
Group Factorizations and Cryptology

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Dominik Reichl

aus Reutlingen

Tübingen
2015

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 23.07.2015
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Peter Hauck
2. Berichterstatter: Prof. Dr. Klaus Reinhardt

Zusammenfassung

Asymmetrische Kryptosysteme, auch Public-Key-Systeme genannt, können u.a. zur
Verschlüsselung von Daten, Authentifizierung und Sicherstellung der Integrität von Daten
eingesetzt werden. Solche Systeme sind in zahlreichen Protokollen zu finden, z.B. in
den Bereichen World Wide Web (HTTPS basierend auf SSL/TLS), E-Mail (S/MIME,
OpenPGP/PGP), entfernte Befehlsausführung (SSH), Dateitransfer (SCP), und vielen
weiteren.

Einwegfunktionen sind Funktionen, die sich effizient berechnen lassen, aber sehr schwie-
rig zu invertieren sind. Einwegfunktionen, die sich mit einer Zusatzinformation (dem priva-
ten Schlüssel) doch effizient invertieren lassen, werden Falltürfunktionen genannt. Asym-
metrische Kryptosysteme basieren auf Falltürfunktionen. Die meisten der heute verwen-
deten asymmetrischen Verfahren, insbesondere RSA und ElGamal, basieren auf solchen
Funktionen in kommutativen algebraischen Strukturen. Ob kommutative Strukturen auf-
grund deren Eigenschaften ein Sicherheitsproblem darstellen könnten, lässt sich derzeit
nicht sagen. Auf jeden Fall ist die Entwicklung und Untersuchung von Verfahren, die auf
nicht-kommutativen Strukturen beruhen, sinnvoll.

Ein Kryptosystem namens MST1, das von S. S. Magliveras, D. R. Stinson und T. van
Trung vorgestellt wurde, basiert auf sogenannten logarithmischen Signaturen von belie-
bigen (also auch nicht-kommutativen, d.h. nicht-abelschen) endlichen Gruppen. Für eine
endliche Gruppe G wird eine geordnete Menge α von Teilmengen von G betrachtet, wobei
jedes Element von G eine eindeutige Darstellung als Produkt von jeweils einem Element
aus den Teilmengen in α haben soll. α wird dann eine logarithmische Signatur genannt.
Interessant ist nun die Frage, ob es logarithmische Signaturen gibt, für die es schwierig
ist, für ein gegebenes Gruppenelement eine solche Faktorisierung als Produkt in α zu
finden. Falls ja, dann wäre dies eine Einwegfunktion: Produkte von Gruppenelementen
(mit Faktoren aus α) können effizient berechnet werden, aber die Invertierung, d.h. das
Finden einer Faktorisierung als Produkt in α, wäre schwierig.

In dieser Dissertation wird für verschiedene Gruppen und Typen logarithmischer
Signaturen die Realisierbarkeit und Sicherheit von MST1 untersucht.

Der erste Teil der Dissertation befasst sich mit der Erzeugung von logarithmischen
Signaturen. Logarithmische Signaturen effizient erzeugen zu können ist eine Vorausset-
zung für eine konkrete Realisierung des MST1-Kryptosystems.

Wir untersuchen zunächst Transformationen logarithmischer Signaturen (deren Effekt
auf Faktorisierungsabbildungen, Unterklassen von Transformationen, Hintereinander-
ausführungen von Transformationen, usw.). Basierend darauf entwickeln wir einen
Algorithmus zur Erzeugung logarithmischer Signaturen. Dieser funktioniert auch mit
nicht-abelschen Gruppen, und bei abelschen Gruppen werden in der Regel mehr loga-
rithmische Signaturen erzeugt als bei den üblicherweise in der Literatur verwendeten
Verfahren.

Danach betrachten wir das Faktorisierungsproblem bzgl. logarithmischer Signaturen
für verschiedene Gruppen.

Für abelsche Gruppen entwickeln wir Faktorisierungsalgorithmen, die bei bestimmten
Klassen von logarithmischen Signaturen effizient sind. Außerdem entwickeln wir einen ge-
nerischen Faktorisierungsalgorithmus, der nicht nur mit logarithmischen Signaturen son-
dern mit allen Blocksequenzen funktioniert (wobei die Laufzeit von der Struktur der Ein-
gabe abhängig ist), und bei dem für einige große Klassen logarithmischer Signaturen die
Effizienz gezeigt werden kann.

Des Weiteren untersuchen wir logarithmische Signaturen von Diedergruppen, und geben
effiziente Faktorisierungsalgorithmen für bestimmte Typen logarithmischer Signaturen an.

Diese Ergebnisse werden verallgemeinert und ausgebaut; wir untersuchen u.a. die
verallgemeinerte Quaternionengruppe und Kranzprodukte.

Bei den vorherigen Untersuchungen wurde jeweils eine bestimmte Darstellung der
Gruppe verwendet. In einem weiteren Teil der Dissertation analysieren wir, in welchen
Fällen sich für eine beliebig gegebene Gruppe (Black-Box-Gruppe) mit bekannter Struktur
ein effizienter Algorithmus zur Konvertierung von Gruppenelementen in die Darstellung,
die in den vorherigen Kapiteln verwendet wurde, angeben lässt.

Abschließend stellen wir unser Programm vor, in dem ein Kryptosystem (basierend
auf einem verallgemeinerten MST1) und die verschiedenen in dieser Arbeit entwickelten
Erzeugungs- und Faktorisierungsalgorithmen implementiert wurden.

Summary

Asymmetric cryptosystems, also called public-key systems, can for instance be used
for encrypting data, authentication and integrity checking of data. Such systems can
be found in numerous protocols, e.g. in the areas World Wide Web (HTTPS based on
SSL/TLS), e-mail (S/MIME, OpenPGP/PGP), remote command execution (SSH), file
transfer (SCP), and many more.

One-way functions are functions that can be computed efficiently, but are hard to invert.
One-way functions that can be inverted efficiently with an additional information (the
private key) are called trap-door functions. Asymmetric cryptosystems are based on trap-
door functions. Most of the currently used asymmetric systems, especially RSA and
ElGamal, are based on such functions in commutative algebraic structures. Whether
commutative structures are a security issue due to their properties is unknown up to now.
In any case the development and analysis of systems that are based on non-commutative
structures is reasonable.

A cryptosystem called MST1, which has been introduced by S. S. Magliveras, D.
R. Stinson and T. van Trung, is based on so-called logarithmic signatures of arbitrary
(also including non-commutative, i.e. non-abelian) finite groups. For a finite group G an
ordered set α of subsets of G is being regarded, where each element of G has a unique
representation as product of one element from each subset in α. α is then called a
logarithmic signature. An interesting question now is whether there exist logarithmic
signatures where it is hard to find a factorization as product in α for a given group
element. If yes, this would be a one-way function: products of group elements (with
factors from α) can be computed efficiently, but the inversion, i.e. finding a factorization
as product in α, would be hard.

In this dissertation the realizability and security of MST1 is analyzed for various
groups and logarithmic signature types.

The first part of the dissertation deals with the generation of logarithmic signa-
tures. The ability to efficiently generate logarithmic signatures is a requirement for a
concrete realization of the MST1 cryptosystem.

We first investigate transformations of logarithmic signatures (their effect on fac-
torization mappings, subclasses of transformations, compositions of transformations,
etc.). Based on this, we develop an algorithm for generating logarithmic signatures.
This algorithm also works with non-abelian groups, and for abelian groups the set
of generated logarithmic signatures is typically a proper superset of the logarithmic
signatures generated by the methods usually used in literature.

Subsequently, we regard the factorization problem with respect to logarithmic sig-
natures for various groups.

For abelian groups we develop factorization algorithms that are efficient for specific
classes of logarithmic signatures. Furthermore, we develop a generic factorization algo-

rithm, which not only works with logarithmic signatures but all block sequences (and the
run-time depends on the structure of the input), and for which the efficiency can be shown
for some large classes of logarithmic signatures.

Moreover, we analyze logarithmic signatures of dihedral groups, and present efficient
factorization algorithms for specific types of logarithmic signatures.

These results are generalized and extended: we analyze the generalized quaternion
group and wreath products.

In the previous investigations we used a specific representation of the group. In
another part of the dissertation we analyze in which cases one can give an efficient
algorithm for converting elements of an arbitrarily represented group (black box group)
with known structure to the representation used in the previous chapters.

Finally, we present our program, in which a cryptosystem (based on a generalized
MST1) and the various generation and factorization algorithms developed in this work
have been implemented.

vii

Contents

1. Introduction 1
1.1. Public-Key Cryptography and Group Factorizations 1
1.2. Existing Work . 2
1.3. Organization and Contributions . 5
1.4. Acknowledgments . 9

2. Preliminaries 10
2.1. Group Theory . 10
2.2. Linear Representations and Characters . 12
2.3. Groups . 13

2.3.1. Permutation Group . 13
2.3.2. Cyclic Group . 14
2.3.3. Dihedral Group . 14

2.3.3.1. Definition and Fundamental Properties 14
2.3.3.2. Conjugacy Classes . 16
2.3.3.3. Permutation Representation 16
2.3.3.4. Linear Representations and Characters 18

2.3.4. Generalized Quaternion Group . 19
2.3.5. Groups G of Order |G| = pn+1 with a Cyclic N E G of Order |N | =

pn . 20
2.3.6. Wreath Product . 23

2.4. Set Properties . 24
2.4.1. Periodicity . 24
2.4.2. Antiperiodicity . 25

2.5. Efficiency . 29
2.6. One-Way Functions . 29
2.7. Cryptographically Secure Pseudo-Random Number Generators (CSPRNGs) 30
2.8. Pseudo-Code . 31

3. Group Factorizations 32
3.1. Definitions and Notations . 32
3.2. Factorization Mappings . 34
3.3. Tame and Wild . 35
3.4. Block Sequence Classes . 39

3.4.1. Canonical Block Sequences . 39
3.4.2. Periodic Block Sequences . 39
3.4.3. Transversal Logarithmic Signatures 40

viii Contents

4. Cryptographic Primitives 44
4.1. PGM (Symmetric Encryption, Logarithmic Signature) 44
4.2. MST1 (Asymmetric Encryption, Logarithmic Signature) 44
4.3. MST1 Generalized (Asymmetric Encryption, Logarithmic Signature) 45
4.4. MST2 (Asymmetric Encryption, [s, r]-Mesh) 46
4.5. MST3 (Asymmetric Encryption, Cover) . 46
4.6. MSTg (Pseudo-Random Number Generator, Cover) 47

5. Transformations and Irreducibility 49
5.1. Transformations . 49

5.1.1. Element Shuffle . 49
5.1.2. Block Shuffle . 51
5.1.3. Translation . 52
5.1.4. Sandwich . 52
5.1.5. Normalization . 53
5.1.6. g- and (i, g)-Normalizations . 54
5.1.7. Fusing / Refinement . 56
5.1.8. Block Substitution . 57
5.1.9. Selective Shift . 60
5.1.10. Automorphism . 60
5.1.11. Combining Sandwich and Normalization 61
5.1.12. Combining Translation and Normalization 62
5.1.13. Combining Translation, Element Shuffle and Normalization (TSN) . 63
5.1.14. Combining Translation, Sandwich, Element Shuffle and Automor-

phism . 67
5.2. Irreducibility . 69

5.2.1. Conditions Induced by Group Homomorphisms to Z2 69
5.2.2. Group, Block and Homomorphism Dependency 71

5.3. Linear Representations and Characters . 72
5.4. Irreducibility and Characters . 75

6. Generating Logarithmic Signatures 77
6.1. Exact Transversal Logarithmic Signatures 78
6.2. Randomizing Elements . 78
6.3. Amalgamated Transversal Logarithmic Signatures (Abelian Only) 80
6.4. Aperiodic Logarithmic Signatures (Abelian Only) 81

6.4.1. p-Groups . 81
6.4.2. Decomposition and Reunion . 83
6.4.3. Strongly Aperiodic Logarithmic Signatures 85

6.5. LS-Gen . 85
6.5.1. Group Implementation Capabilities 86
6.5.2. Transformation Input/Output Relations 87
6.5.3. Transformations . 88
6.5.4. Algorithm . 91

Contents ix

6.5.5. Analysis . 92

7. Factoring in General 95
7.1. Canonical Block Sequences . 95
7.2. Homomorphisms and Multiple Factorizations 96
7.3. Homomorphisms and Normal Subgroup Blocks 97
7.4. Direct Products . 98

8. Abelian Groups 100
8.1. Rédei’s Theorem . 101
8.2. Structure of Logarithmic Signatures for Z2n 101
8.3. Factoring in Z2m ⊕ Zk2 . 103
8.4. Factoring in Logarithmic Signatures with Blocks of Prime Size 110
8.5. Factoring in Logarithmic Signatures with Blocks of Composite Size 121
8.6. Multiple Factorizations . 126
8.7. Generic Factorization Algorithm . 127
8.8. Factoring by Combining Solutions in Factor Groups 141

8.8.1. Statically Chosen Factor Groups . 141
8.8.2. Dynamically Chosen Factor Groups 145
8.8.3. Small Factor Groups . 145

8.9. Tame Logarithmic Signatures . 147
8.9.1. Amalgamated Transversal Logarithmic Signatures AT (G) 147
8.9.2. Aperiodic Decomposition and Reunion 148
8.9.3. Strongly Aperiodic Logarithmic Signatures 149
8.9.4. Specific Group and Logarithmic Signature Types 151

8.10. Factoring by Solving an Integer Linear Programming Problem 154
8.11. Counting Logarithmic Signatures . 158

8.11.1. Z2n , t(α) = (2, 2, . . . , 2) . 158
8.11.2. Zk2, t(α) = (2, 2, . . . , 2) . 158

9. Dihedral Group 160
9.1. Transformations . 161

9.1.1. Block Substitutions . 161
9.1.2. Conditional Block Substitutions . 162

9.2. Factorization Algorithm for Cτ (E(α)) = 1 165
9.3. Factorization Algorithm for D2·pn . 165

9.3.1. Algorithm . 166
9.3.2. Example . 168
9.3.3. Run-Time Examples . 171

9.4. Factoring in D2·2n . 172
9.4.1. τ -Reduction Transformation . 172
9.4.2. Algorithm . 173
9.4.3. Example . 174
9.4.4. Run-Time . 175

x Contents

9.4.5. Generalization for Other Groups . 176
9.5. Generating α ∈ Λ(D2n) with n Odd . 177
9.6. Counting Logarithmic Signatures . 184

9.6.1. D2·2n , t(α) = (2, 2, . . . , 2) . 184
9.6.2. D2pq, t(α) = (p, 2, q) . 187

10.Other Groups 190
10.1. Generalized Quaternion Group . 190
10.2. Groups G of Order |G| = pn+1 with a Cyclic N E G of Order |N | = pn . . . 194
10.3. Small Kernels and Multiple Factorizations 196
10.4. Wreath Products . 197

10.4.1. Orbit-Based Factor Group Descending 199

11.Black Box Groups 200
11.1. Definition and Fundamental Properties . 200
11.2. Cyclic Groups . 204
11.3. Elementary Abelian p-Groups . 206
11.4. Abelian Groups . 208
11.5. Dihedral Groups . 209
11.6. Groups G of Order |G| = 2n+1 with a Cyclic N E G of Order |N | = 2n . . . 209

12.Implementation / Program Documentation 212
12.1. Command Line Options . 212
12.2. Implementation of Generalized MST1 . 213

12.2.1. Command Line Examples . 214
12.2.2. Sample Key Files . 216

12.3. Factoring in Abelian Groups . 217
12.4. Plugin Architecture . 218

13.Further Research 219

A. Factorization Algorithm for Abelian Groups 220

B. Sample Plugin: Zn Group Provider 228

Bibliography 232

List of Abbreviations 236

Index to Notations 237

Index 242

xi

List of Figures

2.1. Square . 17
2.2. Regular Pentagon . 17
2.3. Regular Hexagon . 17
2.4. Regular Heptagon . 18

List of Tables

5.1. Character Table for D2·3 . 73
5.2. Character Table for Z3 . 74

6.1. Relative Frequencies of Finding Logarithmic Signatures 80

8.1. Run-Times for Factoring by Integer Linear Programming Problem Solving . 158

9.1. |{α ∈ Λ(D2n) | α canonical, specific t(α)}| 183
9.2. |{α ∈ Λ(D2·2n) | α canonical, t(α) = (2, 2, . . . , 2)}| 187
9.3. |{α ∈ Λ(D2pq) | α canonical, t(α) = (p, 2, q)}| 189

Abbreviations . 236

Symbols . 237

1

1. Introduction

1.1. Public-Key Cryptography and Group Factorizations

In a public-key cryptosystem (also called asymmetric cryptosystem), each party has two
keys: a private key and a public key. The public key is available to everyone and can be
used to encrypt data or to verify a digital signature. The corresponding private key is
known only to the owner of the key pair and can be used to decrypt data that has been
encrypted using the public key or to create a digital signature.

As the public key P is available to everyone, the mapping EP that encrypts some data
using P must be an injective trap-door function, i.e. an injective one-way function that
can be inverted efficiently only when knowing a private key corresponding to P . If it
would not be injective, nobody could decrypt the data unambiguously; if it would not be
one-way, everybody could decrypt the data using P ; and if the private key would not allow
efficient inversion, we would have simply a one-way function, not a cryptosystem for data
encryption.

Although the public and the private key are related, in a secure public-key cryptosystem
it is computationally infeasible to derive a private key from a public one. In contrast,
in a symmetric cryptosystem, the two keys are the same or can easily be derived from
each other. For a symmetric cryptosystem, a secret key must be exchanged over a secure
channel prior to using the cryptosystem; this is not required in a public-key cryptosystem.

Public-key cryptosystems are fundamental to secure communication over insecure
networks. Such cryptosystems can be found in many well-known cryptographic protocols,
like Hypertext Transfer Protocol Secure (HTTPS) based on Secure Sockets Layer (SSL)
or its successor Transport Layer Security (TLS) for secure communication with web
servers, Secure/Multipurpose Internet Mail Extensions (S/MIME) and OpenPGP/PGP
for e-mail privacy / authentication / integrity / non-repudiation, Secure Shell (SSH) for
remote command execution, Secure Copy (SCP) for file transfer, and many others.

Almost all public-key cryptosystems being used today are based on commutative
algebraic structures. The two most commonly used public-key cryptosystems are RSA
and ElGamal. RSA relies on the assumption that factoring a number into its prime
factors is hard for large numbers (and the one-way function is modular exponentiation).
ElGamal relies on the hardness of the discrete logarithm problem (DLP) in a cyclic
group; it is usually realized either over the cyclic multiplicative group of a field Zp (with
p ∈ P) or over the cyclic group generated by a base point on an elliptic curve over a finite
field. Lattice-based cryptosystems rely on the hardness of problems (e.g. shortest vector

2 1. Introduction

or closest vector) on lattices over a finite field.

The underlying structures of all these cryptosystems are commutative. Up to now it is
unknown whether the properties of commutative structures are a security issue in general.
In any case, it is wise to develop and analyze other public-key cryptosystems, especially
ones based on non-commutative structures.

One approach for a public-key cryptosystem is based on logarithmic signatures of
arbitrary (also including non-commutative, i.e. non-abelian) finite groups. For a finite
group G, let α be an ordered set of subsets (blocks) of G. α is called a logarithmic
signature, if every element of G can be written uniquely as a product of one element from
each subset of α (in the given order).

The idea for a one-way function now is the following: choosing one element from each
subset of α and computing the product is possible efficiently, but the inversion (i.e. finding
the factorization of a group element as a product of one element from each subset of α)
may be hard.

If computing factorizations with respect to α is possible in polynomial time for all group
elements, α is called tame. If no probabilistic polynomial-time algorithm can output the
factorization of a randomly chosen group element with a non-negligible probability, α is
called wild.

One objective is to construct wild logarithmic signatures that additionally allow com-
puting factorizations efficiently when having some extra information (the private key).
With this, we have a trap-door function for an asymmetric cryptosystem.

Another objective is to show that certain logarithmic signatures are tame.

1.2. Existing Work

Cryptosystems. S. S. Magliveras [Mag86] has described a symmetric cryptosystem called
Permutation Group Mappings (PGM) that uses logarithmic signatures. In PGM, a secret
key consists of a pair of tame logarithmic signatures.

S. S. Magliveras, D. R. Stinson and T. van Trung [Mag02b] developed public-key cryp-
tosystems based on logarithmic signatures and [s, r]-meshes1, called MST1 and MST2.

Another public-key cryptosystem called MST3 has been presented by W. Lempken, T.
van Trung, S. S. Magliveras and W. Wei [Lem09]. MST3 is based on the difficulty of
factoring group elements with respect to a randomly generated cover2. MST3 requires the
group G to have several specific properties (like a large center Z such that G does not
split over Z), and Suzuki 2-groups were proposed explicitly.

A pseudo-random number generator called MSTg has been introduced by P. Svaba in
[Sva11] and by P. Marquardt, P. Svaba and T. van Trung in [Mar12]. MSTg is based

1An [s, r]-mesh is a sequence of s blocks (each containing r group elements) where each group element is
generated at least once and the distribution of the generated elements is approximately uniform; see
Section 3.1.

2A cover is a block sequence that generates every group element at least once.

1.2. Existing Work 3

on random covers. It can be highly efficient, and evidence of excellent statistical and
cryptographic properties has been shown.

We give an overview on these cryptosystems in Chapter 4.

PGM. S. S. Magliveras and N. D. Memon [Mag92] discussed various algebraic
properties of PGM. Especially, they have shown that the set of all non-trivial transversal3

logarithmic signature mappings almost always generates the whole symmetric group
(by composition). Furthermore, a computationally infeasible chosen-plaintext attack is
described.

MST1. In [Mag02b], it has been shown that transversal logarithmic signatures for
permutation groups are tame.

M. I. González Vasco and R. Steinwandt [Vas02] have presented various obstacles for
realizing MST1 and MST2. This includes a demonstration that not all logarithmic sig-
natures in the class T NT (G) (the set of all logarithmic signatures for G where no block
is a coset of a subgroup of G) are wild. Furthermore, they gave an example of a partial
inversion attack.

In [Vas04], M. I. González Vasco, D. Hofheinz, C. Mart́ınez and R. Steinwandt primarily
discussed other public-key cryptosystems, but the paper also contains some observations
on logarithmic signatures relevant to MST1. Most importantly, all blocks being anticlosed4

does not imply being far away from transversal.

J.-M. Bohli, R. Steinwandt, M. I. González Vasco and C. Mart́ınez [Boh05] gave exam-
ples of tame totally non-transversal logarithmic signatures for symmetric and alternating
groups. Moreover, they presented a method that allows the decision whether a logarithmic
signature for a permutation group is exact transversal or not (for this, a binary matrix in-
dicating subgroup generation is constructed and a staircase sequence of ones is searched).
This method can also be used in some cases to detect which blocks need to be fused
in order to transform a totally non-transversal logarithmic signature into an equivalent
transversal one.

A result by S. S. Magliveras and N. D. Memon [Mag92] stating that the set of all
non-trivial transversal logarithmic signature mappings almost always generates the whole
symmetric group (by composition) is generalized in [Car06]. A. Caranti and F. D. Volta
were able to reduce the restrictions on the group: when the group is non-trivial and not
cyclic of order p or p2 for p ∈ P, the mappings induced by all exact transversal logarithmic
signatures generate the whole symmetric group.

In [Bla09], S. R. Blackburn, C. Cid and C. Mullan mostly discussed the realization
and the security of MST3, but the paper also contains an important result that applies
to MST1, too: amalgamated5 transversal logarithmic signatures for Zn2 are tame. The

3In a transversal logarithmic signature, each block consists of a full set of coset representatives for a
subgroup given by the product of certain other blocks; details can be found in Section 3.4.3.

4S ⊆ G is called anticlosed, if st /∈ S \ {id} for all s, t ∈ S \ {id}.
5A logarithmic signature constructed from an exact transversal logarithmic signature by permuting blocks
and elements, translating and fusing blocks; see Section 6.3.

4 1. Introduction

idea for proving this is to recursively move into appropriate factor groups (which can be
determined efficiently).

In [Nus11], A. Nuss developed a new security definition for factorization problems (in
previous papers, group factorizations may be either tame or wild, i.e. element factorizations
can be computed efficiently or not; the new security definition instead is similar to the
definition of one-way functions). An efficient factorization algorithm is presented for all
logarithmic signatures of cyclic p-groups (which is based on the existence of a periodic6

block on each recursion level of the algorithm). Another efficient factorization algorithm
is presented for all logarithmic signatures of Zn2 with block sizes less or equal to 4 (which
is based on the existence of a subgroup block on each recursion level of the algorithm).
For logarithmic signatures of Znp , an efficient factorization algorithm is presented for the
case when a Rédei block7 exists on each recursion level.

Motivated by the previous attacks, one objective is to find construction methods for
aperiodic8 logarithmic signatures. B. Baumeister and J.-H. de Wiljes [Bau12] introduced
a method that generates logarithmic signatures by decomposing and reuniting specific
subgroups and transversals.

Building upon this, R. Staszewski and T. van Trung [Sta13] defined strongly aperiodic
logarithmic signatures and presented constructions for abelian p-groups (based on the
method in [Bau12]).

P. Svaba, T. van Trung and P. Wolf [Sva13] presented factorization algorithms for fused
transversal logarithmic signatures of abelian groups (without any restrictions on their
representation).

MST2. In [Mag02b], it has been shown that the problem of computing factoriza-
tions with respect to covers is at least as hard as the discrete logarithm problem
(DLP).

P. Svaba and T. van Trung [Sva07] have shown that generating random covers for large
groups is possible efficiently.

MST3. In [Lem09], two computationally infeasible attacks and the space and time
complexity of computing with Suzuki 2-groups are discussed. The first attack tries to
extract information about the private key from the public key, and the second attack is a
chosen-plaintext attack against the private key.

M. I. González Vasco, A. L. Pérez del Pozo and P. Taborda Duarte [Vas10] discussed
the security of MST3. Especially, they have shown that the hardness of factoring group
elements with respect to random covers for a subset of the group is crucial for the security
of MST3 (in the original proposal [Lem09] it was claimed that this is not required in all
cases).

6A block A (containing elements of the group G) is called periodic, if there exists a g ∈ G \ {id} with
Ag = A or gA = A.

7A block Ai of a logarithmic signature (A1, . . . , As) for a groupG is called a Rédei block, if
〈⋃

j 6=iAj
〉
6= G.

8A logarithmic signature is called aperiodic, if it does not contain a periodic block.

1.3. Organization and Contributions 5

P. Svaba and T. van Trung [Sva10] discussed MST3 in detail. They analyzed MST3 with
Suzuki 2-groups for various classes of group factorizations, present a matrix-permutation
attack, and described a concrete implementation (with run-time and space analysis).

Length. For all groups that we consider in this work, logarithmic signatures with
minimal length9 exist. Anyway, we would like to note that there is research on the
existence of minimal length logarithmic signatures for various groups, e.g. [Vas03], [Hol04]
and [Lem05].

1.3. Organization and Contributions

Our objective is to analyze the realizability and security of MST1 for various groups and
logarithmic signature types.

This work is organized as follows.

1. The introductory Chapter 1 contains a general outline of public-key cryptography
and group factorizations, a summary of existing research on the subject, this section
about the organization of our work and our contributions, and acknowledgments.

2. Chapter 2 introduces various topics and well-known knowledge required for the sub-
sequent parts of this work. This includes basic group theory, linear representations
and characters, definitions and properties of groups, set properties, computational
efficiency, one-way functions and cryptographically secure pseudo-random number
generators.

Furthermore, the pseudo-code language used in this work is defined in this chapter.

Our contributions. We define and analyze antiperiodicity of group subsets.

3. Chapter 3 starts by defining group factorizations and factorization mappings. We
define what “tame” and “wild” mean precisely, and we specify classes of block se-
quences.

4. In Chapter 4, we give an overview on existing cryptographic primitives based on
group factorizations.

5. In Chapter 5, various transformations on block sequences are presented. Further-
more, we analyze the irreducibility of blocks and its connection to linear representa-
tions and characters.

Transformations and irreducibility conditions are interesting, because they can be
used in block sequence generation and factorization algorithms.

9The sum of the block sizes shall be minimal; see Remark 3.5.

6 1. Introduction

Our contributions. Our first main contribution in this chapter is a rigor-
ous analysis of transformations on block sequences. We analyze their effect on
factorization mappings, define subclasses of transformations (e.g. factorization-
permuting block shuffles, which are interesting for block sequence generation
algorithms that include block shuffle transformations). New, interesting types
of block sequence normalizations (which we call g- and (i, g)-normalizations) are
presented. Block substitutions are introduced, and we have a look at their efficiency
and a possible implementation. We analyze compositions of transformations in
detail (e.g. which compositions form a group); this is especially important for de-
signing block sequence generation algorithms based on iterated transformations. In
light of this, we emphasize one special combination (translation, element shuffle and
normalization), which we call a TSN transformation and which plays a significant
role in our logarithmic signature generation algorithm presented in Chapter 6.

Another contribution in this chapter is an analysis of irreducibility of blocks, mainly
based on group homomorphisms. Linear representations and characters are useful
for studying factorizations of abelian groups; we contribute an analysis that shows
to what extent some results for abelian groups can be generalized for non-abelian
groups.

6. In Chapter 6, we review existing algorithms for generating logarithmic signatures,
and present a new generation algorithm.

Our contributions. We design a new algorithm called LS-Gen that gener-
ates logarithmic signatures, which may possibly be wild when the generation
procedure is kept secret. In contrast to most other existing generation algorithms,
LS-Gen also works with non-abelian groups. The algorithm is based on iteratively
applying transformations on an initial logarithmic signature. We discuss the algo-
rithm’s security and the internal interactions of the components of the algorithm.
Furthermore, we show that for abelian groups LS-Gen typically generates a larger
set of logarithmic signatures than the amalgamated ones (generated by the most
commonly used algorithm in literature).

7. In Chapter 7, we have a look at factorization approaches for arbitrary groups, in a
rather abstract way.

Our contributions. We show that regarding only canonical block sequences
is not a real restriction. We consider using homomorphisms, both for logarithmic
signatures and multiple factorizations. We furthermore consider moving into factor
groups via normal subgroup blocks. A demonstration with direct products shows
that a simple concatenation approach does not work.

8. In Chapter 8, we regard factorizations of abelian groups G, represented as
G = Z

p
k1
1

⊕ Z
p
k2
2

⊕ . . .⊕ Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m.

1.3. Organization and Contributions 7

Our contributions. Our contributions in this chapter start with a de-
tailed analysis of the structure of logarithmic signatures α ∈ Λ(Z2n) of type
t(α) = (2, 2, . . . , 2). This leads to an efficient factorization algorithm for logarithmic
signatures α ∈ Λ(Z2m ⊕ Zk2) of type t(α) = (2, 2, . . . , 2).

Based on a theorem of Rédei, we show that for all abelian groups every logarithmic
signature α = (A1, A2, . . . , An) ∈ Λ(G) with |Ai| ∈ P for all 1 ≤ i ≤ n is tame. This
especially includes a detailed elaboration on how to efficiently compute in factor
groups.

Building upon the previous result, we design more factorization algorithms. First,
we drop the requirement that blocks need to be of prime size and point out that the
previous algorithm still works fine if it finds a subgroup on each recursion level. We
further generalize this by showing that finding a periodic block on each recursion
level is sufficient.

We then design a generic factorization algorithm, which is defined for all block se-
quences (e.g. the input block sequence does not necessarily have to contain a periodic
block). We justify why this algorithm is efficient when periodic blocks exist on each
recursion level (i.e. the generic algorithm supersedes all previous factorization algo-
rithms), argue why it is efficient even for aperiodic logarithmic signatures generated
by an algorithm in Chapter 6, and point out why it even may be efficient for loga-
rithmic signatures generated by LS-Gen in practice.

We have a look at other factorization approaches, e.g. via recursively moving into
statically or dynamically chosen factor groups, and demonstrate obstacles that can
occur.

Using our algorithms, we show that various classes of logarithmic signatures are tame
now: amalgamated transversal, aperiodically decomposed and reunited for Zn2 from
[Bau12], and strongly aperiodic constructions from [Sta13].

We provide a list of logarithmic signatures (of specific types and for specific groups)
that can be proved to be tame.

We describe how a factorization problem can be modeled as an integer linear pro-
gramming (ILP) problem. It turns out that none of the ILP solvers that we tested
are able to find factorizations efficiently; we present run-time examples.

Finally, we count logarithmic signatures for some specific abelian groups and loga-
rithmic signature types.

9. In Chapter 9, we study factorizations of dihedral groups. The dihedral group
D2n can be described as the symmetry group of a regular polygon having n sides.
Dihedral groups in some sense are the most simple non-abelian groups.

Our contributions. We first present several interesting block substitution
transformations (both unconditional and conditional ones) in dihedral groups,
which are later used both in our generation and factorization algorithms. We
especially analyze size-permutable blocks in detail.

8 1. Introduction

Subsequently, we design factorization algorithms (some efficient, some not) for vari-
ous special cases, including the case when all blocks of α ∈ Λ(D2n) except one of size
2 contain rotations only (the run-time of our algorithm depends on the run-time of
another factorization algorithm for a Zn logarithmic signature), D2·pn (our run-time
depends on the structure of the logarithmic signature), the special case α ∈ Λ(D2·2n)
of type t(α) = (2, 2, . . . , 2) (the algorithm is always efficient, i.e. α is tame; note that
α has minimal length). We slightly generalize the last case by showing that any
logarithmic signature α ∈ Λ(D2·2n × Zk2) of type t(α) = (2, 2, . . . , 2) is tame.

Furthermore, we design and analyze an algorithm to generate logarithmic signatures
for D2n with n odd.

Similar to the previous chapter, we close this chapter by counting logarithmic sig-
natures for some specific dihedral groups and logarithmic signature types.

10. In Chapter 10, we regard factorizations of other groups.

Our contributions. First we regard generalized quaternion groups, and
show that every α ∈ Λ(Q4·2n) of type t(α) = (2, 2, . . . , 2) is tame. Building upon
this, we prove that every α ∈ Λ(G) of type t(α) = (2, 2, . . . , 2) is tame for all
non-abelian groups of order |G| = 2n+1 (with n ≥ 3) with a cyclic N E G of order
|N | = 2n. For non-abelian groups G of order |G| = pn+1 (with p ∈ P≥3 and n ≥ 2)
with a cyclic N E G of order |N | = pn, α ∈ Λ(G) of type t(α) = (p, p, . . . , p), we
present a reduction to the factorization problem with respect to a p-factorization of
Zpn−1 ⊕ Zp, and prove the tameness in a special case.

We then generalize the previous result using homomorphisms with small kernels. As
a corollary we show that every α ∈ Λ(G) of type t(α) = (2, 2, . . . , 2) is tame when
G is an extra special 2-group.

Finally, we regard wreath products. We present a few factorization approaches,
including an orbit-based factor group descending method.

11. In Chapter 11, we regard black box groups. In all previous chapters we assumed
that the groups were given in a specific representation (e.g. in Chapter 8, we
assumed the abelian group G to be represented as G = Z

p
k1
1

⊕ Z
p
k2
2

⊕ . . . ⊕ Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m), and the algorithms in these chapters
usually depend on these specific representations. In Chapter 11, we assume
that a group is given as a black box (i.e. any arbitrary representation), sup-
porting only a few basic group operations. Given such a black box group, our
goal is to map elements to the representations that we require in the previous
chapters. If we succeed, we have shown that the results from the previous chap-
ters actually hold for arbitrary representations of a group with the specific structure.

Our contributions. Our first result is that cyclic black box groups indeed
can be mapped to our usual representation Zn (integers mod n). For elementary
abelian p-groups, we show a few results for the case when an efficient linear

1.4. Acknowledgments 9

dependence test is available. A few weaker results are presented for the general case
of an abelian group. For dihedral groups, we show that the mapping is possible
efficiently. Furthermore, we show that every α ∈ Λ(G) of type t(α) = (2, 2, . . . , 2) is
tame when G is a non-abelian group (given as black box group) of order |G| = 2n+1

having a cyclic normal subgroup N E G of order |N | = 2n.

12. Our contributions. We have implemented most of the algorithms mentioned in
this work. Chapter 12 documents our program LogSig, which is written in C# and
runs on Windows, Linux and Mac OS X. The program supports encrypting/decrypt-
ing files using a cryptosystem based on a generalized MST1, where the logarithmic
signatures are generated using our LS-Gen algorithm mentioned before. Further-
more, factorization algorithms are implemented, especially including our powerful
generic factorization algorithm.

13. In Chapter 13, we point out various possibilities for further research.

1.4. Acknowledgments

I would especially like to thank my doctoral advisor Prof. Dr. Peter Hauck for his excel-
lent guidance and great support, both for this dissertation and all my other activities at
University (tutorial groups, etc.). I cannot imagine a better mentor.

Thanks a lot to Prof. Dr. Klaus Reinhardt for being the second referee for this work.
Many thanks to Prof. Dr. Klaus-Jörn Lange and Jun. Doz. Dr. Britta Dorn for being

examiners in the oral examination.
Additionally, thanks to all other members of the Discrete Mathematics group (especially

including Claudia Schmidt, Juliane Bertram and Stephanie Reifferscheid); it was a pleasure
to work with you. Furthermore, thanks to Renate Hallmayer, who always had time for
my administrative matters.

Thanks to Bernd Borchert for interesting discussions about various cryptographic topics.
Thanks to the University of Tübingen for supporting this work with a dissertation grant

(Promotionsstipendium nach dem Landesgraduiertenförderungsgesetz).
Last but not least I would like to thank my parents and my grandmother for their

support during my whole time at University. This dissertation is dedicated to you.

10

2. Preliminaries

Chapter 2 introduces various topics and well-known knowledge required for the subsequent
parts of this work. This includes basic group theory, linear representations and charac-
ters, definitions and properties of groups, set properties, computational efficiency, one-way
functions and cryptographically secure pseudo-random number generators.

Furthermore, the pseudo-code language used in this work is defined in this chapter.

Our contributions. We define and analyze antiperiodicity of group subsets.

2.1. Group Theory

Let G be a set and · : G×G→ G a binary operation on G. (G, ·) is called a group, if:

• (a · b) · c = a · (b · c) for all a, b, c ∈ G (associativity).

• There exists an element e ∈ G, such that e · g = g · e = g for all g ∈ G (e is called
identity element ; it is unique, thus we speak of the identity element).

• For every element g ∈ G there exists an element g−1 ∈ G with g · g−1 = g−1 · g = e
(g−1 is called the inverse element of g).

G is called the underlying set of the group (G, ·). Usually we just write G instead of (G, ·),
when the operation is clear. Also, the operation is sometimes omitted; “gh” is short for
“g · h”.

The identity element e will usually be denoted by id (when the operation symbol is “·”)
or 0 (when the operation symbol is “+”).

The order |G| of the group G is the number of elements in the set G.
All groups in this work are by default assumed to be finite, i.e. |G| is finite.
G is called a p-group, if |G| = pm for some p ∈ P and m ∈ N0.
For an element g ∈ G define 〈g〉 := {gn | n ∈ Z}. The order of g is ord(g) := |〈g〉|. If

the order of an element g is finite (which is always the case in a finite group), it is the
minimal n > 0 for which gn = id.

A subset ∅ 6= U ⊆ G is a subgroup (U, ·) of (G, ·), if for all g, h ∈ U the product
g · h and the inverse g−1 are in U . When U is a subgroup of a group G, this is denoted
by U ≤ G.

For a subset S ⊆ G, 〈S〉 denotes the smallest subgroup of G containing S (such a
subgroup exists; it is the intersection of all subgroups containing S).

2.1. Group Theory 11

Given an element g ∈ G and a subgroup U ≤ G, the left coset of U containing g is
gU := {g·u | u ∈ U}. Respectively, the right coset of U containing g is Ug := {u·g | u ∈ U}.
The cosets of U form a partition of G (i.e. the union of all cosets covers G and each two
cosets are either equal or their intersection is empty).

A subgroup N ≤ G is called a normal subgroup, if gN = Ng for all g ∈ G. When N is
a normal subgroup of a group G, this is denoted by N E G.

When N E G is a normal subgroup of G, then G/N := ({gN | g ∈ G}, ∗) with the
binary operation ∗ : G/N ×G/N → G/N : (gN, hN) 7→ ghN is also a group, called factor
group.
Z(G) := {z ∈ G | zg = gz for all g ∈ G} is the center of G. The center of a group is

always a normal subgroup.
CG(S) := {g ∈ G | sg = gs for all s ∈ S} is the centralizer of the subset S ⊆ G. We

have CG(S) ≤ G.
Cl(g) := {hgh−1 | h ∈ G} denotes the conjugacy class of a g ∈ G. The conju-

gacy classes form a partition of the elements of G. For a subset or multiset A ⊆ G,
we write Cl(A) := [Cl(g) | g ∈ A] for the multiset of conjugacy classes of the elements in A.

A group G is called abelian, if g + h = h + g holds for all g, h ∈ G. In this work
we usually write abelian groups additively (i.e. the operation symbol is “+”) and
non-abelian groups multiplicatively (i.e. the operation symbol is “·”).

If there exists a g ∈ G such that 〈g〉 = G, then G is called cyclic.
An abelian p-group G is called elementary abelian, if ord(g) = p holds for all g ∈ G\{0}.
Let G be a p-group. If |Z(G)| = p and G/Z(G) is a non-trivial elementary abelian

p-group, then G is called extra special.

For A,B ⊆ G, A ·B (or short AB) denotes the product A ·B := {a · b | a ∈ A, b ∈ B}. If
G is written additively, analogously A+B := {a+ b | a ∈ A, b ∈ B} denotes the sum.

For two groups (G, ·) and (H, ∗), G × H denotes the direct product , i.e. the ele-
ments of G ×H are ordered pairs (g, h) with g ∈ G and h ∈ H, which together with the
following binary operation form a new group:

• : (G×H)× (G×H)→ G×H : ((g1, h1), (g2, h2)) 7→ (g1 · g2, h1 ∗ h2).

If G and H are abelian, G ⊕ H denotes the direct sum, which is just the direct product
written additively.

We write Gn for the direct product/sum of n copies of G, i.e.

Gn = G×G× . . .×G︸ ︷︷ ︸
n times

.

Let (G, ·) and (H, ∗) be groups. A group homomorphism is a function ϕ : G→ H with

ϕ(a · b) = ϕ(a) ∗ ϕ(b)

for all a, b ∈ G.

12 2. Preliminaries

The kernel ker(ϕ) := {g ∈ G | ϕ(g) = idH} is a normal subgroup of G. For every
N E G there exists a homomorphism that has N as kernel. The image im(ϕ) := ϕ(G) =
{ϕ(g) | g ∈ G} is a subgroup of H.

Two groups are called isomorphic, if there exists a bijective homomorphism between
them; this is denoted using the symbol “∼=”. For a group homomorphism ϕ : G → H, we
have im(ϕ) ∼= G/ ker(ϕ).

A bijective homomorphism is called an isomorphism. An isomorphism from a group to
itself is called an automorphism. The set of all automorphisms on a group G is denoted
by Aut(G). With composition as binary operation, Aut(G) is a group.

The group of inner automorphisms is Inn(G) := {ϕ : G→ G : x 7→ g−1xg | g ∈ G}.
The group of central automorphisms is Autc(G) := {ϕ ∈ Aut(G) | g−1ϕ(g) ∈ Z(G) for

all g ∈ G}; we have Autc(G) = CAut(G)(Inn(G)).

Let N and H be groups and ϕ : H → Aut(N) a group homomorphism. The set
N ×H together with the binary operation

((n1, h1), (n2, h2)) 7→ (n1 · ϕ(h1)(n2), h1 · h2)

forms a group and is called the semidirect product N oϕH of N and H with respect to ϕ.

Let G be an abelian group. According to the fundamental theorem of finitely gen-
erated abelian groups [Hup67], G is isomorphic to Z

p
k1
1

⊕ Z
p
k2
2

⊕ . . . ⊕ Z
pkmm

with pi ∈ P
and ki ∈ N for 1 ≤ i ≤ m (where Zn is the cyclic group of order n). In this representation,
Z
p
k1
1

, . . . ,Z
pkmm

are called the components of G. The type of G is t(G) := (pk1
1 , . . . , p

km
m).

(K,+, ·) (a set K with two binary operations + and ·) is called a field , if (K,+)
is an abelian group (with identity element 0), (K \ {0}, ·) is an abelian group (called
multiplicative group) and a · (b+ c) = (a · b) + (a · c) holds for all a, b, c ∈ K (distributivity).

2.2. Linear Representations and Characters

Let G be a group, K a field and n ∈ N. GL(n,K) denotes the general linear group of
degree n over K, i.e. GL(n,K) := {M ∈Mn(K) | M is invertible}.

A group homomorphism ρ : G→ GL(n,K) is called a K-representation of G.
If ρ(g) = id for all g ∈ G, ρ is called the trivial representation. ρ is called faithful , if and

only if ρ(G) ∼= G (or equivalently ker(ρ) = {id}).
ρ defines an action on the vector space Kn. If ρ is non-trivial and there exists no

non-trivial proper invariant subspace, ρ is called irreducible.
In the rest of this section, we assume K = C.

Let G be a group and ρ : G → GL(n,C) a C-representation of finite dimension
n <∞. The character with respect to ρ is defined as

χρ : G→ C : g 7→ tr(ρ(g)).

2.3. Groups 13

χρ is a class function on G, i.e. it is constant on each conjugacy class: χρ(hgh
−1) = χρ(g)

for all g, h ∈ G.

A character table of a group G is a table in which each column corresponds to a
conjugacy class cj of G and each row to the character χρi of an irreducible representation
ρi of G. In the entries, the image χρi(cj) is listed.

From representation/character theory we know:

• There are exactly as many conjugacy classes as irreducible representations, i.e. the
character table is square.

• Row orthogonality. (f |h) := 1
|G|
∑
g∈G

f(g)h(g) is an hermitian inner product, and for

the characters χ1, χ2, . . . in the character table we have (χi|χj) = δi,j , i.e. the χi are
orthogonal.

• Column orthogonality. 1
|CG(gi)|

∑
χk

χk(gi)χk(gj) = δi,j .

If there are d irreducible representations/characters, it can be proven that the following
equation holds:

d∑
i=1

χi(id)2 = |G|.

If G is abelian, all irreducible representations of G are of degree 1.

2.3. Groups

2.3.1. Permutation Group

Let X be a set. The group of all permutations acting on X is called the symmetric group
on X, and is denoted by Sym(X). If X is actually an algebraic structure, Sym(X) acts
on the underlying set of elements.

If X = {1, 2, . . . , n}, we also write Sym(n) for Sym(X).

For example, we have Sym(6) = Sym({1, 2, 3, 4, 5, 6}) ∼= Sym(Z6).

We write sgn(π) for the sign of the permutation π (i.e. sgn(π) := (−1)N(π) with N(π) the
number of inversions in π). If sgn(π) = 1, π is called even; otherwise (i.e. when sgn(π) =
−1), π is called odd . The function sgn : Sym(X) → {1,−1} is a group homomorphism
({1,−1} and multiplication as binary operation form a group).

The kernel of sgn is called the alternating group Alt(X). Analogously to the notation
for symmetric groups, in the case X = {1, 2, . . . , n} we also write Alt(n) for Alt(X).

Let G be a permutation group. We define two functions to count the number of
even and odd permutations in a set or multiset of elements:

ce : P(G)→ N0 : A 7→ |{π ∈ A | sgn(π) = 1}| ,

14 2. Preliminaries

co : P(G)→ N0 : A 7→ |{π ∈ A | sgn(π) = −1}| .

For a set or multiset A, we have |A| = ce(A) + co(A).

2.3.2. Cyclic Group

Zn := (Z/nZ,+) denotes the cyclic group of order n. We use the numbers {0, 1, . . . , n −
1} as canonical representatives and expect the “+” operator to automatically perform a
modulo computation:

+ : Z2
n → Zn : (x, y) 7→ (x+ y) mod n.

We write Zkn (not kZn) for the direct sum of k copies of Zn, i.e.

Zkn = Zn ⊕ Zn ⊕ . . .⊕ Zn︸ ︷︷ ︸
k times

.

2.3.3. Dihedral Group

2.3.3.1. Definition and Fundamental Properties

Let n ∈ N. The dihedral group D2n can be described as the symmetry group of a regular
polygon having n sides.

In a Cartesian coordinate system in two dimensions, let the center of the polygon
be the origin, and let one vertex of the polygon lie on the positive half of the x-axis (i.e.
one vertex has the coordinates (r, 0) with 0 < r ∈ R).

We write σ for a counterclockwise rotation by the angle 2π
n , and τ for a reflection across

the x-axis. With this, each element of D2n can be written uniquely in the form σkτ c with
k ∈ {0, 1, . . . , n− 1} and c ∈ {0, 1}.

An element σkτ c ∈ D2n is called a rotation, if c = 0. If c = 1, the element is called a
reflection.

The order of D2n is 2n, and we have ord(σ) = n, ord(τ) = 2. An important
equation (for multiplying elements) is

σ · τ = τ · σ−1 = τ · σn−1.

In presentation notation, D2n is
〈
s, t | sn = t2 = id, t−1st = s−1

〉
.

The dihedral group is interesting, because it is one of the most simple non-abelian
finite groups. For n > 2, D2n is non-abelian (because for example we have
σ2τ · στ = σ 6= σn−1 = σ−1 = στ · σ2τ for n > 2). For n = 2, D2·2 is isomor-
phic to the Klein four-group Z2

2.

Notation. In order to save some space (especially in the logarithmic signature

2.3. Groups 15

examples), we sometimes omit the σ. We denote σi by i and σiτ by iτ .

We define two functions to count the number of rotations and reflections in a set
or multiset of elements in G = D2n:

Cσ : P(G)→ N0 : A 7→ |{g ∈ A | g is a rotation}| ,
Cτ : P(G)→ N0 : A 7→ |{g ∈ A | g is a reflection}| .

For a set or multiset A, we have |A| = Cσ(A) + Cτ (A).

Lemma 2.1. Let G = D2n with n > 2. Then

Aut(G) = {ϕm,l : G→ G : σkτ b 7→ σmk+blτ b | m ∈ Z∗n, l ∈ Zn}.

Proof. This is well known, but for the convenience of the reader we provide a proof.

As m ∈ Z∗n (i.e. gcd(m,n) = 1), ϕm,l is bijective. Let g = σuτv, h = σxτy ∈ G with
u, x ∈ Zn and v, y ∈ {0, 1}. ϕm,l is a homomorphism:

• If v = 0:

ϕm,l(gh) = ϕm,l(σ
uσxτy) = ϕm,l(σ

u+xτy) = σm(u+x)+ylτy = σmuσmx+ylτy

= ϕm,l(σ
u) · ϕm,l(σxτy) = ϕm,l(g) · ϕm,l(h).

• If v = 1 and y = 0:

ϕm,l(gh) = ϕm,l(σ
uτσx) = ϕm,l(σ

u−xτ) = σm(u−x)+lτ = σmu+lτσmx

= ϕm,l(σ
uτ) · ϕm,l(σx) = ϕm,l(g) · ϕm,l(h).

• If v = 1 and y = 1:

ϕm,l(gh) = ϕm,l(σ
uτσxτ) = ϕm,l(σ

u−x) = σm(u−x) = σmuτσmxτ

= σmu+lτσmx+lτ = ϕm,l(σ
uτ) · ϕm,l(σxτ) = ϕm,l(g) · ϕm,l(h).

These homomorphisms form a group: we have ϕ1,0 = id, ϕm2,l2(ϕm1,l1(σkτ b)) =
ϕm2,l2(σm1k+bl1τ b) = σm2(m1k+bl1)+bl2τ b = σm2m1k+b(m2l1+l2)τ b = ϕm2m1,m2l1+l2(σkτ b)
and ϕ−1

m,l = ϕm−1,−l·m−1 (as ϕm−1,−l·m−1(ϕm,l(σ
kτ b)) = ϕm−1,−l·m−1(σmk+blτ b) =

σm
−1(mk+bl)+b(−l·m−1)τ b = σkτ b).

Let ϕ be an automorphism of G. We have ϕ(σ) = σm for an m ∈ Zn (due to 〈σ〉
being characteristic in G); and as ϕ is invertible, we must have gcd(m,n) = 1, i.e. indeed
m ∈ Z∗n. Furthermore, ϕ(τ) = σlτ (τ cannot be sent to 〈σ〉). Thus indeed ϕ = ϕm,l for
some m ∈ Z∗n and l ∈ Zn.

16 2. Preliminaries

2.3.3.2. Conjugacy Classes

Lemma 2.2. Let G = D2n. If n is odd, the conjugacy classes in G are {id}, {σ, σ−1},
{σ2, σ−2}, . . ., {σ

n−1
2 , σ−

n−1
2 }, {σkτ | 0 ≤ k ≤ n− 1}. If n is even, the conjugacy classes

in G are {id}, {σ, σ−1}, {σ2, σ−2}, . . ., {σ
n
2
−1, σ−(n

2
−1)}, {σ

n
2 }, {σ2kτ | 0 ≤ k ≤ n

2 − 1},
{σ2k+1τ | 0 ≤ k ≤ n

2 − 1}.

Proof. First of all, each rotation σk together with its inverse σ−k forms a conjugacy class,
because for an arbitrary σl we have σlσkσ−l = σk and for an arbitrary σlτ we have
σlτσkσlτ = σ−k. The cases id and σ

n
2 in the even case are special, because they are

self-inverse.

Now the reflections. Let σkτ be a reflection and l an arbitrary integer. Then σlσkτσl =
σk+2lτ and σlτσkτσlτ = σ−k+2lτ .

In the case where n is odd, 2 is coprime to n and thus every integer j ∈ {0, 1, . . . , n− 1}
can be expressed as j = k+ 2l mod n with an appropriate l. Consequently, the conjugacy
class of σkτ is the subset of all reflections.

In the case where n is even, 2 is not coprime to n anymore. If k in σkτ is even and l
variable, we get all reflections with an even rotation component, because k+2l mod n and
−k + 2l mod n are even (for even n). Similarly, if k in σkτ is odd and l variable, we get
all reflections with an odd rotation component, because k + 2l mod n and −k + 2l mod n
are odd.

2.3.3.3. Permutation Representation

The representation of elements of D2n in Section 2.3.3.1 can efficiently be converted to a
representation using permutations in Sym(n).

Permutation representation of D2n. Let σkτ c ∈ D2n (with 0 ≤ k < n and
c ∈ {0, 1}). The corresponding permutation p = (p1, p2, . . . , pn) ∈ Sym(n) (where pi is
the image p(i)) can be computed as follows:

• For i← 1 to n:

– If c = 0: set pi ← ((i+ k − 1) mod n) + 1,
else (i.e. c = 1): set pi ← (−(i+ k − 1) mod n) + 1.

Symmetry group representation corresponding to a permutation in D2n. Let
p ∈ Sym(n). To compute the corresponding element σkτ c in D2n:

1. If p(2)− p(1) ≡ 1 (mod n): set c← 0,
else: set c← 1.

2. If c = 0: set k ← p(1)− 1,
else: set k ← 1− p(1) mod n.

2.3. Groups 17

Example (D2·4).
Symm. gr. rep. Image arr. Cycle rep. sgn

id 1 2 3 4 (1)(2)(3)(4) 1
σ 2 3 4 1 (1 2 3 4) −1
σ2 3 4 1 2 (1 3)(2 4) 1
σ3 4 1 2 3 (1 4 3 2) −1
τ 1 4 3 2 (1)(2 4)(3) −1
στ 4 3 2 1 (1 4)(2 3) 1
σ2τ 3 2 1 4 (1 3)(2)(4) −1
σ3τ 2 1 4 3 (1 2)(3 4) 1 Figure 2.1.: Square

Example (D2·5).
Symm. gr. rep. Image arr. Cycle rep. sgn

id 1 2 3 4 5 (1)(2)(3)(4)(5) 1
σ 2 3 4 5 1 (1 2 3 4 5) 1
σ2 3 4 5 1 2 (1 3 5 2 4) 1
σ3 4 5 1 2 3 (1 4 2 5 3) 1
σ4 5 1 2 3 4 (1 5 4 3 2) 1
τ 1 5 4 3 2 (1)(2 5)(3 4) 1
στ 5 4 3 2 1 (1 5)(2 4)(3) 1
σ2τ 4 3 2 1 5 (1 4)(2 3)(5) 1
σ3τ 3 2 1 5 4 (1 3)(2)(4 5) 1
σ4τ 2 1 5 4 3 (1 2)(3 5)(4) 1

Figure 2.2.: Regular
Pentagon

Example (D2·6).
Symm. gr. rep. Image arr. Cycle rep. sgn

id 1 2 3 4 5 6 (1)(2)(3)(4)(5)(6) 1
σ 2 3 4 5 6 1 (1 2 3 4 5 6) −1
σ2 3 4 5 6 1 2 (1 3 5)(2 4 6) 1
σ3 4 5 6 1 2 3 (1 4)(2 5)(3 6) −1
σ4 5 6 1 2 3 4 (1 5 3)(2 6 4) 1
σ5 6 1 2 3 4 5 (1 6 5 4 3 2) −1
τ 1 6 5 4 3 2 (1)(2 6)(3 5)(4) 1
στ 6 5 4 3 2 1 (1 6)(2 5)(3 4) −1
σ2τ 5 4 3 2 1 6 (1 5)(2 4)(3)(6) 1
σ3τ 4 3 2 1 6 5 (1 4)(2 3)(5 6) −1
σ4τ 3 2 1 6 5 4 (1 3)(2)(4 6)(5) 1
σ5τ 2 1 6 5 4 3 (1 2)(3 6)(4 5) −1

Figure 2.3.: Regular
Hexagon

18 2. Preliminaries

Example (D2·7).
Symm. gr. rep. Image arr. Cycle rep. sgn

id 1 2 3 4 5 6 7 (1)(2)(3)(4)(5)(6)(7) 1
σ 2 3 4 5 6 7 1 (1 2 3 4 5 6 7) 1
σ2 3 4 5 6 7 1 2 (1 3 5 7 2 4 6) 1
σ3 4 5 6 7 1 2 3 (1 4 7 3 6 2 5) 1
σ4 5 6 7 1 2 3 4 (1 5 2 6 3 7 4) 1
σ5 6 7 1 2 3 4 5 (1 6 4 2 7 5 3) 1
σ6 7 1 2 3 4 5 6 (1 7 6 5 4 3 2) 1
τ 1 7 6 5 4 3 2 (1)(2 7)(3 6)(4 5) −1
στ 7 6 5 4 3 2 1 (1 7)(2 6)(3 5)(4) −1
σ2τ 6 5 4 3 2 1 7 (1 6)(2 5)(3 4)(7) −1
σ3τ 5 4 3 2 1 7 6 (1 5)(2 4)(3)(6 7) −1
σ4τ 4 3 2 1 7 6 5 (1 4)(2 3)(5 7)(6) −1
σ5τ 3 2 1 7 6 5 4 (1 3)(2)(4 7)(5 6) −1
σ6τ 2 1 7 6 5 4 3 (1 2)(3 7)(4 6)(5) −1

Figure 2.4.: Regular
Heptagon

2.3.3.4. Linear Representations and Characters

We distinguish two cases for the dihedral group D2n of order 2n: either n is odd or even.
The irreducible representations of D2n are well known (e.g. see [Ser77]):

• n is even. Representations of degree 1:

ρ0 : D2n → GL(1,C) : σkτ c 7→ 1,

ρ−1 : D2n → GL(1,C) : σkτ c 7→

{
1, if c = 0,

−1, if c = 1,

ρ−2 : D2n → GL(1,C) : σkτ c 7→ (−1)k,

ρ−3 : D2n → GL(1,C) : σkτ c 7→

{
(−1)k, if c = 0,

(−1)k+1, if c = 1.

Additionally, there are representations of degree 2. Let ζn = e
2πi
n a primitive nth

root of unity and h ∈ {1, . . . , n− 1}.

ρh : D2n → GL(2,C) : σkτ c 7→

(
ζhkn 0

0 ζ−hkn

)
, if c = 0,(

0 ζ−hkn

ζhkn 0

)
, if c = 1.

Note that ρh and ρn−h yield the same character, so we can actually restrict 0 < h < n
2

(for h = 0 and h = n
2 , the representations are reducible). With these, we have

∑
χi

χi(1)2 = χρ0(1)2 + χρ−1(1)2 + χρ−2(1)2 + χρ−3(1)2 +

n
2
−1∑

h=1

χρh(1)2

2.3. Groups 19

= 12 + 12 + 12 + 12 +

n
2
−1∑

h=1

22

= 4 + (
n

2
− 1) · 4 = 2n = |D2n|,

i.e. the list of irreducible representations is complete.

• n is odd. Representations of degree 1:

ρ0 : D2n → GL(1,C) : σkτ c 7→ 1,

ρ−1 : D2n → GL(1,C) : σkτ c 7→

{
1, if c = 0,

−1, if c = 1.

The representations ρh of degree 2 are the same as in the even case above, with
0 < h ≤ n−1

2 . With these, we have

∑
χi

χi(1)2 = χρ0(1)2 + χρ−1(1)2 +

n−1
2∑

h=1

χρh(1)2

= 12 + 12 +

n−1
2∑

h=1

22

= 2 +
n− 1

2
· 4 = 2n = |D2n|,

i.e. the list of irreducible representations is complete.

2.3.4. Generalized Quaternion Group

Let 2 ≤ n ∈ N. The generalized quaternion group of order 4n is the group presented by

Q4n :=
〈
σ, τ | σ2n = τ4 = id, τ2 = σn, τ−1στ = σ−1

〉
,

as in [Joh80]. We observe σkτ3 = σk+nτ . Thus every element g ∈ Q4n can be written
uniquely in the form g = σkτ b with 0 ≤ k < 2n and b ∈ {0, 1}.

We call an element σkτ b imaginary, if b = 1.

Lemma 2.3. Let G = Q4·2n (n ∈ N) and H = D2·2n. Define ϕ : G → H : σkτ b 7→
σk mod 2nτ b (note that in the input element the σ and τ symbols are used to denote an
element of the generalized quaternion group, whereas in the output element the σ and
τ symbols specify the rotation and reflection components of a dihedral group element as
defined in Section 2.3.3.1).

Then ϕ is a group homomorphism, ker(ϕ) = {id, σ2n}, ϕ(g) = ϕ(σ2n · g) for all g ∈ G,
and G/

〈
σ2n
〉 ∼= H.

Proof. Let g1 = σkτ b, g2 = σlτ c ∈ G.

20 2. Preliminaries

• If b = 0:

ϕ(g1 · g2) = ϕ(σk · σlτ c) = ϕ(σk+lτ c) = σk+l mod 2nτ c

= σk mod 2n · σl mod 2nτ c = ϕ(g1) · ϕ(g2).

• If b = 1 and c = 0:

ϕ(g1 · g2) = ϕ(σkτ · σl) = ϕ(σk−lτ) = σk−l mod 2nτ

= σk mod 2n · σ−l mod 2nτ = σk mod 2nτ · σl mod 2n = ϕ(g1) · ϕ(g2).

• If b = 1 and c = 1:

ϕ(g1 · g2) = ϕ(σkτ · σlτ) = ϕ(σk−l+2n) = σk−l+2n mod 2n

= σk mod 2n · σ−l mod 2n · id = σk mod 2n · σ−l mod 2n · ττ
= σk mod 2nτ · σl mod 2nτ = ϕ(g1) · ϕ(g2).

Thus ϕ indeed is a group homomorphism.
Let g = σkτ b ∈ G.

ϕ(g) = id⇔ ϕ(σkτ b) = id⇔ σk mod 2nτ b = σ0τ0 ⇔ (k mod 2n = 0 ∧ b = 0).

As k mod 2n = 0 (with 0 ≤ k < 2 · 2n) is fulfilled only by k = 0 and k = 2n, we get
ker(ϕ) = {id, σ2n}.

With this, we immediately get ϕ(σ2n · g) = ϕ(σ2n) · ϕ(g) = id ·ϕ(g) = ϕ(g).

2.3.5. Groups G of Order |G| = pn+1 with a Cyclic N E G of Order |N | = pn

Let p ∈ P≥3, n ≥ 2 and G a non-abelian group of order |G| = pn+1 with a cyclic normal
subgroup N = 〈σ〉 E G of order |N | = pn. Then according to [Hup67] (Theorem 14.9a) G
is isomorphic to

Gp·pn =
〈
σ, τ | σpn = τp = id, τ−1στ = σ1+pn−1

〉
.

Let n ≥ 3 and G a non-abelian group of order |G| = 2n+1 with a cyclic normal subgroup
N = 〈σ〉 E G of order |N | = 2n. Then according to [Hup67] (Theorem 14.9b) G is
isomorphic to one of the following four groups (i.e. the following list is complete, and the
four groups are pairwise non-isomorphic):

• Dihedral group

D2·2n =
〈
σ, τ | σ2n = τ2 = id, τ−1στ = σ−1

〉
.

• Generalized quaternion group

Q4·2n−1 =
〈
σ, τ | σ2n = τ4 = id, τ2 = σ2n−1

, τ−1στ = σ−1
〉

.

2.3. Groups 21

• Other maximal cyclic group

G2·2n =
〈
σ, τ | σ2n = τ2 = id, τ−1στ = σ1+2n−1

〉
.

• Quasi-dihedral group

D2·2n =
〈
σ, τ | σ2n = τ2 = id, τ−1στ = σ−1+2n−1

〉
.

The groups D2·2n , G2·2n and D2·2n are semidirect products (of the cyclic group 〈σ〉 of order
2n with the cyclic group Z2, based on the automorphisms d : σ 7→ σ−1, g : σ 7→ σ1+2n−1

,
d : σ 7→ σ−1+2n−1

), whereas Q4·2n−1 is not a semidirect product.

Lemma 2.4. Let n ≥ 3 and G ∈ {D2·2n , Q4·2n−1 ,D2·2n}. Define

ϕl : G→ G : σkτ b 7→ σk+blτ b (with k ∈ Z2n and b ∈ {0, 1}).

For G = D2·2n and G = Q4·2n−1, ϕl is an automorphism for all l ∈ Z2n. For G = D2·2n,
ϕl is an automorphism for all even l ∈ Z2n.

Proof. This is well known, but for the convenience of the reader we provide a proof.
For D2·2n , the result has been proven in Lemma 2.1 (we have ϕl = ϕ1,l). For Q4·2n−1 ,

the proof works similarly (with m = 1; interpret the elements and the automorphism over
Q4·2n−1 ; in the v = 1 and y = 1 case the insertion of ττ replaces the σ2n−1

from the first
merge).

Let G = D2·2n . It is clear that ϕl is bijective. Let g = σuτv, h = σxτy ∈ G with
u, x ∈ Z2n and v, y ∈ {0, 1}.

• If v = 0:

ϕl(gh) = ϕl(σ
uσxτy) = ϕl(σ

u+xτy) = σu+x+ylτy = σuσx+ylτy

= ϕl(σ
u) · ϕl(σxτy) = ϕl(g) · ϕl(h).

• If v = 1 and y = 0:

ϕl(gh) = ϕl(σ
uτσx) = ϕl(σ

u−x+x·2n−1
τ) = σu−x+x·2n−1+lτ = σu+lτσx

= ϕl(σ
uτ) · ϕl(σx) = ϕl(g) · ϕl(h).

• If v = 1 and y = 1:

ϕl(gh) = ϕl(σ
uτσxτ) = ϕl(σ

u−x+x·2n−1
) = σu−x+x·2n−1

= σuτσxτ

= σuτσ−lσlσxτ = σu+l+l·2n−1
τσx+lτ

∗
= σu+lτσx+lτ

= ϕl(σ
uτ) · ϕl(σxτ) = ϕl(g) · ϕl(h).

(*) l is even ⇒ l · 2n−1 ≡ 0 (mod 2n).

22 2. Preliminaries

Lemma 2.5. Let G = G2·2n with n ≥ 3. Then

ϕl,c : G→ G : σkτ b 7→ (σlτ c)kτ b (with k ∈ Z2n and b ∈ {0, 1})

is an automorphism for all odd l ∈ Z2n and c ∈ {0, 1}.

Proof. This is well known, but for the convenience of the reader we provide a proof.

First we show that ϕl,c is bijective. If c = 0, ϕl,c is obviously bijective (because mul-
tiplying σ exponents with an odd number simply permutes the exponents). So, now let
c = 1.

• Let k be even. We get (σlτ c)kτ b = σl·kσ2n−1·l· k
2
·cτ b = σl·(k+2n−1· k

2
·c)τ b.

– If 4 | k: k 7→ lk mod 2n is bijective on M1 := {x ∈ Z2n | gcd(x, 2n) =
gcd(k, 2n)}.

– If 4 - k: k 7→ l(k + 2n−1) mod 2n is bijective on M2 := {x ∈ Z2n | gcd(x, 2n) =
2}.

Observe {x ∈ Z2n | gcd(x, 2n) ≥ 2} = M1 ∪̇ M2, i.e. ϕl,c bijectively maps elements
with even σ powers to elements with even σ powers.

• Let k be odd. We get (σlτ c)kτ b = σl(k−1)σ2n−1·l· k−1
2
·cσlτ cτ b =

σl(k−1+2n−1· k−1
2
·c+1)τ c+b = σl(k+2n−1· k−1

2
·c)τ c+b.

– If 4 | k − 1, ϕl,c maps the power of σ using k 7→ lk mod 2n. k can be written
as k = 4x+ 1 with some x ∈ N0. Thus, the set of all σ powers of the images of
ϕl,c is M1 := {l(4x+ 1) mod 2n | x ∈ N0} = {4x+ 1 mod 2n | x ∈ N0}.

– If 4 - k − 1, ϕl,c maps the power of σ using k 7→ l(k + 2n−1) mod 2n. k
can be written as k = 4x + 3 with some x ∈ N0. Thus, the set of all σ
powers of the images of ϕl,c is M2 := {l(4x + 3 + 2n−1) mod 2n | x ∈ N0} =
{4x+ 3 + 2n−1 mod 2n | x ∈ N0}.

Observe that 4x+ 1 ≡ 4y+ 3 + 2n−1 (mod 2n)⇔ 4(x− y) ≡ 2 + 2n−1 (mod 2n) has
no solutions, i.e. M1 ∩M2 = ∅. So, {x ∈ Z2n | gcd(x, 2n) = 1} = M1 ∪̇ M2, i.e. ϕl,c
bijectively maps elements with odd σ powers to elements with odd σ powers.

Thus all in all ϕl,c is bijective.

Let g = σuτv, h = σxτy ∈ G with u, x ∈ Z2n and v, y ∈ {0, 1}.

• If v = 0:

ϕl,c(gh) = ϕl,c(σ
uσxτy) = ϕl,c(σ

u+xτy) = (σlτ c)u+xτy = (σlτ c)u(σlτ c)xτy

= ϕl,c(σ
u) · ϕl,c(σxτy) = ϕl,c(g) · ϕl,c(h).

• If v = 1 and y = 0:

ϕl,c(gh) = ϕl,c(σ
uτσx) = ϕl,c(σ

u+x+x·2n−1
τ) = (σlτ c)u+x+x·2n−1

τ

2.3. Groups 23

= (σlτ c)u(σlτ c)x(σlτ c)x·2
n−1

τ = (σlτ c)uτ(σl+l·2
n−1

τ c)x(σl+l·2
n−1

τ c)x·2
n−1

= (σlτ c)uτ(σl+2n−1
τ c)x(σl+2n−1

τ c)x·2
n−1

= (σlτ c)uτ(σlτ c)xσx·2
n−1

σx·2
n−1·2n−1

(σlτ c)x·2
n−1

= (σlτ c)uτ(σlτ c)xσx·2
n−1

(σlτ c)x·2
n−1

= (σlτ c)uτ(σlτ c)xσx·2
n−1

σl·x·2
n−1

σl·2
n−1·x·2

n−1

2

= (σlτ c)uτ(σlτ c)x = ϕl,c(σ
uτ) · ϕl,c(σx) = ϕl,c(g) · ϕl,c(h).

• If v = 1 and y = 1:

ϕl,c(gh) = ϕl,c(σ
uτσxτ) = ϕl,c(σ

u+x+x·2n−1
) = (σlτ c)u+x+x·2n−1

= (σlτ c)uττ(σlτ c)x(σlτ c)x·2
n−1

= (σlτ c)uτ(σl+l·2
n−1

τ c)x(σl+l·2
n−1

τ c)x·2
n−1

τ

= (σlτ c)uτ(σl+2n−1
τ c)x(σl+2n−1

τ c)x·2
n−1

τ

= (σlτ c)uτ(σlτ c)xσx·2
n−1

σx·2
n−1·2n−1

(σlτ c)x·2
n−1

τ

= (σlτ c)uτ(σlτ c)xσx·2
n−1

(σlτ c)x·2
n−1

τ

= (σlτ c)uτ(σlτ c)xσx·2
n−1

σl·x·2
n−1

σl·2
n−1·x·2

n−1

2 τ

= (σlτ c)uτ(σlτ c)xτ = ϕl,c(σ
uτ) · ϕl,c(σxτ) = ϕl,c(g) · ϕl,c(h).

2.3.6. Wreath Product

Let H be a group and P a permutation group acting on a set Ω = {ω1, ω2, . . . , ω|Ω|}. Let

H |Ω| = H × H × . . . × H (|Ω| times) with component-wise multiplication. The wreath
product of H with P , denoted by H oΩ P , is the set H |Ω| × P with the multiplication

(v, p) · (v′, p′) := (v · p(v′), p · p′)

where

p(v′) = p((v′ω1
, v′ω2

, . . . , v′ω|Ω|)) := (v′p−1(ω1), v
′
p−1(ω2), . . . , v

′
p−1(ω|Ω|)

).

This way P defines an automorphism on H |Ω|, and H oΩ P is the semidirect product
H |Ω| o P .

We have |H oΩ P | = |H||Ω| · |P |.
A wreath product is called regular , if Ω = P (the group P acts on itself by left mul-

tiplication). In such a case, we omit the set that P is acting on (namely itself), i.e.
H o P := H oP P .

When P ≤ Sym(X) acts on a set X := {1, 2, . . . , n}, we write H on P := H o{1,2,...,n} P .

Subgroups. Let G := H oΩ P .

• H |Ω| × {id} is a normal subgroup of G and is called the base of G.

24 2. Preliminaries

• More generally, let N E H, then N |Ω| × {id} is a normal subgroup of G, and

ϕ : G→ (H/N) oΩ P : ((vω1 , vω2 , . . . , vω|Ω|), p) 7→ ((vω1N, vω2N, . . . , vω|Ω|N), p)

is a surjective group homomorphism with |ker(ϕ)| = |N ||Ω|.

• For L ≤ H define
D(L) := {((h, h, . . . , h︸ ︷︷ ︸

|Ω| times

), id) | h ∈ L}.

We have D(L) ≤ G and |D(L)| = |L|.
If L ≤ Z(H), then D(L) E G.

For many wreath products, we have Z(G) = D(Z(H)). If H = {id}, then Z(G) =
{id}|Ω| × Z(P).

• {id} × P is a subgroup of G.

2.4. Set Properties

A subset A ⊆ G of a group G is called canonical , if id ∈ A.

A subset A ⊆ G is said to be a cyclic subset, if there exists an a ∈ G such that
A = {id, a, a2, . . . , at−1} for some t ∈ N. We do not enforce t ≥ |〈a〉|; so a cyclic subset is
not necessarily a cyclic subgroup.

Let A,B ⊆ G canonical with |A · B| = |A| · |B|. We call (A,B) size-permutable,
if there exist canonical A′, B′ ⊆ G with |A| = |A′|, |B| = |B′| and A ·B = B′ ·A′.

For a multiset A = [a1, a2, . . . , ak] of elements ai ∈ G, let cg(A) be the multiplicity
of g in A.

For example, for A = [1, 1, 2, 3, 4, 4, 4], we have c1(A) = 2 and c4(A) = 3.

2.4.1. Periodicity

Let A ⊆ G. A is called r-periodic, if there exists a g ∈ G \ {id} with Ag = A. Such a g is
called an r-period of A. If gA = A for g 6= id, g is an `-period and A is `-periodic.

If A is r- or `-periodic, it is also called periodic. If A is not periodic, it is called aperiodic.
In case G is abelian, r- and `-periods are equivalent, thus we just speak of periods.

Example 2.6. If G is non-abelian, r- and `-periods are not equivalent. For example, let
G = D2·8 and A = {id, σ, τ, στ}. Then the set of r-periods of A is {τ}, and the set of
`-periods of A is {στ}.

Also, a set A ⊆ G can be r-periodic, but not `-periodic (and the other way around). For
example, let G = D2·8 and A = {id, σ, τ, σ2τ, σ3τ, σ6}. Then A is r-periodic with periods
{σ2τ}, but not `-periodic (there is no g ∈ G \ {id} with gA = A).

2.4. Set Properties 25

Lemma 2.7. Let A ⊆ G, S� := {g1, g2, . . . , gs} the set of all r-periods of A, and S :=
{id} ∪ S�. Then S ≤ G, and A is a union of cosets of S, i.e. there exists a B ⊆ G such
that A = BS and |A| = |B| · |S|.

Proof. We have S 6= ∅, because id ∈ S. Let g, h ∈ S. Then gh ∈ S, because Agh =
(Ag)h = Ah = A (i.e. gh is an r-period of A and thus in S). Also, g−1 ∈ S, because by
multiplying A = Ag by g−1 from the right on both sides we get Ag−1 = A. So, S ≤ G.
G is the disjoint union of all cosets of S (the cosets form a partition of G). Pick an

arbitrary a ∈ A. For every s ∈ S we have as ∈ A (because s is an r-period of A), i.e.
aS ⊆ A. So, given a coset tS of S (with t ∈ G), tS is either contained completely in A or
it is disjoint to A; A is a (disjoint) union of cosets of S. In order to construct B, pick one
representative from each coset of S contained in A.

2.4.2. Antiperiodicity

We now define and analyze a mapping Z that extracts the “antiperiods” of a group subset.
In Section 9.1.2 we show a connection between antiperiodicity and size-permutability

for dihedral groups (and based on this, we design Algorithm 9.9 for generating logarithmic
signatures of dihedral groups).

Definition 2.8. Let G be a group. Define

Z : P(G)→ P(G) : R 7→ {z ∈ R | z ·R−1 = R}

(where z ·R−1 = {z · r−1 | r ∈ R}). By multiplying z−1 from the left to both sides of the
equation, we obtain the following equivalent definition:

Z : P(G)→ P(G) : R 7→ {z ∈ R | R−1 = z−1 ·R}.

Clearly, Z(R) ⊆ R.

Proposition 2.9. Let G be a group and U ≤ G, then Z(U) = U .

Proof. For all z, u ∈ U , we get z · u−1 ∈ U (i.e. z ∈ Z(U) by definition of Z).

Proposition 2.10. Let G be a group and R ⊆ G with Z(R) 6= ∅, then id ∈ R.

Proof. Let z ∈ Z(R) (at least one such z exists since Z(R) 6= ∅). By definition of Z,
z ·R−1 = R holds. As Z(R) ⊆ R, we have z−1 ∈ R−1, and thus id = z · z−1 ∈ R.

Proposition 2.11. Let G be a group and R ⊆ G. If id ∈ Z(R), then Z(R) \ {id} is the
set of all `-periods of R.

Proof. As Z(R) 6= ∅, by Proposition 2.10 we have id ∈ R, thus all `-periods of R must
be elements of R. As id ∈ Z(R), id ·R−1 = R holds, i.e. R−1 = R. Thus Z(R) = {z ∈
R | z · R−1 = R} = {z ∈ R | z · R = R}. After removing id from Z(R), precisely the
`-periods of R remain.

26 2. Preliminaries

Definition 2.12. Let G be a group and R ⊆ G. Define

Ẑ : P(G)→ P(G) : R 7→ Z(R) · Z(R)−1

(where Z(R) · Z(R)−1 = {r · s−1 | r, s ∈ Z(R)}).

Observe that Ẑ(R) ⊆ R holds (by definition of Z).

For arbitrary subsets ∅ 6= A ⊆ G, the product A · A−1 is not necessarily a subgroup of
G. For example, let G = Z13 and A = {0, 1}, then A − A = {0, 1, 12} is not a subgroup
(because for example 1 + 1 = 2 /∈ A−A). However, if A ·A−1 = A, then clearly A ≤ G.

Theorem 2.13. Let G be a group and R ⊆ G with Z(R) 6= ∅.
Then Ẑ(R) ≤ G, and Z(R) is a right coset of Ẑ(R).

Proof. As Z(R) 6= ∅, we have Ẑ(R) 6= ∅.
Let u, v ∈ Ẑ(R); we show that u · v−1 ∈ Ẑ(R). Write u = a · b−1 and v = c · d−1 with

a, b, c, d ∈ Z(R). We have

u · v−1 = a · b−1 · (c · d−1)−1 = a · b−1 · d · c−1 = a · (c · d−1 · b)−1.

For all r ∈ R, we have b · r−1 ∈ R (due to b ∈ Z(R)), thus d−1 · (b · r−1) ∈ R−1 (due to
d ∈ Z(R)), thus c · (d−1 · b · r−1) ∈ R (due to c ∈ Z(R)). As id ∈ R (by Proposition 2.10),
we see that c · d−1 · b = c · d−1 · b · id−1 ∈ R. Therefore, c · d−1 · b ∈ Z(R).

As a ∈ Z(R) and c · d−1 · b ∈ Z(R), we get a · (c · d−1 · b)−1 ∈ Ẑ(R), i.e. u · v−1 ∈ Ẑ(R).

Consequently, Ẑ(R) ≤ G.

Let x, y, z ∈ Z(R). Observe that x · y−1 · z ∈ Z(R), because for all r ∈ R we have
z · r−1 ∈ R, y−1 · (z · r−1) ∈ R−1, x · (y−1 · z · r−1) ∈ R, and x · y−1 · z ∈ R due to
id ∈ R. So, we have Z(R) · Z(R)−1 · Z(R) ⊆ Z(R). By definition, Ẑ(R) = Z(R) · Z(R)−1,
so Ẑ(R) · Z(R) ⊆ Z(R). As already proven, Ẑ(R) ≤ G, thus especially id ∈ Ẑ(R), and
consequently Ẑ(R) · Z(R) ⊇ Z(R). We obtain

Ẑ(R) · Z(R) = Z(R).

Reading the equation from right to left, Z(R) is the union of one or more right cosets of
Ẑ(R). Two cosets of a subgroup are either the same or disjoint. As the sets on the left
side and the right side of the equation must contain the same number of elements, Z(R)
must be exactly one right coset of Ẑ(R) (all elements in Z(R) result in the same coset
being generated together with Ẑ(R)).

Corollary 2.14. Let G be a group and R ⊆ G. If id ∈ Z(R), then Z(R) ≤ G.

Proof. This directly follows from Theorem 2.13.

Proposition 2.15. Let G be a group and R ⊆ G with Z(R) 6= ∅. Then

|Z(R)| | |R| and |Z(R)| | |G| .

2.4. Set Properties 27

Proof. We have Z(R) · R−1 = R (by definition of Z). By Theorem 2.13, Z(R) is a right
coset of the subgroup Ẑ(R) ≤ G. Multiplying Z(R) together with an element r ∈ R−1

results in another coset of the subgroup (we have Z(R) = Ẑ(R) · g for some g ∈ Z(R), and
thus Z(R) · r = (Ẑ(R) · g) · r = Ẑ(R) · (r · g) is another right coset of Ẑ(R)). So, Z(R) ·R−1

is a union of (right) cosets of a subgroup of G. Two cosets of a subgroup are either the
same or disjoint. Thus, |R| is a multiple of |Z(R)|.

As |Z(R)| =
∣∣∣Ẑ(R)

∣∣∣ and Ẑ(R) ≤ G, |Z(R)| | |G| follows by Lagrange’s theorem.

Corollary 2.16. Let G = Zn, p ∈ P with p |n, and R ⊆ G with |R| = p. Then

∃ z ∈ R : Z(R) ∈ {∅, {z},
〈
n

p

〉
}.

Proof. The case Z(R) = ∅ is clear, thus now assume Z(R) 6= ∅. By Theorem 2.13, Z(R) is
a coset of a subgroup of G. By Proposition 2.15, the only possible orders for the coset are
1 and p.

The possible cosets of the subgroup {0} are {z} for z ∈ Z(R) ⊆ R.

If |Z(R)| = p, then Z(R) is a coset of the subgroup
〈
n
p

〉
≤ G (generated additively),

which is the only subgroup of order p (due to Zn being cyclic). As Z(R) ⊆ R and
|Z(R)| = p = |R|, it must be Z(R) = R. As 0 ∈ R (by Proposition 2.10), we see that R is
the coset containing 0, i.e. the subgroup itself.

Proposition 2.17. Let G be a group, N E G, ϕ : G → G/N : g 7→ gN the canonical
projection onto G/N , and R ⊆ G. Then

Z(ϕ(R)) ⊇ ϕ(Z(R)).

Proof. Let ϕ(z) ∈ ϕ(Z(R)) arbitrary (with an appropriate z ∈ Z(R)). Then ϕ(z)·ϕ(r)−1 ∈
ϕ(R) holds for all r ∈ R (and thus for all ϕ(r) ∈ ϕ(R)), because

z · r−1 ∈ R
⇒ ϕ(z · r−1) ∈ ϕ(R)

⇒ ϕ(z) · ϕ(r−1) ∈ ϕ(R)

⇒ ϕ(z) · ϕ(r)−1 ∈ ϕ(R).

So, ϕ(z) ∈ Z(ϕ(R)), i.e. Z(ϕ(R)) ⊇ ϕ(Z(R)).

Note that Proposition 2.17 is sharp; only “⊇” holds, not “=”. For example, let G = Z8,
N = {0, 4}, ϕ : G → G/N : g 7→ g + N , R = {0, 1, 3, 6}, then ϕ(R) = {0, 1, 2, 3} = G/N ,
Z(R) = {1}, Z(ϕ(R)) = {0, 1, 2, 3} = G/N , i.e. Z(ϕ(R)) ⊃ ϕ(Z(R)).

Proposition 2.18. Let G be an abelian group and A,B ⊆ G canonical with |A + B| =
|A| · |B|.

Then for each of the following statements there exists an example where the statement
holds and a counter-example where the statement does not hold (i.e. none of the statements
holds in general):

28 2. Preliminaries

• Z(A+B) R Z(A) for each R ∈ {=,⊂,⊆,⊃,⊇}.

• |Z(A+B)| R |Z(A)|+ |Z(B)| for each R ∈ {=, <,≤, >,≥}.

• |Z(A+B)| R min {|Z(A)| , |Z(B)|} for each R ∈ {=, >}.

Proof. We give a few examples. Note that A and B can be interchanged, because G is
abelian.

• Let G = Z27, A = {0, 1, 5}, B = {0, 9, 18}.
Then A+B = {0, 1, 5, 9, 10, 14, 18, 19, 23},
Z(A) = ∅, Z(B) = B, Z(A+B) = {1, 10, 19},
Z(A+B) ⊃ Z(A), Z(A+B) R Z(B) is false for all R ∈ {=,⊂,⊆,⊃,⊇},
|Z(A+B)| = |Z(A)|+ |Z(B)|, |Z(A+B)| = min {|Z(A)| , |Z(B)|}.

• Let G = Z27, A = {0, 1, 11}, B = {0, 3, 15} (note that A+B + {0, 9, 18} = G).
Then A+B = {0, 1, 3, 4, 11, 14, 15, 16, 26},
Z(A) = ∅, Z(B) = {3}, Z(A+B) = ∅,
Z(A+B) = Z(A), Z(A+B) ⊂ Z(B),
|Z(A+B)| < |Z(A)|+ |Z(B)|, |Z(A+B)| = min {|Z(A)| , |Z(B)|}.

• Let G = Z27, A = {0, 3, 15}, B = {0, 9, 18} (note that A+B ≤ G).
Then A+B = {0, 3, 6, 9, 12, 15, 18, 21, 24},
Z(A) = {3}, Z(B) = B, Z(A+B) = A+B,
Z(A+B) ⊃ Z(A), Z(A+B) ⊃ Z(B),
|Z(A+B)| > |Z(A)|+ |Z(B)|, |Z(A+B)| > min {|Z(A)| , |Z(B)|}.

• Let G = Z27, A = {0, 3, 15}, B = {0, 5, 16}.
Then A+B = {0, 3, 4, 5, 8, 15, 16, 19, 20},
Z(A) = {3}, Z(B) = {5}, Z(A+B) = {8},
Z(A+B) R Z(A) and Z(A+B) R Z(B) are false for all R ∈ {=,⊂,⊆,⊃,⊇},
|Z(A+B)| < |Z(A)|+ |Z(B)|, |Z(A+B)| = min {|Z(A)| , |Z(B)|}.

Proposition 2.19. Let G be a group, A,B ⊆ G with A ⊆ CG(B), and |A ·B| = |A| · |B|.
Then

Z(A ·B) ⊇ Z(A) · Z(B)

(where Z(A) · Z(B) = {z · z′ | z ∈ Z(A), z′ ∈ Z(B)}).

Proof. If Z(A) = ∅ or Z(B) = ∅, then the statement obviously holds (because the right
side is ∅). Thus now assume that |Z(A)| ≥ 1 and |Z(B)| ≥ 1.

Let z ∈ Z(A) and z′ ∈ Z(B). Then z · z′ ∈ A · B (because z ∈ Z(A) ⊆ A and
z′ ∈ Z(B) ⊆ B). For all g = a · b ∈ A ·B, we get

(z · z′) · g−1 = z · z′ · (a · b)−1 = z · z′ · b−1 · a−1 ∗= z · a−1︸ ︷︷ ︸
∈A

· z′ · b−1︸ ︷︷ ︸
∈B

∈ A ·B.

(*) (z′ · b−1) · a−1 = a−1 · (z′ · b−1) holds due to A−1 ⊆ CG(B) (which holds due to
A ⊆ CG(B) and CG(B) ≤ G).

So, z · z′ ∈ Z(A ·B), i.e. Z(A ·B) ⊇ Z(A) · Z(B).

2.5. Efficiency 29

Note that Proposition 2.19 is sharp; only “⊇” holds, not “=”, as it can be seen from the
examples in the proof of Proposition 2.18.

2.5. Efficiency

A deterministic algorithm is called a polynomial-time algorithm, if its run-time is bounded
by a polynomial in the input length.

A randomized algorithm that always computes correct results is called a Las Vegas
algorithm.

A Las Vegas algorithm is called a probabilistic polynomial-time algorithm, if the expected
value of its run-time is bounded by a polynomial in the input length.

If a problem can be solved by a probabilistic polynomial-time algorithm, the problem
is called easy and the algorithm is called efficient. Otherwise, the problem is called hard.

2.6. One-Way Functions

A one-way function f is a function that can easily be computed for every input, but
computing f−1(a) for a given image a is hard in general.

More formally, a function f : Z∗2 → Z∗2 is called a one-way function, if:

• There exists a deterministic algorithm that for every input x ∈ Z∗2 outputs the value
f(x) within time polynomial in the length of x (i.e. the number of bits).

• For every probabilistic polynomial-time algorithm F and every positive polynomial
P ∈ Z[x] the following holds for all sufficiently large n ∈ N:

Pr[F (f(x), 1n) ∈ f−1(f(x)) | x← Ωn] <
1

P (n)
,

where “x← Ωn” means to randomly choose an element x from the uniform distribu-
tion on Zn2 .

The helper input 1n (string of n ones) ensures that F has a chance to run in time poly-
nomial in its input length (if the 1n would be omitted and the images of f are of length
dlog2 ne, no polynomial-time algorithm can output a preimage).

The definition ensures that f is hard to invert in the average case (not in the worst
case only).

Up to now it is unknown whether one-way functions exist. P 6= NP is a necessary
condition for the existence of one-way functions.

A one-way permutation is a bijective, length-preserving one-way function.

Let kU : N → N and kV : N → N. Let (Un)n∈N and (Vn)n∈N be families with
Un = {0, 1, . . . , kU (n)− 1} and Vn = {0, 1, . . . , kV (n)− 1} for all n ∈ N.

30 2. Preliminaries

A function family (fn : Un → Vn)n∈N with all fn pairwise different (and typically
|Un+1| ≥ |Un| and |Vn+1| ≥ |Vn| for all n ∈ N) is called one-way, if:

• There exists a deterministic algorithm that for every input x ∈ Un outputs the value
f(x) within time polynomial in log2 |Un|.

• For every probabilistic polynomial-time algorithm F and every positive polynomial
P ∈ Z[x] the following holds for all sufficiently large n ∈ N:

Pr[F (f(x), 1dlog2 |Un|e) ∈ f−1(f(x)) | x← ΩUn] <
1

P (log2 |Un|)
,

where “x ← ΩUn” means to randomly choose an element x from the uniform distri-
bution on Un.

Let (fn : Un → Vn)n∈N be a family of one-way functions. If all fn are bijective,
(fn : Un → Vn)n∈N is a family of one-way permutations.

Usually we omit the family notation and just call a single mapping f a one-way
function/permutation, keeping in mind that actually a whole family is meant.

For example, by “let p ∈ P and f : Zp → Zp a one-way permutation” we actually mean
a family (fn : Zi(n) → Zi(n))n∈N of one-way permutations fn with i(n) ∈ P for all n ∈ N.

2.7. Cryptographically Secure Pseudo-Random Number
Generators (CSPRNGs)

A cryptographically secure pseudo-random number generator (CSPRNG) is a function G :
Z∗2 → Z∗2 with the following properties:

• There exists a function l : N0 → N0 with l(n) > n for all n ∈ N0 such that G(x) ∈
Zl(n)

2 for all x ∈ Zn2 and n ∈ N0.

• There exists a deterministic algorithm that for every input x ∈ Z∗2 outputs the value
G(x) within time polynomial in the length of x (i.e. the number of bits).

• For every probabilistic polynomial-time algorithm D : Z∗2 → Z2 and every positive
polynomial P ∈ Z[x] the following holds for all sufficiently large n ∈ N:∣∣Pr[D(G(x)) = 1 | x← Ωn]− Pr[D(z) = 1 | z ← Ωl(n)]

∣∣ < 1

P (n)
,

where “y ← Ωk” means to randomly choose an element y from the uniform distribu-
tion on Zk2.

Like with one-way functions, up to now it is unknown whether CSPRNGs exist. CSPRNGs
exist if and only if one-way functions exist [H̊as99].

2.8. Pseudo-Code 31

2.8. Pseudo-Code

Most algorithms in this work are described using pseudo-code. Some notes on the pseudo-
code:

• Assignments are denoted using the“←” symbol. The “=” symbol denotes an equality
test (not an assignment).

For example, by“x← 4”we mean to set the variable x to the value 4. The expression
“y = 3” is true if and only if the variable y currently has the value 3.

• Indices (for lists, vectors, blocks, block sequences, etc.) are one-based.

For example, for v = (3, 7, 2, 9) we have v[1] = 3 and v[4] = 9.

• Loop boundaries are inclusive.

For example, by “for i← 1 to 4” we mean to execute the following code with i = 1,
i = 2, i = 3 and i = 4 (in this order).

• The keywords “return”, “continue” and“break” have the same meaning as in C-like
languages (C++, Java, C#, etc.):

– “Return” means to leave the current function (or the whole algorithm, if no
function has been declared). In case the function/algorithm returns a value,
this value follows the “return” keyword.

– “Continue” means to skip the rest of the current innermost loop iteration and
continue with the next iteration of the loop (including the advance of any run-
ning variables).

– “Break” means to leave the innermost loop that we are currently in.

The keywords are case-insensitive (e.g. “Return” and “return” mean exactly the
same; we use the one or the other depending on where in the sentence the keyword
appears).

Example:

– For i← 1 to 8:

1. If i = 3: continue.

2. If i = 6: break.

3. Output i.

This algorithm outputs “1 2 4 5”.

• The data types Int and UInt are expected to be able to store arbitrarily large numbers
(so-called “big integers”). An Int stores any value from Z, and an UInt stores any
value from N0.

32

3. Group Factorizations

Chapter 3 starts by defining group factorizations and factorization mappings. We define
what “tame” and “wild” mean precisely, and we specify classes of block sequences.

3.1. Definitions and Notations

Let G be a group, s ∈ N, A1, . . . , As finite sequences of elements of G (the Ai are called
blocks), and α = (A1, . . . , As) a block sequence.

We write |α| for the number of blocks in α, i.e. |α| = s.
|Ai| denotes the number of elements in the block Ai (counting multiples).
The vector t(α) := (|A1|, |A2|, . . . , |As|) is called the type of α.
The length `(α) of α is defined as `(α) :=

∑s
i=1 |Ai|.

If an element g ∈ G is contained in a block Ai (at any position), we write “g ∈ Ai”.
For the ith block Ai of α we also write α[i]. The jth element in the ith block is denoted

by Ai[j] or α[i][j]. If the context is clear, we also write ai,j for this element. i and j are
1-based, i.e. the first element in the first block of α is α[1][1].

• α is called a cover , if {a1 · a2 · · · as | a1 ∈ A1, a2 ∈ A2, . . . , as ∈ As} = G, i.e. every
element g ∈ G can be written as a product g = a1 · a2 · · · as with a1 ∈ A1, a2 ∈
A2, . . . , as ∈ As.
Generating a random cover with high probability is possible efficiently [Sva07].

• α is called a pseudo-logarithmic signature, if
∏s
i=1 |Ai| = |G|.

• α is called a logarithmic signature, if it is a cover and a pseudo-logarithmic signature.
For every element g ∈ G there exists exactly one way to write g as a product
g = a1 · a2 · · · as with a1 ∈ A1, a2 ∈ A2, . . . , as ∈ As.

• α is called a k-factorization, if every element g ∈ G can be written in exactly k
different ways with respect to α (i.e. there are exactly k different ways to select one
element from each block of α such that the product gives g).

• α is called an [s, r]-mesh, if α is a cover, |Ai| = r for every 1 ≤ i ≤ s and

max {cg | g ∈ G}
min {cg | g ∈ G}

≤ 2,

where cg denotes the number of factorizations of an element g ∈ G with respect to
α.

3.1. Definitions and Notations 33

In this work, we mostly regard logarithmic signatures.

The term “logarithmic” comes from the fact that a logarithmic signature α contains∑s
i=1 |Ai| elements, but generates

∏s
i=1 |Ai| elements.

Let Ξ(G) denote the set of all finite block sequences of elements of G, Ξs(G) the
set of all block sequences in Ξ(G) consisting of s blocks, Ξ(r1,...,rs)(G) := {(B1, . . . , Bs) ∈
Ξs(G) | |B1| = r1, |B2| = r2, . . . , |Bs| = rs}, and Λ(G) the set of all logarithmic signatures
for a group G.

Define E(α) :=
⋃s
i=1{Ai[j] | 1 ≤ j ≤ |Ai|}, the (unordered) set of all elements in

the blocks of α. If α is a cover, then 〈E(α)〉 = G, but usually the generators E(α) are not
independent.

Similarly, for a block A, define E(A) := {A[i] | 1 ≤ i ≤ |A|}, the (unordered) set of all
elements in A. For example, if A = (0, 2, 1, 2, 3, 0), then E(A) = {0, 1, 2, 3}.

We often implicitly convert between blocks and sets. During an implicit conversion from
a set S to a block A, the elements in S may be arranged in an arbitrary order to form
an ordered block A (such that A contains every element of S exactly once). During an
implicit conversion from a block A to a set S, duplicate elements are merged and the set
is unordered, i.e. S = E(A).

Let A be a block. Then for instance by “id ∈ A” we mean that the identity element is
contained in A; its position within A is arbitrary and id may be contained in A multiple
times. Furthermore, for example by “let A ∈ P(G) a block” we assume an implicit conver-
sion to happen from a set to a block (i.e. the elements being picked from G are put into
an ordered block in an arbitrary order, but without duplicates).

In light of this, the main purpose of E(A) is to remove duplicate elements from the
block A (the set returned by E(A) may be converted automatically to a block again).

A block A is called a subgroup of G, if |A| = |E(A)| and E(A) ≤ G.

Let ϕ : G → H be a group homomorphism, and A = (a1, . . . , ak) a block with
ai ∈ G for all 1 ≤ i ≤ k. We write ϕ(A) := (ϕ(a1), . . . , ϕ(ak)) (note that A and ϕ(A) are
blocks and thus may contain duplicate elements; we have |A| = |ϕ(A)|).

Let α ∈ Ξs(G). We write ϕ(α) := (ϕ(α[1]), . . . , ϕ(α[s])) ∈ Ξs(H). Observe that
t(ϕ(α)) = t(α).

A factorization of an element g ∈ G is a sequence of indices (i1, i2, . . . , is) such
that

α[1][i1] · α[2][i2] · · ·α[s][is] = g.

For an improved readability of block sequences, we sometimes omit the parentheses en-
closing all blocks and the commas between blocks. If a block contains only one element,
we may omit the block parentheses. Furthermore, we sometimes write blocks as column
vectors. For example,

α = (((0, 0, 0), (3, 0, 1)), ((0, 0, 0), (2, 0, 0)), ((0, 0, 0), (0, 1, 1), (0, 2, 0)), ((0, 0, 0), (0, 0, 1)))

34 3. Group Factorizations

and

α =

(
(0, 0, 0)
(3, 0, 1)

)(
(0, 0, 0)
(2, 0, 0)

)(0, 0, 0)
(0, 1, 1)
(0, 2, 0)

((0, 0, 0)
(0, 0, 1)

)
denote exactly the same block sequence (actually a logarithmic signature) for Z4⊕Z3⊕Z2.

3.2. Factorization Mappings

Let α ∈ Ξs(G) of type t(α) = (r1, . . . , rs). An element selection or product mapping can
be defined as

Θα : Zr1 ⊕ Zr2 ⊕ . . .⊕ Zrs → G : (i1, i2, . . . , is) 7→ α[1][i1 + 1] · α[2][i2 + 1] · · ·α[s][is + 1].

It is convenient to define a bijection to express the indices vector as a non-negative integer
using a mixed radix representation:

λ : Zr1 ⊕ Zr2 ⊕ . . .⊕ Zrs → Z∏s
i=1 ri

: (i1, i2, . . . , is) 7→
s∑
j=1

ijmj

with

mj :=

j−1∏
k=1

rk =

{
1, for j = 1,

r1 · · · rj−1, otherwise.

Define another mapping by composing the above two mappings:

ᾰ : Z∏s
i=1 ri

→ G : x 7→ Θα(λ−1(x)).

If α is a logarithmic signature, we have
∏s
i=1 ri = |G|, and both Θα and ᾰ are bijections.

Let α, β ∈ Ξ(G). If ᾰ = β̆, then α and β are called equivalent, and we also write
α =̆ β.

This equivalence relation is interesting, because most cryptosystems using block se-
quences (we present such cryptosystems in Chapter 4) actually use the mapping ᾰ instead
of directly using an α ∈ Ξ(G). For these cryptosystems, two block sequences α, β ∈ Ξ(G)
result in different encryption functions if and only if ᾰ 6= β̆.

Let α, β ∈ Λ(G) with t(α) = t(β). As we will see in Proposition 5.6, ᾰ = β̆ holds if and
only if α is a sandwich of β (sandwiches will be defined in Section 5.1.4).

Example 3.1. Let G = Z8 and

α :=

(
0

1

)(
0

2

)(
0

4

)
∈ Λ(G), β :=

(
2

3

)(
1

3

)(
5

1

)
∈ Λ(G),

then α 6= β, but ᾰ = β̆, because

β =

(
2

3

)(
1

3

)(
5

1

)
=̆

(
0

1

)
(2)(6)

(
0

2

)
(3)(5)

(
0

4

)
=̆

(
0

1

)
(0)

(
0

2

)
(0)

(
0

4

)
=̆ α.

β was constructed from α using a sandwich transformation.

3.3. Tame and Wild 35

Example 3.2. Let G = Z8 and

α :=

(
0

1

)(
0

2

)(
0

4

)
, β :=

(
0

1

)(
0

2

)(
4

0

)
, γ :=

(
0

1

)(
0

4

)(
0

2

)
∈ Λ(G),

then ᾰ 6= β̆, ᾰ 6= γ̆ and β̆ 6= γ̆, e.g. due to

ᾰ(3) = α[1][2] + α[2][2] + α[3][1] = 1 + 2 + 0 = 3,

β̆(3) = β[1][2] + β[2][2] + β[3][1] = 1 + 2 + 4 = 7,

γ̆(3) = γ[1][2] + γ[2][2] + γ[3][1] = 1 + 4 + 0 = 5,

so ᾰ(3) = 3 6= 7 = β̆(3), ᾰ(3) = 3 6= 5 = γ̆(3) and β̆(3) = 7 6= 5 = γ̆(3).

We observe that ᾰ is efficiently computable for all α ∈ Ξs(G) (simply computing the
product of s group elements), but computing ᾰ−1 can be hard (it requires finding
factorizations of given group elements with respect to α). We state this more precisely in
Section 3.3.

Two logarithmic signatures α, β ∈ Λ(G) can be composed to get a permutation on
Z|G|:

Pα,β : Z|G| → Z|G| : x 7→ β̆−1(ᾰ(x)).

Let η ∈ Λ(G) be a fixed logarithmic signature. For α ∈ Λ(G) define

α̂ : Z|G| → Z|G| : x 7→ Pα,η(x) = η̆−1(ᾰ(x)).

Observe that for every x ∈ Z|G|,

Pα,β(x) = β̆−1(ᾰ(x)) = β̆−1(η̆(η̆−1(ᾰ(x)))) = β̂−1(α̂(x)).

3.3. Tame and Wild

Encoding. Let the elements of a group G (for instance numbers, permutations, matrices
or words in generators) be encoded by binary strings of uniform length bG; bG is called
the code length. Not every string of ZbG2 needs to represent a group element.

An α ∈ Ξ(G) can be stored as a list of blocks containing group elements. We call this
the list representation of α. Every α ∈ Ξ(G) can be described by a list representation. If
not specified differently, in the following we always assume that block sequences are given
by list representations.

When a pair (G,α) is an input to an algorithm, the space required to encode this pair
can be estimated by

S(G,α) := bG · `(α).

Here we assume that negligible space is required to encode/identify the group G.

36 3. Group Factorizations

Time. In order to measure the time complexity of an algorithm having a pair
(G,α) as input, we need to regard families (Gn, αn)n∈N with all αn pairwise different, and
determine how the run-time of the algorithm relates to the input size for n→∞.

A Las Vegas algorithm on a given family (Gn, αn)n∈N (i.e. every member of the family
(Gn, αn)n∈N is a valid input for the algorithm) is efficient, if there exists a positive
polynomial P ∈ Z[x] such that for every (Gi, αi) ∈ (Gn, αn)n∈N the expected value of the
run-time of the algorithm with input (Gi, αi) is bounded by P (S(Gi, αi)).

Tame and wild. An α ∈ Λ(G) is called “tame” or “wild”, depending on how
hard it is to find factorizations of elements with respect to α.

In literature, various similar definitions for “tame” and “wild” can be found.

• Let α ∈ Λ(G). α is called tame, if the factorization of every g ∈ G can be found
efficiently. α is called wild, if it is not tame.

This definition is used for instance in [Bla09].

• Let α ∈ Λ(G) with `(α) bounded by a polynomial in the degree of G (i.e. in the
degree of the smallest faithful permutation representation of G). α is called tame, if
the factorization of every g ∈ G can be found in time polynomial in the degree of G.
α is called wild, if it is not tame.

This definition is used for instance in [Mag02a].

• Let α ∈ Λ(G) with `(α) bounded by a polynomial in log |G|. α is called tame, if the
factorization of every g ∈ G can be found in time polynomial in log |G|. α is called
wild, if it is not tame.

This definition is used for instance in [Sva10] and [Bau12].

Weaknesses of the above definitions are the following:

• In the last two definitions, `(α) is restricted. A definition that does not impose
a restriction on `(α) would be nice. “Tame” and “wild” should be defined for all
logarithmic signatures.

• All of the definitions are black and white: either a logarithmic signature is tame
or it is wild. However, there might be families of logarithmic signatures that are
neither tame nor wild (e.g. a family of logarithmic signatures in which only a fixed
percentage of elements can be factored efficiently).

For example, let α = (A1, . . . , An) ∈ Λ(D2n) with t(α) = (2, . . . , 2), id ∈ Aj for all
1 ≤ j ≤ n and Cτ (E(α)) = 1 (i.e. α contains only one reflection); let the block con-
taining the reflection be Ai. α

′ := (A1, . . . , Ai−1, Ai+1, . . . , An) generates the cyclic
subgroup of all rotations in D2n , and factoring with respect to α′ (as logarithmic
signature of a cyclic group) is easy by Chapter 8. So, even without knowing any-
thing about how to factor with respect to logarithmic signatures for dihedral groups
in general, we already can factor 50% of the elements of D2n with respect to α. As

3.3. Tame and Wild 37

we will see in Proposition 9.6, factoring with respect to α is actually 100% easy;
nonetheless this example shows that the case that a fixed percentage of elements can
be factored easily might indeed occur in a natural way.

Intuitively, a “wild” logarithmic signature would be suited for use in a cryptographic
system based on the hardness of factoring elements with respect to this logarithmic
signature. However, when for instance a fixed percentage < 100% of elements is hard
to factor, it would not be suitable in a cryptographic system.

A stronger definition of “wild” would realize this. The hardness of factoring a ran-
domly chosen group element would be a good candidate.

• It is not specified how α is represented. However, this is important as we will see in
Remark 3.6.

We use the definition of the terms “tame”/“wild” from [Nus11] (which does not have the
weaknesses above), where the definition of “wild” relates to one-way functions. We state
this definition now.

Let (Gn, αn)n∈N be a family of groups Gn (we usually assume that |Gn| ≤ |Gn+1|) and
αn ∈ Λ(Gn) for all n ∈ N, all αn pairwise different and encoded using a list representation.
We assume that there exists a deterministic polynomial-time algorithm that computes Θαn

for all n ∈ N.

• The family (Gn, αn)n∈N is called tame, if there exists a deterministic polynomial-time
algorithm that computes Θ−1

αn (gn) for every input gn ∈ Gn.

• The family (Gn, αn)n∈N is called wild, if for every probabilistic polynomial-time
algorithm A and every positive polynomial P ∈ Z[x] the following holds for all
sufficiently large n ∈ N:

Pr[A(Gn, αn, gn) = Θ−1
αn (gn) | gn ← ΩGn] <

1

P (S(Gn, αn))
,

where “gn ← ΩGn” means to randomly choose an element gn from the uniform
distribution on Gn.

Note that being wild is a special case of being not tame.

Notation. From now on, we usually omit the term “family of” and just call loga-
rithmic signatures tame or wild. Instead of (Gn, αn)n∈N we just write (G,α), keeping in
mind that actually whole families are meant.

For example, by “let α ∈ Λ(G) with `(α) polynomial in log |G|” we actually mean a
family (Gn, αn)n∈N and a polynomial P ∈ Z[x] such that `(αn) ≤ P (log |Gn|) holds for
every n ∈ N.

Mapping. If α ∈ Λ(G) is wild, the mapping ᾰ is a one-way function. Computing
ᾰ is possible efficiently, but computing ᾰ−1 is hard.

38 3. Group Factorizations

One-way permutation. If α ∈ Λ(G) is wild and β ∈ Λ(G) is tame, the mapping Pα,β
is a one-way permutation on Z|G|. For every x ∈ Z|G|, computing Pα,β(x) = β̆−1(ᾰ(x)) is

possible efficiently (β is tame, thus β̆−1 can be computed efficiently). However, computing
P−1
α,β(x) = Pβ,α(x) = ᾰ−1(β̆(x)) is hard, due to α being wild.

Group order and minimal input size. We highlight the connection between
the group order and the minimal size of the input (G,α) (when α is encoded using a list
representation) in the following proposition.

Proposition 3.3. Let (Gn, αn)n∈N be a family as above and P ∈ Z[x] a polynomial such
that for every n ∈ N there exists a pn ∈ P with pn | |Gn| and |Gn| ≤ P (pn).

Then (Gn, αn)n∈N is tame.

Proof. The sizes of the blocks of αn divide the group order |Gn|. Thus we have `(αn) ≥ pn
(because αn must contain a block whose size is pn or a multiple of pn), i.e. S(Gn, αn) ∈
Ω(pn). As |Gn| is polynomial in pn, factoring elements using brute-force is possible in time
polynomial in the input length.

Example 3.4. Let (Gn, αn)n∈N be a family with |Gn| = p2
nqn for pn, qn ∈ P. This implies

`(αn) ≥ 2pn + qn. Factoring elements using brute-force requires time polynomial in p2
nqn,

and we have p2
nqn ≤ (2pn + qn)3, i.e. this is polynomial in the input length.

Remark 3.5. Let |G| = pa1
1 · · · p

ak
k be the prime factorization of |G|, and α =

(A1, . . . , As) ∈ Λ(G). Then obviously `(α) is minimal if and only if |Ai| ∈ P ∪ {4} for
all 1 ≤ i ≤ s (the size of every block must divide the group order, and a block of size b · c
contains at least as many elements as two blocks of size b and c, because b+ c ≤ b · c holds
for all b, c ∈ N≥2; removing any blocks of size 1 results in another logarithmic signature,
therefore blocks of size 1 may be excluded), thus we get the inequality

`(α) =

s∑
i=1

|Ai| ≥
k∑
j=1

ajpj .

So, the minimal length of a logarithmic signature is
∑k

j=1 ajpj . Minimal length logarith-
mic signatures are known to exist for solvable groups, symmetric and alternating groups,
several classical/simple/sporadic groups and all groups of order < 175560; see [Vas03],
[Hol04] and [Lem05].

A less precise lower bound clearly is log2 |G| ≤ `(α).

So, we have

log2 |G| ≤ `(α) ≤ bG · `(α) = S(G,α).

Especially, being polynomial in log2 |G| implies being polynomial in `(α) and in S(G,α).
If `(α) and bG are polynomial in log2 |G|, then being polynomial in S(G,α) is equivalent
to being polynomial in log2 |G|.

3.4. Block Sequence Classes 39

Remark 3.6. Proposition 3.3 assumes that a list representation of α is used. If a different
representation is used, the statement is not necessarily true anymore.

For example, let G = Zp for some p ∈ P and f : Zp → Zp a one-way permutation.
Assume that space polynomial in log |G| is sufficient for storing/describing f . Then

α := (f(0), f(1), . . . , f(p− 1))

(one block containing p elements) is a logarithmic signature for G, and ᾰ(x) = f(x) can
be computed efficiently. Space polynomial in log |G| is sufficient for storing α (store the
function f instead of all elements in the block explicitly). With this representation, ᾰ−1

cannot be computed in time polynomial in log |G| (because f cannot be inverted in time
polynomial in log |G|).

In contrast, if α is stored using a list representation, it is tame by Proposition 3.3.

3.4. Block Sequence Classes

3.4.1. Canonical Block Sequences

A block A is called canonical, if A[1] = id.
A block sequence α = (A1, . . . , As) ∈ Ξs(G) is called

• `-canonical, if Ai[1] = id for all i ∈ {1, 2, . . . , s− 1},

• r-canonical, if Ai[1] = id for all i ∈ {2, 3, . . . , s},

• canonical, if α is `- and r-canonical,

• `�-canonical, if α is `-canonical and |As| = 1,

• r�-canonical, if α is r-canonical and |A1| = 1.

3.4.2. Periodic Block Sequences

A block sequence α = (A1, . . . , As) ∈ Ξs(G) is called r- or `-periodic, if at least one block
Ai is r- or `-periodic.

If α is r- or `-periodic, it is also called periodic. If none of the blocks is periodic, α is
called aperiodic.

We define strong aperiodicity for logarithmic signatures of abelian groups like it
was defined in [Sta13].

Let G be an abelian group and α = (A1, . . . , As) ∈ Λ(G) aperiodic. Let 1 ≤ i1 < i2 <
. . . < id ≤ s and α′ the logarithmic signature resulting from fusing the blocks Ai1 , . . . , Aid
in α (i.e. removing these blocks and adding one large block Ai1 + . . .+Aid at the end).

The fusion of the d blocks Ai1 , . . . , Aid is called admissible, if the type t(α′) does not
imply that α′ is periodic (for sufficient conditions on t(α′) such that α′ is periodic, see
Lemma 8.42).

40 3. Group Factorizations

Let {d1, . . . , dz} be the set of the largest possible numbers of blocks permitted by ad-
missible fusions.

α is called strongly aperiodic, if for each d ∈ {d1, . . . , dz} every admissible fusion of d
blocks results in an aperiodic logarithmic signature.

A vector (k1, . . . , ks) ∈ Ns is called a periodicity forcing factorization type for G, if
every α ∈ Λ(G) with t(α) = (k1, . . . , ks) is periodic.

Various periodicity forcing factorization types for abelian groups can be found in Lemma
8.42.

3.4.3. Transversal Logarithmic Signatures

Let γ : {id} = G0 < G1 < . . . < Gs−1 < Gs = G be a chain of subgroups of G. Let
Ai be a complete set of right coset representatives of Gi−1 in Gi (i.e. Gi−1Ai = Gi and

|Ai| = |Gi|
|Gi−1|). These blocks form a logarithmic signature α := (A1, A2, . . . , As) for G.

Such a logarithmic signature is called exact transversal.

A logarithmic signature α is called transversal, if it is a sandwich (see Section 5.1.4) of
an exact transversal logarithmic signature.

Proposition 3.7. Let γ : {id} = G0 < G1 < . . . < Gs−1 < Gs = G be a chain of subgroups
of G, and Ai a complete set of right coset representatives of Gi−1 in Gi (i.e. Gi−1Ai = Gi
and |Ai| = |Gi|

|Gi−1|). Let α := (A1, . . . , As) be the corresponding exact transversal logarithmic
signature for G.

α is tame if and only if for every g ∈ G and 0 ≤ i ≤ s it can be tested efficiently whether
g ∈ Gi.

Proof. The direction “⇒” is clear: in order to test whether g ∈ Gi, compute the factoriza-
tion of g with respect to α (tame by hypothesis) and test whether id has been selected in
all blocks that are not involved in generating Gi.

We now prove“⇐”, i.e. we compute the factorization indices (y1, . . . , ys) of g with respect
to α (such that g = α[1][y1] · · ·α[s][ys]).

The first s − 1 blocks generate the subgroup Gs−1. There is exactly one a ∈ As such
that g · a−1 ∈ Gs−1. Finding this a is possible efficiently, because |As| ≤ `(α) and group
membership testing in Gs−1 is possible efficiently by hypothesis. Let ys be the index of a
in As and set g′ := g · a−1.

Now repeat this recursively for every block from the right to the left, i.e. search a new
a ∈ As−1 such that g′ · a−1 ∈ Gs−2, cancel it from the end of g′, and so on.

As α contains at most `(α)
2 blocks, all in all the process requires time polynomial in

S(G,α), i.e. α is tame.

So, factoring with respect to α is equivalent to membership testing in the subgroups Gi.
However, when an arbitrary subgroup U (with U 6= Gi for 0 ≤ i ≤ s) is given, being able
to factor in α does not help with membership testing; a subgroup chain containing U
would be required.

3.4. Block Sequence Classes 41

Subgroup membership testing (and thus factoring with respect to exact transversal
logarithmic signatures) is possible efficiently for instance for permutation groups [Cus00].
Algorithm 8.23 shows that exact transversal logarithmic signatures for abelian groups
represented as Z

p
k1
1

⊕ Z
p
k2
2

⊕ . . .⊕ Z
pkmm

are tame. However, in general (e.g. for black box

groups) factoring and subgroup membership testing may be hard.

Definitions.

• E(G) denotes the set of all exact transversal logarithmic signatures for G.

• T (G) denotes the set of all transversal logarithmic signatures for G.

• NT (G) denotes the set of all logarithmic signatures for G that are not transversal,
i.e. NT (G) = Λ(G) \ T (G).

• T NT (G) denotes the set of all logarithmic signatures for G where no block is a coset
of a subgroup of G (“totally non-transversal”).

Furthermore, for F ∈ {E , T ,NT , T NT }, define

F�(G) := {(A1, . . . , As) ∈ F(G) | s ≥ 2 ∧ |Ai| ≥ 2 for all 1 ≤ i ≤ s}.

Note that for example for G = Zp with p ∈ P, we get F�(G) = ∅ (due to one large block
of size p).

One important observation on composing transversal logarithmic signature mappings is
the following (from [Mag92]):

Proposition 3.8. Let G be a finite non-abelian, non-hamiltonian1 group with

|G| /∈ {q, 1 + q2, 1 + q3,
qn − 1

q − 1
, 2n−1(2n ± 1), 11, 12, 15, 22, 23, 24, 28, 176, 276 |

q = pk for p ∈ P, k ∈ N, n ∈ N},

then the set of all non-trivial transversal logarithmic signature mappings generates the
whole symmetric group (by composition), i.e.

〈{α̂ | α ∈ T �(G)}〉 ∼= Sym(Z|G|).

Proof. See [Mag92] (Theorem 6.5).

Later in [Car06], this was improved as follows:

1A hamiltonian group is a non-abelian group in which all subgroups are normal.

42 3. Group Factorizations

Proposition 3.9. Let G be a finite non-trivial group that is not cyclic of order p or p2

for p ∈ P. Then the mappings induced by the exact transversal logarithmic signatures in
E�(G) generate the whole symmetric group (by composition), i.e.

〈{α̂ | α ∈ E�(G)}〉 ∼= Sym(Z|G|).

Proof. See [Car06] (Theorem 1.2).

Factoring. If factoring with respect to some logarithmic signatures is possible efficiently,
the composite mapping induced by them can be inverted efficiently, too (by factoring with
respect to the logarithmic signatures step-by-step).

Thus, a logarithmic signature can only be wild, if computing a corresponding compo-
sition of (exact) transversal logarithmic signatures and factoring with respect to these is
not possible efficiently.

Generating logarithmic signatures. It is not clear whether or how Proposition
3.9 could be used for generating logarithmic signatures. Two logarithmic signatures
α, β ∈ E�(G) together induce a mapping β̂ ◦ α̂, however it is unclear whether or how it is
possible to combine α and β to another logarithmic signature ς ∈ Λ(G) with ς̂ = β̂ ◦ α̂
(except the trivial case |ς| = 1).

Counting exact transversal logarithmic signatures. The number of exact
transversal logarithmic signatures with respect to a given chain of subgroups can be
computed easily. Let γ : {id} = G0 < G1 < . . . < Gs−1 < Gs = G be the chain of
subgroups of G, and α = (A1, A2, . . . , As) an exact transversal logarithmic signature

for it. Let ri be the number of cosets of Gi−1 in Gi, i.e. ri = |Gi|
|Gi−1| ; so (r1, r2, . . . , rs)

is the type of α. In one coset, there are |Gi||Ai| = |Gi|
ri

= |Gi|
|Gi|
|Gi−1|

= |Gi−1| elements. These

representatives of course can freely be interchanged. Consequently for a block Ai there
are |Gi−1|ri possibilities for the coset representatives. Finally, we can permute the order
of the representatives in each block, resulting in |Gi−1|ri · ri! possibilities for block Ai.

So, in total the number of exact transversal logarithmic signatures with respect to the
above chain of subgroups is

s∏
i=1

(|Gi−1|ri · ri!) =
s∏
i=1

i−1∏
j=1

rj

ri

· ri!

 .

Note that some of these exact transversal logarithmic signatures may be equivalent, i.e.
there exist exact transversal α, β ∈ Λ(G) with respect to the same subgroup chain with
α 6= β, but ᾰ = β̆.

For example, let G = Z4, α =
(

0
2

)(
0
1

)
and β =

(
2
0

)(
2
3

)
both exact transversal with respect

to the subgroup chain {0} < {0, 2} < G, α 6= β. However, we have ᾰ = β̆, due to β being
a sandwich of α:

α =

(
0

2

)(
0

1

)
=̆

(
0

2

)
(2)(2)

(
0

1

)
=̆

(
2

0

)(
2

3

)
= β.

3.4. Block Sequence Classes 43

By Proposition 5.6 we know that two logarithmic signatures of the same type are equivalent
if and only if they are sandwiches of each other.

Not all sandwiches of an exact transversal logarithmic signature necessarily are again
exact transversal though. For example,

(
0
2

)
(1)(3)

(
0
1

)
=̆
(

1
3

)(
3
0

)
is a sandwich of α (and thus

again a logarithmic signature for G), but it is not exact transversal (e.g. because the first
block is not a subgroup).

In order to count the inequivalent exact transversal logarithmic signatures, we divide
the number above by the number of possible sandwiches (possible in the sense that the
sandwich is again exact transversal). For the first sandwich element (between the blocks
A1 and A2), there are |A1| possible sandwich elements, namely the elements of A1, because
A1 must remain a subgroup. For the second sandwich element (between the blocks A2

and A3), there are |A1| · |A2| possible sandwich elements, namely the elements of A1 ·A2.
And so on.

Thus, the number of inequivalent exact transversal logarithmic signatures is

∏s
i=1 (|Gi−1|ri · ri!)∏s−1

i=1

∏i
j=1 rj

=

∏s
i=1

((∏i−1
j=1 rj

)ri
· ri!
)

∏s−1
i=1

∏i
j=1 rj

=

s∏
i=1

(∏i−1
j=1 rj

)ri
· ri!∏i

j=1 rj
·
s∏
j=1

rj

=

s∏
i=1

i−1∏
j=1

rj

ri−1

· (ri − 1)!

 · s∏
j=1

rj

=
s∏
i=1

i−1∏
j=1

rj

ri−1

· ri!

 .

44

4. Cryptographic Primitives

In Chapter 4, we give an overview on existing cryptographic primitives based on group
factorizations.

4.1. PGM (Symmetric Encryption, Logarithmic Signature)

Permutation Group Mappings (PGM) is a symmetric encryption algorithm that uses
logarithmic signatures as keys. It has been introduced by S. S. Magliveras [Mag86]
[Mag92].

Let G be a group.

• Spaces. Message space: Z|G|, cipher space: Z|G|.

• Key. (α, β) ∈ Λ(G)2.

• Encryption.

Eα,β : Z|G| → Z|G| : x 7→ Pα,β(x) = β̆−1(ᾰ(x)).

• Decryption.

Dα,β : Z|G| → Z|G| : x 7→ P−1
α,β(x) = ᾰ−1(β̆(x)).

Note that for encryption β must be tame, and for decryption α must be tame, i.e. both
must be tame.

Security. When performing multiple encryptions, PGM has a strong cryptographic
property: almost always all permutations of Z|G| can be achieved, due to Proposition 3.8.
With one encryption, PGM is usually 2-transitive [Mag92].

In [Mag92], a computationally infeasible chosen-plaintext attack is described.

4.2. MST1 (Asymmetric Encryption, Logarithmic Signature)

MST1 is an asymmetric encryption algorithm that uses logarithmic signatures. It has
been introduced by S. S. Magliveras, D. R. Stinson and T. van Trung [Mag02b].

Let G be a group.

• Spaces. Message space: Z|G|, cipher space: Z|G|.

4.3. MST1 Generalized (Asymmetric Encryption, Logarithmic Signature) 45

• Public key. (α, β) ∈ Λ(G)2 with α wild (without the knowledge of the private key)
and β tame.

• Private key. Tame transversal logarithmic signatures θ1, . . . , θk ∈ Λ(G) such that
α̂β̂−1 = θ̂1 · · · θ̂k (such a composition usually exists by Proposition 3.8).

• Encryption.
Eα,β : Z|G| → Z|G| : x 7→ Pα,β(x) = β̆−1(ᾰ(x)).

• Decryption.
Dα,β : Z|G| → Z|G| : x 7→ P−1

α,β(x) = ᾰ−1(β̆(x)).

Security. The security of this system relies on the cryptographic hypothesis that factoring
with respect to logarithmic signatures in general is an intractable problem. For a detailed
analysis, see [Mag02b].

4.3. MST1 Generalized (Asymmetric Encryption, Logarithmic
Signature)

In the definition of MST1 above, α̂β̂−1 must be expressible by a composition of mappings
induced by tame transversal logarithmic signatures. This is motivated by the fact that
usually the set of all mappings induced by (exact) transversal logarithmic signatures gener-
ates the whole symmetric group Sym(Z|G|) (when composing the mappings induced by the
logarithmic signatures with a fixed tame logarithmic signature like β), see the Propositions
3.8 and 3.9. So, even wild logarithmic signatures can usually be written as a composition
of transversals; the wildness relies on not knowing the transversals (without the private
key).

However, more generally it would be sufficient when the knowledge of the private key
allows efficient factoring with respect to α, i.e. α is tame when knowing the private key
and it is wild when not knowing it.

The format of the private key is dependent on the algorithm that allows efficient factoring
with respect to the public logarithmic signature.

So, we obtain the following generalized definition of MST1.

Let G be a group.

• Spaces. Message space: Z|G|, cipher space: Z|G|.

• Public key. (α, β) ∈ Λ(G)2 with α wild (without the knowledge of the private key)
and β tame.

• Private key. Information with which α is tame.

• Encryption.
Eα,β : Z|G| → Z|G| : x 7→ Pα,β(x) = β̆−1(ᾰ(x)).

46 4. Cryptographic Primitives

• Decryption.
Dα,β : Z|G| → Z|G| : x 7→ P−1

α,β(x) = ᾰ−1(β̆(x)).

Security. See Section 4.2.

4.4. MST2 (Asymmetric Encryption, [s, r]-Mesh)

MST2 is an asymmetric encryption algorithm that uses [s, r]-meshes. It has been
introduced by S. S. Magliveras, D. R. Stinson and T. van Trung [Mag02b].

Let G,H be groups such that there exist surjective homomorphisms from G to
H.

• Spaces. Message space: H, cipher space: G×H.

• Private key. Surjective homomorphism f : G→ H.

• Public key. (α, β), where α is a random [s, r]-mesh for G and β := f(α).

• Encryption.

1. Choose a random z ∈ Zrs .
2. Compute y1 := ᾰ(z), y2 := β̆(z), y3 := hy2, where h ∈ H is the message to be

sent.

3. Send (y1, y3).

• Decryption.

1. Recover y2 by computing f(y1) = f(ᾰ(z)) = β̆(z) = y2.

2. Obtain the message h by computing y3y
−1
2 = h.

Security. The security of this system relies on the cryptographic hypothesis that factoring
with respect to [s, r]-meshes in general is an intractable problem. Furthermore, without
knowing the private key it must be computationally infeasible to find a homomorphism
f ′ : G→ H with β = f ′(α). For a detailed analysis, see [Mag02b].

For cyclic groups, factoring with respect to an [s, r]-mesh is at least as hard as the
discrete logarithm problem [Cus00].

4.5. MST3 (Asymmetric Encryption, Cover)

MST3 is an asymmetric encryption algorithm that uses covers and logarithmic signatures.
It has been introduced by W. Lempken, T. van Trung, S. S. Magliveras and W. Wei
[Lem09].

Let G be a non-abelian group with a large center Z such that G does not split
over Z (i.e. there exists no H ≤ G with G = Z × H). |Z| should be large enough such
that exhaustive searching in Z is computationally infeasible.

4.6. MSTg (Pseudo-Random Number Generator, Cover) 47

• Spaces. Message space: Z|Z|, cipher space: G2.

• Private setup.

1. Generate a tame β = (B1, . . . , Bs) ∈ Λ(Z).

2. Generate a random cover α = (A1, . . . , As) with t(α) = t(β) for a subset of G
such that A1, . . . , As ⊆ G \ Z.

3. Choose random t0, . . . , ts ∈ G \ Z.

4. Compute α̃ := (Ã1, . . . , Ãs) with Ãi := t−1
i−1 ·Ai · ti for 1 ≤ i ≤ s.

5. Compute γ := (H1, . . . ,Hs) with |Hi| = |Bi|, Hi[j] = Bi[j] · Ãi[j] for 1 ≤ i ≤ s,
1 ≤ j ≤ |Bi|.

• Private key. (β, (t0, . . . , ts)).

• Public key. (α, γ).

• Encryption. Let m ∈ Z|Z| be the message to be sent.

1. Compute y1 := ᾰ(m) and y2 := γ̆(m).

2. Send (y1, y2).

• Decryption. Let (y1, y2) ∈ G2 be the encrypted message.

1. Compute y2 · t−1
s · y−1

1 · t0 = β̆(m).

2. Recover m from β̆(m) (β̆−1 can be computed efficiently, because β is tame).

Correctness. The decryption works, because

y2 = γ̆(m) = B1[j1] · Ã1[j1] · · ·Bs[js] · Ãs[js]
= B1[j1] · t−1

0 ·A1[j1] · t1 · · ·Bs[js] · t−1
s−1 ·As[js] · ts

= B1[j1] · · ·Bs[js] · t−1
0 ·A1[j1] · · ·As[js] · ts = β̆(m) · t−1

0 · ᾰ(m) · ts
= β̆(m) · t−1

0 · y1 · ts.

Security. The security of this system relies on the cryptographic hypothesis that factoring
with respect to covers for large subsets of groups in general is an intractable problem. For
a detailed analysis, see [Lem09].

4.6. MSTg (Pseudo-Random Number Generator, Cover)

MSTg is a pseudo-random number generator (PRNG) that uses random covers. There is
evidence that it is cryptographically secure (in the sense of a CSPRNG as defined in Sec-
tion 2.7). MSTg has been introduced by P. Marquardt, P. Svaba and T. van Trung [Mar12].

Let G1, G2 be groups with |G1| ≥ |G2|, and f1 : G1 → Z|G1|, f2 : G2 → Z|G2|
bijective mappings. Let l ∈ N with l ≥ |G1|, and k ∈ N0.

48 4. Cryptographic Primitives

• Instance generation. Generate:

– A random cover α for G1 with t(α) = (u1, . . . , ut) such that
∏t
i=1 ui = l.

– Random covers α1, . . . , αk for G1 with t(αi) = (r1, . . . , rs),
∏s
i=1 ri = |G1| for

all 1 ≤ i ≤ k.

– A random cover γ = (H1, . . . ,Hs) for G2 with t(γ) = (r1, . . . , rs).

Define a mapping F : Zl → Z|G2| by the following composition:

Zl
ᾰ−→ G1

f1−→ Z|G1|
ᾰ1−→ G1

f1−→ Z|G1| −→ . . .
ᾰk−→ G1

f1−→ Z|G1|
γ̆−→ G2

f2−→ Z|G2|.

• Input. Seed s0 ∈ Zl, constant C ∈ Zl (with gcd(C, l) = 1).

• Output. To generate n pseudo-random numbers z1, . . . , zn ∈ Z|G2|, do the following:

– For i← 1 to n:

1. Set si ← (si−1 + C) mod l.

2. Output zi := F (si).

Analysis. MSTg can be highly efficient, and evidence of excellent statistical and crypto-
graphic properties has been shown [Mar12].

49

5. Transformations and Irreducibility

In Chapter 5, various transformations on block sequences are presented. Furthermore,
we analyze the irreducibility of blocks and its connection to linear representations and
characters.

Transformations and irreducibility conditions are interesting, because they can be used
in block sequence generation and factorization algorithms.

Our contributions. Our first main contribution in this chapter is a rigorous
analysis of transformations on block sequences. We analyze their effect on factorization
mappings, define subclasses of transformations (e.g. factorization-permuting block
shuffles, which are interesting for block sequence generation algorithms that include block
shuffle transformations). New, interesting types of block sequence normalizations (which
we call g- and (i, g)-normalizations) are presented. Block substitutions are introduced,
and we have a look at their efficiency and a possible implementation. We analyze
compositions of transformations in detail (e.g. which compositions form a group); this is
especially important for designing block sequence generation algorithms based on iterated
transformations. In light of this, we emphasize one special combination (translation,
element shuffle and normalization), which we call a TSN transformation and which plays
a significant role in our logarithmic signature generation algorithm presented in Chapter
6.

Another contribution in this chapter is an analysis of irreducibility of blocks, mainly
based on group homomorphisms. Linear representations and characters are useful for
studying factorizations of abelian groups; we contribute an analysis that shows to what
extent some results for abelian groups can be generalized for non-abelian groups.

5.1. Transformations

In the following we have a look at several transformations that can be applied to block
sequences.

We are especially interested in transformations that produce new, valid logarithmic
signatures when the input is a logarithmic signature.

5.1.1. Element Shuffle

The blocks A1, A2, . . . , As of a block sequence are sequences of elements of G. It is clear
that permuting the elements within a block Ai does not change the multiset of elements
generated by the block sequence.

50 5. Transformations and Irreducibility

We call permuting the elements within blocks an element shuffle.
Shuffling elements within blocks of a k-factorization results in another k-factorization.

Let

e(π1,...,πs) : Ξ(r1,...,rs)(G)→ Ξ(r1,...,rs)(G) : (A1, . . . , As) 7→

 A1[π1(1)]
...

A1[π1(r1)])

 · · ·
As[πs(1)]

...
As[πs(rs)]

be the transformation that applies an element shuffle using the permutations π1 ∈
Sym(r1), . . . , πs ∈ Sym(rs) to a block sequence of type (r1, . . . , rs). Let

E(r1,...,rs)(G) := {e(π1,...,πs) | π1 ∈ Sym(r1), . . . , πs ∈ Sym(rs)}

be the set of all element shuffle transformations.
Together with composition as binary operation, E(r1,...,rs)(G) is a group. We have

e(π̃1,...,π̃s) ◦ e(π1,...,πs) = e(π̃1◦π1,...,π̃s◦πs), the identity is e(id,...,id), and e−1
(π1,...,πs)

= e(π−1
1 ,...,π−1

s).

Let rmax := max {r1, . . . , rs}, then E(r1,...,rs)(G) is non-abelian if and only if rmax ≥ 3
(because Sym(n) is non-abelian if and only if n ≥ 3).

We would like to highlight the effect of an element shuffle on the mapping ᾰ induced by
an α ∈ Ξs(G) of type t(α) = (r1, . . . , rs). Let π1 ∈ Sym(r1), . . . , πs ∈ Sym(rs). Recall that
the function ᾰ is defined (in Section 3.2) as ᾰ : Z∏s

i=1 ri
→ G : x 7→ Θα(λ−1(x)), where

λ : Zr1 ⊕ Zr2 ⊕ . . . ⊕ Zrs → Z∏s
i=1 ri

: (i1, i2, . . . , is) 7→
∑s

j=1 ijmj with mj :=
∏j−1
k=1 rk.

Let β := e(π1,...,πs)(α) and λ̃ : Zr1 ⊕ Zr2 ⊕ . . . ⊕ Zrs → Z∏s
i=1 ri

: (i1, i2, . . . , is) 7→∑s
j=1((πj(ij + 1)− 1) ·mj), we then get

β̆ : Z|G| → G : x 7→ Θβ(λ−1(x))

= Θα(λ̃−1(x)).

Note that (π1, . . . , πs) 6= (id, . . . , id) is not a sufficient condition for β̆ 6= ᾰ. For example,
let G = Z2, α = ((0, 1), (0, 1)) ∈ Ξ(G) (not a logarithmic signature), π1 = π2 = (1 2) ∈
Sym(2) (in cycle notation), then β = e(π1,...,πs)(α) = ((1, 0), (1, 0)), and

β =

(
1

0

)(
1

0

)
=̆

(
1

0

)
(1)(1)

(
1

0

)
=̆

(
0

1

)(
0

1

)
= α,

i.e. β̆ = ᾰ.
However, when α is a logarithmic signature, the condition is necessary and sufficient, as

Proposition 5.1 shows.

Proposition 5.1. Let α ∈ Λ(G) of type t(α) = (r1, . . . , rs) and β := e(π1,...,πs)(α) with
π1 ∈ Sym(r1), . . . , πs ∈ Sym(rs).
β̆ = ᾰ holds if and only if (π1, . . . , πs) = (id, . . . , id).

5.1. Transformations 51

Proof. The direction “⇐” is clear: if (π1, . . . , πs) = (id, . . . , id), we get β = α and thus
β̆ = ᾰ.

We now prove “⇒”. Let g ∈ G. As α is a logarithmic signature, there exists exactly one
factorization g = a1 · · · as with a1 ∈ α[1], . . . , as ∈ α[s]. An element shuffle just permutes
elements within blocks, thus a1 · · · as also is the factorization of g with respect to β. Let
(i1, . . . , is) be the factorization index vector of g with respect to α, and (j1, . . . , js) the
factorization index vector of g with respect to β; with this, we have α[1][i1] = a1 =
β[1][j1], . . . , α[s][is] = as = β[s][js]. α ∈ Λ(G) also implies that ᾰ and β̆ are bijective.
Thus β̆−1(g) = ᾰ−1(g) ⇔ (j1, . . . , js) = (i1, . . . , is) ⇔ π1(i1) = i1, . . . , πs(is) = is. This
holds for all g ∈ G at once (i.e. β̆−1 = ᾰ−1) if and only if (π1, . . . , πs) = (id, . . . , id).

5.1.2. Block Shuffle

We call permuting the order of blocks a block shuffle.

A block shuffle of a logarithmic signature for a group G can result in another valid
logarithmic signature for G or only in a pseudo-logarithmic signature for G. For abelian
groups G, the result always is a logarithmic signature. For non-abelian groups, both can
happen.

Example 5.2. Let G = D2·8, the dihedral group of order 16.

• α = ((id, τ), (id, σ6), (id, σ), (id, σ5τ)) is a logarithmic signature for G.

• α = ((id, τ), (id, σ), (id, σ6), (id, σ5τ)) is another logarithmic signature for G (obvi-
ously, as the two swapped blocks only contain rotations, i.e. are elementwise per-
mutable).

• α = ((id, σ5τ), (id, σ6), (id, σ), (id, τ)) is only a pseudo-logarithmic signature. For
example, the element σ7τ ∈ G has two factorizations: id ·σ6 · σ · τ = σ7τ and
σ5τ · σ6 · id · id = σ5−6 mod 8τ = σ7τ .

Definition 5.3. Let A1, . . . , An ⊆ G, A = A1 · · ·An and π ∈ Sym(n). Assume that
Aπ(1), . . . , Aπ(n) is a valid block shuffle (i.e. Aπ(1) · · ·Aπ(n) = A).

The block shuffle is called factorization-permuting , if Aπ(1)[iπ(1)] · · ·Aπ(n)[iπ(n)] = g for
every g ∈ A with factorization indices i1, . . . in in the non-permuted block sequence (i.e.
g = A1[i1] · · ·An[in]).

Example 5.4. If G is abelian, all block shuffles are factorization-permuting.

Example 5.5. Let G = D2·8 and α =
(

id
σ

)(
id
σ2

)(
id
τ

)(
id
σ4

)
∈ Λ(G). Observe that all block

shuffles are valid, i.e. every permutation of the blocks of α results in another logarithmic
signature for G.

The block shuffle α′ :=
(

id
σ2

)(
id
σ

)(
id
τ

)(
id
σ4

)
(based on the permutation π = (1 2) ∈ Sym(4))

is factorization-permuting: let g = A1[i1] · · ·A4[i4] with respect to α, then in order to get
the factorization of g with respect to α′ one needs to select the iπ(1)th element in the first
block of α′, the iπ(2)th element in the second block of α′, etc.

52 5. Transformations and Irreducibility

In contrast, the block shuffle α′′ :=
(

id
σ

)(
id
τ

)(
id
σ2

)(
id
σ4

)
(based on the permutation π =

(2 3) ∈ Sym(4)) is not factorization-permuting. For example, let g = σ2τ . The factoriza-

tion of g with respect to α is
(

id
σ

)(id

σ2

)(
id
τ

)(id

σ4

)
. With respect to α′′ the factorization is(

id
σ

)(
id
τ

)(id

σ2

)(id

σ4

)
. Observe that even though the last block A4 was not moved by the

block shuffle, different elements need to be selected in A4 in α and α′′ for the factorization
of g.

5.1.3. Translation

In order to get a left translation of a block sequence α = (A1, A2, . . . , As) by an element
t ∈ G, we multiply all elements in the first block A1 by t from the left. For a right
translation, all elements in the last block As are multiplied by t from the right.

As multiplying by a group element t ∈ G is a bijection, i.e. tG = G and Gt = G,
a translation of a logarithmic signature always is a logarithmic signature.

Finding factorizations in translated logarithmic signatures is equivalently hard as
in the original logarithmic signatures. For example, if we can factorize in αt (right
translation of α by t ∈ G), we can do the same in α: factoring an element x ∈ G in α is
equivalent to factoring xt in αt.

Let tx,y : Ξ(G) → Ξ(G) : α 7→ xαy be the transformation that applies a left
translation by x ∈ G and a right translation by y ∈ G to a block sequence α. Let
T(G) := {tx,y | x, y ∈ G} be the set of all translation transformations.

Together with composition as binary operation, T(G) is a group. We have tx2,y2 ◦tx1,y1 =
tx2x1,y1y2 , the identity is tid,id, and t−1

x,y = tx−1,y−1 .
T(G) is abelian if and only if G is abelian.

5.1.4. Sandwich

We define a transformation Ξ(r1,...,rs)(G)×Gs+1 → Ξ(r1,...,rs)(G) :

(α, t) 7→ αt =

t−1
1 · a1,1 · t2
t−1
1 · a1,2 · t2

...

t−1
1 · a1,r1 · t2

t−1
2 · a2,1 · t3
t−1
2 · a2,2 · t3

...

t−1
2 · a2,r2 · t3

 . . .

t−1
s · as,1 · ts+1

t−1
s · as,2 · ts+1

...
t−1
s · as,rs · ts+1

 .

If t1 = ts+1 = id, αt is called a sandwich of α. When building a product in a sandwich αt,
the elements inserted by t cancel out each other (ti · t−1

i = id), i.e. a factorization (vector
of indices) of an element x ∈ G in αt is exactly the same as in α.

A left translation of an α ∈ Ξ(G) from Section 5.1.3 is nothing else than αt with
t2 = t3 = . . . = ts+1 = id. A right translation is αt with t1 = t2 = . . . = ts = id.

5.1. Transformations 53

For all α ∈ Λ(G), we have αt ∈ Λ(G).

Proposition 5.6. Let α, β ∈ Λ(G) with t(α) = t(β). Then ᾰ = β̆ holds if and only if α
is a sandwich of β.

Proof. See [Mag92].

Let

s(x1,...,xs−1) : Ξs(G)→ Ξs(G) : α = (A1, . . . , As) 7→ (A1x1, x
−1
1 A2x2, . . . , x

−1
s−1As)

be the transformation that applies a sandwich using the tuple (x1, . . . , xs−1) ∈ Gs−1 to
the block sequence α; we have s(x1,...,xs−1)(α) = αt with t = (id, x1, . . . , xs−1, id). Let

Ss(G) := {s(x1,...,xs−1) | x1, . . . , xs−1 ∈ G}

be the set of all sandwich transformations.

Together with composition as binary operation, Ss(G) is a group. We have s(y1,...,ys−1) ◦
s(x1,...,xs−1) = s(x1y1,...,xs−1ys−1), the identity is s(id,...,id), and s−1

(x1,...,xs−1) = s(x−1
1 ,...,x−1

s−1).

For s ≥ 2, Ss(G) is abelian if and only if G is abelian.

5.1.5. Normalization

For every α = (A1, A2, . . . , As) ∈ Ξs(G) there exists a sandwich αt with αt[i][1] = id for
all 1 ≤ i ≤ s − 1, i.e. the sandwich αt is an `-canonical block sequence. Precisely, this is
αt with

t1 = id,

t2 = α[1][1]−1,

t3 = α[2][1]−1 · α[1][1]−1,

...

ts = α[s− 1][1]−1 · · ·α[1][1]−1,

ts+1 = id .

We call the process of computing this sandwich a normalization.

Algorithm 5.7. The following algorithm computes the `-canonical equivalent of a block
sequence α = (A1, A2, . . . , As) ∈ Ξs(G):

Function Normalize(BlockSequence α) : Void

• For i← 1 to s− 1:

1. Let g ← α[i][1].

54 5. Transformations and Irreducibility

2. For j ← 1 to ri: set α[i][j]← α[i][j] · g−1.

3. For j ← 1 to ri+1: set α[i+ 1][j]← g · α[i+ 1][j].

Proposition 5.8. Algorithm 5.7 performs less than 2 · `(α) group element multiplications
(which are the most expensive operations here).

Proof. In each of the s−1 outer iterations, one group element multiplication is performed
for each element in the block Ai and for each element in the block Ai+1. In total, we
perform

s−1∑
i=1

(|Ai|+ |Ai+1|) = |A1|+ 2 ·
s−1∑
i=2

|Ai|+ |As| < 2 ·
s∑
i=1

|Ai| = 2 · `(α)

group element multiplications.

5.1.6. g- and (i, g)-Normalizations

Similar to the normalization in Section 5.1.5, a g-normalization is the process of computing
a sandwich, however with different sandwich elements.

Proposition 5.9. Let α = (A1, A2, . . . , As) ∈ Ξs(G) and g ∈ A1 · · ·As arbitrary.

There exists a sandwich of α such that in the resulting block sequence β = (A′1, . . . , A
′
s)

we have id ∈ A′i for 1 ≤ i ≤ s− 1 and g ∈ A′s.
If there exists exactly one factorization of g with respect to α, the sandwich is unique.

Proof. In order to compute this sandwich, first compute a factorization of g with respect
to α. Let (y1, . . . , ys) be the indices of this factorization, i.e. g = α[1][y1] · · ·α[s][ys].

Now let β := αt a sandwich of α with

t1 = id,

t2 = α[1][y1]−1,

t3 = α[2][y2]−1 · α[1][y1]−1,

...

ts = α[s− 1][ys−1]−1 · · ·α[1][y1]−1,

ts+1 = id .

The resulting block sequence has the properties mentioned above. By multiplying t2 =
α[1][y1]−1 onto the elements in A1 from the right, this generates id in the first block.
By multiplying t−1

2 = α[1][y1] onto the elements in A2 from the left, the second block
contains the element α[1][y1]·α[2][y2]. Between the second and the third block, the element
t3 = α[2][y2]−1 · α[1][y1]−1 is multiplied onto the elements in the second block from the
right, which precisely cancels out the element α[1][y1] · α[2][y2], and so on. Thus the first
s− 1 blocks of β contain id.

5.1. Transformations 55

In the very last step, the element t−1
s = α[1][y1] · · ·α[s − 1][ys−1] is multiplied onto

the elements in block As from the left. Thus the last block contains the element
α[1][y1] · · ·α[s− 1][ys−1] · α[s][ys] = g, as asserted.

If there exists exactly one factorization of g with respect to α, the y1, . . . , ys are deter-
mined uniquely, and thus the t1, . . . , ts+1 are determined uniquely.

In contrast to the normalization in Section 5.1.5 (which creates an `-canonical block se-
quence), id now does not necessarily appear in the first positions in the blocks anymore.

Also, a g-normalization requires being able to compute a factorization of g with respect
to α. This is not required when performing a usual normalization (Section 5.1.5).

Example 5.10. Let G = D2·9, α =

 σ5

σ5τ
σ7τ

σ8

σ5

σ2

(σ4τ
σ2

)
∈ Λ(G), and g = σ8. The

factorization of g with respect to α is σ5

σ5τ

σ7τ

 σ8

σ5

σ2

(σ4τ

σ2

)
.

With this, we can perform the σ8-normalization of α: σ5

σ5τ
σ7τ

σ5τ · σ5τ

σ8

σ5

σ2

σ−2σ5τ · σ5τσ2

(
σ4τ
σ2

)

=̆

στid
σ2

σ3

σ6

id

(σ8

στ

)
=: β.

Indeed, the first blocks contain id and the last block contains g = σ8.
As sandwiches never change factorization indices, we can obtain the factorization of σ8

in β by selecting the elements at the same indices as in α. By construction, this selects id
in the first blocks and g in the last block. In the β above, we can very easily verify that
id · id ·σ8 = σ8.

Corollary 5.11. For every α = (A1, . . . , As) ∈ Ξs(G) with id ∈ A1 · · ·As there exists a
sandwich β of α, such that every block of β contains id.

Proof. An id-normalization computes the sandwich.

Corollary 5.12. For every α = (A1, . . . , As) ∈ Ξ(r1,...,rs)(G) with id ∈ A1 · · ·As there
exist s(x1,...,xs−1) ∈ Ss(G) and e(π1,...,πs) ∈ E(r1,...,rs)(G) such that e(π1,...,πs)(s(x1,...,xs−1)(α))
is a canonical block sequence.

Proof. Choose the permutations π1, . . . , πs in such a way that they move id to the top
within every block of the id-normalization of α.

56 5. Transformations and Irreducibility

Note that in Corollary 5.11 we have β̆ = ᾰ by Proposition 5.6. In contrast, in Corollary
5.12 we do not necessarily have β̆ = ᾰ, due to the element shuffle; see Section 5.1.1 for
details.

Generalization: (i, g)-normalizations. The transformation above can be gener-
alized to an (i, g)-normalization (1 ≤ i ≤ s and g ∈ A1 · · ·As), where in the resulting
block sequence the ith block contains the element g and all other blocks contain id.

In order to compute this, perform a g-normalization only up to block i and then similarly
from the right end back to the ith block.

Precisely, let (y1, . . . , ys) be the indices of a factorization of a g ∈ A1 · · ·As with respect
to a block sequence α = (A1, . . . , As) ∈ Ξs(G), then an (i, g)-normalization applies the
following sandwich (which is uniquely determined by i and g, if there exists exactly one
factorization of g with respect to α) to α:

t1 = id,

t2 = α[1][y1]−1,

t3 = α[2][y2]−1 · α[1][y1]−1,

...

ti = α[i− 1][yi−1]−1 · · ·α[1][y1]−1,

ti+1 = α[i+ 1][yi+1] · · ·α[s][ys],

...

ts−1 = α[s− 1][ys−1] · α[s][ys],

ts = α[s][ys],

ts+1 = id .

Analogously to above, it can be verified that the resulting block sequence indeed has the
asserted properties.

Note that just like a g-normalization, an (i, g)-normalization requires the knowledge of
a factorization of g with respect to α.

A g-normalization is nothing else than an (s, g)-normalization.

Example 5.13. Let G = D2·4, α =
(
σ2τ
σ3

)(
στ
τ

)(
σ3τ
σ

)
∈ Λ(G), and g = σ3τ . The factoriza-

tion of g is g = σ3 · στ · σ. A (2, σ3τ)-normalization results in(
σ2τ

σ3

)
σ−3 · σ3

(
στ

τ

)
σ · σ−1

(
σ3τ

σ

)
=̆

(
στ

id

)(
σ3τ

σ2τ

)(
σ2τ

id

)
.

5.1.7. Fusing / Refinement

Two adjacent blocks Ai and Ai+1 of a logarithmic signature α = (A1, A2, . . . , As) can be
fused to a single block containing the elements {g ·h | g ∈ Ai, h ∈ Ai+1}. As the two small

5.1. Transformations 57

blocks Ai and Ai+1 locally generate the same elements as the large fused block, the result
of course is a logarithmic signature α′. α is called a refinement of α′.

5.1.8. Block Substitution

Adjacent blocks Ai, Ai+1, . . . , Ai+k of a logarithmic signature α = (A1, A2, . . . , As) can
be replaced by new blocks A′j , A

′
j+1, . . . , A

′
j+m, provided that they (locally) generate the

same elements, i.e.

{ai · ai+1 · · · ai+k | ai ∈ Ai, ai+1 ∈ Ai+1, . . . , ai+k ∈ Ai+k}
= {aj · aj+1 · · · aj+m | aj ∈ A′j , aj+1 ∈ A′j+1, . . . , aj+m ∈ A′j+m}

and

|Ai| · |Ai+1| · · · |Ai+k| = |A′j | · |A′j+1| · · · |A′j+m|.

The first property ensures that the new blocks generate the same elements as the old ones,
and the second property additionally ensures that logarithmic signatures are mapped to
logarithmic signatures (each element has a unique factorization).

This is a very generic transformation, which highly depends on the group G. Ele-
ment shuffles, block shuffles, fusing and refinement are block substitutions.

Efficiency. Although other operations can be expressed using series of block sub-
stitutions, in practice (during an algorithm involving random block substitutions, like
LS-Gen in Section 6.5) for efficiency it can be useful to perform the other operations
anyway and not rely on block substitutions only.

For example, let G = Z2n and α = (A1, A2, . . . , An) ∈ Λ(G) canonical with |Ai| = 2 for
all i. Assume that we apply r block substitutions that only exchange two adjacent blocks
(at random positions). By Lemma 8.4, there is exactly one g ∈ E(α) with ord(g) = 2n

and we can assume it is in A1. What is the expected value of r such that the element of
order 2n reaches the rightmost block? Obviously, n− 1 block exchanges theoretically are
sufficient, but in practice the block will usually move back and forth a few times before
finally reaching the right side.

If every block substitution would affect the current block containing the element of order
2n, this can be interpreted as an undirected random walk, thus the expected number of
required block substitutions is about n2 [Mot95]. However, only about 2 out of n block
substitutions actually affect the block with the element of order 2n. Thus, all in all about
n3

2 block substitutions are expected to be required for the element of order 2n reaching
the rightmost block.

Block shuffles achieve the same effect a lot more efficiently (a block shuffle that
exchanges A1 with An achieves it in one step).

Implementation. Random block substitutions can be implemented using the two
functions below. This approach works for all groups (including non-abelian) and no

58 5. Transformations and Irreducibility

structural knowledge on the group is required. However, when knowing more about the
structure of the group and the possible effects of block substitutions, implementing these
effects directly will be more efficient.

Function Subst(BlockSequence α) : BlockSequence

1. Let F be a list of all elements generated by α (without duplicates).

If id /∈ F or |F | 6= |α[1]| · · · |α[|α|]|: abort.

2. Remove id from F and permute the elements in F randomly.

3. Let P := [p1, . . . , pr] be the multiset of all prime factors in the numbers |α[i]| for all
i (including duplicate prime factors).

4. Repeat:

a) Choose a random s ∈ {1, . . . , r} and partition P randomly into multisets P1 =
[pi1,1 , . . . , pi1,n1

], . . . , Ps = [pis,1 , . . . , pis,ns].

Let α′ be a new block sequence of type t(α′) = (
∏n1
j=1 pi1,j , . . . ,

∏ns
j=1 pis,j),

containing only id elements.

b) If SubstFillRec(α′, 1, 1, (id), F): return α′.

Function SubstFillRec(BlockSequence α, Int x, Int y, List<GroupElement> L,
List<GroupElement> F) : Bool

1. If x = |α|+ 1: return true.

2. If y = 1: return SubstFillRec(α, x, y + 1, L, F).

3. For each c ∈ F (from left to right):

a) If c < α[x][y − 1]: continue.

b) Set α[x][y]← c, F ′ ← F and v ← true.

c) For each l ∈ L:

i. Let n← l · c.
ii. If n /∈ F ′: set v ← false and break.

iii. Set F ′ ← F ′ \ {n}.
d) If not v: continue.

e) If y = |α[x]|:
i. Let L′ ← L · α[x] (product of all elements in L and block α[x]).

ii. If SubstFillRec(α, x+ 1, 1, L′, F ′): return true.

else if SubstFillRec(α, x, y + 1, L, F ′): return true.

4. Return false.

5.1. Transformations 59

Comments.

• The input for Subst is expected to be a block sequence that is generating id and
is not generating duplicates. The output is a canonical block sequence generating
exactly the same elements as the input block sequence. Additionally, the elements
in the blocks of the output block sequence are in ascending order (the algorithm
requires such an ordering of group elements to exist, and id must be the lowest
element).

The algorithm recursively moves from the left to the right in the blocks of α (index
variable x) and from top to bottom in each block (index variable y).

The list F always contains possible candidates for the current position. F is updated
(forming a new F ′) every time when a candidate element is assigned.

L is a list of elements generated by all blocks left of the current one (i.e. all possible
products of elements in the blocks 1, . . . , x− 1).

• At the start of the loop in Subst, new block sizes are computed. This is done by
collecting all prime factors from the sizes of the blocks of α and composing them
randomly in a new way.

For example, if the input blocks have the sizes (4, 6, 10), we would get P =
[2, 2, 2, 3, 2, 5]. s could be chosen randomly as 4 and the random partitions of P
as P1 = [5, 2], P2 = [3], P3 = [2], P4 = [2, 2]. With these, we would get

α′ = ((id, id, id, id, id, id, id, id, id, id), (id, id, id), (id, id), (id, id, id, id)).

• The loop in Subst choosing new block sizes is required, because there may be types
that do not permit valid factorizations.

For example, let G = D2·6, A1 := (id, σ, σ4τ), A2 := (id, τ) and A := A1A2, then
there are no blocks A′1 and A′2 with A′1A

′
2 = A, |A′1| = 2 and |A′2| = 3, i.e. only block

sequences of type (3, 2) can be factorizations of A, not ones of type (2, 3).

For dihedral groups, we have a look at block substitutions in the Sections 9.1.1 and
9.1.2.

• The check for c < α[x][y − 1] is a performance optimization. It ensures that the
elements in the current block are ordered ascendingly. For example, the blocks
(0, 1, 3) and (0, 3, 1) contain exactly the same elements and it does not make any
sense to try (0, 3, 1) when the block (0, 1, 3) cannot lead to a valid factorization
(because then (0, 3, 1) also will not lead to a valid factorization).

• Only elements in F , which initially contains all elements generated by α except id,
are considered to be candidates for the current position. This only restricts generated
block sequences up to element shuffle-sandwiches (i.e. applying an element shuffle
and a sandwich transformation). All possible block substitutions can be obtained
by computing random element shuffle-sandwiches of the block sequences generated
by the algorithm.

60 5. Transformations and Irreducibility

In order to see why this is correct, let β = (B1, . . . , Bs) ∈ Ξs(G) arbitrary (not
necessarily canonical) with

∏s
i=1 |Bi| = |F | + 1 and B1 · · ·Bs = F ∪ {id}. By

applying an id-normalization to β (Section 5.1.6; note that id ∈ B1 · · ·Bs, thus this
normalization can be applied), we obtain a block sequence β′ where every block
contains id, and thus E(β′) ⊆ F ∪ {id}. By sorting the elements within each block,
we obtain a canonical block sequence.

The algorithm generates all these canonical, sorted block sequences.

• The algorithm theoretically could be used to generate whole logarithmic signatures
for groups. However, it is too slow when the number of blocks/elements is large.

5.1.9. Selective Shift

Let G be a group, α = (A1, . . . , An) ∈ Λ(G), j, k ∈ N with 1 ≤ j ≤ k ≤ n. Let
A := Aj · · ·Ak.

If A is r-periodic, let A = R · S with R ⊆ G and S ≤ G (where S contains id and the
periods of A, see Lemma 2.7). Multiplying any s ∈ S to an element in Ak+1 from the left
clearly results in another logarithmic signature for G and is called an r-selective shift.

If A is `-periodic, let A = S · R with R ⊆ G and S ≤ G. Multiplying any s ∈ S to an
element in Aj−1 from the right results in another logarithmic signature for G and is called
an `-selective shift.

If A is periodic with either A = R · S or A = S ·R (with R and S like above) and S is
a normal subgroup, every element s ∈ S can freely be multiplied to any elements in the
blocks A1, . . . , Aj−1, Ak+1, . . . , An (if S is normal, it can be swapped with all other blocks
and r- and `-selective shifts can be performed in each position). We call this a selective
shift.

If G is abelian, all subgroups are normal, i.e. elements of S can always be multiplied
onto elements in other blocks.

5.1.10. Automorphism

Let ϕ : G → G be an automorphism. Then ϕ(α) is another logarithmic signature of
G. This is proven in a more general form (for surjective homomorphisms and multiple
factorizations) in Theorem 7.3.

Factoring. The factorization index vector of an element g ∈ G with respect to α
is exactly the same as the one for ϕ(g) with respect to ϕ(α).

Example 5.14. Inspired by elementary row additions in matrices, a component addition
automorphism can be defined for some groups.

Let G = L × S × H with L abelian (i.e. L × {id} × {id} ⊆ Z(G)) and ψ : S → L a
homomorphism. Then

ϕ : G→ G : (l, s, h) 7→ (l · ψ(s), s, h)

5.1. Transformations 61

is an automorphism.
A generalization of this are central automorphisms.

Proof. Clearly, ϕ is bijective. We have ϕ−1 : G → G : (l, s, h) 7→ (l · ψ(s−1), s, h) (due to
(lψ(s))ψ(s−1) = lψ(s)ψ(s−1) = lψ(ss−1) = l).
ϕ is a homomorphism. Let g1 = (l1, s1, h1), g2 = (l2, s2, h2) ∈ G.

ϕ(g1 · g2) = ϕ((l1, s1, h1) · (l2, s2, h2)) = ϕ((l1l2, s1s2, h1h2)) = (l1l2ψ(s1s2), s1s2, h1h2)

= (l1l2ψ(s1)ψ(s2), s1s2, h1h2) = (l1ψ(s1)l2ψ(s2), s1s2, h1h2)

= (l1ψ(s1), s1, h1) · (l2ψ(s2), s2, h2) = ϕ((l1, s1, h1)) · ϕ((l2, s2, h2))

= ϕ(g1) · ϕ(g2).

Now, let G = Z8 ⊕ Z2, α =
((0,0)

(1,0)

)((0,0)
(2,0)

)((0,0)
(4,0)

)((0,0)
(4,1)

)
∈ Λ(G), ψ : Z2 → Z8 : y 7→ 4y,

ϕ : G → G : (x, y) 7→ (x + 4y, y), and g = (2, 1). The factorization index vectors for g
with respect to α and ϕ(g) with respect to ϕ(α) are the same:

α =

(
(0, 0)

(1, 0)

)(
(0, 0)

(2, 0)

)(
(0, 0)

(4, 0)

)(
(0, 0)

(4, 1)

)
(sum of selected elements = (2, 1) = g),

ϕ(α) =

(
(0, 0)

(1, 0)

)(
(0, 0)

(2, 0)

)(
(0, 0)

(4, 0)

)(
(0, 0)

(0, 1)

)
(sum of selected elements = (6, 1) = ϕ(g)).

Let aϕ : Ξ(G) → Ξ(G) : α 7→ ϕ(α) be the transformation that applies the automorphism
ϕ ∈ Aut(G) to all elements in α. Let A(G) := {aϕ | ϕ ∈ Aut(G)} be the set of all
automorphism application transformations.

Together with composition as binary operation, A(G) is a group. We have aϕ̃◦aϕ = aϕ̃◦ϕ,
the identity is aid, and a−1

ϕ = aϕ−1 .
A(G) is abelian if and only if Aut(G) is abelian.

5.1.11. Combining Sandwich and Normalization

When starting with a canonical logarithmic signature (of type (r1, . . . , rs)) and first ap-
plying a sandwich transformation s(x1,...,xs−1) and subsequently normalizing the signature,
we get exactly the original canonical logarithmic signature again, i.e. the normalization
undoes the sandwich:

id
a1,2

...
a1,r1

id
a2,2

...
a2,r2

 . . .

id
as,2

...
as,rs

s(x1,...,xs−1)

−−−−−−−−→

id ·x1

a1,2 · x1
...

a1,r1 · x1

x−1
1 · id ·x2

x−1
1 · a2,2 · x2

...

x−1
1 · a2,r2 · x2

 . . .

x−1
s−1 · id

x−1
s−1 · as,2

...

x−1
s−1 · as,rs

62 5. Transformations and Irreducibility

Normalization−−−−−−−−−→

id ·x1 · x−1

1

a1,2 · x1 · x−1
1

...

a1,r1 · x1 · x−1
1

x1 · x−1
1 · id ·x2 · x−1

2

x1 · x−1
1 · a2,2 · x2 · x−1

2
...

x1 · x−1
1 · a2,r2 · x2 · x−1

2

 . . .

xs−1 · x−1

s−1 · id
xs−1 · x−1

s−1 · as,2
...

xs−1 · x−1
s−1 · as,rs

=

id
a1,2

...
a1,r1

id
a2,2

...
a2,r2

 . . .

id
as,2

...
as,rs

 .

5.1.12. Combining Translation and Normalization

Left-translating a canonical logarithmic signature by t ∈ G and subsequently normalizing
it effectively results in conjugating all elements by t and a right translation by t:

id
a1,2

...
a1,r1

id
a2,2

...
a2,r2

 . . .

id
as,2

...
as,rs

Left translation−−−−−−−−−→

t · id
t · a1,2

...
t · a1,r1

id
a2,2

...
a2,r2

 . . .

id
as,2

...
as,rs

Normalization−−−−−−−−−→

t · id ·t−1

t · a1,2 · t−1

...
t · a1,r1 · t−1

t · id ·t−1

t · a2,2 · t−1

...
t · a2,r2 · t−1

 . . .

t · id
t · as,2

...
t · as,rs

=

id

t · a1,2 · t−1

...
t · a1,r1 · t−1

id
t · a2,2 · t−1

...
t · a2,r2 · t−1

 . . .

t · id
t · as,2

...
t · as,rs

Extract right translation−−−−−−−−−−−−−−−→

id

t · a1,2 · t−1

...
t · a1,r1 · t−1

id
t · a2,2 · t−1

...
t · a2,r2 · t−1

 . . .

t · id ·t−1

t · as,2 · t−1

...
t · as,rs · t−1

(t)

=

id

t · a1,2 · t−1

...
t · a1,r1 · t−1

id
t · a2,2 · t−1

...
t · a2,r2 · t−1

 . . .

id

t · as,2 · t−1

...
t · as,rs · t−1

(t) .

5.1. Transformations 63

5.1.13. Combining Translation, Element Shuffle and Normalization (TSN)

We call performing the following transformations onto a logarithmic signature α for a
group G a TSN transformation:

1. Left-translate α by an element t ∈ G.

2. Shuffle the elements within all blocks of α randomly.

3. Normalize α.

4. Extract the right translation (from the last block of α) and discard it.

Example 5.15. Let G = D2·8 and t = σ6.(
id

σ1

)(
id

σ2

)(
id

σ4

)(
id

τ

)
Left translation−−−−−−−−−→ σ6

(
id

σ1

)(
id

σ2

)(
id

σ4

)(
id

τ

)
=̆

(
σ6

σ7

)(
id

σ2

)(
id

σ4

)(
id

τ

)
Random element shuffle−−−−−−−−−−−−−−→

(
σ7

σ6

)(
id

σ2

)(
σ4

id

)(
τ

id

)
Normalization−−−−−−−−−→

(
σ7

σ6

)
σ1 · σ7

(
id

σ2

)
σ1 · σ7

(
σ4

id

)
σ5 · σ3

(
τ

id

)
=̆

(
id

σ7

)(
id

σ2

)(
id

σ4

)(
σ3τ

σ3

)
Extract right translation−−−−−−−−−−−−−−−→

(
id

σ7

)(
id

σ2

)(
id

σ4

)(
id

σ6τ

)
· σ3τ

Discard right translation−−−−−−−−−−−−−−−→

(
id

σ7

)(
id

σ2

)(
id

σ4

)(
id

σ6τ

)
.

Factoring. When being able to factor elements in the original logarithmic signature, one
can derive factorizations for elements in the transformed logarithmic signature. Let t ∈ G
be the left translation and r ∈ G the right translation being discarded at the end. In
order to get the factorization for an element x ∈ G with respect to the TSN-transformed
logarithmic signature, factor x′ := t−1xr in the original logarithmic signature and apply the
transformation. The translations and the normalization do not change element selection
indices; the element shuffle does.

Example 5.16. We want to factor x = σ7τ in the TSN-transformed logarithmic signature
from the previous example. Here, t = σ6 and r = σ3τ . Thus, x′ = t−1xr = σ2 ·σ7τ ·σ3τ =
σ6. In the original, exact transversal logarithmic signature, factorizations are easy to
compute. (

id

σ1

)(
id

σ2

)(
id

σ4

)(
id

τ

)
(fac. of t−1xr)

64 5. Transformations and Irreducibility

Left translation−−−−−−−−−→

(
σ6

σ7

)(
id

σ2

)(
id

σ4

)(
id

τ

)
(fac. of xr)

Random element shuffle−−−−−−−−−−−−−−→

(
σ7

σ6

)(
id

σ2

)(
σ4

id

)(
τ

id

)
(fac. of xr)

Normalization−−−−−−−−−→

(
id

σ7

)(
id

σ2

)(
id

σ4

)(
σ3τ

σ3

)
(fac. of xr)

Extract right translation−−−−−−−−−−−−−−−→

(
id

σ7

)(
id

σ2

)(
id

σ4

)(
id

σ6τ

)
· σ3τ (fac. of xr)

Discard right translation−−−−−−−−−−−−−−−→

(
id

σ7

)(
id

σ2

)(
id

σ4

)(
id

σ6τ

)
(fac. of x).

This indeed is the factorization of x = σ7τ , which we were looking for.

Implementation. The TSN transformation can be implemented efficiently:

1. Multiply all the elements in the first block by t from the left.

2. Shuffle the elements within all blocks.

3. For i← 1 to |α| − 1:

• Let z ← α[i][1]. Multiply all elements in α[i] by z−1 from the right and all
elements in α[i+ 1] by z from the left.

4. Multiply all elements in α[|α|] by α[|α|][1]−1 from the right.

Sandwich ineffectiveness. It is tempting to insert a sandwich transformation after
the left translation to further increase flexibility and complexity. However, a sandwich
transformation here would be ineffective, because it is removed by the normalization:

1. We start with a block sequence α = (A1, . . . , As) of type t(α) = (r1, . . . , rs) with
Ai = (ai,1, . . . , ai,ri) for 1 ≤ i ≤ s, and apply a left translation using t−1

1 ∈ G and a

sandwich using (t2, . . . , ts) ∈ Gs−1. We obtain new blocks A
(1)
1 , . . . , A

(1)
s :

A
(1)
1 = (t−1

1 a1,1t2, . . . , t
−1
1 a1,r1t2),

...

A
(1)
s−1 = (t−1

s−1as−1,1ts, . . . , t
−1
s−1as−1,rs−1ts),

A(1)
s = (t−1

s as,1, . . . , t
−1
s as,rs).

2. We apply an element shuffle using the permutations π1 ∈ Sym(r1), . . . , πs ∈ Sym(rs):

A
(2)
1 = (t−1

1 a1,π1(1)t2, . . . , t
−1
1 a1,π1(r1)t2),

...

A
(2)
s−1 = (t−1

s−1as−1,πs−1(1)ts, . . . , t
−1
s−1as−1,πs−1(rs−1)ts),

A(2)
s = (t−1

s as,πs(1), . . . , t
−1
s as,πs(rs)).

5.1. Transformations 65

3. Now we perform a normalization. In the first round, the element t−1
2 a−1

1,π1(1)t1 is mul-

tiplied from the right to all elements in the first block, and t−1
1 a1,π1(1)t2 is multiplied

from the left to all elements in the second block; we get:

A
(3)
1 = (id, t−1

1 a1,π1(2)a
−1
1,π1(1)t1, . . . , t

−1
1 a1,π1(r1)a

−1
1,π1(1)t1),

A
(3)
2 = (t−1

1 a1,π1(1)a2,π2(1)t3, . . . , t
−1
1 a1,π1(1)a2,π2(r2)t3),

A
(3)
3 = (t−1

3 a3,π3(1)t4, . . . , t
−1
3 a3,π3(r3)t4),

...

A
(3)
s−1 = (t−1

s−1as−1,πs−1(1)ts, . . . , t
−1
s−1as−1,πs−1(rs−1)ts),

A(3)
s = (t−1

s as,πs(1), . . . , t
−1
s as,πs(rs)).

4. In the next round of the normalization process (normalizing the second block),
t−1
3 a−1

2,π2(1)a
−1
1,π1(1)t1 is multiplied from the right to all elements in the second block,

and t−1
1 a1,π1(1)a2,π2(1)t3 is multiplied from the left to all elements in the third block;

we obtain:

A
(4)
1 = (id, t−1

1 a1,π1(2)a
−1
1,π1(1)t1, . . . , t

−1
1 a1,π1(r1)a

−1
1,π1(1)t1),

A
(4)
2 = (id, t−1

1 a1,π1(1)a2,π2(2)a
−1
2,π2(1)a

−1
1,π1(1)t1, . . . ,

t−1
1 a1,π1(1)a2,π2(r2)a

−1
2,π2(1)a

−1
1,π1(1)t1),

A
(4)
3 = (t−1

1 a1,π1(1)a2,π2(1)a3,π3(1)t4, . . . , t
−1
1 a1,π1(1)a2,π2(1)a3,π3(r3)t4),

A
(4)
4 = (t−1

4 a4,π4(1)t5, . . . , t
−1
4 a4,π4(r4)t5),

...

A
(4)
s−1 = (t−1

s−1as−1,πs−1(1)ts, . . . , t
−1
s−1as−1,πs−1(rs−1)ts),

A(4)
s = (t−1

s as,πs(1), . . . , t
−1
s as,πs(rs)).

5. Continuing the normalization process, after the (s−1)th round (i.e. after normalizing
the (s− 1)th block), we have:

A
(s+1)
1 = (id, t−1

1 a1,π1(2)a
−1
1,π1(1)t1, . . . , t

−1
1 a1,π1(r1)a

−1
1,π1(1)t1),

A
(s+1)
2 = (id, t−1

1 a1,π1(1)a2,π2(2)a
−1
2,π2(1)a

−1
1,π1(1)t1, . . . ,

t−1
1 a1,π1(1)a2,π2(r2)a

−1
2,π2(1)a

−1
1,π1(1)t1),

...

A
(s+1)
s−1 = (id, t−1

1 a1,π1(1)a2,π2(1) · · · as−2,πs−2(1)as−1,πs−1(2)a
−1
s−1,πs−1(1) · · · a

−1
1,π1(1)t1,

. . . ,

66 5. Transformations and Irreducibility

t−1
1 a1,π1(1)a2,π2(1) · · · as−2,πs−2(1)as−1,πs−1(rs−1)a

−1
s−1,πs−1(1) · · · a

−1
1,π1(1)t1),

A(s+1)
s = (t−1

1 a1,π1(1)a2,π2(1) · · · as,πs(1), . . . , t
−1
1 a1,π1(1)a2,π2(1) · · · as−1,πs−1(1)as,πs(rs)).

6. By extracting the right translation t−1
1 a1,π1(1)a2,π2(1) · · · as,πs(1) and discarding it, we

finally obtain:

A
(s+2)
1 = (id, t−1

1 a1,π1(2)a
−1
1,π1(1)t1, . . . , t

−1
1 a1,π1(r1)a

−1
1,π1(1)t1),

A
(s+2)
2 = (id, t−1

1 a1,π1(1)a2,π2(2)a
−1
2,π2(1)a

−1
1,π1(1)t1, . . . ,

t−1
1 a1,π1(1)a2,π2(r2)a

−1
2,π2(1)a

−1
1,π1(1)t1),

...

A
(s+2)
s−1 = (id, t−1

1 a1,π1(1)a2,π2(1) · · · as−2,πs−2(1)as−1,πs−1(2)a
−1
s−1,πs−1(1) · · · a

−1
1,π1(1)t1,

. . . ,

t−1
1 a1,π1(1)a2,π2(1) · · · as−2,πs−2(1)as−1,πs−1(rs−1)a

−1
s−1,πs−1(1) · · · a

−1
1,π1(1)t1),

A(s+2)
s = (id, t−1

1 a1,π1(1)a2,π2(1) · · · as−1,πs−1(1)as,πs(2)a
−1
s,πs(1) · · · a

−1
1,π1(1)t1, . . . ,

t−1
1 a1,π1(1)a2,π2(1) · · · as−1,πs−1(1)as,πs(rs)a

−1
s,πs(1) · · · a

−1
1,π1(1)t1).

As it can be seen, the t2, . . . , ts from the sandwich transformation were cancelled out during
the normalization process, i.e. sandwiching is useless here. Therefore, the definition of the
TSN transformation does not contain a sandwich transformation.

Block elements ai,πi(1) are propagated to the right.

Element shuffle. The normalization process always transforms blocks in such a
way that the first element in a block becomes id. An element shuffle before the normal-
ization has the effect that the block is normalized using an element not necessarily being
id, and this element can propagate to the right.

Abelian groups. When the group is abelian, the left translation is ineffective.
This can be seen in the explicit formulas above: every element in the final block sequence
is translated by −t1 from the left and by t1 from the right, which cancel out each other.

In every block Ai, all aj,πj(1) cancel out with an −aj,πj(1) for all 1 ≤ j < i.

All in all, for abelian groups the TSN transformation is nothing else than a translation
of each block by the inverse of an element in this block and an element shuffle; precisely:

A′1 = (0, a1,π1(2) − a1,π1(1), . . . , a1,π1(r1) − a1,π1(1)),

A′2 = (0, a2,π2(2) − a2,π2(1), . . . , a2,π2(r2) − a2,π2(1)),

...

A′s = (0, as,πs(2) − as,πs(1), . . . , as,πs(rs) − as,πs(1)).

5.1. Transformations 67

Corollary 5.17. Let G = Zn2 and α ∈ Λ(G) canonical with t(α) = (2, . . . , 2). Then α is
invariant under TSN transformations.

Proof. With the above observation, for all 1 ≤ i ≤ n we obtain:

• If πi = id:

A′i = ((0, . . . , 0), ai,πi(2) − ai,πi(1)) = ((0, . . . , 0), ai,2 − ai,1)

= ((0, . . . , 0), ai,2 − (0, . . . , 0)) = ((0, . . . , 0), ai,2) = Ai.

• If πi 6= id:

A′i = ((0, . . . , 0), ai,πi(2) − ai,πi(1)) = ((0, . . . , 0), ai,1 − ai,2)

= ((0, . . . , 0), (0, . . . , 0)− ai,2) = ((0, . . . , 0),−ai,2)

= ((0, . . . , 0), ai,2) = Ai.

5.1.14. Combining Translation, Sandwich, Element Shuffle and
Automorphism

Recall that T(G) is the set of all translation transformations (Section 5.1.3), Ss(G) is the
set of all sandwich transformations (Section 5.1.4), E(r1,...,rs)(G) is the set of all element
shuffle transformations (Section 5.1.1), and A(G) is the set of all automorphism appli-
cations (Section 5.1.10). With composition as binary operation, each of these sets is a
group.

Proposition 5.18. The transformations set

M(r1,...,rs)(G) := A(G) ◦ E(r1,...,rs)(G) ◦Ss(G) ◦ T(G)

(i.e. all transformations where we first apply a translation, then a sandwich, then an
element shuffle and finally an automorphism) is a group.

Especially, every composition of a finite number of translations, sandwiches, element
shuffles and automorphism applications can be combined to a composition of one transla-
tion, one sandwich, one element shuffle and one automorphism application.

Proof. Let α = (A1, . . . , As) = ((a1,1, . . . , a1,r1), . . . , (as,1, . . . , as,rs)) ∈ Ξ(r1,...,rs)(G).
Let u, v, ũ, ṽ ∈ G translation elements, (z1, . . . , zs−1), (z̃1, . . . , z̃s−1) ∈ Gs−1 sandwich

tuples, (π1, . . . , πs), (π̃1, . . . , π̃s) ∈ Sym(r1)× . . .×Sym(rs) permutation tuples (for element
shuffles), and ϕ, ϕ̃ automorphisms on G.

((aϕ̃ ◦ e(π̃1,...,π̃s) ◦ s(z̃1,...,z̃s−1) ◦ tũ,ṽ)︸ ︷︷ ︸
∈M(r1,...,rs)(G)

◦ (aϕ ◦ e(π1,...,πs) ◦ s(z1,...,zs−1) ◦ tu,v)︸ ︷︷ ︸
∈M(r1,...,rs)(G)

)(α)

= (aϕ̃ ◦ e(π̃1,...,π̃s) ◦ s(z̃1,...,z̃s−1) ◦ tũ,ṽ)((
(ϕ(ua1,π1(1)z1), . . . , ϕ(ua1,π1(r1)z1)),

68 5. Transformations and Irreducibility

(ϕ(z−1
1 a2,π2(1)z2), . . . , ϕ(z−1

1 a2,π2(r2)z2)),

...

(ϕ(z−1
s−2as−1,πs−1(1)zs−1), . . . , ϕ(z−1

s−2as−1,πs−1(rs−1)zs−1)),

(ϕ(z−1
s−1as,πs(1)v), . . . , ϕ(z−1

s−1as,πs(rs)v))))

= ϕ̃((

(ũϕ(ua1,π̃1(π1(1))z1)z̃1, . . . , ũϕ(ua1,π̃1(π1(r1))z1)z̃1),

(z̃−1
1 ϕ(z−1

1 a2,π̃2(π2(1))z2)z̃2, . . . , z̃
−1
1 ϕ(z−1

1 a2,π̃2(π2(r2))z2)z̃2),

...

(z̃−1
s−2ϕ(z−1

s−2as−1,π̃s−1(πs−1(1))zs−1)z̃s−1, . . . ,

z̃−1
s−2ϕ(z−1

s−2as−1,π̃s−1(πs−1(rs−1))zs−1)z̃s−1),

(z̃−1
s−1ϕ(z−1

s−1as,π̃s(πs(1))v)ṽ, . . . , z̃−1
s−1ϕ(z−1

s−1as,π̃s(πs(rs))v)ṽ)))

= ϕ̃(ϕ((

(ϕ−1(ũ)ua1,π̃1(π1(1))z1ϕ
−1(z̃1), . . . , ϕ−1(ũ)ua1,π̃1(π1(r1))z1ϕ

−1(z̃1)),

(ϕ−1(z̃−1
1)z−1

1 a2,π̃2(π2(1))z2ϕ
−1(z̃2), . . . , ϕ−1(z̃−1

1)z−1
1 a2,π̃2(π2(r2))z2ϕ

−1(z̃2)),

...

(ϕ−1(z̃−1
s−2)z−1

s−2as−1,π̃s−1(πs−1(1))zs−1ϕ
−1(z̃s−1), . . . ,

ϕ−1(z̃−1
s−2)z−1

s−2as−1,π̃s−1(πs−1(rs−1))zs−1ϕ
−1(z̃s−1)),

(ϕ−1(z̃−1
s−1)z−1

s−1as,π̃s(πs(1))vϕ
−1(ṽ), . . . , ϕ−1(z̃−1

s−1)z−1
s−1as,π̃s(πs(rs))vϕ

−1(ṽ)))))

= (aϕ̃◦ϕ ◦ e(π̃1◦π1,...,π̃s◦πs) ◦ s(z1ϕ−1(z̃1),...,zs−1ϕ−1(z̃s−1)) ◦ tϕ−1(ũ)u,vϕ−1(ṽ))︸ ︷︷ ︸
∈M(r1,...,rs)(G)

(α).

So, the two transformations from M(r1,...,rs)(G) can be combined to a single transformation
in M(r1,...,rs)(G), namely a translation by ϕ−1(ũ)u ∈ G from the left and vϕ−1(ṽ) ∈ G
from the right, a sandwich using the elements (z1ϕ

−1(z̃1), . . . , zs−1ϕ
−1(z̃s−1)) ∈ Gs−1, an

element shuffle using the permutations (π̃1 ◦π1, . . . , π̃s ◦πs) ∈ Sym(r1)× . . .×Sym(rs) and
an application of the automorphism ϕ̃ ◦ ϕ ∈ Aut(G).

The identity in M(r1,...,rs)(G) is aid ◦ e(id,...,id) ◦ s(id,...,id) ◦ tid,id.
The inverse of a aϕ ◦ e(π1,...,πs) ◦ s(z1,...,zs−1) ◦ tu,v ∈M(r1,...,rs)(G) is

(aϕ ◦ e(π1,...,πs) ◦ s(z1,...,zs−1) ◦ tu,v)−1

= t−1
u,v ◦ s−1

(z1,...,zs−1) ◦ e
−1
(π1,...,πs)

◦ a−1
ϕ

= tu−1,v−1 ◦ s(z−1
1 ,...,z−1

s−1) ◦ e(π−1
1 ,...,π−1

s) ◦ aϕ−1

= aϕ−1 ◦ e(π−1
1 ,...,π−1

s) ◦ s(ϕ(z−1
1),...,ϕ(z−1

s−1)) ◦ tϕ(u−1),ϕ(v−1)︸ ︷︷ ︸
∈M(r1,...,rs)(G)

.

So, M(r1,...,rs)(G) is a group.

5.2. Irreducibility 69

Remark 5.19. Let f0(U) = {id} and f1(U) = U . As it can be seen from the proof of
Proposition 5.18, the sets T(G), Ss(G), E(r1,...,rs)(G) and A(G) are independent in the
sense that

fb4(A(G)) ◦ fb3(E(r1,...,rs)(G)) ◦ fb2(Ss(G)) ◦ fb1(T(G)) ≤M(r1,...,rs)(G)

for all b1, b2, b3, b4 ∈ Z2.

Furthermore, let T ≤ T(G), S ≤ Ss(G), E ≤ E(r1,...,rs)(G) and A ≤ A(G), then

A ◦ E ◦ fb2(Ss(G)) ◦ fb1(T(G)) ≤M(r1,...,rs)(G),

E ◦ S ◦ T ≤M(r1,...,rs)(G)

for all b1, b2 ∈ Z2.

Remark 5.20. Let H ≤M(r1,...,rs)(G). Then an equivalence relation ∼H can be defined,
where α ∼H β holds if and only if t(α) = t(β) = (r1, . . . , rs) and there exists a transfor-
mation in H that maps α to β (or the other way around).

5.2. Irreducibility

Let G be a group. We call a set (or block containing no duplicate elements) A ⊆ G
irreducible, if there are no sets (or blocks) B,C ⊆ G with |B| > 1, |C| > 1, |A| = |B| |C|
and A = BC.

For finding special conditions for irreducibility, we have a look at homomorphisms
to smaller groups.

Let ϕ : G → H be a group homomorphism. For a set or multiset A ⊆ G, we
write ϕ(A) for the (unordered) multiset [ϕ(a) | a ∈ A].

Proposition 5.21. Let G and H be groups, ϕ : G → H a group homomorphism, and
A,B,C ⊆ G with |A| = |B| |C|. Let A′ := ϕ(A), B′ := ϕ(B), C ′ := ϕ(C).

A necessary condition for A = BC is A′ = B′C ′.

5.2.1. Conditions Induced by Group Homomorphisms to Z2

In this section, we derive a few irreducibility conditions based on counting images of group
homomorphisms to Z2.

In the whole section, let ϕ : G→ Z2 be a group homomorphism.

Example 5.22. Let G be a group, A ⊆ G, and A′ := ϕ(A) (multiset). If c0(A′) = 1 or
c1(A′) = 1, then A is irreducible.

Proof. Let us assume there exist B,C ⊆ G with |B| > 1, |C| > 1, |A| = |B| |C| and
A = BC. Let B′ := ϕ(B) and C ′ := ϕ(C). One of the following cases must occur:

70 5. Transformations and Irreducibility

c0(B′) c1(B′) c0(C ′) c1(C ′) c0(A′) c1(A′)

0 |B| 0 |C| |A| 0
0 |B| |C| 0 0 |A|
|B| 0 0 |C| 0 |A|
|B| 0 |C| 0 |A| 0
∗ ∗ > 0 > 0 ≥ 2 ≥ 2
> 0 > 0 ∗ ∗ ≥ 2 ≥ 2

In all cases, c0(A′) 6= 1 and c1(A′) 6= 1. So, if c0(A′) = 1 or c1(A′) = 1, A is irreducible.

Proposition 5.23. Let G be a group and A,B,C ⊆ G, such that |A| = |B| |C| and
|B| > 1, |C| > 1. We write l := |A|, r := |B| and s := |C|, A′ := ϕ(A), B′ := ϕ(B),
C ′ := ϕ(C).

The following is a necessary condition for A = BC:

c0(A′) = l + 2 · c0(B′) · c0(C ′)− s · c0(B′)− r · c0(C ′),

and equivalently

c1(A′) = −2 · c1(B′) · c1(C ′) + s · c1(B′) + r · c1(C ′).

Proof. Let us assume A = BC. 0 can be generated in B′ + C ′ by b′i + c′j with b′i ∈ B′,
c′j ∈ C ′ and either b′i = c′j = 0 or b′i = c′j = 1 (because 1 + 1 = 0 in Z2). So, we have

c0(A′) = c0(B′)c0(C ′) + c1(B′)c1(C ′)

= c0(B′)c0(C ′) + (r − c0(B′))(s− c0(C ′))

= c0(B′)c0(C ′) + rs− sc0(B′)− rc0(C ′) + c0(B′)c0(C ′)

= l + 2c0(B′)c0(C ′)− sc0(B′)− rc0(C ′).

And thus

l − c1(A′) = l + 2(r − c1(B′))(s− c1(C ′))− s(r − c1(B′))− r(s− c1(C ′))

⇒ −c1(A′) = 2(rs− rc1(C ′)− sc1(B′) + c1(B′)c1(C ′))− rs+ sc1(B′)− rs+ rc1(C ′)

⇒ c1(A′) = 2(rc1(C ′) + sc1(B′)− c1(B′)c1(C ′))− sc1(B′)− rc1(C ′)

= −2c1(B′)c1(C ′) + sc1(B′) + rc1(C ′).

Example 5.24. Let A ⊆ G with |A| = 2m for some m ∈ N, and A′ := ϕ(A). If c0(A′) is
odd, then A is irreducible.

Proof. Let us assume A = BC. As l = |A| = 2m, there must exist u, v ∈ N such that
r = |B| = 2u and s = |C| = 2v (and u + v = m). So, especially r and s are even.
Consequently the right side of the formula in Proposition 5.23 is even (because l, 2, s
and r are even). If c0(A′) is odd, the formula cannot be true, i.e. such B and C do not
exist.

5.2. Irreducibility 71

Example 5.25. Let A ⊆ G with |A| = pm for some p ∈ P and m ∈ N. Write A′ := ϕ(A),
B′ := ϕ(B) and C ′ := ϕ(C).

A = BC can only be true, if c0(A′) ≡ 2 · c0(B′) · c0(C ′) (mod p).

Proof. Let us assume A = BC. As l = |A| = pm, there must exist u, v ∈ N such that
r = |B| = pu and s = |C| = pv (and u + v = m). By reducing both sides of the formula
mod p, we obtain:

c0(A′) = l + 2c0(B′)c0(C ′)− sc0(B′)− rc0(C ′)

⇒ c0(A′) ≡ pm + 2c0(B′)c0(C ′)− pvc0(B′)− puc0(C ′) (mod p)

⇒ c0(A′) ≡ 2c0(B′)c0(C ′) (mod p).

5.2.2. Group, Block and Homomorphism Dependency

Depending on the group and the block, different homomorphisms may provide different
amounts of information on the irreducibility of the block.

Example 5.26. Let

ϑ : D2n → (Z2,+) : g 7→

{
0, if g is a rotation,

1, if g is a reflection,

$: G→ (Z2,+) : g 7→

{
0, if sgn(g) = 1,

1, if sgn(g) = −1,

where sgn(g) is the sign of the permutation g, when G is represented as a permutation
group. For a permutation representation of D2n, see Section 2.3.3.3.

Clearly, both ϑ and $ are group homomorphisms.

The following examples show that sometimes ϑ allows to decide that a block is irreducible
and sometimes $ allows this decision:

• Let G = D2·5 and A = {id, σ2, σ3, σ2τ}. Proposition 5.23 with $ as homomorphism
does not tell us anything about the irreducibility of A, because sgn(g) = 1 for all
g ∈ G and the formula is fulfilled by 4 = 4 + 2 · 2 · 2 − 2 · 2 − 2 · 2. However, using
Proposition 5.23 with ϑ as homomorphism we can conclude that A is irreducible (we
have l = 4, r = s = 2, thus the right side of the formula is even, however Cσ(A) = 3,
i.e. the formula cannot be fulfilled and consequently A is irreducible).

• Let G = D2·6 and A = {id, σ, σ2, σ4}. Proposition 5.23 with ϑ as homomorphism
does not tell us anything about the irreducibility of A, because Cσ(A) = 4 and the
formula could be fulfilled, e.g. by 4 = 4+2·2·2−2·2−2·2 or 4 = 4+2·0·0−2·0−2·0.
However, using Proposition 5.23 with $ as homomorphism we can conclude that A
is irreducible (we have l = 4, r = s = 2, thus the right side of the formula is even,
however sgn(id) = sgn(σ2) = sgn(σ4) = 1, sgn(σ) = −1, so ce(A) = 3, i.e. the
formula cannot be fulfilled and consequently A is irreducible).

72 5. Transformations and Irreducibility

• Let G = D2·7. In this group, for all g ∈ G we have sgn(g) = 1⇔ g is a rotation (see
Section 2.3.3.3), so ϑ and $ provide exactly the same information; ce(M) = Cσ(M)
for all M ⊆ G.

5.3. Linear Representations and Characters

Let ρ : G→ GL(n,C) a C-representation, and χ a character.
For a subset or multiset A ⊆ G, let ρ́(A) :=

∑
g∈A

ρ(g). Similarly, define χ́(A) :=
∑
g∈A

χ(g).

One of the most important tools for studying factorizations of abelian groups us-
ing characters in [Sza04] is the following: let G be an abelian group and A,B ⊆ G, then
A = B if and only if χ́(A) = χ́(B) for all characters χ of G.

We now generalize this for non-abelian groups (and prove it using a similar approach as
in [Sza04]).

Theorem 5.27. Let G be a group and A,B ⊆ G. Cl(A) = Cl(B) if and only if χ́(A) =
χ́(B) for all characters χ of G.

Proof. Let c1, . . . , cm ∈ G be representatives for the conjugacy classes of G (i.e.⋃m
i=1 Cl(ci) = G and Cl(ci) ∩ Cl(cj) = ∅ for all i 6= j). For every character χ of G,

we have

χ́(A) =
∑
g∈A

χ(g) =

m∑
i=1

|Cl(ci) ∩A|χ(ci)

and thus

χ́(A) = χ́(B)⇔
m∑
i=1

|Cl(ci) ∩A|χ(ci) =
m∑
i=1

|Cl(ci) ∩B|χ(ci)

⇔
m∑
i=1

|Cl(ci) ∩A|χ(ci)−
m∑
i=1

|Cl(ci) ∩B|χ(ci) = 0

⇔
m∑
i=1

(|Cl(ci) ∩A| − |Cl(ci) ∩B|)χ(ci) = 0.

There are exactly as many conjugacy classes as characters, i.e. there are m characters
χ1, . . . , χm. The above holds for all characters if and only ifχ1(c1) · · · χ1(cm)

...
. . .

...
χm(c1) · · · χm(cm)

︸ ︷︷ ︸

M

·

 |Cl(c1) ∩A| − |Cl(c1) ∩B|
...

|Cl(cm) ∩A| − |Cl(cm) ∩B|

︸ ︷︷ ︸

v

=

0
...
0

 .

Observe that M is the character table of G. Thus the columns are orthogonal. A set of
pairwise orthogonal vectors is linear independent, so rank(M) = m. Therefore, the linear

5.3. Linear Representations and Characters 73

equation system M · v = (0, . . . , 0)t has exactly one solution: v = (0, . . . , 0)t ∈ Cm. We
get

|Cl(ci) ∩A| − |Cl(ci) ∩B| = 0 for all 1 ≤ i ≤ m
⇔ |Cl(ci) ∩A| = |Cl(ci) ∩B| for all 1 ≤ i ≤ m
⇔ Cl(A) = Cl(B).

Corollary 5.28. Let G be an abelian group and A,B ⊆ G. A = B if and only if χ́(A) =
χ́(B) for all characters χ of G.

Proof. This follows from Theorem 5.27. As G is abelian, there are |G| different conjugacy
classes; we have Cl(g) = {g} for all g ∈ G. Thus, Cl(A) = Cl(B)⇔ A = B.

Example 5.29. Let G = D2·3. From Section 2.3.3.2 we know the conjugacy classes: {id},
{σ, σ2}, {τ, στ, σ2τ}. Using the definitions in Section 2.3.3.4, there are three representa-
tions ρ0, ρ−1 (of degree 1) and ρ1 (of degree 2) with the following characters:

χρ0 : G→ C : σkτ c 7→ 1,

χρ−1 : G→ C : σkτ c 7→ (−1)c,

χρ1 : G→ C : σkτ c 7→

{
ζk3 + ζ−k3 , if c = 0,

0, if c = 1.

So, we get the character table for G = D2·3 shown in Table 5.1 (note that ζ3 + ζ2
3 = −1).

D2·3 id σ τ

χρ0 1 1 1
χρ−1 1 1 −1
χρ1 2 −1 0

Table 5.1.: Character Table for D2·3

Now, let A := {id, σ, στ, σ2τ} and B := {id, σ2, τ, στ}. Then

χ́ρ0(A) = χρ0(id) + χρ0(σ) + χρ0(στ) + χρ0(σ2τ) = 1 + 1 + 1 + 1 = 4,

χ́ρ0(B) = χρ0(id) + χρ0(σ2) + χρ0(τ) + χρ0(στ) = 1 + 1 + 1 + 1 = 4,

χ́ρ−1(A) = χρ−1(id) + χρ−1(σ) + χρ−1(στ) + χρ−1(σ2τ) = 1 + 1− 1− 1 = 0,

χ́ρ−1(B) = χρ−1(id) + χρ−1(σ2) + χρ−1(τ) + χρ−1(στ) = 1 + 1− 1− 1 = 0,

χ́ρ1(A) = χρ1(id) + χρ1(σ) + χρ1(στ) + χρ1(σ2τ) = 2− 1 + 0 + 0 = 1,

χ́ρ1(B) = χρ1(id) + χρ1(σ2) + χρ1(τ) + χρ1(στ) = 2− 1 + 0 + 0 = 1.

So we have χ́(A) = χ́(B) for all characters χ of G and can easily verify that indeed
Cl(A) = [Cl(id),Cl(σ),Cl(τ),Cl(τ)] = Cl(B), i.e. the multisets of conjugacy classes are
the same, but A 6= B.

74 5. Transformations and Irreducibility

Theorem 5.30. Let G be a group and A,B ⊆ G. The following conditions are necessary
(but not sufficient) for A = B:

• χ́(A) = χ́(B) for every character χ of G.

• χ́(A) = χ́(B) for every character χ of U , where U ≤ G is a subgroup of G for which
additionally A ⊆ U and B ⊆ U are true.

Example 5.31. Let G = D2·3, A := {id, σ} and B := {id, σ2}. Using the character table
of G in Example 5.29, we easily compute χ́ρ0(A) = 2 = χ́ρ0(B), χ́ρ−1(A) = 2 = χ́ρ−1(B),
χ́ρ1(A) = 1 = χ́ρ1(B), i.e. the characters of G do not allow us to conclude A 6= B.

U := {id, σ, σ2} ∼= Z3 is a subgroup of G. It is cyclic, abelian, and thus every represen-

tation is of degree 1 and each element forms an own conjugacy class. Let ζ3 = e
2πi
3 . The

generator element can be mapped to any power of ζ3, so we easily compute the character
table, shown in Table 5.2.

Z3 id σ σ2

χρ0 1 1 1
χρ1 1 ζ3 ζ2

3

χρ2 1 ζ2
3 ζ3

Table 5.2.: Character Table for Z3

Now, observe that A,B ⊆ U . We for example see

χ́ρ1(A) = 1 + ζ3 6= 1 + ζ2
3 = χ́ρ1(B)

and thus can conclude A 6= B by Theorem 5.30.

Example 5.32. The conditions in Theorem 5.30 are not sufficient for A = B.

For example, let G = D2·3, A = {id, τ}, B = {id, στ}. Then χ́(A) = χ́(B) for all
characters χ of G (obviously, because τ and στ are in the same conjugacy class).

Let U be the subgroup generated by {id, τ, στ}, then U also contains τ ·στ = σ−1 = σ2,
i.e. |U | ≥ 4. As |U | | |G| by Lagrange’s theorem, we get |U | = 6, and thus U = G. So,
the subgroup character condition does not provide any additional information on whether
A = B or not.

Example 5.33. The conditions in Theorem 5.30 are not sufficient for replacing blocks in
a logarithmic signature.

For example, let G = D2·3, A = {id, τ}, A′ = {id, στ}, B = {id, στ, σ}. Like previously,
χ́(A) = χ́(A′) for all characters χ of G and its subgroups containing A and A′. Here,
(A,B) is a logarithmic signature for G, but (A′, B) is not.

5.4. Irreducibility and Characters 75

5.4. Irreducibility and Characters

Lemma 5.34. Let χ : G → C be a character of an abelian group G, then χ(g + h) =
χ(g)χ(h) for all g, h ∈ G.

This is not necessarily true for non-abelian groups.

Proof. Let G be abelian. From character theory we know that every complex, irreducible
representation ρ is of degree 1, i.e. ρ : G → C× (we have GL(1,C) ∼= C×) and thus
χρ(g) = tr(ρ(g)) = ρ(g). As ρ is a group homomorphism, so is χρ, i.e. χ(g+h) = χ(g)χ(h)
for all g, h ∈ G.

We give a counter-example for the non-abelian case. Let G = D2·3. For the character
χρ1 (see Example 5.29), we get

χρ1(id · id) = χρ1(id) = 2 6= 4 = 2 · 2 = χρ1(id)χρ1(id).

Lemma 5.35. Let χ : G → C be a character of an abelian group G, and A,B ⊆ G
multisets of G. Then χ́(A+B) = χ́(A)χ́(B).

This is not necessarily true for non-abelian groups.

Proof. Let G be abelian, then χ is a group homomorphism according to Lemma 5.34. Note
that A+B is a multiset.

χ́(A+B) =
∑

a+b∈A+B

χ(a+ b)
hom.
=

∑
a+b∈A+B

χ(a)χ(b) =
∑
a∈A

χ(a) ·
∑
b∈B

χ(b) = χ́(A)χ́(B).

If G is non-abelian, this does not hold. For example, take G = D2·3, A = {id} and
B = {id}.

χ́ρ1(AB) = χ́ρ1({id}) = χρ1(id) = 2 6= 4 = 2 · 2 = χρ1(id)χρ1(id) = χ́ρ1(A)χ́ρ1(B).

Theorem 5.36. Let G be an abelian group and A,B,C ⊆ G. Then A = B + C if and
only if χ́(A) = χ́(B)χ́(C) for all characters χ of G.

If G is non-abelian, χ́(A) = χ́(B)χ́(C) does not even need to be true when A = BC.

Proof. Let G be abelian.

A = B + C

Cor. 5.28⇐⇒ χ́(A) = χ́(B + C)

Lem. 5.35⇐⇒ χ́(A) = χ́(B)χ́(C)

for all characters χ of G.
A counter-example for the non-abelian case can be found in the proof of Lemma 5.35.

Proposition 5.37. Let G be a group, ρ : G → GL(n,K) a K-representation of G, and
A,B,C ⊆ G.
ρ́(A) = ρ́(B)ρ́(C) is a necessary condition for A = BC.
If ρ is faithful, then A = BC ⇔ ρ́(A) = ρ́(B)ρ́(C).

76 5. Transformations and Irreducibility

Proof. For every K-representation ρ of G we have:

ρ́(BC) =
∑
bc∈BC

ρ(bc)
hom.
=

∑
bc∈BC

ρ(b)ρ(c)
ring
=
∑
b∈B

ρ(b) ·
∑
c∈C

ρ(c) = ρ́(B)ρ́(C).

With this, it follows:

A = BC
∗⇒ ρ́(A) = ρ́(BC)⇔ ρ́(A) = ρ́(B)ρ́(C).

(*) The direction to the left only follows if ρ is faithful.

77

6. Generating Logarithmic Signatures

For most cryptographic primitives that use logarithmic signatures, we need to be able to
generate random logarithmic signatures for a given group G.

There is interest in generating tame logarithmic signatures as well as wild ones. In
cryptographic primitives, tame logarithmic signatures are for instance used for ordering
(mapping a group element to an integer in [0, |G|−1]) or as keys for a symmetric encryption
algorithm (like PGM in Section 4.1). Wild logarithmic signatures are required for instance
in asymmetric encryption algorithms (like MST1 in Section 4.2).

In the following, we analyze existing approaches and introduce new algorithms for
generating logarithmic signatures.

One-way function/permutation. For an asymmetric encryption algorithm based on
logarithmic signatures, the generation algorithm must provide information (the private
key) that allows to efficiently compute element factorizations. If the algorithm does
not provide this, it basically generates a logarithmic signature for being used as a
one-way function/permutation, not a trap-door function/permutation. However, for a
public-key system (like the generalized MST1 system in Section 4.3), we need a trap-door
function/permutation.

Algorithms for generating logarithmic signatures without providing knowledge how to
compute element factorizations can be useful though for testing factorization algorithms.
We therefore will describe such generation algorithms in the following, too.

Trap-door constructions. One possibility to construct logarithmic signatures is
to start with a fixed tame logarithmic signature for a group G and randomly apply
signature-preserving transformations (i.e. transformations that result in new logarithmic
signatures) that allow deriving a factorization in the new one from the old one. Knowing
the factorization of an element in the starting logarithmic signature, we can apply the
transformations step-by-step and derive its factorization in the resulting logarithmic
signature. The final logarithmic signature would be the public key, and the way how it
was generated would be the private key.

Examples for this construction idea are amalgamated transversal logarithmic signatures
(Section 6.3) and our new generation algorithm LS-Gen (Section 6.5).

An attacker trying to factorize an element would either try it directly (i.e. only using
the public logarithmic signature) or try to find the way how the logarithmic signature
was generated, i.e. try to find the applied transformations. The assumption/hope is that
this is infeasible for the attacker.

Length. We are primarily interested in generating logarithmic signatures α ∈ Λ(G)

78 6. Generating Logarithmic Signatures

where `(α) is polynomial in the minimal length min {`(β) | β ∈ Λ(G)}. Larger logarithmic
signatures are often trivial to generate (most simple example: all group elements stored
in one block), but are not interesting due to space and complexity reasons (when using
a logarithmic signature that requires space polynomial in |G| to be stored/encoded,
factoring using brute-force is efficient).

6.1. Exact Transversal Logarithmic Signatures

Collecting coset representatives for each of the subgroups in the next larger group in the
subgroup chain γ : {id} = G0 < G1 < . . . < Gs−1 < Gs = G as blocks yields an exact
transversal logarithmic signature (for details, see Section 3.4.3).

If |Gi : Gi−1| ∈ P for all 1 ≤ i ≤ s, the resulting logarithmic signature has minimal
length (by Remark 3.5).

6.2. Randomizing Elements

The most simple approach for generating a random, canonical logarithmic signature for a
group G is the following:

1. Find numbers m1, . . . ,mn ∈ N≥2 such that |G| = m1 ·m2 · · ·mn (the mi do not need
to be prime).

2. For each mi generate mi − 1 random elements gi,j ∈ G and let

Ai := (id, gi,1, gi,2, . . . , gi,mi−1).

3. Test whether α := (A1, A2, . . . , An) is a logarithmic signature for G. If yes, α is the
result; if no, go to step 1.

Every canonical logarithmic signature (without blocks of size 1) may be generated using
this approach.

Analysis. There is a multitude of issues with this approach:

• In the last step, it has to be tested whether α is a logarithmic signature for G.
It is not known how to do this for large groups. For small groups G, one could
simply compute all products and look whether there are any duplicates (if there is
a duplicate, α is not a logarithmic signature for G). However, for larger groups this
becomes infeasible.

• The algorithm does not provide a way to compute element factorizations, i.e. it is
not usable in public-key systems.

• It usually is very inefficient. Of course this depends on G, but in general the algo-
rithm will have to generate extremely many block sequences until finding a logarith-
mic signature. Some computer experiments are shown in Table 6.1.

6.2. Randomizing Elements 79

Group Log. Sig. Type Rel. Freq. Gen. Log. Sig. Gen. Block Seq.

D2·2 (2, 2) 0.3750 41528868 110746276
D2·3 (2, 3) 0.1111 6150091 55337810
D2·4 (2, 2, 2) 0.2188 15014920 68635483
D2·5 (2, 5) 0.0192 1379257 71889016
D2·6 ∼= D2·3 × Z2 (2, 2, 3) 0.0417 3135867 75263238
D2·7 (2, 7) 0.0031 143087 46413430
D2·8 (2, 2, 2, 2) 0.0879 3876003 44082541
D2·9 (2, 3, 3) 0.0055 526478 95879030

(3, 2, 3) 0.0055 457683 83515679
D2·10 (2, 2, 5) 0.0036 119219 33176932

(2, 5, 2) 0.0072 243903 33897095
D2·15 (2, 3, 5) 0.00020 5603 27900811

(2, 5, 3) 0.00016 4845 30460012
(3, 2, 5) 0.00022 7419 33020317

D2·24 (2, 2, 2, 2, 2) 0.0227 403467 17757624
D2·25 (2, . . . , 2) 0.0036 48911 13497063
D2·26 (2, . . . , 2) 0.00034 57607 168553491
D2·27 (2, . . . , 2) 1.9 · 10−5 1195 62032198
D2·28 (2, . . . , 2) 6 · 10−7 160 287727650
Sym(4) (2, 3, 4) 0.00115 162232 141268071

(2, 4, 3) 0.00140 269030 191853951
(3, 2, 4) 0.00131 141943 108277507
(2, 2, 2, 3) 0.00753 2576706 342367457
(2, 2, 3, 2) 0.00543 575083 105895557
(2, 3, 2, 2) 0.00543 708234 130396918
(3, 2, 2, 2) 0.00753 1151281 152842645

Alt(4) (3, 4) 0.0058 573101 98935222
(2, 2, 3) 0.0139 1348195 97029285

Alt(5) (2, 2, 3, 5) 4.5 · 10−6 1969 434941512
(2, 3, 2, 5) 1.5 · 10−6 603 406779226
(3, 2, 2, 5) 6.0 · 10−6 2209 367800602
(3, 5, 2, 2) 3.8 · 10−6 1422 375537742

Z6 (2, 3) 0.0556 6846815 123245677
Z10 (2, 5) 0.0048 1089460 227015422
Z12 (2, 2, 3) 0.0116 1329448 114811347
Z3 ⊕ Z2

2
∼= Z6 ⊕ Z2 (2, 2, 3) 0.0208 4425632 212544153

Z14 (2, 7) 0.00048 146797 306889327
Z15 (3, 5) 0.00044 59915 135452677
Z18 (2, 3, 3) 0.00114 204439 178895592
Z20 (2, 2, 5) 0.00051 109481 214704056
Z21 (3, 7) 3 · 10−5 11644 393279710
Z22 (2, 11) 6 · 10−6 1892 293677388

80 6. Generating Logarithmic Signatures

Group Log. Sig. Type Rel. Freq. Gen. Log. Sig. Gen. Block Seq.

Z24 (2, 2, 2, 3) 0.00166 764118 460662026
Z30 (2, 3, 5) 2.4 · 10−5 17869 746020281
Z32 (2, 2, 2, 2, 2) 0.0037 432428 118130151
Z16 ⊕ Z2 (2, 2, 2, 2, 2) 0.0110 866709 78834511
Z8 ⊕ Z2

2 (2, 2, 2, 2, 2) 0.0357 6779772 189721692
Z4 ⊕ Z3

2 (2, 2, 2, 2, 2) 0.1154 16650187 144282242
Z5

2 (2, 2, 2, 2, 2) 0.2980 27819507 93361122

Table 6.1.: Relative Frequencies of Finding Logarithmic Signatures

We obtained the results in Table 6.1 by randomly generating canonical block sequences
(not necessarily different) for the given group and type, and testing for each generated
block sequence whether it is a logarithmic signature (by computing the set of all generated
elements and testing whether this set is the whole group). The relative frequency (column
“Rel. Freq.” in the table) is the number of logarithmic signatures (column “Gen. Log.
Sig.”) divided by the number of generated block sequences (column “Gen. Block Seq.”).
We would like to emphasize again that we did not enforce the generated block sequences
to be different, thus “Gen. Block Seq.” is not the total number of different block sequences
and “Gen. Log. Sig.” is not the total number of different logarithmic signatures for the
specified group and type.

The results were computed using the LogSig utility (Chapter 12), with the com-
mand line option “-crf”. The group is passed using the parameter “-g:” and the type
using “-bstype:”. For improved performance, you might additionally want to specify
“-rand:fast”, which makes LogSig use a fast random number generator instead of a
cryptographically secure one.

The program runs until being terminated manually, and approximately every 10 seconds
it outputs the relative frequency, the number of logarithmic signatures and the number of
generated block sequences.

For example, for G = Sym(4) and type (2, 2, 3, 2), the command line can look as follows:

LogSig.exe -crf -g:Sym4 -bstype:2,2,3,2

Interestingly, generating random covers with high probability is a lot easier, see
[Sva07].

6.3. Amalgamated Transversal Logarithmic Signatures (Abelian
Only)

A generation algorithm described in [Bla09] is the following.

Start with an exact transversal logarithmic signature α of an abelian group G and
perform any of the following transformations a finite number of times:

• Permute the blocks of α.

6.4. Aperiodic Logarithmic Signatures (Abelian Only) 81

• Permute the elements within a block of α.

• Replace a block A by a translate A+ g for some g ∈ G.

• Amalgamate: replace two blocks Ai and Aj by one (larger) block

Ai +Aj = {g + h | g ∈ Ai, h ∈ Aj}.

As G is abelian, each of these transformations results in another logarithmic signature for
G, and thus the final output also is a logarithmic signature for G.

The set of logarithmic signatures generated by this algorithm is denoted by AT (G)
(for Amalgamated Transversal).

In Section 8.9.1 we show that amalgamated transversal logarithmic signatures for
G = Z

p
k1
1

⊕ Z
p
k2
2

⊕ . . .⊕ Z
pkmm

(with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m) are tame.

6.4. Aperiodic Logarithmic Signatures (Abelian Only)

Aperiodic logarithmic signatures are interesting, because periodicity often allows efficient
factorization algorithms (e.g. see Algorithm 8.23).

6.4.1. p-Groups

We cite the following three lemmas from [Sza04].

Lemma 6.1. Let H be a subgroup of the finite abelian group G, where |G : H| = p is
an odd prime. If (q1, . . . , qn) is not a periodicity forcing factorization type for H, then
(q1, . . . , qn, p) and (q1, . . . , qi−1, qip, qi+1, . . . , qn) are not periodicity forcing factorization
types for G, for each i, 1 ≤ i ≤ n.

Proof. See [Sza04], Lemma 2.3.1.

Lemma 6.2. Let H be a subgroup of the finite cyclic group G, where |G : H| = t ≥ 2.
If (r1, . . . , rn) is not a periodicity forcing factorization type for H, then (r1, . . . , rn, t) and
(r1, . . . , ri−1, rit, ri+1, . . . , rn) are not periodicity forcing factorization types for G for each
i, 1 ≤ i ≤ n.

Proof. See [Sza04], Lemma 6.3.1.

Lemma 6.3. Let G be a finite abelian 2-group which is not elementary abelian and let
H be a subgroup of G for which |G : H| = 2. If (q1, . . . , qn) is not a periodicity forcing
factorization type for H, then (q1, . . . , qn, 2) and (q1, . . . , qi−1, 2qi, qi+1, . . . , qn) are not
periodicity forcing factorization types for G, for each i, 1 ≤ i ≤ n.

Proof. See [Sza04], Lemma 7.3.2.

82 6. Generating Logarithmic Signatures

In the proofs, aperiodic factorizations for G are constructed explicitly from aperiodic
factorizations of H.

We want to quickly outline the main idea used in the first construction. Let (A1, . . . , An)
be an aperiodic factorization of H in G. The factor group G/H is cyclic. Choose a
generator element b (such that 〈b+H〉 = G/H) and let B := {0, b, 2b, . . . , (p− 1)b}. If B
is not a subgroup, we are done: (A1, . . . , An, B) is an aperiodic factorization for G. If B is
a subgroup, choose any d ∈ H \ {0} and replace (p− 1)b by (p− 1)b+ d in B (i.e. perform
a selective shift on (p− 1)b by d), then (A1, . . . , An, B) is an aperiodic factorization for G.

It can be shown that merging the new block with an existing one does not result in a
periodic block.

These lemmas can of course be used to design algorithms for generating aperiodic
logarithmic signatures.

We present one special generation algorithm. Given p ∈ P≥3 and 4 ≤ n ∈ N, the
algorithm outputs an abelian p-group G of order |G| = pn and an aperiodic logarithmic
signature for G. The output group G has the property that its component orders are
random; especially G will usually be far away from being cyclic or elementary abelian. In
the output logarithmic signature, blocks are of size p2 at most.

Algorithm 6.4. Let p ∈ P≥3 and 4 ≤ n ∈ N.

Function GenAperiodic(Int p, Int n) : Group × LogSig

1. Set C ← new List<Int>(). C.Append(p, p, p, p). Set c← 4.

2. Set α ← aperiodic logarithmic signature for Z4
p, where α consists of two blocks of

size p2 each.

3. For r ← 5 to n:

a) Let y be a random number out of {1, 2, . . . , c+ 1}.

b) If y ≤ c:

i. Set C[y]← C[y] · p.

ii. Replace every element (g1, . . . , gc) in α by (g1, . . . , gy−1, gy ·p, gy+1, . . . , gc).

else (i.e. if y = c+ 1):

i. C.Append(p).

ii. Replace every element (g1, . . . , gc) in α by (g1, . . . , gc, 0).

iii. Set c← c+ 1.

c) Generate c random numbers (b1, . . . , bc) with each bi ∈ {0, 1, . . . , C[i]− 1}.

d) If by ≡ 0 (mod p): set by ← by + random number out of {1, 2, . . . , p− 1}.

e) Let b← (b1, . . . , bc) and set B ← {0, b, 2b, . . . , (p− 1)b}.

f) While B ≤ G:

6.4. Aperiodic Logarithmic Signatures (Abelian Only) 83

i. Generate c random numbers (d1, . . . , dc) with each di ∈ {0, 1, . . . , C[i]−1}.
Set dy ← dy · p mod C[y]. Let d← (d1, . . . , dc).

ii. Set B ← {0, b, 2b, . . . , (p− 2)b, (p− 1)b+ d}.
g) Let l be the number of blocks in α and set I ← {i | 1 ≤ i ≤ l, |α[i]| < p2}.
h) Pick a random s ∈ R with 0 ≤ s ≤ 1. Define η := 2

3 .

i) If I = ∅ or s < η: append B to α,
else: randomly pick an x ∈ I and replace block α[x] by {a+b | a ∈ α[x], b ∈ B}.

4. Let G be the abelian group with t(G) = C. Return (G,α).

Comments.

• The initial aperiodic logarithmic signature α for Z4
p can be generated using brute-

force or using the construction in Lemma 2.3.3 of [Sza04] (which is more efficient
than brute-force).

• η controls the probability by which a new block (of size p) is added to α instead
of extending an existing block (to size p2). The larger η, the higher the probability
that a new block is added.

Implementation. We have implemented this algorithm.

In order to generate a group and an aperiodic logarithmic signature for it, invoke the
LogSig utility (Chapter 12) with the command line option “-genaperiodic” and the
parameters “-p:” and “-n:”.

For example, LogSig.exe -genaperiodic -p:3 -n:10 can output G = Z3 ⊕ Z27 ⊕ Z9 ⊕
Z3 ⊕ Z27 and α =

(0, 0, 0, 0, 0)
(0, 0, 3, 0, 0)
(0, 0, 6, 0, 0)
(1, 0, 0, 0, 0)
(1, 0, 3, 1, 0)
(1, 0, 6, 2, 0)
(2, 0, 0, 0, 0)
(2, 0, 3, 1, 0)
(2, 0, 6, 2, 0)

(0, 0, 0, 0, 0)
(0, 0, 0, 1, 0)
(0, 0, 0, 2, 0)
(0, 9, 0, 0, 0)
(0, 9, 6, 1, 0)
(0, 9, 3, 2, 0)
(0, 18, 0, 0, 0)
(0, 18, 6, 1, 0)
(0, 18, 3, 2, 0)

(0, 0, 0, 0, 0)
(2, 3, 6, 1, 9)
(1, 6, 3, 2, 18)
(2, 12, 0, 2, 0)
(1, 15, 6, 0, 9)
(0, 18, 3, 1, 18)
(1, 24, 0, 1, 0)
(0, 0, 6, 2, 9)
(2, 3, 3, 0, 18)

(0, 0, 0, 0, 0)
(0, 8, 8, 2, 15)
(0, 16, 7, 1, 3)
(2, 6, 8, 2, 0)

(2, 14, 7, 1, 15)
(2, 22, 6, 0, 3)
(1, 12, 7, 1, 0)
(1, 20, 6, 0, 15)
(1, 1, 5, 2, 3)

(0, 0, 0, 0, 0)
(1, 24, 6, 0, 8)
(2, 21, 3, 0, 16)
(0, 8, 4, 1, 9)
(1, 5, 1, 1, 17)
(2, 2, 7, 1, 25)
(0, 16, 8, 2, 18)
(1, 13, 5, 2, 26)
(2, 10, 2, 2, 7)

.

Tameness. In Section 8.7, we will see that all logarithmic signatures generated by Algo-
rithm 6.4 are tame.

6.4.2. Decomposition and Reunion

The following three algorithms (6.5, 6.6 and 6.7) have been presented in [Bau12].

84 6. Generating Logarithmic Signatures

Algorithm 6.5. [Bau12] Let G be an abelian group, U ≤ G, R a transversal of U in G,
δ := (D1, . . . , Ds) with Di := {di,1, . . . , di,ri} ⊆ R (i.e. t(δ) = (r1, . . . , rs)), D1 + . . .+Ds =
R and |D1| · · · |Ds| = |R|. Furthermore, we need logarithmic signatures

α(j1,...,js) :=
(
A

(j1)
1 , . . . , A(js)

s

)
∈ Λ(U)

for all (j1, . . . , js) ∈ {1, . . . , r1} × . . .× {1, . . . , rs}.
Then β := (B1, . . . , Bs) with

B1 := (d1,1 +A
(1)
1) ∪ . . . ∪ (d1,r1 +A

(r1)
1),

...

Bs := (ds,1 +A(1)
s) ∪ . . . ∪ (ds,rs +A(rs)

s)

is a logarithmic signature for G.

In [Bau12], conditions for the blocks A
(j)
i are given, such that β is aperiodic.

Note that the algorithm also works for non-abelian groups where U ⊆ Z(G) or R ⊆
Z(G).

Algorithm 6.6. [Bau12] Let G = Zn2 . Decompose G as

G = U1 ⊕ . . .⊕ Us︸ ︷︷ ︸
U

⊕D1 ⊕ . . .⊕Ds︸ ︷︷ ︸
R

,

where U1 ⊕D1 is a small group for which an aperiodic logarithmic signature β′ is known.
Furthermore, assume that 2 ≤ |Di| <

∏i−1
j=1 |Uj | for i ∈ {2, . . . , s}.

Let ri := |Di|. For every i ∈ {2, . . . , s}, choose a subset Ki := {k(1)
i , . . . , k

(ri)
i } ⊆

(U1 ⊕ . . .⊕ Ui−1) \ {(0, . . . , 0)}.
In order to obtain an aperiodic logarithmic signature β := (β′, B2, . . . , Bs) ∈ Λ(G), use

Algorithm 6.5 with δ := (D2, . . . , Ds) and

A
(j)
i := {(0, . . . , 0)} ∪

{
k

(j)
i + u | u ∈ Ui \ {(0, . . . , 0)}

}
for i ∈ {2, . . . , s} and j ∈ {1, . . . , ri}.

Algorithm 6.7. [Bau12] Let G = Zn2 . Use Algorithm 6.6 to generate an aperiodic loga-
rithmic signature β ∈ Λ(G). Subsequently, apply a finite number of the transformations
from Section 6.3 (i.e. element shuffles, block shuffles, block translations, block fusions/a-
malgamations) onto β.

The idea of applying these transformations is to hide the blocks of β′ (which generate
U1 ⊕D1), because finding these blocks results in the logarithmic signature being tame.

Tameness. As we will show in Theorem 8.39, all logarithmic signatures generated
by Algorithm 6.7 are tame (because the transformations are insufficient to hide β′).

6.5. LS-Gen 85

6.4.3. Strongly Aperiodic Logarithmic Signatures

The following algorithm for generating strongly aperiodic logarithmic signatures has been
proposed in [Sta13].

Algorithm 6.8. [Sta13] Let G = Z3s
p with p ∈ P, s ≥ 2. Let v1, . . . , v3s be a generator

set for G.
Apply Algorithm 6.5 with

U := 〈v1, . . . , v2s〉 ,
Di := {(0, . . . , 0), v2s+i, 2v2s+i, . . . , (p− 1)v2s+i} for i ∈ {1, . . . , s} ,

A
(1)
1 := 〈v1, v2〉 ,

A
(j)
1 :=

〈
v1 + v2 + (j − 1) ·

s∑
l=2

v2l, u · v2 + (j − 1) ·
s∑
l=2

v2l−1

〉
for j ∈ {2, . . . , p} ,

A
(j)
i := 〈v2i−1 + (j − 1)v1, v2i + (j − 1)v2〉 for i ∈ {2, . . . , s} , j ∈ {1, . . . , p} ,

where u ∈ Zp \ {0} is chosen such that the polynomial x2 − x − u ∈ Zp[x] has no root in
Zp.

The resulting logarithmic signature β (of type t(β) = (p3, . . . , p3)) is aperiodic, and
furthermore fusing any s − 1 or less blocks of β results in another aperiodic logarithmic
signature (i.e. β is strongly aperiodic).

In [Sta13], the authors moreover present a similar algorithm generating strongly aperiodic
logarithmic signatures of type (23, 22, . . . , 22) for Z2s−1

2 .

Tameness. In Section 8.9.3 we show that all logarithmic signatures generated by
Algorithm 6.8 (and the ones for Z2s−1

2) are tame.

6.5. LS-Gen

We now propose and analyze a new algorithm called LS-Gen. LS-Gen works for both
abelian and non-abelian groups. For abelian groups, LS-Gen typically generates more
logarithmic signatures than the algorithm for generating amalgamated logarithmic
signatures (Section 6.3).

Our algorithm starts with a fixed tame logarithmic signature α of a group G and
generates another logarithmic signature β. Without knowing how β was generated, β
might be wild (depending on various things like the group, block sizes of α, etc.).

In order to generate β, various transformations are applied to the logarithmic signa-
ture. In Section 6.5.3 we describe these transformations in detail (their input, output,
properties, etc.). From the transformations that are applicable for G, LS-Gen randomly
selects one and applies it to the current logarithmic signature. This is repeated a few
times (called rounds).

86 6. Generating Logarithmic Signatures

Not all of the transformations might be applicable to a given group. An example
is the transformation permuting the order of a range of blocks in the logarithmic
signature. This operation might always be possible (e.g. when G is abelian) or sometimes
only (e.g. when G = D2n). Deciding whether blocks can be permuted freely can be hard
in general (without knowing anything about the structure of the group). However, the
implementation of the group can often easily decide this.

Therefore, we leave such tests/operations up to the implementation of the group, and
call them group implementation capabilities. Such capabilities are described in Section
6.5.1.

LS-Gen is designed to be extensible. Transformations, input/output relations and
group implementation capabilities can be added easily. When adding new transforma-
tions, security usually can only increase, not decrease (the previous transformations can
still be selected, i.e. the statements in Section 6.5.5 are still valid).

6.5.1. Group Implementation Capabilities

Group implementation capabilities are tests/operations that the implementation of a
group supports. A group implementation is not required to support all of the capabilities
listed below, but the more capabilities it supports, the more transformations LS-Gen can
use (and thus possibly generate stronger logarithmic signatures).

The ability to multiply elements is not considered to be a group implementation
capability. All implementations must support this operation.

With this and G being finite, there also automatically is an efficient algorithm available
for inverting elements: the inverse of an arbitrary g ∈ G is the element g|G|−1, which can
be computed efficiently in time polynomial in log2 |G| by a square-and-multiply (binary
exponentiation) algorithm. If the group implementation does not provide a custom
method for inverting elements, such an algorithm can be used. Of course, usually a group
implementation will override this and provide an even more efficient element inversion
method.

In object-oriented programming languages, group implementation capabilities can
be realized using interfaces. A group would be realized as a class, and it supports a group
implementation capability if it implements the corresponding interface. This is how we
have implemented it in our LogSig utility (see Chapter 12); all the group implementation
capability interfaces can be found in the namespace LogSig.DM.LsGen.GroupImplCaps.

In non-object-oriented programming languages, group implementation capabilities can
be realized using a system based on function queries, e.g. similar to the OpenGL extension
system (using wglGetProcAddress or glXGetProcAddress to obtain extension function
pointers).

In the list of group implementation capabilities below, “Interface in LogSig” speci-

6.5. LS-Gen 87

fies the name of the interface by which we have realized this capability definition in
LogSig.

Note that a “block sequence” is not necessarily a part of the current logarithmic
signature, but may be any sequence of blocks containing group elements.

Group implementation capabilities:

• Name: FacPermShuffleTest.
Input: block sequence.
Output: boolean value.
Interface in LogSig: IFacPermShuffleTest.
Description: Test whether every block shuffle of the input block sequence is
factorization-permuting (see Section 5.1.2). This test is allowed to be one-sided:
when it returns true, every block shuffle is guaranteed to be factorization-permuting,
however when it returns false, a block shuffle may or may not be factorization-
permuting.

Examples: If the group is abelian, the test can simply return true (without even look-
ing at the input blocks). In the case of a dihedral group, the test could check whether
the blocks contain rotations only (this would be a one-sided test as there could be
more blocks that are factorization-permuting when being shuffled, e.g.

(
id
σ4

)(
id
τ

)
in

D2·8).

• Name: NormalChainTest.
Input: block sequence.
Output: boolean value.
Interface in LogSig: INormalChainTest.
Description: Test whether the input block sequence A1, . . . , Ak fulfills all of the
following properties: A1 E G,A1A2 E G, . . . , A1 · · ·Ak E G. This test is allowed
to be one-sided: when it returns true, the block sequence fulfills all of the above
properties, however when it returns false, the block sequence may or may not fulfill
the properties.

• Name: NormalChainFac.
Input: block sequence, group element g.
Output: integer array.
Interface in LogSig: INormalChainFac.
Description: If NormalChainTest indicates that a block sequence has the specified
structure, then the NormalChainFac capability allows factoring elements in the block
sequence: it returns the factorization indices of g with respect to the input block
sequence.

6.5.2. Transformation Input/Output Relations

Transformation input/output relations specify the connection between element factoriza-
tions with respect to the input and output logarithmic signatures of a transformation.

88 6. Generating Logarithmic Signatures

Usually a transformation is able to update element factorizations directly: when a fac-
torization of an element g ∈ G is passed together with the respective logarithmic signature
to the transformation, the transformation on the one hand outputs the transformed log-
arithmic signature and on the other hand the updated factorization of g, i.e. an array of
indices such that the product of the element at these positions in the new logarithmic
signatures again is g. However, this is not possible with all transformations. For example,
consider a left translation of a logarithmic signature, then the factorization of a g ∈ G
cannot be derived easily from the input logarithmic signature. This is where transforma-
tion input/output relations come into play. In the left translation example, the relation
would be simple: in order to factor an element g ∈ G in the new logarithmic signature, we
can factor t−1g (where t is the left translation element) in the input logarithmic signature
and select the same indices in the new logarithmic signature to obtain the factorization of
g.

When LS-Gen wants to factor an element g ∈ G, it can undo all the transformation
input/output relations from the end up to the start in order to compute the element
that needs to be factored in the starting, tame logarithmic signature (such that after the
generation process we end up with the factorization of g in the final logarithmic signature).

In our LogSig utility, all transformation input/output relations can be found in
the namespace LogSig.DM.LsGen.TransformationIORels.

Transformation input/output relations:

• Name: LeftRightTranslationRel.
Impl. in LogSig: LeftRightTranslationRel.
Description: The input/output elements are related by left and right translations.
The object representing this relation needs to save two group elements l and r that
represent the left/right translations. For an input element g ∈ G, the transformation
outputs the factorization of lgr. Conversely, if we want the factorization of an
element h ∈ G in the output logarithmic signature, we need to factor l−1hr−1 in the
input logarithmic signature.

Merging. Multiple consecutive transformation input/output relations (especially ones
of the same type) may be merged to a single one. Merging transformation input/output
relations can save space.

LogSig merges consecutive LeftRightTranslationRels to a single one (by multiplying
the translation elements).

6.5.3. Transformations

Every transformation gets a structure containing the following objects as parameter:

• Group implementation object. Using this object, group elements may be mul-
tiplied, inverted, etc.

6.5. LS-Gen 89

• CSPRNG instance. An instance of a cryptographically secure pseudo-random
number generator that the transformation should use when random numbers are
required.

• Logarithmic signature. The current logarithmic signature. A transformation
may modify this object. On input and output, the logarithmic signature must be
canonical (i.e. id is the first element in every block).

• List of transformation input/output relations. If the current transformation
requires a relation, it is supposed to add the relation to the end of this list.

• Factorization (array of indices). This array is optional from a caller point of
view. If no array is specified, the transformation can ignore this parameter. If an
array is specified (corresponding to the factorization of an element g in the input
logarithmic signature), the transformation must update the indices, i.e. after the
transformation multiplying the elements at these indices in the output logarithmic
signature must again result in g or in an element related to g by a transformation
input/output relation that the transformation added to the list of relations.

In the LogSig utility, an implementation of this structure is the class
TransformationParams in the LogSig.DM.LsGen namespace.

Saving the list of transformation input/output relations is optional (the list can be
regenerated when knowing the CSPRNG seed), but searching for factorizations of
elements is faster when the list is known at the start. If the list is present (for all
transformations), the relations can be undone from the end to the start in order to obtain
the element that we need to start with, and then apply all the transformations in order
to end up with a factorization of the element that we originally were looking for. If the
relations list is not present, LS-Gen needs to be run once in order to generate the relations
list and then again to compute the factorization like above, i.e. two runs of LS-Gen are
required in this case.

In the following, we list all transformations supported by LS-Gen. Some transfor-
mations require group implementation capabilities; if the group implementation does not
support the required capability, the transformation will not be used.

In the list below, “Impl. in LogSig” specifies the name of the class by which the
transformation is implemented in our LogSig utility. All transformations can be found
in the namespace LogSig.DM.LsGen.Transformations.

If no group implementation capabilities are specified, then the transformation is al-
ways applicable (i.e. for every group). Only the group implementation capabilities in
Section 6.5.1 are listed; standard operations like multiplying/inverting elements do not
count.

90 6. Generating Logarithmic Signatures

If no transformation input/output relations are specified, then the transformation
leaves the relations list in the parameters unmodified and updates the factorization indices
array (if passed by the caller) appropriately, such that the factorization subsequently
specifies the same element as on input.

Transformations:

• Block substitution.
Impl. in LogSig: LsgtBlockSubst.
Description: Performs block substitutions. See Section 5.1.8 for properties and
implementation details. The transformation performs n block substitutions at ran-
domly generated positions (where n is number of blocks of α).

• TSN transformation.
Trf. I/O rel.: LeftRightTranslationRel.
Impl. in LogSig: LsgtTsn.
Description: Performs a TSN transformation as specified in Section 5.1.13, either
from the left to the right or from the right to the left (based on a bit drawn from
the CSPRNG). The I/O relation object stores the left/right translation and the
inverse of the element in the last/first block that is removed at the very end by the
normalization (if the last/first block contains an element h, removing the last/first
block is equivalent to right-/left-translating the logarithmic signature by h−1).

• Block shuffle.
Req. group impl. caps.: FacPermShuffleTest.
Impl. in LogSig: LsgtBlockShuffle.
Description: Select a random block. Then iteratively try to extend the selection
to the left and to the right as long as the FacPermShuffleTest returns true, i.e.
as long as the selected blocks are factorization-permuting. When the selection can-
not be extended anymore (i.e. when reaching the leftmost/rightmost block or the
FacPermShuffleTest returning false when trying to include one more block), per-
mute the selected blocks randomly. If a factorization array is specified by the caller,
permute the factorization indices accordingly (using the same permutation that was
used to permute the blocks of the logarithmic signature); this is possible, because
the block sequence being permuted is guaranteed to be factorization-permuting.

• Normal chain selective shifts.
Req. group impl. caps.: NormalChainTest, NormalChainFac.
Impl. in LogSig: LsgtNormalSelShifts.
Description: This transformation first searches for a chain of normal subgroups and
then performs selective shifts (see Section 5.1.9), i.e. it multiplies chain elements
onto elements in other blocks.

In detail: first generate a random permutation π ∈ Sym(n) (where n is the number
of blocks in the current logarithmic signature). While iterating i from 1 to n, test
whether the block Aπ(i) is a normal subgroup using the NormalChainTest group

6.5. LS-Gen 91

implementation capability. If it is a normal subgroup, add π(i) to a list L (which
initially is empty). Then iterate i from 1 to n and for all i /∈ L test whether the block
sequence (AL[0], Aπ(i)) is a normal subgroup chain (using NormalChainTest again).
If it is, add π(i) to L. Continue like this until NormalChainTest returns false for all
remaining blocks. Now, generate a random number 0 ≤ d < |L| and remove the last
d blocks from L. Multiply randomly selected elements from the remaining chain L
onto elements in other blocks (in order to select an element randomly in the chain,
generate a random index for each chain block and multiply the elements at these
indices).

If the caller has specified an element factorization array and a chain element is mul-
tiplied onto an element being part of the factorization, then update the chain factor-
ization elements using NormalChainFac: when the factorization indices in the chain
blocks currently result in a product g and a chain element h is multiplied onto an el-
ement outside the chain blocks that is part of the factorization, let NormalChainFac
compute the factorization indices of gh−1 and copy these into the element factoriza-
tion array.

6.5.4. Algorithm

Let r ∈ N a security level parameter. r specifies how many transformations are applied,
similar to the number of rounds in an iterated block cipher. Depending on G, all logarith-
mic signatures might be tame, and thus the algorithm of course also only can create tame
ones (i.e. increasing the transformations number r does not increase security).

LS-Gen requires random numbers, thus a CSPRNG s must be supplied. The seed of
the CSPRNG corresponds to the private key of the system. Knowing the seed, the way
how the final logarithmic signature was generated is fully defined.

The group element g and transformation input/output relations list l in the parameters
are optional. However, when a g is specified, the algorithm also expects l to be present
and valid. Thus, if the caller does not know l, he first has to run LS-Gen once without a
g in order to obtain l and subsequently run it again with g and l in the parameters.

Function LS-Gen(Group G, UInt r, CSPRNG s, GroupElement g, List<TrfIORel>
l) : LogSig × List<UInt>

1. Prepare the transformations parameter structure S as described in Section 6.5.3,
using the function parameters of LS-Gen.

The logarithmic signature in S is set to a fixed, tame logarithmic signature of G
(provided by the implementation of G), in which factorizations can be computed
easily (also done by the implementation of G).

If g 6= null :

• Undo the transformation input/output relations in l from the end to the be-
ginning (starting at the end with g) in order to obtain an element g′. Set the

92 6. Generating Logarithmic Signatures

factorization indices array in S to the factorization of g′ in the initial tame
logarithmic signature.

2. Repeat r times:

• Randomly choose one of the applicable transformations (i.e. the ones for which
all required group implementation capabilities are available) and execute it on
S.

3. Copy the transformation input/output relations from the list in S to l.

4. If g 6= null : return (S.LogSig, S.Factorization),
else: return (S.LogSig, null).

6.5.5. Analysis

Round count r. Depending on G, a rather small r might suffice or a large r might be
required to possibly achieve reasonable security.

CSPRNG s. The PRNG s should be cryptographically secure.

• s should have a large internal state/seed. If it has a small internal state/seed only
and r is known or small, LS-Gen can produce only a small number of different
logarithmic signatures (polynomial in the input length). In such a case all generated
logarithmic signatures are tame, because an attacker can regenerate them all.

• LS-Gen is extensible and should be secure even when more transformations are
added. Such transformations may leak information on the random numbers gener-
ated by s, which could be a problem, if s would not be cryptographically secure.

For example, consider a transformation that generates 1 random bit for each block
of the current logarithmic signature and sorts the elements within each block in
ascending or descending order, depending on the random bit. If the current loga-
rithmic signature has n blocks and this transformation is applied at the very end, n
consecutive output bits of s are leaked. If an attacker can use these bits to strongly
limit the number of possible seeds or even reconstruct the seed of s (e.g. for LFSRs
of length n with fixed coefficients this is possible easily), the logarithmic signature
is tame, because the attacker can then regenerate the logarithmic signature using
LS-Gen.

Number of adjacent blocks. In the block substitution transformation it might suffice
to always replace only two adjacent blocks by equivalent ones. For example with type
(2, 2, . . . , 2) signatures of D2·2n this is the case, but more blocks might be required for
other groups.

Transformations are not expressible by each other. Block substitutions and
TSN transformations do not require any group implementation capabilities, i.e. they are

6.5. LS-Gen 93

always applicable (independent of the group), thus especially for these two their interplay
is interesting.

A block substitution cannot be expressed by a series of TSN transformations. Con-
versely, a TSN transformation cannot be expressed by a series of block substitutions.

We show this with two simple examples.

Let G = Z2
2 and α =

((0,0)
(1,0)

)((0,0)
(0,1)

)
∈ Λ(G). One possible block substitution is swapping

the two blocks: α′ :=
((0,0)

(0,1)

)((0,0)
(1,0)

)
is indeed a logarithmic signature for G, too. However,

α′ cannot be generated from α using a TSN transformation, because α is invariant under
TSN transformations by Corollary 5.17.

Let G = Z8 and α =
(

0
1

)(
0
2

)(
0
4

)
. With a TSN transformation, we can achieve that one

block contains the element 7: skip the left translation, swap the two elements within the
first block, normalize and discard the right translation; we obtain: α′ :=

(
0
7

)(
0
2

)(
0
4

)
. It

is impossible to generate α′ using block transformations where only two adjacent blocks
are substituted (obviously if we would allow three blocks being substituted, α′ could be
generated). In order to see this, let us have a look at the possible changes that a block
substitution can do. First of all, it can freely permute blocks (G is abelian) and elements
within blocks. It can add the 4 to 1 and 2, because {0, 4} is a subgroup of G. 1 and 2
cannot be added to any other value, because this would violate the structural observation
for Z2n in Lemma 8.4. So, the only elements that we will see after block substitutions
are 0, 1, 2, 4, 5 and 6. 3 and 7 cannot be generated, however α′ contains a 7, thus a TSN
transformation cannot be expressed using block substitutions.

A larger set than AT (G) is generated for most abelian groups. Let G be
an abelian group. LS-Gen typically generates a proper superset of AT (G).

First of all, observe that all transformations in Section 6.3 can be expressed using the
transformations of LS-Gen. Permuting blocks and elements within blocks can be realized
using block substitutions, a translation can be realized using a TSN transformation, and
blocks can be amalgamated using block substitutions. Thus, LS-Gen can generate all
logarithmic signatures in AT (G).

To see why typically a proper superset is generated, we give an example of a logarithmic
signature that LS-Gen can generate, but is not an element of AT (G). Let G = Z4

3 and
α = (A1, A2) with

A1 :=

(0, 0, 0, 0)
(0, 0, 1, 1)
(0, 0, 2, 2)
(1, 0, 0, 0)
(1, 0, 1, 0)
(1, 0, 2, 0)
(2, 0, 0, 0)
(2, 0, 1, 0)
(2, 0, 2, 0)

, A2 :=

(0, 0, 0, 0)
(0, 0, 2, 1)
(0, 0, 1, 2)
(0, 1, 0, 0)
(0, 1, 0, 1)
(0, 1, 0, 2)
(0, 2, 0, 0)
(0, 2, 0, 1)
(0, 2, 0, 2)

.

94 6. Generating Logarithmic Signatures

α is an aperiodic logarithmic signature for G. Obviously, α can be generated by LS-
Gen (start with an arbitrary logarithmic signature of type (3, 3, 3, 3) and apply block
substitutions: amalgamate the left two blocks, amalgamate the right two blocks, and
replace the remaining two blocks by the blocks above), but α /∈ AT (G), because all
logarithmic signatures in AT (G) have a periodic block (as proven in Section 8.9.1).

95

7. Factoring in General

In Chapter 7, we have a look at factorization approaches for arbitrary groups, in a rather
abstract way.

Our contributions. We show that regarding only canonical block sequences is
not a real restriction. We consider using homomorphisms, both for logarithmic signatures
and multiple factorizations. We furthermore consider moving into factor groups via
normal subgroup blocks. A demonstration with direct products shows that a simple
concatenation approach does not work.

7.1. Canonical Block Sequences

For many factorization algorithms we assume that the input block sequence is canonical.
This is not really a restriction, as the following proposition shows.

Proposition 7.1. Let G be a group and α ∈ Ξs(G). Let β ∈ Ξs(G) be the block sequence
obtained by normalizing α, extracting the right translation and discarding it (like in Section
5.1.13). Note that β is canonical.

If β is tame, then α is tame, too.

Proof. Let g ∈ G be an element to be factored with respect to α, and β′ ∈ Ξs+1(G) the
block sequence obtained by normalizing α and extracting the right translation (to a new
block of size 1). Then β = (β′[1], β′[2], . . . , β′[s]). Let r := β′[s+ 1][1].

Compute the factorization index vector (i1, . . . , is) ∈ Ns of g·r−1 with respect to β (which
is possible efficiently, due to β being tame), such that β[1][i1] · β[2][i2] · · ·β[s][is] = g · r−1.
Then (i1, . . . , is) also is a factorization index vector of g with respect to α:

β[1][i1] · β[2][i2] · · ·β[s][is] = g · r−1

⇔ β[1][i1] · β[2][i2] · · ·β[s][is] · r = g · r−1 · r
⇔ β′[1][i1] · β′[2][i2] · · ·β′[s][is] · β′[s+ 1][1] = g
∗⇔ α[1][i1] · α[2][i2] · · ·α[s][is] = g.

(*) A normalization is a sandwich, and sandwiching does not change factorization index
vectors.

Example 7.2. Let G = D2·33 , α =

7τ
15
13

 4τ
22τ
10

(2
1τ

) 2
14
9τ

 ∈ Λ(G) and g = 11τ .

96 7. Factoring in General

First, we normalize α, extract the right translation and discard it:

α =

7τ
15
13

 4τ
22τ
10

(2
1τ

) 2
14
9τ

 id
22τ
20τ

 3
12
24τ

(2
1τ

) 2
14
9τ

 id
22τ
20τ

id
9
τ

(5
4τ

) 2
14
9τ

 id
22τ
20τ

id
9
τ

(id
9τ

) 7
19
14τ

 id
22τ
20τ

id
9
τ

(id
9τ

) id
12
21τ

 (7) = β′,

β =

 id
22τ
20τ

id
9
τ

(id
9τ

) id
12
21τ

 ,

r = 7.

We have g · r−1 = 11τ · (−7) = 11τ · 20 = 18τ . The factorization of 18τ with respect to β
is

β =

 id

22τ
20τ

 id
9

τ

(id
9τ

) id

12
21τ

 .

By selecting the elements at the same indices in α, we obtain:

α =

 7τ

15
13

 4τ
22τ

10

(2
1τ

) 2

14
9τ

 .

We get 7τ · 22τ · 1τ · 2 = 11τ = g, so this indeed is the factorization of g with respect to α.

7.2. Homomorphisms and Multiple Factorizations

Theorem 7.3. Let G,H be groups, ϕ : G → H a surjective group homomorphism, k :=
|ker(ϕ)|, and α = (A1, . . . , As) an l-factorization of G. Then ϕ(α) is a (k · l)-factorization
of H (i.e. every element of H can be expressed in exactly k · l different ways with respect
to the block sequence ϕ(α)).

7.3. Homomorphisms and Normal Subgroup Blocks 97

Proof. As ϕ is a surjective group homomorphism, we have G/ ker(ϕ) ∼= H by the iso-
morphism theorem. Thus every h ∈ H has exactly k preimages under ϕ: let h′ be any
preimage of h under ϕ (i.e. ϕ(h′) = h), then the set of all preimages of h under ϕ is
ϕ−1(h) = {z · h′ | z ∈ ker(ϕ)}.

Let (i1, . . . , is) be a factorization index vector of an element g ∈ G, i.e. g =
A1[i1] · · ·As[is]. Then ϕ(A1[i1]) · · ·ϕ(As[is]) is a factorization of ϕ(g) in ϕ(α), because
ϕ(A1[i1]) · · ·ϕ(As[is]) = ϕ(A1[i1] · · ·As[is]) = ϕ(g). As α is an l-factorization of G, all
of the k elements in ϕ−1(h) have l different factorizations in α; these correspond to the
k · l different factorizations of h with respect to ϕ(α). So, ϕ(α) is a (k · l)-factorization of
H.

Theorem 7.4. Let G,H be groups, ϕ : G → H a surjective group homomorphism, k :=
|ker(ϕ)|, and α an l-factorization of G. If k and l are polynomial in `(α) and if we can
efficiently factor elements in the (k · l)-factorization ϕ(α) of H, then we can efficiently
factor elements with respect to α.

Proof. Suppose we want to factor a g ∈ G. Apply ϕ to the elements in the blocks of α
to obtain ϕ(α). Compute the k · l different factorizations of the element ϕ(g) in ϕ(α).
Selecting the same indices in α, these k · l different factorizations generate the elements
{z · g | z ∈ ker(ϕ)} (each element of this set is generated exactly l times). As id ∈ ker(ϕ),
l of these k · l different factorizations generate g.

Remark 7.5. Applying Theorem 7.4 recursively does not result in an efficient factorization
algorithm (even when the homomorphism kernels on each recursion level are of fixed size),
because l grows exponentially.

For example, let G = Z2n and α ∈ Λ(G) canonical of type (2, 2, . . . , 2). By Rédei’s
theorem (Theorem 8.1), α contains a subgroup block A. The canonical homomorphism
ϕ : G→ G/A : g 7→ g+A has a kernel of size 2, G/A ∼= Z2n−1 and ϕ(α) is a 2-factorization
of G/A. Repeating this, we obtain a 4-factorization of Z2n−2 (by Theorem 8.29 there must
be a subgroup block in the multiple factorization), then an 8-factorization of Z2n−3 , and
so on. We end up with an 2n−1-factorization of Z2. As this is exponential in n, computing
these 2n−1 factorizations and passing them up to the recursion level above cannot be done
efficiently.

7.3. Homomorphisms and Normal Subgroup Blocks

Theorem 7.6. Let G be a group and α = (A1, . . . , As) ∈ Λ(G) with at least one block Ai
being a normal subgroup in G. Define α′ by removing block Ai from α and replacing all
elements g by g ·Ai in the remaining blocks, then α′ ∈ Λ(G/Ai).

If factorizations in α′ can be computed efficiently, then factorizations in α can be com-
puted efficiently, too.

Proof. Write N := Ai and let ϕ : G → G/N : g 7→ gN be the canonical group homo-
morphism (projection) of G onto G/N . By Theorem 7.3, the block sequence ϕ(α) is an

98 7. Factoring in General

|N |-factorization of G/N (i.e. every element in G/N is expressible by exactly |N | different
factorizations). α′ is the block sequence obtained from ϕ(α) by removing the ith block.
Observe that E(ϕ(Ai)) = {id} (as all elements are in N), so α′ is a logarithmic signature
for G/N .

In order to factor an element x ∈ G, first factor xN in α′ (by hypothesis we can factorize
in α′ in polynomial time). Select the corresponding elements in α (the elements at the
same positions as in α′ except Ai). Now, compute the product (in G) of the elements
selected in the blocks A1, . . . , Ai−1 and call it yl. Analogously, compute the product (in
G) of the elements selected in the blocks Ai+1, . . . , As and call it yr. There is exactly one
element a ∈ Ai, such that yl · a · yr = x, which completes the factorization of x that we
were looking for.

Remark 7.7. Especially for non-abelian groups, this approach usually does not directly
lead to a factorization algorithm, because encountering a normal subgroup block in a
logarithmic signature is a rather rare event. However, it can be part of a factorization
algorithm: if the logarithmic signature can be transformed (in an invertible way) such that
a block becomes a normal subgroup, the above can be used as simplification, and possibly
this leads to an efficient factorization algorithm.

Note that for this it is also required to be able to efficiently compute in the factor group.
It is not immediately clear whether or how this is possible for an arbitrary group.

Theorem 7.6 can be generalized using homomorphisms:

Theorem 7.8. Let G,H be groups, α = (A1, . . . , As) ∈ Λ(G), ϕ : G → H a surjective
group homomorphism with k := |ker(ϕ)| polynomial in `(α), and I ⊆ {1, . . . , s} a set of
indices such that

∏
i∈I |Ai| = k and

⋃
i∈I Ai ⊆ ker(ϕ) (in particular,

∏
i∈I Ai = ker(ϕ)).

Define β by removing all blocks Ai with i ∈ I from α and replacing all elements g by
ϕ(g) in the remaining blocks, then β ∈ Λ(H).

If factorizations with respect to β can be computed efficiently, then factorizations with
respect to α can be computed efficiently, too.

Proof. Given an element g ∈ G, first factor ϕ(g) with respect to β (which is possible
efficiently by hypothesis). Since E(ϕ(Ai)) = {id} for all i ∈ I, in the factorization of
g with respect to α the same indices need to be selected in the blocks Aj with j /∈ I.
In order to complete the factorization, elements in the blocks Ai with i ∈ I need to
be selected. There are k possibilities, and trying them using brute-force (i.e. for each
possibility multiplying the selected elements and testing whether the product gives g) is
possible efficiently, because k is polynomial in `(α) by hypothesis.

7.4. Direct Products

Let H,K be groups and G := H × K. Let ϕH : G → H : (h, k) 7→ h and
ϕK : G→ K : (h, k) 7→ k. Let ψH : H → G : h 7→ (h, id) and ψK : K → G : k 7→ (id, k).

Combining logarithmic signatures. Let β ∈ Λ(H) and γ ∈ Λ(K). Then

7.4. Direct Products 99

clearly α := ψH(β)ψK(γ) ∈ Λ(G).

Factoring. Let α ∈ Λ(G) such that the blocks can be partitioned into two sets,
where the first set forms a logarithmic signature for H after applying ϕH and the second
set forms a logarithmic signature for K after applying ϕK . In general it is insufficient to
factor ϕH(g) with respect to the logarithmic signature for H, respectively ϕK(g) with
respect to the logarithmic signature of K and combine the factorization indices.

For example, let H = Z22 ,K = Z32 , G = H ⊕K,

α =

(
(0, 0)
(1, 3)

)(
(0, 0)
(2, 0)

)
︸ ︷︷ ︸

β

(0, 0)
(2, 1)
(0, 2)

(0, 0)
(0, 3)
(0, 6)

︸ ︷︷ ︸

γ

∈ Λ(G).

This α was constructed by taking canonical exact transversal logarithmic signatures for
H and K and performing selective shifts from the fourth block onto the first one and from
the second block onto the third one.

Clearly, ϕH(α) is a 9-factorization of H; ϕH(β) is a logarithmic signature for H. Anal-
ogously, ϕK(α) is a 4-factorization of K; ϕK(γ) is a logarithmic signature for K.

Let g = (1, 1) ∈ G. The factorization index vector for g with respect to α is (2, 2, 2, 3)
(since (1, 3) + (2, 0) + (2, 1) + (0, 6) = (1, 1)).

The factorization index vector of 1 ∈ H with respect to ϕH(β) is (2, 1). The factorization
index vector of 1 ∈ K with respect to ϕK(γ) is (2, 1).

Observe that although ϕH(β) ∈ Λ(H) and ϕK(γ) ∈ Λ(K), the correct factorization
index vector for g with respect to α is not obtained by concatenating the factorization
index vectors for ϕH(g) with respect to ϕH(β) and ϕK(g) with respect to ϕK(γ): the
correct vector is (2, 2, 2, 3) and concatenating would result in (2, 1, 2, 1).

100

8. Abelian Groups

In Chapter 8, we regard factorizations of abelian groups G, represented as
G = Z

p
k1
1

⊕ Z
p
k2
2

⊕ . . .⊕ Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m.

Our contributions. Our contributions in this chapter start with a detailed analysis of
the structure of logarithmic signatures α ∈ Λ(Z2n) of type t(α) = (2, 2, . . . , 2). This leads
to an efficient factorization algorithm for logarithmic signatures α ∈ Λ(Z2m ⊕ Zk2) of type
t(α) = (2, 2, . . . , 2).

Based on a theorem of Rédei, we show that for all abelian groups every logarithmic
signature α = (A1, A2, . . . , An) ∈ Λ(G) with |Ai| ∈ P for all 1 ≤ i ≤ n is tame. This
especially includes a detailed elaboration on how to efficiently compute in factor groups.

Building upon the previous result, we design more factorization algorithms. First, we
drop the requirement that blocks need to be of prime size and point out that the previ-
ous algorithm still works fine if it finds a subgroup on each recursion level. We further
generalize this by showing that finding a periodic block on each recursion level is sufficient.

We then design a generic factorization algorithm, which is defined for all block sequences
(e.g. the input block sequence does not necessarily have to contain a periodic block). We
justify why this algorithm is efficient when periodic blocks exist on each recursion level
(i.e. the generic algorithm supersedes all previous factorization algorithms), argue why it is
efficient even for aperiodic logarithmic signatures generated by an algorithm in Chapter 6,
and point out why it even may be efficient for logarithmic signatures generated by LS-Gen
in practice.

We have a look at other factorization approaches, e.g. via recursively moving into stat-
ically or dynamically chosen factor groups, and demonstrate obstacles that can occur.

Using our algorithms, we show that various classes of logarithmic signatures are tame
now: amalgamated transversal, aperiodically decomposed and reunited for Zn2 from
[Bau12], and strongly aperiodic constructions from [Sta13].

We provide a list of logarithmic signatures (of specific types and for specific groups)
that can be proved to be tame.

We describe how a factorization problem can be modeled as an integer linear program-
ming (ILP) problem. It turns out that none of the ILP solvers that we tested are able to
find factorizations efficiently; we present run-time examples.

Finally, we count logarithmic signatures for some specific abelian groups and logarith-
mic signature types.

Encoding. We assume that a mixed radix representation is used for encoding

8.1. Rédei’s Theorem 101

group elements, i.e. the code length (number of bits required to store a group element) is

bG = dlog2 |G|e =
⌈
log2(pk1

1 · p
k2
2 · · · p

km
m)
⌉

=

⌈
m∑
i=1

(ki · log2 pi)

⌉
.

Note that this encoding is as compact as possible.

8.1. Rédei’s Theorem

One of the most useful observations for factoring in abelian groups is the following theorem
of Rédei:

Theorem 8.1. Let G be an abelian group, and (A1, . . . , An) ∈ Λ(G) with 0 ∈ Ai and
|Ai| ∈ P for all 1 ≤ i ≤ n. Then at least one of the blocks A1, . . . , An is a subgroup of G.

Proof. See [Red65] or [Sza04] (Theorem 1.4.1).

Exact transversal. Let G be an abelian group, and α = (A1, . . . , An) ∈ Λ(G) with
0 ∈ Ai and |Ai| ∈ P for all 1 ≤ i ≤ n. By iterating Rédei’s theorem, we see that there
exists a permutation of the blocks of α such that the resulting logarithmic signature is
exact transversal.

8.2. Structure of Logarithmic Signatures for Z2n

Lemma 8.2. Let x, y ∈ Z2n. If ord(x) > ord(y), then ord(x+ y) = ord(x).
In other words, if gcd(x, 2n−1) < gcd(y, 2n−1), then gcd(x+ y, 2n−1) = gcd(x, 2n−1).

Proof. If y = 0, the statements obviously hold. If x = 0, neither ord(x) > ord(y)
nor gcd(x, 2n−1) < gcd(y, 2n−1) can hold (because 1 is the minimal possible order and
gcd(y, 2n−1) cannot be greater than 2n−1). Thus in the following assume x 6= 0 and y 6= 0.

Write x = 2mx · ux with mx, ux ∈ N0 and 2 - ux, and y = 2my · uy with my, uy ∈ N0

and 2 - uy. We have 2mx = gcd(x, 2n−1) and 2my = gcd(y, 2n−1). Due to gcd(x, 2n−1) <
gcd(y, 2n−1), we get 2mx < 2my , i.e. mx < my. Therefore,

gcd(x+ y, 2n−1) = gcd(2mx · ux + 2my · uy, 2n−1)

= gcd(2mx · (ux + 2my−mx · uy), 2n−1)
∗
= gcd(2mx , 2n−1)

∗∗
= gcd(2mx · ux, 2n−1) = gcd(x, 2n−1).

(*) ux is odd, 2my−mx · uy is even, thus ux + 2my−mx · uy is odd.
(**) ux is odd.
Clearly, ord(x) = 2n

2mx (because 2n

2mx · x ≡
2n

2mx · (2
mx · ux) ≡ 2n · ux ≡ 0 (mod 2n), and

for all mx < i ≤ n: 2n

2i
· x ≡ 2n

2i
· (2mx · ux) ≡ 2n

2i−mx
· ux 6≡ 0 (mod 2n)) and analogously

ord(y) = 2n

2my . So, ord(x) > ord(y) ⇔ 2n

2mx >
2n

2my ⇔ mx < my, and thus with the above
ord(x+ y) = ord(x).

102 8. Abelian Groups

Lemma 8.3. Let G = Z2n, A = {0, a} with a 6= 0, and B ⊆ G canonical with |A+B| =
|A|·|B| = ord(a) and ord(a) ≥ max {ord(b) | b ∈ B}. Then ord(a) > max {ord(b) | b ∈ B}.

Proof. With Lemma 8.2, we have ord(a) ≥ ord(c) for all c ∈ A + B. Together with
|A+B| = ord(a), we get A + B = 〈a〉. We show by induction that for 0 ≤ i < ord(a),
i · a ∈ B holds if and only if 2 | i.

Case i = 0: i · a = 0 · a = 0 ∈ B (due to B canonical).
Case i > 0:

• Case 2 - i. By induction hypothesis, we have (i− 1) · a ∈ B. If i · a ∈ B would hold,
we would have two different factorizations for i · a (with respect to A+B), namely
0 + i · a and a + (i − 1) · a, which would be a contradiction to |A+B| = |A| · |B|.
So, i · a /∈ B.

• Case 2 | i. By induction hypothesis, we have (i − 1) · a /∈ B. If i · a /∈ B, then
i ·a /∈ A+B (because i ·a can neither be written as 0 + i ·a nor as a+ (i− 1) ·a, and
0 and a are the only elements in A), which would be a contradiction to A+B = 〈a〉.
So, i · a ∈ B.

As ord(a) > ord(i · a) holds for all 0 ≤ i < ord(a) with 2 | i, the asserted statement
ord(a) > max {ord(b) | b ∈ B} follows.

Lemma 8.4. Let G = Z2n and α = (A1, . . . , An) ∈ Λ(G) canonical of type t(α) =
(2, 2, . . . , 2). Then the powers of 2 in the prime factorization of all elements in the loga-
rithmic signature except 0G are unique, i.e.

∀ i ∈ {0, 1, . . . , n− 1} ∃! g ∈ (E(α) \ {0}) : gcd(g, 2n−1) = 2i.

Equivalently, we have |{ord(Ai[2]) | 1 ≤ i ≤ n}| = n.

We give two proofs; first an elementary one and then a shorter one using Rédei’s theorem.

Proof. W.l.o.g. assume that the blocks of α are ordered descendingly by the element orders
of the second elements, i.e.

ord(A1[2]) ≥ ord(A2[2]) ≥ . . . ≥ ord(An[2]).

Note that ord(x) = 2n

gcd(x,2n−1)
holds for all x ∈ Z2n \ {0}.

We now show by induction that gcd(Ai[2], 2n−1) = 2i−1 (i.e. ord(Ai[2]) = 2n−i+1) holds
for all 1 ≤ i ≤ n.

Case i = 1. Z2n contains elements of order 2n (namely 1, 3, 5, 7, 9, . . .). Thus, E(α)
must contain at least one element of order 2n, otherwise by Lemma 8.2 all generated
elements would have orders of 2n−1 or less, which would be a contradiction to α ∈ Λ(G).
As we assumed ord(A1[2]) ≥ ord(A2[2]) ≥ . . . ≥ ord(An[2]), we get ord(A1[2]) = 2n, i.e.
gcd(A1[2], 2n−1) = 1 = 21−1.

Case i > 1. Let Li := A1 + A2 + . . . + Ai−1 and Ri := Ai + Ai+1 + . . . + An (then
Li + Ri = Z2n). By induction hypothesis and Lemma 8.2, we get ord(g) > 2n−i+1 for all

8.3. Factoring in Z2m ⊕ Zk2 103

g ∈ Li \ {0}. Furthermore, with Lemma 8.3, we have max {ord(g) | g ∈ Ri} ≤ 2n−i+1.
Z2n contains elements of order 2n−i+1 (namely 1 · 2i−1, 3 · 2i−1, 5 · 2i−1, . . .), conse-
quently E((Ai, Ai+1, . . . , An)) must contain at least one element of order 2n−i+1, oth-
erwise ord(g) < 2n−i+1 would hold for all g ∈ Ri, which would be a contradiction to
α ∈ Λ(G) (because α would not generate any element of order 2n−i+1; we would have
ord(g) < 2n−i+1 for all g ∈ Ri and ord(g) > 2n−i+1 for all g ∈ (Li \ {0}) + Ri). As
we assumed ord(A1[2]) ≥ ord(A2[2]) ≥ . . . ≥ ord(An[2]), we get ord(Ai[2]) = 2n−i+1, i.e.
gcd(Ai[2], 2n−1) = 2i−1.

Now the shorter proof using Rédei’s theorem:

Proof. According to Rédei’s theorem, at least one block of α must be a subgroup. As
every block contains exactly two elements, a subgroup block must be of the form (0, u)
with u = −u. Hence u = 2n−1, because this is the only self-inverse non-0 element in Z2n .

Let G = R + {0, u} (i.e. R is the sum of all other blocks). For every g ∈ G, we have
either g ∈ R or g + u ∈ R. Thus the mapping R → Z2n−1 : g 7→ g mod 2n−1 is bijective.
When interpreting the elements of R in Z2n−1 , the blocks of R form a logarithmic signature
of Z2n−1 .

Apply the argument recursively on R and the statement of Lemma 8.4 follows.

8.3. Factoring in Z2m ⊕ Zk2
Algorithm 8.5. Let H = Z2m̃ ⊕ Zk̃2 for some m̃ ∈ N, k̃ ∈ N0. Let β ∈ Λ(H) canonical of
type t(β) = (2, 2, . . . , 2) and h ∈ H.

The following recursive function finds the factorization of h with respect to β, when
calling FactorizeZ2mZ2k(β, h, m̃, k̃):

Function FactorizeZ2mZ2k(LogSig α, GroupElement g, UInt m, UInt k) : List<UInt>

1. If |α| = 1: find g in α[1] and return its index (one item in a list).

2. Let n← m+ k.

3. Let i be the index of the first block in α being a subgroup (i.e. with ord(α[i][2]) = 2).

Let (u, v1, . . . , vk)← α[i][2].

4. If k ≥ 1 and at least one of the v1, . . . , vk is 1:

a) Let j ← min {z ∈ {1, . . . , k} | vz = 1}.
b) Let f : Z2m⊕Zk2 → Z2m⊕Zk−1

2 : (x, y1, . . . , yk) 7→ (x+yj ·u, y1+yj ·v1, . . . , yi−1+
yj · vi−1, yi+1 + yj · vi+1, . . . , yk + yj · vk).

Let α′ ←
(

(0, . . . , 0)
f(α[1][2])

)
· · ·
(

(0, . . . , 0)
f(α[i− 1][2])

)(
(0, . . . , 0)

f(α[i+ 1][2])

)
· · ·
(

(0, . . . , 0)
f(α[n][2])

)
.

c) Let r ← FactorizeZ2mZ2k(α′, f(g), m, k − 1).

104 8. Abelian Groups

else:

a) Let f : Z2m ⊕ Zk2 → Z2m−1 ⊕ Zk2 : (x, y1, . . . , yk) 7→ (x mod 2m−1, y1, . . . , yk).

Let α′ ←
(

(0, . . . , 0)
f(α[1][2])

)
· · ·
(

(0, . . . , 0)
f(α[i− 1][2])

)(
(0, . . . , 0)

f(α[i+ 1][2])

)
· · ·
(

(0, . . . , 0)
f(α[n][2])

)
.

b) Let r ← FactorizeZ2mZ2k(α′, f(g), m− 1, k).

5. Insert 1 at position i in r.

6. If α[1][r[1]] + . . .+ α[n][r[n]] = g: return r.

Let r[i]← 2 and return r.

Proof. Let G := Z2m ⊕ Zk2 and n := m + k. The algorithm realizes the idea of Theorem
7.6.

According to Rédei’s theorem, at least one of the blocks of α = (A1, A2, . . . , An) is
a subgroup of G. Let i be the index of the first block being a subgroup. We have
Ai = ((0, . . . , 0), s) for an s ∈ G \ {(0, . . . , 0)}. Write s = (u, v1, v2, . . . , vk) with u ∈ Z2m

and v1, . . . , vk ∈ Z2.

Define the projection γj : G→ Z2 : (x, y1, y2, . . . , yk) 7→ yj .

As Ai is a subgroup, s = −s and consequently u ∈ {0, 2m−1} (because only 0 and 2m−1

are self-inverse in Z2m). We distinguish two cases:

• At least one of the v1, . . . , vk is 1. Let vj be the first one of those (i.e. vj = 1).
Now, for all other blocks At with t 6= i, we add s to At[2], if γj(At[2]) = 1. These
additions are selective shifts and therefore result in another logarithmic signature.
In the resulting logarithmic signature, we have γj(Ai[2]) = 1 and γj(At[2]) = 0 for
all t 6= i. Thus, by removing the block Ai and the (j + 1)th component (note that
the one for Z2m is the first) from all elements (f performs the addition and removal
at once), we obtain a logarithmic signature α′ for the group

Z2m ⊕ Z2 ⊕ . . .⊕ Z2︸ ︷︷ ︸
j−1

⊕Z2 ⊕ . . .⊕ Z2︸ ︷︷ ︸
k−j

= Z2m ⊕ Zk−1
2 .

• All of the v1, . . . , vk are 0. Then u = 2m−1 (because u = 0 would result in s =
(0, . . . , 0), a contradiction). Let M := A1 + . . .+Ai−1 +Ai+1 + . . .+An and G′ :=
Z2m−1⊕Zk2. For each g ∈ G, we have either g ∈M or g+s ∈M . Thus, f is bijective
from M to G′, and therefore α′ = (f(A1), . . . , f(Ai−1), f(Ai+1), . . . , f(An)) ∈ Λ(G′).

In order to compute the factorization of g with respect to α, first factor f(g) with respect
to α′, select the corresponding indices in α and complete the factorization by choosing the
correct element in Ai (only two possibilities).

Before giving a few examples illustrating Algorithm 8.5, we first want to have an in-depth
look at its run-time. Although the run-time clearly is polynomial in the input size, we
want to explicitly find an asymptotic bound for the run-time.

8.3. Factoring in Z2m ⊕ Zk2 105

Proposition 8.6. Let G = Z2m ⊕ Zk2 for some m ∈ N, k ∈ N0, n := m + k, and
α = (A1, A2, . . . , An) ∈ Λ(G) canonical of type t(α) = (2, 2, . . . , 2).

Algorithm 8.5 performs O(n2) group element operations/tests.
The input size to Algorithm 8.5 is w := 2n2 +n+ 2 dlog2(n+ 1)e bits, and the run-time

is in O(w
3
2).

Thus, α is tame.

Proof. The code length (number of bits required to store a group element) is bG = n.
The input to the algorithm is a logarithmic signature (requiring S(G,α) = bG · `(α)
bits), an element to factor (requiring bG bits), and the numbers m and k (each requiring
dlog2(n+ 1)e bits). In total, the input size is w = bG · `(α) + bG + 2 dlog2(n+ 1)e =
n · 2n+ n+ 2 dlog2(n+ 1)e = 2n2 + n+ 2 dlog2(n+ 1)e bits.

Let g ∈ G be the element to be factored.
If |α| = 1 (i.e. |G| = 2), one group element test is sufficient (test whether g = (0, . . . , 0)).
Thus now assume n ≥ 2, i.e. |G| ≥ 4. The first step is to search the subgroup block. As

α is canonical, regarding only the second element in each block is sufficient. We need at
most n− 1 group element tests in order to determine the index of the subgroup block (for
1 ≤ i ≤ n − 1 test whether Ai[2] is self-inverse; after n − 1 unsuccessful tests, we know
that An[2] is the self-inverse element).

In both cases that can occur now, we construct a smaller logarithmic signature for a
smaller group (and call us recursively). We need one group element test to decide which
case occurs.

• If at least one of the v1, . . . , vk is 1, e.g. vj , create a new logarithmic signature
consisting of n − 1 blocks, containing the identity of G′ := Z2m ⊕ Zk−1

2 as the first
element in each block (n − 1 group operations). Using n − 1 group element tests,
we compute γj(At[2]) for all other blocks (that do not contain s), and depending on
the results we possibly add s to them (at most n − 1 group operations). Finally,
we remove the (j + 1)th component from the n− 1 elements to obtain G′ elements,
which requires n − 1 group operations. Furthermore, we need to reduce g, which
analogously requires at most 3 group element tests/operations.

• If all of the v1, . . . , vk are 0, create a new logarithmic signature consisting of n − 1
blocks, containing the identity of G′ := Z2m−1 ⊕ Zk2 as the first element in each
block (n − 1 group operations). Using n − 1 group element operations, we perform
the modulo computations in the first components to obtain G′ elements (note that
a mod 2m−1 computation can be realized by simply cutting off the leftmost bit).
Furthermore, we need to reduce g, which analogously requires at most one group
element operation.

When the recursion returns, we compute the sum of the elements at the returned fac-
torization indices in α and select the appropriate element in the subgroup block (if the
sum is g, (0, . . . , 0) needs to be selected in the subgroup block, otherwise s); this requires
(n− 2) + 1 = n− 1 group element operations/tests. There is no need to undo the trans-
formation, because the original logarithmic signature is still in memory (we created a
completely new logarithmic signature for the recursive call).

106 8. Abelian Groups

Let t(n) be the time that a group element operation/test requires when the group
element is encoded using n bits. As G = Z2m ⊕ Zk2, we can assume that t(n) ∈ O(n).

So, the total run-time T (n) of the algorithm with respect to n is bounded by

T (n) = ((n− 1) + 1 + max {4(n− 1) + 3, 2(n− 1) + 1}) · t(n) + T (n− 1) + (n− 1) · t(n)

= T (n− 1) + (6(n− 1) + 4) · t(n)

for n ≥ 2, T (1) = t(1), and thus T (n) ∈ O(n3).
However, the run-time of algorithms is usually expressed with respect to the input size

w. With respect to w, the run-time of the algorithm is in O(
√
w

3
) = O(w

3
2).

Note that there are many possibilities to further optimize the implementation of the
factorization algorithm. For example, copying the identity elements in the blocks is rather
unnecessary; a subroutine could be written that (recursively) works with the second ele-
ments of the original input only.

Example 8.7. We want to factor g := (13, 0, 1, 0) with respect to the following logarithmic
signature of G := Z24 ⊕ Z3

2:

α :=
((0,0,0,0)

(5,1,1,1)

)((0,0,0,0)
(15,0,1,1)

)((0,0,0,0)
(10,0,1,0)

)((0,0,0,0)
(12,1,1,1)

)((0,0,0,0)
(12,0,1,0)

)((0,0,0,0)
(8,0,0,0)

)((0,0,0,0)
(8,1,1,1)

)
.

A6 is the first block being a subgroup, and all vj = 0 (i.e. the second case of Algorithm
8.5 occurs). So, remove A6 and reduce the first component of the elements in all other
blocks mod 8 to get a logarithmic signature for Z23 ⊕ Z3

2:

α1 :=
((0,0,0,0)

(5,1,1,1)

)((0,0,0,0)
(7,0,1,1)

)((0,0,0,0)
(2,0,1,0)

)((0,0,0,0)
(4,1,1,1)

)((0,0,0,0)
(4,0,1,0)

)((0,0,0,0)
(0,1,1,1)

)
.

Now, the fourth block is a subgroup (recall that we are now working in the reduced group).
Here, v1 = 1, i.e. the first case of Algorithm 8.5 occurs. By adding (4, 1, 1, 1) to the others
with γ1(At[2]) = 1, removing the block containing (4, 1, 1, 1) and the second component of
the elements in all other blocks, we get the following logarithmic signature for Z23 ⊕ Z2

2:

α2 :=
((0,0,0)

(1,0,0)

)((0,0,0)
(7,1,1)

)((0,0,0)
(2,1,0)

)((0,0,0)
(4,1,0)

)((0,0,0)
(4,0,0)

)
.

Continuing this way, we get the following logarithmic signatures:

α3 :=
((0,0)

(1,0)

)((0,0)
(3,1)

)((0,0)
(6,0)

)((0,0)
(4,0)

)
(for Z23 ⊕ Z1

2),

α4 :=
((0,0)

(1,0)

)((0,0)
(3,1)

)((0,0)
(2,0)

)
(for Z22 ⊕ Z1

2),

α5 :=
((0,0)

(1,0)

)((0,0)
(1,1)

)
(for Z2 ⊕ Z1

2),

α6 :=
((0,0)

(0,1)

)
(for {0} ⊕ Z1

2).

Now to the factorization of g = (13, 0, 1, 0). In order to compute its factorization in α, we
need to know the factorization of (13 mod 8, 0, 1, 0) = (5, 0, 1, 0) in α1. In order to get its
factorization in α1, we need to compute (5, 1, 0) in α2. Observe that there is a 1 in the
second component, therefore compute (5, 1, 0) + (4, 1, 0) = (1, 0, 0) and conclude that we
need to factor (1, 0) in α3. Continuing like this, we need to factor (1, 0) in α4 and α5, and
(0, 0) in α6.

8.3. Factoring in Z2m ⊕ Zk2 107

Knowing that we need to factor (0, 0) in α6 (which is easy), we can deduce the fac-
torization of (1, 0) in α5 by going up again (from α5 to α6, we have reduced the first
component).

α6 =
((0, 0)

(0,1)

)
,

α5 =
((0,0)

(1, 0)

)((0, 0)

(1,1)

)
.

From α4 to α5 and from α3 to α4, we have reduced the first component, so we get:

α4 =
((0,0)

(1, 0)

)((0, 0)

(3,1)

)((0, 0)

(2,0)

)
,

α3 =
((0,0)

(1, 0)

)((0, 0)

(3,1)

)((0, 0)

(6,0)

)((0, 0)

(4,0)

)
.

In the step from α2 to α3, the second component was removed. We already know that we
need to factor (5, 1, 0) in α2, and the only way to achieve this is by selecting

α2 =
((0,0,0)

(1, 0, 0)

)((0, 0, 0)

(7,1,1)

)((0, 0, 0)

(2,1,0)

)((0,0,0)

(4, 1, 0)

)((0, 0, 0)

(4,0,0)

)
.

We already know we need (5, 0, 1, 0) in α1. As the second component is 0, we simply get:

α1 =
((0,0,0,0)

(5, 1, 1, 1)

)((0, 0, 0, 0)

(7,0,1,1)

)((0, 0, 0, 0)

(2,0,1,0)

)((0,0,0,0)

(4, 1, 1, 1)

)((0,0,0,0)

(4, 0, 1, 0)

)((0, 0, 0, 0)

(0,1,1,1)

)
.

Computing the unreduced sum:

α =
((0,0,0,0)

(5, 1, 1, 1)

)((0, 0, 0, 0)

(15,0,1,1)

)((0, 0, 0, 0)

(10,0,1,0)

)((0,0,0,0)

(12, 1, 1, 1)

)((0,0,0,0)

(12, 0, 1, 0)

)((0, 0, 0, 0)

(8,0,0,0)

)((0, 0, 0, 0)

(8,1,1,1)

)
.

This indeed is the factorization of g = (13, 0, 1, 0).

Example 8.8. Another example how to find factorizations using Algorithm 8.5; this time
without comments (see previous example for detailed explanations of all steps).

We want to factor g := (11, 1, 1, 0) in the following logarithmic signature ofG := Z24⊕Z3
2:

α :=
((0,0,0,0)

(0,0,1,1)

)((0,0,0,0)
(11,1,0,1)

)((0,0,0,0)
(6,1,1,1)

)((0,0,0,0)
(12,0,1,1)

)((0,0,0,0)
(8,0,0,1)

)((0,0,0,0)
(8,1,1,1)

)((0,0,0,0)
(8,1,0,1)

)
,

g = (11, 1, 1, 0),

α1 :=
((0,0,0)

(11,1,1)

)((0,0,0)
(6,1,0)

)((0,0,0)
(12,0,0)

)((0,0,0)
(8,0,1)

)((0,0,0)
(8,1,0)

)((0,0,0)
(8,1,1)

)
,

g1 := (11, 1, 1),

α2 :=
((0,0)

(3,1)

)((0,0)
(6,1)

)((0,0)
(12,0)

)((0,0)
(8,1)

)((0,0)
(0,1)

)
,

g2 := (3, 1),

α3 :=
((0)

(11)

)((0)
(14)

)((0)
(12)

)((0)
(8)

)
,

g3 := (11),

α4 :=
((0)

(3)

)((0)
(6)

)((0)
(4)

)
,

108 8. Abelian Groups

g4 := (3),

α5 :=
((0)

(3)

)((0)
(2)

)
,

g5 := (3),

α6 :=
((0)

(1)

)
,

g6 := (1).

Going up again:

α6 =
((0)

(1)

)
,

α5 =
((0)

(3)

)((0)

(2)

)
,

α4 =
((0)

(3)

)((0)

(6)

)((0)

(4)

)
,

α3 =
((0)

(11)

)((0)

(14)

)((0)

(12)

)((0)

(8)

)
,

α2 =
((0,0)

(3, 1)

)((0, 0)

(6,1)

)((0, 0)

(12,0)

)((0, 0)

(8,1)

)((0, 0)

(0,1)

)
,

α1 =
((0,0,0)

(11, 1, 1)

)((0, 0, 0)

(6,1,0)

)((0, 0, 0)

(12,0,0)

)((0, 0, 0)

(8,0,1)

)((0, 0, 0)

(8,1,0)

)((0, 0, 0)

(8,1,1)

)
,

α =
((0,0,0,0)

(0, 0, 1, 1)

)((0,0,0,0)

(11, 1, 0, 1)

)((0, 0, 0, 0)

(6,1,1,1)

)((0, 0, 0, 0)

(12,0,1,1)

)((0, 0, 0, 0)

(8,0,0,1)

)((0, 0, 0, 0)

(8,1,1,1)

)((0, 0, 0, 0)

(8,1,0,1)

)
.

Indeed, this is the factorization of g = (11, 1, 1, 0).

Example 8.9. Another example; this time with g := (3, 1, 0, 1) in the following logarith-
mic signature of G := Z24 ⊕ Z3

2:

α :=
((0,0,0,0)

(0,0,1,1)

)((0,0,0,0)
(3,0,1,1)

)((0,0,0,0)
(13,1,1,1)

)((0,0,0,0)
(14,1,0,1)

)((0,0,0,0)
(4,0,0,0)

)((0,0,0,0)
(4,1,1,0)

)((0,0,0,0)
(8,0,1,1)

)
,

g = (3, 1, 0, 1),

α1 :=
((0,0,0)

(3,0,0)

)((0,0,0)
(13,1,0)

)((0,0,0)
(14,1,1)

)((0,0,0)
(4,0,0)

)((0,0,0)
(4,1,1)

)((0,0,0)
(8,0,0)

)
,

g1 := (3, 1, 1),

α2 :=
((0,0,0)

(3,0,0)

)((0,0,0)
(5,1,0)

)((0,0,0)
(6,1,1)

)((0,0,0)
(4,0,0)

)((0,0,0)
(4,1,1)

)
,

g2 := (3, 1, 1),

α3 :=
((0,0,0)

(3,0,0)

)((0,0,0)
(1,1,0)

)((0,0,0)
(2,1,1)

)((0,0,0)
(0,1,1)

)
,

g3 := (3, 1, 1),

α4 :=
((0,0)

(3,0)

)((0,0)
(3,1)

)((0,0)
(2,0)

)
,

g4 := (1, 0),

α5 :=
((0,0)

(1,0)

)((0,0)
(1,1)

)
,

g5 := (1, 0),

α6 :=
((0,0)

(0,1)

)
,

g6 := (0, 0).

Going up again:

8.3. Factoring in Z2m ⊕ Zk2 109

α6 =
((0, 0)

(0,1)

)
,

α5 =
((0,0)

(1, 0)

)((0, 0)

(1,1)

)
,

α4 =
((0,0)

(3, 0)

)((0, 0)

(3,1)

)((0,0)

(2, 0)

)
,

α3 =
((0,0,0)

(3, 0, 0)

)((0, 0, 0)

(1,1,0)

)((0, 0, 0)

(2,1,1)

)((0,0,0)

(0, 1, 1)

)
,

α2 =
((0,0,0)

(3, 0, 0)

)((0, 0, 0)

(5,1,0)

)((0, 0, 0)

(6,1,1)

)((0,0,0)

(4, 0, 0)

)((0,0,0)

(4, 1, 1)

)
,

α1 =
((0,0,0)

(3, 0, 0)

)((0, 0, 0)

(13,1,0)

)((0, 0, 0)

(14,1,1)

)((0,0,0)

(4, 0, 0)

)((0,0,0)

(4, 1, 1)

)((0,0,0)

(8, 0, 0)

)
,

α =
((0,0,0,0)

(0, 0, 1, 1)

)
,
((0,0,0,0)

(3, 0, 1, 1)

)
,
((0, 0, 0, 0)

(13,1,1,1)

)
,
((0, 0, 0, 0)

(14,1,0,1)

)
,
((0,0,0,0)

(4, 0, 0, 0)

)
,
((0,0,0,0)

(4, 1, 1, 0)

)
,
((0,0,0,0)

(8, 0, 1, 1)

)
.

Success, this is the factorization of g = (3, 1, 0, 1).

Proposition 8.10. Let G = Z2m ⊕ Zk2 for some m ∈ N, k ∈ N0, and α a canonical
sequence of m+ k blocks of size 2.

Testing whether α is a logarithmic signature for G is possible in polynomial time.

Proof. The idea is to apply several transformations, which are described below, to α. If α
is a logarithmic signature, each of these transformations will result in another logarithmic
signature. Conversely, if α is not a logarithmic signature, the transformations will not
result in one.

At the end, α is a logarithmic signature if and only if the final transformed block
sequence is (B1, B2, . . . , Bm+k) with Bi = {(0, . . . , 0), (2i−1, 0, 0, . . . , 0)} for 1 ≤ i ≤ m and
Bi = {(0, . . . , 0), (0, 0, . . . , 0︸ ︷︷ ︸

i−(m+1)

, 1, 0, . . . , 0︸ ︷︷ ︸
m+k−i

)} for m+ 1 ≤ i ≤ m+ k.

We now describe the transformation process. First, apply the transformations of Algo-
rithm 8.5 to α, but without removing blocks and without shortening the vectors. In the
resulting logarithmic signature there are exactly m vectors of the form (u, 0, 0, . . . , 0) with
u ∈ Z2m , which obviously are generating R := Z2m ⊕{0}k. Thus we can set the first com-
ponent in all other vectors to zero. These other vectors are then generating V := {0}⊕Zk2
(a vector space). By using standard linear column transformations, we achieve that each
of those vectors has a 1 at exactly one position. Normalize the blocks generating R by
choosing the smallest possible representatives: replace every u by the smallest element in
〈u〉 (this is possible efficiently: simply replace every u by uAND ((2m − 1) XOR (u− 1)),
with bitwise AND and XOR). Finally, sort the blocks (the vectors generating R to the
front and ordered lexicographically, subsequently the vectors generating V ordered like
above).

Remark 8.11. Note that the transformations used in the proof of Proposition 8.10 are
not directly invertible when considering factorizations. For example, the step of zeroing
out the first component clearly results in another logarithmic signature, but knowing a

110 8. Abelian Groups

factorization in the transformed signature does not allow us to derive a factorization in
the original one immediately.

In contrast, applying the methods of Algorithm 8.5 allows us to recursively compute
factorizations easily.

Example 8.12. Let G := Z24 ⊕ Z3
2 and

α :=
((0,0,0,0)

(0,0,0,1)

)((0,0,0,0)
(11,0,1,1)

)((0,0,0,0)
(10,1,1,1)

)((0,0,0,0)
(4,0,0,0)

)((0,0,0,0)
(8,1,1,1)

)((0,0,0,0)
(8,0,1,0)

)((0,0,0,0)
(8,0,0,0)

)
.

We want to test whether α is a logarithmic signature for G. So, we first apply the
transformations of Algorithm 8.5 without removing blocks and without shortening the
vectors:

((0,0,0,0)

(0,0,0,1)

)((0,0,0,0)
(11,0,1,0)

)((0,0,0,0)
(10,1,1,0)

)((0,0,0,0)
(4,0,0,0)

)((0,0,0,0)
(8,1,1,0)

)((0,0,0,0)
(8,0,1,0)

)((0,0,0,0)
(8,0,0,0)

)
,

((0,0,0,0)

(0,0,0,1)

)((0,0,0,0)
(11,0,1,0)

)((0,0,0,0)
(2,0,0,0)

)((0,0,0,0)
(4,0,0,0)

)((0,0,0,0)
(8,1,1,0)

)((0,0,0,0)
(8,0,1,0)

)((0,0,0,0)
(8,0,0,0)

)
,

((0,0,0,0)

(0,0,0,1)

)((0,0,0,0)
(3,0,0,0)

)((0,0,0,0)
(2,0,0,0)

)((0,0,0,0)
(4,0,0,0)

)((0,0,0,0)
(8,1,1,0)

)((0,0,0,0)
(8,0,1,0)

)((0,0,0,0)
(8,0,0,0)

)
,

((0,0,0,0)

(0,0,0,1)

)((0,0,0,0)
(1,0,0,0)

)((0,0,0,0)
(2,0,0,0)

)((0,0,0,0)
(4,0,0,0)

)((0,0,0,0)
(8,1,1,0)

)((0,0,0,0)
(8,0,1,0)

)((0,0,0,0)
(8,0,0,0)

)
.

Now we cancel out the first component of all vectors with a 1 in the second or higher
component:

((0,0,0,0)

(0,0,0,1)

)((0,0,0,0)
(1,0,0,0)

)((0,0,0,0)
(2,0,0,0)

)((0,0,0,0)
(4,0,0,0)

)((0,0,0,0)
(0,1,1,0)

)((0,0,0,0)
(0,0,1,0)

)((0,0,0,0)
(8,0,0,0)

)
.

Using linear column transformations (here: just add the 6th vector onto the 5th), we get:

((0,0,0,0)

(0,0,0,1)

)((0,0,0,0)
(1,0,0,0)

)((0,0,0,0)
(2,0,0,0)

)((0,0,0,0)
(4,0,0,0)

)((0,0,0,0)
(0,1,0,0)

)((0,0,0,0)
(0,0,1,0)

)((0,0,0,0)
(8,0,0,0)

)
.

By sorting the vectors we obtain the final result:

((0,0,0,0)

(1,0,0,0)

)((0,0,0,0)
(2,0,0,0)

)((0,0,0,0)
(4,0,0,0)

)((0,0,0,0)
(8,0,0,0)

)((0,0,0,0)
(0,1,0,0)

)((0,0,0,0)
(0,0,1,0)

)((0,0,0,0)
(0,0,0,1)

)
.

This is the logarithmic signature described in the proof of Proposition 8.10, so α indeed
is a logarithmic signature.

8.4. Factoring in Logarithmic Signatures with Blocks of Prime
Size

Let G be an abelian group (represented as G = Z
p
k1
1

⊕ Z
p
k2
2

⊕ . . .⊕ Z
pkmm

with pi ∈ P and

ki ∈ N for 1 ≤ i ≤ m) and α = (A1, A2, . . . , An) ∈ Λ(G) canonical with |Ai| ∈ P for all
1 ≤ i ≤ n. We now design an algorithm (Algorithm 8.16) that computes factorizations with
respect to α using O(q3 ·m ·n3 · `(α)) group operations, where q := max {|Ai| | 1 ≤ i ≤ n}.
Thus, α is tame.

This is one of the main results in our work. Note that it supersedes Algorithm 8.5.

The core idea for the algorithm is the following. According to Rédei’s theorem

8.4. Factoring in Logarithmic Signatures with Blocks of Prime Size 111

(Theorem 8.1), at least one block Ai in α is a subgroup. Subgroups of abelian groups are
normal, thus the factor group G/Ai is well-defined. By applying Theorem 7.6 recursively,
we can factorize every group element efficiently.

For this, we must be able to efficiently represent and perform computations in G/N
(where N is a subgroup; N = Ai on the topmost recursion level). It might not be
immediately clear that this is possible. In fact, if elements in G/N would be represented by
sets of elements (like in the theoretic definition of a normal subgroup), then the procedure
would require exponential time, because the sets grow exponentially while descending
in the recursion. Also, converting elements to permutations and using algorithms based
on permutations (which many computer algebra systems use) might not be appropriate
here, because the space required to store the permutations might be exponential (e.g. the
permutation representation of elements in a cyclic group Z2n has degree 2n; in the compact
element representation that we assume in this section for the input an element requires
dlog2 2ne = n bits, but when converting such an element to a permutation and storing it
as a list of images or storing its cycle notation, we require 2n · n bits).

However, it is possible to efficiently compute in G/N in this case here. In the follow-
ing, we first show how several specific computations related to G/N can be carried out
efficiently, and subsequently we describe the factorization algorithm.

Algorithm 8.13. Let G be an abelian group (represented as G = Z
p
k1
1

⊕Z
p
k2
2

⊕ . . .⊕Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m) and N := A1 + A2 + . . . + Ar with A1 ≤ G,
A1 +A2 ≤ G, A1 +A2 +A3 ≤ G, . . ., N ≤ G. Let x, y ∈ G.

We present two algorithms that together test whether x+N = y +N holds.
We expect the blocks A1, . . . , Ar to be given as a block sequence α := (A1, . . . , Ar), and

x and y as elements of G. The set N (containing |A1| · |A2| · · · |Ar| elements) is not part
of the input; it is only used for notation.

The first algorithm computes a list C ofm group elements. Using C, the second algorithm
tests whether x+N = y +N holds.

Computing C is independent of x and y, i.e. when multiple elements are being tested,
computing C once is sufficient. In the LogSig utility (Chapter 12), we have implemented
this performance optimization.

C is computed by the following algorithm:

1. Let α′ = (A′1, . . . , A
′
r)← α.

2. Let C← ((0, . . . , 0), . . . , (0, . . . , 0)) ∈ Gm.

3. For c← 1 to m:

• For i← 1 to r:

a) Let S ← {(g1, . . . , gm) ∈ A′i | g1 = . . . = gc−1 = 0 and gc 6= 0}.
b) If S = ∅: continue.

c) Let s = (s1, . . . , sm) ∈ S be an element with sc minimal (among the ele-
ments in S).

112 8. Abelian Groups

d) Set C[c]← s.

e) For all elements h = (h1, . . . , hm) in the blocks A′i+1, . . . , A
′
r:

– Replace h by h−
⌊
hc
sc

⌋
· s.

Testing whether x + N = y + N holds is now possible using the following reduction
algorithm:

1. Let t = (t1, . . . , tm)← x− y.

2. For c← 1 to m:

a) If tc = 0: continue.

b) Let s = (s1, . . . , sm)← C[c].

c) If s = (0, . . . , 0): return “x+N 6= y +N”.

d) Set t← t−
⌊
tc
sc

⌋
· s.

e) If tc 6= 0: return “x+N 6= y +N”.

3. Return “x+N = y +N”.

Proof. First of all, we have

x+N = y +N ⇔ x− y +N = N ⇔ x− y ∈ N .

Let d := x− y.

In this proof, let us call a (g1, . . . , gm) ∈ G a c-element, if g1 = . . . = gc−1 = 0 and
gc 6= 0, and define (0, . . . , 0) to be an (m+ 1)-element.

We now prove in detail why the two algorithms work.

• For all 1 ≤ i ≤ r, the block sequences (A1, . . . , Ai) and (A′1, . . . , A
′
i) generate exactly

the same elements at any time while the algorithm is running (including the end).

In order to see why this is true, observe that the innermost replacement operation
does not change the set of generated elements, because s is an element of the subgroup

A′1 + . . . + A′i (and thus −
⌊
hc
sc

⌋
· s also is an element of this subgroup), and A′1 +

. . .+A′i ≤ A′1 + . . .+A′q when h is an element in block A′q (note that q ≥ i+ 1).

In other words, replacing h by h −
⌊
hc
sc

⌋
· s is a selective shift (Section 5.1.9) using

−
⌊
hc
sc

⌋
·s from the subgroup A′1 + . . .+A′i onto h in A′q (with q ≥ i+1), and selective

shifts never change the set of generated elements.

• The C computation algorithm replaces h by h−
⌊
hc
sc

⌋
· s. After this step, we clearly

have hc < sc (from the original hc, the −
⌊
hc
sc

⌋
· s operation subtracts as many sc

from hc as possible, thus for the new hc we get 0 ≤ hc < sc).

8.4. Factoring in Logarithmic Signatures with Blocks of Prime Size 113

• C has the following properties (after its computation algorithm has finished):

– 〈C〉 = N .

– For all 1 ≤ c ≤ m, the cth element of C is a c-element.

Let γc : G→ Z
pkcc

: (g1, . . . , gm) 7→ gc the projection of the cth component. Further-

more, let S(c, i) := {a ∈ A′i | a is a c-element} ∪ {(0, . . . , 0)}, with A′1, . . . , A
′
r being

the blocks when entering the ith iteration within the cth outer iteration of the C
computation algorithm. The following statements hold for all 1 ≤ c ≤ m, 1 ≤ i ≤ r:

– γc(S(c, 1)) ≤ γc(S(c, 1) + S(c, 2)) ≤ . . . ≤ γc(S(c, 1) + . . .+ S(c, r)) ≤ Z
pkcc

.

– ∀ a ∈ (S(c, 1)+ . . .+S(c, i−1))\{(0, . . . , 0)}, b ∈ S(c, i)+ . . .+S(c, r) : γc(a) >
γc(b).

We prove these properties by induction over c. Let the claims be true for the first
c − 1 components, and let A′1, . . . , A

′
r be the blocks when entering the cth outer

iteration.

Let i be the first index that the algorithm finds for which S 6= ∅ (i.e. S(c, j) =
{(0, . . . , 0)} for all 1 ≤ j < i and |S(c, i)| ≥ 2). Let s = (s1, . . . , sm) ∈ S be an
element with sc minimal, and os := ord(γc(s) in Z

pkcc
). As A′1 + . . . + A′i ≤ G, all

multiples of s (in G) must be contained in A′1 + . . .+A′i.

Let a1 ∈ A′1 a c1-element, . . ., ai−1 ∈ A′i−1 a ci−1 element, and c̃ := min {c1, . . . , ci−1}.
If c̃ < c, from the claims being true for all components < c we obtain that a1 + . . .+
ai−1 is a c̃-element. Together with the fact that A′1, . . . , A

′
i−1 do not contain any

c-elements (A′i is the first block containing c-elements), the subgroup A′1 + . . .+A′i−1

does not contain any c-elements. Keeping in mind that the components < c of the
elements in A′i have already been reduced as much as possible, we can conclude that
for every 0 ≤ j < os there must exist an a ∈ S with γc(a) = j ·γc(s). This establishes
γc(S(c, 1)) ≤ γc(S(c, 1) + S(c, 2)) ≤ . . . ≤ γc(S(c, i)) ≤ Z

pkcc
.

The full chain γc(S(c, 1)) ≤ γc(S(c, 1) + S(c, 2)) ≤ . . . ≤ γc(S(c, 1) + . . .+ S(c, r)) ≤
Z
pkcc

can be established by iteratively moving into factor groups (imaginarily, only

for the proof). First move into the factor group G/ 〈s〉. By this, the c-elements in
A′i become z-elements with z > c. Due to the previous reductions, a factor group
element in the blocks A′i+1, . . . , A

′
r now is a c-element if and only if it is a c-element

in G. The argumentation above can now be applied in G/ 〈s〉 (the first block that
contains c-elements will have an index > i). Continuing this iteratively until the end
of the block sequence, the full chain is established.

The inner loop of the C computation algorithm ensures that the c-component of every
element in A′i+1, . . . , A

′
r is smaller than γc(s), and this holds iteratively for all blocks

containing c-elements. Together with the above subgroup chain for Z
pkcc

, we realize

that indeed ∀ a ∈ (S(c, 1) + . . .+S(c, i− 1)) \ {(0, . . . , 0)}, b ∈ S(c, i) + . . .+S(c, r) :
γc(a) > γc(b) holds.

114 8. Abelian Groups

• The reduction algorithm tries to reduce d to (0, . . . , 0). If this is possible, d ∈ N (i.e.
x+N = y +N), otherwise d /∈ N (i.e. x+N 6= y +N).

A reduction is a selective shift of a multiple of an element in C onto the current t
(which is the element that we want to reduce; it is initially set to d). Each element
in C originates from a block A′i and thus is an element of the subgroup N (and all
multiples are also elements of N).

These reductions are performed iteratively for each component. In the first iteration,
the algorithm tries to reduce the first component of t. In the second iteration, the
second component is reduced, and so on. This process has the property that once the
first c components have been reduced, the reduction of the components c+1, c+2, . . .
does not have any effect on the first c components, because in the c′th iteration only
a c′-element is used for reduction.

• Recall that each element in C originates from a block A′i. In the reduction algorithm
it can happen that t is reduced multiple times by elements originating from a common
block. For example, in the jth iteration the jth component of t could be reduced
using a j-element u in a block A′i and later the kth component (k > j) of t could be
reduced using a k-element v in the same block A′i. This is not a problem, because
(t− u)− v = t− (u+ v), and u+ v ∈ A1 + . . .+Ai, as A1 + . . .+Ai is a subgroup
of G. Note that we never need to actually compute the factorization of u + v in
A1 + . . .+Ai. It is just important to understand that two such reductions are always
equivalent to subtracting one element from A1 + . . .+Ai.

By applying this argument iteratively to all performed reductions, we see that these
reductions are equivalent to subtracting one element w ∈ N from d. Then at the
end t = (0, . . . , 0)⇔ ∃w ∈ N : d− w = (0, . . . , 0)⇔ d ∈ N .

Proposition 8.14. Let G be an abelian group (represented as G = Z
p
k1
1

⊕Z
p
k2
2

⊕ . . .⊕Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m) and N := A1 + A2 + . . . + Ar with A1 ≤ G,
A1 +A2 ≤ G, A1 +A2 +A3 ≤ G, . . ., N ≤ G. Let α := (A1, . . . , Ar).

Then Algorithm 8.13 performs O(m · r · `(α)) group operations (and we have O(m · r ·
`(α)) ⊆ O(log2 |G| · `(α)2)).

Proof. We determine the run-times of the two algorithms:

• C computation. Initializing α′ involves copying `(α) group elements. Initializing C
requires copying the identity element m times. The outer loop runs exactly m times,
and the loop within it runs exactly r times. It is not necessary to actually build the
set S; trying to locate a c-element s = (s1, . . . , sm) with sc minimal is sufficient; so
we need to inspect |A′i| group elements; observe that |S| ≤ |A′i| = |Ai|. We consider
copying s to C[c] to take 1 group operation. The next loop iterates over all elements
in the blocks right of A′i.

In total, we need

O(`(α) +m+

m∑
c=1

r∑
i=1

(|A′i|+ 1 +

r∑
j=i+1

|A′j |))

8.4. Factoring in Logarithmic Signatures with Blocks of Prime Size 115

= O(`(α) +m+

m∑
c=1

r∑
i=1

(|Ai|+ 1 +

r∑
j=i+1

|Aj |))

⊆ O(`(α) +m+

m∑
c=1

r∑
i=1

(|Ai|+ 1 + `(α)))

⊆ O(`(α) +m+

m∑
c=1

r∑
i=1

(`(α) + `(α)) +m · r)

= O(`(α) +m+ 2 ·m · r · `(α) +m · r)
= O(m · r · `(α))

group operations.

• Reduction. We need

O(1 +

m∑
c=1

(1 + 1 + 1)) = O(m)

group operations.

Thus, for the C computation and the reduction together, we need

O(m · r · `(α)) +O(m) = O(m · r · `(α))

group operations.

Lemma 8.15. Let G be an abelian group (represented as G = Z
p
k1
1

⊕ Z
p
k2
2

⊕ . . . ⊕ Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m) and N := A1 + A2 + . . . + Ar with A1 ≤ G,
A1 +A2 ≤ G, A1 +A2 +A3 ≤ G, . . ., N ≤ G. Let α := (A1, . . . , Ar) and S ⊆ G/N (each
element of S shall be given by a representative in G).

Then testing whether S is a subgroup of G/N is possible using O(|S|3 ·m · r · `(α)) group
operations.

The algorithm for testing this takes α and S as input. The set N (containing |A1| ·
|A2| · · · |Ar| elements) is not part of the input; it is only used for notation.

Proof. S is a subgroup, if a − b ∈ S for all a, b ∈ S. So, compute all possible differences
d := a− b (there are |S|2 such differences) and test whether d ∈ S holds (by searching an
s ∈ S with d+N = s+N ; this can be tested using Algorithm 8.13). For this, we need

|S|2 + |S|2 · |S| ·O(m · r · `(α)) = O(|S|3 ·m · r · `(α))

group operations.

Algorithm 8.16. Let G be an abelian group (represented as G = Z
p
k1
1

⊕Z
p
k2
2

⊕ . . .⊕Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m), β = (B1, B2, . . . , Bn) ∈ Λ(G) with |Bi| ∈ P for all

116 8. Abelian Groups

1 ≤ i ≤ n, and h ∈ G. Additionally, we can assume that β is canonical (see Proposition
7.1).

The following recursive algorithm finds the factorization of h with respect to β, when
calling FactorizeAb(β, h, ((0, . . . , 0))):

Function FactorizeAb(LogSig α, GroupElement g, BlockSequence N) : List<UInt>

1. If |α| = 1: find g +N in α[1] (in G/N) and return its index (one item in a list).

2. Let s be the index of the first block in α being a subgroup in G/N .

3. Let α′ ← α without the sth block. Let N ′ ← N with block α[s] appended.

4. Let v ← FactorizeAb(α′, g, N ′).

5. Insert 0 at index s in v.

6. Let t← α[1][v[1]] + . . .+ α[s− 1][v[s− 1]] + α[s+ 1][v[s+ 1]] + . . .+ α[|α|][v[|α|]].

7. For i← 1 to |α[s]|:
• If t+ α[s][i] +N = g +N : set v[s]← i and return v.

Proof. The algorithm realizes the idea of Theorem 7.6.

N is fulfilling the requirements for Algorithm 8.13 and Lemma 8.15: initially we have
N = {(0, . . . , 0)} (which indeed is a subgroup of G) and on every recursion level a block
α[s] is appended, where α[s] is a subgroup in G/N (such a block always exists by Rédei’s
theorem); i.e. every new N ′ is also a subgroup of G and while descending in the recursion
we get sequences of subgroups as required by Algorithm 8.13 and Lemma 8.15.

Proposition 8.17. Let G be an abelian group (represented as G = Z
p
k1
1

⊕Z
p
k2
2

⊕ . . .⊕Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m), β = (B1, B2, . . . , Bn) ∈ Λ(G) canonical with
|Bi| ∈ P for all 1 ≤ i ≤ n. Let q := max {|Bi| | 1 ≤ i ≤ n}.

Then Algorithm 8.16 requires O(q3 ·m · n3 · `(β)) group operations.

Proof. We count the required group operations:

• Searching for g + N in a block (if α consists of one block only) requires at most q
equality tests using Algorithm 8.13, i.e. q ·O(m · n · `(β)) group operations.

• For finding the first block being a subgroup in G/N we use Lemma 8.15 for each
block and thus need at most |α| ·O(q3 ·m · n · `(β)) group operations.

• Computing t and completing the factorization requires at most

(n− 2) + |α[s]| · (1 +O(m · n · `(β))) ⊆ O(q ·m · n · `(β))

group operations.

8.4. Factoring in Logarithmic Signatures with Blocks of Prime Size 117

In total, we need

q ·O(m · n · `(β))︸ ︷︷ ︸
Case 1 block

+

n∑
i=2

i ·O(q3 ·m · n · `(β))︸ ︷︷ ︸
Subgroup tests

+O(q ·m · n · `(β))︸ ︷︷ ︸
Completing fac.

= n ·O(q ·m · n · `(β)) +O(q3 ·m · n · `(β)) ·

n∑
i=2

i

= O(q3 ·m · n3 · `(β))

group operations.

Implementation. This algorithm, together with some extensions, has been implemented
in our LogSig program. For the command line syntax, see Section 12.3.

Example 8.18. Let G = Z9 ⊕ Z9 ⊕ Z3 ⊕ Z2, g = (4, 3, 0, 1), and

α =

(0, 0, 0, 0)
(0, 6, 2, 0)
(3, 0, 2, 0)

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

(0, 0, 0, 0)
(0, 8, 1, 0)
(3, 1, 1, 0)

(0, 0, 0, 0)
(3, 0, 0, 0)
(3, 0, 1, 0)

((0, 0, 0, 0)
(3, 6, 0, 1)

)(0, 0, 0, 0)
(2, 3, 1, 1)
(7, 0, 1, 0)

a logarithmic signature for G. We are looking for a factorization of g with respect to α.

α0 :=

(0, 0, 0, 0)
(0, 6, 2, 0)
(3, 0, 2, 0)

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

(0, 0, 0, 0)
(0, 8, 1, 0)
(3, 1, 1, 0)

(0, 0, 0, 0)
(3, 0, 0, 0)
(3, 0, 1, 0)

((0, 0, 0, 0)
(3, 6, 0, 1)

)(0, 0, 0, 0)
(2, 3, 1, 1)
(7, 0, 1, 0)

 ,

N0 := {(0, 0, 0, 0)},
N ′0 := {(0, 0, 0, 0)}.

The second block in α0 is a subgroup (in G/N0).

α1 :=

(0, 0, 0, 0)
(0, 6, 2, 0)
(3, 0, 2, 0)

(0, 0, 0, 0)
(0, 8, 1, 0)
(3, 1, 1, 0)

(0, 0, 0, 0)
(3, 0, 0, 0)
(3, 0, 1, 0)

((0, 0, 0, 0)
(3, 6, 0, 1)

)(0, 0, 0, 0)
(2, 3, 1, 1)
(7, 0, 1, 0)

 ,

N1 :=

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

 ,

N ′1 :=

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

 .

The first block in α1 is a subgroup (in G/N1).

α2 :=

(0, 0, 0, 0)
(0, 8, 1, 0)
(3, 1, 1, 0)

(0, 0, 0, 0)
(3, 0, 0, 0)
(3, 0, 1, 0)

((0, 0, 0, 0)
(3, 6, 0, 1)

)(0, 0, 0, 0)
(2, 3, 1, 1)
(7, 0, 1, 0)

 ,

N2 :=

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

(0, 0, 0, 0)
(0, 6, 2, 0)
(3, 0, 2, 0)

 ,

N ′2 :=

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

(0, 0, 0, 0)
(0, 3, 1, 0)
(0, 6, 2, 0)

 .

118 8. Abelian Groups

The second block in α2 is a subgroup (in G/N2).

α3 :=

(0, 0, 0, 0)
(0, 8, 1, 0)
(3, 1, 1, 0)

((0, 0, 0, 0)
(3, 6, 0, 1)

)(0, 0, 0, 0)
(2, 3, 1, 1)
(7, 0, 1, 0)

 ,

N3 :=

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

(0, 0, 0, 0)
(0, 6, 2, 0)
(3, 0, 2, 0)

(0, 0, 0, 0)
(3, 0, 0, 0)
(3, 0, 1, 0)

 ,

N ′3 :=

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

(0, 0, 0, 0)
(0, 3, 1, 0)
(0, 6, 2, 0)

(0, 0, 0, 0)
(0, 0, 1, 0)
(0, 0, 2, 0)

 .

The first block in α3 is a subgroup (in G/N3).

α4 :=

(
(0, 0, 0, 0)
(3, 6, 0, 1)

)(0, 0, 0, 0)
(2, 3, 1, 1)
(7, 0, 1, 0)

 ,

N4 :=

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

(0, 0, 0, 0)
(0, 6, 2, 0)
(3, 0, 2, 0)

(0, 0, 0, 0)
(3, 0, 0, 0)
(3, 0, 1, 0)

(0, 0, 0, 0)
(0, 8, 1, 0)
(3, 1, 1, 0)

 ,

N ′4 :=

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

(0, 0, 0, 0)
(0, 3, 1, 0)
(0, 6, 2, 0)

(0, 0, 0, 0)
(0, 0, 1, 0)
(0, 0, 2, 0)

(0, 0, 0, 0)
(0, 1, 0, 0)
(0, 2, 0, 0)

 .

The first block in α4 is a subgroup (in G/N4).

α5 :=

(0, 0, 0, 0)
(2, 3, 1, 1)
(7, 0, 1, 0)

 ,

N5 :=

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

(0, 0, 0, 0)
(0, 6, 2, 0)
(3, 0, 2, 0)

(0, 0, 0, 0)
(3, 0, 0, 0)
(3, 0, 1, 0)

(0, 0, 0, 0)
(0, 8, 1, 0)
(3, 1, 1, 0)

((0, 0, 0, 0)
(3, 6, 0, 1)

)
,

N ′5 :=

(0, 0, 0, 0)
(3, 6, 1, 0)
(6, 3, 2, 0)

(0, 0, 0, 0)
(0, 3, 1, 0)
(0, 6, 2, 0)

(0, 0, 0, 0)
(0, 0, 1, 0)
(0, 0, 2, 0)

(0, 0, 0, 0)
(0, 1, 0, 0)
(0, 2, 0, 0)

((0, 0, 0, 0)
(0, 0, 0, 1)

)
.

Factorization of g +N5 in α5:

α5 =

 (0, 0, 0, 0)
(2, 3, 1, 1)

(7, 0, 1, 0)

 .

Factorization of g +N4 in α4:

α4 =

(
(0, 0, 0, 0)

(3, 6, 0, 1)

) (0, 0, 0, 0)
(2, 3, 1, 1)

(7, 0, 1, 0)

 .

Factorization of g +N3 in α3:

α3 =

 (0, 0, 0, 0)

(0, 8, 1, 0)
(3, 1, 1, 0)

((0, 0, 0, 0)

(3, 6, 0, 1)

) (0, 0, 0, 0)
(2, 3, 1, 1)

(7, 0, 1, 0)

 .

8.4. Factoring in Logarithmic Signatures with Blocks of Prime Size 119

Factorization of g +N2 in α2:

α2 =

 (0, 0, 0, 0)

(0, 8, 1, 0)
(3, 1, 1, 0)

 (0, 0, 0, 0)

(3, 0, 0, 0)

(3, 0, 1, 0)

((0, 0, 0, 0)

(3, 6, 0, 1)

) (0, 0, 0, 0)
(2, 3, 1, 1)

(7, 0, 1, 0)

 .

Factorization of g +N1 in α1:

α1 =

 (0, 0, 0, 0)

(0, 6, 2, 0)

(3, 0, 2, 0)

 (0, 0, 0, 0)

(0, 8, 1, 0)
(3, 1, 1, 0)

 (0, 0, 0, 0)

(3, 0, 0, 0)

(3, 0, 1, 0)

((0, 0, 0, 0)

(3, 6, 0, 1)

) (0, 0, 0, 0)
(2, 3, 1, 1)

(7, 0, 1, 0)

 .

Factorization of g +N0 in α0:

α0 =

 (0, 0, 0, 0)

(0, 6, 2, 0)

(3, 0, 2, 0)

 (0, 0, 0, 0)

(3, 6, 1, 0)
(6, 3, 2, 0)

 (0, 0, 0, 0)

(0, 8, 1, 0)
(3, 1, 1, 0)

 (0, 0, 0, 0)

(3, 0, 0, 0)

(3, 0, 1, 0)

((0, 0, 0, 0)

(3, 6, 0, 1)

) (0, 0, 0, 0)
(2, 3, 1, 1)

(7, 0, 1, 0)

 .

Example 8.19. Let G = Z3 ⊕ Z3 ⊕ Z9 ⊕ Z8, g = (1, 1, 7, 7), and

α =

(
(0, 0, 0, 0)
(1, 0, 0, 7)

)(0, 0, 0, 0)
(1, 2, 6, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)
(2, 1, 6, 4)

)(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(1, 2, 3, 0)
(2, 1, 6, 0)

(0, 0, 0, 0)
(0, 2, 5, 4)
(1, 2, 4, 2)

((0, 0, 0, 0)
(1, 2, 6, 6)

)

a logarithmic signature for G. We are looking for a factorization of g with respect to α.

α0 :=

(
(0, 0, 0, 0)
(1, 0, 0, 7)

)(0, 0, 0, 0)
(1, 2, 6, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)
(2, 1, 6, 4)

)(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(1, 2, 3, 0)
(2, 1, 6, 0)

(0, 0, 0, 0)
(0, 2, 5, 4)
(1, 2, 4, 2)

((0, 0, 0, 0)
(1, 2, 6, 6)

)
,

N0 := {(0, 0, 0, 0)},
N ′0 := {(0, 0, 0, 0)}.

The 4th block in α0 is a subgroup (in G/N0).

α1 :=

(
(0, 0, 0, 0)
(1, 0, 0, 7)

)(0, 0, 0, 0)
(1, 2, 6, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)
(2, 1, 6, 4)

)(0, 0, 0, 0)
(1, 2, 3, 0)
(2, 1, 6, 0)

(0, 0, 0, 0)
(0, 2, 5, 4)
(1, 2, 4, 2)

((0, 0, 0, 0)
(1, 2, 6, 6)

)
,

N1 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

 ,

N ′1 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

 .

The 4th block in α1 is a subgroup (in G/N1).

α2 :=

(
(0, 0, 0, 0)
(1, 0, 0, 7)

)(0, 0, 0, 0)
(1, 2, 6, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)
(2, 1, 6, 4)

)(0, 0, 0, 0)
(0, 2, 5, 4)
(1, 2, 4, 2)

((0, 0, 0, 0)
(1, 2, 6, 6)

)
,

N2 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(1, 2, 3, 0)
(2, 1, 6, 0)

 ,

N ′2 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(0, 1, 3, 0)
(0, 2, 6, 0)

 .

120 8. Abelian Groups

The second block in α2 is a subgroup (in G/N2).

α3 :=

(
(0, 0, 0, 0)
(1, 0, 0, 7)

)(
(0, 0, 0, 0)
(2, 1, 6, 4)

)(0, 0, 0, 0)
(0, 2, 5, 4)
(1, 2, 4, 2)

((0, 0, 0, 0)
(1, 2, 6, 6)

)
,

N3 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(1, 2, 3, 0)
(2, 1, 6, 0)

(0, 0, 0, 0)
(1, 2, 6, 0)
(0, 0, 6, 0)

 ,

N ′3 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(0, 1, 3, 0)
(0, 2, 6, 0)

(0, 0, 0, 0)
(0, 0, 3, 0)
(0, 0, 6, 0)

 .

The second block in α3 is a subgroup (in G/N3).

α4 :=

(
(0, 0, 0, 0)
(1, 0, 0, 7)

)(0, 0, 0, 0)
(0, 2, 5, 4)
(1, 2, 4, 2)

((0, 0, 0, 0)
(1, 2, 6, 6)

)
,

N4 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(1, 2, 3, 0)
(2, 1, 6, 0)

(0, 0, 0, 0)
(1, 2, 6, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)
(2, 1, 6, 4)

)
,

N ′4 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(0, 1, 3, 0)
(0, 2, 6, 0)

(0, 0, 0, 0)
(0, 0, 3, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)
(0, 0, 0, 4)

)
.

The third block in α4 is a subgroup (in G/N4).

α5 :=

(
(0, 0, 0, 0)
(1, 0, 0, 7)

)(0, 0, 0, 0)
(0, 2, 5, 4)
(1, 2, 4, 2)

 ,

N5 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(1, 2, 3, 0)
(2, 1, 6, 0)

(0, 0, 0, 0)
(1, 2, 6, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)
(2, 1, 6, 4)

)(
(0, 0, 0, 0)
(1, 2, 6, 6)

)
,

N ′5 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(0, 1, 3, 0)
(0, 2, 6, 0)

(0, 0, 0, 0)
(0, 0, 3, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)
(0, 0, 0, 4)

)(
(0, 0, 0, 0)
(0, 0, 0, 2)

)
.

The first block in α5 is a subgroup (in G/N5).

α6 :=

(0, 0, 0, 0)
(0, 2, 5, 4)
(1, 2, 4, 2)

 ,

N6 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(1, 2, 3, 0)
(2, 1, 6, 0)

(0, 0, 0, 0)
(1, 2, 6, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)
(2, 1, 6, 4)

)(
(0, 0, 0, 0)
(1, 2, 6, 6)

)(
(0, 0, 0, 0)
(1, 0, 0, 7)

)
,

N ′6 :=

(0, 0, 0, 0)
(1, 0, 6, 0)
(2, 0, 3, 0)

(0, 0, 0, 0)
(0, 1, 3, 0)
(0, 2, 6, 0)

(0, 0, 0, 0)
(0, 0, 3, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)
(0, 0, 0, 4)

)(
(0, 0, 0, 0)
(0, 0, 0, 2)

)(
(0, 0, 0, 0)
(0, 0, 0, 1)

)
.

Factorization of g +N6 in α6:

α6 =

 (0, 0, 0, 0)
(0, 2, 5, 4)

(1, 2, 4, 2)

 .

8.5. Factoring in Logarithmic Signatures with Blocks of Composite Size 121

Factorization of g +N5 in α5:

α5 =

(
(0, 0, 0, 0)

(1, 0, 0, 7)

) (0, 0, 0, 0)
(0, 2, 5, 4)

(1, 2, 4, 2)

 .

Factorization of g +N4 in α4:

α4 =

(
(0, 0, 0, 0)

(1, 0, 0, 7)

) (0, 0, 0, 0)
(0, 2, 5, 4)

(1, 2, 4, 2)

((0, 0, 0, 0)

(1, 2, 6, 6)

)
.

Factorization of g +N3 in α3:

α3 =

(
(0, 0, 0, 0)

(1, 0, 0, 7)

)(
(0, 0, 0, 0)

(2, 1, 6, 4)

) (0, 0, 0, 0)
(0, 2, 5, 4)

(1, 2, 4, 2)

((0, 0, 0, 0)

(1, 2, 6, 6)

)
.

Factorization of g +N2 in α2:

α2 =

(
(0, 0, 0, 0)

(1, 0, 0, 7)

) (0, 0, 0, 0)

(1, 2, 6, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)

(2, 1, 6, 4)

) (0, 0, 0, 0)
(0, 2, 5, 4)

(1, 2, 4, 2)

((0, 0, 0, 0)

(1, 2, 6, 6)

)
.

Factorization of g +N1 in α1:

α1 =

(
(0, 0, 0, 0)

(1, 0, 0, 7)

) (0, 0, 0, 0)

(1, 2, 6, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)

(2, 1, 6, 4)

) (0, 0, 0, 0)

(1, 2, 3, 0)
(2, 1, 6, 0)

 (0, 0, 0, 0)

(0, 2, 5, 4)

(1, 2, 4, 2)

((0, 0, 0, 0)

(1, 2, 6, 6)

)
.

Factorization of g +N0 in α0: α0 =

(
(0, 0, 0, 0)

(1, 0, 0, 7)

) (0, 0, 0, 0)

(1, 2, 6, 0)
(0, 0, 6, 0)

((0, 0, 0, 0)

(2, 1, 6, 4)

) (0, 0, 0, 0)

(1, 0, 6, 0)

(2, 0, 3, 0)

 (0, 0, 0, 0)

(1, 2, 3, 0)
(2, 1, 6, 0)

 (0, 0, 0, 0)

(0, 2, 5, 4)

(1, 2, 4, 2)

((0, 0, 0, 0)

(1, 2, 6, 6)

)
.

8.5. Factoring in Logarithmic Signatures with Blocks of
Composite Size

Observation 8.20. If a logarithmic signature α of some abelian group G contains a
subgroup block Ai of composite size, Algorithm 8.16 is able to compute factorizations
in G, if it can compute factorizations in G/Ai. One can easily check that none of the
simplifications/computations in the algorithm actually requires the blocks to be of prime
size; this was only required to prove that in arbitrary abelian groups (represented as direct
sum of cyclic groups) logarithmic signatures with blocks of prime size are tame.

So, the algorithm can successfully factor elements, if on every recursion level it encoun-
ters a subgroup block, independent of the size of the block.

Example 8.21. Let G = Z8 ⊕ Z4, g = (5, 3), and

122 8. Abelian Groups

α =

(
(0, 0)
(2, 1)

)
(0, 0)
(2, 0)
(4, 0)
(6, 0)

((0, 0)(1, 2)

)(
(0, 0)
(4, 2)

)

a logarithmic signature for G. We are looking for a factorization of g with respect to α.

α0 :=

(
(0, 0)
(2, 1)

)
(0, 0)
(2, 0)
(4, 0)
(6, 0)

((0, 0)(1, 2)

)(
(0, 0)
(4, 2)

)
,

N0 := {(0, 0)},
N ′0 := {(0, 0)}.

The second block in α0 is a subgroup (in G/N0).

α1 :=

(
(0, 0)
(2, 1)

)(
(0, 0)
(1, 2)

)(
(0, 0)
(4, 2)

)
,

N1 :=

(0, 0)
(2, 0)
(4, 0)
(6, 0)

 ,

N ′1 :=

(0, 0)
(2, 0)
(4, 0)
(6, 0)

 .

The second block in α1 is a subgroup (in G/N1).

α2 :=

(
(0, 0)
(2, 1)

)(
(0, 0)
(4, 2)

)
,

N2 :=

(0, 0)
(2, 0)
(4, 0)
(6, 0)

((0, 0)(1, 2)

)
,

N ′2 :=

(0, 0)
(2, 0)
(4, 0)
(6, 0)

((0, 0)(1, 2)

)
.

The second block in α2 is a subgroup (in G/N2).

α3 :=

(
(0, 0)
(2, 1)

)
,

N3 :=

(0, 0)
(2, 0)
(4, 0)
(6, 0)

((0, 0)(1, 2)

)(
(0, 0)
(4, 2)

)
,

N ′3 :=

(0, 0)
(2, 0)
(4, 0)
(6, 0)

((0, 0)(1, 2)

)(
(0, 0)
(0, 2)

)
.

Factorization of g +N3 in α3:

8.5. Factoring in Logarithmic Signatures with Blocks of Composite Size 123

α3 =

(
(0, 0)

(2, 1)

)
.

Factorization of g +N2 in α2:

α2 =

(
(0, 0)

(2, 1)

)(
(0, 0)

(4, 2)

)
.

Factorization of g +N1 in α1:

α1 =

(
(0, 0)

(2, 1)

)(
(0, 0)

(1, 2)

)(
(0, 0)

(4, 2)

)
.

Factorization of g +N0 in α0:

α0 =

(
(0, 0)

(2, 1)

)
(0, 0)

(2, 0)

(4, 0)
(6, 0)

(

(0, 0)

(1, 2)

)(
(0, 0)

(4, 2)

)
.

Logarithmic signatures containing composite-sized blocks do not necessarily contain sub-
group blocks. However, we can try to decompose composite-sized blocks, in the hope that
one of the smaller blocks is a subgroup (such that we can descend one recursion level in
the algorithm and work with a simpler logarithmic signature). In the following we present
such a decomposition.

Lemma 8.22. Let G be an abelian group (represented as G = Z
p
k1
1

⊕ Z
p
k2
2

⊕ . . . ⊕ Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m) and N := A1 + A2 + . . . + Ar with A1 ≤ G,
A1 + A2 ≤ G, A1 + A2 + A3 ≤ G, . . ., N ≤ G. Let α := (A1, . . . , Ar) and S ⊆ G/N with
(0, . . . , 0) ∈ S (each element of S shall be given by a representative in G).

Then finding the periods of S (representatives in G for elements in G/N) is possible
using O(|S|3 ·m · r · `(α)) group operations.

The algorithm for computing the periods takes α and S as input. The set N (containing
|A1| · |A2| · · · |Ar| elements) is not part of the input; it is only used for notation.

Proof. A g ∈ G/N \ {(0, . . . , 0)} is a period of S, if S + g = S. As (0, . . . , 0) ∈ S, the only
candidates for g are the elements in S.

So, for each candidate g ∈ S \ {(0, . . . , 0)} we build the set S + g and test whether
S + g = S, which can be done using at most |S|2 element equality tests using Algorithm
8.13 (for each element in S + g check whether it also is in S).

In total, we need

|S| ·
(
|S|+ |S|2 ·O(m · r · `(α))

)
= O(|S|3 ·m · r · `(α))

group operations.

124 8. Abelian Groups

Algorithm 8.23. We extend Algorithm 8.16 in the following way to additionally support
factoring periodic blocks of composite size.

Let the input be the same as in Algorithm 8.16.
If no subgroup can be found on the current recursion level, locate all composite-sized

blocks and test them for periodicity. If a block Ai is of composite size and periodic, by
Lemma 2.7 it can be decomposed as Ai = A+ S with A ⊆ G/N and S ≤ G/N . Replace
Ai by (A,S) (two blocks) and run the algorithm on this new logarithmic signature. If
we find a factorization in the new logarithmic signature, deriving a factorization in the
original one is easy (just search the correct element in Ai).

Proposition 8.24. Algorithm 8.23 requires O(log2 |G| · q3 ·m ·n2 · `(β)) group operations.

Proof. Finding the periods of a block is possible using at most O(q3 ·m · n · `(β)) group
operations by Lemma 8.22.

The block A can then be constructed as follows: start with A = ∅, pick an arbitrary a
in Ai, put a into A and remove the set a+ S from Ai, and repeat this until Ai = ∅. This
procedure requires at most

|Ai|
|S|
· (|S|+ |S| · |Ai| ·O(m · n · `(β))) ⊆ O(q2 ·m · n · `(β))

group operations.
Splitting a periodic block can happen at most

∑m
i=1 ki − 1 < log2 |G| times. Each time

a periodic block is splitted, another recursion level is entered (for a logarithmic signature
having at most n + 1 blocks), where at most n + 1 subgroup block tests are performed
(requiring at most (n+ 1) ·O(q3 ·m ·n · `(β)) group operations) until finding the subgroup
block from the splitting.

In total, we need

q ·O(m · n · `(β))︸ ︷︷ ︸
Case 1 block

+

n∑
i=2

 i · 2 ·O(q3 ·m · n · `(β))︸ ︷︷ ︸
Subgroup tests and finding periods

+O(q ·m · n · `(β))︸ ︷︷ ︸
Completing fac.

+

(

m∑
i=1

ki − 1) ·

O(q2 ·m · n · `(β))︸ ︷︷ ︸
Split to A+ S

+ (n+ 1) ·O(q3 ·m · n · `(β))︸ ︷︷ ︸
Subgroup tests on new rec. level

+O(q ·m · n · `(β))︸ ︷︷ ︸
Completing fac.

= O(q3 ·m · n3 · `(β)) + log2 |G| ·O(q3 ·m · n2 · `(β))

= O(log2 |G| · q3 ·m · n2 · `(β))

group operations.

Example 8.25. Let G = Z16 ⊕ Z2, g = (7, 0), and

α =

(
(0, 0)
(2, 0)

)
(0, 0)
(1, 0)
(4, 0)
(5, 1)

((0, 0)(8, 0)

)(
(0, 0)
(0, 1)

)

8.5. Factoring in Logarithmic Signatures with Blocks of Composite Size 125

a logarithmic signature for G. We are looking for a factorization of g with respect to α.

α0 :=

(
(0, 0)
(2, 0)

)
(0, 0)
(1, 0)
(4, 0)
(5, 1)

((0, 0)(8, 0)

)(
(0, 0)
(0, 1)

)
,

N0 := {(0, 0)},
N ′0 := {(0, 0)}.

The third block in α0 is a subgroup (in G/N0).

α1 :=

(
(0, 0)
(2, 0)

)
(0, 0)
(1, 0)
(4, 0)
(5, 1)

((0, 0)(0, 1)

)
,

N1 :=

(
(0, 0)
(8, 0)

)
,

N ′1 :=

(
(0, 0)
(8, 0)

)
.

The third block in α1 is a subgroup (in G/N1).

α2 :=

(
(0, 0)
(2, 0)

)
(0, 0)
(1, 0)
(4, 0)
(5, 1)

 ,

N2 :=

(
(0, 0)
(8, 0)

)(
(0, 0)
(0, 1)

)
,

N ′2 :=

(
(0, 0)
(8, 0)

)(
(0, 0)
(0, 1)

)
.

The second block is periodic (in G/N2) and can be splitted into two blocks.

α3 :=

(
(0, 0)
(2, 0)

)(
(0, 0)
(1, 0)

)(
(0, 0)
(4, 0)

)
,

N3 :=

(
(0, 0)
(8, 0)

)(
(0, 0)
(0, 1)

)
,

N ′3 :=

(
(0, 0)
(8, 0)

)(
(0, 0)
(0, 1)

)
.

The third block in α3 is a subgroup (in G/N3).

α4 :=

(
(0, 0)
(2, 0)

)(
(0, 0)
(1, 0)

)
,

N4 :=

(
(0, 0)
(8, 0)

)(
(0, 0)
(0, 1)

)(
(0, 0)
(4, 0)

)
,

N ′4 :=

(
(0, 0)
(8, 0)

)(
(0, 0)
(0, 1)

)(
(0, 0)
(4, 0)

)
.

The first block in α4 is a subgroup (in G/N4).

α5 :=

(
(0, 0)
(1, 0)

)
,

N5 :=

(
(0, 0)
(8, 0)

)(
(0, 0)
(0, 1)

)(
(0, 0)
(4, 0)

)(
(0, 0)
(2, 0)

)
,

N ′5 :=

(
(0, 0)
(8, 0)

)(
(0, 0)
(0, 1)

)(
(0, 0)
(4, 0)

)(
(0, 0)
(2, 0)

)
.

126 8. Abelian Groups

Factorization of g +N5 in α5:

α5 =

(
(0, 0)

(1, 0)

)
.

Factorization of g +N4 in α4:

α4 =

(
(0, 0)

(2, 0)

)(
(0, 0)

(1, 0)

)
.

Factorization of g +N3 in α3:

α3 =

(
(0, 0)

(2, 0)

)(
(0, 0)

(1, 0)

)(
(0, 0)

(4, 0)

)
.

Factorization of g +N2 in α2:

α2 =

(
(0, 0)

(2, 0)

)
(0, 0)
(1, 0)
(4, 0)

(5, 1)

 .

Factorization of g +N1 in α1:

α1 =

(
(0, 0)

(2, 0)

)
(0, 0)
(1, 0)
(4, 0)

(5, 1)

(

(0, 0)

(0, 1)

)
.

Factorization of g +N0 in α0:

α0 =

(
(0, 0)

(2, 0)

)
(0, 0)
(1, 0)
(4, 0)

(5, 1)

(

(0, 0)

(8, 0)

)(
(0, 0)

(0, 1)

)
.

Implementation. Algorithm 8.23 has been implemented in our LogSig program. For
the command line syntax, see Section 12.3.

8.6. Multiple Factorizations

We now enhance Algorithm 8.23 to support factoring with respect to certain multiple
factorizations of abelian groups.

Definition 8.26. Let G be an abelian group and α = (A1, . . . , An) a k-factorization of
G, i.e. every element in G can be expressed in exactly k different ways with respect to α.

We define a function µ that maps α to another k-factorization µ(α) of G: for every
block Ai in α test whether there exists 2 ≤ s < |Ai|, such that every element in Ai occurs
exactly s times in Ai, and if so, replace Ai by a block (0, . . . , 0) of size s and a block A′i of

size |Ai|s , where A′i contains all elements of Ai once (i.e. without duplicates).

8.7. Generic Factorization Algorithm 127

Example 8.27. Let G = Z24 .

• α := ((0, 1), (0, 2), (0, 4), (0, 8), (0, 0)) is a 2-factorization of G, and µ(α) = α.

• α := ((0, 1), (0, 2, 0, 2), (0, 4), (0, 8, 8, 0, 0, 8)) is a 6-factorization of G, and

µ(α) = ((0, 1), (0, 0), (0, 2), (0, 4), (0, 0, 0), (0, 8)).

• α := ((0, 1, 2, 3), (0, 4, 8, 12), (0, 1, 2, 3)) is a 4-factorization of G, and µ(α) = α.

• α := ((0, 1, 2, 3), (0, 4, 8, 12), (0, 1, 1, 2, 2, 2)) is a 6-factorization of G, and µ(α) = α.

• α := ((0, 1, 2, 3), (0, 4, 8, 12), (0, 1, 1, 0)) is a 4-factorization of G, and

µ(α) = ((0, 1, 2, 3), (0, 4, 8, 12), (0, 0), (0, 1)).

Algorithm 8.28. We enhance Algorithm 8.23 to factor elements in certain multiple fac-
torizations. Let G be an abelian group and α = (A1, . . . , An) a k-factorization of G (i.e.
every element in G can be expressed in exactly k different ways with respect to α).

On every recursion level: if G = {0}, then all possible selections are valid factorizations;
propagate all of these factorizations to the recursion level above.

Otherwise apply µ to α. Search for a periodic block in µ(α). Here, consider only blocks
that do not contain any element multiple times. When such a periodic block is found,
perform the recursive step as usual (with splitting the block first in the non-subgroup
case).

As the recursive invocation now possibly supplies multiple factorizations instead of only
one when returning, all of these factorizations are lifted and completed appropriately (just
like with the single factorization as before, but with all factorizations now).

This algorithm is only successful when on the first recursion levels periodic blocks are
found (until reaching G = {0}). In later sections we will prove for some groups and
factorizations that this is the case and thus Algorithm 8.28 can be used for these.

The following theorem is from [Sza04] (Theorem 4.3.1). We will use it in later
sections.

Theorem 8.29. Let G be a cyclic group or a group of type (pu, p, . . . , p), where p is a
prime. Then in each multiple factorization of G into cyclic subsets at least one of the
factors is a subgroup of G.

If G is an abelian group which is not cyclic and not of type (pu, p, . . . , p), then G has a
multiple factorization by non-subgroup cyclic subsets.

8.7. Generic Factorization Algorithm

We now present a new generic factorization algorithm for block sequences of elements in
abelian groups. In contrast to our previous algorithms, the generic factorization algorithm
works with all block sequences, not just logarithmic signatures or multiple factorizations.
For a few special cases, we prove that the algorithm is efficient.

128 8. Abelian Groups

Algorithm 8.30. Let H be an abelian group (represented as H = Z
p
k1
1

⊕Z
p
k2
2

⊕ . . .⊕Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m) and β ∈ Ξr(H) canonical (we do not require β to
be a logarithmic signature or multiple factorization of H).

The following recursive algorithm computes all factorizations of a given element h ∈ H
with respect to β (if no such factorizations exist, an empty set is returned), when calling
FactorizeAbEx(β, H, h).

Function FactorizeAbEx(BlockSequence α = (A1, . . . , An), Group G, GroupElement g) :
Set<UInt[]>

1. If n = 1: return {(v) | 1 ≤ v ≤ |A1|, A1[v] = g}.

2. If there exists a block Ai in α with |Ai| > |E(Ai)| (i.e. Ai contains an element at
least twice):

a) Let α′ be the block sequence obtained from α by replacing block Ai by E(Ai).

b) Compute L← FactorizeAbEx(α′, G, g).

c) Let W ← {(v1, v2, . . . , vi−1, j, vi+1, vi+2, . . . , vl) | (v1, v2, . . . , vl) ∈ L, 1 ≤ j ≤
|Ai|}.

d) Return {(v1, v2, . . . , vl) ∈W | α[1][v1] + α[2][v2] + . . .+ α[l][vl] = g}.

3. If there exists a block Ai in α with |Ai| = 1:

a) Let α′ be the block sequence obtained from α by removing block Ai.

b) Compute L← FactorizeAbEx(α′, G, g).

c) Return {(v1, v2, . . . , vi−1, 1, vi, vi+1, . . . , vl) | (v1, v2, . . . , vl) ∈ L}.

4. Compute N ← ChooseNormalSubgroup(α,G). Let ϕ : G→ G/N : x 7→ x+N .

5. Compute L← FactorizeAbEx(ϕ(α), G/N,ϕ(g)).

6. Return {(v1, v2, . . . , vl) ∈ L | α[1][v1] + α[2][v2] + . . .+ α[l][vl] = g}.

Function ChooseNormalSubgroup(BlockSequence α = (A1, . . . , An), Group G) : P(G)

1. Let C ← GetLowOrderElements(α,G).

2. Let ϕg : G→ G/ 〈g〉 : x 7→ x+ 〈g〉.
Compute R← {(g, ord(g) ·u, s) | g ∈ C, (u, s) = EstSeqComplexity(ϕg(α), G/ 〈g〉)}.
During the computation of the set R: if any g results in an estimated complexity of
(1, 1), immediately return 〈g〉.

3. Let η ← min {u | (g, u, s) ∈ R}. Set R← {(g, u, s) ∈ R | u = η}.

4. Let ϑ← min {s | (g, u, s) ∈ R}. Set R← {(g, u, s) ∈ R | s = ϑ}.

8.7. Generic Factorization Algorithm 129

5. Randomly pick one (g, u, s) ∈ R and return 〈g〉.

Function GetLowOrderElements(BlockSequence α = (A1, . . . , An), Group G) : P(G)

1. Let Ψ(Ai) := {Ai[k]−Ai[j] | 1 ≤ j < k ≤ |Ai|} and M :=
⋃n
i=1 Ψ(Ai).

2. Let q̌ ← max {|Ai| | 1 ≤ i ≤ n}. Set d← 0 and C ← ∅.

3. While C = ∅:
a) Set d← d+ 1.

b) Set C ←
{
g ∈M | q̌d−1 < ord(g) ≤ q̌d

}
.

4. Interpret C as a list (order of elements arbitrary). For x← |C| down to 1:

• If there exists a 1 ≤ y < x with ord(C[y]) = ord(C[x]) and C[y] ∈ 〈C[x]〉:
remove the xth element from C.

5. Return C.

Function EstSeqComplexity(BlockSequence α = (A1, . . . , An), Group G) : N2

1. Let α′ = (A′1, . . . , A
′
k)← SimplifySeq(α,G).

2. If k ≤ 1: return (1, 1).

3. Let u←
∏k
i=1 |A′i| and s←

∑k
i=1

∑|A′i|
j=1 ord(A′i[j]).

4. For each g ∈ GetLowOrderElements(α′, G):

a) Let ϕ : G→ G/ 〈g〉 : x 7→ x+ 〈g〉.
b) Let γ = (B1, . . . , Bl)← SimplifySeq(ϕ(α′), G/ 〈g〉).
c) If ord(g) ·

∏l
i=1 |Bi| ≤ u: return EstSeqComplexity(γ,G/ 〈g〉).

5. Return (u, s).

Function SimplifySeq(BlockSequence α = (A1, . . . , An), Group G) : BlockSequence

1. Let α′ be the block sequence obtained from α by replacing each block Ai by E(Ai).

2. Remove all blocks A′i with |A′i| = 1 from α′.

3. Return α′.

Comments.

• We would like to note again that the hypothesis that α is canonical is not really a
restriction; see Proposition 7.1.

130 8. Abelian Groups

• Recall that by Section 8.4 we can efficiently compute in all factor groups that can
occur.

The algorithm definition is rather mathematical (in order to make the core ideas
clear). When implementing the algorithm, the approaches in Section 8.4 can be
used. For example, for ϕ(α) (with ϕ : G → G/N : x 7→ x + N), we actually do
not perform any computation with α, but instead append N to a normal subgroup
chain, like in Algorithm 8.16.

Element orders can for instance be computed using Lemma 11.6, or using the fol-
lowing: let x = (x1, x2, . . . , xm) ∈ G = Z

p
k1
1

⊕ Z
p
k2
2

⊕ . . .⊕ Z
pkmm

, then

ord(x) = lcm(
pk1

1

gcd(x1, p
k1
1)

,
pk2

2

gcd(x2, p
k2
2)

, . . . ,
pkmm

gcd(xm, p
km
m)

)

(which clearly can be computed efficiently).

• Observe that FactorizeAbEx and EstSeqComplexity are non-branching recursions;
they call themselves at most once. The depth is polynomial in log |G|.

• Let α = (A1, A2, . . . , An). Define κ(α,G, g) to be the number of different factoriza-
tions of g with respect to α, i.e. let

κ(α,G, g) := |{(i1, i2, . . . , in) ∈ Nn | 1 ≤ i1 ≤ |A1|, 1 ≤ i2 ≤ |A2|, . . . , 1 ≤ in ≤ |An|,
A1[i1] +A2[i2] + . . .+An[in] = g}|.

Let κ̂(α,G, g) be the maximum number of factorizations returned by a
FactorizeAbEx call on any recursion level when being called with the parameters
α, G and g.

Visually, when imagining the whole process as a recursive chain from top to bottom
(it is non-branching, i.e. not a tree, just a chain) and arranging the returned fac-
torizations horizontally (where each factorization is interpreted as an atom) on each
recursion level, κ̂(α,G, g) is the maximum width of the drawing.

Obviously, κ̂(α,G, g) ≤
∏n
i=1 |Ai| (and later we give an example where “=” holds),

but typically κ̂(α,G, g) is much smaller.

Examples.

– Let G = Z2 ⊕ Z3 ⊕ Z5,

α = (A1, A2, A3) =

(
(0, 0, 0)
(1, 0, 0)

)(0, 0, 0)
(0, 1, 0)
(1, 2, 0)

(0, 0, 0)
(1, 1, 1)
(0, 2, 2)
(1, 2, 3)
(0, 1, 4)

 ∈ Λ(G)

8.7. Generic Factorization Algorithm 131

and g ∈ G. The algorithm will first move into the factor group G/A1, i.e. factor
g + A1 with respect to (A2, A3) in G/A1. Finally, it will look up g + A1 + A2

with respect to (A3) in G/(A1 +A2).

Exactly one element will be found for g + A1 + A2 with respect to (A3) in
G/(A1 + A2), i.e. one index c (with A3[c] = g + A1 + A2 in G/(A1 + A2)) is
passed up to the caller; so

κ((A3), G/(A1 +A2), g +A1 +A2) = 1.

Before the second block was compressed (from ((0, 0, 0), (0, 0, 0), (0, 0, 0)) to
((0, 0, 0))) and removed (because ((0, 0, 0)) contains only one element), it was
((0, 0, 0), (0, 0, 0), (0, 0, 0)). Thus, the factorization that comes up from the re-
cursion level below is now expanded to three factorizations; so

κ((((0, 0, 0)), A3), G/(A1 +A2), g +A1 +A2) = 1,
κ((((0, 0, 0), (0, 0, 0), (0, 0, 0)), A3), G/(A1 +A2), g +A1 +A2) = 3.

There is exactly one index b such that A2[b] +A3[c] = g +A1 in G/A1, i.e. one
factorization (b, c) is passed up to the caller; so

κ((A2, A3), G/A1, g +A1) = 1.

Before the first block was compressed (from ((0, 0, 0), (0, 0, 0)) to ((0, 0, 0)))
and removed (because ((0, 0, 0)) contains only one element), it was
((0, 0, 0), (0, 0, 0)). Thus, the factorization that comes up from the recursion
level below is now expanded to two factorizations; so

κ((((0, 0, 0)), A2, A3), G/A1, g +A1) = 1,
κ((((0, 0, 0), (0, 0, 0)), A2, A3), G/A1, g +A1) = 2.

There is exactly one index a such that A1[a] + A2[b] + A3[c] = g in G, i.e. the
algorithm finally returns one factorization (a, b, c); so

κ(α,G, g) = 1.

The maximum of the κ values is 3, i.e. κ̂(α,G, g) = 3.

– Let G = Z3 and α = ((0, 1, 1)) (one block; α is a block sequence, no logarith-
mic signature). Then κ(α,G, g) = κ̂(α,G, g) for all g ∈ G, κ̂(α,G, 0) = 1,
κ̂(α,G, 1) = 2 and κ̂(α,G, 2) = 0.

The run-time of the algorithm mainly depends on κ̂(α,G, g). If κ̂(α,G, g) is polyno-
mial in `(α), then the algorithm is efficient. If κ̂(α,G, g) is exponential, exponentially
many elements need to be passed to the caller on some recursion level, which requires
exponential time.

• We analyze the effects of the operations on the run-time.

132 8. Abelian Groups

– The removal of duplicate elements in blocks simplifies the block sequence with-
out influencing κ̂(α,G, g). In other words, the maximum value κ̂(α,G, g) is
always caused by a different operation, not the removal of duplicate elements.

Let α = (A1, A2, . . . , An) be a block sequence in which A1 contains duplicate ele-
ments. Define α′ := (E(A1), A2, . . . , An). Then clearly κ(α,G, g) ≥ κ(α′, G, g),
i.e. equally many or more elements are passed up from the upper recursion level
for α than from the lower level for α′.

The relationship can be stated more precisely. For all a ∈ E(A1), let
ma(α

′, G, g) be the number of factorizations of g with respect to α′ where a
is selected in the first block. Then

κ(α,G, g) =
∑

a∈E(A1)

ca(A1) ·ma(α
′, G, g).

– The removal of blocks of size 1 does not influence κ̂(α,G, g).

Let α = (A1, A2, . . . , An) with |A1| = 1 (note that by design this implies A1 =
{0}), then clearly κ(α,G, g) = κ((A2, A3, . . . , An), G, g).

– At the end of the FactorizeAbEx method, a normal subgroup N is chosen and
we move into the factor group G/N . Let ϕ : G→ G/N : x 7→ x+N .

∗ If α ∈ Λ(G), then

κ(ϕ(α), G/N,ϕ(g)) = |N | · κ(α,G, g).

∗ If α is an arbitrary block sequence, the effect may vary, but clearly

κ(ϕ(α), G/N,ϕ(g)) ≥ κ(α,G, g).

So, this operation may influence κ̂(α,G, g).

Observe that the κ values may increase and decrease while descending recursively
(moving into a factor group increases it, removing duplicate elements decreases it).
Thus, κ̂(α,G, g) is determined on any of the recursion levels, not necessarily on the
top or bottom one. However, it is always determined by a movement into a factor
group.

The multiplicities of factorizations caused by moving into factor groups do not nec-
essarily accumulate (multiplicatively), because between the movements into factor
groups duplicate elements are removed. As an example, we would like to highlight
one important special situation. Let α = (A1, A2, . . . , An) be a multiple factorization
(with multiplicity ≥ 1) of G with A1 ≤ G, N = A1 and ϕ : G→ G/N : x 7→ x+N .
We have

κ(ϕ(α), G/N,ϕ(g)) = |N | · κ(α,G, g).

8.7. Generic Factorization Algorithm 133

In ϕ(α) the first block contains only (0, . . . , 0) elements, thus it is compressed to a
single (0, . . . , 0) element. Then, the block containing only (0, . . . , 0) is removed. De-
fine α′ := (ϕ(A2), ϕ(A3), . . . , ϕ(An)) (clearly α′ is a multiple factorization of G/N).

κ(α,G, g) =
|N | · κ(α,G, g)

|N |
=

κ(ϕ(α), G/N,ϕ(g))

|N |

=
κ(ϕ((

|A1|︷ ︸︸ ︷
((0, . . . , 0), (0, . . . , 0), . . . , (0, . . . , 0)), A2, . . . , An)), G/N,ϕ(g))

|N |
= κ(ϕ((((0, . . . , 0)), A2, . . . , An)), G/N,ϕ(g))

= κ(α′, G/N,ϕ(g)).

As we see, during the process locally the number of factorizations increases by a
factor of |N |, but overall this does not accumulate. When g has t factorizations with
respect to α in G, ϕ(g) also has t factorizations with respect to α′ in G/N . Thus,
the movement into the factor group G/N basically has no effect on the run-time
of the algorithm. κ̂(α,G, g) is polynomial in `(α) if and only if κ(α′, G/N,ϕ(g)) is
polynomial in `(α).

Obviously, when the algorithm moves into a factor group where no block of the same
size vanishes completely, the number of factorizations does not necessarily decrease
immediately again and the movement into the factor group can contribute to an
exponential run-time.

In general, let g ∈ G be a candidate element returned by GetLowOrderElements

with a reasonably low order for a block sequence α = (A1, A2, . . . , An) in G, and
ϕ : G→ G/ 〈g〉 : x 7→ x+ 〈g〉. Moving into the factor group G/ 〈g〉 basically has no
effect on the run-time of the algorithm if

ord(g) ·
n∏
i=1

|E(ϕ(Ai))| ≤
n∏
i=1

|E(Ai)|.

In contrast, if “>” holds, the movement into the factor group G/ 〈g〉 can contribute
to an exponential run-time of the algorithm.

• The EstSeqComplexity function tries to estimate the complexity of a block sequence.
For shortness, write ξ(α,G) := EstSeqComplexity(α,G).

The function realizes the following:

– The estimated complexity of a block sequence where a block contains duplicate
elements should be the same as when the duplicate elements are merged to one.

ξ((A1, A2, . . . , An), G) = ξ((E(A1), E(A2), . . . , E(An)), G).

– If the block sequence α = (A1, A2, . . . , An) contains a block of size 1 (w.l.o.g.
let |A1| = 1), then the estimated complexity of α should be the same as the

134 8. Abelian Groups

one of the block sequence where A1 is removed.

ξ((A1, A2, . . . , An), G) = ξ((A2, A3, . . . , An), G) (when |A1| = 1).

– As stated above, moving into a factor group G/ 〈g〉 (let ϕ : G → G/ 〈g〉 : x 7→
x+ 〈g〉) has no effect on the run-time if g has a reasonably low order and

ord(g) ·
n∏
i=1

|E(ϕ(Ai))| ≤
n∏
i=1

|E(Ai)|.

Thus if such a g exists (i.e. returned by GetLowOrderElements with low order
and fulfilling the above inequality), the estimated complexity of α should be
the same as the one of the reduced block sequence for the factor group.

ξ(α,G) = ξ(ϕ(α), G/ 〈g〉).

– If none of the above applies, we estimate the complexity using two natural
numbers.

∗ It primarily rates the block sequence by the number of elements that are
generated (counting duplicates).

This is a worst-case assumption. Let α be a block sequence generating c el-
ements. Then max {κ(α,G, g) | g ∈ G} ≤ c (these at most c factorizations
can be enumerated using brute-force).

∗ The secondary rating value is the sum of the orders of all elements in the
block sequence.

Low order elements indicate a simpler structure, and more elements are
candidates for generating candidate subgroups in the future.

The EstSeqComplexity function structurally is similar to the FactorizeAbEx func-
tion. Both recursively simplify the input block sequence and move into factor groups.
When no other simplifications work, FactorizeAbEx moves into non-optimal factor
groups (i.e. where the reduced block sequence for the factor group is comparatively
large). In contrast, EstSeqComplexity does not do this: when reasonably low order
candidates are available, it only moves into factor groups that cannot contribute to
an exponential run-time of the algorithm.

• The function ChooseNormalSubgroup has the task to choose a “good” normal sub-
group N .

As candidates for N , the cyclic subgroups generated by single elements returned by
GetLowOrderElements are evaluated. These elements have a relatively low order
and guarantee a simplification; details can be found below.

Goals of ChooseNormalSubgroup are the following:

8.7. Generic Factorization Algorithm 135

– |N | should be rather small.

If |N | is large, many factorizations may need to be passed up from the recursion
level below, which results in a large run-time. Thus, the smaller |N | the better.

– Choosing an N can result in various simplifications being possible in the factor
group. For example, when choosing an N , a block might not vanish imme-
diately, but it might become periodic and after moving into the factor group
induced by the subgroup block of periods there might be another periodic block,
and so on. The EstSeqComplexity function takes account of this.

In order to obtain the final complexity rating r, the primary rating returned
by the EstSeqComplexity function is multiplied by |N |. This accounts for
the investment of moving into the factor group G/N (the EstSeqComplexity

function just rates a given block sequence; it does not know how much we would
need to invest to obtain the block sequence and factor group). For example,
when a candidate element of order 8 only results in a block of size 4 vanishing
(the primary rating in G/N would be 1

4th of the rating in G), this is just as good
as a candidate element of order 4 only resulting in a block of size 2 vanishing
(the primary rating in G/N would be 1

2th of the rating in G); 8 · 1
4 = 4 · 1

2 .

The lower the rating r for the block sequence in G/N the better.

Observe that these goals are contradictory. For example, when N = G, the rating
will be minimal, but the run-time is large, because |N | is large. Thus, we need to
prioritize the goals.

The algorithm prioritizes keeping |N | reasonably small. In the first iteration of the
“While” loop of GetLowOrderElements, elements with a maximum order of q̌ (which
is the size of the largest block in α) are regarded as candidates for spanning N .
Only if no candidates with such orders are found at all, the algorithm continues
by searching for candidates again, now accepting orders between q̌ and q̌2. This
continues until at least one candidate has been found (the input α is guaranteed to
contain at least one non-(0, . . . , 0) element).

When having found candidates with reasonable orders, the candidates are filtered by
the ratings they induce in their factor groups. The higher each rating is, the more
complex the block sequence is considered. The ChooseNormalSubgroup function first
filters candidates by the first rating value and then by the second (i.e. the first rating
is considered to be more important; only when the first ratings of two candidates
are the same, the second rating decides which candidate is chosen).

Finally, there might still be multiple candidates left. The algorithm randomly
chooses one of them.

• The GetLowOrderElements function returns elements that have a relatively low order
and guarantee a simplification when moving into factor groups induced by the cyclic
subgroups generated by the elements. The order filtering has been discussed already;
we now show how the initial candidates are chosen.

136 8. Abelian Groups

A candidate element g must result in an immediate simplification when moving into
the factor group G/ 〈g〉. Such an immediate simplification occurs when there are
duplicate elements in a block. Thus for a candidate element g (let ϕg : G→ G/ 〈g〉 :
x 7→ x+ 〈g〉),

n∏
i=1

|E(ϕg(Ai))| <
n∏
i=1

|E(Ai)|

must hold.

Elements fulfilling this inequality can be found easily. For example, all elements in
E(α) \ {(0, . . . , 0)} fulfill it, because for all g ∈ E(α) \ {(0, . . . , 0)} the element g in
one of the blocks becomes a duplicate of (0, . . . , 0) when moving into the factor group
G/ 〈g〉. However, there are more. We do not necessarily need to create duplicates
of (0, . . . , 0); arbitrary elements may become duplicates. Clearly, for every N ≤ G
and a, b ∈ G we have a + N = b + N ⇔ b − a ∈ N . With N := 〈b− a〉 for some
a, b ∈ Ai, the elements a and b become duplicates in G/N . As 〈b− a〉 = 〈a− b〉,
GetLowOrderElements enumerates the candidates in one order only (see definition
of Ψ(Ai); only the element with a lower index is inverted).

Finally, some elements may generate exactly the same subgroup. These are filtered
out at the end of the GetLowOrderElements function.

Comparison. The new Algorithm 8.30 supersedes all previously mentioned factorization
algorithms for abelian groups. This might not be clear immediately (the new algorithm is
rather different, it does not search for periodic blocks, etc.). Thus we now show that the
new algorithm works efficiently whenever the previous algorithms worked efficiently.

• Most previous algorithms required the existence of a subgroup block on each recur-
sion level. Let α = (A1, A2, . . . , An) be such a block sequence, i.e. let α be a block
sequence such that w.l.o.g. A1 ≤ G, A2 ≤ G/A1, A3 ≤ G/(A1 + A2), and so on.
Furthermore, let |Ai| = |E(Ai)| for all 1 ≤ i ≤ n.

As A1 ≤ G, we have ord(a) ≤ |A1| for all a ∈ A1, i.e. elements that are generating
A1 are returned by GetLowOrderElements. Let a ∈ A1 \ {(0, . . . , 0)}.

– If 〈a〉 = A1, the whole block A1 vanishes, keeping the run-time of the algorithm
low.

– Let 〈a〉 6= A1. Clearly 〈a〉 ≤ A1. Define ϕa : G → G/ 〈a〉 : x 7→ x + 〈a〉.
Then ϕa(A1) ≤ G/ 〈a〉 (homomorphic images of subgroups are subgroups) and

|E(ϕa(A1))| = |A1|
ord(a) .

So, when we move into the factor group G/ 〈a〉 (which is optimal, because
the size of A1 reduces to 1

ord(a)th of its size), ϕa(A1) again is a subgroup in

G/ 〈a〉. Iterating this idea we observe that the original block A1 is deconstructed
completely (step by step) before EstSeqComplexity returns.

8.7. Generic Factorization Algorithm 137

It remains to show that the order in which the candidate elements are picked is
irrelevant. Let g ∈ G be the element being picked (not necessarily g ∈ A1). The
picking order irrelevance immediately follows from the fact that ϕg(A1) ≤ G/ 〈g〉
holds for all g, i.e. A1 is always deconstructed completely.

In total we get

κ̂(α,G, g) ≤ max {|Ai| | 1 ≤ i ≤ n} ,

i.e. the new algorithm works very efficiently.

• Similarly the new algorithm works efficiently when a periodic block is found on each
recursion level. The subgroups of periods within periodic blocks are deconstructed
completely.

Just like in the subgroups situation, in total we again get

κ̂(α,G, g) ≤ max {|Ai| | 1 ≤ i ≤ n} ,

i.e. the new algorithm works very efficiently.

In contrast to the previous algorithms, which only worked for logarithmic signatures or
multiple factorizations with special properties, the new Algorithm 8.30 works for all block
sequences (“working” in the sense that the algorithm does output all factorizations of a
given element, just its run-time may vary).

Run-time examples.

• Let α = (A1, A2, . . . , An) ∈ Λ(G) canonical with |Ai| ∈ P for all 1 ≤ i ≤ n. Then
the algorithm works efficiently.

By Rédei’s theorem (Theorem 8.1) there is a subgroup block on each recursion level,
thus as previously shown κ̂(α,G, g) ≤ max {|Ai| | 1 ≤ i ≤ n}.

• Let G be a p-group of order |G| = pn (with p ∈ P≥3) and α = (A1, A2, . . . , Ak) ∈
Λ(G) an aperiodic logarithmic signature generated using Algorithm 6.4. The factor-
ization algorithm works efficiently for α.

It is easy to see why this is true. Let B := A1+A2. By construction of Algorithm 6.4,
B ≤ G and B ∼= Z4

p, thus {ord(g) | g ∈ B} ⊆ {1, p}. So, on the topmost recursion
levels of the factorization algorithm, GetLowOrderElements returns the elements of
A1 and A2. Consequently, after the first recursion levels we are in a factor group
G/N with B ≤ N . Now there always exists a periodic block in each factor group on
all further recursion levels.

More generally, let β ∈ Λ(H) be an aperiodic logarithmic signature for a p-group H
and α an aperiodic logarithmic signature for a group G ≥ H generated by extending
β using any of the lemmas in Section 6.4.1. Then the factorization algorithm is
efficient, because factoring with respect to α is as most as hard as with respect to β.

138 8. Abelian Groups

• Experiments show that the factorization algorithm probably works efficiently for all
abelian logarithmic signatures created by LS-Gen (Section 6.5). Intuitively, LS-Gen
has sufficiently powerful transformations to create logarithmic signatures that could
maybe resist the factorization algorithm. However, parameters used in practice do
not seem to provide sufficient confusion for the factorization algorithm. For example,
a block substitution can transform a logarithmic signature having a periodic block
into an aperiodic logarithmic signature, but practically the number of blocks involved
in this operation is limited to a very low value (otherwise the block substitution
transformation cannot be computed efficiently) and the number of rounds is rather
limited; and as we have seen in the previous example such small, local aperiodic
obstacles are not sufficient to result in an exponential factorization run-time.

• Let G = Z2n and α =
(

0
1

)(
0
1

)
· · ·
(

0
1

)
∈ Ξn(G) (note that α is just a pseudo-loga-

rithmic signature, not a logarithmic signature). Assume that we want to find the
factorization of the element n (there is exactly one factorization for this element, so
theoretically an algorithm can return the answer in polynomial time).

For our factorization algorithm the only candidate element for a subgroup is 1, i.e.
N = G. From the second recursion level, 2n solutions need to be passed up. So, the
run-time of the algorithm is exponential in `(α).

Implementation. We have implemented this algorithm. See Section 12.3 for the
command line syntax.

Optimizations. The description of the algorithm prefers clarity over performance.
There are various optimizations possible, including but not limited to:

• Algorithm 8.13 (for element equality tests in factor groups) works for all factor groups
that are described by a chain of normal subgroups. In Algorithm 8.30, each of these
normal subgroups is cyclic, which can be used to improve the performance.

• For many group elements, the order is computed multiple times (for example, in
GetLowOrderElements the orders of all returned elements are computed and they
are computed again in EstSeqComplexity). Caching the order (storing the order
along with the group element) improves the performance.

• Observe that during ChooseNormalSubgroup and EstSeqComplexity, a loop iter-
ates over all elements returned by GetLowOrderElements, and for every element it
may happen that the function returns immediately, i.e. in this case the remaining
elements returned by GetLowOrderElements are unnecessary. Thus, implementing
GetLowOrderElements as an iterator (i.e. in such a way that it computes a returned
element only when the calling code requests it; e.g. in C# using yield return) can
improve the performance. The last part of GetLowOrderElements (where the set C
is filtered) is very suited for this.

Non-abelian groups. When trying to extend this algorithm for non-abelian groups, the
main obstacle is to find a way how to efficiently compute in factor groups. Furthermore,

8.7. Generic Factorization Algorithm 139

it is unclear how factor groups should be chosen (a cyclic subgroup generated by an
element is not necessarily normal in a non-abelian group).

Specific run-time analysis. As described above, the run-time of the algorithm
highly depends on the structure of the input. Anyway, we want to show the run-time in
one specific situation:

Proposition 8.31. Let H be an abelian group (represented as H = Z
p
k1
1

⊕Z
p
k2
2

⊕. . .⊕Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m) and β = (B1, B2, . . . , Br) ∈ Λ(H) canonical with
|Bi| ∈ P for all 1 ≤ i ≤ r. Let q := max {|Bi| | 1 ≤ i ≤ n}.

Then Algorithm 8.30 computes the factorization of any group element using O(r6 · q6 ·
((log2 |H|)2 + q) ·m · `(β)) group operations.

Proof. We assume that Algorithm 8.30 uses the same approach as Algorithm 8.16 to
compute in factor groups. A group element addition (in any factor group) requires one
operation in H (simply adding representatives), and a group element equality test (in any
factor group) requires O(m · r · `(β)) operations in H (note that this holds in this specific
case only; in general, without further optimizations, the normal subgroup chain may be
larger and thus element equality tests in factor groups may require more group operations
in H).

For computing the order of a group element, we assume that the approach of Lemma
11.6 is used, i.e. we need O((log2 |H|)2 ·m · r · `(β)) group operations for computing the
order of any group element in any factor group.

We now determine the number of group operations performed by each function.

• In the function SimplifySeq, for the replacement of each block Ai by E(Ai) there

are at most
∑n

i=1
(|Ai|−1)·|Ai|

2 < n · q2 factor group operations required, i.e. O(n · q2 ·
m · r · `(β)) operations in H. We assume that removing all blocks A′i with |A′i| = 1
from α′ requires no group operations.

• In GetLowOrderElements, the set Ψ(Ai) contains at most q̂ := (q−1)·q
2 elements,

thus |M | ≤ n · q̂. In order to filter any duplicate elements from M , we need at most
(n·q̂−1)·n·q̂

2 group element equality tests (each requiring O(m · r · `(β)) operations in
H).

When constructing C, for each element in M an element order computation is per-
formed. Due to |C| ≤ |M |, we obtain |C| ≤ n · q̂.

In the next loop, x runs over |C| different values, and in each loop y runs up to x
(exclusively). ord(C[x]) and 〈C[x]〉 can be computed in the outer loop (where x is
the running variable). 〈C[x]〉 is computed explicitly (note that due to the structure
of β we have |〈C[x]〉| ≤ q; and as we have previously computed ord(C[x]), computing
〈C[x]〉 requires at most q − 1 group element additions in H).

140 8. Abelian Groups

In total, GetLowOrderElements requires

n · q̂︸︷︷︸
Build M

+
(n · q̂ − 1) · n · q̂

2
·O(m · r · `(β))︸ ︷︷ ︸

Filter duplicates from M

+n · q̂ ·O((log2 |H|)2 ·m · r · `(β))︸ ︷︷ ︸
Build C

+

|C|∑
x=1

(
O((log2 |H|)2 ·m · r · `(β))︸ ︷︷ ︸

Compute ord(C[x])

+ q − 1︸ ︷︷ ︸
Compute 〈C[x]〉

+

x−1∑
y=1

(
O((log2 |H|)2 ·m · r · `(β))︸ ︷︷ ︸

Compute ord(C[y])

+ q ·O(m · r · `(β))︸ ︷︷ ︸
Test C[y] ∈ 〈C[x]〉

))
= O(n2 · q4 ·m · r · `(β)) +O(n · q2 · (log2 |H|)2 ·m · r · `(β)) +

O(n2 · q4) ·
(
O((log2 |H|)2 ·m · r · `(β)) +O(q ·m · r · `(β))

)
= O(n2 · q4 · ((log2 |H|)2 + q) ·m · r · `(β))

group operations (in H).

• Let f(n) be the number of group operations (in H) that EstSeqComplexity requires
for n blocks without the recursive call. We have

f(n) = O(n · q2 ·m · r · `(β))︸ ︷︷ ︸
First SimplifySeq

+ `(α) ·O((log2 |H|)2 ·m · r · `(β))︸ ︷︷ ︸
Compute s

+

O(n2 · q4 · ((log2 |H|)2 + q) ·m · r · `(β))︸ ︷︷ ︸
GetLowOrderElements

+ O(n · q2)︸ ︷︷ ︸
Low order el.

·

O(n · q2 ·m · r · `(β))︸ ︷︷ ︸
Inner SimplifySeq

+O((log2 |H|)2 ·m · r · `(β))︸ ︷︷ ︸
Compute ord(g)

 .

For the total number of group operations (in H) that EstSeqComplexity requires
at most, we obtain:

n∑
i=1

f(i) =
n∑
i=1

(
O(i · q2 ·m · r · `(β)) + `(α(i)) ·O((log2 |H|)2 ·m · r · `(β)) +

O(i2 · q4 · ((log2 |H|)2 + q) ·m · r · `(β)) +O(i · q2) ·(
O(i · q2 ·m · r · `(β)) +O((log2 |H|)2 ·m · r · `(β))

))
⊆ O(n2 · q2 ·m · r · `(β)) + n · `(α) ·O((log2 |H|)2 ·m · r · `(β)) +

O(n3 · q4 · ((log2 |H|)2 + q) ·m · r · `(β)) +O(n2 · q2) ·(
O(n · q2 ·m · r · `(β)) +O((log2 |H|)2 ·m · r · `(β))

)
∗
= O(n3 · q4 · ((log2 |H|)2 + q) ·m · r · `(β)).

(*) `(α) ≤ n · q.

8.8. Factoring by Combining Solutions in Factor Groups 141

• ChooseNormalSubgroup requires at most

O(n2 · q4 · ((log2 |H|)2 + q) ·m · r · `(β))︸ ︷︷ ︸
GetLowOrderElements

+ O(n · q2)︸ ︷︷ ︸
Low order el.

·

O((log2 |H|)2 ·m · r · `(β))︸ ︷︷ ︸
Compute ord(g)

+O(n3 · q4 · ((log2 |H|)2 + q) ·m · r · `(β))︸ ︷︷ ︸
EstSeqComplexity

+

q − 1︸ ︷︷ ︸
〈g〉

= O(n4 · q6 · ((log2 |H|)2 + q) ·m · r · `(β))

group operations (in H).

• Let f(n) be the number of group operations (in H) that FactorizeAbEx requires for
n blocks without any recursive call. For n ≥ 2, we have

f(n) = O(n · q2 ·m · r · `(β))︸ ︷︷ ︸
Compute E(Ai) for all i

+O(n4 · q6 · ((log2 |H|)2 + q) ·m · r · `(β))︸ ︷︷ ︸
ChooseNormalSubgroup

+

O(q ·m · n · `(β))︸ ︷︷ ︸
Completing fac.

= O(n4 · q6 · ((log2 |H|)2 + q) ·m · r · `(β)).

In total, FactorizeAbEx requires at most

q ·O(m · r · `(β))︸ ︷︷ ︸
Case 1 block

+
r∑

n=2

f(n)

= O(q ·m · r · `(β)) +
r∑

n=2

O(n4 · q6 · ((log2 |H|)2 + q) ·m · r · `(β))

= O(r5 · q6 · ((log2 |H|)2 + q) ·m · r · `(β))

= O(r6 · q6 · ((log2 |H|)2 + q) ·m · `(β))

group operations (in H).

8.8. Factoring by Combining Solutions in Factor Groups

8.8.1. Statically Chosen Factor Groups

Let G = Z
p
k1
1

⊕ Z
p
k2
2

⊕ . . . ⊕ Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m,

α = (A1, A2, . . . , An) ∈ Λ(G) canonical and g ∈ G. Define

ϕc : G→ Z
pkcc

: (g1, g2, . . . , gm) 7→ gc

142 8. Abelian Groups

the projection on the cth component. ϕc is a homomorphism and ϕc(α) is a |G|
pkcc

-

factorization of Z
pkcc

. For shortness, write αc := ϕc(α). Observe that

α[1][i1] + α[2][i2] + . . .+ α[n][in] = g

⇔ ϕc(α[1][i1] + α[2][i2] + . . .+ α[n][in]) = ϕc(g) for all 1 ≤ c ≤ m
⇔ αc[1][i1] + αc[2][i2] + . . .+ αc[n][in] = ϕc(g) for all 1 ≤ c ≤ m.

Define L(α, g, c) := {(i1, i2, . . . , in) ∈ Nn | αc[1][i1] + αc[2][i2] + . . . + αc[n][in] = ϕc(g)}.
Then

⋂m
c=1 L(α, g, c) contains exactly one element, namely the factorization of g.

We now present an approach to turn this idea into a factorization algorithm. The
main obstacle is that the sets L(α, g, c) are very large: |L(α, g, c)| = |G|

pkcc
, too large to

compute. One optimization is to introduce “do not care” indices for blocks that contain
only identity elements in Z

pkcc
. Define

$(x, y) :=

{
−1, if |E(αc[x])| = 1,

y, otherwise,

L′(α, g, c) := {($(1, i1), $(2, i2), . . . , $(n, in)) | (i1, i2, . . . , in) ∈ L(α, g, c)},

θ : Z2 → {0, 1} : (a, b) 7→

{
1, if a = −1 or b = −1 or a = b,

0, otherwise,

θ̂ : Zn ⊕ Zn → {0, 1} : ((i1, i2, . . . , in), (j1, j2, . . . , jn)) 7→
n∏
x=1

θ(ix, jx).

$ replaces the element index y by −1 if and only if the block with index x contains only
identity elements in αc. L

′(α, g, c) is the set of factorizations where all the indices for blocks
containing only identity elements are replaced by −1 (if such a replacement happens at
least once, some factorization vectors become identical, i.e. |L′(α, g, c)| < |L(α, g, c)|). θ̂
tests whether two factorizations are compatible, i.e. whether they can specify the same
factorization of a group element. For this, every index must either be the same or at least
one of the two indices must specify the “do not care” value −1; θ tests this for one index.

There exists exactly one factorization vector u = (i1, i2, . . . , in) ∈ Nn for which there
exist v1 ∈ L′(α, g, 1), v2 ∈ L′(α, g, 2), . . . , vm ∈ L′(α, g,m) with θ̂(u, vk) = 1 for all 1 ≤
k ≤ m. u is the factorization of g.

Algorithm 8.32. Let G = Z
p
k1
1

⊕Z
p
k2
2

⊕ . . .⊕Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m,

α = (A1, A2, . . . , An) ∈ Λ(G) canonical and g ∈ G an element to be factored.
The sets L′(α, g, c) can be computed without computing the full sets L(α, g, c). Let α′c

be the block sequence obtained from αc by removing all blocks that contain only identity
elements. In the remaining block sequence, compute all factorizations of ϕc(g), insert the
value −1 at the positions of the removed blocks and put the resulting factorizations into
L′(α, g, c).

Finally, find a factorization vector u = (i1, i2, . . . , in) ∈ Nn that is compatible with all
L′(α, g, c) sets (i.e. in every L′(α, g, c) there exists a vector that is compatible with u).

8.8. Factoring by Combining Solutions in Factor Groups 143

Various strategies are possible for finding u. We do not specify one in detail, because in
the following we will see that independent of which strategy is used, the algorithm can
have a high run-time.

Furthermore, note that it is not specified how to compute the factorizations of ϕc(g)
(but even when there is a very efficient way for this, the algorithm can have a high
run-time anyway).

Run-time. Unfortunately this algorithm can have a high run-time even for very
simple logarithmic signatures, because all L′(α, g, c) sets may be large.

We construct some example logarithmic signatures for which the algorithm requires
exponential time. For the first construction, we prove a small lemma.

Lemma 8.33. There exists an invertible matrix M ∈ Mn(Z2) such that M contains
n2 − n+ 1 ones. Especially, every row of M contains at least n− 1 ones.

Proof. We construct a matrix M . Let us start with the identity matrix In. The column
vectors clearly are linear independent. Elementary row operations do not break the linear
independency. We now add the first n − 1 rows onto the last row. Subsequently, we add
the last row back onto the first n − 1 rows. The resulting matrix fulfills the requested
property.

For example, for n = 7 we get:

I7

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 1 1 1 1 1 1

0 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 1

=: M .

The resulting matrix M contains n2 − n + 1 ones. Each of the first n − 1 rows contains
n− 1 ones and the last row contains n ones.

This is the maximum number of ones that M can contain. A matrix containing only
n − 2 zeros would contain the row (1, 1, . . . , 1) twice and thus would not be invertible
anymore.

Now back to the high run-time examples.

Example 8.34. Let G = Zn2 and M a matrix as in Lemma 8.33. Let M [i] denote the ith
row vector in M . Clearly,

α :=

(
(0, . . . , 0)
M [1]

)(
(0, . . . , 0)
M [2]

)
· · ·
(

(0, . . . , 0)
M [n]

)
is a logarithmic signature for G.

The factorization Algorithm 8.32 has an exponential run-time for α, because for every
c the block sequence αc contains at least n− 1 blocks with two distinct elements and thus
|L′(α, g, c)| ≥ 2(n−1)−1 = 2n−2, which is exponential in `(α) = 2n.

144 8. Abelian Groups

Example 8.35. Let n ≥ 2, G = Z22n ⊕ Z32n ,

α =

(
(0, 0)
(1, 0)

)(
(0, 0)
(2, 0)

)(
(0, 0)
(22, 0)

)
· · ·
(

(0, 0)
(2n−1, 0)

)
︸ ︷︷ ︸

A

(
(0, 0)
(2n, 0)

)
· · ·
(

(0, 0)
(22n−1, 0)

)
︸ ︷︷ ︸

B

·

(0, 0)
(0, 1)
(0, 2)

 (0, 0)
(0, 3)

(0, 2 · 3)

 (0, 0)
(0, 32)

(0, 2 · 32)

 · · ·
 (0, 0)

(0, 3n−1)
(0, 2 · 3n−1)

︸ ︷︷ ︸

C

·

 (0, 0)
(0, 3n)

(0, 2 · 3n)

 · · ·
 (0, 0)

(0, 32n−1)
(0, 2 · 32n−1)

︸ ︷︷ ︸

D

,

and g ∈ G. Clearly, α ∈ Λ(G). The sums of the blocks in B and D are subgroups of G.
For each block in A randomly pick an element except (0, 0) from the subgroup generated
by the blocks in D and add the element onto the non-identity element in the block of
A (these additions are selective shifts, see Section 5.1.9). For each block in C randomly
pick two distinct non-identity elements from the subgroup generated by the blocks in B
and add them onto the two non-identity elements in the block of C. Call the resulting
logarithmic signature α′. We have `(α′) = `(α) = 2n+ 2n+ 3n+ 3n = 10n.

For example, for n = 3 we could get

α′ =

(
(0, 0)

(1, 2 · 33 + 34 + 2 · 35)

)(
(0, 0)

(2, 34 + 2 · 35)

)(
(0, 0)

(22, 2 · 33 + 2 · 34)

)(
(0, 0)
(23, 0)

)
·

(
(0, 0)
(24, 0)

)(
(0, 0)
(25, 0)

) (0, 0)
(23 + 24 + 25, 1)

(23 + 25, 2)

 (0, 0)
(24 + 25, 3)

(23, 6)

 (0, 0)
(24, 32)

(24 + 25, 2 · 32)

 ·
 (0, 0)

(0, 33)
(0, 2 · 33)

 (0, 0)
(0, 34)

(0, 2 · 34)

 (0, 0)
(0, 35)

(0, 2 · 35)

 ∈ Λ(Z22·3 ⊕ Z32·3).

In order to determine the run-time of Algorithm 8.32 for logarithmic signatures α′ as
constructed above, we regard the components of G separately.

When only looking at the first component of G, there are 3n blocks (namely the ones
in A, B and C) containing non-identity elements. We have |L′(α′, g, 1)| = 3n.

Analogously, when only looking at the second component of G, there are 3n blocks
(namely the ones in A, C and D) containing non-identity elements. We have |L′(α′, g, 2)| =
2n.

Both 3n and 2n are exponential in `(α′). Thus the factorization Algorithm 8.32 has an
exponential run-time for α′.

8.8. Factoring by Combining Solutions in Factor Groups 145

8.8.2. Dynamically Chosen Factor Groups

We generalize the idea from the previous section. ϕc projected group elements onto their
cth component and factorizations with respect to this component only were regarded.
This is equivalent to moving into the factor group G/ 〈e1, e2, . . . , ec−1, ec+1, . . . , em〉 (where
ei = (δi,1, δi,2, . . . , δi,m) ∈ G with δi,j the Kronecker delta) and regarding factorizations
there.

The main problem of Algorithm 8.32 is that it regarded factorizations in statically
chosen factor groups. As seen in the high run-time examples, it can happen that there
are many solutions in every factor group. One improvement is to choose the factor groups
dynamically (based on α), in the hope that there are factor groups with few solutions.

Let N1, N2, . . . , Nk E G with N1 +N2 + . . .+Nk = G and |N1| · |N2| · · · |Nk| = |G|. Define

Nc := N1 +N2 + . . .+Nc−1 +Nc+1 + . . .+Nk,

ϕc : G→ G/Nc : x 7→ x+Nc and αc := ϕc(α). Then

α[1][i1] + α[2][i2] + . . .+ α[n][in] = g

⇔ ϕc(α[1][i1] + α[2][i2] + . . .+ α[n][in]) = ϕc(g) for all 1 ≤ c ≤ k
⇔ αc[1][i1] + αc[2][i2] + . . .+ αc[n][in] = ϕc(g) for all 1 ≤ c ≤ k.

Algorithm 8.32 can be modified in a straightforward way to regard the Nc instead of the
static components. Let us call the modified version Algorithm 8.32�.

The run-time of Algorithm 8.32� is dependent on how the Nc are chosen. If they can be
chosen in such a way that there are few solutions in each L′(α, g,Nc) (defined analogously
to L′(α, g, c)), the algorithm can be efficient.

One approach for choosing the Nc is to take the cyclic subgroups generated by the
elements in E(α), removing as many subgroups as possible (e.g. a subgroup might lie fully
within another subgroup and thus can be removed) and ensuring that they are a direct
sum for G.

For the Example 8.34, this results in an efficient factorization algorithm. Every Nc

would contain (0, . . . , 0) and one of the basis vectors (columns from the matrix). In every
G/Nc, there is exactly one block containing a non-(0, . . . , 0) element, i.e. |L′(α, g,Nc)| = 1
for all 1 ≤ c ≤ n.

However, the algorithm does not provide any way to compute factorizations when G is
near a cyclic group. Algorithms 8.32 and 8.32� required the existence of another algorithm
that factors ϕc(g). When G is cyclic of prime power order, there is only one N1 = G and
the factorization problem is redirected to the other algorithm. In other words, in this case
Algorithms 8.32 and 8.32� do not result in any simplification and thus are useless.

8.8.3. Small Factor Groups

Let G = Z
p
k1
1

⊕Z
p
k2
2

⊕. . .⊕Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m, α = (A1, A2, . . . , An)

a canonical block sequence and g ∈ G.

146 8. Abelian Groups

Let U ≤ G, ϕU : G→ G/U : x 7→ x+ U and α′ := ϕU (α). If all blocks in α′ except one
block A′i contain only (0, . . . , 0) elements (in G/U) and ϕU (g) occurs only once in A′i, the
element to be selected in A′i for a factorization of ϕU (g) with respect to α′ is determined,
and thus the element to be selected in Ai for a factorization of g with respect to α is
determined, too. Let a ∈ Ai be the element that needs to be selected. Let α′′ be the
block sequence obtained by removing block Ai from α. The above procedure can now be
repeated recursively for α′′ instead of α and g−a instead of g until all factorization indices
are determined.

How do we choose the subgroup U? Clearly, most elements of E(α) should become
(0, . . . , 0) when moving into the factor group G/U . Thus it is a good idea to construct
U based on E(α). One way is the following. Build a list L containing all elements from
E(α) \ {(0, . . . , 0)} sorted ascendingly by their orders. Set U ← {(0, . . . , 0)}. For each h
in L (from left to right), test whether U + 〈h〉 6= G and if so, set U ← U + 〈h〉.

Observe the similarity to the generic factorization Algorithm 8.30. Algorithm 8.30
chooses the normal subgroups in a more complex way (estimating the complexity of the
block sequence in the factor group, etc.), but they are also built based on subgroups
generated by single elements from the logarithmic signature and the generator element’s
order has a high influence.

Unfortunately, the U constructed by the procedure above does not necessarily result in
an α′ with only one block containing non-(0, . . . , 0) elements.

When there are multiple candidates in one block, the decision which of them is the
correct one can only be made in a larger factor group. It can happen that the decision is
only possible in the full G, not in any proper factor group of it.

Example 8.36. Let n ∈ N even, G = Z2n and β = (B1, B2, . . . , Bn) ∈ Λ(G) with
Bi = (0, 2i−1). Define α = (A1, A2, . . . , An

2
) with Ai := Bi +Bn−i+1 = {a+ b | a ∈ Bi, b ∈

Bn−i+1} for all 1 ≤ i ≤ n
2 . Clearly, α ∈ Λ(G).

For example, for n = 6 we get

β =

(
0
1

)(
0
2

)(
0
4

)(
0
8

)(
0
16

)(
0
32

)
 α =

0
1
32
33

0
2
16
18

0
4
8
12

 .

For all subgroups U ≤ G with |U | ≥ 2
n
2 , ϕU (α) does not determine any factorization

index, i.e. there are at least two elements in every block of ϕU (α) that both are part of a
factorization of ϕU (g).

Block A1 contains two elements of order 2n. The decision which of them is required for
a factorization of g with respect to α can only be made in the full G, not in any proper
factor group of G (because in every proper factor group, the two elements of order 2n are
identical, as their difference is 2n−1; {0, 2n−1} is the smallest non-trivial subgroup of G,
and all other non-trivial subgroups are supersets of {0, 2n−1}).

Algorithm 8.30 handles periodic blocks elegantly. In Example 8.36, on the deepest recur-
sion level the decision whether a highest order element is part of a factorization of g is

8.9. Tame Logarithmic Signatures 147

made, and on the first recursion level it is decided which of the two highest order elements
actually is correct.

In contrast, the new algorithm cannot handle periodic blocks in a satisfying way yet.
In order to make the decision which of the two highest order elements has to be selected,
the algorithm needs to move into a larger factor group. The larger factor group should
again have the property that most elements in the logarithmic signature should be the
identity. Algorithm 8.30 constructs such an optimal subgroup chain, but from top to
bottom. However, when using exactly this chain, there does not seem to be any advantage
of the new algorithm over Algorithm 8.30; in fact, the new algorithm would just be the
second phase (moving up from the recursion) of Algorithm 8.30. When not using this
chain, another one would need to be constructed from bottom up.

8.9. Tame Logarithmic Signatures

8.9.1. Amalgamated Transversal Logarithmic Signatures AT (G)

Theorem 8.37. Let G be an abelian group (represented as G = Z
p
k1
1

⊕ Z
p
k2
2

⊕ . . .⊕ Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m) and α ∈ AT (G). Then α is tame.

Proof. We can assume that α is canonical (see Proposition 7.1). We show that Algorithm
8.23 finds a periodic or subgroup block on every recursion level.

For the transformations applied by the amalgamated logarithmic signature generation
algorithm to an exact transversal logarithmic signature of G, see Section 6.3.

We can ignore the first two transformations (permuting the blocks and elements within
blocks), because Algorithm 8.23 does not care about the order of blocks or elements.

The generation algorithm started with an exact transversal logarithmic signature having
a subgroup chain structure. Amalgamating two blocks (the fourth transformation) always
results in a periodic block on the recursion level where one of the blocks would be a
subgroup. Let α = (A1, A2, . . . , Ar) ∈ Λ(G) with A1 ≤ G, A1 + A2 ≤ G, etc., then
amalgamating two blocks Ai, Aj with i < j results in a periodic block (for which Ai \
{(0, . . . , 0)} are periods, and possibly there are even more, e.g. in case Aj is a subgroup in
G/(A1 + . . .+Ai)), which is found and decomposed into Ai and Aj again on recursion level
i. Note that if Ai +Aj even is a subgroup in G/(A1 + . . .+Ai−1), then the algorithm on
recursion level i directly moves into the corresponding factor group, without decomposing
the periodic block Ai +Aj first.

Lastly, observe that translations (the third transformation) do not interfere with the
above. If two blocks Ai, Aj (without any translations) are amalgamated to a new block
A := Ai + Aj with period g ∈ G \ {(0, . . . , 0)}, then A′ := Ai + t + Aj + s also has
period g for arbitrary t, s ∈ G, because (Ai + t + Aj + s) + g = (Ai + Aj + g) + t + s =
(Ai + Aj) + t + s = Ai + t + Aj + s. Also, translated subgroups are restored by the
initial normalization: if Ai is a subgroup in G/(A1 + . . . + Ai−1), the normalization of
a translation Ai + t (for an arbitrary t ∈ G) results in Ai again, because normalization
adds −t− a for an arbitrary a ∈ Ai onto Ai + t (the elements could be permuted) and we

148 8. Abelian Groups

have Ai + t − t − a = Ai − a = Ai, i.e. the original Ai (within G/(A1 + . . . + Ai−1)) is
restored.

8.9.2. Aperiodic Decomposition and Reunion

Proposition 8.38. Let G = Zn2 and β ∈ Λ(G) generated by Algorithm 6.6 (in Section
6.4.2).

Then β is tame.

Proof. Let β = (β′, B2, . . . , Bs) ∈ Λ(G) generated by Algorithm 6.6, and ϕH : G→ G/H :
g 7→ g +H for H ≤ G.

β′ generates the subgroup U1 ⊕D1. Define β� := (ϕU1⊕D1(B2), . . . , ϕU1⊕D1(Bs)). Then
β� ∈ Λ(G/(U1 ⊕ D1)). Observe that K2 ⊆ U1 \ {(0, . . . , 0)}. Thus E(ϕU1⊕D1(K2)) =
{(0, . . . , 0)} and therefore B2 = U2 ⊕D2 in G/(U1 ⊕D1). This can be iterated, i.e. every
Bi is a subgroup in G/(U1 ⊕ . . .⊕ Ui−1 ⊕D1 ⊕ . . .⊕Di−1). Consequently, β� is tame by
Algorithm 8.23.

The remaining factorization in β′ can be found using an exhaustive search.

If the number of blocks in β′ is unknown, simply try all possible block counts (increasing
from 1; observing whether it results in a chain of factor groups that we can descend into);
this still is efficient, because β′ is small (constant size for n→∞).

Theorem 8.39. Let G = Zn2 and α = (A1, . . . , Am) ∈ Λ(G) generated by Algorithm 6.7
(in Section 6.4.2).

Then α is tame.

Proof. All we need to show is that we can efficiently find a small subgroup T (with |T |
being polynomial in `(α)) with U1 ⊕D1 ⊆ T . The rest then follows with Proposition 8.38
(move into the factor group G/T , etc.).

We analyze the transformations that Algorithm 6.7 has applied to the aperiodic loga-
rithmic signature produced by Algorithm 6.6.

Element shuffles and block shuffles can be ignored; the following does not depend on
the order of the blocks or elements within the blocks.

Observe the following properties of translations and fusions/amalgamations for all
B,C ⊆ G and s, t ∈ G:

• (B+ s) + t = B+ (s+ t), i.e. multiple translations are equivalent to one translation.

• (B + s) + C = (B + C) + s, i.e. translations and fusions can be interchanged.

Consequently, multiple translations and fusions of blocks are equivalent to fusing the blocks
and applying exactly one translation (where the translation element is the sum of all single
translations).

Furthermore, we need the following observation. Let π : P(G) → P(G) : M 7→ {g ∈
G |M+g = M} compute the periods of M together with (0, . . . , 0) (this forms a subgroup,
see Lemma 2.7). Let H ≤ G, S ⊆ G, t ∈ G, and M := H + S + t. Clearly, π(M) ⊇ H.

8.9. Tame Logarithmic Signatures 149

Let M ′ := M − y for any y ∈ M , then still π(M ′) ⊇ H. As we now additionally have
(0, . . . , 0) ∈M ′ (and thus all periods of M ′ are elements of M ′), we get H ⊆M ′.

So, if we have a block M that actually is of the form M = (U1 ⊕ D1) + S + t, we
can perform a normalization and look at the periods to efficiently recover U1 ⊕ D1 or a
subgroup containing U1 ⊕D1.

Assume that the blocks generating U1⊕D1 were transformed to c blocks (if c is unknown,
try all, like in the proof of Proposition 8.38).

For all 1 ≤ i1 < . . . < ic ≤ m do the following:

1. Compute the sum set M ← Ai1 + . . .+Aic .

2. Compute M ′ ←M − y for an arbitrary y ∈M .

3. Compute T ← π(M ′).

4. Test whether moving into G/T results in a logarithmic signature that allows itera-
tively moving into factor groups (by subgroups of periods). If so: move into G/T ,
apply Algorithm 8.23, and use an exhaustive search in the remaining blocks to ef-
ficiently find the factorization of any group element. If not: try the next tuple
(i1, . . . , ic).

This procedure in total has a run-time polynomial in `(α), because:

• There are
(
m
c

)
possibilities for the tuples (i1, . . . , ic), and

(
m
c

)
≤ mc; this is polynomial

in m ≤ `(α), if c is constant (which we assume).

• |M | =
∏

i∈{i1,...,ic}
|Ai| ≤ `(α)c, i.e. |M | is polynomial in `(α).

• As (0, . . . , 0) ∈ M ′, we have T ⊆ M ′. Thus T can be computed efficiently (test for
each element in M ′ whether it is a period for M ′; this is possible in time polynomial
in |M ′|, and |M ′| = |M | ≤ `(α)c).

• It is clear that testing the logarithmic signature for the iterative property is possible
in time polynomial in `(α); see the factorization algorithms that work like this.

• As |M | ≤ `(α)c, the exhaustive search in the remaining blocks is possible efficiently.

8.9.3. Strongly Aperiodic Logarithmic Signatures

Proposition 8.40. Let G = Z3s
p and β ∈ Λ(G) generated by Algorithm 6.8 (in Section

6.4.3); β is strongly aperiodic and t(β) = (p3, . . . , p3).

Then β is tame (i.e. factorizations can be computed in time polynomial in S(G, β) =
dlog2 |G|e · `(β) =

⌈
log2 p

3s
⌉
· s · p3; both parameters may grow).

150 8. Abelian Groups

Proof. Let β = (B1, . . . , Bs). Let us assume that we know the vectors v1 and v2 (more on
this at the end of the proof). Write ϕH : G→ G/H : g 7→ g +H for H ≤ G.

For all 2 ≤ i ≤ s we have:

Di = {(0, . . . , 0), v2s+i, 2v2s+i, . . . , (p− 1)v2s+i} ,

A
(j)
i = 〈v2i−1 + (j − 1)v1, v2i + (j − 1)v2〉 for j ∈ {1, . . . , p} ,

Bi =
⋃

di,j∈Di

(di,j +A
(j)
i).

When moving into the factor group G/ 〈v1, v2〉, the following happens:

ϕ〈v1,v2〉(Bi) = ϕ〈v1,v2〉(
⋃

di,j∈Di

(di,j +A
(j)
i))

=
⋃

di,j∈Di

(ϕ〈v1,v2〉(di,j) + ϕ〈v1,v2〉(A
(j)
i))

=
⋃

di,j∈Di

(ϕ〈v1,v2〉(di,j) + ϕ〈v1,v2〉(〈v2i−1, v2i〉))

= ϕ〈v1,v2〉 (Di + 〈v2i−1, v2i〉) .

Thus, when moving into the factor group G/ 〈v1, v2〉, all blocks Bi with 2 ≤ i ≤ s become
subgroups, because Di is a (cyclic) subgroup and 〈v2i−1, v2i〉 also is a subgroup (and the
sum of two subgroups is a subgroup, as G is abelian).

Consequently, (B2, . . . , Bs) in G/ 〈v1, v2〉 is tame by Algorithm 8.23. In order to factor
a g ∈ G, for each x ∈ B1 try to factor ϕ〈v1,v2〉(g − x) with respect to (B2, . . . , Bs) in
G/ 〈v1, v2〉 and test the combined factorization indices with respect to β in G. So, β is
tame.

Above we assumed that v1 and v2 are known, thus it remains to show that this assump-

tion is not a problem. Due to (0, . . . , 0) ∈ D1 and A
(1)
1 = 〈v1, v2〉, we have v1, v2 ∈ B1.

Therefore we can simply try all
(
p3−1

2

)
= (p3−1)(p3−2)

2 possibilities for v1, v2 (for each of
these candidate pairs {u, v} ⊆ (E(B1) \ {(0, . . . , 0)}) with u 6= v check whether all other
blocks become subgroups when moving into the factor group G/ 〈u, v〉 and if so continue
with the factorization process as above).

Proposition 8.41. Let G = Z2s−1
2 and β ∈ Λ(G) generated by the algorithm in Section 8

of [Sta13].
Then β is tame.

Proof. The attack idea from the proof of Proposition 8.40 can be used.
Note that there is a minor difference, which however does not affect the attack. In Propo-

sition 8.40, all blocks except B1 become subgroups at once when moving into G/ 〈v1, v2〉.
However, here in Proposition 8.41, only one block of β is guaranteed to become a sub-
group: when moving into G/ 〈v1, v2〉, block B2 becomes a subgroup; when moving into
G/(〈v1, v2〉+B2), block B3 becomes a subgroup; when moving into G/(〈v1, v2〉+B2 +B3),

8.9. Tame Logarithmic Signatures 151

block B4 becomes a subgroup; and so on. As the factorization algorithm moves into factor
groups iteratively anyway, this does not affect the attack.

8.9.4. Specific Group and Logarithmic Signature Types

Lemma 8.42. Let G be an abelian group and α = (A1, . . . , An) ∈ Λ(G) canonical of type
t(α) = (q1, . . . , qn). Let p, q, r, s ∈ P distinct, λ, µ ∈ N and 3 ≤ a ∈ N.

In all of the following cases, α has a subgroup block:

• t(α) ∈ Pn.

• t(G) = (2, . . . , 2), q1 = 2.

• t(G) = (2, . . . , 2), t(α) = (4, . . . , 4).

• t(G) = (2, . . . , 2, 2p), t(α) = (2, . . . , 2, 2p).

• G is a group or a subgroup of a group of type

(p2), (p, p), (p, q), (4, 2), (2, 2, 2, 2).

In all of the following cases, α has a periodic block:

• The p-component of G is cyclic and q1, . . . , qn−1 ∈ {pi | i ∈ N}.

• G is cyclic and q1, . . . , qn ∈
(
{zi | z ∈ P, i ∈ N} ∪ {yz | y, z ∈ P}

)
.

• t(G) = (2λ, 2, . . . , 2), q1, . . . , qn ∈ {2, 4}.

• t(G) = (2λ, 2µ), q1, . . . , qn ∈ {2, 4}.

• t(G) = (2λ, 2, . . . , 2), q1 = . . . = qn−1 = 2.

• q1 = 4, q2, . . . , qn ∈ P.

• The 2-component of G is elementary, q1, . . . , qn ∈ (P ∪ {4}).

• G is a group or a subgroup of a group of type

(pa, q), (p2, q2), (p2, q, r), (p, q, r, s), (p3, 2, 2), (p2, 2, 2, 2), (p, 22, 2),
(p, 2, 2, 2, 2), (p, q, 2, 2), (p, 3, 3), (32, 3), (2a, 2), (22, 22), (p, p).

Proof. In the first case there is a subgroup block by Rédei’s theorem (Theorem 8.1). In
the other cases the existence of a subgroup block is shown in [Sza04] (in the same order
as above): Theorem 4.1.1 (three cases), Section 4.1.

The periodicity is shown in [Sza04] (in the same order as above): Theorem 6.1.3, Theo-
rem 6.2.1, Theorem 7.2.2, Theorem 7.2.4, Corollary 7.2.1, Theorem 7.4.1, Theorem 7.4.2,
Chapter 8.

152 8. Abelian Groups

Observation 8.43. In all of the cases of Lemma 8.42, Algorithm 8.23 descends at least
once in the recursion, i.e. factoring in the starting logarithmic signature is as hard as
factoring in the logarithmic signature for the factor group G/N , where N is the subgroup
block or the subgroup block resulting from splitting the periodic block.

In some cases, this idea can be iterated recursively. If the logarithmic signature for the
factor group G/N is again of one of the forms in Lemma 8.42 (i.e. it again has a periodic
block), the algorithm can descend at least once more. If this can be iterated recursively
until reaching the {0} group, the starting logarithmic signature clearly is tame.

We would like to state a summary when such full recursions occur. For this, we need to
know how the type of the logarithmic signature and the type of the group change when
moving into a factor group.

Let α = (A1, A2, . . . , An) ∈ Λ(G) contain a periodic block Ai, let N be the periods of Ai
together with 0 (we have N ≤ G by Lemma 2.7), and ϕ : G→ G/N : x 7→ x+N . Define

β := (E(ϕ(A1)), E(ϕ(A2)), . . . , E(ϕ(An))).

We claim that β ∈ Λ(G/N). In order to see why this is true, first have a look at ϕ(α).
ϕ(α) is an |N |-factorization of G/N (by Theorem 7.3). As the block Ai is periodic with
periods N , in G/N the application of E reduces the size of the block ϕ(Ai) by the factor
|N | (proof: when splitting Ai = B +N for a B ⊆ G using Lemma 2.7, N becomes {0} in

G/N), i.e. |E(ϕ(Ai))| = |Ai|
|N | . So, the multiplicity of the factorization when moving from

α (for G) to ϕ(α) (for G/N) is generated only by block Ai. In the definition of β this
multiplicity is removed by applying E. Consequently β ∈ Λ(G/N).

Thus, for all j 6= i, we have |E(ϕ(Aj))| = |Aj |. Write t(α) = (u1, . . . , un) and t(β) =
(v1, . . . , vn). Then

v1 | u1, v2 | u2, . . . , vn | un.

The factorization algorithm removes any blocks becoming {0}, i.e. any “1”s are removed
from the t(β) vector.

In summary, when the factorization algorithm moves into a factor group, each value in
the type vector of the logarithmic signature either does not change, vanishes completely
or is reduced to one of its proper divisors (except 1).

It remains to understand how the group type vector changes when moving into a
factor group. For this, we use a well-known result on subgroups of a group:

Lemma 8.44. Let G be an abelian group (represented as G = Z
p
k1
1

⊕ Z
p
k2
2

⊕ . . . ⊕ Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m), and U ≤ G. Then there exist 0 ≤ k′i ≤ ki for all
1 ≤ i ≤ m such that

U ∼= Z
p
k′1
1

⊕ Z
p
k′2
2

⊕ . . .⊕ Z
p
k′m
m

.

Proof. This is proven in Theorem 10.7 of [Fuc67].

8.9. Tame Logarithmic Signatures 153

Furthermore, it is well known that every factor group of an abelian group G is isomorphic
to a subgroup of G (and the other way around).

So, when the factorization algorithm moves into a factor group, each value in the type
vector of the group either does not change, vanishes completely or is reduced to one of its
proper divisors (except 1; t(G/N) shall not contain any 1).

Note that we here just need this statement about the group type vector; we do not need
to convert elements to the factor group representation. Algorithm 8.23 builds a chain of
subgroups for computing in factor groups.

Having understood how the type vectors change, we can now create a list of con-
ditions that result in the factorization algorithm finding a periodic block on every
recursion level (and thus the logarithmic signature being tame). We only list the cases
describing infinite families.

Theorem 8.45. Let G be an abelian group (represented as G = Z
p
k1
1

⊕ Z
p
k2
2

⊕ . . .⊕ Z
pkmm

with pi ∈ P and ki ∈ N for 1 ≤ i ≤ m), and α = (A1, . . . , An) ∈ Λ(G) canonical of type
t(α) = (q1, . . . , qn). Let p, q ∈ P distinct, λ, µ ∈ N and 3 ≤ a ∈ N.

In all of the following cases, α is tame (in the families of logarithmic signatures, all
parameters may tend towards infinity):

1. t(α) ∈ Pn.

2. The p-component of G is cyclic and q1, . . . , qn−1 ∈ {pi | i ∈ N}.

3. G is cyclic and q1, . . . , qn ∈
(
{zi | z ∈ P, i ∈ N} ∪ {yz | y, z ∈ P}

)
.

4. t(G) = (2λ, 2, . . . , 2), q1, . . . , qn ∈ {2, 4}.

5. t(G) = (2λ, 2µ), q1, . . . , qn ∈ {2, 4}.

6. t(G) = (2λ, 2, . . . , 2), q1 = . . . = qn−1 = 2.

7. q1 = 4, q2, . . . , qn ∈ P.

8. The 2-component of G is elementary, q1, . . . , qn ∈ (P ∪ {4}).

9. G is a group or a subgroup of a group of type (pa, q) or (2a, 2).

Proof. By Observation 8.43, it is sufficient to show that when the factorization algorithm
moves into any factor group, one of the conditions is fulfilled again for the factor group
and its logarithmic signature. Let G/N 6= {0} be the factor group and β ∈ Λ(G/N) the
canonical logarithmic signature of type t(β) = (u1, . . . , us) that the factorization algorithm
produces for G/N .

1. t(β) ∈ Ps (same case, i.e. β has the same form as α and thus again contains a periodic
block, and this can be iterated recursively).

2. The p-component of G/N is cyclic and u1, . . . , us−1 ∈ {pi | i ∈ N} (same case; the
last block is irrelevant for the tameness).

154 8. Abelian Groups

3. Factor groups of cyclic groups are cyclic, and again

u1, . . . , us ∈
(
{zi | z ∈ P, i ∈ N} ∪ {yz | y, z ∈ P}

)
(same case).

4. t(G/N) = (2λ
′
, 2, . . . , 2) for some 1 ≤ λ′ ≤ λ, and u1, . . . , us ∈ {2, 4} (same case).

5. u1, . . . , us ∈ {2, 4}. Two cases can occur:

• t(G/N) = (2λ
′
, 2µ

′
) with 1 ≤ λ′ ≤ λ and 1 ≤ µ′ ≤ µ (same case).

• t(G/N) = (2v) with 1 ≤ v ≤ max {λ, µ} (see the case for G/N cyclic and
u1, . . . , us ∈

(
{zi | z ∈ P, i ∈ N} ∪ {yz | y, z ∈ P}

)
, with y = z = 2 we get size

4).

6. t(G/N) = (2λ
′
, 2, . . . , 2) for some 1 ≤ λ′ ≤ λ, and u1 = . . . = us−1 = 2 (same case;

the last block is irrelevant for the tameness).

7. Two cases can occur:

• u1 = 4, u2, . . . , us ∈ P (same case).

• t(β) ∈ Ps.

8. u1, . . . , us ∈ (P ∪ {4}). Two cases can occur:

• G/N has a 2-component. Then the 2-component of G/N is elementary (same
case).

• G/N does not have a 2-component. This implies 2 - |G/N | and thus t(β) ∈ Ps.

9. Let us assume t(G) = (pa, q) or t(G) = (2a, 2). If t(G) = (pa, q), let u := p and
v := q, otherwise let u := 2 and v := 2. Three cases can occur:

• t(G/N) = (ua
′
, v) for some 1 ≤ a′ ≤ a (same case).

• t(G/N) = (ua
′
) for some 1 ≤ a′ ≤ a. Then G/N is cyclic and u1, . . . , us ∈(

{zi | z ∈ P, i ∈ N} ∪ {yz | y, z ∈ P}
)
.

• t(G/N) = (v). Then β contains only one block and thus is tame.

Remark 8.46. Let G = Zk2 and α = (A1, . . . , An) ∈ Λ(G) with |Ai| ∈ {2, 4} for all
1 ≤ i ≤ n, then α is tame (by Theorem 8.45, case 4 with λ = 1). This special case was
also proven in [Nus11] (with a different approach using graphs and matrices).

8.10. Factoring by Solving an Integer Linear Programming
Problem

Finding the factorization of an element with respect to a logarithmic signature of an abelian
group can be formulated as an integer linear programming (ILP) problem. However,
solving ILPs in general seems to be a much more difficult problem than factoring.

8.10. Factoring by Solving an Integer Linear Programming Problem 155

Let G be an abelian group of type t(G) = (m1, . . . ,mc), α ∈ Λ(G) of type t(α) =
(r1, . . . , rs), and g = (g1, . . . , gc) ∈ G the element to be factored. Define two mappings
ρ : {1, . . . , s + 1} → N0 : k 7→

∑k−1
i=1 ri (counts the elements in all blocks left of the kth

block) and γk : G → N0 : (h1, . . . , hc) 7→ hk (projection of the kth component of a group
element).

Define an ILP problem with `(α) + c integer variables x1, . . . , x`(α)+c and the following
constraints (in standard form):

• x1 ≥ 0, x2 ≥ 0, . . . , x`(α)+c ≥ 0.

• For all 1 ≤ k ≤ s:
ρ(k+1)∑
i=ρ(k)+1

xi = 1.

• For all 1 ≤ k ≤ c:
s∑
i=1

ri∑
j=1

(xρ(i)+j · γk(α[i][j]))− x`(α)+k ·mk = gk.

This ILP problem has exactly one solution, thus the linear function to be maximized is
irrelevant.

The first `(α) variables x1, . . . , x`(α) are actually binary variables (i.e. must be either 0
or 1). They can be interpreted as coefficients of the elements in the blocks of α. The “= 1”
constraints together with the non-negativity constraints ensure that exactly one element
in each block has a 1 coefficient, all others must be 0. The last c constraints ensure that
the sum of the selected elements give g. This is achieved component-wise: for each cyclic
group component of G a constraint ensures that the sum of these components equals the
component of the element to be factored. The “−x`(α)+k ·mk” summand realizes a “mod
mk” computation.

Example 8.47. Let G = Z2 ⊕ Z3 ⊕ Z3 ⊕ Z5, g = (0, 1, 2, 1) ∈ G and

α =

(0, 0, 0, 0)
(1, 1, 1, 4)
(0, 1, 0, 2)
(0, 2, 0, 1)
(1, 0, 1, 3)

(0, 0, 0, 0)

(0, 1, 1, 0)
(0, 0, 2, 0)

((0, 0, 0, 0)
(1, 0, 0, 0)

)(0, 0, 0, 0)
(1, 1, 0, 0)
(0, 2, 0, 0)

 ∈ Λ(G).

The ILP problem for factoring g with respect to α is

x1 ≥ 0,

...

x17 ≥ 0,

x1 + x2 + x3 + x4 + x5 = 1,

156 8. Abelian Groups

x6 + x7 + x8 = 1,

x9 + x10 = 1,

x11 + x12 + x13 = 1,

x2 + x5 + x10 + x12 − x14 · 2 = 0,

x2 + x3 + x4 · 2 + x7 + x12 + x13 · 2− x15 · 3 = 1,

x2 + x5 + x7 + x8 · 2− x16 · 3 = 2,

x2 · 4 + x3 · 2 + x4 + x5 · 3− x17 · 5 = 1.

Solving this using a standard ILP solver, we obtain the solution x1 = 0, x2 = 0, x3 =
0, x4 = 1, x5 = 0, x6 = 0, x7 = 0, x8 = 1, x9 = 1, x10 = 0, x11 = 0, x12 = 0, x13 = 1, x14 =
0, x15 = 1, x16 = 0, x17 = 0. Thus the factorization of g with respect to α is

(0, 2, 0, 1) + (0, 0, 2, 0) + (0, 0, 0, 0) + (0, 2, 0, 0) = (0, 1, 2, 1) = g.

Implementation. We have implemented this factorization approach (method
DmMultiZnGroup.FactorByILP), using the well-known lp solve1 library.

Furthermore, we implemented a function that creates a .lp ILP problem file for a given
factorization problem, which can then be solved for instance using the Gurobi2 ILP solver.

Run-time. In general, solving ILPs is known to be NP-hard. We have experi-
mented with factoring using this approach, however the performance was not acceptable.
Although both lp solve and Gurobi implement various solver strategies and optimizations,
even for only medium-sized logarithmic signatures no solutions were found in a reasonable
amount of time. If one wants to use this approach for factoring, solver algorithms would
need to be optimized strongly for this special type of problem. Without optimizations,
this approach is impractical.

For example, let G = Zn2 , g = (1, 0, 1, 0, . . .) ∈ G, and α ∈ Λ(G) obtained by the
simple generation procedure below. This procedure starts with a simple logarithmic
signature for G and performs selective shifts, where some of the indices of the involved
blocks are generated using the Advanced Encryption Standard (AES) block cipher in
counter (CTR) mode.

The generated logarithmic signature looks random; there do not seem to be any special
properties that the ILP solver could exploit.

Although we could have used LS-Gen from Section 6.5 for generating α, we chose to use
the following simple generation procedure for easier reproducibility of the results.

1. Set α ←
(

(0, . . . , 0)
(1, 0, 0, . . .)

)(
(0, . . . , 0)

(0, 1, 0, 0, . . .)

)(
(0, . . . , 0)

(0, 0, 1, 0, 0, . . .)

)
· · ·
(

(0, . . . , 0)
(0, . . . , 0, 1)

)
∈

Λ(G).

1http://lpsolve.sourceforge.net/
2http://www.gurobi.com/

8.10. Factoring by Solving an Integer Linear Programming Problem 157

2. Set K ← (0, . . . , 0) ∈ Z256
2 (constant key for AES-256).

3. For i← 0 to n2 − 1:

a) Set x← i mod n.

b) Set v ← AES-256K(i) (where i is converted to an array of 16 bytes, little-
endian).

c) Set y ← v mod n (where v is converted to a 128-bit unsigned integer, little-
endian).

d) If x 6= y:

• Set α[x+ 1][2]← α[x+ 1][2]⊕ α[y + 1][2].

We have implemented this generation procedure in the LogSig utility (Chapter 12). With
the command line option “-BenchmarkILP”, on a desktop PC (AMD A6-3650 2.60 GHz, 8
GB RAM, Windows 7 SP1 64-bit) we obtained the lp solve run-times in the table below
(without counting the time required for building α and g). With the command line option
“-CreateLPFiles”, LogSig outputs .lp files for the factorization problems; we measured
the time that a gurobi_cl invocation (with the .lp file path as parameter) required to
find a solution.

Note that all logarithmic signatures of type (2, . . . , 2) for G = Zn2 are actually tame (e.g.
see Algorithm 8.23). For comparison, we also list the run-times of our implementations of
Algorithm 8.23 and Algorithm 8.30.

n lp solve 5.5.2 Gurobi 5.6.3 Alg. 8.23 Alg. 8.30

8 0.005 s 0.023 s < 0.001 s 0.018 s
9 0.006 s 0.038 s < 0.001 s 0.027 s

10 0.006 s 0.040 s < 0.001 s 0.055 s
11 0.007 s 0.030 s < 0.001 s 0.077 s
12 0.012 s 0.038 s 0.001 s 0.119 s
13 0.004 s 0.051 s 0.001 s 0.158 s
14 0.053 s 0.120 s 0.002 s 0.259 s
15 0.100 s 0.025 s 0.002 s 0.359 s
16 0.045 s 0.102 s 0.003 s 0.442 s
17 0.136 s 0.215 s 0.004 s 0.633 s
18 0.187 s 0.229 s 0.004 s 0.780 s
19 0.827 s 0.615 s 0.006 s 1.030 s
20 2.637 s 0.584 s 0.007 s 1.313 s
21 1.844 s 1.946 s 0.007 s 1.616 s
22 0.302 s 5.066 s 0.010 s 2.246 s
23 2.806 s 1.874 s 0.012 s 2.803 s
24 2.029 s 29.289 s 0.012 s 3.285 s
25 39.887 s 19.120 s 0.014 s 3.829 s
26 149.802 s 61.606 s 0.018 s 5.053 s
27 115.328 s 108.663 s 0.019 s 6.107 s

158 8. Abelian Groups

n lp solve 5.5.2 Gurobi 5.6.3 Alg. 8.23 Alg. 8.30

28 445.739 s 359.582 s 0.022 s 6.957 s
29 1367.553 s 256.763 s 0.025 s 8.686 s
30 867.829 s 252.540 s 0.028 s 10.158 s
31 2089.052 s 1897.211 s 0.033 s 12.392 s

Table 8.1.: Run-Times for Factoring by Integer Linear Programming Problem Solving

8.11. Counting Logarithmic Signatures

In this section we show for a few groups that the number of logarithmic signatures (i.e.
keys for PGM and MST1) is huge.

8.11.1. Z2n, t(α) = (2, 2, . . . , 2)

Proposition 8.48. Let G = Z2n. There are

n! · 2
(n−1)n

2

canonical logarithmic signatures of type (2, 2, . . . , 2) for G.

Proof. By Lemma 8.4 we know that here the powers of 2 in the prime factorization of all
elements in a logarithmic signature except 0G are unique.

For the odd element (i.e. the one that does not contain 2 as factor), there are 2n−1

possibilities. For the element containing 2 as factor, but not 4, there are 2n−2 possibilities.
For the element containing 4 as factor, but not 8, there are 2n−3 possibilities. And so on.

In total, we get
∏n−1
k=0 2k = 2

∑n−1
k=0 k = 2

(n−1)n
2 possibilities.

The blocks are freely permutable. This results in n! possibilities.

Combining this, we obtain n!·2
(n−1)n

2 different canonical logarithmic signatures. Clearly,
all logarithmic signatures (following the structure of Lemma 8.4) are covered.

8.11.2. Zk2, t(α) = (2, 2, . . . , 2)

Proposition 8.49. Let G = Zk2. There are

k−1∏
j=0

(2k − 2j)

canonical logarithmic signatures of type (2, 2, . . . , 2) for G.

Proof. Observe that G is a vector space over the field Z2. Thus it is sufficient to compute
the number of ordered bases for this vector space.

We construct a basis. For the first element, we can freely choose any vector except
the zero vector, i.e. there are 2k − 1 possibilities. The second vector may be every vector

8.11. Counting Logarithmic Signatures 159

except a multiple of the first one (otherwise they would be linear dependent), so there are
2k − 2 possibilities. The third vector must not be a linear combination of the first two
(these first two generate 4 vectors), so 2k − 4 possibilities, and so on.

160

9. Dihedral Group

In this section we regard the case when G is a dihedral group.

Motivation. Dihedral groups in some sense are the most simple non-abelian groups.
Our goal in this section is to develop factorization and logarithmic signature generation
algorithms for dihedral groups.

In Chapter 8, our most commonly used approach was to locate subgroup/periodic blocks
and move into the induced factor groups. With dihedral groups, this approach does not
work directly, because although even when we encounter a subgroup block, we usually
cannot move into the induced factor group, due to most subgroups not being normal (in
contrast to abelian groups, where all subgroups are normal).

For example,

α =

(
id
σ63τ

)(
id
σ56

)(
id
σ23τ

)(
id
σ20

)(
id
σ67τ

)(
id

σ124τ

)(
id

σ106τ

)(
id
σ10τ

)
is a logarithmic signature for D2·128. Although there are plenty of subgroup blocks in α
(namely the blocks containing a reflection), none of them is normal.

Furthermore, statically chosen factor groups do not seem to be promising either. For
example, even for the rather large normal subgroup

〈
σ16
〉
, none of the non-id elements in

α get reduced to id in the factor group D2·128/
〈
σ16
〉
.

Most structural properties that we have proven for abelian groups do not directly hold
for dihedral groups. For example, by Lemma 8.4 we know that every canonical logarithmic
signature β ∈ Λ(Z2128) of type t(β) = (2, 2, . . . , 2) must contain the element 64 in some
block. However, α neither contains σ64 nor σ64τ .

So, we need to explore the structure of logarithmic signatures for dihedral groups, and
develop new methods or extend existing ones to work with dihedral groups.

Our contributions. We first present several interesting block substitution trans-
formations (both unconditional and conditional ones) in dihedral groups, which are
later used both in our generation and factorization algorithms. We especially analyze
size-permutable blocks in detail.

Subsequently, we design factorization algorithms (some efficient, some not) for various
special cases, including the case when all blocks of α ∈ Λ(D2n) except one of size 2
contain rotations only (the run-time of our algorithm depends on the run-time of another
factorization algorithm for a Zn logarithmic signature), D2·pn (our run-time depends on
the structure of the logarithmic signature), the special case α ∈ Λ(D2·2n) of type t(α) =
(2, 2, . . . , 2) (the algorithm is always efficient, i.e. α is tame; note that α has minimal

9.1. Transformations 161

length). We slightly generalize the last case by showing that any logarithmic signature
α ∈ Λ(D2·2n × Zk2) of type t(α) = (2, 2, . . . , 2) is tame.

Furthermore, we design and analyze an algorithm to generate logarithmic signatures for
D2n with n odd.

Similar to the previous chapter, we close this chapter by counting logarithmic signatures
for some specific dihedral groups and logarithmic signature types.

Encoding. For G = D2n with n ∈ N, we assume that encoding the rotation com-
ponent of a group element requires dlog2 ne bits, and that 1 bit is used for encoding
whether the element is a reflection, i.e. the code length (number of bits required to store
a group element) is

bG = dlog2 |G|e = dlog2 ne+ 1.

Note that this encoding is as compact as possible.

9.1. Transformations

In this section, we have a closer look at transformations applied to logarithmic signatures
of dihedral groups.

9.1.1. Block Substitutions

There are two block substitutions that are of great help to simplify logarithmic signatures
of dihedral groups. The first one is:(

id

σrτ

)(
id

σs

)
↔
(

id

σs

)(
id

σr−sτ

)
.

Both block pairs generate the elements {id, σrτ, σs, σr−sτ}. In a logarithmic signature we
can therefore substitute blocks of the left form by the blocks on the right (and the other
way around) and the result is still a logarithmic signature. Also, if we can compute a
factorization in the logarithmic signature with substituted blocks, we can easily derive
a factorization in the original signature: the local product of the selected elements in
the two substituted blocks just needs to be expressed as a local product in the original
signature.

The second interesting block substitution is:(
id

σrτ

)(
id

σsτ

)
↔
(

id

σr−s

)(
id

σsτ

)
.

Here, both two blocks generate the elements {id, σrτ, σsτ, σr−s}.

We will later use these two block substitutions to find factorizations in special log-
arithmic signatures of the dihedral group.

162 9. Dihedral Group

Note that the second substitution can be generalized for larger blocks. If we have
a block of size 2 on the right, we can freely transform reflections into rotations and
rotations into reflections on the left. An example:

id
σrτ
σsτ
σtτ
σuτ
σvτ

(

id

σwτ

)
↔

id
σr−w

σs−w

σt−w

σu−w

σv−w

(

id

σwτ

)
↔

id
σr−w

σsτ
σt−w

σu−w

σvτ

(

id

σwτ

)
↔

id
σrτ
σsτ
σtτ
σu−w

σv−w

(

id

σwτ

)
.

9.1.2. Conditional Block Substitutions

In the following we have a look at block substitutions that only work under certain cir-
cumstances.(

id
r1τ

)id
r2

r3

 = {id, r1τ, r2, r3, r1 − r2τ, r1 − r3τ}.

•

id
r2

r3

(id
r1 − r3τ

)
= {id, r1τ, r2, r3, r1 + r2 − r3τ, r1 − r3τ}

is the same if r1 − r2 = r1 + r2 − r3 ⇔ r3 = 2r2.

•

 id
r1τ
r3

(id
r1 − r2τ

)
= {id, r1τ, r2, r3, r1 − r2τ, r1 − r2 + r3τ}

is the same if r1 − r3 = r1 − r2 + r3 ⇔ r2 = 2r3.(
id
r1τ

) id
r2τ
r3

 = {id, r1τ, r2τ, r3, r1 − r2, r1 − r3τ}.

•

 id
r2τ
r3

(id
r1 − r3τ

)
= {id, r1τ, r2τ, r3,−r1 + r2 + r3, r1 − r3τ}

is the same if r1 − r2 = −r1 + r2 + r3 ⇔ 2r1 = 2r2 + r3. id
r1

r2τ

id
r3

r4

 = {id, r1, r2τ, r3, r4, r1 + r3, r1 + r4, r2 − r3τ, r2 − r4τ}.

•

id
r3

r4

 id
r1

r2τ

 = {id, r1, r2τ, r3, r4, r1 + r3, r1 + r4, r2 + r4τ, r2 + r3τ}

is the same if r2 − r3 = r2 + r4 ⇔ r3 = −r4.

9.1. Transformations 163

•

id
r3

r4

 id
r1

r2 − r4τ

 = {id, r1, r2τ, r3, r4, r1 + r3, r1 + r4, r2 + r3 − r4τ, r2 + r4τ}

is the same if r2 − r3 = r2 + r3 − r4 ⇔ 2r3 = r4.

In the following, we generalize this. We show a connection to antiperiodicity (Section
2.4.2).

Definition 9.1. Let G = D2n. Define

% : G×G→ G : (σdτ c, σrτ b) 7→

{
σr, if b = 0,

σd−r, if b = 1.

Naturally, for an A ⊆ G we write %(g,A) := {%(g, a) | a ∈ A}.

Theorem 9.2. Let G = D2n and m ∈ N odd. Let T,A ⊆ G two canonical sets with
T = {id, dτ} for some d ∈ Zn (i.e. the second element in T is a reflection), |A| = m,
|T ·A| = 2m. Set R := %(dτ,A).

Then (T,A) is size-permutable if and only if Z(R) 6= ∅.

Proof. T is a subgroup of G; % performs a selective shift using dτ onto an element in A
if and only if the element in A is a reflection; this results in R containing only rotations,
and T ·A = T ·R.

We have T ·R = {g ·h | g ∈ T, h ∈ R} = T∪R∪{(d−r)τ | r ∈ R} = R∪{(d−r)τ | r ∈ R}
(due to T and R being canonical).

Assume that canonical sets T ′ and R′ with |T ′| = 2, |R′| = m and R′ · T ′ = T ·R exist.
As T ′ is canonical, we have id ∈ T ′; and as m is odd, the second element in T ′ must be
a reflection (T ·A contains exactly as many rotations as reflections; if the second element
in T ′ would be a rotation, R′ would have to contain exactly m

2 reflections, which is not
possible due to m being odd). The only candidates for the reflection in T ′ are the elements
(d− r)τ (with r ∈ R), because id ∈ R′. Thus write T ′ = {id, (d− z)τ} for a z ∈ R.

W.l.o.g. we can assume that R′ contains only rotations, because if R′ would contain
reflections, we could perform selective shifts using the element (d−z)τ onto the reflections
in R′ to produce a set that contains only rotations and still generates the same elements
together with T ′. As T ·A contains exactly m rotations, we must set R′ := R.

We get R′ · T ′ = R′ ∪ {(r + d− z)τ | r ∈ R′} = R ∪ {(r + d− z)τ | r ∈ R}, and thus

T ·R = R′ · T ′

⇔ R ∪ {(d− r)τ | r ∈ R} = R ∪ {(r + d− z)τ | r ∈ R}
⇔ {(d− r)τ | r ∈ R} = {(r + d− z)τ | r ∈ R}

⇔ {−r | r ∈ R} = {r − z | r ∈ R}
⇔ R = {z − r | r ∈ R}
⇔ z ∈ Z(R).

164 9. Dihedral Group

Theorem 9.2 does not necessarily hold if m is even; we give a counter-example in Remark
9.5.

In the proof of Theorem 9.2, z is not necessarily determined uniquely, if it exists. For
example, if R E G, then all z ∈ R result in R′ · T ′ = T ·R (i.e. Z(R) = R).

Example 9.3. Let G = D2·15, T = {id, 7τ}, A = {id, 3, 7, 11τ, 13τ}.
In order to test whether (T,A) is size-permutable, we first compute R := %(7τ,A) =
{id, 3, 7, 11, 9} = {id, 3, 7, 9, 11}. We now test whether there exists at least one z ∈ R such
that R = {z − r | r ∈ R}:

• z = 0: 0− 3 mod 15 = 12 /∈ R ⇒ z = 0 is not a valid choice.

• z = 3: 3 − 0 mod 15 = 3 ∈ R, 3 − 3 mod 15 = 0 ∈ R, 3 − 7 mod 15 = 11 ∈ R,
3 − 9 mod 15 = 9 ∈ R, 3 − 11 mod 15 = 7 ∈ R ⇒ z = 3 is a valid choice and with
(d− z)τ = (7− 3)τ = 4τ , we get

T ·A = {id, 7τ} · {id, 3, 7, 11τ, 13τ} = {id, 3, 7, 9, 11} · {id, 4τ} = R′ · T ′.

• z = 7: 7− 3 = 4 /∈ R ⇒ z = 7 is not a valid choice.

• z = 9: 9− 7 = 2 /∈ R ⇒ z = 9 is not a valid choice.

• z = 11: 11− 9 = 2 /∈ R ⇒ z = 11 is not a valid choice.

So, Z(R) = {3} 6= ∅ and (T,A) is size-permutable.

Example 9.4. Let G = D2·15, T = {id, 5τ}, A = {id, 4, 6τ}.
In order to test whether (T,A) is size-permutable, we first compute R := %(5τ,A) =
{id, 4, 14}. We now test whether there exists at least one z ∈ R such that R = {z− r | r ∈
R}:

• z = 0: 0− 4 mod 15 = 11 /∈ R ⇒ z = 0 is not a valid choice.

• z = 4: 4− 14 mod 15 = 5 /∈ R ⇒ z = 4 is not a valid choice.

• z = 14: 14− 4 mod 15 = 10 /∈ R ⇒ z = 14 is not a valid choice.

So, there exists no z ∈ R with the required property (we get Z(R) = ∅), thus (T,A) is not
size-permutable, i.e. there exist no canonical blocks R′, T ′ ⊆ G with |R′| = 3, |T ′| = 2 and
T ·A = R′ · T ′.

Remark 9.5. In Theorem 9.2, m being odd is a necessary hypothesis; the state-
ment does not necessarily hold if m is even. For example, let G = D2·10, m = 6,
T = {id, 8τ}, A = {id, 5, 7, 2τ, 5τ, 7τ}, T · A = {id, 5, 7, 2τ, 5τ, 7τ, 8τ, 3τ, 1τ, 6, 3, 1} =
{id, 1, 3, 5, 6, 7, 1τ, 2τ, 3τ, 5τ, 7τ, 8τ}, |T ·A| = 12 = 2 · 6, R = {id, 5, 7, 6, 3, 1} =
{id, 1, 3, 5, 6, 7}, Z(R) = ∅ (e.g. due to 0 − 1 mod 10 = 9 /∈ R, 1 − 7 mod 10 = 4 /∈ R,
3−1 mod 10 = 2 /∈ R, 5−1 mod 10 = 4 /∈ R, 6−7 mod 10 = 9 /∈ R, 7−3 mod 10 = 4 /∈ R),
but (T,A) is size-permutable, e.g. with A′ = {id, 5, 7, 1τ, 3τ, 8τ} and T ′ = {id, 6} we have
A′ ·T ′ = {id, 5, 7, 1τ, 3τ, 8τ, 6, 1, 3, 5τ, 7τ, 2τ} = {id, 1, 3, 5, 6, 7, 1τ, 2τ, 3τ, 5τ, 7τ, 8τ} = T ·A.

9.2. Factorization Algorithm for Cτ (E(α)) = 1 165

9.2. Factorization Algorithm for Cτ(E(α)) = 1

Proposition 9.6. Let G = D2n and α = (A1, . . . , As) ∈ Λ(G) canonical. Assume there
exists an 1 ≤ i ≤ s such that |Ai| = 2 and all other Aj (with j 6= i) contain only rotations.

If all canonical β ∈ Λ(Zn) of type t(β) = (|A1|, . . . , |Ai−1|, |Ai+1|, . . . , |As|) are tame,
then α is tame.

Proof. As all blocks except Ai contain rotations only, Ai must contain id (due to be-
ing canonical) and a reflection σdτ with d ∈ Zn (otherwise we could not generate any
reflections).

For a factorization of a rotation, id must be selected in Ai. For a factorization of a
reflection, the reflection must be selected in Ai.

Let ϕ : G → Zn : σkτ b 7→ k and β := (ϕ(A1), . . . , ϕ(Ai−1), ϕ(Ai+1), . . . , ϕ(As)). As
every factorization of a rotation ofG requires id to be selected inAi (and every factorization
of a reflection of G requires the reflection to be selected in Ai), we have β ∈ Λ(Zn) and
t(β) = (|A1|, . . . , |Ai−1|, |Ai+1|, . . . , |As|).

Let g ∈ G be an element that we want to factor with respect to α.

• If g is a rotation, select id in Ai, factor ϕ(g) with respect to β and select the
corresponding elements in α.

If β is tame, then this approach is efficient.

• If g is a reflection, we continue as follows. Let β� := (B1, . . . , Bi−1, Bi+1, . . . Bs)
with Bj := ϕ(Aj) for all 1 ≤ j < i and Bj := ϕ(A−1

j) = {ϕ(a−1) | a ∈ Aj} for all
i < j ≤ s. β� is the result of performing selective shifts using the reflection in Ai onto
all elements in Ai+1 (in the result, id must be selected in Ai for the factorization of
g), subsequently removing Ai, performing a normalization (this inverts all rotations,
because σdτ · σr · (σdτ)−1 = σdτ · σr · σdτ = σd−r−d = σ−r), extracting and cutting
the σdτ from the right side (to make the last block canonical) and finally going from
G to Zn. Clearly, β� ∈ Λ(Zn).

For the factorization of g with respect to α, select the reflection in Ai, factor ϕ(g ·
(σdτ)−1) (which is ϕ(g·σdτ)) with respect to β� and select the corresponding elements
in α.

If β� (which is of the same type as β) is tame, then this approach is efficient.

Thus α is tame.

9.3. Factorization Algorithm for D2·pn

In the following we present an algorithm to find element factorizations in logarithmic
signatures of dihedral groups of order 2 ·pn, where p is a prime and n is a natural number.
The run-time of the algorithm is highly dependent on the structure of the logarithmic
signature. In Section 9.3.3, we present run-time examples (including an example where
only O(n2) group operations are required, and an example where exponential time is

166 9. Dihedral Group

required).

For the special case D2·2n , we develop an efficient factorization algorithm in Sec-
tion 9.4.

9.3.1. Algorithm

Let D2·pn be the dihedral group of order 2 · pn, ls a canonical logarithmic signature for
this group, and σkτ c the element to factorize.

The factorization is computed by the following function, when called with the log-
arithmic signature ls (represented by a two-dimensional jagged array, using one-based
indices), p the prime number in our group D2·pn , nRotToFactor = k, nCurPow = −1,
vSelected a list containing as many −1 as we have blocks in the logarithmic signature
(denoted by s), and bTailTau = false.

Function FacRec(LogSig ls, Int p, Int nRotToFactor, Int nCurPow, List<Int> vSe-
lected, Bool bTailTau) : List<Int>

1. If vSelected does not contain any −1:

a) Set gl ← ls[1][vSelected [1]] · ls[2][vSelected [2]] · · · ls[s][vSelected [s]].

b) If bTailTau: set gl ← gl · τ .

c) If gl = σkτ c: return vSelected,
else: return null.

2. If nRotToFactor = 0: set nPowToFactor ← −1,
else: set nPowToFactor ← power of p in the prime factorization of nRotToFactor.

3. If ((nPowToFactor < nCurPow) and (nPowToFactor 6= −1)): return null.

4. Set L ← candidate sets (see below).

5. For each candidate set S in L:

a) Clone lsNew ← ls, vSelectedNew ← vSelected, bTailTauNew ← bTailTau.

b) Select all elements in S (modifies lsNew, vSelectedNew and bTailTauNew ; see
below).

c) Compute all possible selected element products (see below).

d) For each possible product σrτd:

i. Set nRotToFactorNew ← k − r mod pn.

ii. Set List<Int> vSub ← FacRec(lsNew, p, nRotToFactorNew, nCurPow +
1, vSelectedNew, bTailTauNew).

iii. If vSub 6= null : return vSub.

9.3. Factorization Algorithm for D2·pn 167

6. Return null.

Details:

• Finding candidate sets L. We call a list of element positions (block and index) a
candidate set S, when the following conditions are fulfilled:

– For each block there is at most one position specifying an index in this block
(i.e. block indices are unique in S).

– For each position (x, y) the power of p in the power of σ of the element in block
x at index y in the logarithmic signature is exactly nCurPow.

– The number of elements in the candidate set is even when nPowToFactor 6=
nCurPow, or odd when nPowToFactor = nCurPow.

L is the set of all possible candidate sets S.

Example. Let ls be the following logarithmic signature of D2·28 :

(
id

109τ

)(
id

24·3·5
)(

id
22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
.

Here, p is 2. Let nPowToFactor be 3 and nCurPow be 2 (i.e. we are looking at
elements with rotations containing 2 to the power of 2). As we have nPowToFactor
6= nCurPow, the candidate sets must contain an even number of elements. So, L =
{∅, {(3, 2), (4, 2)}}. This means that in order to obtain an even number of elements
containing 22 (exactly) as factor in rotations, we can either select no elements at all
or select both 22 · 3 · 11τ and 22 · 3 · 13.

• Selecting elements of a candidate set S. In order to select elements of S, we
do the following for each element position (x, y) ∈ S (ordered ascendingly by x):

1. Select the element in vSelectedNew, i.e. set vSelectedNew [x] ← y.

2. If the element at (x, y) in ls is a reflection:

a) Multiply the element at (x, y) in ls with τ from the right.

b) For each block ls[i] with i > x (ascendingly):

– For each element gj = σrjτ cj in ls[i]:

∗ Replace gj by σ−rjτ cj (in ls[i]).

c) Toggle bTailTauNew.

Example. Let ls be the following logarithmic signature of D2·28 :

(
id

109τ

)(
id

24·3·5
)(

id
22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
.

168 9. Dihedral Group

From now on, we mark selected elements by rectangles. If bTailTauNew is true, we
indicate this by appending a block containing only the element τ .

By selecting the element 2 · 3 · 11τ , we would obtain the following logarith-
mic signature:(

id
109τ

)(
id

24·3·5
)(

id
22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(id
2 · 3 · 11

)(
id

2·31τ

)(
id

23·5
)
(τ).

• Computing possible selected element products. Having selected some
elements of the logarithmic signature, we compute the product of these selected
elements. However, depending on whether we might later select a reflection between
these elements (i.e. there is a block without any selected element and at least one
element is a reflection), the rotations of the following selected elements either have
to be added or subtracted, i.e. there are two cases / possible products. In this step
of the algorithm, we compute all of these possible products.

Example. Let ls be the following logarithmic signature of D2·28 (selected
elements are marked using rectangles):

(
id

109τ

)(id

24 · 3 · 5

)(id

22 · 3 · 11τ

)(id

22·3·13

)(
id
26

)(
id
25

)(id
2·3·11τ

)(
id

2·97τ

)(id

23 · 33

)
.

Here, there are four possible products. The first block does not have any selected
element and contains a reflection, giving us two cases. The fifth and sixth blocks do
not have selected elements, but also do not contain any reflections, so we can ignore
these blocks. The eighth block does not have any selection and contains a reflection,
giving us two more cases. So, we have the following four possible products:

Case (id, id): σ24·3·5 · σ22·3·11τ · id · id ·σ23·33
= σ24·3·5+22·3·11−23·33

τ = σ22·3·13τ .

Case (τ, id): σ−24·3·5 · σ−22·3·11τ · id · id ·σ−23·33
= σ−24·3·5−22·3·11+23·33

τ = σ22·52
τ .

Case (id, τ): σ24·3·5 · σ22·3·11τ · id · id ·σ−23·33
= σ24·3·5+22·3·11+23·33

τ = σ22·19τ .

Case (τ, τ): σ−24·3·5 · σ−22·3·11τ · id · id ·σ23·33
= σ−24·3·5−22·3·11−23·33

τ = σ22·32·5τ .

9.3.2. Example

In this example we show how the algorithm in Section 9.3.1 finds an element factorization
in a given canonical logarithmic signature.

Let ls be the following logarithmic signature of D2·28 :(
id

109τ

)(
id

24·3·5
)(

id
22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
.

We are looking for the factorization of σ42.

9.3. Factorization Algorithm for D2·pn 169

On the topmost recursion level of FacRec, only τ can be selected (because the ro-
tation component has to be zero and the element must not be the identity). However, as
there is no single τ (without a rotation) in the logarithmic signature, the function calls
itself recursively, now with nCurPow + 1, i.e. 0.

The only element (except id) containing p = 2 to the power of 0 (i.e. 2 does not
appear in the prime factorization of the rotation component of the dihedral group
element) is σ109τ . As we want to factorize σ42, an even number, σ109 cannot be part of
the selection. So, id is selected in this block, and the function calls itself with nCurPow
= 1 and the following signature:(id

109τ

)(
id

24·3·5
)(

id
22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
.

Now we are looking for elements with p = 2 to the power of 1. These are σ2·3·11τ and
σ2·97τ . As 42 = 2·3·7 contains 2 to the power of 1, we need to select an odd number of these
elements. Possible selections therefore are (with the subsequent element transformation
algorithm already applied):(id

109τ

)(
id

24·3·5
)(

id
22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(id
2 · 3 · 11

)(id
2·31τ

)(
id

23·5
)
(τ),(id

109τ

)(
id

24·3·5
)(

id
22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(id
2·3·11τ

)(id
2 · 97

)(
id

23·5
)
(τ).

The function would call itself recursively for both of these possibilities. In order to keep
this example short, we continue only looking at the possibility leading to the solution
(the other possibility results in no solution, as expected), which is the second one. So, we
select id in block 7 and σ2·97τ in block 8.

The next step is to compute the remaining number to factorize. For this, we need
to compute the possible selected element products. We have two possible products,
because there is at least one reflection in an unselected block in front of block 8; these
are: σ2·97τ and σ−2·97τ . Like above, the algorithm would try both of these possibilities,
but to shorten the example, we magically know that the second possibility will lead to
the solution.

We calculate the remaining rotation to factorize: −2 · 97 + x = 42 ⇔ x = 42 + 2 · 97 =
236 = 22 · 59.

Now p = 2 to the power of 2. As 22 · 59 contains 2 to the power of 2, we need to
select an odd number of elements with rotations containing 22. These are σ22·3·11τ and
σ22·3·13. This gives us two possibilities:(id

109τ

)(
id

24·3·5
)(id

22 · 3 · 11

)(id

22·52

)(
id

26·3
)(

id
25·7
)(id

2·5·19τ

)(id
2 · 31

)(
id

23·33

)
,(id

109τ

)(
id

24·3·5
)(id

22·3·11τ

)(id

22 · 3 · 13

)(
id
26

)(
id
25

)(id
2·3·11τ

)(id
2 · 97

)(
id

23·5
)
(τ).

170 9. Dihedral Group

The algorithm would try both; we try the first one first. As there are no free
reflections anymore, there is only exactly one possible product: σ22·3·11σ2·31 =
σ22·3·11+2·31 = σ194 = σ2·97. So, the rotation we still need to factorize is
2 · 97 + x = 42⇔ x = 42− 2 · 97 = −152 ≡ 104 = 23 · 13 (mod 28).

The only free element with a rotation containing 2 to the power of 3 is 23 · 33, so
this gets selected:(id

109τ

)(
id

24·3·5
)(id

22 · 3 · 11

)(id

22·52

)(
id

26·3
)(

id
25·7
)(id

2·5·19τ

)(id
2 · 31

)(id

23 · 33

)
.

The unique product is σ22·3·11σ2·31σ23·33
= σ22·3·11+2·31+23·33

= σ410 = σ154 = σ2·7·11. Thus
we still need to factorize 2·7·11+x = 42⇔ x = 42−2·7·11 = −112 ≡ 144 = 24·32 (mod 28).
There is only one possibility:(id

109τ

)(id

24 · 3 · 5

)(id

22 · 3 · 11

)(id

22·52

)(
id

26·3
)(

id
25·7
)(id

2·5·19τ

)(id
2 · 31

)(id

23 · 33

)
.

This time the unique product is σ24·3·5σ22·3·11σ2·31σ23·33
= σ650 = σ138 = σ2·3·23. Now we

need to factorize 2 · 3 · 23 + x = 42 ⇔ x = 42 − 2 · 3 · 23 = −96 ≡ 160 = 25 · 5 (mod 28).
Again, there is only one possibility:(id

109τ

)(id

24 · 3 · 5

)(id

22 · 3 · 11

)(id

22·52

)(
id

26·3
)(id

25 · 7

)(id
2·5·19τ

)(id
2 · 31

)(id

23 · 33

)
.

This results in a unique product σ24·3·5σ22·3·11σ25·7σ2·31σ23·33
= σ874 = σ106 = 2 · 53. So,

now we are looking for 2 · 53 + x = 42 ⇔ x = 42− 2 · 53 = −64 ≡ 192 = 26 · 3 (mod 28).
As before, there is only one possibility:(id

109τ

)(id

24 · 3 · 5

)(id

22 · 3 · 11

)(id

22·52

)(id

26 · 3

)(id

25 · 7

)(id
2·5·19τ

)(id
2 · 31

)(id

23 · 33

)
.

Let us compute the (unique) product of the selected elements:

id ·σ24·3·5 · σ22·3·11 · id ·σ26·3 · σ25·7 · id ·σ2·31 · σ23·33
= σ1066 = σ42.

This is the element that we were looking for! In each block one element has been selected,
thus the algorithm terminates (passing the factorization up through vSub).

Note that the logarithmic signature has changed in the process (the logarithmic
signature above is not the same as the original one), but the element positions still lead to
a factorization in the original logarithmic signature. This is because the transformations
did not change the factorization for this product. We can verify this in our example by
computing the product of the elements in the original logarithmic signature:(id

109τ

)(id

24 · 3 · 5

)(id

22 · 3 · 11τ

)(id

22·3·13

)(id

26

)(id

25

)(id
2·3·11τ

)(id
2 · 97τ

)(id

23 · 33

)
.

9.3. Factorization Algorithm for D2·pn 171

The product of the selected elements is

id ·σ24·3·5 · σ22·3·11τ · id ·σ26 · σ25 · id ·σ2·97τ · σ23·33

= σ24·3·5 · σ22·3·11 · σ−26 · σ−25 · σ−2·97 · σ23·33

= σ298

= σ42.

9.3.3. Run-Time Examples

Example for O(n2) group operations. We present a family of logarithmic signatures
for D2·2n , in which the algorithm finds factorizations using O(n2) group operations.

Let n ∈ N and ls the following logarithmic signature for D2·2n :(
id
20

)(
id
21

)(
id
22

)(
id
23

)
· · ·
(

id
2n−2

)(
id

2n−1

)(
id
τ

)
.

It is clear that this is a logarithmic signature for D2·2n : using the first s − 1 blocks (the
signature has s = n + 1 blocks) we can generate all rotations (each number 0 ≤ i < 2n

can be written uniquely as
∑n−1

j=0 xj2
j with xj ∈ {0, 1} for all j), and the last block on

the one hand makes the signature generate all rotations (using id) and on the other hand
all reflections (using τ).

The algorithm requires n recursive calls for such a signature. In each call there is
exactly one candidate set in L, because there is only one element in the logarithmic
signature whose rotation contains p = 2 to the power of nCurPow. To recognize this,
the algorithm requires O(n) group operations, because all blocks are investigated. The
procedure to select an element requires O(1) group operations, because there are no
blocks right of the block containing τ and none of the other blocks contain reflections. For
each candidate set there is exactly one possible selected element product, because the first
n blocks contain only rotations; computing this product requires O(n) group operations.
All in all, the algorithm requires O(n) · (O(n) + O(n)) = O(n2) group operations to find
the factorization of an element.

Example for exponential run-time. Now we present a family of logarithmic
signatures for D2·2n with n even, in which the algorithm can require exponential time to
find factorizations of elements.

Let n ∈ N. We start with a signature that obviously is a logarithmic signature for
D2·2n and then successively apply the second block substitution in Section 9.1.1 from
right to left: (

id
2n−1

)(
id

2n−2

)(
id

2n−3

)
· · ·
(

id
22

)(
id
21

)(
id
20

)(
id
τ

)
↔
(

id
2n−1

)(
id

2n−2

)(
id

2n−3

)
· · ·
(

id
21

)(
id

(20+0)τ

)(
id
τ

)
↔
(

id
2n−1

)(
id

2n−2

)(
id

2n−3

)
· · ·
(

id
22

)(
id

(21+20)τ

)(
id

20τ

)(
id
τ

)

172 9. Dihedral Group

↔
(

id
2n−1

)(
id

2n−2

)(
id

2n−3

)
· · ·
(

id
23

)(
id

(22+21+20)τ

)(
id

(21+20)τ

)(
id

20τ

)(
id
τ

)
...

↔
(

id
2n−1

)(
id

2n−2

)(id
(
∑n−3
i=0 2i)τ

)
· · ·
(

id
(22+21+20)τ

)(
id

(21+20)τ

)(
id

20τ

)(
id
τ

)
↔
(

id
2n−1

)(id
(
∑n−2
i=0 2i)τ

)(id
(
∑n−3
i=0 2i)τ

)
· · ·
(

id
(22+21+20)τ

)(
id

(21+20)τ

)(
id

20τ

)(
id
τ

)
↔
(id

(
∑n−1
i=0 2i)τ

)(id
(
∑n−2
i=0 2i)τ

)(id
(
∑n−3
i=0 2i)τ

)
· · ·
(

id
(22+21+20)τ

)(
id

(21+20)τ

)(
id

20τ

)(
id
τ

)
=
(

id
(2n−1)τ

)(
id

(2n−1−1)τ

)(
id

(2n−2−1)τ

)
· · ·
(

id
(23−1)τ

)(
id

(22−1)τ

)(
id

(21−1)τ

)(
id
τ

)
.

This is a logarithmic signature for D2·2n , because the one that we started with obviously
was one and each two substituted blocks locally generate the same four elements as the
original two blocks.

In the first recursive call, i.e. when looking at p = 2 to the power of 0, L contains
2n

2 = 2n−1 candidate sets, because all of the first n (free) blocks contain an element with
an odd rotation component (i.e. with p = 2 to the power of 0). As the loop iterates over
all of these candidate sets and only one leads to the solution, the run-time all in all is
exponential.

9.4. Factoring in D2·2n

In the following we develop an algorithm to efficiently find element factorizations with
respect to logarithmic signatures of type (2, 2, . . . , 2) in D2·2n .

The basic idea is to first simplify the given logarithmic signature (using the τ -
reduction transformation in Section 9.4.1), compute a factorization in the simplified
signature (which will be easy), and finally derive the factorization in the original signature
by undoing the τ -reduction transformation.

9.4.1. τ -Reduction Transformation

The goal of this transformation is to minimize the number of reflection elements in the
logarithmic signature. In type (2, 2, . . . , 2) signatures of D2·2n we can use the two block
substitutions from Section 9.1.1 to reduce the number of reflections to exactly one:

Function TauReduce(LogSig ls, List<UInt> vSubstApplied) : Void

• For i← 1 to |ls| − 1:

– If ls[i][2] is a reflection:

∗ If ls[i + 1][2] is a reflection:

1. Set ls[i][2] ← ls[i][2] · ls[i + 1][2].

2. vSubstApplied.Append(2).

else:

9.4. Factoring in D2·2n 173

1. Set gl ← ls[i + 1][2].

2. Set gr ← ls[i][2] · ls[i + 1][2].

3. Set ls[i][2] ← gl.

4. Set ls[i + 1][2] ← gr.

5. vSubstApplied.Append(1).

else: vSubstApplied.Append(0).

This function transforms the given logarithmic signature in-place and additionally saves
for each block whether a substitution has been applied or not into the vSubstApplied
list (we need this later when undoing the transformation and reconstructing the original
signature).

9.4.2. Algorithm

Algorithm 9.7. Let ls be a type (2, 2, . . . , 2) canonical logarithmic signature of D2·2n .
The following algorithm computes the factorization (block indices) for an element g:

Function FactorizeD2n(LogSig ls, GroupElement g) : List<UInt>

1. Let n← |ls|.

2. Let List<UInt> vFactorization ← new List<UInt>(n, 1).

3. Let List<UInt> vSubstApplied ← new List<UInt>().

4. TauReduce(ls, vSubstApplied).

5. If g is a reflection:

a) Set vFactorization[n] ← 2.

b) Set g ← g · ls[n][2]−1.

6. Let Int nPow ← 0.

7. While g 6= id:

a) Find the element h 6= id in the first n−1 blocks of ls in whose prime factorization
2 appears to the power of nPow (this can be done in constant time, see Section
9.4.4).

Let x be the index of the block containing h.

b) If 2 appears to the power of nPow in g:

i. Set vFactorization[x] ← 2.

ii. Set g ← g · h−1.

c) Set nPow ← nPow + 1.

174 9. Dihedral Group

8. For Int t← n− 1 down to 1:

a) If vSubstApplied [t] = 1:

i. Set gl ← ls[t][2].

ii. Set gr ← ls[t+ 1][2].

iii. Set ls[t][2] ← gl · gr.

iv. Set ls[t+ 1][2] ← gl.

v. If vFactorization[t] = 2 ∧ vFactorization[t+ 1] = 1:
set vFactorization[t] ← 1 and vFactorization[t+ 1] ← 2,

else if vFactorization[t] = 1 ∧ vFactorization[t+ 1] = 2:
set vFactorization[t] ← 2 and vFactorization[t+ 1] ← 2,

else if vFactorization[t] = 2 ∧ vFactorization[t+ 1] = 2:
set vFactorization[t] ← 2 and vFactorization[t+ 1] ← 1.

else if vSubstApplied [t] = 2:

i. Set ls[t][2] ← ls[t][2] · ls[t+ 1][2].

ii. If vFactorization[t] = 2 ∧ vFactorization[t+ 1] = 1:
set vFactorization[t] ← 2 and vFactorization[t+ 1] ← 2,

else if vFactorization[t] = 2 ∧ vFactorization[t+ 1] = 2:
set vFactorization[t] ← 2 and vFactorization[t+ 1] ← 1.

9. Return vFactorization.

9.4.3. Example

Let ls be the following logarithmic signature of D2·28 (the same as in Section 9.3.2):(
id

109τ

)(
id

24·3·5
)(

id
22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
.

We are looking for the factorization of σ42.

First of all, we compute the simplified logarithmic signature (TauReduce):

i ls vSubstApplied(
id

109τ

)(
id

24·3·5
)(

id
22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
1

(
id

24·3·5
)(

id
53τ

)(
id

22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
1

2
(

id
24·3·5

)(
id

3·83

)(
id

22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
2

3
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id

23·29τ

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
1

4
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id
26

)(
id

23·3·7τ
)(

id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
1

5
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

23·17τ

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
1

6
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·5·7
)(

id
2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
2

7
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·5·7
)(

id
27

)(
id

2·97τ

)(
id

23·33

)
2

8
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·5·7
)(

id
27

)(
id

23·33

)(
id

2·32·13τ

)
1

9.4. Factoring in D2·2n 175

g = σ42 is not a reflection, so the next conditional code section is not executed. Now we
compute the factorization in the simplified logarithmic signature (the “While” loop):

nPow g h x vFactorization[x] New g

0 σ42 = σ2·3·7 σ3·83 2 1 σ42

1 σ42 = σ2·3·7 σ2·5·7 6 2 σ228

2 σ228 = σ22·3·19 σ22·3·13 3 2 σ72

3 σ72 = σ23·32
σ23·33

8 2 σ112

4 σ112 = σ24·7 σ24·3·5 1 2 σ128

5 σ128 = σ27
σ25

5 1 σ128

6 σ128 = σ27
σ26

4 1 σ128

7 σ128 = σ27
σ27

7 2 id

Visualizing vFactorization, we have selected the following elements in the simplified loga-
rithmic signature:(id

24 · 3 · 5

)(id
3·83

)(id

22 · 3 · 13

)(id

26

)(id

25

)(id
2 · 5 · 7

)(id

27

)(id

23 · 33

)(id

2·32·13τ

)
.

Computing the product of the selected elements indeed results in σ42. The rest of the
algorithm undoes the τ -reduction transformation in order to find a factorization in the
original logarithmic signature. Recall that vSubstApplied = (1, 2, 1, 1, 1, 2, 2, 1).

t New ls New vFactorization(
id

24·3·5
)(

id
3·83

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·5·7
)(

id
27

)(
id

23·33

)(
id

2·32·13τ

)
(2, 1, 2, 1, 1, 2, 2, 2, 1)

8
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·5·7
)(

id
27

)(
id

2·97τ

)(
id

23·33

)
(2, 1, 2, 1, 1, 2, 2, 1, 2)

7
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·5·7
)(

id
2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
(2, 1, 2, 1, 1, 2, 2, 2, 2)

6
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

23·17τ

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
(2, 1, 2, 1, 1, 2, 1, 2, 2)

5
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id
26

)(
id

23·3·7τ
)(

id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
(2, 1, 2, 1, 2, 2, 1, 2, 2)

4
(

id
24·3·5

)(
id

3·83

)(
id

22·3·13

)(
id

23·29τ

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
(2, 1, 2, 2, 2, 2, 1, 2, 2)

3
(

id
24·3·5

)(
id

3·83

)(
id

22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
(2, 1, 2, 1, 2, 2, 1, 2, 2)

2
(

id
24·3·5

)(
id

53τ

)(
id

22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
(2, 1, 2, 1, 2, 2, 1, 2, 2)

1
(

id
109τ

)(
id

24·3·5
)(

id
22·3·11τ

)(
id

22·3·13

)(
id
26

)(
id
25

)(
id

2·3·11τ

)(
id

2·97τ

)(
id

23·33

)
(1, 2, 2, 1, 2, 2, 1, 2, 2)

We ended up with our original logarithmic signature as expected and the vFactorization
vector represents the following element selection / factorization:(id

109τ

)(id

24 · 3 · 5

)(id

22 · 3 · 11τ

)(id

22·3·13

)(id

26

)(id

25

)(id
2·3·11τ

)(id
2 · 97τ

)(id

23 · 33

)
.

Multiplying the selected elements indeed results in σ42, which we wanted to factorize.

9.4.4. Run-Time

Algorithm 9.7 performs O(n) group operations.

• TauReduce requires O(n) group operations.

176 9. Dihedral Group

• The code within the “While” loop is executed at most n times, because in each
iteration nPow is incremented by one and 2n−1 is the maximum power of 2 that can
occur (and after processing this power g necessarily is id).

– Finding the element h can be done in constant time. For this, we once need to
build a lookup table, with the power of 2 being the key and the element position
the value (similar to bucket-sort). Building the table can be done before the
“While” loop and requires O(n) group operations.

– The rest of the “While” loop requires O(1) group operations.

• The “For” loop at the end clearly requires O(n) group operations.

So, all in all the algorithm requires O(n) + O(n) + n · (1 + O(1)) + O(n) = O(n) group
operations.

9.4.5. Generalization for Other Groups

For all n ∈ N the dihedral group D2·2n is solvable. 〈σ〉 is a normal subgroup of D2·2n and
the factor group D2·2n/ 〈σ〉 has order 2, i.e. is isomorphic to Z2 and thus abelian. The
factor group 〈σ〉 /{id} is isomorphic to 〈σ〉, which is cyclic and thus abelian. So, we have
the following normal series with abelian factor groups:

{id} E 〈σ〉 E D2·2n .

What Algorithm 9.7 actually does is to transform the given logarithmic signature (of type
(2, 2, . . . , 2)) in such a way that the first n blocks generate 〈σ〉 and the last block contains
a complete set of coset representatives of 〈σ〉 in D2·2n . Deciding which coset representative
has to be selected is easy: if the element to factorize is a reflection, select the reflection,
otherwise select the rotation.

By rearranging the first n blocks, we could obtain an exact transversal logarithmic
signature (in which factoring is easy), where the blocks contain complete sets of coset
representatives for the following chain of subgroups:

{id} =
〈
σ2n
〉
< . . . <

〈
σ4
〉
<
〈
σ2
〉
< 〈σ〉 .

The algorithm does not rearrange the blocks, but in fact it just computes the correct
coset representatives in the chain from the right to the left, i.e. it first computes the
required coset representative for

〈
σ2
〉

in 〈σ〉, then for
〈
σ4
〉

in
〈
σ2
〉
, and so on.

The two block substitutions in Section 9.1.1 when written generically are:(
id

g

)(
id

h

)
↔
(

id

h

)(
id

gh

)
(

id

g

)(
id

h

)
↔
(

id

gh

)(
id

h

)

9.5. Generating α ∈ Λ(D2n) with n Odd 177

For the first transformation to be valid, it is required that hgh = g. In dihedral groups,
when g is a reflection and h is a rotation, this indeed is true.

The second transformation is only valid if ghh = g, i.e. h = h−1. In dihedral groups,
reflections indeed have order 2.

Proposition 9.8. Let G = D2·2m × Zk2 with m, k ∈ N0, n := m + k + 1, and α ∈ Λ(G)
canonical with t(α) = (2, 2, . . . , 2). Then factoring with respect to α is possible using O(n2)
group operations, i.e. α is tame.

Proof. Observe that the τ -reduction transformation still works fine in G (because all ele-
ments in (Z2,+) are self-inverse):(

id
(σrτ,b1,...,bk)

)(
id

(σs,c1,...,ck)

)
↔
(

id
(σs,c1,...,ck)

)(
id

(σr−sτ,b1+c1,...,bk+ck)

)
,(

id
(σrτ,b1,...,bk)

)(
id

(σsτ,c1,...,ck)

)
↔
(

id
(σr−s,b1+c1,...,bk+ck)

)(
id

(σsτ,c1,...,ck)

)
.

So, use the τ -reduction algorithm in G (analogous to the one in Section 9.4.1) to transform
α into a logarithmic signature α′ := (A′1, A

′
2, . . . , A

′
n−1, B) with B being the only block

containing an element with a reflection in the first component, and (A′1, A
′
2, . . . , A

′
n−1)

forming a logarithmic signature for G� := Z2m ⊕Zk2. With Algorithm 8.5, factoring in G�

can be done using O(n2) group operations. Consequently factoring in G is easy: when
trying to factor an element g ∈ G, select the correct element b in B (if the first component
of g is a reflection, the second element in B must be selected, otherwise the first), factor
gb−1 with respect to α′ in G�, and undo the τ -reduction transformation.

In total, we need

O(n)︸ ︷︷ ︸
τ -red.

+O(1)︸︷︷︸
B

+ O(n2)︸ ︷︷ ︸
Alg. 8.5

+ O(n)︸ ︷︷ ︸
Undo τ -red.

= O(n2)

group operations.

9.5. Generating α ∈ Λ(D2n) with n Odd

Algorithm 9.9. Let G = D2n with n odd, and v ∈ Pk a type vector of a logarithmic
signature for G (such that

∏k
i=1 v[i] = |G|).

When passing G and v as input to the following algorithm, it returns a random canonical
logarithmic signature α ∈ Λ(G) with t(α) = v. By“random”we here mean one logarithmic
signature out of the set of all logarithmic signatures that the randomized algorithm can
generate, which not necessarily is the set of all logarithmic signatures; we analyze this in
Proposition 9.10 and Remark 9.11.

Random(m) is expected to generate a uniformly distributed random number between
0 and m − 1 (both inclusively). When A is a block of group elements, |A| denotes the
length of the block (number of group elements, counting duplicates).

Function GenDihLogSig(Group G, TypeVector v) : Λ(G)

178 9. Dihedral Group

1. Let n← |G|
2 . Set α← (A1, A2, . . . , Ak) with Ai ← (id, id, . . . , id︸ ︷︷ ︸

v[i]

) for 1 ≤ i ≤ k.

2. Let x2 ← v.IndexOf(2). Set d← Random(n) and α[x2][2]← σdτ .

3. Set xLastTauModInclL← 1 and xLastTauModInclR ← k.

4. While xLastTauModInclL < x2:

• If Random(2|α[xLastTauModInclL]|−1) 6= 0: break,
else: set xLastTauModInclL← xLastTauModInclL + 1.

5. While xLastTauModInclR > x2:

• If Random(2|α[xLastTauModInclR]|−1) 6= 0: break,
else: set xLastTauModInclR ← xLastTauModInclR − 1.

6. Set lRemBlkIdc ← {1, 2, . . . , k} \ {x2} and biGrp ← n.

7. While lRemBlkIdc.Count > 0:

a) Set x ← lRemBlkIdc[Random(lRemBlkIdc.Count) + 1]. Set blk ← α[x] as refer-
ence.

b) Let cEl ← |blk | and biSubGen ← biGrp
cEl .

c) If (x ≤ xLastTauModInclL) ∨ (x ≥ xLastTauModInclR):

• For 1 ≤ i < cEl:

– Set s← (biSubGen·i+biGrp·Random(n
biGrp)) mod n, and blk [i+1]← σs.

else:

i. Set lSubEl ← {biSubGen · i | i ∈ {1, 2, . . . , cEl − 1}} and y ← 2.

ii. Set z ← biSubGen · Random(cEl).

iii. If z 6= 0:

A. Set z ← (z + biGrp · Random(n
biGrp)) mod n.

B. Set blk [2]← σz and lSubEl ← lSubEl \ {z mod biGrp}.
C. If 2 | z: set zFixedPoint ← z

2 ,
else: set zFixedPoint ← (z · n+1

2) mod n.

D. Set blk [3] ← σzFixedPoint and lSubEl ← lSubEl \ {zFixedPoint mod
biGrp}.

E. Set y ← y + 2.

iv. While y ≤ cEl :

A. Set u← lSubEl [1].

B. Set r ← (u+ biGrp · Random(n
biGrp)) mod n.

C. Set blk [y]← σr and blk [y + 1]← σ(z−r) mod n.

9.5. Generating α ∈ Λ(D2n) with n Odd 179

D. Set lSubEl ← lSubEl \ {u, (z − r) mod biGrp}.

E. Set y ← y + 2.

d) Set lRemBlkIdc ← lRemBlkIdc \ {x} and biGrp ← biGrp
cEl .

8. MoveAndSelShiftRec(G,α, x2, d, false, xLastTauModInclL).

9. MoveAndSelShiftRec(G,α, x2, d, true, xLastTauModInclR).

10. Shuffle all elements except id within the blocks of α randomly.

11. Return α.

Function MoveAndSelShiftRec(Group G, LogSig α, Int x, Int d, Bool bRight ,
Int xLastTauModIncl)

1. If bRight ∧ (x ≤ xLastTauModIncl): return.

2. If bRight ∧ (x ≥ xLastTauModIncl): return.

3. If bRight : set x̃← x+ 1,
else: set x̃← x− 1.

4. Let S ← α[x̃].

5. If (bRight ∧ (x̃ > xLastTauModIncl)) ∨ (bRight ∧ (x̃ < xLastTauModIncl)):

a) Let Z ← {z ∈ S | {(z − r) mod n | r ∈ S} = S}.

b) Set z ← Z[Random(|Z|) + 1].

c) If bRight : set d̃← (d− z) mod n,
else: set d̃← (d+ z) mod n.

d) MoveAndSelShiftRec(G,α, x̃, d̃, bRight , xLastTauModIncl).

6. For 2 ≤ i ≤ |α[x̃]|:

• If Random(2) = 0:

– If bRight : set α[x̃][i]← σdτ · α[x̃][i],
else: set α[x̃][i]← α[x̃][i] · σdτ .

Comments.

• The algorithm can roughly be divided into two phases. In the first phase, a loga-
rithmic signature for Zn with a few special properties is generated. In the second
phase, the reflection element in the block of size 2 is spreaded to the left and to the
right using swaps and selective shifts.

180 9. Dihedral Group

• In the beginning, the algorithm locates the position x2 of the block of size 2 (this
position is unique, because n is odd). This block must be of the form (id, σdτ). If
it would contain a rotation as second element, it would be impossible for the block
sequence to generate exactly n rotations and n reflections. d can be chosen randomly;
all values are possible.

• The algorithm then decides up to which blocks the reflection can be spreaded later.
These blocks will have indices xLastTauModInclL and xLastTauModInclR. All blocks
with indices < xLastTauModInclL or > xLastTauModInclR are guaranteed to contain
rotations only.

Determining xLastTauModInclL and xLastTauModInclR is done probabilistically.
When given a random logarithmic signature, we might expect rotations to occur
as often as reflections, i.e. an arbitrary element except id in the blocks of α is a
rotation with probability 1

2 and a reflection with probability 1
2 . For example, the

first block contains only rotations (excluding id) with probability 1
2|α[1]|−1 , thus the

algorithm moves the left boundary xLastTauModInclL by one to the right if and only
if generating a random number between 0 and 2|α[1]|−1 (0 inclusive, upper bound ex-
clusive) results in 0. This is iterated for the next blocks. Clearly, x2 is the maximum.
Analogously, the right boundary xLastTauModInclR is moved to the left.

• Subsequently, a special logarithmic signature for Zn (consisting of all blocks except
the one at index x2) is generated.

lRemBlkIdc is a list of block indices that we have not processed yet. biGrp is the
order of the current subgroup, initially being n.

The algorithm randomly picks one index x from lRemBlkIdc. biSubGen is chosen
such that it generates a subgroup of order cEl within the factor group Zn/H, where
H is the subgroup of Zn with |H| = n

biGrp .

There are no additional restrictions for the blocks with indices ≤ xLastTauModInclL
and ≥ xLastTauModInclR.

All blocks with indices > xLastTauModInclL and < xLastTauModInclR are addition-
ally required to be size-permutable with the block of size 2 (this is required for the
subsequent reflection spreading). Here, we proceed as follows:

– lSubEl is the set of subgroup elements that we have not processed yet. 0 is not
in lSubEl, because id already is in the block.

– By Theorem 9.2, a block R (containing only rotations) is size-permutable with
the block of size 2 if and only if there exists a z ∈ R with {z − r | r ∈ R} = R
(in Zn).

So, we pick one of the non-id subgroup elements as z and ensure in the following
that the size-permutability condition is fulfilled.

For this, we need to understand the mapping

πz : Zn → Zn : r 7→ z − r

9.5. Generating α ∈ Λ(D2n) with n Odd 181

in detail. It is bijective for all z ∈ Zn, i.e. πz is a permutation on Zn. As
πz(πz(r)) = z − (z − r) = r, the cycles of πz have a maximum length of 2. We
have r = z − r ⇔ 2r = z; due to gcd(2, n) = 1, this equation has exactly one
solution (namely z · 2−1 mod n). So, πz consists of exactly one fixed point and
n−1

2 transpositions (cycles of length 2).

– If z = 0, z is the fixed point of πz and there is nothing special to do right now.

Now assume z 6= 0. We put σz into the block, thus covering and removing
z mod biGrp from lSubEl. 0 and z form a cycle of length 2 for πz (because we
have πz(0) = z − 0 = z 6= 0 and πz(z) = z − z = 0 6= z). As πz has exactly
one uniquely determined fixed point, we immediately put it into the block, too.
Due to 2−1 = n+1

2 in Zn, the fixed point is z · 2−1 mod n = z · n+1
2 mod n.

– For the remaining elements in lSubEl, we pick one (it does not matter which
one; the algorithm uses the first one) and put a random representative σr for
it into the block. Size-permutability immediately requires σ(z−r) mod n to be in
the block. The representatives are removed from lSubEl. This is iterated until
lSubEl is empty, i.e. until all elements in the current block have been assigned.

• When the block has been processed, its index is removed from lRemBlkIdc and the
order biGrp of the current factor group is reduced by a factor of cEl.

• In the second phase, reflections are spreaded. This is done by two invocations of
MoveAndSelShiftRec.

This function first recursively calls itself until ending up at the boundary (moving
to the left from x2 up to xLastTauModInclL or moving to the right from x2 up to
xLastTauModInclR). On each level one of the possible z is chosen such that the block
of size 2 can be swapped with the next block (having index x̃), and d is updated
accordingly (see Theorem 9.2). For performance reasons, we do not actually swap
the blocks, but simply update the x and d values.

When moving up from the recursive chain, on each level we imaginarily undo the
swap of the current block and the block of size 2 (except on the bottommost recursion
level) and randomly perform selective shifts from the block of size 2 (that now
imaginarily is a neighbor of the current block, in the direction to x2) onto the current
block.

• The algorithm description prefers clarity over performance. There are various per-
formance optimizations possible, like for example computing the value n

biGrp once
per lRemBlkIdc round only and storing it in a variable, rearranging statements to
be able to avoid duplicate modulo computations, etc.

For an optimized (but harder to read) implementation, please see the method
DmDihedralGroup.CreateRandomSig in the DmDihedralGroup.Gen.cs source code
file of the LogSig utility (Chapter 12).

182 9. Dihedral Group

Implementation. We have implemented Algorithm 9.9 (with performance optimiza-
tions). The LogSig utility (Chapter 12) can be invoked with the command line option
“-gendih” to generate logarithmic signatures for dihedral groups. The parameter
“-n:” specifies the order of the group. Using the optional parameter “-bstype:”, the
type of the logarithmic signature can be specified. If “-sort” is passed, the elements
within the blocks are sorted. If “-countonly” is passed, only the number of generated
logarithmic signatures is printed (otherwise the logarithmic signatures are printed).
Using the optional parameter “-c:”, the number of logarithmic signatures to generate can
be specified (if “-c:” is omitted, as many logarithmic signatures as possible are generated).

For example, the following command generates four unique canonical logarithmic
signatures α for D2·15 of type t(α) = (2, 3, 5) and the elements within the blocks are
sorted:

LogSig.exe -gendih -n:2*15 -bstype:2,3,5 -sort -c:4

Sample output:

D2*15, type: (2, 3, 5)

((id, 4t), (id, 9t, 14t), (id, 8, 2t, 3t, 5t))

((id, 5t), (id, 0t, 10t), (id, 8, 3t, 11t, 14t))

((id, 9t), (id, 5, 10), (id, 3, 11, 2t, 10t))

((id, 14t), (id, 5, 4t), (id, 8, 9, 12t, 13t))

Proposition 9.10. For the following type vectors t(α) (for an α ∈ Λ(D∏
s∈t(α) s

)), Algo-

rithm 9.9 can generate all canonical logarithmic signatures of this type for the group:{
(2, 3, 3), (3, 2, 3), (3, 3, 2),

(2, 3, 5), (2, 5, 3), (3, 2, 5), (3, 5, 2), (5, 2, 3), (5, 3, 2),

(2, 5, 5), (5, 2, 5), (5, 5, 2)
}

.

Proof. We verified this experimentally. First, we counted all canonical logarithmic signa-
tures of the given type (by enumerating them recursively, not randomized; run LogSig
with the command line parameters -enumdih -sort -countonly, “-n:” specifying the
group order and “-bstype:” specifying the type). Subsequently, we called Algorithm 9.9
over and over again, recording and counting the unique logarithmic signatures that it has
generated, and verified that after some time it indeed has output all logarithmic signatures.

Table 9.1 shows the total number of unique logarithmic signatures that both approaches
resulted in.

Group t(α) # Can. Log. Sig. # Sorted Can. Log. Sig.

D2·9 (2, 3, 3) 10368 2592
(3, 2, 3) 10368 2592
(3, 3, 2) 10368 2592

D2·15 (2, 3, 5) 4320000 90000

9.5. Generating α ∈ Λ(D2n) with n Odd 183

Group t(α) # Can. Log. Sig. # Sorted Can. Log. Sig.

(2, 5, 3) 3456000 72000
(3, 2, 5) 4838400 100800
(3, 5, 2) 3456000 72000
(5, 2, 3) 4838400 100800
(5, 3, 2) 4320000 90000

D2·25 (2, 5, 5) 2880000000 5000000
(5, 2, 5) 4608000000 8000000
(5, 5, 2) 2880000000 5000000

Table 9.1.: |{α ∈ Λ(D2n) | α canonical, specific t(α)}|

Clearly, for t(α) = (r1, . . . , rk) we have # Sorted can. log. sig. = # Can. log. sig.∏k
i=1(ri−1)!

.

Remark 9.11. For longer types (at least 4 blocks), Algorithm 9.9 cannot generate all
canonical logarithmic signatures.

For example, the block sequence

α =

(
id
5τ

)id
8
10

id
9
18

 id
6
2τ

is a canonical logarithmic signature for D2·33 , but it cannot be generated by Algorithm
9.9, because for the reflection to spread from the leftmost block (of size 2) to the rightmost
block, the second and third blocks would each need to be size-permutable with the block
of size 2, however the second block does not fulfill this (0 − 8 mod 27 = 19 /∈ α[2], 8 −
10 mod 27 = 25 /∈ α[2], 10− 8 mod 27 = 2 /∈ α[2]).

Note though that

B := α[2] · α[3] = {id, 8, 10, 9, 18, 17, 26, 19, 1} = {id, 1, 8, 9, 10, 17, 18, 19, 26}

is a size-permutable set; we have B = {z − b | b ∈ B} for z ∈ {id, 9, 18}. So, if Algorithm
9.9 would be enhanced to additionally check whether multiple blocks together generate
a size-permutable set (and possibly swap the reflection block with the multiple blocks at
once during the reflection spreading phase), it could generate α.

When implementing this enhancement, a more efficient test whether a set generated
by some blocks is size-permutable will be required. The simple approach used in the
Examples 9.3 and 9.4 would be insufficient (because the number of generated elements
grows exponentially in the number of blocks); the number of blocks would need to be
limited (which reduces the number of logarithmic signatures that can be generated).

Proposition 9.12. Let G = D2n with n odd, P := {p ∈ P | p | 2n}, α ∈ Λ(D2n) generated
by Algorithm 9.9 and of type t(α) = (p1, . . . , pk) with pi ∈ P for all 1 ≤ i ≤ k.

If
∏
p∈P p is polynomial in `(α), then α is tame.

This especially implies that all α ∈ Λ(D2n) generated by Algorithm 9.9 and of type
t(α) = (p, . . . , p, 2, p, . . . , p) for some p ∈ P≥3 are tame.

184 9. Dihedral Group

Proof. If we can undo the reflection spreading of the last phase of Algorithm 9.9 (i.e.
achieve that only the block of size 2 contains a reflection), factoring is easy by Proposition
9.6 and Algorithm 8.16. So, our only goal is to find an efficient way to undo the reflection
spreading (using transformations where the effects on the factorization of an element are
only local, like selective shifts and swapping size-permutable blocks).

We only describe undoing the reflection spreading from the block of size 2 to the right;
the case to the left works analogously.

Let dτ be the reflection in the block of size 2, which we call Ai. The first step is to
undo the selective shifts performed at the very end of the generation algorithm. For this,
perform selective shifts using dτ onto an element in Ai+1 if and only if the element is
a reflection. This results in Ai+1 containing only rotations. If all blocks right of Ai+1

contain rotations only, we are done (with the direction to the right). If not, Ai+1 must be
size-permutable with Ai; in this case swap the blocks (possibly modifying the reflection in
Ai) and repeat the procedure recursively.

The only remaining question is which z ∈ Z(Aj) (for any j ≥ i + 1) to choose when
swapping Aj with Ai and possibly modifying Ai based on z. One approach is to simply
try all possible z ∈ Z(Aj), i.e. assume one of them and continue recursively. At least one
of them leads to a solution (i.e. a block sequence that contains rotations only).

Note that each time we encounter a block with multiple possible z ∈ Z(Aj), the possi-
bilities multiply. Thus this approach is only efficient if the total number of possibilities is
polynomial in `(α). For this, we show that there are at most

∏
p∈P p possibilities in total.

By Corollary 2.16 we know exactly how Z(Aj) looks like for a block Aj . Let p := |Aj |.
Either Z(Aj) = ∅ (then Aj is not size-permutable with Ai and we successfully finished this
direction), |Z(Aj)| = 1 (only one possibility for the swap) or |Z(Aj)| = p. In the last case,

we have E(Aj) = {σi·
n
p | 0 ≤ i < p} (note this is uniquely determined by p); thus this case

can occur only once per prime number in P (except the prime 2, which is irrelevant due
to only one block of size 2 occuring).

P contains all the different prime numbers in the type of α. Each of these primes can
lead to the |Z(Aj)| ∈ P situation, where in the worst case all these possibilities multiply.
When

∏
p∈P p is limited to be polynomial in `(α), trying all these possibilities is still

efficient.

9.6. Counting Logarithmic Signatures

9.6.1. D2·2n, t(α) = (2, 2, . . . , 2)

By reversing τ -reduction, we can count logarithmic signatures forD2·2n of type (2, 2, . . . , 2).

Note that we cannot just count the logarithmic signatures having the τ -reduced struc-
ture, because the transformation is not injective. For example, the following two logarith-
mic signatures for D2·2 are mapped to the same logarithmic signature by a τ -reduction:(

id

1

)(
id

τ

)
τ -Red.−−−−→

(
id

1

)(
id

τ

)
,

9.6. Counting Logarithmic Signatures 185

(
id

1τ

)(
id

τ

)
τ -Red.−−−−→

(
id

1

)(
id

τ

)
.

Proposition 9.13. Let G = D2·2n. There are

n! · 2
n2+n

2 · (2n+1 − 1)

canonical logarithmic signatures of type (2, 2, . . . , 2) for G.

Proof. Let α ∈ Ξ(2,2,...,2)(G) canonical. Consider the following normalization process:

1. Perform a τ -reduction on α.

2. Sort the first n blocks such that ord(α[i][2]) ≥ ord(α[i+ 1][2]) for all 1 ≤ i < n.

3. Replace α[i][2] by min 〈α[i][2]〉 for all 1 ≤ i ≤ n.

4. Let σkτ b ← α[n+ 1][2]. Set α[n+ 1][2]← τ b.

Every step of this process results in a logarithmic signature if and only if the input was a
logarithmic signature.

If α ∈ Λ(G), in step 2 we actually obtain ord(α[i][2]) > ord(α[i+ 1][2]) for all 1 ≤ i < n
by Lemma 8.4, and at the end we have α[n+ 1][2] = τ .

So, α ∈ Λ(G) holds if and only if the process results in

β :=

(
id

20

)(
id

21

)
· · ·
(

id

2n−1

)(
id

τ

)
∈ Λ(G).

Thus, by starting with β and undoing the process, we can generate all logarithmic signa-
tures of G. In order to determine the number of logarithmic signatures for G, we undo
the process and count the number of possibilities in each step.

1. We start with β.

The reflection in the last block can be translated by any rotation. This gives us 2n

possibilities.

2. We can freely change the coset representatives. The representative σ1 in the first
block can be replaced by σ3, σ5, . . . , σ2n−1 (all odd rotations), i.e. there are 2n−1

possibilities for the representative in the first block. For the second block, there are
2n−2 possibilities (all rotations being a multiple of 2, but not of 4), for the third there

are 2n−3 (multiples of 4, but not of 8), etc. So, there are
∏n−1
k=0 2k = 2

∑n−1
k=0 k = 2

(n−1)n
2

possibilities.

3. The first n blocks contain rotations only and therefore are freely permutable. This
gives us n! possibilities.

186 9. Dihedral Group

4. Now we undo the τ -reduction transformation.

We start from the right: the last block might contain a reflection or not in the original
logarithmic signature, so we need to undo the first or the second τ -reduction selective
shift (if the first n blocks of the original logarithmic signature contained a reflection)
or stop. For the second-last block the same, etc. However note that we need to stop
when reaching the leftmost reflection in the original logarithmic signature. So, there
are

∑n
k=0 2n−k =

∑n
k=0 2k = 2n+1 − 1 possibilities (in the first sum the k indicates

the zero-based block index of the leftmost reflection and for each k there are n − k
blocks right of the kth block, resulting in 2n−k possibilities for each k).

Multiplying all these possibilities, we obtain the total number of canonical logarithmic
signatures:

2n · 2
(n−1)n

2 · n! · (2n+1 − 1)

= n! · 2
(n−1)n

2
+n · (2n+1 − 1)

= n! · 2
n2+n

2 · (2n+1 − 1).

Results. Table 9.2 shows the number of canonical logarithmic signatures of type
(2, 2, . . . , 2) for the specified groups. For comparison, the number of canonical pseudo-
logarithmic signatures (i.e. blocks containing arbitrary elements, but id as first element in
each block) is also listed; this number is simply (2n+1)n+1. The probabilities that were
estimated experimentally in Section 6.2 (via relative frequencies) can be computed exactly
from Table 9.2 by dividing the number of canonical logarithmic signatures by the number
of canonical pseudo-logarithmic signatures.

Group # Can. Log. Sig. # Can. Pseudo-Log. Sig.

D2·2 6 16
D2·22 112 512
D2·23 5760 65536
D2·24 761856 33554432
D2·25 247726080 68719476736
D2·26 191763578880 562949953421312
D2·27 344993248051200 ≈ 1.845 · 1019

D2·28 ≈ 1.416 · 1018 ≈ 2.418 · 1024

D2·29 ≈ 1.306 · 1022 ≈ 1.268 · 1030

D2·210 ≈ 2.676 · 1026 ≈ 2.658 · 1036

D2·211 ≈ 1.206 · 1031 ≈ 2.230 · 1043

D2·212 ≈ 1.186 · 1036 ≈ 7.482 · 1050

D2·213 ≈ 2.526 · 1041 ≈ 1.004 · 1059

D2·214 ≈ 1.159 · 1047 ≈ 5.392 · 1067

D2·215 ≈ 1.139 · 1053 ≈ 1.158 · 1077

D2·216 ≈ 2.389 · 1059 ≈ 9.946 · 1086

D2·217 ≈ 1.065 · 1066 ≈ 3.418 · 1097

9.6. Counting Logarithmic Signatures 187

Group # Can. Log. Sig. # Can. Pseudo-Log. Sig.

D2·218 ≈ 1.005 · 1073 ≈ 4.697 · 10108

D2·228 ≈ 2.705 · 10160 ≈ 1.466 · 10253

Table 9.2.: |{α ∈ Λ(D2·2n) | α canonical, t(α) = (2, 2, . . . , 2)}|

9.6.2. D2pq, t(α) = (p, 2, q)

Proposition 9.14. Let p, q ∈ P≥3, p 6= q. Then

|{α ∈ Λ(D2pq) | α canonical, t(α) = (p, 2, q)}|
= p! · q! · (pq−1 + qp−1 − 1) · 2p+q−2

and ∣∣{α ∈ Λ(D2p2) | α canonical, t(α) = (p, 2, p)
}∣∣

= p!2 · pp−1 · 22p−1.

Proof. Let α = (A1, A2, A3) ∈ Λ(D2pq) canonical with t(α) = (p, 2, q), then we have
A2 = (id, dτ) for some d ∈ Zpq (the second element in A2 must be a reflection). By applying
selective shifts using dτ onto the reflections in the surrounding blocks, we can transform
α into a standard form α′ = (A′1, A

′
2, A

′
3), where A′1 and A′3 contain only rotations, and

A′2 = A2. Thus in order to count the number of logarithmic signatures, we can first count
the standard forms and multiply this by the number of possible selective shifts from A2.

In a standard form, d is any number in Zpq, i.e. there are pq possibilities.

As A′1 and A′3 contain only rotations and A′2 contains id, we have (A′1, A
′
3) ∈ Λ(Zpq).

By Chapter 8 we know that at least one of the two blocks must be a subgroup and
the other one a subgroup modified by selective shifts from the subgroup block. There are
(p−1)!·(q−1)! possibilities for both blocks being subgroups (simply arranging the subgroup
elements except id). Performing at least one non-id selective shift from A′1 onto A′3, there
are (p−1)! · (q−1)! · (pq−1−1) possibilities, because after arranging the subgroup elements
within their blocks, onto each element in A′3 except id (there are q − 1 such elements)
one element from A′1 (p possibilities) can be multiplied; 1 possibility must be subtracted,
because the (id, . . . , id) vector would not result in any change in A′3 and thus we would
fall into the previous case. Analogously, for selective shifts from A′3 onto A′1, there are
(p− 1)! · (q − 1)! · (qp−1 − 1) possibilities. In total we have

(p− 1)! · (q − 1)! · (1 + (pq−1 − 1) + (qp−1 − 1))

= (p− 1)! · (q − 1)! · (pq−1 + qp−1 − 1)

canonical logarithmic signatures for Zpq (with two blocks).

Inserting A2 between (A′1, A
′
3) results in a logarithmic signature for G (this is correct,

because prepending or appending A2 to (A′1, A
′
3) clearly results in a logarithmic signature

for G and A2 can be swapped with A′1 or A′3, because one of them is a normal subgroup

188 9. Dihedral Group

in G). Finally, we perform selective shifts from A2 onto A′1 and A′3 to obtain α; there are
2p−1 · 2q−1 = 2p+q−2 possibilities for this (for each non-id element in A′1 and A′3 either a
selective shift is performed or not).

Multiplying all possibilities, we obtain the asserted formula:

p · q · (p− 1)! · (q − 1)! · (pq−1 + qp−1 − 1) · 2p+q−2

= p! · q! · (pq−1 + qp−1 − 1) · 2p+q−2.

For D2p2 it is almost the same. There are p2 possibilities for dτ in A2. Either A′1 or A′3
is a subgroup and the other one is not (Zp2 is cyclic, not elementary abelian); this gives 2
possibilities. There are pp−1 selective shifts from the subgroup block onto the other one.
Thus in total we have:

p2 · (p− 1)! · (p− 1)! · (pp−1 + pp−1) · 2p+p−2

= p!2 · pp−1 · 22p−1.

Results. For some concrete values p and q, the number of canonical logarithmic signatures
α for D2pq of type t(α) = (p, 2, q) is shown in Table 9.3. Additionally, the number of
logarithmic signatures when the elements within the blocks are sorted (by any total order
on D2pq) is shown; clearly we have

Sorted can. log. sig. =
Can. log. sig.

(p− 1)! · (q − 1)!
.

p q # Can. Log. Sig. # Sorted Can. Log. Sig.

3 3 10368 2592
3 5 4838400 100800
3 7 6015098880 4177152
3 11 ≈ 5.804 · 1016 7997755392
3 13 ≈ 3.254 · 1020 ≈ 3.397 · 1011

3 17 ≈ 2.408 · 1028 ≈ 5.755 · 1014

3 19 ≈ 2.965 · 1032 ≈ 2.316 · 1016

3 23 ≈ 8.166 · 1040 ≈ 3.633 · 1019

3 29 ≈ 1.303 · 1054 ≈ 2.137 · 1024

5 5 4608000000 8000000
5 7 ≈ 1.116 · 1013 646016000
5 11 ≈ 7.676 · 1020 ≈ 8.813 · 1012

5 13 ≈ 1.196 · 1025 ≈ 1.040 · 1015

5 17 ≈ 6.829 · 1033 ≈ 1.360 · 1019

7 7 ≈ 2.448 · 1016 ≈ 4.723 · 1010

7 11 ≈ 3.748 · 1024 ≈ 1.434 · 1015

7 13 ≈ 1.139 · 1029 ≈ 3.303 · 1017

7 17 ≈ 2.499 · 1038 ≈ 1.659 · 1022

11 11 ≈ 8.667 · 1031 ≈ 6.582 · 1018

9.6. Counting Logarithmic Signatures 189

p q # Can. Log. Sig. # Sorted Can. Log. Sig.

11 13 ≈ 3.416 · 1036 ≈ 1.965 · 1021

11 17 ≈ 4.378 · 1046 ≈ 5.767 · 1026

13 13 ≈ 3.031 · 1040 ≈ 1.321 · 1023

13 17 ≈ 3.960 · 1050 ≈ 3.951 · 1028

Table 9.3.: |{α ∈ Λ(D2pq) | α canonical, t(α) = (p, 2, q)}|

Remark 9.15. Let p, q ∈ P≥3 and G = D2pq. The number of canonical logarithmic
signatures for G of type (2, p, q) (and (p, q, 2)) is not necessarily the same as for the type
(p, 2, q). For examples, see Table 9.1.

190

10. Other Groups

In Chapter 10, we regard factorizations of other groups.

Our contributions. First we regard generalized quaternion groups, and show
that every α ∈ Λ(Q4·2n) of type t(α) = (2, 2, . . . , 2) is tame. Building upon this, we prove
that every α ∈ Λ(G) of type t(α) = (2, 2, . . . , 2) is tame for all non-abelian groups of order
|G| = 2n+1 (with n ≥ 3) with a cyclic N E G of order |N | = 2n. For non-abelian groups
G of order |G| = pn+1 (with p ∈ P≥3 and n ≥ 2) with a cyclic N E G of order |N | = pn,
α ∈ Λ(G) of type t(α) = (p, p, . . . , p), we present a reduction to the factorization problem
with respect to a p-factorization of Zpn−1 ⊕ Zp, and prove the tameness in a special case.

We then generalize the previous result using homomorphisms with small kernels. As a
corollary we show that every α ∈ Λ(G) of type t(α) = (2, 2, . . . , 2) is tame when G is an
extra special 2-group.

Finally, we regard wreath products. We present a few factorization approaches, includ-
ing an orbit-based factor group descending method.

10.1. Generalized Quaternion Group

Proposition 10.1. Let G = Q4·2n (n ∈ N), m := n + 2, α = (A1, . . . , Am) ∈ Λ(G)
canonical of type (2, 2, . . . , 2), and Aj = (id, σ2n) for a 1 ≤ j ≤ m. Then α is tame.

Proof. Let A := Aj . We have A E G, thus the block A can freely be moved to any
location in the logarithmic signature without changing the factorization of an element
(except permuting the indices order the same of course).

There are two interesting block substitutions:

φ1 :

(
id

σkτ

)(
id

σl

)
↔
(

id

σl

)(
id

σk−lτ

)
(generated set in both cases: {id, σkτ, σl, σk−lτ}),

φ2 :

(
id

σkτ

)(
id

σlτ

)(
id

σ2n

)
↔
(

id

σk−l+2n

)(
id

σlτ

)(
id

σ2n

)
(generated set in both cases: {id, σkτ, σlτ, σk−l+2n , σ2n , σk+2nτ, σl+2nτ, σk−l}).

We use these two block substitutions to simplify α (similar to the algorithm in Section
9.4.1):

Function QuatTauReduce(LogSig α) : Void

10.1. Generalized Quaternion Group 191

1. For i← 1 to m− 2:

a) Move A to position i+ 2 (without changing the order of the other blocks).

b) Let σkτ b ← α[i][2] and σlτ c ← α[i+ 1][2].

c) If b = 0: continue.

d) If c = 0: apply φ1 to the blocks (Ai, Ai+1),
else apply φ2 to the blocks (Ai, Ai+1, Ai+2).

2. Move A to position m− 1.

All of the operations in this algorithm are invertible (so knowing the factorization of an
element in the output logarithmic signature, iteratively undoing the block substitutions
results in a factorization of the element in the original input logarithmic signature).

In the output logarithmic signature only the last block contains an imaginary element
(i.e. an element σkτ b with b = 1). The first m − 1 blocks form a canonical logarithmic
signature for the abelian group Z2n+1 , in which factoring is possible efficiently, see Chapter
8.

So, in order to factor an element g ∈ Q4·2n , perform the simplification above, choose
the correct element in the last block (if the element to be factored is imaginary, select the
second element, otherwise id), factor the remaining required element in the first m − 1
blocks, and undo the simplification transformation.

Example 10.2. Let G = Q4·23 and α =
(

id
σ11τ

)(
id
σ8

)(
id
σ7τ

)(
id
σ13τ

)(
id
σ15

)
∈ Λ(G). Suppose

we want to factor g = σ5. The normal subgroup block A =
(

id
σ8

)
is currently located at

position 2.
First we simplify α: (

id

σ11τ

)(
id

σ8

)(
id

σ7τ

)(
id

σ13τ

)(
id

σ15

)
Move A to position 3−−−−−−−−−−−−−→

(
id

σ11τ

)(
id

σ7τ

)(
id

σ8

)(
id

σ13τ

)(
id

σ15

)
Apply φ2 to (A1, A2, A3)−−−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ7τ

)(
id

σ8

)(
id

σ13τ

)(
id

σ15

)
Move A to position 4−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ7τ

)(
id

σ13τ

)(
id

σ8

)(
id

σ15

)
Apply φ2 to (A2, A3, A4)−−−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ2

)(
id

σ13τ

)(
id

σ8

)(
id

σ15

)
Move A to position 5−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ2

)(
id

σ13τ

)(
id

σ15

)(
id

σ8

)
Apply φ1 to (A3, A4)−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ2

)(
id

σ15

)(
id

σ14τ

)(
id

σ8

)
Move A to position 4−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ2

)(
id

σ15

)(
id

σ8

)(
id

σ14τ

)
.

192 10. Other Groups

Now factor g = σ5 in this simplified logarithmic signature and undo the simplification
transformation: (

id

σ12

)(
id

σ2

)(
id

σ15

)(
id

σ8

)(
id

σ14τ

)
Move A to position 5−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ2

)(
id

σ15

)(
id

σ14τ

)(
id

σ8

)
Apply φ−1

1 to (A3, A4)
−−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ2

)(
id

σ13τ

)(
id

σ15

)(
id

σ8

)
Move A to position 4−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ2

)(
id

σ13τ

)(
id

σ8

)(
id

σ15

)
Apply φ−1

2 to (A2, A3, A4)
−−−−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ7τ

)(
id

σ13τ

)(
id

σ8

)(
id

σ15

)
Move A to position 3−−−−−−−−−−−−−→

(
id

σ12

)(
id

σ7τ

)(
id

σ8

)(
id

σ13τ

)(
id

σ15

)
Apply φ−1

2 to (A1, A2, A3)
−−−−−−−−−−−−−−−−→

(
id

σ11τ

)(
id

σ7τ

)(
id

σ8

)(
id

σ13τ

)(
id

σ15

)
Move A to position 2−−−−−−−−−−−−−→

(
id

σ11τ

)(
id

σ8

)(
id

σ7τ

)(
id

σ13τ

)(
id

σ15

)
.

This indeed is the factorization of g = σ5 with respect to α.

We now develop an improved factorization approach, which in contrast to Proposition 10.1
does not require the presence of a normal subgroup block.

Proposition 10.3. Let G = Q4·2n (n ∈ N), α ∈ Λ(G) canonical of type (2, 2, . . . , 2). Then
α is tame.

Proof. Let m := n+ 2 (the number of blocks of α), H := D2·2n and ϕ : G→ H : σkτ b 7→
σk mod 2nτ b a group homomorphism as in Lemma 2.3. Let β := ϕ(α). By Theorem 7.3, β is
a 2-factorization of H (i.e. every element of H can be expressed in exactly 2 different ways
with respect to β). Now apply the τ -reduction transformation (for dihedral groups, as
described in Section 9.4.1) to obtain a block sequence γ ∈ Ξ(H). In γ, only the last block
contains a reflection element; denote this reflection element by r. Let ζ be the sequence
of the first m− 1 blocks of γ, then ζ is a 2-factorization for Z2n .

Factoring elements z ∈ Z2n with respect to ζ (computing both solutions) is possible
efficiently. Ignoring any (0, 0) blocks, all other blocks of ζ are cyclic subsets (because they
contain 0 and another element not being 0). Thus by Theorem 8.29 at least one of these
blocks is a subgroup of Z2n , and therefore we can apply the factorization Algorithm 8.28
(on all of the first recursion levels until reaching G = {0} there exists at least one subgroup
block).

Knowing how to compute both factorizations in ζ, we can now describe how to factor
in G.

10.1. Generalized Quaternion Group 193

Let g ∈ G. Compute g′ := ϕ(g). We are now looking for the two different factorizations
of g′ with respect to β.

• If g′ is a rotation: compute the two factorizations of g′ with respect to ζ, select id in
the last block of γ and undo the τ -reduction transformation to obtain two solutions
in β.

• If g′ is a reflection: compute the two factorizations of g′ ·r−1 (where r is the reflection
element in the last block of γ, see above) with respect to ζ, select r in the last block
of γ and undo the τ -reduction transformation to obtain two solutions in β.

For exactly one of the two solutions, selecting the elements in α with the same indices as in
β leads to the factorization of g (and the other solution is the factorization of σ2n · g).

Example 10.4. Let G = Q4·23 , α =
(

id
σ12τ

)(
id
σ8

)(
id
σ12

)(
id
σ13τ

)(
id
σ7τ

)
∈ Λ(G). Suppose we want

to factor g = σ11. Applying ϕ, we get

β =

(
id

σ4τ

)(
id

id

)(
id

σ4

)(
id

σ5τ

)(
id

σ7τ

)
as 2-factorization for D2·23 . Performing the τ -reduction:

β =

(
id

σ4τ

)(
id

id

)(
id

σ4

)(
id

σ5τ

)(
id

σ7τ

)
→
(

id

id

)(
id

σ4τ

)(
id

σ4

)(
id

σ5τ

)(
id

σ7τ

)
→
(

id

id

)(
id

σ4

)(
id

τ

)(
id

σ5τ

)(
id

σ7τ

)
→
(

id

id

)(
id

σ4

)(
id

σ3

)(
id

σ5τ

)(
id

σ7τ

)
→
(

id

id

)(
id

σ4

)(
id

σ3

)(
id

σ6

)(
id

σ7τ

)
=: γ,

and thus

ζ =

(
0

0

)(
0

4

)(
0

3

)(
0

6

)
is the 2-factorization for Z23 .

As g′ = ϕ(g) = ϕ(σ11) = σ3 is a rotation, id needs to be selected in the last block of γ.
The two solutions for 3 in ζ are (

0

0

)(
0

4

)(
0

3

)(
0

6

)
,(

0

0

)(
0

4

)(
0

3

)(
0

6

)
.

194 10. Other Groups

For both solutions in γ, we now undo the τ -reduction transformation. As first solution we
get (

id

id

)(
id

σ4

)(
id

σ3

)(
id

σ6

)(
id

σ7τ

)
→
(

id

id

)(
id

σ4

)(
id

σ3

)(
id

σ5τ

)(
id

σ7τ

)
→
(

id

id

)(
id

σ4

)(
id

τ

)(
id

σ5τ

)(
id

σ7τ

)
→
(

id

id

)(
id

σ4τ

)(
id

σ4

)(
id

σ5τ

)(
id

σ7τ

)
→
(

id

σ4τ

)(
id

id

)(
id

σ4

)(
id

σ5τ

)(
id

σ7τ

)
and as second solution (

id

id

)(
id

σ4

)(
id

σ3

)(
id

σ6

)(
id

σ7τ

)
→
(

id

id

)(
id

σ4

)(
id

σ3

)(
id

σ5τ

)(
id

σ7τ

)
→
(

id

id

)(
id

σ4

)(
id

τ

)(
id

σ5τ

)(
id

σ7τ

)
→
(

id

id

)(
id

σ4τ

)(
id

σ4

)(
id

σ5τ

)(
id

σ7τ

)
→
(

id

σ4τ

)(
id

id

)(
id

σ4

)(
id

σ5τ

)(
id

σ7τ

)
.

Selecting the elements at the same indices in α, we obtain the following two factorizations:(
id

σ12τ

)(
id

σ8

)(
id

σ12

)(
id

σ13τ

)(
id

σ7τ

)
,(

id

σ12τ

)(
id

σ8

)(
id

σ12

)(
id

σ13τ

)(
id

σ7τ

)
.

The first factorization generates σ12τ ·id ·σ12·σ13τ ·id = σ−13·σ8 = σ−5 = σ11 = g (which we
were looking for) and the second factorization generates σ12τ ·σ8 ·σ12 ·σ13τ ·id = σ−13 = σ3

(which indeed is σ8 · g, where σ8 ∈ ker(ϕ)).

10.2. Groups G of Order |G| = pn+1 with a Cyclic N E G of
Order |N | = pn

Let n ≥ 3 and G a non-abelian group of order |G| = 2n+1 with a cyclic normal subgroup
N = 〈σ〉 E G of order |N | = 2n. Recall that by Section 2.3.5, G is isomorphic to D2·2n ,
Q4·2n−1 , G2·2n or D2·2n .

10.2. Groups G of Order |G| = pn+1 with a Cyclic N E G of Order |N | = pn 195

Lemma 10.5. Let n ≥ 3 and G a non-abelian group of order |G| = 2n+1 with a cyclic
N E G of order |N | = 2n, α ∈ Λ(G) canonical of type t(α) = (2, 2, . . . , 2). Then α is
tame.

Proof. For the dihedral group D2·2n , we have shown the tameness in Section 9.4. For the
generalized quaternion group Q4·2n−1 , we have shown the tameness in Section 10.1.

Define

ϕD : D2·2n → D2·2n−1 : σkτ b 7→ σk mod 2n−1
τ b

and let g = σkτ b, h = σlτ c ∈ D2·2n . Then

• If b = 0:

ϕD(g · h) = ϕD(σk · σlτ c) = ϕD(σk+lτ c) = σk+l mod 2n−1
τ c

= σk mod 2n−1 · σl mod 2n−1
τ c = ϕD(g) · ϕD(h).

• If b = 1:

ϕD(g · h) = ϕD(σkτ · σlτ c) = ϕD(σk−l+l·2
n−1

τ c+1)

= σk−l+l·2
n−1 mod 2n−1

τ c+1 = σk mod 2n−1 · σ−l mod 2n−1
τ c+1

= σk mod 2n−1
τ · σl mod 2n−1

τ c = ϕD(g) · ϕD(h).

Thus ϕD is a group homomorphism from D2·2n to D2·2n−1 . With this, we can use the same
factorization approach as in Proposition 10.3 (i.e. apply ϕD to obtain a 2-factorization
for D2·2n−1 , perform a τ -reduction, compute the solutions in Z2n−1 , and undo all the
transformations).

The group G2·2n remains. Define

ϕG : G2·2n → Z2n−1 ⊕ Z2 : σkτ b 7→ (k mod 2n−1, b)

and let g = σkτ b, h = σlτ c ∈ G2·2n . Then

• If b = 0:

ϕG(g · h) = ϕG(σk · σlτ c) = ϕG(σk+lτ c) = (k + l mod 2n−1, c)

= (k mod 2n−1, 0) · (l mod 2n−1, c) = ϕG(g) · ϕG(h).

• If b = 1:

ϕG(g · h) = ϕG(σkτ · σlτ c) = ϕG(σk+l+l·2n−1
τ c+1)

= (k + l + l · 2n−1 mod 2n−1, c+ 1)

= (k mod 2n−1, 1) · (l mod 2n−1, c) = ϕG(g) · ϕG(h).

196 10. Other Groups

Thus ϕG is a group homomorphism from G2·2n to Z2n−1⊕Z2. In order to factor an element
g ∈ G2·2n , first factor ϕG(g) in the 2-factorization ϕG(α) of Z2n−1 ⊕ Z2 (which is possible
efficiently, see the abelian part in the proof of Proposition 10.3), then one of the two
factorizations corresponds to the factorization of g in α.

Proposition 10.6. Let p ∈ P≥3, n ≥ 2 and G a non-abelian group of order |G| = pn+1

with a cyclic N E G of order |N | = pn, α ∈ Λ(G) canonical of type t(α) = (p, p, . . . , p).

Then factoring with respect to α is as hard as factoring with respect to a p-factorization
of G� := Zpn−1 ⊕ Zp.

If α contains a block Ai with Ai =
〈
σp

n−1
〉

or if α contains two blocks Ai, Aj with

Ai ·Aj =
〈
σp

n−1
, τ
〉

, then α is tame.

Proof. As seen in Section 2.3.5, G ∼= Gp·pn =
〈
σ, τ | σpn = τp = id, τ−1στ = σ1+pn−1

〉
.

Clearly, ϕ : G → G� : σkτ c 7→ (k mod pn−1, c) is a group homomorphism (due to the
modulo computation, the effect of τ on σ vanishes). Thus, in order to factor a g ∈ G with
respect to α, it is sufficient to find the p different factorizations of ϕ(g) with respect to
the p-factorization ϕ(α) of G�.

Let α contain a block Ai with Ai =
〈
σp

n−1
〉

. We have ϕ(a) = (0, 0) for all a ∈ Ai, thus

the multiplicity p in the p-factorization ϕ(α) of G� is generated completely by the block
Ai. So, by removing the block Ai from α and applying ϕ to the elements in the remaining
blocks, we obtain a β ∈ Λ(G�). As G� is abelian and the blocks of β are all of prime size,
β is tame (using Algorithm 8.16). In order to factor a g ∈ G, first factor ϕ(g) with respect
to β, choose the same indices in α and complete the factorization by choosing the correct
element in Ai (using brute-force, only p possibilities).

Let α contain two blocks Ai, Aj with Ai · Aj =
〈
σp

n−1
, τ
〉

. Clearly, φ : G → Zpn−1 :

σkτ c 7→ k mod pn−1 is a group homomorphism. φ(α) is a p2-factorization of Zpn−1 and
φ(a) = 0 for all a ∈ Ai ∪Aj . The factorization of a g ∈ G can be found like above.

10.3. Small Kernels and Multiple Factorizations

Theorem 7.4 has shown that factoring in a logarithmic signature α for a group G is
possible efficiently when there is a group homomorphism ϕ : G → H with k := |ker(ϕ)|
being polynomial in `(α) and when additionally being able to factor efficiently in the
k-factorization ϕ(α) of H. The previous sections used precisely this.

We now state a proposition that generalizes the results from the previous sections (by
restricting only H, not G, and not requiring a large normal subgroup of a specific size).

Proposition 10.7. Let G,H be groups, ϕ : G → H a surjective group homomorphism,
k := |ker(ϕ)|, and α ∈ Λ(G) canonical of type (2, 2, . . . , 2). If k is polynomial in `(α) and
any of the following conditions is true, then we can efficiently factor elements with respect
to α:

10.4. Wreath Products 197

• H is cyclic.

• H is abelian of type (2a, 2, . . . , 2) for some a ∈ N.

• H = D2·2a for some a ∈ N.

Proof. First apply ϕ to α in order to obtain the k-factorization ϕ(α) of H. As α is of type
(2, 2, . . . , 2), the blocks of α are cyclic subsets or (id, id).

If H is cyclic or abelian of type (2a, 2, . . . , 2) for some a ∈ N, then factoring in ϕ(α)
is possible efficiently by using Algorithm 8.28 (on all of the first recursion levels until
reaching |G| = 1 there exists at least one subgroup block by Theorem 8.29).

If H = D2·2a for some a ∈ N, then use the approach in the proof of Proposition 10.3.
By Theorem 7.4, α is tame.

Corollary 10.8. Let G be an extra special 2-group and α ∈ Λ(G) canonical of type
(2, 2, . . . , 2). Then α is tame.

Proof. Let H := G/Z(G) and ϕ : G → H : g 7→ g · Z(G) the canonical homomorphism
from G to H. As G is extra special, |ker(ϕ)| = |Z(G)| = 2 and H is abelian of type
(2, 2, . . . , 2). By Proposition 10.7, α is tame.

Corollary 10.9. Let H be an abelian 2-group that is either cyclic or of type t(H) =
(2a, 2, . . . , 2) with a ∈ N, or let H be a dihedral 2-group. Let S be an arbitrary group with
|S| being polynomial in log |H|.

Let G := H × S and α ∈ Λ(G) canonical of type t(α) = (2, . . . , 2). Then α is tame.

Proof. The projection ϕ : G → H : (h, s) 7→ h is a surjective group homomorphism.
|ker(ϕ)| = |S| is polynomial in log |H| (and thus polynomial in `(α)). By Proposition 10.7,
α is tame.

10.4. Wreath Products

Proposition 10.10. Let G := H oΩ P and α = (A1, A2, . . . , An) ∈ Λ(G). Assume that
factoring with respect to logarithmic signatures for H |Ω| and P is possible efficiently. If
there exist l, r ∈ N such that U :=

⋃
l≤i≤r Ai ⊆ H |Ω| × {id} and |U | = |H||Ω|, then α is

tame.

Proof. Let ϕ : G→ P : ((v1, v2, . . . , v|Ω|), p) 7→ p, B = (Al, Al+1, . . . , Ar) and

B = (A1, A2, . . . , Al−1, Ar+1, Ar+2, . . . , An).

In order to factor a g ∈ G with respect to α, we can proceed as follows. As |U | =
|H||Ω|, we get B ∈ Λ(H |Ω| × {id}) and ϕ(B) ∈ Λ(P). First find the factorization of ϕ(g)
with respect to ϕ(B) (which is possible efficiently by hypothesis). Select the elements
in α at the corresponding positions. Let gl be the product of the elements selected in
the blocks A1, A2, . . . , Al−1, and gr the product of the elements selected in the blocks

198 10. Other Groups

Ar+1, Ar+2, . . . , An. Let gm := g−1
l gg−1

r (with this we have g = glgmgr). We have gm ∈
H |Ω|×{id}. By factoring gm with respect to B (which is possible efficiently by hypothesis)
and selecting the elements in α, we obtain the factorization of g with respect to α.

Example 10.11. Let G = Z2 o Z4 and

α = ((id, ((1, 1, 0, 0), 1)), (id, ((0, 1, 1, 1), 0)), (id, ((1, 1, 0, 0), 0)),

(id, ((0, 0, 1, 1), 0)), (id, ((1, 1, 0, 1), 0)), (id, ((1, 0, 1, 1), 2))) ∈ Λ(G).

We want to factor g = ((1, 1, 0, 0), 3) with respect to α.

For this, we apply Proposition 10.10. We have l = 2 and r = 5. The factorization of
ϕ(g) = 3 with respect to ϕ(B) is

ϕ(B) = ((0, 1), (0, 2)).

Selecting the corresponding elements in α gives

α = ((id, ((1, 1, 0, 0), 1)), (id, ((0, 1, 1, 1), 0)), (id, ((1, 1, 0, 0), 0)),

(id, ((0, 0, 1, 1), 0)), (id, ((1, 1, 0, 1), 0)), (id, ((1, 0, 1, 1), 2))).

So we have gl = ((1, 1, 0, 0), 1) and gr = ((1, 0, 1, 1), 2). We compute gm = g−1
l gg−1

r =
((1, 0, 0, 1), 3) · ((1, 1, 0, 0), 3) · ((1, 1, 1, 0), 2) = ((1, 0, 1, 1), 0). Factoring gm with respect to
the inner four blocks (which form a logarithmic signature for Z4

2 × {id}, which is abelian)
is easy:

B = ((id, ((0, 1, 1, 1), 0)), (id, ((1, 1, 0, 0), 0)), (id , ((0, 0, 1, 1), 0)), (id , ((1, 1, 0, 1), 0))).

Putting this together with the factorizations for gl and gr, we obtain the factorization of
g with respect to α:

α = ((id, ((1, 1, 0, 0), 1)), (id, ((0, 1, 1, 1), 0)), (id, ((1, 1, 0, 0), 0)),

(id , ((0, 0, 1, 1), 0)), (id , ((1, 1, 0, 1), 0)), (id, ((1, 0, 1, 1), 2))).

Proposition 10.12. Let Ω = {1, 2, . . . , 2k} for some k ∈ N. Let P be a permutation group
acting on Ω with |Pω| = 2 for all ω ∈ Ω and |P | = 2k (i.e. P ∼= Zk2). Let G := Z2 oΩ P
and α = (A1, A2, . . . , An) ∈ Λ(G) canonical of type t(α) = (2, 2, . . . , 2).

Factoring with respect to α is possible in time polynomial in 3
√
|G|.

Proof. W.l.o.g. assume that the orbits of P on Ω are {1, 2}, {3, 4}, . . . , {2k − 1, 2k}. Let

N :=

〈
k⋃
i=1

{((δ1,i, δ1,i, δ2,i, δ2,i, . . . , δk,i, δk,i), id)}

〉
E G

(where δi,j is the Kronecker delta). Let ϕ : G→ G/N : g 7→ gN .

10.4. Wreath Products 199

Observe that N ∼= Zk2 and G/N ∼= (Z2 ⊕ Z2)k ∼= Z2k
2 ; we can go from G to Z2k

2 via

ϕ′ : G→ Z2k
2 : ((v1, v2, . . . , v2k), p)

7→ (v1 ⊕ v2, 2− p(2), v3 ⊕ v4, 4− p(4), . . . , v2k−1 ⊕ v2k, 2k − p(2k)).

In order to factor a g ∈ G with respect to α, we can first compute all 2k different fac-
torizations of ϕ′(g) with respect to the 2k-factorization ϕ′(α) of Z2k

2 (like in Proposition
10.7). One of these factorizations corresponds to the factorization of g with respect to α;

testing all of them is possible in time polynomial in 2k = (23)
k
3 = 8

k
3 = 3

√
|G|.

10.4.1. Orbit-Based Factor Group Descending

Let G := H oΩ P . Write Ω = {ω1, ω2, . . . , ωn+m} (the elements of H |Ω| shall be indexed by
the elements of Ω in this order). Let Ω◦ := {ωn+1, ωn+2, . . . , ωn+m} and assume that Ω◦

forms an orbit, i.e. Pω = Ω◦ for all ω ∈ Ω◦.
Let N E H and T := Hn(H/N)m. When the first n copies of H are indexed by

ω1, ω2, . . . , ωn and the m copies of H/N by ωn+1, ωn+2, . . . , ωn+m, P acts on T like on
Hn+m. As Ω◦ forms an orbit, H components are permuted with other H components and
H/N components are permuted with other H/N components.

With the same automorphism as in the definition of a wreath product, define G� :=
T o P . The canonical projection from G to G� is

ϕ : G→ G� : ((hω1 , hω2 , . . . , hωn+m), p)

7→ ((hω1 , hω2 , . . . , hωn , hωn+1N,hωn+2N, . . . , hωn+mN), p).

ϕ is a surjective group homomorphism and we have z := |ker(ϕ)| = |N |m.

Factoring. Let α be an l-factorization of G. By Theorem 7.4, if z and l are
polynomial in `(α) and if we can efficiently factor elements in the (z · l)-factorization ϕ(α)
of G�, then we can efficiently factor elements with respect to α.

200

11. Black Box Groups

In Chapter 11, we regard black box groups. In all previous chapters we assumed that the
groups were given in a specific representation (e.g. in Chapter 8, we assumed the abelian
group G to be represented as G = Z

p
k1
1

⊕ Z
p
k2
2

⊕ . . . ⊕ Z
pkmm

with pi ∈ P and ki ∈ N
for 1 ≤ i ≤ m), and the algorithms in these chapters usually depend on these specific
representations. In Chapter 11, we assume that a group is given as a black box (i.e. any
arbitrary representation), supporting only a few basic group operations. Given such a
black box group, our goal is to map elements to the representations that we require in
the previous chapters. If we succeed, we have shown that the results from the previous
chapters actually hold for arbitrary representations of a group with the specific structure.

Our contributions. Our first result is that cyclic black box groups indeed can
be mapped to our usual representation Zn (integers mod n). For elementary abelian
p-groups, we show a few results for the case when an efficient linear dependence test is
available. A few weaker results are presented for the general case of an abelian group.
For dihedral groups, we show that the mapping is possible efficiently. Furthermore, we
show that every α ∈ Λ(G) of type t(α) = (2, 2, . . . , 2) is tame when G is a non-abelian
group (given as black box group) of order |G| = 2n+1 having a cyclic normal subgroup
N E G of order |N | = 2n.

11.1. Definition and Fundamental Properties

The black box group model, as introduced in [Bab84], is one of the most general models to
describe a group:

• Group elements are encoded by binary strings of uniform length bG (the code length).
Not every x ∈ ZbG2 needs to represent a group element, and a group element may be
represented by multiple different strings.

• There are three oracle functions computed by a black box:

– prod : ZbG2 × ZbG2 → ZbG2 computes the product of two group elements.

– inv : ZbG2 → ZbG2 inverts a group element.

– id : ZbG2 ×Z
bcG
2 → {YES, ∗} (with the witness exponent c ∈ N) with the following

properties: if x ∈ ZbG2 represents the identity, then there exists an y ∈ Zb
c
G

2 such
that id(x, y) = YES (y is called a witness of x representing the identity); if
x ∈ ZbG2 represents a group element different from the identity, then id(x, y) = ∗
(for all y ∈ Zb

c
G

2).

11.1. Definition and Fundamental Properties 201

These functions are not defined for input strings that do not encode group elements.

A black box group is given by the black box (which allows computing the group operations
above) and a set of generator elements (by binary strings).

The question whether a string x represents the identity can be answered in NP time:
by guessing y we can verify in polynomial time that id(x, y) = YES. However, to answer
whether x does not represent the identity would require an exhaustive search of all
possible witnesses y. The definition of the function id was motivated by factor groups:
in order to test whether a string represents the identity in a factor group G/N , the
membership of the element in N must be tested, which can be hard.

In the unique encoding black box group model, a group element is encoded by ex-
actly one string. This has various implications, the most important one being that
identity testing is now possible efficiently: first find the encoding of the identity element
(by taking an arbitrary generator element g, computing g−1 and g−1g), subsequently the
identity test for an element x can be realized by comparing the string of x with the string
of g−1g.

In the following we want to be able to efficiently decide whether a string repre-
sents the identity or not. Furthermore, we are primarily interested in (multiple)
factorizations of groups. This motivates Definition 11.1.

Definition 11.1. The set B is defined as follows. A family (Gn, αn)n∈N is an element of
B, if and only if for all n ∈ N:

• Gn is a black box group. The identity test oracle function shall be computable
efficiently. The order |Gn| shall be known. Furthermore, |Gn| ≤ |Gn+1| shall hold.

• αn = (An,1, An,2, . . . , An,mn) is a (multiple) factorization of Gn (of multiplicity∏mn
i=1|An,i|
|Gn|). The elements in the blocks of αn are given by binary strings.

As αn is a (multiple) factorization of Gn, E(αn) is a set of generator elements for Gn. We
do not require any additional/separate set of generators. Note that |E(αn)| ≤ `(αn).

It is tempting to drop the requirement that |Gn| shall be known, because αn is available
and |Gn| |

∏mn
i=1 |An,i|. When αn ∈ Λ(Gn), then |Gn| =

∏mn
i=1 |An,i|. However, when

αn is a multiple factorization of multiplicity ≥ 2, it is not immediately clear how to
determine the group’s order efficiently by inspecting Gn (as black box) and αn. For exam-
ple, if Gn is an elementary abelian group, obstacles similar to the ones in Section 11.3 arise.

Notation. Like in Section 3.3, we omit the term “family of” and write (G,α) ∈ B instead
of (Gn, αn)n∈N ∈ B. For example, by “let (G,α) ∈ B with G abelian” we mean to take
any family (Gn, αn)n∈N ∈ B where all Gn are abelian.

When we write that an element g ∈ G is given, then g is usually given as a binary string.
We continue to use additive notation when knowing that the group is abelian. A “+”

for group elements can be realized by a prod call of the black box, and a “−” by an inv

202 11. Black Box Groups

call. In tests for a specific group (e.g. Proposition 11.4), multiplicative notation is used,
because arbitrary (abelian and non-abelian) groups are allowed as input.

Run-time. Many problems on abelian black box groups can be solved using algo-
rithms with a worst-case time complexity polynomial in |G|. For example, in [Ili85]
algorithms are presented for computing a set of defining relations, a complete basis
and the intersection of two abelian groups. In [Buc05], an algorithm is presented that
computes the structure of an abelian group G from a generating set M ; the algorithm
performs O(|M | ·

√
|G|) group operations and stores O(

√
|G|) group elements.

However, in the following we are interested in more efficient algorithms. As defined in
Section 3.3, the space required to encode a pair (G,α) can be estimated by S(G,α) :=
bG · `(α) (where bG is the code length). We assume the black box realizing G is given, and
only a negligible amount of memory is required for identifying/linking to it. Furthermore,
we ignore the memory required for storing the order |G|, because log2 |G| ≤ bG, i.e. the
space of one group element is sufficient for storing the order |G| and thus the required
memory is negligible.

A Las Vegas algorithm having only (G,α) as input is efficient, if the expected value of
its run-time is bounded by a polynomial in S(G,α).

Generators. When a black box group with a code length bG and s generators is
given, the number of required generators can be reduced to O(bG) using a Monte Carlo
algorithm performing O(s · log bG) group operations (see Theorem 1.5 in [Bab95]).

Lemma 11.2. Let (G,α) ∈ B and g, h ∈ G. Testing whether g = h is possible efficiently.

Proof. g = h⇔ g ·h−1 = id; verifying the right side only requires efficient operations/tests.

Proposition 11.3. Let (G,α) ∈ B. When only applying algorithms that perform a num-
ber of black box queries polynomial in S(G,α), then the model is equivalent to a unique
encoding black box group model.

Proof. We construct an equivalent unique encoding black box group G�, such that the al-
gorithms use binary strings of G�, and G� internally performs computations with elements
of G.

The identity test operation of G� is defined to be exactly the same as in G, i.e. the black
box G� internally just performs the identity test operation of G and returns the result to
the caller.

Let us introduce a list L of strings. Initially L is empty. For every element x ∈ E(α)
check whether x is equivalent to an element already in L (using Lemma 11.2); if no
equivalent element exists in L: add x to L.

The other two operations (prod and inv, both returning group elements) are now defined
as follows: taking the input parameters, compute the result of the operation in G, but
instead of directly returning it to the caller, first check whether the result is equivalent to
any element in L; if yes, return the previous string stored in L, otherwise add the string to

11.1. Definition and Fundamental Properties 203

L and return it. By this, different string representations of a group element are mapped
to the first one encountered, thus G� is a unique encoding black box.

As the caller algorithms only perform a number of black box queries polynomial in
S(G,α), L also only contains polynomially many elements and searching L on each group
operation requires polynomial time. Consequently the realization of G� based on G re-
quires only polynomial time.

Proposition 11.4. Let (G,α) ∈ B. Then it can be tested efficiently whether G is abelian.

Proof. For all a, b ∈ E(α) test whether a · b = b · a. At most |E(α)|2 tests are required,
and |E(α)|2 ≤ `(α)2 ≤ S(G,α)2 (which is polynomial in S(G,α)).

Lemma 11.5. Let (G,α) ∈ B. |G| can be decomposed into its prime factors |G| =
pe11 · · · pess (with pi ∈ P pairwise different and ei ∈ N) efficiently, i.e. in time polynomial in
S(G,α).

Proof. Given α = (A1, A2, . . . , Am), compute M :=
∏m
i=1 |Ai|. The prime factorization

M = qk1
1 · · · q

kt
t (with qi ∈ P pairwise different and ki ∈ N) can be computed within time

polynomial in `(α) (factoring each block size |Ai| using trial division is sufficient).

As α is a multiple factorization of G, we have |G| | M . We can now decrease the
exponents ki of the prime factors qi of M until obtaining |G| (i.e. decrease each ki as long
as the resulting number is still divisible by |G|). This procedure requires at most

∑t
i=1 ki

steps, and we have
∑t

i=1 ki ≤ `(α) ≤ S(G,α).

Note that in Lemma 11.5 we are measuring in S(G,α), not log2 |G| (which is the input
length for integer factorization algorithms).

For details on the connection between the group order and the minimal size of the input
(G,α), see Section 3.3.

Lemma 11.6. Let (G,α) ∈ B and g ∈ G. Then ord(g) can be computed efficiently, using
O((log2 |G|)2) group operations.

Proof. We know the order |G| = pe11 · · · pess (with pi ∈ P pairwise different and ei ∈ N)
of G (by applying Lemma 11.5). Clearly g|G| = id. The idea now is to remove as many
prime factors from |G| as possible (as long as the exponentiation of g still gives id). The
minimum remaining exponent then is the order of g.

In detail, the following algorithm computes ord(g):

1. Set r ← pe11 · · · pess .

2. For each pi in |G|:

a) Let m← max {t ∈ N0 | t ≤ ei and g
r

pt
i = id}.

b) Set r ← r
pmi

.

204 11. Black Box Groups

At the end, r = ord(g).

By iterated squaring and multiplying (binary exponentiation), every exponentiation of
g can be computed using O(log2 |G|) group element multiplications.

|G| contains s pairwise different prime factors. The computation of m can be realized
as a loop, starting with t = ei and decreasing t until the exponentiation of g gives id; we
need at most ei steps for this (in the case t = 0 there is no computation required).

So, in total we need

s∑
i=1

ei∑
t=1

O(log2 |G|) = O(log2 |G|) ·
s∑
i=1

ei = O(log2 |G|) ·
s∑
i=1

logpi p
ei
i

⊆ O(log2 |G|) ·
s∑
i=1

log2 p
ei
i = O(log2 |G|) · log2

s∏
i=1

peii

= O(log2 |G|) · log2 |G| = O((log2 |G|)2)

group operations.

11.2. Cyclic Groups

Note that cyclic groups are abelian, thus we use additive notation in this section.

Theorem 11.7. Let (G,α) ∈ B with G a cyclic group. Finding some g ∈ G with 〈g〉 = G
is possible efficiently.

Proof. Let |G| = pe11 · · · pess with pi ∈ P pairwise different and ei ∈ N.

For all 1 ≤ i ≤ s define Ŝpi := { |G|
p
ei
i

· h | h ∈ E(α)} (then
〈
Ŝpi

〉
= Sylpi(G)), mi :=

max {ord(h) | h ∈ Ŝpi} and Mi := {h ∈ Ŝpi | ord(h) = mi}. For each i pick one arbitrary
hi ∈ Mi (observe that 〈hi〉 = Sylpi(G)) and compute g :=

∑s
i=1 hi. With this g, we have

〈g〉 = G, because ord(g) = |G| due to gcd(ord(hi), ord(hj)) = 1 for i 6= j.

Theorem 11.8. Let (G,α) ∈ B with G = 〈g〉 a cyclic group and h ∈ G. Finding a k ∈ N0

such that k · g = h is possible efficiently.

Proof. k is computed by the following algorithm:

1. Set k ← 0 and r ← h.

2. While r 6= 0:

a) Compute u← ord(r) and set v ← |G|
u .

b) Find the minimal i ∈ N for which ord(r − i · (v · g)) < u.

c) Set k ← k + v · i and r ← r − i · (v · g).

11.2. Cyclic Groups 205

The group element sums can be computed efficiently using iterated doubling and adding
(in multiplicative notation this is squaring and multiplying, also known as binary expo-
nentiation). Note that −i · (v · g) = (v · i) · (−g).

Let |G| = pe11 · · · pess with pj ∈ P pairwise different and ej ∈ N. Finding i will be
implemented using a loop; let us call this loop the inner loop. For determining the run-
time of the algorithm, it is sufficient to count how often the inner loop is executed in total.
Observe that within each “While” loop 〈r〉 = 〈v · g〉 holds. Thus i ≤ max {pj | 1 ≤ j ≤ s},
so
∑s

t=1 et · max {pj | 1 ≤ j ≤ s} is an upper bound for the total maximum number
of iterations of the inner loop. However this bound can be improved: in each “While”
loop the maximum prime factor in ord(r) is an upper bound for i, and each “While” loop
execution removes at least one prime factor from ord(r). Thus, summing over all “While”
loops, e1p1 + . . .+ esps is an upper bound for the total maximum number of iterations of
the inner loop. Clearly, this is polynomial in S(G,α).

Example 11.9. Let G = Z23 ⊕ Z32 ⊕ Z5 (which is cyclic, G ∼= Z23·32·5), g = (5, 2, 3) (we
have 〈g〉 = G due to gcd(5, 23) = 1, gcd(2, 32) = 1 and gcd(3, 5) = 1), and h = (1, 1, 2).
We want to compute a k ∈ N0 such that k · g = h using the algorithm in the proof of
Theorem 11.8, while treating G as a black box group and g, h as binary strings. In the
following, all computations in parentheses are just done to allow us computing the orders;
these representations are unknown to the algorithm.

Set k ← 0 and r ← h.

The black box tells us that r 6= (0, 0, 0), thus we enter the “While” loop. u← ord(r) =
23 · 32 · 5 (using Lemma 11.6 for the computation), v ← 1. The inner loop begins. ord(r−
(v · g)) = 2 · 32 · 5 < u (we have r − (v · g) = (1, 1, 2) − (5, 2, 3) = (4, 8, 4)), so i = 1.
Consequently we set k ← k+v · i = 0+1 ·1 = 1 and r ← r− i · (v ·g) (so now r = (4, 8, 4)).

Again r 6= (0, 0, 0), thus we enter the “While” loop another time. u← ord(r) = 2 · 32 · 5,
v ← 22 = 4. ord(r−(v·g)) = 5 < u (we have r−(v·g) = (4, 8, 4)−(4·5, 4·2, 4·3) = (0, 0, 2)),
so i = 1. Consequently we set k ← k + v · i = 1 + 4 · 1 = 5 and r ← r − i · (v · g) (so now
r = (0, 0, 2)).

We get r 6= (0, 0, 0), so another round. u← ord(r) = 5, v = 23 ·32 = 72. ord(r−(v ·g)) =
5 = u (we have r−(v ·g) = (0, 0, 2)−(72·5, 72·2, 72·3) = (0, 0, 1)), ord(r−2·(v ·g)) = 1 < u
(we have r−2·(v ·g) = (0, 0, 2)−(2·72·5, 2·72·2, 2·72·3) = (0, 0, 0)), so i = 2. Consequently
we set k ← k + v · i = 5 + 72 · 2 = 149 and r ← r − i · (v · g) (so now r = (0, 0, 0)).

As r = (0, 0, 0), the algorithm terminates. We can easily verify that indeed k · g =
149 · (5, 2, 3) = (149 · 5, 149 · 2, 149 · 3) = (1, 1, 2) = h.

Factoring. Let (G,α) ∈ B with G a cyclic group, and g ∈ G. Factoring g with respect to
α is as hard as in Chapter 8: first find a generator h ∈ G for G using Theorem 11.7, map
all elements in the blocks of α and g to multiples of h using Theorem 11.8, and apply the
algorithms in Chapter 8.

Theorem 11.10. Let G be a cyclic black box group, B ⊆ G with 〈B〉 = G, and |G| =
pe11 · · · pess (with pi ∈ P pairwise different and ei ∈ N).

A canonical α ∈ Λ(G) with minimal length can be constructed efficiently.

206 11. Black Box Groups

Proof. For all 1 ≤ i ≤ s define Ŝpi := { |G|
p
ei
i

· h | h ∈ B} (then
〈
Ŝpi

〉
= Sylpi(G)),

mi := max {ord(h) | h ∈ Ŝpi} and Mi := {h ∈ Ŝpi | ord(h) = mi}. For each i pick one
arbitrary hi ∈Mi (observe that 〈hi〉 = Sylpi(G)). Compute blocks

A
(j)
i := (0, (1 · pji) · hi, (2 · p

j
i) · hi, . . . , ((pi − 1) · pji) · hi)

for all 1 ≤ i ≤ s and 0 ≤ j ≤ ei − 1. Let

α := (A
(0)
1 , A

(1)
1 , . . . , A

(e1−1)
1 , A

(0)
2 , . . . , A

(e2−1)
2 , . . . , A(0)

s , . . . , A(es−1)
s).

Clearly, α ∈ Λ(G) and it is canonical. As α contains only blocks of prime size, its length
`(α) =

∑s
i=1 eipi is minimal.

In order to emphasize the connection between the group order and the input (G,α) again,
we prove a well-known cryptographic result (which is usually proven using the Pohlig-
Hellman algorithm [Poh78]):

Corollary 11.11. Let G = 〈g〉 a cyclic black box group with |G| containing only prime
factors less than log2 |G|. Then discrete logarithms can be computed efficiently in G, and
thus for example Diffie-Hellman key exchange on G is insecure.

Proof. Use Theorem 11.10 to construct an α ∈ Λ(G) from {g}. As |G| contains only prime
factors less than log2 |G|, each block of α has a size less than log2 |G|. Furthermore, α
can consist of at most log2 |G| blocks. Thus, `(α) < (log2 |G|)2, i.e. `(α) is polynomial in
log2 |G|. Using Theorem 11.8 we efficiently find the discrete logarithm.

If |G| would contain a large prime factor, α would contain a large block, resulting in a
higher run-time.

11.3. Elementary Abelian p-Groups

When G is an elementary abelian p-group, G is isomorphic to a (logp |G|)-dimensional
vector space over the field Zp.

Proposition 11.12. Let (G,α) ∈ B. Then testing whether (G, ·) is an elementary abelian
p-group is possible efficiently.

Proof. By the factorization of |G| we get p (or can immediately decide that G is not a
p-group when |G| is not a power of p). Now test whether a · b = b · a for all a, b ∈ E(α)
and whether ord(g) ∈ {1, p} for all g ∈ E(α).

Proposition 11.13. Let (G,α) ∈ B with G an elementary abelian p-group. Let T :
P(G) → {true, false} a function that efficiently tests whether a set of group elements is
linear dependent (in time polynomial in the input length).

Then finding an independent generating set for G is possible efficiently.

11.3. Elementary Abelian p-Groups 207

Proof. The key idea is that the linear dependence test provides an efficient subgroup
membership test. Let S be a set of linear independent elements, then an element g ∈ G
is in 〈S〉 if and only if g ∈ S or S ∪ {g} is a linear dependent set (which can be tested
efficiently using T).

The independent generating set S for G is constructed by the following simple algorithm:

1. Set S ← ∅.

2. For each g ∈ E(α):

• If not T (S ∪ {g}): set S ← S ∪ {g}.

The loop is iterated |E(α)| ≤ `(α) times. An upper bound for the length of the input for
T is bG · `(α). Thus, all in all the worst-case run-time of the algorithm is polynomial in
bG · `(α)2 ≤ S(G,α)2 (which is polynomial in S(G,α)).

Proposition 11.14. Let (G,α) ∈ B with G an elementary abelian p-group, T : P(G) →
{true, false} an efficient linear dependence tester, S an independent generating set for G,
and g ∈ G.

Finding the factorization of g with respect to S (i.e. finding the multiplicities of the
elements in S such that the sum gives g) is possible using at most logp |G| · p invocations
of T .

Proof. The multiplicities mi (such that
∑|S|

i=1miS[i] = g) are computed by the following
algorithm:

1. Let S′ ← S and r ← g.

2. For 1 ≤ i ≤ |S|:
a) Let s← S[i] and S′ ← S′ \ {s}.
b) For 0 ≤ j < p:

i. Let h← r − j · s.
ii. If h ∈ S′ or T (S′ ∪ {h}): set mi ← j, r ← h and break.

The outer loop runs |S| times and the inner loop at most p times, thus the linear depen-
dence test T is invoked at most |S| · p = logp |G| · p times.

Proposition 11.15. Let (G,α) ∈ B with G an elementary abelian p-group of order ps

and α = (A1, . . . , As) ∈ Λ(G) canonical of type t(α) = (p, p, . . . , p).
For all (i1, i2, . . . , is) ∈ {2, 3, . . . , p}s, S := {Aj [ij] | 1 ≤ j ≤ s} is an independent

generating set for G.

Proof. By Rédei’s theorem (Theorem 8.1), at least one block of α is a subgroup. W.l.o.g. let
A1 ≤ G. Then α′ := (A2, . . . , As) is a logarithmic signature for G/A1 (when interpreting
all elements in α′ as elements in G/A1). For every element a ∈ A1 \ {(0, . . . , 0)}, we have
〈a〉 = A1. Pick an arbitrary element from A1 \ {(0, . . . , 0)} and let it be the first element
for the generating set S for G.

208 11. Black Box Groups

In α′ there again exists a subgroup block (in G/A1) by Rédei’s theorem. W.l.o.g.
let this be the block A2. Then like above α′′ := (A3, . . . , As) ∈ Λ(G/(A1 + A2)). Let
a ∈ A2 \ {(0, . . . , 0)}. Every element a′ in A2 (interpreted as element in G) can be written
as a′ = h+ k · a with h ∈ A1 and k ∈ N. Consequently A1 + 〈a〉 = A1 +A2, so let a be the
second element for the generating set S for G. We have A1 ∩ 〈a〉 = {(0, . . . , 0)} (because
ord(a) = p and a /∈ A1), so the first two generator elements are independent.

By iterating this idea, we see that no matter which element except (0, . . . , 0) we select
in each block of α, the resulting set is always an independent generating set for G.

A slightly generalized result can be found in Section 11.4.

11.4. Abelian Groups

Proposition 11.16. Let (G,α) ∈ B with G an abelian p-group, T an efficient subgroup
membership test for subgroups defined by independent generators, ∅ 6= S a set of indepen-
dent group elements (with (0, . . . , 0) /∈ S), and g ∈ G.

Then computing the order of g + 〈S〉 in the factor group G/ 〈S〉 is possible efficiently.

Proof. The order m = ord(g + 〈S〉) of g + 〈S〉 in G/ 〈S〉 is computed by the following
algorithm:

1. Set m← 1 and h← g.

2. Repeat:

a) Use T to test whether h ∈ 〈S〉. If h ∈ 〈S〉: break.

b) Set h← p · h and m← m · p.

The loop is executed at most logp |G| times.

Proposition 11.17. Let (G,α) ∈ B with G abelian. Then we can efficiently find sets of
generators for all p-Sylow subgroups of G.

Proof. Let |G| = pe11 · · · pess with pi ∈ P pairwise different and ei ∈ N. Define ip to be
the index of the prime p in the factorization of |G|, and mp :=

∏
i∈{1,...,s}\{ip} p

ei
i . Then

Mp := {mp · g | g ∈ E(α)} is a generating set for the p-Sylow subgroup of G.
This can be seen as follows. It is clear that all elements in Mp have a p-power order,

because each element from E(α) was multiplied by all other maximal prime powers (thus
these components vanish); so, 〈Mp〉 is a p-subgroup. 〈Mp〉 is the full p-Sylow subgroup,
because the other primes are all coprime to p (thus the p-components do not vanish).

Proposition 11.18. Let (G,α) ∈ B, where G is abelian of type t(G) = (p1, p2, . . . , ps)
(with pi ∈ P for all 1 ≤ i ≤ s, not necessarily pairwise different) and α = (A1, . . . , As)
canonical of type t(α) = (p1, p2, . . . , ps). Define M := {p1, . . . , ps} and m :=

∏
p∈M p

(such that gcd(m, pki) = pi for all 1 ≤ i ≤ s and k ∈ N).
For all (i1, i2, . . . , is) with 2 ≤ i1 ≤ p1, 2 ≤ i2 ≤ p2, . . . , 2 ≤ is ≤ ps, the set S :=
{ m
|Aj | ·Aj [ij] | 1 ≤ j ≤ s} is an independent generating set for G.

11.5. Dihedral Groups 209

Proof. See the proof of Proposition 11.15. With respect to the factor group G/(A1 + . . .+
Aj−1), the multiplication by m

|Aj | just permutes the elements of the subgroup block Aj

(because Aj is cyclic in G/(A1 + . . . + Aj−1) and gcd(m
|Aj | , |Aj |) = 1). With respect to

G, it ensures that the orders of all elements in S are prime numbers; this results in the
elements in S being independent.

11.5. Dihedral Groups

Theorem 11.19. Let (G,α) ∈ B with G a dihedral group of order |G| ≥ 6. Define

n := |G|
2 .

Finding some σ ∈ G and τ ∈ G with ord(σ) = n, ord(τ) = 2 and στ = τσ−1 is
possible efficiently. Furthermore, for every g ∈ G we can efficiently find k, b ∈ N0 such
that g = σkτ b.

Proof. First of all, let X := E(α) and compute the set X ′ := (X ∪ {id})2 = {xx′ | x, x′ ∈
(X ∪ {id})}. Let r be an arbitrary element in X ′ with ord(r) ≥ 3 (such an element must
exist, because the cyclic normal subgroup of rotations has size n ≥ 3, and X ′ contains all
“partial” rotations). Clearly, r is a rotation and not the identity.

Now we partition X ′ = R ∪̇ T such that R contains rotations only and T reflections
only. In order to decide whether a g ∈ X ′ is a rotation or a reflection, compute g′ := r−1gr;
if g′ = g, then g is a rotation, otherwise it is a reflection.

We have 〈R〉 ∼= Zn. Use Theorem 11.10 to construct a logarithmic signature β ∈ Λ(〈R〉)
from R. Then use Theorem 11.7 (for (〈R〉 , β)) to find a σ ∈ G with 〈σ〉 = 〈R〉.

Pick an arbitrary element from T and call it τ . It does not matter which element we
choose, because τ 7→ σlτ is an automorphism for all l ∈ Zn by Lemma 2.1 (automorphism
ϕ1,l).

Having found elements σ, τ , we can now map arbitrary black box group elements to
this representation. Let g ∈ G. We are looking for a k ∈ N0 and a b ∈ {0, 1} such that
g = σkτ b. First, test whether g is a rotation (g is a rotation if and only if σ−1gσ = g). If
g is a rotation, find a k with g = σk using Theorem 11.8 and set b to 0. If g is a reflection,
compute g′ := g · τ , find a k with g′ = σk using Theorem 11.8 and set b to 1.

Factoring. Let (G,α) ∈ B with G a dihedral group, and g ∈ G. Factoring g with respect
to α is as hard as in Chapter 9, because using Theorem 11.19 we can first map g and all
group elements of α to the representation used in Chapter 9 and then apply the algorithms
for dihedral groups.

11.6. Groups G of Order |G| = 2n+1 with a Cyclic N E G of
Order |N | = 2n

Theorem 11.20. Let n ≥ 3 and (G,α) ∈ B with G a non-abelian group of order |G| =
2n+1 having a cyclic normal subgroup N E G of order |N | = 2n (we require that such an

210 11. Black Box Groups

N exists, but do not require it to be given for example by generators), and α canonical of
type (2, 2, . . . , 2).

Then α is tame.

Proof. By Section 2.3.5, a non-abelian group of order |G| = 2n+1 having a cyclic normal
subgroup N E G of order |N | = 2n is isomorphic to either D2·2n , Q4·2n−1 , G2·2n or D2·2n .

Our goal is to identify the group and map all elements to the representation in Section
2.3.5. α is then tame by Lemma 10.5.

First of all, observe the following for all k ∈ Z2n . For σkτ ∈ D2·2n , we have ord(σkτ) = 2,
because (σkτ)2 = σk−kττ = id. For σkτ ∈ Q4·2n−1 , we have ord(σkτ) = 4, because
(σkτ)4 = (σk−kττ)2 = (σ2n−1

)2 = id (and σ2n−1 6= id). For σkτ ∈ D2·2n , we have
ord(σkτ) ∈ {2, 4}, because (σkτ)2 = σk−k+k·2n−1

ττ = σk·2
n−1

and this element either has
order 1 (if k ≡ 0 (mod 2)) or order 2 (if k ≡ 1 (mod 2)). Thus, for these three groups
ord(g) = 2n for a g ∈ G implies that g ∈ N .

Let X := E(α) and compute the set X ′ := (X ∪{id})2 = {xx′ | x, x′ ∈ (X ∪{id})}. Let
σ be an arbitrary element in X ′ with ord(σ) = 2n (such an element must exist). By the
above observation, for D2·2n , Q4·2n−1 and D2·2n , we get 〈σ〉 = N . If G = G2·2n , it also is
〈σ〉 ∼= N by Lemma 2.5.

Find an arbitrary t ∈ X ′ with σ−1tσ 6= t; then t /∈ 〈σ〉. In order to see why this
is correct, observe the following for all k ∈ Z2n . If G ∼= D2·2n or G ∼= Q4·2n−1 , then
σ−1σkτσ = σk−2τ 6= σkτ . If G ∼= D2·2n , then σ−1σkτσ = σk−2+2n−1

τ 6= σkτ , because
−2 + 2n−1 6≡ 0 (mod 2n). If G ∼= G2·2n , then σ−1σkτσ = σk+2n−1

τ 6= σkτ .

• If ord(t) = 2 and ord(σt) = 2, then G ∼= D2·2n . Define τ := t.

This results in a representation of G compatible with α, because τ 7→ σlτ is an
automorphism for all l ∈ Z2n by Lemma 2.4.

• If ord(t) = 4 and ord(σt) = 4, then G ∼= Q4·2n−1 . Define τ := t.

This results in a representation of G compatible with α, because τ 7→ σlτ is an
automorphism for all l ∈ Z2n by Lemma 2.4.

• If either ord(t) = 2 ∧ ord(σt) = 4 or ord(t) = 4 ∧ ord(σt) = 2, then G ∼= D2·2n . If
ord(t) = 2 define τ := t, otherwise define τ := σt.

This results in a representation of G compatible with α. In order to see this, let
τ ′ be the original imaginary element without a factor from N . τ ′ 7→ σlτ ′ is an
automorphism for all even l ∈ Z2n by Lemma 2.4. ord(τ) = 2 implies that τ can
be expressed as τ = σlτ ′ with an even l, i.e. τ ′ can be mapped to τ using an
automorphism.

• Otherwise we have G ∼= G2·2n (and either ord(t) = 2n or ord(σt) = 2n). The
following procedure computes a τ that results in a representation of G compatible
with α:

1. Set t′ ← t.

2. Repeat:

11.6. Groups G of Order |G| = 2n+1 with a Cyclic N E G of Order |N | = 2n 211

a) Set u← ord(t′).

b) If u = 2: break.

c) Set t′ ← σ
2n

u t′.

3. Define τ := t′.

When τ ′ was the imaginary element in the original representation, clearly τ is either
τ ′ or σ2n−1

τ ′. These two are equivalent, because τ ′ 7→ σ2n−1
τ ′ obviously is an

automorphism (we have (σ2n−1
τ ′)2 = id and σ2n−1

τ ′ = τ ′σ2n−1
).

Mapping elements to powers of σ and τ works exactly as in the proof of Theorem 11.19.

212

12. Implementation / Program
Documentation

Our program LogSig implements various algorithms related to logarithmic signatures.

LogSig is written in C#, using the .NET class library. It runs on all Windows
systems with the Microsoft .NET Framework 4.0 (i.e. Windows ≥ XP; .NET 4.0 is
required, because LogSig for instance uses the BigInteger class, which is only present
in version 4.0 and higher) and all systems supported by Mono (e.g. Linux and Mac OS
X).

Building. To build an executable application from the source code, do the follow-
ing:

• Under Windows: open the LogSig.sln file using Microsoft Visual Studio or
SharpDevelop1 IDE, and build the solution (“Build”→ “Rebuild Solution”).

• Under Linux / Mac OS X: open the LogSig.sln file using MonoDevelop, and build
the solution (“Build”→ “Rebuild Solution”).

12.1. Command Line Options

LogSig is a console application. The task to perform is specified using command line
options/parameters.

Command line options/parameters must start with “-” or “--”; the two prefixes
are equivalent. For example, the following mean exactly the same: -t and --t.

Some parameters support values. In order to separate the parameter name from its
value, use “:” or “=”. For example, -r:200 and -r=200 are equivalent.

Option/parameter names are case-insensitive (e.g. “-t” and “-T” are equivalent).
Parameter values may be case-sensitive, depending on the parameter (e.g. the value of
a password parameter “-pw:” is case-sensitive, whereas for example the value of a group
parameter “-g:” is case-insensitive).

General command line options:

1http://www.icsharpcode.net/OpenSource/SD/Default.aspx

12.2. Implementation of Generalized MST1 213

• “-t”: Performs a self-test. In the self-test, various parts of the application are tested,
including but not limited to numerical methods (factorization, string conversion,
etc.) and cryptographic algorithms (e.g. the cryptographically secure pseudo-random
number generator).

• “-fct”: Enables factorization of numbers. Group and element orders are factor-
ized before writing them to file/screen; e.g. instead of writing 4698, LogSig writes
2*3^4*29. Computing number factorizations can require a long time and can con-
siderably slow down LogSig, so this should only be enabled for testing and analysis
purposes.

• “-mst1”: Prerequisite option for all commands related to generalized MST1 algo-
rithms (details in Section 12.2). Supported suboptions are:

– “-c”: Create a public/private key pair.

– “-e”: Encrypt a file.

– “-d”: Decrypt a file.

These options are explained in detail in Section 12.2.1.

12.2. Implementation of Generalized MST1

LogSig implements a public-key system based on the generalized version of MST1

(Section 4.3). Files can be encrypted using a public key and decrypted using a private
key.

Generalized MST1 with LS-Gen. A public key consists of a logarithmic signa-
ture generated by LS-Gen (Section 6.5). The corresponding private key consists of the
same logarithmic signature and additionally some information how this logarithmic
signature was created.

LS-Gen requires random numbers during the generation of a logarithmic signature.
These are generated by a cryptographically secure pseudo-random number generator
(CSPRNG) based on the Advanced Encryption Standard (AES) block cipher in counter
(CTR) mode.

The seed for this generator (an AES key and an initial counter value) is basically the
private key. Starting with a tame logarithmic signature and knowing the seed, LS-Gen can
construct the public logarithmic signature again (i.e. the seed represents the information
how the public logarithmic signature was generated) and allows to compute factorizations
of arbitrary group elements.

Encryption/Decryption. When using a high rounds count for LS-Gen, the de-
cryption is rather slow. Thus, files are encrypted/decrypted using a symmetric block
cipher, namely AES, and the key for it is derived from the factorization of a random
group element with respect to the public logarithmic signature.

In detail, LogSig does the following in order to encrypt a file:

214 12. Implementation / Program Documentation

• Load the public key file containing a logarithmic signature for a group G.

• Generate a random initialization vector (IV) and a random number 0 ≤ s < |G|.

• Map s to a vector of block indices in the logarithmic signature, using a mixed radix
conversion where the bases are the element counts in the blocks. Multiply the loga-
rithmic signature elements at these indices to obtain a group element g ∈ G.

• Write the header of the encrypted file. The header contains a file type identifier, a
version number, the element g and the IV.

• Convert s to a byte array and hash this byte array using SHA-256. The resulting
256-bit hash is used as key for AES. Symmetrically encrypt the file now. LogSig
uses the CBC block cipher mode of operation and a PKCS7 padding.

Note that s (which effectively is the factorization of g in the public logarithmic signature)
is not stored in the encrypted file; s must be erased securely after the encrypted file has
been created.

In order to decrypt a file, LogSig does the following:

• Load the private key file and the header of the encrypted file, i.e. especially the
element g ∈ G and the IV.

• Run LS-Gen to obtain the factorization for g. Undo the mixed radix representation
to reconstruct 0 ≤ s < |G|.

• Convert s to a byte array and hash this byte array using SHA-256. Decrypt the file
symmetrically now, using the 256-bit hash as key and the loaded IV.

12.2.1. Command Line Examples

Generating a key pair. In order to create a public/private key pair, invoke LogSig
with the options “-mst1” and “-c”.

By default, the names of the output files are Generated.pub and Generated.prv. To
change “Generated”, you can specify a different base name using the command line pa-
rameter “-base:”.

The group must be specified using the command line parameter “-g:”. The following
are valid, built-in group names (plugins can provide additional groups):

• Dih or D: dihedral group.

• Sym or S: symmetric group.

• Alt or A: alternating group.

• C or Z: cyclic group.

• Quat or Q: generalized quaternion group.

12.2. Implementation of Generalized MST1 215

Additionally, direct products/sums and wreath products are supported. To create a direct
product/sum, separate the groups by an “x”. For specifying the wreath product of two
groups, separate them by a “w” (the second group is the permutation group acting on
itself).

The size of the group must be appended to its name. Usually, the group order (i.e. the
number of elements) is appended. However, for the symmetric and the alternating group,
the degree (size of the set that the permutation group acts on) needs to be specified.

For specifying the size, “^” and “*” can be used; e.g. you can write 2^32*3 instead of
12884901888). If you are using the factorization notation, enclose the number in quotes
(").

Examples:

• “-g:Sym4” – The symmetric group Sym(4).

• “-g:Z2xZ3xZ3xSym5” – The direct product Z2 × Z3 × Z3 × Sym(5).

• “-g:"D2*32"” – The dihedral group D2·32.

• “-g:"D2*2^8xZ2xZ3"” – The direct product D2·28 × Z2 × Z3.

• “-g:D64wZ11” – The wreath product D2·32 o Z11.

The default number of LS-Gen rounds is 5000. This can be changed using the command
line parameter “-r:”.

The generated private key file is encrypted using a master password for security reasons.
This master password must be specified using the command line parameter “-pw:”. If the
password contains a space or any special command line character, it must be enclosed in
quotes.

Example:

LogSig.exe -mst1 -c -g:"D2*2^128" -r:200 -pw:abc

Generates a key pair for a logarithmic signature of D2·2128 . For the generation of the
logarithmic signature, 200 LS-Gen rounds are used. The private key file is protected
using the master password “abc”.

Encrypting a file. To encrypt one or more files, invoke LogSig with the op-
tions “-mst1” and “-e”. The files to encrypt are passed as arguments (without a
parameter name).

The public key file path has to be specified using the parameter “-key:”.
By default, the name of the output file is the name of the input file name plus

“.enc”. However, you can freely specify a different output file path using the parameter
“-outfile:”. This parameter of course only makes sense when encrypting exactly one
file; if more files are encrypted, this parameter cannot be used.

Example:

216 12. Implementation / Program Documentation

LogSig.exe -mst1 -e -key:Generated.pub TestFile.txt

Encrypts the file TestFile.txt using the public key stored in Generated.pub. The encrypted
data is saved to the file TestFile.txt.enc; the input file is not modified.

Decrypting a file. For decrypting, invoke LogSig with the options “-mst1” and
“-d”. Similar to the encryption call, the files to decrypt are passed as arguments (without
a parameter name) and the private key file has to be passed using “-key:”. The decrypted
file is written to a file named like the input file plus “.dec”. Like before, this can be
overridden using “-outfile:”.

The master password required for decrypting the private key has to be passed using
the parameter “-pw:”.

Example:

LogSig.exe -mst1 -d -key:Generated.prv -pw:abc TestFile.txt.enc

Decrypts the private key file Generated.prv using the master password “abc” and then
uses this information to decrypt the file TestFile.txt.enc. The output is written to
TestFile.txt.enc.dec.

12.2.2. Sample Key Files

A public key file is an XML file containing definitions for the group being used (type and
order) and a logarithmic signature. A private key XML file additionally contains the
seed, round count and transformation input/output relations for LS-Gen.

For example, the following public key XML file defines a logarithmic signature for
the dihedral group of order 270 = 2 · 33 · 5 (such a small group is used just for giving
an example for the file format; in a real system a much larger group and a larger round
count would of course be used):

<?xml version="1.0" encoding="utf-8"?>
<PkcPublicKey xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Group>D2*135</Group>
<LogSig>((id, 132, 36t), (id, 117, 6t, 105t, 36), (id, 42t),

(id, 85t, 46), (id, 90, 40t))</LogSig>
</PkcPublicKey>

The corresponding private key XML file could look like the following:

<?xml version="1.0" encoding="utf-8"?>
<PkcPrivateKey xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

12.3. Factoring in Abelian Groups 217

<Group>D2*135</Group>
<LogSig>((id, 132, 36t), (id, 117, 6t, 105t, 36), (id, 42t),

(id, 85t, 46), (id, 90, 40t))</LogSig>
<GeneratorKey>I/WzFoY7Ro6fianfTiX89+vAo+RDBiHZyDoRe4+H5gc=

</GeneratorKey>
<GeneratorCtr>wtvMtu7M98PhbHS4wrxsKA==</GeneratorCtr>
<GeneratorRounds>200</GeneratorRounds>
<GeneratorTrfIORels>(T:130t/52)</GeneratorTrfIORels>

</PkcPrivateKey>

Note that GeneratorKey and GeneratorCtr are encrypted using the master pass-
word.

12.3. Factoring in Abelian Groups

The factorization algorithm in Section 8.4/8.5 (for logarithmic signatures with periodic
blocks on each recursion level) and the generic one in Section 8.7 (for arbitrary block
sequences of abelian groups) have been implemented.

• In order to use the algorithm of Section 8.4/8.5, pass the command line option
“-AbFac”.

• In order to use the algorithm of Section 8.7, pass the command line option
“-AbFacEx”.

The group can be specified using the parameter “-g:” (must be specified as a direct sum
of cyclic groups), the logarithmic signature or block sequence in the parameter “-ls:” (for
“-AbFac” it must be a logarithmic signature with periodic blocks on each recursion level;
for “-AbFacEx” it may be any arbitrary block sequence), and the element to factor in the
parameter “-el:”.

Example 12.1. Let G = Z8 ⊕ Z4, g = (5, 3) ∈ G, and

α =

(
(0, 0)

(2, 1)

)(
(0, 0)

(4, 0)

)(
(0, 0)

(1, 2)

)(
(0, 0)

(2, 0)

)(
(0, 0)

(4, 2)

)
∈ Λ(G).

In order to compute the factorization of g with respect to α, invoke LogSig as follows:

LogSig.exe -AbFac -g:Z8xZ4 -ls:"(((0,0), (2,1)), ((0,0), (4,0)),

((0,0), (1,2)), ((0,0), (2,0)), ((0,0), (4,2)))" -el:(5,3)

The program outputs:

(5,3) = (2,1) + (0,0) + (1,2) + (2,0) + (0,0).

218 12. Implementation / Program Documentation

12.4. Plugin Architecture

LogSig was written with extensibility in mind; it has a plugin architecture. Plugins can
add more application modules (handlers for command line arguments), as well as new
groups.

An example of a complete plugin adding support for Zn groups (once more) can be
found in Appendix B.

219

13. Further Research

As we have shown in Section 8.9, amalgamated transversal logarithmic signatures and
various constructions for aperiodic logarithmic signatures are tame. Furthermore, for
abelian groups we have pointed out that our generic factorization algorithm in Section 8.7
usually works efficiently for logarithmic signatures generated by LS-Gen.

Thus it remains an open problem whether it is possible to efficiently construct possibly
wild logarithmic signatures for abelian groups (and whether the construction allows to be
used as a trap-door).

LS-Gen can generate logarithmic signatures for non-abelian groups. Although the
algorithm uses a few powerful transformations during the construction process, in practice
(when implementing a cryptosystem based on wild logarithmic signatures) it is a good
idea to implement additional group-specific transformations for efficiency (for an example,
see the note on the efficiency of block substitutions in Section 5.1.8). An example of a
group-specific transformation for dihedral groups is the reflection spreading in Algorithm
9.9 (based on our Theorem 9.2 about size-permutability).

In the future, more group-specific transformations may be presented.

The development of factorization algorithms for more groups and logarithmic sig-
nature types will be the subject of further research. Especially interesting might be direct
products (e.g. the group D2

2n).

220

A. Factorization Algorithm for Abelian
Groups

The following is the source code of the generic factorization Algorithm 8.30 for abelian
groups described in Section 8.7.

Listing A.1: DmMultiZnGroup.FacEx.cs

1 // LogSig − Logarithmic S ignature U t i l i t y
2 // Copyright (C) 2011−2015 Dominik Re ich l <info@dominik−r e i c h l . de>
3

4 using System;

5 using System.Collections.Generic;

6 using System.Linq;

7 using System.Text;

8 using System.Numerics;

9 using System.Diagnostics;

10

11 namespace LogSig.DM.MultiZnGroup

12 {

13 public sealed partial class DmMultiZnGroup : IDmGroup <DmMultiZnGroupElement >

14 {

15 /// <summary>
16 /// Compute a l l f a c t o r i z a t i o n s o f <paramref name=”e l ” /> with
17 /// r e s p e c t to <paramref name=”bs ” />.
18 /// </summary>
19 /// <param name=”bs”>An a r b i t r a r y block sequence o f e lements
20 /// in <paramref name=”grp ” /> (not n e c e s s a r i l y a l oga r i thmi c s i gn a t u r e
21 /// or mu l t ip l e f a c t o r i z a t i o n o f <paramref name=”grp ” />).</param>
22 /// <param name=”grp”>Group.</param>
23 /// <param name=”e l ”>Element to f a c t o r .</param>
24 /// <returns>Al l f a c t o r i z a t i o n s o f <paramref name=”e l ” />.</ returns>
25 public static List <int[]> FactorizeAbEx(

26 DmBlockSeq <DmMultiZnGroupElement > bs, DmMultiZnGroup grp ,

27 DmMultiZnGroupElement el, DmTraceInfo ti)

28 {

29 return FactorizeAbEx(bs, grp , el,

30 new DmBlockSeq <DmMultiZnGroupElement >(), ti);

31 }

32

33 private static List <int[]> FactorizeAbEx(

34 DmBlockSeq <DmMultiZnGroupElement > bs, DmMultiZnGroup grp ,

35 DmMultiZnGroupElement el, DmBlockSeq <DmMultiZnGroupElement > lsDivChain ,

36 DmTraceInfo ti)

37 {

38 List <int[]> lRes = new List <int[]>();

39 NormalChainEq eq = new NormalChainEq(grp , lsDivChain);

40

41 if(bs.Blocks.Count == 1)

42 {

43 for(int i = 0; i < bs.Blocks [0]. Elements.Count; ++i)

44 {

221

45 if(eq.Equals(bs.Blocks [0]. Elements[i], el))

46 lRes.Add(new int[] { i });

47 }

48 return UpdTrace(lRes , ti);

49 }

50

51 for(int x = 0; x < bs.Blocks.Count; ++x)

52 {

53 DmLogSigBlock <DmMultiZnGroupElement > blk = bs.Blocks[x];

54 List <DmMultiZnGroupElement > lUni = blk.Elements.Distinct(

55 eq).ToList ();

56 if(blk.Elements.Count > lUni.Count)

57 {

58 DmBlockSeq <DmMultiZnGroupElement > bsNew = bs.Clone();

59 bsNew.Blocks[x]. Elements.Clear();

60 bsNew.Blocks[x]. Elements.AddRange(lUni);

61

62 List <int[]> lSubFac = FactorizeAbEx(bsNew , grp , el,

63 lsDivChain , ti);

64 return UpdTrace(EnumAndMatch(bs, grp , el, eq, lSubFac ,

65 x, false), ti);

66 }

67 }

68

69 for(int x = 0; x < bs.Blocks.Count; ++x)

70 {

71 DmLogSigBlock <DmMultiZnGroupElement > blk = bs.Blocks[x];

72 if(blk.Elements.Count == 1)

73 {

74 DmBlockSeq <DmMultiZnGroupElement > bsNew = bs.Clone();

75 bsNew.Blocks.RemoveAt(x);

76

77 List <int[]> lSubFac = FactorizeAbEx(bsNew , grp , el,

78 lsDivChain , ti);

79 return UpdTrace(EnumAndMatch(bs, grp , el, eq, lSubFac ,

80 x, true), ti);

81 }

82 }

83

84 List <DmMultiZnGroupElement > lN = ChooseNormalSubgroup(bs, grp , eq);

85

86 DmBlockSeq <DmMultiZnGroupElement > lsDivChainN = lsDivChain.Clone();

87 lsDivChainN.AddBlock(lN.ToArray ());

88

89 List <int[]> lSubFacN = FactorizeAbEx(bs, grp , el, lsDivChainN , ti);

90 foreach(int[] vCand in lSubFacN)

91 {

92 if(eq.Equals(bs.MultiplyElements(new List <int >(vCand), grp), el))

93 lRes.Add(vCand);

94 }

95

96 return UpdTrace(lRes , ti);

97 }

98

99 private static List <int[]> UniqueFacs(List <int[]> lFacs)

100 {

101 return lFacs.Distinct(new ArraysEqualComparer <int >()).ToList ();

102 }

103

104 private static List <int[]> UpdTrace(List <int[]> l, DmTraceInfo ti)

105 {

106 if(l.Count > ti.MaxWidth) ti.MaxWidth = l.Count;

222 A. Factorization Algorithm for Abelian Groups

107 return l;

108 }

109

110 private static List <int[]> EnumAndMatch(

111 DmBlockSeq <DmMultiZnGroupElement > bs, DmMultiZnGroup grp ,

112 DmMultiZnGroupElement el, NormalChainEq eq, List <int[]> lFacs ,

113 int x, bool bInsert)

114 {

115 List <int[]> lRes = new List <int[]>();

116

117 foreach(int[] vCand in lFacs)

118 {

119 for(int j = 0; j < bs.Blocks[x]. Elements.Count; ++j)

120 {

121 List <int > lFac = new List <int >(vCand);

122

123 if(bInsert) lFac.Insert(x, j);

124 else lFac[x] = j;

125

126 if(eq.Equals(bs.MultiplyElements(lFac , grp), el))

127 lRes.Add(lFac.ToArray ());

128 }

129 }

130

131 return UniqueFacs(lRes);

132 }

133

134 private sealed class ArraysEqualComparer <T> : IEqualityComparer <T[]>

135 where T : IEquatable <T>

136 {

137 public bool Equals(T[] x, T[] y)

138 {

139 if((x == null) || (y == null))

140 {

141 Debug.Assert(false);

142 return false;

143 }

144

145 if(x.Length != y.Length) return false;

146

147 for(int i = 0; i < x.Length; ++i)

148 {

149 if(!x[i]. Equals(y[i])) return false;

150 }

151

152 return true;

153 }

154

155 public int GetHashCode(T[] obj)

156 {

157 if(obj == null) { Debug.Assert(false); return 0; }

158

159 return obj.Sum(o => o.GetHashCode ());

160 }

161 }

162

163 private sealed class ElemWithRatings

164 {

165 public DmMultiZnGroupElement Element;

166 public List <BigInteger > Ratings;

167

168 public ElemWithRatings(DmMultiZnGroupElement e,

223

169 List <BigInteger > lRatings)

170 {

171 this.Element = e;

172 this.Ratings = lRatings;

173 }

174 }

175

176 private static List <DmMultiZnGroupElement > ChooseNormalSubgroup(

177 DmBlockSeq <DmMultiZnGroupElement > bs, DmMultiZnGroup grp ,

178 NormalChainEq eq)

179 {

180 IEnumerable <DmMultiZnGroupElement > eC = GetLowOrderElements(bs, grp ,

181 eq);

182

183 List <ElemWithRatings > lR = new List <ElemWithRatings >();

184 foreach(DmMultiZnGroupElement e in eC)

185 {

186 NormalChainEq eqSub = AppendSubgroup(grp , eq, e);

187 List <BigInteger > lRating = EstSeqComplexity(bs, grp , eqSub);

188 if(lRating.TrueForAll(bi => bi.IsOne))

189 return GetCyclicSpan(grp , eq, e).Elements;

190 lRating [0] *= ElementOrder(e, grp , eq);

191 lR.Add(new ElemWithRatings(e, lRating));

192 }

193

194 BigInteger biEta = lR.Min(r => r.Ratings [0]);

195 lR = lR.Where(r => (r.Ratings [0] == biEta)).ToList ();

196

197 BigInteger biTheta = lR.Min(r => r.Ratings [1]);

198 lR = lR.Where(r => (r.Ratings [1] == biTheta)).ToList ();

199

200 if(lR.Count == 0) throw new Exception("lR.Count == 0");

201 int ri = Program.CryptoRandom.GenerateInt32(lR.Count);

202 return GetCyclicSpan(grp , eq, lR[ri]. Element).Elements;

203 }

204

205 private static IEnumerable <DmMultiZnGroupElement > GetLowOrderElements(

206 DmBlockSeq <DmMultiZnGroupElement > bs, DmMultiZnGroup grp ,

207 NormalChainEq eq)

208 {

209 List <DmMultiZnGroupElement > lM = new List <DmMultiZnGroupElement >();

210 for(int x = 0; x < bs.Blocks.Count; ++x)

211 {

212 var blk = bs.Blocks[x]. Elements;

213 for(int j = 0; j < (blk.Count - 1); ++j)

214 {

215 for(int k = j + 1; k < blk.Count; ++k)

216 {

217 var m = grp.Multiply(grp.Invert(blk[j]), blk[k]);

218 if(lM.TrueForAll(el => !eq.Equals(el, m)))

219 lM.Add(m);

220 }

221 }

222 }

223

224 BigInteger q = new BigInteger(bs.Blocks.Max(

225 blk => blk.Elements.Count));

226

227 int d = 1;

228 List <DmMultiZnGroupElement > lC = new List <DmMultiZnGroupElement >();

229 while(lC.Count == 0)

230 {

224 A. Factorization Algorithm for Abelian Groups

231 lC = lM.Where(e => ((BigInteger.Pow(q, d - 1) < ElementOrder(e,

232 grp , eq)) && (ElementOrder(e, grp , eq) <=

233 BigInteger.Pow(q, d)))).ToList ();

234 ++d;

235 }

236

237 for(int x = lC.Count - 1; x > 0; --x)

238 {

239 BigInteger ordX = ElementOrder(lC[x], grp , eq);

240 var blkSpanX = GetCyclicSpan(grp , eq, lC[x]);

241

242 bool bValid = true;

243 for(int y = 0; y < x; ++y)

244 {

245 if((ElementOrder(lC[y], grp , eq) == ordX) &&

246 (blkSpanX.Elements.FindIndex(el => eq.Equals(el,

247 lC[y])) >= 0))

248 {

249 bValid = false;

250 break;

251 }

252 }

253

254 if(bValid) yield return lC[x];

255 }

256

257 yield return lC[0];

258 }

259

260 private static BigInteger ElementOrder(DmMultiZnGroupElement el,

261 DmMultiZnGroup grp , NormalChainEq eq)

262 {

263 if(eq.Equals(el, grp.Identity)) return BigInteger.One;

264

265 List <BigInteger > lFactors = new List <BigInteger >(grp.OrderFactors);

266 int p = lFactors.Count - 1;

267

268 while(p >= 0)

269 {

270 BigInteger biPow = lFactors.Aggregate(BigInteger.One ,

271 (prod , f) => prod * f);

272 biPow /= lFactors[p];

273 if(eq.Equals(grp.Pow(el, biPow), grp.Identity))

274 lFactors.RemoveAt(p);

275

276 --p;

277 }

278

279 return lFactors.Aggregate(BigInteger.One , (prod , f) => prod * f);

280 }

281

282 private static DmLogSigBlock <DmMultiZnGroupElement > GetCyclicSpan(

283 DmMultiZnGroup grp , NormalChainEq eq, DmMultiZnGroupElement g)

284 {

285 var blkSubgroup = new DmLogSigBlock <DmMultiZnGroupElement >();

286 DmMultiZnGroupElement s = grp.Identity;

287 do

288 {

289 blkSubgroup.Elements.Add(s);

290 s = grp.Multiply(s, g);

291 }

292 while(!eq.Equals(s, grp.Identity));

225

293 return blkSubgroup;

294 }

295

296 private static NormalChainEq AppendSubgroup(DmMultiZnGroup grp ,

297 NormalChainEq eq, DmMultiZnGroupElement g)

298 {

299 DmBlockSeq <DmMultiZnGroupElement > lsNew = eq.NormalChain.Clone();

300 lsNew.Blocks.Add(GetCyclicSpan(grp , eq, g));

301 return new NormalChainEq(grp , lsNew);

302 }

303

304 private static List <BigInteger > EstSeqComplexity(

305 DmBlockSeq <DmMultiZnGroupElement > bs, DmMultiZnGroup grp ,

306 NormalChainEq eq)

307 {

308 var bsSmp = SimplifySeq(bs, grp , eq);

309 if(bsSmp.Blocks.Count <= 1)

310 return new List <BigInteger >(new BigInteger [] {

311 BigInteger.One , BigInteger.One });

312

313 BigInteger u = bsSmp.Blocks.Aggregate(BigInteger.One , (prod , blk) =>

314 (prod * blk.Elements.Count));

315 BigInteger s = bsSmp.Blocks.Aggregate(BigInteger.Zero , (so, blk) =>

316 (so + blk.Elements.Aggregate(BigInteger.Zero , (si, e) =>

317 (si + ElementOrder(e, grp , eq)))));

318

319 var eC = GetLowOrderElements(bsSmp , grp , eq);

320 foreach(DmMultiZnGroupElement g in eC)

321 {

322 NormalChainEq eqSub = AppendSubgroup(grp , eq, g);

323 var bsSub = SimplifySeq(bsSmp , grp , eqSub);

324 if((ElementOrder(g, grp , eq) * bsSub.Blocks.Aggregate(

325 BigInteger.One , (prod , blk) => (prod *

326 blk.Elements.Count))) <= u)

327 return EstSeqComplexity(bsSmp , grp , eqSub);

328 }

329

330 List <BigInteger > lRes = new List <BigInteger >(2);

331 lRes.Add(u);

332 lRes.Add(s);

333 return lRes;

334 }

335

336 private static DmBlockSeq <DmMultiZnGroupElement > SimplifySeq(

337 DmBlockSeq <DmMultiZnGroupElement > bs, DmMultiZnGroup grp ,

338 NormalChainEq eq)

339 {

340 var bsNew = new DmBlockSeq <DmMultiZnGroupElement >();

341 for(int x = 0; x < bs.Blocks.Count; ++x)

342 bsNew.AddBlock(bs.Blocks[x]. Elements.Distinct(eq).ToArray ());

343 for(int x = bs.Blocks.Count - 1; x >= 0; --x)

344 {

345 if(bsNew.Blocks[x]. Elements.Count == 1)

346 bsNew.Blocks.RemoveAt(x);

347 }

348 return bsNew;

349 }

350

351 private sealed class NormalChainEq :

352 IEqualityComparer <DmMultiZnGroupElement >

353 {

354 private readonly DmMultiZnGroup m_grp;

226 A. Factorization Algorithm for Abelian Groups

355 private readonly DmMultiZnGroupElement [] m_v;

356

357 private readonly DmBlockSeq <DmMultiZnGroupElement > m_ls;

358 public DmBlockSeq <DmMultiZnGroupElement > NormalChain

359 {

360 get { return m_ls; }

361 }

362

363 public NormalChainEq(DmMultiZnGroup grp ,

364 DmBlockSeq <DmMultiZnGroupElement > lsNormalChain)

365 {

366 if(grp == null) throw new ArgumentNullException("grp");

367 m_grp = grp;

368

369 m_v = new DmMultiZnGroupElement[grp.Mods.Length];

370 m_ls = Simplify(grp , lsNormalChain);

371 }

372

373 private DmBlockSeq <DmMultiZnGroupElement > Simplify(DmMultiZnGroup grp ,

374 DmBlockSeq <DmMultiZnGroupElement > lsChain)

375 {

376 if(lsChain == null) throw new ArgumentNullException("lsChain");

377

378 DmBlockSeq <DmMultiZnGroupElement > ls = lsChain.Clone();

379

380 for(int c = 0; c < grp.Mods.Length; ++c)

381 {

382 for(int x = 0; x < ls.Blocks.Count; ++x)

383 {

384 DmMultiZnGroupElement sMin = null;

385 foreach(DmMultiZnGroupElement el in ls.Blocks[x]. Elements)

386 {

387 if(el.Values[c]. IsZero) continue;

388 if(!el.Values.Take(c).All(bi => bi.IsZero)) continue;

389

390 if((sMin == null) || (el.Values[c] < sMin.Values[c]))

391 sMin = el;

392 }

393 if(sMin == null) continue;

394

395 m_v[c] = sMin;

396

397 BigInteger sc = sMin.Values[c];

398 Debug.Assert ((sc >= 0) && (sc < grp.Mods[c]));

399 for(int xr = x + 1; xr < ls.Blocks.Count; ++xr)

400 {

401 for(int yr = 0; yr < ls.Blocks[xr]. Elements.Count;

402 ++yr)

403 {

404 var h = ls.Blocks[xr]. Elements[yr];

405 BigInteger hc = h.Values[c];

406 Debug.Assert ((hc >= 0) && (hc < grp.Mods[c]));

407

408 if(sc <= hc)

409 {

410 var sMulti = grp.Pow(sMin , hc / sc);

411 Debug.Assert (! sMulti.Equals(grp.Identity));

412

413 var gRed = grp.Multiply(h, grp.Invert(sMulti));

414 ls.Blocks[xr]. Elements[yr] = gRed;

415 Debug.Assert(gRed.Values[c] < sc);

416 }

227

417 }

418 }

419 }

420 }

421

422 return ls;

423 }

424

425 public bool Equals(DmMultiZnGroupElement x, DmMultiZnGroupElement y)

426 {

427 DmMultiZnGroupElement d = m_grp.Multiply(x, m_grp.Invert(y));

428

429 for(int c = 0; c < m_grp.Mods.Length; ++c)

430 {

431 if(d.Values[c] == 0) continue;

432

433 DmMultiZnGroupElement s = m_v[c];

434 if(s == null) return false;

435

436 BigInteger q = d.Values[c] / s.Values[c];

437

438 DmMultiZnGroupElement sMul = m_grp.Pow(s, q);

439 d = m_grp.Multiply(d, m_grp.Invert(sMul));

440

441 if(!d.Values[c]. IsZero) return false;

442 }

443

444 Debug.Assert(d.Values.All(bi => bi.IsZero));

445 return true;

446 }

447

448 public int GetHashCode(DmMultiZnGroupElement obj)

449 {

450 return 0; // Force that the Equals method i s used
451 }

452 }

453 }

454 }

228

B. Sample Plugin: Zn Group Provider

The following, complete source code of a plugin for LogSig (Chapter 12) adds support
for Zn groups.

LogSig does already support Zn groups out of the box (by using C or Z as group name);
this plugin just demonstrates how a plugin can look like.

When the source code is compiled and the DLL file placed in the directory of LogSig,
all group parameters (e.g. “-g:”) additionally support Res as group name, and all group-
generic procedures (cryptosystem key pair generation, encryption, decryption, etc.) can
use this group.

Listing B.1: LsZnGroupExt.cs

1 // LogSig − Logarithmic S ignature U t i l i t y
2 // Copyright (C) 2011−2015 Dominik Re ich l <info@dominik−r e i c h l . de>
3

4 using System;

5 using System.Collections.Generic;

6 using System.Text;

7 using System.Numerics;

8

9 using LogSig.Crypto;

10 using LogSig.DM;

11 using LogSig.Plugins;

12

13 namespace LsZnGroup

14 {

15 public sealed class LsZnGroupExt : LsPlugin

16 {

17 public override bool Initialize(ILsPluginHost host)

18 {

19 if(host == null) return false;

20

21 host.GroupFactories.Add(new ZnGroupFactory ());

22 return true;

23 }

24 }

25

26 public sealed class ZnGroupFactory : IDmGroupFactory

27 {

28 public object CreateInstance(string strGroup)

29 {

30 BigInteger? biOrder = NumUtil.GetPrefixedNumber(strGroup , "Res");

31 if(! biOrder.HasValue) return null;

32

33 return new ZnGroup(biOrder.Value);

34 }

35 }

36

37 public sealed class ZnGroupElement : IDmGroupElement <ZnGroupElement >

38 {

229

39 private int? m_hash = null;

40

41 private readonly BigInteger m_n;

42 public BigInteger Value { get { return m_n; } }

43

44 public ZnGroupElement(BigInteger biValue)

45 {

46 m_n = biValue;

47 }

48

49 public ZnGroupElement Clone()

50 {

51 return (ZnGroupElement)MemberwiseClone ();

52 }

53

54 public override string ToString ()

55 {

56 return NumUtil.FactorsToString(m_n , true);

57 }

58

59 public static ZnGroupElement Parse(string str)

60 {

61 return new ZnGroupElement(NumUtil.Parse(str));

62 }

63

64 public override int GetHashCode ()

65 {

66 if(m_hash.HasValue) return m_hash.Value;

67

68 int h = m_n.GetHashCode ();

69

70 m_hash = h;

71 return h;

72 }

73

74 public override bool Equals(object obj)

75 {

76 return Equals(obj as ZnGroupElement);

77 }

78

79 public bool Equals(ZnGroupElement other)

80 {

81 if(other == null) return false;

82 return (m_n == other.m_n);

83 }

84

85 public int CompareTo(ZnGroupElement other)

86 {

87 if(other == null) return 1;

88 return m_n.CompareTo(other.m_n);

89 }

90 }

91

92 public sealed class ZnGroup : IDmGroup <ZnGroupElement >

93 {

94 public string Name

95 {

96 get { return ("Res" + NumUtil.FactorsToString(m_biOrder , true)); }

97 }

98

99 private readonly BigInteger m_biOrder;

100 public BigInteger Order { get { return m_biOrder; } }

230 B. Sample Plugin: Zn Group Provider

101

102 private ZnGroupElement m_id = new ZnGroupElement (0);

103 public ZnGroupElement Identity { get { return m_id; } }

104

105 public ZnGroup(BigInteger biOrder) { m_biOrder = biOrder; }

106

107 public ZnGroupElement ParseElement(string str)

108 {

109 return ZnGroupElement.Parse(str);

110 }

111

112 public ZnGroupElement Multiply(ZnGroupElement a, ZnGroupElement b)

113 {

114 return new ZnGroupElement ((a.Value + b.Value) % m_biOrder);

115 }

116

117 public ZnGroupElement Invert(ZnGroupElement t)

118 {

119 if(t.Value.IsZero) return t;

120 return new ZnGroupElement(m_biOrder - t.Value);

121 }

122

123 public ZnGroupElement GenerateRandomElement(CryptoRandomGen rand)

124 {

125 return new ZnGroupElement(rand.GenerateBigInt(m_biOrder));

126 }

127

128 public ZnGroupElement NextElement(ZnGroupElement t)

129 {

130 return new ZnGroupElement ((t.Value + BigInteger.One) % m_biOrder);

131 }

132

133 public BigInteger ElementToBigInt(ZnGroupElement t)

134 {

135 return t.Value;

136 }

137

138 public ZnGroupElement BigIntToElement(BigInteger biElem)

139 {

140 return new ZnGroupElement(biElem);

141 }

142

143 public DmBlockSeq <ZnGroupElement > CreateDefaultSig ()

144 {

145 var ls = new DmBlockSeq <ZnGroupElement >();

146

147 BigInteger n = m_biOrder , p = 2, pp = 1;

148 while(n != 1)

149 {

150 if((n % p).IsZero)

151 {

152 var blk = ls.AddBlock ();

153 for(int i = 0; i < p; ++i)

154 blk.Elements.Add(new ZnGroupElement(pp * i));

155

156 pp *= p;

157 n /= p;

158 continue;

159 }

160

161 ++p;

162 }

231

163

164 return ls;

165 }

166

167 public int[] FactorInDefaultSig(ZnGroupElement t)

168 {

169 DmBlockSeq <ZnGroupElement > ls = CreateDefaultSig ();

170

171 int[] vFactorization = new int[ls.Blocks.Count];

172

173 BigInteger biRot = t.Value;

174 for(int i = 0; i < vFactorization.Length; ++i)

175 {

176 int p = ls.Blocks[i]. Elements.Count;

177 vFactorization[i] = (int)(biRot % p);

178 biRot /= p;

179 }

180

181 return vFactorization;

182 }

183 }

184 }

232

Bibliography

[Bab84] L. Babai, E. Szemerédi, On the Complexity of Matrix Group Problems I, in
Proceedings of the 25th Annual Symposium on Foundations of Computer Science,
pp. 229–240, 1984.
doi:10.1109/SFCS.1984.715919

[Bab95] L. Babai, G. Cooperman, L. Finkelstein, E. Luks, A. Seress, Fast Monte
Carlo Algorithms for Permutation Groups, J. of Computer and System Sciences, vol.
50, nr. 2, pp. 296–308, Elsevier, 1995.
doi:10.1006/jcss.1995.1024

[Bau12] B. Baumeister, J.-H. de Wiljes, Aperiodic Logarithmic Signatures, J. of
Math. Cryptology, vol. 6, nr. 1, pp. 21–37, de Gruyter, 2012.
doi:10.1515/jmc-2012-0003

[Bla09] S. R. Blackburn, C. Cid, C. Mullan, Cryptanalysis of the MST3 Public Key
Cryptosystem, J. of Math. Cryptology, vol. 3, nr. 4, pp. 321–338, de Gruyter, 2009.
doi:10.1515/JMC.2009.020

[Boh05] J.-M. Bohli, R. Steinwandt, M. I. González Vasco, C. Mart́ınez,
Weak Keys in MST1, Des. Codes Cryptography, vol. 37, nr. 3, pp. 509–524, Kluw-
er/Springer, 2005.
doi:10.1007/s10623-004-4040-y

[Buc05] J. Buchmann, A. Schmidt, Computing the Structure of a Finite Abelian Group,
Math. of Comp., vol. 74, nr. 252, pp. 2017–2026, American Mathematical Society,
2005.
doi:10.1090/S0025-5718-05-01740-0

[Car06] A. Caranti, F. D. Volta, The Round Functions of Cryptosystem PGM Gen-
erate the Symmetric Group, Des. Codes Cryptography, vol. 38, nr. 1, pp. 147–155,
Kluwer/Springer, 2006.
doi:10.1007/s10623-005-5667-z

[Cus00] C. A. Cusack, Group Factorizations in Cryptography, Ph.D. dissertation, Uni-
versity of Nebraska, 2000.

[Fuc67] L. Fuchs, Abelian Groups, 3rd edition reprinted, Pergamon Press, 1967.

[Gol01] O. Goldreich, Foundations of Cryptography: Volume I – Basic Tools, Cam-
bridge University Press, 2001.

Bibliography 233

[H̊as99] J. Håstad, R. Impagliazzo, L. A. Levin, M. Luby, A Pseudorandom Gen-
erator from any One-Way Function, SIAM J. on Computing, vol. 28, nr. 4, pp.
1364–1396, 1999.
doi:10.1137/S0097539793244708

[Hol04] P. E. Holmes, On Minimal Factorisations of Sporadic Groups, Experiment.
Math., vol. 13, nr. 4, pp. 435–440, A K Peters, 2004.
http://projecteuclid.org/euclid.em/1109106435

[Hup67] B. Huppert, Endliche Gruppen I, Springer, 1967.

[Ili85] C. S. Iliopoulos, Analysis of Algorithms on Problems in General Abelian Groups,
Information Processing Letters, vol. 20, nr. 4, pp. 215–220, Elsevier, 1985.
doi:10.1016/0020-0190(85)90052-3

[Joh80] D. L. Johnson, Topics in the Theory of Group Presentations, London Mathe-
matical Society Lecture Note Series, vol. 42, Cambridge University Press, 1980.

[Lem05] W. Lempken, T. van Trung, On Minimal Logarithmic Signatures of Finite
Groups, Experiment. Math., vol. 14, nr. 3, pp. 257–269, A K Peters, 2005.
http://projecteuclid.org/euclid.em/1128371751

[Lem09] W. Lempken, T. van Trung, S. S. Magliveras, W. Wei, A Public Key
Cryptosystem Based on Non-Abelian Finite Groups, J. of Cryptology, vol. 22, nr. 1,
pp. 62–74, Springer, 2009.
doi:10.1007/s00145-008-9033-y

[Mag86] S. S. Magliveras, A Cryptosystem from Logarithmic Signatures of Finite
Groups, in Proceedings of the 29th Midwest Symposium on Circuits and Systems,
pp. 972–975, Elsevier, 1986.

[Mag92] S. S. Magliveras, N. D. Memon, Algebraic Properties of Cryptosystem PGM,
J. of Cryptology, vol. 5, nr. 3, pp. 167–183, Springer, 1992.
doi:10.1007/BF02451113

[Mag02a] S. S. Magliveras, Secret- and Public-Key Cryptosystems from Group Factor-
izations, Tatra Mt. Math. Publ., vol. 25, pp. 11–22, 2002.

[Mag02b] S. S. Magliveras, D. R. Stinson, T. van Trung, New Approaches to
Designing Public Key Cryptosystems Using One-Way Functions and Trapdoors in
Finite Groups, J. of Cryptology, vol. 15, nr. 4, pp. 285–297, Springer, 2002.
doi:10.1007/s00145-001-0018-3

[Mar12] P. Marquardt, P. Svaba, T. van Trung, Pseudorandom Number Generators
Based on Random Covers for Finite Groups, Des. Codes Cryptography, vol. 64, nr.
1–2, pp. 209–220, Springer, 2012.
doi:10.1007/s10623-011-9485-1

234 Bibliography

[Mot95] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University
Press, 1995.

[Nus11] A. Nuss, On Group Based Public Key Cryptography, Ph.D. dissertation, Univer-
sity of Tübingen, 2011.
http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-63659

[Poh78] S. C. Pohlig, M. E. Hellman, An Improved Algorithm for Computing Loga-
rithms over GF (p) and its Cryptographic Significance, IEEE Transactions on Infor-
mation Theory, vol. 24, nr. 1, pp. 106–110, 1978.
doi:10.1109/TIT.1978.1055817

[Red65] L. Rédei, Die neue Theorie der endlichen abelschen Gruppen und Verallge-
meinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hung., vol. 16, nr.
3–4, pp. 329–373, Kluwer, 1965.
doi:10.1007/BF01904843

[Ser77] J. P. Serre, Linear Representations of Finite Groups, Graduate Texts in Math-
ematics, Springer, 1977.

[Sho99] P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer, SIAM J. on Computing, vol. 41, no. 2, pp.
303–332, 1999.
doi:10.1137/S0036144598347011

[Sta13] R. Staszewski, T. van Trung, Strongly Aperiodic Logarithmic Signatures, J.
of Math. Cryptology, vol. 7, nr. 2, pp. 147–179, de Gruyter, 2013.
doi:10.1515/jmc-2013-5000

[Sva07] P. Svaba, T. van Trung, On Generation of Random Covers for Finite Groups,
Tatra Mt. Math. Publ., vol. 37, pp. 105–112, 2007.

[Sva10] P. Svaba, T. van Trung, Public Key Cryptosystem MST3: Cryptanalysis and
Realization, J. of Math. Cryptology, vol. 4, no. 3, pp. 271–315, de Gruyter, 2010.
doi:10.1515/jmc.2010.011

[Sva11] P. Svaba, Covers and Logarithmic Signatures of Finite Groups in Cryptography,
Ph.D. dissertation, University of Duisburg-Essen, 2011.
http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=

25967

[Sva13] P. Svaba, T. van Trung, P. Wolf, Logarithmic Signatures for Abelian Groups
and Their Factorization, Tatra Mt. Math. Publ., vol. 57, no. 1, pp. 21–33, 2013.
doi:10.2478/tmmp-2013-0033

[Sza04] S. Szabó, Topics in Factorization of Abelian Groups, Birkhäuser, 2004.

Bibliography 235

[Sza09] S. Szabó, A. D. Sands, Factoring Groups into Subsets, Lecture Notes in Pure
and Applied Mathematics, vol. 257, Chapman and Hall / CRC Press, 2009.

[Vas02] M. I. González Vasco, R. Steinwandt, Obstacles in Two Public Key Cryp-
tosystems Based on Group Factorizations, Tatra Mt. Math. Publ., vol. 25, pp. 23–37,
2002.

[Vas03] M. I. González Vasco, M. Rötteler, R. Steinwandt, On Minimal Length
Factorizations of Finite Groups, Experiment. Math., vol. 12, nr. 1, A K Peters, 2003.
http://projecteuclid.org/euclid.em/1064858780

[Vas04] M. I. González Vasco, D. Hofheinz, C. Mart́ınez, R. Steinwandt, On the
Security of Two Public Key Cryptosystems Using Non-Abelian Groups, Des. Codes
Cryptography, vol. 32, nr. 1–3, pp. 207–216, Kluwer/Springer, 2004.
doi:10.1023/B:DESI.0000029223.76665.7e

[Vas10] M. I. González Vasco, A. L. Pérez del Pozo, P. Taborda Duarte, A
Note on the Security of MST3, Des. Codes Cryptography, vol. 55, nr. 2–3, pp. 189–
200, Springer, 2010.
doi:10.1007/s10623-010-9373-0

236

List of Abbreviations

The following table lists abbreviations used throughout this work.

Abbreviation Meaning

AES-256 Advanced Encryption Standard with 256-bit key (a symmetric
block cipher, considered as being secure today).

CBC Cipher Block Chaining mode (block cipher mode of operation).
CSPRNG Cryptographically Secure Pseudo-Random Number Generator.
CTR Counter mode (block cipher mode of operation).
DLL Dynamic Link Library.
DLP Discrete Logarithm Problem.
ECB Electronic Code Book mode (block cipher mode of operation).
GUI Graphical User Interface.
HTTPS Hypertext Transfer Protocol Secure.
ILP Integer Linear Programming.
IO Input/Output.
IV Initialization Vector used in several block cipher modes of op-

eration, e.g. CBC.
LFSR Linear Feedback Shift Register.
PGM Permutation Group Mappings.
PKCS Public-Key Cryptography Standard.
PRNG Pseudo-Random Number Generator.
S/MIME Secure/Multipurpose Internet Mail Extensions.
SCP Secure Copy.
SHA-256 256-bit version of the Secure Hash Algorithm (a cryptographic

hash algorithm, considered as being secure today).
SSH Secure Shell.
SSL Secure Sockets Layer.
TLS Transport Layer Security.
TSN Translation, Element Shuffle and Normalization.
UI User Interface.
UTF-8 8-bit Unicode Transformation Format (mapping of Unicode

characters to byte sequences).
W.l.o.g. Without loss of generality.
XML Extensible Markup Language (markup language for represent-

ing hierarchically structured data in text form).

237

Index to Notations

The following table lists symbols used throughout this work.

Symbolism Meaning Where Def.

@ End of proof.
∃x At least one x exists.
∃!x Exactly one x exists.
@x No x exists.
∀x For all x.
∅ Empty set.
brc Largest z ∈ Z with z ≤ r.
dre Smallest z ∈ Z with z ≥ r.
|G| Order of the group G. 2.1
〈g〉 Cyclic subgroup generated by the group element g,

〈g〉 := {gn | n ∈ Z}.
2.1

〈S〉 Smallest subgroup of G containing the set S ⊆ G. 2.1
Gn Direct product/sum of n copies of the group G. 2.1

[x, y] Closed interval, all values between x and y (includ-
ing x and y).

]x, y[Open interval, all values between x and y (excluding
x and y).

u← v In pseudo-code: set the variable u to the value v. 2.8
G×H Direct product of G and H. 2.1
G⊕H Direct sum of the abelian G and H. 2.1

N oϕ H Semidirect product of the groups N and H with
respect to the group homomorphism ϕ : H →
Aut(N).

2.1

G ∼= H G and H are isomorphic. 2.1
U ≤ G U is a subgroup of the group G. 2.1
N E G N is a normal subgroup of the group G. 2.1
x ≈ y x is approximately y.
x� y x is far larger than y.
f2 ◦ f1 Composition of the functions f1 and f2,

(f2 ◦ f1)(x) = f2(f1(x)).
x | y x divides y without remainder.

x ≡ y (mod m) Congruence relation (on Z),
x ≡ y (mod m)⇔ m | x− y.

238 Index to Notations

Symbolism Meaning Where Def.

x mod y Modulo function,
x mod y := min {n ∈ N0 | n ≡ x (mod y)}.

α =̆ β For α, β ∈ Ξ(G), α =̆ β ⇔ ᾰ = β̆. 3.2
aϕ(α) Automorphism application on α ∈ Ξ(G),

aϕ : Ξ(G)→ Ξ(G) : α 7→ ϕ(α).
5.1.10

A(G) Group of all automorphism application transforma-
tions, A(G) := {aϕ | ϕ ∈ Aut(G)}.

5.1.10

Alt(n) Alternating group on the set {1, 2, . . . , n}. 2.3.1
Alt(X) Alternating group on the set X. 2.3.1
AT (G) Set of all amalgamated transversal logarithmic sig-

natures for the group G.
6.3

Aut(G) Group of automorphisms on the group G. 2.1
Autc(G) Group of central automorphisms on the group G,

Autc(G) := {ϕ ∈ Aut(G) | g−1ϕ(g) ∈ Z(G) for all
g ∈ G}.

2.1

C Complex numbers.
CG(S) Centralizer of the subset S ⊆ G,

CG(S) := {g ∈ G | sg = gs for all s ∈ S} ≤ G.
2.1

cg(A) Multiplicity of g in the block A. 2.4
ce(A) ce : P(G)→ N0 : A 7→ |{π ∈ A | sgn(π) = 1}|. 2.3.1
co(A) co : P(G)→ N0 : A 7→ |{π ∈ A | sgn(π) = −1}|. 2.3.1
Cσ(A) Cσ : P(G)→ N0 : A 7→ |{g ∈ A | g is a rotation}|. 2.3.3.1
Cτ (A) Cτ : P(G)→ N0 : A 7→ |{g ∈ A | g is a reflection}|. 2.3.3.1
χ́(A) For a character χ : G→ C and A ⊆ G:

χ́(A) :=
∑
g∈A

χ(g).
5.3

Cl(g) Conjugacy class of a g ∈ G,
Cl(g) := {hgh−1 | h ∈ G}.

2.1

D2n Dihedral group of order 2n. 2.3.3.1
D2n Quasi-dihedral group of order 2n. 2.3.5

δi,j Kronecker delta, δi,j :=

{
1, if i = j,

0, if i 6= j.

E(α) Set of all elements in the blocks of α ∈ Ξ(r1,...,rs)(G),
E(α) :=

⋃s
i=1{α[i][j] | 1 ≤ j ≤ ri}.

3.1

E(A) Set of all elements in the block A,
E(A) := {A[i] | 1 ≤ i ≤ |A|}.

3.1

E(G) Set of all exact transversal logarithmic signatures
for the group G.

3.4.3

e(π1,...,πs)(α) Element shuffle of α ∈ Ξ(r1,...,rs)(G) using the per-
mutations π1 ∈ Sym(r1), . . . , πs ∈ Sym(rs).

5.1.1

239

Symbolism Meaning Where Def.

E(r1,...,rs)(G) Group of all element shuffle transformations,
E(r1,...,rs)(G) := {e(π1,...,πs) | π1 ∈ Sym(r1), . . . , πs ∈
Sym(rs)}.

5.1.1

Fq Finite field of order q, where q = pn with p ∈ P, n ∈
N.

Gp·pn Gp·pn :=
〈
σ, τ | σpn = τp = id, τ−1στ = σ1+pn−1

〉
. 2.3.5

gcd(x, y) Greatest common divisor of x and y.
GL(n,K) General linear group of degree n over K,

GL(n,K) := {M ∈Mn(K) | M is invertible}.
2.2

im(f) Image of the mapping f . 2.1
Inn(G) Group of inner automorphisms on the group G,

Inn(G) := {ϕ : G→ G : x 7→ g−1xg | g ∈ G}.
2.1

ker(f) Kernel of the mapping f . 2.1
`(α) Length of α ∈ Ξ(r1,...,rs)(G), `(α) :=

∑s
i=1 ri. 3.1

Λ(G) Set of all logarithmic signatures for the group G. 3.1
lcm(x, y) Least common multiple of x and y.

lnx Natural logarithm of x (with respect to base e).
log x Logarithm of x with respect to base 10.

logr x Logarithm of x with respect to base r.
Mn(S) Set of all n× n matrices over the set S.

M(r1,...,rs)(G) M(r1,...,rs)(G) := A(G)◦E(r1,...,rs)(G)◦Ss(G)◦T(G). 5.1.14

N Natural numbers, N := {1, 2, 3, . . .}.
N0 Natural numbers with 0, N0 := {0, 1, 2, . . .}.

N≥k Natural numbers greater than or equal to k,
N≥k := {n ∈ N0 | n ≥ k}.

NT (G) Set of all logarithmic signatures for the group G
that are not transversal, NT (G) = Λ(G) \ T (G).

3.4.3

O(f) Set of all functions with an absolute asymptotic
growth rate less or equal to the one of the function
f , O(f) := {g : x 7→ g(x) | ∃ c > 0, x0 : |g(x)| ≤
c · |f(x)| for all x ≥ x0}.

Ω(f) Set of all functions with an absolute asymptotic
growth rate greater or equal to the one of the func-
tion f , Ω(f) := {g : x 7→ g(x) | ∃ c > 0, x0 : |g(x)| ≥
c · |f(x)| for all x ≥ x0}.

ord(g) Order of g, ord(g) := |〈g〉|. 2.1
P Prime numbers in N.

P≥k Prime numbers greater than or equal to k,
P≥k := {p ∈ P | p ≥ k}.

P(S) Power set of S, P(S) := {U | U ⊆ S}.
Pr[E] Probability that event E occurs.

Q Rational numbers.

240 Index to Notations

Symbolism Meaning Where Def.

Q4n Generalized quaternion group of order 4n. 2.3.4
R Real numbers.

rank(M) Maximum number of linear independent row/col-
umn vectors of the matrix M .

ρ́(A) For a C-representation ρ : G → GL(n,C) and a
subset or multiset A ⊆ G: ρ́(A) :=

∑
g∈A

ρ(g).
5.3

S(G,α) S(G,α) := bG · `(α), where bG is the code length. 3.3
s(x1,...,xs−1)(α) Sandwich of α ∈ Ξs(G) using x1, . . . , xs−1 ∈ G,

s(x1,...,xs−1) : Ξs(G) → Ξs(G) : α = (A1, . . . , As) 7→
(A1x1, x

−1
1 A2x2, . . . , x

−1
s−1As).

5.1.4

Ss(G) Group of all sandwich transformations,
Ss(G) := {s(x1,...,xs−1) | x1, . . . , xs−1 ∈ G}.

5.1.4

sgn(π) Sign of the permutation π, sgn(π) := (−1)N(π) with
N(π) the number of inversions in π.

2.3.1

Sylp(G) Sylow p-subgroup of the group G.

Sym(n) Symmetric group on the set {1, 2, . . . , n}. 2.3.1
Sym(X) Symmetric group on the set X. 2.3.1

t(α) Type of the block sequence α ∈ Ξ(r1,...,rs)(G),
t(α) := (r1, . . . , rs).

3.1

t(G) Type of the abelian group G. 2.1
T (G) Set of all transversal logarithmic signatures for the

group G.
3.4.3

tx,y(α) Translation of α ∈ Ξ(G) by x, y ∈ G,
tx,y : Ξ(G)→ Ξ(G) : α 7→ xαy.

5.1.3

T(G) Group of all translation transformations,
T(G) := {tx,y | x, y ∈ G}.

5.1.3

Θ(f) Set of all functions with the same absolute asymp-
totic growth rate as the function f ,
Θ(f) := O(f) ∩ Ω(f).

Θα Element selection/product mapping. 3.2
T NT (G) Set of all logarithmic signatures for G where no

block is a coset of a subgroup of G.
3.4.3

tr(M) Trace of the square matrix M ,
tr :Mn(K)→ K : M 7→

∑n
i=1Mi,i.

Ξ(G) Set of all finite block sequences of elements of G. 3.1
Ξs(G) Ξs(G) := {(A1, . . . , Am) ∈ Ξ(G) | m = s}. 3.1

Ξ(r1,...,rs)(G) Ξ(r1,...,rs)(G) := {α ∈ Ξs(G) | t(α) = (r1, . . . , rs)}. 3.1

Z Integers, Z := {. . . ,−2,−1, 0, 1, 2, . . .}.
Zn Cyclic group (Z/nZ,+) of order n,

factor ring (Z/nZ,+, ·).
2.3.2

241

Symbolism Meaning Where Def.

Zkn Direct sum of k copies of Zn,
Zkn = Zn ⊕ Zn ⊕ . . .⊕ Zn︸ ︷︷ ︸

k times

.
2.3.2

Z[x] Set of all polynomials over Z.
Z(G) Center of the group G,

Z(G) := {z ∈ G | zg = gz for all g ∈ G}.
2.1

Z(R) Z : P(G)→ P(G) : R 7→ {z ∈ R | z ·R−1 = R}. 9.1.2

Ẑ(R) Ẑ : P(G)→ P(G) : R 7→ Z(R) · Z(R)−1. 9.1.2

242

Index

.NET, 212

Abelian group, 11

Acknowledgments, 9

Admissible, 39

Advanced Encryption Standard, 156, 213

AES, 156, 213

Alternating group, 13, 214

Amalgamated transversal, 80, 147

Anticlosed, 3

Antiperiodicity, 25, 163, 184

Aperiodic, 24, 39, 81, 82, 84, 94, 148, 149

Strongly, 40, 85, 149

Associativity, 10

Asymmetric encryption, 44–46, 213

Automorphism, 12, 60, 67

Central, 12, 61

Inner, 12

Binary exponentiation, 86, 204, 205

Black box group, 200

Block, 32

Block cipher, 156, 213

Block shuffle, 51, 90

Block substitution, 57, 161

C#, 212

Canonical, 24, 39, 53, 95

Case sensitivity, 212

CBC mode, 214

Center, 11

Central automorphism, 12, 61

Centralizer, 11

Character, 12, 72

Dihedral group, 18

Character table, 13

Code length, 35, 100, 161, 200

Combining

Logarithmic signatures, 98

Solutions in factor groups, 141

Command line, 80, 83, 157, 182, 212,
214, 217

Component, 12

Composite, 121, 124

Conjugacy class, 11, 13, 16

Contributions, 5

Coset, 11

Counting, 42, 184

Cover, 32, 46, 47

Cryptographic primitives, 44

Cryptographically secure pseudo-random
number generator, 30, 47, 89, 92,
213

Cryptography

Public-key, 1

CSPRNG, 30, 47, 89, 92, 213

CTR mode, 156, 213

Cyclic group, 11, 14, 214

Cyclic subset, 24, 127

Decomposition, 83, 148

Diffie-Hellman, 206

Dihedral group, 14, 20, 214

Characters, 18

Direct product, 11, 98, 215

Direct sum, 11, 215

Discrete logarithm problem, 46, 206

Distributivity, 12

DLP, 46, 206

Doubling and adding, 205

Dynamic, 145

Index 243

Easy, 29
Efficiency, 29, 57
Element

Identity, 10
Inverse, 10

Element shuffle, 49, 63, 67
Elementary abelian group, 11
Encryption

Asymmetric, 44–46, 213
Symmetric, 44

Endian, 157
Equivalent, 34, 53
Even permutation, 13
Exact transversal, 40, 78, 101, 147
Extensibility, 218
Extra special, 11, 197

Factor group, 11
Factorization, 33
Factorization-permuting, 51, 87, 90
Faithful, 12
Field, 12
Fusing, 56

General linear group, 12
Generalized quaternion group, 19, 20,

190, 214
Generic, 127
Group, 10

Abelian, 11
Alternating, 13, 214
Black box, 200
Cyclic, 11, 14, 214
Dihedral, 14, 20, 214
Elementary abelian, 11
Factor, 11
General linear, 12
Generalized quaternion, 19, 20, 190,

214
Hamiltonian, 41
Klein four-, 14
Multiplicative, 12
Permutation, 13
Quasi-dihedral, 21

Symmetric, 13, 214
Group implementation capabilities, 86
Group order, 10, 38

Hamiltonian group, 41
Hard, 29
Heptagon, 18
Hexagon, 17
Homomorphism, 11, 69, 96, 97, 196

Identity element, 10
ILP, 154
Image, 12
Imaginary, 19
Initialization vector, 214
Inner automorphism, 12
Integer linear programming, 154
Introduction, 1
Inverse element, 10
Irreducibility, 12, 69, 75
Isomorphic, 12
Iterator, 138
IV, 214

Kernel, 12
Klein four-group, 14
Kronecker delta, 145, 198, 238

Las Vegas algorithm, 29, 36, 202
Length, 32

Minimal, 38
LFSR, 92
Linear feedback shift register, 92
Linear representation, 12, 18, 72
Linux, 212
List representation, 35, 37
Little-endian, 157
Logarithmic signature, 32, 44, 45, 213
LogSig program, 212
LS-Gen, 85, 213

Mac OS X, 212
Matrix, 143
Mesh ([s, r]-mesh), 32, 46
Microsoft .NET Framework, 212

244 Index

Minimal length, 38
Mixed radix representation, 34, 100, 214
Mono, 212
MST1, 44, 213
MST1 generalized, 45, 213
MST2, 46
MST3, 46
MSTg, 47
Multiple factorization, 32, 96
Multiplicative group, 12

Normal subgroup, 11, 97
Normalization, 53, 61–63, 95

Odd permutation, 13
One-way function, 29, 77
One-way permutation, 29, 38, 77
Orbit-based factor group descending, 199
Order

Element, 10
Group, 10, 38

Organization, 5
Orthogonality, 13

P 6= NP, 29
p-Group, 10
Pentagon, 17
Periodic, 24, 39, 60, 94, 123, 124, 127,

135, 137, 146, 147, 151, 217
Periodicity forcing factorization type, 40,

81
Permutation group, 13
Permutation group mappings, 44
Permutation representation, 16, 111
PGM, 44
PKCS7, 214
Plugin, 218, 228
Pohlig-Hellman, 206
Polynomial-time algorithm, 29
Primitives

Cryptographic, 44
PRNG, 30, 47, 89, 92, 213
Probabilistic polynomial-time algorithm,

29, 30, 37

Product
Direct, 11, 98, 215
Semidirect, 12, 21, 23
Wreath, 23, 197, 215

Provider, 228
Pseudo-code, 16, 31, 46–48, 53, 58, 64,

78, 82, 91, 103, 111, 116, 128,
149, 156, 166, 172, 173, 177, 185,
190, 203, 204, 207, 208, 210

Pseudo-logarithmic signature, 32, 51,
138, 186

Pseudo-random number generator, 30,
47, 89, 92, 213

Public-key cryptography, 1

Quasi-dihedral group, 21

Randomizing, 78
Rédei block, 4
Rédei’s theorem, 101
Refinement, 56
Regular, 23
Representation

Linear, 12, 18, 72
List, 35, 37
Permutation, 16, 111
Symmetry group, 16

Reunion, 83, 148
Rounds, 85, 215

Sandwich, 40, 52, 53, 61, 67
Selection, 34
Selective shift, 60
Self-test, 213
Semidirect product, 12, 21, 23
SHA-256, 214
Shuffle

Block, 51, 90
Element, 49, 63

Sign of permutation, 13, 71
Size-permutability, 24, 163, 180
Square, 17
Squaring and multiplying, 86, 204, 205
Static, 141

Index 245

Strongly aperiodic, 40, 85, 149
Subgroup, 10

Normal, 11, 97
Subset

Cyclic, 24, 127
Substitution

Blocks, 57, 161
Sum

Direct, 11, 215
Symmetric encryption, 44
Symmetric group, 13, 214
Symmetry group representation, 16

Tame, 36
τ -Reduction, 172
Transformation input/output relations,

87
Transformations, 49, 88
Translation, 52, 62, 63, 67
Transversal, 40, 45, 78, 101, 147
Trap-door, 77
TSN transformation, 63
Type

Block sequence, 32
Group, 12

Underlying set, 10
Unique encoding, 201

Wild, 36
Windows, 212
Witness exponent, 200
Wreath product, 23, 197, 215

XML, 216

