigbaren Informationen vom Leser genutzt werden um die mit dem
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Komposita assoziierte lexiko-semantischen Informationen zu aktivieren

(vgl. maximization of opportunities, Libben, 2006).

Mehr als 60% der Zeit reicht eine einzige Fixation auf das Kom-
positum aus. Waéihrend dieser einzelnen Fixation fixieren Leser weit
genug in ein Kompositum hinein um alle seine orthographischen Ei-
genschaften verfiighar zu machen. Diese orthographischen Eigenschaften
wiederum aktivieren die gesamte lexiko-semantische Information, die
mit einem Kompositum assoziiert ist: Dauern von “first-and-only” Fixa-
tionen sind mitbestimmt durch eine einheitliche Messung der Bottom-up
Unterstiitzung der lexiko-semantischen Reprisentation sowohl des Kom-

positums als Ganzem, als auch seiner Teile.

In beinahe 40% der Fille benotigen die Leser eine zweite Fixation um
das Kompositum erfolgreich zu verarbeiten. Ein wichtiger Ausloser fiir
zusétzliche Fixationen ist eine suboptimale Fixationsposition wihrend
der ersten Fixation. Infolgedessen stehen dem Leser bei “first-of-many”
Fixationen nicht alle orthographischen Eigenschaften zur Verfiigung.
Dementsprechend hat bei “first-and-only” Fixationen die NDL Aktivier-
ung der lexiko-semantischen Reprisentation des linken Teils die grofite
Vorhersagekraft, wenn ausschliellich das erste Trigram des Kompositums

als Eingabe verwendet wird.

In der Analyse mit lexikalischen Verteilungsvariablen zeigt sich ein
Einfluss der Worthéufigkeit des Kompositums sowohl auf die “first-and-
only” Fixation als auch auf die zweite Fixation. In Anlehnung an die
Analyse mit lexikalischen Verteilungsvariablen kénnte man daher anneh-
men, dass die grundlegenden Prozesse von “first-and-only” Fixationen und
zweiten Fixationen &#hnlich seien. Die NDL Analyse der Komposita-Daten
zeigt allerdings, dass sich die Worthéufigkeitseffekte fiir “first-and-only”
Fixationen und zweite Fixationen qualitativ unterscheiden. Wahrend
“first-and-only” Fixationsdauern durch die Bottom-Up Unterstiitzung der
mit einem Kompositum assoziierten, lexiko-semantischen Informationen
charakterisiert sind, werden zweite Fixationen durch die unabhéngige a
priori Wahrscheinlichkeit eines Kompositums beeinflusst. Anders gesagt:
Wiéhrend der zweiten Fixation greifen die Leser auf eine Top-Down “best

guess” Strategie zuriick.
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Zusammenfassung

Allgemein ist die Vorhersagekraft von lexikalischen Verteilungsvari-
ablen und die von NDL Werten #dhnlich. Wie bei den Reaktionszeiten
in der Aufgabe “lautes Lesen” schneidet die NDL Struktur auch bei der
Vorhersage von Augenfixationsmustern beim Lesen von Komposita im
Vergleich mit anderen aktuellen Ansitzen gut ab. Wie oben dargestellt,
liefern die NDL Werte weit detailliertere und differenziertere Einblicke in

die Prozesse, die diesen Fixationsmustern zugrunde liegen.

Der dritte, vielleicht strengste, Test des Potentials von “Discrimination
Learning” in dieser Dissertation ist eine Untersuchung der Vorhersagekraft
der NDL Werte fiir die elektroenzephalographischen Korrelate der Sprac-
hverarbeitung in einem Priming-Experiment zur Bildbenennung. Als zu
untersuchendes Korrelat wurde das, auf den Onset des Bildes folgende,
ERP Signal ausgew#hlt und gemessen. In diesem Priming-Experiment
wurde den Versuchspersonen als Prime eine Préposition zusammen mit
einem bestimmten Artikel gezeigt (z. B. “on the”), gefolgt von einem Bild
eines freigestellten Objektes (z. B. einer Erdbeere). Die Daten aus diesem
Priming-Experiment zeigen einen Effekt der Prépositionshaufigkeit, einen
anhaltenden, beinahe-linearen Effekt fiir die Phrasenhéufigkeit und oszil-
latorische Effekte der Worthaufigkeit und der “Constructional Prototyp-
icality”, welche beide die ERP-Aktivitit im Theta-Bereich modulieren.

Eine NDL Analyse der ERP Daten zeigt einen Effekt der Bottom-
Up Aktivierung der Préposition, der qualitativ und topographisch dem
Effekt der Prapositionshiufigkeit dhnelt. Des Weiteren weist der Ef-
fekt der Bottom-Up Aktivierung des Zielworts einige Ahnlichkeiten zum
Worthéufigkeitseffekt auf. Die stirkste Ahnlichkeit zum Worthiufigkeit-
seffekt findet sich allerdings beim Effekt der Top-down Information,
genauer in der a priori Wahrscheinlichkeit des Zielwortes. Wiederum
liefert die NDL Analyse deshalb einen detaillierteren Einblick in das Wesen
eines Haufigkeitseffektes.

Die quantitative Leistung der NDL Pradiktoren beim Erkldren des
ERP Signals nach dem Erscheinen des Bildes ist mindestens so gut wie
die Leistung lexikalischer Verteilungsvariablen. In einer Regressionsana-
lyse erkldren NDL Prédiktoren und lexikalische Priadiktoren jeweils einen

ghnlich grofien Anteil der Varianz im ERP Signal. In einer Analyse, der
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eine baumbasierte “Machine Learning” Technik zugrunde liegt, zeigen
die NDL Pradiktoren aber eine signifikant bessere Vorhersagekraft als die
lexikalischen Verteilungsvariablen.

Diese Dissertation zeigt das Potential des “Discrimination Learning”
als Beschreibung des Sprachverarbeitungssystems von Erwachsenen auf.
Drei Experimente und drei Verhaltensmessungen der Sprachverarbeitung
zeigen, dass “Discrimination Learning” im Vergleich zu anderen Analyse-
techniken und Sprachverarbeitungsmodellen vergleichbare oder bessere
Ergebnisse liefert. Dariiber hinaus erméglicht “Discrimination Learning”
neue und detailliertere Einblicke in die zugrunde liegenden Eigenschaften
des Sprachverarbeitungssystems. Dabei bedient sich der hier vorgestellte
Ansatz eines bemerkenswert einfachen, transparenten und universellen

Lernmechanismus.
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