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ZUSAMMENFASSUNG 
Die epithelial-mesenchymale Transition (EMT) ist ein reversibler zellulärer 

Reprogrammierungsprozess, der ursprünglich während der Embryonalentwicklung auftritt. Im 

somatischen Gewebe ist der EMT-Prozess entscheidend an der Initiierung von Metastasen 

und Entwicklung von Tumoren beteiligt. Während des EMT-Prozesses verlieren einzelne 

Zellen eines Zellverbunds ihre epithelialen Eigenschaften, lösen sich von ihren Nachbarzellen 

ab und erlangen einen mesenchymalen Phänotyp mit hohem Migrations- und 

Invasionspotential. Die Aufklärung der molekularen Ursachen und die Erforschung neuer 

Möglichkeiten, gezielt in diesen Prozess einzugreifen, sind daher von besonderem Interesse 

für die Entwicklung neuer Behandlungsstrategien gegen die Bildung von Metastasen. Dabei 

dienen charakteristische epitheliale und mesenchymale Proteine, wie das Zellkontakt-Protein 

Occludin, das Aktin-Zytoskelett, der transkriptionale Repressor SNAI1 und das 

Intermediärfilament Vimentin als spezifische Biomarker oder sogar als Zielstrukturen für 

Wirkstoffe. Bis heute existiert noch kein Ansatz, diese endogenen Markerproteine in lebenden 

Zellen und in einem physiologischen Kontext zu untersuchen.  

In dieser Arbeit wurden neue Einzeldomänen-Antikörper (Nanobodies) selektiert, um 

dynamische Veränderungen dieser EMT-Biomarker in Lebendzellsystemen biochemisch und 

optisch zu verfolgen. Nanobodies basieren auf der variablen Domäne von Schwere-Ketten-

Antikörpern aus Kameliden und sind die kleinste, natürlich vorkommende antigenbindende 

Einheit. Für intrazelluläre Anwendungen werden Nanobodies an fluoreszierende Proteine 

fusioniert, wodurch sogenannte Chromobodies entstehen, die auf DNA-Ebene in Zellen 

eingebracht werden. Es wurden spezifische Nanobodies gegen Occludin, SNAI1 und 

Vimentin mittels der Phagen-Display-Technologie selektiert und ihre Bindeeigenschaften in 

biochemischen und zellbiologischen Analysen untersucht. Darauf basierend wurden stabile 

Zellsysteme mit einem Vimentin-spezifischen Chromobody sowie mit einem bereits 

beschriebenen Aktin-Chromobody hergestellt. Mittels High-Content-Mikroskopie konnten 

damit zum ersten Mal dynamische Veränderungen dieser endogenen Strukturkomponenten 

nach Induktion des EMT-Prozesses mit dem Wachstumsfaktor TGF-β detailliert beobachtet 

und quantifiziert werden. Abschließend wurden in einem Screeningsystem Zeit- und Dosis-

abhängige Effekte nach Behandlung mit dem Vimentin-modifizierenden Wirkstoff Withaferin 

A bestimmt. Dieser hier beschriebene und vielseitig nutzbare Ansatz ermöglicht es nun die 

räumliche und zeitliche Organisation von relevanten EMT-Biomarkern detailliert in lebenden 

Zellen zu studieren. Damit ist ein Grundstein für neue Screeningtechnologien zur Findung 

von EMT-beeinflussenden Wirkstoffen mit antimetastasierender Wirkung gelegt. 
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ABSTRACT 
The epithelial-mesenchymal transition (EMT) is a reversible cellular reprogramming process 

that originally occurs during embryonic development and is strongly involved in the initiation 

of metastases and cancer progression. During EMT, single cells of an epithelial layer lose 

their characteristic epithelial features, detach from their neighbor cells and acquire a 

mesenchymal phenotype with increased migratory and invasive potential. Targeting EMT is 

of particular interest for the development of novel compounds in the anti-metastatic cancer 

therapy. Thereby, certain epithelial and mesenchymal proteins, including the tight junction 

component occludin, the actin cytoskeleton, the transcriptional repressor SNAI1 and the 

intermediate filament vimentin, serve as specific biomarkers or even as target structures for 

compounds. To date, there is no approach available to study these endogenous markers in 

living cells in a physiological context.  

In this thesis, novel single-domain antibodies (nanobodies) were selected to trace EMT 

biomarkers in a cancer-relevant living cell system. Nanobodies (~15 kDa), derived from 

heavy-chain-only antibodies of camelids, represent the smallest naturally occurring antigen 

binding reagent. For intracellular target visualization, they can be fused to fluorescent proteins 

(referred to as chromobodies) and introduced into cells on DNA level. Specific nanobodies 

against occludin, SNAI1 and vimentin were selected via the phage display technology and 

respective binding properties of nanobodies and chromobodies were analyzed in biochemical 

and cell biological assays. The vimentin specific and intracellular functional chromobody 

VB6-CB and a previously described chromobody specific for actin (Actin-CB) were stably 

introduced in cellular models. Based on the chromobody fluorescence, dynamic changes of 

endogenous actin and vimentin upon induction of EMT with the transforming growth factor β 

(TGF-β) were monitored and quantified for the first time by high-content-imaging. Moreover, 

by treatment with the vimentin modifying compound Withaferin A (WFA) time- and dose- 

dependent alterations of vimentin were observed and analyzed.  

Taken together, this versatile approach allows detailed studies of the spatiotemporal 

organization of relevant EMT-biomarkers in living cells. This may provide the basis for novel 

screening technologies for anti-metastatic therapeutics affecting EMT. 
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as well as the reversed process, described as mesenchymal-epithelial transition (MET), are 

frequent events that occur during embryonic development, tissue regeneration and diseases 

such as organ fibrosis and tumor progression (Barriere et al., 2015). 

1.1.1 EMT in development 

In the 1960s, the epithelial-mesenchymal transition was first described by Elizabeth Hay, 

studying a model of the primitive streak during chick embryogenesis (Hay, 1968). Based on 

this pioneering work, it is known that the ability of cells to switch from an adherent epithelial 

phenotype into migratory mesenchymal cells is fundamental in early embryonic stages (Hay, 

2005, Lim and Thiery, 2012). During the formation of the three germ layers (gastrulation), 

cells of a single epithelial layer (epiblast) undergo EMT to constitute mesoderm and 

endoderm, while cells that remain in the epiblast turn into the ectoderm (Acloque et al., 2009). 

Later on, EMT and MET processes are also involved in the generation of neural crest cells 

and their differentiation into derivates such as neurons, glial cells and pigment cells during the 

development of the nervous system (Dupin et al., 2007). Originating from the early 

mesoderm, several EMT and MET events, as well as the related process endothelial-

mesenchymal transition (EndMT) are required for the morphogenesis of tissues and whole 

organs, such as pancreas, liver and heart (Johansson and Grapin-Botton, 2002, Tanimizu and 

Miyajima, 2007, Timmerman et al., 2004). Generally, EMT processes during development are 

classified as Type 1 EMT (Kalluri and Weinberg, 2009). 

1.1.2 EMT in tissue regeneration and organ fibrosis  

In adults, processes of Type 2 EMT occur during wound healing. In case of an injury, 

keratinocytes are activated in response to inflammatory cytokines and undergo partial EMT 

that allows them to spread and migrate within loose cell-cell adhesions (Arnoux et al., 2008, 

Yan et al., 2010). However, Type 2 EMT does not only occur in healthy organisms, but is also 

linked to pathological events, including fibrotic diseases of the liver, kidney, heart and lung 

(Kalluri and Neilson, 2003). Permanent injuries, such as chronic inflammation, promote 

ongoing EMT processes. This leads to an increased number of myofibroblasts that arise 

through EMT and secrete an excessive amount of collagen and other ECM components, 

resulting in a complete loss of organ function (Liu, 2004, Zeisberg et al., 2007).  

1.1.3 EMT in cancer progression 

During the last decade, activation of the EMT program has been linked to critical mechanisms 

in tumor progression, development of circulating tumor cells (CTCs) and metastasis 

formation (De Craene and Berx, 2013, Barriere et al., 2015). While excessive cell 
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proliferation and angiogenesis are early events in the progression of epithelial cancers, EMT 

type 3 processes occur in advanced stages during cancer cell dissemination (Thiery and Lim, 

2013). Thereby, single cells originating from primary tumors invade the surrounding tissue 

and metastasize to distant parts of the body. Epithelial cells that underwent full or partial 

EMT show an increased resistance to anoikis (Kim et al., 2012) and can cross the ECM to 

intravasate blood vessels (Nieto, Yu et al., 2013). In this context, it has been shown that 

certain populations of circulating tumors cells (CTCs) that underwent EMT present properties 

of migratory cancer stem cells (CSCs), such as self-renewal and the capacity to grow into 

secondary tumors (Mani et al., 2008), while in other populations, referred as stationary CSCs, 

stemness properties are suppressed (Ocana et al., 2012, Nieto, 2013, Jung and Yang, 2015). 

For extravasation and colonization processes of micro- and macrometastases mesenchymal-

epithelial transition (MET) processes occur (Chang et al., 2013). This is reflected by high 

histological similarities between primary and secondary tumors and is consistent with studies, 

describing mesenchymal-like cells that re-acquire epithelial characteristics but continue to 

maintain mesenchymal properties, referred as metastable phenotype (Brabletz et al., 2001, 

Lee et al., 2006, Jordan et al., 2011). 

The emerging role of EMT during tumor progression and metastatic development turns it into 

an attractive target for cancer therapy (reviewed in Davis et al., 2014). In this regard, 

important EMT marker proteins as well as signaling pathways are of particular interest and 

will be described in the following sections of the introduction. 

1.2 EMT marker proteins 

A hallmark of EMT is the change in expression of epithelial and mesenchymal marker 

proteins (Figure 1.2) (Kalluri and Weinberg, 2009). Most of the epithelial markers are 

components of junctional complexes: occludin, claudin and zona occludens (ZO) 1-3 are tight 

junction proteins, while E-cadherin is implicated in adherens junctions and linked to cortical 

actin via catenins, and cytokeratins are connected to the desmosoms via desmoplakin (Knights 

et al., 2012, Lamouille et al., 2014). Triggered through extracellular activators such as growth 

factors and components of the ECM, the expression of so-called EMT transcription factors 

(TFs), including SNAI1, SNAI2, TWIST, ZEB and others is increased (Peinado et al., 2007). 

EMT-TFs regulate EMT-relevant gene expression and act as transcriptional repressors of 

epithelial marker proteins. Along with the loss of epithelial markers, the expression of 

mesenchymal markers such as N-cadherin, vimentin and fibronectin is increased. This is 

accompanied by extensive changes in the organization of the actin cytoskeleton, leading to 
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enhanced cellular motility (Thiery and Sleeman, 2006, Lamouille et al., 2014). Metastable 

cells that underwent only partial EMT were shown to express epithelial as well as 

mesenchymal marker proteins (Jordan et al., 2011). The following sections provide a detailed 

description of four fundamental EMT markers occludin, actin, SNAI1 and vimentin. 

 

Figure 1.2: Epithelial and mesenchymal markers. (A) Epithelial cell with cell junctions and characteristic 

marker proteins. Epithelial markers comprise the tight junction proteins occludin, claudin, ZO1-3, the adherens 

junction component E-cadherin, which is connected to cortical actin via β-catenin and α-catenin, the desmosoms 

associated protein desmoplakin and the intermediate filament cytokeratin. (B) Mesenchymal cell and 

characteristic marker proteins. Mesenchymal markers comprise N-cadherin, the transcription factors SNAI1, 

SNAI2, ZEB and TWIST, the cytoskeletal elements vimentin and actin stress fibers, as well as the ECM 

component fibronectin (modified from Lamouille, 2014).  

1.2.1 Occludin 

Together with other transmembrane linker proteins (e.g. claudins, JAM) and cytoplasmic 

adaptor proteins (e.g. ZO1-3, vinculin, and cingulin), occludin is an essential component of 

cellular tight junctions at the apical side of epithelial and endothelial cells (reviewed in 

Niessen, 2007). The occludin monomer (~65 kDa) consists of a cytoplasmic N- and C-

terminus, four transmembrane domains as well as one small intracellular and two extracellular 

loops (Figure 1.2) (Furuse et al., 1993). The extracellular loops have been shown to be 

required for cell-cell interactions, while the N- and C- termini are involved in the sealing and 

barrier function of tight junctions (Chen et al., 1997, Bamforth et al., 1999). Moreover, the 

extended C-terminal domain interacts with a number of cytoplasmic proteins, including ZO1-

3 (Fanning et al., 1998, Itoh et al., 1999, Haskins et al., 1998), junctional adhesion molecule 

(JAM) (Bazzoni et al., 2000), and vascular adhesion molecule (VAP)-33 (Lapierre et al., 
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1999). It is also essential for the dimerization of occludin and was shown to mediate signal 

transduction (reviewed in Feldman et al., 2005). Regulation of occludin is highly depending 

on its phosphorylation state: In intact epithelial cells occludin is extensively phosphorylated 

on Ser and Thr residues, whereas phosphorylation on Tyr residues has been linked to 

disruption of the tight junctions (Ando-Akatsuka et al., 1996, Raleigh et al., 2011). Since 

occludin is involved in epithelial adhesion, migration and apoptosis, deregulation of occludin 

has been associated with diseases such as viral and bacterial infections, inflammatory diseases 

and tumor progression (Du et al., 2010, Cummins, 2012, Beeman et al., 2012). Decreased 

occludin levels were found to be a frequent event in a variety of epithelial tumors (Tobioka et 

al., 2004, Orban et al., 2008, Martin et al., 2010). During EMT, occludin gene expression is 

repressed by the EMT-TFs SNAI1, SNAI2, TWIST and FoxF1, leading to a tight junction 

collapse, accompanied by the loss of the epithelial barrier function (Peinado et al., 2007, Yang 

et al., 2010, Nilsson et al., 2010). 

1.2.2 Actin 

Microfilaments, consisting of the 42 kDa protein actin, microtubules and intermediate 

filaments are the three major components of the cytoskeleton. The actin monomer is a 

globular protein (G-actin) that is able to polymerize into filamentous actin (F-actin) upon 

regulation through ATP hydrolysis and a number of actin binding proteins, particularly 

profilin and cofilin (Dominguez and Holmes, 2011). Actin organization is critically involved 

in migration and invasion of metastatic cancer cells (Yamaguchi and Condeelis, 2007, Ridley, 

2011). In epithelial cells, actin filaments are organized in thin cortical bundles linked to the 

plasma membrane. They are tightly connected to the adherens junctions via α-catenin and β-

catenin and to the tight junctions via interaction with the ZO proteins (Niessen, 2007). Hence, 

changes in the arrangement of cellular junctions dramatically affect the organization of the 

actin cytoskeleton in epithelial cells. In mesenchymal cells, actin filaments are typically 

reorganized into thick contractile stress fibers at the ventral cell surface (Godoy et al., 2009, 

Haynes et al., 2011, Lamouille et al., 2014). During EMT, actin remodeling is controlled by 

the Rho small GTPases family, including RhoA, Rac and Cdc42, which mediate the formation 

of actin stress fibers, lamelopodia and filopodia (Woodham and Machesky, 2014, Morris and 

Machesky, 2015). In this context, increased expression of the actin regulating proteins Arp2/3 

and WAVE2 has been reported to correlate with poor prognosis in breast and liver carcinomas 

(Iwaya et al., 2007). A recent study also suggests that actin reorganization may appear as an 

upstream regulator of EMT in metastatic cancer cells (Shankar and Nabi, 2015). 
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1.2.3 SNAI1 

As mentioned above, SNAI1 is a mesenchymal marker protein and belongs to the so-called 

EMT-TFs. SNAI1 (Snail), SNAI2 (Slug) and SNAI3 (Smuc) constitute the Snail family of 

transcriptional repressors, all comprising a highly conserved C-terminal DNA binding domain 

with four to six C2H2 zinc fingers (Nieto, 2002). The N-terminal SNAG domain of SNAI1 

and SNAI2 is responsible for their repressor capacity, while the central domains are highly 

diverse. SNAI1 comprises a Ser/Pro rich domain, a so-called destruction box domain as well 

as a nuclear export signal (NES) (Peinado et al., 2007, Wang et al., 2013b). Posttranslational 

modifications within these regions regulate subcellular localization, protein stability and 

repressor activity of SNAI1 (Wu et al., 2009b, Vinas-Castells et al., 2010). In particular, 

phosphorylation of the NES and destruction box domain by GSK3β has been reported to 

mediate ubiquitin-dependent degradation of SNAI1 (Zhou et al., 2004, Zheng et al., 2013). 

Most importantly, SNAI1 has been shown to repress the expression of many EMT related 

target genes, including the epithelial markers E-cadherin, occludin, cytokeratin 17 and 18, 

claudins and collagen2α1 (Peinado et al., 2007, Lamouille et al., 2014). The mechanism of 

SNAI1-mediated transcriptional repression was proposed to occur via complex formation 

with the co-repressor Sin3A and HDAC1/2 (Peinado et al., 2004). Interestingly, SNAI1 also 

binds to its own promoter, thereby autoregulating its expression (Peiro et al., 2006). Being 

involved in many EMT regulating signaling pathways (see also section 1.3), SNAI1 plays a 

critical role in the development of tumor metastasis (Kaufhold and Bonavida, 2014). 

Recently, it has been reported to contribute to drug resistance and a CSC-like phenotype in 

metastasizing pancreatic cancer and lung cancer (Zhou et al., 2014, Wang et al., 2014). 

1.2.4 Vimentin 

One of the most frequently described mesenchymal EMT markers is the 54 kDa protein 

vimentin. Together with desmin and GFAP, vimentin belongs to the type III class of 

intermediate filaments and is a major cytoskeletal component of mesenchymal cells, which is 

mainly involved in tissue integrity and cytoarchitecture (reviewed in Herrmann et al., 2007). 

The evolutionarily highly conserved protein generally consists of three domains. The N-

terminal head domain (aa 1 - 95) is required for vimentin assembly, depending on 

posttranslational modifications (Sihag et al., 2007). The central helical rod domain (aa 96 – 

407) includes three α-helices (coil 1A, 1B and coil 2) which are connected by two linkers (L1 

and L12). Finally, the C-terminal tail domain (aa 408 – 488) is essential for the radial 

compaction and width control of extended filaments (Chernyatina et al., 2012, Herrmann et 

al., 1996). Assembly and disassembly of vimentin filaments are tightly regulated by the 
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interplay of numerous kinases that are involved in cell division and migration (Sihag et al., 

2007). When dephosphorylated, soluble tetrameric vimentin units self-assemble by lateral 

association into unit length filaments (ULFs), which anneal longitudinally into higher-order 

filamentous structures with an approximate thickness of 10 nm after radial compaction 

(Kirmse et al., 2007). Phosphorylation of vimentin Ser/Thr residues, typically located in the 

head or tail domain induce vimentin disassembly (Sihag et al., 2007, Snider and Omary, 

2014). Vimentin is involved in a number of signaling pathways mediating apoptosis (Byun et 

al., 2001, Burikhanov et al., 2014), cell migration and invasion (Zhu et al., 2011, Vuoriluoto 

et al., 2011, Havel et al., 2014). In the context of EMT, ectopic expression of vimentin in 

cellulo has been shown to induce mesenchymal-like cell features (Mendez et al., 2010). 

Moreover, overexpression of vimentin has been shown to correlate with increased formation 

of metastases, reduced patient survival and poor prognosis across multiple epithelial cancers, 

including lung, breast and gastrointestinal tumors (Otsuki et al., 2011, Yamashita et al., 2013, 

Dauphin et al., 2013). 

1.3 EMT signaling 

EMT signaling is mediated by various intrinsic factors (e.g. kinases, transcription factors) as 

well as extrinsic stimuli from the local microenviroment, including growth factors, cytokines, 

hypoxia and components of the ECM. Thereby the transforming growth factor β (TGF-β) 

pathway represents the main signaling mechanism. Other pathways involved in EMT 

constitute receptor tyrosine kinase (RTK), Wnt, Notch, and Hedgehog signaling. All of them 

activate intracellular kinase cascades that induce EMT-TFs, triggering the repression of 

epithelial markers and induction of mesenchymal markers (reviewed in Lamouille et al., 2014, 

Gonzalez and Medici, 2014). 

1.3.1 TGF-β-dependent signaling 

TGF-β signaling can be activated by three isoforms of TGF-β (TGF-β1, TGF-β2 and TGF-β3) 

as well as by the bone morphogenic proteins (BMP2-7). Thereby, TGF-β1 is best described in 

cancer-related EMT signaling (Xu et al., 2009). Ligand binding to the heterotetrameric 

receptor complex, consisting of TGF-β receptor I (TGF-βRI) and TGF-βRII components, 

leads to phosphorylation of TGF-βRI by the Ser/Thr kinase activity of TGF-βRII. 

Subsequently, the transcription factors SMAD2/3 are recruited to the Gly/Ser rich domain of 

TGF-βRI, followed by phosphorylation of the C-terminal domain of SMAD2/3 which induces 

complex formation with the transcriptional co-activator SMAD4 (Feng and Derynck, 2005, 

Gonzalez and Medici, 2014). This SMAD2/3 and SMAD 4 complex translocates into the 
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Alongside SMAD-dependent signaling, TGF-β is also potent as an activator of non-SMAD 

pathways, such as signaling through Rho GTPases (RhoA, Rac and Cdc42) to regulate the 

actin cytoskeleton (Ridley, 2011). Moreover, ubiquitinylation of RhoA via TGF-βRI-

dependent phosphorylation of Par6 and activation of Smurf1 induces proteasomal degradation 

of RhoA and disruption of the tight junctions (Ozdamar et al., 2005). Since TGF-β receptors 

were shown to have a low Tyr phosphorylation activity next to their Ser/Thr phosphorylation 

activity, they can also directly activate the PI3K-Akt and MAPK pathways. TGF-β-mediated 

activation of the PI3K-Akt pathway during EMT leads to an increase in cell size, protein 

synthesis, motility and invasion mediated through mTOR signaling (Lamouille et al., 2012). 

Activation of ERK/MAPK signaling cascades have been shown to contribute to a decreased 

E-cadherin expression and increased expression of fibronectin and vimentin (Xie et al., 2004, 

Yu et al., 2002). 

1.3.2 TGF-β-independent signaling 

In addition to TGF-β-dependent signaling, EMT can be induced by a number of other growth 

factors, including epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-

derived growth factor (PDGF) and insulin growth factor (IGF). All of them stimulate receptor 

tyrosine kinases (RTKs) that activate signaling pathways mediated by PI3K-Akt, Src and Ras 

and induce expression of the EMT-TFs (Lemmon and Schlessinger, 2010, Lamouille et al., 

2014). Inhibition of GSK3β during Wnt signaling contributes to an increased SNAI1 stability 

and promotes nuclear accumulation of β-catenin, which activates the transcription factor 

LEF1 and induces the expression of SNAI1, SNAI2, TWIST and other EMT-related genes 

(Yook et al., 2006, Fodde and Brabletz, 2007). Moreover, Notch signaling has been shown to 

activate SNAI1 expression directly and indirectly through induction of hypoxia-inducible 

factor 1α (HIF-1α) as well as through crosstalk with Wnt, ERK and NF-κB signaling (Miele 

et al., 2006, Sahlgren et al., 2008). Eventually, Hedgehog signaling induces the expression of 

EMT-related genes through activation of Gli transcription factors (Li et al., 2006). 

1.4 EMT targeting therapeutics 

Due to the prominent role of EMT in the development of cancer metastases, the dynamic 

transition process and its related marker proteins are of particular therapeutic interest (Davis 

et al., 2014). Moreover, EMT has been associated with the acquisition of therapy resistance, 

regarding radiation, chemotherapy and small molecule-targeted therapies. For example, 

resistance to gefitinib and ertolinib in non-small lung cancer cells, or resistance to 5-

fluorouracil in breast cancer cells correlates with the acquisition of a mesenchymal phenotype 
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(Yauch et al., 2005, Zhang et al., 2012). In the development of EMT-targeting pharmaceutics 

different strategies address (i) the inhibition of extrinsic signals (e.g. TGF-β, EGF) or intrinsic 

signals (signaling pathway components, e.g. TGF-βRI), (ii) the MET process or (iii) direct 

targeting of mesenchymal EMT markers (e.g. vimentin, SNAI1) (Davis et al., 2014). The 

majority of EMT-interfering compounds that are currently investigated in clinical trials, focus 

on classic drug targets, including receptors, enzymes and transporter proteins (Rask-Andersen 

et al., 2011). One example is the small molecule and selective inhibitor of TGF-βRI, 

LY2157299, which is currently tested in a number of phase I-IV clinical trials for its 

application in hepatocarcinoma, pancreatic cancer and malignant glioma (Kothari et al., 2014, 

Pasquier et al., 2015). 

Few compounds have been identified to directly target mesenchymal EMT biomarkers. N-

cadherin can be blocked by a specific peptide (named ADH-1) to prevent tumor progression 

in pancreatic cancer mice models and has been addressed by a neutralizing antibody to treat 

myeloma (Shintani et al., 2008, Sadler et al., 2013). Certain dietary and herbal 

chemopreventive agents, such as resveratrol, 2-hydroxycinnamaldehyde and curcumin are 

discussed to inhibit EMT via SNAI1-dependent mechanisms (Wang et al., 2013a, Ismail et 

al., 2013, Huang et al., 2013). The role of vimentin in EMT and tumor progression turns it 

into an attractive target for cancer therapy (Satelli and Li, 2011). Direct targeting of vimentin 

by Withaferin A (WFA) has been shown to reduced tumor growth and metastatic spread 

breast cancer in mice models through inhibition of EMT (Bargagna-Mohan et al., 2007, Yang 

et al., 2013). Moreover, other compounds such as silibinin or arylquins negatively regulate 

vimentin resulting in reduced migration and invasiveness or induction of apoptosis in cancer 

cells (Wu et al., 2009a, Burikhanov et al., 2014). 

Currently, most primary screening technologies for EMT-targeting drug discovery at 

academic institutions rely on cell-based assays and include assay readouts that are mainly 

based on fluorescence intensity, glow luminescence, and high-content imaging (Comley, 

2014, Gupta et al., 2009, Aref et al., 2013). Thereby, antibody-mediated techniques serve as 

powerful tools to detect prognostic biomarkers, but they are restricted to endpoints 

experiments and provide no information about dynamic processes. For real-time analyses, 

ectopic expression of fluorescently labeled EMT markers has been employed (Suzuki et al., 

2009, Zhou et al., 2004, Chang et al., 2009, Kajita et al., 2014). However, ectopic expression 

of the mesenchymal markers SNAI1 and vimentin effect cell shape, motility and invasion or 

even induces EMT and therefore does not reflect the distribution and dynamic organization of 

endogenous proteins (Peinado et al., 2004, Moreno-Bueno et al., 2009, Mendez et al., 2010). 
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Based on the importance of EMT markers as prognostic factors and molecular targets for anti-

metastatic cancer therapy, there is an ongoing demand for novel strategies to study EMT and 

its related biomarkers on endogenous levels and in disease-relevant models. 

1.5 Intracellular affinity reagents (Intrabodies) 

Intracellular affinity reagents have been established to overcome distinct limitations of 

conventional techniques to investigate spatial and temporal dynamics of cellular structures. 

Antibodies are valuable tools for innumerable applications, including Western blot, ELISA, 

mass spectrometry, immunofluorescence etc. However, due to their large size and improper 

folding in the reducing environment of the cytoplasm, antibody-based detection of 

endogenous proteins is restricted to fixed and permeabilized samples and does not allow 

tracing of dynamic processes in living cells. Fluorescent fusion proteins are widely used for 

live cell imaging of dynamic protein localization, but e.g. posttranslational modifications 

remain invisible and fusion of large protein tags, including eGFP or mCherry to N- or C-

termini can lead to protein mislocalization (Stadler et al., 2013). During the last decades a 

number of recombinant antibody-derived formats as well as non-antibody structures have 

been developed, which combine the advantages of antibodies and fluorescent fusion proteins 

and provide new opportunities to track and manipulate intracellular target structures (Kaiser et 

al., 2014, Helma et al., 2015).  

1.5.1 Non-immunoglobulin scaffolds 

Recombinant binding reagents, based on the tenth domain of type III fibronectin (also referred 

to as monobody), have been described to functionally address intracellular targets, since the 

fibronectin structure does not depend on intramolecular disulfide bonds (Koide et al., 1998, 

Gross et al., 2013). Anticalins, derived from lipocalins, are considered to be well suited for 

targeting of small molecules and conformational epitopes in vitro as well as in living cells 

(Eggenstein et al., 2014, Terwisscha van Scheltinga et al., 2014). The designed ankyrin repeat 

proteins (DARPins) are the most prominent example for so-called repeat proteins. Containing 

neither disulfide bridges nor free cysteines, DARPins have been shown to modulate particular 

enzymes in living cells (Kummer et al., 2012, Pluckthun, 2015). In addition to protein 

scaffolds, small peptides such as lifeact (17 amino acids), derived from the actin-binding 

protein (Abp 140), are available for live cell visualization (Riedl et al., 2008, Riedl et al., 

2010). Finally, aptamers, consisting of ssDNA or RNA were found to specifically recognize 

target molecules and serve as intracellular affinity reagents (Kunz et al., 2006, Meyer et al., 

2011). 
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Figure 1.4: Schematic overview of intrabody formats. Intracellular binding reagents such as monobodies and 

anticalins are derived from naturally occurring non-immunoglobulin structures (Non-Ig scaffolds). Moreover, 

peptides, designed ankyrin repeat proteins (DARPins) and DNA or RNA aptamers serve as intrabodies. The 

most commonly IgG-derived intrabody format (Ig-Scaffolds) is the scFv, consisting of a variable heavy and light 

chain (VH and VL), connected by a peptide linker. In some cases single VH or VL domains are applied as 

intrabodies. The VHH domain (nanobody) is derived from camelid heavy-chain-only antibodies (hcAbs). For 

fluorescence imaging, the VHH domain can be fused to fluorescent proteins, resulting in chromobodies. 

1.5.2 Immunoglobulin G scaffolds 

The Immunoglobulin G (IgG) is the antibody format most commonly used in research and 

consists of two heavy chains and two light chains, each comprising a variable domain (VH or 

VL respectively). Antigen binding is mediated by six complementary determining regions 

(CDRs), three of which are located in the VH and three in the VL domain (Davies and 

Metzger, 1983). For intracellular applications, single chain variable fragments (scFvs, ~25 

kDa) have been generated by directly connecting the VH and VL domain via a flexible peptide 

linker, typically comprising (Gly4/Ser)2-4 repeats (Bird et al., 1988, Toleikis et al., 2004). 

However, due to hydrophobic residues on the surface of VHs and VLs, intracellular expression 

of these constructs often results in reduced solubility, improper folding and aggregation 

(Biocca et al., 1990, Cattaneo and Biocca, 1999). More recently, individual studies described 

modified and fluorescently labeled scFvs for live cell imaging e. g. of α-tubulin (Cassimeris et 

al., 2013), to trace posttranslational modifications of histones in living cells (Sato et al., 

2013a) or for super resolution microscopy (Szent-Gyorgyi et al., 2008, Yates et al., 2013). In 

addition, few examples of single VH or VL domains derived from IgGs have been applied as 

intrabodies (Colby et al., 2004, Sato et al., 2013a). 
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1.6 Nanobodies 

Currently, the smallest antigen binding reagents based on immunoglobulin fold are single 

domain antibodies (sdAbs, also referred as nanobodies), derived from heavy-chain-only 

antibodies (hcAbs) of Camelidae (reviewed in Muyldermans, 2013). 

1.6.1 Derivation and structure of nanobodies 

In addition to the conventional IgG1 (~ 150 kDa) in the serum of camelids (Vicugna pacos, 

Camelus bactrianus, Camelus dromedarus and Llama glama) heavy-chain-only antibodies 

(hcAbs, IgG2 and IgG3, ~ 90 kDa) were discovered (Hamers-Casterman et al., 1993). Other 

naturally occurring antibodies devoid of light chains were found in cartilaginous fish, 

including nurse shark (Ginglymostoma cirratum), wobbegong and spotted ratfish (Hydrolagus 

colliei) and are called immunoglobulin new antigen receptors (IgNARs) (Greenberg et al., 

1995, Rast et al., 1998, Nuttall et al., 2001). hcAbs consist of two identical heavy chains that, 

unlike heavy chains of conventional IgG1s, comprise only two constant domains (CH2 and 

CH3, but no CH1), a hinge region and a variable domain (VHH). Notably, the hinge region of 

IgG2 is longer than the one of the IgG3 isotype (Woolven et al., 1999). Loss of the CH1 

domain appears through a G-to-A point mutation that provokes the elimination of the CH1 

region by splicing (Nguyen et al., 1999). Consequently, this prevents interaction with the 

constant region of the light chain (CL), mediated by CH1 in IgG1 (Davies and Metzger, 1983). 

Devoid of light chains, antigen binding of hcAbs is mediated by the VHH domain only, 

resulting in a number of characteristic adaptations. Both VH and VHH domains consist of four 

conserved framework regions (FR1-FR4) linked by three hypervariable CDRs and stabilized 

by a canonical disulfide bridge between FR1 and FR3 (Cys23-Cys94) and a conserved 

Trp103 in FR4 (Muyldermans et al., 1994, Desmyter et al., 1996). However, in FR2 the 

highly conserved hydrophobic residues at the positions Val37, Gly44, Leu45 and Trp47 of the 

VH domain are substituted by the more hydrophilic residues Phe/Tyr37, Glu/Gln44, Arg45 

and Gly/Phe/Leu47 in the VHH domain (Kabat and Wu, 1991, Vu et al., 1997, Barthelemy et 

al., 2008). These changes lead to an increased hydrophilicity of the former light chain 

interface and a high overall solubility of the VHH domain (Conrath et al., 2005). 

Consequently, heavy chains of sdAbs do not associate with the chaperone protein BiP 

(binding immunoglobulin protein) and escape from the endoplasmic reticulum (Nguyen et al., 

2002). Notwithstanding the reduced combinatorial diversity, hcAbs can compete with 

conventional IgGs regarding their affinities. This may be explained by somatic diversification 

mechanisms, including hypermutations of single nucleotides, oligonucleotide insertions and 
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their good regeneration capacity, they are highly attractive for immunoaffinity purification of 

endogenous proteins (Klooster et al., 2007). Nanobody-mediated precipitation of ectopically 

expressed or endogenous targets has been performed to analyze protein-protein interactions 

(Rothbauer et al., 2008, Traenkle et al., 2015), as well as interactions between proteins and 

DNA by chromatin immunoprecipitation (ChIP) (Nguyen-Duc et al., 2013). For sensitive 

detection of target proteins in complex samples nanobody-based sandwich immunoassays 

have been developed (Zhu et al., 2014). Due to their smaller size compared to conventional 

antibodies, a closer spatial proximity of the fluorophore and the target structure can be 

achieved by immunostaining with fluorescently labeled nanobodies, which has been exploited 

for super resolution microscopy (Ries et al., 2012). Moreover nanobodies have been applied 

to facilitate structural analyses by x-ray crystallography, since they can stabilize 

crystallization of membrane proteins or large protein complexes (Rasmussen et al., 2011, 

Abskharon et al., 2014, Pardon et al., 2014). 

Most importantly nanobodies are well suited to modulate and trace intracellular target 

structures within living cells. Intramolecular disulfide bridges are not necessarily required for 

correct nanobody folding, allowing efficient expression of functional nanobodies even in the 

reducing environment of the cytoplasm. Intracellular expressed nanobodies (intrabodies) have 

been applied to affect enzyme activity (Lauwereys et al., 1998, Jobling et al., 2003), to induce 

conformational changes (Kirchhofer et al., 2010), to trigger targeted protein degradation 

(Caussinus et al., 2012), to manipulate genes in individual cells (Tang et al., 2013), and to 

trace endogenous protein localization in living cells and whole organisms as so-called 

chromobodies (Rothbauer et al., 2006, Burgess et al., 2012, Helma et al., 2012a, Panza et al., 

2015, Traenkle et al., 2015). Chromobodies are chimeric fusion proteins consisting of a 

nanobody moiety and a fluorescent protein e.g. the green fluorescent protein (GFP) (Chalfie et 

al., 1994, Tsien, 1998). The first described and most prominent chromobody example is the 

red fluorescent GFP-chromobody that has been shown to co-localize with and trace dynamic 

changes of GFP-labeled proteins, independently of the subcellular compartment (Rothbauer et 

al., 2006, Schornack et al., 2009). Other chromobodies have been developed to visualize the 

nuclear lamina and monitor apoptosis (lamin-chromobody), to follow the progression of the 

cell cycle (PCNA-chromobody) or to address non-endogenous targets such as morphogenesis 

of HIV (Zolghadr et al., 2012, Burgess et al., 2012, Helma et al., 2012b). Recently, a 

chromobody specific for the Wnt signaling component β-catenin has been applied for high 

content imaging (Traenkle et al., 2015).  
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1.7 Aims and objectives 

The reversible cellular reprogramming process epithelial-mesenchymal transition (EMT) 

plays an emerging role for the development of novel anti-metastatic therapeutics. Hence, there 

is ongoing need for novel techniques to study EMT and its related biomarkers at an 

endogenous level in disease-relevant models. Overcoming the drawbacks of conventional 

antibodies and expression of ectopic fusion proteins, the chromobody technology allows 

tracking of endogenous biomarkers in living cells, without affection cell viability and function 

of the target protein. 

The aim of this work was, to develop chromobody-based cellular models, to monitor and 

quantify dynamic changes during the process of EMT by high content imaging, thereby 

providing the basis for novel screening approaches to identify EMT affecting compounds. 

This requires the selection of camelid-derived single domain antibodies (nanobodies) against 

significant EMT markers followed by detailed biochemical and cell biological 

characterization of nanobodies and chromobodies, and the development of a reliable 

phenotypic readout for high-content imaging. 
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2 MATERIAL AND METHODS 

2.1 Material 

2.1.1 Chemicals and solutions 

chemical / solution  manufacturer  
10x RIPA Buffer ChromoTek, Martinsried, Germany 

10x T4 DNA-Ligase Reaction Buffer New England Biolabs 

2-Propanol Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

2x YT Medium (2xYT) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

3,3’,5,5’-Tetramethylbenzidin (TMB) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

5x Phusion HF- Buffer New England Biolabs GmbH, Frankfurt, Germany 

6x DNA Loading Dye Thermo Scientific GmbH, Schwerte, Germany 

Acetic Acid, 99-100% Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Acetone Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Acrylamide Bisacrylamide Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Agarose, molecular biology grade Serva Electrophoresis GmbH, Heidelberg, Germany 

Ammoniumperoxodisulfat (APS) Carl Roth GmbH & Co KG, Karlsruhe 

Ampicillin AppliChem GmbH, Darmstadt, Germany 

ATTO dye (NHS Ester) ATTO-TEC GmbH, Siegen, Germany  

Blasticidin Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

β−Μercaptoethanol  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

BSA Sigma-Aldrich Chemie Gmbh, Munich, Germany 

Color Silver Stain Kit Thermo Scientific GmbH, Schwerte, Germany 

Coomassie Brilliant Blue G250, R250 Serva Electrophoresis GmbH, Heidelberg, Germany 

DAPI (4,6-diamiddino-2-phenylindole) Roche Diagnostics GmbH, Mannheim, Germany 

Di-sodium hydrogen phsophat Merck KgaA, Darmstadt, Germany 

DMEM, high glucose, with phenolred Life Technologies GmbH, Darmstadt, Germany 

DMEM/HAMs F12 Life Technologies GmbH, Darmstadt, Germany 

DMSO ≥99 % Sigma-Aldrich Chemie Gmbh, Munich, Germany 

DNAse I AppliChem GmbH, Darmstadt, Germany 

dNTP Solution Mix New England Biolabs GmbH, Frankfurt, Germany 

EDTA AppliChem GmbH, Darmstadt, Germany 

Estradiol Sigma-Aldrich Chemie Gmbh, Munich, Germany 

Ethanol, absolut Sigma-Aldrich Chemie GmbH, Munich, Germany 

Ethanol, denatured Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ethidiumbromid-Solution (0,025 %) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Fetal Bovine Serum Life Technologies GmbH, Darmstadt, Germany 

Formaldehyde (37%) Sigma-Aldrich Chemie GmbH, Munich, Germany 

G418 Life Technologies GmbH, Darmstadt, Germany 

GeneRuler 1 kb plus DNA Ladder Thermo Scientific GmbH, Schwerte, Germany 

Gentamycin (50 mg/ml) PAA Laboratories GmbH, Pasching, Austria 

Glucose D(+) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Glycine Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Hoechst 33342 Solution Life Technologies GmbH, Darmstadt, Germany 

Hydrochloric acid 37% AppliChem GmbH, Darmstadt, Germany 

Hydrogen Peroxide Fluka Chemie AG, Germany 

Hygromycin Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Hyperphage (M13K07∆pIII) Progen Biotechnik GmbH, Heidelberg, Germany 
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Imidazol Sigma-Aldrich Chemie GmbH, Munich, Germany 

Insulin Sigma-Aldrich Chemie Gmbh, Munich, Germany 

Isopropyl-beta-D-thiogalaktopyranosid (IPTG) Diagonal GmbH, Münster, Germany 

Kanamycin Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

L-glutamine Sigma-Aldrich Chemie Gmbh, Munich, Germany 

Lipofectamin 2000 Life Technologies GmbH, Darmstadt, Germany 

Lipofectamin LTX Life Technologies GmbH, Darmstadt, Germany 

Luria Broth (LB) Medium Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Lysozyme AppliChem GmbH, Darmstadt, Germany 

Magnesium chloride Sigma-Aldrich Chemie Gmbh, Munich, Germany 

Methanol, min. 99 % Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Midiprep System PureYield Plasmid Promega GmbH, Mannheim, Germny 

Milkpowder, Blotting Grade Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

NEB- Buffer 1-4 New England Biolabs GmbH, Frankfurt, Germany 

NHS-activated SepharoseTM 4 Fast Flow GE Healthcare, Uppsala, Sweden 

NucleoSpin Gel and PCR Clean-up Kit Macherey-Nagel, Düren Germany 

NucleoSpin Plasmid Kit Macherey-Nagel, Düren Germany 

NP-40 Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

PageRuler™ Prestained Protein Ladder Plus Fermentas GmbH, St.Leon-Rot, Germany 

Penicillin Streptomycin Life Technologies GmbH, Darmstadt, Germany 

Phenylmethanesulfonylfluoride (PMSF) SERVA Electrophoresis GmbH, Heidelberg, Germany 

Phosphate Buffered Saline (PBS), 1x Sigma-Aldrich Chemie GmbH, Munich, Germany 

Phusion™ High-Fidelity DNA Polymerase New England Biolabs GmbH, Frankfurt, Germany 

Pierce protein free blocking buffer Thermo Scientific GmbH, Schwerte, Germany 

Polyacrylamide mix 30% Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Polyethyleneimine Sigma-Aldrich Chemie GmbH, Munich, Germany 

Ponceau S Sigma-Aldrich Chemie Gmbh, Munich, Germany 

Potassium chloride Sigma-Aldrich Chemie Gmbh, Munich, Germany 

Protease Inhibitor Mix M SERVA Electrophoresis GmbH, Heidelberg, Germany 

Resazurin (alamarBlue®) AbD Serotec, Puchheim, Germany 

Restrictionenzymes New England Biolabs GmbH, Frankfurt, Germany 

RNase A (10 mg/ml) AppliChem GmbH, Darmstadt, Germany 

Roti Phenol Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Roti Phenol/Chloroform/Isoamylalcohol Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Rubidium chloride Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Select Agar Invitrogen GmbH, Karlsruhe, Germany 

Sodium bicarbonate Sigma-Aldrich Chemie Gmbh, Steinheim, Germany 

Sodium carbonate Sigma-Aldrich Chemie Gmbh, Steinheim, Germany 

Sodium chloride Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Sodium dodecyl sulfate (SDS) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Sulfuric acid, 96 % Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

T4 Ligation Kit New England Biolabs GmbH, Frankfurt, Germany 

TEMED Carl Roth GmbH & Co.KG, Karlsruhe, Germany 

TGF-β1 Peprotec Inc., Hamburg, Germany 

Tris (trisaminomethane) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Triton X-100 Carl Roth GmbH & Co.KG, Karlsruhe, Germany 

Trypsin/EDTA (1:250) PAA Laboratories GmbH, Cölbe, Germany 

Tween 20 Carl Roth GmbH & Co.KG, Karlsruhe, Germany 

Withaferin A (WFA) Merck Millipore, Darmstadt, Germany 
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2.1.2 Devices 

device  manufacturer  
ÄKTA FPLC system UPC 900 GE Healthcare, Uppsala, Sweden 

Autoklave VX-95 Systec GmbH, Wettenberg, Germany 

Cell Observer SD Zeiss AG, Oberkochen, Germny 

Centrifuge 5415R Eppendorf AG, Hamburg, Germany 

Centrifuge 5424 Eppendorf AG, Hamburg, Germany 

Centrifuge 5810R Eppendorf AG, Hamburg, Germany 

Centrifuge Megafuge 1.0R Heraeus Instruments, Hanau, Germany 

Centrifuge Universal 2S Hettich GmbH & Co KG, Tuttlingen, Germany 

Confocal lasser scanning microscope LSM510 Zeiss AG, Oberkochen, Germny 

CO2-Incubator CB150 Binder GmbH, Tuttlingen, Germany 

Elektrophoresis Chamber  Bio-Rad Laboratories GmbH, München, Germany 

Envision 2102 Multilabel Reader PerkinElmer, Rodgau, Germany 

GFL water bath 1002 GFL, Burgwedel, Germany 

GFL water bath 1083 GFL, Burgwedel, Germany 

High-content microscope MetaXpressXL system Molecular devices, Biberach, Germany 

Incubator shaker C25 New Brunswick Scientific, Nürtingen, Germany 

INTAS UV documentation system INTAS, Goettingen, Germany 

Light microscope TMS-F Nikon, Duesseldorf, Germany 

Magnet stirrer RCTbasic IKA-Werke GmbH, Staufen, Germany 

Microscope Axiovert 200M Zeiss AG, Oberkochen, Germny 

Microscope Olympus CKX 41 Olympus, Hamburg, Germny 

Multipipet plus Eppendorf AG, Hamburg, Germany 

Mupid One electrophoresis unit NIPPON Genetics EUROPE GmbH, Dueren, Germany 

Neubauer chamber Brand, Wertheim, Germany 

Overhead rotator Bachofer, Reutlingen, Germany 

PCR device Primus 96 plus MWG Biotech AG, Ebersberg, Germany 

pH meter Mettler-Toledo GmbH, Giessen, Germany 

PHERAstar plate reader BMG Labtech, Offenburg, Germany 

Photometer Eppendorf AG, Hamburg, Germany 

Pipet HandyStep Brand GmbH & Co KG, Wertheim, Germany 

Pipets 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl Brand GmbH & Co KG, Wertheim, Germany 

Pipettboy Integra BioSciences, Fernwald, Germany 

Pipette, 8-Kanal, 0,5 µl - 10 µl Eppendorf AG, Hamburg,  Germany 

Plate-Incubator Heraeus Instruments, Hanau, Germany 

Power supply gel elektrophoresis MP-300V Major Science, USA 

PowerPac Basic Power Supply Bio-Rad Laboratories GmbH, München, Germany 

Scale AE160 Mettler-Toledo GmbH, Giessen, Germany 

Scale BP 3100S Sartorius AG, Göttingen, Germany 

Scale CPA225D-0CE Sartorius AG, Göttingen, germany 

Scale XS205 DualRange Mettler-Toledo GmbH, Giessen, Germany 

Semi-Dry transfer cell Bio-Rad Laboratories GmbH, München, Germany 

Sonifier Sonopuls HD60/UW60 Bandelin, Berlin, Germany 

Spectrometer NanoDrop 2000 Thermo Scientific, Schwerte, Germany 

Steril hood BDK GmbH, Sonnenbühl-Genkingen, Germany 

Thermomixer comfort Eppendorf AG, Hamburg,  Germany 
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Typhoon Trio Scanner GE Healthcare, Uppsala, Sweden 

Vortex Genie 2 Scientific Industries, Karlsruhe, Germany 
 

2.1.3 Consumables 

consumable  manufacturer  
µClear 96-well microplate Greiner Bio-One, Frickenhausen, Germany 

µ-slide, 8-well, uncoated Ibidi GmbH, Martinsried, Germany 

96 well assay block Thermo Scientific GmbH, Schwerte, Germany 

Amersham Protan 0,45 µm Nitrocellulose GE Healthcare, Uppsala, Sweden 

Amicon® Ultra Centrifugal Filter Devices Millipore S.A.S., Molsheim, France 

Assay Block, 96-well, 2 ml Schubert & Weiss, Munich, Germany 

Blotting Paper Grad 703 Bio-Rad Laboratories GmbH, Munich, Germany 

Cell Culture Flasks T-25, T-75, T-125 Corning GmbH, Wiesbaden, Germany 

Cell Culture Plates, p100 Corning GmbH, Wiesbaden, Germany 

Cryotubes, 1,8 ml Greiner Bio-One, Frickenhausen, Germany 

Desalting Column PD-10 GE Healthcare, Uppsala, Sweden 

Falcon Tubes (15 and 50 ml) Sarstedt AG & Co., Nümbrecht, Germany 

Falcon-Tubes 15ml und 50ml Greiner Bio-One, Frickenhausen, Germany 

Filtorpur S 0.45 Sarstedt AG & Co., Nümbrecht, Germany 

Filtropur S 0.2 Sarstedt AG & Co., Nümbrecht, Germany 

GFP-multiTrap, GFP-Trap, RFP-Trap ChromoTek GmbH, Martinsried, Germany 

HisTrap™ FF column, 1 ml GE Healthcare, Uppsala, Sweden 

LoBind tubes Eppendorf, Hamurg, Germany 

Multiwell plate: 6, 12, 24, 48, 96 well, steril Corning GmbH, Wiesbaden, Germany 

NHS-activated Sepharose 4 Fast Flow GE Healthcare, Uppsala, Sweden 

Nitrocellulose Membrane Bio-Rad Laboratories GmbH, Munich, Germany 

PageRuler Plus Prestained Protein Ladder Thermo Scientific, Schwerte, Germany 

Parafilm Brand GmbH & Co. KG, Wertheim, Germany 

PCR-Reaction tube, 200 µl/500 µl Sarstedt AG & Co., Nümbrecht, Germany 

PD-10 desalting column GE Healthcare, Uppsala, Sweden 

Petridish, 145 x 20 mm Greiner Bio-one, Frickenhausen, Germany 

Petridish, 92 x 16 mm Sarstedt AG & Co., Nümbrecht, Germany 

pH Indicatorstrips, pH 0-14 Merck KGaA, Darmstadt, Germany 

Pipettes (2, 5, 10 und 25 ml) Sarstedt AG & Co., Nümbrecht, Germany 

Pipettetips (10, 20, 200, 1000, 1250 µl) Starlab GmbH, Hamburg, Germany 

Protino® Ni-NTA Agarose Macherey-Nagel, Düren, Germany 

Reaction tube 1,5 ml / 2 ml (steril) Sarstedt AG & Co., Nümbrecht, Germany 

Superdex 75 10/300 GL GE Healthcare, Uppsala, Sweden 

syringe (2, 5, 10, 20, 50 ml) B. Braun Melsungen AG, Melsungen, Germany 

syringe filters (0.22 µM) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Tips for repeating pipette Eppendorf AG, Hamburg, Germany 

Typhoon TRIO GE Healthcare Life Sciences 

UV cuvettes Brand GmbH & co KG, Wertheim, Germany 
 

2.1.4 Antibodies 

Following primary and secondary antibodies were applied. 
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2.1.4.1 Primary antibodies 

antibody (species)  manufacturer  
anti-GFP 3H9 (rat, mAb) ChromoTek, Munich, Germany 

anti-RFP 3F5 (mouse, mAb) ChromoTek, Munich, Germany 

anti-GAPDH (rabbit, pAb) Santa Cruz, Dallas, USA 

anti-His6 (mouse, mAb) GE Healthcare,Uppsala, Sweden 

anti-TagRFP (rabbit, mAb) evrogen, Moscow, Russia 

anti-vimentin clone V9 (mouse, mAb) Sigma-Aldrich Chemie GmbH, Munich, Germany 

anti-occludin (rabbit, pAb) Life Technologies GmbH, Darmstadt, Germany 

anti-SNAI1, SN9H2 (rat, mAb)) Cell Signaling, NEB, Frankfurt, Germany 

anti-SNAI1, H130 (rabbit, pAb) Santa Cruz, Dallas, USA 

anti-SNAI1 (rabbit, pAb) Abcam, Cambridge, UK 

anti-M13 (mouse, mAb), HRP conjugate GE Healthcare, Uppsala, Sweden 
 

2.1.4.2 Secondary antibodies 

antibody (species)  manufacturer  
anti-mouse (goat) Alexa 488/546/647 conjugates Life Technologies GmbH, Darmstadt, Germany 

anti-rabbit (goat) Alexa 488/546/647 conjugates Life Technologies GmbH, Darmstadt, Germany 

anti-rat (goat) Alexa 488/546/647 conjugates Life Technologies GmbH, Darmstadt, Germany 
 

2.1.5 Oligonucleotides 

Following oligonucleotides were applied for polymerase chain reactions. All oligonucleotides 

were synthesized by Metabion AG (Martinsried, Germany). 

oligonucleotide  sequence  
OCLN-His-fwd 5’-AAG GAT CCA GCC GCC ATG AAC TTT GAG ACA CCT TCA AAA AG-3’ 

OCLN-His-rev 
5’-AAA AGC TTC TAG TGA TGG TGA TGG TGA TGT GTT TTC TGT CTA 
TCA TAG TCT CC-3’ 

OCLN-GST-fwd 5’-AAG GAT CCA ACT TTG AGA CAC CTT CAA AAA GAG-3’ 

OCLN-GST-rev 5’-AAG AAT TCC TAT GTT TTC TGT CTA TCA TAG TCT CCA-3’ 

SNAI1-His-fwd 5’-AAG GAT CCA GCC GCC ATG CCG CGC TCT TTC CTC G-3’ 

SNAI1-His-rev 5’-AAG AAT TCT CAG CGG GGA CATCCT G-3’ 

SNAI1-GST-fwd 5’-AAG GAT CCC CGC GCT CTT TCC TCG-3’ 

SNAI1-GST-rev 5’-AAG GAT CCC CGC GCT CTT TCC TCG-3’ 

VIM-His-fwd 5’-AAG GAT CCA GCC GCC ATG TCC ACC AGG TCC GTG TC-3’ 
VIM-His-rev 
 

5’-AAA AGC TTT TAG TGA TGG TGA TGG TGA TGT TCA AGG TCA TCG 
TGA TGC-3’ 

VIM-GFP-fwd 5’-AAG GGT ACC TCC ACC AGG TCC GTG TCC-3’ 

VIM-rod-fwd 5’-AAA GGT ACC AAG AAC ACC CGC ACC AAC GAG-3’ 

VIM-tail-fwd 5’-AAA GGTA CCA GCA GGA TTT CTC TGC CTC TTC C-3’ 

VIM-head-rev 5’-AAA GGA TCC TCA GAA CTC GGT GTT GAT GGC-3’ 

VIM-rod-rev 5’-AAG GGA TCC TCA CTC CTC GCC TTC CAG CAG-3’ 

VIM-rev 5’-AAG GGA TCC TCA TTC AAG GTC ATC GTG ATG C-3’ 

VIM-mCherry-fwd 5’ AAA AGC TTA GGT GGA GGA GGT TCT TCC ACC AGG TCC GTG TC-3’ 

SNAI1-GFP-fwd 5’-AAA AGC TTT AGG TGG AGG AGG TTC TCC GCG CTC TTT CCT CG-3’ 

SNAI1-cherry-fwd 5’-AAA AGC TTA GGT GGA GGA GGT TCT CCG CGC TCT TTC CTC G-3’ 

SNAI1-rev 5’-AAG GTA CCT CAG CGG GGA CAT CCT GAG CAG CCG G-3’ 
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OCLN-GFP-fwd 5’-AAA AGC TTT AGG TGG AGG AGG TTC TTC ATC CAG GCC TCT TG-3’ 

OCLN-cherry-fwd 5’-AAA AGC TTA GGT GGA GGA GGT TCT TCA TCC AGG CCT CTT G-3’ 

OCLN-rev 5’-AAG GTA CCC TAT GTT TTC TGT CTA TCA TAG TCT CC-3’ 
attB-VHH-fwd 
 

5’-GGG GAC AAG TTT GTA CAA AAA AGC AGG CTG GCC ATG GCT CAG 
GTG CAG CTG GTG-3’ 

attB-GFP-rev 
 

5’-GGG GAC CAC TTT GTA CAA GAA AGC TGG GTT TAC TTG TAC AGC 
TCG TCC ATG CCG-3’ 

VHH-I-fwd 
 

5’-GGG GAG ATC TCC GGC CAT GGC TCA GGT GCA GCT GGT GGA GTC 
TGG-3’ 

VHH-II-fwd 
 

5’-GGG GAG TTC TCC GGC CAT GGC TCA GGT GCA GCT GCA GGA GTC 
TGG-3’ 

VHH-III-fwd 
 

5’-GGG GAG ATC TCC GGC CAT GGC TCA TGT GCA GCT GCA GGA GTC 
TGG-3’ 

VHH-I-rev 5’-GGG GGA AGC TTC TTG AGG AGA CGG TGA CCT GCA T-3’ 

VHH-II-rev 5’-GGG GGA AGC TTC TTG AGG AGA CGG TGA CCT GGG-3’ 

VHH-III-rev 5’-GGG GGA AGC TTC TGC TGG AGA CGG TGA CCT GGG T-3’ 

Biv-I-fwd 5’-GGC CCA GCC GGC CAT GGC TC-3’ 

Biv-I-rev 5’-CTC CAC CTG AGG AGA CGG TGA CCT GGG-3’ 

Biv-II-fwd 
5’-CGG TGG ATC CGG TGG CGG AGG TAG CGC TCA GGT GCA GCT GGT 
GGA G-3’ 

Biv-II-rev 5’-CAG TGA ATT CTA TTA GTG ATG GTG ATG GTG-3’ 
 

2.1.6 Vectors 

Following vector backbones were used for molecular cloning of DNA constructs. 

vector  manufacturer  
pRSETB Addgene, Cambridge, USA 

pGEX-6P-1 Addgene, Cambridge, USA 

pEGFP-N1 Clontech, Mountain View, USA 

pEGFP-C1 Clontech, Mountain View, USA 

pHEN4 (Arbabi Ghahroudi et al., 1997) 

pHEN6 (Conrath et al., 2001) 

pLenti-V5-DEST Life Technologies GmbH, Darmstadt, Germany 

pENTR Life Technologies GmbH, Darmstadt, Germany 

pDONR Life Technologies GmbH, Darmstadt, Germany 

pHEN6-Biv provided by ChromoTek-GmbH, Martinsried, Germany 

pmCherry-C1 provided by ChromoTek-GmbH, Martinsried, Germany 
 

2.1.7 DNA constructs 

Following DNA constructs were generated by molecular cloning, using the indicated 

oligonucleotides, vector backbones and restriction sites. 

plasmid  vector backbone  oligonucleotides  restriction sites  
VIM-His 6 pRSET-B VIM-His-fwd/VIM-His-rev BamHI/HindIII 

SNAI1-His6 pRSET-B SNAI1-His-fwd/ SNAI1-His-rev BamHI/HindIII 

OCLN-His6 pRSET-B OCLN-His-fwd/ OCLN-His-rev BamHI/HindIII 

GST-SNAI1 pGEX-6P-1 SNAI1-GST-fwd/ SNAI1-GST-rev BamHI/EcoRI 

GST-OCLN pGEX-6P-1 OCLN-GST-fwd/ OCLN-GST-rev BamHI/EcoRI 
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all nanobodies pHEN6 direct restriction from pHEN4 
SfiI/BstEII or 
NcoI/BstEII 

all chromobodies pEGFP-N1 VHH-I-III fwd/V HH-I-III-rev- BglII/HindIII 

VB6-VB6 
 

pHEN6-Biv 
 

Step 1: Biv-I-fwd/Biv-I-rev 
Step2: Biv-II-fwd/Biv-II-rev  

Step 1: NcoI/Bsu36 
Step 2: BamHI/EcoRI 

GFP-OCLN pEGFP-C1 OCLN-GFP-fwd/OCLN-rev HindIII/KpnI 

GFP-SNAI1 pEGFP-C1 SNAI1-GFP-fwd/SNAI1-GFP-rev HindIII/KpnI 

GFP-VIM pEGFP-C1 VIM-GFP-fwd/VIM-rev KpnI/BamHI 

GFP-head pEGFP-C1 VIM-GFP-fwd/VIM-head-rev KpnI/BamHI 

GFP-rod pEGFP-C1 VIM-rod-fwd/VIM-rod-rev KpnI/BamHI 

GFP-tail pEGFP-C1 VIM-tail-fwd/VIM-rev KpnI/BamHI 

mCherry-OCLN pmCherry-C1 OCLN-mCherry-fwd/OCLN-rev HindIII/KpnI 

mCherry-SNAI1 pmCherry-C1 SNAI1-mCherry-fwd/SNAI1-GFP-rev HindIII/KpnI 

mCherry-VIM pmCherry-C1 VIM-mCherry-fwd/VIM-rev HindIII/KpnI 

pENTR-VB6 pENTR attB-VHH-fwd/attB-GFP-rev Gateway cloning 

pLenti-VB6 pLenti-V5-DEST - Gateway cloning 

pENTR-Actin-CB pENTR attB-VHH-fwd/attB-GFP-rev Gateway cloning 

pLenti-Actin-CB pLenti-V5-DEST - Gateway cloning 

 

All resulting constructs were sequenced and expression was tested in E.coli XL1 Blue or 

E.coli BL21 for bacterial expression constructs or in HEK293T for mammalian expression 

constructs and analyzed by Western blot analysis. 
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2.2 Methods 

2.2.1 Molecular biological methods 
2.2.1.1 Polymerase chain reaction 

In order to amplify DNA fragments and to introduce selective restriction sites, polymerase 

chain reaction (PCR) was performed. The reaction typically contained the template DNA, two 

specific oligonucleotides (see section 2.1.5), deoxynucleotide triphosphates (dNTPs) mix, 

reaction buffer and the thermostable DNA Phusion polymerase (Table 2.1). PCR 

amplification was carried out according to similar programs as shown in Table 2.2 and 

repeated in ~30 cycles. 

Table 2.1: Typical PCR reaction Table 2.2: Typical PCR program 

 volume  final conc.  
5x HF buffer 10 µl 1x 

dNTP mix (10 mM) 1 µl 200 µM/dNTP 

forward primer 1 µl 200 nM 

reverse primer 1 µl 200 nM 

Phusion polymerase 1 µl 0.08 U/µl 

template DNA 50 ng 1 ng/µl 

ddH2O ad 50 µl  
 

 temp.  time  cycles  
initial denaturation 94 °C 30s 1 

denaturation 94 °C 15 s 

30 annealing 58 °Cs 15 s 

extension 72 °C 20 s 

final extension 72 °C 8 min 1 

end 4 °C ∞  
 

´ 

2.2.1.2 Restriction analysis 

Digestion of DNA fragments and plasmids was performed using restriction endonucleases 

from New England Biolabs following the manufacturer’s guidelines. For analytical digestion 

500 ng – 1 µg DNA were used and 2.5 – 5 µg for preparative digestion. 

2.2.1.3 Agarose gel electrophoresis 

DNA samples including PCR fragments and DNA digestions were separated and analyzed by 

agarose gel electrophoresis. To this end, 5x DNA loading dye was added to the samples, 

which were separated using a 1 % agarose gel in 1x Tris-Acetate-EDTA (TEA)-buffer, 

containing 0.025 µg/ml ethidium bromide (EtBr). For precise sizing of DNA fragments, 

GeneRuler 1kb plus DNA ladder (Thermo scientific) was used. Detection of EtBr-stained 

DNA fragments was performed with an Intas UV system (Intas Science Imaging). For 

molecular cloning, DNA fragments were cut from the gel and purified by means of the 

NucleoSpin Gel and PCR clean-up Kit (Macherey-Nagel) following the manufacturer’s 

guidelines. For elution H2O was used instead of the recommended elution buffer. 

2.2.1.4 DNA Ligation 

During molecular cloning, ligation of digested and purified DNA fragments was performed 

using the T4 DNA ligase system (New England Biolabs). Thereby a molar 1:3 ratio of 
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purified vector and insert was deployed (Table 2.3). Ligations were incubated at 16 °C 

overnight and subsequently transformed into E. coli XL1 blue cells.  

Table 2.3: Typical ligation reaction. 

 amount / volume  
10x T4 Ligase buffer 1 µl 

T4 Ligase 1 µl 

vector ~150 ng 

insert ~50 ng 

ddH2O ad 10 µl 
 

2.2.1.5 Transformation of bacteria 

For transformation of bacteria, 250 µl of chemical competent E. coli XL1 blue cells or E. coli 

BL21 were thawed on ice. Subsequently, ~50-100 ng plasmid DNA or 5 µl ligation samples 

were added and incubated for 30 min on ice. Heat shock was performed for 45 s at 42 °C 

followed by additional incubation on ice for 2 min. After culturing for 1 h at 37 °C in 250 ml 

SOC medium, cells were plated on selection agar and incubated overnight at 37 °C. 

2.2.1.6 Preparation of plasmids 

Transformed E. coli XL1 blue cells were cultured overnight at 37 °C in 5 ml LB-medium for 

plasmid preparation of small DNA amounts and in 50 ml LB medium for high DNA amounts 

in presence of appropriate antibiotics. Preparation of small DNA amounts was performed with 

the NucleoSpin® Plasmid Kit (Macherey-Nagel), while high DNA amounts were isolated 

with the Midiprep System PureYield Plasmid Kit (Promega) following the respective 

manufacturer’s protocol. DNA concentration was determined by measuring the absorbance at 

260 nm using a NanoDrop2000 spectrometer (Thermo Scientific). 

2.2.1.7 Gateway cloning 

Construction of the plasmids pLenti-VB6-CB and pLenti-Actin-CB was performed using the 

Gateway technology system (Life Technologies) according to the manufacturer’s protocol. 

Briefly, chromobody sequences were amplified using the attB-VHH-fwd and attB-GFP-rev 

primers and shuttled into the pDONR vector by a BP recombination reaction (Table 2.4) at 

room temperature overnight. The reaction was stopped by adding 2 µl proteinase K solution 

(2 µg/µl) at 37 °C for 10 min. After transformation into E. coli XL1 blue and isolation by 

plasmid preparation the resulting entry clone was added to a LR recombination reaction 

(Table 2.5) at room temperature overnight, to shuttle the chromobody construct into the 

pLente-V5/DEST vector. LR reaction was stopped by 2 µl proteinase K solution (2 µg/µl) at 

37 °C for 10 min. 
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Table 2.4: BP recombination reaction Table 2.5: LR recombination reaction 

component  volume  
attB PCR product 2 µl 

pDONR (150 ng/µl) 2 µl 

5 x BP Clonase buffer 4 µl 

BP Clonase 4 µl 

TE buffer, pH 8 ad 16 µl 
 

component  volume  
entry clone 2 µl 

pLenti-V5/DEST (150 ng/µl) 2 µl 

5 x LR Clonase buffer 4 µl 

LR Clonase 4 µl 

TE buffer, pH 8 ad 16 µl 
 

 

2.2.2 Biochemical methods 
2.2.2.1 Preparation of phage particles 

A phage library representing the whole VHH repertoires of an alpaca, immunized with OCLN-

His6, SNAI1-His6 and VIM-His6 was used for the preparation of phage particles. Alpaca 

immunization, cloning of the VHH library into the pHEN4 vector and transformation of TG1 

cells was performed by ChromoTek GmbH (Martinsried, Germany), who kindly provided the 

completed TG1 phage library. To produce phage particles, TG1 cells containing the 

phagemids were cultured at 37 °C in 2xYT, containing 100 µg/ml ampicillin and 2 % (w/v) 

glucose (2xYT-amp/glu), until reaching a logarithmic growth phase, when the M13K07 

helper phage (Progen) was added for infection. After additional 30 min, cells were harvested 

by centrifugation, followed by resuspension of the cell pellet in 2xYT medium containing 100 

µg/ml ampicillin and 25 µg/ml kanamycin (2xYT-amp/kana) and incubated at 37 °C 

overnight. Subsequently, the produced phage particles expressing VHH domains on their 

surface were harvested from the supernatant by precipitation with 20 % polyethylene glycol 

(PEG) 6000 for 1 h on ice, followed by centrifugation (30 m in, 4000 rpm, 4°C). Finally, the 

phage pellet was resuspended in 1 x PBS and stored at 4 °C for further until further use. 

2.2.2.2 Solid phase panning 

To enrich phage particles expressing VHH domains specific for occludin, SNAI1 and 

vimentin, two consecutive rounds of solid phase panning were performed. Initially, phage 

particles were pre-cleared by incubation with immunotubes, previously blocked with 5 % 

(w/v) nonfat dry milk in 1xPBS (5 % MBPS), to remove unspecifically binding phages. Pre-

cleared phages were then added to immunotubes coated with 20 µg of purified GST-occludin, 

GST-SNAI1 and VIM-His6. After 2 h incubation at room temperature, weakly binding phages 

were removed by washing 10 times with TBST (0.05 % Tween 20 in 1 x PBS), while the last 

washing step was performed with 1 x PBS. Bound phages were eluted with 100 mM 

triethylamine (pH 10) and eluted phages were immediately neutralized with 1 M Tris/HCL 

(pH 7.4). These phages were used to re-infect E. coli TG1 cells for a second panning round. 

Thereafter, re-infected TG1 cells were plated on agar plates (2xYT-amp/glu) and enrichment 
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of phages carrying antigen specific VHHs was determined by comparative analysis of 

colonies, containing phagemides, derived from uncoated control tubes or from tubes, coated 

with the respective antigen. 

2.2.2.3 Phage-ELISA 

Phage ELISA was performed to analyze the binding specificities of monoclonal phage clones 

resulting from solid phase panning. Phage particles derived from single TG1 colonies were 

prepared in 2 ml cultures in 96-well format. Purified antigens (GST-OCLN, GST-SNAI1 and 

VIM-His 6) were coated on microtiter plates (10 µg/well) and blocked with 5% MPBS. 

Monoclonal phage particles were added and incubated for 2 h at room temperature. 

Subsequently, plates were washed 3 times with TBST (0.05 % Tween in tris buffered saline) 

and additional 3 times with 1 x PBS. Detection of specifically bound phages was performed 

using a HRP-conjugated anti-M13 monoclonal antibody (GE-Healthcare).  

2.2.2.4 Protein expression in E.coli 

Expression of OCLN-His6, SNAI1-His6, VIM-His6, GST-occludin and GST-SNAI1 was 

carried out in E.coli BL21 cells, while XL1 blue cells were used for the expression of 

nanobodies. Generally, 2 l cultures were grown at 37 °C in LB medium containing 

appropriate antibiotics and protein expression was induced at OD600 0.6-0.8 by adding 

0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) overnight at 30 °C. IPTG is a 

structural analog of lactose that permanently binds to the lacI repressor and allows constant 

protein expression of genes controlled by the lac-promoter. The next day, cells were harvested 

by centrifugation (5000 x g, 10 min, 4 °C) and pellets were resuspended in binding buffer (1x 

PBS, 0.5 M NaCl, 20 mM imidazol, pH 8 for His6 tagged proteins and 1 x PBS for GST-

tagged proteins). If required, resuspended pellets were stored at - 20 °C until further use.  

Standard lysis of bacteria was performed in binding buffer containing additional DNaseI 

(1 µg/ml), phenylmethanesulfonylfluoride (PMSF 0.5 mM), 1 x protein inhibitor mix B 

(Serva) and lysozyme (0.1 mg/ml). After 1 h incubation at 4 °C on an end-over end rotor, cell 

suspensions were sonicated 10 x 20 pulses. Cells expressing VIM-His6 were lysed under 

denaturating conditions (40 mM NaHCO3, 1 % SDS, 300 mM NaCl, 20 mM β-

mercaptoethanol, pH 9.6) for 1 h at 37 °C followed by sonication (10 x 20 pulses). Finally, 

insoluble components were separated by centrifugation (20 000 x g, 20 min, 4 °C) and 

supernatants were filtered through a 0.45 µm filter. Supernatants derived from VIM-His6 

expressing cells were diluted 1:4 previous to protein purification.  
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2.2.2.5 Protein purification 

Purification of His6-tagged proteins 

His6-tagged proteins were purified by immobilized metal ion affinity chromatography 

(IMAC) using a Ni2+- nitrilotriacetic acid (NTA) matrix and an ÄKTA purifier FPLC-system 

(GE Healthcare). 1 ml HisTrap FF (GE Healthcare) columns were equilibrated in binding 

buffer (5 column volumes, CV) and the flow rate during the entire purification process was 

set to 1 ml/min. For purification of vimentin-His6 an alternative binding puffer (2 x PBS), 

0.125 % SDS, 5 mM β-mercaptoethanol, 5 mM imidazole, pH 8.0) was used. Elution was 

performed by applying an imidazole gradient (Elution buffer: 1x PBS, 0.5 M NaCl, 500 mM 

imidazol, pH 6.8) and eluted proteins were collected in 500 µl fractions.  

Purification of GST-tagged proteins 

GST-tagged proteins were purified by means of an ÄKTA purifier FPLC-system (GE 

Healthcare), using columns with glutathione-agarose matrix. 1 ml GSTrap FF (GE 

Healthcare) columns were equilibrated in 1 x PBS (5 column volumes, CV) and the flow rate 

during the entire purification process was set to 1 ml/min. Elution was performed by applying 

a two-step gradient with elution buffer (50 mM Tris-HCl pH 8.0, 10 mM reduced gluthatione) 

and eluted proteins were collected in 500 µl fractions.  

2.2.2.6 Gel filtration and protein desalting 

Gel filtration chromatography was performed using an ÄKTA purifier FPLC-system and a 

Superdex 75 gelfiltration column (GE Healthcare). The column was equilibrated in 1 x PBS 

(2 CV) and the flow rate during the entire purification process was set to 0.5 ml/min. 2 ml of 

the peak fractions resulting from affinity chromatography were applied to the column and 

proteins were collected in 500 µl fractions. Desalting of VIM-His6-containing fractions into 

PBS was carried out with PD-10 Desalting Columns (GE Healthcare) according to the 

manufacturer’s protocol. 

2.2.2.7 Immobilzation of nanobodies on sepharose beads 

2 mg of purified nanobodies (2 mg/ml) in 1 x PBS were coupled to 1 ml NHS-activated 

sepharose according to the manufacturer’s protocol. 

2.2.2.8 Labeling of nanobodies with organic dyes 

Coupling of nanobodies to the NHS-activated organic dye ATTO488 (ATTOTEC) was 

performed according to the manufacturer’s protocol. Subsequently, unbound dye was 

removed by separation with PD-10 Desalting Columns (GE Healthcare) according to the 
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manufaturer’s protocol. Degree of labeling (DOL) was determined by absorption 

spectroscopy according the instructions provided by ATTOTEC (www. ATTOTEC.com). 

2.2.2.9 Mammalian cell lysis 

Mammalian cells were washed 3 times with 1 x PBS and harvested from 10 cm cell culture 

dishes by centrifugation (200 g, 5 min, 4 °C). Snap-frozen cell pellets were stored at -20 °C 

until further use. For analysis of occludin or vimentin, cell lysis was performed in 200 µl 

RIPA buffer (10 mM Tris/Cl pH 7.5, 150 mM NaCl, 0.1 % SDS, 1 % Triton X-100, 1 % 

Deoxycholate, 5 mM EDTA, 1 µg/ml DNaseI, 2.5 mM MgCl2, 2 mM PMSF, 1x protease 

inhibitor mix M (Serva)), while for analysis of SNAI1 standard lysis buffer (10 mM Tris/Cl 

pH 7.5; 150 mM NaCl; 0.5 mM EDTA; 0.5% NP-40) was used. Pellets were homogenized by 

repeated pipetting for 40 min (20 x, every 10 min) on ice and incubated for additional 10 min 

in a sonication ice bath, if RIPA buffer was used. After centrifugation (10 min at 18,000 x g) 

protein concentrations of supernatants were determined by BCA Protein Assay (Thermo 

Scientific) according to the manufacturer’s protocol. 

2.2.2.10 SDS-PAGE and Western blot 

Denaturing polyacrylamid gel electrophoresis (SDS-PAGE) was performed to allow size-

dependent separation of proteins. Samples, containing 1 x sample buffer (0.1 % 2-

Mercaptoethanol, 0.0005 % Bromophenol blue, 10 % Glycerol, 2 % SDS in ddH2O) were 

denaturated at 95 °C for 5 min. Separation using a BioRad electrophoresis system was applied 

at 150 – 200 V in running buffer (25 mM Tris/HCl, 1,92 M glycine in ddH2O) . Gels were 

prepared according to Table 2.6 and 2.7.  

Table 2.6: Separation gel components Table 2.7: Stacking gel components 

component  final conc.  
Acrylamide 8-15 % (w/v) 

Bisacrylamide 0.08-0.3 % (w/v) 

Tris/HCl pH 8.8 375 mM 

SDS 0.1 % 

APS 0.05 % (w/v) 

TEMED 0.1 % (v/v) 
 

component  final conc.  
Acrylamide 5 % (w/v) 

Bisacrylamide 0.33 % (w/v) 

Tris/HCl pH 6.8 60 mM 

SDS 0.1% 

APS 0.05% (w/v) 

TEMED 0.1% (v/v) 
 

Separated proteins were either stained with Coomassie Brilliant Blue or transferred from the 

SDS-gel to a nitrocellulose membrane by Western blotting. 

For Coomassie staining, Coomassie solution (0.3 % Coomassie Blue R 250, 50 % methanol, 

10 % acetic acid in ddH2O) was added for 30 min followed by removal of excessive dye with 
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destaining solution 1 (50 % ethanol, 10 % acetic acid in H2O) for 1 h and destaining solution 

2 (10 % ethanol, 5 % acetic acid) overnight. 

During Western blotting proteins were transferred from SDS-gels to nitrocellulose 

membranes by semi-dry blotting system (BioRad) at 150 mM per gel for 1.5 - 2 h. 

Subsequently, total protein on membranes was stained reversibly with Ponceau S solution (0.5 

% Ponceau S, 10 % acetic acid in ddH2O). For specific protein detection membranes were 

incubated overnight at 4 °C with primary antibodies (see section 2.1.4.1), diluted in MTBST 

(5 % nonfat dry milk in TBST (0.05 % Tween in tris buffered saline)) or in 5 % bovine serum 

albumin (BSA) in TBST according to the manufacturer’s guidelines. The next day, 

membranes were washed 3 times with TBST for 5 min followed by incubation with a 

fluorescently labeled secondary antibody (see section 2.1.4.2) diluted in MTBST for 1 h at 

room temperature. After additional washing steps (3 x TBST), membranes were dried and 

fluorescent signals were detected on a Typhoon-Trio laser scanner (GE Healthcare). 

2.2.2.11 Immunoprecipitation 

Supernatants derived from mammalian cells (see section 2.2.2.9) were adjusted with dilution 

buffer (10 mM Tris/Cl pH7.5, 150 mM NaCl, 0.5 mM EDTA, 2 mM PMSF) to 0.5 ml. 10 µl 

(2 %) were removed for later analysis of the input fraction. Precipitation was performed at 

4 °C for 16 h on an end-over-end rotor using 30 µl of nanobodies immobilized on sepharose 

beads. As negative control a non-related nanobody (specific for bovine serum albumin) was 

used. After centrifugation (2 min, 2500 x g, 4°C) the supernatant was removed. 10 µl (2 %) of 

the supernatant was used for later analysis of the non-bound (flow through) fraction. The bead 

pellet was washed two times in 0.5 ml dilution buffer, resuspended in 2x sample buffer and 

boiled for 10 min at 95°C. Finally, 1 % of the input, 1 % of the non-bound and 10 % of the 

bound fractions were analyzed by SDS-PAGE followed by Western blot analysis as described 

in section 2.2.2.10. 

2.2.2.12 Intracellular-immunoprecipitation 

1 x 106 – 1 x 107 HEK293T cells were transiently transfected with equal amounts of 

expression vectors encoding for VB3-CB, VB6-CB (vimentin-chromobodies) or eGFP. 

Transfection efficiency was monitored the next day by fluorescence microscopy and cells 

were harvested 24 h after transfection. Cell pellets were lysed (see section 2.2.2.9) and 

chromobodies or eGFP were precipitated using the GFP-Trap (ChromoTek) as described in 

2.2.2.11.  
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2.2.3 Cell culture methods 

2.2.3.1 Culturing of mammalian cell lines 

All cell culture techniques were carried out under sterile conditions on a laminar flow hood. 

Cryopreserved cells (10 % DMSO in culture medium) were thawed in a 37°C water bath. Cell 

were separated from thawing medium by centrifugation (100 x g, 5 min), transferred into 

fresh culture medium and grown at 37 °C, 5 % CO2 and 95 % humidity in T75 or T125 

culture flasks. HEK293T, HEK293-FT, HeLa, Huh7, BHK (clone 2) and MDCK were 

cultured in DMEM (high glucose, pyruvate) supplemented with 10 % fetal bovine serum 

(FBS), 200 mM glutamine and antibiotics. HEK293-FT culture medium additionally 

contained 500 µg/ml G418 (Sigma Aldrich). A549 cells were cultured in DMEM/F-12 (high 

glucose, pyruvate) supplemented with 10 % FBS, 200 mM glutamine and antibiotics. MCF7 

cells were cultured in DMEM (high glucose, pyruvate) supplemented with 2 mM glutamine, 

10% fetal bovine serum, antibiotics, 1 µM estradiol and 1 U/ml insulin. A549_VB6-CB cells 

were maintained in A549 medium supplemented with 80 µg/ml hygromycin (PAA), while 

A549_Actin-CB medium contained 4 µg/ml blasticidin (Carl Roth GmbH). Huh7_Actin-CB 

were cultured in Huh7 medium supplemented with 5 µg/ml blasticidin. Subconfluently grown 

cells were passaged every 2-3 days using trypsin/EDTA. Primary hepatocytes, provided by 

the group of Prof. Andreas Nüssler were cultured as described previously (Schyschka et al., 

2013). 

2.2.3.2 Cell seeding and compound treatment 

Prior to cell seeding, cells were trypsinized and counted using a Neubauer chamber. For 

biochemical techniques cells were seeded in 10 cm culture dishes and grown to 95 % 

confluence. For microscopical use, between 2x103 and 8x103 cells were seeded in µClear 96-

well plates (Greiner) and grown for 24 to 72 h. For time-lapse imaging and high-content 

imaging, cells were seeded in antibleaching DMEM-gfp medium (evrogen). For FRAP 

analyses, 1.5x104 cells were seeded in µ-slide 8-well chamber (Ibidi) and grown overnight. 

Compound treatment with 5 ng/ml TGF-β1 (Peprotech) or 50 - 500 nM Withaferin A (WFA, 

Merck Millipore) was performed up to 72 h. 

2.2.3.3 Transfection 

Transient transfection was carried out either with Lipofectamine LTX (Life Technologies) or 

polyethyleneimine (PEI, Sigma Aldrich). HeLa, BHK and Hek293T cells were transfected 

with PEI working solution (0.4 mg/ml PEI, 300 mM NaCl in ddH2O, pH 7 for Hek293T, pH 

10 for HeLa, BHK). DNA-PEI complexes were prepared, using max. 200 ng DNA and 1.5 µl 
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PEI in 20 µl DMEM for 96-well format or 24 µg DNA and 180 µl PEI in 600 µl DMEM for 

10 cm culture dishes, and incubated for 15 min at room temperature. Subsequently, 

complexes were added to the cells and incubated for 24 h at 37 °C, 5 % CO2 and 95 % 

humidity. 

Transfection of A549 cells was carried out with Lipofectamine LTX according to the 

manufacturer’s protocol. Briefly, for 96-well format 100 ng DNA, 0.4 µl Lipofectamine LTX 

and 0.1 µl PLUS reagent were diluted in 20 µl OptiMEM (Life Technologies), incubated for 

30 min at room temperature and added to the cells for 24 h. 

2.2.3.4 Lentiviral transduction 

Lentiviral transduction was performed to allow stable integration of genes in the genome of 

desired cell lines. Lentiviral particles were prepared, using the ViraPower lentiviral 

expression systems (Life Technologies), according to the manufacturer’s protocol. Briefly, 

HEK293-FT cells cultured in T125 flasks were transfected with the ViraPower packaging mix 

and desired pLenti/V5-DEST plasmids. Supernatants, containing virus particles were 

collected 48 h and 72 h after transfection and residual cell fragments were removed by 

centrifugation (3000 x g, 15 min, 4 °C), followed by filtering through 0.45 µm pore size 

filters. Subsequently, virus particles were concentrated by ultracentrifugation (50 000 x g, 90 

min, 4 °C), resuspended in 100 µl of 1 % BSA in 1 x PBS and stored at – 80 °C until further 

use. 

Cells were transduced, by adding 20 µl concentrated phage particles (5 x 107 transducing 

units / ml) per well (12 well plate) and incubated for 24 h at 37 °C, 5 % CO2 and 95 % 

humidity. Medium was replaced by fresh culture medium 24 h after transduction. 

2.2.3.5 Generation of stable cell lines 

For the generation of stable cell lines, cells were transduced with lentiviral particles 

containing pLenti/V5-DEST plasmids coding for chromobodies. After transduction, cells 

were subjected to a two-week selection period with appropriate antibiotics (hygromycin or 

blasticidin). Single-cell separation in 96-well plates (1 cell / well), as well as cell sorting of 

polyclonal cell lines with equal expression levels was performed by fluorescence active cell 

sorting (FACS) (conducted by FACS core facility, University of Tuebingen, Hill campus). 

For the selection of monoclonal cell lines and single clones were analyzed microscopically, 

regarding the level of chromobody expression. 
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2.2.3.6 Resazurin assay 

A549 cells were transiently transfected with plasmids coding for VB3-CB, VB6-CB or GFP. 

72 h post transfection, cells were incubated with culture medium containing resazurin (Sigma 

Aldrich, 10 µg/ml final concentration) for 1 h. Fluorescence was measured at 570 nm and 600 

nm with a PHERAstar plate reader (BMG Labtech). Student’s t-test was performed for 

statistical analysis. 

2.2.3.7 Wound healing and transwell invasion assay 

For wound healing assays, A549-wt or A549_VB6-CB cells were seeded in 12-well plates 

and grown to 90 % confluence. Three scratch wounds per well were applied with a 200 µl 

pipette tip and non-adherent cells were washed twice with PBS. Fresh medium with or 

without 5 ng/ml TGF-β was added and cells were cultured for 48 h. Phase-contrast images 

were taken immediately (0 h), 24 h and 48 h after wounding with a Cell Observer SD (Zeiss), 

10 x magnification. Open wound areas were determined with the TScratch automated 

analysis software (Geback et al., 2009). For statistical analysis student’s t-test was used. 

For invasion assays, polycarbonate membrane transwell inserts (8 µM pre size, 0.33 cm2, 

Corning) for 24-well plates were coated with 0.4 mg/ml growth factor reduced Matrigel (BD 

Biosciences) according to the manufacturer’s guidelines. A549-wt or A549_VB6-CB cells 

were seeded at 5x104 cells per well on Matrigel-coated inserts in FBS free medium in 

presence or absence of TGF-β and 10 % FBS was added to the bottom wells of the chambers. 

After 24 h and 48 h cells were washed with PBS, fixed with 100 % Methanol for 15 min and 

stained with crystal violet (1 % crystal violet, 10 % ethanol in H2O) for 30 min. Non-invading 

cells were swiped off and phase-contrast images were taken with Cell Observer SD (Zeiss), 

10 x magnification. The percentage of invading cells was determined with ImageJ software.  

2.2.3.8 Immunocytochemistry 

For immunocytochemistry cells cultured in µClear 96-well plates were washed twice with 1 x 

PBS and fixed with 4 % paraformaldehye (PFA) in 1 x PBS for 15 min at room temperature. 

Subsequently, cells were washed twice with 1 x PBS and blocked and permeabilized with 3 % 

BSA, 0.1 % Triton X-100 in PBS for 30 min. Incubation with primary antibodies or 

ATTO488 labeled nanobodies, diluted in 3 % BSA in PBS was carried out at 4 °C overnight. 

After additional washing steps (3 x with 0.02 % Tween in PBS, PBST), secondary antibodies 

diluted in 3 % BSA in PBS were incubated for 1 h at room temperature. Finally, cells were 

counterstained with 0.02 µg/ml 4,6-diamidino-2-phenylindole (DAPI, Sigma Aldrich) for 1 

min and washed 3 times with PBST. Multiwell plates were stored in PBS at 4 °C.  
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2.2.3.9 Fluorescent-2-hybrid (F2H) assay 

Based on a lac operator system, the fluorescent-2-hybrid assay was carried out to analyze 

intracellular protein interactions as described by Zolghadr et al. (Zolghadr et al., 2008). 7x103 

BHK (clone2) cells were seeded in µClear 96-well plates and transfected with plasmids 

coding for one bait and one prey protein, labeled with two different fluorescent proteins. 24 h- 

interactions were analyzed microscopically. 

2.2.3.10 Classic microscopy 

For initial selection of the chromobodies and for co-localization studies, images were acquired 

with an Axiovert 200M (Carl Zeiss Microscopy GmbH) and 40 x magnification in combination 

with AxioVision 4.7.1.0 imaging software (Carl Zeiss Microscopy GmbH). 

Morphological studies of A549 wildtype (A549-wt) and A549-VB6-CB were performed with 

a Cell Observer SD (Carl Zeiss Microscopy GmbH), 10 x magnification in combination with the 

Zen2 blue edition software (Carl Zeiss Microscopy GmbH). 

Images for F2H analyses were acquired with an ImageXpress micro XL system (Molecular 

Devices), 20 x magnification in combination with MetaXpress software (64 bit, 5.1.0.41, 

Molecular Devices). 

2.2.3.11 Fluorescence recovery after photobleaching (FRAP) 

For fluorescence recovery after photobleaching (FRAP) experiments, HeLa cells cultured in 

µ-slide 8-well chambers were transiently transfected with the plasmids coding for eGFP-

vimentin (GFP-VIM), VB3-CB or VB6-CB. FRAP recordings were performed with a Zeiss 

confocal laser scanning microscope (CLSM 510 Meta) in combination with the LSM510 4.0 

SP2 software. Images were acquired using a 488 nm Argon laser and 63 x magnification. For 

photobleaching the laser was set to 50 % output and 100 % transmission to bleach a 5 x 5 µm 

region of interest for 1.7 s. Confocal imaging series were acquired with 1 % laser transmission 

and the pinhole opened to 1.5 Airy units. Generally, 5 prebleach and 145 postbleach images 

were recorded with 294 ms time intervals. Normalized mean fluorescence intensities were 

corrected for background and for total loss of fluorescence over time. Fluorescence recovery 

curves were fitted with Origin 7.5 using an exponential function, given by ���� = ��1-e-kt�, 
where I(t) is the signal intensity dependent on time, A is the end value of intensity, k is the 

time constant. Half-times of recovery were determined by 	�
/� = ��.�
�� . For statistical analysis 

two-tailed Student’s t-test was used. 
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2.2.3.12  Time-lapse imaging 

For time-lapse series, A549_VB6-CB cells were seeded in µclear 96-well plates in 

antibleaching DMEM-gfp medium and stimulated with TGF-β (5 ng/ml) for 48 h. 

Subsequently, TGF-β was removed and cells were cultivated for additional 45 h. Images were 

acquired in 3 h time intervals with of an ImageXpress micro XL system (Molecular Devices), 

40 x magnification in combination with the MetaXpress software (64 bit, 5.1.0.41, Molecular 

Devices). 

2.2.3.13 Image segmentation and analysis 

For high content analyses, A549_Actin-CB, Huh7_Actin-CB and A549_VB6-CB were plated 

in µClear 96-wells plates and treated with TGF-β and/or WFA (see section 2.2.3.2). Images 

were acquired with an ImageXpress micro XL system and analyzed by the MetaXpress 

software (64 bit, 5.1.0.41, Molecular Devices). For automated nuclear segmentation, nuclei of 

live cells were stained by addition of 2 µg/ml Hoechst33258 (Sigma Aldrich) to the cell 

culture medium. Automated segmentation of vimentin and actin was carried out using the 

MetaXpress Custom Module Editor (CME 5.1) software (Molecular Devices). 

Prior to the segmentation of vimentin, images were processed using a Top Hat filter (size: 30 

pixels, shape: circle). Subsequently, a modified version of the “find fibers” tool was applied, 

based on the fluorescence of VB6-CB to segment vimentin fibers including identification of 

single segments and branch points. Thereby the following settings were used: minimum fiber 

width: 0.1 µm, maximum fiber width: 50 µm, intensity above local background (IALB): 150 

grey levels. Fibers shorter than 20 fiber length units were excluded from the final readout by 

applying a filter mask. Nuclei were segmented by means of the “Count Nuclei” tool (fast 

algorithm, minimum width 6 µm, maximum width 40 µm, IALB 500 grey levels). Eventually, 

the total number of fiber segments was divided by the number of segmented nuclei of the 

entire cell population. For each condition ~300 cells were analyzed. Data derived from WFA 

experiments were normalized to the untreated control (0 nM WFA). Standard errors were 

calculated from three independent experiments and Student’s t-test was used for statistical 

analysis. 

Prior to the segmentation of actin stress fibers, images were processed using a Top Hat filter 

(size 5 pixels, shape circle). Stress fibers were segmented using an adapted version of the 

“find fibers” tool based on the fluorescence of Actin-CB. Settings were applied as follows: 

minimum fiber width: 0.2 µm, maximum fiber width: 5 µm, IALB: 200 grey levels. To 

identify only straight fibers the ellipsed form factor (EFF = fiber length / fiber width) was 

calculated and only fibers ≥ 3 fiber length units and EFF ≤ 5 were included for the final 
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readout. Nuclei were segmented by means of the “Count Nuclei” tool (fast algorithm, 

minimum width 6 µm (A549); 7 µm (Huh7), maximum width 40 µm, IALB 500 grey levels). 

Eventually, the total number of stress fibers was divided by the number of segmented nuclei 

of the entire cell population. For each condition ~300 cells were analyzed. Standard errors 

were calculated from three independent experiments and Student’s t-test was used for 

statistical analysis. 
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RESULTS 
To generate a chromobody-based cellular sy

multiple steps were required in order to visualize and quantify effects of EMT

targeting compounds by high-content imaging in real time

occludin, SNAI1 and vimentin were produced for immunization and nanobody screening (1). 
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Since, due to the enrichment process, some of the identified positive ELISA clones might 

comprise identical amino acid sequences, analyses of all positive nanobody sequences were 

performed. The alignment of the protein sequences resulted in two unique occludin-

nanobodies (OF6-NB and OG1-NB), six unique SNAI1-nanobodies (SA2-NB, SB4-NB, , 

SG1-NB, SG6-NB, SF2-NB and SF4-NB) and eight unique vimentin-nanobodies (VB3-NB, 

VB6-NB, VC4-NB, VF6-NB, VE3-NB, VG1-NB, VG4-NB and VH3-NB) (Figure 3.4). From 

previous studies it is known that VHH domains carry hydrophilic amino acids in framework 2 

(FR2) instead of the highly conserved hydrophobic amino acids of VHs that promote the 

interaction with the VLs of conventional IgGs (Muyldermans et al., 1994, Harmsen et al., 

2000). These substitutions at the positions V37F/Y, G44E/Q, L45R and W47G/L were 

described as so-called hallmark residues (Vu et al., 1997). While all occludin and SNAI1-

nanobodies, as well as the vimentin-nanobodies VB3-NB, VE3-NB, VF6-NB and VG1-NB 

were verified as VHH domains, closer inspection of the hallmark residues revealed that VB6-

NB, VC4-NB, VG4-NB and VH3-NB are VH domains most likely derived from conventional 

IgGs.  

The two occludin-nanobodies OF6-NB and OG1-NB are highly similar and differ in only 

seven amino acids located mainly in the CDR1 (Figure 3.4 A). Unlike SNAI1 and vimentin-

nanobodies, OF6-NB and OG1-NB exhibit an extended CDR3 loop comprising 14 amino 

acids, including an additional cysteine residue. These observations have already been 

described for other VHH domains suggesting a compensation of the lacking light chain by an 

extended CDR3 that is stabilized by an additional disulfide bond between FR2 and CDR3 

(Muyldermans et al., 1994, Desmyter et al., 1996, Conrath et al., 2003). 

Sequence analyses of the six unique SNAI1-nanobodies revealed that the CDR1 regions are 

rather heterologous, while CDR2 and CDR3 differ in maximally one amino acid (Figure 3.4 

B). In addition, minor varieties in the framework regions exist.  

As mentioned previously, only VB3-NB, VE3-NB, VF6-NB and VG1-NB are VHH domains 

derived from heavy-chain-only antibodies (hcAbs), while VB6-NB, VC4-NB, VG4-NB and 

VH3-NB are VHs derived from conventional IgGs of the immunized animal. Apart from 

relatively divers CDR1s and few single amino acid exchanges the VHHs are broadly 

homologous. By contrast the CDRs of the VHs are rather diverse and show small variances in 

the total sequence length.  

 



 

                                                                                                                                                   
 

A 
 
  
OF6  QVQLVESGGGLAQPGGSLRLSCAASG FAIDLTTLG WFRQAPGKGREGVS CISASGVA TLYDDSVKGRFTISRDDAKNTVYLQMNDLKPDDTAVYYCAA DGPDKLATDCREDSYDY WGQGTQVTVSS 126 
OG1  QVQLVESGGGLVQPGGSLTLSCVASG FTFDLSSMG WFRQAPGKEREGVA CISASGVA TLYDDSVKGRFTISRDDAKNTVYLQMNDLKPDDTAVYYCAA DGPDKLATDCREDSYDY WGQGTQVTVSS 126 

     ***********.****** ***.*** *::**:::* ******** ****: ******** ***************************************** ***************** ***********  
 

B 
 
SA2  QVQLVESGGGLVQPGGSLRLSCAFSG FSFDLHAIG WFRQTPGKERELVA AITKGG-K TYHADSVKGRFTISRDKGSNTVYLQMNSLKPEDTAMYYCAA GEVA-------DQGYDN WGQGTQVTVSS 118 
SB4  QVQLVESGGGLAQPGGSLRLSCAASG FAIDLTTLG WFRQAPGKERELVA AILRGG-K TYHADSVKGRFTISRDKNTNTLYLQMNSLKPDDTGMYYCAA GEVE-------DRGYDN WGQGTQVTVSS 118 
SF2  QVQLVESGGGLVQPGESLRLTCVVSG DTLDYYAVG WFRQAPGKERGLIA AITRGG-K TYHADSVKGRFTISRDRVANVVYLQMSGLRPDDTAMYYCAA GEVA-------DQGYDN WGQGTQVTVSS 118 
SG1  QVQLVESGGGSVQAGDSLRLSCVASG STAVISAMG WFRQAPGKERSLIA AITRGG-K TYHADSVKGRFTISKDKTANTVYLQMRLLQPEDTAIYYCAA GEVE-------GRGYDN WGQGTQVTVSS 118 
SF4  QVQLVESGGGLVQAGGSLRLSCAASR --SDLGAMG WYRQAPGKERVLVA AILRGG-K TYYDDSVRGRFTISRDKNTNTLYLQMDNLNADDTAMYYCAA GEVE-------GRGYDN WGQGTQVTVSS 118 
SG6  QVQLVESGGGSVQAGGSLRLSCVVSG NIFSLNAMG WYRQAPGKERELVA AILRGG-K TYHADSVRGRFTISRDKNTNTLYLQMNNLKPDDTGMYYCAA GEVE-------DRGYDN WGQGTQVTVSS 118 

     ********** .*.* ****:*. *        ::* *.**:***** *:* ** :** * **: ***:******:*: :*.:****  *..:**.:***** ***        .:**** *********** 

 

C 
 
VB3  QVQLVESGGGSVQAGDSLRLSCAASG NTFSIKVMG WYRQAPGKQRELVA VSTNSGAS VNYANSVKGRFTISIDSVKKTTYLQMNSLKPEDTAVYFCNA YDG---------RYEDY YGQGTQVTVSS 117 
VE3  QVQLVESGGGLVQPGGSLRLSCAASG STFRIRTMG WYRQAPGKQRELVA VSTNSGGS VNYADSVKGRFTISIDSVKKTTDLQMNSLKPEDTAVYYCNA YDS---------DYLDY YGQGTQVTVSS 117 
VF6  DVQLVESGGGLVEAGGSLRLSCAASG RTFSPYVMG WYRQAPGNQRELVA VSTNSGAS VNYANSVKGRFTISIDSVKKTTYLQMNSLKPEDTAVYFCNA YDG---------RYEDY YGQGTQVTVSS 117 
VG1  DVQLVESGGGLVQAGGSLKLSCKASG STYSIHVYG WYRQAPGKQRELVA VSTNSGAS VNYANSVKGRFTISIDSVKKTTYLQMNSLKPEDTAVYFCNA YDG---------RYEDY YGQGTQVTVSS 117 
 
VB6  QVQLVESGGGLVQSGGSLTLTCAASG FTFSAASMR WVRQVPGKGLEWVA TIDGTGAN SYYSESAKGRFTISRDNARNTLRLQMNNLKPDDTAVYYCAN FG-------R-----NY WGKGTQVTVSS 114 
VC4  QVQLVESGGGLVQPGGSLRLSCLASG FSFGSYRMH WVRQAPGKGLEWVS GISSGGGT TYYADSVKGRFTISRDNAKNMLYLQMNNLQPEDTAVYYCLG G--------DWAD---- WGQGTQVTVSS 114 
VG4  QVQLVESGGGLVQPGGSLRLSCVASG FTFSDYWMY WVRQAPGKGLEWVS GISPGG-T TTYADSVKGRFTTSRDNTRNTLYLQMNELKPEDTAVYYCAK DL-------NWVDSDDY WGRGTQVTVSS 118 
VH3  QVQLVESGGGLAQPGGSLRLSCAASG FTFSSYAMS WVRQAPGKGLEWVS GITSGGSS TYYASSVKGRFTISRDNTKNTLYLQMDNLKSDDTAVYYCAK A---------WGSASSS RGQGTQVTVSS 117 

     :********* .:.*.** *:* ***  ::       * **.**:  * *:      * .   *:.*.***** * *..::   ***:.*:.:*****:*                      *:******** 

 
37   F/Y (VHH)  V (VH)   * fully conserved 
44   E/Q (VHH)  G (VH)   : strongly similar 
45   R   (VHH)  L (VH)   . weakly similar 
47   G/L (VHH)  W (VH)    
 
 
 

Figure 3.4: Amino acid sequence alignment of unique nanobodies specific for occludin (A), SNAI1 (B) or vimentin (C). Hallmark residues at the positions 37, 44, 45 

and 47 (Kabat numbering (Kabat and Wu, 1991)) of VHH and VH sequences are displayed as white letters on black (VHH) or dark grey (VH) background and non-identical 

residues are highlighted in light grey. * indicates positions with fully conserved residues, : indicates conservation between groups of strongly similar properties and . indicates 

conservation between groups of weakly similar properties. 
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In summary, biopanning of the phagemide library derived from an alpaca immunized with 

recombinant occludin, SNAI1 and vimentin and subsequent screening by phage-ELISA, 

followed by sequence analysis of the positive phage clones resulted in a successful selection 

of two unique occludin-nanobodies, six unique SNAI1-nanobodies and eight unique 

nanobodies specific for vimentin. 

3.2 Characterization and identification of intracel lular functional 
EMT-chromobodies 

For the development of a nanobody-based cellular EMT model, the intracellular functionality 

of fluorescently labeled nanobodies (chromobodies) is absolutely indispensable. The general 

strategy to characterize and select suitable EMT nanobodies was therefore to primarily 

generate so-called “chromobodies” by fusing the coding sequences of all unique nanobodies 

to fluorescent proteins (e.g. eGFP) (Figure 1.4.). To perform co-localization studies as initial 

tests, these chromobodies were introduced in mammalian cells, together with expression 

plasmids coding for the respective antigen, fused to a distinguishable fluorescent protein. 

Only chromobody candidates that co-localize with the ectopically expressed antigens were 

selected for further validation by biochemical and cell biological assays, including Western 

blot, immunofluorescence, immunoprecipitation, intracellular-immunoprecipitation and live-

cell imaging. 

3.2.1 Occludin-nanobodies and -chromobodies 

3.2.1.1 Preselection of occludin-chromobodies 

Starting from 31 positive ELISA clones, sequence analysis showed that the two unique 

sequences of OF6-NB and OG1-NB were strongly enriched. Both nanobodies were 

genetically fused to eGFP, resulting in OF6- and OG1-chromobody (OF6-CB and OG1-CB), 

and transiently expressed in mammalian cells. To investigate the intracellular expression and 

distribution of OF6-CB and OG1-CB, HeLa cells were co-transfected with full-length 

occludin fused to mCherry (mCherry-OCLN) and one of the chromobody constructs (Figure 

3.5 A). The images show that mCherry-OCLN was integrated into the tight-junctions among 

endogenous occludin and predominately located at the plasma membrane of transfected cells. 

While OF6-CB co-localized with mCherry-OCLN at the plasma membrane indicating 

potential intracellular binding of the chromobody to ectopically expressed occludin, OG1-CB 

showed no co-localization, but was rather diffusely distributed throughout nucleus and 

cytoplasm (Figure 3.5 A). 
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biochemical applications would be of particular interest, even if the priority of this work was 

to identify functional chromobodies for intracellular approaches.

Since OF6-CB has been shown to partially co

OF6-NB was found to be a promising candidate for biochemical analyses. To investigate 

OF6-NB in immunological applications, it was recombinantly produced in 
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3.2.2 SNAI1-nanobodies and -chromobodies 

3.2.2.1 Preselection of SNAI1-chromobodies 

Potential SNAI1-specific nanobodies were converted into the chromobodies SA2-CB, SB4-

CB, SF2-CB, SF4-CB, SG1-CB and SG6-CB by genetic fusion of each nanobody sequence to 

eGFP, as described in the previous section. To investigate the intracellular expression and 

distribution of all six SNAI1-chromobodies, HeLa cells were transiently co-transfected with 

mCherry-tagged SNAI1 (mCherry-SNAI1) and one of the chromobody constructs (Figure 3.9 

A). Since SNAI1 is a transcription factor and comprises a nuclear localization signal (NLS) 

(Mingot et al., 2009), ectopically expressed mCherry-SNAI1 was mainly located in the 

nucleus of transfected cells (Figure 3.9 A). All SNAI1-chromobodies could be readily 

expressed and co-localized with mCherry-SNAI1 within the nucleus, suggesting potential 

intracellular recognition of ectopically expressed SNAI1. However, all chromobodies 

additionally exhibit a diffusive distribution in the cytoplasm of transfected cells (Figure 3.9 

A). 

To investigate whether the SNAI1-chromobodies indeed recognize endogenous SNAI1, each 

chromobody as well as GFP was single-expressed in Hela cells (Figure 3.9 B) and the 

distributional pattern of each chromobody was compared to GFP and to antibody stainings 

with three different IgG antibodies, specific for SNAI1 (Figure 3.9 C). All SNAI1-

chromobodies were distributed throughout the entire cell and showed a slight nuclear 

accumulation, very similar to solely expressed GFP. Surprisingly, the patterns of the three 

IgG antibodies α-SNAI1, Sn9H2 and H130 strongly differed from each other, even though 

they are not stated to address distinct SNAI1 fractions. While α-SNAI1 was mainly located in 

the cytoplasm of the cells, Sn9H2 showed a clear nuclear staining and H130 equally stained 

cytoplasm and nucleus (Figure 3.9 C). These observations allow no reliable interpretation of 

the “real” localization of endogenous SNAI1 and therefore cannot be used for a comparable 

analysis of the chromobody distributions. In additional studies with A375 cells, a cell line 

described to express high levels of endogenous SNAI1 (Kajita et al., 2004), similar results 

were obtained (data not shown).  

Based on these findings an additional experimental approach had to be applied to investigate, 

whether the selected SNAI1-nanobodies recognize and bind SNAI1 in living cells. 
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VG1-CB, VG4-CB or VH3-CB and mCherry labeled vimentin (mCherry-VIM). (B) Single expression of 

vimentin-chromobodies in HeLa cells. Structures, reminiscent of the midbody are marked by white arrows. (C) 

Controls. HeLa cells were transfected with GFP (GFP) or stained with a conventional vimentin antibody (α-VIM 

IgG). Shown are representative images from independent experiments (N = 3). Scale bars, 20 µm. 

Image analysis revealed that mCherry-VIM assembles into endogenous vimentin structures 

and was localized in perinuclear region of the cytoplasm in the majority of transfected cells. 

Remarkably, most of the eight chromobody candidates did not co-localize with those 

structures. While the chromobodies VC4-CB, VF6-CB and VG4-CB were rather diffusely 

distributed similar to solely expressed GFP, VE3-CB and VH3-CB strongly aggregated 

independently of presence or absence of co-expressed mCherry-VIM. Only the chromobodies 

VB3-CB VB6-CB and VG1-CB truly co-localized with mCherry-VIM (Figure 3.13 A) and 

displayed a filamentous pattern that resembles the distribution of endogenous vimentin in 

single transfected HeLa cells (Figure 3.13 B). This suggests that these three chromobodies 

recognize ectopically expressed as well as endogenous vimentin in living HeLa cells. 

However, for VG1-CB focal enrichment of the chromobody fluorescence between the 

majority of dividing cells was observed (Figure 3.11 B, white arrows), indicating that VG1-

CB recognizes additional structures apart from vimentin (e.g. structures of the midbody 

reviewed in Steigemann and Gerlich, 2009). Consequently, only VB3-CB and VB6-CB were 

identified as most promising candidates for the following biochemical and cell-biological 

studies. 

3.2.3.2 Biochemical characterization of vimentin-nanobodies VB3-NB and VB6-NB 

In the previous section VB3-CB and VB6-CB were identified as potential vimentin-

chromobodies for the intracellular envisaged applications. Since the assumption that the 

chromobody binding moieties VB3-NB and VB6-NB recognize vimentin, is based on optical 

microscopic analysis only, the following section focuses on detailed characterization of both 

nanobodies on a biochemical level. To this end, VB3-NB and VB6-NB were recombinantly 

produced and purified as previously described for OF6-NB in section 3.2.1.2. 

In the first part of the biochemical characterization of VB3-NB and VB6-NB, the purified 

nanobodies were chemically coupled to the organic dye ATTO488 (VB3ATTO488, VB6ATTO488) 

resulting in a degree of labeling (DOL) of 1 for VB3-NB and 0.8 for VB6-NB. To test, 

whether VB3ATTO488 and VB6ATTO488 are applicable to detect vimentin in direct 

immunofluorescence, co-staining experiments with the ATTO488-labeled nanobodies and an 

established vimentin antibody were performed (Figure 3.14 A-C). 
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Figure 3.14: Immunofluorescence and immunoblotting with dye
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nucleus and cytoplasm of HeLa and MDA-MB-231 cells (Figure 3.14 A). By contrast, 

VB6ATTO488 clearly co-localized with α-VIM-IgG in all cell lines, indicating that VB6ATTO488 

recognizes vimentin in these cells (Figure 3.14 B). In repeating experiments, residual 

background signals were detected with VB6ATTO488. To increase the avidity of the binding 

molecule, a bivalent nanobody was generated, by connecting two identical VB6 domains by a 

flexible (Gly4Ser)3 linker. Co-staining with the ATTO488-labeled bivalent nanobody VB6-

VB6ATTO488 and α-VIM-IgG showed a broad signal overlap at vimentin filaments in all tested 

cell lines (Figure 3.14 C). Moreover, compared to VB6ATTO488, staining with VB6-VB6ATTO488 

was drastically improved, distinguished by an increase in signal intensity at filamentous 

structures and a concomitant decrease of unspecific background. 

Another application for dye-labeled nanobodies is the direct detection of proteins in 

immunoblotting. To test whether the vimentin-nanobodies are functional in Western blot, 

20 µg of cell lysates from four cell lines expressing differing levels of vimentin were 

separated by SDS-PAGE, followed by immunoblotting. While in one experiment vimentin 

was detected with a control vimentin antibody (α-VIM-IgG), in a second experiment VB6-

VB6ATTO488 was used for detection (Figure 3.14 D). The results show that through direct 

detection with VB6-VB6ATTO488 similar binding patterns as with α-VIM-IgG in combination 

with a fluorescently labeled secondary antibody were observed, indicating that VB6-

VB6ATTO488 recognizes denatured vimentin in immunoblotting. No signals in Western blot 

analyses could be detected with the monovalent nanobodies VB3ATTO488 and VB6ATTO488 (data 

not shown). 

To extend the biochemical characterization of the vimentin-nanobodies, VB3-NB, VB6-NB 

and VB6-VB6-NB were covalently immobilized on sepharose beads generating so-called 

vimentin-traps (VB3-trap, VB6-trap and VB6-VB6-trap). In the following section, these 

vimentin-traps were tested for their ability to precipitate endogenous vimentin as well as 

ectopically expressed vimentin domains from a number of cell lysates (Figure 3.15). Equal 

amounts of the soluble protein fractions derived from HeLa, HEK293T, MDCK and A549 

cells were incubated with equal amounts of the indicated vimentin-traps. Input fractions as 

well as bound fractions were subjected to Western blot analysis to detect possibly precipitated 

endogenous vimentin (Figure 3.15 A). The results show that all nanobodies bound 

endogenous vimentin, but with varying efficiencies. The highest amounts of vimentin were 

detected in the bound fractions of VB3-trap independently of the origin of the lysates. By 

contrast, both VB6-trap and VB6-VB6-trap, bound only minor amounts of vimentin even 

though slightly more vimentin was precipitated with VB6-VB6-trap than with the monovalent 
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Detection with a GFP antibody (lower panel, GFP) clearly exhibits the enrichment of GFP as 

well as both chromobodies in the respective bound fractions. Moreover, the results show that 

vimentin was co-precipitated

the bound fraction of the negative control (upper panel, vimentin). This indicates specific 

binding of both chromobodies to vimentin upon intracellular expression.

To test whether intracellular chromobody expression might have cytotoxic effects, cell 

viability was measured by performing a resazurin

transfected with plasmids coding for VB3

culture media, while resazurin was added 72 h after transfection. Since viable cells 

continuously reduce the blue colored resazurin to the red colored resorufin, cell viability, 

deduced by this color change was measured after 1 h incubation with resazurin (

The results show that compared to the control (GFP) no significant changes in cell viability 

could be determined for VB3

As mentioned above, a considerable number of studies on vimentin currently rely on 

fluorescently labeled vimentin 

reported that ectopic expression of vimentin induces changes in cell shape, motility and 

adhesion and therefore might not reflect the distribution and dynamic organization of 

endogenous vimentin 

vimentin-chromobodies and fluorescently labeled vimentin (GFP

number of HeLa cells expressing GFP

fluorescence imaging (

large number of cells expressing GFP

from unspecific accumulation of overexpressed protein (

including the information of more than 300 cells per construct, revealed that GFP

formed aggregates in ~ 80 % of transfected cells, while the percentage of cells with 

fluorescent granules was significantly decreased upon expression of

VB6-CB (~ 14 %) (

Detection with a GFP antibody (lower panel, GFP) clearly exhibits the enrichment of GFP as 

well as both chromobodies in the respective bound fractions. Moreover, the results show that 

precipitated with VB3-CB and VB6

the bound fraction of the negative control (upper panel, vimentin). This indicates specific 

binding of both chromobodies to vimentin upon intracellular expression.
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transfected with plasmids coding for VB3-CB, VB6

ture media, while resazurin was added 72 h after transfection. Since viable cells 

continuously reduce the blue colored resazurin to the red colored resorufin, cell viability, 

deduced by this color change was measured after 1 h incubation with resazurin (

The results show that compared to the control (GFP) no significant changes in cell viability 

could be determined for VB3-CB and VB6-CB. 

Figure 3.17: Resazurin assay.

VB3-CB, VB6-CB or GFP

reagent for 1 h at 37 °C. 

Depicted viability values represent relative mean fluorescence intensities and 

standard deviation determined for transfection
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VB6-CB (t1/2 = 3.9 s) demonstrate a slightly faster recovery rate and indicate a more transient 

binding mode of VB6

following intracellular applications.

Figure 3.19: Fluorescen
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In summary, the results of the intracellular characterization of the vimentin-chromobodies 

revealed that both, VB3-CB and VB6-CB, recognize vimentin upon intracellular expression. 

Moreover, both vimentin-chromobodies show no cytotoxic effects and can be solubly 

expressed in living cells without unspecific accumulation. FRAP analysis revealed that VB6-

CB binds to vimentin more transiently that VB3-CB. Since the more transient binding mode 

of VB6-CB might influence the functionality and dynamic organization of endogenous 

vimentin to a lower extent, this chromobody was selected for all further intracellular 

approaches. Taken together, VB6-CB is suggested to be a highly suited novel tool for 

intracellular imaging of the EMT marker protein vimentin. 

3.3 Development of chromobody-based EMT models for high 
content imaging 

As mentioned previously, epithelial-mesenchymal transition (EMT) is a highly dynamic 

process that occurs during metastasis formation (Richardson et al., 2012, Thiery and Sleeman, 

2006, Lamouille et al., 2014). In this context, the identification of novel compounds that 

modulate EMT during tumor progression is of particular interest for novel therapeutic 

approaches, targeting the formation of metastases. To date, screening strategies to select novel 

EMT affecting compounds mainly rely on endpoint readouts regarding gene expression, cell 

viability and migration (Gupta et al., 2009, Li et al., 2011, Chua et al., 2012). Hence, there is a 

high demand for assays depicting the dynamics of EMT in disease relevant cellular models in 

real time.  

In the previous sections detailed biochemical and cell biological analyses of novel identified 

nanobodies and chromobodies against the EMT marker proteins occludin, SNAI1 and 

vimentin were performed. The data conclude that nanobodies and chromobodies against these 

cellular targets are applicable as biochemical research tools including Western blot, 

immunoprecipitation or intracellular-immunoprecipitation. However, image analysis of cells 

expressing occludin and SNAI1 specific chromobodies indicated that none of these 

chromobodies are suited to visualize dynamic changes of the respective target structures in 

cells undergoing EMT. By contrast, characterization of nanobodies and chromobodies against 

vimentin revealed a broad applicability of these binding molecules to target and trace this 

EMT relevant target in many biochemical and cellular assays. Remarkably, visualization of 

endogenous vimentin structures with VB3-CB and VB6-CB now offers new opportunities to 

study the dynamic EMT process in living cells.  
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To achieve a more detailed insight into structural changes of the cytoskeleton upon EMT, a 

previously described chromobody, specifically targeting filamentous actin structures was 

additionally applied. Recently, the functionality of this commercially available actin-

chromobody (Actin-CB, ChromoTek GmbH) has been proved in various eukaryotic systems 

(Rocchetti et al., 2014, Panza et al., 2015). In the following section, the vimentin specific 

chromobody VB6-CB as well as the actin specific chromobody Actin-CB were selected for 

the development of cell-based EMT models. 

3.3.1 Vimentin-chromobody-based EMT model 

As described in the introduction, vimentin is a mesenchymal marker protein which is not 

present in primary epithelial cells and shows only minor expression levels in some epithelial 

derived cancer cell lines. By contrast, vimentin is highly expressed in cells with mesenchymal 

origin (e.g. fibroblasts) and becomes enriched in epithelial cells, undergoing EMT. Hence, 

vimentin is a highly relevant EMT biomarker. To monitor dynamic changes of endogenous 

vimentin in a stable and reliable live-cell system VB6-CB was selected to generate a cell-

based EMT model.  

During the last decade, the lung cancer cell line A549 has been frequently used to study EMT 

in tumor progression (Kawata et al., 2012, Liu et al., 2013, Kim et al., 2014, Pan et al., 2015). 

In this context the well described transforming growth factor β (TGF-β) is widely deployed to 

induce EMT through SMAD-dependent transcriptional activation (see section 1.3). To study 

dynamic rearrangements of vimentin during EMT-related processes in living cells, VB6-CB 

was introduced into A549 cells. Initially tested transient transfection of A549 cells with a 

VB6-CB coding expression plasmid resulted in strong overexpression of the chromobody in 

many cells as well as a large heterogeneity regarding intercellular expression levels (data not 

shown). To achieve more moderate and uniform expression levels, VB6-CB was stably 

introduced in A549 cells using a lentiviral transduction system. Transduced cells were 

subjected to selective pressure by adding antibiotics in order achieve stable integration of the 

VB6-CB sequence in the genome of A549 cells. Single cells, stably expressing VB6-CB and 

displaying diverse expression levels, were separated into 96-well plates by fluorescence 

activated cells sorting (conducted by FACS facility, hill campus, University of Tuebingen), to 

develop a number of monoclonal cell lines. To minimize background fluorescence of unbound 

chromobody, a cell line with a low overall expression level of VB6-CB (A549_VB6-CB) was 

selected. 

 



In section 3.2.3.2 it 

whether stable integration of the chromobody construct has an impact on cellular physiology 

particularly in response to TGF

morphology, migration and invasion was performed. Thereby the chromobody cell line 

A549_VB6-CB was compared to the original A549 

attempt, A549

TGF-β for 72 h (

morphological changes from a small epithelial cell shape to a larger spindel

mesenchymal phenotype. Moreover, the morphology of both cell lines did not differ in any of 

the analyzed conditions.

Figure 3.21: Cell morphology of A549

cells were plated at high (upper panel) and low densities (lower panel) and left untreated (

with 5 ng/ml TGF

images of independent experiments (N = 5)

In a second attempt, the migratory and invasive potential of A549

were compared by perf

the wound healing assays A549

open wound areas were determined 24 h and 48 h after wounding in absence or presence of 

TGF-β (Figure 

regarding cell migration. For transwell invasion assays, A549

were cultured in polycarbonate transwell inserts and left untreated or stimulated with TG

for 48 h. After staining of invading cells with crystal violet, the percentage of invading cells 

was determined (

In section 3.2.3.2 it was shown that expression of VB6

whether stable integration of the chromobody construct has an impact on cellular physiology 

particularly in response to TGF-β stimulation, a set of experiments regarding cell 

gy, migration and invasion was performed. Thereby the chromobody cell line 

CB was compared to the original A549 

attempt, A549-wt and A549_VB6-CB were seeded at different densities and stimulated with 

for 72 h (Figure 3.21). Both, A549

morphological changes from a small epithelial cell shape to a larger spindel

mesenchymal phenotype. Moreover, the morphology of both cell lines did not differ in any of 

d conditions. 

Cell morphology of A549-wt and A549 cells in response to TGF

were plated at high (upper panel) and low densities (lower panel) and left untreated (

with 5 ng/ml TGF-β (+ TGF-β). Phase contrast images were taken after

images of independent experiments (N = 5). Scale bar

In a second attempt, the migratory and invasive potential of A549

were compared by performing wound healing and transwell invasion assays (

the wound healing assays A549-wt and A549_VB6

open wound areas were determined 24 h and 48 h after wounding in absence or presence of 

Figure 3.22 A). The results show no significant differences between the two cell lines 

regarding cell migration. For transwell invasion assays, A549

were cultured in polycarbonate transwell inserts and left untreated or stimulated with TG

for 48 h. After staining of invading cells with crystal violet, the percentage of invading cells 

was determined (Figure 3.22 B). While the absolute percentage of invading cells obtained for 

was shown that expression of VB6-CB is not cytotoxic in general. To test 

whether stable integration of the chromobody construct has an impact on cellular physiology 

stimulation, a set of experiments regarding cell 

gy, migration and invasion was performed. Thereby the chromobody cell line 

CB was compared to the original A549 wildtype cell line (A549

CB were seeded at different densities and stimulated with 

). Both, A549-wt and A549_VB6-CB cells, underwent 

morphological changes from a small epithelial cell shape to a larger spindel

mesenchymal phenotype. Moreover, the morphology of both cell lines did not differ in any of 

wt and A549 cells in response to TGF-β. A549-

were plated at high (upper panel) and low densities (lower panel) and left untreated (-

Phase contrast images were taken after 72 h. Shown are representative 

. Scale bar: 100 µm. 

In a second attempt, the migratory and invasive potential of A549-wt and A549

orming wound healing and transwell invasion assays (

wt and A549_VB6-CB cells were grown to confluence and 

open wound areas were determined 24 h and 48 h after wounding in absence or presence of 

no significant differences between the two cell lines 

regarding cell migration. For transwell invasion assays, A549-wt and A549_VB6

were cultured in polycarbonate transwell inserts and left untreated or stimulated with TG

for 48 h. After staining of invading cells with crystal violet, the percentage of invading cells 

). While the absolute percentage of invading cells obtained for 

RESULTS 

65 

CB is not cytotoxic in general. To test 

whether stable integration of the chromobody construct has an impact on cellular physiology 

stimulation, a set of experiments regarding cell 

gy, migration and invasion was performed. Thereby the chromobody cell line 

(A549-wt). In a first 

CB were seeded at different densities and stimulated with 

CB cells, underwent 

morphological changes from a small epithelial cell shape to a larger spindel-like 

mesenchymal phenotype. Moreover, the morphology of both cell lines did not differ in any of 

 
-wt and A549_VB6-wt 

- TGF-β) or stimulated 

Shown are representative phase 

wt and A549-VB6-CB cells 

orming wound healing and transwell invasion assays (Figure 3.22). For 

CB cells were grown to confluence and 

open wound areas were determined 24 h and 48 h after wounding in absence or presence of 

no significant differences between the two cell lines 

wt and A549_VB6-CB cells 

were cultured in polycarbonate transwell inserts and left untreated or stimulated with TGF-β 

for 48 h. After staining of invading cells with crystal violet, the percentage of invading cells 

). While the absolute percentage of invading cells obtained for 



RESULTS 

66 
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Taken together, the comparative studies of A549-wt and A549_VB6-CB cells regarding cell 

morphology, migration and invasion have shown that stable integration of the VB6-CB 

construct into A549 cells has no impact on the ability of the cells to undergo EMT. Moreover, 

time-lapse analyses demonstrate that dynamic rearrangements of endogenous vimentin can be 

readily traced by the chromobody fluorescence on a single cell level. Consequently, the 

A549_VB6-CB cell line well suited to study vimentin during EMT. 

3.3.2 Actin-chromobody-based EMT model 

Actin is one of the best described cytoskeletal proteins and plays major roles in 

cytoarchitecture, cell adhesion and migration (Yamaguchi and Condeelis, 2007, Parsons et al., 

2010). During the process of EMT, actin has been shown to relocate from cortical actin at the 

plasma membrane of epithelial cells to actin stress fibers in mesenchymal cells (Haynes et al., 

2011). Recently, an actin specific chromobody has been described to visualize full 

localization dynamics of endogenous actin in living cells and whole organisms (Panza et al., 

2015). Here, the actin-chromobody (Actin-CB) is used to develop EMT-relevant cellular 

models that can be applied for high-content imaging studies. 

To investigate the dynamic distribution of endogenous actin in EMT-related processes, Actin-

CB was introduced in two EMT-relevant cell lines: the above described epithelial lung cancer 

cell line A549 and the epithelial hepatocarcinoma cell line Huh7. While A549 cells are 

commonly used to study EMT in tumor progression as already described, Huh7 cells are often 

applied in studies that address EMT during hepatic dedifferentiation (Godoy et al., 2013, 

Meyer et al., 2013). As explained previously, intracellular expression levels of chromobodies 

upon transient transfection widely differ within intercellular populations. Hence, A549 and 

Huh7 cells were transduced by means of a lentiviral system, followed by selective pressure 

with appropriate antibiotics, in order achieve stable integration of Actin-CB in the genome of 

the respective cell lines. Similar to the previously described generation of stable A549_VB6-

CB cell line, fluorescence-activated cell sorting was performed to obtain polyclonal pools 

with equal intercellular expression levels. To minimize side effects, due the background 

fluorescence of unbound chromobody, a cellular pool with relatively low Actin-CB 

expression levels was selected for A549 and Huh7 cells respectively. 

To investigate actin visualization with Actin-CB in the selected cell systems, co-localization 

studies were performed to compare the distribution of the stably expressed chromobody to 

classic actin staining with phalloidin. The latter is a natural toxin that binds filamentous actin 
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Withaferia somnifera

activity in vivo (Shohat et al., 1967

by inducing dominant negative effects 

been described to promote phosphorylation and disruption of vimentin 

2011) and to inhibit TGF

To test whether it is possible to verify effects of vimentin

means of the vimentin

with WFA was performed. For detailed quantification of the cellular effects upon WFA 
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segments were significantly decreased upon treatment with 250 nM and 500 nM WFA. This 

indicates that the effects of WFA were completely recovered after 24 h. Furthermore, the 

strongest decrease of vimentin fiber segments was observed after 6 h and 12 h, showing a 

two-fold reduction of vimentin in presence of TGF-β and a ten-fold reduction in absence of 

TGF-β. Overall, the results conclude that high-content imaging of the vimentin-chromobody 

model allows precise quantification of dose- and time-dependent compound effects 

independently of the initial level of vimentin. 

To summarize, both actin-chromobody models A549_Actin-CB and Huh7_Actin-CB as well 

as the vimentin-chromobody model A549_VB6-CB can be applied for high-content imaging 

studies, thereby allowing a reliable segmentation of actin stress fibers or filamentous vimentin 

respectively. Induction of EMT by treatment with TGF-β could be quantified with all three 

chromobody models. Moreover, time- and dose-dependent effects of the vimentin-modulating 

small compound WFA were quantitatively detected by real-time high content imaging of the 

vimentin-chromobody model. 
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4 DISCUSSION 
The cellular reprogramming process, epithelial-mesenchymal transition, is of particular 

interest for the development of anti-metastatic therapeutics. In this context, novel strategies 

that enable real-time analysis of EMT biomarkers are required that deepen our insight into the 

complex regulation of this dynamic process. In this thesis, nanobodies against the EMT 

marker proteins occludin, SNAI1 and vimentin were generated and analyzed regarding their 

applicability in biochemical as well as cell biological approaches. The occludin-specific 

nanobody OF6-NB is a powerful tool for biochemical applications particularly for pull-down 

experiments, yet is not appropriate to detect endogenous occludin in living cells. Functionality 

of the SNAI1-specific nanobody SG6-NB and chromobody SG6-CB are restricted to 

ectopically overexpressed Snail, while the recognition of endogenous Snail remains unclear. 

Two functional nanobodies, VB3-NB and VB6-NB, were developed and applied for 

biochemical detection and precipitation of vimentin, while their chromobody formats VB3-

CB and VB6-CB are functional to trace endogenous vimentin in living cells. Based on the 

highly soluble and transient binding of VB6-CB and the previously described Actin-CB, 

EMT-relevant cellular models were generated and adapted for high-content imaging. These 

models allow live-visualization of actin and vimentin redistribution during EMT in real-time 

as well as quantitative detection of the effects of the EMT inducer TGF-β and the vimentin-

modulating compound Withaferin A (WFA). In the following section the observed results are 

critically discussed in the context of the current state of the art in the field of nanobodies and 

EMT. 

4.1 Nanobody selection process 

To study spatial and temporal dynamics of cellular processes, such as EMT, a number of 

intracellular affinity reagents have been described that allow tracing of endogenous cellular 

target structures (see section 1.5). One advantage of these recombinant binding formats is that 

they can be easily selected form generic libraries. In this thesis specific nanobodies against the 

EMT-markers occludin, SNAI1 and vimentin have been selected via phage display. Phage 

display is the most robust and frequently used screening technique, nonetheless nanobodies 

can also be selected by mRNA display (Doshi et al., 2014), ribosome display (Yau et al., 

2003), bacterial display (Fleetwood et al., 2013) or yeast display (Koide and Koide, 2012). 

Recently, a novel approach has been described that allows direct selection of nanobody 

sequences form the animal serum, without intermediary expression systems (Fridy et al., 

2014). Most commonly, nanobody selection is based on libraries derived from immunized 
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animals (Lauwereys et al., 1998, Van Audenhove et al., 2013, Pardon et al., 2014), while in 

some cases naïve libraries from non-immunized animals have been applied (Monegal et al., 

2009, Jobling et al., 2003).  

Starting from a VHH phage library, comprising 2x107 cfu/ml, a clear enrichment of specific 

phages was obtained for each antigen after two panning cycles in this study. This is consistent 

with other studies, generally describing one or two panning cycles for selection of nanobodies 

from libraries derived from immunized animals, depending on the magnitude of the hcAb-

mediated humoral response (Rothbauer et al., 2006, Pardon et al., 2014, Traenkle et al., 2015). 

Due to the larger diversity, at least two or more panning cycles are required for nanobody 

selection from naïve libraries (Groot et al., 2006, Jobling et al., 2003). For all antigens a 

satisfying number of specifically binding nanobodies were obtained after phage ELISA, 

hence, no more than 47 clones were tested per antigen. All selection technologies mentioned 

above are suited to identify high-affinity binding molecules, however, they are not able to 

predict functionality within living cells. Since a major focus of this work was to generate 

chromobodies for intracellular usage, the subsequent selection strategy of nanobodies, 

positive in phage ELISA, was implemented by simple intracellular co-localization studies as 

well as the fluorescent two-hybrid (F2H) assay. Other strategies to identify binding molecules 

within living cells have been described as well: The intracellular antibody capture technology 

(IACT) combines the phage display technology with a modified yeast two-hybrid (Y2H) 

assay, allowing the selection of binding molecules functional in yeast (Visintin et al., 1999, 

Visintin et al., 2002). An altered bacterial two-hybrid system was developed to enable a one-

step isolation of nanobodies functional in bacteria (Pellis et al., 2012). Since antigens derived 

from E. coli comprise no posttranslational modifications and passive adsorption on solid 

surfaces sometimes leads to structural deterioration, another approach, describing a modified 

technique of the classic phage display using natively folded and freely accessible proteins 

produced in mammalian cells has been developed (Schmidthals, 2013). However, functional 

expression of all these selected binding molecules in mammalian cells is not ensured and still 

requires additional and careful intracellular validation. 

4.2 Diversity of nanobody sequences 

The variety of b lymphocytes producing specific antibodies is indispensable for the defense 

mechanisms of the adaptive humoral immune system. Thereby, the random combination of 

variable (V), diversity (D) and joining (J) genes (so called V(D)J recombination) is an 

underlying process during b cell maturation. For the formation of heavy chains of 
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conventional tetrameric antibodies as well as of heavy-chain-only antibodies, the alpaca 

genome comprises three V gene subgroups (IgHV1, IgHV2 and IgHV3), with IgHV3 

containing 17 members of the VHH set (divided into 6 subsets A-F) and 54 members of the VH 

set (divided into 12 subsets A-K), seven D genes (DH1 – DH7) and seven J genes (JH1 – JH7) 

(Achour et al., 2008). In a first step, D and J segments are combined, while in a second step a 

V gene joins the assembled DJ sequence to form a complete VHH or VH exon (Nguyen et al., 

1999). In heavy chain variable domains CDR1, FR2 and CDR2 are encoded by a V segment, 

while the CDR3 loop is formed by recombination of V, D, and J segments, resulting in 

increased sequence variability within this region (Wu et al., 1993). 

Analysis of all the unique nanobody sequences selected in section 3.1 revealed significant 

differences. The two occludin-nanobodies are encoded by the same V gene of IgHV3 

subgroup and VHH subset D marked by the hydrophilic hallmark residues Phe37, Glu44, 

Asp45 and Gly47 in FR2 (Achour et al., 2008). The V gene of the SNAI1-nanobodies SA2-

NB, SB4-NB, SF2-NB and SG1-NB belong to the VHH subset E (Phe37, Glu44, Asp45, 

Leu47), while SF4-NB and SG6-NB are derived from the VHH subset B (Tyr37, Glu44, 

Asp45, Leu47) of IgHV3 (Achour et al., 2008). As mentioned in the results section, the four 

vimentin-nanobodies VB3-NB, VE3-NB, VF6-NB and VG1-NB are VHHs, including V genes 

derived from VHH subset A (Tyr37, Gln44, Asp45, Leu47) of IgGV3, while the nanobodies 

VB6-NB, VC4-NB, VG4-NB and VH3-NB are encoded by V genes of the IgGV3 VH set, 

including the hydrophobic residues Val37, Gly44, Leu45 and Trp47 in FR2 (Achour et al., 

2008). During the generation of the phagemide library, precise preparation of DNA 

fragments, coding for heavy chains of hcAbs (IgG2, IgG3), should ensure that only VHH 

domains are included in the library and selected by phage display and ELISA (Schmidthals, 

2013). Thereby, three subsequent PCR reactions are performed to amplify the gene segments 

coding for the VHH repertoire. The first PCR is specific for all heavy chains of conventional 

IgG1, IgG2, and IgG3, resulting in PCR products with different lengths, since the hcAbs lack 

the CH1 domain. Only the shorter PCR product, derived from hcAbs serves as template for 

subsequent PCR amplifications specific for the variable domains. Hence, contamination with 

DNA fragments coding for heavy chains of conventional IgGs (IgG1s) during the second 

PCR amplification step is the likeliest explanation for the selected VH sequences. 

The varying length and high diversity within the CDR3 loops of the identified sequences is 

largely set by the integration of the D genes (Wu et al., 1993). An elongated CDR3 loop, 

often described for VHH domains (Muyldermans, 2013), was only observed for the occludin-

nanobodies, both comprising identical D genes with an additional cysteine residue (Figure 
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3.4). It can be assumed that this CDR3 loop is stabilized by the formation of a disulfide bridge 

mediated by the additional cysteine, which might be crucial for correct folding and 

recognition of the antigen. Hence, improper folding of OF6-CB in the reducing environment 

of the cytoplasm might be one reason, why this chromobody is only partially functional 

within living cells. All Snail nanobodies share the same D segment indicated by nearly 

identical CDR3s. By contrast, within VHH sequences of the vimentin-nanobodies, CDR3 of 

VE3 is derived from another D segment than VB3, VF6 and VG1, and the VH sequences each 

comprise largely diverse CDR3s indicating recombination of different D genes. Sequence 

analyses of CDR3 and FR4 regions revealed that all selected nanobodies contain the same J 

gene, JH4, occurring most frequently in VH as well as in VHH sequences (Achour et al., 2008). 

Beyond V(D)J recombination, other mechanisms such as somatic hypermutations (reviewed 

in French et al., 1989) and imprecise joining events, resulting in addition or loss of 

nucleotides at the junctions of recombined segments (reviewed in Schatz et al., 1992), 

increase the diversity of the selected nanobodies and explain varieties within sequences 

derived from the same V, D or J genes.  

4.3 General applicability of the developed nanobodi es and 
chromobodies 

The main focus of this work was to generate a system that allows intracellular tracing of 

endogenous EMT-markers in living cells. Among the identified nanobodies and 

chromobodies only VB3-CB and VB6-CB are fully functional for intracellular applications, 

while occludin- and SNAI1-chromobodies are not suited to trace endogenous targets within 

living cells. 

Occludin is an integral transmembranic component of cellular tight junctions between 

epithelial cells (Furuse et al., 1993). As mentioned above, the malfunction of the developed 

occludin-chromobodies might be explained by incorrect folding in the reducing environment 

of the cytoplasm. Another reason might be that within cells, the chromobody epitope is 

inaccessible. In intact tight junctions, occludin is known to interact with many other tight 

junctional proteins, including the three ZO proteins JAM, VAP-33, JEAP and CLMP 

(reviewed in Feldman et al., 2005). Thus, interaction of one of these proteins with the 

cytoplasmic C-terminal domain of occludin might mask the chromobody. When 

overexpressing occludin, some epitopes might be accessible, assuming that the ectopic 

occludin concentration is much higher than the concentration of endogenous interaction 

partners. This might explain that OF6-CB co-localizes with mCherry-OCLN, but not with 
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endogenous occludin (Figure 3.4). Surprisingly, intracellular-immunoprecipitation 

experiments indicated intracellular binding of OF6-CB to ectopically expressed as well as 

endogenous occludin (Figure 3.6). This might be explained by the disruption of tight 

junctional protein complexes leading to increased accessibility of the epitope upon cell lysis. 

Moreover, OF6-CB may bind to endogenous occludin within living cells, yet in a minor 

extent, so it is not detectable by fluorescence microscopy, but by IC-IP followed by 

immunoblotting, which is much more sensitive, due the enrichment of the antigen. OF6-NB 

was shown to efficiently precipitate and detect occludin in immunoprecipitation and Western 

blot experiments (Figure 3.5 and 3.6), leading to the assumption that OF6-NB recognizes a 

linear epitope rather than a conformational structure, as was shown for most nanobodies 

described so far (De Genst et al., 2006).  

The high performance of the OF6-NB and OF6-CB in immunoprecipitation experiments as 

well as in IC-IP studies might facilitate the identification of novel binding partners of 

occludin. Additionally, several nanobodies have been recently applied as chaperones for the 

crystallization of complex biological structures, including integral transmembrane proteins 

(Conrath et al., 2009, Rasmussen et al., 2011, Pardon et al., 2014). Hence, OF6-NB might be 

useful to stabilize the overall structure of occludin alone or in complex with other proteins. 

This would expand the knowledge significantly, since only the structure of the cytoplasmic C-

terminal domain of occludin has been elucidated to date (Li et al., 2005).  

The canonical EMT marker and transcriptional repressor SNAI1 is of great interest for cancer 

research, particularly regarding its role in the development of metastases, acquisition of 

cancer stem cell-like properties and resistance to chemotherapeutic drugs (reviewed in Wang 

et al., 2013b and Kaufhold and Bonavida, 2014). Most studies addressing SNAI1 apply 

measurements on mRNA levels (Moreno-Bueno et al., 2009, Zhou et al., 2014), since SNAI1 

protein levels are difficult to detect in Western blot or in immunocytochemical (IHC) and 

immunohistochemical (ICC) assays (Zhou et al., 2004, Lee et al., 2006, Qiao et al., 2010). 

This is explained by the high instability of the SNAI1 protein, combined with a lack of 

functionally reliable SNAI1 antibodies. In this context, it is not surprising that SG6-NB is 

barely functional for immunoprecipitation of SNAI1. The more promising format is the 

intracellular functional SG6-CB which recognizes ectopically expressed SNAI1 within living 

cells, as was shown by IC-IP (Figure 3.9) and by a modified fluorescent two-hybrid assay 

(Figure 3.10). Whether SG6-CB also binds to endogenous SNAI1, remains unclear, but it is a 

most attractive candidate for further investigations e.g. by analyzing IC-IP bound fractions by 

mass spectrometry. 
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Vimentin is the major intermediate filament protein found in mesenchymal cells and its role 

as cytoskeletal component has been known for many years (reviewed in Herrmann et al., 

1996). Yet, we are still at the beginning to understand its dynamic and interdependent 

functions especially during EMT and metastasis formation. In vitro studies with the vimentin-

specific nanobodies VB3-NB and VB6-NB coupled to an organic dye have shown that only 

VB6-NB detects denatured vimentin in Western blot and immunofluorescence. By generating 

a bivalent VB6-nanobody and thereby increasing its avidity, antigen detection was 

dramatically improved. Interestingly, VB3-NB precipitates vimentin more efficiently than 

VB6-NB, but in Western blot and immunofluorescence its epitope might be inaccessible. 

Based on these findings, VB6-NB is assumed to recognize a linear epitope, as it was also 

stated for OF6-NB, while VB3-NB might bind to a rather conformational epitope that is 

destroyed upon denaturation of vimentin. This hypothesis is supported by the fact that VB3-

NB and VB6-NB are derived from different antibody classes (hcAb vs. conventional IgGs) 

and comprise completely differing hypervariable domains (Figure 4.1). Hence, it can be 

hypothesized that the two nanobodies address different epitopes, both located in the rod 

domain of vimentin. Yet, the precise epitope of each nanobody/chromobody is not known. 

 
 

VB3  NTFSIKVMG WYRQAPGKQRELVA VSTNSGAS YDGRYEDY 
VB6  FTFSAASMR WVRQVPGKGLEWVA TIDGTGAN FGRNY--- 
      ***   *  * **.***  * ** .   :**. :  .*    

Figure 4.1: Sequence alignment of the three CDR regions (CDR1-3) and FR2 of VB3-NB and VB6-NB. 

In recent years, novel super-resolution techniques have revolutionized the field of 

fluorescence microscopy (reviewed in Hell, 2009 and Fornasiero and Opazo, 2015). In this 

context fluorescently labeled nanobodies are used to allow a closer spatial proximity of the 

fluorophore and the target structure and thereby minimize the linkage errors observed with the 

much larger primary and secondary antibodies. In the past, a GFP-specific nanobody, 

covalently coupled to a fluorescent dye, has been applied for photoactivation localization 

microscopy (PALM) of fluorescently labeled microtubules (Ries et al., 2012). Recently, a 

tubulin-specific nanobody has been developed for super-resolution imaging of endogenous 

microtubules (Mikhaylova et al., 2015). Since VB6-NB was shown to detect vimentin directly 

in immunofluorescence, it may be a promising candidate to visualize endogenous vimentin by 

super-resolution microscopy, which is currently being investigated. 

Another recent study describes a novel compound and 3-arylquinoline derivative, named 

Arylquin1, which triggers secretion of the tumor suppressor protein Par-4 leading to apoptosis 

CDR2 CDR1 CDR3 FR2 
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in diverse cancer cells, but not in normal cells (Burikhanov et al., 2014). Burikanov et al. 

revealed a potential mechanism, by which Par-4 is clustered upon binding to vimentin and 

thereby prevented from secretion. By binding to vimentin, Arylquin 1 displaces Par-4 from 

vimentin, resulting in Par-4 secretion. The proposed interaction between Par-4 and vimentin 

was supported by immunoprecipitation and intracellular co-localization experiments. In this 

context, VB6-CB might help for a better understanding of Arylquin 1’s mode of action. 

Intracellular expression of VB6-CB might exhibit vimentin localization, depending on 

Arylquin 1 and Par-4. Moreover, IC-IP experiments could be applied to analyze the proposed 

interaction between vimentin and Par-4 in absence or presence of Arylquin 1 in a more 

physiological environment. 

4.4 Chromobodies for live cell imaging 

As described earlier in the introduction, chromobodies, comprising a nanobody moiety and a 

fluorescent protein, have become a valuable alternative to conventional antibodies and ectopic 

expression of fluorescently labeled target proteins. Several studies describe applications of 

chromobodies in living cells to visualize and trace dynamic changes of intracellular target 

structures (Rothbauer et al., 2006, Kirchhofer et al., 2010, Burgess et al., 2012, Li et al., 2012, 

Traenkle et al., 2015). In the context of this thesis, intrabodies addressing EMT marker 

proteins in living cells were of particular interest.  

For live cell visualization of the well-known cytoskeletal component actin, which is known to 

undergo a dramatic reorganization during EMT, a number of chromobody-based and non-

chromobody approaches have been described. The small peptide, lifeact, has been derived 

from the first 17 amino acids of Abp140 of Saccharomyces cerevisiae and successfully been 

applied as a live-cell actin marker in various cell lines as well as whole organisms e.g. 

drosophila and mice (Riedl et al., 2008, Riedl et al., 2010, Spracklen et al., 2014). Moreover, 

a number of intracellular functional F-actin specific nanobodies have been developed (Van 

Audenhove et al., 2013, Rocchetti et al., 2014).  

The commercially available actin-chromobody, which has been applied in this study, is a 

valuable tool to trace the dynamic organization of F-actin in cellulo and in vivo, as it has 

recently been demonstrated in living zebrafish models (Panza et al., 2015). However, 

although reorganization of the actin cytoskeleton is linked to EMT it still occurs in numerous 

cellular processes and cannot only be classified as an EMT-specific phenomenon. To date, no 

approaches are available to visualize any other EMT specific marker in living cells.  
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In the present study, two chromobodies, VB3-CB and VB6-CB, were developed as novel 

biosensors to study the endogenous localization and dynamic rearrangements of the 

mesenchymal EMT-marker vimentin in live cells. The current state of the art regarding live-

cell imaging of vimentin mainly relies on microinjection or ectopic expression of 

fluorescently labeled vimentin (Kuczmarski and Goldman, 2007, Helfand et al., 2011, Chang 

et al., 2009, Kajita et al., 2014). However, detailed analyses of protein expression, cell shape, 

motility and migration of several breast cancer cell lines upon ectopic expression or knock-

down of vimentin have shown that increased vimentin expression correlates with a 

mesenchymal phenotype, while loss of vimentin expression causes mesenchymal cells to 

adopt epithelial phenotypes (Mendez et al., 2010). Hence, overexpression of fluorescently 

labeled vimentin does not reflect the endogenous situation.  

The two chromobodies, developed in this study, visualize vimentin for the first time in its 

physiologically relevant state. Comparative analyses of fluorescently labeled vimentin (GFP-

VIM) and the two chromobodies have shown that GFP-VIM strongly aggregates upon 

overexpression, while the chromobodies were more soluble. Both chromobodies were shown 

to have no effect on cell viability compared to solely expressed GFP. These findings are 

supported by the unaltered morphology and minimal changes in migration and invasion of 

A549 cells expressing VB6-CB (A549_VB6-CB), compared to the wild-type cell line. The 

more transient binding mode, observed by FRAP analysis suggests minimal interference with 

endogenous vimentin dynamics. Still, further impact on protein function cannot be completely 

excluded. As mentioned above, in a facilitated model vimentin disassembles upon extensive 

phosphorylation of Ser/Thr residues, while assembled filaments are widely unphosphorylated 

(Snider and Omary, 2014). Since alpaca immunization and nanobody selection were 

performed with recombinant vimentin purified from bacteria, it is likely that VB6-CB 

recognize both, soluble and polymerized vimentin independently of the phosphorylation state. 

Yet, intracellular binding of the chromobody might hinder posttranslational modifications of 

vimentin by masking the binding site of kinases or interaction with other binding partners, as 

it has been proposed for some intrabodies (Sato et al., 2013a, Bethuyne et al., 2014). In this 

context, recognition of the rod domain may be advantageous and less harmful than binding of 

the chromobody to the N- or C-terminus, since important phosphorylation sites are located 

mainly in the head- and tail domain of vimentin. 
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4.5 Induction of EMT 

EMT can be induced by numerous intrinsic (e.g. receptors, transcription factors) and extrinsic 

stimuli, such as growth factors and components of the ECM (reviewed by (Gonzalez and 

Medici, 2014)). In this context, the transforming growth factor β1 (TGF-β1) is the most 

widely used inducer, regarding EMT in cancer research. During early stages of tumorigenesis, 

TGF-β inhibits cell proliferation and acts as a tumor suppressor, while in later stages it 

promotes tumor progression by the initiation of EMT leading to increased invasiveness and 

formation of metastases (Heldin et al., 2009). In this study, induction of EMT with TGF-β led 

to characteristic changes in morphology and motility of both wild-type A549 and A549_VB6-

CB. Surprisingly, no significant changes in wound healing were induced by TGF-β in both 

cell lines. This might be explained by the proliferation inhibiting effect of TGF-β, which 

cannot be differentiated from cell migration by classic scratch assays. Moreover, previous 

studies have shown that A549 cells with cancer stem cell (CSC)-like properties respond to 

TGF-β with enhanced motility in wound healing assays, while the non-CSC cells did not 

change in motility (Tirino et al., 2013). Whether the monoclonal A549_VB6-CB cell line 

exhibits a CSC or non-CSC-like phenotype remains unclear and has to be further investigated. 

In A549_VB6-CB cells increased vimentin protein levels were detected by Western blot upon 

induction of EMT with TGF-β. This is due to regulation of vimentin protein expression by 

SMAD-dependent TGF-β signaling. Activated TGF-β receptors phosphorylate SMAD2/3, 

which complex with SMAD4 and translocate in the nucleus. Once in the nucleus, the SMAD 

complex activates the expression of EMT transcription factors, including FOXC2, which was 

shown to promote vimentin expression (Mani et al., 2007, Lamouille et al., 2014). Moreover, 

the SMAD complex activates transcription through interaction with DNA-binding factors of 

the Sp1 or AP-1 family such as c-Jun, c-Fos and Sp1/SP3 that bind to the vimentin promoter 

and initiate vimentin expression (Rittling et al., 1989, Wu et al., 2007, Wu et al., 2003). 

SMAD3 was also shown to directly activate the expression of vimentin (Wu et al., 2007). 

Moreover, the vimentin promoter is a target of β-catenin/TCF4 complex and of NFκB, both 

components of SMAD-independent pathways, that can be activated by TGF-β (see section 

1.3.2) (Gilles et al., 2003, Lilienbaum and Paulin, 1993, Wu et al., 2007). 

Live-cell imaging of TGF-β treated A549_VB6-CB cells showed a reverse redistribution from 

perinuclear vimentin in untreated cells, extending to a complex network throughout the cell 

periphery. This is consistent with a recent study, focusing on TGF-β-mediated EMT in 

different populations of A549 cells with features of cancer stem cells (CSC) or non-CSC 
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properties (Tirino et al., 2013). Vimentin redistribution upon TGF-β treatment was detected in 

both CSCs and non-CSCs. Likewise, EMT-dependent vimentin reorganization in A549 cells 

has been observed by overexpression of the transcription factor PREP1, which is described to 

affect TGF-β-SMAD signaling (Risolino et al., 2014). Regarding vimentin’s role in cell 

motility and migration, Helfand et al. have shown that within migrating mesenchymal-like 

fibroblasts, gradients of different vimentin assembly states are present within the cells. While 

in the tail and perinuclear regions of these cells vimentin was organized in a complex network 

of filaments, in lamellipodia a disassembled fraction of vimentin was observed (Helfand et al., 

2011). Consequently, the reliable visualization of TGF-β mediated reorganization of the 

highly relevant EMT biomarker vimentin makes VB6-CB a valuable tool for researchers in 

the field of vimentin and EMT.  

Interestingly, TGF-β-mediated induction of vimentin lead to a slight increase of the 

chromobody fluorescence in A549_VB6-CB cells, which cannot be simply explained, since 

chromobody expression is not expected to be dependent on TGF-β. Recently, similar results 

were observed for a chromobody specific for β-catenin, showing a significant increase in the 

global chromobody signal after inhibition of the β-catenin destruction complex, while 

chromobody mRNA levels remained unaffected (Traenkle et al., 2015). In this study, a 

mechanism leading to an antigen-mediated stabilization of the chromobody has been 

proposed. Other studies have described the stabilization of intrabodies, modified by the 

addition of a degradation promoting domain, upon ectopic expression of the respective 

antigens (Sibler et al., 2005). Similar to the mentioned β-catenin specific chromobody, VB6-

CB might be stabilized by the presence of its antigen independently of an introduced 

destabilizing domain, suggesting a general principle for antigen-dependent stabilization of 

intracellularly expressed chromobodies. Further investigations will be necessary to clarify, 

whether this may constitute a novel and flexible approach to detect dynamic changes in the 

expression levels of endogenous proteins by means of chromobodies.  

With regard to actin cytoskeletal arrangements, TGF-β-mediated EMT induction led to the 

reorganization of cortical actin bundles to thick stress fibers at the ventral cell surface in both 

developed Actin-CB models: A549_Actin-CB and Huh7_Actin-CB (Figure 3.26). These 

observations are consistent with previous studies describing EMT-related actin 

rearrangements e.g. in hepatocytes (Godoy et al., 2009) or mouse mammary epithelial 

NMuMG cells (Haynes et al., 2011). TGF-β-dependent remodeling of actin has been shown to 

be dependent on RhoA activation (Masszi et al., 2003). Moreover, increased expression of 

moesin, a member of the ezrin/radixin/moesin (ERM) family has been reported in response to 
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TGF-β and is proposed to be required for efficient actin filament remodeling (Haynes et al., 

2011). 

4.6 Relevance of EMT chromobody models for therapeu tic 
research and clinical settings 

EMT plays a prominent role in the development of cancer metastases and in the acquisition of 

therapy resistance of many cancers. Common therapeutics have often been ineffective 

regarding metastatic cancer, hence, novel technologies to identify compounds targeting the 

dynamic transition process and its related marker proteins are of particular interest for the 

anti-metastatic cancer therapy. Screening strategies addressing EMT currently rely on 

endpoint readouts of gene expression, fluorescence intensity, glow luminescence, and high-

content imaging. For example, Li et al. developed a high-throughput screening approach 

based on a luciferase reporter system measuring vimentin expression and analyzed the effect 

of the primary hits on the invasive potential of spheroids (Li et al., 2011). Another study, 

conducted by Gupta et al. screened for compounds affecting cell viability of epithelial CSCs 

by a luminescence assay (Gupta et al., 2009). Recently, Chua et al. have designed a high-

content screening assay to identify EMT inhibitors affecting cell growth and cell migration 

(Chua et al., 2012). 

In this thesis, cell-based chromobody models were generated for the first time to visualize 

dynamic changes of the EMT-markers actin and vimentin in real time. Moreover, high-

content imaging models were developed to allow monitoring and quantifying subtle changes 

in expression and dynamic redistribution of actin and vimentin upon pathway activation. 

Finally, the vimentin-chromobody model was applied to determine time- and dose-dependent 

alterations of vimentin upon compound treatment with Withaferin A (WFA). This proof of 

principle study demonstrates that the approach developed in this thesis, to trace endogenous 

EMT-markers, provides much deeper insight into the cellular properties and effects of EMT 

modulating compounds. The observation of early effects 3 h after WFA incubation with doses 

of 250 nM and higher indicates a substantial cellular uptake of WFA and its functionality in 

the cellular environment. Continuous live-cell imaging revealed a maximum effect after 6 h – 

12 h and a complete reversion after 24 h, which indicates that WFA might be actively 

exported, inactivated upon metabolization or counteracted by cellular vimentin-regulatory 

circuits. In any case, such transient compound effects cannot be identified by any endpoint 

assay. This example clearly illustrates that compound screens which are restricted to certain 

time points are prone to report false negatives. The approach developed in this thesis is 
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suitable to overcome these limitations and is expected to increase the yield of screening 

campaigns, thereby facilitating the identification of effective EMT modulators.  

In the context of EMT, preclinical drug discovery still relies mainly on 2D cell culture studies, 

for reasons of simplicity and low costs. However, critics argue that 2D models do not reflect 

the complexity of cancerous tissue in vivo, including the contribution of the ECM into which 

cells undergoing EMT invade. To simulate the in vivo situation, novel 3D approaches have 

been recently reported (Li et al., 2011, Chua et al., 2012, Katz et al., 2011, Aref et al., 2013). 

Katz et al. have established a 3D breast cancer in vitro model that mimics the invasion of cells 

with mesenchymal phenotype to break through the basal membrane into stromal collagen 

(Katz et al., 2011). In another approach Aref et al. have developed a microfluidic system that 

integrates A549 lung tumor cell spheroids in a 3D hydrogel scaffold and in co-culture with 

endothelial HUVEC cells (Aref et al., 2013). The authors describe significant differences in 

drug response between 2D and 3D models and between monoculture and co-culture, 

regarding cell proliferation and migration away from the spheroid. Acknowledging the current 

debate, the next step will be to transfer the described EMT chromobody models A549_VB6-

CB, A549_Actin-CB and Huh7_Actin-CB to robust 3D models, allowing a most authentic 

identification of EMT targeting compounds. Notably, observations described for primary 

hepatic 2D and 3D cultures regarding drug toxicity tests led to similar conclusions. For 

example, toxic effects of acetaminophen in vivo can be reproduced in 3D, but not in 2D 

models (Schyschka et al., 2013). Moreover, expression levels and distribution of actin and 

vimentin significantly differ between 2D and 3D cultured hepatocytes (Godoy et al., 2009). 

Since, both Actin-CB and VB6-CB, can be functionally expressed in primary hepatocytes as 

shown in this study, chromobody tracking of endogenous actin and vimentin in primary 

hepatocytes might lead to a better understanding of toxicological effects of drugs in such 3D 

models.  

When it comes to downstream preclinical screening of potential drug candidates, animal 

studies are indispensable. Since most studies on EMT are based on in vitro and in cellulo 

assays, the validity of these data for the in vivo situation has been under intense debate (Tarin 

et al., 2005, Cardiff, 2005). This is partly due to the difficulty to distinguish the origin of 

fibroblasts and CTCs, thereby differentiating between EMT-derived cells and cells with other 

origins. Moreover inhibiting EMT in vivo, has been proposed to be possibly 

counterproductive to prevent distant metastases in patients already exhibiting CTCs (Tsai et 

al., 2012, Nieto, 2013). However, novel studies demonstrated that data  derived from in vitro 

EMT studies can be translated into the clinical setting (Jahn et al., 2012, Tsai et al., 2012, 
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Bonnomet et al., 2012). Most interestingly, the breast cancer EMT in vivo model of Bonnomet 

et al. is based on MDA-MB-468 vimentin-negative cells that grow into primary 

heterogeneous xenografts with vimentin-negative as well as vimentin-positive regions. 

Furthermore, circulating tumor cells exhibited EMT markers suggesting that spontaneous 

EMT events promote intravasation and metastatic dissemination in vivo. Based on these data 

and on the fact that chromobodies and other intrabodies have been successfully introduced in 

living animals (e.g. zebrafish, mice) (Panza et al., 2015, Sato et al., 2013b), it can be proposed 

that intracellular tracing of the reliable EMT biomarker vimentin with VB6-CB might 

facilitate live-experiments and histological studies regarding EMT, CTCs, metastatic 

dissemination and potential drug candidates in vivo.  
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4.7 Outlook 

In this thesis, novel nanobodies and chromobodies against the EMT-biomarkers occludin, 

SNAI1 and vimentin have been developed. OF6-NB specifically targets occludin in Western 

blot and pull down experiments. Since OF6-CB is not functional for intracellular imaging, a 

chromobody against an alternative membrane associated EMT-marker protein would be 

highly valuable. In this context, the tight junction component ZO1 might be a suitable target, 

since this large protein localizes at the cytosolic surface of the plasma membrane and might 

be more accessible for chromobody binding. Currently, potential ZO1 specific chromobodies 

are under development.  

The role of SNAI1 in tumor progression and metastasis formation is of particular interest for 

cancer researchers as described in numerous recent studies (Zhou et al., 2014, Wang et al., 

2014, Kaufhold and Bonavida, 2014). However, as shown in this study, available SNAI1 

antibodies are poorly functional. Hence, further efforts to generate SNAI1 specific nano- or 

chromobodies are highly reasonable. Based on the findings described in this thesis, further 

experiments to analyze whether SG6-CB indeed binds endogenous SNAI1 e.g. by mass 

spectrometry would be indicated. Moreover, the development of bivalent SNAI1-nanobodies 

to obtain binding molecules with increased avidity might lead to better results. 

The two identified vimentin binders VB3 and VB6 are functional as nanobodies as well as 

chromobodies. With regard to the emerging technologies for super resolution microscopy the 

bivalent VB6-VB6-NB is an interesting tool for super resolution recordings of endogenous 

vimentin. In this context, experimental settings have to be optimized including the fixation 

processes, selection of appropriate dyes and dye-coupling.  

Most importantly, chromobody-based models developed in this study combine the relevance 

of actin and particularly vimentin as EMT biomarkers with the unique advantage of live-cell 

analysis and can be used to monitor time- and dose-dependencies of compound-mediated 

effects. Based on these proof-of-principle studies, the next step will be to apply the A549-

VB6-CB system to compound screening. Since vimentin is regulated by extensive 

phosphorylation, it would be highly interesting to test e.g. libraries comprising kinase 

inhibitors.  

Finally, the developed 2D models may be adapted to 3D cell systems, using current 

techniques such as 3D-KITChip or the hanging drop system. Although it will be very 

challenging to develop a reliable 3D phenotypic readout, such models will provide deeper 

insights in the complex regulation of EMT in physiologically more relevant systems. 
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