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ABSTRACT

The oceanic redox state distinctly changed during the Precambrian Eon. Entirely anoxic oceans in earliest 
Earth history initially became mildly oxygenated in some shallow marine areas. The first appearance of 
such ‘oxygen oases’ remains controversial, but their areal extension in late Archean and early Proterozoic 
times possibly triggered atmospheric oxygenation during the Great Oxidation Event around 2.4 billion 
years ago. The timing of complete ocean oxygenation (including the deep ocean) is likewise debated in the 
scientific community, but may be linked to a second oxygenation event almost 2 billion years later during 
the final stages of the Precambrian Eon (Ediacaran Period). 

In this cumulative dissertation periods of major environmental redox changes were investigated using 
the isotope proxies of redox sensitive elements such as iron (Fe) and molybdenum (Mo). The transitional 
period before the Great Oxidation Event was examined by a Mo isotope study of late Archean black shales 
and iron formations of the Hamersley Basin, Australia (CHAPTER I). Both types of sediments show a gradual 
increase towards heavy Mo isotopic ratios between 2.6 and 2.5 billion years ago. This increase requires a 
contemporaneously upcoming sink of isotopically light Mo, such as Manganese oxides (MnO2), which may 
have formed in shallow marine ‘oxygen oases’. To further verify this interpretation, 2.48 billion years old 
Mn-rich iron formations from the Griqualand West Basin, South Africa, were analyzed for the Mo and Fe 
isotopic composition (CHAPTER II). The observed negative correlation between Mn concentration and Mo 
isotopic ratios confirms that the adsorption of (isotopically light) molybdate onto Mn oxides represented 
an important Mo burial pathway. Importantly, also Fe isotopic ratios show a negative correlation with Mn 
concentrations. Considering modern redox stratified lake equivalents, this trend most likely arise from the 
depletion of heavy Fe isotopes in the uppermost water column along the chemocline due to iron oxidation 
by Mn oxides. Thus, multiple isotopic evidence confirms local Mn oxide formation in oxygen-rich shallow 
marine waters before atmospheric oxygenation during the Great Oxidation Event. 

The assumed oxygenation of the deep ocean during the Ediacaran Period would have further 
extended the depositional area of Mn oxides, thus also increasing the sink of isotopically light Mo. As a 
consequence, the seawater Mo isotopic ratio is expected to have been risen to modern-like high ratios. 
However, the geochemical study of Teplá Barrandian black shales from this time period draws a different 
picture (CHAPTER III). The sulfur isotopic composition and the ratio of molybdenum concentrations to 
total organic carbon indicate the temporal restriction of the local depositional basin and accompanied 
depletion of dissolved sulfate and molybdate. The Mo isotopic composition of black shales deposited in 
such restricted and euxinic basins mirrors the contemporaneous global seawater Mo isotopic signature 
(like in the modern Black Sea). Constantly low Mo isotopic ratios in respective sediments suggest the lack 
of Mn oxide formation in contemporaneous deep sea settings due to continuously anoxic deep water 
conditions at the end of the Precambrian eon. 





ZUSAMMENFASSUNG

Der Redoxzustand der Ozeane erlebte signifikante Veränderungen während des Präkambrischen Äons. 
Ausgehend von vollständig anoxischen Bedingungen während der frühesten Erdgeschichte entwickelten 
sich zunächst in lokalen Flachwasserbereichen leicht oxische Bedingungen. Das früheste Auftreten solcher 
‚Sauerstoffoasen‘ bleibt umstritten, doch ihre Ausbreitung könnte die Oxidation der Atmosphäre während 
des Great Oxidation Events vor etwa 2,4 Milliarden Jahren ausgelöst haben. Die vollständige Oxidation der 
Ozeane, inklusive des tiefen Ozeans, fand hingegen vermutlich erst etwa 2 Milliarden Jahre später während 
eines zweiten Oxidationsereignisses am Ende des Präkambrischen Äons statt (Ediacara Periode). 

In dieser kumulativen Dissertation wurden wesentliche Zeiträume, die geprägt waren durch 
Veränderungen des marinen Redoxzustandes, anhand von Isotopenmessungen redox-sensitiver Elemente, 
wie zum Beispiel Molybdän (Mo) und Eisen (Fe), genauer untersucht. Die Übergangsphase vor dem Great 
Oxidation Event wurde mithilfe von Mo-Isotopenmessungen an spät-archaischen Schwarzschiefern und 
Eisenformationen des Hamersley-Beckens, Australien, detailliert eruiert (CHAPTER I). Beide Sedimenttypen 
zeigen einen kontinuierlichen Anstieg zu schwereren Isotopenverhältnissen, welcher die regionale oder 
globale Ausweitung der Senke für isotopisch leichtes Mo impliziert. Manganoxide (MnO2), die in oxischen 
Flachwasserregionen gebildet wurden, stellen eine solche Senke dar. Um diese Interpretation weiter zu 
verifizieren, wurden 2,48 Milliarden Jahre alte Mn-reiche Eisenformationen aus dem Griqualand West-
Becken, Südafrika, auf die Mo- und Fe-Isotopie hin untersucht (CHAPTER II). Die hier festgestellte negative 
Korrelation von Mn-Konzentrationen und Mo-Isotopenverhältnissen bestätigt, dass die Adsorption von 
isotopisch leichtem Molybdat an Mn-Oxiden einen wichtigen Ablagerungsmechanismus darstellte. Die 
Fe-Isotopenverhältnisse zeigen ebenfalls eine negative Korrelation mit Mn-Konzentrationen. Im Hinblick 
auf rezente, redox-stratifizierte Seen weist dieser Trend auf die Oxidation von gelöstem Eisen durch Mn-
Oxide entlang der Redoxkline hin. Zusammenfassend lässt sich also feststellen, dass mehrere isotopische 
Evidenzen die lokale Mn-Oxidation in oxischen Flachwasserregionen noch vor der Oxidation der Atmosphäre 
während des Great Oxidation Event bestätigen.

Die angenommene Oxidation des tiefen Ozeans während der Ediacara Periode hätte die weitere 
Ausbreitung von Mn-Oxid-Ablagerungen zur Folge gehabt und somit auch die Senke von isotopisch leichtem 
Molybdän vergrößert. Damit einhergehend wäre ein Anstieg des Meerwasser-Mo-Isotopenverhältnisses 
zu rezent hohen Werten zu erwarten. Die geochemische Studie an Schwarzschiefern vom Teplá Barrandium 
zeichnet allerdings ein anderes Bild (CHAPTER III). Die Messungen von Schwefel-Isotopenverhältnissen 
sowie den Verhältnissen von Mo-Konzentrationen zum gesamten organischen Kohlenstoff deuten auf 
temporäre Restriktion des lokalen Beckens hin, was mit der Abreicherung von Sulfat und Molybdat in 
der lokalen Wassersäule einherging. Die Mo-Isotopenverhältnisse von Schwarzschiefern aus solch 
restriktiven und euxinischen Becken spiegeln die zeitgleiche globale Meerwasserisotopie wider (vgl. 
heutiges Schwarzes Meer). Konstant niedrige Mo-Isotopenverhältnisse in diesen Schwarzschiefern deuten 
allerdings nicht auf erhöhte Mn-Oxid-Ablagerungen hin, sondern implizieren vielmehr kontinuierlich 
anoxische Tiefwasserbedingungen am Ende des Präkambriums. 
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1. The Precambrian evolution of environmental redox conditions
 
The evolution of the chemical composition of the atmosphere and the oceans represents a major 

task in geochemical research. It is generally assumed that anoxic conditions prevailed during the Hadean 
and Archean era until the so-called Great Oxidation Event (GOE) in the early Proterozoic. The ‘smoking 
gun’ for this view is the preservation of mass independent sulfur isotope fractionations (MIF) in Archean 
sediments, which requires an anoxic atmosphere with oxygen levels lower than 10-5 of present atmospheric 
level (Farquhar et al., 2000; Pavlov and Kasting, 2002). The loss of these MIF signals in Paleoproterozoic 
sediments between 2.45 and 2.32 Ga ago (Bekker et al., 2004; Guo et al., 2009; Hannah et al., 2004) 
provides strong evidence for increasing atmospheric oxygen levels above this threshold (Fig. 1). Consistent 
with this geochemical indication, geological observations such as the first appearance of paleosoils with 
oxidized iron (‘red beds’) and the disappearance of detrital pyrite and uranite in marine sediments younger 
than the GOE provide further compelling evidence for more oxidizing conditions (Canfield, 2005; Holland, 
2006).

The availability of free oxygen is a question of the balance of oxygen sinks and sources. Some authors 
suggested that the GOE was triggered by decreasing oxygen sinks, for example due to the loss of hydrogen 
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to space (Catling et al., 2001) or changes in the chemical composition of volcanic gases (Gaillard et al., 2011; 
Kump and Barley, 2007). Alternatively, bacterial oxygen production by oxygenic photosynthesis increased 
(Holland, 2006). Coupled with the burial of reduced carbon (organic matter), oxygenic photosynthesis 
represents a net source of oxygen. The evolution of oxygenic photosynthesis is still poorly understood 
but probably predates the GOE by several hundreds of million years (Eigenbrode and Freeman, 2006; 
Kurzweil et al., 2013; Planavsky et al., 2014). The local production of oxygen in shallow marine habitats 
during this transitional period could have oxygenated some surface areas of the ocean (Fig. 1). In these 
regions a stratified water column developed, with anoxic deep waters and oxic surface waters divided by 
a chemocline (Kendall et al., 2010; Planavsky et al., 2014; Riding et al., 2014). Oxygen exchange between 
local ‘oxygen oases’ and the atmosphere might have caused short-term fluctuations in atmospheric oxygen 
concentrations (Frei et al., 2009) and ‘whiffs’ of oxygen (Anbar et al., 2007). Higher rates of oxidative 
weathering of sulfides thereby increased the supply of associated metals (such as molybdenum) to the 
ocean, which may explain their enrichment in pre-GOE sediments (Anbar et al., 2007). However, persistent 
accumulation of oxygen in the atmosphere before the GOE was probably inhibited by the outbalancing 
capacity of reduced components of the continental crust and the ocean-atmosphere system.

Some authors suggested a short-lived ‚oxygen overshoot‘ In the aftermath of the GOE (Fig. 1) (Bekker 
and Holland, 2012). During the Lomagundi-Jatuli event between 2.3 and 2.1 Ga ago strong positive shifts 
in the carbonate carbon isotopic record indicate the increased burial of isotopically light organic carbon, a 
net source of oxygen (Karhu and Holland, 1996). Inconsistently with this claim, however, contemporaneous 
organic-rich sedimentary deposits are missing, but were only deposited during the subsequent Shunga 
Event. The precise interrelation of both events and their implications for the history of oxygenation are 

FIGURE 1: (from Lyons et al., 2014) The evolution of the atmospheric redox-state. Right axis: pO2 
relative to the present atmospheric level (PAL). The red line marks the classical view of atmospheric 
oxygenation (Kump, 2008). The blue curve was established in more recent years. The arrows between 
3.0 and 2.5 Ga indicate the transmission of oxygen from local marine oxygen oases to the atmosphere. 
During the GOE around 2.4 Ga ago atmospheric oxygen levels increased significantly and possibly 
‘overshot‘ during the subsequent Lumagundi-Jatuli event (2.3 to 2.1 Ga). The mid-Proterozoic time 
period was characterized by lower oxygen levels again. During a second major oxygenation event 
at the end of the Neoproterozoic the deep ocean may have become oxygenated and atmospheric 
oxygen levels reached modern-like values.
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still poorly understood and remain a matter of debate in the scientific community (Lyons et al., 2014). It is, 
however, well constrained that oxygen levels remained relatively low during the following period between 
1.8 and 0.8 Ga ago (Holland, 2006; Lyons et al., 2014). Due to the invariability of several geochemical 
proxies this mid-Proterozoic time period was termed the ‘boring billion’ (Holland, 2006). The start of 
the boring billion also marks the disappearance of large iron-rich chemical sediments, so-called iron 
formation (IF), which developed by the local oxidation of dissolved Fe2+ to insoluble Fe3+ and subsequent 
precipitation of Fe3+-minerals (see further explanation in 1.2). Their disappearance was initially interpreted 
to be a consequence of Fe2+ limitation in an oxic (Holland, 2005) or sulfidic ocean (Canfield, 1998). More 
recent studies, however, demonstrated that the deep ocean remained ferruginous beyond the GOE and 
during most of the Proterozoic era (Planavsky et al., 2011). Following these authors, the termination of BIF 
deposition is rather related to lower release of hydrothermal iron during volcanically more quite periods 
in mid-Proterozoic times.

Although controversial, first deep ocean oxygenation might have occurred in the course of a second 
major oxygenation event during the late Neoproterozoic (Canfield et al., 2007; Chen et al., 2015; Och and 
Shields-Zhou, 2012). This time period is also marked by major biologic innovations such as the evolution 
of multi-cellular life (Love et al., 2009), tectonic modifications such as the break-up of the supercontinent 
Rodinia (Hoffman, 1991) as well as climate changes, which caused the global Marinoan and Sturtian 
glaciations (Hoffman et al., 1998). A causal link between these environmental, biologic and tectonic 
changes seems manifest, although the primery trigger remains controversial (Butterfield, 2009; Fike et 
al., 2006; Lenton et al., 2014; Och and Shields-Zhou, 2012). But independent of the triggering mechanism 
higher and possibly modern-like oxygen concentrations in the ocean-atmosphere system are assumed for 
the first time during this second major oxygenation event at the end of the Precambrian (Och and Shields-
Zhou, 2012). 

2. The principles of the molybdenum and the iron isotope proxy

2.1 Mass-dependent isotope fractionation
During the last years the isotopic composition of transition metals became an important tool to better 

constrain the history of the Earth’s redox-evolution (Arnold et al., 2004; Asael et al., 2013; Kendall et al., 
2015; Rouxel et al., 2005; Wille et al., 2007). The use of these isotope proxy signals relies on fundamentals 
of mass dependent isotope fractionation, which arise from quantum chemical effects (Bigeleisen, 1965; 
Urey, 1947). The zero point energy of a molecule, which is the difference between its lowest allowed 
potential energy level and the minimum of the potential well, depends on the masses of the single atoms 
(Fig. 2). Molecules with heavier isotopes have relatively lower zero-point-energies and form stronger 
chemical bonds. The dissociation energy of these molecules is larger, which causes slower reaction 
rates and kinetic isotope fractionations during chemical reactions (Sharp, 2007). Furthermore, the lower 
potential and vibrational energy of heavy-isotope-molecules results in lower translational velocities (i.e. 
during diffusion) and lower contact probability (i.e. during adsorption), which can also cause isotope 
fractionations.
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The relevant fractionation processes for the application of molybdenum (Mo) and iron (Fe) isotopes as 
a paleo-redox proxy are briefly described in the following and in more detail in chapters I to III. The Mo- 
and Fe isotopic composition of a sample is generally shown in the δ-notation, which relates the isotopic 
ratio of the sample to a certified standard material:

where R represents the ratio of the abundance of the heavy to the light isotope. 

Aerosols
δ56Fe ~0.1‰

Rivers
δ56Fe -1 to 0‰

Euxinic sed.
δ56Fe -0.8 to 0‰

Igneous rocks
δ56Fe ~0.1‰

Pelagic sediments
δ56Fe -0.1‰

Hydroth. �uids
δ56Fe -0.6 to 0‰

Mn-Fe crusts
δ56Fe -1 to 0‰

altered oceanic crust
δ56Fe -1.5 to 1.5‰

Pore �uids
δ56Fe -0.3 to 0.4‰

Seawater (heterogeneous)
δ56Fe -1.4 to 0.8‰

FIGURE 2: (from Anbar and Rouxel, 2007) Schematic illustration, which demonstrates the context of zero-
point-energies and molecular bond-strength. The molecule AB with the heavy isotope of xA has a relatively 
lower zero-point-energy and forms stronger chemical bonds.
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2.2 Iron isotopes
Iron has four naturally occurring stable isotopes (Table 1) and a relative abundance in the Earth’s 

crust of ~5 % (Taylor and McLennan, 1985). Nevertheless, the modern oxic ocean is strongly depleted and 
heterogeneously distributed with respect to iron (Gordon et al., 1982), which arise from the insolubility 
of oxidized Fe3+. Figure 3 summarizes the modern in- and outfluxes of iron and their respective (strongly 
variable) isotopic compositions. 

In reducing marine environments, however, iron is very soluble as Fe2+. Therefore, it is expected that the 
anoxic Archean ocean was enriched and homogeneously distributed in Fe2+ (Johnson et al., 2008). Such a 
ferruginous ocean was a prerequisite for the deposition of proximal (Superior Type) iron formations, which 
resulted from local oxidation of Fe2+ and subsequent formation and precipitation of Fe3+-minerals on the 
continental shelf (Isley and Abbott, 1999). The precise oxidation mechanism remains a matter of debate in 
the scientific community. The abiotic oxidation of Fe2+ by UV light (Cairns-Smith, 1978) was recently shown 
to be an unlikely mechanism (Konhauser et al., 2007). However, iron oxidation can proceed abiotically 
by oxidants such as O2, which would suggest the local availability of oxygen (and possibly oxygenic 
photosynthesis) in the upper water column (Cloud, 1973). Alternatively, iron was oxidized biotically by 
anoxygenic phototrophic bacteria, which use Fe2+ as an electron donor (Kappler et al., 2005).

The abiotic as well as the biotic oxidation of iron is accompanied by large isotope fractionations, 
thereby enriching the heavy isotopes in the more oxidized species (Beard and Johnson, 2004; Croal et 
al., 2004; Welch et al., 2003). The transition from a homogeneous ferruginous ocean towards more 
oxidized conditions may change the seawater and sedimentary Fe isotopic composition (i.e. the Fe 
isotopic composition of contemporaneous IFs, Rouxel et al., 2005; Anbar and Rouxel, 2007). It is, however, 
difficult to distinguish between both mechanisms by the use of Fe isotopes. Furthermore, other processes 

Aerosols
δ56Fe ~0.1‰

Rivers
δ56Fe -1 to 0‰

Euxinic sed.
δ56Fe -0.8 to 0‰

Igneous rocks
δ56Fe ~0.1‰

Pelagic sediments
δ56Fe -0.1‰

Hydroth. �uids
δ56Fe -0.6 to 0‰

Mn-Fe crusts
δ56Fe -1 to 0‰

altered oceanic crust
δ56Fe -1.5 to 1.5‰

Pore �uids
δ56Fe -0.3 to 0.4‰

Seawater (heterogeneous)
δ56Fe -1.4 to 0.8‰

FIGURE 3: Schematic illustration of the Fe isotopic composition of the most relevant fluxes and 
reservoirs in the modern marine environment. In-fluxes are shown in orange boxes, out-fluxes in 
green boxes, respectively. The Fe isotopic composition of reservoirs is indicated in white boxes 
(Anbar and Rouxel, 2007, and references therein). The large variability as well as the similarity in the 
isotopic composition of most fluxes is striking. Importantly, the seawater Fe isotopic composition 
is heterogeneous in the modern ocean because of the insolubility of iron in oxic aquatic systems 
(Conway and John, 2014).
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Seawater (homogeneous)
δ98Mo 2.3‰

Rivers
δ98Mo 0.7‰

Euxinic sed.
δ98Mo ~2.3‰

Igneous rocks
δ98Mo 0.4‰

Suboxic sediments
δ98Mo -0.5-1.3‰

Hydroth. �uids
δ98Mo ~0.7‰

Mn oxides
δ98Mo -0.7‰

10 %

90 %

35 %

50 % 15 %

apart from changes in the oxidation state are also accompanied by Fe isotopic fractionation, i.e. mineral 
formation processes (Beard and Johnson, 2004; Guilbaud et al., 2011; Guilbaud et al., 2010; Wiesli et 
al., 2004). Also, the bacterial reduction of iron cause significant Fe isotope fractionations (Johnson et 
al., 2005). Depending on the depositional history of the analyzed sediments and the abundant mineral 
species, all these fractionation processes need to be taken into account, when reconstructing ancient 
redox conditions by the use of Fe isotopes (see chapters II to III for more detailed explanations).

2.3 Molybdenum isotopes
Molybdenum has seven naturally occurring stable isotopes (Table 1). The abundance of molybdenum 

in the Earth’s crust is relatively low (1ppm) (Taylor and McLennan, 1985). In contrast to Fe, Mo forms 
very unreactive molybdate ions (MoO4

2-) in oxic oceans. It therefore represents the most abundant 
transition metal in the modern ocean (105 nM) with a residence time of ~440 ka (Miller et al., 2011), 
which implies a globally homogeneous distribution in respect of concentration and isotopic composition 
(Fig. 4). The modern sources and sinks of marine Mo and their respective Mo isotopic compositions are 
summarized in Fig. 4. Most importantly, the adsorption onto Mn oxides represents the main outflux of 
Mo in oxic settings, thereby preferentially adsorbing isotopically light Mo (Barling and Anbar, 2004). As a 
consequence, the remaining modern marine Mo reservoir is isotopically heavy. In sulfidic marine settings, 
molybdate transforms to thiomolybdate, which is efficiently removed from solution by adsorption onto 
organic matter or the precipitation of Mo-Fe-sulfides (Helz et al., 1996; Helz et al., 2011; Tribovillard et al., 
2004). The near quantitative removal of Mo in such settings might preserve the Mo isotope signal in such 
sediments (i.e. organic-rich black shales). The Mo isotopic composition of global seawater (and euxinic 
sediments such as organic-rich black shales) may, thus, depend on the areal extension of oxic relative to 
sulfidic conditions. For example, an increase in the seawater δ98Mo value (and the δ98Mo value of euxinic 
black shales) is expected in the course of global ocean oxygenation (Arnold et al., 2004).

However, the application of Mo isotopes as a ‘global paleo-redox proxy’ is complicated by several  
aspects. First, the input was significantly lower during Archean times because of limited sulfide oxidation 

Table 1: Iron and molybdenum isotope abundances
Iron Molybdenum
Isotope abundance (%) Isotope abundance (%)

54Fe 5.8 92Mo 14.84
56Fe 91.72 94Mo 9.25
57Fe 2.2 95Mo 15.92
58Fe 0.28 96Mo 16.68

 97Mo 9.55
98Mo 24.13
100Mo 9.63

* after de Laeter et al. (2003)
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in a predominantly anoxic environment. As a consequence, the seawater Mo reservoir was probably 
significantly smaller and possibly heterogeneously distributed (Scott et al., 2008). Furthermore, the 
assumption of quantitative Mo removal in euxinic environments is very simplified, particularly when 
considering environments with relatively low H2Saq concentrations. In respective settings large isotope 
fractionations can occur, which has implications on the local sedimentary as well as the seawater Mo 
isotopic composition. It is therefore critical to consider the Mo isotope data in a broader context, particularly 
regarding the local depositional environment (see chapters I for more detailed explanations).

In summary, isotope analyses of redox sensitive elements such as Mo and Fe in appropriate sediments 
have the potential to trace changes of ancient environmental redox states. The combination of Mo- and 
Fe isotopes is particularly promising because of their complementary behavior during redox-changes. 
However, several other parameters apart from redox changes (i.e. biologic activity and the availability of 
H2Saq) also have large implications for the sedimentary isotopic composition. A detailed understanding of 
the local depositional environment and the operating processes during sedimentation and diagenesis are 
therefore essential.

Seawater (homogeneous)
δ98Mo 2.3‰

Rivers
δ98Mo 0.7‰

Euxinic sed.
δ98Mo ~2.3‰

Igneous rocks
δ98Mo 0.4‰

Suboxic sediments
δ98Mo -0.5-1.3‰

Hydroth. �uids
δ98Mo ~0.7‰

Mn oxides
δ98Mo -0.7‰

10 %

90 %

35 %

50 % 15 %

FIGURE 4: Schematic illustration of the Mo isotopic composition of the most relevant fluxes and 
reservoirs in the modern marine environment. In-fluxes are shown in orange boxes (Archer and 
Vance, 2008; McManus et al., 2006), out-fluxes in green boxes, respectively (Poulson et al., 2006, 
and references therein). The Mo isotopic composition of reservoirs is indicated in white boxes 
(Siebert et al., 2003; Voegelin et al., 2014). Numbers indicate the relative contribution of the flux 
(Scott et al., 2008). The seawater Mo reservoir is homogeneously distributed due to the stability 
of molybdate ions in oxic seawater. Isotope fractionations during adsorption onto Mn oxides 
cause the enrichment of light isotopes in respective sediments, leaving behind an isotopically 
heavy ocean. This seawater Mo isotope signal may be preserved in euxinic sediments, where the 
transformation of molybdate to particle reactive thiomolybdate causes near quantitative removal 
of Mo. As a consequence of the very efficient Mo removal, respective settings account for 15 % of 
the global Mo sink, although the areal extension of euxinic conditions is less than 1 % of the global 
ocean (Scott et al., 2008). 
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3. Overview of the cumulative dissertation

In the following three chapters of this cumulative dissertation various sediments from very different 
depositional settings were geochemically analyzed. By the use of ‘non-traditional’ stable isotope data of 
redox-sensitive elements (Fe, Mo) and the further complementation by major element and ‘traditional’ 
stable isotope data (C, O, S) the marine environmental conditions, which prevailed during deposition, are 
reconstructed. Thereby, the necessity to consider the isotopic proxy signals in the context of the local 
depositional environment is highlighted. The age of the analyzed sediments ranges from late Archean 
(Chapter I) to early Paleoproterozoic (Chapter II) to late Neoproterozoic (Chapter III), thus, covering time 
periods of major environmental changes (Fig. 1). 

In CHAPTER I alternations of organic-rich black shales and siderite-rich iron formations from the 
Hamersley Group, Western Australia, were analyzed for the molybdenum, carbon and oxygen isotopic 
composition. The consideration of organic-rich black shales as well as siderite-rich iron formations helps 
to better understand the Mo burial pathway in each depositional environment and the consequential 
implications for the sedimentary and seawater Mo isotopic composition. The observed temporal trends 
in the sedimentary Mo isotopic composition combined with a Mo-flux box-model suggest regional/global 
changes in the oceanic redox-state with time. The depositional age of these sediments is bracketed 
between 2.6 and 2.5 Ga. This transitional time period before the GOE may denote the first local formation 
of near surface oxygen oases and so-called ‘whiffs’ of oxygen. 

The marine redox evolution during the time period immediately before the GOE is considered in 
CHAPTER II. The analyzed iron formations from the Koegas Subgroup, Transvaal Supergroup, South Africa, 
were deposited around 2.48 Ga ago (Kendall et al., 2013). The combination of Mo and Fe isotope data 
from these sediments provides important constraints on the behavior of the respective redox sensitive 
elements in such settings and highlights the need to distinguish between their local and global implications. 
Comparing the results with isotopic data from a modern anoxic lake equivalent and other Precambrian 
sediments, the coupled Mo and Fe isotope data suggest the deposition along an anoxic-oxic chemocline 
in the vicinity of a local oxygen oasis. The expansion of oxygenic photosynthetic activity and the coupled 
dispersion of such near shore oxygen oases may have initiated the subsequent GOE.

The study in CHAPTER III deals with the question of the timing and the extent of deep ocean oxygenation, 
which may have represented the last major redox change towards a modern-like well-oxygenated world. 
Several studies link deep ocean oxygenation to the second major oxygenation event, which in turn may be 
linked to major biological evolutions during the late Neoproterozoic and Precambrian-Cambrian transition 
(Canfield et al., 2007; Chen et al., 2015; Fike et al., 2006). New S, Fe, and Mo isotopic data and precise 
U-Pb zircon dating of late Neoproterozoic black shales from the Teplá-Barrandian Unit, Czech Republic, 
are presented in this chapter. The results create a detailed picture of the local depositional setting and its 
variation with time. Coupled with this knowledge, the molybdenum isotope data strongly challenge the 
general view of deep ocean oxygenation close to the Precambrian-Cambrian boundary. 
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CHAPTER I

Continuously increasing δ98Mo values in Neoarchean black shales 
and Iron formations from the Hamersley Basin

1. Abstract

We present Mo-, C- and O-isotope data from black shales, carbonate- and oxide facies iron formations 
from the Hamersley Group, Western Australia, that range in age from 2.6 to 2.5 billion years. The data show 
a continuous increase from near crustal δ98Mo values of around 0.50 ‰ for the oldest Marra Mamba and 
Wittenoom formations towards higher values of up to 1.51 ‰ for the youngest sample of the Brockman 
Iron Formation. Thereby, the trend in increasing δ98Mo values is portrayed by both, carbonate facies iron 
formations and black shales. Considering the positive correlation between Mo concentration and total 
organic carbon, we argue that this uniformity is best explained by molybdate adsorption onto organic 
matter in carbonate iron formations and scavenging of thiomolybdate onto sulfurized organic matter in 
black shales. A temporal increase in the seawater δ98Mo over the period 2.6-2.5 Ga is observed assuming 
an overall low Mo isotope fractionation during both Mo removal processes. Oxide facies iron formations 
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show lowest Mo concentrations, lowest total organic carbon and slightly lower δ98Mo compared to nearly 
contemporaneous black shales. This may indicate that in iron formation settings with very low organic 
matter burial rates, the preferential adsorption of light Mo isotopes onto Fe-(oxyhydr)oxides becomes 
more relevant. 

A similar Mo-isotope pattern was previously found in contemporaneous black shales and carbonates 
of the Griqualand West Basin, South Africa. The consistent and concomitant increase in δ98Mo after 2.54 
billion years ago suggests a more homogenous distribution of seawater molybdate with uniform isotopic 
composition in various depositional settings within the Hamersley Basin and the Griqualand West Basin. 
The modeling of the oceanic Mo inventory in relation to the Mo in- and outflux suggests that the long-
term build-up of an isotopically heavy seawater Mo reservoir requires a sedimentary sink for isotopically 
light Mo. The search for this sink (i.e. adsorption onto Mn-oxides in well oxygenated surface oceans and/
or subaerial environments or incomplete thiomolybdate formation in weakly sulfidic settings) remains 
debated, but its relevance becomes more important closer to the Great Oxidation Event and is probably 
related to already weakly oxidizing conditions even prior to the 2.5 Ga “whiff of oxygen”.

 

2. Introduction

The exact timing and evolution of the oxygenation of Earth’s atmosphere and oceans still remain 
debated in the scientific community. The generally accepted model is of a Great Oxidation Event (GOE) 
between 2.45 and 2.32 Ga (Bekker et al., 2004; Hannah et al., 2004; Holland, 2006) when atmospheric 
oxygen levels rose above 10-5 of present atmospheric level (PAL) (Farquhar et al., 2000; Pavlov and Kasting, 
2002). This view has been challenged by more recent studies that suggest at least locally a much earlier 
first appearance of free atmospheric oxygen, which were most likely subjected to strong fluctuations 
(Anbar et al., 2007; Crowe et al., 2013; Duan et al., 2010; Frei et al., 2009; Kurzweil et al., 2013; Planavsky 
et al., 2014; Reinhard et al., 2013; Voegelin et al., 2010; Wille et al., 2007). These (temporal) increases in 
atmospheric oxygen levels were tightly coupled with surface ocean oxygenation and the development of a 
stratified water column with anoxic deep waters (Kendall et al., 2010; Reinhard et al., 2009). However, the 
possible causes for environmental oxygenation during Meso- to Neoarchean are still a matter of debate, 
as described in detail by Catling (2014). 

Due to their redox sensitive behavior, some transition metals (V, Cr, Fe, Mo, Re) and, particularly, their 
isotopic variations, can be used as proxies for environmental redox changes. Molybdenum, dissolved as 
molybdate (MoO4

2-), is one of the most abundant transition metals in the modern oxygenated oceans. Its 
long residence time between 440 and 750 kyrs depending on fluxes and mass balance calculations (Miller 
et al., 2011; Morford and Emerson, 1999) results in a globally homogeneous modern seawater Mo-isotopic 
composition of 2.3 ‰ in δ98Mo (Siebert et al., 2003). This seawater δ98Mo value is in stark contrast with 
an average δ98Mo value of 0.4 ‰ of the upper continental crust (Voegelin et al., 2014), the main source 
of oceanic Mo. The build-up of an isotopically heavy Mo oceanic reservoir is associated with Mo isotopic 
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fractionation during adsorption of MoO4
2- onto mineral surfaces. Recent X-ray absorption spectroscopy 

studies (XANES and EXAFS) show that the coordination of tetrahedrally coordinated molybdate (MoO4
2-) 

may change during adsorption (Wasylenky et al., 2008; Kashiwabara et al., 2011). With this, adsorbed 
Mo forms outer sphere complexes on ferrihydrite and Al-oxides that are partly tetrahedrally and partly 
octahedrally coordinated. By contrast, Mo forms inner sphere complexes on Mn- and Ti-oxides that 
are octahedrally coordinated (Kashiwabara et al., 2011). The Mo-coordination is of particular interest 
for Mo-isotope studies, as octahedrally bound Mo has longer and therefore weaker Mo-O bonds than 
tetrahedrally bound Mo. As a consequence, isotopically light Mo is preferentially incorporated into 
octahedral coordination sites. Therefore, adsorption onto Mn-oxides causes large differences in the 
Mo-isotopic composition (Δ98MoMn-oxides-seawater = δ98MoMn-oxides- δ98Moseawater = -3 ‰; Barling et al., 2001), 
whereas the difference is somewhat smaller when molybdate adsorbs onto ferrihydrite (Δ98Moferrihydrite-

seawater = δ98Moferrihydrite - δ
98Moseawater = -1.1 ‰; Goldberg et al., 2009). Under euxinic conditions with H2S 

concentrations above 11 µmol L-1 (hereafter called as strongly euxinic conditions), molybdate is almost 
quantitatively transformed to thiomolybdate (MoS4

2-) (Helz et al., 1996; Nägler et al., 2011), which is 
readily removed from solution either by adsorption onto organic matter (Dahl et al., 2010; McManus 
et al., 2006) or by the formation of authigenic Fe-Mo-sulfides (Helz et al., 2011). As a consequence, the 
δ98Mo in black shales deposited below such a euxinic water column (hereafter called euxinic sediments) 
should reflect the isotopic composition of seawater molybdate. Modern euxinic sediments from the Black 
Sea exhibit the seawater isotopic composition of 2.3 ‰ (Nägler et al., 2011; Neubert et al., 2008), but 
are slightly depleted in the heavy isotopes compared to the directly overlying water column suggesting 
a small net fractionation between thiomolybdate and authigenic sedimentary Mo of Δ98Mothiomolybdate-black 

shale = δ98Moblack shale- δ
98Mothiomolybdate = -0.5 ± 0.3 ‰ (Nägler et al., 2011). This indicates that the removal is 

only nearly-quantitative even at very high H2S concentrations. In intermediate redox milieus (e.g., weakly 
euxinic environments, defined here as environments with low free H2S concentrations below 11µmol L-1 
and suboxic environments, where H2S(aq) is only present in the pore-water) the incomplete transformation 
to thiomolybdate (and the formation of intermediate oxythiomolybdate species MoOXS4-X

2-) can cause 
more significant net Mo isotope fractionations. Accordingly, sediments from weakly euxinic depositional 
environments may reflect almost the full spectrum of observed Mo-isotope variations (Neubert et al., 
2008; Poulson et al., 2006; Siebert et al., 2006).

The oxidation of Mo4+ to Mo6+ and the formation of soluble molybdate is a prerequisite for large 
subsequent isotope fractionation. In aqueous environments with Eh higher than -0.4 V (at a pH of 8), 
molybdate is the thermodynamically stable species. By contrast, abiotic oxidation of other redox sensitive 
metals such as iron (Fe2+ oxidation to Fe3+ at Eh of -0.1 V), chromium (Cr3+ oxidation to Cr6+ at Eh of 0.3 V) or 
manganese (Mn2+ oxidation to Mn4+ at Eh > 0.5 V), need much higher redox potentials (Takeno, 2005). This 
means that even under very reducing and ferruginous conditions, molybdate remains thermodynamically 
stable as dissolved phase in seawater.

The goal of this study is to investigate the onset and mode of Neoarchean redox changes in the ocean-
atmosphere system. For this purpose we expand the Mo-isotope data of Hamersley Basin sedimentary 
rocks presented by Duan et al. (2010) back in time, turning our attention to the Mo-isotopic evolution 
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in different Archean sedimentary settings. The distinction between different depositional environments 
within the same basin throughout the same time interval may provide a more detailed picture of the 
Neoarchean Mo-cycle as well as the evolution of the oceanic redox state at different deposition depths. 
We present Mo-isotope data from black shales as well as from carbonate and oxide facies iron formations 
(IF) from the Neoarchean Hamersley Basin, spanning a depositional age range of 2.6 to 2.5 Ga.

3. Geological setting and sample description

The samples of this study are sedimentary rocks obtained from drill cores ABDP#9 and Millstream#9 
from the Hamersley Basin of Western Australia (Fig. 1). Stratigraphically, samples from Millstream#9 
represent the Marra Mamba Formation and the lower part of the Wittenoom Formation, which have an 
age of ~2597 ± 5 Ma (Fig. 1; Trendall et al., 1998). Samples from ABDP#9 are slightly younger, transitioning 
from the upper part of the Wittenoom Formation (spherule layer: ~2541 +18/-15 Ma; Woodhead et al., 
1998)  into the Mt. Sylvia Formation, the Mt. McRae Shale (~2501 ± 8 Ma; Anbar et al., 2007) and the Dales 
Gorge Member of the Brockman Iron Formation (2495 ± 16 and 2461 ± 6 Ma; Trendall et al., 2004). 

The Hamersley Basin reflects a deep shelf/platform environment below wave base and above the 
calcite compensation depth (Morris, 1993). Its depositional setting has been described as an outer-shelf 
environment that was separated from the coast by a carbonate barrier, which inhibited large inputs 
of terrigenous detrital material (Morris and Horwitz, 1983). The Marra Mamba Iron Formation mainly 
consists of laminated ferruginous chert and oxide- and carbonate facies iron formation (Klein and Gole, 
1981; Krapež et al., 2003) with intercalations of shaly, Fe-rich carbonates (Morris and Horwitz, 1983). 
The lower Paraburdoo Member of the conformably overlying Wittenoom Formation consists mainly of 
thinly bedded calcitic/dolomitic/sideritic carbonates. The upper Bee Gorge Member of the Wittenoom 
Formation represents alternating grey-black shales and limestones/dolostones (Simonson et al., 1993). A 
several meter thick chert layer, called the Lower Chert, marks the transition to the Mt. Sylvia Formation, 
which is mainly composed of shales, siliciclastics, and chert units and capped by a 5 m thick layer of banded 
iron formation, the so called Bruno’s Band (Krapež et al., 2003). The Mt. McRae Shale consists of two 
black shale layers (S1 and S2) that are separated by a Fe-carbonate unit (Anbar et al., 2007). Conformably 
overlying this is the Dales Gorge Member of the Brockman Iron Formation, which predominantly consists 
of alternating layers of chert and banded iron formation (Krapež et al., 2003). The metamorphic grade 
of the Hamersley Basin is sub-greenschist facies (i.e. prehnite-pumpellyte; McConchie, 1984; Tyler and 
Thorne, 1990; Anbar et al., 2007).

The samples analyzed for this study include 1) organic rich, black shales, 2) grey-greenish and Fe-rich 
shaly carbonates, and 3) banded iron formations. Black shales (1) are fine-grained and finely laminated. 
They show strong enrichments in organic carbon and pyrite, the latter mainly appearing as early diagenetic 
nodules and disseminated grains. Black shale deposits represent the most proximal setting (Beukes and 
Gutzmer, 2008). Greenish shale units (2) are also finely laminated. These samples contain less organic 



CHAPTER I 17

carbon and detrital material but are enriched in iron and carbonate. Most samples show disseminated Fe-
carbonates in fine-grained chert matrices. Less common are later diagenetic coarse-grained rhombohedral 
carbonate grains. Beukes and Gutzmer (2008) argue that such samples represent relatively deep marine 
environments. Iron formations (3) have no detrital material and represent the most distal deep water facies 
(Beukes and Gutzmer, 2008). These samples show distinct bands of very fine grained chert alternating 
with bands of reddish hematite and coarse grained, idiomorphic magnetite crystals.

4. Methods

Major element concentrations were determined by X-ray fluorescence analyses (XRF) using the Bruker 
AXS Pioneer S4 at the University of Tuebingen. Glass beads were prepared by mixing 1.5 g of dried and 
powdered sample material with 7.5 g lithium tetraborate, which was fused at 1050 °C for 30 minutes. 
The loss of ignition was determined on a separate sample aliquot by the weight loss after 60 minutes 
of heating in a furnace at 1050 °C. For concentration measurements 32 standardized samples define 

FIGURE 1: Geological map of the Pilbara Craton with drill core locations of ABDP#9 and Millstream#9. 
Also illustrated are the corresponding stratigraphic units and their predominant lithology. The bars on 
the far right site demonstrate which stratigraphic units are covered by both drill cores of this study and 
which parts of ABDP#9 were already analyzed by Anbar et al. (2007) and Duan et al. (2010). Also shown 
are a U-Pb zircon age (2.60 Ga; Trendall et al., 1998), a Pb-Pb age (2.54 Ga; Woodhead et al., 1998), and 
a Re-Os age (2.50 Ga; Anbar et al., 2007).
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elemental calibration lines, with element specific analytical uncertainties is element specific (for Fe2O3 the 
1σ standard error is 0.06 %). 

To determine total organic carbon (TOC), powdered samples were decarbonized with 10 % HCl at room 
temperature and four-times rinsed with ultrapure H2O (18.2 MΩ cm-1). This procedure was repeated twice. 
The concentration of TOC (decarbonized samples) and total carbon (TC; of untreated bulk samples) were 
then measured by combustion with a Vario elemental analyzer. The total inorganic carbon component 
(TIC) was calculated as the difference between TC and TOC. 

Carbonate carbon and oxygen isotope measurements were determined on bulk sample material that 
was treated with phosphoric acid (99 %) in a He-atmosphere at 90 °C for at least 150 minutes to fully 
assure complete dissolution of all carbonates including iron carbonates. Isotopic ratios of the evolving 
CO2-gas were measured by continuous flow with a Gasbench II coupled to a Finnigan MAT 252 gas source 
mass spectrometer at the University of Tuebingen. Isotope ratios were calibrated with NBS18 (δ13C of -5.00 
‰ and δ18O of -22.96 ‰) and NBS19 (δ13C of 1.95 ‰ and δ18O of -2.20 ‰ relative to the Vienna Pee Dee 
Belemnite; V-PDB) and are reported in the δ-notation relative to the V-PDB standard: 

where X is the respective element, i is the mass of the rare isotope, and j is the mass of the common 
isotope. δ-values are reported in ‰ by multiplication with a factor of 1000. The external reproducibility is 
0.1 ‰ (2σ) for both, δ13C and δ18O.

For the determination of the carbon isotopic composition of the organic matter, a few milligrams 
of the dried and decarbonized sample material were flash combusted at 1050 °C. The evolving CO2 gas 
was separated gas-chromatographically with a Carlo Erba NC 2500 elemental analyzer (EA). The EA was 
coupled to a Finnigan Delta+XL for carbon isotope measurements using continuous flow mode. Results 
were calibrated to the in-house standard USGS 24 and are presented here in the δ-notation in per mill and 
relative to V-PDB. 

Mo-isotope analyses follow the method described by Wille et al. (2013). Samples were ashed for 12 
h at 600 °C to oxidize organic phases. An adequate amount of a 100Mo-97Mo double spike was added 
to 50-500 mg powdered sample material prior to sample digestion and Mo-purification. The double-
spike method allows for the correction of the instrumental mass bias as well as mass fractionation that 
might be caused during chromatographic Mo-purification (Rudge et al., 2009). Samples were dissolved 
in Teflon beakers by sequential digestion steps using distilled HF, HNO3 and HCl acids. Mo was purified 
using a combination of anion and cation exchange chromatography (i.e. using Dowex 1X8, 200-400 mesh 
and Dowex 50WX8 200-400 mesh resins, respectively) as described by Wille et al. (2013). Molybdenum 
isotopic ratios were measured on a multi-collector ICP-MS (ThermoFisher Scientific NeptunePlus) at the 
University of Tuebingen. Measurements of the in-house standard ZH-2, a Mo-rich sulfide that ran through 
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all chemical separation steps, yield a long-term reproducibility on δ98Mo better than 0.09 ‰ (2σ). Results 
were calibrated using the Johnson Matthey ICP standard and are reported in the δ-notation relative to the 
NIST3134 standard (Goldberg et al., 2013), which was set to 0.25 ‰ following a proposal of Nägler et al. 
(2014):  

 

5. Results

In order to characterize the set of 23 samples we distinguish petrologically and chemically between 
black shales, and carbonate and oxide facies iron formations (Table 1). Black shales are rich in TOC, with 
values between 0.8 and 5.5 weight percent (wt%), have Fe2O3 below 15 wt% and Al2O3 above 10 wt%. In 
contrast, iron formations have Fe2O3 above 25 wt% and Al2O3 below 5 wt% (and most of them even below 
1 wt%). We further distinguish between carbonate and oxide dominated iron formation facies, as well as 
mixtures of both (carb-IF, ox-IF and carb/ox-IF, respectively). To do so, we calculated the iron formation 
carbonate fraction assuming that all Ca and Mg are bound in carbonate. We further assumed that all 
remaining carbonate is ferrous carbonate. All samples with more than 70 % of the total iron bound in 
ferrous carbonate we refer to as carbonate facies iron formation, samples with less than 10 % we refer 
to as oxide facies iron formation, and intermediate samples we refer to as oxide/carbonate facies iron 
formation. This distinction is confirmed by petrological observations (Fig. 2). 
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Figure 2
Reflected light microscopy images of samples ABDP-103 (a), ABDP-190 (b) and ABDP-215 (c). (a) shows 
iron carbonate spheroids in a fine grained chert matrix. Iron carbonate rhombs and iron carbonate spheroids 
within chert are observed in (b). A layer of fine grained hematite and large magnetite crystals marks a distinct 
boundary. (c) shows a fine chert matrix separated from a thick band of hematite filled with magnetite crystals.

FIGURE 2: Reflected light microscopy images of samples ABDP-103 (a), ABDP-190 (b) and ABDP-215 
(c). (a) shows iron carbonate spheroids in a fine grained chert matrix. Iron carbonate rhombs and 
iron carbonate spheroids within chert are observed in (b). A layer of fine grained hematite and large 
magnetite crystals marks a distinct boundary. (c) shows a fine chert matrix separated from a thick band 
of hematite filled with magnetite crystals.
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Average concentrations of TIC follow the order ox-IFs (0.8 ± 0.3 wt%) < black shales (1.4 ± 2.2 wt%) < 
ox/carb IFs (5.9 ± 0.8 wt%) < carb IFs (8.5 ± 1.0 wt%). Corresponding δ13CCarb values vary strongly (between -
17.0 and -0.1 ‰) with averages in the order of black shales (-3.8 ± 3.5 ‰) > carb IF (-5.6 ± 2.4 ‰) > ox/carb 
IFs (-6.9 ± 2.8 ‰) > ox IFs (-9.7 ± 2.1 ‰). The δ18OCarb pattern shows variable values only for black shales 
(-14.5 to -6.7 ‰) but is homogeneous for all iron formation (-11.1 to -9.1 ‰). For comparison, the oxygen 
and carbon isotopic composition of 3 limestones (ABDP-260; ABDP-332; ABDP-355) were measured. Both, 
δ13CCarb and δ18OCarb values span narrow ranges (δ13CCarb between -1.27 and -0.87 ‰ and δ18OCarb between 
-12.79 and -9.04 ‰). We observe no correlation between δ13CCarb and δ18OCarb (Fig. 3). Iron formations show 
strong variability in δ13CCarb (with values below limestone δ13CCarb) at relatively constant δ18OCarb. 

Average TOC contents increase in the order ox-IFs (0.1 ± 0.0 wt%) = ox/carb-IFs (0.1 ± 0.1 wt%) < carb-
IFs (0.7 ± 0.4 wt%) < black shales (2.4 ± 1.5 wt%). The corresponding δ13COrg values vary between -43.3 and 
-27.2 ‰ with averages of carb IFs (-35.9 ± 4.9 ‰), black shales (-33.6 ± 3.0 ‰), ox/carb-IFs (-32.5 ± 5.3 
‰) and ox-IFs (-30.1 ± 1.9 ‰) (Table 2). Considering only black shale samples, δ13CCarb and δ13COrg exhibit 
a positive linear correlation with an R2 value of 0.86, whereas no correlation is observed in both types of 

Table 1: Main elements of drill cores ABDP#9 and Millstream#9

Sample depth Formation Lithology SiO2 Al2O3 TiO2 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI sum

(m) (wt%) (wt%) (wt%)  (wt%) (wt%) (wt%)  (wt%) (wt%) (wt%) (wt%)  (wt%)

ABDP-103 102.55 Dales Gorge carb-IF 12.2 0.0 0.0 53.4 0.2 4.1 1.0 0.0 0.0 0.1 28.0 99.1

ABDP-114 114.4 Mt McRae black shale 21.9 5.6 0.2 2.9 0.5 11.9 20.4 0.2 2.4 0.0 33.4 99.3

ABDP-133 132.7 Mt McRae black shale 55.1 11.4 0.4 10.3 0.4 3.6 2.8 0.3 3.2 0.1 10.7 98.4

ABDP-164 163.5 Mt McRae carb-IF 11.2 4.1 0.1 44.2 0.4 8.4 1.9 0.1 1.5 0.1 29.5 101.4

ABDP-177 176.7 Mt McRae black shale 56.7 11.9 0.5 9.9 0.1 2.2 0.5 0.5 5.9 0.1 10.5 98.7

ABDP-180 179.8 Mt McRae carb-IF 32.4 0.6 0.0 30.1 0.7 5.4 5.9 0.0 0.0 0.1 24.4 99.6

ABDP-190 190.2 Mt Sylvia ox/carb-IF 12.9 0.0 0.0 65.7 0.3 2.7 2.8 0.1 0.0 0.1 15.1 99.6

ABDP-215 214.5 Mt Sylvia ox-IF 16.4 0.3 0.0 76.3 0.0 2.4 2.1 0.1 0.0 0.1 1.9 99.6

ABDP-219 218.65 Mt Sylvia black shale 52.0 12.8 0.5 13.3 0.1 3.5 1.3 0.1 6.1 0.1 9.2 98.9

ABDP-220 219.95 Mt Sylvia ox-IF 58.5 0.0 0.0 37.6 0.0 0.7 1.1 0.1 0.0 0.0 1.0 98.9

ABDP-240 239.5 Wittenoom black shale 64.8 12.7 0.5 6.8 0.1 3.0 1.3 0.8 3.2 0.0 6.2 99.3

ABDP-259 259.38 Wittenoom black shale 64.9 10.8 0.4 10.2 0.1 3.4 1.4 0.6 1.4 0.1 5.8 99.3

ABDP-260 259.63 Wittenoom limestone 9.0 0.1 0.0 1.5 0.6 0.8 48.3 0.1 0.0 0.0 38.6 99.0

ABDP-292 291.6 Wittenoom carb-IF 22.0 3.6 0.2 28.5 0.4 6.9 11.5 0.1 0.3 0.0 26.2 99.6

ABDP-316 316 Wittenoom black shale 59.3 16.1 0.6 5.5 0.1 4.2 1.4 3.5 3.6 0.1 4.7 99.2

ABDP-332 332 Wittenoom limestone 0.9 0.1 0.0 0.8 0.2 0.6 54.8 0.1 0.0 0.0 43.0 100.6

ABDP-335 334.55 Wittenoom carb-IF 8.6 0.8 0.1 29.3 0.5 6.8 19.3 0.1 0.0 0.1 34.4 99.9

ABDP-340 340 Wittenoom black shale 57.1 15.9 0.7 6.9 0.2 4.5 2.1 1.3 3.1 0.1 7.5 99.3

ABDP-355 355.18 Wittenoom limestone 10.7 3.1 0.1 1.7 0.9 1.0 44.4 0.6 0.6 0.0 36.0 99.0

  

Mill-205 205 Wittenoom black shale 60.4 16.7 0.6 2.5 0.1 2.5 1.0 0.1 11.4 0.1 4.1 99.4

Mill-206 205.5 Wittenoom black shale 58.3 13.5 0.7 1.8 0.1 4.1 3.7 0.1 8.2 0.1 8.7 99.3

Mill-217 217 Wittenoom black shale 59.3 17.7 0.9 1.9 0.0 2.6 0.4 0.1 10.7 0.1 5.6 99.2

Mill-223 223 Marra Mamba carb-IF 6.5 1.1 0.1 35.1 0.8 9.7 13.9 0.0 0.0 0.1 32.8 100.1

Mill-223.2 223.2 Marra Mamba carb-IF 7.8 1.8 0.1 26.8 0.8 10.5 17.7 0.1 0.2 0.1 33.5 99.5

Mill-225 225 Marra Mamba ox/carb-IF 12.3 1.1 0.1 40.5 0.6 6.9 15.1 0.2 0.4 0.1 22.4 99.6

Mill-229 229.3 Marra Mamba black shale 45.8 11.0 0.5 2.6 0.3 7.6 9.2 0.1 6.0 0.1 16.3 99.5
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iron formations (Fig. 3b). Accordingly, the difference in δ13COrg and δ13CCarb (Δ
13COrg-carb) is with -29.85 ± 1.36 

‰ very constant in black shales, but varies strongly in IFs (-26.15 ± 8.45 ‰).

For the determination of authigenic molybdenum concentrations we corrected all samples for a 
detrital component by normalizing on Al, assuming that all Al is detrital with a chemical composition of the 
Post Archean Australian Shale (PAAS) (Taylor and McLennan, 1985). Al concentrations in iron formations 
are very low and show only weak correlation with Mo concentrations (R2 of 0.39; Fig. 4a), which clearly 
mismatches the range of Al/Mo ratios of average continental crust. The correction further indicates that 
more than 80 % of Mo in iron formations is non-detrital, but authigenic (see Table 2). Black shales have 
higher Al concentrations but are also enriched in Mo. The relative proportion of authigenic Mo is always 
above 77 % (mostly even above 85 %). Mo and Al show no correlation and suggest that Mo enrichment 
was decoupled from the detrital input. 

Authigenic Mo concentrations vary between 0.3 and 13 ppm and averages increase in the order ox-
IFs (0.4 ± 0.1 µg/g) = carb/ox-IFs (0.4 ± 0.1 µg/g) < carb-IFs (0.8 ± 0.4 µg/g) < black shales (7.1 ± 8.9 µg/g; 
Table 2). Considering only black shales, we observe average authigenic Mo concentrations of 2.2 µg/g 
in the Marra Mamba Formation (1 sample), 3.3 ± 1.2 µg/g in the Wittenoom Formation (7 samples), 3.8 
µg/g in the Mt. Sylvia Formation (1 sample),  3.9 ± 1.3 µg/g in the S2 of the Mt. McRae Shale (19 samples; 
this study and Anbar et al., 2007) and 18.5 ± 9.4 µg/g in the S1 layer of the Mt. McRae Shale (46 samples; 
Anbar et al., 2007 and this study) revealing a concentration increase with time. Mo concentrations in all 
sedimentary rocks show no correlation with iron (Fig. 4b) but a positive correlation with TOC (Fig. 4c). 
Excluding the two black shale outliers with extremely high Mo and TOC, the linear trend between Mo and 

FIGURE 3: (a) Compilation of δ18O and δ13C of carbonates in bulk rock samples. Expected trends for 
fluid alteration or lithification during diagenesis (Knauth and Kennedy, 2009) are not observed. Iron 
formations have generally lower δ13CCarb but similar δ18OCarb as limestones (red circles), which is the 
result of iron carbonate formation during dissimilatory iron reduction (DIR). (b) illustrates δ13COrg vs. 
δ13CCarb showing a correlation only in black shale samples (black circles). Iron formations, displayed as 
squares (orange: carbonate facies IFs, white: oxide/carbonate facies IFs, blue: oxide facies IFs), exhibit 
no correlation.
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TOC has an R2 value of 0.51. Mo/TOC ratios of black shales are between 1.0 and 3.7 ppm/wt% and show 
no correlation with the molybdenum isotopic composition (δ98Mo). The δ98Mo values are between +0.51 
and +1.51 ‰ (Fig. 5) and thus above the δ98Mo composition of the continental crust. Black shales and 
carb-IFs of similar core depth have a similar Mo-isotopic composition (i.e. compare sample pairs ABDP-177 
and ABDP-180, ABDP-335 and ABDP-340, and Mill-225 and Mill-229, respectively; Table 2). Oxide-IFs show 
more negative δ98Mo values compared to black shales of similar core depth (Δ98Moox-IF-black shale = δ98Moox-IF 
- δ98Moblack shale = -0.4 ‰). Independent of the sediment type we observe a general increase in δ98Mo of up 
to 1.51 ‰ passing up stratigraphy through the Mt. Sylvia Formation, Mt. McRae Shale and Brockman Iron 
Formation (Fig. 5). By contrast, older sedimentary rocks of the Marra Mamba and Wittenoom formations 
exhibit lower δ98Mo, at a relatively constant level (mean of 0.66 ± 0.24 ‰ (2σ); excluding the outlier 
Millstream-223.2). Age constraints of a spherule layer within the Bee Gorge Member in drill core ABDP#9 
(observed at a core depth of 295 m) define the onset of this increase in δ98Mo to an age slightly younger 
than 2.54 Ga (Woodhead et al., 1998).

Table 2: Selected geochemical parameters of drill cores ABDP#9 and Millstream#9

Sample depth Formation Lithology TOC TIC TC δ18OCarb δ13CCarb δ13COrg Δ13C δ98Mo 2SE Mo Mo Mo/TOC

(m)  (wt%)  (wt%)  (wt%) ‰** ‰** ‰ ‰ ‰ abs µg/g µg/g* (ppm/wt%)

ABDP-103 102.55 Dales Gorge carb-IF 0.6 8.2 8.3 -9.07 -6.69 -28.98 -22.28 1.51 0.03 1.4 1.4 2.3

ABDP-114 114.4 Mt McRae black shale 3.3 8.0 11.4 -6.65 -1.23 -32.64 -31.42 1.31 0.02 4.0 3.7 1.1

ABDP-133 132.7 Mt McRae black shale 4.7 0.8 5.4 -12.45 -9.28 -37.27 -27.99 1.37 0.01 13.7 13.1 2.8

ABDP-164 163.5 Mt McRae carb-IF 1.4 8.3 9.7 -10.62 -6.26 -36.87 -30.61 1.05 0.02 1.4 1.1 0.8

ABDP-177 176.7 Mt McRae black shale 5.5 0.2 5.7 -12.05 -9.79 -38.78 -28.99 0.97 0.02 3.5 2.9 0.5

ABDP-180 179.8 Mt McRae carb-IF 0.4 7.1 7.6 -9.95 -10.54 -36.84 -26.30 0.92 0.04 0.2 0.2 0.4

ABDP-190 190.2 Mt Sylvia ox/carb-IF 0.0 5.1 5.1 -10.98 -12.52 -27.23 -14.70 0.90 0.05 0.5 0.5 12.5

ABDP-215 214.5 Mt Sylvia ox-IF 0.1 1.1 1.2 -11.13 -12.81 -28.21 -15.40 0.83 0.04 0.3 0.3 4.5

ABDP-219 218.65 Mt Sylvia black shale 3.6 0.6 4.2 -11.98 -7.46 -37.95 -30.49 1.10 0.02 4.5 3.8 1.0

ABDP-220 219.95 Mt Sylvia ox-IF 0.1 0.6 0.6 -10.65 -17.03 -31.93 -14.90 0.64 0.05 0.4 0.4 6.9

ABDP-240 239.5 Wittenoom black shale 1.4 0.4 1.8 -11.59 -7.37 -36.85 -29.48 0.58 0.03 2.1 1.4 1.0

ABDP-259 259.38 Wittenoom black shale 1.1 0.5 1.6 -11.64 -4.32 -32.84 -28.53 0.89 0.03 2.5 1.9 1.8

ABDP-292 291.6 Wittenoom carb-IF 0.5 7.1 7.6 -11.32 -4.94 -32.84 -27.90 0.72 0.03 1.2 1.0 2.1

ABDP-316 316 Wittenoom black shale 1.0 0.3 1.3 -14.50 -3.02 -31.29 -28.27 0.61 0.02 4.4 3.6 3.7

ABDP-335 334.55 Wittenoom carb-IF 0.2 9.9 10.1 -10.58 -5.05 -30.99 -25.94 0.57 0.12 0.6 0.5 2.9

ABDP-340 340 Wittenoom black shale 2.0 0.5 2.5 -12.00 -1.78 -29.84 -28.06 0.62 0.02 3.8 2.9 1.5

 

Mill-205 205 Wittenoom black shale 1.8 0.3 2.1 -7.98 -0.60 -31.96 -31.36 0.52 0.02 4.1 3.5 1.9

Mill-206 205.5 Wittenoom black shale 1.7 1.4 3.1 -11.14 -0.05 -31.85 -31.80 0.84 0.01 4.9 4.2 2.5

Mill-217 217 Wittenoom black shale 2.5 0.1 2.4 -8.60 -0.48 -30.85 -30.37 0.79 0.03 6.2 5.3 2.1

Mill-223 223 Marra Mamba carb-IF 0.6 9.3 9.9 -9.82 -2.78 -43.31 -40.52 0.72 0.03 0.4 0.3 0.5

Mill-223.2 223.2 Marra Mamba carb-IF 1.1 9.3 10.3 -10.07 -3.26 -41.41 -38.15 1.51 0.02 0.9 0.8 0.7

Mill-225 225 Marra Mamba ox/carb-IF 0.2 6.8 6.9 -10.51 -6.85 -37.77 -30.92 0.51 0.03 0.4 0.3 2.0

Mill-229 229.3 Marra Mamba black shale 0.8 3.8 4.6 -8.77 -0.53 -31.60 -31.08 0.59 0.02 2.8 2.2 2.9
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6. Discussion

The environmental conditions during sedimentation are critical for the removal mechanism of 
molybdate from the water column. As our samples span very different depositional settings across the 
continental shelf/slope, a more detailed analysis of prevailing environmental conditions is necessary. 

6.1 Black shales
Black shales were deposited in a distal shelf environment, an area with relatively high primary microbial 

productivity and high detrital input. On average the detrital fraction accounts for 62 wt% of the black 
shales, assuming that all Al and Ti originate from detritus with a chemical composition of PAAS. However, 
less than 25 % of sedimentary Mo (usually even less than 15 %) is detrital, indicating strong authigenic Mo 
enrichment. High TOC contents up to 5.5 wt% are consistent with deposition in an anoxic environment. In 
more detail, we observe that black shales with high TOC (Mt. McRae Shale) have generally low δ13COrg (down 
to -38.8 ‰ in ABDP-177) as well as low δ13CCarb (down to -9.8 ‰ in ABDP-177; Fig. 3, 5). Nearly constant 
Δ13COrg-Carb values of -29.85 ± 1.36 ‰ mirror the expected range of fractionation during primary production 
in the Neoarchean (Eigenbrode and Freeman, 2006). The tight coupling of δ13COrg and δ13CCarb  suggests one 
single carbon source for carbonates and organic matter, namely dissolved inorganic carbon (DIC) of the 
ambient seawater, which changed in its isotopic composition over time. This could indicate global trends 
with elevated δ13CDIC, δ

13COrg and δ13CCarb  during periods of high organic matter burial rates. However, such a 
correlation was not observed in contemporaneous sedimentary rocks of the Griqualand West Basin, South 
Africa (Fischer et al., 2009). Considering the consistently higher δ13CCarb values of shallower water limestones 
(-1.27 to -0.87 ‰ in δ13CCarb), a more plausible explanation for this feature is a local shelf environment that 
was characterized by a stratified water column with a large gradient (up to 9 ‰) in the δ13CDIC (Jiang et al., 
2007). Periods of low δ13COrg, low δ13CCarb and high TOC could reflect the upwelling of nutrient rich deep 
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waters that were depleted in 13C (Jiang et al., 2007; Kaufman et al., 1991). Such environmental conditions 
stimulate primary production (high TOC), as well as the activity of heterotrophic organisms. Productivity 
of methanogenic bacteria appears to be subordinate, as the expected difference in δ13COrg and δ13CCarb 
would be much larger. However, organisms that reduce sulfate and elemental sulfur within the sediment 
were very common throughout the Neoarchean Hamersley Group deposition (Partridge et al., 2008), as is 
also indicated by the abundance of diagenetic pyrite in our black shales. Locally formed euxinic conditions 
in the water column and/or the sediment would cause molybdate transformation to oxythiomolybdate 
(MoOxS4-x

2-) and/or thiomolybdate depending on the ambient concentration of dissolved H2S(aq) (Helz et al., 
1996; Nägler et al., 2011; Neubert et al., 2008). At H2S(aq) concentrations above 11 µmol L-1, thiomolybdate 
(MoS4

2-) is the predominant species with a maximum abundance of 83 % (Erickson and Helz, 2000; 
Nägler et al., 2011) and with a constant Mo isotope fractionation between sediment and thiomolybdate 
of Δ98MoMoS4—sediment = -0.5 ± 0.3 ‰ (Nägler et al., 2011). Assuming that the remaining 17 % represent 
the MoOS3

2- species with Δ98MoMoOS3-MoS4 of -1.75 ‰ (Nägler et al., 2011), the equilibrium fractionation 
between the sediment and euxinic seawater with H2S(aq) above 11 µmol L-1 is Δ98Moeuxinic_seawater—sediment = -0.7 
‰, consistent with observations in the Black Sea (Nägler et al., 2011; Neubert et al., 2008). Only if the 
removal is nearly quantitative (as in the deep Black Sea, where dissolved Mo-concentrations drop down to 
8 nmol L-1 compared to 105 nmol L-1 in the open ocean; Algeo and Lyons, 2006) the isotopic composition 
of the sediment mirrors that of global seawater (Fig. 6). However, sedimentary δ98Mo might be up to 0.7 
‰ lower compared to the δ98Mo of global seawater, if the removal is non-quantitative (Fig. 6). In the case 
of the Cariaco Basin, Mo-removal from seawater is clearly non-quantitative, as indicated by only slightly 
lower concentrations of dissolved Mo (~80 nmol L-1) compared to the global ocean (105 nmol L-1) (Algeo 
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FIGURE 6: The hypothetical equilibrium isotope fractionation between euxinic seawater (Black Sea; 
Neubert et al., 2008) and possibly pore-water (e.g. Cariaco Basin; Arnold et al., 2004; and continental 
margins; Poulson et al., 2006; Poulson Brucker et al., 2009) with H2S(aq) above 11 µmol L-1 (blue) and 
underlying sediments (red) in dependence of the Mo-fraction that is removed from seawater. We 
assume maximal thiomolybdate formation of 83 %, the rest being MoOS3

2-(Erickson and Helz, 2000; 
Nägler et al., 2011), giving an equilibrium isotope fractionation of ~ -0.7 ‰ in δ98Mo (Nägler et al., 
2011). In weakly euxinic environments with H2S(aq) below 11 µmol L-1, when thiomolybdate formation is 
less predominant, significantly larger fractionations are possible.

and Lyons, 2006). This might be due to lower H2S(aq) concentrations, which are slightly below the switching 
point within the water column and unknown for the pore-water, and/or due to larger seawater exchange 
rates (Algeo and Lyons, 2006). The δ98Mo value of sediments from the Cariaco Basin deposited around 13 
ka ago (Lyons et al., 2003) is around 0.5 ‰ lower than the modern global seawater isotopic composition 
(Fig. 6) (Arnold et al., 2004). Although the environmental conditions might have changed during the last 
13 ka (e.g. H2S(aq) concentration and water renewal times), this may additionally indicate that basinal 
restriction is a key parameter that controls seawater Mo depletion and the preservation of the seawater 
Mo isotopic composition. If this model is correct, the deep water within the Cariaco Basin should show 
δ98Mo slightly above the global seawater δ98Mo. We therefore note that the δ98Mo of ancient sediments 
only reflects the seawater δ98Mo when H2S(aq) concentrations of the seawater or pore-water were above 
11 µmol L-1 (Erickson and Helz, 2000; Neubert et al., 2008) and when the marine depositional setting was 
connected to the open ocean but restricted enough to allow quantitative removal (Algeo and Lyons, 2006). 
If the removal of Mo is non-quantitative (like in the Cariaco Basin), sediments in euxinic settings are up to 
0.7 ‰ lower in δ98Mo than the ambient seawater. 
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In non-euxinic marine settings (e.g. suboxic settings with low bottom water O2 and H2S(aq) < 5 µmol 
L-1 and << 10 µmol L-1, or ferruginous settings with no bottom water H2S(aq)and O2) the mechanisms of 
Mo-sequestration are different (Scott and Lyons, 2012). In these intermediate redox environments, Mo is 
scavenged from pore-water molybdate that can derive from seawater through diffusion, from reductive 
dissolution of Fe-Mn oxides in the uppermost layers of the sediment (Reitz et al., 2007; Scott and Lyons, 
2012), or from decomposition of organic matter (Dellwig et al., 2007; Kowalski et al., 2013; Poulson 
Brucker et al., 2009). Mn-oxides, the predominant Mo-adsorbent in the modern oxic oceans, do not form 
inorganically below an Eh of 0.5 V at a marine pH of 8. Therefore, the role of Mn oxides might be subordinate 
in a largely anoxic Archean environment, although some studies point to local Mn oxide formation in iron 
formations already before the GOE (Planavsky et al., 2014; Crowe et al., 2013). We observe very low Mn 
concentrations and no correlation in Fe/Mn with δ98Mo like Planavsky et al. (2014), which indicates that 
Mn oxide formation and re-dissolution within the sediment was unimportant in the black shale setting 
of the Hamersley Basin. Fe oxides were possibly present but probably more important in iron formation 
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FIGURE 7: Simplified box model for Mo sequestration in black shale, Fe-carbonate and Fe-oxide settings. 
In black shale settings Mo is scavenged by sulfurized organic matter in a sulfidic zone in the water column 
(S1 layer) or within the sediment (S2 layer). In Fe-carbonate settings the adsorption of molybdate onto 
organic matter is the predominant Mo-removal pathway, whereas the adsorption onto Fe-oxyhydroxides 
is of minor importance. By contrast, in Fe-oxide settings where the supply of organic matter is largely 
missing, this adsorption mechanism becomes more important. Mo sequestration increases in the order 
Fe oxides < Fe-carbonates < “ferruginous“ black shales (S2) < “euxinic“ black shales (S1). Mo isotope 
fractionations in black shales are low, as long as H2S(aq) concentrations within the water column and the 
sediment, respectively, are above the switching point of 11 µmol L-1. Also the adsorption onto organic 
matter, the predominant Mo-removal pathway in Fe-carbonates is associated with low Mo isotope 
fractionations, so that the δ98Mo of black shales and Fe-carbonates might be similarly close to the 
δ98Mo of ancient seawater. In Fe-oxide settings isotopically light Mo is preferentially adsorbed onto Fe-
oxyhydroxides and/or hematite/magnetite, which causes slightly lower δ98Mo in Fe-oxides compared to 
nearly contemporaneous black shales.
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settings (see 5.2 and 5.3). Relative Fe-depletion along with Mo enrichment in black shales excludes that 
the adsorption on Fe-oxyhydroxides was the predominant removal mechanism. In non-euxinic black shale 
settings, the diffusion of seawater molybdate into the sediments and the demineralisation of organic 
matter were probably the predominant sources of pore-water molybdate (Fig. 7). 

Mo associated with organic matter is adsorbed onto organic aggregates or incorporated into the 
cells or both. The incorporation into cells can (but does not have to) cause a coordination change from 
tetrahedral to octahedral depending on the specific incorporation mechanism (see Liermann et al., 2005 
for more details). Expected Mo-isotope fractionations during this coordination change were confirmed 
during experiments, although fractionation magnitudes are relatively low and range from Δ98Moorganic_cells-

seawater = δ98Moorganic_cells - δ
98Moseawater = -0.2 to -1 ‰ (Liermann et al., 2005; Nägler et al., 2004; Zerkle et 

al., 2011). However, this effect might be subordinate, because the cells of nitrogen fixing cyanobacteria, 
which use Mo-rich enzymes, have only low Mo concentrations between 0.2 ppm and 2.4 ppm (Tuit et 
al., 2004). The relative contribution of cell related Mo to the total authigenic Mo fraction is very low (on 
average only 1.3 ± 0.6% in our black shale samples assuming the high-end cell-Mo concentration of 2.4 
ppm). This might indicate that the adsorption of molybdate onto organic aggregates dominates, a process 
that is associated with low Mo-isotope fractionations (Kowalski et al., 2013). The pore-water molybdate 
in non-euxinic black shale settings therefore likely has a similar Mo-isotopic composition as seawater. It 
is transformed to oxythiomolybdate and/or thiomolybdate and scavenged by sulfurized organic matter, 
if a zone of sulfate reduction prevailed within the sediment (Fig. 7) (Helz et al., 1996; Poulson et al., 
2006; Scott and Lyons, 2012; Tribovillard et al., 2004). Such a zone is indicated by the abundance of early 
diagenetic pyrite in our black shales. As described above, the magnitude of Mo-isotope fractionation 
during this process is mainly dependent on the ambient H2S(aq) concentration within the sediment. In 
open marine settings with ferruginous bottom waters and high pore-water H2S(aq) concentrations the Mo 
isotopic composition of the sediments is very uniform and close to the seawater Mo isotopic composition 
with Δ98Moferruginous_sediment-seawater = δ98Moferruginous_sediment- δ

98Moseawater = -0.7 ‰ (Poulson Brucker et al., 2009; 
Poulson et al., 2006). Interestingly, this fractionation magnitude is expected for an open marine setting 
with quantitative thiomolybdate formation assuming the equilibrium fractionation model (Fig. 6), but such 
an interpretation is speculative and requires further investigation. However, variability in the δ98Mo of 
anoxic margin sediments is only expected if: (1) the seawater δ98Mo changes, (2) the reductive dissolution 
of Fe-Mn oxides is relevant, or (3) thiomolybdate formation is non-quantitative (H2S(aq) < 11µmol L-1). For 
example, in suboxic settings where the reductive dissolution of Fe-Mn oxides is relevant, this additional 
source for pore-water molybdate can cause a larger range in the sedimentary Mo-isotopic composition 
of suboxic margin sediments (Siebert et al., 2006). The same would be true if thiomolybdate formation is 
incomplete, as occurs in weakly euxinic sedimentary environments. 

Fe-speciation is commonly used to classify local redox conditions and to distinguish between euxinic 
and non-euxinic settings (Poulton et al., 2004; Raiswell and Canfield, 1998). However, we note that the 
distinction between weakly and strongly euxinic depositional environments of ancient sedimentary rocks 
is difficult, even with Fe speciation data. This proxy gives no exact indication about the quantitative H2S 
concentration and hence whether the switching point of 11 µmol L-1 H2S was reached and thiomolybdate 
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formation was nearly quantitative or not. Therefore, even black shales with iron speciation data indicating 
a euxinic depositional environment may not fully imprint the ambient seawater’s Mo-isotopic composition. 
Moreover, the Fe speciation data refer to the water column redox state (Poulton et al., 2004). Efficient 
Mo-scavenging within the sulfate reduction zone of the sediment can still be the predominant removal 
pathway even if the overlying water column is ferruginous (e.g. see Poulson et al., 2006). Reinhard et al. 
(2009) showed that the ambient seawater during the deposition of the S2 layer of the Mt. McRae Shale 
was mainly ferruginous, whereas it was mainly euxinic during deposition of the younger S1 layer. We 
measured the Mo isotopic composition of two black shales from S1 (ABDP-114, ABDP-133) and one black 
shale from S2 (ABDP-177). Despite lower resolution, like Duan et al. (2010) we observe slightly lower 
δ98Mo in the older and non-euxinic S2 layer and even lower values in black shales from older formations, 
an observation that can be explained by two different scenarios: 

1) Consistent with the Fe-speciation data of Reinhard et al. (2009), the increase could indicate the 
preferential removal of light Mo isotopes in non-euxinic settings like the S2 layer, whereas the euxinic 
S1 layer might mimic the Neoarchean seawater Mo isotopic composition (Duan et al., 2010). Even if we 
exclude the reductive dissolution of Mn-oxides at our black shale depositional settings, weakly euxinic 
conditions in the pore-water of S2 with H2S(aq) concentrations below the switching point of 11 µmol L-1 
could have caused large Mo-isotope differences between seawater and sediment (Neubert et al., 2008). 
The continuous increase from low δ98Mo during the Marra Mamba and Wittenoom black shales towards 
highest values in the S1 layer could indicate that Mo-isotope fractionations became less pronounced, 
possibly due to increasing pore-water H2S(aq) concentrations. In this scenario the seawater Mo-isotopic 
composition could have remained relatively constant with δ98Mo as high as those observed in the strongly 
euxinic S1 layer, which would give the best approximation for the ancient seawater δ98Mo (Duan et al., 
2010). 

2) Alternatively, our data would indicate a temporal increase in seawater δ98Mo, whereas authigenic 
molybdenum enrichment in the black shales remained quantitative and thus mirrored the changing 
seawater δ98Mo (Duan et al., 2010). We prefer this scenario to the previous one for several reasons that 
will be discussed below, as well as in chapters 5.2 and 5.3. Considering the good correlation of Mo and 
TOC, Mo scavenging by sulfurized organic matter seems a reasonable removal pathway (Tribovillard et al., 
2004) (Fig. 7). The large abundance of diagenetic pyrite indicates that H2S and bacterial sulfate reduction 
prevailed within the sediment also during S2 deposition and deposition of older black shales (Reinhard 
et al., 2009). If thiomolybdate formation in this zone was nearly quantitative, all black shales (below a 
ferruginous and sulfidic water column) will show δ98Mo that are similarly close to, and reflect minimum 
values of, the δ98Mo of ancient seawater. We admit that the assumption of quantitative thiomolybdate 
formation remains hypothetical. However, we would expect large scatter in our δ98Mo dataset if pore-
water H2S(aq) concentrations were relatively low and variable. Such scattering in δ98Mo values is observed in 
contemporaneous black shales of the Griqualand West Basin, South Africa (Wille et al., 2007). Consistent 
with less efficient Mo-removal in weakly euxinic environments, Mo concentrations in the black shales 
of this location are also significantly lower (Wille et al., 2007). The lack of such pronounced scatter in 
our δ98Mo dataset from the Hamersley Basin with continuously increasing values argues against strongly 
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variable authigenic enrichment factors under fluctuating low H2S concentrations. We therefore suggest 
that the best modern analogue for our black shale settings are anoxic margin settings, where Mn-cycling 
is negligible, the seawater-sediment interface is ferruginous (and was only partly euxinic as during S1 
deposition) and a sulfidic zone formed in the sulfate reduction zone within the sediment (Poulson Brucker 
et al., 2009; Poulson et al., 2006). These sediments, where pore-water molybdate was effectively scavenged 
by formation of oxythiomolybdate and organic matter deposition, exhibit relatively small Mo isotopic 
differences between seawater and sediments (Poulson et al., 2006; Scott and Lyons, 2012). The main 
difference to a hypothetical Neoarchean analogue was a significantly smaller seawater Mo-reservoir, as 
indicated by continuously low Mo/TOC (Scott et al., 2008). Quantitative Mo removal is easier achieved at 
such low seawater molybdate concentrations (Duan et al., 2010), such that Archean sediments may even 
more closely reflect the seawater δ98Mo (Fig. 6). Mo enrichments will be highest when the bottom water 
was also euxinic, as during deposition of the S1 layer, but lower when the supply of molydbate is mainly 
dependent on the diffusional transport of seawater molybdate into the sediment. This might explain the 
extreme Mo enrichments in the black shales of S1 (Reinhard et al., 2009).

We conclude that during black shale deposition, the sediment and the sediment-water interface were 
anoxic and partly euxinic (S1, Mt. McRae Shale; Reinhard et al., 2009). The Mo-isotope data of authigenic 
Mo in these black shales reflect minimum values for ambient seawater (Wille et al., 2007). The continuous 
increase in black shale δ98Mo from a mean value of 0.66 ‰ ± 0.22 (2σ) before 2.54 Ga up to 1.37 ‰ in the 
Mt. McRae Shale could therefore indicate decreasing net Mo scavenging in the youngest samples or (as 
preferred here) an increase in the Mo-isotopic composition of the ambient seawater. 

6.2 Carbonate facies iron formation 
Carb-IFs formed on the shelf/slope in more distal and deeper environments than black shales (Beukes 

and Gutzmer, 2008). The detrital influence during deposition of these units was negligible, as indicated 
by low Al and Ti concentrations (Table 1). Fe-carbonates precipitate when a solution is oversaturated in 
Fe2+ and HCO3

- (Beukes et al., 1990; Winter and Knauth, 1992). Ohmoto et al. (2004) suggested that such 
oversaturation in Archean seawater was a consequence of extremely high atmospheric p(CO2). However, 
a more recent study of the 87Rb-87Sr radiogenic isotope system in iron carbonates points to an early 
diagenetic origin of Archean iron carbonates (Johnson et al., 2013). The oxidation of organic matter and 
coupled dissimilatory iron reduction during early diagenesis can also create an oversaturation of Fe2+ and 
HCO3

- within the sediment’s pore-water (Ellwood et al., 1988; Johnson et al., 2008) and the subsequent 
precipitation of iron carbonates before lithification (Johnson et al., 2013). This formation mechanism is 
consistent with lower δ13CCarb in carb-IFs compared to limestones, as it strongly indicates the integration 
of isotopically light carbon that was derived from organic matter remineralization within the sediment 
(Fig. 3a). Furthermore, the spheroidal shape of iron carbonate investigated in this study (Fig. 2a, b) was 
most likely caused by the reaction of ferrihydrite with organic matter during early diagenesis (Köhler et 
al., 2013). Ferrihydrite, which is the presumed precursor mineral for any iron formation, can form during 
iron oxidation by photoferrotrophic bacteria (Widdel et al., 1993) or inorganically by free oxygen in an 
oxic ocean surface layer (Cloud, 1965), whereas photo oxidation was ruled out as primary mechanism for 
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Fe-oxidation and subsequent BIF formation (Konhauser et al., 2007). The spheroidal and rhombohedral 
shape of iron carbonates might indicate that photoferrotrophic bacteria were the predominant primary 
producer (Köhler et al., 2013). The subsequent oxidation of organic matter by Fe3+ within the sediment 
requires the absence of energetically more efficient oxidants such as O2. Furthermore, reduced iron would 
preferentially form iron sulfides if H2S was available (Poulton et al., 2004). Consequently, iron carbonates 
formed in an anoxic and non-sulfidic pore-water environment overlain by a ferruginous water column 
(Holland, 2006; Kaufman et al., 2007; Poulton et al., 2004). 

In an H2S free pore-water/seawater environment, the formation and scavenging of thiomolybdate 
is excluded. Furthermore, the role of Mn-oxides and hence the adsorption of molybdate onto these 
minerals was probably of minor importance in an anoxic environment (see one exception in section 5.4). 
Still, Fe-carbonates are enriched in authigenic Mo, which make up more than 80 % of total Mo (Table 2). 
Considering the genesis of Fe-carbonates, molybdenum was either scavenged by organic matter or by Fe-
oxyhydroxides. We would expect similar Mo enrichments in oxide and carbonate facies iron formations, 
if the adsorption onto Fe-oxyhydroxides was the predominant scavenging mechanism. However, 
authigenic Mo concentrations increase in the order oxide IF < carb/ox IF < carb IF. Thereby, authigenic Mo 
concentrations positively correlate with TOC. This rather suggests that Mo scavenging by organic matter 
was the predominant process (Fig. 7), a mechanism that was shown to be very efficient in the modern 
German Wadden Sea (Dellwig et al., 2007; Kowalski et al., 2013). It appears that only in settings with very 
low organic carbon burial rates does the adsorption of molybdate onto Fe-(oxyhydr)oxides significantly 
contribute to the sequestration of Mo into the sediments (Wichard et al., 2009).

The concentrations of Mo are lower in Fe carbonates compared to black shales, because a sulfidic 
zone and thiomolybdate formation was absent (Fig. 7). Independent of all these different Mo enrichment 
mechanisms, we observe very similar δ98Mo values in black shale/carbonate IF sample pairs APDB-177/
APDB-180, APDB-335/APDB-340, and Mill-225/Mill-229, which are similar in depth and probably age 
(Table 2; Fig. 5). Furthermore, the δ98Mo values of Fe carbonates generally follow the same trend as the 
δ98Mo values of black shales with highest values in the youngest samples (excluding sample Mill-223.2, 
see section 5.4; Fig. 5). Considering the low Mo-isotope fractionations during Mo-scavenging by organic 
matter (Kowalski et al., 2013), the increase in δ98Mo values of Fe-carbonates in the course of the Mt. 
Sylvia Formation, Mt. McRae Shale and Brockman Iron Formation indicates an increase in the seawater 
δ98Mo. This in turn confirms our previous hypothesis that the magnitude of Mo scavenging in all black 
shale samples was similar and nearly quantitative, probably due to nearly quantitative thiomolybdate 
formation in H2S rich sedimentary settings. Therefore, the most straightforward interpretation of the 
δ98Mo record suggests similarly small Mo isotopic differences between seawater and black shales as well 
as carbonate facies iron formations, respectively, and an increase in the seawater δ98Mo over the course 
of the deposition of the Mt. Sylvia Formation, Mt. McRae Shale and Brockman Iron Formation.
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6.3 Oxide facies iron formation 
According to Beukes and Gutzmer (2008), oxide-IFs represent the most distal deep-water facies in an 

anoxic environment. Correspondingly, the respective samples show no detrital component (undetectable 
concentrations of Al and Ti). Furthermore, TOC concentrations are extremely low (in the range of the 
analytical detection limit). Low TOC might limit the coupled reaction of iron (III) reduction and organic 
matter oxidation and hence the formation of iron carbonates. By contrast, the labile Fe-oxyhydroxide 
fraction formed layers of iron oxides such as hematite and magnetite during early diagenesis (Fig. 2b, c; 
Beukes and Gutzmer, 2008). Some samples show both, iron carbonates and iron oxides (Fig. 2b). The thin 
section in figure 2b clearly demonstrates the separation of iron carbonate and iron oxide layers, which 
suggests continuous sediment deposition under changing environmental conditions. The absence of pyrite 
in both types of iron formations indicates a ferruginous and non-sulfidic environment during deposition. 

Oxide facies iron formations, as with carbonate facies iron formations, reveal a large authigenic 
Mo component. The H2S free environment in these settings impedes the formation of particle reactive 
thiomolybdate and subsequent Mo sequestration as is the case for Fe carbonate settings. But, opposite 
to Fe carbonate settings, we suggest that the burial rate of organic matter was low enough so that Mo 
adsorption onto Fe-oxyhydroxides was the predominant authigenic Mo enrichment process in oxide 
facies iron formations (Fig. 7). This adsorption causes Mo-isotopic differences of Δ98Moferrihydrite-seawater = 
δ98Moferrihydrite - δ

98Moseawater of -1.1 ‰ (Goldberg et al., 2009). Consistent with our hypothesis the δ98Mo of 
two pure oxide IFs (ABDP-215 and ABDP-220) are slightly lower than the δ98Mo of the “contemporaneous” 
black shale (ABDP-219; Δ98MoABDP215/220-ABDP219 = δ98MoABDP215/220 - δ

98MoABDP219 = -0.4 ‰; Table 2).  Low Mo 
concentrations in Fe oxides suggest that the efficiency of Mo removal at these settings was generally low, 
which could have been a question of competition for free adsorption sites. The Archean ocean was rich in 
Si (with concentrations more than 60 times higher than today; Siever, 1992), which has a higher affinity to 
ferric (oxyhydr)oxides than Mo (Balistrieri and Chao, 1990). During times of non-biological Si precipitation, 
mineral adsorption represented the main Si removal mechanism in the Archean ocean (Siever, 1992). 
Thus, the chemical composition of the Archean ocean (i.e. high Si concentrations), might have significantly 
hindered Mo-adsorption on ferric (oxyhydr)oxides.

6.4 The evolution of seawater δ98Mo
The continental crust (and hence detrital Mo) has a relatively narrow range in δ98Mo values between 

0.0 and 0.6 ‰, with an average continental δ98Mo value of ca. 0.3 - 0.4 ‰ (Greber et al., 2013; Siebert 
et al., 2003; Voegelin et al., 2014; Wille et al., 2013). Most early and middle Archean sedimentary rocks 
exhibit δ98Mo values within this continental range (Siebert et al., 2005; Voegelin et al., 2014; Wille et al., 
2013) along with low Mo/TOC ratios (Wille et al., 2013; Scott et al., 2008). Some higher δ98Mo values 
in ~3.0 Ga old iron formations, which positively correlate with Fe/Mn ratios point to local Mo-isotope 
fractionations during adsorption onto Mn-oxides (Planavski et al., 2014). Altogether the current dataset 
suggests low seawater Mo concentrations (low Mo/TOC) along with global inhomogeneity of Archean 
seawater δ98Mo, with temporal and spatial variability being dependent on the local Mo input as well as 
local fractionation processes (e.g. Planavsky et al., 2014). 
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The sedimentary rocks from the Neoarchean Marra Mamba and Wittenoom formations, Hamersley 
Basin, exhibit authigenic Mo enrichment, but still low Mo/TOC ratios. Most δ98Mo values are only slightly 
above the average value of the continental crust and close to the majority of early and middle Archean 
δ98Mo values, which indicates unchanged environmental conditions. One exception (Fe carbonate Mill-
223.2) shows an anomalously high δ98Mo value of 1.51 ‰ that is in stark contrast to significantly lower 
δ98Mo values of all other samples of the Marra Mamba and Wittenoom formations. In addition, the 
carbonate IF (Mill-223), which is only 20 cm above this sample has a significantly lower δ98Mo value of 
0.72 ‰. The geochemical, petrological and mineralogical similarity of both Fe carbonates argues against a 
different Mo removal mechanism with variable Mo-isotope fractionations. Such short-term variability could 
result from the local formation of Mn-oxides. Mn-oxides represent an impermanent sink for isotopically 
light Mo (Scott and Lyons, 2012). During reductive dissolution of Mn-oxides within the sediment Mo is 
re-liberated and diffuses back into the water column as long as it is not fixed within a sulfidic zone of the 
sediment (Scott and Lyons, 2012). This means that isotopically light Mo is only temporary bound as long as 
Mn-oxides persist in the uppermost sediment layers and could temporary cause high δ98Mo values of local 
seawater (i.e. during deposition of Mill-223.2). Theoretically, later instability of local Mn oxides in more 
reducing environments would re-liberate isotopically light Mo shifting the local seawater δ98Mo back to 
lower values (i.e. during deposition of Mill-223). Such short scale temporal variability is only imaginable 
when the reservoir size of seawater molybdate is small and its residence time is short (consistent with low 
Mo/TOC ratios).  

Alternatively, temporary high δ98Mo values could also reflect a short-term increase of a homogeneous 
δ98Mosw reservoir, which might also explain similarly high δ98Mo values observed in nearly contemporaneous 
carbonates on the Kapvaal craton (Fig. 8) (Voegelin et al., 2010). Assuming such homogeneous distribution 
of Mo in seawater, we used the box-model described in Wille et al. (2008) to model the effect of an abruptly 
larger sink of isotopically light Mo on the seawater Mo isotopic composition (spike on the left in panel 2, 
Fig. 9a). Similarly, we modeled the effects of an abrupt short-term increase in the Mo-influx and the Mo 
removal efficiency, respectively, on the δ98Mosw values (abrupt doubling for 100 ka at constant isotopic 
differences between seawater and sediment; spike on the left in panel 1, Fig. 9b and c, respectively). The 
seawater Mo inventory was set to 1 % of the modern inventory (Scott et al., 2008). Reduced oxidative 
weathering on the continents during the Archean are expected to cause a significantly lower Mo-influx, 
which we also set to 1 % of the modern influx (= outflux in steady state). Although Neoarchean Mo-fluxes 
are poorly constrained and the resulting modern-like residence time might be overvalued, we note that 
the perturbation of the Mo ocean inventory and its isotopic composition depend on changing the relative 
proportions of the two fluxes and the inventory as well as their isotopic compositions. The choice of these 
parameters assures homogenous seawater Mo distribution. The Mo-isotopic composition of the influx was 
kept constant at 0.4 ‰ in δ98Mo throughout all models (Voegelin et al., 2014). For simplicity, we assume 
only two outfluxes. The euxinic outflux comprises 15 % of the total outflux (Scott et al., 2008) with a Mo-
isotopic composition, which equals that of seawater. For the remaining 85 % of outflux in mainly reducing 
but not strongly euxinic environments an isotopic difference of Δ98Mosw-sed = δ98Mosw – δ98Mosed = 0.9 ‰ in 
steady state (Kendall et al., 2009) is assumed. We note that an increase in Δ98Mosw-sed models the relative 
extension of weakly sulfidic as well as oxic environments, both of which will remove isotopically light Mo. 
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The temporal increase of this value on the 10th to 100th ka timescale can explain short-term variability 
of seawater δ98Mo (left side in panel 3, Fig. 9a) only if the period of perturbation gets closer to the range 
of the seawater residence time of Mo (~700 ka in the modern ocean and in the models). The short-term 
variability of δ98Mosw is, however, amplified when combining higher Δ98Mosw-sed with an abrupt increase 
in Mo removal efficiency (left side in panel 3, Fig. 9d). Such a combination is expected during increased 
Mo scavenging in more widespread weakly euxinic settings and better explains temporally high δ98Mosw 

-0,3

0,0

0,3

0,6

0,9

1,2

1,5

1,8

M.M. Wittenoom Mt Sylvia Mt McRae Dales Gorge

δ98Mo (‰)

continental crust

Black shale (This study)
Carb-IF (This study)
Ox/Carb-IF (this study) 
Ox-IF (This study)

2.60 2.502.54Age (Ga)
Vryburg Lower Nauga Upper Nauga Klein Naute KurumanMontevilleLo.Bo.

2.56 2.49

„Whiff of
oxygen“ G.O.E.

350 Depth (m)300 250 200 150 100200240

1200 1100 1000 900 800 700 600 500 400 300 200 Depth (m)
Kapvaal

Pilbara

Black shale (Wille et al., 2007)
Black shale (Duan et al., 2010)
Carb-IF (Duan et al., 2010)
Carbonates (Voegelin et al., 2010)

FIGURE 8: The evolution of δ98Mo in black shales, carbonates and iron formations during the Neoarchean 
(Hamersley Basin: Duan et al., 2010 and this study; Griqualand West Basin: Wille et al., 2007; Voegelin 
et al., 2010). The δ98Mo are plotted against sample depth of the Australian drill cores ABDP#9 and 
Millstream#9 (black: Duan et al., 2010; this study) and the Australian drill core GKP01 (red: Wille et 
al., 2007; Voegelin et al., 2010). All sample sets were time-correlated using spherule layers (Simonson 
et al., 2009), U-Pb zircon ages (2.60 Ga, Trendall et al., 1998), Pb-Pb ages (2.54 Ga; Woodhead et al., 
1998)  and a Re-Os shale age (2.50 Ga; Anbar et al., 2007). Our data show low δ98Mo close to crustal 
values (grey area) before 2.54 Ga (Marra Mamba and Wittenoom formation) and a subsequent increase 
towards more positive values (Mt. Sylvia Formation, Mt. McRae Shale and Brockman Formation). 
Samples from the Griqualand West Basin, South Africa, (Wille et al., 2007) show larger variability but 
a qualitatively similar trend in maximum values. The increase is concomitant for black shales (black 
circles) and carbonate facies iron formation (orange squares). Ultimately, the increase is attributed to 
the build-up of a more homogeneous oceanic molybdate reservoir with a higher seawater δ98Mo as a 
consequence of increasing redox-potentials before the G.O.E. and the “whiff” of oxygen.



Continuously increasing δ98Mo values in Neoarchean black shales...34

values as seen in the Marra Mamba Formation. However, during periods of strong Mo removal we would 
expect Mo enrichments and high - rather than low - Mo/TOC ratios during times of increased Mo removal 
efficiency (Wille et al., 2008). So far such enrichments are not observed in the global geological record. We 
therefore prefer the initial interpretation that the exceptional increase towards a high δ98Mo value at 2.6 
Ga (e.g. in Mill-223.2) is a local phenomenon, which is consistent with a seawater Mo-reservoir that was 
still heterogeneous and variable with respect to its isotopic composition. 

In contrast to mainly low δ98Mo values close to the crustal average in sediments of the Marra Mamba 
and Wittenoom formations with only one single excursion to higher values, we observe continuously 
increasing δ98Mo values in the samples younger than 2.54 Ga, belonging to the Mt. Sylvia Formation, 
the Mt. McRae Shale and the Dales Gorge Member of the Brockman Iron Formation (ABDP-260 to -102; 
Fig. 8). The Neoarchean increase in δ98Mo values of Hamersley Basin sedimentary rocks (up to 1.51 ‰ 
here and up to 1.86 ‰ for the S1 layer in the Mt. McRae Shale; Duan et al., 2010) was also observed 
in contemporaneous sedimentary rocks of the Griqualand West Basin, South Africa (Wille et al., 2007; 
Voegelin et al., 2010). The large scatter in black shales from the Griqualand West Basin (Wille et al., 2007) 
could be a consequence of Mo-isotope fractionations in weakly sulfidic settings or mixing of detrital and 
authigenic Mo (see 5.1). However, maximum values, which represent the best approximation for the 
ancient seawater δ98Mo, show a broadly similar evolution (Fig. 8). These observations suggest that the 
seawater became isotopically heavier and more homogeneous with respect to Mo, at least regionally 
within the basin that straddled the South African and Australian regions. 

Mo/TOC ratios remained relatively low also during deposition of the Mt. Sylvia Formation and the 
Mt. McRae Shale, which seems at odds with a larger and more homogeneous seawater Mo reservoir. 
However, the magnitude of Mo/TOC ratios is also dependent on local environmental conditions such as 
sedimentation rates and particularly sulfide levels (Algeo and Lyons, 2006; Dahl et al., 2013). Comparing 
the Mo/TOC ratios from the euxinic S1 interval of the Mt. McRae Shale (FeHR/FeT > 0.38 and FePy/FeHR > 0.8; 
Reinhard et al., 2009) with Mo/TOC ratios from a euxinic interval of the 2.66 Ga old Jeerinah Formation of 
the conformably underlying Fortescue Group, Western Australia (FeHR/FeT > 0.38 and FePy/FeHR  > 0.8; Scott 
et al., 2011), the increase in Mo/TOC ratios from averaged 0.4 ± 0.2 in Jeerinah black shales (Scott et al., 
2011) to averaged 2.0 ± 0.6 in Hamerslay Basin Mt. McRae black shales (Anbar et al., 2007) is significant. 
First strong enrichment of Mo in euxinic black shales of the Mt. McRae Shale, which led to the idea of 
a whiff of oxygen before the G.O.E. (Anbar et al., 2007) are therefore consistent with a larger and more 
homogeneous seawater Mo reservoir. These Mo enrichments required euxinic seawater conditions that 
could have been a consequence of local oceanographic changes (e.g. the upwelling of DIC and nutrient 
rich deep waters). Such local oceanographic changes in turn led to strong variations in the carbon isotope 
record but had little effects on the Mo-isotopic composition. The δ98Mo still increases during the Dales 
Gorge Member, whereas the δ13Corg and δ13Ccarb shift back to lower values (see red lines in Fig. 5). This 
pattern additionally suggests that the seawater molybdate reservoir was less affected by local changes but 
rather more homogeneous in its distribution and isotopic composition. Thus, the increase in the seawater 
molybdate reservoir apparently goes hand in hand with higher seawater δ98Mo. 
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FIGURE 9: (a, blue) fluxes remain constant at 1 % of the modern influx with a seawater Mo reservoir that is also 
1 % of the modern inventory (causing a modern-like residence time). The Δ98Mosw-sed = δ98Mosw – δ98Mosed was 
changed by lowering the 98Mosed (the output) abruptly on a short-term (100 ka, left side) and smoothly on a long-
term (40 Ma, right side), respectively. We changed Δ98Mosw-sed from 0.9 ‰ up to 1.8 ‰, whereby the subscript 
“sed” includes all but strongly euxinic sediments and modelled the effects on the δ98Mosw value. (b, black) the 
effect of abrupt doubling of the Mo influx for 100 ka and a smooth doubling for 40 Ma, respectively, on the δ98Mosw 
(keeping Δ98Mosw-sed constant). (c, yellow)  the effect of abrupt doubling of the Mo removal efficiency for 100 ka 
and a smooth doubling for 40 Ma, respectively, on the δ98Mosw value. Note that the smooth long-term doubling 
of the Mo removal efficiency has little effects of the absolute outflux, because the outflux is correlated to the Mo 
inventory, which decreases with time (thus balancing higher Mo removal efficiency). (d, green) modelling of more 
widespread weakly euxinic environments, which would cause more efficient Mo removal of isotopically light Mo 
(thus a combination of a and c). We observe large effects on the δ98Mosw value on a short-term and on a long term, 
but also a decline of the seawater Mo inventory. (e, red) modelling of environmental oxygenation. In this scenario 
higher rates of oxidative weathering (higher influx) come along with the preferential removal of isotopically light 
Mo during adsorption onto Mn oxides in well oxygenated shallow water habitats (higher Δ98Mosw-sed combination 
of a and b). The modeled δ98Mosw shows large variation only on the long-term. Coevally the model suggests the 
build-up of a larger Mo inventory, which is consistent with the Neoarchean geological record.
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The possible causes for the build-up of a more homogeneous and isotopically heavier ocean are well 
discussed by Duan et al. (2010). These authors exclude a hydrothermal source of isotopically heavy Mo and 
highlight the need for an increasing sink of isotopically light Mo. Archean carbonate facies iron formations 
seem to fail as a sink for isotopically light Mo as they show similar positive δ98Mo as black shales and Mo 
burial is associated with organic matter deposition rather than adsorption onto Fe-oxyhydroxides. The 
sequestration of isotopically light Mo in oxide facies iron formations with only slightly lower δ98Mo values 
also appear to have been subordinate, considering the extremely low Mo concentrations of oxide IFs. Duan 
et al. (2010) conclude instead that the preferential removal of isotopically light Mo onto Mn oxides either 
during oxidative weathering on the continents or in well oxygenated marine coastal areas was a more 
probable cause. The generation of continental crust coupled with considerable relief-building increased 
remarkably during the Neoarchean (Flament et al., 2008; Rey and Coltice, 2008). Higher reliefs would 
have increased rates of physical weathering and the riverine and aeolian input of detrital material. In the 
course of increasing atmospheric oxygen concentrations (Anbar et al., 2007), higher rates of oxidative 
weathering are expected. Mn oxide formation and the involved retention of isotopically light Mo in well 
oxygenated surface ocean areas possibly caused higher seawater δ98Mo values (Duan et al., 2010). This 
idea is confirmed by our modeling. The smooth long-term increase (over 40 Ma) of the Mo-influx by 
higher rates of oxidative weathering increases the Mo-inventory consistent with higher Mo concentrations 
and increasing Mo/TOC ratios in the Mt. McRae Shale. However, this increase alone cannot explain the 
shift towards higher seawater δ98Mo (right side in panel 3, Fig. 9b). Also the long-term increase in Mo 
removal efficiency has little effects on the δ98Mosw (right side in panel 3, Fig. 9c). However, by coupling a 
higher Mo-influx with higher Δ98Mosw-sed (i.e. due to Mo-adsorption onto Mn-oxides), our model suggests a 
significant and long-term increase in the δ98Mosw as well as the seawater Mo inventory consistent with the 
observed geological record (right side in panel 3, Fig. 9e). We therefore agree with Duan et al. (2010) that 
the increasing presence of Mn-oxides on well oxygenated shelf regions could have caused continuously 
higher δ98Mo in black shales and siderites as long as the seawater Mo reservoir was at least regionally 
homogeneous. 

Alternatively, light Mo was preferentially removed in weakly sulfidic environments, which would have 
similar effects on the δ98Mosw. Coevally with increasing oxygenation in the course of the GOE, the weathering 
of sulfides on the continents led to elevated fluxes of sulfate and molybdenum to the oceans. On the one 
hand, this could have increased the ocean’s Mo inventory and thus be a possible explanation for its more 
homogeneous distribution. On the other hand, higher sulfate concentrations stimulated bacterial sulfate 
reduction and hence the formation of sulfidic conditions (Reinhard et al., 2009). Thereby the build-up of 
a larger Mo inventory requires a Mo influx, which outbalances higher Mo removal rates in weakly euxinic 
settings. A larger inventory and more euxinic conditions enabled large Mo enrichments in black shales 
(Anbar et al., 2007). In the very beginning of environmental oxygenation before the GOE, the development 
of more weakly sulfidic rather than strongly conditions might be favored, which could have caused the 
gradual increase in the seawater δ98Mo during the Neoarchean. For example, the predominant formation 
of MoO3S

2- rather than MoS4
2- in environments with H2S(aq) concentrations lower than 5µmol L-1 cause large 

fractionations up to 3 ‰ in δ98Mo (Neubert et al., 2008) and possibly the build-up of an isotopically heavy 
ocean. The subsequent areal expansion of sulfidic conditions during further oxygenation in the course 
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and after the GOE could have caused the development of more strongly sulfidic conditions with H2S(aq) 

concentrations above 11 µmol L-1 and reduced net Mo-isotope fractionations (Duan et al., 2010). This 
could explain the leveling down of seawater δ98Mo during the Proterozoic (Arnold et al., 2004; Duan et al., 
2010; Kendall et al., 2009). 

7. Conclusions

The molybdenum isotopic composition of black shales and carbonate facies iron formations exhibit 
authigenic Mo enrichment with near “crustal” δ98Mo values in the Marra Mamba and Wittenoom 
formations (2.6 to 2.54 Ga) of the Hamersley Group, Western Australia, with only one single exception 
with significantly higher δ98Mo. These results suggest a small and inhomogeneous seawater molybdate 
reservoir that was dominated by the unfractionated continental Mo input. Fractionation processes on Mn-
oxides were temporally and spatially restricted causing locally high seawater δ98Mo. Passing up section 
through the Mt. Sylvia Formation, Mt. McRae Shale and the Brockman Iron Formation δ98Mo values 
continuously increase over time (2.54 to 2.50 Ga), by up to 1.5 ‰. We suggest that the uniform increase 
in δ98Mo in Fe carbonates and black shales along with a good correlation of Mo concentration with total 
organic carbon, is best explained by two removal mechanisms that are associated with similarly low Mo-
isotope fractionations, e.g. the adsorption of molybdate onto organic matter in Fe carbonate settings 
and thiomolybdate scavenging by the formation of sulfurized organic matter in the euxinic pore-water 
environments of black shale settings. Only in oxide iron formation settings does the adsorption of Mo 
onto Fe-oxyhydroxides seem relevant. Consistent with new modeling presented here, the concomitant 
increase in δ98Mo within shelf sediments of the Hamersley Basin, Australia, and the Griqualand West 
Basin, South Africa, implies the build-up of a homogeneous and isotopically heavy Mo seawater reservoir 
after 2.54 Ga. The larger Mo reservoir size could have been a consequence of higher Mo-fluxes during 
oxidative weathering on the continents. The formation of Mn oxides during weathering or within well 
oxygenated coastal areas could have caused a seawater molybdate reservoir with high δ98Mo. In contrast, 
iron formation appear to be unsuitable as an important sink for isotopically light Mo. Alternatively, the 
formation of weakly sulfidic conditions during early stages of environmental oxygenation could have 
amplified the sequestration of isotopically light Mo. Both explanations require mild oxygenation and 
sulfide weathering on the continents already before the GOE, so that our results and interpretations are 
in line with previous studies. 
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CHAPTER II

Coupled Iron and Molybdenum isotopes from a 2.4 billion years 
old oxygen oasis

1. Abstract

We provide new molybdenum and iron isotopic data from carbonate and silicate iron formations of the 
2.48 Ga old Koegas Subgroup, South Africa, which were deposited below the anoxic-oxic redoxcline of a 
local oxygen oasis. The positive correlation of Fe/Mn ratios with both δ98Mo and δ56Fe values highlights the 
substantial role of Mn for the cycling of Mo and Fe. We suggest that pore water molybdate was recharged 
(1) by the diffusional transport of seawater molybdate with high δ98Mo and (2) by the re-liberation of 
adsorbed molybdate with low δ98Mo during Mn oxide dissolution. The relative contribution of isotopically 
light Mo is highest close to the Mn chemocline, where the flux of Mn oxides is largest, which causes the 
positive correlation of Fe/Mn ratios and δ98Mo values in the Koegas sediments.
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The relationship of δ56Fe and Mn becomes apparent when considering modern depositional equivalents 
such as Lac Pavin. The δ56Fe values of dissolved Fe2+ in Lac Pavin show a pronounced decrease along the 
Mn redox cline, which is attributed to the oxidation and precipitation of isotopically heavy Fe-hydroxides 
in this depth region (Busigny et al., 2014). The positive correlation of δ56Fe values with Fe/Mn ratios in 
Koegas sediments therefore results from Mn oxide formation in the water depth region with lowest δ56Fe. 
Importantly, the Fe-isotope trends observed in Lac Pavin were not preserved in respective sediments. 
This might indicate that the gradient of the chemocline in early Proterozoic oxygen oases was smoother 
probably as a result of relatively low oxygen concentrations. We suggest that before the Great Oxidation 
Event the O2-exchange of oxic surface waters with the still reducing atmosphere kept the local marine 
oxygen levels relatively low. 

2. Introduction

The Great Oxidation Event (GOE) between 2.45 and 2.32 billion years (Ga) ago represents one of the 
major environmental changes in Earth history (Holland, 2006). During this time period atmospheric oxygen 
levels rose from below 10-5 up to 10-2 of Present Atmospheric Level (PAL) (Farquhar et al., 2000; Holland, 
2006; Pavlov and Kasting, 2002). This jump in atmospheric oxygen concentration reflects a combination of 
increased primary production by oxygenic photosynthesis and organic carbon burial, a decrease in the O2 
buffer capacity or a combination of both (Catling et al., 2001; Gaillard et al., 2011; Holland, 2006; Kump 
and Barley, 2007; Lyons et al., 2014).

Some evidence points to photosynthetic activity by cyanobacteria several hundred million years earlier 
than the GOE (Canfield, 2005; Crowe et al., 2013; Kurzweil et al., 2013; Nisbet et al., 2007). However, the 
reducing power of the upper continental crust, the atmosphere and the deep ocean outbalanced oxygen 
production and prohibited the earlier accumulation of free oxygen. Separated from anoxic deep waters, 
only some shallow marine habitats became oxygenated (Planavsky et al., 2014; Reinhard et al., 2009), 
which caused the development of a locally stratified ocean margin (Kendall et al., 2010). The existence of 
such oxygen oasis were claimed as early as 3.0 Ga ago (Planavsky et al., 2014). However, their extension and 
the implications for the isotopic composition of different paleo-redox proxies remain poorly understood. 

In this study we combine Fe and Mo isotopes from iron formations (IFs) of the Koegas Subgroup, 
South Africa, to reconstruct the local environment of the Griqualand West Basin more than 2.4 Ga ago. 
The deposition of such proximal iron formations is related to the local oxidation of very soluble Fe2+, 
which was derived from a ferruginous deep ocean reservoir. Oxidized Fe3+ is poorly soluble and forms 
Fe-(oxy)hydroxide minerals, which may subsequently precipitate on the seafloor. This oxidation could 
be processed by anoxygenic phototrophic bacteria (Kappler et al., 2005). Alternatively, IFs of the Koegas 
Subgroup shortly before the GOE could indicate the local availability of oxygen in surface ocean areas 
(Cloud, 1973). We compare our results with isotopic data of modern anoxic lakes, which were claimed 
as modern ocean analogues (Busigny et al., 2014) as well as isotopic data of sediments from the oldest 
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known oxygen oasis (Planavsky et al., 2014). The combination of Mo and Fe isotopes provides important 
insights into the local marine environment with profound implications for the regional/global ocean redox 
state and the behavior of redox sensitive elements like Mo and Fe in such settings in general.

3. Geological setting and sample material

The Ghaap Group (Traansvaal Supergroup, South Africa) represents a continuous sedimentary 
succession, which was deposited in the Griqualand West Basin immediately before the GOE (Beukes and 
Gutzmer, 2008). The Koegas Subgroup forms the uppermost unit of the Ghaap Group, which represents 
the final stage of a long-term regressive period (Schröder et al., 2011). SHRIMP U-Pb zircon data of the 
subjacent Asbesheuwels Subgroup (Kuruman Formation) indicate a maximum depositional age of 2460 
± 5 Ma (Pickard, 2003). In contrast, Re-Os dating of shales from the Koegas Subgroup (Nelani Formation, 
Klipputs Member; GEC01 174-176) provide a depositional age of 2479 ± 22 Ma (Kendall et al., 2013), which 
may suggest a true depositional age at the lower end of this error range. 

The sediments of the Koegas Subgroup represent periodical alternations of siliciclastic units during 
regressions (Pannetjie-, Naragas-, Heynskop Formation) and iron formations during transgressions 
(Doradale-, Rooinekke-, Nelani Formation) along a prograding delta or submarine fan system (Schröder 
et al., 2011). The terrigenous input was generally higher in the eastern parts of the basin, which argues 
for lateral basinal deepening from E to W (Schröder et al., 2011). The eastern drillcore GTF01 therefore 
represents the more proximal depositional setting (Fig. 1A). GTF01 samples of this study are from the 
Doradale Formation, which is associated with maximal sea level and the deposition of fine-grained and 
laminated IFs. The western GEC01 drillcore comprises sediments from deeper settings of the Rooinekke 
and Nelani formations. Beukes (1983) suggested a flooding surface at the base of the Nelani formation 
during the Klipputs Member (Fig. 1C). The subsequent regression during the Nelani Formation ends in 
granular carbonate iron formations (sample GEC 65.9), which represent deposition above wave base. 

The petrological and mineralogical composition of our samples is described in detail by Nel (2013). 
This author mainly distinguishes between Fe-carbonate lutite and Fe-silicate lutite dominated samples, 
respectively, as well as a combination of both (Table 1, Fig 1C). In most samples dark green-black, very fine 
grained and massive Fe-silicate lutite layers alternate with lighter colored, greyish siderite lutite layers, 
which are coarser grained and can form a peloidal structure. This alternation results in fine laminations 
visible on the core material (http://general.uj.ac.za/agouron/). The abundance of Fe-oxides (mainly 
magnetite) is minor compared to Fe-silicates and Fe-carbonates. Few samples show minor abundance of 
Riebeckite (Table 1, 2), which point to low-grade metamorphism of the Koegas Subroup (Schröder et al., 
2011). Pyrite is only abundant in detrital form in sandstone units of the Koegas Subgroup, which were not 
considered in this study (Johnson et al., 2013b). Very low concentrations of Al2O3 in our samples strongly 
suggest that the terrigenous input was generally reduced (Table 1).
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4. Methods

For Fe isotope measurements ~20 mg of powdered sample material were digested at 120°C for 48 
hours using a 3:1 mixture of distilled HF and HNO3 acids. Subsequently, dried samples were two times re-
dissolved in distilled 6M HCl, which assured complete dissolution. An aliquot containing around 30 µg Fe 
was split for further purification of Fe. The separation of Fe by the use of an anion exchange resin (AG1-X8, 
100-200 mesh) follows a procedure described by Schönberg and von Blacnkenburg (2005).
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FIGURE 1: (A) Location of the Griqualand West Basin on the Kaapvaal Craton, South Africa (modified 
from Schroeder et al., 2011). (B) Geological map of the Griqualand West Basin and the drill core 
position of GEC01 and GTF01 (modified from Schroeder et al. , 2011). (C)  Stratigraphic description of 
drill cores GEC01 and GTF01.  Re-Os dating of shales deposited at the base of the Nelani Formation 
during the Klipputs Member provide a maximum depositional age of 2479 ± 22 Ma (Kendall et al., 
2013). Selected geochemical parameters are shown against drill core depth. The concentrations of Al, 
Fe and Mn are from Nel (2013). Pan.: Pannetje; Dor.: Doradale; Na.: Naragas; He: Heynskop.
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ent com
position, data from

 N
el, 2013

Form
ation

drillcore/
lithology

SiO
2

Al2 O
3

Fe
2 O

3
M

gO
CaO

N
a2O

K
2 O

TiO
2

P
2 O

5
M

nO
Fe/M

n
LO

I
Sum

 
Depth

 
w

t%
w

t%
w

t%
w

t%
w

t%
w

t%
w

t%
w

t%
w

t%
w

t%
w

t%
%

N
elani

G
EC 53.2

sid
36.6

1.1
35.4

4.8
1.1

0.2
0.5

0.1
0.1

0.8
39.0

19.3
99.9

G
EC 65.9

sid (gr IF band)
20.7

1.0
45.0

5.8
1.2

0.2
0.5

0.1
0.1

0.5
79.7

24.9
99.8

G
EC 82.2

sid-sil
38.8

0.6
40.2

4.3
0.8

0.1
0.3

0.0
0.1

0.5
69.9

14.2
99.9

G
EC 82.8

sil-sid
39.1

0.9
36.9

4.5
2.6

0.2
0.4

0.0
0.1

0.4
90.2

14.7
99.8

G
EC 84

sid-sil
30.5

1.1
43.8

5.9
0.7

0.2
0.6

0.1
0.1

0.3
123.8

16.7
99.9

G
EC 87.5

m
ag sid-sil

48.7
0.4

28.8
3.1

5.1
0.3

0.2
0.0

0.0
0.7

39.4
12.6

99.9
G

EC 118
sid (som

e riebeckite)
30.2

0.2
39.3

5.3
1.0

0.3
0.1

0.0
0.1

0.5
78.8

22.9
99.9

G
EC 120

sid
21.7

0.0
40.0

4.9
2.2

0.1
0.0

0.0
0.0

0.8
43.0

26.5
96.4

G
EC 122.5

sid
38.2

0.2
41.2

3.8
1.3

0.1
0.1

0.0
0.1

0.2
219.2

14.6
99.9

G
EC 126.5

sid (m
inor sil)

41.2
0.4

41.4
4.8

0.8
0.1

0.2
0.0

0.1
0.3

133.6
10.6

99.9
G

EC 135.5
sid (m

inor rieb)
47.7

0.4
39.9

4.7
0.4

0.1
0.2

0.0
0.1

0.2
240.2

6.3
99.9

 
G

EC 140
sid (m

inor sil)
50.6

0.3
37.8

2.9
0.9

0.2
0.2

0.0
0.1

0.2
189.6

6.9
100.0

G
EC 144.3

sil
42.0

1.3
40.5

4.3
0.4

0.4
0.7

0.1
0.1

0.2
203.3

9.9
99.9

G
EC 164.5

sil
39.5

5.4
31.6

4.1
0.5

0.3
3.9

0.3
0.1

0.4
73.3

13.7
99.8

G
EC 172.5

sid-sil
44.6

7.2
28.3

3.6
0.2

0.3
4.9

0.3
0.1

0.3
85.3

10.0
99.8

 
G

EC 181.1
sid-sil

36.9
2.5

35.3
4.1

2.6
0.3

1.1
0.2

0.1
0.5

70.9
16.5

99.9
Rooinekke

G
EC 202.5

sid-sil
46.8

0.3
24.1

3.1
4.9

0.4
0.2

<0.01
0.0

3.0
7.2

17.1
99.9

G
EC 209.4

sil
36.3

1.3
35.6

5.3
1.0

0.9
1.0

0.1
0.1

3.2
10.2

15.2
99.9

G
EC 231.7

sid-sil
42.8

0.4
30.2

3.4
3.7

0.4
0.3

0.0
0.1

3.9
6.9

14.8
100.0

G
EC 257

sil sid and rieb
59.9

0.7
26.6

2.2
1.3

2.0
0.3

0.0
0.1

1.0
23.8

5.9
99.9

G
EC 259

sid-sil
29.5

1.1
37.5

4.6
2.9

0.2
0.5

0.1
0.1

3.2
10.6

20.3
99.9

 
G

EC 284.7
sid-sil

37.3
0.5

36.8
3.6

6.8
0.2

0.2
0.0

0.1
0.9

35.4
13.4

99.9
Doradale 

G
TF-248.5

sid-sil
35.9

1.4
33.0

3.7
3.8

0.1
0.6

0.1
0.1

1.9
15.8

19.3
99.8

G
TF-251.5

sid-sil
34.6

1.0
38.9

3.8
1.2

0.1
0.5

0.1
0.1

1.3
28.1

18.3
99.9

G
TF-257.3

sid-sil
38.4

0.7
37.7

4.0
1.1

0.1
0.4

0.1
0.1

1.1
31.0

16.3
99.9

G
TF-263.4

sil-sid
42.5

0.6
36.5

3.7
0.6

0.1
0.2

0.1
0.1

0.8
40.4

11.7
96.8

G
TF-266.8

sil-sid
42.6

1.6
36.2

4.9
0.5

0.1
1.1

0.1
0.1

0.9
36.7

11.9
99.9

G
TF-269.2

sid-sil
60.6

0.3
26.9

2.8
1.1

0.0
0.1

0.0
0.0

0.5
47.6

7.6
100.0

G
TF-278

sil-sid
39.2

0.7
41.1

3.3
4.1

0.1
0.3

0.0
0.1

0.7
53.8

10.3
99.9

G
TF 278.8

sil-sid
47.0

1.0
38.0

4.3
0.7

0.1
0.2

0.1
0.0

0.5
65.0

7.8
99.7
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Purified samples were dissolved in 0.3M HNO3 and introduced into a multi collector ICP-MS (Thermo 
Scientific Neptune; University of Tuebingen) using a Stable Sample Introduction (SSI) spray dual chamber 
system with a PFA pneumatic nebulizer. Isotopic ratios were measured at high resolution, which assured the 
resolution of polyatomic interferences such as 40Ar16O+ on 56Fe+ and 40Ar14N+ on 54Fe+ (Weyer and Schwieters, 
2003). The Isobaric interferences of 54Cr+ and 58Ni+ were corrected for by simultaneous measurements of 
52Cr+ and 60Ni+, respectively, and the use of published relative isotope abundance data (de Laeter et al., 
2003) assuming the same instrumental mass bias for Cr and Ni as determined for Fe. Fe isotopic ratios 
were measured by using the standard bracketing method (Schoenberg and von Blanckenburg, 2005). 
Each sample measurement was bracketed by IRMM-014 reference solution measurements (Institute of 
Reference Material and Measurements, Geel, Belgium). A measurement always included one block of 
20 cycles, each having an integration time of 8.4 s. The correction of the instrumental mass bias follows 
a scheme of Schoenberg and von Blanckenburg (2005). Fe isotopic ratios are presented in the δ-notation 
and relative to the reference solution of IRMM-014 and are expressed in ‰: 

All samples were measured twice and average isotopic values are presented in this study (Table 2). 
The long-term reproducibility of the HAN standard is 0.29 ± 0.05 ‰ (2SD; n = 145). The in-house standard 
HAN measured during the course of this study showed average δ56Fe values of 0.294 ± 0.039 ‰ (2SD, n 
= 11), which is consistent with published values (Moeller et al., 2014). The IF-G reference material, which 
ran through all purification steps in the course of this study shows a δ56Fe value of 0.644 ‰, which is also 
in agreement with literature values (Dauphas and Rouxel, 2006). Total Fe blanks were ~4 ng, contributing 
less than 0.1 % to the extracted Fe signal, which assures negligible contamination during the analytical 
procedure.

For Mo isotope measurements 100-300 mg of powdered and ashed (12h at 600°C) sample material, 
which is equivalent to ~50 ng Mo, was spiked in the ratio 1:1 (97Mo-100Mo double spike) and digested using 
the dissolution steps described above. The double spike method allows the correction for mass dependent 
isotope fractionations during the purification and measurement procedure. Chemical purification of Mo 
was achieved using a combination of anion and cation exchange resins (Eichrom AG1-X8, 200-400 mesh; 
Eichrom 50WX8, 200-400 mesh). 

Mo isotopic ratios were measured in low resolution mode with a multi collector ICP-MS Thermo 
Scientific Neptune at the University of Tuebingen. To improve the signal intensity (the signal on 95Mo was 
always above 250 mV), samples were introduced using a CETAC Aridus IITM desolvating nebulizer system. 
The Isobaric interferences of 96Ru+, 98Ru+, and 100Ru+ were corrected for by simultaneous measurements of 
99Ru+ and the use of published relative isotope abundance data (de Laeter et al., 2003) assuming the same 
instrumental mass bias for Ru as determined for Mo. Acid blank analyses, which bracketed each sample 
and standard measurement, were used for an on-peak-zero baseline subtraction. Samples and standards 
were measured for 100 cycles, each having an integration time of 8.4 s. The correction for instrumental 
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mass bias follows a scheme of Siebert et al. (2001). The Mo isotopic data are reported in the δ-notation 
relative to NIST 3134 and expressed in ‰: 

We follow the proposal of Nägler et al. (2013) and set NIST 3134 to 0.25 ‰ in δ98Mo. The repeated 
cross-calibration of NIST 3134 with our in-house standard Johnson Matthey ICP during the measurement 
sequence of this study showed an isotopic difference of Δ98MoNIST3134-JM = 0.286 ± 0.030 ‰ (2SD; n = 4), 
which is in agreement with the long term average Δ98MoNIST3134-JM value of 0.273 ± 0.031 ‰ (2SD, n = 32) 
as well as with literature values (Goldberg et al., 2013). A second in-house standard, ZH-2, which ran 
through all purification steps during the course of this study shows a δ98Mo value of 1.001 ‰ and 0.097 
‰, respectively. These values are consistent with the long-term reproducibility of ZH-2, which is 0.995 ± 
0.086 (2σ; n = 16) as well as with literature values (Lehmann et al., 2007). The total blank was below 0.2 
ng, which assured negligible contamination of sample measurements.

5. Iron isotopes

Iron isotopes can potentially be used to reconstruct the ancient marine redox-state (Rouxel et al., 2005) 
because the redox dependent speciation of iron is accompanied by fractionation processes. Dissolved 
Fe(aq)

2+ and poorly soluble Fe(aq)
3+ isotopically equilibrate within minutes with a large isotopic difference of 

Δ56FeFe2+ - Fe3+ = δ56FeFe2+ - δ
56FeFe3+ = -3 ‰ (Welch et al., 2003). The subsequent precipitation of Fe(aq)

3+ as Fe-
oxyhydroxide minerals causes a kinetic isotope fractionation in opposite direction, the magnitude being 
mainly dependent on the mineral species and temperature. For zero age ferrihydrite the isotopic difference 
is Δ56FeFe3+ - FeOOH= δ56FeFe3+ - δ

56FeFeOOH = +2 ‰ (Beard and Johnson, 2004; Johnson et al., 2008). Altogether 
the oxidation and precipitation of Fe3+ minerals cause the relative depletion of heavy Fe isotopes in the 
remaining Fe(aq)

2+ reservoir. The separation of anoxic Fe(aq)
2+-rich deep waters and an oxic surface layer, 

where Fe(aq)
2+ is oxidized therefore causes large isotopic gradients along the chemocline (Busigny et al., 

2014). The Fe isotopic composition of sediments along this chemocline thus potentially records an ancient 
local oxygen oasis.

The Fe isotopic composition of the Koegas Subgroup sediments shows distinct trends along the 
stratigraphic column (Fig. 1C). During the Doradale Formation and the Rooinekke Formation δ56Fe values 
remain below -0.75 ‰ and down to -1.82 ‰ (Interval 1; GTF01 + GEC01 250–195 m). Up in stratigraphy, we 
observe a sharp increase in δ56Fe values at the base of the Nelani Formation (Klipput-Member, Interval 2; 
GEC01 195–160 m) followed by a continuous and smooth decrease in the course of the Nelani Formation 
(Interval 3 GEC 160-50 m; Fig. 1C). Low δ56Fe values during the IF dominated interval 1 are accompanied 
by relatively high Mn concentrations as well as low Fe/Mn ratios. The continuous sharp increase during 
interval 2 reflects a change in lithology from pure iron formations towards alternations of shaly sediments 
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Table 2: Fe and M
o isotopic com

position
replicates

Form
ation

Drillcore/
Depth

Lithology
δ

56/54Fe
2σ

δ
57/54Fe

2σ
δ

58/54Fe
2σ

δ
57/56Fe

2σ
M

o
δ

98M
o

M
o

δ
98M

o
M

o 
 

Depth
(‰

)
(‰

)
(‰

)
(‰

)
µg/g

(‰
)

µg/g
(‰

)
µg/g

N
elani

G
EC 53.2

53.2
sid

0.50
-0.93

0.08
-1.36

0.11
-1.94

0.42
-0.43

0.03
0.24

0.48
0.20

0.48
0.21

 
G

EC 65.9
65.9

sid (gr IF)
0.46

-1.11
0.03

-1.64
0.05

-1.73
0.37

-0.53
0.05

0.16
0.46

0.16
G

EC 82.2
82.2

sid-sil
1.11

-0.93
0.03

-1.37
0.08

-1.89
0.02

-0.44
0.05

0.24
0.96

0.27
1.09

0.24
G

EC 82.8
82.8

sil-sid
0.85

-0.49
0.03

-0.74
0.08

-1.16
0.13

-0.25
0.05

0.63
0.91

0.59
0.82

0.63
G

EC 84
84

sid-sil
1.04

-0.16
0.03

-0.27
0.06

-0.24
0.44

-0.12
0.06

0.45
1.03

0.46
1.02

0.45
G

EC 87.5
87.5

m
ag sid-sil

0.75
-0.55

0.03
-0.81

0.07
-0.98

0.39
-0.27

0.06
0.28

0.77
0.30

0.73
0.28

G
EC 118

118
sid (som

e rieb)
0.52

-0.60
0.03

-0.90
0.09

-1.09
0.13

-0.29
0.06

0.16
0.52

0.16
G

EC 120
120

0.44
-1.34

0.01
-1.97

0.01
-2.56

0.03
-0.63

0.00
0.09

0.44
0.09

G
EC 122.5

122.5
sid

0.71
0.18

0.02
0.25

0.00
0.32

0.08
0.07

0.02
0.15

0.71
0.15

G
EC 126.5

126.5
sid (m

inor sil)
0.67

-0.26
0.03

-0.38
0.12

-0.38
0.08

-0.12
0.08

0.13
0.67

0.13
G

EC 135.5
135.5

sid (m
inor rieb)

0.86
-0.09

0.04
-0.09

0.04
-0.22

0.11
0.00

0.00
0.15

0.86
0.15

G
EC 140

140
sid (m

inor sil)
0.66

0.04
0.04

0.06
0.06

0.09
0.30

0.02
0.01

0.22
0.66

0.22
G

EC 144.3
144.3

sil
1.05

0.41
0.04

0.57
0.03

0.78
0.07

0.16
0.01

0.24
1.03

0.23
1.03

0.24
G

EC 164.5
164.5

sil
0.55

-0.09
0.02

-0.14
0.00

-0.02
0.01

-0.05
0.02

0.60
0.53

0.66
0.52

0.60
G

EC 172.5
172.5

sid-sil
0.49

0.06
0.03

0.09
0.06

0.16
0.29

0.03
0.04

0.71
0.50

0.85
0.47

0.71
 

G
EC 181.1

181.1
sid-sil

0.43
-0.48

0.01
-0.71

0.05
-0.47

0.23
-0.23

0.06
0.07

0.43
0.07

 
Rooinekke

G
EC 202.5

202.5
sid-sil

0.15
-1.82

0.00
-2.67

0.03
-3.52

0.21
-0.86

0.03
0.09

0.45
0.09

 
 

G
EC 209.4

209.4
sil

0.32
-1.26

0.02
-1.89

0.04
-2.23

0.29
-0.63

0.05
0.17

0.32
0.17

0.29
0.17

G
EC 231.7

231.7
sid-sil

-0.01
-1.27

0.03
-1.88

0.03
-2.33

0.02
-0.61

0.00
0.50

-0.01
0.50

G
EC 257

257
sil sid and rieb

0.11
-1.21

0.03
-1.80

0.04
-2.31

0.19
-0.59

0.01
0.53

0.11
0.53

0.09
0.52

G
EC 259

259
sid-sil

0.32
-1.30

0.00
-1.92

0.01
-2.52

0.03
-0.62

0.01
0.17

0.32
0.16

 
 

 
G

EC 284.7
284.7

sid-sil
0.36

-1.09
0.02

-1.63
0.10

-2.21
0.01

-0.54
0.08

0.40
0.36

0.41
0.34

0.40
Doradale 

G
TF-248.5

248.5
sid-sil

0.51
-1.19

0.02
-1.77

0.03
-2.24

0.25
-0.58

0.05
0.22

0.48
0.22

0.49
0.22

 
G

TF-251.5
251.5

sid-sil
0.88

-0.79
0.01

-1.18
0.02

-1.47
0.23

-0.39
0.03

0.52
0.88

0.52
G

TF-257.3
257.3

sid-sil
0.46

-1.23
0.00

-1.83
0.01

-2.23
0.00

-0.60
0.01

0.73
0.46

0.73
G

TF-263.4
263.4

sil-sid
0.46

-1.07
0.10

-1.58
0.13

-1.78
0.07

-0.51
0.03

0.39
0.46

0.39
G

TF-266.8
266.8

sil-sid
0.66

-0.94
0.03

-1.34
0.08

-1.46
0.33

-0.40
0.06

0.29
0.68

0.27
0.64

0.28
G

TF-269.2
269.2

sid-sil
0.64

-1.05
0.01

-1.55
0.02

-1.73
0.02

-0.51
0.03

0.31
0.51

0.21
0.62

0.31
G

TF-278
278

sil-sid
0.32

-0.75
0.00

-1.14
0.02

-1.95
1.00

-0.39
0.01

0.95
0.36

0.96
0.30

0.95
G

TF 278.8
278.8

sil-sid
0.28

-0.89
0.03

-1.34
0.01

-1.75
0.02

-0.45
0.03

0.28
0.25

0.29
0.26

0.28
sil: Fe-silicate; sid: siderite; rieb: riebeckite; m

ag: m
agnetite; gr IF: granular iron form

ation
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and silicate lutites. This change is also depicted by higher Al concentrations and near crustal δ56Fe values in 
this interval (Beard et al., 2003; Poitrasson, 2006) (Fig. 1C). The IF dominated succession between 150 and 
50 m shows low Al concentrations again. However, these IFs exhibit significantly lower Mn concentrations 
and higher Fe/Mn ratios compared to the lower IF section. All intervals together reflect a positive correlation 
of δ56Fe values with Fe/Mn ratios (Fig. 2A).

This positive correlation of δ56Fe values with Fe/Mn ratios suggests that Fe isotope fractionation 
was related to Mn oxide formation, an interrelation, which was also observed in Lac Pavin, a modern 
redox-stratified lake, which was claimed as a “Archean ocean analogue” (Busigny et al., 2014). Similar as 
Precambrian oxygen oases, Lac Pavin shows a well oxygenated upper surface layer divided from anoxic and 
ferruginous deep waters (Fig. 3). Along a Mn chemocline between these water bodies Mn2+ derived from 
anoxic deep waters is oxidized. Slightly below this chemocline, Fe2+ is oxidized either by the concomitant 
reduction of Mn oxides or by oxygen (Busigny et al., 2014; Hongve, 1997). Busigny et al. (2014) observed 
a sharp decline in δ56Fe values of dissolved Fe2+ along the Mn oxidation reaction zone. This relation is 
attributed to the oxidation of Fe2+ to Fe3+ probably by the reduction of Mn oxides and the concomitant 
enrichment of heavy Fe isotopes in precipitated Fe3+ minerals, which leaves behind a Fe(aq)

2+ reservoir with 
low δ56Fe values (Tsikos et al., 2010) (Fig. 3). 

Considering the mineralogy of GEC01 and GTF01 samples, Mn is exclusively bound in carbonate phases, 
which implies the quantitative reduction of Mn oxides within the water column and/or the sediment 
(Johnson et al., 2013b). The enrichment of Mn in carbonates during diagenesis is a question of Mn 
availability within the sediments, which in turn largely depends on the flux of Mn oxides to the sediment. 
The deeper the ferruginous water column, the more efficient is the reduction and re-dissolution of Mn 
oxides within the water column (Tsikos et al., 2010). This hinders the precipitation of Mn oxides in the 
deeper parts of the anoxic basin. Relative enrichment of Mn in carbonates of GEC01 and GTF01 samples is 
therefore expected in sediments directly beneath the chemocline, and along the water depth region with 
low δ56Fe values in dissolved Fe2+ (Fig. 3). We suggest that this association causes the most negative δ56Fe 
values in sediments with high Mn concentrations and low Fe/Mn ratios (Fig. 2A). 

Importantly, the trends in the δ56Fe value of dissolved Fe2+, observed along the chemocline by Busigny 
et al. (2014), are not preserved in the associated bulk rocks of the lake. One reason could be that bulk rock 
Fe isotope measurements from Lac Pavin were masked by detrital Fe. Most negative δ56FeFe2+ values in 
Lac Pavin were measured in water samples with very low Fe(aq)

2+  concentration. Mass balance constraints 
therefore indicate that their impact on the sedimentary δ56Fe value might be relatively low. In contrast, 
the near absence of detrital components in the chemical sediments from intervals 1 and 3 might allow 
the better preservation of water column isotope signals. Additionally, we suggest that the surface waters 
of the Griqualand West Basin were lower concentrated in O2 compared to Lac Pavin. This would have 
lowered Mn(aq)

2+ and Fe(aq)
2+ oxidation rates, because their half-life mainly depends on pH and the oxygen 

concentration in seawater (Field and Sherrell, 2000). Lower Mn(aq)
2+ and Fe(aq)

2+ oxidation rates in turn could 
have developed a rather smooth Mn chemocline with more smoothly declining Fe(aq)

2+ concentrations 
and δ56Fe values. If the chemocline extended over several and maybe tens of meters, the development 
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of higher concentrated Fe(aq)
2+  with low δ56Fe values might more significantly contribute to the low bulk 

sedimentary δ56Fe values.

The preservation of distinct and primary trends in our dataset might benefit from the missing of Fe 
sulfides in the IFs of the Koegas Subgroup (Nel, 2013), which strongly suggest that dissolved H2S was 
poorly available during the deposition of the Koegas Formation. This precludes iron isotope fractionations 
during pyrite formation. Johnson et al. (2013a) argue that siderite is unsuitable for the reconstruction of 
the redox structure of the water column, because of large Fe isotope fractionations during the (bacterial) 
dissimilatory iron reduction within the sediment. The differentiation between Fe isotope fractionations 
within the water column and within the sediment, respectively, are therefore extremely difficult (Johnson 
et al., 2013a). However, the appearance of Fe oxides in our samples is subordinated compared to Fe 
carbonates and Fe silicates (Nel, 2013). This might indicate near quantitative reduction of primary Fe 
(oxy)hydroxides within the sediment, which would assure negligible net Fe isotope fractionations during 
dissimilatory iron reduction (DIR), and the preservation of primary seawater Fe isotope signals. 
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FIGURE 2: (A) The positive correlation of δ98Mo values and Fe/Mn ratios in 3.0 Ga old banded iron 
formations from the Sinqeni Formation, Pongola Supergroup, South Africa (red dots; Planavsky et al., 2014) 
is also observed in banded iron formations from the 2.4 Ga old Koegas Subgroup, Transvaal Supergroup, 
South Africa (although the spread is somewhat smaller). This trend was attributed to the preferential 
adsorption of isotopically light Mo onto Mn oxides in a well oxygenated near shore environments 
(Planavsky et al., 2014) B) Similarly, δ56Fe values show a positive correlation with Fe/Mn ratios. The 
oxidation of Fe2+  by Mn oxides and the precipitation of Fe oxyhydroxides with high δ56Fe causes low 
δ56FeFe2+ values in the uppermost water column (Busigny et al., 2014). As a consequence, relatively lower 
δ56Fe values in sediments below the most oxidized near surface environment are expected. Both trends 
thus reflect a redox stratified water column with anoxic deep waters and a well oxygenated surface layer.
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6. Molybdenum isotopes

In contrast to Fe, Mo is poorly reactive in oxic as well as in anoxic-ferruginous waters. In the modern 
predominantly oxic ocean dissolved molybdate (MoO4

2-) is therefore homogeneously distributed in 
concentration as well as in its isotopic composition with a residence time of around 440 ka (Miller et 
al., 2011). Only if free sulfide is available, molybdate transforms to particle reactive (oxy)thiomolybdates 
species (MoOxS4-x

2-), which are probably scavenged by sulfurized organic matter (Helz et al., 1996; Tribovillard 
et al., 2004). As mentioned above, the missing of Fe sulfides strongly suggest that dissolved H2S was 
poorly available during the deposition of the Koegas Formation. This argues against (oxy)thiomolybdate 
formation in our sediments. Large fractionations associated with this transformation (Tossell, 2005), as 
well as the efficient scavenging of (oxy)thiomolybdate by sulfurized organic matter (Tribovillard et al., 
2004) can therefore be excluded. 

The adsorption of molybdate onto Mn-oxides represents the probably most important Mo-sink in oxic 
marine settings (Bertine and Turekian, 1973; Scott and Lyons, 2012). This adsorption is associated with large 
equilibrium Mo isotopic fractionation, thereby preferentially adsorbing light Mo isotopes (Δ98Mosw-MnO2 = 
δ98Mosw - δ98MoMnO2 = 3 ‰) (Barling and Anbar, 2004). The formation of Mn oxides requires free oxygen 
and the catalyzing effect of Mn oxidizing bacteria (Diem and Stumm, 1984; Morgan, 2005; Tebo et al., 
2005), which are expected in most proximal, well oxygenated surface ocean areas during the Proterozoic. 

The δ98Mo values of our sample set follow similar trends as δ56Fe values, although the magnitude of 
variation is somewhat smaller (Fig. 1C). We observe relatively low δ98Mo values down to -0.01 ‰ during 
interval 1. The shaly succession of interval 2 shows δ98Mo values around 0.4 ‰, which is in the expected 
range of the detrital Mo isotopic composition (Voegelin et al., 2014). The uppermost interval 3 shows 
highest δ98Mo values up to 1.11 ‰. Like δ56Fe values, also δ98Mo values positively correlate with Fe/Mn 
ratios (Fig. 2B), a correlation, which was also observed in other 1.8 to 3.0 Ga old iron formations (Planavsky 
et al., 2014). Planavsky et al. (2014) suggested that low δ98Mo values reflect the local formation of Mn oxides 
and the subsequent preferential adsorption of isotopically light Mo. Accordingly, Mn enriched samples 
with low Fe/Mn ratios should show lowest δ98Mo values. Higher δ98Mo values in Mn-poor samples require 
an additional Mo source with relatively heavier Mo isotopic composition. In search for this additional Mo 
source, the more detailed consideration of the Mo burial pathway is necessary. As mentioned above, Mn 
oxides were quantitatively reduced within the sediment (Johnson et al., 2013b), which also causes the re-
liberation of adsorbed Mo (Scott and Lyons, 2012). We suggest that the pore water molybdate reservoir 
is recharged by this dissolution of Mn oxides (low δ98Mo) as well as the diffusional transport of seawater 
molybdate (high δ98Mo) into the sediment. The higher the flux of Mn oxides to the sediments, the more 
relevant is the isotopically light component of adsorbed Mo for the pore water molybdate reservoir.

The exact burial pathway of pore water molybdate into the sediment remains difficult to reconstruct. 
We observe no correlation of Mo and Mn concentrations (Fig. 4), which might indicate the decoupling of 
burial pathways. Mn is exclusively incorporated into carbonates (Johnson et al., 2013b), whereas Mo might 
also adsorb onto organic compounds. The Mo isotope data seems more robust against this decoupling, 
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possibly because of low Mo isotope fractionations during Mo adsorption onto organic matter (Kowalski et 
al., 2013).

The local formation of Mn oxides within the water column of the Griqualand West Basin is consistent 
with our Fe isotope results as well as mineralogical observations (Johnson et al., 2013b). The positive 
correlation of δ98Mo values and Fe/Mn ratios in our sample set therefore confirms the interpretation of 
Planavsky et al. (2014). But the question arises, if the adsorption of isotopically light Mo has, like Fe, effects 
of the Mo isotopic composition of the remaining seawater Mo reservoir. Assuming a similar depletion of 
dissolved molybdate along the Mn chemocline due to efficient Mo drawdown by adsorption onto Mn 
oxides, we would expect strong enrichment of heavy Mo isotopes in this remaining reservoir. If so, high 
δ98Mo values should correlate with low Fe/Mn ratios and low δ56Fe values, which is not the case. This 
indicates that the removal of Mo by adsorption onto Mn oxides has negligible effects on the concentration 
and the isotopic composition of the local seawater molybdate reservoir (Fig. 3). It rather suggests an at 
least regionally homogeneous seawater Mo isotopic composition and a significant Mo seawater reservoir 
in the oxic surface layer and beyond the deeper ferruginous ocean (Fig. 3). It remains however unclear, if 
the seawater Mo reservoir was already homogeneous on a global scale. 
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FIGURE 3: The modelled environment during BIF depoisition of the Koegas subgroup in comparism 
to Lac Pavin, an „Archean ocean analogue“ (Busigny et al., 2014). A chemocline devides anoxic deep 
waters from a well oxygenated surface layer. The oxidation of Fe2+ and Mn2+ and the precipitation 
of Fe and Mn oxides, respectively (black straight arrows), cause strong concentration gradients 
near the oxic surface layer. The gradient is particularly sharp and slightly shallower for Mn2+, which 
might indicate that Fe2+ is oxidized in deeper regions by sinking Mn oxides formed above (Busigny et 
al., 2014).  As a consequence of this oxidation reaction, the δ56Fe values of remaining Fe2+ strongly 
decrease at the Mn chemocline. Applied to the Koegas environment, the deposition of Fe oxides 
formed in shallower settings should show relatively lower δ56Fe values. In respective settings 
the flux of Mn oxides is higher, which causes higher Mn2+ concentrations in the porewater (and 
carbonates). Bulk sediments, thus, show relatively low Fe/Mn ratios. The preferential adsorption of 
isotopically light Mo onto these Mn oxides will cause lower δ98Mo values in sediments from most 
proximal settings (Planavsky et al., 2014), where the Mn oxide flux is highest. In more distal setting 
the diffusional transport of seawater Mo with higher δ98Mo may be the predominant Mo source.
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7. Summary and Implications for the pre-GOE environment

Our data strongly indicates a stratified water column in the Griqualand West Basin shortly before the 
GOE around 2.48 Ga ago. We find no evidence for a euxinic water body at intermediate depth. Our data 
rather suggest the continuous development of a chemocline between oxic surface waters and ferruginous 
deep waters. IFs of the Koegas Subgroup were deposited close to this chemocline in relatively shallow 
water environments. The development of the chemocline with depth was rather smooth, probably 
because of significantly lower oxygen concentrations in the oxic surface layer compared to modern lake 
equivalents. The precise quantification of oxygen concentrations in the surface water layer by our data 
seems, however, impossible. 

The local burial pathways of Fe and Mo within such an oxygen oasis are different but both related 
to the formation of Mn oxides along the redox boundary. The removal of isotopically light Mo during 
adsorption onto Mn oxides has negligible effects on the seawater δ98Mo value, because of reservoir 
effects discussed above. In contrast the more efficient removal of Fe during oxidation along the Mn redox-
cline cause a local shift in the δ56Fe value of the local water column like in modern redox stratified lakes. 
Therefore, Mo isotopes have the general potential to trace regional or even global redox changes, whereas 
Fe isotopes are more dependent on local fractionation processes. However, the possibility of large Mo 
isotope fractionations during adsorption onto Mn oxides in the discussed Griqualand West Basin make IF 
sediments an inadequate sedimentary deposit to reconstruct the seawater Mo isotopic composition and 

FIGURE 4: (A) Compilation of Mo and Al concentration data, which shows no correlation. 
This indicates that Mo enrichment is not associated with the supply of detrital material.  
(B) Similarly, there is no correlation between Mo and Mn concentrations. Despite the 
linked flux of Mn oxides and adsorbed molybdate to the sediments, the final burial of 
Mo and Mn after dissolution of Mn oxides within the sediment might be decoupled.
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its variation with time (in contrast to black shales). For the use of Fe isotopes, in contrast, the negligible 
dilution with detrital material and the near missing of Fe bound in oxides and sulfides may allow the 
preservation of local seawater Fe isotope fluctuations in the here studied IF sediments.

If δ56Fe values, δ98Mo values and Fe/Mn ratios depend on the closeness to the oxic-anoxic redox 
boundary, their temporal variation is a consequence of sea level fluctuations. Relatively high δ56Fe values, 
high δ98Mo values and high Fe/Mn ratios reflect a high stand of sea level. Consistent with this hypothesis, 
a transgressive event at the base of the Nelani Formation (Beukes, 1983) coincides with an increase in 
δ98Mo values, δ56Fe values and Fe/Mn ratios. The subsequent regression during the Nelani Formation is 
accompanied by decreasing δ56Fe values and Fe/Mn ratios. The δ56Fe values during transgressive periods 
might constrain the Fe isotopic composition of the ancient ferruginous deep ocean. Considering highest 
δ56Fe values along the flooding surface of the Nelani Formation, the deep water Fe isotopic composition 
might have been close to the average continental crust δ56Fe value around 0 ‰.
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CHAPTER III

Coupled sulfur, iron and molybdenum isotope data from black 
shales of the Teplá-Barrandian unit argue against deep ocean 
oxygenation during the Ediacaran

1. Abstract

The Earth’s atmosphere and hydrosphere changed from an Archean anoxic to a modern oxygenated 
world in two major steps, the Paleoproterozoic Great Oxidation Event (2.4-2.3 billion years ago) and the 
Neoproterozoic Oxidation Event (0.8 to 0.5 billion years ago). Both events had a strong influence on the 
availability of redox sensitive and bio-essential metals within the ocean and are, thus, strongly linked to 
fundamental biological innovations and diversification. Biological diversification during the Precambrian-
Cambrian transition between 555 and 540 million years ago may have been driven by ocean-atmosphere 
oxygenation. The exact timing and the extent of (deep) ocean oxygenation within this time period remains 
unresolved though. 

Here we present major and trace element compositions as well as Mo, S and Fe isotopic data of organic-
rich black shales from the Teplá-Barrandian unit, Czech Republic. New in situ zircon U-Pb ages provide 
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a maximum depositional age of 559.8 ± 3.8 million years. Black shales with strong metal enrichment 
show low δ��Fe values due to the dominance of authigenic pyrite-Fe with δ��Fe values around -0.6 ‰ 
over detrital Fe with δ��Fe values around 0.1 ‰. Samples with lower authigenic metal enrichment show 
relatively low Mo/TOC ratios and increasing δ��S values, which is interpreted to reflect basinal restriction 
and longer seawater renewal times. In analogy to the modern Black Sea, the accompanied depletion of 
basinal Moaq due to near quantitative Mo removal might have led to the preservation of the seawater 
δ��Mo in the respective black shales. Our best estimate for this seawater Mo isotopic composition <560 
million years ago is +1.2 ‰ in δ��Mo, which is nearly identical to seawater δ��Mo values inferred from Mid-
Proterozoic black shales. The lack of higher δ��Mo values in black shales (and seawater) argues against 
contemporaneous Mn oxide formation in well oxygenated deep sea settings, which would preferentially 
adsorb isotopically light Mo leaving behind an isotopically heavy ocean. By contrast, the deep ocean might 
have remained ferruginous with the hydrothermal Fe still outbalancing surficial oxygen production. Our 
results therefore contribute to a growing data set, which suggests limited deep water oxygenation during 
major biological innovations in the late Ediacaran period. 

 

2. Introduction

After the so-called boring billion between 1.8 and 0.8 billion years ago (Ga), an exciting period with 
major biologic innovations, tectonic and climatic modifications as well as environmental changes followed 
during late Neoproterozoic times between 0.8 and 0.54 Ga (Och and Shields-Zhou, 2012). The break-up of 
the supercontinent Rodinia between 825 Ma and 720 Ma (Hoffman, 1991; Li et al., 2008) was accompanied 
by continental drift from high towards equatorial latitudes (Hoffman et al., 1998). Glacial deposits on 
these low latitude continents suggest two global glaciation events, the Sturtian glaciation from 740 to 
647 Ma and the Marinoan glaciation from 660 to 635 Ma (Hoffman et al., 1998; Kennedy et al., 1998). 
Contemporaneously, first Metazoan fossils indicate the evolution of multi-cellular life during this Cryogenian 
period (850 to 635 Ma) (Love et al., 2009; Yin et al., 2007). At the end of the subsequent Ediacaran period 
(635 to 541 Ma) the development of mobility and bioturbation around 555 Ma (Martin et al., 2000), of 
biological calcification around 550 Ma (Grotzinger et al., 2000) and predation around 549 Ma (Bengtson 
and Zhao, 1992) led to rapid biological diversification within the Ediacaran period. These major biologic 
inventions might have benefited from the amalgamation of the supercontinent Gondwana between 650 
and 515 Ma, which led to high rates of tectonic uplift and an elevated erosion-related nutrient discharge 
(Kennedy et al., 2006). Higher sedimentation rates along with enhanced primary production increased the 
burial of organic matter and, therefore, represented a net source of free oxygen for the ocean-atmosphere 
system (Campbell and Squire, 2010; Kaufman et al., 1997). Several geochemical proxies such as C and S 
isotopes (Fike et al., 2006), Fe speciation data (Canfield et al., 2007), Mo isotopes (Kendall et al., 2015) and 
enrichments of redox sensitive trace metals such as V, Cr and Mo (Frei et al., 2009; Sahoo et al., 2012; Scott 
et al., 2008) confirm an increase in oxygen levels at the end of the Neoproterozoic era during the so-called 
Neoproterozoic Oxygenation Event (Och and Shields-Zhou, 2012). 
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A causal link between tectonic, biologic and environmental changes seems to manifest in the 
Neoproterozoic era, but the primery trigger remains elusive. Mills and Canfield (2014) highlight the need 
to distinguish between the first eukaryote evolution in the Cryogenian period (850 to 635 Ma) and its 
subsequent diversification during Ediacaran (Ediacaran Fauna from 585 to 541 Ma) and Cambrian times. 
Eukaryote evolution clearly preceded environmental oxygenation, whereas the later diversification seems 
more closely related to it. Some authors consider higher p(O�) a necessary precondition, because the 
evolution of large animals requires more significant amounts of oxygen (Berner et al., 2003; Falkowski 
et al., 2005; Knoll and Carroll, 1999). By contrast, Butterfield (2009) argues that biologic innovations 
proceeded independently from external features like the increase in atmospheric oxygen concentration. 
These authors favor the development of a well-mixed clear water system generated by suspension feeding 
eukaryotes, which enabled the evolution of larger animals in light-flooded surface ocean areas. Larger and 
faster sinking fecal pellets then enhanced the burial of organic matter and enabled oxygen enrichment in 
the ocean-atmosphere system. Both theories give, however, little explanation for diversification. Other 
ecological innovations such as predation might have increased selection pressure promoting further 
morphological innovations (Bengtson, 2002). However, arguments always steer towards the rise of 
atmospheric oxygen when considering that carnivores prefer high oxygen environments (Sperling et al., 
2013). This again highlights the close relationship of oxygen concentrations in the oceans and animal 
diversification and the consequential challenge to resolve the triggering mechanisms (intrinsic vs. extrinsic) 
for the Ediacaran Fauna and the Cambrian “explosion of life”.

Mills and Canfield (2014) pointed out that a more detailed understanding of temporal and spatial 
changes of oxygen concentrations in the ocean-atmosphere system is one key question that needs to be 
better resolved. Mo isotopes represent a well-established proxy to reconstruct the oceanic redox-state 
(Arnold et al., 2004; Asael et al., 2013; Kendall et al., 2011; Kendall et al., 2015; Kendall et al., 2010; Neubert 
et al., 2008). The Mo input is considered to be temporally invariable with δ��Mo values close to average 
continental crust (~0.4 ‰) (Greber et al., 2014; Voegelin et al., 2014) and the modern weathering input 
(~0.7 ‰ (Archer and Vance, 2008)). The predominant Mo species dissolved in well oxygenated seawater, 
the tetrahedrally coordinated molybdate (MoO�

�-), is relatively unreactive and globally homogeneous with 
a mean ocean residence time of 440 to 750 ka (Miller et al., 2011; Morford and Emerson, 1999). Today, the 
main Mo sink in oxic marine settings is molybdate adsorption onto Mn oxides in the deep ocean. Thereby, 
the formation of octahedrally coordinated inner-sphere complexes causes the preferential adsorption of 
isotopically light Mo and a large isotopic difference of Δ��MoMn-oxides-seawater = δ��MoMn-oxides- δ

��Moseawater = -3 ‰ 
(‚closed system‘ equilibrium exchange process; Barling and Anbar, 2004; Kashiwabara et al., 2011). In sulfidic 
environments the oxygen in molybdate molecules substitutes with sulfur and forms oxythiomolybdates 
(MoOxS�-x

�-; x = 0-4). This species change is also accompanied with isotopic fractionation, enriching the more 
sulfurized species in the light Mo isotopes (Tossell, 2005). The sulfurization is mainly dependent on the 
concentration of free H�Saq. At H�Saq above 11 µmol L-�, thiomolybdate (MoS�

�-) becomes the predominant 
species, which is very particle reactive and readily removed from solution either by adsorption onto 
sulfurized organic matter (Helz et al., 1996; Tribovillard et al., 2004) or by authigenic precipitation of Mo-
Fe-S minerals (Helz et al., 2011). The nearly quantitative removal ensures the preservation of the seawater 
Mo isotopic signature in restricted sulfidic settings, i.e. black shales (Arnold et al., 2004; Neubert et al., 
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2008). However, at lower H�Saq concentrations in weakly euxinic settings the formation and removal of 
thiomolybdate is incomplete and causes enrichment of light Mo isotopes in the respective sediments 
(Nägler et al., 2011; Poulson Brucker et al., 2009; Poulson et al., 2006; Siebert et al., 2006). Today, Mn 
crusts and weakly euxinic sediments represent the predominant sinks of isotopically light Mo, leaving 
behind a modern seawater molybdate reservoir that is strongly enriched in the heavy isotopes with a 
globally homogeneous δ��Mo of 2.3 ‰ relative to NIST3134 (set to 0.25 ‰) (Archer and Vance, 2008; 
Barling et al., 2001; Siebert et al., 2003). In theory and despite Mo-isotope fractionation during incomplete 
thiomolybdate formation in weakly euxinic settings, the absence of Mn crusts in pelagic deep-sea settings 
and the concomitant lack of large Mo-isotope fractionations during Mo adsorption onto these Mn oxides 
would cause considerably lower seawater δ��Mo values in Precambrian times. The oxygenation of the 
deep ocean during the Neoproterozoic Oxygenation Event should then be accompanied by a shift towards 
higher seawater δ��Mo values, which would be preserved in contemporaneous sediments from restricted 
sulfidic settings (black shales).

Here, we provide new geochemical data (S-, Fe- and Mo-isotopes, main element concentrations) of 
metal-rich black shales from the Teplá-Barrandian unit (Czech Republic), which were deposited in an arc 
setting, likely influenced by hydrothermal activity. The combination of element ratios such as Mo/TOC and 
Fe/Al and the isotopic compositions of sulfur, iron and molybdenum allow the detailed reconstruction of 
the local depositional setting and the distinction of the different sources of S, Fe and Mo (hydrothermal vs. 
seawater vs. detrital) as well as their respective isotopic composition. This in turn provides a unique view 
on the marine environmental conditions that prevailed during late Neoproterozoic times. New U-Pb zircon 
age constraints allow the placement of our geochemical dataset in the stratigraphic context. 

3. Geological background

The Teplá-Barrandian unit in the Center of the Bohemian Massif consists of a Neoproterozoic to 
earliest Cambrian basement that formed during Cadomian subduction and accretion processes at the NW-
African periphery of Gondwana (e.g., Zulauf et al., 1999, and references therein). The overlying Cambrian 
to Mid-Devonian volcano-sedimentary successions indicate rifting, a passive margin stage, and incipient 
Variscan docking processes that preceded Variscan continental collision between Laurussia and Gondwana 
(e.g., Drost 2008 and references therein). Despite the Variscan overprint, the Cadomian basement of the 
Teplá-Barrandian unit is well preserved and consists of the Blovice accretionary complex in the NW, which 
formed during S-directed subduction beneath a magmatic arc or active continental margin in the SE (Fig. 
1). According to the present understanding the sedimentary and volcanic rocks preserved in the Blovice 
complex were deposited in an intra-oceanic back-arc basin the closure of which led to the formation of 
the accretionary wedge and to arc magmatism in the SE (Drost et al., 2011; Hajná et al., 2014; Pin and 
Waldhausrová, 2007).
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The accretionary wedge is composed of several fault-bounded coherent belts alternating with belts 
of mélanges (Hajná et al., 2014). The coherent belts consist of rhythmical alternations of graywackes, 
mudstones and shales, while the mélange belts display a block-in-matrix architecture and contain chiefly 
mafic volcanics derived from a depleted or enriched mantle source, respectively, as well as black shales, 
cherts and rare carbonates in graywacke and shale matrix.

The timing of the onset of the subduction processes is not well constrained. An imprecise whole-
rock Sm-Nd isochron age for back-arc mid ocean ridge basalts within the Blovice accretionary complex 
indicates growth of the intra-oceanic back-arc basin at 605 ± 39 Ma (95 % conf.; Pin and Waldhausrová, 
2007). Consumption of the intra-oceanic back arc basin by subduction may have started at ~620 Ma (age 
of trondjemite pebbles; Sláma et al. 2008a). Subduction beneath the magmatic arc/active continental 
margin in the SE appears to last until around the Precambrian-Cambrian boundary. This is indicated by 
~540 Ma amphibolites with MORB signature in the Mariánské Lázně complex, which are thought to 
represent remnants of the subducting plate and must have formed before the termination of subduction 
(Timmermann et al., 2006; Timmermann et al., 2004). An age close to the Precambrian-Cambrian transition 
(541 Ma) for the termination of subduction is also in agreement with a recent study of Hajná et al. (2013), 
which provides evidence that mélange forming processes lasted until early Cambrian times.

4. Sample material

All samples are from two drill cores (HRM-3 and KA-5) in the northeast of Pilsen, Czech Republic (Fig. 
1). Borehole HRM-3 (~300 m deep) was drilled NW of the village Hromnice and comprises black shale 
layers with a thickness of several tens of meters intercalated by layers of mafic volcanogenic products 
(Fig. 2a). Borehole KA-5 (~100 m deep) was drilled E of the village Kamenec and encountered a sequence 
of submarine metabasalts alternating with fine layers and lenses of black shales (Fig. 2b). Both drill cores 
are located in the Cadomian basement of the Teplá-Barrandian unit, namely in mélange belt 2 (sensu 
Hajná et al., 2014) of the Blovice accretionary complex. The rocks in this belt show a chaotic structure of 
several different lithologies such as terrigenous mass flows (graywackes), pillow (meta)basalts, deep water 
sediments (black shales) and rare carbonates pointing to a variety of depositional environments within 
the intra-oceanic back-arc basin. The black shale setting was described as a semi-isolated basin part with 
restricted seawater circulation and strong influence of submarine volcanic activity (Pašava et al., 1996). 
Large fluxes of metal-rich hydrothermal fluids created an area of high primary productivity and caused 
the enrichment of metals and organic matter in black shales (Pašava et al., 1993; Pašava et al., 1996). 
As large parts of the Blovice complex (including the sampling area) were only little affected by Variscan 
metamorphism (lower greenschist facies: chlorite facies in HRM-3 and prehnite-pumpellite facies in KA-5, 
respectively) syn- to early diagenetic mineral structures in the black shales from HRM-3 and KA-5 are still 
preserved (Pašava et al., 1996). 
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FIGURE 1 (A) Location of the Bohemian Massif. (B) Subdivision of the Bohemian Massif with the 
Teplá-Barrandian unit in its center (modified after Dallmeyer et al., 1995; Mazur et al., 2005). (C) 
Sketch map of the Teplá-Barrandian unit (modified after Kachlík in Linnemann et al., 2008; Hajná et 
al., 2014). Detrital zircon data from Drost et al. (2011) and Hajná et al. (2013). Sm-Nd date from Pin 
and Waldhausrová (2007). (D) Simplified geotectonic setting of the Teplá-Barrandian unit during Edi-
acaran times (after Zulauf et al., 1999; Drost et al., 2011; Hajná et al., 2014).
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Constraints on the depositional age of the deposits in mélange belt 2 come from a detrital zircon 
study of Hajná et al. (2013) (Fig. 1). This study found two prominent peaks in the age distribution at ~560 
and ~530 Ma, the latter representing the maximum age of mélange formation. However, the history of 
different lithologies in mélanges including their depositional age can differ significantly. The depositional 
age of organic-rich black shales within mélange belt 2 was previously thought to be distinctly older (635 ± 
45 Ma, 1σ,  whole rock Pb isochron, Pašava and Amov, 1993).

5. Methods

For the determination of major element concentrations glass beads of a homogenized mixture of 1.5 g 
dried and powdered sample material and �.� g lithium tetraborate were fused at �0�0 °C for �0 minutes. 
Glass beads were then analyzed by wavelength dispersive X-ray fluorescence (XRF) using a Bruker AXS 
Pioneer S4 at the University of Tuebingen. Thirty-two standardized samples define a calibration line, the 
average analytical error of which is element specific and generally lower than 0.25 % for major element 
oxides (e.g. 0.06 % for Fe�O�). The loss on ignition (LOI) was determined externally and calculated by 
weight loss after 60 minutes heating of 1g dried and pulverized sample material at 1050 °C.

Around 1 g of powdered sample material was ashed for 12 hours at 600 °C prior to chemical purification 
of Mo and Fe to destroy organic compounds. The ashed sample material (20-50 mg) was weighed in pre-
cleaned PFA beakers and dissolved using a mix of concentrated and distilled HF and HNO� at ��0 °C for �� 
hours. Upon drying down the solutions the samples were taken up in 6M HCl and re-dissolved in closed 
beakers at 130 °C for 48 hours. Visual inspection of this solution for residual solids was performed to 
ensure complete sample dissolution. Subsequently, aliquots were taken for further Mo and Fe purification, 
respectively.

An adequate amount of �00Mo-��Mo double spike was added to the samples to correct for any mass 
dependent isotope fractionation during the Mo purification procedure and Mo isotope measurements. The 
purification of Mo included anion exchange chromatographic methods (Dowex 1X8, 200-400 mesh) and 
cation exchange chromatographic methods (Dowex 50WX8 200-400 mesh), the latter assuring separation 
from Fe and other heavy metals. The Mo isotopic composition was measured on the ThermoFisher 
Scientific NeptunePlus multi-collector ICP-MS at the University of Tuebingen. To correct for background 
intensities we performed on-peak-zero (OPZ) measurements of the carrier solution (2% nitric acid) before 
and after each sample and standard measurement. Samples and standards were measured for 100 cycles 
each having an integration time of 8.4 s. Interferences of Ru (on ��Mo+, ��Mo+ and �00Mo+) as well as Zr (on 
��Mo+ and ��Mo+) were corrected for by simultaneous measurement of ��Ru+ and ��Zr+, respectively, and the 
use of published relative isotope abundance data (de Laeter et al., 2003) assuming an equal instrumental 
mass bias for Zr and Ru as determined for Mo. Isotopic data are reported in the δ-notation against NIST 
3134 (Goldberg et al., 2013; Greber et al., 2012): 
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Thereby, NIST3134 was set to 0.25 ‰ for better comparison with earlier published data (Nägler et 
al., 2014). Cross-calibration with an in-house Johnson Matthey ICP standard gave an isotopic difference 
of Δ��MoNIST3134-JM = 0.27 ± 0.02 ‰ (2SD; n = 5), which is consistent with results of Goldberg et al. (2013). 
The long-term 2SD standard deviation of δ��MoNIST3134 measurements is better than 0.09 ‰ (n = 40). Two 
geological in-house standards (ZH-2 and ZH-5), which ran through all purification steps during the course of 
this study showed δ��Mo values of 1.00 ‰ and 1.23 ‰, respectively, consistent with previously published 
estimates (Lehmann et al., 2007). The long-term reproducibility of ZH-2 and ZH-5 is 0.99 ± 0.09 ‰ (2SD; n 
= 16) and 1.24 ± 0.09 ‰ (2SD; n= 15), respectively.
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FIGURE 2: (A) Lithological composition and depth-resolved chemical parameters of the HRM-3 drill 
core. Between ~50 and ~150 m depth the rock record is dominated by volcanic products and also 
shows authigenic enrichments of S, Fe and Mo as well as low δ��Fe and low δ��S (red squares). Below 
and above, the lithology is dominated by several tens of meters of black shales that show significantly 
lower authigenic enrichments of S, Fe and Mo as well as higher δ��Fe and higher δ��S (black squares). 
Zircon U-Pb dating of a layer rich in volcanogenic detritus (250 m) provides a maximum depositional age 
of ~560 Ma. (B) Lithological and geochemical features of the KA-5 drill core (white circles). In contrast 
to borehole HRM-3, the entire lithology of KA-5 is dominated by metabasalts with intercalations of 
meter-thick black shale layers and lenses.
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Purification of Fe follows a method described in Schoenberg and von Blackenburg (2005). Thereby, the 
Fe fraction was separated using an anion exchange resin (AG1-X8, 100-200 mesh). Samples were dissolved 
in 0.3M HNO� and isotopic ratios were measured by Multi-collector ICP-MS (ThermoFisher Scientific 
NeptunePlus) at the University of Tuebingen using the standard-sample bracketing method (SSB) described 
in Schoenberg and von Blackenburg (2005) or by the ��Fe-��Fe double spike method described in Swanner 
et al. (2015), respectively. The high resolution mode allowed the resolution of polyatomic interferences 
such as �0Ar��O+ on ��Fe+ and �0Ar��N+ on ��Fe+ (Weyer and Schwieters, 2003). Isobaric interferences of ��Cr+ 
and ��Ni+ were corrected for by simultaneous measurements of ��Cr+ and �0Ni+, respectively, and the use 
of published relative isotope abundance data (de Laeter et al., 2003) assuming the same instrumental 
mass bias for Cr and Ni as determined for Fe. For SSB samples were measured for 20 cycles with an 
integration time of 8.4 s each cycle. Instrumental mass bias correction was approached using the scheme 
of Schoenberg and von Blanckenburg (2005). For the double-spike method an adequate amount of ��Fe-
��Fe double spike was added prior to Fe purification. We performed on-peak-zero (OPZ) measurements of 
the 0.3M nitric acid carrier solution before and after each sample and standard measurement to correct 
for background intensities. Samples were measured for 90 cycles with an integration time of 8.4 s each 
cycle. The correction of the instrumental mass bias was performed iteratively using a scheme described 
by Compston and Oversby (1969) with the assumption of an exponential fractionation law (Maréchal et 
al., 1999). Fe isotopic ratios are presented in the δ-notation relative to IRMM-014 (Institute of Reference 
Material and Measurements, Geel, Belgium): 

For SSB the δ��Fe of repeated measurements of our in-house standard HanFe during the course of this 
study was on average 0.28 ± 0.05 ‰ (2SD; n = 11), which agrees with the long-term reproducibility of 0.29 
± 0.05 ‰ (2SD; n = 145) and is also in excellent agreement with previously published values (Moeller et 
al., 2014). Every sample was measured twice, showing very good reproducibility (Table APPENDIX-III-1). 
For double-spike measurements the δ��Fe of the in-house standard HanFe was also 0.28 ± 0.04 ‰ (2SD, n 
= 5). The reference material IF-G, an iron formation from Isua, Greenland, that run through all purification 
steps together with our samples during the course of this study, showed a δ��Fe value of 0.63 ± 0.02 (2SE), 
which is consistent with literature values of 0.63 ± 0.02 (2σ) (Dauphas and Rouxel, 2006). 

Between 0.5 and 5 mg bulk rock sample material was used for sulfur isotope and sulfur concentration 
analyses. Both were measured with a NC 2500 elemental analyzer coupled to a Thermo Quest Delta*XL 
mass spectrometer at the University of Tuebingen. Samples were calibrated to the δ��S values of several 
in-house standards, such as the NBS 123 (δ��S = 17.10 ‰), the NBS 127 (δ��S = 20.31 ‰), the IAEA-S-1 
(δ��S = -0.30 ‰), and the IAEA-S-3 (δ��S = 21.70 ‰), relative to the Vienna Canyon Diablo Troilite (V-CDT). 
S-isotope ratios are presented in the δ-notation relative to V-CDT. The long-term reproducibility is ± 0.3 ‰ 
(2SD) for δ��S measurements and ± 5 % (2SD) for the sulfur concentration. 
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For U-Pb zircon dating heavy minerals were separated from the crushed rocks using heavy liquid 
(sodium polytungstate in water). Zircon crystals of all colors, shapes and sizes were hand-picked under 
the binocular microscope and set in epoxy mounts. After polishing and CL imaging with a LEO 1450 VP 
Scanning electron microscope (Oxford Instruments at the University of Tuebingen), the zircon mounts 
were sonicated in dilute HNO� to remove all surface contamination.

Zircon U-Pb dating was performed using a ThermoFisher Scientific iCAP Qc quadrupole ICP-MS and 
a Resonetics RESOlution M-50 eximer laser at the University of Tuebingen. Instrument settings and 
operating conditions are listed in Table APPENDIX-III-2. After 30 seconds of gas blank measurement, laser 
ablation data were collected for another 30 seconds. The data were processed offline in a spreadsheet-
based program. Data reduction included correction for gas blank as well as for time-dependent, laser-
induced and instrumental fractionation. Fractionation correction was done by bracketing the unknowns 
with GJ1 zircon standard (608 Ma, ~430 ppm U; Jackson et al., 2004) and applying the intercept method 
for the �0�Pb/���U ratio. Reported uncertainties were propagated by quadratic addition of the within run 
precision of each analysis and the external reproducibility of the GJ1 standard (<1 % for �0�Pb/�0�Pb and 
�0�Pb/���U, 1.5 to 4.9 % for �0�Pb/���Th due to low Th concentration in GJ1; 1σ) during the analytical session. 
A common Pb correction using the 204 method (Košler and Sylvester, 2003) was applied when necessary. 
Reference zircons 91500 (1065 Ma, 81 ppm U; Wiedenbeck et al. 1995) and Plešovice (337 Ma, ~800 
ppm U; Sláma et al. 2008b) were treated as unknowns and provided a quality control (Fig. APPENDIX-
III-2, Table APPENDIX-III-4). Age calculations and plots were obtained using Isoplot (Ludwig, 2012). The 
concordia ages given in Table APPENDIX-III-3 were calculated from the analyses with >0.15 probability of 
concordance (Isoplot function; Ludwig, 2012). Maximum sedimentation ages were calculated using the 
criteria and suggestions by Dickinson and Gehrels (2009). Kernel density estimations were constructed 
using Density Plotter (Vermeesch, 2012).

6. Results

6.1 Depositional age
To better constrain the depositional age of the studied black shales we analyzed detrital zircon from 

two samples (Fig. 3, Table-APPENDIX-III-3). One sample is from HRM-3 drill core and represents the depths 
interval 249.5 to 250.1 m, i.e. comes from the lower part of the section analyzed for stable metal isotopes 
(Fig. 2). The youngest detrital zircon ages form a peak at ~560 Ma corresponding to a maximum depositional 
age for the lower part of HRM-3 drill core of 559.5 ± 3.5Ma (weighted mean ± 2σ, n = 11 concordia ages, 
MSWD = 0.76). The second sample is from a surface outcrop next to HRM-3 drill site. The youngest peak in 
this greywacke sample is ~535 Ma corresponding to a distinctly younger maximum sedimentation age of 
534.8 ± 3.5 Ma (weighted mean ± 2σ, n = 11 concordia ages, MSWD = 0.50; Fig. 3, S1). 

Generally, the constituents of mélanges can have a different origin and different depositional ages. 
Therefore, the maximum sedimentation age of the black shales in HRM-3 might not be constrained by 
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the two samples. However, as one of the samples is from the lower part of the analyzed section and 
the second one from a surface outcrop above the drill core and both samples have similar peaks in the 
detrital zircon age distribution, i.e. the same provenance, we assume that the HRM-3 section represents 
a deformed but coherent stratigraphic interval rather than two (or more) tectonically juxtaposed rock 
assemblages of different origin. Thus, we consider the age of the HRM-3 black shales analyzed for stable 
metal isotopes to be younger than 559.5 ± 3.5 Ma. The upper part of the drill core may even be early 
Cambrian in age (<534.8 ± 3.5 Ma).
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FIGURE 3: Kernel density estimation plots (Vermeesch, 2012) of detrital zircon ages between 500 and 
700 Ma. The concordia ages of analyses with >0.15 probability of concordance were plotted. A) Gray-
wacke sample from above black shale sequence showing four major detrital zircon age peaks and an 
Early Cambrian maximum sedimentation age. (A-1) and (A-2) Weighted means of the concordia ages 
constituting the peaks at 535 Ma and 559 Ma. (B) and (B-1) A sample from HRM-3 drill core taken in 
the lower part of the black shale sequence (cf. Fig. 2) gives a maximum sedimentation age of 559.5 
± 3.5 Ma. The concurrence of the ~560 Ma peaks in both samples and the absence of the ~535 Ma 
peak in the older rock suggest that the lower part of the black shale sequence is younger than ~560 
Ma. Due to the early Cambrian maximum depositional age of the overlying graywackes the upper 
part of the section may even be early Cambrian in age.
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6.2 Geochemical composition
The black shales of both drill cores show large variations in transition metal concentrations such as V (35 

– 2020 ppm), Ni (14 – 1200 ppm), Cu (15 – 1044 ppm) or Zn (16 – 4170 ppm) (Table 1). The concentrations 
of these metals fluctuate intensely over the depth range of KA-5 but vary more continuously in the HRM-3 
drill core. HRM-3 black shales between 50 and 150 m, which are frequently intercalated by (meta-)tuffites, 
are significantly more enriched in trace metals compared to black shales from the depth region below 
and above (Table 1). Trace metal enriched samples are also more enriched in Fe but depleted in Al, thus 
showing remarkably high FeT/Al ratios (Fig, 2a). The black shales below and above show relatively lower 
FeT/Al ratios, reflecting the same range as sediments from the Black Sea, which is the largest modern 
anoxic ocean basin (Severmann et al., 2008).

The iron isotopic composition of pyritic black shales from both drill cores varies between -0.75 and 
+0.08 ‰ in δ��Fe (Fig. 2; Fig. APPENDIX-III-1; Table 1). HRM-3 black shales with lower metal enrichment 
(0-50 m and 150-270 m) show relatively higher δ��Fe values that are (similar as FeT/Al ratios) within the 
range of δ��Fe values from modern Black Sea sediments (Severmann et al., 2008). In contrast, black shales, 
which are more enriched in iron, sulfur and trace metals show lower δ��Fe values (Fig. 2a; Table 1, 2). A 
positive correlation between S (wt%) and FeT/Al ratios (R² = 0.85, excluding sample KA-5-13) is observed 
(Fig. 4a). Whole rock δ��S values vary between -25.1 and -4.4 ‰ with more negative values in sulfur-rich 

0

1

2

3

4

5

6

0 5 10 15 20

Fe
T/

Al

S (wt%)

A B
HRM-3 (0-50m; 150-270m)
KA-5

HRM-3 (50-150m)

δ3
4 S

(‰
)

magmatic sulfur

30

40

50

Neoproterozoic seawater δ34SSO4

basinal δ34S
SO4

∆34
S SO

4-
Fe

S2
 =

 5
5‰

∆34
S SO

4-
Fe

S2
 =

 5
5‰

-30

-25

-20

-15

-10

-5

0

0 5 10 15 20

S (wt%)

FIGURE 4: (A) Sulfur concentrations show a positive correlation with FeT/Al, which is attributed to 
authigenic pyrite enrichment. The latter is particularly pronounced in samples of the depth interval 
between 50 to 150 m in HRM-3 (red squares). (B) Sulfur concentration against δ��S values. All δ��S va-
lues are below the δ��S of magmatic sulfur and imply S-isotope fractionations during sulfate reduction 
(displayed as ∆��SSO4-FeS2). Samples with lower sulfur enrichment (and lower abundance of authigenic 
pyrite; e.g. black squares) show higher δ��S values. Increasing δ��S values are attributed to a repea-
tedly evolving basinal sulfate reservoir with increasing δ��S values due to the continuous precipitation 
of ��S depleted pyrite. 
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samples (Fig. 4b). Metal enriched samples of HRM-3 (50 to 150 m) also show strong sulfur enrichments 
and low δ��S values being in stark contrast to lower S concentrations and higher δ��S values in the depth 
region below and above. Most of the black shales from KA-5 plot in between, which results in a continuous 
negative trend (Fig. 4b). 

The chemical heterogeneity in our sample set is also depicted in variable Mo abundances ranging 
from 2 to 209 ppm (Fig. 2, Table 1). In comparison with modern euxinic settings our Mo and TOC data 
show similar concentration ranges as well as similar correlations of Mo and TOC (Fig. 5). Samples from 
KA-5 indicate a relatively steep slope of 49 (units 10-4; R² = 0.74), which is also observed in sediment 
samples of the weakly restricted Saanich Inlet, an anoxic silled basin along the uplifted convergent margin 
of Vancouver Island, Canada (Algeo and Lyons, 2006). In the drill core HRM-3, the ratios of Mo/TOC vary 
with core depth. Samples with overall high metal concentrations (between 50 and 150 m) show a slope 
of 35 (R² = 0.99, red squares), whereas samples below and above have a slope of 21 (R² = 0.95, black 
squares). The latter is slightly lower than that observed in sediment samples from the Cariaco Basin, an 
anoxic silled basin at the convergent margin of the Venezuelan continental shelf (Algeo and Lyons, 2006). 

The range in δ��Mo values is similar in both drill cores (Fig. 2) with a minimum value of +0.12 ‰ and a 
maximum value of +1.20 ‰. HRM-3 samples with lower Mo/TOC ratios tend to have higher δ��Mo (Table 
1). Along the drill core depth of HRM-3 we observe high δ��Mo values up to 1.1 ‰ at greater depth, a 
continuous decrease until metal-enriched samples from middle depth with constant δ��Mo values around 
0.7 ‰ and a subsequent re-increase towards higher values around 1.2 ‰ in the uppermost part of the 
drill core (Fig. 2).  
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7. Discussion

7.1 The local depositional environment
The concentration of aluminum serves as a good proxy for quantifying the terrigeneous input due to 

overall low aqueous solubility of Al. The ratio of FeT/Al in sediment samples is therefore a measure for 
authigenic Fe enrichment vs. detrital input. The positive correlation of FeT/Alratios and S concentration in 
our samples strongly suggests that authigenic Fe enrichment was linked to pyrite formation (Fig. 4a). This 
is confirmed by several petrological and mineralogical studies of the KA-5 and HRM-3 drillcores, which 
pointed out that other authigenic Fe phases are limited to secondary quartz carbonate veinlets (e.g. siderite) 
or are completely absent (e.g. Fe oxides) (Pašava et al., 1993; Pašava et al., 1996). The predominance of 
authigenic Fe sulfide minerals and the concomitant lack of Fe carbonates and Fe oxides in primary black 
shale layers suggest a high degree of pyritization (DOP), although there is no Fe speciation data available 
to further confirm this hypothesis. This would indicate that the local depositional environment was euxinic 
(Raiswell et al., 1994). 

In euxinic settings molybdenum forms particle reactive thiomolybdate species, which are efficiently 
trapped by sulfur-rich organic matter (Tribovillard et al., 2004). Accordingly, Mo is particularly enriched 
in the organic-sulfur-rich matrix of the samples (Pašava et al., 1993). Significant correlations of Mo with 
TOC are consistent with this observation (Fig. 5) and can be attributed to variable water renewal times as 
shown by Algeo and Lyons (2006). These authors demonstrate that flat Mo/TOC slopes are controlled by 
limitation of Moaq in more restricted euxinic basins. Mo and TOC concentrations of samples from the KA-5 
drill core define a steep slope, which is similar to data from the modern Saanich Inlet. This modern analogue 
is a relatively well mixed anoxic silled basin with short water renewal times (Algeo and Lyons, 2006). In the 
HRM-3 drill core, the slope of Mo vs. TOC changes with core depth. High Mo/TOC ratios in samples from 
trace metal enriched core depth between 50 and 150 m indicate higher bottom water Mo concentrations 
in a more ventilated depositional setting with better access to the open ocean. In contrast, low Mo/TOC 
ratios of samples from deeper and higher sections of HRM-3 drill core are consistent with lower Moaq 
concentrations in the contemporaneous seawater and, thus, point to deposition in a temporarily more 
restricted basin. In principle, such temporal restriction could result from changes in the ocean circulation 
pattern and/or water column stratification with sporadic venting like in the Gotland deep of the Baltic 
Sea or the Saanich Inlet, Canada. Alternatively, physical changes in the sedimentary environment due to 
contemporary tectonic activity or temporal changes in the chemocline depth may have led to variations in 
ventilation and water exchange. A probable major difference of the Kamenec and Hromnice depositional 
settings compared to modern settings was the significantly higher H�Saq concentration, as indicated by the 
generally high abundance of authigenic pyrite.

The relative depletion of other metals such as Fe, Ni, Cu or Zn in HRM-3 samples with low Mo/TOC 
might similarly result from restricted supply during times of low water renewal rates. Low authigenic 
enrichments of these metals correlate with low sulfur concentrations. The relative depletion of sulfur 
in the uppermost and lowermost part of HRM-3 is accompanied by higher δ��S values (Fig. 4b). These 
relatively high δ��S values are still lower than the isotopic composition of modern mantle sulfur, which 
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shows homogeneous δ��S values between 0 and 4 ‰ (Seal, 2006). Negative δ��S values require fractionation 
processes during sulfate reduction, during which the light ��S is enriched in the sulfide phase. Considering 
the S isotopic composition of contemporaneous seawater sulfate during late Neoproterozoic times with 
δ��S values around 30 ‰ (Hurtgen et al., 2002; Strauss, 1993), the isotopic difference Δ��Ssulfate-FeS2 was up 
to 55 ‰. Such isotopic differences are relatively large but within the range observed in modern marine 
sulfides (Canfield and Teske, 1996; Canfield and Thamdrup, 1994; Jørgensen, 1990). Assuming similar S-
isotopic differences between sulfate and pyrite in all black shales, the δ��S value of the sulfate must have 
increased during more restricted periods (Fig. 4b). Such an increase could reflect a temporally evolving 
sulfate pool within times of increased basinal restriction, which gets isotopically heavier due to continuous 
pyrite burial (and the preferential removal of isotopically light S) in combination with limited replenishment 
from seawater sulfate. The sulfur isotope data are therefore consistent with the restriction vs. well-mixed 
scenario. 

In line with changing sulfur concentrations and δ��S values, the bulk iron isotopic composition changes 
with increasing authigenic pyrite enrichment. A linear positive correlation between δ��Fe and Al/FeT (Fig. 
6) indicates binary mixing between an Al-rich detrital source with high δ��Fe around 0.1 ‰ (Beard et al., 
2003; Schoenberg and von Blanckenburg, 2006) and high Al/FeT ratios around 2 (estimated from other 
sedimentary rocks and potential basaltic source rocks in the Blovice accretionary complex) (Drost et al., 
2007; Pin and Waldhausrová, 2007) and a Fe-rich authigenic source with low δ��Fe around -0.6 ‰ (Fig. 6; 
S2). The impact of the detrital Fe component increases during periods of increased basinal restriction. 
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The preservation of the observed correlations in the δ��Fe-Al/FeT plot and their explanation by a simple 
binary mixing model (Fig. 6) seem unexpected considering large kinetic Fe isotope fractionations during 
pyrite formation and the possible preferential uptake of isotopically light Fe (Guilbaud et al., 2011; see 
detailed explanation of pyrite formation processes and Fe isotope fractionation during pyrite formation in 
APPENDIX-III). Only one sample (HRM-3-55) deviates from the modeled mixing array showing a low δ��Fe 
value of -0.75 ‰. We suggest that Fe isotope fractionation during rapid and non-quantitative mackinawite/
pyrite formation caused the enrichment of light Fe isotopes in this sample. Fast growing sulfide nuclei 
might have inhibited the equilibration of Feaq and FeS, which caused the preservation of a larger isotopic 
difference (Butler et al., 2005). The lack of other δ��Fe values, which are significantly lower than proposed 
by the mixing area, suggests in turn that the net effect of Fe isotope fractionations during pyrite formation 
was low for all other samples. This strongly indicates that the removal of Fe was quantitative, thus 
preserving the original Fe isotope signal of the authigenic source in the sediment. Quantitative Fe removal 
implies that pyrite precipitation was limited by Feaq availability in an H�Saq supersaturated (e.g. euxinic) 
local environment, which is consistent with our argumentation for a euxinic setting.

In contrast to Fe, Mo concentration data indicate that variations in the detrital Mo-flux had little effect 
on the bulk Mo isotopic composition of most black shales. Only three samples, HRM-3-161, HRM-3-216 
and KA-5-30 show Mo concentrations below 3 ppm, which is close to the value of the PAAS (1.0 ppm) 
(Taylor and McLennan, 1985). In these tuff-rich layers detrital Mo might dominate. However, assuming 
a detrital composition similar to PAAS (Taylor and McLennan, 1985) and that all Al�O� in our samples is 
detrital, the terrigeneous Mo flux rate accounts on average for only 1.3 % of the total Mo in all other black 
shales, which highlights the predominance of authigenic Mo enrichment.

7.2 Authigenic metal enrichment from seawater- proposal 1
Changes in water renewal times and Moaq availability not only alter the ratio of Mo/TOC, but also 

have an impact on the sedimentary Mo isotope signal (Kurzweil et al., 2015). For example, in euxinic and 
strongly restricted basins like the modern Black Sea the δ��Mo value of the sediments is slightly lower than 
the local deep water δ��Mo (Nägler et al., 2011) but mirrors the open ocean δ��Mo. This is because the 
deep water renewal time and therefore the Mo supply is significantly lower than Mo scavenging (Algeo 
and Lyons, 2006). The removal of Mo is extremely high in euxinic settings (Scott et al., 2008) and nearly 
quantitative in restricted settings like the Black Sea (Nägler et al., 2011; Neubert et al., 2008). In less 
restricted euxinic basins like the Cariaco Basin, where Mo depletion is less pronounced, sediments show 
δ��Mo values ~0.6 ‰ lower compared to the open ocean (Arnold et al., 2004). Thus, the more restricted 
a euxinic basin, the more depleted is the basinal Moaq and the more converge the sedimentary δ��Mo and 
the open ocean δ��Mo (Kurzweil et al., 2015).

In such a scenario, our black shale samples with low Mo/TOC and high δ��Mo values must have been 
deposited during one or several period(s) of relative depletion in Moaq resulting from restricted seawater 
circulation (Fig. 7a; black squares; HRM-3: 0-50 m, 150-270 m; excluding KA-5-13). Accordingly, the 
maximum δ��Mo value of 1.2 ‰ in our dataset represents the best estimate of the contemporaneous 
seawater δ��Mo value. The Mo/TOC ratios of the respective black shales follow a trend intermediate 
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between that of black shales from the modern Black Sea and the Cariaco Basin (Algeo and Lyons, 2006). In 
the case of sediments from the Black Sea δ��Mo values mirror the global seawater δ��Mo value (Neubert et 
al., 2008). We therefore argue that our highest δ��Mo value of 1.2 ‰ is very close to the late Neoproterozoic 
seawater δ��Mo value.  We note that the δ��Mo values during these restricted periods are not constantly 
high but show some variation towards lower values, although Mo/TOC ratios remain relatively invariant. 
Mo isotope fractionations under weakly sulfidic conditions could represent a possible explanation for this 
variation (Poulson Brucker et al., 2009; Poulson et al., 2006). Lowering the local H�Saq concentration below 
the switching point of 11 µmol L-� causes an increase in the abundance of oxythiomolybdate relative to 
that of the thiomolybdate species (Neubert et al., 2008). Sediments below such weakly sulfidic water 
columns generally exhibit lower δ��Mo values than the global ocean δ��Mo value (Poulson Brucker et al., 
2009; Poulson et al., 2006; Siebert et al., 2006). So far there is, however, no proxy established that allows 
to evaluate whether or not the switching point was reached. Even if Fe speciation data indicate sulfidic 
conditions, it is not clear whether or not H�Saq concentrations were high enough for near quantitative 
thiomolybdate formation. We note, however, that increasing δ��Mo values in respective black shales 
correlate with increasing sulfur concentrations, which may indicate higher H�Saq and more efficient 
thiomolybdate formation during deposition of black shales with highest δ��Mo values (Fig. 7b).

Samples from intermediate core depth of HRM-3 (50-150m) show high Mo/TOC at relatively constant 
δ��Mo values of 0.63 ± 0.08 ‰ (2SD, Fig. 7). High sulfur concentrations in the respective samples may 
furthermore suggest particularly strong euxinic conditions. During these periods of minor basinal restriction 
the sedimentary δ��Mo value is expected to be around 0.7 ‰ lower than the contemporaneous seawater 
δ��Mo value (Kurzweil et al., 2015). The absence of significantly lower δ��Mo values during well-mixed 
periods therefore represents an additional indication that the seawater δ��Mo value was close to 1.2 ‰.

In contrast to δ��Mo values, which remain constant independent of absolute Mo enrichment, we 
observe lower δ��Fe values in samples with a larger authigenic Fe component. As suggested above, the 
supply from a Fe source with negative δ��Fe values around -0.6 ‰ probably overwhelmed the contribution 
of detrital Fe during more ventilated periods. A ferruginous deep ocean could represent this source. Its Fe 
isotopic composition is poorly constrained, but might have been close to or slightly lower in the δ��Fe than 
average continental crust (~0.05 ‰) (Beard et al., 2003; Johnson et al., 2008a). Temporal invariability in 
the δ��Fe value of this source would be expected because of the long residence time of Fe in a Precambrian 
anoxic deep ocean (Johnson et al., 2008a). 

A benthic Fe-shuttle from nearby shelf regions could represent an alternative and/or additional Fe 
source with negative δ��Fe values. Interestingly, the Al/FeT-δ

��Fe relationship of the Kamenec-Hromnice 
black shales follow a similar trend as modern black shales from the Gotland Deep (Baltic Sea) and the Black 
Sea (Fig. 6; S2) (Fehr et al., 2008; Severmann et al., 2008) This modern trend was explained by the export 
of shelf Fe with low δ��Fe values, which subsequently precipitated as pyrite in the euxinic sediments of the 
basin (Severmann et al., 2008). Our HRM-3 samples from more restricted periods, plot in the very same 
area of the Al/FeT-δ

��Fe plot as samples from the modern Black Sea and, therefore, may suggest a similar 
depositional environment (Fig. 6) (Severmann et al., 2008).
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FIGURE 7: (A) Mo/TOC ratios against δ��Mo values. Low Mo/TOC indicate Moaq depletion during more 
restricted periods (Algeo and Lyons, 2006). Near quantitative Moaq removal allowed the preservation 
of the seawater δ��Mo within the sediment (1.2 ‰, proposal 1). During deposition of black shales with 
higher Mo/TOC, Moaq depletion was reduced and the sedimentary δ��Mo value up to 0.7 ‰ lower 
than contemporaneous seawater (Kurzweil et al., 2015). Alternatively, the supply of hydrothermal 
Mo with a δ��Mo value of around 0.7 ‰ was higher during more ventilated periods (proposal 2). (B) 
Sulfur concentrations against δ��Mo values. The supply of sulfate from the open ocean was reduced 
during more restricted periods, which caused lower precipitation rates of authigenic sulfides. (C) Mo 
concentration against Mo isotopic composition. (D) δ��Mo values against δ��Fe values. The grey area 
marks the field of the modern detrital Fe- and Mo isotopic composition (Beard and Johnson, 2004; 
Dauphas and Rouxel, 2006; Siebert et al., 2003; Voegelin et al., 2014). The red area marks the Mo and 
Fe isotopic composition of modern hydrothermal fluids (Johnson et al., 2008b; McManus et al., 2006; 
Sharma et al., 2001). The blue area marks the suggested Mo and Fe isotopic composition of the late 
Neoproterozoic ocean. All data points fall within the mixing area of these components. However, we 
note again, that lower δ��Mo values could reflect a stronger hydrothermal component (proposal 2) as 
well as larger differences in Δ��Mosediment-seawater (up to 0.7 ‰) due to less circulation restriction and/or 
less Moaq depletion (proposal 1).
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 7.3 Hydrothermal metal enrichment – proposal 2
The documented local volcanogenic-hydrothermal input could represent an alternative or additional 

source for authigenic metal enrichment. The pattern of PGE’s (platinum group elements) in Teplá Barrandian 
black shales indicates a hydrothermal source of these elements, although absolute enrichments of PGE’s 
are significantly lower compared to high-temperature hydrothermal ore deposits (Pašava et al., 1996). 
Variability in PGE and other metal enrichment might indicate changes in the supply from a local low-
temperature hydrothermal source. The δ��Fe values of modern hydrothermal fluids are not globally 
uniform but tend to negative values down to -1 ‰, with an average of -0.4 ‰  (Beard et al., 2003; Johnson 
et al., 2008b; Moeller et al., 2014; Sharma et al., 2001). The binary mixing of detrital Fe with δ��Fe values 
around 0.1 ‰ and a hydrothermal authigenic Fe source with δ��Fe values around -0.6 ‰ is therefore also 
consistent with the proposal of hydrothermal metal enrichment (Fig. 6).

The S-isotope record is more difficult to explain by changes in the supply from a low-temperature 
hydrothermal vent system. In modern low-T hydrothermal settings sulfate, which is used for bacterial sulfate 
reduction and subsequent pyrite formation, is supplied from seawater on the one hand and diffusional 
transport from underlying basement formation waters on the other hand (Böttcher et al., 2006; Wheat et 
al., 2002). The latter brines are ultimately also recharged from the seawater reservoir, but are isotopically 
heavier due to subsurface pyrite precipitation (Böttcher et al., 2006). We therefore expect higher instead 
of lower δ��S values during periods of high hydrothermal fluxes, when the impact of isotopically heavy 
brines is higher (Fig. 4b). 

Alternatively, sulfate was additionally supplied from magmatic fluids (Fig. 4b) (Alt, 1995; Gamo et al., 
1997; Herzig et al., 1998). Sulfate-rich hydrothermal fluids with even higher sulfate concentrations than 
seawater are observed in hydrothermal systems along back-arc basins (Gamo et al., 1997), which likely 
represent a modern analogue to the setting studied here (Pin and Waldhausrová, 2007). The addition of 
magmatic sulfate with lower δ��S values compared to seawater sulfate could therefore explain lower δ��S 
values and higher sulfur concentrations in metal enriched samples. During reduced hydrothermal activity 
seawater sulfate with higher δ��S values could have represented the only or predominant sulfate source, 
resulting in higher δ��S values (Fig. 4b).

For those samples of the HRM-3 drill core, which show low δ��Fe and low δ��S, Mo/TOC ratios are 
higher and the δ��Mo values are relatively constant (+0.63 ± 0.08 ‰, 2SD), independent of the absolute 
authigenic Mo enrichment. High Mo/TOC ratios might indicate higher Moaq availability due to increased 
hydrothermal fluxes instead of better access to the open ocean (see section 5.2). The Mo isotopic 
composition agrees very well with the δ��Mo value of modern low-temperature hydrothermal fluids (~+0.7 
‰ in δ��Mo) (McManus et al., 2006) and provides a reasonable estimate of the Mo isotopic composition 
of the local hydrothermal input at Hromnice (Fig. 7c). Such constant δ��Mo values of the hydrothermal flux 
would argue against temporal variability in the Mo isotopic composition due to fractionation processes 
within the hydrothermal system. Mo isotope fractionations during species changes and reduction of 
hydrothermal Mo(VI) in HMoO�- (Rempel et al., 2009) and the subsequent precipitation of molybdenite 
(MoS�) as a co-phase of chalcopyrite (CuFeS�) were therefore negligible. Such a scenario is supported by 
high Cu and Mo concentrations in the respective samples. 
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For HRM-3 black shales with high δ��S values and lower Mo/TOC ratios, Mo enrichment is accompanied 
by increasing δ��Mo values up to +1.20 ‰ (Fig. 7c), a correlation that requires further consideration. 
The observed trend in respective samples can be explained by a pure seawater signal, which was partly 
modified by fractionation processes during Mo sequestration in a weakly sulfidic environment (see section 
5.2) or alternatively by a mixing trend of seawater Mo with hydrothermal Mo. The latter interpretation 
implies that the relative contribution of Mo from a hydrothermal source with δ��Mo of ~+0.7 ‰ and 
from Neoproterozoic seawater with δ��Mo of ~+1.2 ‰ was variable. However, such mixing processes 
should result in a positive rather than a negative correlation of δ��Mo and δ��Fe values (Fig. 7d), because 
the hydrothermal fluid would have been characterized by very low δ��Fe and also lower δ��Mo values. 
Furthermore, we expect higher rather than lower Mo concentrations in the respective samples (Fig. 7c). 
The positive trend between Mo concentration and δ��Mo values (Fig. 7c) and the observed negative trend 
in the δ��Mo vs. δ��Fe-plot (Fig. 7d) therefore argue against significant authigenic enrichment of Mo from 
a hydrothermal source in respective samples.

We note that even in modern settings it remains unclear if the hydrothermal input represents a net 
sink or source of marine Mo (Chester, 2009). Therefore, some metals such as PGE, which might have been 
depleted in seawater, could have been enriched from a local hydrothermal source (possibly also Fe, Ni, 
Cu and some other trace metals during some periods), whereas the source of Mo and also sulfate was 
probably mainly seawater (Fig. 8). Altogether, the geochemical and isotopic features exhibited by our black 
shale samples can be explained by intermittent variations in basin restriction and are, thus, consistent with 
proposal 1 (Fig. 8).  Additionally, a temporally available hydrothermal component may have affected the 
composition of some black shales (Pašava et al., 1996).

7.4 Implication for the Neoproterozoic environment
Recent studies point to unchanged ferruginous seawater conditions far into the Paleozoic era (Feng 

et al., 2014; Goldberg et al., 2007; Wang et al., 2012; Wood et al., 2015), which seems inconsistent with 
several other geochemical studies that claim for deep ocean oxygenation at the Precambrian-Cambrian 
boundary or even before (Canfield et al., 2007; Fike et al., 2006; Kendall et al., 2015; Sahoo et al., 2012). 
In our view, the best explanation for this apparent inconsistency is a heterogeneous ocean with a spatially 
variable redox structure. For example, late Neoproterozoic Fe speciation data from Newfoundland (Canfield 
et al., 2007) describe a locally developed oxic water column. Similarly, strong authigenic enrichments of 
redox sensitive trace metals like V, Mo and U (Sahoo et al., 2012) are not only dependent on the global 
availabilities of these metals in more oxygenated environments but also on local factors such as the 
sedimentation rate, the local redox state and access of the basin to the open ocean (Algeo and Lyons, 
2006; Noordmann et al., 2015). To overcome this problem of local vs. global tracers, the geochemical 
analysis of sediments from various depositional and geographical settings is necessary. Therefore, our 
new geochemical data from the Teplá Barrandian black shales represent an important supplement to the 
existing late Neoproterozoic – early Cambrian dataset. The lack of preservation of Neoproterozoic deep 
sea sediments, however, excludes conclusions on the deep sea redox-state by geochemical analyses of 
local proxies. Therefore, geochemical proxies representing global signals are required. 
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We agree with Sahoo et al. (2012), who observed modern-like authigenic enrichments of Mo in ~635 
Ma old sediments of the Doushantou Formation, South China, that the presence of a significant seawater 
Mo reservoir is a precondition for strong authigenic enrichments (Sahoo et al., 2012). Such a reservoir 
involves a globally homogeneous Mo concentration and isotopic composition in seawater. The long mean 
ocean residence time of molybdenum along with redox-dependent fractionation processes particularly in 
oxic deep sea settings make Mo isotopes one of the most powerful proxies to trace changes in the global 
redox state. The formation of Mn-oxides in well oxygenated deep sea settings would cause the removal of 
isotopically light Mo leaving behind an isotoipically heavier ocean. The resulting increase in δ��Mo values 
should be preserved in black shales like those analyzed here and in other studies (Arnold et al., 2004; 
Asael et al., 2013; Dahl et al., 2010; Gordon et al., 2009; Kendall et al., 2009). It has to be kept in mind 
that lower δ��Mo values could result from fractionation processes, for example during non-quantitative 
thiomolybdate formation in weakly sulfidic settings. Therefore, maximum δ��Mo values generally apply as 
the best approximates of the ancient global seawater Mo isotopic composition. Considering the evolution 
of δ��Mo values from sediments of anoxic environments, the first increase to modern-like high δ��Mo 
values is observed in sediments from the late Neoproterozoic Member IV of the Doushantuo Formation, 
South China, which show δ��Mo values up to +2.3 ‰ around 560 Ma (Fig. 9) (Kendall et al., 2015). This 
value is in contrast to and significantly higher than the seawater δ��Mo value inferred from approximately 
contemporaneous Teplá-Barrandian black shales presented in this study as well as maximum δ��Mo values 
inferred from Mid-Proterozoic rocks (Arnold et al., 2004; Kendall et al., 2009). 
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FIGURE 9: δ��Mo values (a) and Mo concentration (b) from the literature (small white circles 
represent δ��Mo data from Southern China, white squares δ��Mo data from other regions and 
black circles concentration data, respectively; see Kendall et al., 2015 and references therein) and 
this study (red squares and red circles, respectively). Glaciations are highlighted by gray shading. 
Sahoo et al. (2012) proposed an increase in atmospheric O� shortly after the Marinoan glaciation 
based on metal enrichments in black shales, which contrasts with lower enrichments during the 
„boring billion“ between 1.8 to 0.8 Ga. Kendall et al. (2015) argued that deep ocean oxygenation 
caused high and modern-like δ��Mo values during the Ediacaran at 560 Ma. Interestingly, very 
high δ��Mo values are mainly from continental margin sediments of Southern China (small white 
circles) and are closely related to carbon isotope excursions (I.e. Jiang et al., 2007). This could 
indicate local upwelling environments (Jiang et al., 2007), where the Mo isotope composition of 
anoxic sediments represents a transient signal (Wille et al., 2008). It is striking that very high δ��Mo 
values correlate with very low δ��Mo in the same succession, which would be consistent with the 
modeling of transient Mo isotope signals (Wille et al., 2008). As indicated by the orange area, 
which reflects maximum δ��Mo values excluding those from sediments of Southern China, globally 
and modern-like δ��Mo values might be first observed in Devonian sediments (Dahl et al., 2010). 
This may indicate a delayed deep water oxygenation long after the evolution and diversification of 
Metazoan life during the Ediacaran.
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High Mo isotopic values (2.34 ‰ in δ��Mo) in black shales of the upper Doushantuo Formation, Yangtze 
Platform, China (560 to 551 Ma) have been interpreted as transient episodes of extensive ocean oxygenation 
(Kendall et al., 2015). Another transient signal with high δ��Mo values up to 2.15 ‰ were found in slightly 
younger black shales and phosporite deposits of the lower Niutitang Formation, Yangtze Platform, China 
(532 Ma) (Chen et al., 2015; Wen et al., 2011; Xu et al., 2012), which was interpreted as evidence for 
homeostasis of oxic deep oceanic redox conditions (Chen et al., 2015). These black shales (and sulfide 
ores) also show very high Mo concentrations up to 7.31 wt%, respectively (Xu et al., 2012). Differences 
in the δ��C record between platform and slope to basinal sections within the Yangtze Platform during the 
Ediacaran period have been interpreted as evidence for sulfate reduction in anoxic deep oceans and long 
term deep ocean anoxia/euxinia (Jiang et al., 2007). Carbon isotope anomalies found in both black shale 
succession (Jiang et al., 2007) with associated transient heavy Mo isotope signals indicate a non-steady 
state dynamic of reactive DOC and DIC pools (Rothman et al., 2003) possibly triggered by upwelling of DOC 
rich anoxic/euxinic bottom waters (Jiang et al., 2007). Such an expansion of euxinic shelf settings can cause 
a transient Mo isotopic signal with temporary heavy isotopic composition (Wille et al., 2008). If transient 
heavy Mo isotope signals reflect short term changes in the global ocean circulation pattern associated 
with deep ocean ventilation and oxygenation or local/regional upwelling effects remains therefore elusive. 
Remarkably, all very high δ��Mo values in pre-Devonian sediments come from Southern China (see small 
circles in Fig. 9). Moreover, very high δ��Mo values are often in close stratigraphic relationship with very 
low and negative δ��Mo values, a relation, which is expected during transient δ��Mo excursions (Wille et 
al., 2008). We, thus, highlight that short term high δ��Mo values do not necessarily represent extensive 
ocean oxygenation. A very cautious consideration of the local depositional environment is necessary 
before interpreting the Mo isotope data in black shales.

Again, we agree with Sahoo et al. (2012) that the seawater Mo reservoir established already during 
Neoproterozoic times but suggest that the main sink of isotopically light Mo in the modern ocean, the 
adsorption of molybdate on Mn oxides in deep sea settings, remained relatively unimportant. This may 
have caused the temporal decoupling of high Mo concentrations and long-term high δ��Mo values (Fig. 9). 
Whereas molybdate is the stable Mo species already at relatively low redox-potentials, the oxidation of 
Mn�+ to Mn�+ and the subsequent formation of MnO� requires significantly higher redox potential (Takeno, 
2005). We argue that such high redox potentials were not accomplished in late Neoproterozoic deep sea 
settings, as indicated by continuously low δ��Mo values (Fig. 9). The lack of Mn oxide formation in these 
settings, thus, argues against deep ocean oxygenation as early as the Ediacaran period. 

In case of a continuously anoxic deep ocean during Ediacaran times, the question about expected 
consequences for the biology arises. The modern deep ocean and the deep ocean seabed are characterized 
by relatively less diverse life forms and slow rates of microbial activity compared to shallow marine shelf 
settings. The bacterial biomass per square meter of the sea floor decreases exponentially with increasing 
seafloor depth (Jørgensen and Boetius, 2007; Rowe and Pariente, 2012). Furthermore, no eukaryotic 
live forms have been observed in modern deep sediment samples (Parkes et al., 2005). Lower biologic 
activity results from energy limitation (excluding special locations such as black smoker environments) 
and temperature depression (Jørgensen and Boetius, 2007) and is, thus, controlled by parameters, which 
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would barely change in a more oxygenated deep water setting. It therefore seems questionable, that deep 
ocean oxygenation significantly increased the habitable area.   

The evolution and diversification of larger animals is rather related to shallow marine water habitats. 
Life in these areas might have suffered from the occasional upwelling of anoxic (and toxic) deep waters 
(Chen et al., 2015). Reducing the potential of such upwelling events by full ocean oxygenation could in 
turn optimize the conditions for life in shallower environments and possibly pave the way for enhanced 
biological activity (Chen et al., 2015). However, local extinction events can also create free habitable space 
area and, thus, stimulate new biological innovations. 

The formation of larger organic pellets during Ediacaran times would prevent organic matter more 
efficiently from oxidation and, thus, decrease the oxygen demand in the upper water column (Butterfield, 
2009; Lenton et al., 2014). The resulting increased net burial of organic matter then represents a net 
source for oxygen. Higher oxygen concentrations are a precondition for larger animals (Berner et al., 2003; 
Falkowski et al., 2005) and the evolution of carnivore life (Sperling et al., 2013). Carnivores might have 
increased the selection pressures, which further promoted diversification (Bengtson, 2002). Lowering 
the oxygen demand in surface ocean waters could potentially outcompete reducing marine chemical 
components and finally also oxygenate the deep ocean. However, we highlight that biologic inventions in 
surface ocean environments and the deep ocean redox-state are poorly syndetic but both linked to surface 
ocean oxygenation. The absence of evidence for deep ocean oxygenation during the Ediacaran does 
therefore not necessarily imply continuously low surface ocean oxygen concentrations. Limited exchange 
with the deep ocean may have inhibited its concomitant oxygenation. Therefore, it is also possible that the 
deep ocean oxygenation was decoupled from higher surface ocean redox potentials and major biological 
evolutions at the Precambrian-Cambrian boundary.

If the net flux of oxygen to the deep sea increased, we suggest that the redox-potential in deep sea 
settings during the Ediacaran was not high enough to allow pelagic Mn crust formation like in the modern 
ocean. The continuous increase towards non-transient high δ��Mo values in Devonian black shales (Fig. 9) 
might then indicate the full oxygenation of the deep ocean (Dahl et al., 2010), possibly as a consequence 
of the dispersion and expansion of land plants. The higher resistance of land plants against oxygenation 
and the resulting increased organic matter burial rates may have caused a later pulse of deep water 
oxygenation (Dahl et al., 2010). 

8. Conclusions

Late Neoproterozoic black shales from the Teplá-Barrandian unit, Czech Republic, which have a 
maximum depositional age of ~560 Ma, were analyzed for main and trace element concentrations as 
well as for their S, Fe and Mo isotopic composition. We observe temporal variations in the Mo/TOC ratio, 
which are attributed to changes in Moaq availability and water circulation restriction. Consistent with 
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this interpretation, δ��S values increase from -25 ‰ to -4 ‰ and S concentrations decrease during more 
restricted periods due to the continuous burial of ��S depleted pyrite in an evolving basin. Black shales 
deposited during more ventilated periods show strongest authigenic enrichments of metals like Fe, Ni, 
Cu or Zn. The predominant authigenic Fe phase is pyrite suggesting a euxinic depositional environment. 
The positive linear relationship of Al/FeT vs. δ��Fe indicates binary mixing of this authigenic Fe in pyrite 
with low δ��Fe values (~-0.6 ‰) and detrital Fe with high δ��Fe values (~0.1 ‰). Anoxic deep seawater 
in combination with a temporally active local hydrothermal vent could represent the ultimate source for 
authigenic metal enrichment. 

Samples deposited during well-mixed periods show relatively low and constant δ��Mo values between 
0.6 and 0.7 ‰. These values could reflect the Mo isotopic composition of the local hydrothermal source. 
Alternatively, the non-quantitative Mo removal from seawater in a less restricted basin might have caused 
slightly lower δ��Mo values in the sediments compared to the open ocean. Higher δ��Mo values of up to 
1.2 ‰ are the result of near quantitative Mo removal during more restricted periods and represent our 
best estimate of the late Neoproterozoic seawater Mo isotopic composition. The value of 1.2 ‰ is in the 
range of δ��Mo values of black shales from the middle Proterozoic. This invariance might indicate the 
continuous absence of (1) Mn oxide formation in deep sea settings, (2) the absence of large Mo isotope 
fractionations during adsorption onto Mn oxides and (3) the build-up of a heavier seawater Mo reservoir. 
In line with previous studies, the Mo isotopic composition of black shales from the Teplá-Barrandian unit 
consistently suggests that the deep ocean was still decoupled from oxygenation and remained largely 
anoxic, and ferruginous until at least ~560 Ma. These conditions may only have changed during another 
oxygenation event in Devonian times (Dahl et al., 2010). 
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Supplements of CHAPTER III

1. Pyrite formation and Iron isotope systematics

Pyrite is the predominant authigenic Fe-mineral phase in the black shales of the Hromnice and 
Kamenec boreholes (Pašava et al., 1996). The hydrothermal and marine cycles of Fe, S and Mo are strongly 
linked to authigenic pyrite formation. Pyrite, therefore, represents a key mineral component in a S-Fe-Mo-
isotope study and as such demands a detailed investigation of its formation mechanism and associated 
fractionation processes. In our samples pyrite appears as anhedral grains and in framboidal form (Pašava 
et al., 1996). The larger grains and grainy aggregates are associated with quartz-carbonate veinlets and 
have been interpreted as post-depositional recrystallization products of framboidal pyrite (Pašava et al., 
1993). In contrast, the more abundant framboidal pyrite represents a syn- to early diagenetic mineral 
phase (Wilkin and Barnes, 1997). Its formation involves the rapid nucleation of tetragonal mackinawite 
(FeS) from an anoxic solution that is supersaturated in Fe2+ and H2S (Butler and Rickard, 2000; Wilkin 
and Barnes, 1997). The subsequent contemporary diffusional growth may cause a raspberry like texture 
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of similar sized framboids. Mackinawite formation is accompanied by a kinetic Fe-isotope fractionation 
with Δ56FeFe(II)-FeS = 0.85 ± 0.3 ‰ for zero age FeS at pH 4 (Butler et al., 2005). During aging the isotopic 
difference becomes significantly smaller and might get close to equilibrium with Δ56FeFe(II)-FeS < -0.34 ‰ 
as a consequence of continuous isotope exchange between iron in solution and iron in the surface layer 
of mackinawite (e.g. Butler et al., 2005). Wu et al. (2012) concluded that at higher (near neutral) pH the 
diffusional growth of mackinawite is slow enough to generally allow Fe isotopic equilibration causing an 
isotopic difference of Δ56FeFe(II)-FeS = 0.32 ± 0.29 ‰. However, isotopic equilibration is not attained, if the 
diffusional growth of mackinawite is fast, which can cause a larger difference between the Fe isotopic 
composition of the mineral and the solution (Guilbaud et al., 2010). 

In a subsequent step, pyrite may form via two different pathways from redissolved mackinawite.

(1) FeS(aq) + Sn
2- = FeS2 + S2-n

-1; polysulfide pathway (i.e. Schoonen and Barnes, 1991) 
(2) FeS(aq) + H2S = FeS2 + H2; H2S pathway (i.e. Rickard and Luther III, 1997) 

In sulfidic environments the latter reaction pathway is predominant due to higher abundance of H2S 
relative to S-2

(aq) species (Rickard and Luther, 2007). The initial step of mackinawite dissolution probably 
causes negligible isotope fractionation as Fe remains in the same redox state as well as in tetrahedral 
coordination (Guilbaud et al., 2011). However, Fe in pyrite is octahedrally coordinated. According to 
quantum mechanical insights, lighter isotopes preferentially partition into higher coordination numbers 
(Bigeleisen and Mayer, 1947). This might explain the experimentally determined kinetic isotope 
fractionation factor of αFe(II)-FeS2 = 1.0022 ±0.0007 at temperatures of 40-100 °C (Guilbaud et al., 2011), 
which would result in strong depletion of heavy Fe isotopes in pyrite. Conflicting with this observation, 
experiments at high temperatures (300-350 °C) and high pressures (500 bars) predict equilibrium Fe-
isotope fractionations in opposite direction with a difference of Δ56FeFe(II)-FeS2 = -0.99 ± 0.29 ‰ (Syverson et 
al., 2013). These experimental results are consistent with theoretical calculations and spectral data from 
Mössbauer spectroscopy and inelastic resonant X-ray scattering, which also predict enrichment of heavy 
Fe-isotopes in the sulfide phase (Polyakov et al., 2007; Schauble et al., 2001). The disputed results and 
predictions of Fe isotope fractionation during pyrite formation remain controversial and apparently vary 
under different environmental conditions. The pyrite fraction in modern anoxic sediments generally shows 
negative δ56Fe values (Busigny et al., 2014; Severmann et al., 2006; Severmann et al., 2008) confirming 
the experimental results of Guilbaud et al. (2011). Similarly, in modern high temperature environments 
like hydrothermal deposits and massive sulfides pyrite also shows lower δ56Fe values compared to the 
hydrothermal fluid (Rouxel et al., 2004; Rouxel et al., 2008). Such deposits seem most appropriate for 
comparison with the sulfide-rich black shales from the Teplá-Barrandian unit. Importantly, the effects of Fe 
isotope fractionations will only be preserved in the sedimentary record, if the removal of dissolved Fe(II) is 
incomplete with a remaining dissolved Fe reservoir. If pyrite formation is limited by Fe(II)aq availability in a 
H2Saq supersaturated environment, we expect little net Fe isotope fractionation effects. 
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2. Fe-mixing model

We calculated a two component Fe mixing model (Fig. APPENDIX-III-1) using the following parameters: 
(1) a detrital δ56Fe of +0.05 ‰ as indicated by detritus dominated samples HRM-3-161 and HRM-3-216. 
Such a value is in line with δ56Fe of the modern detrital input and terrestrial igneous rocks (Beard et 
al., 2003; Dauphas and Rouxel, 2006; Schoenberg and von Blanckenburg, 2006; Severmann et al., 2004; 
Sharma et al., 2001). (2) a variable detrital FeT/Al of 0.4 to 0.8, as the parameter depends on the weathered 
source rock type and may vary temporally. This range was derived from the most detritus dominated 
samples in our dataset (FeT/Al=0.4 in HRM-3-161 and HRM-3-216), the average FeT/Al ratio of other 
siliciclastic (meta-)sediments in the Blovice accretionary complex (0.49) (Drost, 2008; Drost et al., 2007; 
Pin and Waldhausrová, 2007) and the average FeT/Al ratio of potential basaltic source rocks in the area 
(average 0.8; data of Pin and Waldhausrová, 2007). The FeT/Al ratio of the average upper continental crust 
(0.48) (Rudnick and Gao, 2003) is well within this range. (3) a lower value for authigenic δ56Fe of -0.6 ‰ as 
indicated by the x-axis intercept in the δ56Fe vs. Al/FeT plot. and (4) an upper value for authigenic δ56Fe of 
-0.4 ‰, which is the average value for the modern hydrothermal input (Beard et al., 2003; Bennett et al., 
2009; Severmann et al., 2004; Sharma et al., 2001). The resulting mixing array (grey area in Fig. APPENDIX-
III-1) explains most samples from KA-5 and HRM-3. 

Calculations
FeT = Fe Total, FeD = Fe detrital, FeHy = Fe hydrothermal

FeT = FeD + FeHy

FeHy = x * FeD   x: Proportion FeHy an FeD: x = FeHy / FeD

FeT = FeD + x * FeD

FeT/Al = (FeD + x * FeD) /Al
FeT /Al = FeD/Al + (x * FeD)/Al 
X = (FeT - FeD) / FeD

X = FeT/FeD - FeD /FeD

X = FeT /FeD – 1   y: Proportion FeD to FeT:  y = FeD / FeT

X = 1/y – 1    1-y: Proportion FeHy to FeT

FeT = FeD + (1/y – 1) FeD

FeT/Al = FeD/Al + (1/y – 1) * FeD/Al
δ56FeT = y * δ56FeD + (1-y) δ56FeHy (‰)

Given and decided parameters:
FeD/Al: 0.4 and 0.8, respectively
δ56FeD: 0.05 ‰
δ56FeHy: -0.6 ‰ and -0.4 ‰ (modern hydrothermal average), respectively
Variable y: proportion of detrital Fe to total Fe
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FIGURE APPENDIX-iii-1: Compilation of δ56Fe against FeT/Al. The gray shaded area displays 
the mixing model with detrital δ56Fe of 0.05 ‰ and a ratio of FeT/Al between 0.4 and 0.8 and 
authigenic iron (we assume no authigenic Al) that has a Fe isotopic composition between -
0.6 to -0.4 ‰. Black numbers indicate the relative portion of authigenic Fe. Most samples are 
within the mixing area. Moreover, most HRM-3 samples with low authigenic Fe enrichment 
(black squares) follow a trend observed in modern Black Sea samples (blue area) (Severmann et 
al., 2008). Only one sample has a lower δ56Fe than expected from the mixing model, indicating 
Fe isotope fractionation effects.
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Fig. S1. Laser ablation ICP-MS U-Pb data of Plešovice and 91500 reference zircons used 
for quality control. Repeat analyses of the standard zircons during the analytical 
sessions yield concordia ages that are identical within error with the reference ages.

FIGURE APPENDIX-iii-2: Laser ablation ICP-MS U-Pb data of Plešovice and 91500 reference zircons used 

for quality control. Repeat analyses of the standard zircons during the analytical sessions yield concordia ages 

that are identical within error with the reference ages

3. Additional figures and tables
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Table III-1. SSB Fe isotope m
easurem

ents

sam
ple

depth
δ

56Fe
av

δ
56Fe

1
2SD

a
δ

56Fe
2

2SD
a

δ
57Fe

1
2SD

a
δ

57Fe
2

2SD
a

δ
58Fe

1
2SD

a
δ

58Fe
2

2SD
a

m
 (‰

)
 (‰

)
 (‰

)
 (‰

)
 (‰

)
 (‰

)
 (‰

)
HRM

-3-21
21

-0.17
-0.22

0.04
-0.12

0.03
-0.33

0.07
-0.15

0.07
-0.14

0.35
-0.12

0.39
HRM

-3-27
27

-0.10
-0.12

0.04
-0.08

0.03
-0.16

0.07
-0.07

0.06
-1.22

0.96
0.00

0.37
HRM

-3-33
33

-0.04
-0.08

0.03
-0.01

0.04
-0.10

0.06
0.00

0.05
0.16

0.33
0.09

0.36
HRM

-3-48
48

-0.11
-0.11

0.04
-0.12

0.03
-0.15

0.06
-0.16

0.06
0.00

0.38
-0.13

0.36
HRM

-3-55
55

-0.75
-0.75

0.03
-0.74

0.03
-1.12

0.06
-1.10

0.06
-0.92

0.36
-1.48

0.32
HRM

-3-73
73

HRM
-3-85

85
-0.52

-0.51
0.03

-0.53
0.03

-0.78
0.06

-0.75
0.07

-0.58
0.41

-0.53
0.34

HRM
-3-96

96
-0.47

-0.48
0.04

-0.47
0.03

-0.74
0.05

-0.69
0.07

-1.28
0.42

-0.96
0.36

HRM
-3-119

119
-0.41

-0.45
0.03

-0.37
0.04

-0.67
0.06

-0.56
0.08

-0.68
0.33

-0.59
0.34

HRM
-3-161

161
0.04

0.05
0.03

0.03
0.04

0.09
0.06

0.08
0.08

0.12
0.32

0.26
0.33

HRM
-3-166

166
-0.30

-0.30
0.03

-0.31
0.04

-0.43
0.05

-0.44
0.06

-0.65
0.34

-0.39
0.34

HRM
-3-190

190
HRM

-3-206
206

HRM
-3-216

216
0.06

0.05
0.03

0.08
0.03

0.07
0.07

0.15
0.07

0.01
0.34

0.36
0.37

HRM
-3-240

240
-0.17

-0.19
0.04

-0.14
0.03

-0.25
0.08

-0.19
0.06

-0.37
0.32

-0.26
0.30

HRM
-3-265

265
-0.11

-0.16
0.03

-0.06
0.03

-0.21
0.07

-0.14
0.06

-0.31
0.32

-0.06
0.34

HRM
-3-268

268
 

a 2 standard deviation of 20 cycles during the m
easurem

ent on the ICP-M
S
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Table III-2. Thermo Scientific iCAP Qq Instrument settings and operating conditions 
 
Instrument Thermo Scientific iCAP Qc 

Forward Power 1550 W 
Coolant gas flow 14.0 l/min  
Sample gas flow 0.85 l/min 
Sampling depth 4.3 mm  
Data acquisition 
protocol 

Time-resolved analysis 

Isotopes determined 202Hg, 204(Hg + Pb), 206Pb, 207Pb, 
208Pb, 232Th, 235U, 238U 

Acquisition mode Peak jumping, one point per peak 
Dwell time 10ms, except 207Pb and 235U: 20ms 
Cones Ni, skimmer with sensitivity insert 
  
Laser-ablation system Resonetics RESOlution M-50 
Laser type/ wavelength Excimer 193 nm 
Pulse duration 20 ns 
Energy density 2.6 J/cm2 
ThO+/Th+ < 1.0% 
Nominal spot diameter 33 μm 
Sampling strategy spot 
Laser repetition rate 4 Hz 
He gas flow 600 ml/min 
N2 gas flow 3 ml/min 
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Table III-3. LA-IC
P-M

S detrital zircon data for grains younger than 700M
a.

C
oncordia ages in bold type w

ere calculated from
 tw

o analyses of the sam
e grain.

ages

Pb
U

Th
Th/U

206/204Pb
208/206Pb
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±
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]
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]
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rho
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±2s
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M

SW
D

prob.
 age

greyw
acke from

 surface outcrop (n=71 analyses of w
hich 59 are concordant)

H
R

M
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582
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0.69
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0.21

0.032
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2.0
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1.3

0.67
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16
H

R
M
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4.1
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0.30
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576
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39
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0.11
0.74
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R

M
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3962
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785
439

0.60
5191

0.18
0.026

4.3
0.060

1.1
0.713

1.7
0.086

1.3
0.75

519
44

605
49

546
15

532
13

H
R

M
-3JP_20

45
444

171
0.51

1368
0.15

0.032
4.3

0.061
1.1

0.866
1.5

0.103
1.1

0.70
631

53
631

47
634

14
634

13
634

12
0.02

0.88
H

R
M

-3JP_22
27

266
153

0.63
4869

0.20
0.031

4.3
0.060

1.5
0.823

2.0
0.099

1.3
0.65

613
52

621
65

610
18

607
15

608
15

0.18
0.67

H
R

M
-3JP_25

24
227

178
0.83

5247
0.26

0.032
4.3

0.061
1.5

0.867
2.0

0.104
1.2

0.63
641

54
625

65
634

18
636

15
636

15
0.12

0.73
H

R
M

-3JP_26
68

810
394

0.52
7356

0.16
0.028

4.3
0.059

1.1
0.735

1.7
0.090

1.2
0.75

565
48

571
48

560
14

557
13

558
13

0.30
0.59

H
R

M
-3JP_29

44
560

256
0.51

2451
0.15

0.025
4.3

0.064
1.2

0.755
1.7

0.086
1.2

0.69
493

42
735

52
571

15
531

12
H

R
M

-3JP_31
8

82
64

0.86
1308

0.26
0.031

4.5
0.061

2.0
0.866

2.4
0.103

1.3
0.53

612
54

635
87

633
23

633
15

633
15

0.00
0.97

H
R

M
-3JP_36

49
471

335
0.80

6375
0.25

0.032
4.3

0.062
1.2

0.880
1.7

0.104
1.2

0.69
641

54
661

53
641

16
635

14
637

14
0.84

0.36
H

R
M

-3JP_40
25

285
158

0.59
2245

0.18
0.027

2.8
0.060

2.5
0.710

2.7
0.086

1.2
0.44

532
29

589
107

545
23

534
12

535
12

0.98
0.32

H
R

M
-3JP_42

25
269

258
1.10

1993
0.25

0.021
4.1

0.062
1.6

0.775
2.0

0.091
1.2

0.60
423

34
657

69
583

18
564

13
H

R
M

-3JP_44
12

134
81

0.67
3444

0.20
0.027

2.9
0.059

1.8
0.741

2.1
0.091

1.1
0.53

541
31

567
78

563
18

562
12

562
12

0.01
0.91

H
R

M
-3JP_47

22
224

124
0.58

3752
0.19

0.032
2.7

0.061
1.6

0.818
2.0

0.098
1.2

0.59
633

34
623

70
607

18
603

13
604

13
0.32

0.57
H

R
M

-3JP_49
11

117
77

0.73
1691

0.23
0.031

3.1
0.060

1.9
0.814

2.5
0.099

1.6
0.63

614
37

593
83

605
23

608
18

607
18

0.13
0.72

H
R

M
-3JP_50

31
343

240
0.74

5757
0.24

0.028
2.7

0.058
1.4

0.700
1.8

0.088
1.1

0.62
559

30
525

62
539

15
542

12
542

11
0.30

0.58
H

R
M

-3JP_52
19

212
86

0.48
2464

0.14
0.027

2.7
0.059

1.8
0.734

2.1
0.091

1.1
0.51

541
29

550
80

559
18

561
12

561
12

0.07
0.79

H
R

M
-3JP_53

16
177

113
0.70

2854
0.22

0.026
3.0

0.058
1.6

0.689
2.1

0.086
1.3

0.63
528

31
525

71
532

17
534

13
534

13
0.06

0.81
H

R
M

-3JP_55
12

108
147

1.53
1138

0.38
0.022

3.1
0.065

2.0
0.789

2.3
0.088

1.2
0.52

442
27

764
83

591
21

547
12

H
R

M
-3JP_57

2
22

19
0.95

333
0.29

0.026
3.0

0.058
2.8

0.691
3.2

0.086
1.6

0.49
525

31
540

124
533

27
532

16
532

16
0.02

0.90
H

R
M

-3JP_59a
17

175
136

0.88
1641

0.27
0.027

2.8
0.059

1.6
0.700

2.0
0.087

1.3
0.64

533
29

553
69

539
17

535
13

H
R

M
-3JP_59b

17
189

126
0.72

2326
0.22

0.027
2.7

0.059
1.4

0.700
1.8

0.086
1.1

0.61
531

29
578

62
539

15
529

11
H

R
M

-3JP_60
21

223
121

0.63
3331

0.19
0.026

2.8
0.059

1.6
0.727

2.0
0.090

1.2
0.59

528
29

554
70

555
17

555
13

555
12

0.00
0.97

H
R

M
-3JP_61

14
162

99
0.65

2796
0.20

0.028
2.8

0.057
1.4

0.729
1.8

0.093
1.2

0.64
567

31
494

62
556

16
571

13
H

R
M

-3JP_62
34

412
166

0.44
6497

0.14
0.027

2.8
0.059

1.2
0.689

1.7
0.085

1.2
0.68

534
29

550
55

532
14

528
12

529
11

0.60
0.44

H
R

M
-3JP_65

16
175

125
0.78

1910
0.24

0.028
2.6

0.059
2.1

0.734
2.4

0.090
1.2

0.51
554

29
568

90
559

21
557

13
557

13
0.06

0.81
H

R
M

-3JP_66
11

113
69

0.67
1510

0.20
0.030

2.8
0.060

1.4
0.827

1.9
0.100

1.2
0.64

602
34

608
62

612
17

613
14

613
14

0.03
0.87

H
R

M
-3JP_67

20
244

72
0.35

2611
0.10

0.023
3.6

0.067
1.3

0.758
1.8

0.082
1.3

0.71
462

32
838

53
573

16
508

12
H

R
M

-3JP_69
41

451
361

0.89
5507

0.27
0.027

2.6
0.059

1.2
0.732

1.6
0.091

1.1
0.68

537
28

552
51

558
14

559
12

559
11

0.08
0.77

H
R

M
-3JP_71

39
414

178
0.46

0.15
0.031

2.8
0.060

1.7
0.799

2.1
0.097

1.2
0.56

620
34

598
74

596
19

596
13

596
13

0.00
0.95

H
R

M
-3JP_73

22
245

169
0.72

2334
0.23

0.029
2.7

0.059
1.6

0.724
2.1

0.090
1.3

0.63
577

31
550

70
553

18
554

14
553

14
0.01

0.92
H

R
M

-3JP_74
15

175
78

0.47
1541

0.15
0.029

2.8
0.059

1.4
0.737

1.9
0.091

1.3
0.68

582
32

560
61

561
17

561
14

561
14

0.00
0.96

concordia ages for analyses w
ith 

probability of concordance 
>0.15, including decay constant 

errors

533
8

2.20
0.14
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Table III-3. continued
C

oncordia ages in bold type w
ere calculated from

 tw
o analyses of the sam

e grain.

ratios
ages

P
b

U
Th

Th/U
206/204P

b
208/206P

b
208P

b/
±

±
207P

b/
±

206P
b/

±
208P

b/
207P

b/
206P

b/

ppm
ppm

ppm
232Th

1s%
207/206P

b
1s%

235U
1s%

238U
1s%

rho
232Th

±2s
207/206P

b
±2s

235U
±2s

238U
±2s

concordia
±2s

M
S

W
D

prob.
 age

H
R

M
-3JP

_75
25

287
152

0.58
2017

0.18
0.028

2.8
0.059

1.6
0.732

2.0
0.090

1.3
0.62

565
31

555
70

557
18

558
13

558
13

0.01
0.92

H
R

M
-3JP

_77
16

152
118

0.82
1993

0.26
0.032

2.8
0.060

1.9
0.853

2.2
0.102

1.2
0.54

645
35

621
80

626
21

628
14

628
14

0.03
0.86

H
R

M
-3JP

_78
9

103
50

0.57
1650

0.17
0.026

3.0
0.058

1.8
0.685

2.2
0.086

1.2
0.55

518
31

526
80

530
18

530
12

530
12

0.01
0.92

H
R

M
-3JP

_79
15

146
102

0.77
2069

0.24
0.031

2.9
0.060

1.5
0.806

2.0
0.097

1.4
0.68

609
35

605
65

600
19

599
16

599
16

0.03
0.85

H
R

M
-3JP

_80
46

492
375

0.79
5793

0.25
0.028

2.7
0.059

1.4
0.709

1.8
0.087

1.2
0.65

561
30

574
60

544
15

537
12

539
12

1.40
0.24

H
R

M
-3JP

_84
19

210
104

0.53
3683

0.17
0.028

2.8
0.058

1.5
0.725

1.9
0.090

1.1
0.60

564
31

544
67

553
16

556
12

555
12

0.12
0.72

H
R

M
-3JP

_85
51

549
493

0.94
6698

0.28
0.027

2.7
0.058

1.2
0.725

1.6
0.090

1.1
0.69

533
29

547
51

553
14

555
12

554
11

0.08
0.77

H
R

M
-3JP

_86
18

193
129

0.71
3654

0.23
0.029

2.8
0.058

1.9
0.726

2.2
0.091

1.2
0.53

580
32

527
82

554
19

561
12

560
12

0.69
0.41

H
R

M
-3JP

_88
18

206
124

0.67
5459

0.21
0.028

2.8
0.058

1.4
0.733

1.8
0.091

1.1
0.63

562
32

543
62

558
16

562
12

561
12

0.36
0.55

H
R

M
-3JP

_89
25

241
135

0.69
0.19

0.027
2.8

0.060
1.4

0.817
1.9

0.099
1.2

0.67
539

30
602

60
606

17
608

14
607

14
0.04

0.85
H

R
M

-3JP
_90

20
201

99
0.56

2378
0.17

0.030
2.8

0.060
1.5

0.832
2.0

0.101
1.2

0.63
597

33
602

66
615

18
619

14
618

14
0.25

0.62
H

R
M

-3JP
_92

21
236

82
0.38

3424
0.12

0.031
2.9

0.060
1.3

0.802
1.9

0.098
1.5

0.76
619

35
589

55
598

18
600

17
599

16
0.15

0.70
H

R
M

-3JP
_93

28
320

154
0.56

4904
0.17

0.027
2.9

0.059
1.3

0.739
1.8

0.091
1.2

0.66
538

31
565

58
562

15
561

13
561

12
0.02

0.89
H

R
M

-3JP
_94

20
220

169
0.83

2073
0.26

0.027
2.7

0.061
1.7

0.729
2.2

0.086
1.3

0.60
530

29
646

74
556

19
534

13
H

R
M

-3JP
_95

29
295

273
0.83

3161
0.26

0.032
2.9

0.061
1.5

0.863
1.9

0.102
1.2

0.62
646

37
645

63
632

18
628

14
629

14
0.28

0.59
H

R
M

-3JP
_96

31
311

182
0.70

5375
0.20

0.029
2.8

0.060
1.8

0.863
2.1

0.104
1.1

0.53
584

32
620

76
632

20
635

13
635

13
0.15

0.70
H

R
M

-3JP
_97

35
394

189
0.53

9079
0.16

0.028
2.7

0.060
1.2

0.759
1.7

0.092
1.1

0.69
565

30
588

52
573

15
570

12
571

12
0.44

0.51
H

R
M

-3JP
_101

13
151

78
0.59

3937
0.18

0.028
3.0

0.059
1.7

0.736
2.1

0.090
1.3

0.59
548

33
575

75
560

18
556

14
557

13
0.23

0.63
H

R
M

-3JP
_102

15
171

79
0.57

1648
0.14

0.021
3.2

0.058
1.5

0.683
2.1

0.085
1.4

0.69
426

27
530

66
528

17
528

14
528

14
0.00

0.95
H

R
M

-3JP
_103

13
150

98
0.73

0.22
0.026

2.7
0.058

1.4
0.696

1.8
0.087

1.1
0.62

520
28

541
63

536
15

535
12

536
11

0.03
0.86

H
R

M
-3JP

_107
17

189
127

0.71
2170

0.25
0.029

2.8
0.067

1.4
0.787

2.1
0.085

1.6
0.75

587
32

847
57

590
19

525
16

H
R

M
-3JP

_108
26

267
130

0.53
4223

0.16
0.030

2.8
0.060

1.4
0.808

1.9
0.098

1.2
0.64

589
33

595
63

601
17

603
14

602
13

0.05
0.82

H
R

M
-3JP

_109a
34

344
360

1.19
0.34

0.026
3.7

0.059
1.4

0.742
1.8

0.091
1.1

0.63
524

38
571

60
564

15
562

12
H

R
M

-3JP
_109b

25
274

218
0.91

4004
0.26

0.026
3.7

0.058
1.3

0.748
1.7

0.093
1.1

0.65
522

38
540

56
567

15
574

12
H

R
M

-3JP
_111

10
118

51
0.48

2595
0.15

0.027
3.8

0.058
1.7

0.709
2.1

0.089
1.2

0.57
538

40
528

75
544

18
548

12
547

12
0.28

0.60
H

R
M

-3JP
_112

15
160

65
0.45

2458
0.14

0.031
3.7

0.060
1.5

0.818
2.0

0.099
1.3

0.64
609

45
604

67
607

18
608

15
608

14
0.01

0.91
H

R
M

-3JP
_113

9
92

85
1.00

0.31
0.028

3.7
0.058

1.9
0.728

2.2
0.091

1.2
0.52

562
41

520
84

556
19

564
13

563
12

1.13
0.29

H
R

M
-3JP

_114
10

97
109

1.26
1655

0.38
0.027

3.8
0.058

2.1
0.726

2.4
0.090

1.2
0.51

544
41

548
91

554
21

555
13

555
13

0.03
0.87

sam
ple from

 H
R

M
-3 drill core at 249.5 to 250.1m

 (n=101 analyses of w
hich 83 are concordant)

L_01
11

116
98

0.89
1667

0.28
0.029

4.5
0.060

1.9
0.767

2.2
0.093

1.2
0.54

582
52

598
82

578
20

573
13

L_01rep
8

88
55

0.66
1199

0.21
0.029

5.1
0.060

1.8
0.775

2.1
0.094

1.2
0.55

585
58

591
77

582
19

580
13

L_02
25

267
106

0.40
4315

0.12
0.032

4.5
0.060

1.6
0.861

1.9
0.104

1.1
0.57

636
57

616
67

631
18

635
13

634
13

0.32
0.57

L_03
51

596
142

0.24
9136

0.07
0.030

4.5
0.059

1.3
0.801

1.7
0.098

1.2
0.68

604
54

581
55

597
16

602
13

600
13

0.54
0.46

L_05
20

216
110

0.63
1308

0.19
0.029

5.7
0.060

3.6
0.797

3.7
0.096

1.1
0.30

579
66

619
154

595
34

589
13

589
13

0.15
0.70

L_06
16

171
52

0.30
3338

0.09
0.032

4.7
0.061

1.2
0.867

1.7
0.104

1.3
0.73

631
59

622
51

634
16

637
15

636
15

0.34
0.56

L_08
4

41
30

0.76
808

0.23
0.032

4.8
0.061

1.9
0.867

2.4
0.103

1.4
0.60

629
60

632
82

634
23

634
17

634
17

0.00
0.96

L_09
12

133
76

0.58
2301

0.18
0.030

4.7
0.059

1.6
0.778

1.9
0.095

1.1
0.59

598
55

577
68

585
17

586
13

586
13

0.07
0.79

L_10
68

658
538

0.80
3127

0.25
0.030

4.6
0.060

1.7
0.813

2.2
0.098

1.4
0.64

603
54

612
72

604
20

602
16

602
16

0.07
0.79

L_11
25

244
170

0.72
4276

0.22
0.031

4.5
0.060

1.9
0.825

2.3
0.100

1.2
0.53

609
54

592
83

611
21

616
14

615
14

0.33
0.56

L_16
21

202
176

0.90
1702

0.27
0.031

4.5
0.061

1.6
0.863

2.0
0.103

1.2
0.61

614
55

631
67

632
19

632
15

632
14

0.00
0.97

L_20
26

258
119

0.46
0.14

0.033
4.5

0.061
1.5

0.896
1.9

0.106
1.2

0.62
655

58
652

64
650

18
649

15
649

14
0.01

0.94

577
9

0.38
0.54

concordia ages for analyses w
ith 

probability of concordance >0.15, 
including decay constant errors

567
8

0.40
0.53
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Table III-3. continued
C

oncordia ages in bold type w
ere calculated from

 tw
o analyses of the sam

e grain.
ratios

ages

P
b

U
Th

Th/U
206/204P

b
208/206P

b
208P

b/
±

±
207P

b/
±

206P
b/

±
208P

b/
207P

b/
206P

b/

[ppm
]

[ppm
]

[ppm
]

232Th
1s%

207/206P
b

1s%
235U

1s%
238U

1s%
rho

232Th
±2s

207/206P
b

±2s
235U

±2s
238U

±2s
concordia

±2s
M

S
W

D
prob.

 age

L_21
70

653
460

0.83
1237

0.25
0.030

4.5
0.060

2.6
0.817

2.8
0.099

1.1
0.40

590
53

602
112

606
26

607
13

607
13

0.01
0.93

L_23
29

299
249

0.83
0.26

0.029
4.5

0.060
1.2

0.771
1.7

0.093
1.1

0.67
574

51
598

54
580

15
576

12
577

12
0.62

0.43
L_24

8
91

51
0.59

0.18
0.030

4.7
0.060

1.6
0.804

2.0
0.098

1.3
0.63

596
56

596
68

599
19

600
15

600
15

0.01
0.91

L_26
24

300
87

0.29
2778

0.09
0.030

4.6
0.061

1.6
0.786

1.9
0.094

1.1
0.56

601
54

626
68

589
17

579
12

580
12

1.80
0.18

L_27
10

112
43

0.39
1619

0.12
0.031

4.6
0.060

2.0
0.814

2.4
0.098

1.5
0.60

608
55

618
84

605
22

601
17

602
16

0.15
0.70

L_27
9

99
55

0.58
1033

0.18
0.032

4.6
0.061

1.7
0.876

2.1
0.104

1.2
0.58

633
58

646
74

639
20

637
15

637
15

0.06
0.80

L_28
50

479
368

0.78
11607

0.24
0.032

4.5
0.061

1.2
0.874

1.6
0.104

1.1
0.66

633
56

632
52

638
15

639
13

639
13

0.08
0.78

L_30
26

241
102

0.59
360

0.26
0.043

5.0
0.111

2.7
1.505

2.9
0.098

1.2
0.42

858
84

1820
97

932
36

603
14

L_34
25

281
100

0.37
3765

0.11
0.029

1.8
0.060

1.3
0.810

1.7
0.097

0.9
0.64

586
20

614
57

602
16

600
13

599
10

0.24
0.62

L_36
35

404
95

0.25
5637

0.07
0.030

1.9
0.060

1.2
0.820

1.6
0.099

1.1
0.70

595
22

610
50

608
15

607
13

608
13

0.01
0.91

L_37
4

53
19

0.36
687

0.11
0.027

2.5
0.057

3.1
0.702

3.4
0.090

1.5
0.43

535
27

485
136

540
29

553
15

552
15

1.01
0.31

L_38
22

228
104

0.47
3041

0.15
0.032

1.9
0.061

1.5
0.867

1.9
0.104

1.1
0.58

634
23

629
67

634
18

635
13

635
13

0.03
0.86

L_39
14

138
90

0.67
0.21

0.030
1.9

0.060
1.7

0.809
2.0

0.097
1.1

0.56
598

22
611

72
602

18
599

13
600

13
0.09

0.76
L_40

7
67

37
0.56

898
0.17

0.031
2.6

0.058
2.4

0.826
2.7

0.104
1.2

0.46
624

32
518

104
612

25
637

15
L_41

22
250

149
0.61

3143
0.18

0.028
1.9

0.059
1.5

0.743
1.8

0.092
1.1

0.58
549

21
560

65
564

16
565

12
565

11
0.03

0.86
L_42

40
454

147
0.34

3153
0.11

0.032
1.8

0.061
1.6

0.866
1.9

0.103
1.1

0.57
630

22
648

68
633

18
629

13
630

13
0.30

0.59
L_44

7
63

59
0.97

1690
0.29

0.032
1.9

0.061
2.2

0.894
2.6

0.105
1.3

0.49
633

23
656

95
648

25
646

15
647

15
0.04

0.84
L_45

21
244

56
0.24

3449
0.07

0.030
2.3

0.060
1.5

0.803
1.9

0.097
1.2

0.63
596

27
595

64
598

17
599

14
599

13
0.01

0.91
L_46

19
224

101
0.48

2309
0.15

0.028
1.8

0.061
1.6

0.761
2.0

0.091
1.2

0.60
549

19
630

68
575

17
561

13
L_47

13
130

100
0.79

0.24
0.031

1.7
0.060

1.6
0.857

1.9
0.103

1.1
0.58

614
21

612
68

629
18

633
14

632
13

0.39
0.53

L_49
26

250
174

0.71
2284

0.22
0.032

1.9
0.061

1.4
0.871

1.8
0.103

1.1
0.60

631
23

642
62

636
17

634
13

635
13

0.06
0.80

L_50rep
26

300
132

0.45
0.14

0.028
5.0

0.059
1.5

0.738
2.0

0.091
1.3

0.65
559

56
564

66
561

17
561

14
L_50rep-r

136
1603

706
0.41

0.12
0.027

5.0
0.059

1.1
0.738

1.7
0.091

1.3
0.74

548
54

563
49

561
15

561
13

L_51
9

93
67

0.74
0.22

0.031
2.1

0.061
1.6

0.859
2.0

0.102
1.2

0.59
609

25
633

70
630

19
629

14
L_51rep

9
91

60
0.69

3090
0.21

0.032
5.0

0.061
2.2

0.869
2.7

0.104
1.5

0.56
630

62
629

97
635

26
636

18
L_52

15
165

92
0.57

2756
0.18

0.029
1.8

0.059
1.4

0.767
1.9

0.094
1.2

0.64
581

20
575

63
578

17
579

13
579

13
0.02

0.90
L_52rep

23
243

190
0.77

3474
0.25

0.029
5.0

0.060
1.4

0.730
1.9

0.089
1.2

0.63
576

57
587

63
556

16
549

12
sm

_02
36

418
205

0.49
4439

0.15
0.027

1.7
0.060

1.2
0.724

1.7
0.087

1.2
0.70

539
18

609
53

553
15

540
12

sm
_04

86
839

517
0.61

9897
0.19

0.032
1.7

0.061
1.1

0.857
1.7

0.103
1.3

0.76
635

21
627

48
629

16
629

16
629

15
0.00

0.94
sm

_05
26

240
201

0.84
0.26

0.032
1.9

0.060
1.5

0.866
1.9

0.104
1.2

0.62
632

23
620

65
633

18
637

14
636

14
0.28

0.60
sm

_13
19

213
74

0.35
4091

0.11
0.030

2.1
0.060

1.5
0.804

1.9
0.098

1.2
0.63

600
25

592
64

599
17

601
14

601
13

0.08
0.78

sm
_14

10
99

67
0.72

0.21
0.031

2.0
0.061

2.0
0.871

2.3
0.104

1.2
0.54

611
24

624
85

636
22

640
15

639
15

0.13
0.72

sm
_16

30
342

119
0.40

1272
0.13

0.031
1.9

0.070
1.7

0.932
2.1

0.097
1.1

0.53
623

23
914

72
669

20
598

13
sm

_17
7

69
43

0.63
0.19

0.031
3.0

0.061
2.1

0.869
2.5

0.103
1.3

0.53
612

36
641

91
635

24
633

16
633

16
0.03

0.87
sm

_18
68

665
564

0.76
0.22

0.030
2.8

0.061
1.2

0.872
1.7

0.104
1.1

0.68
593

33
642

53
636

16
635

14
635

13
0.06

0.80
sm

_19
26

231
268

1.20
3613

0.34
0.030

2.9
0.061

1.2
0.870

1.6
0.104

1.1
0.70

591
34

636
50

635
15

635
14

635
13

0.00
0.98

sm
_20

22
219

111
0.51

4057
0.16

0.030
3.0

0.060
1.5

0.811
1.9

0.098
1.2

0.63
605

36
595

64
603

17
605

14
605

13
0.09

0.77
sm

_27
12

124
93

0.74
0.24

0.030
3.0

0.060
1.9

0.764
2.3

0.092
1.3

0.56
599

35
603

82
577

20
570

14
571

14
0.60

0.44
sm

_29
13

146
58

0.41
2316

0.13
0.030

3.1
0.059

1.9
0.791

2.4
0.097

1.5
0.62

598
36

578
82

592
22

595
17

594
17

0.17
0.68

sm
_30

24
263

138
0.52

4125
0.16

0.028
2.9

0.059
1.5

0.737
1.9

0.091
1.2

0.62
558

32
565

65
561

17
560

13
560

13
0.03

0.86
sm

_32
53

605
167

0.27
3885

0.08
0.030

2.8
0.060

1.2
0.800

1.7
0.097

1.2
0.70

595
33

588
51

597
15

599
13

599
13

0.18
0.67

sm
_33

5
61

17
0.31

856
0.09

0.025
3.8

0.064
2.0

0.752
2.4

0.086
1.2

0.52
508

38
727

87
570

21
531

13

concordia ages for analyses w
ith 

probability of concordance >0.15, 
including decay constant errors

631
11

0.00
0.99

561
9

0.01
0.91
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Table III-3. continued
C

oncordia ages in bold type w
ere calculated from

 tw
o analyses of the sam

e grain.

ratios
ages

P
b

U
Th

Th/U
206/204P

b
208/206P

b
208P

b/
±

±
207P

b/
±

206P
b/

±
208P

b/
207P

b/
206P

b/

[ppm
]

[ppm
]

[ppm
]

232Th
1s%

207/206P
b

1s%
235U

1s%
238U

1s%
rho

232Th
±2s

207/206P
b

±2s
235U

±2s
238U

±2s
concordia

±2s
M

S
W

D
prob.

 age

sm
_34

13
124

85
0.66

0.21
0.032

3.0
0.059

1.7
0.838

2.0
0.102

1.2
0.57

643
38

585
73

618
19

628
14

626
14

1.36
0.24

sm
_35

36
399

143
0.37

0.11
0.030

2.9
0.060

1.1
0.806

1.6
0.098

1.1
0.71

602
34

598
48

600
14

601
13

601
13

0.01
0.92

sm
_37

23
231

128
0.57

3115
0.17

0.030
3.0

0.060
1.5

0.845
1.9

0.103
1.2

0.63
606

35
586

64
622

18
632

14
630

14
1.96

0.16
sm

_38
18

183
115

0.62
3135

0.19
0.030

2.9
0.059

1.6
0.805

2.0
0.098

1.2
0.60

591
34

580
68

600
18

605
14

604
13

0.53
0.47

sm
_39

17
153

107
0.69

3466
0.22

0.034
2.9

0.062
1.4

0.905
1.9

0.107
1.2

0.64
669

38
659

61
655

18
653

15
654

14
0.03

0.87
sm

_40
14

127
89

0.74
1838

0.22
0.031

2.9
0.062

1.6
0.879

1.9
0.103

1.1
0.58

617
35

665
67

641
18

634
13

635
13

0.83
0.36

sm
_42

68
762

191
0.25

7923
0.08

0.030
2.9

0.060
1.1

0.804
1.7

0.097
1.2

0.74
599

34
609

49
599

15
597

14
598

14
0.23

0.63
sm

_43
14

146
90

0.62
7051

0.20
0.031

2.9
0.061

1.7
0.826

2.0
0.099

1.1
0.55

615
35

623
72

611
18

608
13

608
13

0.17
0.68

sm
_44

37
444

152
0.35

0.11
0.028

2.9
0.058

1.3
0.730

1.7
0.091

1.1
0.63

567
32

525
57

556
14

564
12

563
11

1.88
0.17

sm
_45

24
296

68
0.24

0.07
0.028

3.0
0.059

1.5
0.734

1.9
0.091

1.2
0.63

558
33

557
65

559
17

559
13

559
13

0.00
0.95

sm
_47

10
111

49
0.48

1126
0.14

0.028
3.1

0.059
2.0

0.764
2.3

0.094
1.2

0.51
558

34
572

86
576

20
578

13
577

13
0.02

0.90
sm

_48
49

512
447

0.89
13006

0.27
0.028

2.8
0.059

1.2
0.758

1.7
0.094

1.2
0.69

556
31

555
53

573
15

577
13

576
12

0.65
0.42

sm
_50

22
216

127
0.61

4666
0.18

0.031
3.0

0.061
1.3

0.871
1.8

0.104
1.3

0.73
615

37
630

55
636

18
638

16
637

16
0.06

0.80
sm

_51
28

274
179

0.65
0.20

0.032
2.8

0.061
1.4

0.869
1.7

0.104
1.1

0.62
639

36
628

59
635

16
637

13
636

13
0.08

0.77
sm

_53
21

193
116

0.61
3012

0.18
0.034

2.8
0.062

1.5
0.955

2.0
0.111

1.3
0.66

671
37

679
64

681
20

681
17

681
16

0.00
0.96

sm
_54

25
275

98
0.36

5535
0.11

0.029
2.9

0.059
1.6

0.795
1.9

0.099
1.1

0.57
587

34
549

69
594

17
606

13
sm

_55
26

260
138

0.56
4753

0.16
0.030

2.9
0.060

1.3
0.861

1.7
0.103

1.0
0.61

595
34

620
58

631
16

634
12

633
12

0.22
0.64

sm
_56

6
57

43
0.78

1045
0.23

0.032
2.9

0.061
2.1

0.892
2.5

0.105
1.2

0.50
628

36
657

92
647

24
645

15
645

15
0.07

0.80
sm

_57
20

221
83

0.40
0.11

0.028
3.2

0.059
1.5

0.791
1.9

0.097
1.2

0.61
556

35
570

66
592

17
598

13
597

13
0.70

0.40
sm

_59
13

154
52

0.35
0.11

0.030
2.9

0.059
2.1

0.792
2.4

0.097
1.1

0.48
588

34
577

92
592

22
596

13
596

13
0.18

0.67
sm

_60
69

814
346

0.45
9919

0.12
0.024

2.8
0.061

1.2
0.714

1.7
0.085

1.2
0.69

470
26

631
53

547
14

527
12

sm
-b-02

30
339

108
0.32

7486
0.10

0.031
5.1

0.060
1.3

0.793
1.8

0.096
1.2

0.66
611

61
599

58
593

16
591

13
592

13
0.06

0.81
sm

-b-03
31

295
212

0.73
0.22

0.032
5.0

0.062
1.8

0.906
2.1

0.106
1.1

0.51
642

63
667

79
655

21
651

14
652

14
0.16

0.69
sm

-b-04
35

352
276

0.81
6652

0.25
0.032

5.0
0.061

1.3
0.864

1.7
0.103

1.1
0.63

637
62

625
57

632
16

635
13

634
13

0.11
0.74

sm
-b-05

9
85

90
1.08

2235
0.34

0.032
5.0

0.061
2.0

0.866
2.4

0.103
1.4

0.58
642

63
639

84
634

23
632

17
632

17
0.03

0.87
sm

-b-07
32

323
90

0.28
9628

0.08
0.031

5.0
0.061

1.2
0.866

1.7
0.104

1.2
0.69

620
61

622
53

633
16

636
14

635
14

0.25
0.62

sm
-b-08

54
581

458
0.84

2122
0.27

0.028
5.0

0.060
2.1

0.736
2.4

0.089
1.1

0.46
564

55
596

92
560

21
551

11
552

11
0.91

0.34
sm

-b-09
19

207
140

0.70
3004

0.23
0.029

5.0
0.061

1.4
0.753

1.8
0.090

1.1
0.63

577
57

628
60

570
16

555
12

sm
-b-10

7
74

65
0.86

944
0.27

0.030
5.1

0.059
1.7

0.766
2.1

0.095
1.3

0.60
593

59
558

73
578

18
583

14
582

14
0.46

0.50
sm

-b-15
21

254
95

0.38
0.12

0.029
5.1

0.059
1.5

0.738
1.9

0.090
1.2

0.62
574

58
580

65
562

16
557

13
558

12
0.45

0.50
sm

-b-16
23

230
152

0.66
4088

0.21
0.031

5.0
0.061

1.6
0.833

2.0
0.099

1.2
0.61

618
61

636
68

616
19

610
14

611
14

0.57
0.45

sm
-b-17

56
552

386
0.73

3718
0.23

0.030
5.1

0.060
1.5

0.801
1.9

0.097
1.1

0.61
602

61
601

64
597

17
596

13
596

13
0.02

0.89
sm

-b-19
9

95
74

0.85
1527

0.26
0.027

5.1
0.058

2.1
0.712

2.4
0.089

1.1
0.47

536
54

527
94

546
21

551
12

sm
-b-19rep

16
166

155
0.95

0.29
0.028

5.0
0.059

1.6
0.739

2.0
0.091

1.2
0.57

560
55

556
72

562
17

563
12

sm
-b-24

13
131

71
0.53

1011
0.20

0.036
5.1

0.071
1.4

0.956
1.9

0.097
1.3

0.66
717

71
968

59
681

19
598

14
sm

-b-25
53

645
218

0.33
6748

0.11
0.030

5.0
0.059

1.1
0.737

1.6
0.091

1.2
0.75

592
58

565
47

561
14

560
13

560
12

0.04
0.84

sm
-b-26

9
99

67
0.65

1137
0.21

0.028
5.1

0.060
1.7

0.710
2.0

0.086
1.1

0.54
563

56
601

75
545

17
531

11
sm

-b-28
64

494
1055

3.00
5119

0.55
0.018

5.4
0.061

1.5
0.837

1.9
0.100

1.2
0.60

365
39

634
67

618
18

613
14

614
13

0.38
0.54

sm
-b-29

71
823

264
0.48

0.15
0.031

5.3
0.060

1.2
0.827

1.6
0.100

1.1
0.68

616
64

610
52

612
15

612
13

612
13

0.01
0.94

sm
-b-30

52
576

147
0.26

8982
0.08

0.031
5.0

0.060
1.3

0.805
1.7

0.097
1.1

0.65
616

61
612

57
600

16
597

13
598

13
0.25

0.62
sm

-b-34
36

390
124

0.34
7857

0.10
0.031

5.0
0.060

1.4
0.816

1.9
0.098

1.2
0.64

608
60

609
62

606
17

605
14

605
13

0.02
0.90

concordia ages for analyses w
ith 

probability of concordance >0.15, 
including decay constant errors

557
9

0.18
0.67
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Table III-4: U
-Pb data for reference m

aterials treated as unknow
ns

Pb
U

Th
Th/U

206Pb/ 204Pb
208Pb/ 206Pb

ratios
[ppm

]
[ppm

]
[ppm

]
208Pb/ 232Th

±1s%
207Pb/ 206Pb

±1s%
207Pb/ 235U

±1s%
206Pb/ 238U

±1s%
rho

Ples
32

684
62

0.09
7250

0.03
0.017789

2.91
0.052728

1.48
0.387236

1.92
0.053264

1.22
0.64

Ples
35

750
65

0.09
7411

0.03
0.016978

2.97
0.053020

1.61
0.389221

2.00
0.053242

1.18
0.59

Ples
34

738
65

0.09
5896

0.03
0.016818

2.95
0.053015

1.29
0.389982

1.82
0.053351

1.28
0.70

Ples
35

749
65

0.10
9146

0.03
0.016930

3.87
0.053069

1.49
0.390573

1.89
0.053378

1.15
0.61

Ples
35

748
66

0.10
6983

0.03
0.016813

2.92
0.053212

1.36
0.390577

1.79
0.053234

1.17
0.65

Ples
36

774
73

0.09
9605

0.03
0.017806

4.66
0.052941

1.12
0.390591

1.63
0.053509

1.19
0.73

Ples
25

529
43

0.09
3357

0.03
0.017124

2.60
0.052945

1.29
0.392670

1.76
0.053790

0.97
0.68

Ples
37

780
69

0.10
9074

0.03
0.016016

4.37
0.052969

1.47
0.392912

1.83
0.053799

1.08
0.59

Ples
37

775
74

0.09
7534

0.03
0.018314

3.11
0.053119

1.18
0.393523

1.75
0.053730

1.30
0.74

Ples
38

796
72

0.09
15466

0.03
0.018000

5.11
0.052880

1.36
0.393739

1.75
0.054002

1.11
0.63

Ples
37

793
71

0.08
9650

0.03
0.019217

5.15
0.052607

1.24
0.394111

1.83
0.054334

1.35
0.74

Ples
36

781
75

0.10
8055

0.03
0.018142

4.80
0.053402

1.17
0.394581

1.72
0.053589

1.26
0.73

Ples
22

470
37

0.08
6086

0.02
0.016362

2.83
0.053137

1.59
0.394695

1.97
0.053872

0.91
0.58

Ples
35

752
66

0.09
9259

0.03
0.016657

4.36
0.053330

1.27
0.397082

1.71
0.054002

1.15
0.67

Ples
36

765
67

0.10
10299

0.03
0.016508

3.94
0.053147

1.36
0.397495

1.79
0.054244

1.18
0.66

Ples
37

797
71

0.09
6710

0.03
0.018484

5.02
0.053415

1.36
0.398133

1.87
0.054058

1.29
0.69

Ples
36

758
73

0.10
5135

0.03
0.017533

3.40
0.053714

1.22
0.399389

1.71
0.053927

1.20
0.70

Ples
37

784
70

0.10
4531

0.03
0.016799

3.14
0.053181

1.22
0.400102

1.75
0.054565

1.25
0.72

91500
16

93
30

0.35
3670

0.11
0.054202

3.00
0.073835

1.73
1.827044

2.08
0.179468

1.15
0.55

91500
16

93
30

0.35
3029

0.11
0.053914

2.91
0.074596

1.53
1.837169

1.95
0.178621

1.22
0.62

91500
16

96
32

0.36
1797

0.11
0.054095

2.85
0.074640

1.43
1.845673

1.85
0.179343

1.18
0.64

91500
17

101
35

0.35
3004

0.11
0.055180

2.02
0.074504

1.80
1.849242

2.18
0.180017

1.01
0.56

91500
15

89
31

0.33
2490

0.11
0.059507

5.07
0.075156

1.32
1.854494

1.75
0.178962

1.15
0.65

91500
13

77
25

0.36
2017

0.11
0.053427

4.08
0.075894

1.65
1.856889

2.01
0.177450

1.15
0.57

91500
16

91
31

0.34
2914

0.11
0.057262

5.18
0.075054

1.53
1.857182

1.91
0.179464

1.15
0.60

91500
17

99
34

0.35
2394

0.11
0.054358

4.70
0.074701

1.37
1.858231

1.76
0.180414

1.11
0.63

91500
17

104
36

0.34
2939

0.11
0.056213

2.94
0.075852

1.23
1.861316

1.68
0.177973

1.15
0.68

91500
17

101
35

0.36
2265

0.11
0.054006

4.71
0.075479

1.59
1.865404

2.03
0.179244

1.25
0.62

91500
17

101
34

0.35
3218

0.11
0.054410

3.01
0.075761

1.68
1.871169

2.13
0.179130

1.31
0.61

91500
16

92
30

0.35
2770

0.11
0.055266

4.53
0.075402

1.26
1.872670

1.72
0.180126

1.17
0.68

91500
17

97
34

0.34
2275

0.10
0.055942

2.92
0.074790

1.16
1.880096

1.68
0.182320

1.22
0.73

91500
13

76
25

0.36
1675

0.11
0.053793

3.88
0.076148

1.62
1.886104

2.00
0.179642

1.17
0.59

91500
16

94
31

0.35
3037

0.11
0.055789

4.41
0.075263

1.44
1.887197

1.87
0.181859

1.19
0.64

91500
17

100
35

0.36
1956

0.11
0.054278

2.16
0.076567

1.65
1.890258

2.05
0.179052

1.00
0.60

91500
17

93
32

0.52
788

0.15
0.052544

6.57
0.074683

2.94
1.849914

3.06
0.179554

0.86
0.28
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Table III-4: continued
ages

concordia age
208Pb/ 232Th

±2s
207Pb/ 206Pb

±2s
207Pb/ 235U

±2s
206Pb/ 238U

±2s
age

±2s
M

SW
D

probability

Ples
356

21
317

67
332

11
335

8
334

8
0.27

0.61
Ples

340
20

330
73

334
11

334
8

334
8

0.02
0.90

Ples
337

20
329

59
334

10
335

8
335

8
0.04

0.85
Ples

339
26

332
68

335
11

335
8

335
7

0.01
0.92

Ples
337

20
338

62
335

10
334

8
334

8
0.01

0.91
Ples

357
33

326
51

335
9

336
8

336
8

0.14
0.71

Ples
343

18
326

59
336

10
338

8
338

6
0.15

0.70
Ples

321
28

327
67

336
10

338
7

338
7

0.09
0.76

Ples
367

23
334

53
337

10
337

9
337

8
0.02

0.90
Ples

361
37

324
62

337
10

339
7

339
7

0.25
0.62

Ples
385

39
312

56
337

11
341

9
340

9
1.05

0.30
Ples

363
35

346
53

338
10

337
8

337
8

0.12
0.73

Ples
328

18
335

72
338

11
338

8
338

6
0.01

0.92
Ples

334
29

343
57

340
10

339
8

339
8

0.02
0.90

Ples
331

26
335

62
340

10
341

8
340

8
0.03

0.86
Ples

370
37

346
61

340
11

339
9

340
8

0.05
0.82

Ples
351

24
359

55
341

10
339

8
339

8
0.54

0.46
Ples

337
21

337
55

342
10

342
8

342
8

0.05
0.83

91500
1067

62
1037

70
1055

27
1064

23
1061

21
0.55

0.46
91500

1061
60

1058
62

1059
26

1059
24

1059
22

0.00
0.96

91500
1065

59
1059

57
1062

25
1063

23
1063

21
0.02

0.88
91500

1086
43

1055
72

1063
29

1067
24

1067
20

0.11
0.74

91500
1168

115
1073

53
1065

23
1061

22
1063

21
0.15

0.69
91500

1052
84

1092
66

1066
27

1053
22

1057
21

1.24
0.26

91500
1125

114
1070

62
1066

25
1064

23
1065

21
0.03

0.86
91500

1070
98

1060
55

1066
23

1069
22

1068
20

0.09
0.77

91500
1105

63
1091

49
1067

22
1056

22
1062

20
1.68

0.19
91500

1063
98

1081
64

1069
27

1063
25

1065
23

0.29
0.59

91500
1071

63
1089

67
1071

28
1062

26
1065

24
0.54

0.46
91500

1087
96

1079
51

1071
23

1068
23

1070
21

0.17
0.68

91500
1100

63
1063

46
1074

22
1080

24
1076

21
0.40

0.52
91500

1059
80

1099
65

1076
27

1065
23

1069
22

0.95
0.33

91500
1097

94
1076

58
1077

25
1077

24
1077

22
0.00

0.96
91500

1068
45

1110
66

1078
27

1062
24

1064
19

2.02
0.16

91500
1035

133
1060

118
1063

41
1065

17
1064

17
0.00

0.95
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