Supplementary table IV. 4 | Incorporation rates of "heavy" and "medium" isotopes of arginine and lysine in cells after 10 days of growth in SILAC media. "Heavy" and "medium" isotopes were incorporated during cell growth. The rate describes the percentage of "heavy" and "medium" amino acid isotopes in the cells proteins. Cells were considered fully labeled since the incorporation rate was high (above 95%).

	Fmr $^{+}$MEF	Fmr1 ${ }^{-1}$ MEF
Arginine 6	0.97	0.97
Lysine 4	0.97	0.97
Arginine 10	0.97	0.96
Lysine 8	0.97	0.97

Supplementary table IV. 5 | SILAC heavy/light mixing error. Summary of unnormalized proportions of "heavy", "medium" and "light" labeled evidences compared to each other. The numbers of detected and quantified evidences are listed additionally.

	Median (M/L)	Median (H/L)	Median (H/M)	Detected evidences	Quantified evidences
Proteome Fmr1+ MEF biological replicate 1	1.11	1.06	0.96	47,722	31,032
Proteome Fmr1+ MEF biological replicate 2	1.08	1.10	1.03	88,444	66,308
Proteome Fmr1- MEF biological replicate 1	1.06	1.14	1.08	64,590	50,407
Proteome Fmr1- MEF biological replicate 1	1.11	0.99	0.89	80,190	62,828
Phosphoproteome Fmr1+ MEF biological replicate 1	1.15	1.12	0.97	30,014	20,097
Phosphoproteome Fmr1+ MEF biological replicate 2	1.05	1.05	1.00	11,238	9,247
Phosphoproteome Fmr1 MEF biological replicate 1	1.09	1.15	1.06	27,781	22,034
Phosphoproteome Fmr1MEF biological replicate 1	1.09	0.98	0.90	10,897	8,961

Supplementary table IV. 7 | Potential substrates of GSK-36 in Fmr1+ MEFs (class 3). Table contains protein name of the potential substrate, presence of GSK-3 motif, overlap with known substrate [228], position of phosphorylated amino acid and phosphorylated residue.

Protein.names	GSK-3 motif	Reported substrates	Position	Amino.acid
ADP-ribosylation factor GTPase-activating protein 1			360	S
Alpha-1-syntrophin	+		195	S
Armadillo repeat protein deleted in velo-cardio-facial syndrome homolog			141	S
Catenin alpha-2			655	S
Cyclin-dependent kinase 17			92	S
Cytospin-B	+		355	S
Cytospin-B	+		133	S
Cytospin-B			914	S
E3 ubiquitin-protein ligase RNF213			79	S
Filamin A-interacting protein 1-like			809	S
Filamin-A	+		16	S
Formin-1	+		616	S
Formin-binding protein 1-like			429	S
Glucocorticoid-induced transcript 1 protein			107	S
Heat shock protein beta-1	+		13	S
Interferon regulatory factor 2-binding protein-like			637	S
Interferon-induced helicase C domain-containing protein 1			289	S
Interferon-induced helicase C domain-containing protein 1	+		302	S
Interferon-induced, double-stranded RNA-activated protein kinase			32	S
Leiomodin-1	+		550	S
Lipid phosphate phosphohydrolase 1			271	T
MARCKS-related protein	+		85	T
Matrix metalloproteinase-23			240	Y
Microtubule-associated protein 1B	+	+	2030	S
Mitogen-activated protein kinase kinase kinase MLT			649	S
Muscle-related coiled-coil protein	+		334	T
Nestin	+		575	S
Nestin			728	S
Nestin	+		731	S
Nestin	+		963	S
Nestin	+		169	S
Nexilin			16	S
Palladin	+		987	S
Paxillin			302	S
PDZ and LIM domain protein 5	+		332	S
Pleckstrin homology domain-containing family A member 1			70	S
Plekha5 protein			417	S
Protein phosphatase 1 regulatory subunit 12A	+		422	S
Protein prune homolog 2	+		1876	S
Protein prune homolog 2	+		594	S
Ras GTPase-activating protein-binding protein 2	+		227	T
Sequestosome-1	+		269	T
Serine-rich coiled-coil domain-containing protein 1	+		375	S
Signal-induced proliferation-associated 1-like protein 1			288	S

Protein.names	GSK-3 motif	Reported substrates	Position	Amino.acid
Sodium bicarbonate cotransporter 3			247	S
Sodium-coupled neutral amino acid transporter 1			52	S
TBC1 domain family member 1			231	S
Torsin-1A-interacting protein 1	+		33	S
Tropomyosin alpha-1 chain;Tropomyosin beta chain			87	S
Tumor protein D54			5	S
Tumor protein D54	+		12	S
Tyrosine-protein kinase Fyn			21	S
Voltage-dependent P/Q-type calcium channel subunit alpha-1A			2168	S

Supplementary table IV. 8 | Potential substrates of GSK-36 in Fmr1- MEFs (class 3). Table contains protein name of the potential substrate, presence of GSK-3 motif, overlap with known substrate [228], position of phosphorylated amino acid and phosphorylated residue.

Protein.names	GSK-3 motif	Reported substrates	Position	Amino.acid
182 kDa tankyrase-1-binding protein			1212	S
6-phosphofructokinase, liver type			775	S
Acetyl-coenzyme A synthetase, cytoplasmic	+		263	S
Actin-binding protein anillin	+		180	S
Actin-binding protein anillin			444	S
ADP-ribosylation factor GTPase-activating protein 2			431	S
AF4/FMR2 family member 4	+		1040	S
Ahnak protein			5596	S
Ahnak protein			576	S
AP-2 complex subunit mu			147	S
AP-2 complex subunit mu			154	T
Apolipoprotein B receptor	+		420	S
Apolipoprotein B receptor	+		484	S
Apolipoprotein B receptor			398	S
Band 4.1-like protein 3	+		495	T
Calcium-regulated heat stable protein 1	+		31	S
Calcium-regulated heat stable protein 1	+		42	S
Catenin delta-1		+	201	T
Citron Rho-interacting kinase	+		1956	S
Cyclin-dependent kinase 12			889	T
Cyclin-dependent kinase 14			78	S
Cytosine-specific methyltransferase	+		598	S
Cytospin-A			52	T
Dedicator of cytokinesis protein 7			452	S
Density-regulated protein	+		73	S
Deoxynucleoside triphosphate triphosphohydrolase SAMHD1	+		603	T
Dihydropyrimidinase-related protein 2		+	542	S
Dihydropyrimidinase-related protein 3	+	+	101	S

Protein.names	GSK-3 motif	Reported substrates	Position	Amino.acid
Disks large homolog 3			8	S
Disks large-associated protein 5	+		70	S
DNA ligase			210	T
DNA ligase 1	+		188	S
DNA ligase 1	+		51	S
DNA replication licensing factor MCM2			140	S
Drebrin-like protein			273	S
Drebrin-like protein			295	T
E1A-binding protein p400	+		923	S
Elongation factor 2			57	T
Eukaryotic translation initiation factor 4 gamma 1	+		1184	S
FH2 domain-containing protein 1			645	S
Filamin-A			1731	T
Filamin-A	+		1742	T
Filamin-B	+		2478	S
Fos-related antigen 2	+		120	S
Fructose-bisphosphate aldolase A			36	S
Gap junction alpha-1 protein			306	S
Heat shock protein HSP 90-alpha			316	S
Heat shock protein HSP 90-alpha			318	T
Heterogeneous nuclear ribonucleoproteins C1/C2			229	S
Inner centromere protein			284	S
Interferon-activable protein 204			165	S
Interferon-induced, double-stranded RNA-activated protein kinase	+		163	S
Intersectin-1			166	S
Junctional protein associated with coronary artery disease			831	S
Kinesin-like protein KIF15	+		568	S
Lamin-B1	+		24	S
Lamin-B1;Lamin-B2	+		392	S
Lamin-B1;Lamin-B2	+		394	S
Lmo7 protein			927	T
Metalloreductase STEAP3			20	S
Microtubule-associated protein 1A			667	S
Microtubule-associated protein 1A	+		1606	S
Microtubule-associated protein 1A	+		1580	S
Microtubule-associated serine/threonine-protein kinase 4			1176	S
MKL/myocardin-like protein 1	+		6	S
Multivesicular body subunit 12A			168	S
Myb-binding protein 1A	+		1164	S
Myb-binding protein 1A	+		1253	S
Myc box-dependent-interacting protein 1	+		293	S
Myosin phosphatase Rho-interacting protein			1015	S
NAD kinase			62	T
Nuclear factor interleukin-3-regulated protein	+		301	S
Nuclear pore complex protein Nup107			83	T
Nuclear pore complex protein Nup98-Nup96	+		839	S
Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1	+		181	S
Nucleolar RNA helicase 2			118	S

Protein.names	GSK-3 motif	Reported substrates	Position	Amino.acid
Nucleolin	+		121	T
Nucleophosmin			252	S
Nucleophosmin	+		217	T
OTU domain-containing protein 7B			100	S
PDZ and LIM domain protein 2			210	S
Phosphatidylinositol 4-kinase type 2-alpha			462	S
Prelamin-A/C	+		392	S
Prelamin-A/C			463	S
Protein WWC2			999	T
R3H domain-containing protein 2			871	S
R3H domain-containing protein 2			283	S
Rab11 family-interacting protein 5			174	S
RAB23, member RAS oncogene family, isoform CRA_a			197	S
Radiation-inducible immediate-early gene IEX-1			31	S
Ras and Rab interactor 1			446	S
Receptor-interacting serine/threonine-protein kinase 2			176	S
Receptor-interacting serine/threonine-protein kinase 2			178	S
Receptor-interacting serine/threonine-protein kinase 2			364	S
Replication factor C subunit 1	+		155	S
Reticulon-4	+		16	S
Rho guanine nucleotide exchange factor 2			93	S
Rhotekin			507	S
SAM and SH3 domain-containing protein 1			400	S
Septin-10			413	S
Serine/arginine repetitive matrix protein 2	+		964	S
Serine/threonine-protein kinase SIK2			484	T
Serine/threonine-protein kinase SIK3			221	T
Sister chromatid cohesion protein PDS5 homolog B	+		1281	S
Smith-Magenis syndrome chromosomal region candidate gene 8 protein homolog			488	S
Sorting nexin-7			8	S
Spermatogenesis-associated protein 13			670	S
Splicing factor 3B subunit 1	+		223	T
Srcap protein	+		45	S
Supervillin			407	T
Target of rapamycin complex 2 subunit MAPKAP1			476	S
Tensin-3	+		1436	S
Thymidine kinase, cytosolic			15	S
Transcription factor HIVEP2			764	S
Tubulin alpha-1B chain			48	S
Tumor protein D54			5	S
Ubiquitin-conjugating enzyme E2 O	+		836	S
Uncharacterized protein C7orf50 homolog	+		180	S
Versican core protein			1622	S
WD repeat and HMG-box DNA-binding protein 1			784	S
Zinc finger CCCH domain-containing protein 11A	+		677	S
Zinc finger protein GLI2			848	S

Supplementary figure III. 1 | Imputation of missing data. Label-free intensities were log10-transformed and missing values were imputed to simulate protein abundances near the detection limit using values 1.4 for 'downshift' and 0.3 for width, respectively.

Supplementary figure III. 2 | Quantile normalization of LFQ intensities. LFQ intensities across the different measurements were normalized according to the Quantile method using function 'normalize.quantiles' form the 'preprocessCore' R-package.

A

/Neighborhood/Gene Fusion/Cooccurance/Coexpression/Experiments / Databases/Texmining/Homology

B

Supplementary figure IV. 1 | STRING analysis. a) Network from Class 1-3 proteins with increased level; b) Network from Class 1-3 proteins with decreased level.

Supplementary figure IV. 2 | Classified proteins and phosphorylation events mapped onto mTOR signaling pathway. Box colors indicate protein

direction, while circle and its color indicates phosphorylation event and direction.

 Supplementary figure IV. 4 | Classified proteins and phosphorylation events mapped onto Wht signaling pathway. Box colors indicate protein level

 Supplementary figure IV. 5 | Classified proteins and phosphorylation events mapped onto MAPK signaling pathway. Box colors indicate protein

Supplementary figure IV. 6 | Correlation between biological replicates on the proteome level. Correlation between biological replicates in A) TDZD-8 treatment in Fmr1 ${ }^{+}$MEFs; B) TDZD-8 treatment in Fmr1- MEFs; C) lithium treatment in Fmr1+ MEFs; D) lithium treatment in Fmr1- MEFs; E) TDZD-8 versus lithium treatment in Fmr1- MEFs; F) TDZD-8 versus lithium treatment in Fmr1- MEFs.

Supplementary figure IV. 7 | Correlation between biological replicates on the phosphoproteome level. Correlation between biological replicates in A) TDZD-8 treatment in Fmr1 ${ }^{+}$MEFs; B) TDZD-8 treatment in Fmr1- MEFs; C) lithium treatment in Fmr1+ MEFs; D) lithium treatment in Fmr1- MEFs; E) TDZD-8 versus lithium treatment in Fmr1- MEFs; F) TDZD-8 versus lithium treatment in Fmr1- MEFs.

Supplementary figure IV. 8 | Distributions of quantified phosphorylation events in Fmr1+ MEFs. A) TDZD-8 vs no treatment in biological replicate 1; B) TDZD-8 vs no treatment in biological replicate 2; C) lithium vs no treatment in biological replicate 1; D) lithium vs no treatment in biological replicate 1; E) TDZD-8 vs lithium in biological replicate 1; F) TDZD-8 vs no lithium in biological replicate 1; Intensity is log10, H/L ratios log2 transformed. Red dots represent significant ($p<0.05$) outliers.

Supplementary figure IV. 9 | Distributions of quantified phosphorylation events in Fmr1- MEFs. A) TDZD-8 vs no treatment in biological replicate 1; B) TDZD-8 vs no treatment in biological replicate 2; C) lithium vs no treatment in biological replicate 1; D) lithium vs no treatment in biological replicate 1; E) TDZD-8 vs lithium in biological replicate 1; F) TDZD-8 vs no lithium in biological replicate 1; Intensity is log10, H/L ratios log2 transformed. Red dots represent significant ($p<0.05$) outliers.

Supplementary figure IV. 10 | Overview of overlap with known substrates and GSK motif in our phosphoproteome data upon lithium treatment. A) Overlap with reported (known and proposed) substrates in Fmr1+ MEFs; B) Overlap with reported (known and proposed) substrates in Fmr1 ${ }^{-}$MEFs; C) Number of phosphorylation proteins with GSK motif in $\mathrm{Fmr} 1^{+}$MEFs; \boldsymbol{D}) Number of phosphorylation proteins with GSK motif in Fmr1 ${ }^{+}$MEFs.

Supplementary figure IV. 11 | Known and predicted protein interactions of detected phosphoproteins upon lithium treatment. A) proteins with decreased phosphorylation in Fmr1 ${ }^{+}$cell line; B) proteins with decreased phosphorylation in Fmr1 cell line.

Supplementary figure IV. 12 | Quantitative proteomic workflow. Proteins were extracted from isolated hippocampi of WT, Fmr1 KO and Fmr1 KO/mGluR5 het KO mice and digested with Trypsine. The resulting peptides were analyzed by LC-MS/MS after which bioinformatic analysis was performed.

Supplementary figure IV. 13 | MS/MS counts, label-free intensity and intensity of FMRP. Intensity is observed across all genotypes in all samples (black line), while label-free (LFQ) intensity is present in all WTs and two Fmr1-Kos (red line). In order to get value for the LFQ intensity, 2 peptides from the same proteins are needed. LFQ intensity in Fmr1KOs (as well as intensity in both KOs) can be explained via manual observation of two peptides which are giving LFQ intensity. These peptides are not unique for FMRP protein, and moreover no MS/MS counts were observed in these Fmr1-KO samples (blue line). We enabled match between run option during the processing of the data which is responsible for this artefact.

Supplementary figure IV. 14 | STRING analysis. Network of significantly changing proteins from pairwise analysis of Fmr1-KO and Fmr1-KO/mGluR5 het genotype. Red color indicates increased protein expression, and green decreased protein expression in Fmr1-KO, respectively. Black circle means that this proteins are overlapping with proteins from Darnell et al. dataset.

Supplementary figure IV. 15 | STRING analysis. Network of significantly changing proteins from pairwise analysis of WT and Fmr1-KO/mGluR5 het genotype. Red color indicates increased protein expression, and green decreased protein expression in Fmr1-KO, respectively. Black circle means that this proteins are overlapping with proteins from Darnell et al. dataset.

