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Abstrakt
Die vorliegende Arbeit behandelt eine Deformation von Spektralkurven von Flä-
chen konstanter mittlerer Krümmung (Constant mean curvature - CMC) in R3. Zu-
erst werden die grundlegenden Fakten über konforme Immersionen von Flächen
und insbesondere von CMC Tori nach R3 zusammengetragen. Es wird ein Bezug
zwischen CMC Tori und doppelt periodischen Lösungen der sinh-Gordon Gleichung
aufgezeigt. Darauf aufbauend wird eine Riemannsche Fläche, die Spektralkurve de-
finiert und die Theorie der Spektralkurven für die doppelt periodische Lösungen der
sinh-Gordon Gleichung vorgestellt. Das Geschlecht g dieser Spektralkurve heißt
Spektralgeschlecht. Es werden die extrinsischen Schließungsbedingungen erklärt,
die nötig sind, um eine Immersion zu einem Torus in R3 zu schließen.

Ausgehend von den Spektralkurven wird die Theorie der Withamdeformatio-
nen entwickelt, die die Spektralkurven so deformiert, dass die intrinsischen Schlie-
ßungsbedingungen erhalten werden, d.h. die Spektralkurve weiterhin eine Spek-
tralkurve einer doppelt periodischen Lösung der sinh-Gordon Gleichung bleibt. Die
Deformation wird weiterhin um die extrinsischen Schließungsbedingungen ergänzt.
Diese Deformation erzeugt ausgehend von einer Spektralkurve eines CMC Torus
in R3 eine Familie von CMC Zylindern mit doppelt periodischer Metrik. Weiterhin
schließen sich diese Zylinder zu CMC Tori auf einer abzählbar dichten Teilmenge
des Existenzintervalls der Deformation.

Die Withamdeformation wird nun benutzt, um Spektralkurven von CMC Zylin-
dern mit möglichen Doppelpunkten zu finden. Diese Spektralkurven werden für
eine Bifurkation von Spektralgeschlecht g zu g + 1 benutzt. Da die Withamdefor-
mation am Bifurkationspunkt singulär ist, wird eine Prozedur zur Desingularisie-
rung vorgestellt. Dabei wird zuerst eine Potenzreihenentwicklung einer möglichen
Lösung konstruiert und ihre Eindeutigkeit bewiesen. Im zweiten Schritt wird die
Konvergenz einer derartigen Lösung gezeigt. Auf diese Weise ist eine Bifurkation
der Withamdeformation in ein höheres Spektralgeschlecht möglich, die die Schlie-
ßungsbedingungen erhält. Es wird wieder eine Familie von CMC Zylindern mit dop-
pelt periodischer Metrik erzeugt. Auch hier schließen sich diese Zylinder zu CMC
Tori auf einer dichten Teilmenge des Existenzintervalls, nun mit Spektralgeschlecht
g + 1. Diese Desingularisierung wird benutzt, um einen bekannten Satz über die
Existenz von Tori mit beliebig hohem Spektralgeschlecht neu zu beweisen. Da der
Beweis mittels einer Deformation erbracht wird, ist es möglich eine Familie von
CMC Zylindern explizit zu konstruieren, die einen bekannten Torus wie den Wente
Torus mit einem neuen Torus von beliebig hohem Spektralgeschlecht verbindet.
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1 Introduction
The surfaces with constant mean curvature (CMC) have been of big interest to
mathematicians since the middle of the nineteenth century. In the mid 20th century
two important results about the global properties of CMC surfaces were found by
Hopf and Aleksandrov. In 1955 Hopf [18] showed that any compact genus zero
immersed CMC surface must be a round sphere and as such must be embedded.
Aleksandrov [2] used the maximum principle to show that any compact embedded
CMC surface must be a round sphere.

In the eighties of the twentieth century this topic regained new interest with
the discovery of the first immersed but not embedded CMC tori in R3 by Wente
[26]. The theory was developed further by Hitchin [17], by Pinkall and Sterling
[23] and by Bobenko [4, 5, 6]. In particular the latter worked out the relation
between CMC tori in different space forms, doubly periodic solutions of the sinh-
Gordon equation and hyperelliptic Riemann surfaces. For a CMC surface with a
doubly periodic metric, the metric is closely related to doubly periodic solutions of
the sinh-Gordon equation and those doubly periodic solutions admit an additional
structure in form of a hyperelliptic Riemann surface. These surfaces are called spec-
tral curves. Krichever [22] and later Grinevich and Schmidt [15] started to study
deformation properties of these spectral curves. The deformations they are using
are called Whitham deformation since they are similar in spirit to those studied by
Whitham [27].

One interesting question to be studied was for which genera g of those spectral
curves there exist CMC tori in R3. Bobenko [4] already showed that there are no
tori for g = 0, 1. The example of Wente was g = 2. Ercolani et al. [12] proved that
for any even spectral genus g there must exist a CMC torus with a spectral curve of
such genus. Later Jaggy [20] used deformation techniques to prove that for every
spectral genus g ¾ 2 there exist tori in R3 with such spectral genus. Although his
proof relied on deformation techniques, it used the implicit function theorem at a
crucial point. Thus the proof is not constructive in the sense that it does not allow
to construct the tori whose existence it shows.

The Whitham deformations are very appealing since they allow to study the mod-
uli space of the sinh-Gordon solutions and also of CMC tori and CMC cylinders with
a doubly periodic metric. Carberry and Schmidt [9, 10] obtained interesting results
about the denseness of spectral curves for CMC tori in S3 and R3 inside a suitably
chosen space of admissible spectral curves. Hauswirth et al. [16] used them to
study minimal annuli in S2 × R. Calini and Ivey [8] used similar deformations to
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Chap. 1: Introduction

study space curves in R3 corresponding to periodic and quasi periodic finite-gap
solutions of the nonlinear Schrödinger equation. The two last papers had to deal
with singularities of the Whitham deformation which also will be a large part of
our work. The author of this thesis has already used Whitham deformation in his
previous work [21] to prove a particular case where the spectral curve of a Clifford
torus, a CMC torus in S3, was deformed through spectral curves of CMC tori in S3
in such a way that at the end of the deformation it arrived at the spectral curve of
a Wente torus in R3.

In the current thesis we will study Whitham deformations of CMC tori and doubly
periodic CMC cylinders in R3. In contrast to S3 where CMC tori come in families it
is not possible to obtain deformations of CMC tori in R3. Therefore we will define
a flow through doubly periodic CMC cylinders which will close up to CMC tori on
a dense subset of the time interval. This will be achieved by preserving the double
periodicity of the metric and of the periodicity of the translation and rotation period
of the CMC surface along one of the period directions of the metric. Thus, if those
translation and rotation periods vanished (i.e. the CMC surface is topologically a
cylinder in R3) at the starting point of the flow, we would flow through doubly pe-
riodic CMC cylinders. The second period direction of the metric also gives rise to
translation and rotation periods in R3. Our flow has the additional property that the
translation period is preserved. Therefore if we started at a CMC torus, we would
flow through doubly periodic CMC cylinders without any translation periods in R3,
which will close up to CMC tori for rational angles of the rotational period. For a
non-trivial flow this will happen at a dense subset of its existence interval. Using
this deformation, we will find a spectral curve of a cylinder with a double point,
i.e. a singular spectral curve. We will then use our flow to open the double point
and bifurcate to a spectral curve of genus g + 1. The main part of the work will
be to show that it is possible to desingularize the flow at such a singular spectral
curve and preserve the closing conditions on the way so we can properly flow along
Whitham deformation after that. It will become clear that there will be only one
direction in which the flow desingularizes. Similar desingularizations where per-
formed by Hauswirth et al. [16] and Calini and Ivey [8]. In case of curves in R3 and
the nonlinear Schrödinger equation the desingularization procedure is much easier
then in our case. The main reason for this is that for closed the curves in R3 one
needs to control only one period and the deformation equations for curves decou-
ple in a way which allows a good analysis of the behavior around such bifurcation
points.

The following work is divided into three main parts. We start with chapter 2,
where we recall some facts about conformal immersions mainly to make what fol-
lows self contained and to fix the notations.

Chapter 3 will introduce spectral curves and explain some of their properties. We
will discuss intrinsic closing conditions and how they ensure the existence of doubly
periodic solutions of the sinh-Gordon equation. We will also explain the extrinsic
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closing conditions which are necessary to obtain cylinder and tori.
Chapter 4 contains the main part of this thesis. We introduce the Whitham defor-

mation which preserves the intrinsic closing conditions. Then we will show how the
extrinsic closing conditions can be incorporated and how they affect the freedom of
the deformation. Here we will see why it is necessary to deform through cylinders.
The rest of the chapter will analyze the deformation equations in great detail. We
will see what are the singularities of the flow, how bifurcating to higher spectral
genus introduces singularities of the flow, and how to find those points where bi-
furcation to higher spectral genus is possible. For a certain type of bifurcation we
will show the existence of formal power series solutions to the singular deformation
equation and then also show their convergence. Finally, we will use these results
to prove the existence of tori of arbitrary high spectral genus. In contrast to the
proof given in Jaggy [20], our proof involves only Whitham deformations and not
an implicit function theorem. As such our proof is a constructive approach. At the
end of this chapter we will demonstrate this by a numerical example of a Whitham
flow with a Wente torus of spectral genus 2 at the start and a Dobriner torus of
spectral genus 3 at the end of the deformation.
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2 Conformal immersions
In the following we will gather some useful standard facts about conformal immer-
sions into the three dimensional space forms S3 and R3. In particular we will look
at an equation for the mean curvature of these immersions. Then we will define
an extended frame and illustrate its relation to the sinh-Gordon equation. After
that we will recall the Sym-Bobenko formulas which construct an immersion from
a given extended frame. At the end of the chapter we will use monodromy of the
extended frame to define the spectral curve. The exposition follows Schmitt et al.
[25] and Bobenko [6].

2.1 Conformal immersions into R3

We will look at the matrix Lie group SU2. The Lie algebra su2 of this group is
equipped with a commutator [·, ·]. Let α,β ∈ Ω1(R2, su2) be smooth 1-forms on R2

with values in su2. We define a su2-valued 2-form by

[α∧ β](X , Y ) = [α(X ),β(Y )]− [α(Y ),β(X )] (2.1)

for X , Y ∈ TR2. Let Lg : h 7→ gh be the left multiplication in SU2. By left translation
we obtain an isomorphism of the tangential bundle T SU2

∼= SU2×su2. We also
have a Maurer-Cartan form

θ : T SU2→ su2, vg 7→ (dLg−1)g vg

which satisfies the Maurer-Cartan equation

2dθ + [θ ∧ θ] = 0. (2.2)

For a map F : R2→ SU2, the pullback α = F ∗θ satisfies (2.2) as well. The converse
is also true: every solution α ∈ Ω1(R2, su2) of (2.2) integrates to a smooth map
F : R2→ SU2 with α= F ∗θ .

We now complexify the tangent bundle TR2 and decompose
(TR2)C = T ′R2 ⊕ T ′′R2 into (1, 0) and (0, 1) tangent spaces and write d = ∂ + ∂̄ .
We also decompose

Ω1(R2, sl2(C)) = Ω′(R2, sl2(C))⊕Ω′′(R2, sl2(C))

5



Chap. 2: Conformal immersions

using su2
C = sl2(C). We split ω ∈ Ω1(R2, sl2(C)) accordingly into the (1, 0) part

ω′ and the (0,1) part ω′′ writing ω = ω′ +ω′′. Finally, we set the ∗-operator on
Ω1(R2, sl2(C)) to ∗ω=−iω′+ iω′′.

For further computations we fix the following basis of sl2(C):

ε− =
�

0 0
−1 0

�

, ε+ =
�

0 1
0 0

�

, ε=
�

−i 0
0 i

�

. (2.3)

Moreover let 〈·, ·〉 be the billinear extension of the Ad-invariant inner product on
su2 to su2

C = sl2(C), such that 〈ε,ε〉= 1. For X , Y ∈ su2 we further have

〈X , Y 〉=−
1

2
tr X Y, ‖X‖=

p

det X , X × Y =
1

2
[X , Y ]. (2.4)

So the following relations arise



ε−,ε−
�

=



ε+,ε+
�

= 0, ε−
ᵀ = ε+,

[ε,ε−] = 2iε−, [ε+,ε] = 2iε+, [ε−,ε+] = iε.
(2.5)

We will identify the three space R3 with the Lia algebra su2. Under this identifi-
cation the isometry group will be doubly covered by SU2. Let T be the stabilizer of
ε under the adjoint action of SU2 on su2. We view the two-sphere as S3 = SU2 /T.

We will now take a closer look on conformally parametrized surfaces into
R3 = su2.

Let f : R2 → su2 be a conformal immersion. Let U ⊂ R2 be an open simply
connected set with a coordinate z : U → C. Write d f ′ = fzdz and d f ′′ = fz̄dz̄. The
conformality of the map f is equivalent to




fz, fz
�

=



fz̄, fz̄
�

= 0 and the existence
of a function u ∈ C∞(U ,R), such that




fz, fz̄
�

= 1
2
eu. We accompany fz and fz̄, which

are tangential to the surface immersion, by the Gauss map N : U → S2 = SU2 /T.
There exist a lift F : U → SU2 such that

fz = e
u
2 Fε−F−1, fz̄ = e

u
2 Fε+F−1, N = FεF−1. (2.6)

The mean curvature is H = 2e−u 
 fzz̄, N
�

and the Hopf differential Qdz2 is given by
Q =




fzz, N
�

. Using these relations we obtain

fzz = uz fz̄ +QN , fz̄z̄ = uz̄ fz + Q̄N , fzz̄ =
1

2
euHN , (2.7)
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2.2 The sinh-Gordon equation

and

α := F−1dF =
�

− (
1

2
e

u
2 Hdz+ e−

u
2 Q̄dz̄)iε−

+(e−
u
2 Qdz+

1

2
e

u
2 Hdz̄)iε+

−
1

4
(uzdz− uz̄dz̄)iε

�

.

(2.8)

We observe that an conformal immersion f gives rise to a triple (u, H,Q) which
in turn defines an 1-form α. This α defines a differential equation dF = Fα which
can clearly be solved when α comes from a given frame F .

We finish this section by proving a formula for the curvature of a conformal im-
mersion.

Lemma 2.1. The mean curvature H of a conformal immersion f : R2 → su2 is given
by 2d ∗ d f = H[d f ∧ d f ].

Proof. We compute [d f ∧ d f ] = 2ieuNdz ∧ dz̄. Another computation shows
d∗d f = ieuHNdz∧dz̄ and by combining both results we have proved the claim.

2.2 The sinh-Gordon equation

Previous section showed us how a conformally parametrized surfaces gives rise
to an integrable triple (u, H,Q). In this section we will derive the integrability
conditions of such triples and illustrate the relation between conformal immersions
with constant mean curvature and solutions of the sinh-Gordon equation. We will
introduce a spectral parameter and define extended frames.

As shown in previous chapter a triple (u, H,Q) of functions C∞(U ,R) gives rise
to a 1-form α via

α=
1

4

�

−uzdz+ uz̄dz̄ 4ie−
u
2 Qdz+ 2ie

u
2 Hdz̄

2ie
u
2 Hdz+ 4ie−

u
2 Q̄dz̄ uzdz− uz̄dz̄

�

. (2.9)

The equation
dF = Fα (2.10)

has an solution F : U → SU2 exactly when 2dα+ [α∧α] = 0 holds.
We decompose α = α′dz + α′′dz̄ into the corresponding (1, 0) and (0, 1) parts.

The equation 2dα + [α ∧ α] = 0 is then equivalent to ∂̄ α′ − ∂ α′′ = [α′,α′′]. A

7



Chap. 2: Conformal immersions

computation shows that this equation is equivalent to a system of equations

uzz̄ +
1

2
euH2− 2e−uQQ̄ = 0, (2.11a)

1

2
euHz =Q z̄, (2.11b)

1

2
euHz̄ = Q̄z, (2.11c)

to the well known Gauss-Codazzi equations.
The equations (2.11b) and (2.11c) show us that in case of CMC immersion, i.e. if

H ≡ const, Q must be a holomorphic function. The quadratic holomorphic differen-
tial Qdz2 is called the Hopf differential. When we deal with CMC tori, we observe
that than Q ≡ const. In this case it is possible to scale H by scaling the Euclidean
space and to scale Q by a change of coordinate. With this in mind we set H ≡ 1 and
Q ≡ 1

2
and the equation (2.11a) becomes

uzz̄ + sinh(u) = 0, (2.12)

the sinh-Gordon equation.
We will now introduce a spectral parameter λ ∈ S1 to our equations by defining

αλ :=
1

4

�

−uzdz+ uz̄dz̄ 4iλ−1e−
u
2 Qdz+ 2ie

u
2 Hdz̄

2ie
u
2 Hdz+ 4iλe−

u
2 Q̄dz̄ uzdz− uz̄dz̄

�

. (2.13)

A short computation shows that for H ≡ const and Q z̄ = 0 the integrability condition
2dαλ+[αλ∧αλ] = 0 yields the same condition on u as in the case of 2dα+[α∧α] =
0 namely the equation (2.11a) which is the sinh-Gordon equation in case of H ≡ 1
and Q ≡ 1

2
. It is then possible to solve dFλ = Fλαλ.

Proposition 2.2. Let u : R2→ R be a smooth function. Let λ ∈ S1. Let

αλ :=
1

4

�

−uzdz+ uz̄dz̄ 2iλ−1e−
u
2 dz+ 2ie

u
2 dz̄

2ie
u
2 dz+ 2iλe−

u
2 dz̄ uzdz− uz̄dz̄

�

.

Then the equation 2dαλ+[αλ∧αλ] holds exactly if u solves the sinh-Gordon-equation

uzz̄ + sinh(u) = 0.

In this case the equation
dFλ = Fλαλ.

has a unique solution Fλ : R2× S1→ SU2 with the initial data Fλ(0) = 1. Fλ is called
an extended frame.

8



2.3 The Sym-Bobenko formulas

2.3 The Sym-Bobenko formulas
In the following we will explain the Sym-Bobenko formulas which allow us to com-
pute a conformal immersion from a given extended frame into R3.

Let Fλ : R2× S1→ su2 be an extended frame with αλ = F−1
λ dFλ.

Proposition 2.3. Let M be a simply connected Riemann surface and Fλ an extended
frame. Let H ∈ R∗. For every λ ∈ S1 the map fλ : M → R3 defined by

fλ =−2iλH−1(∂λFλ)F
−1
λ −H−1FλεF−1

λ

is a conformal immersion M → R2 with constant mean curvature H

Proof. We can then decompose αλ in the following way

αλ = α
′
λ+α

′′
λ = (α

′
1+λα

′′
1)ε−+ (λ

−1α′2+α
′′
2)ε++ (α

′
3+α

′′
3)ε. (2.14)

We compute

d f ′
λ
=−2iλH−1Fλ∂λα

′
λ
F−1
λ
−H−1Fλ[α

′
λ
,ε]F−1

λ

= 2iλ−1H−1Fλα
′
2ε+F−1

λ + 2iH−1Fλα
′
1ε−F−1

λ − 2iλ−1H−1Fλα
′
2ε+F−1

λ

= 2iH−1Fλα
′
1ε−F−1

λ

= e
u
2 Fε−F−1

(2.15)

and

d f ′′
λ
=−2iλH−1Fλ∂λα

′′
λ
F−1
λ
−H−1Fλ[α

′′
λ
,ε]F−1

λ

=−2iλH−1Fλα
′′
1ε−F−1

λ + 2iλH−1Fλα
′′
1ε−F−1

λ − 2iH−1Fλα
′′
2ε+F−1

λ

=−2iH−1Fλα
′′
2ε+F−1

λ

= e
u
2 Fε+F−1.

(2.16)

We can see now
¬

d f ′λ, d f ′λ
¶

= 0,
¬

d f ′′λ , d f ′′λ
¶

= 0, and
¬

d f ′λ, d f ′′λ
¶

= 1
2
eu so the

conformality is clear. We have again N = FεF−1. Further since the equations
(2.15) and (2.16) are the same as in (2.6) the extended frame which comes from
fλ is indeed the same extended frame Fλ as we stated with. So with the same
computations as in section 2.1 we obtain again H for the mean curvature and thus
proving the claim.

The Sym-Bobenko formulas are very useful when one knows the extended frame
since their allow to replace a integration, which is usually needed to compute an
immersion from its frame, by a differentiation with respect to spectral parameter λ.
These formulas can also be used to great effect in numerical computations of sur-
faces. Here one is mostly only interested in fλ for one particular value of λ, usually
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Chap. 2: Conformal immersions

λ = 1. One can then compute the needed derivative in the same step as the ex-
tended frame at a given value of λ.

Different spectral parameters λ yield different associated surfaces with the same
metric and mean curvature but different Hopf differentials. When one refers to a
particular surface in this family with a particular value of λ, one calls this λ the
Sym point.

Here we showed only the formula for R3. Similar formulas exist also for S3 and
H3.

2.4 Monodromy, closing conditions and the
spectral curve

In the following we will take a closer look into doubly periodic solutions of the sinh-
Gordon equation. The doubly periodicity of the sinh-Gordon solution is obviously
a prerequisite for a doubly periodic metric of a CMC immersion and thus for CMC
tori.

Let u be a doubly periodic solution of the sinh-Gordon equation uzz̄+ sinh(u) = 0
with period lattice Γ ⊂ R2. Then the 1-form αλ is also doubly periodic and via
dFλ = Fλαλ. The extended frame fulfills the following quasi periodicity condition

Fλ(z+ p) = Fλ(z0+ p)Fλ(z) for all z ∈ R2

for a period p ∈ Γ and a base point z0. We use this relation to define the monodromy
of the extended frame.

Definition 2.4 (Monodromy). The monodromy M : Γ × C∗ → SU2 of Fλ is
M(p,λ) := F(z0+ p,λ).

An important property of the monodromy is that despite its dependence on the
choice of the base point z0 the eigenvalues µ1, µ2 of M do not depend on that
choice.

We can now use the monodromy of a doubly periodic sinh-Gordon solution with
its eigenvalues µ1, µ2 to define the spectral curve of this solution.

Definition 2.5 (Spectral curve). The Riemann surface Σ the defined by

Σ = {(µ1,λ) ∈ C∗×C∗ : µ2
1− tr(M(p,λ))µ1+ 1= 0}

parameterizing the eigenvalues of M is called the spectral curve.

We state now some facts about the so defined spectral curve. Further details can
be found in Hitchin [17]. Σ does not depend on the choice of basis vector p ∈ Γ.
We used µ1 to define Σ, using µ2 yields the same spectral curve. Σ completes to

10



2.4 Monodromy, closing conditions and the spectral curve

hyperelliptic Riemann surface λ : Σ → CP1. This is achieved by adding branch
points over λ = 0 and λ =∞. This is possibly when zeros of µ j do no accumulate
there. The genus g of Σ is called the spectral genus. A result of Pinkall and Sterling
[23] shows that CMC tori in R3 have a finite spectral genus g allowing the above
completion. Solutions of sinh-Gordon equation with finite spectral genus are also
called finite-gap solutions.

The version of spectral curve we defined here is also called the multiplier spectral
curve. One can also define a spectral curve based on the holonomy of a flat connec-
tion coming from the immersion. Bohle [7] has worked out in detail when those
two spectral curves coincide. For our purposes the definition of multiplier spectral
curve will suffice.

So far a doubly periodic solution of sinh-Gordon equation only ensures the doubly
periodicity of the metric of a CMC immersion. In order to obtain CMC cylinder and
tori we need global closing conditions, i.e. periodicity of the immersion fλ. We
compute

fλ(z+ p) =− 2iλH−1(∂λFλ)(z+ p)F−1
λ (z+ p)−H−1Fλ(z+ p)εF−1

λ (z+ p)

=− 2iλH−1(∂λM(p,λ)Fλ)(z)F
−1
λ (z)M

−1(p,λ)

−H−1M(p,λ)Fλ(z)εF−1
λ
(z+ p)M−1(p,λ)

=− 2iλH−1∂λM(p,λ)M−1(p,λ)

− 2iλH−1M(p,λ)(∂λFλ)(z)F
−1
λ (z)M

−1(p,λ)

−H−1M(p,λ)Fλ(z)εF−1
λ (z+ p)M−1(p,λ)

=− 2iλH−1∂λM(p,λ)M−1(p,λ) +M(p,λ) fλ(z)M
−1(p,λ).

(2.17)

We see that in order to have fλ(z+ p) = fλ(z). we need

M(p,λ) =±1 and ∂λM(p,λ) = 0. (2.18)

Those conditions will usually be fulfilled for only one λ. From now on we will use
λ= 1 as the Sym point. Since the spectral curve gives only access to eigenvalues of
M we need to express these conditions in terms of eigenvalues. Further it will be
beneficial to deal with lnµ j instead of µ j. This leads to the following statement.

Proposition 2.6. The spectral curve of a CMC torus fulfills additional properties,
namely the (extrinsic) closing conditions

lnµ j

�

�

�

λ=1
∈ πiZ and ∂λ lnµ j

�

�

�

λ=1
= 0,

where µ j are the eigenvalues of the monodromy with respect to lattice basis p1, p2 ∈ Γ.

The equation (2.17) indicates that in case of M(p,λ) = ±1 one is left with a
translation period coming from ∂λM(p,λ) and in case of ∂λM(p,λ) = 0 on has a

11



Chap. 2: Conformal immersions

rotational period coming from M(p,λ).
In case these conditions are fulfilled only for one µ j, we have a CMC cylinder, as

the surface closes only in one direction.

Remark. Since we used the Sym Bobenko formula in order to establish the closing
conditions it is clear that their form depend on the space form the immersion is
mapping into.

Finally we mention that it is possible to recover the sinh-Gordon solution from its
spectral curve. The same is also true for the extended frame. There are several ways
to do it. One is via theta functions and Baker-Akhiezer functions. It is developed
in detail in Bobenko [4]. Another way is by using a polynomial killing field. This
method is described in Pinkall and Sterling [23] for tori in R3 and Ferus et al. [13]
for minimal tori in S4. Finally one can also use methods developed in Dorfmeister
et al. [11]. We wont go here in detail since our further work will be entirely on the
level of spectral curves and we wont relay on any particular reconstruction method.
In order to obtain immersions of CMC surfaces from the spectral curves which we
will construct in later chapters one of course needs to use one of the mentioned
reconstruction methods.

12



3 Spectral curves
In the previous chapter we recalled the connection between conformal immersions
of constant mean curvature and solutions of the sinh-Gordon equation. Since we
will be dealing with tori and doubly periodic cylinders in the rest of this thesis,
we are particularly interested in doubly periodic solutions of sinh-Gordon equation.
Those solutions admit an additional structure in form of a hyperelliptic Riemann
surface, the so called spectral curve of the solution. Those Riemann surfaces were
for example studied in detail by Bobenko [4, 5].

In this chapter we will recall the properties of the spectral curves. We will fix the
notion of the spectral curve for our purposes. We will explain what are the intrinsic
closing conditions and how the spectral curve encodes them. We will study the
extrinsic closing conditions need to produce compact surfaces. We also will define
the spectral data which will endow the spectral curve with an additional structure
in form of two meromorphic differentials in a vector form suitable for further work.
These spectral data will be used in the following chapter to define deformations.

3.1 Spectral curve of constant mean curvature
cylinders and tori

In section 2.4 of the last chapter we defined the spectral curve and captured some
of its properties. Here we will restate them in form of a proposition to have a basis
for further analysis. Proofs to these properties can be found in Hitchin [17] and
Bobenko [4, 5]. We will also make a coordinate change from the spectral parameter
λ to κ. The relation between these parameters is the following

λ=
i−κ
i+κ

, and κ= i
1−λ
1+λ

(3.1)

The points on the real line in κ correspond to the unit circle in λ. We do this to
simplify the computations that will follow in the this thesis. One of the reasons for
this is that λ=∞ is mapped to κ=−i and we will therefore not have to deal with
branch points over a point with∞ as a coordinate.

Let Σ be a hyperelliptic Riemann surface κ : Σ → CP1 whose branch locus in-
cludes the two points y± over κ=±i and let σ be the hyperelliptic involution of Σ.
Further we recall that for a doubly periodic solution u : R2→ R of the sinh-Gordon

13



Chap. 3: Spectral curves

equation we have monodromy with its eigenvalues µ j and a lattice Γ ⊂ R2 with a
basis p1, p2 over which u is periodic.

Proposition 3.1 (Spectral Curve). If Σ is a spectral curve of a doubly periodic solution
of sinh-Gordon equation the following holds.

• Σ possesses two additional anti-holomorphic involutions η and ρ = η ◦ σ =
σ ◦η. η has no fixed points and η(y+) = y−.

• There exists two non vanishing holomorphic functions µ1,µ2 on Σ \ {y+, y−}
with σ∗µ j = µ−1

j , η∗µ̄ j = µ j, ρ
∗µ̄ j = µ−1

j . These are the eigenvalues of the
monodromy with respect to lattice basis p1, p2 ∈ Γ

• The 1-forms θ j := d lnµ j are meromorphic differentials with double poles on y±

and zero residues.

• The principal parts at y+ respectively y− of θ j are linearly independent.

With above properties there is still some freedom left for κ. We fix kappa such
that it fulfills

σ∗κ= κ, η∗κ̄= κ, ρ∗κ̄= κ.

The spectral curve which is a hyperelliptic surface is then given by the equation

ν2 = (κ2+ 1)a(κ).

Here a(κ) is a polynomial defined by

a(κ) =
g
∏

l=1

(κ−αl)(κ− ᾱl)

with pairwise different branch points α1, . . . ,αg ∈ {κ ∈ C : Im(κ) > 0}. Therefore
we have η∗ā = a and ρ∗ā = a. There are no branch points on the real line and for
κ on the real line we have a(κ)> 0. Finally the following transformations hold

η∗ν̄ =−ν , ρ∗ν̄ = ν , ρ∗ν =−ν .

On can also see that a is a polynomial with only real coefficients and deg(a) = 2g
and a leading coefficient a2g = 1.

3.2 Intrinsic closing conditions
Definition 3.2 (Adapted canonical basis). Let A1, . . . , Ag , B1, . . . , Bg ∈ H1(Σ,Z) be
a canonical basis for the homology of Σ such that ρ∗(Al) ≡ −Al ,ρ

∗(Bl) ≡ Bl

14



3.2 Intrinsic closing conditions

i

−i

α1

α1

α2

α2

A1 A2

B1

B2

Figure 3-1: Branch points and cuts of the spectral curve Σ in the κ-plane together
with the adapted canonical basis for the homology. Thick lines represent
cuts and dashed lines are parts of the cycles which are on the second
sheet of the hyperelliptic Riemann surface.

mod 〈A1, . . . Ag〉 and the projection of each Al to CP1 has winding number one
around αl , ᾱl and zero the around other roots of a. A1, . . . , Ag , B1, . . . , Bg will be
called adapted canonical basis.

We will now investigate the space of 1-forms on Σ.

Definition 3.3. Let B(Σ) be the vector space of meromorphic differentials on Σ
which have double poles only on y± and are holomorphic elsewhere.

By Riemann-Roch the space B(Σ) of such differentials on the hyperelliptic sur-
face Σ has complex dimension g + 2. The 1-forms

κl

ν(κ2+ 1)
dκ, l = 0, . . . , g + 1 (3.2)

form a basis for this vector space.
So we can write all those 1-forms as

θ j =
i b j(κ)

ν(κ2+ 1)
dκ (3.3)

with some complex polynomial b j of degree deg(b j) = g + 1. The reason for the
factor i will become apparent in a moment.

Our aim is to investigate Riemann surfaces with attached differentials which are
potential candidates for spectral curves to double periodic solutions of the sinh-
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Chap. 3: Spectral curves

Gordon equations. This mandates that the 1-forms θ j are equal to d lnµ j for holo-
morphic functions µ j on Σ\{y+, y−}. This is equivalent to the following conditions

Definition 3.4 (Intrinsic closing conditions).
∫

Al

θ j ∈ 2πiZ,
∫

Bl

θ j ∈ 2πiZ (3.4)

We recall the transformation behavior of µ j under the involutions σ,η,ρ. If θ j

are equal to d lnµ j this would lead to corresponding transformation behavior of θ j

under those involutions. So we pose this transformation behavior as a condition on
θ j

σ∗θ j =−θ j, η
∗θ̄ j = θ j, ρ

∗θ̄ j =−θ j. (3.5)

This in turn leads to a transformation behavior of b j, in particular we obtain

b j(κ̄) = b j(κ). We conclude that all coefficients of b j needs to be real. This reduces
the vector space of possible b j from complex g + 2-dimensional vector space to a
real g + 2-dimensional vector space.

We now combine the transformation behavior of θ j ∈B(Σ) with the transforma-
tion behavior of the cycles Al and we obtain

∫

Al

θ =

∫

Al

θ =−
∫

Al

ρ∗θ =−
∫

ρ∗A j

θ =

∫

Al

θ . (3.6)

So
∫

Al
θ ∈ R. This means in order to satisfy (3.4), we need in fact

∫

Al

θ =

∫

Al

i b j(κ)

ν(κ2+ 1)
dκ= 0. (3.7)

These are g linearly independent real conditions on the (g + 2)-dimensional space
of real polynomials b j with deg(b j) = g + 1.

Definition 3.5. Let BA(Σ) be the subspace of B(Σ) which contains all 1-forms that
fulfill the transformation conditions (3.5) and have zero periods around the A-cycles
(3.7).

The space BA(Σ) is a real 2-dimensional space.
Looking at the cycles Bl and θ j ∈BA(Σ) we obtain

∫

Bl

θ =

∫

Bl

θ =−
∫

Bl

ρ∗θ =−
∫

ρ∗Bl

θ . (3.8)
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3.3 Extrinsic closing conditions

Using
∫

Al
θ = 0, we have

∫

Bl

θ =−
∫

ρ∗Bl

θ =

∫

Bl

θ (3.9)

since ρ∗(Bl) ≡ Bl mod 〈A1, . . . Ag〉. So
∫

Bl
θ ∈ iR. So all θ j ∈ BA(Σ) have purely

imaginary periods around B-cycles.
If the spectral curve corresponds to a doubly periodic solution of the sinh-Gordon

equation, so (3.4) is fulfilled, this space is spanned by b1, b2 whose periods lie in
2πiZ.

Furthermore we have seen that a spectral curve, which consists of a hyperellip-
tic surfaces and two differentials on this surface is completely determined by the
coefficients of the polynomials a and b j. These are 2g + 2(g + 2) = 4g + 4 real
parameters.

Definition 3.6 (Spectral Data). We call the vector (a, b1, b2) ∈ R4g+4 consisting of
the real coefficients of the polynomials a and b j spectral data.

Remark. If (a, b1, b2) fulfills intrinsic closing conditions (3.4), then (a, n1 b1, n2 b2),
n1, n2 ∈ Z will also fulfill those closing conditions. This corresponds to taking n1p1

and n2p2 as the basis vectors for the fundamental domain instead of p1 and p2.

3.3 Extrinsic closing conditions
A spectral curve fulfilling (3.4) corresponds to a doubly periodic solution of the
sinh-Gordon equation. It gives rise to a patch of a CMC surface via the Sym-Bobenko
formula (Section 2.3). We are interested in CMC tori and CMC cylinders with dou-
bly periodic metric so we need additional closing conditions which we already have
established in section 2.4. For CMC immersions to R3 the so called extrinsic closing
conditions amount to

lnµ j

�

�

�

κ=0
∈ πiZ and ∂κ lnµ j

�

�

�

κ=0
= 0. (3.10)

These conditions correspond to similar conditions on θ j. In order to write those
down we need a path γ on the Riemann surface Σ between the two points over
κ= 0. The conditions (3.10) are then equivalent to

∫

γ

θ j ∈ πiZ and θ j

�

�

�

κ=0
= 0. (3.11)

Remark. If (a, b1, b2) fulfills the intrinsic (3.4) and extrinsic (3.10) closing condi-
tions, then (a, n1 b1, n2 b2), n1, n2 ∈ Z will also fulfill those closing conditions. Again
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Chap. 3: Spectral curves

this corresponds to taking n1p1 and n2p2 as the basis vectors for the fundamental
domain instead of p1 and p2. The geometric meaning for the immersion is that we
have a surface which will be multiply wrapped around the directions of its periods.

3.4 Branch points of the spectral curve and
integrals over cycles

In the previous sections we have established how a hyperelliptic Riemann surface
gives rise to a space of meromorphic differentials of certain kind and what are the
intrinsic and extrinsic closing conditions on those differentials so that the Riemann
surfaces becomes a spectral curve of a doubly periodic solution of the sinh-Gordon
equation or even a CMC cylinder or a CMC torus. We will investigate this relation-
ship further by using a map similar to the one defined by Jaggy [20].

We can use the results of the last two section to obtain a map from the set of
branch points of the spectral curve {α1, . . . ,αg} (we do not inlcude y± here) to a
two plane of differentials which have zero periods around A-cycles

{α1, . . . ,αg} 7→BA(Σ) (3.12)

On the other hand there is a map from θ j ∈ BA(Σ) to a vector in Rg+2. We define
such a vector by

v j := i(θ j(0),

∫

γ

θ j,

∫

B1

θ j, . . . ,

∫

Bg

θ j). (3.13)

The path γ connects the two points over κ= 0 on the Riemann surface Σ as before.
The vectors v j depend linearly on θ j. The two vectors v1 and v2 are themselves
linearly independent when θ j are linearly independent.

We can now combine these two maps to a map from a set of branch points
{α1, . . . ,αg} to a two plane spanned by v1 and v2. We obtain a map

f : Cg → Gr(2,Rg+2)
{α1, . . . ,αg} 7→ Rv1⊕Rv2.

(3.14)

One observes that this definition relies on cycles Al ,Bl . Further f is multivalued
function generally. In order to deal with that we restrict f to a small open neighbor-
hood U ⊂ Cg of {α1, . . . ,αg}, where all αl are distinct. The cycles Al ,Bl can then be
chosen in such a way that they are constant in κ-plane for all α ∈ U . The function
f is then nicely defined and is single valued.

First important observation is that if {α1, . . . ,αg} maps to a Rv1 ⊕ Rv2 which
contains two linearly independent vectors ṽ1, ṽ2 ∈ Q2 and both v1 and v2 have a 0
in their first entry, then all intrinsic and extrinsic closing conditions are fulfilled and
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3.4 Branch points of the spectral curve and integrals over cycles

thus the Riemann surface Σ corresponding to {α1, . . . ,αg} is the spectral curve of a
torus in R3.

The real dimension of U ⊂ Cg is 2g and this equals to the real dimension
dim(Gr(2,Rg+2)) = 2(g + 2 − 2) = 2g. So there is a hope that the map f is at
least locally invertible. In fact we have the following result which shows the neces-
sary conditions.

Theorem 3.7. Let α = {α1, . . . ,αg} be in U. Let Σ be a hyperelliptic surface defined
by

Σ : ν2 = (κ2+ 1)
g
∏

l=1

(κ−αl)(κ− ᾱl) (3.15)

and assume that for θ1,θ2 ∈BA(Σ) the following conditions hold

• θ1 and θ2 have a simple zero at κ= 0,

• θ1 and θ2 have no further common zeros,

• θ j(αl) 6= 0 for all l ∈ 1, · · · , g,

then df(α) is invertible for f as defined in (3.14).

This theorem is stated by Jaggy [20], the proof is due to Kirchver [22], Bikbaev
and Kuskin[3].

An immediate consequence of this theorem is that arbitrary close to any spectral
curve fulfilling the assumptions of the theorem there exist a spectral curve which
additionally fulfill the extrinsic and intrinsic closing condition and thus is a spectral
curve of a torus.

Loosely speaking the big assumption of the theorem is that the differentials have
a common root at κ= 0 and thus already fulfill this closing condition, as this is not
a dense condition. The other assumptions are of technical nature. And since f is
locally invertible around such a point we can fulfill all the other closing conditions,
as those are dense conditions.

In the following chapter we will use the map f to introduce a deformation of spec-
tral curves known as Whitham deformation. The Theorem 3.7 will not be necessary
as we will establish the non singular nature of the deformation for initial values
satisfying similar assumptions to those in the theorem without relying on this result
and with different methods compared to those used in proving the theorem.
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4 Whitham deformations
The Whitham deformation was first introduced for the Korteweg–de Vries equation
by Whitham [27]. Krichever [22] used it on spectral curves. This theory was further
developed and applied to the sinh-Gordon equation and to CMC cylinders and CMC
tori by Grinevich and Schmidt [15].

In this chapter we will introduce the Whitham deformation as a natural way
to define a deformation on spectral data in such a way that one has control over
various closing conditions. Generically one would expect that such deformations
are a hard to study object involving integrals over cycles for the definition. We
will see that in case of the sinh-Gordon equation with finite spectral genus these
equations will become differential algebraic equation on spectral parameters.

We will work out the conditions for when those deformations become singular.
We will see what are the conditions for a possible bifurcation to higher spectral
genus and how to obtain such spectral data by Whitham deformations. Then we
will desingularize the spectral data at a bifurcation point allowing us to deform to
higher spectral genus. At the end of the chapter we will reprove the result of Jaggy
[20] using our results about Whitham deformations. We will close this treatment by
demonstrating the constructive nature of our proof by showing a numerical example
of a flow connecting a Wente torus of spectral genus 2 with a Dobriner torus of
spectral genus 3.

4.1 Deformations of spectral curves
As a motivation we recall from the last chapter 3.4 the map

f : Cg → Gr(2,Rg+2)
{α1, . . . ,αg} 7→ Rv1⊕Rv2,

(4.1)

with v j = i(θ j(0),
∫

γ
θ j,
∫

B1
θ j, . . . ,

∫

Bg
θ j) and the Theorem 3.7 which established

that df is invertible in some neighborhood of α which satisfies certain conditions.
One way to understand this is in terms of ordinary differential equations. Namely

for initial conditions α(t0) satisfying the assumptions of Theorem 3.7 one can pre-
scribe a path in the space of Rv1⊕Rv2 starting with f(α(t0)). Then it is possible to
integrate this path to a path α(t) in the domain of f.
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Chap. 4: Whitham deformations

In the following we will choose a basis θ1,θ2 of BA(Σ) and accordingly the map
f will be considered as a map f : Cg → R2(g+2), {α1, . . . ,αg} 7→ (v1, v2). We will
now write down the differential equations which define a flow as the one sketched
above. The data we are operating on is the spectral data consisting of the polyno-
mials a encoding the branch points αl and the polynomials b j encoding the differ-
entials θ j in the way defined in section 3.2.

The map f was defined by using θ1,θ2 ∈ BA(Σ) so we need to make sure our
chosen basis of differentials stays in this subspace

∂t

∫

Al

θ j = 0. (4.2)

Then we need to follow the path (v1(t), v2(t)) and obtain

i(∂tθ j(0),∂t

∫

γ

θ j,∂t

∫

B1

θ j, . . . ,∂t

∫

Bg

θ j) = ∂t v j. (4.3)

The Theorem 3.7 ensures that for given data (a, b1, b2) and (∂t v1,∂t v2) there is a
unique (∂t a,∂t b1,∂t b2) which defines an ordinary differential equation. The rela-
tion between (a, b1, b2,∂t v1,∂t v2) and (∂t a,∂t b1,∂t b2) governed by those equations
involves integrals around cycles on the Riemann surfaces and are generally very
complicated. A possible way to understand them would be to build on the work of
Bobenko [4] and write them in terms of theta-functions. The following will show
that those equations simplify considerably for an interesting case of the so called
Whitham deformations.

The idea of Whitham deformation is to deform spectral data by only allowing de-
formations which preserve intrinsic closing conditions. In our language this means
that (∂t v1,∂t v2) consists almost entirely of zeros and only those components which
correspond to θ j(0) and

∫

γ
θ j, namely to the extrinsic closing conditions, are al-

lowed to have non zero entries.

In the case of Whitham deformations the equations (4.2) and (4.3) become

∂t

∫

Al

θ j = 0, ∂t

∫

Bl

θ j = 0, (4.4)

i∂tθ j(0) = (∂t v j)1, i∂t

∫

γ

θ j = (∂t v j)2, (4.5)

where (∂t v j)1 is the first component of the vector (∂t v j). Recalling that θ j =
i b j(κ)

ν(κ2+1)
dκ,
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4.1 Deformations of spectral curves

we rewrite the equations as

∂t

∫

Al

i b j(κ)

ν(κ2+ 1)
dκ= 0, ∂t

∫

Bl

i b j(κ)

ν(κ2+ 1)
dκ= 0, (4.6)

i∂t

i b j(κ)

ν(κ2+ 1)

�

�

�

κ=0
= (∂t v j)1, i∂t

∫

γ

i b j(κ)

ν(κ2+ 1)
dκ= (∂t v j)2. (4.7)

Since we are dealing with these equations locally, we can analyze them purely in
the κ-coordinate. Furthermore, locally the A and B cycles do not depend on the
deformation parameter t and we can interchange ∂t with integration.

∫

Al

∂t

i b j(κ)

ν(κ2+ 1)
dκ= 0,

∫

Bl

∂t

i b j(κ)

ν(κ2+ 1)
dκ= 0, (4.8)

i∂t

i b j(κ)

ν(κ2+ 1)

�

�

�

κ=0
= (∂t v j)1, i

∫

γ

∂t

i b j(κ)

ν(κ2+ 1)
dκ= (∂t v j)2. (4.9)

We observe that this equations pose a nice condition on ∂tθ j = ∂t
i b j(κ)

ν(κ2+1)
dκ. Since

Al , Bl is a basis for the homology of Σ and ∂tθ j are zero around all these cycles
and holomorphic outside of the branch points, there exists global meromorphic
functions φ j(κ) such that dφ j = ∂tθ j. All those functions can be written in the
following form

φ(κ) =
ic j(κ)

ν
(4.10)

with polynomials c j of degree deg(c j) = g + 1. Since the integrability conditions
∂ 2
κtθ j = ∂ 2

tκθ j have to hold, we obtain

∂t

i b j(κ)

ν(κ2+ 1)
= ∂κ

ic j(κ)

ν
. (4.11)

We examine this equation further by using ν2 = (κ2+ 1)a(κ) to obtain

2ḃ j(κ)a(κ)− b j(κ)ȧ(κ) =− 2κa(κ)c j(κ)

+ (κ2+ 1)(2a(κ)c′j(κ)− a′(κ)c j(κ))
(4.12)

As we want to maintain the reality of the coefficients of a and b j, we see that we
need also the coefficients of c j to be real. Further, we see that for each j (4.12) is
an equation on polynomials in κ of degree 3g + 1. By equating the coefficients we
obtain 3g+2 equations on the coefficients of a, b j, and c j. In total 6g+4 equations
on 6g + 8 real parameters. The remaining 4-dimensional freedom corresponds to
the freedom of setting (∂t v j)1 and (∂t v j)1.
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Chap. 4: Whitham deformations

This shows that in case of Whitham deformations the equations (4.2) and (4.3)
which are non-algebraic, transform to (4.12) which is a system of differential alge-
braic equations. The above argument can be reversed by assuming that there exist
polynomials c j such that the integrability conditions (4.11) are fulfilled. It follows
then that such a deformation must obey (4.6) and thus is a Whitham deformation.
We will take this approach and show in this work that there exist polynomials c j

which solve (4.12) and equivalently (4.11) under the same assumptions as in The-
orem 3.7. This means that our further treatment will not rely on the work of Jaggy
[20] and in particular on the Theorem 3.7 to show the existence of the Whitham
flow. Nevertheless we used this theorem as it provides a very nice motivation for
the definition of the Whitham flow and explains differential algebraic nature of
Whitham flow equations.

4.2 Whitham deformations of cylinders

We have seen that the integrability conditions on a, b j, and c j give rise to 6g + 4
equations on 6g + 8 real parameters. These equations come from intrinsic closing
conditions, we did not include any of the extrinsic closing conditions so far.

Preserving the extrinsic closing conditions (3.10) amounts to

∂tθ j

�

�

�

κ=0
= 0 and ∂κθ j

�

�

�

κ=0
= 0. (4.13)

This translates directly to conditions on b j and c j

c j(0) = 0 and b j(0) = 0. (4.14)

If we want to preserve all closing conditions, we obtain an ODE whose only
solution is the constant one. The proof of this statement is a straight forward appli-
cation of the Theorem 4.3 which we will proof when we investigate the Whitham
equations. This indicates that the space of the CMC tori in R3 is discrete.

So there are no non-trivial deformations along CMC tori in R3, but we can try
to relax the extrinsic closing conditions thus deforming along CMC cylinders with
doubly periodic metric. The goal will be to control the closing conditions in such
a way that one can prove that for some time t after starting the flow all closing
conditions will be fulfilled again and we arrive at a spectral curve of a CMC torus.

A good candidate for a flow through CMC cylinders with a control on closing
condition would be the following ansatz

b1(0) = 0 b2(0) = 0
c1(0) = 0 c2(0) = v 6= 0. (4.15)
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4.3 Matrix equation of the flow

We maintain three of the four conditions. For the last closing condition we pick
some function v which can vary with t but fulfills v(t) 6= 0 for all t This means that
we vary θ2|κ=0. The condition θ2|κ=0 ∈ πiZ is in fact a rational condition if we allow
for integer multiples of θ j. So a flow which continuously varies θ2|κ=0 and ensures
that all the other conditions are fulfilled, will produce spectral curves fulfilling all
closing conditions on a dense subset of its interval of existence.

4.3 Matrix equation of the flow

We will now take a closer look at the deformation equations and bring them to a
form which is better suited for further analysis.

First look at the equations which come from the integrability conditions:

−b j(κ)ȧ(κ) + 2a(κ)ḃ j(κ) + 2κa(κ)c j(κ)− (κ2+ 1)2a(κ)c′j(κ)

+ (κ2+ 1)a′(κ)c j(κ) = 0.
(4.16)

We observe that (4.16) is a sum of products, each product having two different
polynomials as factors, one coming from the spectral data a, a′, b j and one from the
unknowns ȧ, ḃ j, c, c′.

We now compute each product in terms of κi and the coefficients of the other
involved polynomials. Taking the degrees of the monomials into consideration, we
express them together with their polynomials as

a(κ) = κ2g +
2g−1
∑

i=0

aiκ
i

ȧ(κ) =
2g−1
∑

i=0

ȧiκ
i

a′(κ) = 2gκ2g−1+
2g−2
∑

i=0

(i+ 1)ai+1κ
i (4.17)

b j(κ) =
g+1
∑

i=0

b j,iκ
i ḃ j(κ) =

g+1
∑

i=0

ḃ j,iκ
i (4.18)

c j(κ) =
g+1
∑

i=0

c j,iκ
i c′j(κ) =

g
∑

i=0

(i+ 1)c j,i+1κ
i (4.19)

We already know that all the coefficients of the above polynomials are real.

Note that a is always a monic polynomial, so that we can put a2g = 1 and ȧ2g = 0

25



Chap. 4: Whitham deformations

and thus

a(κ) =
2g
∑

i=0

aiκ
i

ȧ(κ) =
2g−1
∑

i=0

ȧiκ
i

a′(κ) =
2g−1
∑

i=0

(i+ 1)ai+1κ
i. (4.20)

We now start the computations of terms in (4.16):

− b j(κ)ȧ(κ) =
3g
∑

i=0

�

min(g+1,i)
∑

l=max(0,i−(2g−1))

−b j,l ȧi−lκ
i�. (4.21)

The next summand is

2a(κ)ḃ j(κ) =
3g+1
∑

i=0

�

min(2g,i)
∑

l=max(0,i−(g+1))

2al ḃ j,i−lκ
i�. (4.22)

The last three summands compute to

2a(κ)c j(κ) =
3g+1
∑

i=0

�

min(2g,i)
∑

l=max(0,i−(g+1))

2al c j,i−lκ
i�, (4.23)

−2a(κ)c′j(κ) =
3g
∑

i=0

�

min(2g,i)
∑

l=max(0,i−g))

−2(i− l + 1)al c j,i−l+1κ
i�, (4.24)

a′(κ)c j(κ) =
3g
∑

i=0

�

min(2g−1,i)
∑

l=max(0,i−(g+1))

(l + 1)al+1c j,i−lκ
i�. (4.25)

The equation (4.16), demanding that a polynomial in κ is zero, is equivalent to a
set of equations on the coefficients of this polynomial, namely that those are zero.
We will now construct these equations by collecting all coefficients of κi for a fixed
i using (4.21)–(4.28).

The coefficients of κi in (4.21) and (4.22) involve sums of products of coeffi-
cients from two polynomials, one from the given spectral data and one unknown
polynomial. The last three expressions (4.26)– (4.28) involve coefficients from
given polynomial a and the unknown polynomial c. We will combine these three
expressions using additional factors κ and (κ2+ 1) as they occur in (4.16):

2κa(κ)c j(κ) =
3g+2
∑

i=1

�

min(2g+1,i)
∑

l=max(1,i−(g+1))

2al−1c j,i−lκ
i�, (4.26)
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−2(κ2+ 1)a(κ)c′j(κ) =
3g+2
∑

i=2

�

min(2g+1,i−1)
∑

l=max(1,i−(g+1))

−2(i− l − 1)al−1c j,i−lκ
i�

+
3g
∑

i=0

�

min(2g,i−1)
∑

l=max(−1,i−(g+1))

−2(i− l + 1)al+1c j,i−lκ
i�,

(4.27)

(κ2+ 1)a′(κ)c j(κ) =
3g+2
∑

i=2

�

min(2g+1,i)
∑

l=max(2,i−(g+1))

(l − 1)al−1c j,i−lκ
i�

+
3g
∑

i=0

�

min(2g−1,i)
∑

l=max(0,i−(g+1))

(l + 1)al+1c j,i−lκ
i�.

(4.28)

Therefore

2κa(κ)c j(κ)− 2(κ2+ 1)a(κ)c′j(κ) + (κ
2+ 1)a′(κ)c j(κ)

=
3g+2
∑

i=1

�

min(2g+1,i)
∑

l=max(1,i−(g+1))

(−2i+ 3l + 1)al−1c j,i−lκ
i�

+
3g
∑

i=0

�

min(2g,i)
∑

l=max(−1,i−(g+1))

(−2i+ 3l + 1)al+1c j,i−lκ
i�.

(4.29)

We observe that for a given κi the coefficients depend linearly on the vector of
coefficients of the polynomials in the spectral data and also linearly on the vector
of coefficients of the unknown polynomial describing the t-derivative in the flow
ODE.

Combining the previous results, we can rewrite the two equations from the inte-
grability condition (4.16) as a matrix equation.

Proposition 4.1. The two equations

2ḃ j(κ)a(κ)− b j(κ)ȧ(κ) =− 2κa(κ)c j(κ)

+ (κ2+ 1)(2a(κ)c′j(κ)− a′(κ)c j(κ))
(4.30)

are equivalent to the matrix equation

M(X )Y = 0 (4.31)

Where

• X is the vector of coefficients (ai, b1,i, b2,i) of the polynomials (a, b1, b2)

• Y is the vector of coefficients (ȧi, ḃ1,i, ḃ2,i, c1,i, c2,i) of the polynomials (ȧ, ḃ1, ḃ2, c1, c2)
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Chap. 4: Whitham deformations

• M is a (6g + 4)× (6g + 8) block matrix depending linearly on X

M =
�

B1 A1 0 A2 0
B2 0 A1 0 A2

�

. (4.32)

Here B j is the (3g + 2)× (2g)-matrix

B j =−

b j,0 0 0

b j,g+1 b j,0 0 0

0 b j,g+1 b j,0 0 0

0 0 b j,g+1 b j,0

0 0 b j,g+1

0 0

































































































, (4.33)

A1 the (3g + 2)× (g + 2)-matrix

A1 = 2

a0 0 0

a2g−1 a0 0 0

2 a2g−1 a0 0 0

0 2 a2g−1 a0 0 0

0 0 2 a2g−1 a0

0 0 2 a2g−1

0 0 2













































































































, (4.34)

and A2 the (3g + 2)× (g + 2)-matrix

A2 =

1a1 −2a0 0 0 0 0

2(a3 + a0) −1a1 −4a0 0 0 0

3(a4 + a2) 0(a3 + a0) −3a1 0 0 0

2g + 2 (2g − 1)a2g−1 (2g − 4)(1+ a2g−2) 0 0

0 2g (2g − 3)a2g−1 0 0

0 0 2g − 2 0 0

0 0 0 −(2g − 2)a0 0 0

0 0 0 −(2g − 3)a1 −2ga0 0

0 0 0 −(2g − 4)(a3 + a0) −(2g − 1)a1 −(2g + 2)a0

0 0 0 3a2g−1 0(1+ a2g−2) −3(a2g−1 + a2g−3)

0 0 0 4 1a2g−1 −2(1+ a2g−2)

0 0 0 0 2 −1a2g−1

































































































































































































.

(4.35)
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4.3 Matrix equation of the flow

Since the coefficients of M(X ) depend linearly on the entries of the vector X we
obtain the following useful representation of this matrix.

Proposition 4.2. The matrix M(X ) can be written as M(X ) = M0+M1(X ), where M0

is a (6g + 4)× (6g + 8)-matrix with constant entries of M(X ), and M1 is a constant
(6g + 4)× (6g + 8)× (4g + 4) tensor capturing the linear dependence of M on X .

It is easy to incorporate the extrinsic closing conditions into this matrix equation.
The first three conditions

b1(0) = 0, b2(0) = 0, c1(0) = 0 (4.36)

are represented by three additional rows with 1 on positions corresponding to
ḃ1,0, ḃ2,0, c1,0 and 0 elsewhere. With those additional rows we obtain a new
(6g + 7) × (6g + 8) matrix. Generally this matrix will have a 1-dimensional
kernel and by setting the fourth condition c2(0) = v, or equivalently c2,0 = v, we
pick one element from this kernel as Y and obtain a well defined ODE.

Equivalently we can also remove the columns corresponding to ḃ1,0, ḃ2,0, c1,0 and
set b1,0 = b2,0 = c1,0 = 0 obtaining a (6g+4)×(6g+5)matrix with the same kernel
as the (6g + 7)× (6g + 8) matrix after omitting ḃ1,0, ḃ2,0, c1,0. We will usually use
this (6g+4)× (6g+5) matrix in later computations and still call it M if there is no
chance of confusion.

4.3.1 Determinant of the flow equation

The equation for the Whitham deformation flow can be written as M(X )Y = 0
where M(X ) is (6g + 7) × (6g + 8) matrix. We choose a function v and asking
for c2,0 = v. In order for the equation to reflect this, we have to add a row to M(X )
with 1 on the position corresponding to c2,0 and 0 elsewhere. We can then write
M(X )Y = V where V = (0, . . . , 0, v). Since M(X ) is now a (6g + 8) × (6g + 8)
square matrix we can look at det(M(X )). The flow equations determine a unique
Ẋ only when M(X ) is invertible, i.e. det(M(X )) 6= 0. If det(M(X )) = 0 there is no
unique Ẋ and we will call such X singular points of the Whitham flow. Naturally it
is important to analyze and understand det(M(X )).

Obviously det(M(X )) can be computed by using Laplace expansion. We will
neglect possible sign changes of det(M(X )) in the following operations to simplify
the argument, since we are only interested in det(M(X )) up to some constant factor.
When doing the Laplace expansion we observe that M(X ) contains 4 rows with a
1 as the sole non zero entry. Those rows are coming from the closing conditions
ḃ1,0 = ḃ2,0 = c1,0 = 0 and c2,0 = v, which involve only one element from Y . This
observation let us remove those 4 rows and the 4 columns where those rows contain
a 1. The 4 columns are the first columns of both A1 blocks and the first of the A2
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Chap. 4: Whitham deformations

blocks as defined in Proposition 4.1. Thous we arrive at a (6g+4)×(6g+4)matrix
with the same determinant as the original (6g + 8)× (6g + 8).

In the next step we use the condition b1,0 = b2,0 = 0. This means that the first
rows of the B1 and B2 block contains only zeros. Since we also remove the first
columns of the A1 blocks, those have also only zeros in the first row. The A2 blocks
have 2 non zero entries in their first row, but they also had the first row removed
in the first step. This means the only non zero element of the first row in both
half of M(X ) is −2a0. We remove those rows and the second columns of A2 which
contained those non zero entries. Lets us call the resulting (6g+2)×(6g+2)matrix
M̃(X ). We observe that det(M(X )) ∼ a2

0 det(M̃(X )), where by ∼ we mean up to a
non-zero constant factor.

An equivalent way to define M̃(X ) is by remembering that M(X ) captures the
coefficients of ȧ, ḃ1, ḃ2, c1, c2 in the expression

m j(κ) :=−b j(κ)ȧ(κ) + 2a(κ)ḃ j(κ)

+2κa(κ)c j(κ) + (κ
2+ 1)(a′(κ)c j(κ)− 2a(κ)c′j(κ))

(4.37)

After setting b1,0 = b2,0 = 0 and ḃ1,0 = ḃ2,0 = and c1,0 = c1,1 = 0, c2,0 = c2,1 = 0 one

can write b j = κb̃ j, ḃ j = κ
˙̃b j, c j = κ2 c̃ j and we see that we can now divide out a

common factor κ from (4.37) to obtain

m̃ j(κ) :=−b̃ j(κ)ȧ(κ) + 2a(κ)˙̃b j(κ)

−2(κ2+ 2)a(κ)c̃ j(κ) + κ(κ
2+ 1)(a′(κ)c̃ j(κ)− 2a(κ)c̃′j(κ))

(4.38)

We see that M̃(X ) as defined above is capturing the coefficients of ȧ, ˙̃b1, ˙̃b2, c̃1,
c̃2 in that expression. The fact that det(M(X )) ∼ a2

0 det(M̃(X )) means that (4.38)
exhibits the same singular behavior as (4.37), the only possible exception being at
a0 = 0 where (4.37) is singular and (4.38) might be regular.

So we have a (6g + 2)× (6g + 2) matrix M̃(X ) with entries which are linear in
the entries of X . We observe that det(M̃(X )) is at most a polynomial of degree
6g + 2 in the entries of X . In the following, we will determine this polynomial up
to a constant factor by finding several polynomials of lower degree which divide
det(M̃(X )). Those polynomials will be mostly resultants and discriminants of poly-
nomials a(κ), b j(κ). A short overview of some general facts about resultants res
and discriminants ∆ can be found in [14]. In particular, we will need the fact that
the determinant of the Sylvester matrix of two polynomials equals to the resultant
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4.3 Matrix equation of the flow

of these two polynomials. We will also use the following relations

res( f g, h) = res( f , h) res(g, h),
∆( f )∼ res( f , f ′),

∆( f g)∼∆( f )∆(g) res( f , g)2.

(4.39)

We check m̃ j at κ = 0 with a0 = 0 and obtain m̃ j(0) = −b̃ j(0)ȧ(0). This leads us
to

b̃2(0)m̃1(0)− b̃1(0)m̃2(0) = 0. (4.40)

So we found a linear combination of rows in M̃(X ) to create a zero row. This means
that M̃(X ) is singular if a0 = 0. Which in turn means that the resultant res(a(κ),κ)
has to be a factor of det(M̃(X )).

Now we check what happens if κ = ±i is a root of a(κ). Under the assumption
a(±i) = 0 we obtain m̃ j(±i) =−b̃ j(±i)ȧ(±i) and in turn

b̃2(±i)m̃1(±i)− b̃1(±i)m̃2(±i) = 0. (4.41)

So M̃(X ) is here singular as well and res(a(κ), (κ2 + 1)) has to be a factor of
det(M̃(X )).

Lastly, we assume κ = κ̃ is a root of a(κ) and a′(κ). Under the assumption
a(κ̃) = a′(κ̃) = 0, we obtain m̃ j(κ̃) =−b̃ j(κ̃)ȧ(κ̃) and in turn

b̃2(κ̃)m̃1(κ̃)− b̃1(κ̃)m̃2(κ̃) = 0. (4.42)

So M̃(X ) is singular when a(κ) has a root with a multiplicity higher than 1, and
res(a(κ), a′(κ)) has to be a factor of det(M̃(X )).

We also observe that rows and columns of M̃(X ) can be reordered in such a way
that it becomes a block matrix

� M11 M12
M21 M22

�

where M11 is the Sylvester matrix of the
polynomials b̃1(κ) and b̃2(κ). Since det(M̃(X )) = det(M11)det(M22−M12M−1

11 M21)
and det(M11) = res(b̃1(κ), b̃2(κ)) is the resultant of those polynomials, we see that
res(b̃1(κ), b̃2(κ)) is a factor of det(M̃(X )).

To conclude this argument, we collect all the factors of det(M̃(X )). We found that
res(a(κ),κ), res(a(κ), (κ2+1)), res(a(κ), a′(κ)) and res(b̃1(κ), b̃2(κ)) are all factors
of det(M̃(X )). We can combine the first three resultants to res(a(κ),κ(κ2+1)a′(κ))
seeing that

det(M̃(X )) = c res(a(κ),κ(κ2+ 1)a′(κ)) res(b̃1(κ), b̃2(κ)) (4.43)

Since deg(a(κ)) = 2g and deg(b̃ j(κ)) = g we see that the degrees of those resul-
tants in the coefficients of X are 4g + 2 and 2g. On the other hand det(M̃(X )) has
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a degree 6g + 2 and thus c can only be some scale factor. We have shown

det(M̃(X ))∼ res(a(κ),κ(κ2+ 1)a′(κ)) res(b̃1(κ), b̃2(κ)) (4.44)

and

det(M(X ))∼ res(a(κ),κ3(κ2+ 1)a′(κ)) res(b1(κ)/κ, b2(κ)/κ). (4.45)

This expression is well defined since we assumed b1,0 = b2,0 = 0. This way we
proved the following proposition.

Proposition 4.3. The determinant of the matrix M(X ) defined in Proposition 4.1 and
extended by

b1(0) = 0, b2(0) = 0, c1(0) = 0, c2(0) = v (4.46)

fulfills the following proportionality condition

det(M(X ))∼ res(a(κ),κ3(κ2+ 1)a′(κ)) res(b1(κ)/κ, b2(κ)/κ) (4.47)

where by ∼ we mean up to a non-zero constant factor.

We observe that det(M(X )) 6= 0 for spectral data which fulfills the following prop-
erties: the polynomial a has no multiple zeros and a(0) 6= 0, a(±i) 6= 0, neither of
the polynomials b j has common zeros with a, the polynomials b j have no common
zeros except for κ = 0, where both b j do have a common zero. Since M(X ) is
invertible in this case, we obtain Y = 0 if and only if c2(0) = v = 0. This proves the
existence of Whitham flow with generic initial spectral data and also the statement
from section 4.2 that there are non non-trivial deformations along CMC tori in R3.

Our main use of the formula for det(M(X )) will be during the desingulariza-
tion procedure at a bifurcation point to higher genus which we will perform in
the section 4.5. During this procedure we will use a particular factorization of the
polynomials a and b j and we also will the first three derivatives of det(M(X )) at a
particular point in the subsection 4.5.3. In order to keep the computation involving
det(M(X )) at one place we will show these computations in the remainder of the
section. We will explain the exact reason for the need of these computations in the
later sections where we will use these results.

Consider the following factorization of polynomials a and b j:

a = (κ2− 2αrκ+α
2
r +αi)a

g−1 and b j = (κ− β j)b
g−1
j (4.48)

with αr ,αi,β j ∈ R.
We first observe

det(M(X ))∼ res(a(κ),κ3(κ2+ 1)a′(κ)) res(b1(κ)/κ, b2(κ)/κ)

∼ res(a(κ),κ3(κ2+ 1))∆(a(κ)) res(b1(κ)/κ, b2(κ)/κ).
(4.49)
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Next we use

∆(a(κ))∼∆((κ2− 2αrκ+α
2
r +αi)a

g−1(κ))

∼∆(κ2− 2αrκ+α
2
r +αi)∆(a

g−1(κ)) res(κ2− 2αrκ+α
2
r +αi, ag−1(κ))2

∼αi∆(a
g−1(κ)) res(κ2− 2αrκ+α

2
r +αi, ag−1(κ))2

(4.50)

and

res(b1(κ)/κ, b2(κ)/κ)∼ res((κ− β1)b
g−1
1 (κ)/κ, (κ− β2)b

g−1
2 (κ)/κ)

∼ res(κ− β1,κ− β2) res(κ− β1, bg−1
2 (κ)/κ)

res(bg−1
1 (κ)/κ,κ− β2) res(bg−1

1 (κ)/κ, bg−1
2 (κ)/κ)

∼(β1− β2) res(κ− β1, bg−1
2 (κ)/κ)

res(bg−1
1 (κ)/κ,κ− β2) res(bg−1

1 (κ)/κ, bg−1
2 (κ)/κ)

(4.51)

to obtain the following result.

Lemma 4.4. The determinant of matrix M(X ) defined in Proposition 4.1 and extended
by

b1(0) = 0, b2(0) = 0, c1(0) = 0, c2(0) = v (4.52)

with respect to the factorization

a = (κ2− 2αrκ+α
2
r +αi)a

g−1 and b j = (κ− β j)b
g−1
j (4.53)

fulfills the following proportionality condition

det(M(X ))∼ res(a(κ),κ3(κ2+ 1))∆(a(κ)) res(b1(κ)/κ, b2(κ)/κ)

∼ res(κ2− 2αrκ+α
2
r +αi,κ

3(κ2+ 1)) res(ag−1(κ),κ3(κ2+ 1))

αi(β1− β2) res(κ2− 2αrκ+α
2
r +αi, ag−1(κ))2

res(κ− β1, bg−1
2 (κ)/κ) res(bg−1

1 (κ)/κ,κ− β2)

∆(ag−1(κ)) res(bg−1
1 (κ)/κ, bg−1

2 (κ)/κ).

(4.54)

We will now use this result to compute the derivatives of det(M(X )) with respect
to X at a point which we will call Xdp. We will use the Xdp as a bifurcation point to
higher spectral genus. Such a point is characterized by αr = β j = κdp 6= 0 and
αi = 0 with respect to the previous factorization a = (κ2−2αrκ+α2

r +αi)ag−1 and
b j = (κ−β j)b

g−1
j of the polynomials a and b j. Further denote by X̃ the spectral data

obtained from (ag−1, bg−1
1 , bg−1

2 ) at such Xdp. And we assume that det(M(X̃ )) 6= 0.
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From the previous Lemma 4.4 we see that

det(M(Xdp)) = 0 (4.55)

due to αi = 0 and β1 = β2. We can write det(M(X ))∼ αi(β1− β2) f (X ) where

f (x) := res(κ2− 2αrκ+α
2
r +αi,κ

3(κ2+ 1))

res(κ2− 2αrκ+α
2
r +αi, ag−1(κ))2

res(κ− β1, bg−1
2 (κ)/κ) res(bg−1

1 (κ)/κ,κ− β2)

res(ag−1(κ),κ3(κ2+ 1))∆(ag−1(κ)) res(bg−1
1 (κ)/κ, bg−1

2 (κ)/κ)

∼ res(κ2− 2αrκ+α
2
r +αi,κ

3(κ2+ 1))

res(κ2− 2αrκ+α
2
r +αi, ag−1(κ))2

res(κ− β1, bg−1
2 (κ)/κ) res(bg−1

1 (κ)/κ,κ− β2)

det(M(X̃ ))

(4.56)

contains the remaining terms. From our assumptions it follows that f (X )
�

�

X=Xdp
6= 0.

We also see that

ddet(M(X ))
�

�

X=Xdp

∼ (β1− β2) f (X )dαi +αi f (X )(dβ1− dβ2) +αi(β1− β2)d f (X )
�

�

X=Xdp

= 0.

(4.57)

Let us now check d2 det(M(X )). We obtain

d2 det(M(X ))
�

�

X=Xdp

∼ f (X )dαi(dβ1− dβ2) + (β1− β2)dαid f (X )
�

�

X=Xdp

+ f (X )dαi(dβ1− dβ2) +αi(dβ1− dβ2)d f (X )
�

�

X=Xdp

+αi(dβ1− dβ2)d f (X ) + (β1− β2)dαid f (X )
�

�

X=Xdp

+αi(β1− β2)d
2 f (X )

�

�

X=Xdp

= f (X )dαi(dβ1− dβ2)
�

�

X=Xdp

(4.58)

This shows us that d2 det(M(X ))
�

�

X=Xdp
6= 0 if dαi 6= 0 and dβ1− dβ2 6= 0.

Lemma 4.5. The determinant of matrix M(X ) defined in Proposition 4.1 and extended
by

b1(0) = 0, b2(0) = 0, c1(0) = 0, c2(0) = v (4.59)
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4.4 Spectral curves with double points

with respect to the factorization

a = (κ2− 2αrκ+α
2
r +αi)a

g−1 and b j = (κ− β j)b
g−1
j (4.60)

fulfills the following conditions at Xdp

det(M(X ))
�

�

X=Xdp
= 0

d det(M(X ))
�

�

X=Xdp
= 0

d2 det(M(X ))
�

�

X=Xdp
6= 0

(4.61)

for dαi 6= 0 and dβ1 − dβ2 6= 0, under the assumptions that det(M(X̃ ) 6= 0 for X̃
formed with coefficients from ag−1, bg−1

j and αr = β j = κdp 6= 0 and αi = 0 for Xdp.

4.4 Spectral curves with double points

In this section we will derive necessary conditions on a spectral curve for the case
that two branch points meet at κdp ∈ R. Then we will proceed to show how to find
spectral curves which meet those conditions.

We recall from section 3.2 that for any l = 1, . . . , g the cycle Bl in the κ-plane
crosses only the cuts between κ= i and κ=−i and between κ= αl and κ= ᾱl .

When we assume that
p

k has the cut going from 0 to −∞ we can write
∫

Bl

θ j =

∫

Bl

i b j(κ)

ν̃(κ2+ 1)(Im(αl)
q

i(κ−αl

Im(αl )

q

κ−ᾱl

Im(αl )
)
dκ (4.62)

and obtain the cuts in the way we prescribed before.

Now we look at what happens when αl → κdp and thus Im(αl)→ 0. We denote
by θ̃ j, B̃l the results of this limit. After taking this limit and desingularizing the
spectral curve we obtain

∫

B̃l

θ̃ j =

∫

B̃l

i b̃ j(κ)

ν̃(κ2+ 1)
dκ. (4.63)

Here the path along B̃l crosses only one cut between κ = i and κ = −i so it is not
closed anymore, it connects on Σ the two points α±l over Re(αl) = κdp ∈ R. With
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i

−i

α1

α1

α2

α2

A1
A2

B1

B2

Figure 4-1: Branch points and cuts of a spectral curve Σ in the κ-plane. The branch
points α1, ᾱ1 are close to the real line. When they are on the real line
they form a double point.

this observation and using lnµ j(α
+
l ) =− lnµ j(α

−
l ) we obtain

∫

B̃l

i b j(κ)

ν̃(κ2+ 1)
dκ= 2 lnµ j(κdp). (4.64)

We conclude that if we start with a spectral curve where
∫

Bl
θ j ∈ 2πiZ, after

taking the limit Im(α j)→ 0 we must have lnµ j(κdp) ∈ πiZ. This is the necessary
condition on κdp to be a putative double point. A spectral curve having such a point
can be the result of a limiting procedure of spectral curves where two branch points
collide.

Definition 4.6. We say a spectral curve Σ with κdp ∈ R such that lnµ j(κdp) ∈ πiZ
has a putative double point at κdp.

Remark. From the extrinsic closing conditions for a torus we see that the Sym-point
κ= 0 is always a putative double point.

Later we will use such spectral curves with a putative double point to bifurcate
to higher spectral genus. In general a spectral curve of a torus may only have such
a point at the Sym-point. We will need spectral curves where such a point exists
and is not equal to the Sym-point. So we need a way to find such spectral curves,
possibly in such a way that we still maintain a control on the closing conditions.

We will now show that we can find such spectral curves by a procedure involving
Whitham deformations. We define

φ : R×R→ R2

(κ, t)→ (i lnµ1(κ, t)), i lnµ2(κ, t)).
(4.65)
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4.5 Bifurcation to higher spectral genus

This function does indeed map into R2 since ∂κ(i lnµ j(κ, t)) = b j(κ)ν−1(κ2+ 1)−1.
We are looking for (κdp, tdp) such that φ(κdp, tdp) ∈ Z2. As we have seen in sec-
tions 3.2 and 3.3 we allow for integer multiplies of lnµ j since with those multi-
plies we still have a closed surface, we just allow it to be multiple wrapped around
the directions of its periods. This allows us to look in fact for (κdp, tdp) such that
φ(κdp, tdp) ∈Q2.

Lemma 4.7. For every t0 and every ε > 0 there is tdp ∈ (t0, t0+ε) such that a κdp ∈ R
exist so that φ(κdp, tdp) ∈Q2.

Proof. We look at t-derivative of φ

∂tφ(κ, t) = (i∂t lnµ1(κ, t)), i∂t lnµ2(κ, t)) (4.66)

If we have a non-constant deformation, we have ∂tφ(κ, t0) 6≡ 0. So there is κ0 such
that ∂tφ(κ0, t0) 6= 0. There exist also small δ,ε > 0 such that ∂tφ(κ, t) 6= 0 for all
κ ∈ (κ0 − δ,κ0 + δ) and t ∈ (t0, t0 + ε). By continuity of φ(κ, t) there must exist
κdp ∈ (κ0−δ,κ0+δ) and tdp ∈ (t0, t0+ ε) such that φ(κdp, tdp) ∈Q2.

Remark (Procedure for finding spectral curves with double points). An obvious way
to find such a spectral curve would be the following procedure:

(i) Find κ0 ∈ R such that lnµ1(κ0, t0) ∈Q and ∂t lnµ2(κ0, t0) 6= 0.

(ii) Define κ̇0 by ∂t lnµ1(κ0(t), t) = 0.

(iii) Find tdp ∈ (t0, t0+ ε) such that lnµ2(κ0(tdp), tdp) ∈Q.

(iv) Now κdp = κ0(tdp) and φ(κdp, tdp) ∈Q2.

This procedure gives us a spectral curve with a putative double point, but since we
used the Whitham deformation to get there, we obtain a spectral curve of a CMC
cylinder with a doubly periodic metric.

4.5 Bifurcation to higher spectral genus
In the previous section we have derived necessary conditions for the existence of
a putative double point on spectral curve. Moreover, we also described a way to
generate spectral curves with such points. In the following we will analyze how
to use such a curve as an initial condition for our flow to move this curve into a
spectral curve of higher spectral genus.

Let Σg−1 be spectral curve with a putative double point κdp. The spectral data
of Σg−1 should be (ag−1, bg−1

1 , bg−1
2 ). We define a new singular Riemann surface Σ

with two new differentials on it by changing the spectral data in the following way

a = (κ−κdp)
2ag−1 and b j = (κ−κdp)b

g−1
j . (4.67)
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Chap. 4: Whitham deformations

The new Riemann surface Σ has arithmetic genus g + 1 and corresponds to the
same solution of the sinh-Gordon equation as Σg−1 since (a, b1, b2) give rise to the
same differentials θ j as (ag−1, bg−1

1 , bg−1
2 ).

Definition 4.8. Denote by Xdp the spectral data (a, b1, b2) obtained from the spec-
tral data (ag−1, bg−1

1 , bg−1
2 ) and a putative double point κdp ∈ R.

a = (κ−κdp)
2ag−1 and b j = (κ−κdp)b

g−1
j . (4.68)

For further computations we will make some more assumptions about Xdp.

Assumption 4.9. Let X be the vector of spectral data (a, b1, b2) of the following form:

• The polynomial a has no multiple zeros and a(0) 6= 0, a(±i) 6= 0.

• Neither of the polynomials b j has common zeros with a.

• The polynomials b j have no common zeros except for κ = 0, where both b j do
have a common zero.

• At least one b j has the full degree g + 1 where g is the genus of Σ.

We observe that the above assumptions on X are of such a type that if they hold
for spectral data X and X is deformed continuously, then the assumptions will hold
in a ε-neighborhood of X . The assumptions do not hold for Xdp, but they are
only violated because a and b j have a common zero at κdp and a has a double
zero there. If there is a continuous flow defined on a interval (t0 − ε, t0 + ε) and
this flow opens the double point at κdp, the above assumptions will be fulfilled for
(t0− ε, t0+ ε) \ {ε}.

4.5.1 Possible directions of the flow at a bifurcation point

In this section we will start building formal solutions of the flow ODE by investigat-
ing the space of possible directions Y of those solutions. Later we will show which
of those directions lead to formal solutions of the flow ODE.

We have written the flow ODE with extrinsic closing conditions as a matrix equa-
tion M(X )Y = 0, ehere M(X ) is a (6g + 4)× (6g + 5) matrix. In the following we
will compute the null space and the rank of the M(Xdp) in the case of spectral data
Xdp with one double point (as constructed in 4.5) fulfilling the assumptions 4.9. We
will represent those spaces by matrices formed of basis vectors.

We denote by Pl(Xdp) respectively Pr(Xdp) the left kernel resp. the right kernel of
M(Xdp).

Pl(Xdp)M(Xdp) = 0 and M(Xdp)Pr(Xdp) = 0. (4.69)
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Our first observation is that for the spectral data of the form

a = (κ−κdp)
2â and b j = (κ−κdp)b̂ j (4.70)

both integrability equations

−b j(κ)ȧ(κ) + 2a(κ)ḃ j(κ) + 2κa(κ)c j(κ)− (κ2+ 1)2a(κ)c′j(κ)

+ (κ2+ 1)a′(κ)c j(κ) = 0
(4.71)

are independently fulfilled when evaluated at κ= κdp. Having the computations in
the section 4.3 in mind we remember that the first 3g+2 rows of M(Xdp) come form
the integrability equation with b1 and the following 3g + 2 rows from b2. Those
rows are formed by the coefficients of ki in those integrability equations. Knowing
that the integrability conditions are independently of each other fulfilled at κ =
κdp lets us know at least two vectors in the left kernel Pl(Xdp) of M(Xdp), namely
(κ0

dp, . . . ,κ3g+1
dp , 0, . . . , 0) and (0, . . . , 0,κ0

dp, . . . ,κ3g+1
dp ). So the left kernel Pl(Xdp) of

M(Xdp) is at least 2-dimensional and therefore the right kernel Pr(Xdp) of M(Xdp)
has to be at least 3-dimensional.

We have found the lower bound for the rank of M(Xdp). We will now compute
the upper bound and then the exact rank. In order to do so we will rewrite the
integrability equations. We define the following vectors of polynomials

A= ( a(κ), (κ2+ 1)a′(κ), ȧ(κ) )
B1 = ( 2ḃ1(κ) + 2κc1(κ)− 2(κ2+ 1)c′1(κ), c1(κ), −b1(κ) )
B2 = ( 2ḃ2(κ) + 2κc2(κ)− 2(κ2+ 1)c′2(κ), c2(κ), −b2(κ) )

(4.72)

We define, analogously to the cross product in R3, a product of two of those vectors
resulting in another vector of polynomials with three entries:

B1× B2 =























b1(κ)c2(κ)− b2(κ)c1(κ)

2b2(κ)ḃ1(κ) + 2κb2(κ)c1(κ)− 2(κ2+ 1)b2(κ)c
′
1(κ)

− 2b1(κ)ḃ2(κ)− 2κb1(κ)c2(κ) + 2(κ2+ 1)b1(κ)c
′
2(κ)

2ḃ1(κ)c2(κ)− 2(κ2+ 1)c′1(κ)c2(κ)
− 2ḃ2(κ)c1(κ) + 2(κ2+ 1)c′2(κ)c1(κ)























(4.73)

Lemma 4.10. The two integrability equations

2ḃ j(κ)a(κ)− b j(κ)ȧ(κ) =− 2κa(κ)c j(κ)

+ (κ2+ 1)(2a(κ)c′j(κ)− a′(κ)c j(κ))
(4.74)
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together with
b1(κ)c2(κ)− b2(κ)c1(κ) = f0κ(κ− f1)a(κ) (4.75)

are equivalent to the following system of three equations

B1× B2 = f0κ(κ− f1)A (4.76)

Proof. Denote the integrability equations (4.74) and (4.75) by

int j :=2ḃ j(κ)a(κ)− b j(κ)ȧ(κ)

+ 2κa(κ)c j(κ)− (κ2+ 1)(2a(κ)c′j(κ)− a′(κ)c j(κ)),

w :=b1(κ)c2(κ)− b2(κ)c1(κ)− f0κ(κ− f1)a(κ),

(4.77)

and denote by
cross j := (B1× B2− f0κ(κ− f1)A) j (4.78)

the 3 entries of the vector equation (4.76). Explicitly we obtain

cross1 =b1(κ)c2(κ)− b2(κ)c1(κ)
− f0κ(κ− f1)a(κ),

cross2 =2b2(κ)ḃ1(κ) + 2κb2(κ)c1(κ)− 2(κ2+ 1)b2(κ)c
′
1(κ)

− 2b1(κ)ḃ2(κ)− 2κb1(κ)c2(κ) + 2(κ2+ 1)b1(κ)c
′
2(κ)

− f0κ(κ− f1)(κ
2+ 1)a′(κ),

cross3 =2ḃ1(κ)c2(κ)− 2(κ2+ 1)c′1(κ)c2(κ)

− 2ḃ2(κ)c1(κ) + 2(κ2+ 1)c′2(κ)c1(κ)
− f0κ(κ− f1)ȧ(κ).

(4.79)

We note w = cross1. As short computation shows

b2(κ)int1− b1(κ)int2+ (κ
2+ 1)a′(κ)w = a(κ)cross2 (4.80)

and
c2(κ)int1− c1(κ)int2+ (κ

2+ 1)ȧ(κ)w = a(κ)cross3 (4.81)

Thus we see that if int1 = int2 = w = 0, meaning that integrability conditions are
fulfilled, then a(κ) = 0, or cross2 = 0 and cross3 = 0. So for a(κ) 6= 0 all solutions
to (4.74) and (4.75) are solutions to (4.76).

As similar computation shows

b jcross3− c jcross2− 2(κc j + ḃ j − (κ2+ 1)c′j)cross1 = f0κ(κ− f1)int j (4.82)

We see that if cross1 = cross2 = cross3 = 0, then f0κ(κ− f1) = 0 or int1 = 0 and
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4.5 Bifurcation to higher spectral genus

int2 = 0. So for f0κ(κ− f1) 6= 0 all solutions to (4.76) are solutions to (4.74) and
(4.75).

We will now use this representation of the equations to determine the space of
possible solutions (ȧ, ḃ1, ḃ2, c1, c2) for given (a, b1, b2). of the form

a = (κ−κdp)
2â and b j = (κ−κdp)b̂ j. (4.83)

The equation from the first entries of B1× B2 = f0κ(κ− f1)A is

b1(κ)c2(κ)− b2(κ)c1(κ) = f0κ(κ− f1)a(κ). (4.84)

The degree of b j and c j is g +1 and the degree of a is 2g. Since b j have a common
zero at 0, we can divide out the factor κ from both sides of the equation. The degree
of c j are now 1 higher than those of b j. The polynomials b j have a common zero
at κdp in addition to the zero at κ = 0. These two facts together lead to the space
of possible c j being 3-dimensional. For the flow we are interested in, we have the
restriction that c1(0) = 0 and c′1(0) = 0 and this cuts the space of possible c j to a
1-dimensional space for every given ( f0, f1).

We use the second equation from B1 × B2 = f0κ(κ− f1)A to determine ḃ j from
the computed c j of the first equation. This equation has the form

b1(κ)ḃ2(κ)− b2(κ)ḃ1(κ) = p(κ) (4.85)

with p being a polynomial determined by (a′, b j, c j). Here b j have a common zero
at 0 as before but ḃ j also have a common zero there. Together with the common
zero of b j at κdp we obtain a 2-dimensional space of possible ḃ j.

Finally the last equation from B1× B2 = f0κ(κ− f1)A reads as

f0κ(κ− f1)ȧ(κ) = p(κ). (4.86)

Here p is determined by (ḃ j, c j) and there is no freedom in choosing an ȧ. It is
unique if the equation has a solution. So we have 1-dimensional freedom to choose
f0, f1 since different values of f0 lead to the same (ȧ, ḃ1, ḃ2, c1, c2)multiplied by some
constant factor. We have a 1-dimensional freedom for c1, c2 from the first equation
and a 2-dimensional freedom for ḃ1, ḃ2 from second equation. By combining these
results, we see that for a given (a, b1, b2) with a common zero at κdp the space of
possible (ȧ, ḃ1, ḃ2, c1, c2) is at most 4-dimensional.

We will now see that the solubility of the third equation restricts this space to a
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3-dimensional space. The third equation reads as

f0κ(κ− f1)ȧ(κ) =2ḃ1(κ)c2(κ)− 2(κ2+ 1)c′1(κ)c2(κ)

− 2ḃ2(κ)c1(κ) + 2(κ2+ 1)c′2(κ)c1(κ).
(4.87)

The restriction in solubility of the third equation comes from the fact that the left
hand side has degree 2g+1 but the right hand side has degree 2g+2. Unravelling
the coefficient of κ2g+2 from the right hand side, we obtain the following condition
on solubility

ḃ1,g+1c2,g+1− c1,g+1c2,g − ḃ2,g+1c1,g+1+ c1,g c2,g+1 = 0. (4.88)

This condition involves coefficients of ḃ j and c j which are obtained from solving the
first and second equation. To be precise we need the coefficients of κ2g+2 and κ2g+1

from the first equation

f0κ(κ− f1)a(κ) = b1(κ)c2(κ)− b2(κ)c1(κ). (4.89)

Those are
b1,g+1c2,g+1− b2,g+1c1,g+1 = f0 (4.90)

and

b1,g+1c2,g + b1,g c2,g+1− b2,g c1,g+1− b2,g+1c1,g =− f0 f1+ f0a2g−1. (4.91)

We also need the coefficients of κ2g+2 and κ2g+1 from the second equation

f0κ(κ− f1)(κ
2+ 1)a′(κ) =2b2(κ)ḃ1(κ) + 2κb2(κ)c1(κ)− 2(κ2+ 1)b2(κ)c

′
1(κ)

− 2b1(κ)ḃ2(κ)− 2κb1(κ)c2(κ) + 2(κ2+ 1)b1(κ)c
′
2(κ).

(4.92)

Those are

−2g f0 f1+ (2g − 1) f0a2g−1 =2b2,g+1 ḃ1,g+1− 2g b2,g c1,g+1− 2(g − 1)b2,g+1c1,g

− 2b1,g+1 ḃ2,g+1+ 2g b1,g c2,g+1+ 2(g − 1)b1,g+1c2,g .
(4.93)

Solving (4.90), (4.91), (4.93) for b1,g+1c1,g+1c2,g+1 and substituting them in (4.88)
we obtain

f0 b2,g+1(2c2,g − a2g−1c2,g+1+ ḃ2,g+1) = 0. (4.94)
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4.5 Bifurcation to higher spectral genus

Similarly, solving for b2,g+1c1,g+1c2,g+1, we obtain

f0 b1,g+1(2c1,g − a2g−1c1,g+1+ ḃ1,g+1) = 0. (4.95)

Those equations are fulfilled when f0 = 0. When f0 6= 0 they give a linear condition
on the space of possible (ȧ, ḃ1, ḃ2, c1, c2), since both b1,g+1 and b2,g+1, as leading
coefficients of b1 and b2, can not equal 0 at the same time under the assump-
tions 4.9. This means that (4.88) reduces the solution space by one dimension, and
we arrive at the conclusion that the space of solutions of M(Xdp)Y = 0 is exactly
3-dimensional

Proposition 4.11. The space of solutions (ȧ, ḃ1, ḃ2, c1, c2) for M(Xdp)Y = 0, where
Xdp is defined by a = (κ− κdp)2â and b j = (κ− κdp)b̂ j, κdp 6= 0, and â, b̂ j fulfill
assumptions 4.9, is exactly 3-dimensional.

An immediate consequence of this result is rank(Pl(Xdp)) = 2 and rank(Pr(Xdp)) =
3. This means that (κ0

dp, . . . ,κ3g+1
dp , 0, . . . , 0), (0, . . . , 0,κ0

dp, . . . ,κ3g+1
dp ) is indeed a ba-

sis for the left null space of M(Xdp).
We will now construct a basis for the space of the solutions of M(Xdp)Y = 0.

There are two basis vectors with f0 = 0. One comes from a solution with c j = 0
and corresponds to a Y direction where only the kdp is varied along the real axis.
The second solution is when c j 6= 0, in this case the double point is opened to two
branch points. The last basis vector comes from solving the equation with f0 6= 0.

We now factor out form a and b j the terms which affect the double point

a = (κ2− 2αrκ+α
2
r +αi)a

g−1 and b j = (κ− β j)b
g−1
j . (4.96)

At the singular spectral data with the double point κdp we have

αr = κdp, αi = 0, β j = κdp. (4.97)

So this factorization at the singular data is exactly the same as in Proposition 4.11.
Obviously ȧ and ḃ j are determined by ȧg−1, ḃg−1

j and α̇r α̇i β̇ j

ȧ = (−2κα̇r + 2αrα̇r + α̇i)a
g−1+ (κ2− 2αrκ+α

2
r +αi)ȧ

g−1,

ḃ j =−β̇ j b
g−1
j + (κ− β j)ḃ

g−1
j ,

a′ = (κ−αr)a
g−1+ (κ2− 2αrκ+α

2
r +αi)(a

g−1)′,

b′j = bg−1
j + (κ− β j)(b

g−1
j )

′.

(4.98)

We rewrite

2ḃ j(κ)a(κ)− b j(κ)ȧ(κ) =− 2κa(κ)c j(κ)

+ (κ2+ 1)(2a(κ)c′j(κ)− a′(κ)c j(κ))
(4.99)
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with those factored polynomials and obtain

(2ag−1 ḃg−1
j − bg−1

j ȧ)(κ− β j)(κ
2− 2αrκ+α

2
r +αi)

+ 2ag−1 bg−1
j β̇ j(κ

2− 2αrκ+α
2
r +αi))− ag−1 bg−1

j (κ− β)(−2κα̇r + 2αrα̇r + α̇i)

+ ((ag−1)′c j − 2ag−1c′j)(κ
2+ 1)(κ2− 2αrκ+α

2
r +αi)

+ 2ag−1c j((2κ
2−καr + 1)(κ−αr) + καi) = 0.

(4.100)

Proposition 4.12. Let the spectral data Xdp be defined by

a = (κ2− 2αrκ+α
2
r +αi)a

g−1, b j = (κ− β j)b
g−1
j (4.101)

and
αr = κdp, αi = 0, β j = κdp (4.102)

with κdp 6= 0. Let ag−1 = â and bg−1
j = b̂ j where X̂ is coming from â and b̂ j and fulfills

the assumptions 4.9. Then the space of solutions (ȧ, ḃ1, ḃ2, c1, c2) for M(Xdp)Y = 0 is
spanned by the following three solutions: one solution with

α̇r = 1, α̇i = 0, β̇ j = 1, ȧg−1 = 0, ḃg−1
j = 0, c j = 0, (4.103)

a second solution with

α̇r = 0, α̇i = 0, β̇ j = 0, ȧg−1 = ˙̂a, ḃg−1
j = ˙̂b j, c j = (κ−κdp)ĉ j, (4.104)

where ˙̂a, ˙̂b j and ĉ j are solutions to M(X̂ )Ŷ = 0 the flow of the spectral data without
the double point, and finally a third solution

α̇r = 0, α̇i = 1, β̇ j = β̇
o
j , ȧg−1 = ȧo ḃg−1

j = ḃo
j , c j = co

j , (4.105)

which does not lie in the space spanned by the first two solutions and which opens the
double point.

Proof. In the following we look at the integrability condition (4.100) right at the
spectral data where αr = κdp,αi = 0 and β j = κdp.

Setting

α̇r = 1, α̇i = 0, β̇ j = 1, ȧg−1 = 0, ḃg−1
j = 0, c j = 0, (4.106)

one can immediately see that (4.99) is fulfilled. We also can see that f0 = 0, since
in

b1(κ)c2(κ)− b2(κ)c1(κ) = f0κ(κ− f1)a(κ) (4.107)
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4.5 Bifurcation to higher spectral genus

the above choice of c j makes the left side identically to zero.
Now we set

α̇r = 0, α̇i = 0, β̇ j = 0, ȧg−1 = ˙̂a, ḃg−1
j = ˙̂b j, c j = (κ−κdp)ĉ j (4.108)

and we obtain

(κ−κdp)
3(2˙̂b j(κ)a

g−1(κ)− bg−1
j (κ)˙̂a(κ) + 2κag−1(κ)ĉ j(κ)

− (κ2+ 1)(2ag−1(κ)ĉ′j(κ)− (a
g−1)′(κ)ĉ j(κ))) = 0.

(4.109)

This shows that ˙̂a, ˙̂b j and ĉ j need to be a solutions to M(X̂ )Ŷ = 0, the flow of the
spectral data without the double point, if (4.99) is fulfilled. Here f0 6= 0.

Finally, we set

α̇r = 0, α̇i = 1, β̇ j = β̇
o
j , ȧg−1 = ȧo ḃg−1

j = ḃo
j , c j = co

j , (4.110)

Obviously these data do not lie in the space spanned by the first two solutions. We
will now show that this kind of data solves (4.99). In a first step we differentiate
the integrability condition (4.100) with respect to κ and evaluate it at κ= κdp. We
obtain

ag−1(κdp)(b
g−1
j (κdp)α̇

o
i − 2(κ2

dp + 1)co
j (κdp)) = 0. (4.111)

Solving this for co
j (κdp) leads to

co
j (κdp) =

bg−1
j (κdp)α̇o

i

2(κ2
dp + 1)

. (4.112)

Now we differentiate the integrability condition (4.100) a second time with respect
to κ and evaluate again at κ = κdp. We solve the result for β̇ j and use (4.112) to
obtain

β̇ o
j = α̇

o
r + α̇

o
i

3κdp

2(κ2
dp + 1)

+ α̇o
i

(ag−1)′(κdp)

4ag−1(κdp)
− α̇o

i

(bg−1
j )

′(κdp)

2bg−1
j (κdp)

(4.113)

We see that if

co
j (κdp) =

bg−1
j (κdp)

2(κ2
dp + 1)

, β̇ o
j =

3κdp

2(κ2
dp + 1)

+
(ag−1)′(κdp)

4ag−1(κdp)
−
(bg−1

j )
′(κdp)

2bg−1
j (κdp)

(4.114)

it follows that α̇r = 0, α̇i = 1. Since bg−1
j (κdp) 6= 0 from our assumptions and

(bg−1
1 )(κdp)co

2(κdp)− (b
g−1
2 )(κdp)co

1(κdp) = 0 with the above data, we can always
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pick co
j from the one-dimensional space of possible c j for b1(κ)c2(κ)− b2(κ)c1(κ) =

0 such that co
j (κdp) are as above. For these co

j setting β̇ o
j as above amounts again to

a particular choice in the space of solutions of

2b2(κ)ḃ1(κ) + 2κb2(κ)c1(κ)− 2(κ2+ 1)b2(κ)c
′
1(κ)

− 2b1(κ)ḃ2(κ)− 2κb1(κ)c2(κ) + 2(κ2+ 1)b1(κ)c
′
2(κ) = 0.

(4.115)

So setting co
j (κdp) and β̇ o

j leads to the desired α̇r = 0, α̇i = 1 and such a solution
exists for f0 = 0.

Since the three solutions we found are linearly independent, we have constructed
a basis for the solutions of M(Xdp)Y = 0.

One important observation we can make here is that under the assumption that
α̇r = 0 and α̇i = 1, we have

(bg−1
1 )′(κdp)

bg−1
1 (κdp)

6=
(bg−1

2 )′(κdp)

bg−1
2 (κdp)

⇔ β̇ o
1 6= β̇

o
2 (4.116)

In addition to α̇i 6= 0 this will be a necessary condition for properly open a double
point. To reflect this we extend the assumption 4.9 on X to the following assump-
tion on Xdp:

Assumption 4.13. Let Xdp be the vector of the spectral data (a, b1, b2) obtained from
the spectral data (ag−1, bg−1

1 , bg−1
2 ) and a putative double point κdp ∈ R by

a = (κ−κdp)
2ag−1 and b j = (κ−κdp)b

g−1
j . (4.117)

We assume the following:

• The polynomial ag−1 has no multiple zeros and ag−1(0) 6= 0, ag−1(±i) 6= 0.

• Neither of the polynomials bg−1
j has common zeros with ag−1.

• The polynomials bg−1
j have no common zeros except for κ = 0, where both bg−1

j
do have a common zero.

• At least one bg−1
j has the full degree g + 1 where g is the genus of Σg−1.

• (bg−1
1 )′(κdp)b

g−1
2 (κdp) 6= (b

g−1
2 )′(κdp)b

g−1
1 (κdp).

The procedure in section 4.4 allows to find κdp anywhere on the real line. Since
bg−1

1 and bg−1
2 are distinct polynomials, the last assumption is easy to meet.
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4.5.2 Power series expansion of the flow at a double point

We have seen in Proposition 4.1 that we can write the Whitham flow equation as
a matrix equation M(X )Y = 0. Additionally, the matrix M has the form M(X ) =
M0 + M1(X ) as shown in Proposition 4.2. These results enable us to compute t-
derivatives of the Whitham flow equation and by doing so construct a power series
solution to this ODE.

First of all we remember that M and consequently M0 and M1 do not depend on
t where X and Y are functions of t. We observe therefore

M(X (t)) = M0+M1(X (t))
∂t(M(X (t))) = M1(∂t X (t))
∂ n

t (M(X (t))) = M1(∂
n
t X (t)).

(4.118)

By taking t-derivatives of M(X )Y = 0 a further computation shows

(M0+M1(X (t)))Y (t) = 0

(M0+M1(X (t)))∂t Y (t) +M1(∂t X (t))Y (t) = 0

(M0+M1(X (t)))∂
2
t Y (t) + 2M1(∂t X (t))∂t Y (t) +M1(∂

2
t X (t))Y (t) = 0

(M0+M1(X (t)))∂
n
t Y (t) +

n−1
∑

i=0

�

n

i

�

M1(∂
(n−i)
t X (t))∂ i

t Y (t) = 0

(4.119)

From the previous section we know that M(Xdp) has nontrivial left kernel Pl(Xdp).
So we conclude that Ydp has to fulfill the following equations.

(M0+M1(Xdp))Ydp = 0 (4.120a)

Pl(Xdp)M1(∂t Xdp)Ydp = 0 (4.120b)

For ∂t Ydp the equations read as follows

(M0+M1(Xdp))∂t Ydp =−M1(∂t Xdp)Ydp (4.121a)

2Pl(Xdp)M1(∂t Xdp)∂t Ydp + Pl(Xdp)M1(∂
2
t Xdp)Ydp = 0 (4.121b)

Finally for ∂ n
t Y

(M0+M1(Xdp))∂
n
t Ydp =−

n−1
∑

i=0

�

n

i

�

M1(∂
(n−i)
t Xdp)∂

i
t Ydp (4.122a)

nPl(Xdp)M1(∂t Xdp)∂
n
t Y+Pl(Xdp)M1(∂

n+1
t Xdp)Ydp = (4.122b)

−
n−1
∑

i=1

�

n+ 1

i

�

Pl(X )M1(∂
(n+1−i)
t Xdp)∂

i
t Ydp
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We defined X and Y in such a way that ∂ n+1
t X is just the first part of ∂ n

t Y . More pre-
cisely, there exists a projection Px y := [I , 0] and ∂ n+1

t X = Px y∂
n
t Y . This means that

with the exception of the equations for Ydp, all those equations are linear systems
on the components of ∂ n

t Ydp which are the unknowns. Looking at the first equation
of the general system (4.122a) for ∂ n

t Ydp, we see that right hand side has to lie in
the image of M(Xdp) in order for the equation to be solvable. This is equivalent to

n−1
∑

i=0

�

n

i

�

M1(∂
(n−i)
t Xdp)∂

i
t Ydp ⊥ ker(M(Xdp)

ᵀ). (4.123)

The latter in turn is equivalent to (4.122b) for ∂ n−1
t Ydp. So if ∂ n

t Ydp solves (4.122b)
then (4.122a) is solvable for ∂ n+1

t Ydp. On the other hand (4.122b) is always linearly
independent from (4.122a), so it has always a solution in the solution space of
(4.122a). We conclude the following proposition.

Proposition 4.14. For every Ydp which solves

(M0+M1(Xdp))Ydp = 0

Pl(Xdp)M1(∂t Xdp)Ydp = 0
(4.124)

there exists a unique formal solution (Ydp,∂t Ydp,∂ 2
t Ydp, . . . ) which solves

(M0+M1(Xdp))∂
n
t Ydp =−

n−1
∑

i=0

�

n

i

�

M1(∂
(n−i)
t Xdp)∂

i
t Ydp

nPl(Xdp)M1(∂t Xdp)∂
n
t Ydp+Pl(Xdp)M1(∂

n+1
t Xdp)Ydp =

−
n−1
∑

i=1

�

n+ 1

i

�

Pl(Xdp)M1(∂
(n+1−i)
t Xdp)∂

i
t Ydp

(4.125)

for every ∂ n
t Ydp.

In 4.5.1 we computed the space of solutions of

M(Xdp)Ydp = (M0+M1(Xdp)Ydp = 0.

It remains to check which of those are solutions to

Pl(Xdp)M1(∂t Xdp)Ydp = 0.

We recall that Pl(Xdp) has only two rows, namely (κ0
dp, . . . ,κ3g+1

dp , 0, . . . , 0) and

(0, . . . , 0,κ0
dp, . . . ,κ3g+1

dp ). Since Pl(Xdp)M1(∂t Xdp) = 0 amounts to evaluation of the
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4.5 Bifurcation to higher spectral genus

integrability conditions at κdp, we can write Pl(Xdp)M1(∂t Xdp)Ydp = 0 as follows:

∂t

� −b j(κ)ȧ(κ) + 2a(κ)ḃ j(κ)+2κa(κ)c j(κ)

−(κ2+ 1)2a(κ)c′j(κ)+(κ
2+ 1)a′(κ)c j(κ)

�
�

�

�

κ=κdp

= 0. (4.126)

As before we factor out the terms which affect the double point form a and b j

a = (κ2− 2αrκ+α
2
r +αi)a

g−1 and b j = (κ− β j)b
g−1
j . (4.127)

At the singular spectral data with the double point we have

αr = κdp, αi = 0, β j = κdp. (4.128)

Obviously ȧ and ḃ j are determined by ȧg−1, ḃg−1
j and α̇r α̇i β̇ j.

The basis of the solutions for of M(Xdp)Y = 0 as computed in 4.5.1 can be char-
acterized as follows. One solution with

α̇r = 1, α̇i = 0, β̇ j = 1, ȧg−1 = 0, ḃg−1
j = 0, c j = 0, (4.129)

a second solution with

α̇r = 0, α̇i = 0, β̇ j = 0, ȧg−1 = ˙̂a, ḃg−1
j = ˙̂b j, c j = (κ−κdp)ĉ j, (4.130)

where ˙̂a, ˙̂b j and ĉ j are solutions to M(X̂ )Ŷ = 0 the flow of the spectral data without
the double point, and finally a third solution

α̇r = 0, α̇i = 1, β̇ j = β̇
o
j , ȧg−1 = ȧo ḃg−1

j = ḃo
j , c j = co

j , (4.131)

which does not lie in the space spanned by the first two solutions and which opens
the double point.

In a lengthy computation we rewrite the differentiated integrability condition
(4.126) with the factored polynomials (4.127) and insert linear combinations of
the solutions we recalled above (4.129), (4.130), (4.131) scaled by f1, f2 and f3

respectively. We obtain the following condition

f3( f1h1+ f2h2+ f3h3) = 0 (4.132)
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where

h1 =− ag−1(κdp)b
g−1
j (κdp) + 2(k1

dp + 1)ag−1(κdp)c
0
j (κdp) (4.133)

h2 =− 2(k1
dp + 1)ag−1(κdp)ĉ j(κdp) (4.134)

h3 =(k
2
dp + 1)((ag−1)′(κdp)c

0
j (κdp)− ag−1(c0

j )
′(κdp))

+ 2κdpag−1(κdp)c
0
j (κdp)− ag−1(κdp)b

g−1
j (κdp)β̇

o
j

(4.135)

By having this result, we can see which of the solutions to M(Xdp)Ydp = 0 are
solutions to Pl(Xdp)M1(∂t Xdp)Ydp = 0. From the above condition either f3 = 0, in
this case any linear combination of (4.133) and (4.134) solves (4.132) and thus
any linear combination of (4.129) and (4.130) solves Pl(Xdp)M1(∂t Xdp)Ydp = 0. Or
f3 6= 0, then there exists a unique up to a scaling combination of (4.133), (4.134),
and (4.135) which solves (4.132) and thus a unique up to a scaling combination
of (4.129), (4.130), and (4.131) which solves Pl(Xdp)M1(∂t Xdp)Ydp = 0. The first
solution is any linear combination of moving the closed double point along the real
axis and the flow of the lower spectral genus, the flow equation stays singular in all
of these directions. The second solution gives a unique direction which opens the
double point and the flow equation is not singular immediately after opening the
double point.

Proposition 4.15. The equation M(Xdp)Ydp = 0 has one unique formal solution
(Ydp,∂t Ydp,∂ 2

t Ydp, . . . ) with the property that this solution opens the double point.
The uniqueness is up to a scale of each of the ∂ n

t Ydp.

As we have seen before ∂ n+1
t Xdp = Px y∂

n
t Ydp. We can now define the formal

power series solution of the flow ODE near a singular spectral data.

Definition 4.16. Let

Xdp(t) := Xdp +
∑

n=1

∂ n
t Xdp

tn

n!
(4.136)

be the unique formal solution for the Whitham flow which opens the double point
in the spectral data Xdp.

So far we have proven the existence and the uniqueness of a formal solution. It
remains to show that this is an actual solution to the Whitham flow that is (4.136)
converges.

4.5.3 Vector fields with zeros and convergence of formal
solutions

In 4.5.2 we showed the existence of a formal power series solution for the Whitham
flow at singular spectral data with a double point. In this section we will recall

50



4.5 Bifurcation to higher spectral genus

a result about convergence of power series solutions from the general theory for
ODEs and use it to prove that the solution constructed in 4.5.2 is an actual solution
for the Whitham flow ODE.

We start with the ODE as defined in the Proposition 4.1. We extend M by one
row adding the equation c2(0) = 1 to our flow and thereby picking a particular
element for the kernel of M or, equivalently, fix the t-dependence of the flow. The
flow equation is now

M(X )Y = V (4.137)

where Y = [Ẋ , C] as in the Proposition 4.1 and V = (0, . . . , 0, 1).
This is a differential algebraic equation with a singularity. Most of the theory

concerning such equations deals with so called standard singular points (e.g. Rabier
[24]). Without going into further detail, we remark that the singular points in our
case are not standard singular points and we can not use these results. On the other
hand, we do not try to understand the geometry around the singular point in full
detail, we are merely interested in the convergence of a certain formal solution that
we have already constructed. In the following we will see that we can relate our
differential system to a system of the form

t Ẋ = f (t, X ) (4.138)

where t ∈ C and f : C×Cn → Cn is an analytic function. There are strong results
for these systems. In particular, Theorem V-2-7 from Hsieh [19] shows that every
formal solution to the system (4.138) is convergent.

In the following, we will use some standard facts about determinants, adjugate
matrices and their respective derivatives. We denote by

δ(X ) := det(M(X )), (4.139)

then the usual property of the adjugate matrix of M(X ) gives

M(X )adj(M(X )) = adj(M(X ))M(X ) = det(M(X ))I = δ(X )I . (4.140)

Since M is affine in X , we see that adj(M(X )) and δ(X ) are analytic in X , they are
even polynomial. Away from singular X we also know that δ(X ) 6= 0. Thus, we
can multiply (4.137) by adj(M(X )) and preserve the behavior of the flow outside
of singular points. We obtain

δ(X )Y = adj(M(X ))V (4.141)

We now can use the projection Px y = [I , 0] satisfying Ẋ = Px y Y to drop the C-part
of Y . We arrive at a new system

δ(X )Ẋ = Px y adj(M(X ))V =: f (X ). (4.142)
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We observe that f is analytic in X .

Let us now assume that at Xdp we have the following behavior for δ(X ) and
f (X ) = Px y adj(M(X ))V

δ(X )
�

�

X=Xdp
= 0, dδ(X )

�

�

X=Xdp
= 0, d2δ(X )

�

�

X=Xdp
6= 0, (4.143)

f (X )
�

�

X=Xdp
= 0, d f (X )

�

�

X=Xdp
= 0, (4.144)

and in particular also
∂ 2

t δ(Xdp)
�

�

t=0 6= 0. (4.145)

Essentially, we want that the right hand side of (4.142) vanishes to at least the same
order as the left hand side.

The above assumptions ensure that the power series expansion of δ(Xdp(t)) in t
starts with a quadratic term. Therefore we can make a formal change of coordinates
from t to s such that

δ(Xdp(t(s))) = s2. (4.146)

The new formal solution Xdp(s) is now a formal solution to s2Ẋ = f (X ).

Let us now move Xdp to the origin, so that we have

Xdp(0) = 0, f (X )
�

�

X=0 = 0, d f (X )
�

�

X=0 = 0. (4.147)

We can then write Xdp(s) = sX̂ (s) and accordingly Ẋ (s) = s ˙̂X (s) + X̂ (s). The new
formal series X̂ (s) is now a formal solution to

s3X̂ (s) = f (sX̂ (s))− s2X̂ (s). (4.148)

Define now a new function g by

g(s, W ) :=
f (sW )

s2 −W. (4.149)

We observe that g(0, W ) is well defined since f vanishes to at least second order at
0. So we can write a new differential equation

sẆ = g(s, W ) (4.150)

and immediately see that W = X̂ (s) solves this equation. For this fact we see that
g(0, X̂ (0)) = 0. We can again shift by X̂ (0) to get g(0, 0) = 0. The makes all
assumptions of Theorem V-2-7 from Hsieh [19] hold and thus X̂ (s) converges. This
means that also Xdp(t) converges after some change of coordinates in t. Since the
system we are interested in is an autonomous system, we are free to make any
change of coordinates in t.
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4.5 Bifurcation to higher spectral genus

It remains to check the assumptions (4.143), (4.144) and (4.145) to finally estab-
lish the convergence of our formal solution. We have already proved the assumption
(4.143) in Lemma 4.5. The assumption (4.145) follows directly from (4.143) and
the property of Xdp(t) that it opens the double point. Let us now prove the validity
of (4.144). We first notice that M(X ) has nullity rank of 2 at Xdp. From this it
follows directly that adj(M(X ))

�

�

X=Xdp
= 0. This proves f (X )

�

�

X=Xdp
= 0, the first part

of (4.144). To prove d f (X )
�

�

X=Xdp
= 0 a little more work is required. We split M as

M =
�

M̂ B
0 1

�

(4.151)

such that
�

B
1

�

is the column corresponding to the only non-zero entry of V . We
compute

adj(M) =
�

adj(M̂) −adj(M̂)B
0 det(M̂)

�

. (4.152)

This leads us to

f (X ) = Px y adj(M(X ))V = Px y

�

−adj(M̂(X ))B(X )
det(M̂(X ))

�

. (4.153)

We want to show d f (X )
�

�

X=Xdp
= 0. We already know ddet(M̂(X ))

�

�

X=Xdp
= 0 so

it remains to show d(adj(M̂)(X )B(X ))
�

�

X=Xdp
= 0 or dadj(M̂)(X )B(X )

�

�

X=Xdp
= 0 as

dB(X )
�

�

X=Xdp
= 0 since B(X ) is linear in X . We use

adj(M̂(X ))M̂(X ) = det(M̂(X ))I . (4.154)

By differentiating and evaluating at Xdp we obtain

d adj(M̂(X ))M̂(X )
�

�

X=Xdp
+ adj(M̂(X ))dM̂(X )

�

�

X=Xdp
= ddet(M̂(X ))I

�

�

X=Xdp
. (4.155)

Again, we already know adj(M̂(X ))
�

�

X=Xdp
= 0 and ddet(M̂(X ))

�

�

X=Xdp
= 0, and so

we have
dadj(M̂(X ))M̂(X )

�

�

X=Xdp
= 0. (4.156)

We use this equation to ensure

d adj(M̂)(X )B(X )
�

�

X=Xdp
= 0 (4.157)

by showing
B(X )

�

�

X=Xdp
∈ Im(M̂(X ))

�

�

X=Xdp
. (4.158)
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Chap. 4: Whitham deformations

The vector B(Xdp) contains the coefficients of c2,0 of the flow equations. Those
coefficients are the coefficients of the polynomial κa(κ) + (κ2 + 1)a′(κ). Both
a(κ) and a′(κ) have a root at κdp. We remember that (κ0

dp, . . . ,κ3g+1
dp , 0, . . . , 0) and

(0, . . . , 0,κ0
dp, . . . ,κ3g+1

dp ) are the basis of left kernel Pl(Xdp) of M(Xdp). Using the
last two fact we see that

B(Xdp)⊥ ker(M̂(Xdp)
⊥) (4.159)

or equivalently
B(Xdp) ∈ Im(M̂(Xdp)). (4.160)

So we have shown d adj(M̂)(X )B(X )
�

�

X=Xdp
= 0 and thus also d f (X )

�

�

X=Xdp
= 0. This

was the last assumption for the proof of the main proposition of the section giving
us the convergence of the formal solution to the Whitham flow at a singular point.

4.6 Algorithm for higher spectral genus
Let us summarize our results so far. We have seen in section 4.2 that we can use a
Whitham deformation with a torus as initial data and flow though cylinders hitting
new tori on a dense subset of every time interval. In section 4.4 we have proven
Lemma 4.7, which ensures that on such a flow we can always find cylinders with
putative double points. In section 4.5 we have shown that one can bifurcate to
higher spectral genus by opening such double points under the assumptions 4.13
on the spectral data. This opening procedure ensured that the closing conditions
which were preserved by the Whitham flow were preserved during the bifurcation.
This allows to continue the Whitham flow into higher spectral genus, still producing
spectral data of CMC tori on a dense subset of the existence interval of the flow.
Using such a torus as initial data for a new deformation, one obtains every time a
torus of spectral genus one higher than before.

The obvious algorithm is the following. We start at a torus with spectral genus g,
spectral curve Σg , and spectral data X g:

(i) Use the Whitham deformation to flow from Σg to Σg,dp with a putative double
point at κdp. For details see section 4.4.

(ii) Add a double point to Σg,dp at κdp obtaining a singular curve with spectral
data X g+1,dp.

(iii) Use the procedures from sections 4.5.1 and 4.5.2 to construct a formal solu-
tion to the Whitham flow desingularizing the flow at the bifurcation point.
The treatment in section 4.5.3 ensures that this formal solution converges.

(iv) Use the Whitham deformation to flow further and stop at a torus with spectral
genus g + 1, spectral curve Σg+1 and spectral data X g+1.
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4.6 Algorithm for higher spectral genus

(v) Repeat starting from (i) until g reaches desired spectral genus.

To start the procedure one can use a known lower spectral genus torus like the
Wente torus. Using the Wente torus has an advantage for numerical experiments
since it is easy to compute the spectral data for this torus to an arbitrary chosen
precision. One can do this by the description given by Abresch [1] in terms of ellip-
tic functions. This problem is well understood numerically and there exist several
implementation in different numerical software packages.

The above algorithm does not require long time existence of the Whitham flow
since every step can be completed in an ε-time interval of the flow. Thus our al-
gorithm proves the existence of tori of arbitrary high spectral genus g as long as
g ¾ g0, where g0 is spectral genus of a known torus at the start of the procedure.
When we use the Wente torus of spectral genus 2 with explicitly given spectral data
[5], [1]as a starting CMC torus our algorithm produces an alternative proof of the
result by Jaggy [20] for the existence of tori with arbitrary spectral genus g ¾ 2.

Theorem 4.17. For every g ¾ 2 there exist a torus in R3 such that its spectral curve
has genus g.
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Chap. 4: Whitham deformations

4.7 Numerical Example
In this section we will describe a numerical experiment showing the procedure
described in the previous section 4.6. We will start with the well known Wente
torus of spectral genus 2. Using the method developed before, we first deform the
spectral data such that we obtain spectral data of spectral genus 2 with a putative
double point. Then we will open this double point by desingularizing the Whitham
flow at this point. After that we continue the Whitham flow into spectral genus 3
and finally arrive at the spectral data of the Dobriner torus.

We used the Wolfram Mathematica software package to compute the Whitham
flow by using the built in ODE solver of this package. The desingularization was
performed by constructing the first few terms of the power series expansion and
using the truncated series to compute non singular spectral data near bifurcation
point. After that the ODE solver was used again to continue the flow. The recon-
struction of the extended frame from the spectral data obtained by the flow was
performed by a Killing field. References for reconstruction methods can be found
at the end of section 2.4. The immersion into R3 was then computed by the Sym-
Bobenko formula. The computation was done by an external library written for this
purpose and the visualization was then performed again in Mathematica.

We will show the spectral curve by plotting the branch points inside the unit
circle in the λ-plane, which is more common in literature compared to the κ-plane
we used to simplify our computations. We will omit the branch points outside of
the unit circle since those are obtained by just reflecting at unit circle. The branch
point at the origin and the Sym point at λ= 1 is also included in the plots.
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4.7 Numerical Example

-i

-1

i

1

Figure 4-2: The starting point of the deformation in spectral genus 2: the Wente
torus. Shown are the CMC torus in R3 and the spectral curve. The spec-
tral curve is characterized by its branch points in the λ-plane denoted
by small crosses. The branch point at λ= 0 and the Sym point at λ= 1
are shown as well.
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Chap. 4: Whitham deformations
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i

1

Figure 4-3: A twisted torus of spectral genus 2 near a possible bifurcation point
to spectral genus 3. Shown are the CMC torus in R3 and the spectral
curve. The spectral curve is characterized by its branch points in the
λ-plane denoted by small crosses. The branch point at λ = 0 and the
Sym point at λ= 1 are shown as well.
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4.7 Numerical Example

-i

-1

i

1

Figure 4-4: The traces of the branch points in the λ-plane during the deformation
from torus in figure 4-2 to the torus in figure 4-3. The branch points
in the λ-plane are denoted by small crosses. Their direction during the
deformation is shown by an arrow. The branch point at λ = 0 and the
Sym point at λ= 1 are shown as well.
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Chap. 4: Whitham deformations
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1

Figure 4-5: A twisted torus of spectral genus 2 near a possible bifurcation point
to spectral genus 3. Shown are the CMC torus in R3 and the spectral
curve. The spectral curve is characterized by its branch points in the
λ-plane denoted by small crosses. The branch point at λ = 0 and the
Sym point at λ= 1 are shown as well.
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4.7 Numerical Example
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1

Figure 4-6: A cylinder of spectral genus 2 at a possible bifurcation point to spectral
genus 3. Shown are the cylinder and the traces of the branch points
of the spectral curve in the λ-plane during the deformation from the
twisted torus in figure 4-5 to this cylinder. The direction of the move-
ment of the branch point above the real axis is roughly towards the
axis.
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Figure 4-7: The traces of the branch points in the λ-plane during the deformation
after bifurcating to spectral genus 3 from cylinder in figure 4-6. The
branch points in the λ-plane are denoted by small crosses. Their direc-
tion during the deformation is shown by an arrow. A double point on
the unit circle in the upper right quadrant is opened and the resulting
branch point moves towards its final position in the upper left quadrant.
The branch point at λ = 0 and the Sym point at λ = 1 are shown as
well.
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4.7 Numerical Example
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1

Figure 4-8: The end point of the deformation at spectral genus 3: the Dobriner
torus. Shown are the CMC torus in R3 and the spectral curve. The spec-
tral curve is characterized by its branch points in the λ-plane denoted
by small crosses. The branch point at λ= 0 and the Sym point at λ= 1
are shown as well.
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5 Conclusion
The presented work reproves a statement by Jaggy [20] about the existence of
spectral curves for CMC tori with arbitrary high spectral genus using a deformation
allowing to construct the resulting CMC tori. This proof deepens the understanding
about the structure of the underlying moduli space of CMC tori and CMC cylinders
with doubly periodic metric. It also allows to use the Witham deformation to obtain
new examples of tori and gives a possible guideline to a proof of their existence
since it also gives a deformation path starting at a torus known to exist. In this
sense it gives some understanding about the connectedness of the moduli space.

Still there is a loot of work to do. The techniques used in this thesis can probably
be expanded to understand when it is possible to open several double points at once
and to the case where a double point is opened at the Sym point. These cases are
harder because the conditions for when this is possible are not dense anymore. So
further control on spectral data during the deformation would be desirable. Also
the question of long term existence of Whitham flow should be tackled in order to
obtain a further understanding of the structure of the moduli space.
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