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Geleitwort

Zu den großen Herausforderungen unserer Zeit gehört in der Finanzwirtschaft zweifel-

sohne das Ausfallrisiko, auch Credit Risk genannt. Dieses Risiko betrifft alle Arten von

Finanzgeschäften, sofern die Möglichkeit besteht, dass vereinbarte Zahlungen womöglich

nicht vollumfänglich geleistet werden und somit zumindest teilweise ausfallen. Deshalb

stellt Credit Risk eine wichtige Risikoquelle für die folgenden Finanzmarktakteure dar:

• Risikomanager, die die bestehenden Risiken identifizieren und im gewünschten

Umfang adjustieren müssen.

• Investoren, die genau den Umfang und die Art dieses Risikos abschätzen und

geeignet in Bezug zu entsprechenden Risikoprämien setzen wollen, um von solchen

Positionen zu profitieren.

• Aufsichtsbehörden, die bei Übernahme von Kreditrisiken über den Umfang des

bei Banken zu unterlegenden Kapitals zu entscheiden haben.

Mit dem vorliegenden Werk ist es Thomas Schön sowohl gelungen die Struktur des

Credit Risk im Kern zu identifizieren als auch Ausfallrisiken mit modernen Finanzpro-

dukten wie Conditional Credit Default Swaps (CCDS) zu steuern und in Form von

aufsichtsrechtlichen Kennzahlen wie dem Credit Value Adjustment (CVA) geeignet zu

erfassen.

Durch eine konsequente empirische sowie modelltheoretische Analyse gelingt es Herrn

Schön die entscheidenden ökonomischen Effekte zu identifizieren und empirisch nachzu-

weisen. Insbesondere kann er so das umfassende Ausfallrisiko in drei verschiedene

Subausfallarten für Einzelausfälle, Multiausfälle und systemische Ausfälle unterteilen



und markante Veränderungen dieser in der Wahrnehmung des Kapitalmarktes durch

die Finanzkrise aufzeigen. Die Betrachtung dieser Subkategorien ist auch für Credit

Default Swaps (CDSs) auf Einzeladressen von höchster Relevanz, da diese je nach

Bonität unterschiedlich, aber in vorhersehbarer Weise auf CDS-Preise einwirken.

Ferner meistert Herr Schön die Bewertungsherausforderungen von CCDS. Mittels eines

Strukturmodells mit Zins- und Bonitätsrisiko erfasst er die spezifischen Unterschiede im

Vergleich zu herkömmlichen CDS und kann dennoch eine einfache, geeignete Näherungs-

formel, die lediglich auf Marktpreisen von gehandelten Instrumenten basiert, für CCDS

angeben.

Schließlich zeigt er die Modellabhängigkeit der CVA sowohl bei Aktien- als auch Zins-

derivaten auf.

Mit dieser Arbeit liefert Herr Schön für alle drei genannten Interessensgruppen rel-

evante Beiträge, die ein neues Verständnis von Credit Risk bei der Risikoerfassung,

-bewertung und aufsichtsrechtlichen Behandlung ermöglichen.

Ich kann sowohl allen Forschenden wie auch Risikomanagern, Tradern, Portfolio Man-

agern sowie Supervisorn in Aufsichtsbehörden, die mit Kreditrisiken zu tun haben, die

Lektüre der äußerst gelungenen Dissertationsschrift von Thomas Schön nur empfehlen.

Ich wünsche dieser Arbeit eine gute Aufnahme in diesen Leserkreisen.

Prof. Dr. Christian Koziol
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Meinen Eltern Gisela und Siegfried Schön danke ich aus tiefstem Herzen für die un-

beschwerte, wunderbare Kindheit, die sie mir und meinem Bruder geschenkt haben.

Dadurch, dass sie meine Ausbildung stets gefördert und mich all die Jahre unterstützt

haben, legten sie den Grundstein für die vorliegende Arbeit.

Meinem Bruder Dr. Stephan Schön und seiner Frau Amela danke ich für den steten
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Chapter 1

Introduction

This thesis comprises three essays on the pricing of default risk. It analyzes latest

developments in this field empirically and theoretically delivering deeper insights into

the questions of how firms default and how default risk is priced in interest rate and

equity instruments.

The origin of default risk lies in the possibility that a particular firm may not be able

to follow its financial obligations, only making fractions of promised payments to its

financial counterparties. This might lead to losses at a counterparty that in turn can

cause its default, too. Very common but still highly important financial instruments in

this context are debt securities such as bonds or loans. In the course of such a bond or

loan, an investor lends a predefined amount of capital to the issuing firm which is then

able to make investments that, for example, aim at expanding its business. Ideally,

the firm pays back the capital at the maturity of the security and compensates the

investor for lending his capital by paying interest on a regular basis. But since the

outcome of an investment is uncertain in advance, in a worst case scenario, the firm

can go bankrupt and impose a severe loss on the investor.

Thus, an investor has a deep interest in managing the default risk of his exposures. An

important financial innovation that was developed in the 1990s and that gained con-

siderable trading volumes in the 2000s are credit default swaps (CDS). A CDS insures

an investor against the default of a predefined debt security. In case the counterparty

of the investor defaults, he will receive a payment amount from the CDS contract

that restores the amount of capital that he lost because of the default which can be

considered as a perfect hedge of default risk.

Very important characteristics of CDS contracts are their very high liquidity and their

very high sensitivity towards default risk which make them ideal instruments for default

risk studies. For example, CDS can be pooled in a portfolio which again can be regarded
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as an underlying for other securities such as index credit default swaps or tranches of

collateralized debt obligations (CDOs). With the help of these instruments, an investor

can insure himself against losses of a portfolio of debt securities. Thus, their prices

reveal whether the default risks of single firms do only depend on their creditworthiness

or whether they might also be subject to defaults of other firms. The default of the

major parts supplier Delphi in 2005 and its consequences for the creditworthiness of

General Motors showed that a single default can cause a chain reaction on financial

markets. Longstaff and Rajan (2008) find that such correlated defaults are clearly

priced in CDO tranches. But their paper raises the question which firms exactly are

subject to the correlated default factors that they find for CDO tranche products. In

the second chapter of this thesis, we investigate this question empirically and find that

especially firms with a high creditworthiness are subject to correlated default factors.

Despite the fact that CDS contracts have gained high practical importance in the last

years, one of their major drawbacks lies in their restriction to plain vanilla debt se-

curities such as bonds or loans. There are, however, many other and more complex

financial instruments traded actively on the markets whose value can be clearly af-

fected by the default of a counterparty. Interest rate swaps (IR swaps) are one of the

most important representatives of non-vanilla instruments that are subject to default.

Their importance is attributed to the fact that IR swaps are used by many financial

institutions for managing interest rate risk. In contrast to plain vanilla debt securities

whose future default loss can be roughly estimated at valuation date, the future pay-

ments of IR swaps are stochastic because of uncertain interest rate payments. In this

context, the management of possible default losses is highly complex and the valua-

tion of defaultable IR swaps is non-trivial. Contingent credit default swaps (CCDS)

provide protection against the default of IR swaps in a similarly convenient way as

CDS do for plain vanilla debt securities. But the crucial question is whether CCDS

exhibit a similar pricing behavior as CDS do or whether they are basically different

instruments with distinct properties. In the third chapter, we investigate this question

in a semi-analytical setting and find that CCDS exhibit fundamentally different pricing

properties as CDS contracts.

One practical reason why CCDS have not gained high trading volumes lies in their

complex payoff profile. No mentionable market has emerged since dealers and buyers

avoid highly complex default products that are difficult to evaluate. Another major

reason lies in the way the Basel II/III accords stipulate banks to mitigate default risks.

On the one hand, a bank could offset its default risk from complex transactions by

buying a CCDS. But it can also mitigate its default risks by correcting the value of
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their portfolios for all default losses that might occur which is commonly known as

credit valuation adjustment (CVA). The CVA is computed by subtracting the value of

a defaultable financial instrument from its non-defaultable value. Therefore, it equals

the default risk premium of a specific security. The major problem related to CVA lies

in its computation since highly sophisticated models commonly need to be deployed.

However, there are no established standard models for CVA computations which en-

ables financial institutions to choose from a variety of available market models. As

a consequence, the CVA can differ across models to a certain extent. In the fourth

chapter of this thesis, we analyze the model dependence of the CVA for standard in-

struments in equity and interest rate markets. The main finding is that the CVA can be

highly model dependent with obvious important implications for market participants

and regulators. The last chapter concludes this thesis.
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Chapter 2

Do Correlated Defaults Matter for

CDS?∗

Abstract

Correlated defaults and systemic risk are clearly priced in credit portfolio securities

such as CDOs or index CDSs. In this paper we study an extensive CDX data set for

evidence whether correlated defaults are also present in the underlying CDS market.

We develop a cash flow based top-down approach for modeling CDSs from which we

can derive the following major contributions: (I) Correlated defaults did not matter for

CDS prices prior to the financial crisis in 2008. During and after the crisis, however,

their importance has increased strongly. (II) In line with a plausible default order,

we observe that correlated defaults primarily impact the CDS prices of firms with an

overall low CDS level. (III) Idiosyncratic risk factors for each single CDS play a major

(minor) role when the CDS premia are high (low).

∗ This chapter is based on the working paper “Do Correlated Defaults Matter for CDS Premia?
An Empirical Analysis” by Koziol, Koziol and Schön (2014).
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2.1 Introduction

Credit default swaps (CDSs) provide protection against the default of single name

borrowers. Their prices are therefore highly dependent on the future default probability

of the respective single name and they should only react to changes in their associated

creditworthiness. However, if CDSs on different single names are pooled together in

a portfolio, prices of securities on that portfolio, e.g. collateralized debt obligation

(CDO) tranches, reveal that not only single defaults are priced in the CDS pool but

correlated defaults are as well see e.g. Longstaff and Rajan (2008). As a consequence,

we have a paradoxical situation for the pricing of CDSs on single entities. On the

one hand, a default event and therefore a payoff from the CDS only depends on the

solvency of the particular firm. On the other hand, the market price for the CDS

is also impacted by other characteristics outside the firm such as correlation effects.

This property suggests that not only the individual default risks of a single name are

relevant for pricing CDS but also systemic factors that can lead to the default of many

single names simultaneously due to default correlation.

The aim of this paper is to analyze risk factors for correlated defaults that drive CDS

quotes. In particular, we strive for answers to the following research questions: (1)

Has the financial crisis changed the relevance of correlated default factors? (2) Which

CDSs are primarily impacted by correlated default factors? (3) Which CDSs require a

further idiosyncratic factor beyond the common default factors of the portfolio to be

reasonably explained?

To analyze these research questions, we use CDX data for CDSs and CDO tranches

retrieved from Markit for the time period from September 2005 until September 2012.

In the first step, we follow the approach proposed by Longstaff and Rajan (2008)

to calibrating default risk factors that explain CDO prices. We also find that three

factors — single defaults, industry defaults and systemic defaults — represent market

prices reasonably well. In the second step, we derive a cash flow based top-down

approach that translates CDO prices into CDS quotes. The notion behind this model

is that an observed change of a CDS translates with different sensitivities to the various

CDO tranches in which this entity is included. Furthermore, our top-down approach

allows for idiosyncratic risk factors that can perfectly explain empirically observed CDS

premia.

These estimations provide us with the following conclusions: before the crisis, corre-

lated default factors, i.e. industry and systemic defaults, played a minor role in the

pricing of CDSs. More than 80% of the observed default risk was caused by the single

default factor. During and subsequent to the crisis, correlated default factors strongly
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enhanced their importance. During the crisis, correlated default factors accounted for

about 80% of the default risk, and even after the crisis, their fraction is still above

50%.

Furthermore, we can observe that the CDO tranche sensitivities to the various CDSs

contained therein exhibit a reasonable default order. In other words, the low CDS

premia are primarily relevant for the senior tranche in a CDO, while the high CDS

quotes drive the equity tranche of a CDO. As a consequence of the further observation

that the equity tranche can be primarily characterized by the single default factor,

whereas the correlated default factors explain the more senior tranches, we can confirm

the following important relationship for the pricing of CDSs: high CDS premia are

primarily driven by the single default factor. For low CDS quotes, the correlated

default factors are a relevant issue.

The methods applied in this paper are related to other important studies. Giesecke et

al. (2011) introduce a top-down approach based on a default matrix implied by CDO

and CDS prices. We modify their approach by adapting the default matrix to observ-

able cash flows. That way, we achieve a low parameterization and a high analytical

and empirical tractability. To put our approach to work, we have to use a model for

the CDO portfolio for which a wide variety of literature exists. First of all, models

that belong to the category of top models can be employed within our framework. Top

models are used to directly model the portfolio loss distribution without considering

the single names of the underlying portfolio. Examples can be found in Longstaff and

Rajan (2008), Schönbucher (2006), Arnsdorf and Halperin (2007), Brigo et al. (2007),

Ding et al. (2009) and many others. Since we do not impose certain restrictions on

the CDO model but only assume the ability to model CDO cash flows, we could also

use bottom-up models that capture the portfolio loss distribution from the underlying

single-name portfolio. Li (2000), Hull and White (2004) and Lopatin (2011) belong to

this category. Ascheberg et al. (2013) investigate how these models perform empiri-

cally in hedging situations. Junge and Trolle (2013) construct a liquidity risk measure

for CDS markets in comparison to index CDSs. Our paper contributes to their discus-

sion through the introduction of idiosyncratic risk factors that explain the spread of

index-to-theoretical bases.

The remainder of the paper is organized as follows: in Section 2.2, we introduce our cash

flow based top-down approach. Section 2.3 presents a step-wise calibration procedure

for the top-down model that we apply in Section 2.4 to the CDX North America

Investment Grade index in order to analyze the question whether correlated defaults

are priced in CDS markets. Section 2.5 concludes.
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2.2 The Model

At first glance, single-name CDSs are only subject to individual default risk. However,

if they are pooled in a portfolio such as for CDOs, the prices of tranches reveal that they

contain not only individual, but also correlated default risks. In order to understand

which portfolio risk factors are priced in single-name CDSs we propose a top-down

approach that splits the cash flows of CDO tranches (top level) to the single name

CDSs of the underlying portfolio (down level). The cash flow allocation is based on

sensitivities that specify to what extent the cash flow of a specific CDS can be attributed

to a given CDO tranche. This approach is based on the characteristic that a portfolio

of CDSs provides equivalent cash flows to its corresponding CDO. Moreover, to capture

potential deviations, we extend our top-down approach by including an idiosyncratic

risk factor for each single-name CDS. This factor accounts for individual default risk

that is not priced in the CDO market and should therefore facilitate the interpretation

of any deviations between CDO-induced model premia and observed CDS premia.

In the following, we present how CDSs and CDO tranches are priced in our cash flow

based top-down approach in general and how the idiosyncratic risk factor is embedded

in our model for every single-name CDS. Furthermore, we outline the top model of

Longstaff and Rajan (2008) that we use to price CDOs and a pointwise-homogeneous

Poisson process for the idiosyncratic risk factors of single name CDS.

2.2.1 CDO Valuation

Let Lτ denote the accumulated loss of a CDO portfolio for any time τ with t ≤ τ ≤ T ,

where t denotes the valuation date and T the maturity of the CDO with notional

1. Then, for the possible portfolio loss outcomes during the lifetime of the CDO

0 ≤ Lτ < 1 holds. Furthermore, let ap and dp denote the attachment and the detach-

ment point of the tranche p. The accumulated loss process Lpτ of tranche p is then

expressed by

Lpτ =
1

dp − ap
(max[0, Lτ − ap]−max[0, Lτ − dp]) . (2.1)

The equation shows that the notional 1−Lpτ of the tranche p is not affected by portfolio

losses that occur below its attachment point, Lτ < ap. For higher losses Lτ ≥ ap, the

notional 1− Lpτ of p linearly decreases for increasing Lτ until Lτ hits the detachment

point of p leading to Lpτ = 1.
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The payment obligations of a CDO tranche become effective at payment dates tn for

which t < tn ≤ T holds. We denote the time period between tn−1 and tn as ∆tn where

usually ∆tn takes values that are close to the quarter of a year depending on the day

count convention of the CDO.

The protection leg of a CDO tranche compensates for losses in the underlying portfolio

interval [ap, dp) that occur between two payment dates tn−1 and tn. Thus, the value of

the protection leg at t under the risk-neutral measure Q is equal to

PF p,prot
t =

N∑
n=1

bt,tn · E
Q
t

(
Lptn − L

p
tn−1

)
(2.2)

where bt,tn denotes the discount factor at t with time horizion tn. In exchange for the

loss compensation, a CDO investor has to pay a premium cpt at every date tn on the

intact capital of the portfolio interval. The value of the premium leg referring to a

premium amount of 1 is then expressed by

PF p,prem
t =

N∑
n=1

bt,tn ·∆tn · E
Q
t

(
1− Lptn−1

)
. (2.3)

There are two conventions governing how CDO tranche premia are quoted in the mar-

kets. The approach that was mainly used before the financial crisis of 2008 is known

as the running spread convention. At the trading date t, the two counterparties of a

CDO tranche trade agree that the protection buyer will pay a premium cpt∆tn on the

remaining intact capital of the tranche to the protection seller at each payment date tn.

The premium cpt may change for every other CDO tranche trade and consequently, it

is subject to market risk. Thus, as the market risky premium cpt is paid on a recurring

basis its quoting convention is known as the running spread convention. Its value is

derived from the assumption that under the risk-neutral measure Q the value of the

protection leg has to equal the value of the premium leg leading to:

cpt =
PF p,prot

t

PF p,prem
t

. (2.4)

The other approach to quoting CDO tranches is known as the upfront payment con-

vention. It was already used for junior tranches before the financial crisis but it has

since become the market standard. Its major benefit lies in the simplification of trade

processing and the higher flexibility and efficiency in trade settlements. Unlike for cpt ,

the running spread cp,fix is set for a standard amount and is not subject to market risk.
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In order to account for the value of the CDO portfolio, the protection buyer pays an

upfront payment cp,up
t to the protection seller at t that is subject to market risk. When

the value of the protection leg is equal to that of the premium leg, cp,up
t is equal to

zero. Otherwise,

cp,up
t = PF p,prot

t − cp,fixPF p,prem
t (2.5)

holds. Equation (2.5) implies that cp,up
t can take negative values which might seem

unrealistic at first glance. But there are certain cases in which the value of the fixed

premium leg might be too high with respect to the quality of an underlying portfolio

interval and therefore the protection seller compensates the buyer for overpayments

that occur during the course of the CDO tranche.

Typically, the intervals [ap, dp) are parameterized in such a way that their union yields

the interval [0, 1). Furthermore, they are disjoint sets, making them adjacent intervals.

In the following, we will assume that p = 1 marks the most junior tranche of a CDO

which is commonly known as the equity tranche. As long as no default happens in the

CDO portfolio, the capital of the equity tranche remains unaffected. But as soon as

losses occur, the capital of the equity tranche will be reduced first until it is completely

exhausted. Further portfolio losses will then affect the next most junior tranche after

the equity tranche, p = 2, also known as the junior mezzanine tranche. Increasing

portfolio losses will consume the capital of p = 2 until it is completely exhausted, too.

In this way, at least in theory, the capital of the CDO is consumed tranche after tranche

until the capital of the entire portfolio is consumed.

2.2.2 CDS Valuation

In our top-down approach, the value of a CDS k is represented by its sensitivities qpk
towards the CDO tranches p = 1, . . . , P . In other words, the sensitivities qpk split the

cash flows of all CDO tranches to all the single-name CDSs of the underlying portfolio.

Therefore, in a perfect world, the cash flow of a CDO tranche p is completely allocated

to the underlying CDS portfolio leading to equation (2.6). Additionally, as we only

split a cash flow into positive amounts, inequation (2.7) has to hold:

K∑
k=1

qpk = 1,∀p, (2.6)

qpk ≥ 0,∀p,∀k. (2.7)
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(2.6) and (2.7) represent restrictions that CDS model premia have to adhere to and

that are especially important during calibration.

The cash flows of a CDO tranche are allocated to a single-name CDS as follows: as

can be seen from equation (2.1) the cash flows of a CDO tranche refer to its notional

with amount 1. However, the notional of the CDO portfolio adds up to 1 as well.

Consequently, CDO tranche cash flows need to be rescaled to the original portfolio

notional which can be achieved by multiplying equation (2.2) by (dp− ap). In the next

step, the rescaled CDO tranche cash flows are split to the single-name CDSs of the

portfolio by multiplying them by the tranche sensitivities qpk. For the protection leg of

a CDS k, the value of allocated tranche cash flows is expressed by:

PF k,prot
t =

N∑
n=1

bt,tn

P∑
p=1

qpk · (dp − ap) · E
Q
t

(
Lptn − L

p
tn−1

)
(2.8)

If both markets, the CDO as well as the CDS market, valued risks equivalently, equation

(2.8) would be sufficient for valuing the protection leg cash flow of any CDS. However,

this may not always be the case, and in order to account for CDS premia that are not

in line with CDO cash flows, we extend the CDS valuation by including idiosyncratic

risk factors. For this purpose, we introduce a stochastic default time ηk for each CDS

k where the distribution of ηk is driven by a k-specific idiosyncratic risk factor. Then

the value of the protection leg induced by the idiosyncratic risk factor is

Ik,prot
t = (1− ϕ) ·

N∑
n=1

bt,tn · P [tn−1 < ηk ≤ tn] , (2.9)

where ϕ denotes the recovery rate. As in the protection leg, the portfolio-related part

of the premium leg of k is computed as

PF k,prem
t =

N∑
n=1

bt,tn ·∆tn ·
P∑
p=1

qpk · (dp − ap) · E
Q
t

(
1− Lptn−1

)
(2.10)

and the part of the idiosyncratic risk factor as

Ik,prem
t =

N∑
n=1

bt,tn ·∆tn · P [tn < ηk] . (2.11)
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Finally, the model premium of a CDS k in our top-down approach is expressed by

fkt =
PF k,prot

t + Ik,prot
t

PF k,prem
t + Ik,prem

t

. (2.12)

If qpk = 0 for all p of a given k, then equation (2.12) reduces to the valuation formula

that is commonly used in the literature, e.g. as in Longstaff et al. (2005). It would

also mean that a CDS is not correlated with a given CDO portfolio at all.

Default Order Equations (2.8) to (2.12) show that in our approach mainly four types

of input are necessary for pricing CDS premia: the discount factors bt,tn , the expected

tranche loss EQ
t

(
Lptn
)
, the sensitivities qpk that determine the impact of the expected

tranche loss on the CDS premium, and finally the survival probabilities P [tn < ηk]

deduced from the idiosyncratic risk factor. While the expected tranche loss is computed

from CDO data, the sensitivities qpk and the idiosyncratic risk factor are retrieved from

information priced in the CDS market. The levels of their values have a strong economic

impact as they reveal which kind of portfolio risk is priced in a given CDS. For example,

let us consider the sensitivity q1
k that is associated with the equity tranche of a CDO.

If q1
1 is noticeably higher than all other q1

k then the bulk of the expected losses of the

equity tranche are priced in CDS k = 1. Another example deals with the important

question of whether systemic risk is priced in only a few single names or in all names

of a portfolio. Given the nature of systemic risk, one might expect that the effects of a

catastrophic event, e.g. a severe economic crisis, would lead to a substantial number of

defaults in the portfolio. Therefore, if CDSs and CDO markets are priced consistently

it is plausible to suggest that most of the single names are exposed to systemic risk,

implying equally high qpk for all k with respect to the senior tranche p = 4. In other

words, the risk of junior tranches should be mapped to only a few single names that

have a high probability of default. By contrast, the risk inherent in senior tranches

should be priced in single names with small CDS premia because they will most likely

only be affected by a catastrophic event. Consequently, the values qpk shed light on the

implicit default order that can be deduced from CDS and CDO premia. If the default

order prevails, then a high (low) CDS quote is supposed to have a high sensitivity to

the equity tranche p = 1 (senior tranche p = 4). A major question for our empirical

study in Section 2.4 will be, whether the default order can be verified empirically.
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2.2.3 Portfolio Model

There are several possibilities for modeling the loss distribution of a portfolio. One

common way is to model the default of every single name first and then to aggregate

the resulting single-name loss distributions to a portfolio loss distribution. This ap-

proach is known as the bottom-up approach and is used e.g. in the base correlation

model (O’Kane and Livesey (2004)). Although we are free to employ such a model

in our valuation approach, it seems to be more purposeful to model the portfolio loss

distribution directly without considering the risks inherent in single names. In this way,

one does not need to account for the dependence structure between all single names

which results in a much lower parameterization and simpler calibration of the model.

The model of Longstaff and Rajan (2008) combines these desirable properties and is

the portfolio model that we use throughout this paper.

First, we assume that the loss dynamic of a portfolio is driven by three independent

Cox processes i = 1, 2, 3. The intensity dynamic of each process is given in the form of

a Cox et al. (1985) process without drift as in

dλiτ = σi
√
λiτdY

i
τ , (2.13)

where dY i
τ marks the independent increment of a Wiener process related to process

i and σi its volatility. λiτ denotes the jump intensity. Let Pt[j = N i
T ] denote the

probability that conditional on time t process i has jumped j times at time T . It can

then be shown that the following equation holds for the jump probabilities of each

process:

Pt[j = N i
T ] = exp(−Ai(T − t) · λit) ·

j∑
k=0

Bi
j,k(T − t) · (λit)k, (2.14)

Ai(T − t) =
4σ2

i√
2σ3

i ·
[
1 + exp(−

√
2σi · (T − t))

] − √2

σi
(2.15)

where Bi
0,0(T − t) = 1, Bi

j,0(T − t) = 0 for j > 0, Bi
j,k(0) = 0 for j > 0, k > 0. The

remaining functions Bi
j,k(T − t), 1 ≤ k ≤ j − 1 are computed numerically from the

following system of ODEs:

dBi
j,j(τ) = j · (Bi

j−1,j−1(τ)− σ2
i · Ai(τ) ·Bi

j,j(τ))dτ, (2.16)

dBi
j,k(τ) =

(
jBi

j−1,k−1(τ)− kσ2
iA

i(τ)Bi
j,k(τ) +

(k + 1)kσ2
i

2
Bi
j,k+1(τ)

)
dτ. (2.17)
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As a result of the distributions for the number of jumps N i
τ and the jump size γi, we

obtain the following possible outcomes for the portfolio losses:

Lτ = 1− exp

(
−

3∑
i=1

γiN
i
τ

)
. (2.18)

Obviously, 0 ≤ Lτ < 1 holds for N i
τ ∈ N0. If N i

τ = 0,∀i then the exponential function

is equal to one and the portfolio loss takes the value Lτ = 0. For increasing N i
τ the

portfolio loss will increase as well until it takes values close to one.

2.2.4 Single-Name Model

In general, there are two model classes that are suitable for computing the default prob-

abilities of the idiosyncratic risk factors in equations (2.11) and (2.9): structural and

reduced form models. While structural models are particularly useful for an economic

explanation of the sources leading to the default of a company, reduced form models al-

low for a higher flexibility and do not need any assumptions with regard to the liability

structure. For these two reasons, we employ a pointwise-homogeneous reduced form

model in the context of Lando (1998) in order to compute default probabilities from

the idiosyncratic risk factor. Let θkτ mark the default intensity of the idiosyncratic risk

factor of single name k at time τ . The associated solution for the survival probabilities

Pt[T < ηk] can be derived as

Pt[T < ηk] = exp(−(θkt + ωkt ) · (T − t)) (2.19)

where ωkτ marks a technical intensity that does not exhibit a specific economic meaning.

The need for ωkτ arises because of the structure of equation (2.12) and the calibration

pattern introduced in Section 2.3. The first step in the pattern calibrates the ratio

PF k,prot
t /PF k,prem

t to observed CDS premia. Afterwards, for calibrating the idiosyn-

cratic risk factor, it first needs to be adapted to the protection and the default leg

induced by the tranche cash flows and the calibrated qpk as in (2.12). That means that

PF k,prot
t + Ik,prot

t

PF k,prem
t + Ik,prem

t

=
PF k,prot

t

PF k,prem
t

(2.20)

for calibrated ωkτ and θkτ = 0. To match observed CDS premia, we allow θkτ to take

values that are greater than −ωkτ . This way, the calibrated θkτ reflect the true level of

idiosyncratic risk.
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2.3 Model Calibration

For an accurate calibration, we propose a stepwise calibration pattern that successively

calibrates the models involved from the top level of the CDO portfolio to the down level

of each single-name CDS.

2.3.1 Portfolio Level

Let c∗pt denote the observable market quote of the CDO tranche p at time t. For a

given data set, we formulate the calibration problem as follows:

min
λt,σ,γ

∑
t

∑
p

∣∣∣∣cpt − c∗ptc∗pt

∣∣∣∣
s.t. λit ≥ 0,∀i, ∀t,

σi ≥ 0,∀i,

γi ≥ 0,∀i.

(2.21)

Calibration errors that are composed of absolute values of relative differences offer

several advantages in CDO calibration. First, the information of all tranches is incor-

porated into the calibration problem to the same extent. This effect avoids an overem-

phasis of junior tranches with relatively high premia and ensures that the information

contained in senior tranches is taken into account in a balanced way. The approach is

therefore superior for calibrating correlated default factors that drive prices of senior

tranches. Moreover, in comparison with a quadratic calibration error, the absolute

error forces the optimization algorithm to further minimize errors that are below one,

whereas quadratic errors tend to overemphasize very large deviations and to neglect

very small ones. The problem is solved with a gradient-based method.

2.3.2 Single-Name Level

In our approach, there are two types of risks that are priced in CDS premia: CDO-

induced risk and idiosyncratic risk. While the latter is only related to the single-name

k and therefore does not require any information about the other single names of

a portfolio, the former is split from the portfolio to all single names. This is why
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restrictions (2.6) and (2.7) have to be adhered to during the calibration of qpk. We

formulate the general calibration problem as

min
q,θ

∑
t

K∑
k=1

(fkt − f ∗kt )2

s.t.
K∑
k=1

qpk = 1,∀p,

qpk ≥ 0, ∀p, ∀k,

ωkt ≥ 0,∀k,

θkt ≥ −ωkt ,∀k,

(2.22)

where f ∗kt denotes the values of observed CDS market premia. We do not choose an

absolute error as in (2.21) because we want to make use of a quadratic optimization

algorithm that facilitates very fast and accurate calibration1.

Since θkt is not restricted to positive values the idiosyncratic risk factor can lead to

higher or lower CDS model premia compared to the case in which only portfolio risks

are priced. Let us assume that the model premium which is only induced by portfolio

risk is lower than the observed market premium. Then θkt > 0 has to hold as additional

default mass needs to be induced by the idiosyncratic risk factor. For the other case

that the portfolio model premium is too high, θkt < 0 leads to a reduction of the priced

default mass in the model premium. This is why one can directly infer from the value

of the intensities θkt whether a single name is subject to high or low idiosyncratic risk.

The restriction θkt ≥ −ωkt needs to be imposed because otherwise negative intensities

θkt + ωkt would be possible in (2.19), and the related default probabilities Pt[T < ηk]

would not meet the usual requirements for a probability measure.

Although the idiosyncratic risk factors provide easy and useful explanations they com-

plicate the calibration of CDS premia. One possibility for addressing this problem

would be to calibrate all the parameters related to CDSs at once: qpk, ω
k
t , θ

k
t . However,

it is non-trivial to solve such a high-dimensional problem. For this reason, we propose

a step-wise calibration approach that we outline in the following.

We split the problem (2.22) into two problems that are easier to solve. First, we

calibrate the sensitivities qpk only and afterwards the idiosyncratic risk factor where we

take the calibrated qpk from the first step as fixed values. This approach is motivated by

the assumption that all single names — and only them — are part of the CDO portfolio

1 As problem (2.21) would still be highly non-linear with a quadratic error, the absolute error there
is the better choice for an accurate calibration.
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and that all losses that are priced in the CDO should map, overall , to the single names.

Any further deviations that cannot be explained by the portfolio dynamics are then

captured by the idiosyncratic risk factor.

In accordance with the approach of Giesecke et al. (2011), let q ∈ R(k·p)×1 denote

the stapled vectors qk each of which contains the sensitivities qpk of a given k. With e

denoting a vector of ones for which e ∈ Rp×1 holds, we solve the following quadratic

problem for q:

min
q

1

2
qT ·Q · q

s.t. A · q = e

q ≥ 0.

(2.23)

Q is a diagonal matrix with matrices Qk on its diagonal and zeros otherwise with

Qk =
∑
τ

diag(zkτ ) · e · e′ · diag(zkτ ), (2.24)

where the elements of the vector zkt ∈ Rp×1 are defined as

zk,pt =
N∑
n=1

bt,tn · (dp − ap) ·

(
∆tn · E

Q
t

(
1− Lptn

)
−
EQ
τ

(
Lptn − L

p
tn−1

)
f ∗kt

)
. (2.25)

Equation (2.25) is obtained by subtracting (2.10) from (2.8) and rearranging. The

error is squared in equation (2.24) for a given k and stapled in Q for all single names.

With the help of a quadratic optimizer, the calibration of q turns out to be very fast,

accurate and unambiguous.

In the second step, we solve problem (2.22) for every k independently from the rest of

the portfolio but with fixed qpk from the previous calibration. This way, the intensities

θkt are obtained easily by applying a gradient-based method.
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2.4 Empirical Analysis

After describing the formal foundations of our analysis, we can turn to our overall

question of which default factors are priced in CDS markets empirically. We outline

the specifics of the CDX data set, provide corresponding results of the calibration

routine presented in Section (2.3) and finally show the test results which reveal the

role of correlated defaults in CDS markets in the years 2005 - 2012 which include the

subprime credit crisis.

2.4.1 Data Set

Our data set comprises daily CDO, index CDS and single-name CDS quotes of the CDX

North America Investment Grade Index from September 2005 until September 2012

with a maturity of five years which to our knowledge, is the most extensive CDX data

set used so far in the literature. The data set was completely retrieved from Markit,

which is the provider of the CDX index. The CDX comprises the cross-industry single

names that exhibit the highest liquidity in the credit derivatives market. Therefore,

our analysis focuses on the overall credit risk perception among representative single

names during that period.

There are some important characteristics of the CDX data set that we outline in the

following. Before the beginning of the financial crisis in 2007, the CDX index was

reconstituted every six months in March and September, a process which is commonly

known as index roll. Immediately before an index roll occurs, Markit conducts a

poll in which licensed CDS dealers agree on the most liquid 125 single names that

will constitute the next CDX index. The first index of that kind was the CDX 1 that

began trading in September 2003 and was labeled as an on-the-run index, which means

that it was constituted of the most liquid single names at that time. Afterwards, the

CDX 2 began trading in March 2004 as an on-the-run index and so forth. From this

point, trades in the CDX 1 were still possible as long as the maturity of the underlying

products was not reached. However, the CDX 1 was entitled to continue as an off-the-

run index as it did not represent the most liquid single names at that time. However,

no CDO data are available for the first four CDX indices and for this reason, we exclude

them from our analysis.

We include the four subsequent indices CDX 5 through 8 that exhibit workable time

series on daily CDO as well as CDS quotes and the same CDO tranche borders: 0−0.03,

0.03− 0.07, 0.07− 0.10, 0.10− 0.15 and 0.15− 0.30. For these indices, we also include
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index CDS2 data to supplement the missing tranche that would cover the last CDO

interval ending with detachment point 1. The only tranche of these indices that was

quoted according to the upfront payment convention (2.5) was the equity tranche with

c1,fix = 500 bp, a1 = 0 and d1 = 0.03. The quotes of all other tranches correspond to

the running spread convention (2.4).

For the following three years, the CDX data exhibit a peculiar feature: although index

rolls were conducted every half-year, CDX 9 is considered to be the most liquid refer-

ence index during the crisis. Because of this and the fact that CDX 9 has the most

workable time series in these three years, we exclude the indices CDX 10 through 13.

Furthermore, we do not supplement CDX 9 data with index CDS because the time

series of the 0.3− 1 tranche is available.

After CDX 9, three major changes occured for liquidity reasons. First, index rolls were

only conducted every full year. Thus, even index numbers are not available any more

because the odd numbers started to trade in the September of each year and traded for

the entire following year. Second, the tranche borders of the CDO were restructured

to four tranches 0 − 0.03, 0.03 − 0.07, 0.07 − 0.15 and 0.15 − 1. Third, the quotation

convention was changed to the upfront convention for all tranches which — in that

order — exhibit the fixed running premia 500 bp, 100 bp, 100 bp and 50 bp. The last

two indices that we include in our data sample are CDX 15 and CDX 17, of which the

former was on-the-run from September 2010 until September 2011 and the latter the

subsequent year.

In the whole observation period, four credit events occured that led to payouts of CDO

tranches and CDSs. The first two are related to Fannie Mae and Freddie Mac, which

were placed into conservatorship on September 7, 2008. Washington Mutual filed for

Chapter 11 bankruptcy on September 27, 2008, followed by CIT Group about one year

later on November 1, 2009. Until the respective credit event, we include the CDS time

series of all four entities. The absolute CDO tranche premia were reduced after each

credit event, but unlike the CDSs they continued trading on the markets as the capital

of the underlying portfolio intervals was not exhausted. After each credit event, the

version of the corresponding index was increased by one. So before September 7, 2008,

the CDX 9 data referred to its first version. Afterwards, the second version of CDX 9

began trading and so forth.

In the CDS space, major changes occured on April 8, 2009 and they are known as the

CDS Big Bang. The thrust of these changes was to improve the efficiency of central

clearing and trade processing in CDS markets. Of all the changes in the context of

2 The index CDS can be considered as a tranche on the whole portfolio interval 0− 1.
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the CDS Big Bang, the only one that may be important to us is the change of the

quotation convention. Before that date, CDS premia were quoted according to the

running spread convention. Afterwards, CDS dealers quoted them in terms of the

upfront payment convention. Another characteristic of the CDX data set is that all

CDS quotes after the CDS Big Bang were still quoted in terms of the running spread

convention. The conversion from upfront payments to running spreads is facilitated

by a model converter that Markit offers on its website. It is common market practice

to use models because otherwise — as can be seen from equations (2.4) and (2.5)3 —

conversion would not be possible.

The characteristics of the data set show that a uniform presentation of all indices is not

possible because of changing tranche borders and quotation conventions. Therefore, we

have two possible ways to describe the data set: first, we could present the descriptive

statistics for each single CDX index with its fixed characteristics in terms of quotation

convention and tranche borders. This would truly reflect all observed data and provide

full transparency but would involve costs regarding the associated scope and readability.

For this reason, we choose the second option which entails the use of model premia

computed from the calibrated top model. The advantage of this approach lies in the

fact that it facilitates the presentation of uniform time series for CDO tranche premia

which can be compared among indices. Clearly, this implies the drawback of imposing

model risk on the descriptive statistics. Because of the good model fit, which we will

present later, we consider this handicap to be negligible.

All CDX indices that we include in our study exhibit different tranche borders and

quotation conventions. As we seek to unify tranches across all indices we need to fix

the tranche borders and conventions. This leads us to the problem that we need to

reduce and convert observed data to premia that can be computed from any index. For

example, from the premia of the 0.07−0.10 and the 0.10−0.15 tranche we can compute

a model-implied premium for a non-existent 0.07 − 0.15 tranche, but not vice versa

because of missing information. Consequently, we have to fix our uniform tranche

borders to the borders of the CDX15 and CDX17 indices: 0.00 − 0.03, 0.03 − 0.07,

0.07 − 0.15 and 0.15 − 1.00. The model gives us the flexibility to use the quotation

convention for tranches that best fits our purposes. As outlined above, CDS premia

are quoted in accordance with the running spread convention throughout our data

set. Furthermore, according to the running spread convention, quotations can never

take negative values, which attributes a higher expressiveness to statistics. For these

3 The facts also hold for CDS model premia.
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two reasons, we use the running spread convention to represent tranche data that are,

provided that no workable observed time series exists, computed from the top model.

2.4.2 Descriptive Statistics

In the course of this paper, we investigate how the market perception of default factors

has changed over time. In order to draw meaningful conclusions from our data set, we

divide it into three parts that are in line with Kahle and Stulz (2010): the pre-crisis

period ranging from September 2005 until September 2007, which comprises the CDX 5

through 8 indices. The crisis period lasting from September 2007 until September 2010,

which consists solely of CDX 9 data. And finally, the post-crisis period from September

2010 until September 2012, which contains the CDX 15 and 17 indices. Thus, we are

capable of comparing the role of default factors in the CDS market before, during and

after the financial crisis.

Figure 2.1 plots CDO premia that were retrieved from the data set and that were

supplemented by model premia where necessary. The upper graph shows that until

spring 2007, the CDO market was in a comparably smooth state with equity tranche

premia just short of 2000 basis points. The premia of the 0.03− 0.07, 0.07− 0.15 and

0.15−1.00 tranches were negligibly small during that period. The outbreak of the crisis

in summer 2007 is reflected in increased premia for all tranches. The roll to the CDX

9 index saw a sharp drop in the equity tranche premia followed by very high market

uncertainty in the overall credit derivatives market. The credit events of Fannie Mae,

Freddie Mac and Washington Mutual in September 2008 caused the CDX 9 tranches

to peak at the beginning of 2009. Afterwards, the situation relaxed until summer 2010

when premia widened again, although no credit event occured in the index. This rise

may have been driven by the Greek sovereign debt crisis which started at that time and

may have channelled through to North American credit derivatives markets. Another

explanation might be the drop in CDX 9 liqudity in anticipation of the roll to the CDX

15 index which started trading at considerably lower premia. The low premium levels

of CDX 15 persisted throughout CDX 17 and were — at least for the equity tranche —

at levels similar to those immediately before the crisis. However, for the more senior

tranches the premium levels after the crisis are considerably higher than before the

crisis. As can be seen from the lower graph of Figure 2.1, the more senior tranches in

particular gained in relative premium levels during the crisis. This observation indicates

that correlated defaults may have played an increasingly important role during the crisis

because they mainly affect the premium levels of tranches with high seniority.
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Table 2.1 presents the descriptive statistics for the four tranche premia throughout

the complete data set4. The correlation between the time series decreases with the

seniority of the tranche. For example, the equity tranche is highly correlated with the

junior mezzanine tranche but exhibits almost no correlation with the senior tranche

with borders 0.15− 1.00. This property suggests that different risk factors are driving

the premia of different tranches and therefore justify the use of the three-factor model.

Furthermore, premium levels decrease with the seniority of a tranche because the cap-

ital of junior tranches is consumed first when defaults occur. Since all time series

exhibit a very high serial correlation, the descriptive statistics for their first differences

are also reported in Table 2.1. The values show that the main findings of the original

time series hold for the differentiated time series as well and that the former are not

due to the high serial correlation.

4 Descriptive statistics for the pre-crisis, crisis and post-crisis periods are reported in the appendix.
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Figure 2.1: Graphs for the Time Series of the CDX North America
Investment Grade CDO Tranche Model Premia

The upper graph shows the time series of unified CDO tranche premia com-
puted from the portfolio model for the period from September 2005 until
September 2012. The dashed vertical division lines indicate the roll of one
CDX index to the next. The straight lines indicate the rolls for the CDX 9
index and simultaneously mark the borders of pre-crisis, crisis and post-crisis
periods in our data sample. The lower panel shows the same premia but di-
vided by the first values of their respective time series. Values of the upper
panel are reported in basis points. Values of the lower panel are normalized
to the first observation of the respective time series.
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Each CDX index comprises the 125 most liquid single names during its on-the-run time

period. Figure 2.2 plots the 5% and 95% quantiles, the mean and the median of the

cross-section of CDS premia. Until the outbreak of the crisis, the overall CDS premium

level was comparably low, with the 95% quantile moving below 150 basis points and

the mean below 60 basis points. The outbreak of the financial crisis in summer 2007

led to a considerable increase in overall CDS premium levels which peaked at the

beginning of 2009. The level of the 95% quantile reached more than 1500 basis points,

indicating that during that time, the market priced high default probabilities for the

single names with the lowest credit quality among the index constituents. The median

CDS premium reached a maximum of more than 200 basis points. This level does not

reflect a very high default probability but signals that in the overall market perception,

protection sellers took high premia for single names with a good credit quality, which

may suggest that correlated defaults were priced in CDS markets.

Table 2.2 shows the corresponding summary statistics5. In line with Table 2.1, the

observed CDS time series exhibit high serial correlations which are considerably reduced

by taking first differences. In addition, the time series of all considered cross-sectional

statistics are highly correlated. The finding suggests that CDSs follow overall market

movements, which again indicates that correlated defaults are likely to be priced in the

CDS market.

Interest rate data are the last missing piece that we need for the calibration of the top-

down approach. We compute discount factors from the Svensson parameters published

on the website of the Federal Reserve. The parameters reflect the interest rate term

structure of US Treasuries that are considered to be the most liquid interest rate

products in the US market. Therefore, they are ideally suited to our purposes. An

explanation of the related methodology can be found in Gürkaynak et al. (2006).

5 Descriptive statistics for the pre-crisis, crisis and post-crisis periods are reported in the appendix.
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Figure 2.2: CDS Time Series of the CDX North America Investment
Grade Index Constituents

The graph shows daily cross-sectional statistics for the CDX index con-
stituents. The dashed vertical division lines indicate the roll of one CDX
index to the next. The straight lines indicate the rolls for the CDX 9 index
and simultaneously mark the borders of pre-crisis, crisis and post-crisis periods
in our data sample. Values are reported in basis points.
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2.4.3 Calibration Results

In the following we present the results of the calibration procedure introduced in Section

2.3. First, as a preparation for the CDS study, we discuss the calibrated parameters

of the top model and the associated goodness of fit. Afterwards, we turn towards

the question of which default factors are priced in CDS markets and investigate the

calibrated CDS parameters.

2.4.3.1 Portfolio Level

Jump Size and Volatility Parameters We applied the proposed calibration pro-

cedure to each CDX index. Table 2.3 presents the resulting parameter values. The

jump size parameters γi, i = 1, 2, 3 are comparably stable across the different CDX in-

dices. The value of the first parameter γ1 ranges from 0.0042 to 0.0083. Given the fact

that each constituent is weighted with 1/125 = 0.008 in a CDX index, the jump size

allows the interpretation of the first factor to model the default of a single name while

the recovery rates vary from 47.5% to 0%6. For this reason, we refer to the first factor

as the single default factor of the portfolio. The jump size parameter of the second

factor lies between 0.0592 and 0.0792 which are clearly above the jump sizes reported

for the single default factor. Thus, a jump of the second factor induces a default that

corresponds with the simultaneous default of 9.11 single names given a recovery rate

of 0%, or 18 firms with a recovery rate of 49.38%. Since a CDX index is composed

of single names from 12 different industries, the average number of single names per

industry is equal to 10.42. Consequently, the second factor can be interpreted as an

industry default factor. This interpretation implies that correlated defaults are priced

in CDOs because more than 10 firms default at the same time in case the second factor

jumps. In contrast, if there was no default correlation priced at all, more than one

single name could not default at the same time in the model. The jump sizes of the

third factor range from 0.3459 to 0.4044. A default event of the third factor may thus

wipe out more than 40% of the portfolio capital. This means that more than 50 single

names with recovery rate 0% would default at the same time if the third factor jumps.

This seems to be a very unlikely event because it is tantamount to an extremely severe

economic crisis with consequences beyond the scope of the last financial crisis in 2008.

We interpret this factor as modeling a systemic default event and therefore call it the

systemic default factor. The standard errors of the jump size parameters show that

6 Or even less than 0%. In that rare case, two single names default if the first factor jumps.
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the calibration worked particularly well in all cases. Furthemore, they are in line with

Longstaff and Rajan (2008), who report similar values.

The stability observed for jump size parameters across CDX indices does not apply to

the volatility parameters σi, i = 1, 2, 3. In the pre-crisis and crisis periods, the σi are

relatively stable with the exception of σ1, which drops for the CDX 8 index. However,

the picture changes for the post-crisis period, where the σi can take values that are

more than three times larger than before. The finding suggests that despite decreased

premium levels, and hence lower default risk, the market environment exhibited a high

degree of uncertainty. In this context, it seems plausible that the market perception of

default volatility has changed because of the financial crisis.

Priced Defaults by Portfolio Risk Factors Since we are interested in the question

of how the importance of the factors has changed relative to each other on the one

side, and how this translates to the portofolio loss distribution on the other side, we

have plotted the priced defaults resulting from the top model in Figure 2.3. Before

the crisis, more than 80% of priced defaults can be attributed to the single default

factor. The industry and the systemic factor played a negligible role during that

period. Furthermore, only around 2% of the portfolio capital were expected to default

under the risk-neutral measure. Afterwards, the financial crisis changed the situation

dramatically. At the beginning of 2009, the market expected almost 10% of the portfolio

capital to default. Roughly 80% of these defaults were priced by the industry and the

systemic risk factor, with the former clearly the more dominant of the two. The market

situation eased in 2010 and the expected default mass declined to 4%, half of which

can be attributed to the single default factor. The index roll from CDX 9 to 15 saw a

sharp increase in the time series of systemic defaults. This increase might be explained

by the new index composition or the new tranche borders, which may have stimulated

a greater awareness of systemic risk in the senior tranche. After the crisis, the systemic

risk factor accounts for more than 40% of priced defaults while the proportion between

the first and the second factor remains relatively stable. Summing up, the single default

factor played the major role during the pre-crisis period whilst the correlated default

factors dominated afterwards. Thus, the market perception of correlated defaults and

particularly systemic risk has changed during and after the financial crisis.
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Volatility parameters Jump size parameters
First Second Third First Second Third

CDX5 0.1872 0.2115 0.1573 0.0045 0.0592 0.3459
(0.0006) (0.0001) (0.0007) (0.0000) (0.0000) (0.0006)

CDX6 0.2901 0.1928 0.1573 0.0048 0.0619 0.3459
(0.0032) (0.0004) (0.0007) (0.0000) (0.0001) (0.0002)

CDX7 0.3522 0.1960 0.1573 0.0048 0.0611 0.3459
(0.0008) (0.0002) (0.0009) (0.0000) (0.0000) (0.0004)

CDX8 0.0006 0.2003 0.1573 0.0043 0.0602 0.3459
(0.5597) (0.0001) (0.0005) (0.0000) (0.0000) (0.0003)

CDX9 0.1343 0.2003 0.1573 0.0042 0.0602 0.3459
(0.0371) (0.0085) (0.0115) (0.0001) (0.0005) (0.0150)

CDX15 0.7130 0.0000 0.4044 0.0079 0.0729 0.4044
(0.0022) (0.8375) (0.0013) (0.0000) (0.0001) (0.0002)

CDX17 0.4740 0.4550 0.3834 0.0083 0.0656 0.3834
(0.0101) (0.0054) (0.0037) (0.0001) (0.0003) (0.0013)

Table 2.3: Top Model Parameter Estimates for the CDX North America
Investment Grade Indices

This table reports parameter estimates for the top model. The volatility parameters
are σi, i = 1, 2, 3 and the jump size parameters are γi, i = 1, 2, 3. Standard errors are
in parantheses and are computed according to Gallant (1975).

2006 2007 2008 2009 2010 2011 2012
0

0.02

0.04

0.06

0.08

0.1

All defaults

Correlated defaults

Systemic defaults

Figure 2.3: Time Series of Priced Defaults in CDX CDO Tranches

The graph shows the priced defaults in CDX CDO tranches computed from the
top model. All defaults refer to the factors i = 1, 2, 3, and correlated defaults
refer to the factors i = 2, 3 combined. Systemic defaults refer to factor i = 3
only. The maximum possible default loss is equal to the portfolio notional with
amount 1.
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Goodness of Fit To assess the overall model fit, we examine the fit of model premia

with regard to observed premia of the data set. A typical measure that is applied in

this context is the so-called root mean square error (RMSE). The value of the RMSE

reports the absolute deviation between observed and model premia. In our study

the RMSE would measure the difference between observed and model premia in basis

points. Although this would provide a high degree of comparability across tranches,

one major drawback lies in the explanatory power, since a deviation of e.g. 10 basis

points for the equity tranche is relatively lower than a deviation of 10 basis points

for the senior tranche. In order to satisfy this circumstance for CDO tranches, we

introduce the root mean square relative error (RMSRE) that is defined as follows:

RMSREp
t,T =

√√√√ T∑
τ=t

(
cpτ − c∗pτ
c∗pτ

)2

(2.26)

The advantage of the RMSRE lies in its comparability across tranches: if the model

premia of an equity tranche and a senior tranche are both calibrated with a deviation

of 10% then they can be considered to fit the data equally well. Another favorable

property for our study is the robustness of the RMSRE towards a change in quota-

tion conventions. As mentioned earlier, the quotation convention for some on-the-run

tranches in the data set suddenly changes from running to upfront, which would di-

rectly lead to a sharp increase or drop in RMSEs. Since this does not hold for RMSREs

they are clearly better suited for our purposes. Furthermore, the RMSRE is closely re-

lated to the error in problem (2.21) and thus coincides with the top model calibration.

However, there is a slight drawback associated with the RMSRE: if the observed pre-

mium c∗pt is close to zero it takes huge values and distorts a further analysis. Therefore

we have to erase outliers.

Figure 2.4 plots the mean RMSRE across tranches. During the pre- and post-crisis

periods, the mean RMSRE ranges from roughly 1% to 10% with high fluctuations.

For a senior tranche with a premium of 50 basis points this translates to a maximum

deviation of 5 basis points which can be considered a good model fit. However, during

the crisis the RMSRE takes higher values and has partially higher fluctuations than

in the other periods. This might be considered a weakness of the model but given the

fact that, during the crisis, observed premia are usually subject to greater distortion

owing to market uncertainty, the model fit in the crisis is still good.
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Figure 2.4: Time Series of Mean RMSRE across CDO Tranches

The graph shows the time series of the mean RMSRE across CDO tranches
adjusted for outliers. The RMSRE refers to observed CDO tranche premia.

2.4.3.2 Single-Name Level

As an outcome of top model calibration, we know that the CDO market prices corre-

lated defaults, especially during and after the crisis. But are these risks also perceived

in CDS markets? With the help of our top-down model, we are able to answer this

question empirically by analyzing the calibrated values of the qpk and θkt .

Test Setup for Portfolio Sensitivities In the first step, we hypothesize how cor-

related defaults are reflected in CDS prices within our model. For this reason, let us

assume the following two cases: first, a single name with a very high CDS premium

in the cross-section of the portfolio. Second, a single name with a low CDS premium.

For the first single name, a high value of the associated CDS suggests a high default

probability and favors an early default time. For the single name with the low CDS

premium, the opposite relation holds: since a default is unlikely it is expected that

other single names will default beforehand, if at all. Therefore, the low CDSs should

be priced in the senior tranche p = 4 whose capital is only affected by defaults that

occur last of in a portfolio. One could also argue that single names with a very low

CDS premium may only default in catastrophic scenarios such as natural disasters or

very severe economic crises. In this case, they should also exhibit a high sensitivity

towards the senior tranche. Accordingly, single names with high CDS premia should

be priced in the equity tranche since they are expected to default as one of the first

portfolio constituents.
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To test whether these considerations hold empirically, we formulate the regression

equation

qp = ap + bp · f ∗ + εp, (2.27)

qp =


qp1

qp2
...

qpK

 , f ∗ =


E(f ∗1t )

E(f ∗2t )
...

E(f ∗Kt )

 ,

where K denotes the total number of single names in the portfolio and εp a zero mean

error term. The notion behind this regression is to determine the relationship between

the size of CDS f ∗ and the sensitivities qp toward a tranche p. If bp is positive, we can

conclude that high CDSs are priced in p. If it is negative, this holds for low CDSs.

We compute the qp and f ∗ for each single CDX index and regress them according to

equation (2.27) per period. That means that the first regression refers to the parameters

qpk and f ∗ of CDX 5 to 8 combined, the second regression to CDX 9 and the third

regression to CDX 15 und 17 combined. The packages assure that there is an equal

amount of data involved in each regression and thus they have comparable explanatory

power.

From our notion that only single names with high CDS premia are priced in the equity

tranche, we retrieve the following hypothesis:

Hypothesis 1. The tranche sensitivity q1
k is higher for high CDS premia than for low

CDS premia.

Empirically, we can consider hypothesis 1 to hold if the regression parameter b1 is

positive and significant.

Accordingly, since single names with high CDS premia are supposed to default first,

they should have no influence on the pricing of the senior tranche, and the respective

tranche sensitivity should equal zero. Therefore we retrieve:

Hypothesis 2. The tranche sensitivity q4
k is higher for low CDS premia than for high

CDS premia.

The validity of hypothesis 2 can be verified by a negative parameter b4.

Test Setup for Idiosyncratic Risk Factors To capture potential pricing devia-

tions between observed and CDO-induced CDS premia, we introduced idiosyncratic

risk factors. Since we are interested in finding out which CDSs they particularly apply
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to, we conduct the following regression with respect to the calibrated idiosyncratic

intensities θkt :

θ = a+ b · f ∗ + ε (2.28)

θ =


E(θ∗1t )

E(θ∗2t )
...

E(θ∗Kt )

 . (2.29)

where ε indicates a zero mean error term. If idiosyncratic risk factors are especially

present in high CDS premia, b should be positive. In the opposite case that they are

present in low CDS premia, b should be negative. If the CDS level is in no way related

to the amount of idiosyncratic risk, b should be close to zero.

Test Results for Pre-Crisis Period The regression results for the three periods

are presented in Table 2.4. It can be seen that the only tranche sensitivities for which

the regression coefficient bp is significant during the pre-crisis periods, are the equity

and the junior mezzanine tranche with p = 1 and p = 2. The coefficient for the junior

mezzanine tranche is higher than for the equity tranche, which is fairly surprising

because from hypotheses 1 and 2 the coefficient should decrease with the seniority of

the CDO tranche. The scatter plots of Figure 2.5 reveal that this is due to outliers

with a comparably low CDS premium that lead to a high b2. The plots also show that

the sensitivities q2 are higher than q1 for the highest CDS premia of the portfolio. The

finding suggests that hypothesis 1 holds and that the highest CDS premia are priced in

the most junior tranches. Regarding the senior mezzanine p = 3 and the senior tranche

p = 4, there is no evidence that the single names follow a particular default order since

the coefficients bp are not significant. This is not surprising because correlated defaults

were less important in the pricing of CDOs during the pre-crisis period and hence they

were not perceived by the single-name CDS market.

Test Results for Crisis Period Later, though the CDO market apparently at-

tached greater importance to correlated defaults owing to the outbreak of the financial

crisis. Table 2.4 shows that both hypotheses 1 and 2 hold in the CDS market because

the values of the coefficients b1 and b4 are both significant and they exhibit the ex-

pected sign. This translates to the single default factor being priced in single names

with high CDS premia and systemic risks being priced in low CDSs. Thus, the CDS

market follows the suggested default order, especially if both single and correlated de-
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fault risks play an important and visible role in the CDO market. Only the coefficients

b2 and b3 are not in line with the results for the equity and the senior tranche. b2 > b1

holds because of an outlier and b3 is not significant. A possible explanation lies in

the high volatility of the industry factor which accounts for most of the risk inherent

in the junior and senior mezzanine tranches. Since the time series of those tranches

and the CDSs that should — from a theoretical viewpoint — be in line with them

are very volatile, the calibrated tranche sensitivities do not take the suggested values.

Therefore, we cannot conclude that the default order holds for the mezzanine tranches.

Test Results for Post-Crisis Period Almost the same picture applies to the post-

crisis period with the difference that all bp are strongly significant. Hypotheses 1 and 2

hold but again b2 and b3 take the highest values. Our findings show that correlated de-

faults were not priced in CDS markets during the pre-crisis period; only single defaults

were. The higher relevance of industry and systemic risk for CDO portfolios during

the crisis was anticipated by participants in the CDS market who considered possible

correlated defaults in their CDS trades.

Test Results for Idiosyncratic Risk Factors The relevance of the idiosyncratic

price effect for single-name CDSs is revealed in Table 2.4 and Figure 2.5. Idiosyncratic

risk factors prevailed during all three time periods of our analysis but were especially

dominant during the crisis period. Furthermore, idiosyncratic risk increases with the

level of CDS premia. Single names which are under high financial distress are very

volatile on top of the single default factor that prices them. Similarly, not all dynam-

ics observed on the CDS market automatically influence the time series of the equity

tranche. A possible explanation could include illiquidity or diversification effects that

act as a buffer between high CDSs and the equity tranche premium. However, these ef-

fects have a much weaker influence on low CDSs and the senior tranche premium. Thus,

low CDS premia mainly follow overall market movements which can be characterized

in terms of the systemic risk factor.

Goodness of Fit The presence of idiosyncratic risk factors implies that CDS premia

cannot be fully explained by the top model and the tranche sensitivities. A perfect

match is only possible with the idiosyncratic extension of CDS model premia that we

introduced in equations (2.9) and (2.11). Nevertheless, it is still interesting to assess the

model fit with tranche sensitivities, if only because it reveals how well they can explain

observed CDS premia. We measure the deviations between observed and model premia

with the RMSRE. Figure 2.6 plots the RMSRE time series for the cross-section of CDS
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premia. It shows that more than one half of CDS premia are mispriced by less than

20%, which is tolerable for various applications. However, the top 5% of deviations

take very large values that are even above 100%. In these cases, the idiosyncratic risk

factors are required. The graph also shows that the mispricings are comparably higher

in the crisis period than outside of it because the top-down model has its difficulties

capturing the overall high market volatility at that time. But the high deviations could

also be attributed to high levels of idiosyncratic risk caused by increased illiquidity in

the markets. Despite some outliers, the overall model fit can be regarded as good

enough to conclude that the tranche sensitivities have high explanatory power to back

the findings of our analysis.

Tranche sensitivities
q1 q2 q3 q4 θt

P
re

-C
ri

si
s ap, a 0.0027 0.0015 0.0090 0.0087 -0.0005

p-Value(ap, a) 0.0001 0.3727 0.0000 0.0000 0.0000
bp, b 1.2261 1.5074 -0.2282 -0.1524 0.2369
p-Value(bp, b) 0.0000 0.0000 0.2883 0.0636 0.0000
R2 0.2107 0.0652 0.0023 0.0069 0.4552

C
ri

si
s

ap, a 0.0030 0.0004 0.0071 0.0089 -0.0070
p-Value(ap, a) 0.0320 0.8553 0.0017 0.0000 0.0000
bp, b 0.2323 0.3469 0.0577 -0.0502 0.7823
p-Value(bp, b) 0.0000 0.0000 0.3176 0.0007 0.0000
R2 0.2589 0.2522 0.0084 0.0933 0.7922

P
os

t-
C

ri
si

s ap, a 0.0047 -0.0054 -0.0017 0.0105 -0.0008
p-Value(ap, a) 0.0006 0.0165 0.4260 0.0000 0.0000
bp, b 0.3107 1.2431 0.9000 -0.2351 0.1415
p-Value(bp, b) 0.0036 0.0000 0.0000 0.0009 0.0000
R2 0.0336 0.1683 0.1050 0.0433 0.2862

Table 2.4: Regression Results for Single-Name CDSs during the Pre-Crisis,
Crisis and Post-Crisis Periods

This table reports results for the regressions of the single-name parameters qpk and θkt
against the respective absolute CDS mean levels. Regression data comprise pre-crisis,
crisis and post-crisis period CDX data.
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Figure 2.6: Time Series of Mean RMSRE across CDS Premia

The graph shows the time series of the mean RMSRE without idiosyncratic
risk across CDS premia. The RMSRE refers to observed CDS premia.

2.5 Conclusion

In this paper, we studied the impact of correlated default factors on CDS premia.

Therefore, we first recapitulated the top model of Longstaff and Rajan (2008) to model

CDO tranche premia. Afterwards, we derived a cash flow based top-down approach

that links theoretical CDS model premia to any kind of CDO model. A special feature

of our framework lies in the ability to allow for idiosyncratic risk factors that are not

priced in the CDO portfolio. With the help of these risk factors, empirically observed

CDS premia can be perfectly matched by our model.

The top-down model was calibrated to an extensive CDX data set that covers daily

tranche and CDS quotes from September 2005 until September 2012. We found that

before the outbreak of the financial crisis in 2007, the influence of correlated default

factors on CDS premia was only minor. However, the financial crisis led to a dramatic

increase in those factors which accounted for most of the expected defaults in CDO and

CDS markets at that time. After the crisis, the market situation eased, leading to an

overall lower default risk level but still with high importance attached to the correlated

default factors. Accordingly, we found correlated default factors to be priced in CDS

markets when they were particularly high, that is, during and after the financial crisis.

Our analysis revealed that the prices of single names with a low pricing level are

mainly driven by correlated default factors. Furthermore, we found idiosyncratic risk

to be priced in CDS markets in the whole data set but especially during the financial

crisis. Single names with high CDS premia were in particular subject to high levels of

idiosyncratic risk.
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Chapter 3

CCDS:

Accurate and Approximate Pricing∗

Abstract

In this paper, we analyze the pricing of contingent credit default swaps (CCDS) which

provide protection against default losses in derivative transactions. In a framework

with both asset and interest rate risk, we obtain a meaningful semi-analytical solution

for CCDS prices with an interest rate swap as underlying. Our model yields three

major contributions: (I) CCDS have several properties that fundamentally differ from

those of CDS, despite the similar nature between both instruments. (II) We propose

a simple approximate pricing formula for CCDS which is computed by the prices of

observable traded assets, i.e. the CDS quote, the value of a swaption and a zero-bond.

(III) We find that the approximate formula always overestimates the correct values and

converges for a financial institution with low default risk.

∗ This chapter is based on the working paper “Contingent CDS: Accurate and Approximate Pric-
ing” by Koziol and Schön (2014).

47



3.1 Introduction

To manage credit risk of industrial firms or financial institutions, credit default swaps

(CDS) have established and are frequently used instruments for protection purposes.

An important characteristic of plain vanilla CDS is that they provide a fixed compen-

sation equal to the loss given default of the defaulting company’s liabilities. Hence, a

loan or a corporate bond can be perfectly hedged when the loss given default of the

loan or corporate bond, respectively, coincides with the protection volume of the CDS.

However, market participants often do not have a fixed exposure to a financial institu-

tion such as in case of a loan or corporate bond but exhibit a dynamic exposure such

as in case of a swap contract. Once a financial institution has signed a swap contract

with another market participant, who is concerned about the credit risk of the financial

institution, a static CDS protection will fail to protect against a potential default. This

is due to the fact that the market participant loses the (positive) swap value in case of a

default of the financial institution. Since the swap value at default apparently depends

on the interest rate term structure at this point in time, the market participant does

not know in advance about the exposure at default. As a consequence, she cannot

perfectly protect herself against a default of her swap counterpart with a CDS, because

the required CDS volume, i.e. the exposure at default, is unknown prior to a default.

As a reaction to this hedging challenge, contingent credit default swaps (CCDS) have

been introduced. According to Brigo and Pallavicini (2006), the major difference

between CCDS and CDS refers to the amount of protection in case of default. While

classical CDS provide the loss given default of a representative loan of the underlying

company, a CCDS pays the (positive) value of an arbitrary financial claim. In case of

our example with a swap contract between a financial institution and another market

participant, a CCDS pays the value of the swap once the financial institution defaults.

As a result, CCDS now provide the market participant with a perfect protection against

default risk of the financial institution. In case of a default, the market participant, on

the one hand side, loses the (positive) swap value as the financial institution will no

longer satisfy its obligations. On the other side, she obtains the swap value from the

CCDS so that the total position is perfectly hedged.

While the pricing of CDS is well understood, the pricing of CCDS cannot be carried

out in an analogous way due to the stochastic exposure over time. In this paper, we

aim at rigorously analyzing the pricing of CCDS. For this purpose, we formulate a

structural credit risk model for financial institutions that accounts for both asset losses

and interest rate risk. In particular, both the credit event of a financial institution as

well as the exposure of a CCDS written on a swap are crucially driven by interest rate
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risk. Our framework adapts the Merton (1974) model to the typical characteristics of

financial institutions where a bank’s assets have a larger time to maturity than its lia-

bilities. Hence, both losses of the assets of the financial institution and an unfortunate

interest rate development can trigger a default of the financial institution. Imposing

a geometric Brownian motion for asset values and interest rate uncertainty according

to Vasicek (1977), we obtain tractable pricing formulae from a change of the usual

risk-neutral measure to the risk-neutral forward measure.

This framework yields the following three major contributions:

(I) In contrast to CDS, the prices of CCDS are no longer monotonous in the short

rate, its volatility and the correlation between assets and interest rates of the financial

institution.

(II) We propose a simple approximate pricing formula for CCDS with a swap exposure.

This approximation for the CCDS price is the product out of the classical CDS quote

and the value of a corresponding swaption divided by the according zero-bond price.

Hence, the major advantage of this formula is that it only consists of market prices of

traded assets.

(III) We analyze the accuracy of our approximate pricing formula. We find that the

approximation is an overestimation for the correct value. For very low default probabil-

ities, the approximate formula converges towards the correct CCDS price. For higher

default probabilities, the difference can be relevant so that knowledge of a sophisticated

structural model is necessary.

The remainder of the paper is organized as follows. In Section 3.2, we introduce a

structural default model with interest rate risk. Exact valuation formulae for swaptions,

CDS and CCDS as well as the approximate valuation formula for CCDS are retrieved in

Section 3.3. We investigate the pricing behaviour of the approximate CCDS valuation

formula in Section 3.4. Section 3.5 concludes.
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3.2 The Model

CCDS protect against a credit event of an arbitrary counterparty. In contrast to

classical CDS, the protection refers to the current value of a pre-specified derivative

such as interest rate swaps, swaptions and spread options. Hence, a CCDS eliminates

the counterparty risk of OTC derivatives. In our analysis, we focus on interest rate

swaps as a representative of a very common underlying used by financial institutions to

manage interest rate risk. Brigo and Pallavicini (2006) give an overview about further

types of derivatives underlying a CCDS.

We set up our model in the context of Merton (1974) and extend it for interest rate

risk. This extenstion will provide us with an illustrative modeling of the default event

where both asset value and interest rate changes can cause bankruptcy as it is true for

financial intermediaries.

3.2.1 Interest Rate Process

Let rt denote the short rate that is subject to interest rate risk in our model. In

accordance with Vasicek (1974) we assume that rt follows the mean-reversion process

drt = κ · (θ − rt)dt+ σrdZ
Q
1,t, (3.1)

where κ is the speed of reversion, θ the level of the long-term mean, σr the instantaneous

standard deviation and dZQ
1,t the increments of a standard Wiener process under the

risk-neutral measure Q for which the money market account is the numeraire. The

well-known solution B(rt, t, T ) to bond prices at time t with maturity in T reads

B(rt, t, T ) = EQ
t

exp

− T∫
t

rudu

 = exp(−K(t, T ) · rt +D(t, T )), (3.2)

K(t, T ) =
1− exp(−κ · (T − t))

κ
, (3.3)

D(t, T ) =

(
θ − σ2

r

2κ2

)
(K(t, T )− (T − t))− σ2

r ·K2(t, T )

4κ
, (3.4)

Despite the well-known drawbacks associated with the Vasicek model such as negative

interest rates or constant volatility (see e.g. Chan et al. (1992)) the Vasicek model

has its merits for our application due to the following reasons: First, the model has

a high analytical tractability as well as a relatively low parameterization which allows

for an illustrative choice for our purposes. Second, we primarily need interest rate risk
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at all but not a specific type of model. For this reason, we prefer to obtain illustrative

semi-closed form solutions within the Vasicek dynamics rather than only numerical

results within a more advanced interest rate model.

To price arbitrary claims CLt at time t in this setup, we need to compute the expec-

tation of the terminal value CLT of the claim divided by the realization exp(
∫ T
t
rudu)

of the money market account:

CLt = EQ
t

exp

− T∫
t

rudu

 · CLT
 . (3.5)

While the terminal value CLT only depends on the short rate rT at time T , the value

exp(
∫ T
t
rudu) of the money market account is driven by the entire path of the short rate

from t to T . At first glance, this path dependency requires numerical solutions which

prevent a meaningful analysis based on closed-form representations. Fortunately, a

more convenient representation avoiding a costly evaluation of the path dependency

is possible by applying stochastic calculus. We can erase the path dependency by

changing the measure from the risk-neutral measure Q to the risk-neutral forward

measure QT under which forward bond prices with maturity T are martingales. This

approach leads to the general valuation formula where the expected terminal payoff

under the new measure QT is discounted with the corresponding bond price B(rt, t, T ):

CLt = B(rt, t, T ) · EQT

t [CLT ]. (3.6)

In the Vasicek model, this change of measure can be achieved by the following trans-

formation:

dZQT

1,t = σrK(t, T )dt+ dZQ
1,t. (3.7)

As a result, the dynamics of rt under QT are specified by

drt =
[
κ · (θ − rt)− σ2

r ·K(t, T )
]
dt+ σrdZ

QT

1,t . (3.8)
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Furthermore, we can easily obtain a solution of stochastic differential equation (3.8).

The interest rate rT at time T from the perspective of time t is identical in distribution

to

rT
d
= µQT

r,t + σr,t · X̃, (3.9)

µQT

r,t = e−κ(T−t)
(
rt + θ · (eκ(T−t) − 1)− σ2

r

κ
sinh [κ · (T − t)]

)
, (3.10)

σ2
r,t = σ2

r ·
(

1− e−2κ(T−t)

2κ

)
, (3.11)

where X̃ is a standard-normally distributed random variable. A proof of equations

(3.7) to (3.11) can be found in Appendices 3.A and 3.A.

3.2.2 Asset Value Process

As both the asset value of the financial institution and the interest rates may impact

the default probability, we need to account for them in CCDS valuation. Typically,

lower interest rates improve refinancing conditions of borrowers and therefore increase

their repayment probability. For this reason, we assume that the asset value of the

financial institution is negatively related to interest rates, expressed by a non-positive

correlation parameter ρ ≤ 0. We will loosen this assumption later when we investigate

the general CCDS pricing formula. The dynamics of At of the financial institution

read:

dAt = σAAt ·
(
ρdZQ

1,t +
√

1− ρ2dZQ
2,t

)
, (3.12)

where σA is the volatility and ρ the correlation parameter through which we correlate

At with rt. dZ
Q
1,t and dZQ

2,t denote the increments of two independent standard Wiener

processes under the initial risk-neutral measure Q from which the first one was already

used in equation (3.1) for the short rate process.

Notice that At does not denote the asset value in the classical sense but its forecast

value towards the time horizon TA. For example, the asset value at time T < TA follows

from its forecast discounted with the corresponding bond value:

Asset value in T = AT ·B(rT , T, TA). (3.13)

This characteristic will become important when we introduce the default condition of

the financial institution in which unfavorable interest rate movements can also lead to

a default.
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The change of measure in equation (3.7) also affects the dynamics of At. As it is only

related to the increments dZQ
1,t of the first Wiener process, dZQT

2,t = dZQ
2,t holds. The

dynamics of At are then given by

dAt = −ρσrσA ·K(t, T ) · Atdt+ σAAt(ρdZ
QT

1,t +
√

1− ρ2dZQT

2,t ), (3.14)

with the solution

AT = At exp(µQT

A,t + σA ·
√
T − t · (ρX̃ +

√
1− ρ2Ỹ )), (3.15)

µQT

A,t = ρσrσA ·
[

1

κ2
− T − t

κ
− exp(−κ · (T − t))

κ2

]
− σ2

A

2
· (T − t), (3.16)

where X̃, Ỹ denote independent standard-normally distributed random variables.

3.2.3 Default Condition

The classical Merton (1974) approach considers the asset value of a counterparty to

be the single driver of default. For financial institutions, such as the counterparty of

the interest rate swap, there are two potential sources for a default: an unfavourable

asset value and/or unfavourable interest rates. We assume that the financial institution

defaults at time T if the value of its assets falls below the value of its liabilities. Since

AT denotes the asset value forecast with respect to the horizon TA, the asset value at

time T , i.e. the discounted asset value forecast at time T reads AT ·B(rT , T, TA) and is

subject to asset as well as interest rate risk. We assume that the financial institution

will have fixed short-term liabilities with amount L whose maturity is denoted as TL.

Furthermore, the values of the maturities are chosen such that T < TL < TA holds.

The default condition at time T can then be written as

AT ·B(rT , T, TA) < L ·B(rT , T, TL)⇔ def[rT , AT ] (3.17)

It is now clear how interest rates can induce a default. As TL < TA, the predicted

asset value AT is discounted more strongly than the short-term liabilities L. Hence,

the financial institution will default for sufficient interest rates increases. That way,

even favorable movements of At can be offset by interest rates.

So far we have not discussed the role of the entities that sell the fixed payer swap to

the financial institution and the CCDS protection. In line with Sorensen and Bollier

(1994), the credit risk of both counterparties in an transaction has to be taken into

account. In our analysis this would translate to three entities that are subject to
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default. In order to have clear effects and a meaningful interpretation of our pricing

formulae, we do not consider the credit risks of the market participant that sells the

interest rate swap as well as the CCDS protection seller. Since Arora et al. (2012)

pinpoint that the effect on CDS spreads is vanishingly small, we can abstract from

credit risk for sell-side institutions, i.e. the market participant selling the interest

rate swap and the CCDS protection seller. Thus, our model setup may not perfectly

match theoretical considerations on two-way credit risk but it can be justified by the

negligibility of empirical evidence.
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3.3 Valuation Approach

We use the model introduced in the previous section to evaluate CCDS, CDS and swap-

tions. Note that the following valuation formulae are independent from the particular

stochastics within the model and that they represent a general setting which allows for

other possible specifications of interest and asset value forecast risk.

3.3.1 Swaption Valuation

With the definitions of the default condition and the asset and interest rate processes,

we are able to value the instruments that are of our interest — swaptions, CDS and

CCDS. At first glance it might seem counterintuitive why we should value swaptions

rather than swaps. This is because in case of default, the CCDS only pays the positive

swap value which can be characterized as a swaption component.

We assume that the financial institution manages the interest rate risk of its balance

sheet and buys a fixed payer swap from the market participant. Therefore, the market

participant holds a fixed receiver swap long. In order to manage counterparty risk, the

market participant seeks to buy protection against a default loss in the fixed receiver

swap which might only occur when the financial institution defaults in case the fixed

the receiver swap has a positive value to the market participant. Therefore, the possible

default loss clearly exhibits an option character with regard to the fixed receiver swap.

In order to value the associated receiver swaption, we first need to define its inner value

at maturity T :

ISW [rT ] = max

[
s

TS∑
Tn=T+1

B(rT , T, Tn)− (1−B(rT , T, TS)), 0

]
. (3.18)

We can now represent the value of the swaption at time t as the expectation of (3.18)

under QT discounted with a zero-bond:

SWt = B(rt, t, T ) · EQT

t [ISW [rT ]] . (3.19)

3.3.2 CDS Valuation

CDS classically require frequent payments of CDS premia unitl a protection payment

is made or the CDS matures. In order to have a clear and simple timeline, we restrict

all payments to the initial and terminal dates t = 0 and t = T , respectively. Hence, we

have one upfront payment that serves as the protection leg and one possible default
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payment, the default leg at time T . Let ϕ denote the recovery rate. The upfront

payment CDSt can then be valued by

CDSt = (1− ϕ) ·B(rt, t, T ) · EQT

t [def[rT , AT ]] , (3.20)

which is the fair value of the CDS in t. Simply put, the value of the CDS is equal to the

discounted payment 1−ϕ that will occur with the default probability EQT

t [def[rT , AT ]].

3.3.3 CCDS Valuation

The CCDS differs from the CDS as it no longer pays a plain vanilla notional in case of

default but the value of an interest rate swap. As the CCDS insures the swap-selling

market participant against losses she might sustain from the swap, the only scenario in

which it will pay out is when the swap has a positive value upon default of the financial

institution. This option character explains why the CCDS is composed of a swaption

and a default component. In line with the pricing of the CDS, we have an upfront

payment CCDSt at time t = 0 and a potential default payment at time T . Therefore,

the fair value at time t is

CCDSt = (1− ϕ) ·B(rt, t, T ) · EQT

t [ISW [rT ] · def[rT , AT ]] . (3.21)

In general, all three pricing equations (3.19) — (3.21) cannot be solved analytically.

Nevertheless, their semi-analytical representations allow for a straightforward numeri-

cal computation which turns out to be fast and accurate.

In addition to the generally valid but abstract pricing formula (3.21), we aim at repre-

senting the CCDS price using liquid market instruments. The beauty of this approach

is that it is free of any model-risk. In order to obtain an alternative pricing formula we

use the well-known covariance rule Cov[X, Y ] = E[X · Y ] − E[X] · E[Y ] and rewrite

equation (3.21):

CCDSt = (1− ϕ) ·B(rt, t, T ) ·
(
EQT

t [ISW [rT ]] · EQT

t [def[rT , AT ]]
)

(3.22)

+ (1− ϕ) ·B(rt, t, T ) · CovQ
T

t [ISW [rT , s], def[rT , AT ]]

= CDSt ·
SWt

B(rt, t, T )

+ (1− ϕ) ·B(rt, t, T ) · CovQ
T

t [ISW [rT , s], def[rT , AT ]]
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Thus, the CCDS price is composed of the CDS, swaption and bond price and the

covariance between the default condition and the inner value of the swaption which

can be interpreted as a further correction term. It is now straightforward to distinguish

between the components in CCDS valuation that are free of model risk and the one

for which models need to be utilized, at least in theory. For this reason, we define

an approximate value ĈCDSt for the correct CCDS price that only accounts for the

traded assets but neglects the covariance term:

ĈCDSt =
CDSt · SWt

Bt

. (3.23)

Obviously, formula (3.23) has an advantageous property: It is simply the product of a

CDS and a swaption price with maturity of the CCDS divided by the corresponding

zero-bond price Bt := B(rt, t, T ). Thus, its representation is completely model-free and

fully relies on the prices of liquid market instruments.

Practically, it would be of great interest to know whether there are certain situations

in which the covariance term in (3.22) can be neglected or whether it can be ignored

at all. That way, one would not need to implement any additional model for the

computation of the covariance term and the CCDS price could be approximated by

the information priced in bond, swaption and CDS markets. We derive the following

important property for CCDS that provide protection against default losses in fixed

receiver swaps7:

CovQ
T

t [ISW [rT ], def[rT , AT ]] ≤ 0. (3.24)

From the covariance property (3.24) and equation (3.22) we can see that the approx-

imate formula always overestimates the correct price for CCDS with a fixed receiver

interest rate swap as an underlying. This property represents an important aspect

for practitioners as they will not run the risk of underrating the true risks inherent

to a receiver CCDS with this approximation. Therefore, the approximate formula can

serve as an indicator of default risk in derivative transactions, even in turbulent market

environments.

To this point, we have assumed that the correlation may only take non-positive values,

ρ ≤ 0. We can now loosen this assumption by taking the monotonicity properties of

def[rT , AT ] into consideration. As can be easily shown from inserting the definitions of

7 A proof can be found in Appendix 3.A.
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rT and AT , the default condition def[µQT

r,t + σr,t · X̃, At exp(µQT

A,t + σA ·
√
T − t · (ρX̃ +

√
1− ρỸ ))] is increasing in X̃ as long as

ρ <
σr

σA
√
T
· [K(t, TA) · J(t, TA)−K(t, TL) · J(t, TL)] , (3.25)

J(t, T ) =

√
1− exp(−2κ · (T − t))

2κ

holds. Since rT is also increasing in X̃, we must have a positive relation between

def[rT , AT ] and rT in this case. However, if ρ is sufficiently greater than zero, restriction

(3.25) is violated and consequently, the monotonicity of the default condition inverts.

In this case, the covariance may take positive values and (3.24) does not hold. The

approximate formula (3.23) then underestimates the correct value of a CCDS.

When regarding the pricing representations for CCDS, CDS and swaptions derived

in this section, we can easily see that all formulae hold for every arbitrage-free term

structure model that provides information about the short rate and expectations under

the required measure. Hence, the assumed Vasicek dynamics are just for illustration

purposes when computing specific values.
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A0 σA TA L TL r0 κ θ σr ρ s TS T

100 0.03 10 65 2 0.03 0.3 0.05 0.01 0 0.05 10 1

Table 3.1: Initial Parameter Set

The table shows the initial parameter set for our structural model. The pa-
rameter values imply a one-year risk-neutral forward default probability of
3.20%
.

3.4 Value Analysis

In order to gain an understanding of the issues associated with CCDS, we accomplish

a comparative-static analysis to

• see whether CCDS properties are in line with

well-known properties of CDS

• analyze the accuracy of the approximate formula.

This analysis is carried out in a realistic parameter setting. The aim is to produce

default probabilities that are in line with observable default rates.

The values of the initial parameter set are listed in Table 3.1. The asset forecast

volatility σA = 0.03 accords with the common volatility level observed for financial

institutions. As the considered financial institution of our model performs term trans-

formation regarding assets and liabilities, TA is chosen to be 10 years and much larger

than the lifetime of liabilities that have to be paid in the near future. We set their

maturity to TL = 2 years. r0 is chosen below the long-term mean θ. The parameters

κ, θ as well as σr approximately match the values reported by Chan et al. (1992). We

suppose that the asset value forecast of the financial institution exhibits no correlation

with the short rate leading to ρ = 0. The swap rate s equals the long-term mean θ and

it is thought that the swap will expire in TS = TA = 10 years from the CCDS valuation

date t = 0. As r0 < θ one could interpret the value of s to be the fair rate of a swap

that was closed before t. Finally, we set A0 = 100 and choose the value L = 65 so that

it provides a one-year risk-neutral forward default probability of 3.20%. Since Hull et

al. (2005) indicate that risk-neutral default probabilities are approximately 5 times as

high as their corresponding physical default probabilities, our model-implied default

probability is in line with the weighted average default rate for financial institutions of

0.69% reported by Standard and Poor’s (2013) for the time period from 1981 to 2012.

We will vary some of these values in the following subsections in order to assess their

impact on CCDS prices.
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Figure 3.1: Impact of A0 on CDS and CCDS Price

The panels show CDSt and CCDSt for varying A0 while all other parameters
are held constant. Prices are reported in basis points.

3.4.1 CCDS and CDS Prices

In general, CCDS are very illiquid and bespoke contracts as they have a very specific

underlying. No noteworthy indices and markets have emerged for CCDS yet. Nev-

ertheless, market participants are still interested in managing their credit exposure

especially with regard to the value of their outstanding derivatives.

A naive approach to hedge these risks would be to buy swaption-many CDS contracts

due to similiar pricing characteristics with respect to A0. As both panels of Figure 3.1

show, the CDS and the CCDS behave in the exact same manner if A0 increases and

the other parameters remain constant. This property would justify the naive hedging

approach.

However, as we show in the following, CCDS and CDS also exhibit important differ-

ences in their respective pricing behaviors making a naive hedge highly doubtful. The

left panel of Figure 3.2 shows the CDS price for different interest rate scenarios. The

plot shows that increasing interest rates lead to higher CDS prices in our model. On

the one hand side, higher interest rates imply a lower zero-bond price which according

to equation (3.20) should make the price cheaper. However, the effect is overcompen-

sated by the default condition (3.17) that is triggered in more cases. Economically,

this is because higher interest rates worsen the refinancing conditions for the financial

institution and therefore make a default more likely. Thus, higher interest rates imply

higher default probabilities and higher CDS prices.

According to equation (3.21), the default condition plays an important role for the

valuation of CCDS. For this reason, when interest rates are increasing from a very

low starting point close to zero, the right panel of Figure 3.2 shows that the CCDS
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Figure 3.2: Impact of r0 on CDS and CCDS Price

The panels show CDSt and CCDSt for varying r0 while all other parameters
are held constant. Prices are reported in basis points.
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The panels show CDSt and CCDSt for varying σr while all other parameters
are held constant. Prices are reported in basis points.

price increases in r0. This property is in line with increasing CDS prices for those

parameters. However, when r0 is high, the CCDS price declines in r0. This effect, that

clearly distinguishes CCDS from CDS prices, can be explained by the behavior of the

swaption component inherent to the CCDS. Since a CCDS provides default insurance

against a fixed receiver swap long, the value of the underlying declines with increasing

interest rates thus implying a declining CCDS price. To sum up, the CCDS price with

regard to r0 is driven by two effects: the default likelihood that increases the price for

low r0 and the swaption price that decreases it for high r0 because of a low exposure.

61



−1 −0.5 0 0.5 1

100

200

300

400

500

600

ρ

C
D
S
t

ρ

C
C
D
S
t

0

0.5

1

1.5

2

2.5

−1 −0.5 0 0.5 1

Figure 3.4: Impact of ρ on CDS and CCDS Price

The panels show CDSt and CCDSt for varying ρ while all other parameters
are held constant. Prices are reported in basis points.

62



The parameter σr determines the amplitude of the stochastic increments in equation

(3.1). Figure 3.3 shows the related pricing graphs for CDS and CCDS. As can be seen

from the left panel, the CDS price increases in σr. This is because of the fact that its

payoff function is convex in r0 as seen in Figure 3.2. Remarkably, we find the opposite

relationship for CCDS. Figure 3.3 illustrates that CCDS decline with a higher σr. This

is a consequence from a concave payoff function of the CCDS in σr seen in Figure 3.2.

A further major difference between the prices of CDS and CCDS refers to the relation-

ship to the correlation ρ. As the left panel of Figure 3.4 shows, the CDS price declines

in the correlation ρ between the asset forecast At and the short rate rt. Let us assume

that ρ = −1 holds. That way, the short rate and the asset forecast value are perfectly

correlated and always developing into the opposite direction. Now, if AT is low then

rT is high. Both variables imply a higher default probability because a low AT makes

a shortfall of the asset value under L more likely and higher short rates worsen the

refinancing conditions for the financial institution. However, for ρ = 1, the opposite is

the case: When AT is low, then rT is low as well leading to higher zero-bond prices.

Consequently, the negative effect from a lower asset forecast value is compensated by

the advantages of lower short rates. Therefore, CDS quotes decline with ρ because a

higher correlation allows for a better hedge of low asset value forecasts with favorable

lower short rates. For the CCDS, we again find a different shape. In Figure 3.4, the

CCDS quote first increases and then tends to zero for correlations from −1 to 1. This

behavior of the CCDS price results from the interplay between the swaption component

and the default condition. For ρ = −1, AT declines for increasing rT . In this situation,

we have a high default probability associated with a low swaption value close to zero.

Since the present value of a payoff in case of default, i.e. the swaption value, is nearly

zero, the CCDS is also close to zero for ρ = −1. For a high correlation ρ = 1, the hedg-

ing effects between assets and short rates imply a low default probability. Hence, the

CCDS such as the CDS in this case tend to zero. Summing up, since the CCDS is close

to zero for both ρ = −1 and ρ = 1, it must attain its maximum for an intermediate

correlation ρ between −1 and 1.

3.4.2 CCDS and Approximate CCDS Price

In order to correctly value a CCDS, we use our model that accounts for both asset

value and interest rate risk. From (3.25), we have a simple approximation ĈCDSt

out of observable prices of traded assets that upward estimates the correct value of

the CCDS. In the following analysis, we focus on the differences between ĈCDSt and

CCDSt, i.e. the accuracy of (3.23).
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Figure 3.5: Impact of σA and σr on CCDS and Approximate CCDS
Price

The panels show CCDSt and ĈCDSt in dependence of CDSt for varying σA
and σr and increasing A0. Prices are reported in basis points.

The left panel of Figure 3.5 shows the CCDS price in dependence of the CDS price

for varying A0. This computation is carried out for various volatilities σA of the asset

value. The approximate CCDS price obviously increases linearly in CDSt because a

rise in A0 only affects the default condition but neither the swaption nor the bond

price. Furthermore, the correct price always lies below the approximate price because

since inequation (3.24) holds. Hence, the approximate ĈCDSt quote converges to the

true value CCDSt when the default risk, i.e. CDSt, is low.

When regarding different levels for the volatility of the asset forecast, we observe that

the correct CCDS price moves towards the approximate price for increasing σA. The

higher asset value volatility makes the approximation more accurate since it only affects

the default condition and therefore dilutes the importance of the short rate for the

covariance term. As can be seen from the right panel of Figure 3.5 the opposite holds

for the short rate volatility σr that is varied for increasing A0. When σr increases,

the influence of the short rate on the covariance term, i.e. the distance between the

approximate and the correct price, rises. Thus, we have two ways how the volatility

parameters of our model influences the goodness of the approximate formula: it is

improved by higher σA but it deteriorates for higher σr.
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3.5 Conclusion

In this paper, we have focused on the valuation of CCDS that have a fixed receiver

interest rate swap as an underlying. A reasonable CCDS price requires the consid-

eration of a structural model with both asset and interest rate risk. When applying

appropriate techniques for change of measures, we obtain tractable pricing formulae

for CCDS. Moreover, we can propose an approximate formula for CCDS that is com-

posed of a CDS, a swaption and a zero-bond which can be received from the prices of

liquid market instruments. This formula overestimates the correct price of a CCDS.

For financial institutions with low CDS quotes, the approximation tends to the true

CCDS value. Despite the similar nature between CCDS and CDS, they exhibit dif-

ferent properties. This outcome justifies the use of sophisticated structural models for

the pricing of CCDS especially when credit risk is severe.

65



Appendix 3.A Proofs

3.A.1 Distribution of FB(T,T, TF ) under QT

The path dependency in the expectation operator can be erased by changing the prob-

ability measure from the risk-neutral measure Q to the risk-neutral forward measure

QT .

Proof: We change the measure by representing the forward bond price as

FB(t, T, TF ) = B(rt, t, TF )/B(rt, t, T ). (3.A.1)

From Itō’s lemma we obtain

dFB(t, T, TF ) = σ2
rK(t, T ) [K(t, T )−K(t, TF )]FB(t, T, TF )dt (3.A.2)

+ σr [K(t, T )−K(t, TF )]FB(t, T, TF )dZQ
1,t.

We now apply Girsanov’s theorem, in order to make FB(t, T, TF ) a martingale under

QT :

dZQT

1,t = σrK(t, T )dt+ dZQ
1,t (3.A.3)

which results in the following forward bond price dynamics under QT :

dFB(t, T, TF ) = σr [K(t, T )−K(t, TF )]FB(t, T, TF )dZQT

1,t . (3.A.4)

Using Itō’s lemma, Itō’s isometry and the transformation

X(t, T, T1) = log [FB(t, T, TF )] , (3.A.5)

it can be shown that the following equation holds:

FB(T, T, TF ) =
B(t, t, TF )

B(t, t, T )
exp

[
−1

2
· Z(t, T, TF ) +

√
Z(t, T, TF )εQ

T

1

]
, (3.A.6)

Z(t, T, TF ) = σr

∫ T

t

[K(u, T )−K(u, TF )]2 du

where εQ
T

1 is standard-normally distributed.
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3.A.2 Distribution of rT under QT

The properties of the distribution of rT under the risk-neutral forward measure QT are

derived in accordance with Mamon (2004).

Proof: After applying Girsanov’s theorem, the short rate process under QT is given

by:

drt =
[
κ · (θ − rt)− σ2

r ·K(t, T )
]
dt+ σrdZ

QT

1,t , (3.A.7)

with its solution

rT = rt +

T∫
t

[κ · (θ − ru)] du− σ2
r ·

T∫
t

K(u, T )du+ σr ·
T∫
t

dZQT

1,u . (3.A.8)

Applying the expectation operator on both sides and taking the partial derivative for

t, we obtain the following differential equation

∂µQT

r,t

∂t
= κ ·

(
θ − µQT

r,t

)
− σ2

r

∂K(t, T )

∂t
. (3.A.9)

Given the boundary condition µQT

r,t = rt, this equation solves to

µQT

r,t = e−κ(T−t)
(
rt + θ · (eκ(T−t) − 1)− σ2

r

κ
sinh [κ · (T − t)]

)
. (3.A.10)

The variance of the short rate can be derived by applying Itō’s isometry, resulting in

σ2
r,t = σ2

r ·
(

1− e−2κ(T−t)

2κ

)
(3.A.11)

which is the same variance as under Q. Summing up, rT is normally distributed with

mean µQT

r,t and variance σ2
r,t under QT .
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3.A.3 CovQ
T

t [ISW [rT ], def[rT ,AT ]] ≤ 0

The CCDS price in equation (3.22) is overestimated by its approximation if and only

if the covariance term takes non-positive values. In the following we prove that this

condition holds for receiver swaps as long as (3.25) is valid. The proof holds for arbitrary

distributional assumptions of rT and AT as long as the indicator function def[rT , AT ]

is weakly monotonically increasing in rT .

Proof: Let

ÎSW [X̃] = ISW [µQT

r,t + σr,t · X̃], (3.A.12)

d̂ef[X̃, Ỹ ] = def[µQT

r,t + σr,t · X̃, A(X̃, Ỹ )], (3.A.13)

A(X̃, Ỹ ) = At exp(µQT

A,t + σA ·
√
T − t · (ρX̃ +

√
1− ρỸ ))

and

∆ÎSW [X̃] = ÎSW [X̃]− EQT

t [ÎSW [X̃]], (3.A.14)

∆d̂ef[X̃, Y ] = d̂ef[X̃, Y ]− EQT

t [d̂ef[X̃, Ỹ ]|Y ]. (3.A.15)

Then the conditional covariance depending on the fixed value Y can be computed by

CovQ
T

t [ÎSW [X̃], d̂ef[X̃, Ỹ ]|Y ] (3.A.16)

=

∞∫
−∞

∆ÎSW [x] ·∆d̂ef[x, Y ] · f(x)dx.

It can be easily shown that ∆ÎSW [x] and ∆d̂ef[x, Y ] are monotonous and that the

former decreases and the latter increases in x. Thus, the integration interval (−∞,∞)

in (3.A.16) can be devided into three intervals S1 = (−∞, v], S2 = (v, w] and S3 =

(w,∞) with v < w. We now distinguish the following two cases:

Case 1: v and w are chosen so that

sign
(

∆ÎSW [x]
)

=

{
1, for x ∈ S1

⋃
S2

−1, for x ∈ S3.
(3.A.17)
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and

∆d̂ef[x, Y ] =

{
h−, for x ∈ S1

h+, for x ∈ S2

⋃
S3.

(3.A.18)

Then

CovQ
T

t [ÎSW [X̃], d̂ef[X̃, Ỹ ]|Y ] (3.A.19)

=

v∫
−∞

∆ÎSW [x]︸ ︷︷ ︸
>0

· h−︸︷︷︸
<0︸ ︷︷ ︸

<0

·f(x)dx+

∞∫
v

∆ÎSW [x] · h+ · f(x)x

≤
v∫

−∞

∆ÎSW [x]︸ ︷︷ ︸
>0

· h+︸︷︷︸
>0︸ ︷︷ ︸

>0

·f(x)dx+

∞∫
v

∆ÎSW [x] · h+ · f(x)dx

= h+ ·
∞∫

−∞

∆ÎSW [x] · f(x)dx

= h+ ·
∞∫

−∞

(ÎSW [x]− EQT

t [ÎSW [x]]) · f(x)dx

= h+ ·
(
EQT

t [ÎSW [X̃]− EQT

t [ÎSW [X̃]]
)

= 0.
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Case 2: v and w are chosen so that

sign
(

∆ÎSW [x]
)

=

{
1, for x ∈ S1

−1, for x ∈ S2

⋃
S3.

(3.A.20)

and

∆d̂ef[x, Y ] =

{
h−, for x ∈ S1

⋃
S2

h+, for x ∈ S3.
(3.A.21)

Then

CovQ
T

t [ÎSW [X̃], d̂ef[X̃, Ỹ ]|Y ] (3.A.22)

=

w∫
−∞

∆ISW [x] · h− · f(x)dx+

∞∫
w

∆ÎSW [x]︸ ︷︷ ︸
<0

· h+︸︷︷︸
>0︸ ︷︷ ︸

<0

·f(x)dx

≤
w∫

−∞

∆ÎSW [x] · h− · f(x)dx+

∞∫
w

∆ÎSW [x]︸ ︷︷ ︸
<0

· h−︸︷︷︸
<0︸ ︷︷ ︸

>0

·f(x)dx

= h− ·
∞∫

−∞

∆ÎSW [x] · f(x)dx

= h− ·
∞∫

−∞

(ÎSW [x]− EQT

t [ÎSW [x]]) · f(x)dx

= h− ·
(
EQT

t [ISW [X̃]− EQT

t [ISW [X̃]]
)

= 0.

Both cases yield the result that CovQ
T

t [ÎSW [X̃], d̂ef[X̃, Ỹ ]|Y ] ≤ 0. In order to compute

the total covariance CovQ
T

t [ÎSW [X̃], d̂ef[X̃, Ỹ ]] we need to determine the value of the

covariance between the conditional expectations of the inner swap value and the default

condition. It can be easily shown that the following equation holds with respect to

stochastic Y :

CovQ
T

t [EQT

t [ÎSW [X̃]|Ỹ = Y ], EQT

t [d̂ef[X̃, Ỹ ]|Ỹ = Y ]] = 0 (3.A.23)
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due to the invariance of EQT

t [ÎSW [X̃]|Ỹ = Y ] for Y . By applying the law of total

covariance, we can write:

CovQ
T

t [ÎSW [X̃], d̂ef[X̃, Ỹ ]] (3.A.24)

=

∞∫
−∞

CovQ
T

t [ÎSW [X̃], d̂ef[X̃, Ỹ ]|y] · f(y)dy

+ CovQ
T

t [EQT

t [ÎSW [X̃]|Ỹ = Y ], EQT

t [d̂ef[X̃, Ỹ ]|Ỹ = Y ]]

Since the second term is always zero according to (3.A.23) and the integral
∞∫
−∞

CovQ
T

t [ÎSW [X̃], d̂ef[X̃, Ỹ ]|y] · f(y)dy is non-positive due to (3.A.19) and (3.A.22)

the total term must be negative:

CovQ
T

t [ÎSW [X̃], d̂ef[X̃, Ỹ ]] ≤ 0. (3.A.25)
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Chapter 4

How Market Model Choice Affects

the CVA∗

Abstract

The Basel II/III accords aim at an improved stability of the financial system. A key

aspect is the credit valuation adjustment (CVA) that accounts for counterparty credit

risk in derivatives transactions. As the CVA for a specific derivative trade with a

counterparty is not observable on the market, its value needs to be computed from

a market and a default model. In this paper, we investigate the model risk that is

associated with market models in the context of CVA. We find that the CVA can be

highly dependent on model choice. This has important implications for practitioners in

financial institutions and regulators because the amount of required economic capital

can vary to a notable extent.

∗ This chapter is based on the working paper “How Market Model Choice Affects the CVA” by
Schön (2015).
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4.1 Introduction

To erase the counterparty credit risk component of derivatives trades, central clearing

houses can call market participants for collateral that is used for compensating losses.

Although this exchange-based mechanism works well for standardized contracts such

as futures, it cannot be generally applied to highly complex derivatives because of their

very bespoke nature and the resulting illiquidity. In order to overcome this drawback

in over-the-counter markets, the Basel II/III accords stipulate market pariticipants to

account for credit risk in their OTC trades and to back those trades with collateral.

Because of their high illiquidity, it is usually not possible to observe a market price for

these derivatives and to appropriately correct them for counterparty credit risk. It is

therefore necessary to use a sophisticated market model and a default model to compute

the price that is adjusted for any losses that might occur upon default, known as credit

valuation adjustment (CVA). The amount of these default losses again depends on the

potential future exposure (PFE) of a single derivative transaction which needs to be

computed with the help of a market model since it is not observable (see e.g. De Prisco

and Rosen (2005)). However, there is no widely-accepted standard market model

within each asset class that can be used for PFE computations and consequently, the

adjusted price could be strongly model-dependent and therefore subject to model risk.

An implication of choosing a non-suitable market model could be an underestimation

of possible default losses. In this case, the computed value of a derivative would be

too high entailing that a counterparty would need to back a transaction with too much

collateral which is costly. On the other hand, an overestimation of possible default

losses would lead to an adjusted price that is too low implying that less collateral

is posted than actually needed making the trade more risky. Therefore, banks have

a clear incentive to compute the adjusted price properly by choosing an appropriate

market model which on the one hand saves cost of collateral but on the other leads to

an adequate valuation of counterparty credit risk.

In this paper, we examine the dependence of CVA on the choice of the market model.

We conduct our analysis on equity and interest rate markets since they both represent

important asset classes for standard derivatives such as equity options and interest rate

swaps. For assessing model risk, we follow the approach introduced by Branger et al.

(2012). We assume that a sophisticated model represents the true market model in

each of both asset classes and generate prices from these two models. Afterwards, less

complex market models are calibrated to the generated prices. They are then used for

simulating the PFE profiles of standard securities in each market: call and put options

in the equity market, bonds, floaters, swaps, swaptions, caplets and floorlets in the
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interest rate market. In the last step, we compute the CVA from these profiles and

carve out to which extent it is dependent on model choice.

Both analyses are carried out independently of each other since equity dynamics are

not relevant for the valuation of the interest rate instruments that we consider in

our analysis. Furthermore, the same holds for the equity instruments with respect to

interest rate models since only a complex equity model without a stochastic interest

rate component is assumed to reflect the true equity market.

Our analysis is based on memorable contributions in the academic literature. Bakshi

et al. (1997) analyze models for European call and put options empirically. They

find that a stock price diffusion process with stochastic volatility and jumps (SVJ)

performs best in pricing and hedging, compared to the Black and Scholes (1973), the

Heston (1973) and the Amin and Ng (1993) models which either exhibit constant

volatility, stochastic volatility (SV) or stochastic volatility and stochastic interest rates

(SVSI). For assessing model dependence on interest rate markets, we implement the

Heath et al. (1992) (HJM) framework since it provides an arbitrage-free modelling

of the whole term structure and many important models such as the continuous-time

version of the Ho and Lee (1986) and the Hull and White (1993) model are embedded

within it. Based on the findings of Bühler et al. (1999) we use the single factor

version of the HJM framework and implement three interest rate models by specifying

their volatility functions according to Amin and Morton (1994). In short, we find

that the properties of future distributions are highly model dependent for equity as

well as interest rate instruments. The CVA itself exhibits a high model dependence

for the equity derivatives, but shows no mentionable deviations for the interest rate

instruments across the three considered interest rate models.

The paper is organized as follows. In Section 4.2 we provide a short summary of the

HJM framework, the volatility functions and the interest rate instruments that are

to be analyzed. Section 4.3 treats the equity models and instruments. The model

dependence of CVA is studied in Section 4.4. Section 4.5 concludes.

4.2 Interest Rate Models and Instruments

In this section, we present the interest rate models and give a brief description of the

assessed interest rate instruments. There are many models avaiblable for the valuation

of interest rate instruments, beginning with Vasicek (1977) and followed by Brennan

and Schwartz (1979), Cox et al. (1986) and many others. These models have in

common that the future state of the term structure is retrieved from the state of a
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short-term interest rate that is complemented by a long-term interest rate in some

models. Although this modelling approach is very intuitive, it has its drawbacks with

respect to matching the term structure of a given state. Furthermore, in most cases, it

only allows for normal term structure shapes and is not capable of capturing important

characteristics such as slope, curvature and the volatility term structure. A framework

that overcomes these drawbacks is the forward rate framework introduced by Heath

et al. (1992) (HJM). In contrast to the aforementioned short rate models, the HJM

framework allows for a simultaneous and arbitrage-free modelling of the complete term

structure by imposing certain restrictions on the drift term of the forward rates. It can

also cure the lack of capturing slope and curvature movements when enough risk factors

are involved. The most important reason why we stick to the HJM framework however,

lies in its generality. Some important interest rate models, e.g. the Hull and White

(1993) and the continuous-time version of the Ho and Lee (1986) model, turn out to be

special cases of the HJM framework when the volatility function is chosen appropriately.

For these reasons, the HJM framework provides a good environment for our analysis

with regard to interest rate markets. In the following, we give a brief summary of the

HJM framework, outline its implementation and the volatility specifications according

to Amin and Morton (1994) for the continuous-time Ho and Lee (1986), the exponential

Vasicek (1977) and the Hull and White (1993) model. Since our implementation of the

Hull and White (1993) model allows for a time-dependent volatility calibration, it is

the most general of the three models considered in our analysis. Therefore, we assume

it to be the true market model in the context of this paper.

4.2.1 Continuous HJM Framework

According to Heath et al. (1992), the arbitrage-free dynamics of an instantaneous

forward rate f(t, T ) under the risk-neutral measure Q are given by the stochastic

differential equation

df(t, T ) = σ(t, T, f(t, T ))

T∫
t

σ(t, s, f(t, T ))dsdt+ σ(t, T, f(t, T ))dz(t), (4.1)

where, in general, the forward rate f(t, T ) has the volatility σ(t, T, f(t, T )) that can

depend on the valuation date t, the maturity T and f(t, T ). dz(t) denotes the increment

of a one-dimensional Brownian motion. Although the HJM approach allows for a finite

number of risk factors, we only stick to the one-dimensional version since according to
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the empirical results of Bühler et al. (1999) it is sufficient to price standard interest

rate derivatives like we do in our paper.

As can be easily seen from equation (4.1), the dynamics of f(t, T ) are particularly

dependent on the definition of the volatility function σ(t, T, f(t, T )). One way to

define σ(t, T, f(t, T )) lies in the numerical calibration to observable market data, such

as the current term and volatility structures, but also in the calibration to market

prices of interest rate derivatives such as swaptions, caps and floors. Although this

approach can lead to very reasonable calibration and pricing results, it does not allow

for an insightful interpretation of the volatility function because of its purely numerical

specification. A pre-specified structure of σ(t, T, f(t, T )) represents a better way that

requires less parameters. Therefore, we follow the approach of Amin and Morton

(1994) and slightly modify their volatility function by including time-dependence for

the volatility parameter σ0 and ignoring the possibility of including the current level

of f(t, T ):

σ(t, T, f(t, T )) = [σ0(t) + σ1 · (T − t)] · exp[−κ · (T − t)]. (4.2)

We ignore f(t, T ) in equation (4.2) because it can lead to non-reasonable derivative

prices when using a non-recombining tree with only a few time steps. This may seem

avoidable, for example by increasing the number of steps. However, since we need to

rely on a very fast valuation for derivatives in the context of the Monte Carlo simulation

outlined in Section 4.4, we exclude f(t, T ) from the specification of σ(t, T, f(t, T )) in

order to reduce the number of time steps in the tree.

4.2.2 Discrete HJM Framework

The dynamics of the forward rate f(t, T ) are completely defined by equations (4.1)

and (4.2) in a continuous-time setting. However, an infinite number of instantaneous

forward rates on the one side and time continuity on the other are not workable in

practical situations. So we need to discretize the HJM framework in order to make

it work. In the following, we describe which steps are necessary for discretization

according to Amin and Morton (1994).

First, we discretize the instantaneous forward rates to an observable forward rate curve

fd(t, tj−1, tj) whose forward rates cover an equally spaced and complete time grid with
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tJ = T and tj = t + j · T−t
J
, j ∈ N0. In this representation, the first forward rate

fd(t, t, T−t
J

) marks the spot rate and

bd(t, Tb) = exp

− ∑
t≤tj≤Tb

fd(t, tj−1, tj) · hj

 . (4.3)

defines the zero-bond price at time t with maturity Tb and hj = tj − tj−1. Note that

if Tb does not match the time grid, we linearly interpolate missing forward rates from

the model.

The discretization of the instantaneous forward rates is straighforward. However, the

discretization of the time continuity entails a pitfall with an important mathematical

implication. First, let α(t, ti, f
d(t, ti)) define the discretized drift term of the stochastic

differential equation in (4.1), where t = t0 < t1 < . . . < ti−1 < ti ≤ T denotes a

non-equally-spaced time grid with I + 1 points in time and ki = ti − ti−1. (4.1) then

reads

fd(t+ ki, ti) = fd(t, ti) + α(t, ti, f
d(t, ti))ki (4.4)

± σ(t, ti, f
d(t, ti))

√
ki, ∀i : ti − t > 0.

The up and the down state in (4.4) are both reached with a probability of 1
2
. The

problem with this representation is that the drift term α(t, ti, f
d(t, ti)) is not simply

the discrete time version of the drift term in (4.1) because then, zero-bond prices would

not be martingales in the model. In Appendix 4.A.1, we derive the following definition

for the drift terms in the discrete time setting satisfying a general martingale condition

for zero-bonds:

L∑
j=1

α(t, tj, f
d(t, tj))hj =

1

ki
ln

(
cosh

(√
hj

L∑
j=1

σ(t, tj, f
d(t, tj))hj

))
. (4.5)

The drift terms α(t, tj, f(t, tj) can be computed successively in each time step by setting

L = 1, . . . , J .

The definition of the time grid ti allows step sizes that do not necessarily exhibit the

same length. Although this feature is not required in the Monte Carlo setup outlined in

Section 4.4 because there, only a fixed step size of one week is applied in the simulation,

it is very useful in derivatives valuation that would otherwise be more costly. For each

simulated path of the term structure we computed prices of derivatives with a non-

recombining tree. The time grid of the tree is chosen in accordance with Amin and
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Morton (1994) who define them to be linearly increasing with the last step having

double the size of the first one. With the help of complete induction, it can be shown

that the time grid satisfying these conditions is defined by

ki = k1 ·
(

1 +
i− 1

I − 1

)
, k1 =

2T

3I
. (4.6)

The number of steps in the tree is crucial for the precision of computed derivative prices.

Precision increases with the number of steps but also involves a more costly computa-

tion. Bühler et al. (1999) find that seven time steps are sufficient to achieve accurate

derivative prices. For this reason, we choose seven steps in the non-recombining tree.

4.2.3 Interest Rate Models

The advantage of the HJM approach lies in its versatility. By giving a concrete specifi-

cation of equation (4.2), in some cases the approach reduces to well-known interest rate

models. Table 4.1 shows the volatility specifications for the interest rate models that

we consider for our analysis along with the calibrated parameters. The continuous-time

σ(t, T, f(t, T )) σ0 σ1 κ

HW σ0(t) · exp[−κ · (T − t)] 0.1000
EV σ0 · exp[−κ · (T − t)] 0.0033 0.0448
HL σ0 0.0021

Table 4.1: HJM Volatility Functions of Interest Rate Models and
Calibrated Model Parameters

The table shows the HJM volatility functions of the three interest rate models
considered in our analysis: the continuous-time version of the Ho and Lee
(1986) model (HL) and the exponential Vasicek (1977) model (EV) according
to Amin and Morton (1994) and the Hull and White (1993) model (HW).
Furthermore, the calibrated model parameters for the risk-neutral measure are
presented. The HW model was calibrated to 15 swap rates and 10 swaption
prices observed on 9/17/2014 in the German market. From this model, we
generated 10 swaption prices to which we calibrated the other two interest
rate models. For readability reasons, we do not present the values of σ0(t).

version of the Ho and Lee (1986) model (HL) exhibits a constant volatility parameter

σ0 = 0.0021. In contrast, σ0 is clearly higher for the exponential Vasicek (1977) model

(EV) since it is exponentially dampened with parameter κ = 0.0448. The function

σ0(t) of the Hull and White (1993) model (HW) was specified according to Henrard

(2012) as piecewise-constant on succeeding time intervals, where we choose the time

79



intervals to be equidistant with length one year. The specification of the HW volatility

function makes it the most flexible interest rate model in the context of this paper.

For this reason, the HW model is assumed to be the true market model.

4.2.4 Interest Rate Instruments

For assessing CVA model risk, we consider plain vanilla interest rate instruments that

are most common in the markets: zero-bonds, coupon bonds, floaters, swaps, swap-

tions, caplets and floorlets. Their valuation formulae are outlined in the following.

Zero-Bond The price of a zero-bond at time t with maturity T and notional 1 is

expressed by the value of the expected discount factor D(t, T ):

ZB(t, T ) = Et [D(t, T )] , (4.7)

D(t, T ) = exp

− T∫
t

r(τ)dτ

 . (4.8)

The expectation operator in (4.7) is evaluated by computing the short rate from the

forward rate term structure in each tree node of the discrete HJM framework. In some

cases, when the time grid of the tree does not match the time grid of the forward rate

structure, r(t) needs to be interpolated.

Coupon Bond Let NB denote the number of coupon payments with payment dates

ti = t1 . . . , tNB
. Furthermore, let cB denote the coupon payment measured in percent.

The value of a coupon bond with notional 1 can then be computed according to

B(t, tNB
) = Et

[
cB

NB∑
i=1

D(t, ti) +D(t, tNB
)

]
. (4.9)

Floater The cash flows of a floater can be replicated by investing the nominal at

the spot rate and reinvesting it at the future spot rate as soon as the maturity of the

current spot rate has been reached. Since the future value of the spot rate can be

expressed by the forward rate fd(ti−1, ti−1, ti), the today’s value of the floater reads

F (t, tNF
) = Et

[
NF∑
i=1

fd(ti−1, ti−1, ti) ·D(t, ti) +D(t, tNF
)

]
(4.10)
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where NF denotes the number of floater payments and ti = t1, . . . , tNF
their respective

payment dates.

Swap Swaps are standard interest rate derivatives that are used for managing interest

rate risk. A common usage is to exchange variable interest rate payments, like from

spot rates whose future value is uncertain, against fixed payments until the maturity

tNfix
of the swap is reached. The value S(t, tNfix

) of such a fixed-receiver swap at time

t is computed from

S(t, tNfix
) = Et

[
CF (t, tNfix

)
]
, (4.11)

CF (t, tNfix
) = cS

Nfix∑
i=1

D(t, ti)−
Nfl∑
i=1

fd(ti−1, ti−1, ti) ·D(t, ti). (4.12)

As can be seen from (4.11) and (4.12), the swap payments can be replicated by a

coupon bond long with maturity tNfix
and a floater short with maturity tNfl

. Typically

tNfix
= tNfl

holds but Nfix 6= Nfl.

Swaption An instrument that allows its buyer to enter into a fixed-receiver swap for

low interest rates is called fixed-receiver swaption. Its value at time t is given by

Swaption(t, t1, tNfix
) = Et

[
D(t, t1) ·max

[
CF (t1, tNfix

), 0
]]
, (4.13)

where t1 marks the maturity of the swaption and tNfix
the maturity of the underlying

fixed-receiver swap with t < t1 < tNfix
.

Floorlet Swaps and swaptions can provide full protection against changes in interest

rate levels. In some cases, however, it is more purposeful to hedge against certain

interest rate levels. Floors are broadly used instruments that insure its buyer against

low interest rate levels by paying the difference to a pre-defined threshold. Payments

can occur periodically until the maturity of the floor. The instrument that has the

same payoff as a floor for one period is called floorlet. Its value is defined by

Floorlet(t, t2) = Et
[
D(t, t2) ·max

[
K − fd(t1, t1, t2), 0

]]
. (4.14)

K marks the strike of the floorlet and t2 its maturity. The payment of the floorlet is

fixed at the beginning of its spot rate period t1 with t1 < t2 and the buyer receives the

payment max
[
K − fd(t1, t1, t2), 0

]
at t2.
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Caplet The opposite holds for caplets. Since they insure against high interest rate

levels, their values are given by equation

Caplet(t, t2) = Et
[
D(t, t2) ·max

[
fd(t1, t1, t2)−K, 0

]]
(4.15)

with the same notations that are used for floorlets.

4.3 Equity Models and Instruments

Black and Scholes (1973) along with Merton (1973) (BSM) pioneered the valuation of

European equity options. One of their main assumptions lies in the stochastic behavior

of stock returns. Although even today their model is highly relevant in many practical

situations, the event of the Black Monday 1987 showed that the assumption of a flat

volatility of stock returns does not hold for real option markets. Many traders bypassed

this problem by computing a volatility surface from observable option prices that can

still be used with the BSM formulae. However, the incompleteness of the BSM formulae

attracted the attention of researchers. Heston (1993) improved the BSM approach

by assuming that the equity return volatility is neither static nor deterministic but

stochastic. His two factor model is able to capture volatility smiles and skews and

therefore, represents the first important extension to BSM in the literature. For this

reason, we further denote this model as stochastic volatility model (SV). Another

important extension was introduced by Amin and Ng (1993). In their model, the

equity return volatility and the short-term interest rate are assumed to be stochastic.

We call it the stochastic volatility and stochastic interest rate model (SVSI). Bakshi et

al. (1997) (BCC) present a framework that is capable of modelling stochastic volatility

and stochastic jumps in stock returns as well as stochastic interest rates. Their model

can be condensed to one of the three equity models mentioned earlier. They find that

a model with stochastic volatility and jumps performs best among all models tested in

their analysis and that it is not remarkably improved by adding a stochastic interest

rate factor. For this reason, we implement the BCC model with stochastic volatility

and jumps (SVJ) and assume it to be the true market model. In the following, we

outline the general BCC approach that includes the SV, SVSI and SVJ models.
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4.3.1 Continuous BCC Framework

We examine a nondividend-paying stock with price S(t) whose dynamics under the

risk-neutral measure are given by

dS(t)

S(t)
= [r(t)− λ · µJ ]dt+

√
v(t)dz1(t) + J(t)dq(t). (4.16)

In (4.16), r(t) denotes the continuous-time riskless short rate, dz1(t) the increment of

a Wiener process, J(t) the percentage jump size of the Poisson jump counter q(t) with

yearly jump intensity λ. The time-related properties of qt are defined by P [dq(t) = 1] =

λdt and P [dq(t) = 0] = 1 − λdt. v(t) marks the volatility of the diffusion part of the

stock returns that is assumed to follow a Cox et al. (1985) mean-reversion process

defined by

dv(t) = [θv − κv · v(t)]dt+ σv
√
v(t)dz2(t). (4.17)

θv marks the mean-reversion level, κv the speed of adjustment and σv the volatility of

volatility. The Wiener increments dz2(t) are correlated with dz1(t) via

Cov [dz1(t), dz2(t)] = ρdt with correlation parameter ρ. The dependence between both

Wiener processes satisfies the common observation that the volatility of equities in-

creases when their prices drop. Therefore, as we present later, the correlation param-

eter ρ is typically smaller than zero.

The dynamics of the riskless short rate also follow a Cox et al. (1985) process with

dr(t) = [θr − κr · r(t)]dt+ σr
√
r(t)dz3(t), (4.18)

where θr marks the mean-reversion level, κr the speed of reversion and σr the volatil-

ity. The Wiener increments dz3(t) are assumed to be independent of other stochastic

variables.

The percentage jump size J(t) is i.i.d. over time following the lognormal distribution

ln[1 + J(t)] ∼ N
(

ln[1 + µJ ]− 1

2
σ2
J , σ

2
J

)
(4.19)

with mean parameter µJ and volatility parameter σJ .

The parameter values for the three models are presented in Table 4.2. Analogously to

the calibration of the interest rate models, we choose the SVJ model as reference model

because it exhibits the most important stochastic properties. The parameters related to
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S(0) v(0) θv κv σv ρ r(0)

SVJ 100 0.040 0.040 2.030 0.380 −0.570 0.020
SVSI 100 0.050 0.041 0.665 0.524 −0.672 0.001
SV 100 0.040 0.039 1.226 0.362 −0.614 0.016

λ µJ σJ θr κr σr

SVJ 0.590 −0.050 0.070
SVSI 0.005 0.513 0.026
SV

Table 4.2: Calibrated BCC Model Parameters

The table shows the model parameters for the SV, SVSI and SVJ models. The
parameters of the SVJ model are retrieved from Bakshi et al. (1997). In line
with Branger et al. (2012), we computed 25 call prices from the SVJ model
to which we calibrated the SVSI and the SV model.

the jump component of the SVJ model imply an average jump size of nearly−5% with a

frequency of λ = 0.590 jumps per year. In other words, the equity market is assumed to

react negatively on rare events as it can be observed for real markets in turmoil periods.

Furthermore, the correlation between the stock price and the volatility increments is

clearly below zero with a value of ρ = −0.570. Again, this parameter setting is in line

with real markets where volatility tends to increase when stock prices drop but not

when stock prices rise. We generate call prices from the SVJ model to which the other

two models are calibrated afterwards. The calibrated correlation ρ = −0.614 of the

SV model is clearly lower than for the SVJ model because it compensates the missing

jump component by emphasizing downsize risk. The reversion speed κv is also clearly

lower implying that the future volatility has a larger volatiltiy itself with more up-

and downside risk. This also holds for the SVSI model. The correlation parameter ρ

of the SVSI model takes the lowest value among the considered models. This can be

attributed to the fact that the stochastic interest rate feature leads to overall higher

call prices that need to be compensated by a higher downside risk to match the prices

generated by the SVJ model.

4.3.2 Equity Instruments

Call In general, the fair price of a European call option on the stock price S(t) is

given by

C(t, tC) = Et [D(t, t+ tC) ·max[StC −K, 0]] , (4.20)
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where tC marks the time to maturity of the call in the point of time t and K its strike

price. It can be shown that under the assumed BCC framework, the semi-analytical

solution to this equation is represented by

C(t, tC) = S(t) · Π1(t, tC , S(t), r(t), v(t)) (4.21)

−K ·D(t, t+ tC) · Π2(t, tC , S(t), r(t), v(t)).

The functions Πj, j = 1, 2 are defined by

Πj(t, tC , S(t), r(t), v(t)) (4.22)

=
1

2
+

1

π

∞∫
0

Re

[
exp(−iφ ln[K])fj(t, tC , S(t), r(t), v(t), φ)

iφ

]
dφ,

where f1 and f2 are complex exponential functions. The call price (4.21) is easily

obtained with the help of a numeric integrator and the price of the corresponding put

from the put-call parity.

4.4 Monte Carlo Simulation and Results

The central question of this paper is whether model choice has a significant impact on

CVA. Hence, we investigate the model dependency of equity and interest rate instru-

ments that are most commonly traded in the markets. The first subsection outlines

the Monte Carlo setup of our analysis, the specifics of the investigated instruments and

a definition of CVA. In the second section, we present the distributional properties for

the selected instruments in dependence of model choice and carve out differences they

can cause in CVA values.

4.4.1 Monte Carlo Setup and CVA Definition

In order to compute the CVA, one needs to know the distributions of derivatives prices

in the future. Since the associated distributional properties are highly complex, it

is suitable to apply Monte Carlo (MC) methods (De Prisco and Rosen (2005)). The

paths of the risk factors are simulated in the first step and the price paths of derivatives

are computed accordingly. Typically, the distribution of future derivatives prices is re-

trieved by carrying out the simulation of the risk factors under the physical measure.

This way, the paths are supposed to follow observable time series of e.g. interest rates,

equity indices, commodity prices and counterparty default risk. Afterwards, deriva-
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tives prices are computed under the risk-neutral measure. But as Gregory (2009) and

Ghamami and Zhang (2014) point out, the CVA reflects the market price of counter-

party credit risk and all related simulations and computations should be carried out

under the risk-neutral measure. Therefore, we choose to simulate risk factors under

the risk-neutral measure as well.

Another important aspect that is related to simulation deals with roll-off risk which

is the risk that important distributional properties, such as the price at a payment

date, are not captured by a MC method if its step size is too large. For instance, a

payment date of a floater could be left out from simulation which could lead to an

overly smoothed exposure profile. Therefore, the ideal step size would be one day

which is highly costly to evaluate. To make our simulation more efficient, we choose a

step size of one week and the payment dates to match the simulation dates. This way,

we fully eliminate roll-off risk.

The MC simulation is performed under the following conditions: the number of paths

is chosen to be J = 10, 000 which leads to a maximum distance of 5 bps to the 95%

confidence bounds of the CVA in our MC application. As can be seen from Tables

4.3 and 4.4, this is sufficient to compare the investigated CVA values. The maturity

of all derivative contracts, if not stated otherwise, is chosen to be T = 5 years where

valuation starts at t = 0. Since we simulate on a weekly basis, the total number of steps

per path is 260. The constant yearly default intensity of the counterparty is λ = 3%.

The specifics of the examined derivative contracts are as follows. We simulate the paths

for out-of-the-money (OTM), at-the-money (ATM) and in-the-money (ITM) European

call and put options with strike prices KITM = 80, KATM = 100 and KOTM = 120 for

the calls and in reverse order for the puts. The payments of all interest rate instruments

are chosen to occur on a yearly basis if not stated otherwise. The coupon is that of

a five year par bond priced in t = 0. The payments of the caplet and the floorlet are

fixed in t1 = 4 and are due in t2 = 5 and the strike K is set to the coupon of the par

bond for the caplet and K = 2.25% for the floorlet. The maturity of the swap, which

is fairly priced in t = 0, is set to tNfix
= 10. This way, the exposure profile of the

swap can be studied more easily since it is much clearer than for a swap expiring in

five years. The swaption expires at t1 = 5 and has a forward swap rate of cS = 2.25%

with t1 = 5 and tNfix
= 10 as underlying. The notional of all interest rate instruments

or their respective underlying, where applicable, is set to 100.

Potential Future Exposure Let ωj denote the jth simulated path with j = 1, . . . , J ,

where J is the corresponding number of paths. Furthermore, let t0 < t1 < . . . < tK
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denote the MC time grid with K being the number of time steps. Since a financial

entity can only experience a loss if its derivatives position i to a counterparty h has

positive value, the potential future exposure of that position is defined according to De

Prisco and Rosen (2005) by

PFEh
i (ωj, tk) = max

[
V h
i (ωj, tk), 0

]
. (4.23)

V h
i (ωj, tk) is the mark-to-future value of derivative i at path ωj and time tk. The set

PFEh
i = {PFEh

i (ωj, tk)|j = 1, . . . , J, k = 0, . . . , K} is called PFE profile and contains

all possible future exposures of derivative i related to counterparty h. Together with

the default risk properties of h, it provides the basis for the CVA computations.

Expected Exposure An important CVA measure that is derived from PFEh
i is

called expected exposure and is computed in line with De Prisco and Rosen (2005) as

EEh
i (tk) =

1

J

J∑
j=1

PFEh
i (ωj, tk). (4.24)

EEh
i (tk) quantifies the mean of the cross section of paths at time tk from the perspective

of time t0. Its values provide a graphical illustration that can be easily interpreted.

For example, if EEh
i (tk) is low, then the expected amount of money that can be lost in

a derivatives transaction due to default is low, too. Therefore, it indicates the amount

of possible losses a financial entity experiences if its counterparty h defaults at tk.

Credit Valuation Adjustment (CVA) An important building block in the Basel

II/III accords is the credit valuation adjustment whose value represents the expected

default loss of a derivative i with counterparty h. Its value is used for adjusting the

value of a default-free derivative for the default risk associated with counterparty h. In

other words, if the CVA is subtracted from the default-free price of a derivative i then

one receives its defaultable price with respect to counterparty h. There are several

definitions of the CVA in the literature. However, in the following, we propose a new

definition that is based on the framework of Lando (1998) for reduced-form default

models. The advantage of this definition lies in its relationship to valuation formulae

that are commonly used in the literature for pricing default risky instruments, such as

credit default swaps or defaultable bonds, and therefore allows for the applicability of

established valuation methodologies.
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Let λht denote the intensity of a Cox process that can only jump once. If a jump

occurs, then h defaults which triggers a loss in the outstanding derivatives notional if

it is positive to the financial entity. Otherwise, no losses can occur. Then, the CVA

is computed as the expected discounted default losses across the simulated paths of

PFEh
i :

CV Ahi (t, tk) = Et

 tk∫
ξ=t

D(t, ξ)λhξ exp

− ξ∫
ψ=t

λhψdψ

PFEh
i (ωj, ξ)dξ

 , (4.25)

where λhξ exp(−
∫ ξ
ψ=t

λhψdψ) marks the probability that counterparty h defaults exactly

at time ξ and D(t, ξ) the discount factor for the time period from t until ξ.

4.4.2 Analysis of Potential Future Exposures

Expected Exposure and Distribution Properties The distributions from the

MC simulation are rich of information which need to be condensed in order to draw

meaningful conclusions from them. Their properties are reflected by the mean8, the

standard deviation and the quantiles to a satisfactory extent. The distribution prop-

erties of the at-the-money put are plotted in Figure 4.1. The figure reveals that the

properties are highly model-dependent. The quantile Q90%(t) shows the strongest in-

crease over time for the SVSI model, followed by the SVJ and the SV model with clearly

lower values. The upside risk of the put is more pronounced for the SVSI model since

stochastic interest rates may lead to a higher NPV of the strike price at the valuation

date. This effect overcompensates the risk of downside jumps that are priced with the

SVJ model. However, as can be seen for the other measures, the SVJ model generates

the highest values followed by the SVSI and the SV model. For the great majority of

simulation paths, the jump feature of the SVJ model leads to higher put prices, since

its negative jump size leads to a higher ad hoc moneyness of the put option. Therefore,

the lowest EE(t) is associated with the SV model.

The future distributions of the coupon bond are outlined in Figure 4.2. The distribu-

tions that are generated from all three models exhibit spikes at the coupon payment

dates since for CVA analysis, the bond must be valued according to the clean price

convention. The pull-to-par effect is also a characteristic that is retrieved from all

four models. But the distributions from the HW and the EV model have a higher

variance than from the HL model which makes upside and downside outliers more

8 In our analysis, the mean is equivalent to EEh
i (tk).
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Figure 4.1: Expected Exposure and Distribution Properties
of At-the-Money Put

The graphs show EE(t), the distribution quantiles Q90%(t), Q70%(t), Q50%(t),
Q30%(t), Q10%(t) and the standard deviation σ(t) of the cross section of Monte
Carlo paths of the at-the-money put option for all t. Paths are simulated on
a weekly basis from the SVJ, SVSI and SV model over a period of five years.
The simulation of risk factors and the computation of derivative prices are
carried out under the risk-neutral measure.
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Figure 4.2: Expected Exposure and Distribution Properties
of Coupon Bond

The graphs show EE(t), the distribution quantiles Q90%(t), Q70%(t), Q50%(t),
Q30%(t), Q10%(t) and the standard deviation σ(t) of the cross section of Monte
Carlo paths of the coupon bond for all t. Paths are simulated on a weekly basis
from the HW, HL and EV model over a period of five years. The simulation
of risk factors and the computation of derivative prices are carried out under
the risk-neutral measure.
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likely. Furthermore, the HW model shows the highest variance for observations after

200 weeks because its piecewise-constant volatilities have increasing values over time.

The pull-to-par effect predominates after 60 weeks for the other three models and is

not compensated by their volatility specifications.

Similar conclusions can be drawn for the floorlet whose distribution properties are

plotted in Figure 4.3. For the HL model, the floorlet expires out-of-the-money in the

majority of cases. For the HW and the EV model however, it can take high values

at expiration. The fact that the standard deviation σ(t) at maturity is higher than

Q90%(t) resides in the high values of outliers. The sample shows that model choice has

a strong impact on potential future exposures and that in extreme cases, contracts may

mostly expire out-of-the-money for a specific model whereas it can take comparably

high values for others. Further figures that are related to the other instruments can be

found in the appendix.

CVA In post-trade processing, it is crucial to compute the defaultable value of a

derivative because it is processed in further computations which define the amount

of economic capital that is backed behind a portfolio of (derivative) securities. This

defaultable value is obtained by subtracting the CVA as defined in equation (4.25)

from the default-free market price of a derivative. Consequently, the higher the CVA,

the lower the value of the derivative. But there is an important catch. The CVA is not

observable on the market and consequently, market models need to be employed for its

computation. This circumstance is important in practical applications — by choosing

a specific market model, a financial institution may receive a lower CVA than in other

cases with all important implications towards economic capital and risk management.

Table 4.3 presents the CVA for call and put options in dependence of the market model.

The SVJ and the SV model produce the lowest CVA values for all call options. When

comparing the results of the SV and the SVJ model, the jump feature of the latter seems

to have a negligible impact on the valuation of call options. However, the reason for

this lies in the calibrated parameter values of the SV model: its correlation parameter

is clearly lower than the one of the SVJ model. The same holds for κv implying

a higher dispersion of future volatility levels. Both parameter values compensate the

jumps occuring with an average negative jump size in the SVJ model. The SVSI model

produces the highest CVA values because of stochastic interest rates that lead to lower

discounted values of strike prices compared to the other two models. The opposite

holds for the put options: the SVSI model produces the lowest CVA values because of

lower discounted strike values. The values of the SV model are slightly above the ones
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Figure 4.3: Expected Exposure and Distribution Properties of Floor-
let

The graphs show EE(t), the distribution quantiles Q90%(t), Q70%(t), Q50%(t),
Q30%(t), Q10%(t) and the standard deviation σ(t) of the cross section of Monte
Carlo paths of the floorlet for all t. Paths are simulated on a weekly basis
from the HW, HL and EV model over a period of five years. The simulation
of risk factors and the computation of derivative prices are carried out under
the risk-neutral measure.
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Call Put
OTM ATM ITM OTM ATM ITM

SVJ 134.773 255.426 428.943 47.434 125.164 255.757
(2.4719) (3.5038) (4.4074) (1.2641) (2.2572) (3.2990)

SVSI 167.723 293.858 466.544 42.177 109.691 223.802
(2.9460) (3.8826) (4.6770) (1.2209) (2.2260) (3.3282)

SV 136.721 254.456 422.770 51.866 130.835 260.385
(2.5811) (3.6232) (4.5301) (1.2372) (2.2397) (3.3001)

Table 4.3: CVA of Equity Options

The table presents the CVA of out-of-the-money (OTM), at-the-money (ATM)
and in-the-money (ITM) call and put options as valued with the SV, SVSI
and SVJ model. The distance to the 95% confidence bounds of the simulation
are reported in parantheses. The confidence bounds were retrieved under the
normality assumption and give a rough indication of the MC precision. The
constant yearly default intensity of the counterparty is λ = 3%. Values are
reported in basis points.

of the SVJ model which can be attributed to the values of ρ and κv. To summarize

the findings, the CVA produced from the SV model is close to the CVA of the SVJ

model. However, the CVA values of the SVSI model clearly deviate from the results of

the SVJ model. Therefore, we conclude that the CVA can be highly model-dependent

for equity options.

The CVA values for interest rate instruments are shown in Table 4.4. Surprisingly, the

CVA values show no mentionable model dependence across all instruments. This is

in clear contrast to the model dependence of the distribution properties which show

a high variation across models. The reason lies in the high dependence of the CVA

on the expected exposure EEh
i (tk) in our simulation. As we assumed no correlation

between the default intensity λ and the market risk factor, the default characteristics

are the same for all three model setups. And since EEh
i (tk) is not related to tail risk,

the differences between CVA values are negligible.

4.5 Conclusion

The usage of CVA in the financial industry has strongly increased in the past years

because of the requirements defined in the Basel II/III accords. The main benefit

of CVA should lie in its stabilizing effect on the financial system since the default of

counterparties may cause less severe losses in financial portfolios. However, we find
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Bond Caplet Floater Floorlet Swap Swaption

HW 1392.723 12.596 4.872 0.044 0.189 0.109
(0.3417) (0.0857) (0.1024) (0.0915) (0.5242) (0.3220)

HL 1392.971 12.225 4.873 0.042 0.158 0.067
(0.2485) (0.0678) (0.0763) (0.0713) (0.3980) (0.2365)

EV 1392.783 12.502 4.873 0.044 0.170 0.086
(0.3566) (0.0852) (0.1110) (0.0899) (0.4866) (0.2797)

Table 4.4: CVA of Interest Rate Instruments

The table presents the CVA of the coupon bond, caplet, floorlet, floater, swap
and swaption as valued with the HW, EV and HL model. The distance to
the 95% confidence bounds of the simulation are reported in parantheses. The
confidence bounds were retrieved under the normality assumption and give a
rough indication of the MC precision. The constant yearly default intensity of
the counterparty is λ = 3%. Values are reported in basis points.

that the computation of the CVA of equity options can be subject to high model risk

with important consequences with respect to the amount of economic capital.
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Appendix 4.A Proofs

4.A.1 Proof of equation (4.5)

In the following, we derive equation (4.5) in accordance with Amin and Morton (1994).

Proof: Since the price of a zero-bond according to equation (4.7) is required to meet

the martingale condition Et[D(t+ ki, T )D(t, t+ ki)] = exp[−
∫ T
t
f(t, τ)dτ ], in the dis-

crete time setting with instantaneous forward rates f(t, T )

exp

− T∫
t

f(t, τ)dτ

 (4.26)

=
1

2
exp

− T∫
t

f(t, τ) + kiα(t, τ, f(t, τ)) +
√
kiσ(t, τ, f(t, τ))dτ


+

1

2
exp

− T∫
t

f(t, τ) + kiα(t, τ, f(t, τ))−
√
kiσ(t, τ, f(t, τ))dτ


needs to hold, which can be simplified to the condition

1 =
1

2
exp

−
ki T∫

t

α(t, τ, f(t, τ))dτ +
√
ki

T∫
t

σ(t, τ, f(t, τ))dτ

 (4.27)

+
1

2
exp

−
ki T∫

t

α(t, τ, f(t, τ))dτ −
√
ki

T∫
t

σ(t, τ, f(t, τ))dτ

 .
After applying some algebra, equation (4.27) can be reformulated as

exp

−ki T∫
t

α(t, τ, f(t, τ))dτ

 = cosh−1

√ki

T∫
t

σ(t, τ, f(t, τ))dτ

 . (4.28)

By assuming discrete forward rates fd(t, tj−1, tj), we arrive at equation (4.5).
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Appendix 4.B Figures
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Figure 4.4: Expected Exposure and Distribution Properties of
At-the-Money Call

The graphs show EE(t), the distribution quantiles Q90%(t), Q70%(t), Q50%(t),
Q30%(t), Q10%(t) and the standard deviation σ(t) of the cross section of Monte
Carlo paths of the at-the-money call option for all t. Paths are simulated on
a weekly basis from the SVJ, SVSI and SV model over a period of five years.
The simulation of risk factors and the computation of derivative prices are
carried out under the risk-neutral measure.
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Figure 4.5: Expected Exposure and Distribution Properties of
Caplet

The graphs show EE(t), the distribution quantiles Q90%(t), Q70%(t), Q50%(t),
Q30%(t), Q10%(t) and the standard deviation σ(t) of the cross section of Monte
Carlo paths of the caplet for all t. Paths are simulated on a weekly basis from
the HW, HL and EV model over a period of five years. The simulation of
risk factors and the computation of derivative prices are carried out under the
risk-neutral measure.
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Figure 4.6: Expected Exposure and Distribution Properties of
Floater

The graphs show EE(t), the distribution quantiles Q90%(t), Q70%(t), Q50%(t),
Q30%(t), Q10%(t) and the standard deviation σ(t) of the cross section of Monte
Carlo paths of the floater for all t. Paths are simulated on a weekly basis from
the HW, HL and EV model over a period of five years. The simulation of
risk factors and the computation of derivative prices are carried out under the
risk-neutral measure.
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Figure 4.7: Expected Exposure and Distribution Properties of Swap

The graphs show EE(t), the distribution quantiles Q90%(t), Q70%(t), Q50%(t),
Q30%(t), Q10%(t) and the standard deviation σ(t) of the cross section of Monte
Carlo paths of the swap for all t. Paths are simulated on a weekly basis from
the HW, HL and EV model over a period of five years. The simulation of
risk factors and the computation of derivative prices are carried out under the
risk-neutral measure.
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Figure 4.8: Expected Exposure and Distribution Properties of
Swaption

The graphs show EE(t), the distribution quantiles Q90%(t), Q70%(t), Q50%(t),
Q30%(t), Q10%(t) and the standard deviation σ(t) of the cross section of Monte
Carlo paths of the swaption for all t. Paths are simulated on a weekly basis
from the HW, HL and EV model over a period of five years. The simulation
of risk factors and the computation of derivative prices are carried out under
the risk-neutral measure.
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Chapter 5

Summary and Conclusion

This thesis contains three essays on empirical and theoretical finance that analyze

default risky instruments.

In Chapter 2, we devote ourselves to the question where correlated default factors can

be detected in the underlying CDS market. Hence, we investigate a very large CDX

data set that comprises daily index CDS, CDO tranche and CDS data from the years

2005 - 2012. We divide this data set into a pre-crisis, a crisis and a post-crisis period

and draw the following conclusions: before the financial crisis, more than 80% of the

observed default risk was caused by the single default factor and only 20% could be

attributed to correlated default factors. This picture changed dramatically during the

crisis, when correlated default factors accounted for more than 80% of default risk

whereas the remaining 20% are due to the single default factor. After the crisis, the

fraction of the correlated default factors was still above 50%. Accordingly, correlated

default factors played a negligible role in the pricing of CDS before the crisis. However,

during and after the crisis, correlated default factors were highly immanent to CDS on

firms with a high creditworthiness. Thus, we can draw the conclusion that especially

firms with a low default probability are likely to default in groups during a financial

crisis or in catastrophic scenarios. In contrast, firms with a high default probability

are less affected by correlated default factors since often, they are already in financial

distress that is independent from macroeconomic factors and the state of other firms.

The pricing of CCDS contracts is analyzed in Chapter 3. CCDS insure against default

losses in derivatives transactions. As a prominent example, we consider CCDS that

have IR swaps as an underlying. We set up our model in the context of a structural

model according to Merton (1974) that accounts for correlated asset and interest rate

factors. Consequently, the counterparty of the model may not only default because of

asset risk but also because of unfavorable interest rate movements that can worsen refi-
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nancing conditions and lead to a default. We derive semi-analytical valuation formulae

for CCDS, CDS, swaptions and zero-bonds that can easily be evaluated numerically.

Furthermore, we derive a model-free approximate formula for the valuation of CCDS

that only relies on observable market prices of a CDS, a swaption and a zero-bond.

Subsequently, we carry out a comparative-static analysis yielding the following im-

portant results: CCDS fundamentally differ from CDS in their pricing behavior. An

increasing initial short rate and interest rate volatility level lead to higher CDS prices

because of a higher probability of high interest rates that are more likely to cause a

default of the counterparty. However, the CCDS price declines for an increasing in-

terest rate volatility because the underlying swaption is out-of-the-money. Thus, the

swap has values close to zero upon default. Furthermore, we find that our approximate

formula always overestimates the correct CCDS price which makes it a useful tool for

time-critical practical situations.

An alternative way of accounting for the default risk of a complex financial instrument

is provided by subtracting the CVA from its default-free value. We analyze the model

dependence of CVA in Chapter 4. Hence, we implement three equity and three interest

rate models that are based on the Bakshi et al. (1997) and the Heath et al. (1992)

framework respectively. We find that in general, CVA-related computations are highly

model dependent for equity instruments. For the interest rate models though, the CVA

is far less model dependent than in the equity case. These findings have important

implications for practitioners and regulators alike: by choosing a market model with

suitable properties for CVA computation, financial institutions are able to overvalue

their positions backing them with less economic capital than truly necessary. Hence,

regulators are well advised to take a close look to the applied market models in order

to assure the stability of an important cornerstone of the financial system.
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[38] Föllmer, H. and Schweizer, M., ’Hedging of Contingent Claims under Incomplete

Information’, In Davis, M. H. A. and Elliott, R. J., Applied Stochastic Analysis, Vol.

5, Stochastics Monographs, Gordon & Breach, 1991, pp. 389 - 414.

[39] Frey, R. and Backhaus, J., ’Dynamic Hedging of Synthetic CDO Tranches with

Spread Risk and Default Contagion’, Working Paper, 2009, pp. 1 - 22.

[40] Gallant, R. A., ’Nonlinear regression’, The American Statistician, Vol. 29, 1975,

pp. 73 - 81.

[41] Errais, E., Giesecke, K. and Goldberg, L., ’Pricing Credit from the Top Down

with Affine Point Processes’, Working Paper, 2007, pp. 1 - 29.

[42] Giesecke, K., Goldberg, L. R. and Ding, X., ’A Top-Down Approach to Multiname

Credit’, Operations Research, Vol. 59, 2011, pp. 283 - 300.

[43] Giesecke, K., ’The Correlation-Neutral Measure for Portfolio Credit’, Working

Paper, 2007, pp. 1 - 22.

[44] Giesecke, K. and Tomecek, P., ’Dependent Events and Changes of Time’, Working

Paper, 2005, pp. 1 - 28.

[45] Gorton, G. B., ’The Subprime Panic’, NBER Working Paper 14398, 2008, pp. 1 -

38.

[46] Gorton, G. B., ’The Panic of 2007’, NBER Working Paper 14358, 2008, pp. 1 -

91.

[47] Gürkaynak, R. S., Sack, B. and Wright, J. H., ’The U.S. Treasury Yield Curve:

1961 to the Present’, Finance and Economics Discussion Series, Divisions of Re-

search & Statistics and Monetary Affairs, Federal Reserve Board, Washington D.C.,

2006, pp. 1 - 42.

[48] Halperin, I. and Tomecek, P., ’Climbing Down from the Top: Single Name Dy-

namics in Credit Top Down Models’, Working Paper, 2008, pp. 1 - 33.

[49] Heath, D., Jarrow, R. and Morton, A., ’Bond Pricing and the Term Structure of

Interest Rates: A Discrete Time Approximation’, Journal of Financial and Quanti-

tative Analysis, Vol. 25, 1990, pp. 419 - 440.

110



[50] Heath, D., Jarrow, R. and Morton, A., ’Contingent Claim Valuation with a Ran-

dom Evolution of Interest Rates’, The Review of Futures Markets, Vol. 9, 1990, pp.

54 - 76.

[51] Heath, D., Jarrow, R. and Morton, A., ’Bond Pricing and the Term Structure of

Interest Rates: A New Methodology for Contingent Claims Valuation’, Economet-

rica, Vol. 60, 1992, pp. 77 - 105.

[52] Henrard, M., ’Hull-White One Factor Model: Results and Implementation’, Work-

ing Paper, 2012, pp. 1 - 11.

[53] Heston, S. L., ’A Closed-Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options’, The Review of Financial Studies, Vol.

6, 1993, pp. 327 - 343.

[54] Ho, T. S. Y. and Lee, S.-B., ’Term Structure Movements and Pricing Interest Rate

Contingent Claims’, The Journal of Finance, Vol. 41, 1986, pp. 1011 - 1029.

[55] Hull, J., Predescu, M. and White, A., ’Bond prices, default probabilities and risk

premiums’, Journal of Credit Risk, Vol. 1, 2005, pp. 53 - 60.

[56] Hull, J. and White, A., ’One-Factor Interest-Rate Models and the Valuation of

Interest-Rate Derivative Securities’, Journal of Financial and Quantitative Analysis,

Vol. 28, 1993, pp. 235 - 254.

[57] Hull, J. and White, A., ’The impact of default risk on the prices of options and

other derivative securities’, Journal of Banking & Finance, Vol. 19, 1995, pp. 299 -

322.

[58] Hull, J. and White, A., ’The General Hull-White Model and Super Calibration’,

Working Paper, 2000, pp. 1 - 20.

[59] Hull, J. and White, A., ’Valuation of a CDO and an nth to Default CDS Without

Monte Carlo Simulation’, Journal of Derivatives, Vol. 12, 2004, pp. 8 - 23.

[60] Hull, J. and White, A., ’Collateral and Credit Issues in Derivatives Pricing’, Work-

ing Paper, 2013, pp. 1 - 25.

[61] Jarrow, R. A. and Turnbull, S. M., ’Pricing Derivatives on Securities Subject to

Credit Risk’, The Journal of Finance, Vol. 50, 1995, pp. 53 - 85.

111



[62] Jarrow, R. A., Lando, D. and Turnbull, S. M., ’Term Structure of Credit Risk

Spreads’, The Review of Financial Studies, Vol. 10, 1997, pp. 481 - 523.

[63] Jorion, P. and Zhang, G., ’Good and bad credit contagion: Evidence from credit

default swaps’, Journal of Financial Economics, Vol. 84, 2007, pp. 860 - 883.

[64] Junge, B. and Trolle, A. B., ’Liquidity Risk in Credit Default Swap Markets’,

Working Paper, 2013, pp. 1 - 46.

[65] Kahle, K. M. and Stulz, R. M., ’Financial Policies and the Financial Crisis: How

Important was the Systemic Credit Contraction for Industrial Corporations?’, NBER

Working Paper Series, 2010, pp. 1 - 53.

[66] Kole, E., Keodijk, K. and Verbeek, M., ’Selecting Copulas for Risk Management’,

Working Paper, 2006, pp. 1 - 23.

[67] Koziol, C., Koziol, P. and Schön, T., ’Do Correlated Defaults Matter for CDS

Premia? An Empirical Analysis’, Working Paper, 2014, pp. 1 - 45.

[68] Koziol, C. and Schön, T., ’Contingent CDS: Accurate and Approximate Pricing’,

Working Paper, 2014, pp. 1 - 28.

[69] Lando, D., ’On Cox Processes and Credit Risky Securities’, Review of Derivatives

Research, Vol. 2, 1998, pp. 99 - 120.

[70] Li, A., ’A Jump Diffusion Model for Contingent CDS Valuation’, Working Paper,

2007, pp. 1 - 10.

[71] Li, D. X., ’On Default Correlation: A Copula Function Approach’, Working Paper,

2000, pp. 1 - 29.

[72] Liu, J., Longstaff, F. A. and Mandell, R. E. , ’The Market Price of Risk in Interest

Rate Swaps: The Roles of Default and Liquidity Risks’, Journal of Business, Vol.

79, 2006, pp. 2337 - 2359.

[73] Longstaff, F. A., Mithal, S. and Neis, E., ’Corporate Yield Spreads: Default Risk

or Liquidity? New Evidence from the Credit Default Swap Market’, The Journal of

Finance, Vol. 60, 2005, pp. 2213 - 2251.

[74] Longstaff, F. A. and Rajan, A., ’An Empirical Analysis of the Pricing of Collat-

eralized Debt Obligations’, The Journal of Finance, Vol. 63, 2008, pp. 529 - 563.

112



[75] Longstaff, F. A. and Schwartz, E. S., ’A Simple Approach to Valuing Risky Fixed

and Floating Rate Debt’, The Journal of Finance, Vol. 50, 1995, pp. 787 - 819.

[76] Lopatin, A. V., ’A simple dynamic model for pricing and hedging heterogenous

CDOs’, Working Paper, 2008, pp. 1 - 27.

[77] Lopatin, A. and Misirpashaev, T., ’Two-Dimensional Markovian Model for Dy-

namics of Aggregate Credit Loss’, Working Paper, 2007, pp. 1 - 27.

[78] Mamon, R. S., ’Three Ways to Solve for Bond Prices in the Vasicek Model’, Journal

of Applied Mathematics and Decision Sciences, Vol. 8, 2004, pp. 1 - 14.

[79] Merton, R. C., ’Theory of Rational Option Pricing’, The Bell Journal of Eco-

nomics and Management Science, Vol. 4, 1973, pp. 141 - 183.

[80] Merton, R. C., ’On the Pricing of Corporate Debt: The Risk Structure of Interest

Rates’, The Journal of Finance, Vol. 29, 1974, pp. 449 - 470.

[81] O’Kane, D. and Livesey, M., ’Base Correlation Explained’, Lehman Brothers

Quantitative Credit Research Quarterly, Vol. 2004-Q3/4, 2004, pp. 1 - 18.
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[86] Schönbucher, P., ’Portfolio Losses and the Term Structure of Loss Transition

Rates: A New Methodology for the Pricing of Portfolio Credit Derivatives’, Working

Paper, 2006, pp. 1 - 27.

[87] Sorensen, E. H. and Bollier, T. F., ’Pricing Swap Default Risk’, Financial Analysts

Journal, Vol. 50, 1994, pp. 23 - 33.

[88] Standard and Poor’s, ’2012 Annual Global Corporate Default Study and Rating

Transitions’, 2013.

113



[89] Vasicek, O., ’An Equilibrium Characterization of the Term Structure’, Journal of

Financial Economics, Vol. 5, 1977, pp. 177 - 188.

[90] Yu, F., ’Default Correlation in Reduced-Form Models’, Journal of Investment

Management, Vol. 3, 2005, pp. 33 - 42.

114




	Introduction
	Do Correlated Defaults Matter for CDS?
	Introduction
	The Model
	CDO Valuation
	CDS Valuation
	Portfolio Model
	Single-Name Model

	Model Calibration
	Portfolio Level
	Single-Name Level

	Empirical Analysis
	Data Set
	Descriptive Statistics
	Calibration Results

	Conclusion
	Appendix Tables

	CCDS:Accurate and Approximate Pricing
	Introduction
	The Model
	Interest Rate Process
	Asset Value Process
	Default Condition

	Valuation Approach
	Swaption Valuation
	CDS Valuation
	CCDS Valuation

	Value Analysis
	CCDS and CDS Prices
	CCDS and Approximate CCDS Price

	Conclusion
	Appendix Proofs

	How Market Model Choice Affects the CVA
	Introduction
	Interest Rate Models and Instruments
	Continuous HJM Framework
	Discrete HJM Framework
	Interest Rate Models
	Interest Rate Instruments

	Equity Models and Instruments
	Continuous BCC Framework
	Equity Instruments

	Monte Carlo Simulation and Results
	Monte Carlo Setup and CVA Definition
	Analysis of Potential Future Exposures

	Conclusion
	Appendix Proofs
	Proof of equation (4.5)

	Appendix Figures

	Summary and Conclusion
	Bibliography

