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Abstract

The discovery of two fundamental error-correcting code families, known as turbo codes

and low-density parity-check (LDPC) codes, has led to a revolution in coding theory

and to a paradigm shift from traditional algebraic codes towards modern graph-based

codes that can be decoded by iterative message passing algorithms. From then on, it has

become a focal point of research to develop powerful LDPC and turbo-like codes. Besides

the classical domain of randomly constructed codes, an alternative and competitive line

of research is concerned with highly structured LDPC and turbo-like codes based on

combinatorial designs. Such codes are typically characterized by high code rates already

at small to moderate code lengths and good code properties such as the avoidance of

harmful 4-cycles in the code’s factor graph. Furthermore, their structure can usually

be exploited for an efficient implementation, in particular, they can be encoded with

low complexity as opposed to random-like codes. Hence, these codes are suitable for

high-speed applications such as magnetic recording or optical communication.

This thesis greatly contributes to the field of structured LDPC codes and systematic

repeat-accumulate (sRA) codes as a subclass of turbo-like codes by presenting new com-

binatorial construction techniques and algebraic methods for an improved code design.

More specifically, novel and infinite families of high-rate structured LDPC codes and sRA

codes are presented based on balanced incomplete block designs (BIBDs), which form

a subclass of combinatorial designs. Besides of showing excellent error-correcting capa-

bilites under iterative decoding, these codes can be implemented efficiently, since their

inner structure enables low-complexity encoding and accelerated decoding algorithms.
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A further infinite series of structured LDPC codes is presented based on the notion

of transversal designs, which form another subclass of combinatorial designs. By a pro-

per configuration of these codes, they reveal an excellent decoding performance under

iterative decoding, in particular, with very low error-floors. The approach for lowering

these error-floors is threefold. First, a thorough analysis of the decoding failures is car-

ried out, resulting in an extensive classification of so-called stopping sets and absorbing

sets. These combinatorial entities are known to be the main cause of decoding failu-

res in the error-floor region over the binary erasure channel (BEC) and additive white

Gaussian noise (AWGN) channel, respectively. Second, the specific code structures are

exploited in order to calculate conditions for the avoidance of the most harmful stopping

and absorbing sets. Third, powerful design strategies are derived for the identification

of those code instances with the best error-floor performances. The resulting codes can

additionally be encoded with low complexity and thus are ideally suited for practical

high-speed applications.

Further investigations are carried out on the infinite family of structured LDPC codes

based on finite geometries. It is known that these codes perform very well under iterative

decoding and that their encoding can be achieved with low complexity. By combining

the latest findings in the fields of finite geometries and combinatorial designs, we gene-

rate new theoretical insights about the decoding failures of such codes under iterative

decoding. These examinations finally help to identify the geometric codes with the most

beneficial error-correcting capabilities over the BEC.
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1
Introduction

Many forms of digital communication are visible in daily life such as telephone commu-

nication, television, computer networks and radio broadcasting. Besides of that, there

are more inconspicuous types of digital communication within the fields of electrical

engineering, computer science, aerospace engineering and many more. All these forms

of digital communication have in common, that the transmission of information is di-

sturbed by physical interferences such as atmospheric disturbances or hardware failures,

leading to errors in the received data. Hence, since the advent of the first data trans-

mission applications, there is a great interest in the detection and correction of errors

that occur during the transmission or storage of digital data. Today, we are still facing

big challenges in order to keep pace with technological advancements, novel application

scenarios as well as new trends in the field of coding theory such as quantum commu-

nication. Therefore, new and powerful error-correction techniques have to be invented,

explored and developed in the future.

Looking back to the year 1948, Claude E. Shannon has published a groundbreaking

paper [1] that gave birth to the fields of information theory and coding theory. In this

paper, Shannon formalized the concept of information and established fundamental li-

mits for the maximum amount of information that can potentially be transmitted over

an unreliable communication channel [2]. Shannon’s efforts culminated in his famous

channel coding theorem, which states that for any given channel, there exists an upper
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limit, called the channel’s capacity, for which reliable transmission is possible for rates

smaller than the capacity and reliable transmission is not possible for rates above the

capacity. More precisely, there always exists a block code with rate smaller than the

channel capacity for which the decoding error probability is arbitrarily small. Unfortu-

nately, the proof of this theorem is non-constructive such that it does not deliver any

concrete codes with capacity-achieving decoding performances. As a consequence, it has

become a major challenge to construct practical codes capable of achieving the limit of

Shannon’s coding theorem along with manageable encoding and decoding complexity.

A popular class of capacity-achieving codes are low-density parity-check (LDPC) co-

des that were originally introduced by Gallager in 1962 [3] and further examined in his

remarkable doctoral thesis [4]. In this thesis, Gallager also conceived the idea of itera-

tive decoding under which LDPC codes are potentially capable of achieving the limit

of Shannon’s coding theorem. However, at this time, the implementation of an efficient

iterative decoder for LDPC codes was infeasible due to the limited computational power

such that the powerfulness of iterative decoding could not be fully demonstrated [5]. As

a consequence, the class of LDPC codes was largely ignored for over three decades. Mo-

reover, the field of error-correcting codes was dominated by highly-structured algebraic

block codes and convolutional codes such that the enormous potential of LDPC codes

has not been recognized since they pursued a completely different coding paradigma.

The discovery of turbo codes in 1993 by Berrou et al. [6, 7] revolutionized the field of

coding theory and led to a fundamental paradigm shift from algebraic-driven approaches

to modern codes with very long code lengths that can be decoded by iterative message-

passing algorithms. By using a parallel concatenation of two simple constituent codes

and a pseudo-random block interleaver, Berrou et al. surprisingly discovered codes achie-

ving Shannon’s theoretical limits, having enough structure to enable low encoding and

decoding algorithms such that these codes are suitable for practical applications. After

the rediscovery of LDPC codes by Mackay and Neal in 1995 [8] there has been renewed

interest in LDPC codes. Decoded with iterative message-passing algorithms, these co-
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des have shown to perform remarkably close to the Shannon limit. Subsequently, LDPC

codes have become a focal point of research.

Inspired by the turbo revolution, other families of turbo-like codes has been developed

as competitive alternatives to turbo codes and LDPC codes. One example are so-called

repeat-accumulate (RA) codes introduced in [9]. This code family was primarily develo-

ped for theoretical purposes and have an extremly simple encoding scheme that basically

consists of a serial concatenation of two simple constituent codes, namely a repetition

code and an accumulator. Despite of their simplicity, it has soon been realized that pro-

perly designed RA codes exhibit an excellent decoding performance. Also, it has been

recognized that the systematic version of RA codes1, called systematic RA (sRA) codes

can be interpreted as LDPC codes (see for example, [10], and the references therein).

Hence, sRA codes can be simultaneously seen as a class of simple turbo-like codes and a

class of LDPC codes [11]. This dual representation can be exploited by using the turbo-

like code representation for low-complexity encoding and the LDPC code representation

for graph-based iterative decoding, gaining the benefits of both representations.

The codes considered in the current thesis are highly relevant for pratical applications

in actual and future generations of communication system standards. More precisely,

LDPC codes are adopted in several recent wireless networking standards such as IE-

EE802.11n (WiFi), IEEE802.16d (WiMAX), IEEE 802.16e (WiMAX) and in 10 Gb/s

ethernet IEEE 803.3an (cf. [12, 13] and the references therein), as well as in digital vi-

deo broadcasting (DVB-2) [14] and many others. Furthermore, they are considered for

a wide range of applications with low BER requirements such as optical channels and

magnetic disk drives [15, 16]. Also, repeat-accumulate codes are used in today’s and

future standards such as in DVB-S2 and IEEE802.16 (WirelessMAN).

1 The systematic version of an RA code means that the orginal message bits are concatenated with the

output of the accumulator such that the message is directly embedded in the encoded output.
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1.1. Thesis overview

The present thesis is structured as follows. Chapter 2 gives a short overview of the basic

concepts of coding theory in Section 2.1 and introduces the family of low-density parity-

check (LDPC) codes in Section 2.2 as well as the family of systematic repeat-accumulate

(sRA) codes in Section 2.3. For both code families, Section 2.4 gives a short survey of

the basic principles of good code design.

Chapter 3 presents new families of structured LDPC codes based on combinatorial

construction techniques. Firstly, Section 3.1 gives a short introduction into the concept of

balanced incomplete block designs (BIBDs) as a basic notion of the field of combinatorial

design theory, and describes their connection to the design of LDPC codes. Secondly,

Section 3.2 and 3.3 presents novel classes of high-rate LDPC codes and sRA codes,

respectively, based on certain classes of BIBDs. Finally, the error-correcting capabilities

of the novel codes are demonstrated by extensive Monte-Carlo simulations in Section 3.4.

Chapter 4 presents new families of LDPC codes based on transversal designs with

optimized performances over the BEC and AWGN channel, in particular, with very low

error-floors. After shortly introducing the basic concepts of set systems, Latin squares

and transversal designs in Section 4.1, it is shown in Section 4.2, how LDPC codes can be

constructed from transversal designs with cyclic structure. Based on this specific family

of LDPC codes, an extensive stopping set analysis is carried out in Section 4.3, which is

then utilized for the design of LDPC codes with highly beneficial stopping set distribu-

tions in Section 4.4, leading to codes with very low error-floors over the BEC. Similarly,

after conducting an absorbing set analysis in Section 4.5, powerful design strategies are

developed in Section 4.6 for the construction of LDPC codes with benefical absorbing

set distributions, leading to excellent codes over the AWGN channel. Subsequently, the

decoding performances of the arising LDPC codes are demonstrated in Section 4.7 by

comprehensive computer simulations over the BEC and AWGN channel. The chapter

is closed by an extensive discussion which compares the novel TD LDPC codes to the

6



BIBD LDPC codes presented in the previous chapter.

Chapter 5 gives some new theoretical insights into the family of LDPC codes based

on finite geometries, more specifically, based on projective and affine geometries which

are introduced in Section 5.1. Section 5.2 gives a short overview of the different types

of LDPC codes that can be constructed based on finite geometries. In Section 5.3, a

thorough stopping set analysis is carried out which results in fundamental bounds for

the stopping distances of LDPC codes based on finite geometries. Finally, Section 5.4

summarizes and discusses the results of the chapter.

Chapter 6 concludes the thesis by discussing the major results, while Section 6.1 gives

an outlook on upcoming tasks that can be followed up.
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1.2. Publications and contribution

The present thesis is based on the results of the author’s publications [P1], [P2] and

the submitted manuscript [P3], but it extends their outcome substantially. Although

structured and combinatorial code design is an integral part of the last manuscript [P4],

its quantum theoretic coding approach separates it thematically from the other papers

such that it is not treated in the present thesis.

Section 1.2.1 gives references to all publications and manuscripts in which the doctoral

candidate and author of the present thesis has been involved. Subsequently, Section 1.2.2

describes the candidate’s contribution to the listed manuscripts.

1.2.1. Publications and manuscripts

[P1] A. Gruner and M. Huber, “New Combinatorial Construction Techniques for Low-

Density Parity-Check Codes and Systematic Repeat-Accumulate Codes,” IEEE

Trans. on Communications, vol. 60, no. 9, pp. 2387–2395, 2012.

[P2] A. Gruner and M. Huber, “Low-Density Parity-Check Codes from Transversal

Designs with Improved Stopping Set Distributions,” IEEE Trans. on Communi-

cations, vol. 61, no. 6, pp. 2190–2200, 2013.

[P3] A. Gruner and M. Huber, “Absorbing Set Analysis and Design of LDPC Codes

from Transversal Designs over the AWGN Channel,” submitted to IEEE Trans. on

Information Theory, 2014.

[P4] Y. Fujiwara, A. Gruner and P. Vandendriessche, “High-rate quantum low-density

parity-check codes assisted by reliable qubits,” accepted for publication in IEEE

Trans. on Information Theory, 2014.
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1.2.2. Contribution of the candidate

Regarding the first publication [P1], the doctoral candidate is the lead author and has

been responsible for the Sections I, IV, and V, whereas the co-author has been in charge

of Sections II and III. The scientific ideas, as well as the analysis and interpretation of

the results have been worked out under the collaboration of both authors in equal parts.

All simulations have been performed, visualized and interpreted by the candidate based

on a self-developed MATLAB software.

For the manuscripts [P2] and [P3], the candidate is the lead author as well as the

originator of the scientific ideas of both papers. Furthermore, the data generation and

paper writing has been completely carried out by the doctoral candidate. The results

have been analyzed and interpreted mainly by the lead author in collaboration with the

co-author. Finally, all simulations have been performed, presented an evaluated by the

candidate.

For the last manuscript [P4], the candidate is a co-author and has been responsible

for the implementation and presentation of all experimental results. Furthermore, he has

contributed to the analysis and interpretation of the results.
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2
Basics

2.1. Coding theory

The field of coding theory is concerned with the protection of data against physical

errors such as atmospheric disturbances and hardware failures when transferring the data

over a noisy communication channel or when storing the data in an error-prone storage

system. By contrast, the related area of cryptology is concerned with the protection of

data against unauthorized wiretapping and data manipulation by third parties (called

adversaries). The coding theory is also closely related to the field of information theory

and interacts with several scientific disciplines such as discrete and applied mathematics,

computer science and electrical engineering.

2.1.1. Error-correcting codes

The basic notion in coding theory is the so-called error-correcting code which is used to

detect and correct errors. The essential idea of an error-correcting code is to add redun-

dant data systematically to a message so that the receiver can recover the potentially

corrupted message by exploiting the code’s structure. Fig. 2.1 shows the components

of a channel coding system. A sender delivers messages that shall be transmitted over

10



Sender Encoder Channel Decoder Receiver
Messages Codewords

Received
codewords

Recovered
messages

Encodes message
into codewords

Occurrence of
physical errors

Reconstruction of
the messages

Abbildung 2.1. – Channel coding system

a noisy channel and the encoder translates these messages into codewords containing

redundant data. The arising codewords are then transmitted over a channel which may

introduce errors due to physical disturbances. The decoder finally attempts to recover

the original message by using the redundancy and structure of the received codewords.

2.1.2. Linear block codes

The most important class of error-correcting codes are so-called block codes which encode

messages of K symbols into codewords (or blocks) of N symbols where N > K. A linear

block code, denoted by C, with code length N and dimension K is a linear K-dimensional

subspace of the vector space FNq , where Fq is the finite field of prime power order q. The

vectors of (the subspace) C are called codewords. In this thesis, we only consider binary

codes with q = 2 such that each codeword is a sequence of N bits. Since linear subspaces

can be spanned by a minimal set of basis vectors, every block code C can be represented

by a minimal set of K codewords. By writing these codewords as the columns of an

N × K matrix, we obtain the generator matrix G of the code. The generator matrix

provides a way to encode a message x ∈ FKq (thought as a column vector) into the

codeword Gx ∈ C, such that

C = {Gx : x ∈ FKq }.

Furthermore, if for any M ×N matrix H with M ≥ N −K holds that

C = {c ∈ FNq : Hc = 0},

then H is called a parity-check matrix of the code, i.e., C is implicitly given by the null

11



space of H. Since the columns of G are codewords of C, it clearly holds that HG = 0. Also

note that the parity-check matrix H of a code is not unique, i.e., there are many different

representations for a parity-check matrix leading to the same code. It is very important

to design the parity-check matrix properly since it influences the code’s performance

under iterative decoding and furthermore, since specific structures can be exploited for

the practical implementation of the code.

The hamming distance between two codewords is equal to the number of symbols in

which they differ and the weight of a codeword is its hamming distance to the all-zero

codeword. In the classical domain of algebraic coding theory, an important property of

a linear code, C, is its minimal distance, denoted by dmin(C), which is defined as the

smallest hamming distance between any two codewords of C or, equivalently, as the

smallest weight of any codeword of C. The minimal distance of a code plays an essential

role for the classical maximum-likelihood (ML) decoder, since the ML decoding strategy

is to find the codeword with the smallest hamming distance to the received codeword.

Obviously, it is guaranteed that a number of
⌊
(dmin(C) − 1)/2

⌋
or less errors can be

corrected.

2.2. Low-density parity-check (LDPC) codes

Whereas in the classical domain of algebraic codes (e.g. [17, 18]), the vector space of

their codewords is at the forefront in order to maximize the code’s minimum distance

under ML decoding, the core part of an LDPC code is its parity-check matrix H. The

central idea of an LDPC code [3] is that H is sparse, meaning that the number of ones

in H is small compared to the number of zeros. The advantage of a sparse parity-check

matrix is that an iterative decoding algorithm can efficiently operate on the code’s factor

(or Tanner) graph [19] which is an equivalent representation of the parity-check matrix.

More precisely, let GH = (V, F,E) denote a bipartite graph, where the nodes V are

associated with the rows of H, the nodes F are associated with the columns of H and E

12



is a set of undirected edges such that the i-th node of V is connected to the j-th node of

F if and only if Hij = 1. The elements of V are called bit nodes, since they correspond

to the code bits, and the elements of F are called check nodes, since they correspond to

the parity-check equations of the code.

Classically important parameters of an LDPC code are the code length N , which

is equal to the number of columns of H, the dimension K = N − rank2(H), the rate

R = 1− rank2(H)
N

and the design rate Rd = 1− M
N

where M is the number of rows of H.

Note that the design rate is equal to the code rate if and only if the 2-rank of H is full,

else R > Rd. If the parity-check matrix of an LDPC code has constant column weights

k and constant row weights r, then the code is called (k, r)-regular.

2.2.1. Encoding

Since LDPC codes are linear block codes, it is always possible to encode messages by

calculating the generator matrix G from the parity-check matrix H and to multiplicate

the messages with G in order to obtain the corresponding codewords. Unfortunately,

the generator matrices of LDPC are generally not sparse such that there arise two

major drawbacks. The number of multiplications for encoding as well as the memory

demand to store the generator matrix is quadratic in the code length. This situation is

intensified by the circumstance that we need large code lengths for capacity-achieving

decoding performances. As a consequence, it is a big shortcoming of LDPC codes that

they usually have a high encoding complexity quadratic in the code length.

However, there exist families of structured LDPC codes whose encoding complexity

is linear proportional to the code length. For instance, the class of quasi-cyclic LDPC

codes (e.g. [20]) can be encoded by circuits of simple feedback shift registers [21]. One

important objective of this thesis is to design structured LDPC codes that are accessible

for low-complexity encoding, such that these codes can be used for practical applications.
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2.2.2. Iterative decoding

Whereas classical block codes are generally characterized by short code lengths and

highly algebraic structure in order to reduce the decoding complexity under ML de-

coding, LDPC codes pursue a different decoding paradigma. LDPC codes unfold their

full strength in combination with iterative decoding algorithms which allow the codes

to potentially achieve the limit of Shannon’s coding theorem. These algorithms were

independently discovered several times (e.g. [3, 22]) and thus are known under different

names and variants such as the belief propagation algorithm [23], the message passing

algorithm [24] or the sum-product algorithm [25].

The family of iterative decoding algorithms can generally be divided into hard-decision

algorithms which use binary values for their decoding computations and soft-decision

algorithms which use probabilistic and continuous values. In general, hard-decision al-

gorithms have a low computational complexity, but perform poorly compared to soft-

decision algorithms. Conversely, soft-decision algorithms exhibit very good decoding per-

formances but at the cost of a high complexity. As a consequence, there is always a

tradeoff between the computational complexity and the error performance of decoding

algorithms.

When Gallager invented the LDPC codes in his thesis [4], he also came along with

various iterative decoding algorithms, today known as the Gallager A/B algorithms (see,

e.g., [26]) and the bit-flipping algorithm. These algorithms are examples for hard-decision

decoding and are widely used over the binary symmetric channel (BSC). In the same

thesis, Gallager presented the first probabilistic decoding method as an instance of soft-

decision algorithms. After it has been recognized that these algorithms perform very

well, many new iterative decoding algorithms have been developed for various channels.

The most famous iterative decoding algorithm is the so-called sum-product algorithm

(SPA). The basic idea behind the SPA is to iteratively improve approximations of the

a-posteriori probabilities (APPs) based on the incoming message symbols. For this, the
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algorithm sends probabilistic messages iteratively along the edges of the code’s factor

graph and applies Bayes’ rule at each node based on the extrinsic information gained

of the local neighboring check nodes. Since the parity-check matrix is sparse, the factor

graph has only a small number of edges which makes the decoding algorithm efficient.

It can be shown that the SPA leads to correct APPs when the factor graph is free of

cycles, but for practical reasons, this assumption can not be met by serious LDPC codes.

However, it has been recognized that the SPA nevertheless works amazingly well if the

factor graph has cycles. For a detailed description of the SPA, the reader is referred to

[27, 28].

The SPA is the best algorithm in terms of the error rate but has also the highest

computational complexity among the iterative decoding algorithms. Hence, there exist

many modified algorithms that reduce the complexity of the standard SPA at the cost

of a degradation in performance, for instance, the min-sum algorithm [29]. A survey of

belief propagation algorithms with reduced complexity can be found in [30].

2.2.3. Construction principles

The main approaches for the construction of LDPC codes can basically be subdivided

into two lines of research.1 On the one hand, random LDPC codes are constructed by

non-deterministic computer algorithms under certain design criteria and, on the other

hand, structured LDPC codes are designed based on combinatorial tools such as certain

block designs, geometries and finite fields. The primary aim of random-like constructions

is to optimize the decoding performance of the arising codes and therefore, random codes

generally have an excellent decoding performance, in particular, for large code lengths

and small code rates. However, this approach leads to codes that have no inner algebraic

structure which can be exploited for more efficient encoding and decoding algorithms and

thus are challenging to implement in practice. Moreover, the properties of these codes

1 Note that this section is a partial reprint of the introductory sections [P1, Section I] and [P2, Section I]

which have also been written by the author of this thesis.
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can not be guaranteed due to the non-deterministic nature of their random constructions

and thus, there is no assurance that a particular code have good properties. As a further

consequence, these codes are hard to optimize if some specific properties are required.

The second ongoing line of research focuses on the construction of highly structured

LDPC codes based on combinatorial designs. The underlying structure can typically

be exploited for low-complexity encoding and an acceleration of the decoding process

as opposed to random-like codes. Furthermore, the parity-check matrices can be stored

more effectively in a compressed form from which the full parity-check matrices can

be calculated on-the-fly. Moreover, structured LDPC codes can guarantee deterministic

code properties such as 4-cycle-free factor graphs and are more amenable for extensive

mathematical analyses.

A fertile and sophisticated approach is to utilize the well-known concepts of combi-

natorial design theory for the construction of LDPC codes by considering the incidence

matrix of a combinatorial design as the parity-check matrix of an LDPC code. This pro-

ductive connection of designs and codes has been discovered independently by several

researchers (e.g. [31, 32, 33]). Subsequently, structured LDPC codes have been designed

based on finite geometries (FGs) [31, 32] and Steiner 2-designs [34, 35, 27, 33], a cer-

tain subclass of balanced incomplete block designs (BIBDs). A wide range of structured

LDPC codes has also been derived from the field of partial geometries (e.g. [36]), in-

cluding the codes from Steiner 2-designs as a subclass. Further subclasses are codes on

generalized quadrangles as presented in [37], and codes on transversal designs considered

in [36, 27]. An important subclass of structured LDPC codes are quasi-cyclic codes (see,

e.g., [38] and the references therein). By exploiting their cyclic structure, these codes can

be encoding with linear complexity by using circuits of simple feedback shift registers

[21, 39].

In order to improve the decoding performance of LDPC codes, there are two usual

strategies pursued in the literature. First, by increasing the girth of the code’s factor

graph (e.g., [40, 41]), i.e., by avoiding the smallest cycles which are known to be harmful

16



for the iterative decoding process. Large girth speeds up the convergence of iterative

decoding and leads to better performance if the number of iterations is limited. Second,

by lowering the so-called error-floors. This phenomenon is a significant flattening of

the bit-error-rate (BER) curve beyond a certain signal-to-noise-ratio (SNR) and is a

problem of focal importance, since many practical applications of LDPC codes require

extremely low operational BERs [42]. It has been discovered that error-floors are caused

by special substructures in the code’s factor graph that act as internal states in which

the iterative decoder can be trapped. Richardson [43] introduced the notion of trapping

sets to describe such internal states for iterative decoders.2

Depending on the channel and the iterative decoding algorithm, trapping sets may

have quite different characteristics. Over the binary erasure channel (BEC), trapping

sets have a purely combinatorial representation known as stopping sets. These entities

completely determine the decoding performance over the BEC [47] and have been studied

in a large series of subsequent papers (e.g. [48, 49]). Stopping sets are also extensively

investigated from a design theoretic perspective (e.g. [50]), from this viewpoint known

as full configurations in designs.

For more complex non-erasure channels such as the AWGN channel, trapping sets have

a more subtle nature and can not easily be described by a simple combinatorial notion

such as stopping sets. However, a major subclass of the occurring trapping sets over the

AWGN channel can be described by combinatorial objects called (fully) absorbing sets

which have been introduced in [51]. It has been demonstrated by extensive hardware

simulations [51, 52] that these entities are the main contributors to the error-floors over

the AWGN channel under SPA decoding (see Section 2.2.2).

In order to improve the decoding performance in the error-floor region, it is a crucial

step to identify those trapping sets of an LDPC code that cause the iterative decoder to

fail, and, in a second step, to find techniques to avoid the most harmful ones.

2 Other publications that are concerned with codes on graphs under iterative decoding have studied

closely related notions as elementary trapping sets [44] and pseudocodewords [45, 46].
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2.2.4. Stopping sets

Stopping sets are the cause of decoding failures over the BEC under iterative erasure

(or peeling) decoding (e.g. [53]) and can be considered as special states in which the

decoder gets trapped. It has been shown in [47] that these entities completely determine

the decoding performance over the BEC under iterative decoding such that an exact

analysis of the bit erasure probability is possible. Basically, a stopping set is a subset

of bit nodes of a code’s factor graph such that each bit nodes is connected to at least

two check nodes. For a more detailed definition of stopping sets, the reader is referred

to [48], or, from a design theoretic perspective, to the full version of [50].

In order to assess the quality of an LDPC code over the BEC, it is a substantial step to

examine the stopping set distribution of the code, meaning the collection of stopping sets

that occur in the code’s factor graph along with the number of their occurrences [54]. In

particular, it is important to identify the smallest stopping sets since they dominate the

performance in the error-floor region. The size of the smallest stopping sets is termed

the stopping distance (or stopping number) (e.g., [48, 49]) and plays an essential role

under iterative decoding over the BEC comparable to the role of the minimum distance

played under maximum-likelihood (ML) decoding.

Knowing the smallest stopping sets of a code is essential for estimating and evalua-

ting the code’s performance, even more, since the performance in the error-floor region

is usually beyond the scope of classical Monte-Carlo simulations. Unfortunately, it is

already an NP-hard problem to find the size of the smallest stopping sets (cf. [55, 42])

such that computer-based search algorithms for finding and enumerating stopping sets

reach their limits for growing code lengths unless the code has no specific structure that

can be exploited.

It is therefore a reasonable approach to examine code families based on suitable com-

binatorial designs which provide an algebraic setting for the investigation of stopping

sets on a simplified way. These codes have potentially useful structures that can be ex-
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ploited to identify and enumerate harmful stopping sets. The challenge is then to reveal

those code instances with the most beneficial stopping set distributions, in particular,

with the highest stopping distance and the minimum number of dominating stopping

sets. This strategy has been pursued in a large number of previous papers (e.g. [50, 54])

and is also the core idea of our publication [P2] as well as of Chapter 4.

2.2.5. Absorbing sets

The notion of absorbing sets has been firstly introduced in [51]. By using a hardware

emulation platform for investigating the causes of error floors over the AWGN channel,

the authors have recognized that the behavior of the SPA performance in the low-BER

region can be linked to special substructures of a code’s factor graph, termed absorbing

sets. For a contemporary definition of absorbing sets in terms of the factor graph, the

reader is referred to [13]. Absorbing sets have a purely combinatorial description such

as stopping sets over the BEC and can be considered as special subclasses of near-

codewords, as proposed in [56], and trapping sets, as introduced in [43]. Also, absorbing

sets are closely related to the notion of fixed sets (e.g. [57, 58, 59]) which have been

primarily used to characterize the main error events over the BSC when decoding with

the Gallager A/B algorithms [4]. In [13], the notion of absorbing sets has been extended

to fully absorbing sets which have the property that they are stable under bit-flipping

algorithms [60] and thus are the dominant factors for any bit-flipping decoder. Since

the decoding failures of various message-passing algorithms and channels are supposed

to be closely related [61], it can be assumed that fully absorbing sets in general greatly

contribute to the error-floor performance for various iterative decoder and channels.

Since (fully) absorbing sets are the primary cause of decoding failures over the AWGN

channel, it is of great importance to identify and count the most harmful absorbing sets

that may occur in the factor graph of LDPC codes. Such a classification is extremly useful

for various theoretical and practical approaches: it provides a valuable groundwork for

the analytical study of error-floors in the low-BER regions, leading to a better theoretical
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understanding of the failure mechanisms over the AWGN channel and other related

channels. In [62], a deterministic method for predicting the error-floors over different

channel models has been developed in terms of absorbing sets and their cardinalities,

leading to theoretical bounds for the decoder’s performance. Furthermore, in [63], a

technique based on importance sampling has been presented in order to estimate the

decoding performances in the error-floor region by using the characterization of dominant

absorbing sets and their cardinalities. Both methods are even more valuable since they

allow the prediction of BERs in regions that are out of reach for standard Monte-Carlo

simulations. From a practical viewpoint, the knowlegde of absorbing sets is essential

for the design of LDPC codes with improved absorbing set spectra [64, 65], leading to

codes with better error-floor performances that can be used for high-speed applications

operating in low-BER regions. Also, it greatly supports the design of high-throughput

hardware emulators [66, 52].

The identification of absorbing sets in a code’s factor graph is known to be a very

hard problem such that search algorithms are generally limited to small absorbing sets

fulfilling certain constraints which are supposed to have the most detrimental effect on

the decoding performance. The identification of such absorbing sets can be significantly

enhanced by using the specific structure of LDPC codes based on combinatorial designs

which will be demonstrated in the present thesis. The harmfulness of an absorbing set

can currently not calculated exactly due to the absence of a complete characterization

and understanding of the failure mechanisms over the AWGN channel. However, the

harmfulness can be based on several conjectures obtained by intuition and by experi-

mental results. An (a, b) absorbing set of size a and syndrome b (cf. [13]) is supposed to

be harmful if

(a) the size a is small,

(b) the syndrome b is small compared to a,

(c) the absorbing set is fully, and

(d) the degrees of the bit nodes are small.
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2.3. Systematic repeat-accumulate (sRA) codes

A common weakness of many LDPC codes is their high encoding complexity quadratic

in the code length, although there are some structural LDPC codes that can be encoded

with linear complexity, for instance, quasi-cyclic codes. This handicap motivates the

family of systematic repeat-accumulate (sRA) codes which are designed to have an

encoding scheme with low complexity. Moreover, the encoding scheme leads to codes

that are representable by sparse parity-check matrices such that sRA codes can be

decoded in exactly the same powerful way as LDPC codes (see e.g. [10, 67, 68]). Hence,

sRA codes are simultaneously a class of fast encodable turbo-like codes and a class of

LDPC codes, gaining the advantages of both code representations [10].

2.3.1. Encoding with low complexity

The main idea of sRA codes is a serial concatenation of two simple constituent codes with

an interleaver and an optional combiner between them [11]. It has been recognized that

these sRA codes, although simple, show a great decoding performance under iterative

decoding. In this thesis, we consider only regular sRA codes, but they can also easily be

generalized to the irregular case by employing an irregular repetition code and optionally

an irregular combiner (see [69, 70, 71] and the references therein). The encoding process

is precisely described in [72, 11], but for the convenience of the reader, the process is

outlined below.

(1) First, we start with a message of K input bits

(s1, s2, . . . , sK).

(2) Then, we apply a repetition code with parameter q which means that the i-th bit
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will be repeated q times, giving

(u1, u2, . . . , uqK) := (s1, . . . , s1︸ ︷︷ ︸
×q

, s2, . . . , s2︸ ︷︷ ︸
×q

, . . . , sK , . . . , sK︸ ︷︷ ︸
×q

).

Clearly, it arises a bit sequence of length qK.

(3) A permutation Π, called an interleaver, shuffles the bit sequence and leads to

(υ1, υ2, . . . , υqK) := (Π(u1),Π(u2), . . . ,Π(uqK)).

(4) We apply a combiner with parameter a which means that the subsequence will

firstly be partitioned into M subsequences such that each subsequence has length

a and, secondly, that the bits of each subsequence will be summed up mod 2. Let

Si be the i-th subsequence and define ⊕(Si) :=
{∑

x (mod 2) : x ∈ Si
}

. Then,

(r1, r2, . . . , rM) := (⊕(S1),⊕(S2), . . . ,⊕(SM)).

Clearly, it arises a bit sequence of length M = qK
a

.

(5) Next, an accumulator sums up the bit sequence consecutively and outputs

p1 := r1,

pi := ri ⊕ pi−1, for i = 2, . . . ,M.

(6) Finally, the K message bits and the M output bits of the accumulator are conca-

tenated, giving the final codeword

(s1, s2, . . . , sK , p1, p2, . . . , pM)

of length N := K +M . This is called a systematic output.

As previously demonstrated, the encoding scheme of an sRA code can be performed

very efficiently due to simple processing steps based on low-level operations. We obtain

an sRA code of length N = K(1 + q
a
) and rate R = a

a+q
[70] which is equal to the design

rate, since the 2-rank of the parity-check matrix is generally full. Furthermore, the parity-

check matrix of an sRA code can always be represented in the form H = [H1, H2] with

the following properties (cf. [10, 11]):
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(1) H1 is of size M ×K and H2 of size M ×M .

(2) H1 has column weights q, i.e., the column weights are solely determined by the

repetition code.

(3) H1 has row weights a, i.e., the row weights are solely determined by the combiner.

(4) The structure of H1 is completely specified by the permutation Π of the interleaver.

(5) H2 is a double-diagonal matrix with M −1 columns of weight two and one column

of weight one such that the i-th column has 1-entries at rows i and i+ 1 (whereas

the last column has only one 1-entry in the last row).

(6) The structure of H2 is solely determined by the accumulator.

2.3.2. Decoding as LDPC codes

Systematic RA codes can be considered as a special class of LDPC codes and thus can

be decoded on exactly the same way as LDPC codes [10] by using an interative decoding

algorithm that operates efficiently on the code’s sparse factor graph. This LDPC code

representation of sRA codes is clarified by the following theorem.

Theorem 1 ([10]) Systematic RA codes can be considered as LDPC codes since their

parity-check matrices are sparse.

Proof. This connection will be now elaborated in more detail since it is important

for the understanding of the present thesis and since no particular proof has been found

in the literature. We start with the canonical basis vectors e1, . . . , eK of FK2 . From these

vectors, we will generate K codewords which form a generator matrix by taking them

as rows. With input e1, we have q many 1-entries after the repetition code in step (2).

The interleaver in step (3) does not change this number, since it only distributes the

1-entries. We assume that this distribution is designed in such a way that no two points

lie in the same subsequence of step (4), since then the interleaver would not be working

correctly and no valid parity-check matrix would be arise. Hence, the combiner in step

(4) does not cancel out 1-entries through binary additions such that the number of ones
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stays the same. The accumulator in step (5) is therefore the only processing step that

reduces the number of 1-entries. By writing the output vectors row-wise in a matrix, we

obtain the generator matrix of the sRA code in standard form,

G =


p1

IK
...

pK


where IK is the K × K identity matrix due to the systematic output and pi are the

output vectors of the accumulator for the i-th input vector ei. It is well known that if

G = (IK , X) is the generator matrix in standard form, then H = (−XT , IN−K) is the

parity-check matrix of the code (e.g., [73]). Therefore, we obtain the parity-check matrix

H =
[
pT
1 ... pT

K IM

]
=


p1,1 ... pK,1 1 0 ... 0

p1,2 ... pK,2 0 1 ... 0
...

...
...

...
. . .

...

p1,M ... pK,M 0 0 ... 1

 .

of the sRA code with M = N −K, where the first K columns are the output vectors of

the accumulator. The target now is to transform H in such a way that IM is converted

into a double diagonal matrix which is compatible for the sRA encoding scheme. The

double diagonal matrix, denoted by H2, should be of the form

H2 :=



1 0

1 1
. . . . . .

1 1

0 1 1


.

Let z1, ...,zM be the rows of H. We modify the rows by

z′1 := z1, and

z′i := zi ⊕ zi−1, for i = 2, ...,M.
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By applying this on the rows of H, we obtain

H =



p1,1 ... pK,1

p1,2 ⊕ p1,1 ... pK,2 ⊕ pK,1
p1,3 ⊕ p1,2 ... pK,3 ⊕ pK,2 H2

...
...

p1,M ⊕ p1,M−1 ... pK,M ⊕ pK,M−1


.

The bit pj,l for j = 1, ..., K and l = 1, ...,M can be replaced by the accumulated sum

pj,l =
∑l

k=1 rj,k where rj,k is the k-th bit of the vector after the combiner with ej as

input vector. It follows that

pj,1 = rj,1,

pj,1 ⊕ pj,2 = rj,1 ⊕
2∑

k=1

rj,k = rj,2,

...

pj,K−1 ⊕ pj,K =
K−1∑
k=1

rj,k ⊕
K∑
k=1

rj,k = rj,K .

Consequently, the parity-check matrix can be simplified to

H =



r1,1 ... rK,1

r1,2 ... rK,2

r1,3 ... rK,3 H2

...
...

r1,M ... rK,M


=
[
rT
1 ... rT

K H2

]
.

By transforming the identity matrix to the form of a double diagonal matrix, the

calculations of the accumulater are reversed such that the first K columns are the bit

vectors ri after the combiner. As shown above, the vectors ri have weight qi. Furthermo-

re, H2 has M−1 columns of weight two and a single column of weight one. By neglecting

the weight-1 column, the density ρH of the parity-check matrix H can be calculated by
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ρH =
qK + 2M

NM
.

With K = RN (where R is the code rate) and M = N −RN , it follows that

ρH =
qR + 2− 2R

N(1−R)
.

With constant rate R and constant q, the density converges against 0 for N → ∞.

Therefore, the parity-check matrix H is sparse for large code lengths. �

2.3.3. Construction principles

The key part of the design of sRA codes with good decoding performances is the esta-

blishment of an high-quality interleaver for which there are potentially (qK)! possible

permutations. Since sRA codes are specialized LDPC codes, the design of interleavers

are implicitly included in the design of a parity-check matrix. Therefore, the typical

approach for the construction of a good sRA code is to design a parity-check matrix as

in the traditional way for LDPC codes and to adapt it so that it fits into the encoding

scheme of an sRA code (cf. [10, 11]). Then, the interleaver for the encoding process can

directly be derived from the structure of the parity-check matrix [72]. Since sRA codes

are decoded as LDPC codes, they benefit from the same structural properties that are

required to design good LDPC codes with respect to their decoding performance, for

example, avoiding short cycles in the code’s factor graph.

Now, we discuss the process of transferring an LDPC code into an sRA code. Once

the parity-check matrix H of an LDPC code has been constructed, for instance, by the

combinatorial construction techniques in Section 3, the matrix has to be tranformed into

the sRA compatible form H ′ = [H1, H2] as described in Subsection 2.3.1. To keep things

easy, we assume that H is free of 4-cycles which is an essential property for an LDPC

code with good decoding performances. Also, we assume that the originating LDPC

code is regular, since we only consider regular sRA codes. Note that these assumptions
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are trivially satisfied by the LDPC codes based on combinatorial designs which will be

considered in the present thesis.

(1) First, let B(i) be the column of H with 1-entries at row i and i + 1 (mod M) for

1 ≤ i ≤M where M is the number of rows. It can easily be verified that B(i) must

be unique, since H is free of 4-cycles.

(2) Delete all B(i) if existent. Then, the remaining columns form H1.

(3) Finally, append a double diagonal matrix H2 of size M×M . Note that the columns

B(i) have to be deleted in step (2) in order to avoid 4-cycles in the arising parity-

check matrix H ′.

(4) Finally, the sRA code parameters q, a,K and Π can be derived from the parity-

check matrix H ′. The parameters q and a are equal to the constant column and

row weight of H1, respectively, and K is equal to the number of columns of H1.

The only tricky part is the derivation of Π. For this, enumerate the 1-entries of H1

column-wise and let this number be ϕ. Furthermore, enumerate the 1-entries of

H1 row-wise and let this number be γ. Now, let Π(s) be the the interleaver entry

at position s for 1 ≤ s ≤ qK. Then, for every 1-entry of H1 with sequential indices

(ϕ, γ), set Π(γ) = ϕ.
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2.4. Guiding principles for good code design

This section gives a short overview about the basic principles for good LDPC code design

based on best practice. Furthermore, the presented principles can directly be transferred

to the design of sRA codes, since these codes can be considered as special LDPC codes.

2.4.1. Performance vs. ease of implementation

The performance of a code is obviously the most critical factor in code design. Under

iterative message passing decoding, the performance of an LDPC code can be broken

down into three measurements. First, how good is the ultimate error performance, i.e.,

how close does the code’s performance come to the Shannon limit. Second, how fast

does the decoding process converge to its best possible solution and, third, how is the

error-floor behavior of the code in the high-SNR region.

Besides having an excellent decoding performance, a good LDPC code should also

faciliate an efficient (hardware) implementation for their practical applicability. Unfor-

tunately, the simultaneous fulfilment of both properties is a big challenge, since an easier

implementation requires more code structure that can be exploited in order to accelerate

the encoding and decoding algorithms, but which also leads to a potential degradation

of the decoding performance due to the loss of flexibility in the code design. Hence,

there has to be found a convenient trade-off between random-like codes with optimized

performances and highly structured codes with an efficient implementation.

In general, randomly constructed LDPC codes have very good decoding performances

since they have only few framework conditions for the construction of their factor graphs

and thus a maximum degree of freedom for connecting bit nodes with variable nodes.

Indeed, the best known LDPC codes are randomly constructed. However, the imple-

mentation of such codes is very complex due to the lack of code structure. In particular,

there is no general way for encoding random-like LDPC codes with low complexity.
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By contrast, structured LDPC codes based on combinatorial designs are subjected

to many combinatorial conditions imposed by the underlying designs, but can usually

be encoded with linear complexity by exploiting their inner structure. Furthermore, the

structure can typically be utilized to accelerate the decoding algorithm and to store

the code’s parity-check matrix in a storage space saving manner. An important class of

structured LDPC codes are quasi-cyclic LDPC codes which can be encoded with low

complexity by using simple feedback shift registers [21] while offering excellent decoding

performances.

2.4.2. Large code length

A large code length is known to be beneficial for the decoding performance since then

the parity-check equations typically involve many code bits such that the corresponding

check nodes profit from much extrinsic information coming from the neighboring bit

nodes. In fact, the best known decoding performance over the AWGN channel has been

achieved by an LDPC code with a very large code length of N = 107 [74]. Although

an implementation of this code is rather impratical due to a very high encoding and

decoding complexity, it demonstrates that a large code length is highly benefical for the

decoding performance of an LDPC code.

2.4.3. Sparsity vs. connectivity

The main idea of an LDPC code is that its parity-check matrix is sparse such that

the iterative decoding algorithm operates efficiently on the code’s factor graph. Also,

a sparse parity-check matrix obviously reduces the memory consumption in order to

store the matrix. On the other hand, the degrees of the bit nodes and check nodes

should be large enough to gain valuable extrinsic information from the neighboring

nodes throughout the decoding process. A usual approach is to keep the column weights

relatively small (typically three or slightly larger) which guarantees the sparsity of the

parity-check matrix and which has also shown to deliver good decoding results.
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2.4.4. Large girth by avoiding short cycles

A major target in the LDPC code design is to increase the girth of the code’s factor

graph which is defined as the size of the smallest cycle. It is well known that small cycles

are harmful for the decoding process since they affect the independence of the extrinsic

information exchanged by the iterative decoder [75]. Theoretically, the standard SPA

converges to the optimal solution as long as the factor graph is free of cycles (e.g. [76]),

but nonetheless, the design of pratical LDPC codes with reasonable rates inevitably

leads to cycles in their factor graphs. By applying the SPA on these codes, the existence

of small cycles decelerate the speed of convergence which finally leads to a degraded

decoding performance when the number of iterations is limited.3 Conversely, large girth

speeds up the convergence of iterative decoding and leads to a better performance if the

number of iterations is limited. Hence, the focus of many papers that design structured

codes lies on achieving a large girth (e.g., [40, 41]), but at the cost of their code rates.

On the other hand, it has been shown that the SPA applied on factor graphs with re-

latively small cycles can nevertheless result in astonishingly good decoding performances

since these cycles can be compensated by a well designed code structure. Many papers

that are concerned with high-rate structured LDPC codes are typically content with

avoiding the most harmful 4-cycles in order to maintain the high code rates. The cycles

of size 6 and higher then can be compensated by the relatively long code lengths and

inner structure of the resulting codes.

2.4.5. Full rank vs. rank deficient parity-check matrices

Adding linearly dependent rows to a code’s parity-check matrix can be beneficial for

the decoding performance over various channels (e.g. [48, 77, 78]). While the code rate

3 From a theoretical perspective, the existence of cycles prevents an exact error-probability analysis of

the iterative decoding and for smaller cycles, the analysis breaks down earlier [33].
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is unaffected, the additional rows lead to more parity-check equations such that each

code bit is checked by more parity-check equations. This finally results in an improved

decoding performance which has been demonstrated, for example, in [27] and [32], where

families of LDPC codes based on rank deficient parity-check matrices have been designed.

However, the gain of performance is small compared to the increase of the decoding

effort, such that this approach is not reasonable for high-speed applications where the

time efficiency of the decoding algorithm is a crucial factor. For such applications, it is

recommendable to use a full ranked parity-check matrix since it minimizes the decoding

effort for a given code rate while having a reasonable decoding performance. In the

present thesis, we mainly consider LDPC codes whose highly combinatorial constructions

lead to full or nearly full ranked parity-check matrices in order to design codes for high-

speed applications such as magnetic recording and optical communications channels.

2.4.6. Increasing the minimum distance

The minimum distance dmin(C) of the code should be maximized. This strategy is prima-

rily important for ML decoding, whereas the failure mechanisms for iterative decoding

is more subtle. However, since every codeword defines a stopping set and an absorbing

set in the code’s factor graph, the codewords with the smallest weights also lead to

small and extremly harmful stopping sets and to the smallest possible absorbing sets

of syndrome 0. Hence, an increase of the minimum distance is also highly beneficial for

iterative decoding over various channels, in particular, over the BEC and the AWGN

channel.

2.4.7. Low error-floors

For high-speed applications that operate at very high SNRs, an essential requirement to

the error-correcting code is that error-floors are lowered significantly. These error-floors

are caused by trapping sets such as stopping sets over the BEC (Subsection 2.2.4) or
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absorbing sets over the AWGN channel (Subsection 2.2.5). As a consequence, it is very

important to avoid these substructures in the code’s factor graph in order to improve the

decoding performance in the critical low error-floor region. Since obviously only a small

fraction of trapping sets can be avoided, it is reasonable to focus on the most harmful

ones which are typically small and, in the case of absorbing sets, have small syndromes.

2.4.8. Summary

As a summary, it can be observed that the design of LDPC and sRA codes has to cope

with many trade-offs and is therefore strongly dependent on the specific application for

which a code is used. In the present thesis, the main objective is to design structured

LDPC codes for high-speed applications such as magnetic recording or optical commu-

nication channels. Such codes must typically have high code rates already at small to

moderate code lengths and low error-floors in order to operate successfully in high SNR

regions. The low error-floors are achieved by avoiding the most relevant stopping and

absorbing sets in the code’s factor graph. General requirements are that the parity-check

matrices are sparse, (nearly) full-ranked and free of harmful 4-cycles. Very importantly,

the designed codes must have an efficient (hardware) implementation.
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3
New Combinatorial Constructions

for LDPC and sRA Codes

This chapter presents novel and infinite classes of structured LDPC codes and systematic

RA codes based on combinatorial designs, more precisely, on balanced incomplete block

designs (BIBDs). The arising codes are characterized by very high code rates already at

small to moderate block lengths and by their specific structure that can be exploited for

highly efficient encoding and decoding algorithms. Hence, the codes are suitable for high-

speed applications such as magnetic recording or communication channels. Moreover,

the factor graphs of these codes exhibit good structural properties with regard to their

decoding performances, in particular, they have no harmful cycles of size four.

3.1. Preliminaries

This section gives some standard material on combinatorial designs which will be import-

ant for the current chapter. For encyclopedic references, the reader is referred to [79, 80].

Note that this section is basically a reprint of [P1, Section II].

33



3.1.1. Balanced incomplete block designs (BIBDs)

Let P be a set of v elements and B a collection of k-subsets of P . The elements of P

and B are called points and blocks, respectively. An ordered pair (P ,B) is defined to

be a balanced incomplete block design, denoted by BIBD(v, k, λ), if each pair of points

is contained in exactly λ blocks. A BIBD(v, k, 1) is also called a Steiner 2-design. It is

straightforward that in a BIBD each point is contained in the same number r of blocks,

and for the total number b of blocks, the parameters of a BIBD satisfy the relations

bk = vr and λ(v − 1) = r(k − 1). For (P ,B) a BIBD(v, k, λ), its incidence matrix is

a v × b matrix, denoted by N , in which Nij = 1 if the i-th point of P is contained in

the j-th block of B, and Nij = 0 otherwise. Clearly, N is unique up to column and row

permutation.

Let (P ,B) be a BIBD(v, k, λ), and let σ be a permutation on P . For a block B =

{b1, . . . , bk} ∈ B, define Bσ := {bσ1 , . . . , bσk}. If Bσ := {Bσ : B ∈ B} = B, then σ is

called an automorphism of (P ,B). If there exists an automorphism σ of order v, then

the BIBD is called cyclic and is denoted by CBIBD(v, k, λ). In this case, the point set

P can be identified with Zv, the set of integers modulo v, and σ can be represented

by σ : i → i + 1 (mod v). For a block B = {b1, . . . , bk} in a CBIBD(v, k, λ), the set

B+ i := {b1 + i (mod v), . . . , bk+ i (mod v)} for i ∈ Zv is called a translate of B, and the

set of all distinct translates of B is called the orbit containing B. If the length of an orbit

is v, then the orbit is said to be full, otherwise short. A block chosen arbitrarily from an

orbit is called a base block (or starter block). If k divides v, then the orbit containing the

block B =
{

0, v
k
, 2 v

k
, . . . , (k − 1) v

k

}
is called a regular short orbit. For a CBIBD(v, k, 1)

to exist, a necessary condition is v ≡ 1 or k (mod k(k− 1)). When v ≡ 1 (mod k(k− 1))

all orbits are full, whereas if v ≡ k (mod k(k − 1)) one orbit is the regular short orbit

and the remaining orbits are full.

A BIBD is said to be resolvable, and denoted by RBIBD(v, k, λ), if the block-set B

can be partitioned into classes R1, . . . ,Rr such that every point of P is contained in
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exactly one block of each class. The classes Ri are called resolution (or parallel) classes.

If Ri is a resolution class, define Rσ
i := {Bσ : B ∈ Ri}. An RBIBD is called cyclically

resolvable if it has a non-trivial automorphism σ of order v that preserves its resolution

{R1, . . .Rr}, i.e., {Rσ
1 , . . .Rσ

r } = {R1, . . .Rr} holds. If, in addition, the design is cyclic

with respect to the same automorphism σ, then it is called cyclically resolvable cyclic,

and denoted by CRCBIBD(v, k, λ).

In a CBIBD(v, k, 1), we can define a multiset ∆B := {bi − bj : i, j = 1, . . . , k; i 6= j}

of differences for a base block B = {b1, . . . , bk}. Let {Bi}i∈I , for some index set I, be all

the base blocks of full orbits. If v ≡ 1 (mod k(k− 1)), then clearly
⋃
i∈I ∆Bi = Zv \ {0}.

The family of base blocks {Bi}i∈I is then called a cyclic difference family in Zv, denoted

by CDF(v, k, 1).

Let k be an odd positive integer and p ≡ 1 (mod k(k− 1)) a prime. A CDF(p, k, 1) is

said to be radical, and denoted by RDF(p, k, 1), if each base block is a coset of the k-th

roots of unity in Zp [81]. If there exists a RDF(p, k, 1) with k odd, then there exists a

CRCBIBD(kp, k, 1) [82].

3.1.2. LDPC codes based on BIBDs

This section summarizes the state-of-the-art of general LDPC code design based on

BIBDs (cf. [32, 33, 34, 35, 27]): The v × b incidence matrix of a BIBD(v, k, 1) can be

considered as a parity-check matrix H of a binary (k, r = bk
v

)-regular BIBD LDPC code

of length N = b = v(v−1)
k(k−1)

, if we identify the v points with the parity-check equations and

the b blocks with the N code bits. In this case, all column weights of H are equal to k,

and all row weights are equal to r. The dimension of the code is K = b−rank2(H), where

rank2(H) denotes the 2-rank of H, and the code rate is R = 1− rank2(H)k(k−1)
v(v−1)

. In ge-

neral, the calculation of rank2(H) depends on the specific structure of the BIBD(v, k, 1).

It is clear from the classical Fisher’s Inequality that rank2(H) ≤ v. Furthermore, it is

elementary to see that, if 2 | v−1
k−1

, then rank2(H) ≥ v − 1, with equality if and on-
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ly if 2 | k (cf. [83, Theorem 2.4.1]). More precise results are in particular known for

BIBD(v, 3, 1)s [84].

As in a BIBD(v, k, 1) no pair of points have more than one block in common (i.e., no

pair of columns of H contains more than one “1” at the same positions), the Tanner

graph of a BIBD-LDPC code is free of cycles of length four which are known to be very

harmful for the decoding process. Moreover, since every pair of points occurs in exactly

one block, it follows that the girth is exactly six. Since each column in H has weight

k and no two columns have more than one “1” in common, there are k parity-check

equations that are orthogonal on every code bit. Thus, the minimum distance of the

code is at least k + 1. The same lower bound holds for the size of minimal stopping

sets [50].

Some specific classes of BIBDs proved to be especially useful in the code design:

(a) LDPC code constructions based on CDFs, called CDF LDPC codes, have been

considered in [34, 35, 27] for constant column weights k = 3 to 7. Since CBIBDs

can easily be constructed from CDFs (e.g. [35, Section III]), these codes form a

subclass of the more general class of LDPC codes based on CBIBDs, called CBIBD

LDPC codes. In the following, we distinguish between these two classes since CDF

LDPC codes are in general quasi-cyclic [85] and thus can be encoded with linear

complexity, whereas there are some CBIBD LDPC codes that does not have this

property. More specifically, all CBIBD LDPC codes based on a CBIBD with a

regular short orbit are not quasi-cyclic by definition, although these codes have a

highly cyclic structure.

(b) LDPC codes based on RBIBDs, called RBIBD LDPC codes, have been constructed

in [27, 33] for constant column weights k = 3, 4.

(c) LDPC codes based on CRCBIBDs, called CRCBIBD LDPC codes, have been de-

signed in [27, 33] for constant column weights k = 3, 4.
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3.2. New high-rate LDPC codes based on BIBDs

In the first part of our paper [P1, Section III], we have proposed some infinite families

of LDPC codes based on several subclasses of BIBDs, more specifically, on CBIBDs,

RBIBDs and CRCBIBDs. By using the incidence matrices of these BIBDs as the parity-

check matrices of LDPC codes we obtain structured code families with deterministic

properties. This idea is not new and has been taken up in a various number of previous

manuscripts (e.g. [32, 34, 35, 27, 33]). However, the results of our paper are more general

then previous ones. The presented codes are 4-cycle-free and cover a wide spectrum of

column weights and code lengths while offering very high rates. It can easily be shown

that these codes have the highest code rates among all regular 4-cycle-free LDPC codes

of the same column weight, the same number of parity-check equations and the same

or higher rank of their parity-check matrices [27]. This statement is formalized in the

following proposition.

Proposition 2 Let H be the N ×M parity-check matrix of a BIBD LDPC code with

column weight k and rate R, and let H ′ be the N ′×M parity-check matrix of any regular

4-cycle-free LDPC code of the same column weight and rate R′ such that rank2(H ′) ≥

rank2(H). Then, it follows that R ≥ R′.

Proof. For BIBDs, every pair of points occurs exactly once by definition. There are

M(M−1)
2

possible pairs of points and every block contains k(k−1)
2

pairs. Hence, it follows

that the code length of the BIBD LDPC code is given by N = M(M−1)
k(k−1)

. For any regular

4-cycle-free LDPC code, every pair of points is contained in at most one block (when

considering the columns as blocks and the rows as points), leading to N ′ ≤ M(M−1)
k(k−1)

. It

follows directly that N ′ ≤ N and hence R′ ≤ R using that rank2(H ′) ≥ rank2(H). �
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3.2.1. CBIBD LDPC codes

Thm. 3 proposes some infinite classes of CBIBD LDPC codes with column weights

ranging from 3 to 7 and two finite classes with column weights of 8 and 9. The CBIBDs

are based on known families of cyclic difference families (CDFs) in [79, 86] and the

references therein and thus are, more specifically, CDF LDPC codes. It should be noted

that subclasses of these codes have already been considered in [34, 35, 27].

Theorem 3 [P1, Thm. 1] Let p be a prime. Then there exists a regular quasi-cyclic

CDF LDPC code of column weight k, length N = p(p−1)
k(k−1)

and rate R ≥ 1 − k(k−1)
v−1

based

on a CDF(p, k, 1) for the following cases:

(1) (k, p) = (3, 6t+ 1) for any positive integer t,

(2) (k, p) = (4, 12t+ 1) for any positive integer t such that v is a prime power,

(3) (k, p) = (5, 20t+ 1) for any positive integer t such that v is a prime power,

(4) (k, p) = (6, 30t+ 1) for any positive integer t 6= 2,

(5) (k, p) = (7, 42t+ 1) for any positive integer t > 1 with the possible exceptions p =

127, 211 as well as primes p ∈ [261239791, 1.236597× 1013] such that (−3)
q−1
14 = 1

in Zp.

(6) (k, p) = (8, p) for all values of p ≡ 1 (mod 56) < 104 with the possible exceptions

p = 113, 169, 281, 337,

(7) (k, p) = (9, p) for all values of p ≡ 1 (mod 72) < 104 with the possible exceptions

p = 289, 361.

The spectrum of the new code families is partially visualized in Fig. 3.1. As we can

observe, almost all CDF LDPC codes achieve a code rate of at least 0.9. More precisely,

the codes of the smallest column weight three exceed the bound R ≥ 0.9 already at a

small code length of approximately 600 and the codes of the highest column weight nine

at a code length of roughly 104. Hence, the presented codes achieve very high rates along

with manageable small to moderate code lengths.
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Abbildung 3.1. – The black markers represent possible CDF LDPC codes, each based on a

CDF(p, k, 1) with k varying from 3 to 9. The plot relates the number of parity-check equations

(equivalent to the prime order p of the CDF) to the code length N = p(p− 1)/k(k − 1) where k is

equal to the column weight of the code. The plot also visualizes some upper bounds for which the

codes definitely achieve a rate of R ≥ 0.8, 0.9, 0.95 and 0.98.
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An essential strength of CDF LDPC codes is the quasi-cyclic structure of their parity-

check matrices consisting of circulant submatrices that correspond to the block orbits of

the underlying CBIBDs [P1]. The benefit of this structure is twofold. Firstly, quasi-cyclic

codes can be encoded with circuits of simple feedback shift register [21], leading to a

low encoding complexity linear in the block length. Secondly, by removing an arbitrary

number of circulant submatrices, we can adjust the rate and length of the codes more

independently, gaining much more flexibility in the code design. This motivates the

following theorem.

Theorem 4 For any (k, r = M−1
k−1

)-regular CDF LDPC code with M parity-check equa-

tions, length rM
k

and rate of at least r−k
r

, there exists a wide range of regular 4-cycle-free

LDPC codes of column weight k, row weight r−kt, code length rM
k−tM and rate of at least

r−kt−k
r−kt for t = 1, . . . , r

k
− 2.

Proof. The parity-check matrix of a CDF LDPC code consists of r
k

circulant sub-

matrices of size M ×M which correspond to the full orbits of the underlying CBIBD.

Clearly, these circulant submatrices are (k, k)-regular. By removing t arbitrarily chosen

circulants, a new LDPC code with the specified parameters arises. Note that we have

to maintain at least two circulants (i.e., t ≤ r
k
− 2), otherwise the parity-check matrix

would be quadratic which prevents reasonable data transmission under the assumption

that the parity-check matrix has a full or nearly full 2-rank. �

Thm. 4 does not specify which of the circulants should be removed. Obviously, there

may arise LDPC codes with quite different decoding performances depending on which

combination of circulants has been discarded. Therefore, it is an interesting approach

to identify the best selection of circulants for a given pair of channel and decoding

algorithm. It is unknown if this issue can be solved analytically, but reasonable choices

for a given scenario could certainly be found by employing computer simulations.
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Tabelle 3.1. – Possible exceptions: An RBIBD(v, k, 1) with k = 5 or 8 is not known to exist for

the following values of v ≡ k (mod k(k − 1)), see [P1] c© 2012 IEEE.

k = 5

v 45 345 465 645

k = 8

v

176 624 736 1128 1240 1296 1408 1464

1520 1576 1744 2136 2416 2640 2920 2976

3256 3312 3424 3760 3872 4264 4432 5216

5720 5776 6224 6280 6448 6896 6952 7008

7456 7512 7792 7848 8016 9752 10200 10704

10760 10928 11040 11152 11376 11656 11712 11824

11936 12216 12328 12496 12552 12720 12832 12888

13000 13280 13616 13840 13896 14008 14176 14232

21904 24480

3.2.2. RBIBD LDPC codes

Thm. 5 proposes some infinite series of regular RBIBD LDPC codes with column weights

varying from 3 to 8 and one infinite class of regular RBIBD LDPC codes for any prime

power k, all admitting very high code rates with manageable block lengths. These codes

rely on known families of RBIBDs (cf. [79, 87] and the references therein) and it is noted

that the codes of column weight 3 and 4 have already been considered in [27, 33].

Theorem 5 [P1, Thm. 2, 3] Let v be a positive integer. Based on an RBIBD(v, k, 1),

there exists a (k, v−1
k−1

)-regular RBIBD LDPC code of length N = v(v−1)
k(k−1)

and rate R ≥

1− k(k−1)
v−1

for the following cases:

(1) (k, v) = (3, 6t+ 3) for any positive integer t,

(2) (k, v) = (4, 12t+ 4) for any positive integer t,

(3) (k, v) = (5, 20t+ 5) for any positive integer t with the possible exceptions given in

Table 3.1,

(4) (k, v) = (8, 56t+ 8) for any positive integer t with the possible exceptions given in

Table 3.1.
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(5) If v and k are both powers of the same prime, there exists a code with the specified

parameters if and only if (v − 1) ≡ 0 (mod (k − 1)) and v ≡ 0 (mod k).

These results are visualized in Fig. 3.2 for codes up to roughly 7000 parity-check

equations. As we can observe, the proposed families comprise a large spectrum of RBIBD

LDPC codes with column weights varying from 3 to 27 and with code rates ranging from

0.6 to nearly 1, where almost all codes have a code rate of at least 0.9. Moreoever, the

code families of column weights 3, 4, 5 and 8 exists for a high density of parameters

and their code rates exceed the extremly high upper code rate bound R ≥ 0.98 for

manageable code lengths of about 104.2, 104.5, 104.7 and 105.1, respectively.

An important strength of RBIBD LDPC codes is the specific structure of their parity-

check matrices consisting of portions of (k, 1)-regular submatrices which correspond to

the resolution classes of the underlying RBIBDs. By removing an arbitrary number

of such resolution submatrices, we can adjust the rate and length of the code more

independently, gaining much more flexibility in the code design. This technique is not

new and has already been proposed in [33]. Applied on our results, we can construct

further regular LDPC codes with parameters given by the following theorem.

Theorem 6 Given any (k, r = M−1
k−1

)-regular RBIBD LDPC code with M parity-check

equations, length rM
k

and rate of at least r−k
r

, there exists a wide range of regular 4-cycle-

free LDPC codes of column weight k, row weight r − t, code length (r−t)M
k

and a rate of

at least r−k−t
r

for t = 1, . . . , r − k − 1.

Proof. The parity-check matrix of an RBIBD LDPC code consists of r resolution

submatrices of size (M × M
k

) which are (k, 1)-regular. By removing a selection of t

arbitrary resolutions, we produce an LDPC code with the specified parameters. Note

that we have to maintain at least k + 1 resolutions (i.e., t ≤ r − k − 1), otherwise no

data transmission is possible under the assumption of a full or nearly full 2-rank. �

It is worth noting that the resolution submatrices of RBIBD LDPC codes have only

M
k

columns, whereas the circulant submatrices of CBIBD LDPC codes are quadratic and
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Abbildung 3.2. – The black dots represent possible RBIBD LDPC codes, each based on a

RBIBD(v, k, 1) with k varying from 3 to 27. The plot relates the number of parity-check equa-

tions (equivalent to the order v of the RBIBD) to the code length N = v(v−1)/k(k−1) where k is

equal to the column weight of the code. The plot also visualizes some upper bounds for which the

codes definitely achieve a rate of R ≥ 0.6, 0.8, 0.9, 0.95 and 0.98. Note that all codes with a rate of

smaller than 0.1 have been discarded, since these codes have no pratical relevance.
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Tabelle 3.2. – Existence of a CRCBIBD(pk, k, 1) with k = 5, p < 103, and k = 7 or 9, p < 104,

see [P1] c© 2012 IEEE.

k = 5

p
41 61 241 281 401 421 601 641 661

701 761 821 881

k = 7

p

337 421 463 883 1723 3067 3319 3823 3907

4621 4957 5167 5419 5881 6133 8233 8527 8821

9619 9787 9829

k = 9

p 73 1153 1873 2017 6481 7489 7561

have M columns. Hence, RBIBD LDPC codes can be adjusted more smoothly compared

to CBIBD LDPC codes and thus allow a more flexible code design. In this context, it is an

interesting question which selection of resolution submatrices lead to the best decoding

performance in terms of a given channel and decoding algorithm, but the problem will

not be treated in the present thesis.

3.2.3. CRCBIBD LDPC codes

Thm. 7 proposes some infinite series of regular CRCBIBD LDPC codes with column

weights varying from 3 to 9 and with moderate to very high code rates. These code classes

are based on known families of radical difference families (RDFs) (cf. [82, 81, 79, 88, 89]

and the references therein) and have partially been treated in [27, 33].

Theorem 7 [P1, Thm. 4] Let p be a prime number. Based on a CRCBIBD(pk, k, 1),

there exists a (k, pk−1
k−1

)-regular CRCBIBD LDPC code of length N = p(pk−1)
k−1

and rate

R ≥ 1− k(k−1)
pk−1

for the following cases:

(1) (k, p) = (3, 6t+ 1) for any positive integer t,

(2) (k, p) = (4, 12t+ 1) for any odd positive integer t,
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(3a) (k, p) = (5, 20t+ 1) for any positive integer t such that p < 103, and furthermore

(3b) (k, p) = (5, 20t + 1) for any positive integer t satisfying the following condition:

ε + 1 is not a 2e+1-th power in Zp, or equivalently (11 + 5
√

5)/2 is not a 2e+1-th

power in Zp, where 2e is the largest power of 2 dividing t and ε a 5-th primitive

root of unity in Zp,

(4) (k, p) = (7, 42t + 1) for any positive integer t satisfying the following condition:

there exists an integer f such that 3f divides t and ε+1, ε2 +ε+1, ε
2+ε+1
ε+1

are 3f -th

powers but not 3f+1-th powers in Zp, where ε is a 7-th primitive root of unity in

Zp,

(5) (k, p) = (9, p) for the values of p ≡ 1 (mod 72) < 104 given in Table 3.2.

Moreover, based on a CRCBIBD(`k, k, 1), there exists a (k, `k−1
k−1

)-regular CRCBIBD

LDPC code of length N = `(`k−1)
k−1

and rate R ≥ 1− k(k−1)
`k−1

for the following cases:

(6) (k, `) for k = 3, 5, 7, or 9, and ` is a product of primes of the form p ≡ 1 (mod

k(k − 1)) as in the cases above,

(7) (k, `) = (4, `) and ` is a product of primes of the form p = 12t+ 1 with t odd.

The results are partially visualized in Fig. 3.3. We can observe that there is a high

density of CRCBIBD LDPC codes for column weights 3 to 5 with code rates of 0.9 and

higher. Moreover, in the observed range up to about 3700 parity-check equations, there

exist three CRCBIBD LDPC codes of column weight k = 7 and code rates of at least

0.98, and one code of column weight k = 9 with a code rate of nearly 0.9.

The major advantage of CRCBIBD LDPC codes is that they inherit the resolvability

of RBIBD LDPC codes and the cyclic character of CBIBD LDPC codes such that they

combine the specific benefits of both code classes [P1]. More specifically, these codes

allow low-complexity encoding by exploiting their cyclic structure and have the same

parametric flexibility as codes based on RBIBDs by removing an arbitrary number of

small resolution classes. In particular, since CRCBIBDs are also CBIBDs and RBIBDs,

the results of Thm. 4 and 6 can be transferred to CRCBIBD LDPC codes, such that we
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Abbildung 3.3. – The black markers represent possible CRCBIBD LDPC codes, each based on a

CRCBIBD(v, k, 1) with k varying from 3 to 9. The plot relates the number of parity-check equations

(equivalent to the order v of the CRCBIBD) to the code length N = v(v − 1)/k(k − 1) where k is

equal to the column weight of the code. The plot also visualizes some upper bounds for which the

codes definitely achieve a rate of R ≥ 0.8, 0.9, 0.95 and 0.98.
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obtain a wide range of regular LDPC codes where the rates and lengths can be chosen

more independently.

3.3. New high-rate sRA codes based on BIBDs

Based on known families of BIBDs, this section presents several new classes of sRA codes

and generalized weight-q sRA codes with combinatorial interleavers. Note that these

codes have already been considered in the second part of our paper [P1, Section VI].

Depending on the underlying type of BIBD, the arising codes are called CBIBD, RBIBD

and CRCBIBD sRA codes, respectively.

3.3.1. Weight-q sRA codes

A drawback of the classical sRA code is that the H2-part of its parity-check matrix has

M − 1 columns of weight two and one column of weight one which result in a low error-

floor in the code’s performance. More precisely, by considering the code’s factor graph,

the columns of weight two correspond to bit nodes of degree two and are a weakness in

the decoding process since these bit nodes gain only little extrinsic information from the

two neighboring check nodes. However, in the case of sRA codes with very large code

lengths, the influence of these deficient columns is small since the code length is quadratic

proportional to M while we have only M columns of lower weight. As a consequence,

the decoding performance converges against the performance of the corresponding LDPC

codes, but along with the low-complexity encoding of sRA codes.

For the case of short to moderate code lengths, Johnson and Weller developed a refined

encoding scheme [90, 10] by proposing an alternative accumulator structure that reduces

the number of weight-two columns significantly. The resulting codes are termed weight-3

RA (w3RA) codes, since the accumulator produces mainly columns of weight three in

the H2-part of their parity-check matrices.

47



Inspired by the work of Johnson and Weller, we have extended their results by pro-

posing a generalized accumulator design in [P1, Section VI] which leads to novel codes

termed weight-q sRA codes. It is noted that this modified accumulator has been similarly

introduced by Liva et. al [91], but with focus on the design of irregular RA codes and

flexible choices of the node degree distributions. The new accumulator structure enables

weight-q sRA codes for higher column weights without suffering the low error-floors as

in the case of classical sRA codes.

Recall the encoding scheme in Section 2.3.1. We now replace the accumulator of step

(5) by a new generalized accumulator. For this, let g1, . . . , gq−1 ∈ {1, ...,M} be the

design parameters of the generalized accumulator and s` :=
∑`

j=1 gj for ` = 1, . . . , q− 1.

Furthermore, let ri denote the output of the combiner at time i. Then, the output pi of

the new accumulator is calculated by the recursive scheme

pi := ri ⊕ pi−s1 ⊕ ...⊕ pi−sq−1 , for i = 1, ...,M

where pi−s` = 0 if i − s` < 0. This accumulator again results in a parity-check matrix

of the form H = [H1, H2], where the i-th column of H2 has 1-entries in the rows i and

i + s`, 1 ≤ ` ≤ q − 1, given that these rows exist. Thus, the parameters gj, called

the accumulator design parameters, specify the vertical distance between the j-th and

(j + 1)-th 1-entry in the columns of H2. The H1-part is unaffected by the accumulator

and hence remains as introduced in Section 2.3.1. Consequently, a large fraction of the

H2-columns have the same high column weight as the columns of H1, leading to an

improved decoding performance compared to sRA codes.

The new accumulator produces (M − sq−1) columns of weight q. Since high column

weights are benefical for the decoding process, the number of weight-q columns should

be maximized. This means that the accumulator design parameters have to be as small

as possible in order to minimize sq−1 = g1 + . . .+ gk−1. On the other hand, it must hold

that gi 6= gj for i 6= j in order to avoid 4-cycles in the code’s factor graph. The best

choice for the accumulator design paramaters is therefore gi = i for i = 1, . . . , q − 1.

48



Based on this generalized accumulator, we use the combinatorial construction techni-

ques presented in Section 3.2 to construct new families of (weight-q) sRA codes based on

CBIBDs, RBIBDs and CRCBIBDs (cf. [P1, Section VI]). The new code classes have an

excellent decoding performance very close to those of regular LDPC codes, along with

the low encoding complexity of turbo-like codes. In the following, the particular code

classes will be described in more detail.

3.3.2. CBIBD sRA codes

The specific structure of a CBIBD(v, k, 1) can generally be exploited for the construction

of a weight-q sRA code of column weight k for any 2 ≤ q ≤ k (where with q = 2 the

classical sRA code arises).

Theorem 8 Let (P ,B) be the points and blocks of a CBIBD(v, k, 1) where the points P

are identified with Zv. Let p1 and p2 be any two points of P such that gcd(p2−p1, v) = 1

and let B = {p1, p2, . . . , pk} be the block of B containing these points. Then, there exists

a CBIBD weight-q sRA code for any 2 ≤ q ≤ k of length N = v(v−1)
k(k−1)

, rate R = 1− k(k−1)
v−1

and with accumulator design parameters

gi = (p2 − p1)−1(pi+1 − pi) (mod v), for i = 1, . . . , q − 1.

Clearly, g1 = 1. The remaining design parameters g2, . . . , gq−1 depend on the base block

which contains the chosen pair of points. In order to minimize the gi values, all possible

combinations of points should be tested for each base block.

Proof. Proof by construction: define a permutation σ on P by σ : x→ (p2−p1)−1(x−

p1) (mod v) for any point x ∈ Zv. Next, construct the incidence matrix of (Pσ,Bσ) such

that the point x ∈ Zv is identified with row x + 1. Let Ci = (c1, . . . , cv) ∈ {0, 1}v be

the column where ci = 1 and ci+1 = 1 for i = 1, . . . , v. Then, set cj = 0 if j < i

or j > min{` :
∑`

l=i cl ≥ q}. Now, define H2 = [C1, . . . , Cv] and take the remaining

columns as H1. Finally, the parity-check matrix H = [H1, H2] defines a CBIBD weight-q

sRA code with the specified parameters. �
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This process has been demonstrated in [P1, Subsections VI-A] based on some CDF

constructions known in the literature. Note that it is straightforward to obtain a CBIBD

once a CDF is known (e.g. [35, Section III]). Since our aim ist to maximize the harmful

low-weight columns in the code’s parity-check matrix, we only treat the case when q = k.

In the following, a summarization of our results is given:

(1) From Netto’s “first” construction [92], we obtain a CDF(v, 3, 1) for prime powers

of the form v ≡ 1 (mod 6) and thus also a CBIBD(v, 3, 1). With Thm. 8, we can

construct a series of CBIBD w3RA codes of column weight three, length N = v(v−1)
6

,

rate R = v−7
v−1

, M = v parity-check equations and accumulator design parameters

g1 = 1 and g2, where g2 is determined by the CDF. Table 3.3 lists the parameters

of the first 22 CBIBD w3RA codes based on Netto’s first construction, restricting v

to primes. The values of the row (*) are measurements for the success of our w3RA

codes (in percent), meaning that this percentage of columns in the accumulator

matrix H2 has been increased compared to the classical sRA counterparts. As we

can observe, all listed codes have over 50 percent of increased columns in H2 and

seven of them even over 80 percent. Hence, all codes highly benefit from their w3RA

code representation. The values of the row (**) are measurements for the influence

of the deficient columns of column weights one and two with respect to the code

length. As we can see, the influence of the deficient columns decreases for larger

block lengths and thus can be neglected for sufficient large block lengths. Fig. A.1

depicts the parity-check matrices of a CBIBD LDPC, sRA and w3RA code of length

N = 57 based on an CBIBD(19, 3, 1).

(2) From the construction of Buratti [93], we obtain a series of CDF(p, 4, 1) for primes

of the form p ≡ 1 (mod 12) and a family of CDF(p, 5, 1) for primes of the form

p ≡ 1 (mod 20). The first series leads to CBIBD w4RA codes of column weight four,

length N = p(p−1)
12

, rate R = p−13
p−1

, M = p parity-check equations and accumulator

design parameters g1 = 1, g2 and g3 where the values of g2 and g3 can not be

chosen freely, but are determined by the CBIBD. Table 3.4 lists the parameters

of the first 12 w4RA codes up to a code length of 8138 obtained by Buratti’s
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construction. It can be seen, that nearly all codes have more than 90 percent of

columns in H2 with increased column weights and thus highly profit from their

w4RA code representation. Furthermore, the percentage of deficient columns in H

rapidly decreases for a growing code length and thus are less influential. The second

series leads to CBIBD w5RA codes of column weight five, length N = p(p−1)
20

, rate

R = p−21
p−1

, M = p parity-check equations and accumulator design parameters g1 =

1, g2, g3 and g4 where the values of g2, g3 and g4 are determined by the CBIBD. In

Table 3.5, the parameters of the first 10 w5RA codes based on Buratti’s construction

are listed. As we can see, all codes have increased column weights for over 90 percent

of their H2-columns and thus highly benefit from their w5RA code representation.

Also, the percentage of deficient columns is very small with respect to the code

length and thus are expected to have only little influence on the code’s performance.

3.3.3. RBIBD sRA codes

A weakness of RBIBD LDPC codes from Section 3.2.2 is that they are not encodable

by feedback shift registers as opposed to CDF LDPC codes due to their missing quasi-

cyclic structure. However, the specific structure of certain RBIBDs can be utilized to

employ an sRA encoder in order to enable turbo-like encoding with linear complexity.

Johnson and Weller demonstrated this approach [10] by constructing RBIBD sRA codes

based on known RBIBD(v, 3, 1)s from Ray-Chaudhuri and Wilson [94]. In our paper [P1,

Subsection IV-B], we have modified this construction in order to design novel RBIBD

w3RA codes. Table 3.6 lists the first 12 codes where the order v are restricted to be

primes of the form v ≡ 1 (mod 6). Note that such codes can also easily be constructed

for prime powers. Fig. A.2 visualizes and compares the parity-check matrices of RBIBD

LDPC, sRA and w3RA codes of length N = 70 based on an RBIBD(21, 3, 1) from

Ray-Chaudhuri and Wilson.
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Tabelle 3.3. – Parameters of a series of CBIBD w3RA codes of column weight three up to

length 8251 based on Netto’s “first” construction. Every column represents a code that relies

on a CDF(p, 3, 1) with p prime of the form p ≡ 1 (mod 6). The code has length N = p(p−1)
6 , M = p

parity-check equations, rate R = p−7
p−1 and accumulator design parameters g1 = 1 and g2. The codes

have been constructed by Thm. 8 in such a way that the design parameters gi are minimized.

p 13 19 31 37 43 61 67 73 79 97 103

N 26 57 155 222 301 610 737 876 1027 1552 1751

R 0.5 0.67 0.8 0.83 0.86 0.9 0.91 0.92 0.92 0.94 0.94

g2 3 7 5 10 6 13 29 8 23 35 46

(∗) 69 58 81 70 84 77 55 88 70 63 54

(∗∗) 15.4 14.0 3.9 5.0 2.3 2.3 4.1 1.0 2.3 2.3 2.7

p 109 127 139 151 157 163 181 193 199 211 223

N 1962 2667 3197 3775 4082 4401 5430 6176 6567 7385 8251

R 0.94 0.95 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97

g2 45 19 42 32 12 58 48 84 92 14 39

(∗) 58 84 69 78 92 64 73 56 53 93 82

(∗∗) 2.3 0.7 1.3 0.9 0.3 1.3 0.9 1.4 1.4 0.2 0.5

∗ Percentage of columns with increased weights in H2, i.e., 100M−g1−g2
M

∗∗ Percentage of deficient columns of weight 1 or 2 in H, i.e., 100 g1+g2
N

3.3.4. CRCBIBD sRA codes

The task of encoding codes based on CRCBIBDs is more subtle compared to codes on

CDFs. Although CRCBIBDs have a cyclic structure, their LDPC codes are not quasi-

cyclic by definition [27], since every CRCBIBD possesses a regular short orbit which

leads to an “incomplete” circulant submatrix in the code’s parity-check matrix. As a

consequence, fast encoding can either be realized by a modified circuit of feedback shift

registers as proposed in [27] or, even simpler, by employing the encoder of an sRA code.

In [P1, Subsection IV-C], we have constructed new CRCBIBD weight-q sRA codes

based on CRCBIBDs from the direct construction of Genma, Mishima and Jimbo [82].

For this, we have utilized a certain subset of k resolution classes in order to construct
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Tabelle 3.4. – Parameters of CBIBD w4RA codes of column weight four up to code length 8138

based on Buratti’s construction. Every column represents a code that relies on a CDF(p, 4, 1) with

p prime of the form p ≡ 1 (mod 12). The code has length N = p(p−1)
12 , M = p parity-check

equations, rate R = p−13
p−1 and accumulator design parameters g1 = 1, g2 and g3. The codes have

been constructed by Thm. 8 in such a way that the design parameters gi are minimized.

p 37 61 73 97 109 157 181 193 229 241 277 313

N 111 305 438 776 981 2041 2715 3088 4351 4820 6371 8138

R 0.67 0.8 0.83 0.88 0.89 0.92 0.93 0.94 0.95 0.95 0.96 0.96

g2 2 4 6 3 2 8 2 5 29 14 38 13

g3 21 6 34 55 57 26 30 30 130 210 97 182

(∗) 92 92 90 96 97 94 98 97 87 94 86 96

(∗∗) 2.7 1.6 1.6 0.5 0.3 0.4 0.1 0.2 0.7 0.3 0.6 0.2

∗ Percentage of columns with increased weights in H2, i.e., 100M−g1−g2
M

∗∗ Percentage of deficient columns of weight 1 or 2 in H, i.e., 100 g1+g2
N

Tabelle 3.5. – Parameters of CBIBD w5RA codes of column weight five up to length 38764

based on Buratti’s construction. Every column represents a code that relies on a CDF(p, 5, 1) with

p prime of the form p ≡ 1 (mod 20). The code has length N = p(p−1)
20 , M = p parity-check

equations, rate R = p−21
p−1 and accumulator design parameters g1 = 1, g2, g3 and g4. The codes have

been constructed by Thm. 8 in such a way that the design parameters gi are minimized.

p 401 421 461 601 641 661 701 761 821 881

N 8020 8841 10603 18030 20512 21813 24535 28918 33661 38764

R 0.95 0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.98 0.98

g2 5 4 11 21 53 39 9 11 12 19

g3 48 35 70 122 120 281 277 93 523 181

g4 284 160 188 356 69 28 236 243 64 236

(∗) 99 99 97 96 92 94 99 98 98 98

(∗∗) 0.07 0.06 0.11 0.12 0.26 0.18 0.04 0.04 0.04 0.05

∗ Percentage of columns with increased weights in H2, i.e., 100M−g1−g2
M

∗∗ Percentage of deficient columns of weight 1 or 2 in H, i.e., 100 g1+g2
N
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Tabelle 3.6. – Parameters of RBIBD w3RA codes of column weight k = 3 and N ≤ 15862 based

on the RBIBD construction of Ray-Chaudhuri und Wilson [94]. Every column represents a code

that relies on a RBIBD(p, 3, 1) with p restricted to primes of the form p ≡ 1 (mod 6). The code

has length N = p(p−1)
6 , M = p parity-check equations, rate R = p−7

p−1 and accumulator design

parameters g1 = 1 and g2. The codes have been constructed by Thm. 8 in such a way that the

design parameters gi are minimized.

p 21 39 57 93 111 129 183 201 219 237 291 309

N 70 247 532 1426 2035 2752 5551 6700 7957 9322 14065 15862

R 0.7 0.84 0.89 0.93 0.95 0.95 0.97 0.97 0.97 0.97 0.98 0.98

g2 16 22 7 67 10 49 13 163 154 181 61 226

(∗) 19 41 86 27 90 61 92 18 29 23 79 27

(∗∗) 24.3 9.3 1.5 4.8 0.5 1.8 0.3 2.4 1.9 2.0 0.4 1.4

∗ Percentage of columns with increased weights in H2, i.e., 100M−g1−g2
M

∗∗ Percentage of deficient columns of weight 1 or 2 in H, i.e., 100 g1+g2
N

the accumulator matrix H2. These k resolution classes are cyclic shifts of each other and

form a single block orbit, whereas all other resolution classes consist of blocks that are

distributed over several block orbits. Hence, in order to maintain the resolvable structure,

the accumulator matrix H2 should be constructed from the single orbit that consists of

only k resolution classes. The resolved structure can then be used for optimization, for

example, by removing a certain selection of the remaining resolution classes. A disad-

vantage of this approach is that we are restricted to accumulator design parameters that

are predefined by the structure of the single block orbit.

On the other hand, since CRCBIBDs are cyclic, we can apply the technique presented

in Thm. 8 in order to obtain weight-q RA codes with the best possible accumulator

design parameters, but which may lead to a split of the resolution classes. Table 3.7 lists

the basic parameters of some CRCBIBD w3RA codes with the best possible accumulator

design parameters. Fig. A.3 (c) depicts the parity-check matrix of a CRCBIBD(21, 3, 1)

w3RA code.
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Tabelle 3.7. – Parameters of CRCBIBD w3RA codes of column weight k = 3 up to length 9322

based on CRCBIBDs from the construction of Genma, Mishima and Jimbo [82]. Every column

represents a code that relies on a CRCBIBD(3p, 3, 1) with p prime of the form p ≡ 1 (mod 6). The

code has length N = p(3p−1)
2 , M = pk parity-check equations, rate R = 1− 6

3p−1 and accumulator

design parameters g1 = 1 and g2. The codes have been constructed by Thm. 8 in such a way that

the design parameters g1 and g2 are minimized.

p 7 13 19 31 37 43 61 67 73 79

N 70 247 532 1426 2035 2752 5551 6700 7957 9322

M 21 39 57 93 111 129 183 201 219 237

R 0.70 0.84 0.89 0.93 0.95 0.95 0.97 0.97 0.97 0.97

g2 4 16 7 25 10 49 13 37 64 55

(∗) 76 56 86 72 90 61 92 81 70 76

(∗∗) 7.1 6.9 1.5 1.8 0.5 1.8 0.3 0.6 0.8 0.6

∗ Percentage of columns with increased weights in H2, i.e., 100M−g1−g2
M

∗∗ Percentage of deficient columns of weight 1 or 2 in H, i.e., 100 g1+g2
N

3.4. Simulations

This section serves to demonstrate the decoding power of the novel classes of structured

LDPC codes and systematic RA codes by extensive Monte-Carlo simulations. These

simulations are performed over the AWGN channel by employing the standard sum-

product algorithm [28] with a maximum of 50 iterations per codeword. The results are

visualized in Fig. 3.4, 3.5 and 3.6. A legend displays the following information in the

respective order: code type, construction method in brackets, and a triple [N,R, k], where

N is the code length, R the code rate and k the constant column weight of the parity-

check matrix. The structured BIBD LDPC, sRA and weight-q sRA codes are compared to

random LDPC codes based on the progressive-edge growth (PEG) algorithm [95]. It can

generally be observed that the structured codes outperform their randomly constructed

counterparts significantly. Hence, these codes are working very well, in particular, for

short to moderate code length and high code rates. The simulations also demonstrate

that the new BIBD weight-q sRA codes outperform their classical sRA counterparts
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and behave similar as the corresponding LDPC codes. Hence, by employing the novel

accumulator structure, we can avoid the high error-floors that occur for classical sRA

codes caused by the low weight columns in their parity-check matrices.

Further experimental results for our new combinatorial code families are presented in

[P1, Subsection III-D] and in [P1, Subsection IV-D]. In this paper, we have show that the

structured codes outperform random regular Gallager LDPC codes [4] with comparable

parameter sets. Also, we have observed a performance gain as the column weights grow

larger and a particular good performance of CRCBIBD LDPC codes
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Abbildung 3.4. – The figure compares the decoding performances of a CBIBD LDPC, sRA and

w3RA code based on Netto’s “first” construction [35] with a random LDPC code constructed

by the PEG algorithm. All codes have the same code length N = 2667, rate R = 0.95 and

column weight k = 3. It can be observed that the structured BIBD codes outperform their random

counterpart significantly at an SNR region of 5.8 dB and larger. Furthermore, the CBIBD sRA

code shows a relatively high error-floor already at 5.8 dB, while the corresponding CBIBD w3RA

even outperforms the LDPC code.
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Abbildung 3.5. – The figure compares the decoding performances of a CBIBD LDPC, sRA and

w3RA code based on Buratti’s construction [93] with a random LDPC code of the same parameters

constructed by the PEG algorithm. The structured LDPC code have originally been proposed by

Vasic and Milenkovic [35], whereas the sRA and w3RA code are presented in Section 3.3.2. All codes

have the same code length N = 776, rate R = 0.88 and column weight k = 4. It can be observed

that the structured BIBD codes outperform their randomly constructed counterpart already at an

SNR region of 5 dB and larger. While the CBIBD sRA code shows a relatively high error-floor at

approximately 5.5 dB, the corresponding CBIBD w3RA lowers this error-floor significantly. Since

the code length is relatively small, the impact of the low column weights of H2 is strong such that

both RA codes suffer an error-floor compared to their LDPC counterpart.
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Abbildung 3.6. – The figure shows the decoding performances of an RBIBD LDPC, sRA and

w3RA code based on a family of RBIBDs constructed by Ray-Chaudhuri and Wilson [94]. The

LDPC and sRA codes have originally been proposed by Johnson and Weller in [33] and [10],

respectively, whereas the w3RA code is presented in Section 3.3.3. The structured codes are com-

pared with a random LDPC code based on the PEG algorithm. All codes have the same code length

N = 2035, rate R = 0.95 and column weight k = 3. It can be observed that the structured BIBD

codes outperform their randomly constructed counterpart significantly already at an SNR of 5.5

dB and larger. Furthermore, the CBIBD sRA code shows a relatively high error-floor at 6.4 dB,

while the corresponding CBIBD w3RA avoids this error-floor and behaves similar to the LDPC

code.
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4
LDPC Codes Based on

Transversal Designs

This chapter is concerned with the design of an infinite family of structured LDPC

codes based on transversal designs, called TD LDPC codes . These codes are thoroughly

investigated and designed in order to optimize their decoding performances over the

BEC and AWGN channel. The presented results are based on our closely related papers

[P2] and [P3], but extend their outcome in several ways. Note that the examined codes

have already been considered in [36, 27], but in a rather general way.

After defining some basic concepts in Section 4.1, a special class of cyclic-structured

TD LDPC is introduced in Section 4.2. Based on this code class, Section 4.3 provides

a thorough stopping set analysis as a foundation for the design of optimized TD LDPC

codes over the BEC in Section 4.4. Similarly, in Section 4.5, an extensive absorbing set

analysis is performed as a basis for Section 4.6, which treats the design of TD LDPC

codes over the AWGN channel.

As a result, there arise infinite families of regular high-rate TD LDPC codes with

excellent decoding performances and very low error-floors over the BEC and AWGN

channel. When designed properly, these codes are quasi-cyclic and can be encoded with

linear complexity by circuits of feedback shift registers. Furthermore, the codes guarantee
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the same structural properties than BIBD LDPC codes, in particular, their factor graphs

are free of 4-cycles, having a girth of six.

Moreover, transversal designs have the important property that they are resolvable

[36], meaning that their blocks can be partitioned into resolution classes such that each

point of the design is contained in exactly one block per class. As already discussed in

Section 3 for the case of RBIBD LDPC codes, the resolvability of the underlying design

of block size k leads to portions of (k, 1)-regular submatrices in the code’s parity-check

matrix. By discarding an arbitrary selection of such matrices, a wide range of regular

LDPC codes with various rates and lengths can be derived. This technique has already

been applied to codes from Euclidean geometry in [96] and Steiner 2-designs in [97].

4.1. Preliminaries

This section is basically a reprint of [P3, Section II] and gives an overview of the basic

concepts that are required to construct LDPC codes based on transversal designs.

4.1.1. Set systems

A set system, denoted by S, is a pair (P,B) consisting of a point set P and a block set

B which is a family of subsets of P. For a consistent representation, we only allow set

systems where P =
⋃

B such that each point is contained in at least one block. The size

of S is given by the number of blocks of B. The degree of a point is the number of blocks

containing the point and by O(P) we mean the subset of points of P having odd degree.

Two set systems (P,B) and (P′,B′) are isomorphic, if there exists a bijection between P

and P′ that maps B to B′. Given a transversal design D with points P and blocks B, a

set system (P,B) is called a configuration of D if P ⊆ P and B ⊆ B.1 Every set system

can be equivalently described by a matrix which allows a convenient representation of

1 The notion of configurations in designs is frequently used in the literature about combinatorial designs

and codes from designs (e.g. [50]).
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the system. More precisely, a set system is equivalent to a |P| × |B| matrix where the

entry at (i, j) is one if the i-th point of P is in the j-th block of B, else zero.

Let S = (P,B) be a set system of block size k and Q be a set of k colors. Then, a

k-coloring of S is a mapping ϕ : P → Q such that the points of any block of B are

colored uniquely, i.e., |{ϕ(x) : x ∈ B}| = k for any B ∈ B. For each c ∈ Q, the set

ϕ−1(c) = {x ∈ P : ϕ(x) = c} is called a color class. Clearly, the union of the color classes

of any k-coloring ϕ define a partition of the points of P. In the present chapter, such

partitions are used to describe the k-colorings of a set system. A set system is called

k-colorable if there is at least one k-coloring. Clearly, there can be different k-colorings

for a single set system.

Let S = (P,B) and S′ = (P′,B′) be two set systems of block size k with k-colorings ϕ

and ϕ′, respectively. Then,

(1) S is isomorphic to S′ if and only if there exists a bijection σ : P → P′ such that

σ(B) = B′ where σ(B) :=
{
{σ(x) : x ∈ B} : B ∈ B

}
.

(2) Sϕ is isomorphic to S′ϕ′ if and only if, in addition to (1), there exists a bijection

φ : Q→ Q such that φ(ϕ(x)) = ϕ′(σ(x)) for any x ∈ P.

4.1.2. Latin squares

A Latin square L of order n is an array of n× n cells, where each row and each column

contains every symbol of an n-set S exactly once [79]. Let L[x, y] denote the symbol

at row x ∈ X and column y ∈ Y , where X and Y are n-sets indexing the rows and

columns of L, respectively. Two Latin squares L1 and L2 of order n are orthogonal, if

they share a common row and column set X and Y , respectively, and if the ordered

pairs (L1[x, y], L2[x, y]) are unique for all (x, y) ∈ X × Y . In other words, there can not

be two cell positions [x1, y1] and [x2, y2] such that L1[x1, y1] = L1[x2, y2] and L2[x1, y1] =

L2[x2, y2]. A set of Latin squares L1, ..., Lm is called mutually orthogonal, if for every

1 ≤ i < j ≤ m, Li and Lj are orthogonal. These are also referred to as mutually

orthogonal Latin squares (MOLS).
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4.1.3. Transversal designs (TDs)

A transversal design TD(k, n) of order (or group size) n and block size k is a triple

(P ,G,B), where

(1) P is a set of kn points.

(2) G is a partition of P into k classes of size n, called groups.

(3) B is a collection of k-subsets of P , called blocks.

(4) Every unordered pair of points from P is contained either in exactly one group or

in exactly one block (cf. [79]).

It follows from (1)-(4) that any point of P occurs in exactly n blocks and that |B| = n2.

Furthermore, axiom (4) implies that every block of B consists of exactly one point per

group. Hence, by identifying the groups with k different colors, we obtain a k-coloring

of the set system (P ,B).

Theorem 9 For k ≥ 3, the existence of a set of m := k − 2 mutually orthogonal Latin

squares (MOLS) of order n is equivalent to the existence of a TD(k, n) [79, 98, 99].

Proof. We will outline the proof of this known result, since it is important for the

understanding of the thesis. Let L1, . . . , Lm be m MOLS with symbol sets S1, . . . , Sm,

and with common row and column sets X and Y , respectively. We may assume that the

sets X, Y, S1, . . . , Sm are pairwise disjoint, which can easily be achieved by renaming the

elements. Then we obtain a TD(k, n) with points P = {X ∪ Y ∪ S1 ∪ . . . ∪ Sm}, groups

G = {X, Y, S1, . . . , Sm} and blocks B = {{x, y, L1[x, y], . . . , Lm[x, y]} : (x, y) ∈ X × Y }.

This process can be reversed to recover a set of m = k − 2 MOLS from a TD(k, n) for

k ≥ 3. �
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4.2. LDPC codes based on cyclic-structured TDs

In this chapter, our focus lies on an infinite family of structured TD LDPC codes that

are highly amenable for extensive mathematical analysis and thus are ideally suited for

analyzing and eliminating stopping sets and absorbing sets. First, we will have a closer

look at the construction of these codes and their properties.

4.2.1. Construction

(1) We start by choosing a prime power order q which defines a finite field Fq. This

parameter solely determines the resulting code length by N = q2.

(2) Next, we construct an m-set of mutually orthogonal Latin squares (MOLS) where

m can be chosen between 1 and q − 2. This parameter determines the constant

column weight of the code’s parity-check matrix by k = m + 2. The i-th Latin

square of the set of MOLS is a q × q array filled with q symbols such that the cell

indexed by row x ∈ Fq and column y ∈ Fq contains the symbol αix + βiy ∈ Fq
for the scale factors αi, βi ∈ Fq \ {0}. In order to obtain MOLS, the scale factors

(α1, β1), . . . , (αm, βm) of the m Latin squares have to be chosen in such a way that

αiβj 6= αjβi over Fq for 1 ≤ i, j ≤ m with i 6= j. As we can observe, each Latin

square has a simple cyclic structure in that sense that each row is obtained from

the previous one by adding the scale factor αi component-wise over Fq. The same

holds for the rows by adding the scale factor βi.

(3) In the next step, the set of m MOLS of order q is transformed into a transversal

design of order q and block size k = m + 2. This relation has originally been

described in [100, 99] and is outlined in Thm. 9.

(4) Finally, the incidence matrix of the transversal design is directly used as the parity-

check matrix of an LDPC code, termed L m
q –TD LDPC code. We say that the order

q of the underlying MOLS and the scale factors α1, . . . , αm are the code parameters

which describe the code uniquely.
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4.2.2. Properties

The basic parameters of an L m
q –TD LDPC code can be expressed in terms of q and

m. More precisely, the code is (m + 2, q)-regular, has length N = q2, a number of

M = q(m + 2) parity-check equations and code rate R ≥ q−m−2
q

. Experimental results

show that the 2-rank of the code’s parity-check matrix is precisely q(m + 2) − m − 1

and thus is nearly full, even though this has not been rigorously proven. This leads to

a code rate of exactly R = q2−q(m+2)+m+1
q2

which is slightly larger than the design rate

Rd = q2−q(m+2)
q2

= q−m−2
q

. Furthermore, the factor graphs of the resulting codes are free

of harmful 4-cycles and have a girth of 6.

We have shown in [P2, Thm. 4] that every set of MOLS with associated scale factors

{(αi, βi) : 1 ≤ i ≤ m} can be reduced into an isomorphic form of MOLS with scale factors

{(αi, 1) : 1 ≤ i ≤ m} such that both sets of MOLS lead to the same code. Consequently,

one scale factor per Latin square is theoretically sufficient for generating the entire set

of possible L m
q –TD LDPC codes for a given order q. However, the second scale factor

can be utilized to transfer the parity-check matrix of these codes into a form with quasi-

cyclic structure which enables low-complexity encoding by feedback shift registers [21].

This process has been elaborated in our paper [P2, Section VI].

In the remainder of this chapter, we only consider L m
q –TD LDPC codes based on

MOLS in reduced form, i.e., with associated scale factors {(αi, 1) : 1 ≤ i ≤ m}. This

consideration is sufficient for the purpose of analyzing the stopping and absorbing set

spectra of the resulting codes. It is crucial to notice that for a fixed set of parameters

(q,m), there exists a large series of non-isomorphic L m
q –TD LDPC codes depending on

the choice of the scale factors α1, . . . , αm. These codes share the same basic parameters

but may exhibit significantly different decoding performances. The following proposition

enumerates the number of possible choices for the scale factors for fixed q and m which

lead to codes with non-isomorphic parity-check matrices. The results are visualized in

Fig. 4.1.
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Abbildung 4.1. – Number of non-isomorphic L m
q –TD LDPC codes in terms of the prime power

order q and column weight k = m+ 2.

Proposition 10 For every prime power order q and column weight k = m + 2 with

1 ≤ m ≤ q− 2, there exist
⌈(

q−1
k−2

)
/(q− 1)

⌉
different L m

q –TD LDPC codes whose parity-

check matrices are non-isomorphic.

Proof. For column weight k, we need k − 2 MOLS. We assume w.l.o.g. that these

MOLS are in reduced form [P3, Thm. 4] and thus we may associate the i-th Latin square

with a single scale factor αi ∈ F∗q. Since all scale factors must be distinct, there are
(
q−1
k−2

)
possible choices for α1, . . . , αk−2. Finally, it follows from [P3, Thm. 5] that q− 1 choices

produce the same code. The ceiling function is needed for the pathological case when

λ�{α1, . . . , αm} = {α1, . . . , αm} for a λ ∈ Fq \ {0, 1} and for at least one choice of scale

factors, where � is the componentwise multiplication. �

Example. Let q = 5 and m = 2, then there are six possible choices for the scales

factors {α1, α2}, namely {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 4}. By [P3, Thm. 4],

we know that the MOLS based on the scale factors
{
λ�{1, 2} : λ ∈ F∗5

}
=
{
{1, 2}, {1, 3},

{2, 4}, {3, 4}
}

leads to the same code where � is the componentwise multiplication, as
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well as MOLS based on the scale factors
{
λ � {1, 4} : λ ∈ F∗5

}
=
{
{1, 4}, {2, 3}

}
.

Consequently, there are two different L 2
5 –TD LDPC codes with non-isomorphic parity-

check matrices. These both codes are (4, 5)-regular, have length N = 25, a number of

M = 20 parity-check equations and code rate R = 0.32.

It is noted that the construction of MOLS is an old problem that has already been

addressed from a purely mathematical standpoint. In particular, the method used to

generate the cyclic-structured MOLS over finite fields can be found in [101]. This method

has been adapted in [27] in order to construct TD LDPC codes of arbitrary column

weights, but their further investigations are primarily focused on codes of column weight

three that avoid codewords of weight four (known as Pasch-configurations from a design

theoretic perspective, e.g., [102, 103]). In our papers [P2, P3], we have generalized this

construction by using two scale factors for each Latin square. Although one scale factor

per Latin square is theoretically sufficient for generating the entire set of possible L m
q –

TD LDPC codes, the second scale factor is essential for transferring the parity-check

matrix into quasi-cyclic structure [P2, Section VI] which allows low-complexity encoding.

4.3. Stopping set analysis

This section provides an extensive stopping set analysis of TD LDPC codes, in parti-

cular, for the infinite family of L m
q –TD LDPC codes described in the previous section.

The focus lies primarily on codes of column weight 3 and 4, but the results are also

potentially useful for higher column weights. Due to the simplified structure of the un-

derlying transversal designs, these codes provide an excellent algebraic framework for the

investigation of stopping sets. Recall that the family of L m
q –TD LDPC codes consists

of subseries of d
(
q−1
k−2

)
/(q − 1)e different codes for each prime power order q and column

weight k. Although the codes within the same series have identical basic parameters,

they exhibit entirely different decoding performances over the BEC and thus reveal great

potential for optimization. The main objective is therefore to identify those code instan-
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ces from each subseries that have the most beneficial stopping set distributions. For this,

we have derived powerful conditions that only depend on the scale factors of the un-

derlying MOLS as well as on the choice of the prime power order q. By satisfying these

conditions, we obtain high-rate TD LDPC codes with excellent decoding performances

over the BEC under erasure (or peeling) decoding [53, 104], in particular, with very low

error-floors.

As a first step, the results of our publication [P2] are shortly summarized as a basis

for further investigations. The paper provides an exhaustive examination of stopping

sets in LDPC codes from transversal designs. For this, we have transferred the concept

of stopping sets to the level of Latin squares [P2, Section III], leading to the notion of

full-correlating subrectangles [P2, Subsection III-B]. Basically, these subrectangles can

be thought of as a simplified representation of stopping sets in terms of the underlying

MOLS which can easily be analyzed. More specifically, each cell of a subrectangle obeys

the same calculation rule given by the linear equation αix + y for the cell at position

(x, y) of the i-th Latin square with scale factor αi. Hence, the stopping sets can be

described by systems of linear equations in a closed algebraic form. By solving these

systems symbolically, i.e., in dependence of the scale factors and the order q, we can

derive exact conditions for the existence of the corresponding stopping sets.

Based on a theoretical analysis, we have exactly determined the stopping distance

of L 1
q –TD LDPC code of column weight three [P2, Thm. 5] and lower bounded the

stopping distance of L 2
q –TD LDPC code of column weight four [P2, Thm. 6]. The

results are outlined in the following proposition.

Proposition 11 Let H(m, q) be the parity-check matrix of an L m
q –TD LDPC codes of

column weight k = m+ 2 and let ωq be the characteristic of the finite field Fq such that

q = ωtq for any t ≥ 1. Then, it holds that

smin

(
H(1, q)

)
=

{
4, if ωq = 2,

6, if ωq > 2,
(4.1)
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smin

(
H(2, q)

)
≥

{
6, if ωq = 2 or 3,

8, if ωq > 3.
(4.2)

Furthermore, by extensive computer simulations, we have revealed only two types of

full-correlating subrectangles that may occur in any pair of MOLS from L 2
q for ωq > 3

[P2, Subsection V-A]. These subrectangles correspond to stopping sets of size eight in the

resulting L 2
q –TD LDPC codes and it is shown that they can be eliminated by satisfying

the conditions α1 + α2 6= 0, 2α1 − α2 6= 0 and α1 − 2α2 6= 0 over Fq. Furthermore, no

stopping sets of size nine has been found. As a consequence, it ca be conjectured that

the stopping distance can be raised from eight to ten for the case of ωq > 3.

In [P2, Subsection V-B], we describe a technique to construct full-correlating sub-

rectangles by the composition of translations. By generalizing this method to higher

m, we obtain full-correlating subrectangles in MOLS from L m
q by the composition of

full-correlating subrectangles in MOLS from L m−1
q . Consequently, we can construct

unavoidable stopping sets for every L m
q –TD LDPC code, leading to the following pro-

position.

Proposition 12 Let H be the parity-check matrix of an L m
q –TD LDPC code based on

a set of m cyclic MOLS and let H ′ be the parity-check matrix of an L m−1
q –TD LDPC

code based on an (m − 1)-subset of these MOLS. Then, every stopping set of size ` in

H ′ leads to a stopping set of size at most 2` in H. In particular, it follows that

smin(H) ≤ 2smin(H ′). (4.3)

Combined with equation (4.1), we obtain for the case of L 2
q –TD LDPC codes that

smin

(
H(2, q)

)
≤

{
8, if ωq = 2,

12, if ωq > 2.
(4.4)

In [P2, Subsection V-C], we have developed a technique for the analytical optimization

of L 2
q –TD LDPC codes by maximizing the size of the full-correlating subrectangles that

arise from the composition of translations. As a result, we can significantly reduce the
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number of stopping sets of size ten in L 2
q –TD LDPC codes if the conditions α1 +α2 6= 0,

α1 − 2α2 6= 0, 2α1 − α2 6= 0 and α2
1 − α1α2 + α2

2 6= 0 are satisfied over Fq. Finally,

we have identified further types of stopping sets of size 10 that may occur in L 2
q –TD

LDPC codes. These stopping sets can partially be eliminated by satisfying the conditions

α2
1+α1α2−α2

2 6= 0, α2
2+α1α2−α2

1 6= 0 and α2
1−3α1α2+α2

2 6= 0 over Fq [P2, Subsection V-

D].

Based on the results of our publication [P2], the present chapter provides an enhanced

and more detailed stopping set analysis of the infinite family of L m
q –TD LDPC codes

(Section 4.2). The approach for this analysis is threefold. First, an exhaustive classifica-

tion of the stopping set candidates for general TD LDPC codes is elaborated. Second,

based on this classification, the specific structure of L m
q –TD LDPC codes is exploited

in order to eliminate the most harmful stopping sets of these codes whenever this is

possible and, if not, to provide an exact count of the stopping sets. In the third and last

step, powerful design strategies are derived in order to obtain high-rate TD LDPC codes

with excellent performances over the BEC under standard erasure decoding.

4.3.1. Stopping set candidates (SSCs)

From a coding theoretic perspective, stopping sets are defined as special subgraphs of a

code’s factor graph. However, from a design theoretic viewpoint, it is more natural to

consider stopping sets as special set systems, allowing a more comfortable description of

the combinatorial properties in terms of the underlying transversal design. Furthermore,

stopping sets are, by definition, inextricably linked with a concrete code since they are

subgraphs of one specific factor graph. This viewpoint is problematic when we investigate

the existence of stopping sets since it does not admit their absence. Consequently, Def. 13

introduces the notion of stopping set candidates in the form of set systems which are

independent of any specific code instance.
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Definition 13 A stopping set candidate (SSC) for the family of TD LDPC codes of

column weight k is a set system consisting of points and blocks that fulfil the following

combinatorial conditions:

(A) All blocks contain exactly k points,

(B) any two blocks have at most one point in common,

(C) the points can be partitioned into k classes such that every block has exactly one

point per class, i.e., the set system is k-colorable, and

(D) every point is contained in at least two blocks.

The first three conditions (A)-(C) are clearly inherited from the underlying TD and the

fourth condition (D) arise from the definition of a stopping set. Note that the partition

of points into k classes is equivalent to the existence of a k-coloring of the SSC. This

equivalence can be clarified by considering that the points of each TD are, by definiton,

partitioned into k groups such that each block has exactly one point per group. Hence,

by coloring the points within a group with the same color and each group with a different

color, we obtain a k-coloring of the SSC for which the points of every block are colored

uniquely.

Intuitively, an SSC can be seen as a pattern for a stopping set that satisfies all necessary

combinatorial conditions in order to represent a stopping set in any TD LDPC code. The

presence or absence of such a stopping set in a specific TD LDPC code finally depends

on the code’s structure. Also notice that an SSC can equivalently be represented by an

incidence matrix such that the points and blocks of the SSC correspond to the rows and

columns of this matrix. This matrix representation is used for the visualization of the

SSCs in the following classification.

4.3.2. Classification of SSCs

This section gives an extensive classification of stopping set candidates that potentially

occur in TD LDPC codes. The SSCs are uniquely labeled by S
(`)
k {i}, where ` is the
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size of the SSC (number of blocks), k is the constant number of points per block and

where the postfix {i} enumerates those SSCs that have the same ` and k. Appendix B

thoroughly describes the classification process in order to identify the most harmful SSCs

that potentially occur in a TD LDPC code.2 Based on this process, the current section

presents an exhaustive collection of SSCs of column weights three and four up to size

seven and eleven, respectively. The arising lists can easily be extended to larger SSCs,

but this is deliberately avoided in order to keep the lists small and also, since larger

stopping sets are known to be harmless compared to smaller ones.

Fig. C.1 in Appendix C shows the complete list of SSCs of size ` ≤ 7 that may occur

in a TD LDPC code of column weight three. This collection arises from the procedure

O := SSC Classification(3, 7).

Note that the resulting list of SSCs is consistent with the list of full subrectangles

presented in [P2, Fig. 2], but since several of these subrectangles are isomorphic, they

represent the same stopping set.

Fig. C.2 gives a complete list of all possible SSCs of size ` ≤ 7 that may occur in a

TD LDPC code of column weight four, i.e., all SSCs obtained by

O := SSC Classification(4, 7).

It can be observed that there are no SSCs of size smaller than five and of size seven.

For block sizes of eight and larger, our procedure outputs an extremly large number of

SSCs of which the most ones do not occur in any L 2
q –TD LDPC code due to their specific

structure. Hence, in order to obtain a small and handy list of SSCs that occur in at least

one L 2
q –TD LDPC code, a different approach has been taken. For this, standard Monte

carlo simulations has been performed for many L 2
q –TD LDPC codes with different values

of q and the occurring stopping sets has been detected and categorized. This approach is

2 This process has originally been developed in our manuscript [P2] in order to classificate absorbing

set candidates but it can easily be adapted for the classification of SSCs.
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non-deterministic and non-exhaustive such the arising lists of SSCs may be incomplete

although it is highly probable that all relevant stopping sets has been detected.

Fig. C.3 lists all SSCs of size eight and nine that has been detected for at least one

L 2
q –TD LDPC code of column weight four and order q ≥ 5. It should be noted that

there has been found more SSCs of size eight and nine that specifically occur in L 2
q –TD

LDPC codes for ωq = 2 or 3. However, these codes contain smaller and more dominant

stopping sets of size four in the case of ωq = 2 and stopping sets of size six in the case of

ωq = 3 which are therefore the main contributors to the error-floor performance of these

codes. Hence, the influence of stopping sets of size eight and nine are less important and

can be excluded from consideration.

Finally, Fig. C.4 and Fig. C.5 visualize all SSCs of size ten and eleven, respectively,

which has been detected for at least one L 2
q –TD LDPC code of column weight four with

ωq ≥ 13. In order to keep the lists small, all SSCs are excluded that specifically occur

in L 2
q –TD LDPC codes with ωq < 13. As we will see later, these codes have dominant

stopping sets smaller than ten such that the influence of the stopping sets of size ten or

larger is small such that they can be neglected.

4.3.3. Elimination of SSCs

Based on the presented classification of stopping set candidates, this section investigates

the existence of each SSC in an L m
q –TD LDPC code by exploiting the special structure

of the code. Once it is known, under which conditions these SSCs exist and how they can

be eliminated, we can derive powerful conditions for the proper choice of code parameters

to reveal the codes with the most beneficial stopping set distributions.

More specifically, we calculate the exact elimination condition for every SSC. This

condition determines for any choice of q and the scale factors α1, . . . , αm if the SSC is

present or absent in the corresponding L m
q –TD LDPC code. For calculating the exact

elimination condition of an SSC, we use the elimination process outlined in Appendix E.
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Tabelle 4.1. – List of important conditions over Fq

Label Condition

A1 ωq 6= 2

A2 ωq 6= 3

A3 ωq 6= 5

A4 ωq 6= 7

A5 ωq 6= 13

A6 ωq 6= 17

B1 α1 + α2 6= 0

B2 2α1 − α2 6= 0

B3 α1 − 2α2 6= 0

B4 α2
1 + α1α2 − α2

2 6= 0

B5 α2
2 + α1α2 − α2

1 6= 0

Label Condition

B6 α2
1 − 3α1α2 + α2

2 6= 0

B7 α2
1 − α1α2 + α2

2 6= 0

B8 α1 + 3α2 6= 0

B9 3α1 + α2 6= 0

B10 3α1 − 2α2 6= 0

B11 2α1 − 3α2 6= 0

B12 α1 + 2α2 6= 0

B13 2α1 + α2 6= 0

B14 α1 − 3α2 6= 0

B15 3α1 − α2 6= 0

B16 α2
1 + α1α2 + α2

2 6= 0

This process has originally been presented in our publication [P3] for eliminating absor-

bing sets but it can equivalently be used for the case of SSCs. For the smallest and most

harmful SSCs, the exact number of their occurrences is calculated additionally. These

cardinalities are extremly useful in order to estimate the decoding performances over

the BEC under iterative decoding. For calculating the exact cardinalities, the process

has been extended to, simply spoken, count the solutions of the linear equation systems

that give rise to a stopping set. It is worth noting here that this algorithm could only

be implemented efficiently by exploiting the simple structure of L m
q –TD LDPC codes.

Let S be any SSC of our classification in the previous section and let C be an L m
q –TD

LDPC code. We say that a stopping set of C is of type S if its set system representation

is isomorphic to S. When it is written that a stopping set is of type Sϕ, then it is meant

that there occurs a stopping set of type S in C such that the given k-coloring ϕ of S

complies with the partitioning of the points into the groups of the underlying TD. The

function e(Sϕ, C) gives the exact condition for the elimination of all stopping sets of type

Sϕ such that there does not occur any stopping set of type Sϕ in C if and only if e(Sϕ, C)

is satisfied. Furthermore, the term |Sϕ, C| counts the number of stopping sets of type

Sϕ in C. Clearly, it holds that |Sϕ, C| = 0 if and only if e(Sϕ, C) = 1. Note that both
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Tabelle 4.2. – Let C be any L 1
q –TD LDPC code of column weight three. For each SSC of Fig. C.1,

the table presents all possible 3-colorings ϕ, the exact elimination conditions e(Sϕ, C) and the exact

cardinalities |Sϕ, C|. The referenced subterms Ai are listed in Table 4.1. S means the negation of S

and f(S) := 1 if S is satisfied, else 0.

SSC S 3-colorings ϕ e(Sϕ, C) |Sϕ, C|

S
(4)
3 {1, 6}, {2, 5}, {3, 4} A1 f(A1)1

4
q2(q − 1)

S
(6)
3 {1} {1, 6, 7}, {2, 5, 8}, {3, 4, 9} A1 f(A1)1

2
q2(q − 1)(q − 2)

S
(6)
3 {2} {1, 6, 9}, {2, 5, 8}, {3, 4, 7} no 1

6
q2(q − 1)(q − 2)

S
(6)
3 {3} {1, 8}, {2, 5, 6}, {3, 4, 7} A2 f(A2)1

2
q2(q − 1)

S
(7)
3 {1} {1, 8, 9}, {2, 5, 7}, {3, 4, 6} A1 f(A1)1

2
q2(q − 1)(q − 2)

S
(7)
3 {2} {1, 8, 9}, {2, 5, 7}, {3, 4, 6} always 0

S
(7)
3 {3} {1, 8, 9}, {2, 5, 7}, {3, 4, 6} A1 f(A1)1

2
q2(q − 1)

Tabelle 4.3. – Let C be any L 2
q –TD LDPC code of column weight four. For each SSC of Fig. C.2,

the table presents all possible 4-colorings ϕ, the exact elimination conditions e(Sϕ, C) and the

exact cardinalities |Sϕ, C|. The referenced subterms Ai and Bi are listed in Table 4.1. S means the

negation of S and f(S) := 1 if S is satisfied, else 0.

SSC S 4-colorings ϕ e(Sϕ, C) |Sϕ, C|

S
(6)
4 {1} {1, 9, 10}, {2, 6, 12}, {3, 7, 8}, {4, 5, 11} A1 ∨B16 f(A1 ∧B16)q2(q − 1)

S
(6)
4 {2} {1, 11}, {2, 6, 10}, {3, 7, 8}, {4, 5, 9} A2 ∨B1 f(A2 ∧B1)2

3
q2(q − 1)

functions are calculated in dependence of the code parameters q and α1, . . . , αm (scale

factors) such that the results are valid for all L m
q –TD LDPC codes.

For each SSC of Fig. C.1, Table 4.2 gives their exact elimination conditions for L 1
q –

TD LDPC codes of column weight three with respect to their 3-colorings. Furthermore,

their exact cardinalities are listed, meaning the number of their occurrences in an L m
q –

TD LDPC code. For the SSCs of Fig. C.2, Table 4.3 gives all possible 4-colorings, their

exact elimination conditions and their cardinalities. Finally, Table 4.4 presents all non-

isomorphic 4-colorings of the SSCs classificated in Fig. C.3, Fig. C.4 and Fig. C.5, as

well as the exact conditions for their elimination in L 2
q –TD LDPC codes.
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Tabelle 4.4. – Let C be any L 2
q –TD LDPC code of column weight four. For each SSC of Fig. C.3,

C.4 and C.5, the table presents all non-isomorphic 4-colorings ϕ and the exact elimination conditions

e(Sϕ, C). The referenced subterms Ai and Bi are listed in Table 4.1. S is the negation of S and

f(S) := 1 if S is satisfied, else 0.

SSC S 4-colorings ϕ e(Sϕ, C)

S
(8)
4 {1} {1, 10, 11, 16}, {2, 7, 9, 12}, {3, 6, 8, 13}, {4, 5, 14, 15} B1 ∧B2 ∧B3

{1, 8, 13, 16}, {2, 7, 9, 12}, {3, 6, 10, 11}, {4, 5, 14, 15} A1

S
(8)
4 {2} {1, 8, 12, 14}, {2, 5, 13}, {3, 6, 9, 11}, {4, 7, 10} A3 ∨ (B1 ∧B2 ∧B3)

S
(9)
4 {1} {1, 8, 13, 16}, {2, 5, 9, 11}, {3, 6, 10, 14}, {4, 7, 12, 15} A3 ∨ (B1 ∧B2 ∧B3)

S
(9)
4 {2} {1, 8, 12, 16}, {2, 5, 10, 13}, {3, 6, 9, 14}, {4, 7, 11, 15} A4 ∨ (B1 ∧B2 ∧B3)

S
(9)
4 {3} {1, 11, 14, 16}, {2, 5, 8, 12}, {3, 6, 9, 13}, {4, 7, 10, 15} A4 ∨ (B12 ∧B13)

S
(10)
4 {1} {1, 8, 12, 17, 19}, {2, 5, 9, 11, 15}, {3, 6, 10, 13, 18}, {4, 7, 14, 16} A1 ∨ A2 ∨ A3 ∨ (B1 ∧B2 ∧B3)

5 other non-isomorphic 4-colorings always

S
(10)
4 {2} {1, 9, 12, 13, 18}, {2, 6, 11, 16, 19}, {3, 5, 8, 14, 17}, {4, 7, 10, 15} A5 ∨ (B1 ∧B2 ∧B3)

S
(10)
4 {3} {1, 8, 14, 17, 19}, {2, 5, 9, 11}, {3, 6, 12, 16, 18}, {4, 7, 10, 13, 15} A1 ∨ A2 ∨ A3 ∨ (B1 ∧B2 ∧B3)

5 other non-isomorphic 4-colorings always

S
(10)
4 {4} {1, 8, 13, 16, 19}, {2, 5, 9, 15, 17}, {3, 6, 10, 11}, {4, 7, 12, 14, 18} A2 ∨ A3 ∨ A4 ∨ (B1 ∧B2 ∧B3)

8 other non-isomorphic 4-colorings always

S
(10)
4 {5} {1, 9, 12, 15, 20}, {2, 7, 10, 11, 19}, {3, 6, 8, 13, 18}, {4, 5, 14, 16, 17} B4 ∧B5 ∧B6

{1, 10, 12, 17, 20}, {2, 7, 8, 16, 19}, {3, 6, 9, 11, 13}, {4, 5, 14, 15, 18} B7

{1, 10, 12, 18, 19}, {2, 7, 8, 15, 20}, {3, 6, 9, 11, 13}, {4, 5, 14, 16, 17} A1 ∨B1 ∨B2 ∨B3 ∨B7

S
(10)
4 {6} {1, 8, 15, 18}, {2, 5, 9, 17}, {3, 6, 11, 13, 16}, {4, 7, 10, 12, 14} A5 ∨ (B8 ∧B9)

S
(10)
4 {7} {1, 9, 13, 18}, {2, 7, 10, 12, 15}, {3, 6, 11, 16, 17}, {4, 5, 8, 14, 19} A1 ∨B1 ∨B7

S
(10)
4 {8} {1, 8, 13, 17}, {2, 5, 14, 15}, {3, 6, 9, 11, 16}, {4, 7, 10, 12} A1 ∨ A2 ∨ (B1 ∧B2 ∧B3)

2 other non-isomorphic 4-colorings always

S
(11)
4 {1} {1, 8, 15, 18, 19}, {2, 5, 9, 13, 14}, {3, 6, 12, 16, 17}, {4, 7, 10, 11, 20}

A1 ∨ A2 ∨ A3 ∨ A5

∨ (B1 ∧B2 ∧B3)

{1, 9, 10, 13, 14}, {2, 7, 11, 19, 20}, {3, 6, 12, 16, 17}, {4, 5, 8, 15, 18} always

S
(11)
4 {2} {1, 9, 12, 13, 20}, {2, 5, 8, 14, 16}, {3, 6, 10, 15, 17}, {4, 7, 11, 18, 19} A5 ∨ (B1 ∧B2 ∧B3)

{1, 9, 11, 14, 18}, {2, 7, 8, 13, 19}, {3, 6, 10, 15, 17}, {4, 5, 12, 16, 20} always

S
(11)
4 {3} {1, 8, 14, 17, 20}, {2, 5, 10, 12, 15}, {3, 6, 9, 13, 16}, {4, 7, 11, 18, 19} A1 ∨B1 ∨B2 ∨B3 ∨B7

3 other non-isomorphic 4-colorings always

S
(11)
4 {4} {1, 11, 15, 18, 20}, {2, 5, 8, 13, 19}, {3, 6, 9, 14, 16}, {4, 7, 10, 12, 17}

A5 ∨ (B10 ∧B11 ∧B12

∧B13 ∧B14 ∧B15)

S
(11)
4 {5} {1, 9, 12, 15, 18}, {2, 6, 11, 14, 17}, {3, 5, 8, 13, 19}, {4, 7, 10, 16} A1 ∨B7 ∨B1

S
(11)
4 {6} {1, 8, 13, 17, 20}, {2, 5, 11, 14, 16}, {3, 6, 9, 12, 19}, {4, 7, 10, 15, 18} A5 ∨ (B10 ∧B11 ∧B12 ∧B13)

S
(11)
4 {7} {1, 11, 15, 16, 20}, {2, 5, 8, 12, 18}, {3, 6, 9, 13, 17}, {4, 7, 10, 14, 19} A6 ∨ (B1 ∧B2 ∧B3)
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Example. Consider the SSC S
(4)
3 which has exactly one 3-coloring. We can eliminate

all stopping sets of type S
(4)
3 in an L 1

q –TD LDPC codes if the condition A1 is satisfied.

Conversely, if A1 is not satisfied, then there exist 1
4
q2(q − 1) stopping sets of type S

(4)
3

whose points are divided into groups by the underlying TD in the same way as the points

of S
(4)
3 are partitioned into the color classes by the given 3-coloring.

4.4. Design strategies over the binary erasure

channel

This section serves to investigate the implications of our stopping set analysis to the

design of L m
q –TD LDPC codes and to derive new and powerful strategies in order to

obtain codes with the most beneficial stopping set distributions. The arising conditions

are expressed in terms of the order q and the scale factors α1, . . . , αm of the underlying

set of MOLS from L m
q . Furthermore, let ωq be the characteristic of Fq, i.e., q = ωtq

for any t ≥ 1. Before the design strategies are presented in detail, two propositions are

formulated which are very important for the elaboration of our strategies.

Proposition 14 Let H the parity-check matrix of an L m
p –TD LDPC code based on

MOLS with prime order p and let H ′ be the parity-check matrix of an L m
pt –TD LDPC

code based on MOLS with the same choice of scale factors, but with prime power order

pt for any t > 0. Then, every stopping set in H leads directly to a stopping set in H ′ of

the same size but not vice versa. In particular, it holds that smin(H ′) ≤ smin(H).

Proof. Consider H and H ′ as the incidence matrix of a transversal design D and

D′, respectively. It can be shown that D has a large number of subdesigns of type D′

(cf. [105]) and thus every stopping set of H directly results in a stopping set of H ′ of

the same size. The converse does not hold in general. �

Proposition 15 Let H be the parity-check matrix of an L m
q –TD LDPC code and let

H ′ be the parity-check matrix of an L m−t
q –TD LDPC code for 1 ≤ t ≤ m− 1 such that
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H ′ arises from H by deleting the rows corresponding to any t groups of the underlying

L m
q –TD. Then, every stopping set in H directly leads to a stopping set in H ′ of the

same size but not vice versa. In particular, it holds that smin(H ′) ≤ smin(H).

Proof. Consider the matrix representation of any stopping set in H. From the defi-

nition of stopping sets we know that every row of this matrix must have a weight of at

least 2. This property does not get lost by deleting any rows of H such that the matrix

with potentially fewer rows remains a stopping set in H ′. Conversely, the property can

be destroyed by adding rows of weight one such that a stopping set in H ′ does not

generally result in a stopping set of H. �

Strategy 1 The order q of an L m
q –TD LDPC code should be a large prime number.

Proof. This strategy is motivated by the following arguments:

∗ The L m
pt –TD LDPC codes of length N = p2t based on MOLS with prime power

order pt for t > 1 should be avoided since their stopping distances are upper boun-

ded by the stopping distances of the corresponding L m
p –TD LDPC codes of length

N = p2 based on MOLS of order p with the same scale factors (Proposition 14).

Hence, the stopping distance does not increase for larger code lengths.

∗ There exist stopping sets that specifically occur for a certain characteristic ωq and

thus are termed ωq-specific stopping sets. It can be observed that the size of the

smallest ωq-specific stopping set tends to be smaller if ωq is small. For instance, if

ωq = 2, the L 1
2 –TD LDPC codes of column weight three exclusively contain the

smallest 2-specific stopping sets of type S
(4)
3 and for ωq = 3, the smallest 3-specific

stopping sets are of type S
(6)
3 {3}. For the case of L 2

2 –TD LDPC codes of column

weight four, the smallest 2-specific stopping sets are of type S
(6)
4 {1}, the smallest

3-specific stopping sets of type S
(6)
4 {2}, the smallest 5-specific stopping sets of

type S
(8)
4 {2}, the smallest 7-specific stopping sets of type S

(9)
4 {2} and S

(9)
4 {3}, the

smallest 13-specific stopping sets of type S
(10)
4 {2} and S

(10)
4 {6}, and finally, the

smallest 17-specific stopping sets of type S
(11)
4 {7}. As we can see, the size of the
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smallest ωq-specific stopping sets steadily grows from 6 to 11 for ωq = 2 to 17.

Furthermore, it can be expected that there are even larger ωq-specific stopping

sets for ωq > 17. Hence, in order to eliminate these types of stopping sets, it is

reasonable to choose q as a large prime number which avoids small characteristics.

�

For covering the whole spectrum of L m
q –TD LDPC codes, the following strategies are

nevertheless presented in terms of a general prime power order q.

Strategy 2 (Design of L 1
q –TD LDPC codes of column weight three)

Based on our investigations, we obtain the best L 1
q –TD LDPC codes over the BEC via

standard erasure decoding by choosing the prime power order q such that ωq > 3 where

ωq is the characteristic of Fq. The arising codes have a stopping distance of six.

Proof. This strategy is based on the following arguments:

∗ The stopping distance can be raised from four to six by choosing ωq 6= 2 such

that all stopping sets of type S
(4)
3 are eliminated. This is the maximal achievable

stopping distance, since there always occur size-6 stopping sets of type S
(6)
3 {2}.

∗ The number of the smallest stopping sets of size six can be minimized by satisfying

ωq > 3 such that stopping sets of type S
(6)
3 {1}, S

(6)
3 {3} and S

(6)
3 {4} are eliminated.

∗ The eliminated SSCs are most likely contained in larger stopping sets which can

trivially be avoided in addition.

�

Strategy 3 (Design of L 2
q –TD LDPC codes of column weight four)

Based on our investigations, we obtain the best L 2
q –TD LDPC codes over the BEC via

standard erasure decoding by choosing the prime power order q and the scale factors α1

and α2 in such a way that the conditions A1 to A6 and B1 to B7 are satisfied over Fq.

The arising codes have a stopping distance of ten.

79



Proof. This strategy relies on the following arguments:

∗ The smallest and most harmful stopping sets of types S
(6)
4 {1} and S

(6)
4 {2} can be

eliminated by satisfying the conditions A1 and A2.

∗ All size-8 stopping sets of type S
(8)
4 {1} and S

(8)
4 {2} can be avoided by A1 and

B1 to B3. Furthermore, all size-9 stopping sets of type S
(9)
4 {1} to S

(9)
4 {3} can be

eliminated by satisfying A3 and A4.

∗ Hence, we can raise the stopping distance from six to ten by fulfilling the conditions

A1 to A4 and B1 to B3.

∗ The stopping distance for our properly designed L 2
q –TD LDPC codes is exactly

ten since there occur stopping sets of type S
(10)
4 {5}. This is the largest possible

stopping distance for any L 2
q –TD LDPC code of column weight four.

∗ The number of dominating stopping sets of size ten can be reduced significantly

by satisfying B1 to B7 and A5. More precisely, the SSCs S
(10)
4 {1} to S

(10)
4 {4} can

be eliminated by B1 to B3 and the SSCs S
(10)
4 {6} to S

(10)
4 {8} can be avoided by

A5, B1 to B3 and B7. Furthermore, the number of stopping sets of type S
(10)
4 {5}

can be significantly reduced by satisfying B4 to B7.

∗ The number of stopping sets of size eleven can be reduced substantially by satisfy-

ing the conditions A5, A6 and B7. More precisely, the proposed strategy eliminates

all stopping sets of type S
(11)
4 {1} to S

(11)
4 {7} except stopping sets of type S

(11)
4 {3}.

�

Strategy 4 (Design of L m
q –TD LDPC codes of column weight five and higher)

For m > 2, we obtain excellent L m
q –TD LDPC codes of column weight five and higher

by choosing the prime power order q and the scale factors α1, . . . , αm in such a way that

the conditions A1 to A5 and B1 to B7 are satisfied over Fq .

Proof. This strategy is motivated by the following considerations:

∗ There are two possibilites in order to improve the stopping set distribution of

L m
q –TD LDPC codes of higher column weights. First, we can carry out an exact
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stopping set analysis of these codes and derive a design strategy based on this ana-

lysis just as we have done it for the codes of column weight k ≤ 4. Unfortunately,

this approach leads to a very high computational complexity for growing column

weights such that an exhaustive analysis is extremly expensive. Second, we can

exploit the topological relations between the stopping set distributions of L m
q –TD

LDPC codes and those of smaller column weights such that the design strategy for

L m
q –TD LDPC codes with higher column weights can be reduced to the strategies

elaborated for codes of smaller column weights. This second approach is the basis

of the current strategy and will subsequently be described in more detail.

∗ Consider an L m
q –TD LDPC code with parity-check matrix H and an L m−t

q –TD

LDPC code of lower column weight with parity-check matrix H ′ that arises from

H by deleting all rows that correspond to an arbitrary selection of t groups of

the underlying TD. As we know from Prop. 15, every stopping set in H leads to

a stopping set in H ′ of the same size but with reduced column weight. Hence,

the elimination of stopping sets in L m−t
q –TD LDPC codes greatly supports the

elimination of stopping sets in L m
q –TD LDPC codes of higher column weight.

�

Based on the presented design strategies, Table 4.5 shows the parameters of possible

L 2
q –TD LDPC codes of column weight four for every prime order q up to 100. As we

can see, our strategies admit a wide range of possible codes for every prime order q.
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Tabelle 4.5. – For the family of L 2
q –TD LDPC codes of column weight k = 4, the table lists the

best possible choices for the scale factors α1, α2 for prime orders q up to 100 in order to obtain

excellent codes with maximum stopping distance smin(H) = 10 according to the design strategies

elaborated in Section 4.4 over the BEC. Note that there are no convenient choices for q < 19.

q Define α1 = 1. Then, the best choices for α2 are N R

19 {2, . . . , 18} \ {2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18} 361 0.80

23 {2, . . . , 22} \ {2, 12, 22} 529 0.83

29 {2, . . . , 28} \ {2, 5, 6, 7, 15, 23, 24, 25, 28} 841 0.87

31 {2, . . . , 30} \ {2, 6, 12, 13, 14, 16, 18, 19, 20, 26, 30} 961 0.87

37 {2, . . . , 36} \ {2, 11, 19, 27, 36} 1369 0.89

41 {2, . . . , 40} \ {2, 6, 7, 8, 21, 34, 35, 36, 40} 1681 0.90

43 {2, . . . , 42} \ {2, 7, 22, 37, 42} 1849 0.91

47 {2, . . . , 46} \ {2, 24, 46} 2209 0.92

53 {2, . . . , 52} \ {2, 27, 52} 2809 0.93

59 {2, . . . , 58} \ {2, 25, 26, 27, 30, 33, 34, 35, 58} 3481 0.93

61 {2, . . . , 60} \ {2, 14, 17, 18, 19, 31, 43, 44, 45, 48, 60} 3721 0.94

67 {2, . . . , 66} \ {2, 30, 34, 38, 66} 4489 0.94

71 {2, . . . , 70} \ {2, 8, 9, 10, 36, 62, 63, 64, 70} 5041 0.94

73 {2, . . . , 72} \ {2, 9, 37, 65, 72} 5329 0.95

79 {2, . . . , 78} \ {2, 24, 29, 30, 31, 40, 49, 50, 51, 56, 78} 6241 0.95

83 {2, . . . , 82} \ {2, 42, 82} 6889 0.95

89 {2, . . . , 88} \ {2, 9, 10, 11, 45, 79, 80, 81, 88} 7921 0.96

97 {2, . . . , 96} \ {2, 36, 49, 62, 96} 9409 0.96
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4.5. Absorbing set analysis

In this chapter, we thoroughly investigate and design L m
q –TD LDPC codes for their

optimal usage over the AWGN channel under iterative decoding with the standard sum-

product algorithm. The presented results are based on our manuscript [P3], but the

findings of this paper are extended significantly. The current chapter provides a compre-

hensive absorbing set analysis by a threefold approach. First, an exhaustive classification

of possible absorbing sets is presented which may occur in the factor graph of any TD

LDPC code. Second, based on this classification, the specific structure of L m
q –TD LDPC

codes is exploited for the elimination of the most harmful absorbing sets. Third, powerful

conditions are derived in order to identify those codes with the most beneficial absorbing

set spectra. As a result, we obtain an infinite family of high-rate regular LDPC codes

with excellent performances over the AWGN channel, in particular, with very low-error

floors.

4.5.1. Absorbing set candidates (ASCs)

By definition, absorbing sets are special subgraphs of a code’s factor graph. From a

design theoretic viewpoint, it is more natural to consider absorbing sets as set systems

which allow a more comfortable description of the combinatorial properties in terms of

the underlying transversal design. Furthermore, absorbing sets are inextricably linked

with a concrete code since they are subgraphs of one specific factor graph. This viewpoint

is problematic when we investigate the existence of absorbing sets since it does not admit

their absence. Consequently, Def. 16 introduces the notion of absorbing set candidates

which are described in the form of set systems independent of a specific code instance.3

3 Although the following definition of absorbing set candidates is tailored to the family of TD LDPC

codes, they must not necessarily occur in any code of this family.
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Definition 16 An absorbing set candidate (ASC) for the family of TD LDPC codes

with column weight k is a set system of points and blocks such that

(A) each block contains exactly k points,

(B) any two blocks share at most one point,

(C) the points can be partitioned into classes such that every block has exactly one point

per class, i.e., the set system is k-colorable, and

(D) for every block, the majority of points from this block is contained in an even

number of blocks.

The first three conditions (A)-(C) are imposed by the properties of a transversal design

and the fourth condition arise from the definition of an absorbing set. In particular,

note, that property (C) directly follows from the property of a TD that its point set

is partitioned in k groups such that every block of the TD has exactly one point per

group. As for absorbing sets, the size of an ASC shall be the number of blocks and the

syndrome shall be defined as the number of points with odd degree.

Intuitively, absorbing set candidates can be seen as patterns for absorbing sets that

satisfies all necessary combinatorial conditions in order to represent an absorbing set

in TD LDPC codes, but which must not necessarily occur in a specific code instance

of this code family. An ASC can equivalently be represented by its binary incidence

matrix such that the points and blocks of the ASC correspond to the rows and columns

of the matrix. In the next section, this matrix representation is primarily used for the

visualization of the ASCs.

4.5.2. Classification of ASCs

This section presents an extensive classification of small absorbing set candidates that

potentially occur in TD LDPC codes. The ASCs of the classification are uniquely labeled

by (a, b)k{i}, where a is the size of the ASC (number of blocks), b is the syndrome

(number of points with odd degree), k is the constant block size and where the postfix
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{i} enumerates those ASCs that have the same size, syndrome and block size. The

applied classification process is based on the procedure developed in [P3, Section III]

and is outlined in Appendix B. Basically, by starting with an empty set system, the

current set system is successively extended in all possible ways in compliance with certain

combinatorial constraints that must be satisfied in order to represent an ASC. Note that

the specific structure of TD LDPC codes significantly reduces the number of ways in

which a set system can be extended since only k-colorable set systems are admitted.

Hence, we obtain a narrow collection of ASCs precisely tailored for the family of TD

LDPC codes.

Table D.1 and Table D.2 show a complete classification of ASCs for TD LDPC codes

of column weight three and four, respectively, up to size six. Note that these tables have

originally been presented in [P3, Subsection III-B and C]. For the case of TD LDPC

codes with column weight four, the classification is expanded by a complete list of all 34

ASCs of size eight and syndrome of at most two in Table D.3. Note that this table also

visualizes the inclusions between the ASCs. Furthermore, an exhaustive classification of

ASCs up to size six for TD LDPC codes of column weight five is given in Table D.4. For

keeping the list small, the size-6 ASCs with syndromes larger than six has been excluded

which are supposed to be harmless since they have relatively large syndromes. It is worth

noting here that the classification is suitable for the entire family of TD LDPC codes

and not only for a specific code within this family, whereas, in contrast, many search

algorithms for finding small absorbing sets (e.g. [106, 107]) result in lists of absorbing

sets that occur in the factor graph of one specific code.

4.5.3. Elimination of ASCs

Based on the presented classification of ASCs in the previous section, we are now con-

cerned with their existence in L m
q –TD LDPC codes. As will be demonstrated, some of

the associated absorbing sets can be eliminated or partially avoided by a proper choice

of the code parameters, more precisely, by the right choice of the scale factors αi and the
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prime power order q of the underlying finite field. Finally, we derive powerful conditions

for the most convenient choices under the objective of avoiding the potentially most

harmful absorbing sets.

First, we will define some basic notations. Let S be any ASC and let C be an L m
q –TD

LDPC code. We say that an absorbing set of C is of type S if the set system representation

of the absorbing set is isomorphic to S. Furthermore, let ϕ be any k-coloring of S,

where k is the block size of S. Then, an absorbing set is of type Sϕ, if, in addition, the

given k-coloring complies with the partition of the points into groups by the underlying

transversal design. Furthermore, we have shown in [P3, Thm. 2] that an absorbing set

of type Sϕ is fully if all points of S with an odd degree are contained in exactly one color

class of ϕ. The converse does also hold for the cases of k = 3 and 4.

We now investigate the existence of an ASC S in dependence of the code parameters

of C. For this, we have developed a procedure in [P3, Section V] in order to calculate

the exact conditions for which absorbing sets of type S exist or can be eliminated. This

procedure exploits the specific structure of L m
q –TD LDPC codes and is thoroughly

described and outlined in Appendix E. Basically, every ASC can be described by a linear

equation system in a closed algebraic form. This system is then solved symbolically by

a modified Gaussian elimination algorithm in dependence of the code parameters.

By applying the described procedure on every ASC of the classification presented in

Section 4.5.2, we obtain the exact conditions of how the respective absorbing sets can be

eliminated or partially avoided in dependence of the code parameters of C. The results

are presented in several tables by giving the following information for each ASC S.

∗ First, all possible k-colorings of S are listed.

∗ For each coloring ϕ of S, the term e(Sϕ, C) gives the exact elimination condition,

i.e., there is no absorbing set of type Sϕ in C if and only if e(Sϕ, C) is satisfied.

∗ For each coloring of S, the term |Sϕ, C| gives the number of occurrences of absorbing

sets of type Sϕ in C. Clearly, it holds that |Sϕ, C| = 0 if and only if e(Sϕ, C) is

satisfied.
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Tabelle 4.6. – List of important conditions over Fq

Label Condition

C1 α1 + α2 6= 0

C2 2α1 − α2 6= 0

C3 α1 − 2α2 6= 0

C4 ωq 6= 2

C5 α2
1 + α1α2 − α2

2 6= 0

C6 α2
2 + α1α2 − α2

1 6= 0

C7 α2
1 − 3α1α2 + α2

2 6= 0

C8 α2
1 − α1α2 + α2

2 6= 0

C9 ωq 6= 3

C10 3α1 − 2α2 6= 0

C11 2α1 − 3α2 6= 0

C12 α1 + 2α2 6= 0

C13 2α1 + α2 6= 0

C14 α1 − 3α2 6= 0

C15 3α1 − α2 6= 0

C16 α2
1 + α1α2 + α2

2 6= 0

C17 ωq 6= 5

C18 3α2
1 − 3α1α2 + α2

2 6= 0

Label Condition

C19 α2
1 − 3α1α2 + 3α2

2 6= 0

C20 3α1 − 4α2 6= 0

C21 4α1 − 3α2 6= 0

C22 α1 − 4α2 6= 0

C23 4α1 − α2 6= 0

C24 α1 + 3α2 6= 0

C25 3α1 + α2 6= 0

C26 α2
1 + α2

2 6= 0

C27 2α2
1 − 2α1α2 + α2

2 6= 0

C28 α2
1 − 2α1α2 + 2α2

2 6= 0

C29 α3
1 + α2

1α2 + α3
2 6= 0

C30 α3
1 + α1α

2
2 + α3

2 6= 0

C31 α2
1 − 2α2

2 6= 0

C32 2α2
1 − α2

2 6= 0

C33 α2
1 − 4α1α2 + 2α2

2 6= 0

C34 2α2
1 − 4α1α2 + α2

2 6= 0

C35 α2
1 + 2α1α2 − α2

2 6= 0

C36 α2
2 + 2α1α2 − α2

1 6= 0
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Tabelle 4.7. – Let C be any L 1
q –TD LDPC code of column weight three. For each ASC of

Fig. D.1, the table presents all possible 3-colorings ϕ, the exact elimination conditions e(Sϕ, C)

and the cardinalities |Sϕ, C|. An asterisk (∗) indicates that an absorbing set of type Sϕ is full. The

subterms Ci are listed in Table 4.6. S is the negation of S and f(S) := 1 if S is satisfied, else 0.

ASC S 3-coloring ϕ e(Sϕ, C) |Sϕ, C|

(3, 3)3 {1, 6}, {2, 5}, {3, 4} no q2(q − 1)

(4, 0)3 {1, 6}, {2, 5}, {3, 4} (∗) C4 f(C4)1
4
q2(q − 1)

(4, 2)3 {1, 6, 7}, {2, 5}, {3, 4} (∗) C4 f(C4)3
2
q2(q − 1)

(4, 4)3 {1, 6}, {2, 5, 8}, {3, 4, 7} no ≤ 3
2
q2(q − 1)(q − 2)

{1, 6}, {2, 4}, {3, 5, 7, 8} (∗) no ≤ 3
4
q2(q − 1)(q − 2)

(5, 3)3{1} {1, 6, 7}, {2, 5, 8}, {3, 4, 9} no ≤ 3q2(q − 1)(q − 2)

(5, 3)3{2} {1, 6, 9}, {2, 5, 8}, {3, 4, 7} no q2(q − 1)(q − 2)

(5, 5)3 {1, 7, 9, 10}, {2, 5, 8}, {3, 4, 6} no ≤ 3q2(q − 1)(q − 2)(q − 3)

(6, 0)3{1} {1, 6, 7}, {2, 5, 8}, {3, 4, 9} (∗) C4 f(C4)1
2
q2(q − 1)(q − 2)

(6, 0)3{2} {1, 6, 9}, {2, 5, 8}, {3, 4, 7} (∗) no 1
6
q2(q − 1)(q − 2)

(6, 2)3{1} {1, 8}, {2, 5, 6}, {3, 4, 7} (∗) C9 f(C9)1
2
q2(q − 1)

(6, 2)3{2} {1, 8, 9}, {2, 5, 6}, {3, 4, 7} (∗) C4 ∨ C9 ≤ f(C4 ∧ C9, 3q
2(q − 1))

(6, 2)3{3} {1, 6, 7}, {2, 5, 9, 10}, {3, 4, 8} (∗) C4 ≤ f(C4)5
2
q2(q − 1)(q − 2)

(6, 2)3{4} {1, 6, 7}, {2, 5, 8}, {3, 4, 9, 10} (∗) C4 ≤ f(C4)3q2(q − 1)(q − 2)

(6, 2)3{5} {1, 6, 7, 10}, {2, 5, 8}, {3, 4, 9} (∗) C4 ≤ f(C4)3
2
q2(q − 1)(q − 2)

(6, 2)3{6} {1, 6, 9, 10}, {2, 5, 8}, {3, 4, 7} (∗) always 0

(6, 4)3{1} {1, 10}, {2, 5, 7, 8}, {3, 4, 6, 9} no ≤ 3
2
q2(q − 1)(q − 2)

(6, 4)3{2} {1, 8, 9, 10}, {2, 5, 6}, {3, 4, 7} (∗) no ≤ q2(q − 1)(q − 2)

(6, 4)3{3} {1, 6, 8, 10, 11}, {2, 5, 7}, {3, 4, 9} (∗) no ≤ 3q2(q − 1)(q − 2)(q − 3)

{1, 6, 8, 9}, {2, 5, 7}, {3, 4, 10, 11} no ≤ 5q2(q − 1)(q − 2)(q − 3)

(6, 4)3{4} {1, 6, 8, 10}, {2, 5, 7, 11}, {3, 4, 9} no ≤ 3
2
q2(q − 1)(q − 2)(q − 3)

(6, 4)3{5} {1, 6, 8}, {2, 5, 9, 10}, {3, 4, 7, 11} no ≤ 3
2
q2(q − 1)(q − 2)(q − 3)

{1, 7, 9, 10, 11}, {2, 4, 8}, {3, 5, 6} (∗) no ≤ 3
2
q2(q − 1)(q − 2)(q − 3)

{1, 7, 8, 10}, {2, 4, 9, 11}, {3, 5, 6} no ≤ 5
2
q2(q − 1)(q − 2)(q − 3)

{1, 6, 8}, {2, 4, 9, 11}, {3, 5, 7, 10} no ≤ 3
2
q2(q − 1)(q − 2)(q − 3)

(6, 4)3{6} {1, 6, 8}, {2, 5, 9, 10}, {3, 4, 7, 11} no ≤ 3q2(q − 1)(q − 2)(q − 3)

{1, 6, 9, 11}, {2, 4, 8}, {3, 5, 7, 10} no ≤ 5
2
q2(q − 1)(q − 2)(q − 3)

(6, 6)3{1} {1, 10, 11}, {2, 5, 7, 8}, {3, 4, 6, 9} no ≤ 3
2
q2(q − 1)(q − 2)(q − 3)

(6, 6)3{2} {1, 7, 9, 10}, {2, 5, 8, 11}, {3, 4, 6, 12} no ≤ 1
2
q2(q − 1)2(q − 2)(q − 3)

{1, 7, 8, 11}, {2, 5, 9, 10}, {3, 4, 6, 12} no ≤ 3
2
q2(q − 1)2(q − 2)(q − 3)

{1, 6, 8}, {2, 5, 9, 11, 12}, {3, 4, 7, 10} no ≤ 5
2
q2(q − 1)2(q − 2)(q − 3)

{1, 6, 8}, {2, 4, 10}, {3, 5, 7, 9, 11, 12} (∗) no ≤ 1
2
q2(q − 1)2(q − 2)(q − 3)
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Tabelle 4.8. – Let C be any L 2
q –TD LDPC code of column weight four. For each ASC of Fig. D.2,

the table presents all non-isomorphic 4-colorings ϕ, the exact elimination conditions e(Sϕ, C) and

the cardinalities |Sϕ, C|. An asterisk (∗) indicates that an absorbing set of type Sϕ is full. The

subterms Ci are listed in Table 4.6. S is the negation of S and f(S) := 1 if S is satisfied, else 0.

ASC S 4-coloring ϕ e(Sϕ, C) |Sϕ, C|

(4, 4)4 {1, 8}, {2, 6}, {3, 7, 9}, {4, 5, 10} C1 ∧ C2 ∧ C3 q2(q − 1)
3∑̀
=1

f(C`)

{1, 8}, {2, 6}, {3, 5}, {4, 7, 9, 10} (∗) C4 q2(q − 1)f(C4)

(5, 4)4 {1, 9, 10}, {2, 6, 12}, {3, 7, 8}, {4, 5, 11} C5 ∧ C6 ∧ C7 2q2(q − 1)
7∑̀
=5

f(C`)

(6, 0)4 {1, 9, 10}, {2, 6, 12}, {3, 7, 8}, {4, 5, 11} (∗) C4 ∨ C16 q2(q − 1)f(C4 ∧ C16)

(6, 2)4{1} {1, 11}, {2, 6, 10}, {3, 7, 8}, {4, 5, 9} (∗) C1 ∨ C9
2
3
q2(q − 1)f(C1 ∧ C9)

(6, 2)4{2} {1, 11, 12}, {2, 6, 10}, {3, 7, 8}, {4, 5, 9} (∗) always 0

(6, 2)4{3} {1, 8, 12, 13}, {2, 6, 11}, {3, 7, 9}, {4, 5, 10} (∗) (C1 ∧ C2 ∧ C3) ∨ C9 2q2(q − 1)
3∑̀
=1

f(C` ∧ C9)

{1, 8, 11}, {2, 6, 12, 13}, {3, 7, 9}, {4, 5, 10} (∗) always 0

(6, 2)4{4} {1, 9, 10}, {2, 6, 12, 13}, {3, 7, 8}, {4, 5, 11} (∗) always 0

(6, 4)4{1} {1, 11, 12, 13}, {2, 6, 10}, {3, 7, 8}, {4, 5, 9} (∗) C8 ∨ C1
4
3
q2(q − 1)f(C8 ∧ C1)

(6, 4)4{2} {1, 9, 11, 13, 14}, {2, 6, 12}, {3, 7, 8}, {4, 5, 10} (∗) C4 ∨ C16 12q2(q − 1)f(C4 ∧ C16)

{1, 9, 11, 12}, {2, 6, 13, 14}, {3, 7, 8}, {4, 5, 10} always 0

{1, 9, 10, 13}, {2, 6, 12}, {3, 7, 8}, {4, 5, 11, 14}
(C10 ∧ C11 ∧ C12 ∧ C13

15∑
`=10

f(C` ∧ C17, 4q
2(q − 1))

∧ C14 ∧ C15) ∨ C17

{1, 8, 10}, {2, 6, 12}, {3, 7, 9, 13}, {4, 5, 11, 14} C9 ∨ C1 12q2(q − 1)f(C9 ∧ C1)

{1, 8, 10}, {2, 7, 11, 13}, {3, 5, 12}, {4, 6, 9, 14} C8 ∨ C1 ∨ C4 12q2(q − 1)f(C8 ∧ C1 ∧ C4)

{1, 8, 10}, {2, 6, 13, 14}, {3, 5, 12}, {4, 7, 9, 11} always 0

{1, 8, 10}, {2, 6, 12}, {3, 5, 13, 14}, {4, 7, 9, 11}
C10 ∧ C11 ∧ C12

2q2(q − 1)
15∑
`=10

f(C`)
∧ C13 ∧ C14 ∧ C15

(6, 4)4{3} {1, 9, 10}, {2, 6, 12}, {3, 7, 8, 14}, {4, 5, 11, 13} (C16 ∧ C18 ∧ C19) ∨ C4 2q2(q − 1)
∑

`=16,18,19

f(C` ∧ C4)

{1, 9, 10}, {2, 6, 13, 14}, {3, 5, 12}, {4, 7, 8, 11}
C20 ∧ C21 ∧ C22 ∧ C23

q2(q − 1)
25∑
`=20

f(C`)
∧ C24 ∧ C25

(6, 4)4{4} {1, 9, 11, 13, 14}, {2, 6, 12}, {3, 7, 8}, {4, 5, 10} (∗) C1 ∨ C2 ∨ C3 ∨ C8 4q2(q − 1)f(C1 ∧ C2 ∧ C3 ∧ C8)

{1, 9, 11, 12}, {2, 6, 13, 14}, {3, 7, 8}, {4, 5, 10} always 0

(6, 6)4{1} {1, 9, 12, 13}, {2, 7, 11, 14}, {3, 6, 8}, {4, 5, 10, 15} C1 ∧ C2 ∧ C3 n/a

{1, 9, 11, 14}, {2, 7, 12, 13}, {3, 6, 8}, {4, 5, 10, 15} C8 n/a

{1, 9, 11, 14}, {2, 7, 12, 13}, {3, 6, 8}, {4, 5, 10, 15} no n/a

{1, 8, 10}, {2, 7, 11, 14}, {3, 6, 9, 15}, {4, 5, 12, 13} always n/a

{1, 8, 10}, {2, 7, 12, 13}, {3, 6, 9, 15}, {4, 5, 11, 14}
(C1 ∨ C4 ∨ C14)

∧ (C2 ∨ C4 ∨ C11 ∨ C13) n/a

∧ (C3 ∨ C4 ∨ C10 ∨ C12)

{1, 8, 12, 14}, {2, 6, 11}, {3, 7, 9, 13}, {4, 5, 10, 15}
C1 ∧ (C2 ∨ C3 ∨ C8 ∨ C9)

n/a
∨ (C1 ∧ C9)

{1, 8, 10}, {2, 6, 11}, {3, 7, 9, 14, 15}, {4, 5, 12, 13} C1 ∧ C2 ∧ C3 n/a

{1, 8, 10}, {2, 6, 11}, {3, 7, 9, 13}, {4, 5, 12, 14, 15}
(C1 ∨ C4 ∨ C14 ∨ C26)

∧ (C2 ∨ C4 ∨ C11 ∨ C13 ∨ C27) n/a

∧ (C3 ∨ C4 ∨ C10 ∨ C12 ∨ C28)

{1, 8, 10}, {2, 6, 11}, {3, 5, 13}, {4, 7, 9, 12, 14, 15} (∗) C4 n/a

(6, 6)4{2} {1, 10, 12, 14}, {2, 7, 11, 15}, {3, 6, 8}, {4, 5, 9, 13} C4 n/a

{1, 10, 11, 15}, {2, 7, 12, 14}, {3, 6, 8}, {4, 5, 9, 13} C1 ∧ C2 ∧ C3 n/a

{1, 9, 11}, {2, 7, 12, 14}, {3, 6, 8}, {4, 5, 10, 13, 15} always n/a

{1, 8, 12}, {2, 6, 11}, {3, 5, 9}, {4, 7, 10, 13, 14, 15} (∗) no n/a
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Tabelle 4.9. – Let C be any L 2
q –TD LDPC code of column weight four. For each ASC of Fig. D.3,

the table presents all non-isomorphic 4-colorings ϕ and the exact elimination conditions e(Sϕ, C).

An asterisk (∗) indicates that an absorbing set of type Sϕ is full. The subterms Ci are listed in

Table 4.6. S is the negation of S and f(S) := 1 if S is satisfied, else 0.

ASC S 4-coloring ϕ e(Sϕ, C)

(8, 0)4{1} {1, 8, 12, 15}, {2, 6, 13, 14}, {3, 5, 11, 16}, {4, 7, 9, 10} (∗) C4 ∨ C16

{1, 8, 11, 16}, {2, 6, 12, 15}, {3, 5, 13, 14}, {4, 7, 9, 10} (∗) C4

3 other non-isomorphic 4-colorings always

(8, 0)4{2} {1, 9, 10, 13}, {2, 6, 12, 15}, {3, 7, 8, 16}, {4, 5, 11, 14} (∗) (C29 ∧ C30) ∨ C4

(8, 0)4{3} 2 non-isomorphic 4-colorings always

(8, 0)4{4} {1, 9, 11, 12}, {2, 6, 13, 14}, {3, 7, 8, 16}, {4, 5, 10, 15} (∗) (C29 ∧ C30) ∨ C4

2 other non-isomorphic 4-colorings always

(8, 0)4{5} 3 non-isomorphic 4-colorings always

(8, 0)4{6} {1, 10, 12, 14}, {2, 7, 11, 15}, {3, 6, 8, 16}, {4, 5, 9, 13} (∗) always

{1, 10, 11, 15}, {2, 7, 12, 14}, {3, 6, 8, 16}, {4, 5, 9, 13} (∗) C1 ∧ C2 ∧ C3

(8, 2)4{1} {1, 8, 12, 13}, {2, 6, 11, 14}, {3, 7, 9, 16, 17}, {4, 5, 10, 15} (∗) always

(8, 2)4{2} 4 non-isomorphic 4-colorings always

(8, 2)4{3} 8 non-isomorphic 4-colorings always

(8, 2)4{4} 5 non-isomorphic 4-colorings always

(8, 2)4{5} 2 non-isomorphic 4-colorings always

(8, 2)4{6} {1, 9, 10, 13, 17}, {2, 6, 12, 14}, {3, 7, 8, 16}, {4, 5, 11, 15} (∗) always

(8, 2)4{7} {1, 9, 10, 13}, {2, 6, 12, 15}, {3, 7, 8, 16, 17}, {4, 5, 11, 14} (∗) always

(8, 2)4{8} 2 non-isomorphic 4-colorings always

(8, 2)4{9} 2 non-isomorphic 4-colorings always

(8, 2)4{10} {1, 9, 10, 14}, {2, 6, 12, 16, 17}, {3, 7, 8, 15}, {4, 5, 11, 13} (∗) always

(8, 2)4{11} {1, 9, 11, 12}, {2, 6, 13, 14}, {3, 7, 8, 16, 17}, {4, 5, 10, 15} (∗) (C29 ∧ C30) ∨ C4

(8, 2)4{12} 2 non-isomorphic 4-colorings always

(8, 2)4{13} 6 non-isomorphic 4-colorings always

(8, 2)4{14} 7 non-isomorphic 4-colorings always

(8, 2)4{15} {1, 9, 10, 13}, {2, 6, 12, 16, 17}, {3, 7, 8, 15}, {4, 5, 11, 14} (∗) ((C10 ∧ C11) ∨ C1) ∧ ((C12 ∧ C14) ∨ C2)

∧ ((C13 ∧ C15) ∨ C3)

8 other non-isomorphic 4-colorings always

(8, 2)4{16} {1, 8, 10, 16, 17}, {2, 7, 11, 12}, {3, 5, 13, 14}, {4, 6, 9, 15} (∗) (C27 ∨ C1 ∨ C3) ∧ (C28 ∨ C1 ∨ C2)

∧ (C26 ∨ C2 ∨ C3)

{1, 8, 10, 16, 17}, {2, 6, 13, 14}, {3, 5, 12, 15}, {4, 7, 9, 11} (∗) C31 ∧ C32 ∧ C33 ∧ C34

∧ C34 ∧ C35 ∧ C36

3 other non-isomorphic 4-colorings always

(8, 2)4{17} 3 non-isomorphic 4-colorings always

(8, 2)4{18} 6 non-isomorphic 4-colorings always

(8, 2)4{19} 6 non-isomorphic 4-colorings always

(8, 2)4{20} 3 non-isomorphic 4-colorings always

(8, 2)4{21} 6 non-isomorphic 4-colorings always

(8, 2)4{22} 5 non-isomorphic 4-colorings always

(8, 2)4{23} 4 non-isomorphic 4-colorings always

(8, 2)4{24} {1, 8, 11, 12, 17}, {2, 6, 14, 15}, {3, 5, 13, 16}, {4, 7, 9, 10} (∗) C4 ∨ C9 ∨ ((C3 ∨ C10 ∨ C12)

∧ (C2 ∨ C9 ∨ C13) ∧ (C1 ∨ C14))

5 other non-isomorphic 4-colorings always

(8, 2)4{25} 3 non-isomorphic 4-colorings always

(8, 2)4{26} 3 non-isomorphic 4-colorings always

(8, 2)4{27} 3 non-isomorphic 4-colorings always

(8, 2)4{28} 2 non-isomorphic 4-colorings always
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∗ For each coloring ϕ, the tables visualizes by an asterisk if the absorbing sets of

type Sϕ are fully in the case of their existence.

Table 4.7 gives the exact elimination conditions and cardinalities for the ASCs of

Fig. D.1 which potentially occur in L 1
q –TD LDPC codes of column weight three. Ta-

ble 4.8 presents the exact elimination conditions and cardinalities for the ASCs of

Fig. D.2 for L 2
q –TD LDPC codes of column weight four. Finally, Table 4.9 gives the

elimination conditions for the size-8 ASCs of Fig. D.3 for L 2
q –TD LDPC codes of column

weight four. The results for the ASCs of column weight five in Fig. D.4 are not presen-

ted in this section, but the implications for the strategy of designing L 3
q –TD LDPC of

column weight five are extensively discussed in Strategy 7. It is worth noting here that

the elimination conditions and cardinalities of the ASCs are presented in terms of the

prime power order q and the scale factors αi and thus are valid for the entire family of

L m
q –TD LDPC codes. Hence, the results can be used for the design of TD LDPC codes

with an infinite range of code lengths and rates.

4.6. Design strategies over the AWGN channel

Based on the results of the absorbing set analysis, this section derives powerful strategies

for the design of excellent L m
q –LDPC codes over the AWGN channel via standard SPA

decoding. The main objective is to find the codes with the most beneficial absorbing

set spectra from the family of L m
q –TD LDPC codes. However, the strategies should

be as unrestricted as possible to maintain the parametric flexibility of the code family.

Note that the presented results are valid for the entire range of possible L m
q –TD LDPC

codes, whereas the results obtained by computer-based search algorithms are typically

valid only for one specific parity-check matrix.

Strategy 5 (Strategy for L 1
q -TD LDPC codes of column weight three)

Based on our results, we obtain the best L 1
q –TD LDPC codes over the AWGN channel

via standard SPA decoding by choosing the prime power order q of Fq in such a way that

ωq > 3, where ωq is the characteristic of Fq.
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Proof. The proof relies on the following arguments:

∗ The absorbing sets of type (4, 0)3 and (6, 0)3{1} are eliminated. These absorbing

sets are supposed to be the most harmful ones since they are very small, have

syndrome 0 and are fully. In particular, the absorbing sets of type (4, 0)3 are the

smallest possible fully absorbing sets and thus are extremly detrimental for the

decoding process.

∗ The smallest absorbing sets of type (3, 3)3 are unavoidable, but they are relatively

harmless since they are not full and have a relatively large syndrome of three.

∗ Unfortunately, the absorbing sets of type (4, 0)3 and (4, 2)3 can not be avoided

simultaneously since their elimination depend on opposing conditions, but the

(4, 0)3 absorbing sets are more harmful and thus have a higher priority.

∗ The absorbing sets of size 5 can not be avoided, but they are supposed to be

harmless since they are not full and have relatively large syndromes.

∗ The (6, 0)3{1} fully absorbing sets can be avoided by ωq 6= 2, whereas the (6, 0)3{2}

fully absorbing sets can generally not be avoided. Hence, the absorbing sets of type

(6, 0)3{2} are supposed to be the most harmful ones which mainly dominate the

decoding performance in the error-floor region.

∗ Finally, the (6, 2)3{1} absorbing sets can be avoided by ωq 6= 3 which reduces the

number of absorbing sets of size six, whereas the (6, 2)3{2}, (6, 2)3{3}, (6, 2)3{4}

and (6, 2)3{5} ones can not be avoided by ωq > 3.

∗ The absorbing sets of types (6, 4){i} and (6, 6){i} can not be eliminated, but they

are supposed to be harmless due to their large syndromes.

�

Strategy 6 (Strategy for L 2
q –TD LDPC codes of column weight four)

Based on our results, we obtain the best L 2
q –TD LDPC codes over the AWGN channel

via standard SPA decoding by choosing the prime power order q of Fq and the scale factors

α1 and α2 in such a way that the conditions C1 to C16 and C18 to C36 of Table 4.6 are

satisfied.
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Proof. The proof relies on the following arguments:

∗ The smallest possible absorbing sets have type (4, 4)4 and can be eliminated if

and only if the conditions C1 to C4 of Table 4.6 are satisfied. The (6, 2)4{1} and

(6, 2)4{3} absorbing sets can simultaneously be avoided since they contain a (4, 4)4

absorbing set.

∗ The smallest possible fully absorbing sets have size (4, 4)4 and can be eliminated

if and only if C4 is satisfied. Note that the absorbing sets of type (4, 4)4 are only

full if the second 4-coloring listed in Table 4.8 is induced by the underlying TD.

∗ The smallest absorbing sets of syndrome 0 are of type (6, 0)4 and can be avoided if

and only if C4∨C16 is satisfied. These absorbing sets are full and thus are extremly

harmful for the decoding process. Note that (6, 0)4 absorbing sets correspond to

codewords of minimum weight six and also define stopping sets of the same size.

Hence, by avoiding these entities, we can also raise the minimum and stopping

distance of the code.

∗ The absorbing sets of type (5, 4)4 can be avoided if and only if the conditions C5 to

C7 are satisfied. Although these absorbing sets are supposed to be relatively harm-

less due to their large syndromes, they are contained in harmful (6, 0)4, (6, 2)4{4},

(8, 2)4{9} and (8, 2)4{10} absorbing sets (and most likely in larger ones) which can

therefore be simultaneously be eliminated.

∗ The fully (6, 2)4{3} absorbing sets can be avoided by satisfying the conditions C1

to C3 and the fully (6, 2)4{2} and (6, 2)4{4} absorbing sets do never occur due

to the specific structure of the considered codes. Hence, all absorbing sets of size

a ≤ 6 and syndrome b ≤ 2 can simultaneously be avoided by the proposed design

strategy.

∗ The fully (6, 4)4{1} absorbing sets can be avoided by satisfying the condition C8.

∗ The (6, 4)4{2} absorbing sets are eliminated by satisfying the conditions C4 and

C8 to C15, in particular, the subset of fully (6, 4)4{2} absorbing sets are avoided

by C4. These absorbing sets are contained in harmful fully (8, 2)4{15} ones which

are therefore avoided concurrently. Also, they are contained in (8, 2)4{13} and
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(8, 2)4{14} absorbing sets, but which can never occur.

∗ The (6, 4)4{3} absorbing sets can be avoided by the conditions C16 and C18 to C25.

They are contained in (8, 2)4{6} and (8, 2)4{25} absorbing sets which are trivially

eliminated.

∗ The fully (6, 4)4{4} absorbing sets can not simultaneously be avoided by our de-

sign strategy since their elimination condition is opposed to the conditions of more

harmful absorbing sets. Hence, the (6, 4)4{4} absorbing sets are the smallest ones

that definitely occur while pursuing our strategy. However, they have relative-

ly large syndromes and thus are supposed to be rather harmless. Also, they are

contained in absorbing sets of type (8, 2)4{5} but which are trivially avoided.

∗ The absorbing sets of type (6, 6)4{1} can partially be eliminated by C1 to C4 and

C8. In particular, the fully (6, 6)4{1} absorbing sets can be avoided if and only if

the condition C4 is satisfied. The absorbing sets of type (6, 6)4{2} can partially be

eliminated if the conditions C1 to C4 are satisfied, but the subset of fully (6, 6)4{2}

absorbing sets can not be avoided. Although the absorbing sets of types (6, 6)4{1}

and (6, 6)4{2} are harmless due to their large syndromes, they are contained in

(8, 0)4{4}, (8, 0)4{5}, (8, 0)4{6}, (8, 2)4{18} and (8, 2)4{20} to (8, 2)4{28} absor-

bing sets and most likely in larger ones which can therefore partially be eliminated.

∗ The fully absorbing sets of types (8, 0)4{i} with i ∈ {1, . . . , 6} can all be eliminated

by satisfying C1 to C4, C29 and C30.

∗ The fully absorbing sets of types (8, 2)4{i} with i ∈ {1, . . . , 28}\{24} are all simul-

taneously eliminated by the conditions C10 to C15 and C26 to C36. The (8, 2)4{24}

absorbing sets are the only occurring ones in the codes obtained by our design

strategy.
�

Strategy 7 (Strategy for L 3
q –TD LDPC codes of column weight five)

We obtain the best L 3
q –TD LDPC codes over the AWGN channel via standard SPA

decoding by choosing the prime power order q of Fq and the scale factors α1, α2 and α3

in such a way that the conditions D1 to D26 of Table 4.10 are satisfied.
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Tabelle 4.10. – List of conditions over Fq depending on the scale factors α1, α2 and α3. A condition

is satisfied, if it is satisfied for all possible permutations (αx, αy, αz) of the given scale factors.

Label Condition

D1 αx − αy + αz 6= 0

D2 αxαy − αxαz + αyαz 6= 0

D3 αxαy − 2αyαz + α2
z 6= 0

D4 α2
x − αyαz 6= 0

D5 αx + αy 6= 0

D6 2αx − αy 6= 0

D7 2αx − αy − αz 6= 0

D8 αxαy + αxαz − 2αyαz 6= 0

D9 αxαy − αxαz − α2
y 6= 0

D10 αxαy + αxαz − α2
y 6= 0

D11 αxαy − αyαz − α2
z 6= 0

D12 α2
x + αxαy − αxαz − α2

y 6= 0

D13 α2
x − αxαy − αxαz + α2

z 6= 0

D14 αxαy − 2αyαz − αxαz + α2
z 6= 0

Label Condition

D15 αxα
2
y − α2

yαz + αxα
2
z − αxαyαz 6= 0

D16 αxα
2
y − α2

yαz + α2
xαz − αxαyαz 6= 0

D17 αxα
2
y + α2

xαz + αyα
2
z − 3αxαyαz 6= 0

D18 α2
xαy + α2

xαz + α2
yαz − 3αxαyαz 6= 0

D19 αxαz − 2αxαy + αyαz + α2
x − α2

z 6= 0

D20 α2
x + αyαz − 3αxαy + α2

y 6= 0

D21 2α2
xαy − αxα2

y − α2
xαz + α2

yαz − αxαyαz 6= 0

D22 2α2
xαy − αxα2

y − α2
xαz + αyα

2
z − αxαyαz 6= 0

D23 α2
x + αxαy − α2

y 6= 0

D24 α2
x − 3αxαy + α2

y 6= 0

D25 αxαz − 3αxαy + αyαz

+α2
x + α2

y − α2
z 6= 0

D26 α2
xα

2
y − α2

xα
2
z − α2

yα
2
z + 3αxαyα

2
z

−αxα2
yαz − α2

xαyαz 6= 0

Proof. The proof relies on the following arguments:

∗ The smallest possible absorbing sets are of type (4, 8)5 and can be eliminated if

and only if the conditions D1 to D8 of Table 4.10 are satisfied. Although these

absorbing sets are probably not harmful themselves due to their large syndrome,

their elimination is highly beneficial since they are contained in (5, 5)5, (5, 7)5,

(6, 0)5, (6, 2)5, (6, 4)5{1}, (6, 4)5{2} and (6, 6)5{1} to (6, 6)5{4} absorbing sets (and

most likely in many larger ones) which can therefore be eliminated simultaneously.

In particular, the (6, 0)5, (6, 2)5 absorbing sets are supposed to be the most harmful

ones which are avoided by the proposed design strategy.

∗ The absorbing sets of type (5, 9)5 can be avoided if the conditions D1 to D26

are satisfied. These absorbing sets are relatively harmless due to their very large

syndromes, but since they are contained in absorbing sets of type (6, 4)5{2} and

(6, 6)5{5} (and most likely in even larger and more harmful ones), it is expected

that their elimination improves the decoding performance in the error-floor region

significantly.
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∗ There are five non-isomorphic types of (6, 6)5 absorbing sets. Four of these types

contain (4, 8)5 absorbing sets and one type contains a (5, 9)5 ASC and thus can

be avoided simultaneously. Furthermore, there are eight non-isomorphic types of

(6, 8)5 absorbing sets. Six of these types contain (4, 8)5 absorbing sets and two

types contain (5, 9)5 absorbing sets. Hence, all possible absorbing sets of size a ≤ 6

and syndrome b ≤ 8 can be avoided by eliminating the (4, 8)5 and (5, 9)5 ones. The

absorbing sets of size 6 and syndrome b ≥ 4 are supposed to be relatively harmless,

but they are most likely contained in larger and more harmful absorbing sets with

smaller syndromes such that their elimination is highly advantageous.

∗ Finally, there are six non-isomorphic types of (6, 10)5 absorbing sets and two non-

isomorphic types of (6, 12)5 absorbing sets. These types have not been evaluated

due to the large computational complexity, but since their syndromes are very

large, they are supposed to be harmless for the decoding process.

�

Based on the presented design strategies over the AWGN channel, Table 4.11 and

Table 4.12 show the parameters of possible L 2
q –TD LDPC codes of column weight four

and L 3
q –TD LDPC codes of column weight five, respectively, for every prime order

q ≤ 100. Hence, the design strategies admit a wide range of possible codes.

4.7. Simulations

This section demonstrates the decoding power of our well-designed TD LDPC codes

based on cyclic-structured transversal designs. Fig. 4.2 shows the bit erasure rates of

various LDPC codes over the BEC channel under peeling (or erasure) decoding [53] and

Fig. 4.3 shows the bit error rates over the AWGN channel by employing the standard SPA

decoder with a maximum of 50 iterations per codeword. A legend displays the following

information in the respective order: code type, construction method in brackets, and a

triple [N,R, k], where N is the code length, R the code rate and k the constant column

weight of the parity-check matrix.
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Tabelle 4.11. – Possible parameters of L 2
q –TD LDPC codes of column weight four, length N and

rate R. While α1 = 1, the design parameter α2 is chosen in accordance with the design strategies

presented in Section 4.6. The order q is restricted to prime numbers up to 100. Observe that there

are no suitable codes for the prime orders q = 5, 7, 11, 13, 17, 19, 23, 29, 31, 41.

q Let α1 = 1. Then, possible choices for α2 are N R

37 5, 8, 9, 14, 15, 17, 21, 23, 24, 29, 30, 33 1369 0.89

43 5, 9, 10, 12, 13, 16, 18, 19, 20, 24, 25, 26, 28, 31, 32, 34, 35, 39 1849 0.91

47 5, 10, 11, 13, 14, 15, 19, 22, 26, 29, 30, 33, 37, 38 2209 0.92

53 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 20, 21, 22, 25, 29, 32, 33, 34, 2809 0.93

37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49

59 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 28, 32, 3481 0.93

36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55

61 7, 8, 9, 10, 22, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36, 38, 39, 40, 3721 0.94

52, 53, 54, 55

67 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 4489 0.94

32, 36, 40, 41, 42, 43, 44, 47, 48, 49, 53, 54, 56, 57, 59, 60, 61, 62

71 5, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 5041 0.94

38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 55, 56, 57, 67

73 5, 6, 7, 11, 12, 13, 15, 18, 20, 21, 26, 29, 30, 35, 39, 44, 45, 48, 51, 5329 0.945

53, 56, 59, 61, 62, 63, 67, 68, 69

79 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 21, 22, 28, 32, 33, 34, 37, 38, 42, 6241 0.95

43, 46, 47, 48, 52, 58, 59, 62, 63, 64, 65, 66, 67, 68, 73, 74, 75

83 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 6889 0.95

27, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71,

72, 73, 74, 75, 76, 77, 78, 79

89 5, 6, 7, 8, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 29, 36, 37, 38, 39, 7921 0.96

40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 54, 61, 68, 69, 71, 72,

73, 74, 75, 76, 77, 78, 82, 83, 84, 85

97 5, 6, 9, 10, 11, 12, 17, 18, 19, 20, 24, 26, 27, 28, 29, 30, 31, 34, 39, 9409 0.96

40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 64,

67, 68, 69, 70, 71, 72, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92, 93
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Tabelle 4.12. – Possible parameters of L 3
q –TD LDPC codes of column weight five, length N and

rate R. The order q is restricted to prime numbers up to 100. While α1 = 1, the design parameters

α2 and α3 are chosen in accordance with Section 4.6. Observe that there are no suitable codes for

the prime numbers q < 67.

q Let α1 = 1. Then, possible choices for (α2, α3) are N R

67 (3, 15), (3, 20), (3, 27), (3, 37), (5, 7), (5, 15), (5, 39), (5, 45) 4489 0.93

(7, 33), (7, 53), (7, 55), (9, 11), (9, 13), (9, 27), (9, 45),

(11, 23), (11, 31), (11, 50), (13, 33), (13, 41), (13, 61), . . . , (61, 63)

73 (3, 11), (3, 15), (3, 22), (3, 30), (3, 40), (3, 44), (3, 53), (3, 60), 5329 0.93

(4, 9), (4, 21), (4, 28), (4, 31), (4, 41), (4, 45), (4, 52), (4, 59),

(5, 7), (5, 8), (5, 15), (5, 28), (5, 32), (5, 36), (5, 49), (5, 63), . . . , (67, 69)

79 (7, 11), (7, 15), (7, 32), (7, 57), (9, 19), (9, 32), (9, 62), (9, 67), 6241 0.94

(11, 23), (11, 52), (11, 58), (13, 28), (13, 55), (13, 62), (13, 71),

(15, 25), (15, 36), (15, 48), . . . , (69, 73)

83 (3, 8), (3, 11), (3, 34), (3, 38), (3, 54), (3, 60), (3, 66), (3, 73), 6889 0.94

(4, 19), (4, 38), (4, 57), (4, 70), (5, 8), (5, 11), (5, 24), (5, 36),

(5, 41), (5, 59), (5, 67), (5, 73), . . . , (76, 81)

89 (3, 8), (3, 22), (3, 56), (3, 77), (5, 8), (5, 13), (5, 34), (5, 35), (5, 48), 7921 0.94

(5, 51), (5, 52), (5, 60), (5, 62), (5, 64), (5, 65), (5, 71), (6, 26),

(6, 52), (6, 55), (6, 72), (7, 18), (7, 27), (7, 35), (7, 53), . . . , (82, 87)

97 (3, 8), (3, 13), (3, 16), (3, 17), (3, 23), (3, 27), (3, 35), (3, 38), (3, 43), 9409 0.95

(3, 45), (3, 54), (3, 55), (3, 56), (3, 58), (3, 61), (3, 69), (3, 70), (3, 72),

(3, 74), (3, 76), (3, 78), (3, 79), (3, 80), (3, 82), (3, 83),

(3, 86), (3, 90), (3, 93), . . . , (90, 95)

Further experimental results have been presented in [P2, Section VII] for the BEC

and in [P3, Section VII] for the AWGN channel. In both manuscripts, we have verified

that the properly designed TD LDPC codes exhibit a significant improvement of the

decoding performance compared to the corresponding TD LDPC codes with an adverse

choice of scale factors. Furthermore, the well-chosen codes outperform their counterparts

based on the progressive-edge growth (PEG) algorithm [95] and other structured LDPC

codes.
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Abbildung 4.2. – The figure compares the BEC decoding performances of an L 2
47–TD LDPC

code with scale factors (α1, α2) = (1, 2) (bad choice) and an L 2
47–TD LDPC code with scale

factors (α1, α2) = (1, 5) (good choice), to a random LDPC code based on the PEG algorithm and

to an LDPC code based on the Lattice construction from [35]. All codes have the same code length

N = 2209, rate R = 0.92 and column weight four. It can be observed that the TD LDPC code

with proper chosen scale factors outperforms the random LDPC code and the Lattice LDPC code

significantly. Also, it can be seen that the TD LDPC code with detrimental scale factors reveals a

high error-floor at approximately ε = 0.04.
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Abbildung 4.3. – The figure compares the AWGN channel decoding performances of an L 2
47–TD

LDPC code with scale factors (α1, α2) = (1, 2) (bad choice) and an L 2
47–TD LDPC code with scale

factors (α1, α2) = (1, 5) (good choice), to a random LDPC code based on the PEG algorithm. All

codes have the same code length N = 2209, rate R = 0.92 and column weight four. It can be

observed that the TD LDPC code with well-chosen scale factors outperforms the random LDPC

code significantly. By contrast, the adverse TD LDPC code performs very poor and reveals a very

high error-floor at approximately 5 dB.
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4.8. Discussion

LDPC codes based on BIBDs as presented in the previous chapter have the highest

design rates Rd among all 4-cycle-free LDPC codes. Hence, these codes are ideally suited

for high-speed data transmission. However, their high combinatorial requirements lead

to a rather rigid arrangement of their parity-check matrices, leaving only little scope

for code optimizations with respect to their decoding performances. This observation

motivates the family of LDPC codes based on transversal designs which allow a more

flexible configuration of their parity-check matrices at the cost of a slight decrease of their

design rates. Hence, the codes of TD LDPC codes can potentially be more optimized

with respect to their decoding performances due to less structural requirements, but are

also able to achieve code rates nearly as high as those for BIBD LDPC codes. First, we

will take a closer look at the design rates of both code classes:

Proposition 17 The design rate of BIBD LDPC codes is given by

Rd = 1− k(k − 1)

M − 1
(4.5)

where M is the number of parity-check equations and k is the column weight.

Proof. With Rd = N−M
N

and N = M(M−1)
k(k−1)

, the proposition follows. �

Proposition 18 The design rate of TD LDPC codes is given by

Rd = 1− k2

M
(4.6)

where M is the number of parity-check equations and k is the column weight.

Proof. With Rd = N−M
N

and N = M2

k2
, the proposition follows. �

Fig. 4.4 visualizes the difference between the design rates of BIBD and TD LDPC

codes for column weights varying from three to ten. As we can observe, there is only a

small difference between the design rate curves of BIBD LDPC codes and TD LDPC
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Abbildung 4.4. – Design rates of BIBD LDPC codes vs. TD LDPC codes for column weights 3

to 10

codes (for the same column weight) and, secondly, this difference decreases for growing

M . In fact, it can easily be shown that the difference of (4.5) and (4.6) goes to zero if

M goes to infinity. Hence, the design rates of the TD LDPC codes are indeed almost as

high as those of BIBD LDPC codes.

In the following considerations, we will restrict the class of BIBDs to the subclass of

Steiner 2-designs, since the BIBD LDPC codes resulting from Steiner 2-designs naturally

avoid 4-cycles in their factor graphs whereas all other BIBD LDPC codes does not

share this important property in general. As already mentioned, the small decrease

of the design rate of a TD LDPC code compared to a BIBD LDPC code relaxes the

combinatorial constraints imposed by the underlying designs. More precisely, every pair

of points of a Steiner 2-design must be contained in exactly one block, whereas, by

contrast, every pair of points of a TD must only be contained in at most one block of

the design. This loosening can potentially lead to a more subtle configuration of the

arising parity-check matrix in order to avoid harmful substructures such as stopping
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sets and absorbing sets. To shed light on this, the stopping distances of several classes

of LDPC codes based on Steiner 2-designs and TDs will be compared in more detail.

As already elaborated in Thm. 2 and 3, the L 1
q -TD and L 2

q -TD LDPC codes of

column weight three and four can be designed in such a way that the stopping distances

are six and ten, respectively. Furthermore, these codes have enough flexibility to reduce

the number of stopping sets of size ten and larger significantly. By contrast, a general

lower bound for the stopping distance of LDPC codes based on Steiner 2-designs is

stated in [50] by smin ≥ k + 1. As we can see, the properly designed L m
q -TD LDPC

codes exceed this bound substantially. When we restrict ourselves to the case of quasi-

cyclic BIBD LDPC codes of column weight k, an upper bound for the minimum distance

has been established in [35, Thm. 3.1] and is given by dmin ≤ 2k which directly leads

to smin ≤ 2k. In particular, for the case of k = 4, we have an upper bound of smin ≤ 8,

whereas, by contrast, the optimized quasi-cyclic L 2
q -TD LDPC codes of column weight

four have a higher stopping distance of ten. It is likely that this difference between the

stopping distances becomes even greater for growing column weights.

Much attention has been given to the class of Steiner triple systems (STSs) and

their corresponding STS LDPC codes of column weight three (e.g. [27, 35, 33]), in

particular, to those that avoid so-called Pasch configurations. It has been realized that

Pasch configurations in STSs are extremly harmful for the resulting codes, since they

correspond to stopping sets of size four [50, 108, 35] and, even more, that these stopping

sets are the only possible ones of this size. Hence, the elimination of Pasch configurations

in STSs leads to codes with stopping distance smin ≥ 5 [27]. The STSs that are free of

Pasch configurations are termed anti-Pasch STSs and have intensively been studied in

the literature independent of any coding theoretic purpose (e.g. [102, 109]). Anti-Pasch

STSs are known to be very rare. For instance, from the 80 non-isomorphic STSs of

order 15 [110, 111], only one is Pasch-free [102]. Hence, most of the STSs have Pasch

configurations and thus result in codes with stopping distance four.
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The complete spectrum of orders for which anti-pasch STSs exist is exactly known and

given by υ ≡ 1, 3 (mod 6) except for υ = 7, 13 [109]. We can observe a loss of parametric

flexibility compared to L 1
q -TD LDPC codes that exist for every prime power order q

and can trivially avoid Pasch configurations for ωq 6= 2 due to their specific structure.

The situation is being further exacerbated when we restrict ourselves to anti-Pasch STSs

that are cyclic. From the 11.084.874.829 STSs of order 19 reported in [112], only two are

cyclic and anti-Pasch [113]. By contrast, nearly all L 1
q -TD LDPC codes are quasi-cyclic

and thus can be encoded with low complexity.

Further research on STSs in order to avoid certain configurations is concerned with

r-sparse STSs. An STS is called r-sparse if it does not contain an Erdős configuration

(cf. [108]). It can easily be verified that a STS is 4-sparse exactly when it is anti-Pasch

[108]. Furthermore, an STS is known to be 5-sparse if it contains no configurations

isomorphic to the Pasch configuration or the Mitre configuration (cf. [114]). These 5-

sparse STSs are very attractive from a coding theoretic perspective, since they lead to

STS LDPC codes with a stopping distance of at least six [108]. Unfortunately, 5-sparse

STSs are extremly rare. For instance, from the 2.353.310 cyclic STSs of order 57 listed

in [114, Table 1], only 843 are 5-sparse. Hence, there is a significant loss of parametric

flexibility compared to L 1
q -TD LDPC codes which exist for every prime power order

q and can trivially avoid Pasch and Mitre configurations when ωq 6= 2. The avoidance

of Mitre configurations can easily be verified by the fact that this configuration is not

4-colorable which is a necessary condition in order to occur in any L 1
q -TD LDPC code.

The same argument holds for many other stopping set candidates that, by contrast, can

potentially occur in STS LDPC codes.

For higher column weights, i.e., when k ≥ 4, only few is known about the stopping

sets of LDPC codes based on Steiner 2-designs. Some studies [35, 50] are concerned with

Steiner 2-designs free of generalized Pasch configurations (GPCs) which correspond to

the smallest possible stopping sets of size k + 1 in the LDPC codes based on these

designs. Since no other stopping sets of size k + 1 can exist, the stopping distances of
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these codes are larger than k+ 1 if and only if there is no GPC in the underlying design.

Unfortunately, Steiner 2-designs without generalized Pasch-configurations are extremly

rare and only few constructions for such designs are known. Possible examples are designs

from projective and affine geometries (Chapter 5). More precisely, a projective geometry

of prime power order q leads to a Steiner 2-design of block size q+1 that avoids GPCs if

and only if q is odd and thus to an LDPC code of column weight q+ 1 without stopping

sets of size q + 2. As an example, we obtain an LDPC code of column weight four and

stopping distance equal to six (cf. Fig 5.3) based on a projective geometry with q = 3.

By contrast, we have designed TD LDPC codes of column weight four with stopping

distances equal to ten which is significantly higher. Furthermore, an affine geometry of

prime power order q leads to a Steiner 2-design of block size q avoiding GPCs if and

only if q is odd. For instance, we obtain an LDPC code of column weight five based on

an affine geometry with q = 5 and stopping distance of at least seven and at most nine

(cf. Fig 5.3). This stopping distance is already exceeded by properly designed TD LDPC

codes of column weight four and is expected to be higher for increasing column weights.

As a summary, we can say that for the case of column weight three, there exist

some rare 5-sparse STS LDPC codes that achieve the stopping distance of L 1
q -TD

LDPC codes. However, the situation changes dramatically for higher column weights, in

particular, when we restrict ourselves to quasi-cyclic codes. For example, LDPC codes of

column weight four that are based on cyclic Steiner 2-designs have a stopping distance

of at most eight [113], whereas L 2
q -TD LDPC codes of column weight four can achieve

a stopping distance equal to ten. It is highly probable that this difference between the

stopping distances becomes even greater for growing column weights. Hence, it can be

expected that the error-floor performance of well designed TD LDPC codes is better

than the performance of comparable LDPC codes based on Steiner 2-designs, but at

the cost of a slight decrease of the code rates. Although no studies have been found

that investigate the absorbing set spectra of LDPC codes based on Steiner 2-designs,

it is likely that optimized TD LDPC codes are also more beneficial since they can be

designed in such a way that they avoid the most harmful absorbing sets.
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5
LDPC Codes Based on Finite

Geometries

Low-density parity-check codes based on finite geometries (FGs), called FG LDPC codes,

have originally been proposed in [31, 32] and were among the first algebraic constructed

LDPC codes. Subsequently, these codes have been studied in a large series of publications

(e.g. [115, 116, 117, 118, 119]) and books (e.g. [120]). This chapter is concerned with the

investigation of FG LDPC codes based on certain subclasses of finite geometries, namely

projective and affine geometries, and are consequently referred to as PG LDPC codes in

the case of projective geometries and AG LDPC codes in the case of affine geometries.

Such codes are well structured and allow efficient encoding and decoding algorithms with

low complexity. In particular, they have a quasi-cyclic code representation [32] and thus

can be encoded with complexity linear in the code length. Futhermore, it is known that

the factors graphs of these codes are free of harmful 4-cycles and have a girth of six.

The main objective of the present chapter is to investigate the stopping distances of

FG LDPC codes in order to identify those codes with beneficial stopping set distributions

and thus with advantageous error-correcting capabilities over the BEC. The presented

results arise from the latest findings in the fields of finite geometries and combinatorial

designs and are stated from a coding theoretic perspective. As far as the author know,

the derived bounds for the stopping distances are currently the best known.
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5.1. Preliminaries

5.1.1. Projective geometry

A projective geometry of dimension m ≥ 2 and prime power order q, denoted by

PG(m, q), is a pair (P ,L) consisting of a point set P and a line set L over Fq such

that the points P are the 1-dimensional subspaces of the vector space Fm+1
q , excluding

the zero vector, and the lines L are the 2-dimensional subspaces of Fm+1
q , excluding the

zero vector. It is well known that

|P| = qm+1 − 1

q − 1
and |L| = (qm+1 − 1)(qm − 1)

(q2 − 1)(q − 1)
.

Each line contains k := q+ 1 points and each point lies on r := (qm− 1)/(q− 1) lines. If

m = 2, the PG(2, q) is called a projective plane. Every PG(m, q) can be described by a

binary |P|× |L| incidence matrix, denoted by N , with rows indexed by the points of P ,

columns indexed by the lines of L and where Nij = 1 if the i-th point lies on the j-th

line, and Nij = 0 otherwise. Furthermore, every PG(m, q) forms a BIBD( q
m+1−1
q−1

, q+1, 1)

by associating the points and lines of the projective geometry with the points and blocks

of the desin, respectively. In particular, the arising BIBD is a Steiner 2-design.

Let (P ,L) be any PG(m, q). Each 3-dimensional subspace of Fm+1
q gives the point

set P ′ of a projective subplane PG(2, q) with P ′ ⊂ P and with line set L′ ⊂ L which

consists of all lines of L that are completely contained in P ′. Consequently, there are

many projective subplanes PG(2, q) embedded in a PG(m, q).

5.1.2. Affine geometry

An affine geometry of dimension m ≥ 2 and prime power order q, denoted by AG(m, q),

is a pair (P ,L) consisting of a point set P and a line set L over Fq such that the points P

are the vectors of the vector space Fmq , and the lines L are the 1-dimensional subspaces
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of Fmq and their cosets. We have

|P| = qm and |L| = qm−1 q
m − 1

q − 1
.

Each line contains k := q points and each point lies on r := qm−1
q−1

lines. If m = 2, the

AG(2, q) is called an affine plane. Every AG(m, q) can be described by a binary |P|×|L|

incidence matrix, N , with rows indexed by the points of P , columns indexed by the lines

of L and with Nij = 1 if the i-th point lies on the j-th line, else Nij = 0.

Every AG(m, q) forms a BIBD(qm, q, 1) by associating the points and lines of the

affine geometry with the points and blocks of the design, respectively. In particular, it

is a Steiner 2-design. Furthermore, an affine plane AG(2, q) can be constructed from a

projective plane PG(2, q) by deleting an arbitrary line of PG(2, q) and all the points lying

on this line. All affine planes obtained by deleting any line of PG(2, q) are isomorphic.

Each coset of a 2-dimensional subspace of AG(m, q) can be considered as the point set

P ′ of an affine subplane AG(2, q). More precisely, let p, p′ be two linearly independent

points of Fmq \{(0, . . . , 0)}. Then, the point set can be constructed by P ′ = {αp+βp′+z :

α, β ∈ Fq} for any z ∈ Fmq . Finally, the line set L′ of the subplane consists of all lines of

AG(m, q) whose points are completely contained in P ′.

5.2. Types of LDPC codes based on finite

geometries

By using the incidence matrices of finite geometries as the parity-check matrices of linear

block codes, we obtain the family of FG LDPC codes. Based on specific classes of finite

geometries, this code family can further be subdivided into several subfamilies. Let N be

the incidence matrix of a PG(m, q). Then, two types of PG LDPC codes can be derived.

First, the type-I PG LDPC code, denoted by C
(1)
PG(m, q), is given by the nullspace of

the (line-by-point) parity-check matrix H
(1)
PG(m, q) := N T which is the transpose of N .
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Second, the type-II PG LDPC code, denoted by C
(2)
PG(m, q), is given by the nullspace of

the (point-by-line) parity-check matrix H
(2)
PG(m, q) := N . Analogously, we obtain two

types of AG LDPC codes based on the incidence matrix N of any affine geometry. First,

the type-I AG-LDPC code, denoted by C
(1)
AG(m, q), is given by the parity-check matrix

H
(1)
AG(m, q) := N T . Second, the type-II AG-LDPC code, denoted by C

(2)
AG(m, q), is given

by the parity-check matrix H
(2)
AG(m, q) := N . This classification has been introduced in

[32] and was maintained in nearly all subsequent papers on codes from finite geometries

(e.g., [121, 122]).

5.2.1. Properties of FG LDPC codes

An extensive list of fundamental parameters for classical FG LDPC has been summa-

rized and presented in [122]. For the convenience of the reader, some of these results

are outlined in Table 5.1. The listed parameters include the code length N , the code

dimension K, the column weight k and row weight r of the parity-check matrix, and

the minimum distance dmin of the code. For calculating the code dimension, which is

determined by the 2-rank of the parity-check matrix (or, equivalently, by the incidence

matrix of the underlying finite geometry), the following known results are needed.

Theorem 19 [123] The 2-rank of the incidence matrix of PG(m, 2t) is given by

rank2(N ) = ϕ(m, 2t) =
∑

(s0,...,st)

t−1∏
j=0

L(sj+1,sj)∑
i=0

(−1)i
(
m+ 1

i

)(
m+ 2sj+1 − sj − 2i

m

)
where the first sum is taken over all ordered sets (s0, . . . , st) with s0 = st, sj ∈ Z such

that 0 ≤ sj ≤ m− 1 and 0 ≤ 2sj+1 − sj ≤ m+ 1 for each j = 0, . . . , t− 1, and

L(sj+1, sj) =

⌊
2sj+1 − sj

2

⌋
.

Theorem 20 [124] For q odd, the 2-rank of the incidence matrix of PG(m, q) is

rank2(N ) = |P| − 1 =
qm+1 − q
q − 1

.
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FG Type m q N K (k, r) dmin

PG I any 2t 2t(m+1)−1
2t−1

N − ϕ(m, 2t)
(

2tm−1
2t−1

, 2t + 1
)

(2t + 2)2t(m−2)

PG II any 2t (2t(m+1)−1)(2tm−1)
(22t−1)(q−1)

N − ϕ(m, 2t)
(

2t + 1, 2tm−1
2t−1

)
2t + 2

PG II any odd (qm+1−1)(qm−1)
(q2−1)(q−1)

N − qm+1−q
q−1

(
q + 1, q

m−1
q−1

)
2(q + 1)

AG I any 2t 2tm N − ϕ(m, 2t) + ϕ(m− 1, 2t)
(

2tm−1
2t−1

, 2t
)

(2t + 2)2t(m−2)

AG II any 2t 2t(m−1) 2tm−1
2t−1

N − ϕ(m, 2t) + ϕ(m− 1, 2t)
(

2t, 2tm−1
2t−1

)
2t + 1

AG II any odd qm−1 qm−1
q−1

N − qm
(
q, q

m−1
q−1

)
2q

Abbildung 5.1. – Parameters of FG LDPC codes, where q is generally restricted to be a prime

power and m ≥ 2 (cf. [122]). The function ϕ(m, 2t) is given by Thm. 19.

Theorem 21 [125] The 2-rank of the incidence matrix of AG(m, 2t) is given by

rank2(N ) = ϕ(m, 2t)− ϕ(m− 1, 2t).

Theorem 22 [126] For q odd, the 2-rank of the incidence matrix of AG(m, q) is

rank2(N ) = |P| = qm.

The code bits of type-I FG LDPC codes are associated with the points P of the finite

geometry such that N = |P|, and the parity-check equations are associated with the

lines of the geometry, i.e., M = |L|. For an odd order q, the code dimension is given by

K = |P| − rank2(H
(1)
PG(m, q)) = 1 (Thm. 20) in the case of type-I PG LDPC codes and

by K = |P| − rank2(H
(1)
AG(m, q)) = 0 (Thm. 22) in the case of type-I AG LDPC codes.

As a consequence, the type-I FG LDPC codes are useless for practical application when

q is odd. For type-I FG LDPC codes, we therefore restrict our considerations to the case

of q = 2t even, leading to finite geometries which are conjectured in [125] to have the

lowest rank among all Steiner 2-designs of the same order and block size (cf. [122]). The

resulting type-I FG LDPC codes therefore achieve the highest possible code rates as t

increases.

The code bits of type-II FG LDPC codes are associated with the lines L of the finite

geometry such that N = |L|, and the parity-check equations are associated with the

points, i.e., M = |P|. For the case of q = 2t, these codes are known to have the lo-
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west possible minimum distance [122] and thus may perform suboptimally over various

channels. By contrast, if q odd, the type-II FG-LDPC codes have very high minimum

distances [122], even achieving the highest possible minimum distances among all codes

based on non-trivial abelian point-transitive Steiner 2-designs of the same order and

block size [113].

5.3. Stopping set analysis

In this section, we present several bounds for the stopping distances of LDPC codes based

on projective and affine geometries. These bounds are mainly derived from the latest

theoretical findings in the field of finite geometries that have been studied independently

of any coding theoretic purpose. It is worth noting here that these bounds are valid

for every single code within the family of LDPC codes based on projective and affine

geometries and thus are of great significance.

5.3.1. Stopping distance of PG LDPC codes

First, we consider the case of LDPC codes based on projective planes PG(2, q). In this

case, the concept of stopping sets can be equivalently transferred to the level of the under-

lying projective planes, leading to the concept of sets without tangents. These combina-

torial entities have been intensively studied in the field of finite geometries (cf. [127, 128]

and the references therein) and thus are a valuable source for our investigations. More

specifically, let S be any subset of the points of a projective plane PG(2, q). A line of

PG(2, q) that meets S in exactly one point is called a tangent line of S. If there is no

tangent line of S, then S is called a set without tangents.

Lemma 23 (cf. [128]) A set without tangents S of size ` := |S| in a projective plane

PG(2, q) is equivalent to a stopping set of size ` in H
(1)
PG(2, q) and is the dual represen-

tation of a stopping set of size ` in H
(2)
PG(2, q).
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Proof. Since the columns of H
(1)
PG(2, q) correspond to the points of PG(2, q), the

definition of a set without tangents is equivalent to the definition of a stopping set. If we

interchange the roles of points and lines of a projective plane π, we obtain a dual plane

π∗ which is isomorphic to π. This implies that each set without tangents has a dual set

of lines which correspond to the columns of a stopping set of H
(2)
PG(2, q). �

Type-I PG LDPC codes

By considering the line-by-point indidence matrix of a PG(m, q) as a parity-check matrix

such that the lines correspond to the parity-check equations and the points correspond

to the code bits, we obtain a type-I PG LDPC code. When the order q of PG(m, q) is

odd and m > 2, then the arising type-I PG LDPC codes are useless for any practical ap-

plication since their code rates are close to zero. We therefore restrict our considerations

to the case of q = 2t even.

Proposition 24 If q = 2t is even, then

2tm − 1

2t − 1
+ 1 ≤ smin(H

(1)
PG(m, 2t)) ≤ (2t + 2)2t(m−2).

For m = 2, it follows that smin(H
(1)
PG(2, 2t)) = 2t + 2.

Proof. Recall that the columns of H
(1)
PG(m, 2t) correspond to the points of PG(m, 2t).

Since every point lies on r = 2tm−1
2t−1

lines, each column has weight r. It can easily be seen

that we need at least r+ 1 columns to construct a stopping set, such that the submatrix

formed by these columns has no rows of weight one. The lower bound follows. The

minimum distance of the code C
(1)
PG(m, 2t) is known to be dmin(C

(1)
PG(m, 2t)) = (2t +

2)2t(m−2) [129, Thm. 1] which is an upper bound for smin(H
(1)
PG(m, 2t)). �

Type-II PG LDPC codes

By taking the point-by-line indidence matrix of a PG(m, q) as a parity-check matrix such

that the points correspond to the parity-check equations and the lines correspond to the
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code bits, we obtain a type-II PG LDPC code. Let PG(m, q) be a projective geometry

with point set P and line set L. Then, we say that a subset of lines E ⊆ L is a stopping

set of PG(m, q) when each point of PE =
⋃
E is contained in at least two lines of E . By

saying that E is a stopping set of PG(m, q), we mean that the lines of E correspond to

columns of H
(2)
PG(m, q) which form a stopping set.

Proposition 25 For any stopping set E of PG(m, q) it holds either that E occurs in a

projective subplane PG(2, q) or that the size of E can be lower bounded by |E| ≥ 2q + 2.

Proof. See Appendix F.1. �

Theorem 26 For any prime power order q, it holds that

smin(H
(2)
PG(m, q)) = smin(H

(2)
PG(2, q)).

Proof. Recall that there are many subplanes PG(2, q) embedded in a PG(m, q) and

thus, every stopping set of PG(2, q) directly leads to a stopping set of PG(m, q), giving

smin(H
(2)
PG(m, q)) ≤ smin(H

(2)
PG(2, q)).1 Conversely, assume that there is a stopping set E

in PG(m, q) of size |E| < smin(H
(2)
PG(2, q)) which implies that E does not occur in any

PG(2, q). We also know that smin(H
(2)
PG(2, q)) is upper bounded by dmin(H

(2)
PG(2, q)) =

2q + 2 [122, Thm. 27]. It follows that |E| < 2q + 2 which is a contradiction to Prop. 25.

Hence, |E| ≥ smin(H
(2)
PG(2, q)) and thus smin(H

(2)
PG(m, q)) ≥ smin(H

(2)
PG(2, q)). �

Proposition 27 If q = 2t is an even prime power, then

smin(H
(2)
PG(m, 2t)) = 2t + 2.

Proof. By considering PG(m, 2t) as a Steiner 2-design of block size 2t + 1, we know

from [50] that the stopping distance is smin(H
(2)
PG(m, 2t)) ≥ 2t + 2. For q = 2t, a stopping

set of size 2t + 2 in H
(2)
PG(2, 2t) corresponds to the dual of a hyperoval in PG(2, 2t).

1 As an example, Fig. 5.2 depicts the embedding of the parity-check matrix H
(2)
PG(2, 2) in the parity-check

matrix H
(2)
PG(3, 2).
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[0, 1, 0, 0]
[1, 0, 0, 0]
[0, 1, 1, 0]
[1, 1, 0, 0]
[1, 1, 1, 0]
[1, 0, 1, 0]
[0, 0, 1, 0]
[0, 1, 0, 1]
[1, 0, 0, 1]
[0, 1, 1, 1]
[1, 1, 0, 1]
[1, 1, 1, 1]
[1, 0, 1, 1]
[0, 0, 1, 1]
[0, 0, 0, 1]

= H
(2)
PG(2, 2)



1 . . . 1 . 1 1 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . .

1 1 . . . 1 . . . . . 1 1 1 1 . . . . . . . . . . . . . . . . . . . .

. 1 1 . . . 1 . . . . . . . . 1 1 1 1 . . . . . . . . . . . . . . . .

1 . 1 1 . . . . . . . . . . . . . . . 1 1 1 1 . . . . . . . . . . . .

. 1 . 1 1 . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . . . . . .

. . 1 . 1 1 . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . .

. . . 1 . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1

. . . . 1 . . . . 1 1 . . . . . 1 . 1 . . . 1 . . . . . 1 .

. . . . . 1 . 1 . . . . 1 . . . 1 . . 1 . . . . . 1 . . . 1

. . . . . . . 1 . . . . . 1 . . . . 1 1 . . . . 1 . . . 1 . . . . 1 .

. . . . . . . . . . 1 . . . 1 . 1 . . . . . 1 . . . 1 . 1 . . 1 . . .

. . . . . . . . 1 . . . . 1 . . . 1 . . 1 . . . . 1 . 1 . . . 1 . . .

. . . . . . . . 1 . . 1 . . . . 1 . . 1 . . . 1 . . . . . 1 . . . . 1

. . . . . . . 1 . . . 1 . . . 1 . . . . 1 . . . . . 1 . . . 1 . 1 . .

. . . . . . . . . 1 . . 1 . . . . . 1 . . . 1 . . 1 . . . 1 . . 1 . .



= H
(2)
PG(3, 2)

Abbildung 5.2. – Embedding of H
(2)
PG(2, 2) in H

(2)
PG(3, 2); The stopping set in H

(2)
PG(2, 2), formed

by the columns 1, 2, 4 and 7, is also a stopping set in H
(2)
PG(3, 2).

A hyperoval O is a set of 2t + 2 points such that any line of PG(2, 2t) meets O in

either zero or exactly two points of O. It is well known that a hyperoval exists in

PG(2, q) if and only if q is even [50]. Since a hyperoval is a set without tangents in

PG(2, 2t), there is a stopping set in H
(2)
PG(2, 2t) of the same size (Lemma 23), such that

smin(H
(2)
PG(2, 2t)) = 2t + 2. The generalized proposition follows from Thm. 26. �

Proposition 28 For any prime power q, it holds that

smin(H
(2)
PG(m, q)) ≤ 2q.

Proof. Let L,L′ be two lines of a projective plane PG(2, q) with an intersection

point p. The points of (L ∪ L′) \ {p} form a set without tangents of size 2q [128]

which corresponds to a stopping set of the same size according to Lemma 23. Hence,

smin(H
(2)
PG(2, q)) ≤ 2q. The generalized proposition follows from Thm. 26. �

Proposition 29 If q is an odd prime power and q > 5, then

smin(H
(2)
PG(m, q)) ≤ 2(q − 1).

Proof. In a projective plane PG(2, q) with q > 5 and point set P , let C1 = {[x, y, z] ∈

P : z2 = xy} (over Fq) and C2 = {[x, y, z] ∈ P : z2 = axy} (over Fq) with a ∈ Fq such
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that a − 1 and a(a − 1) are both squares over Fq. The union C1 ∪ C2 is a set without

tangents of size 2(q − 1) [130, 128]. The prop. follows from Lemma 23 and Thm. 26. �

Proposition 30 If q = pt is an odd prime power with p prime and t ≥ 1, then

smin(H
(2)
PG(m, q)) ≤ 2q + 1− q − p

p− 1
.

Proof. A blocking set of PG(2, q) is a subset of points such that each line contains at

least one point of the blocking set. A blocking set is minimal, if no subset is a blocking

set. In [131], a minimal blocking set B of size |B| = q + q−1
p−1

is constructed by

B =
{

[1, x, xp] : x ∈ Fpt
}
∪
{

[0, x, xp] : x ∈ Fpt , x 6= 0
}
.

Since B is a blocking set of Rédei-type [132], there exists a line L with q+ 1 points such

that |B ∩ L| = q−1
p−1

. Then, the set (B ∪ L) \ (B ∩ L) is a set without tangents of size

` := |B|+ |L| − 2|B ∩ L| = 2q + 1− q − 1

p− 1
,

which corresponds to a stopping set of the same size in H
(2)
PG(2, q) (Lemma 23), such that

smin(H
(2)
PG(2, q)) ≤ `. The generalized proposition follows from Thm. 26. �

Proposition 31 If q is an odd prime power, then

smin(H
(2)
PG(m, q)) ≥

{
q + 5, if 3 - q,
q + 3, else.

Proof. These bounds has been presented in the full version of [50, Thm. 13 and 14]

for the case of projective planes and can be generalized to m-dimensional projective

geometries by applying Thm. 26. �

Proposition 32 If q is an odd prime power, then

smin(H
(2)
PG(m, q)) ≥ q +

1

4

√
2q + 2.

Proof. This lower bound was introduced by Blokhuis, Seress and Wilbrink in [130]

for the size of sets without tangents (which were called untouchable sets) in projective

planes. The proposition follows with Lemma 23 and Thm. 26. �

115



5.3.2. Stopping distance of AG LDPC codes

Type-I AG LDPC codes

We obtain a type-I AG LDPC code by considering the line-by-point incidence matrix

of an AG(m, q) as the parity-check matrix of the code. Then, the lines of the geometry

correspond to the parity-check equations and the points correspond to the code bits.

Proposition 33 If q = 2t is an even prime power order, then

2tm − 1

2t − 1
+ 1 ≤ smin(H

(1)
AG(m, 2t)) ≤ (2t + 2)2t(m−2).

For m = 2, we have smin(H
(1)
AG(2, 2t)) = 2t + 2.

Proof. The columns of H
(1)
PG(m, 2t) have weight r = 2tm−1

2t−1
. It can be easily seen that

we need at least r+1 columns to establish a stopping set, such that the submatrix formed

by these columns has no rows of weight one. The lower bound follows. The minimum

distance of C
(1)
AG(m, 2t) is known to be dmin(C

(1)
AG(m, 2t)) = (2t + 2)2t(m−2) [129, Thm. 1]

which is an upper bound for smin(H
(1)
AG(m, 2t)). �

Type-II AG LDPC codes

Let AG(m, q) be an affine geometry with point set P and line set L. By taking the

point-by-line indidence matrix of AG(m, q) as the parity-check matrix of an LDPC code

such that the points correspond to the parity-check equations and the lines correspond

to the code bits, we obtain a type-II AG LDPC code. Then, we say that a subset of

lines E ⊆ L is a stopping set of AG(m, q), when each point of PE =
⋃
E is contained in

at least two lines of E . By saying that E is a stopping set of AG(m, q), it is meant that

there is a corresponding stopping set in the factor graph of H
(2)
AG(m, q).

Proposition 34 For any stopping set E of AG(m, q) it holds either that E occurs in an

affine subplane AG(2, q) or that the size of E can be lower bounded by |E| ≥ 2q.
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Proof. See Appendix F.2. �

Theorem 35 For any prime power order q, it holds that

smin(H
(2)
AG(m, q)) = smin(H

(2)
AG(2, q)).

Proof. Recall that there are many affine subplanes AG(2, q) embedded in the affine

geometry AG(m, q) and thus every stopping set of AG(2, q) directly results in a stopping

set of AG(m, q) such that smin(H
(2)
AG(m, q)) ≤ smin(H

(2)
AG(2, q)). Now, we assume that

there is a stopping set E in AG(m, q) of size |E| < smin(H
(2)
AG(2, q)) which implies that

E does not occur in any AG(2, q). We also know that smin(H
(2)
AG(2, q)) is upper bounded

by dmin(H
(2)
AG(2, q)) = 2q [122, Thm. 34] such that |E| < 2q. This is a contradiction to

Prop. 34. Hence, |E| ≥ smin(H
(2)
AG(2, q)) and thus smin(H

(2)
AG(m, q)) ≥ smin(H

(2)
AG(2, q)). �

Proposition 36

smin(H
(2)
AG(m, q)) ≤ smin(H

(2)
PG(m, q))− 1

Proof. Let E be the set of lines of PG(2, q) that correspond to a stopping set in

H
(2)
PG(2, q). After deleting any line L ∈ E and all points lying on L, the remaining lines

E \ L correspond to a stopping set in H
(2)
AG(2, q) of size |E| − 1, where AG(2, q) ari-

ses from PG(2, q) by deleting L and all points lying on L. Hence, smin(H
(2)
AG(2, q)) ≤

smin(H
(2)
PG(2, q))− 1. The proposition finally follows with Thm. 26 and Thm. 35. �

Proposition 37 If q = 2t is an even prime power, then

smin(H
(2)
AG(m, 2t)) = 2t + 1.

Proof. By considering AG(m, 2t) as a Steiner 2-design with block size 2t, we know

from [50] that the stopping distance must be smin(H
(2)
AG(m, 2t)) ≥ 2t+1. For q = 2t, there

are stopping sets of size 2t + 2 in H
(2)
PG(m, 2t) (Prop. 27), leading to smin(H

(2)
AG(m, 2t)) ≤

2t + 1 with Prop. 36. �
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Proposition 38 If q is an odd prime power, then

smin(H
(2)
AG(m, q)) ≤


2q − 1,

2q − 3, if q > 5,

2q − q−p
p−1

, if q = pt.

Proof. This follows by applying Prop. 36 to the results of Prop. 28, 29 and 30. �

Proposition 39 If q is an odd prime power, then

smin(H
(2)
AG(m, q)) ≥ q + 2

Proof. This lower bound has been established in [50] for the case of affine planes

(m = 2). The generalized proposition follows by Thm. 35. �

5.4. Discussion

The problem of calculating the stopping distance of codes based on finite geometries has

been reduced to the problem of calculating the stopping distance of codes based on the

corresponding projective and affine planes (cf. Thm. 26 and 35). As a consequence, the

derived bounds for codes on finite planes with m = 2 can be directly transferred to the

general case as m increases. As a summary, Fig. 5.3 gives on overview of the determined

bounds for the stopping distances of PG and AG LDPC codes in comparison to their

minimum distances. In particular note, that the derived bounds are generally valid for

all parameters q and m and thus for all possible codes based on affine and projective

geometries.

It can be observed that type-I FG LDPC codes have very large stopping distances

which can be explained by large column weights as m increases. Since these codes are

highly rank-deficient, they can reach high code rates although they have more parity-

check equations than code bits. However, the decoding of such codes is computationally
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FG Type m q (prime power) smin dmin

PG I ≥ 2 2t ≤ (2t + 2)2t(m−2) (Prop. 24)
(2t + 2)2t(m−2)

PG I ≥ 2 2t ≥ 2tm−1
2t−1

+ 1 (Prop. 24)

PG I = 2 2t 2t + 2 (Prop. 24) 2t + 2

PG II ≥ 2 2t q + 2 (Prop. 27) q + 2

PG II ≥ 2 odd ≤ 2q (Prop. 28)

2(q + 1)

PG II ≥ 2 q > 5 odd ≤ 2(q − 1) (Prop. 29)

PG II ≥ 2 q = pt odd ≤ 2q + 1− q−p
p−1

(Prop. 30)

PG II ≥ 2 odd ≥ q + 3 (Prop. 31)

PG II ≥ 2 odd and 3 - q ≥ q + 5 (Prop. 31)

PG II ≥ 2 odd ≥ q + 1
4

√
2q + 2 (Prop. 32)

AG I ≥ 2 2t ≤ (2t + 2)2t(m−2) (Prop. 33)
(2t + 2)2t(m−2)

AG I ≥ 2 2t ≥ 2tm−1
2t−1

+ 1 (Prop. 33)

AG I = 2 2t 2t + 2 (Prop. 33) 2t + 2

AG II ≥ 2 2t q + 1 (Prop. 37) q + 1

AG II ≥ 2 odd ≤ 2q − 1 (Prop. 38)

2q
AG II ≥ 2 q > 5 odd ≤ 2q − 3 (Prop. 38)

AG II ≥ 2 q = pt odd ≤ 2q − q−p
p−1

(Prop. 38)

AG II ≥ 2 odd ≥ q + 2 (Prop. 39)

Abbildung 5.3. – Bounds for the stopping distance smin of FG LDPC codes, where q is generally

restricted to be a prime power and m ≥ 2.

intensive and suboptimal due the large number of linearly dependent parity-check equa-

tions. By contrast, type-II FG LDPC codes have nearly full 2-ranks and thus are efficient

in that sense that their computational decoding effort is in an optimal relation to their

decoding performance. It can be seen, that it is very important to avoid type-II FG

LDPC codes with q even, since these codes have extremly low stopping distances as well

as minimum distances. On the other hand, type-II FG LDPC codes with q odd have

large stopping distances and thus show an excellent decoding performance, in particular,

in the error-floor region.
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6
Conclusion

Although intensive research in the field of coding theory has been made significant

progress in constructing error-correcting codes with capacity-achieving decoding perfor-

mances, it is still a major task to design well-performing codes along with ease of im-

plementation. The present thesis makes substantial progress in the design and analysis

of structured LDPC and sRA codes based on combinatorial designs that can potenti-

ally be used for high-speed applications. These algebraic codes show excellent decoding

performances and are designed such that they can be encoded with very low complexity.

In Chapter 3, novel families of structured LDPC codes have been presented based on

certain subclasses of combinatorial designs, more specifically, based on CBIBDs, RBIBDs

and CRCBIBDs. The structure of LDPC codes from CBIBDs have the advantage that

they enable low-complexity encoding linear in the code length and the LDPC codes

based on RBIBDs reveal a great parametric flexibility since their lengths and rates can

be adjusted independently by removing an arbitrary selection of resolution classes. Fi-

nally, LDPC codes based on CRCBIBDs combine the strength of both code families.

Futhermore, these results have been adapted to construct new families of systematic

repeat-accumulate codes which can generally be encoded with linear complexity as op-

posed to unstructured random-like LDPC codes. For short to moderate code lengths,

classical sRA codes have the drawback that they possess columns of weight two in their

parity-check matrices which cause a relatively high error-floor. This handicap has been
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eliminated by introducing the family of weight-q sRA codes as a generalization of the

classical sRA codes. Subsequently, we have designed new weight-q sRA code with ex-

cellent decoding performances similar to their LDPC counterparts, but along with the

low-encoding complexity of turbo-like codes.

Chapter 4 is concerned with an extensive analysis of the stopping set and absorbing

set spectra of LDPC codes based on transversal designs. By utilizing the results of these

investigations, powerful design strategies have been derived in order to construct infinite

families of high-rate structured LDPC codes with excellent decoding performances over

the BEC and the AWGN channel, in particular, with very low error-floors. Besides their

good performances in the high-SNR region, LDPC codes from transversal design are

quasi-cyclic, resolvable and have basically the same good structural properties as LDPC

codes based on BIBDs, for instance, their factor graphs are free of 4-cycles.

Finally, Chapter 5 presents new theoretical results for the stopping distances of LDPC

codes based on finite geometries, more precisely, based on projective and affine geome-

tries. Firstly, it has been shown that the problem of determining the stopping distances

of codes based on finite geometries can be reduced to the much simpler problem of fin-

ding the stopping distances of codes based on the corresponding (projective and affine)

planes. Secondly, deep theoretical insights are generated by deriving tight bounds for

the stopping distances of such codes based on the latest findings in the fields of finite

geometries and combinatorial designs. These bounds are essential to reveal those codes

with the most beneficial high-SNR performance. As a result, we obtain structured LDPC

codes with excellent decoding performances over the BEC.

6.1. Outlook

There are several possibilites how the present thesis can be followed up. First notice

that the combinatorial design theory is an old discipline that goes back several centuries

[80] such that the concepts from combinatorial design theory have been investigated far
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earlier than the field of coding theory came into existence. Subsequently, the universe of

design theory expanded rapidly year by year and is still an ongoing subject of research.

As a consequence, many fundamental designs are well investigated and a large variety of

constructions for such designs exist and are still developed. Since combinatorial designs

can be used for the construction of LDPC codes, the wide range of combinatorial designs

has been and is still a valuable source for the construction of novel and structured code

families.

Many structured LDPC codes have already been designed based on known families

of Steiner 2-designs including finite geometries [32], unitals [76], oval designs [133] and

so on. Furthermore, there exist codes based on the more generalized concepts such as

partial geometries [36, 27, 83] which include the Steiner 2-designs as a subclass. However,

only a small fraction of possible constructions for such designs has been considered and

further examined from a coding theoretic perspective. There are still many direct as

well as recursive constructions for Steiner 2-designs and more generalized concepts that

are yet unconsidered for generating an LDPC code. These constructions potentially lead

to novel LDPC codes with completely different structures and decoding performances

than existing ones even if their basic parameters are identical. Possible constructions for

exploitable Steiner 2-designs can be found, for example, in [134, 102, 113]. For a survey of

known results for the existence and construction of Steiner 2-designs see [79, 80, 135, 136]

and the references therein.

While a wide range of LDPC codes with column weight three has already been propo-

sed based on Steiner triple systems, there is still a lack of structured LDPC codes with

larger column weights, i.e., with k > 3. For instance, possible construction techniques for

Steiner 2-designs of block size four are described in [137, Section 2], leading to potential

new families of LDPC codes. It is also worth to consider the more generalized concepts of

Pairwise Balanced Designs (PBDs) and Group Divisible Designs (GGDs) [79, Part IV]

whose incidence structures are further convenient sources for new LDPC codes.

As a next step, the novel and existing families of structured LDPC codes can be
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thoroughly examined with regard to the most harmful trapping sets that occur under

iterative decoding. While the decoding failure mechanisms over the BEC can comple-

tely be explained in terms of stopping sets, the situation is more complicated for non-

erasure channels such as the BSC or AWGN channel. For these channels, it is still an

open problem how trapping sets can be fully characterized and how they behave under

message-passage decoding. Hence, a better characterization of the failure mechanisms

would be desirable. An advisable first approach is to identify the most relevant stopping

and absorbing sets due to the simple combinatorial characteristic of these entities and

also, since absorbing sets are known to be the main cause of error-floors over the AWGN

channel. By exploiting the specific structure of the combinatorial code families, this task

can be simplified considerably.

Moreover, it would be important to find a measurement for the harmfulness of absor-

bing sets in order to identify those ones which have the most detrimental effect on the

decoding performance. Such a measurement would be extremly useful in code design for

avoiding the most harmful absorbing sets. Generally, the benefit of a thorough trapping

set analysis is twofold. Firstly, it provides deterministic methods for the prediction of

error-floors over various channels. Secondly, it facilitates the design of structured LDPC

codes with beneficial trapping set distributions and thus with good decoding performan-

ces, in particular, with very low error-floors.

A recent trend in coding theory is the construction and design of non-binary LDPC

codes (e.g. [138]) which can outperform their binary counterparts in the case of small to

moderate code lengths or in the case of higher order modulation [139]. However, these

codes are still unsuitable for pratical usage due to a very high decoding complexity. An

efficient hardware implementation of non-binary LDPC codes is still an open issue and

only a few publications exist on this topic [140]. A promising approach is the algebraic

design of structured non-binary LDPC codes on the basis of combinatorial tools such as

finite fields and finite geometries (cf. [120]). This structure can potentially be exploited

in order to leverage the implementation of such codes. However, the generalization of

123



constructions from the binary to the non-binary case is a non-trivial problem. An in-

teresting approach would be to transfer the techniques for the design of binary LDPC

codes based on combinatorial designs to the non-binary case.

As shown in our paper [P4], the methods from the classical domain of structured

high-rate LDPC code can also be exploited for the construction of quantum LDPC codes

assisted by reliable qubits. The arising quantum LDPC codes inherit the characteristics

of their classical counterparts, in particular, the low-complexity encoding along with the

high decoding performances already at short to moderate code lengths. The results of

our paper may encourage future studies to take advantage of classical code design and

to find novel error-correction schemes by exploiting the phenomena unique to the world

of quantum information [P4].
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Appendices
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A
Examples of Structured

Parity-Check Matrices
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(a) CBIBD LDPC code as proposed in [35, 27]

(b) CBIBD sRA code as proposed in Section 3.3.2

(c) CBIBD w3RA code as proposed in Section 3.3.2

Abbildung A.1. – Parity-check matrix of a CBIBD LDPC, sRA and w3RA code of column weight

k = 3, length N = 57 and rate R = 0.67 based on a CBIBD(19, 3, 1) from Netto’s first construction

[92].
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(a) RBIBD(21, 3, 1) LDPC code as proposed in [33]. The underlying RBIBD is based

on the construction of Ray-Chaudhuri and Wilson [94].

(b) RBIBD(21, 3, 1) sRA code as presented in [10].

(c) RBIBD(21, 3, 1) w3RA code as proposed in Section 3.3.3.

Abbildung A.2. – Parity-check matrix of an RBIBD LDPC, sRA and w3RA code of column

weight k = 3, length N = 70 and rate R = 0.7 based on an RBIBD(21, 3, 1) from the construction

of Ray-Chaudhuri and Wilson.
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(a) CRCBIBD LDPC code in cyclic representation

(b) CRCBIBD LDPC code in resolved representation

(c) CRCBIBD w3RA code in cyclic representation as proposed in Section 3.3.4.

Abbildung A.3. – Parity-check matrix of a CRCBIBD LDPC, sRA and w3RA code of column

weight k = 3, length N = 70 and rate R = 0.7 based on a CRCBIBD(21, 3, 1).
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B
Classification Process

For the classification of SSCs and ASCs that may occur in TD LDPC codes, we have

written a program that outputs an exhaustive list of non-isomorphic set systems which

satisfy the combinatorial constraints (A)-(D) of Def. 13 in the case of SSCs and the

constraints (A)-(D) of Def. 16 in the case of ASCs up to a given size of t blocks. By

starting with an empty set system, we successively extend it by a further block (in all

possible ways) in compliance with some combinatorial rules that are necessary to build

up an SSC or ASC. When an extension fulfills all constraints of Def. 13 or Def. 16, we

add it to the output list of SSCs or ASCs, respectively. We continue until a maximum

number of t blocks has been reached.

O = SSC/ASC Classification(k, t)

Input

∗ k: constant block size

∗ t: maximum number of blocks

Output

∗ O: The output list O contains all non-isomorphic SSCs or ASCs of block size k and

at most t blocks that may occur in any TD LDPC code of column weight k. The

presence or absence of these entities in a TD LDPC code finally depends on the

specific structure of the code.
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Notations and Invariants

∗ The current set system is denoted by S with point set P and block set B.

∗ A set system (P′,B′) is called an extension of S if P ⊆ P′ and B ⊆ B′.

∗ Let E$, 1 ≤ $ ≤ t, be t global lists of non-isomorphic extensions of size $ that

have already been processed. Note that the set systems collected in E$ are not

necessarily SSCs or ASCs.

Algorithm

(1) Initialization: We start with an empty set system S. Define E$ = ∅ for 1 ≤ $ ≤ t

and O = ∅.

(2) Find extensions of S: We extend S by a further block of size k in all possible ways

with the following restrictions:1

(2a) The constraints (A)-(C) of Def. 13 (or Def. 16) must be valid.

(2b) S must be connected, i.e, for any two distinct subsets of blocks (called com-

ponents) there must be at least one point that is contained in both com-

ponents.

Let S1, S2, . . . , Sµ be all possible non-isomorphic extensions of S.

(3) For each extension Si with number of blocks $ do:

(3a) If Si is isomorphic to any set system of E$, discard Si and continue with the

next extension, else add Si to E$.

(3b) Add Si to the output O, if Si satisfies constraint (D) of Def. 13 in the case of

SSCs or constraint (D) of Def. 16 in the case of ASCs.

(3c) If $ = t, we stop processing this extension, else we apply steps (2)-(3) recur-

sively to S := Si.
2

1 Note that any violation of (2a) is irreparable by extending the set system such that the concerned

extensions can be discarded at this early stage. By contrast, the constraint (2b) is reparable by adding

some new blocks properly such that the isolated components get connected. Nevertheless, we may

discard unconnected set systems here since all connected extensions will be found by extending the

blocks in different order. All constraints therefore reduce the processing complexity.

2 Note that the violation of constraint (D) is in both cases reparable by adding some new blocks properly
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such that the extensions must be further processed even if they violate (D).
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C
Stopping Set Classification

1 1 1 . .
2 1 . 1 .
3 1 . . 1
4 . 1 1 .
5 . 1 . 1
6 . . 1 1

S
(4)
3

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 1 . . .
5 . 1 . . 1 .
6 . . 1 . . 1
7 . . . 1 1 .
8 . . . 1 . 1
9 . . . . 1 1

S
(6)
3 {1}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 . . 1 .
5 . 1 . . . 1
6 . . 1 . 1 .
7 . . 1 . . 1
8 . . . 1 1 .
9 . . . 1 . 1

S
(6)
3 {2}

1 1 1 1 . . .
2 1 . . 1 . .
3 1 . . . 1 .
4 . 1 . 1 . .
5 . 1 . . . 1
6 . . 1 . 1 .
7 . . 1 . . 1
8 . . . 1 1 1

S
(6)
3 {3}

1 1 1 1 . . . .
2 1 . . 1 1 . .
3 1 . . . . 1 1
4 . 1 . 1 . . .
5 . 1 . . . 1 .
6 . . 1 . 1 . .
7 . . 1 . . . 1
8 . . . 1 . 1 .
9 . . . . 1 . 1

S
(7)
3 {1}

1 1 1 1 . . . .
2 1 . . 1 1 . .
3 1 . . . . 1 .
4 . 1 . 1 . . 1
5 . 1 . . . 1 .
6 . . 1 . 1 . .
7 . . 1 . . . 1
8 . . . 1 . 1 .
9 . . . . 1 . 1

S
(7)
3 {2}

1 1 1 1 . . . .
2 1 . . 1 1 . .
3 1 . . . . 1 1
4 . 1 . 1 . . .
5 . 1 . . . 1 .
6 . . 1 . 1 . .
7 . . 1 . . . 1
8 . . . 1 . . 1
9 . . . . 1 1 .

S
(7)
3 {3}

Abbildung C.1. – Matrix representation of all stopping set candidates S
(`)
3 {i} of size ` ≤ 7 and

column weight three (enumerated by {i}) that may occur in a TD LDPC code of column weight

three. The dots represent zero-entries.

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 . 1 1 . . .
6 . 1 . 1 . .
7 . 1 . . . 1
8 . . 1 . 1 .
9 . . 1 . . 1
10 . . . 1 1 .
11 . . . 1 . 1
12 . . . . 1 1

S
(6)
4 {1}

1 1 1 1 . . .
2 1 . . 1 . .
3 1 . . . 1 .
4 1 . . . . 1
5 . 1 . 1 . .
6 . 1 . . 1 .
7 . 1 . . . 1
8 . . 1 1 . .
9 . . 1 . 1 .
10 . . 1 . . 1
11 . . . 1 1 1

S
(6)
4 {2}

Abbildung C.2. – Complete list of all stopping set candidates of size ` ≤ 7 and column weight

four (in matrix representation) that may occur in a TD LDPC code of column weight four. The

dots represent zero-entries. Note that there are no SSCs of size ` ≤ 5 and of size seven.
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1 1 1 . . . . . .
2 1 . . . 1 . . .
3 1 . . . . . . 1
4 1 . 1 . . . . .
5 . 1 . 1 . . . .
6 . 1 . . . . 1 .
7 . 1 . . . 1 . .
8 . . 1 1 . . . .
9 . . 1 . . . 1 .
10 . . 1 . . 1 . .
11 . . . 1 1 . . .
12 . . . 1 . . . 1
13 . . . . 1 1 . .
14 . . . . 1 . 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1

S
(8)
4 {1}

1 1 1 . . . . . .
2 1 . 1 . 1 . . .
3 1 . . . . . 1 .
4 1 . . 1 . . . .
5 . 1 . 1 . . 1 .
6 . 1 . . . 1 . .
7 . 1 . . 1 . . 1
8 . . 1 1 . . . .
9 . . 1 . . . . 1
10 . . 1 . . 1 1 .
11 . . . 1 1 . . .
12 . . . . 1 1 . .
13 . . . . . 1 . 1
14 . . . . . . 1 1

S
(8)
4 {2}

1 1 1 . . . . . . .
2 1 . . . . . 1 . .
3 1 . . . . . . 1 .
4 1 . . . 1 . . . .
5 . 1 . . . . . . 1
6 . 1 . 1 1 . . . .
7 . 1 1 . . . 1 . .
8 . . 1 1 . . . . .
9 . . 1 . 1 . . 1 .
10 . . 1 . . . . . 1
11 . . . 1 . 1 . . .
12 . . . 1 . . . 1 .
13 . . . . 1 1 . . .
14 . . . . . 1 1 . .
15 . . . . . 1 . . 1
16 . . . . . . 1 1 1

S
(9)
4 {1}

1 1 1 . . . . . . .
2 1 . 1 . . . . . .
3 1 . . . 1 . 1 . .
4 1 . . . . . . . 1
5 . 1 . . . 1 . . 1
6 . 1 . 1 . . . . .
7 . 1 1 . 1 . . . .
8 . . 1 1 . . . . .
9 . . 1 . . . . . 1
10 . . . 1 . . 1 . .
11 . . . 1 . . . 1 .
12 . . . . 1 1 . . .
13 . . . . 1 . . 1 .
14 . . . . . 1 . 1 .
15 . . . . . 1 1 . .
16 . . . . . . 1 1 1

S
(9)
4 {2}

1 1 1 1 . . . . . .
2 1 . . . . . . 1 .
3 1 . . . . . . . 1
4 1 . . 1 . . . . .
5 . 1 . . . . 1 . .
6 . 1 . 1 . . . . .
7 . 1 . . 1 1 . . .
8 . . 1 . 1 . . . .
9 . . 1 . . 1 . . .
10 . . 1 . . . . 1 .
11 . . . 1 1 . . . .
12 . . . 1 . 1 . . 1
13 . . . . 1 . 1 1 .
14 . . . . . 1 1 . .
15 . . . . . . 1 . 1
16 . . . . . . . 1 1

S
(9)
4 {3}

Abbildung C.3. – Matrix representation of stopping set candidates of size ` ∈ {8, 9} and column

weight four that occur in at least one L 2
q -TD LDPC code with k = 4 and q ≥ 5. The dots represent

zero-entries. The SSCs have been found by an extensive computer search.

1 1 1 . . . . . . . .
2 1 . . . . . . 1 . .
3 1 . . 1 . . . . . .
4 1 . 1 . . . . . . 1
5 . 1 . . 1 . . . . .
6 . 1 . . . . . . . 1
7 . 1 . 1 . . . . . .
8 . . 1 1 . . . . . .
9 . . 1 . . . . . 1 .
10 . . 1 . . 1 . . . .
11 . . . 1 . . 1 . . .
12 . . . . 1 1 . . . .
13 . . . . 1 . . 1 . .
14 . . . . 1 . 1 . . .
15 . . . . . 1 . . . 1
16 . . . . . 1 . 1 1 .
17 . . . . . . 1 1 . .
18 . . . . . . 1 . 1 .
19 . . . . . . . . 1 1

S
(10)
4 {1}

1 1 1 . . . . . . . .
2 1 . . . 1 . . . . .
3 1 . . . . . 1 . . .
4 1 . . 1 . 1 . . . .
5 . 1 . . . . . . . 1
6 . 1 1 . . . . . . .
7 . 1 . . . . . . 1 .
8 . . 1 1 . . . . . .
9 . . 1 . . . . . 1 .
10 . . 1 . . . . 1 . 1
11 . . . 1 . . . 1 . .
12 . . . 1 . . . . . 1
13 . . . . 1 1 . . . .
14 . . . . 1 . . 1 . .
15 . . . . 1 . 1 . . .
16 . . . . . 1 1 . . .
17 . . . . . 1 . . 1 .
18 . . . . . . 1 1 . .
19 . . . . . . . . 1 1

S
(10)
4 {2}

1 1 1 . . . . . . . .
2 1 . . . . . . 1 1 .
3 1 . 1 . . . . . . .
4 1 . . . . . 1 . . .
5 . 1 . . . 1 . . . .
6 . 1 . . 1 . . . . .
7 . 1 . . . . . . . 1
8 . . 1 1 . . . . . .
9 . . 1 . 1 . 1 . . .
10 . . 1 . . . . 1 . .
11 . . . 1 . . . . . 1
12 . . . 1 . . . . 1 .
13 . . . 1 . 1 . . . .
14 . . . . 1 1 . . . .
15 . . . . 1 . . . 1 .
16 . . . . . 1 . 1 . .
17 . . . . . . 1 1 . .
18 . . . . . . 1 . . 1
19 . . . . . . . . 1 1

S
(10)
4 {3}

1 1 1 . . . . . . . .
2 1 . . 1 . . . . . .
3 1 . . . . . 1 . 1 .
4 1 . . . . . . . . 1
5 . 1 . . . . . . 1 .
6 . 1 . . . . . 1 . 1
7 . 1 1 . . . . . . .
8 . . 1 1 . . . . . .
9 . . 1 . 1 . . . . .
10 . . 1 . . 1 . . . .
11 . . . 1 1 . . . . .
12 . . . 1 . 1 . . . .
13 . . . . 1 1 . . . .
14 . . . . 1 . 1 . . .
15 . . . . . 1 . 1 . .
16 . . . . . . 1 1 . .
17 . . . . . . 1 . . 1
18 . . . . . . . 1 1 .
19 . . . . . . . . 1 1

S
(10)
4 {4}

1 1 1 . . . . . . . .
2 1 . . . . . 1 . . .
3 1 . . . . . . . 1 .
4 1 . . 1 . . . . . .
5 . 1 1 . . . . . . .
6 . 1 . . . . . 1 . .
7 . 1 . . 1 . . . . .
8 . . 1 1 . . . . . .
9 . . 1 . . . 1 . . .
10 . . 1 . . 1 . . . .
11 . . . 1 . . . . . 1
12 . . . 1 1 . . . . .
13 . . . . 1 1 . . . .
14 . . . . 1 . . . 1 .
15 . . . . . 1 . 1 . .
16 . . . . . 1 . . . 1
17 . . . . . . 1 1 . .
18 . . . . . . 1 . . 1
19 . . . . . . . 1 1 .
20 . . . . . . . . 1 1

S
(10)
4 {5}

1 1 1 . . . . . . . .
2 1 . . 1 . . 1 . . .
3 1 . 1 . . . . . . .
4 1 . . . . . . 1 . .
5 . 1 . . 1 . . . . .
6 . 1 . . . . . . . 1
7 . 1 . . . 1 . . . .
8 . . 1 1 1 . . . . .
9 . . 1 . . 1 . . 1 .
10 . . 1 . . . 1 . . .
11 . . . 1 . . . 1 . .
12 . . . 1 . . . . . 1
13 . . . . 1 1 . . . .
14 . . . . 1 . . . 1 .
15 . . . . . 1 1 1 . .
16 . . . . . . 1 . 1 .
17 . . . . . . . 1 . 1
18 . . . . . . . . 1 1

S
(10)
4 {6}

1 1 1 . . . . . . . .
2 1 . . . . 1 . . . .
3 1 . 1 . . . . . . .
4 1 . . . . . 1 . . .
5 . 1 . . . . . 1 . .
6 . 1 . . 1 . . . . .
7 . 1 . . . . . . 1 .
8 . . 1 1 . . . . . .
9 . . 1 . 1 . 1 . 1 .
10 . . 1 . . . . 1 . .
11 . . . 1 . . . . . 1
12 . . . 1 . . 1 . . .
13 . . . 1 . 1 . . . .
14 . . . . 1 1 . . . .
15 . . . . 1 . . . . 1
16 . . . . . 1 . . 1 .
17 . . . . . . 1 1 . .
18 . . . . . . . 1 . 1
19 . . . . . . . . 1 1

S
(10)
4 {7}

1 1 1 . . . . . . . .
2 1 . 1 . . . . . . 1
3 1 . . . 1 . . . . .
4 1 . . . . . . . 1 .
5 . 1 . 1 . . 1 . . .
6 . 1 . . . . . 1 . .
7 . 1 . . . 1 . . . 1
8 . . 1 1 . . . . . .
9 . . 1 . . 1 . . . .
10 . . 1 . . . 1 1 . .
11 . . . 1 . . . . 1 .
12 . . . 1 1 . . . . .
13 . . . . 1 1 1 . . .
14 . . . . 1 . . 1 . .
15 . . . . . 1 . . 1 .
16 . . . . . . 1 . . 1
17 . . . . . . . 1 1 1

S
(10)
4 {8}

Abbildung C.4. – Matrix representation of harmful stopping set candidates of size ten and column

weight four that occur in at least one L m
q -TD LDPC code with k = 4 and q ≥ 13. The dots represent

zero-entries. The SSCs have been found by an extensive computer search.
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1 1 1 . . . . . . . . .
2 1 . . 1 . . . . . . .
3 1 . 1 . . . . . . . .
4 1 . . . . . . 1 . . .
5 . 1 . . . . . . 1 . .
6 . 1 . 1 . . . . . . .
7 . 1 1 . . 1 . . . . .
8 . . 1 1 1 . . . . . .
9 . . 1 . . . . 1 . 1 .
10 . . . 1 . . . . 1 . .
11 . . . . 1 . 1 . . . .
12 . . . . 1 . . 1 . . .
13 . . . . 1 . . . . . 1
14 . . . . . 1 1 . . . .
15 . . . . . 1 . . . . 1
16 . . . . . 1 . . 1 1 .
17 . . . . . . 1 . . . 1
18 . . . . . . 1 . . 1 .
19 . . . . . . . 1 1 . .
20 . . . . . . . . . 1 1

S
(11)
4 {1}

1 1 1 . . . . . . . . .
2 1 . . . . . . . . . 1
3 1 . . 1 . . . . 1 . .
4 1 . 1 . 1 . . . . . .
5 . 1 . . . . 1 . . . .
6 . 1 . . . 1 . . . . .
7 . 1 . . . . . . . 1 .
8 . . 1 1 . . . . . . .
9 . . 1 . . . . . 1 . .
10 . . 1 . . . . 1 . . .
11 . . . 1 . 1 . . . . .
12 . . . 1 . . . 1 . . .
13 . . . . 1 1 1 . . . .
14 . . . . 1 . . 1 . 1 .
15 . . . . 1 . . . . . 1
16 . . . . . 1 . . 1 . .
17 . . . . . . 1 . . 1 .
18 . . . . . . 1 . . . 1
19 . . . . . . . 1 1 . .
20 . . . . . . . . . 1 1

S
(11)
4 {2}

1 1 1 . . . . . . . . .
2 1 . 1 . . . . . . . 1
3 1 . . . . . . 1 . . .
4 1 . . . 1 . . . . . .
5 . 1 . . . . . . 1 . .
6 . 1 . 1 . . . . . . .
7 . 1 1 . . . 1 . . . .
8 . . 1 1 1 . . . . . .
9 . . 1 . . 1 . . 1 . .
10 . . . 1 . . . 1 . . .
11 . . . 1 . 1 . . . . .
12 . . . . 1 . 1 . . . .
13 . . . . 1 . . . . 1 .
14 . . . . . 1 1 . . . .
15 . . . . . 1 . . . 1 .
16 . . . . . . 1 . . . 1
17 . . . . . . . 1 1 . .
18 . . . . . . . 1 . 1 .
19 . . . . . . . . 1 . 1
20 . . . . . . . . . 1 1

S
(11)
4 {3}

1 1 1 1 . . . . . . . .
2 1 . . 1 . 1 . . . . .
3 1 . . . . . . . . . 1
4 1 . . . 1 . . . 1 . .
5 . 1 . . . . . . . . 1
6 . 1 . 1 . . . . . . .
7 . 1 . . . 1 . . . . .
8 . . 1 . . . . . 1 . .
9 . . 1 . . 1 . 1 . . .
10 . . 1 . . . . . . 1 .
11 . . . 1 1 . . . . . .
12 . . . 1 . . . 1 . . .
13 . . . . 1 . 1 . . . .
14 . . . . 1 . . . . 1 .
15 . . . . . 1 1 . . . .
16 . . . . . . 1 . 1 . .
17 . . . . . . 1 . . . 1
18 . . . . . . . 1 1 . .
19 . . . . . . . 1 . 1 .
20 . . . . . . . . . 1 1

S
(11)
4 {4}

1 1 1 . . . . . . . . .
2 1 . 1 . . . . . . 1 .
3 1 . . . . . . 1 . . .
4 1 . . . . . . . 1 . .
5 . 1 . . . . 1 . . . .
6 . 1 . . . . . . . . 1
7 . 1 . 1 1 . . 1 . 1 .
8 . . 1 1 . . . . . . .
9 . . 1 . 1 . . . . . .
10 . . 1 . . . 1 . . . .
11 . . . 1 . 1 . . . . .
12 . . . 1 . . . . 1 . .
13 . . . . 1 1 . . . . .
14 . . . . 1 . . . 1 . .
15 . . . . . 1 1 . . 1 .
16 . . . . . 1 . . . . 1
17 . . . . . . 1 1 . . .
18 . . . . . . . 1 . . 1
19 . . . . . . . . 1 1 1

S
(11)
4 {5}

1 1 1 . . . . . . . . .
2 1 . 1 . . . . . 1 . .
3 1 . . . 1 . 1 . . . .
4 1 . . . . 1 . . . . .
5 . 1 . . . . 1 . . . .
6 . 1 . . . . . . . . 1
7 . 1 . 1 . . . . . 1 .
8 . . 1 1 . . . . . . .
9 . . 1 . . 1 . . . . .
10 . . 1 . . . . 1 . . .
11 . . . 1 . . . . . . 1
12 . . . 1 . . . . 1 . .
13 . . . . 1 1 . . . . .
14 . . . . 1 . . . . 1 .
15 . . . . 1 . . . 1 . .
16 . . . . . 1 . 1 . . .
17 . . . . . . 1 1 . . .
18 . . . . . . 1 . . . 1
19 . . . . . . . 1 . 1 .
20 . . . . . . . . 1 1 1

S
(11)
4 {6}

1 1 1 1 . . . . . . . .
2 1 . . . . . 1 . . . .
3 1 . . 1 . . . . . 1 .
4 1 . . . . . . 1 . . .
5 . 1 . . 1 . . . . . .
6 . 1 . . . 1 . . . . .
7 . 1 . 1 . . . . . . .
8 . . 1 . . . . . . 1 .
9 . . 1 . . . . . 1 . .
10 . . 1 . . . 1 . . . 1
11 . . . 1 1 . . . . . .
12 . . . 1 . 1 . 1 . . .
13 . . . . 1 . 1 . . . .
14 . . . . 1 1 . . . . .
15 . . . . . 1 1 . . . .
16 . . . . . . . 1 1 . .
17 . . . . . . . 1 . . 1
18 . . . . . . . . 1 . 1
19 . . . . . . . . 1 1 .
20 . . . . . . . . . 1 1

S
(11)
4 {7}

Abbildung C.5. – Matrix representation of stopping set candidates of size eleven and column

weight four that occur in at least one L 2
q -TD LDPC codes with k = 4 and q ≥ 13. The dots

represent zero-entries. The SSCs have been found by an extensive computer search.
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D
Absorbing Set Classification

1 1 1 .
2 1 . 1
3 1 . .
4 . 1 1
5 . 1 .
6 . . 1

(3, 3)3

1 1 1 . .
2 1 . 1 .
3 1 . . 1
4 . 1 1 .
5 . 1 . 1
6 . . 1 1

(4, 0)3

1 1 1 . .
2 1 . 1 .
3 1 . . 1
4 . 1 1 .
5 . 1 . 1
6 . . 1 .
7 . . . 1

(4, 2)3

1 1 1 . .
2 1 . 1 .
3 1 . . .
4 . 1 . 1
5 . 1 . .
6 . . 1 1
7 . . 1 .
8 . . . 1

(4, 4)3

1 1 1 . . .
2 1 . 1 . .
3 1 . . 1 .
4 . 1 1 . .
5 . 1 . . 1
6 . . 1 . .
7 . . . 1 1
8 . . . 1 .
9 . . . . 1

(5, 3)3{1}

1 1 1 . . .
2 1 . 1 . .
3 1 . . 1 .
4 . 1 . . 1
5 . 1 . . .
6 . . 1 . 1
7 . . 1 . .
8 . . . 1 1
9 . . . 1 .

(5, 3)3{2}

1 1 1 . . .
2 1 . 1 . .
3 1 . . . .
4 . 1 . 1 .
5 . 1 . . .
6 . . 1 . 1
7 . . 1 . .
8 . . . 1 1
9 . . . 1 .
10 . . . . 1

(5, 5)3

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 1 . . .
5 . 1 . . 1 .
6 . . 1 . . 1
7 . . . 1 1 .
8 . . . 1 . 1
9 . . . . 1 1

(6, 0)3{1}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 . . 1 .
5 . 1 . . . 1
6 . . 1 . 1 .
7 . . 1 . . 1
8 . . . 1 1 .
9 . . . 1 . 1

(6, 0)3{2}

1 1 1 1 . . .
2 1 . . 1 . .
3 1 . . . 1 .
4 . 1 . 1 . .
5 . 1 . . . 1
6 . . 1 . 1 .
7 . . 1 . . 1
8 . . . 1 1 1

(6, 2)3{1}

1 1 1 1 . . .
2 1 . . 1 . .
3 1 . . . 1 .
4 . 1 . 1 . .
5 . 1 . . . 1
6 . . 1 . 1 .
7 . . 1 . . 1
8 . . . 1 1 .
9 . . . . . 1

(6, 2)3{2}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 1 . . .
5 . 1 . 1 . .
6 . . 1 . 1 .
7 . . . 1 . 1
8 . . . . 1 1
9 . . . . 1 .
10 . . . . . 1

(6, 2)3{3}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 1 . . .
5 . 1 . . 1 .
6 . . 1 . . 1
7 . . . 1 1 .
8 . . . 1 . 1
9 . . . . 1 .
10 . . . . . 1

(6, 2)3{4}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 1 . . .
5 . 1 . . 1 .
6 . . 1 . . .
7 . . . 1 1 .
8 . . . 1 . 1
9 . . . . 1 1
10 . . . . . 1

(6, 2)3{5}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 . . 1 .
5 . 1 . . . 1
6 . . 1 . 1 .
7 . . 1 . . 1
8 . . . 1 1 .
9 . . . 1 . .
10 . . . . . 1

(6, 2)3{6}

1 1 1 1 1 . .
2 1 . . . 1 .
3 1 . . . . .
4 . 1 . . 1 .
5 . 1 . . . .
6 . . 1 . . 1
7 . . 1 . . .
8 . . . 1 . 1
9 . . . 1 . .
10 . . . . 1 1

(6, 4)3{1}

1 1 1 1 . . .
2 1 . . 1 . .
3 1 . . . 1 .
4 . 1 . 1 . .
5 . 1 . . . 1
6 . . 1 . 1 .
7 . . 1 . . 1
8 . . . 1 . .
9 . . . . 1 .
10 . . . . . 1

(6, 4)3{2}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 1 . . .
5 . 1 . . 1 .
6 . . 1 . . .
7 . . . 1 . 1
8 . . . 1 . .
9 . . . . 1 1
10 . . . . 1 .
11 . . . . . 1

(6, 4)3{3}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 1 . . .
5 . 1 . . . .
6 . . 1 . . .
7 . . . 1 1 .
8 . . . 1 . 1
9 . . . . 1 1
10 . . . . 1 .
11 . . . . . 1

(6, 4)3{4}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 . . 1 .
5 . 1 . . . 1
6 . . 1 . 1 .
7 . . 1 . . .
8 . . . 1 . 1
9 . . . 1 . .
10 . . . . 1 .
11 . . . . . 1

(6, 4)3{5}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 . 1 . . 1 .
5 . 1 . . . .
6 . . 1 . 1 .
7 . . 1 . . .
8 . . . 1 . 1
9 . . . 1 . .
10 . . . . 1 1
11 . . . . . 1

(6, 4)3{6}

1 1 1 1 1 . .
2 1 . . . 1 .
3 1 . . . . .
4 . 1 . . 1 .
5 . 1 . . . .
6 . . 1 . . 1
7 . . 1 . . .
8 . . . 1 . 1
9 . . . 1 . .
10 . . . . 1 .
11 . . . . . 1

(6, 6)3{1}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . . . .
4 . 1 . 1 . .
5 . 1 . . . .
6 . . 1 . 1 .
7 . . 1 . . .
8 . . . 1 . 1
9 . . . 1 . .
10 . . . . 1 1
11 . . . . 1 .
12 . . . . . 1

(6, 6)3{2}

Abbildung D.1. – Complete list of (a, b)3 absorbing set candidates of size a ≤ 6, syndrome b and

column weight three. All depicted candidates are 3-colorable. If there are multiple candidates of

the same size (a, b)3, we use a postfix {i} to determine an order. The dots represent zero-entries.
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1 1 1 . .
2 1 . 1 .
3 1 . . 1
4 1 . . .
5 . 1 1 .
6 . 1 . 1
7 . 1 . .
8 . . 1 1
9 . . 1 .
10 . . . 1

(4, 4)4

1 1 1 . . .
2 1 . 1 . .
3 1 . . 1 .
4 1 . . . 1
5 . 1 1 . .
6 . 1 . 1 .
7 . 1 . . .
8 . . 1 . 1
9 . . 1 . .
10 . . . 1 1
11 . . . 1 .
12 . . . . 1

(5, 4)4

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 . 1 1 . . .
6 . 1 . 1 . .
7 . 1 . . . 1
8 . . 1 . 1 .
9 . . 1 . . 1
10 . . . 1 1 .
11 . . . 1 . 1
12 . . . . 1 1

(6, 0)4 �

(5, 4)4

1 1 1 1 . . .
2 1 . . 1 . .
3 1 . . . 1 .
4 1 . . . . 1
5 . 1 . 1 . .
6 . 1 . . 1 .
7 . 1 . . . 1
8 . . 1 1 . .
9 . . 1 . 1 .
10 . . 1 . . 1
11 . . . 1 1 1

(6, 2)4{1} �

(4, 4)4

1 1 1 1 . . .
2 1 . . 1 . .
3 1 . . . 1 .
4 1 . . . . 1
5 . 1 . 1 . .
6 . 1 . . 1 .
7 . 1 . . . 1
8 . . 1 1 . .
9 . . 1 . 1 .
10 . . 1 . . 1
11 . . . 1 1 .
12 . . . . . 1

(6, 2)4{2} �

(4, 4)4

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 . 1 1 . . .
6 . 1 . 1 . .
7 . 1 . . 1 .
8 . . 1 1 . .
9 . . 1 . . 1
10 . . . 1 . 1
11 . . . . 1 1
12 . . . . 1 .
13 . . . . . 1

(6, 2)4{3} �

(4, 4)4

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 . 1 1 . . .
6 . 1 . 1 . .
7 . 1 . . . 1
8 . . 1 . 1 .
9 . . 1 . . 1
10 . . . 1 1 .
11 . . . 1 . 1
12 . . . . 1 .
13 . . . . . 1

(6, 2)4{4} �

(5, 4)4

1 1 1 1 . . .
2 1 . . 1 . .
3 1 . . . 1 .
4 1 . . . . 1
5 . 1 . 1 . .
6 . 1 . . 1 .
7 . 1 . . . 1
8 . . 1 1 . .
9 . . 1 . 1 .
10 . . 1 . . 1
11 . . . 1 . .
12 . . . . 1 .
13 . . . . . 1

(6, 4)4{1}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 . 1 1 . . .
6 . 1 . 1 . .
7 . 1 . . . 1
8 . . 1 . 1 .
9 . . 1 . . .
10 . . . 1 . 1
11 . . . 1 . .
12 . . . . 1 1
13 . . . . 1 .
14 . . . . . 1

(6, 4)4{2}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . . .
5 . 1 1 . . .
6 . 1 . 1 . .
7 . 1 . . . .
8 . . 1 . 1 .
9 . . 1 . . 1
10 . . . 1 1 .
11 . . . 1 . 1
12 . . . . 1 1
13 . . . . 1 .
14 . . . . . 1

(6, 4)4{3}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 . 1 1 . . .
6 . 1 . 1 . .
7 . 1 . . 1 .
8 . . 1 . . 1
9 . . 1 . . .
10 . . . 1 . 1
11 . . . 1 . .
12 . . . . 1 1
13 . . . . 1 .
14 . . . . . 1

(6, 4)4{4}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . . .
5 . 1 1 . . .
6 . 1 . . 1 .
7 . 1 . . . .
8 . . 1 . . 1
9 . . 1 . . .
10 . . . 1 1 .
11 . . . 1 . 1
12 . . . 1 . .
13 . . . . 1 1
14 . . . . 1 .
15 . . . . . 1

(6, 6)4{1}

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . . .
5 . 1 . . 1 .
6 . 1 . . . 1
7 . 1 . . . .
8 . . 1 . 1 .
9 . . 1 . . 1
10 . . 1 . . .
11 . . . 1 1 .
12 . . . 1 . 1
13 . . . 1 . .
14 . . . . 1 .
15 . . . . . 1

(6, 6)4{2}

Abbildung D.2. – Complete list of (a, b)4 absorbing set candidates of size a ≤ 6, syndrome b

and column weight four that may occur in a TD LDPC code of column weight four. All depicted

candidates are 4-colorable. If there are multiple candidates of the same size (a, b)4, we use a postfix

{i} to determine an order. The symbol “�” means that the left-hand candidate is an extension of

the right-hand candidate. The dots represent zero-entries.
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1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 1 . . . .
9 . . 1 . . . 1 .
10 . . . 1 . . . 1
11 . . . . 1 1 . .
12 . . . . 1 . 1 .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1

(8, 0)4{1} �

(4, 4)4

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . 1 . . .
8 . . 1 . . 1 . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . . 1
12 . . . . 1 . 1 .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1

(8, 0)4{2}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . . 1
12 . . . . 1 . 1 .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1

(8, 0)4{3}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1

(8, 0)4{4} �

(6, 6)4{1}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . . . 1 .
9 . . 1 . . . . 1
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . 1 . 1 .
14 . . . . 1 . . 1
15 . . . . . 1 1 .
16 . . . . . 1 . 1

(8, 0)4{5} �

(6, 6)4{1}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 . . . 1 . .
6 . 1 . . . . 1 .
7 . 1 . . . . . 1
8 . . 1 . . 1 . .
9 . . 1 . . . 1 .
10 . . 1 . . . . 1
11 . . . 1 . 1 . .
12 . . . 1 . . 1 .
13 . . . 1 . . . 1
14 . . . . 1 1 . .
15 . . . . 1 . 1 .
16 . . . . 1 . . 1

(8, 0)4{6} �

(6, 6)4{2}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . 1 . . .
8 . . 1 1 . . . .
9 . . 1 . . 1 . .
10 . . . 1 . 1 . .
11 . . . . 1 . 1 .
12 . . . . 1 . . 1
13 . . . . . 1 1 .
14 . . . . . 1 . 1
15 . . . . . . 1 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{1} �

(4, 4)4

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . 1 . . .
8 . . 1 1 . . . .
9 . . 1 . . 1 . .
10 . . . 1 . . 1 .
11 . . . . 1 1 . .
12 . . . . 1 . . 1
13 . . . . . 1 1 .
14 . . . . . 1 . 1
15 . . . . . . 1 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{2} �

(4, 4)4

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 1 . . . .
9 . . 1 . . . 1 .
10 . . . 1 . . . 1
11 . . . . 1 1 . .
12 . . . . 1 . 1 .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{3} �

(4, 4)4

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 1 . . . .
9 . . 1 . . . 1 .
10 . . . 1 . . . .
11 . . . . 1 1 . .
12 . . . . 1 . 1 .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1
17 . . . . . . . 1

(8, 2)4{4} �

(4, 4)4

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . 1 . . .
8 . . 1 . . 1 . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . 1 .
12 . . . . 1 1 . .
13 . . . . 1 . . 1
14 . . . . . 1 . 1
15 . . . . . . 1 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{5} �

(6, 4)4{4}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . 1 . . .
8 . . 1 . . 1 . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . 1 .
12 . . . . 1 . . 1
13 . . . . 1 . . .
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1
17 . . . . . . . 1

(8, 2)4{6} �

(6, 4)4{3}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . 1 . . .
8 . . 1 . . 1 . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . . 1
12 . . . . 1 . 1 .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{7}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . 1 . . .
8 . . 1 . . 1 . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . . 1
12 . . . . 1 . 1 .
13 . . . . 1 . . .
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1
17 . . . . . . . 1

(8, 2)4{8}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . 1 . .
10 . . . 1 1 . . .
11 . . . 1 . . 1 .
12 . . . . 1 . . 1
13 . . . . . 1 1 .
14 . . . . . 1 . 1
15 . . . . . . 1 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{9} �

(5, 4)4

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 1 . . .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . . 1 1 .
14 . . . . . 1 . 1
15 . . . . . . 1 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{10} �

(5, 4)4

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . 1 . .
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 . 1 .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{11}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . 1 . .
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 . 1 .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . .
16 . . . . . . 1 1
17 . . . . . . . 1

(8, 2)4{12}

Abbildung D.3. – (Figure continues on the next page)

138



1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . 1 .
12 . . . . 1 1 . .
13 . . . . 1 . . 1
14 . . . . . 1 . 1
15 . . . . . . 1 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{13} �

(6, 4)4{2}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . 1 . 1 .
14 . . . . . 1 . 1
15 . . . . . . 1 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{14} �

(6, 4)4{2}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . . 1 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{15} �

(6, 4)4{2}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . . 1
12 . . . . 1 . 1 .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{16}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . . 1
12 . . . . 1 . 1 .
13 . . . . 1 . . .
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1
17 . . . . . . . 1

(8, 2)4{17}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 .
17 . . . . . . . 1

(8, 2)4{18} �

(6, 6)4{1}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . 1 . . .
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1
17 . . . . . . . 1

(8, 2){19}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . 1 . . 1
14 . . . . . 1 . 1
15 . . . . . 1 . .
16 . . . . . . 1 1
17 . . . . . . 1 .

(8, 2)4{20} �

(6, 6)4{1}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . 1 .
10 . . . 1 . . . 1
11 . . . 1 . . . .
12 . . . . 1 1 . .
13 . . . . 1 . . 1
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1
17 . . . . . . 1 .

(8, 2)4{21} �

(6, 6)4{1}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . 1 . . .
9 . . 1 . . . . .
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . 1 . 1 .
14 . . . . . 1 1 .
15 . . . . . 1 . 1
16 . . . . . . 1 1
17 . . . . . . . 1

(8, 2)4{22} �

(6, 6)4{1}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . . . 1 .
9 . . 1 . . . . 1
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . 1 . 1 .
14 . . . . 1 . . 1
15 . . . . . 1 1 .
16 . . . . . 1 . .
17 . . . . . . . 1

(8, 2)4{23} �

(6, 6)4{1}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . . . 1 .
9 . . 1 . . . . 1
10 . . . 1 . . 1 .
11 . . . 1 . . . .
12 . . . . 1 1 . .
13 . . . . 1 . 1 .
14 . . . . 1 . . 1
15 . . . . . 1 1 .
16 . . . . . 1 . 1
17 . . . . . . . 1

(8, 2)4{24} �

(6, 6)4{1}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . . . 1 .
9 . . 1 . . . . 1
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 1 . .
13 . . . . 1 . 1 .
14 . . . . 1 . . .
15 . . . . . 1 . 1
16 . . . . . 1 . .
17 . . . . . . 1 1

(8, 2)4{25} �

(6, 4)4{3}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . 1 . .
8 . . 1 . . . 1 .
9 . . 1 . . . . 1
10 . . . 1 . . 1 .
11 . . . 1 . . . 1
12 . . . . 1 . 1 .
13 . . . . 1 . . 1
14 . . . . 1 . . .
15 . . . . . 1 1 .
16 . . . . . 1 . 1
17 . . . . . 1 . .

(8, 2)4{26} �

(6, 6)4{2}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 1 . . . . .
6 . 1 . 1 . . . .
7 . 1 . . . . . .
8 . . 1 . . 1 . .
9 . . 1 . . . 1 .
10 . . . 1 . 1 . .
11 . . . 1 . . 1 .
12 . . . . 1 1 . .
13 . . . . 1 . 1 .
14 . . . . 1 . . 1
15 . . . . . 1 . 1
16 . . . . . . 1 1
17 . . . . . . . 1

(8, 2)4{27} �

(6, 6)4{2}

1 1 1 . . . . . .
2 1 . 1 . . . . .
3 1 . . 1 . . . .
4 1 . . . 1 . . .
5 . 1 . . . 1 . .
6 . 1 . . . . 1 .
7 . 1 . . . . . 1
8 . . 1 . . 1 . .
9 . . 1 . . . 1 .
10 . . 1 . . . . 1
11 . . . 1 . 1 . .
12 . . . 1 . . 1 .
13 . . . 1 . . . 1
14 . . . . 1 1 . .
15 . . . . 1 . 1 .
16 . . . . 1 . . .
17 . . . . . . . 1

(8, 2)4{28} �

(6, 6)4{2}

Abbildung D.3. – (Figure starts at the previous page). Complete list of all (a, b)4 absorbing set

candidates of size a = 8, syndrome b ≤ 2 and column weight four that may occur in a TD LDPC

code of column weight four. All depicted candidates are 4-colorable. If there are multiple candidates

of the same size (a, b)4, we use a postfix {i} to determine an order. The symbol “�” means that the

left-hand candidate is an extension of the right-hand candidate. The dots represent zero-entries.
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1 1 1 . .
2 1 . 1 .
3 1 . . 1
4 1 . . .
5 1 . . .
6 . 1 1 .
7 . 1 . 1
8 . 1 . .
9 . 1 . .
10 . . 1 1
11 . . 1 .
12 . . 1 .
13 . . . 1
14 . . . 1

(4, 8)5

1 1 1 . . .
2 1 . 1 . .
3 1 . . 1 .
4 1 . . . 1
5 1 . . . .
6 . 1 1 . .
7 . 1 . 1 .
8 . 1 . . 1
9 . 1 . . .
10 . . 1 1 .
11 . . 1 . 1
12 . . 1 . .
13 . . . 1 1
14 . . . 1 .
15 . . . . 1

(5, 5)5 �

(4, 8)5

1 1 1 . . .
2 1 . 1 . .
3 1 . . 1 .
4 1 . . . 1
5 1 . . . .
6 . 1 1 . .
7 . 1 . 1 .
8 . 1 . . 1
9 . 1 . . .
10 . . 1 1 .
11 . . 1 . 1
12 . . 1 . .
13 . . . 1 .
14 . . . 1 .
15 . . . . 1
16 . . . . 1

(5, 7)5 �

(4, 8)5

1 1 1 . . .
2 1 . 1 . .
3 1 . . 1 .
4 1 . . . 1
5 1 . . . .
6 . 1 1 . .
7 . 1 . 1 .
8 . 1 . . .
9 . 1 . . .
10 . . 1 . 1
11 . . 1 . .
12 . . 1 . .
13 . . . 1 1
14 . . . 1 .
15 . . . 1 .
16 . . . . 1
17 . . . . 1

(5, 9)5

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 1 . . . . 1
6 . 1 1 . . .
7 . 1 . 1 . .
8 . 1 . . 1 .
9 . 1 . . . 1
10 . . 1 1 . .
11 . . 1 . 1 .
12 . . 1 . . 1
13 . . . 1 1 .
14 . . . 1 . 1
15 . . . . 1 1

(6, 0)5 �

(5, 5)5

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 1 . . . . 1
6 . 1 1 . . .
7 . 1 . 1 . .
8 . 1 . . 1 .
9 . 1 . . . 1
10 . . 1 1 . .
11 . . 1 . 1 .
12 . . 1 . . 1
13 . . . 1 1 .
14 . . . 1 . 1
15 . . . . 1 .
16 . . . . . 1

(6, 2)5 �

(5, 5)5

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 1 . . . . 1
6 . 1 1 . . .
7 . 1 . 1 . .
8 . 1 . . 1 .
9 . 1 . . . 1
10 . . 1 1 . .
11 . . 1 . 1 .
12 . . 1 . . 1
13 . . . 1 1 .
14 . . . 1 . .
15 . . . . 1 .
16 . . . . . 1
17 . . . . . 1

(6, 4)5{1} �

(5, 5)5

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 1 . . . . 1
6 . 1 1 . . .
7 . 1 . 1 . .
8 . 1 . . 1 .
9 . 1 . . . 1
10 . . 1 1 . .
11 . . 1 . 1 .
12 . . 1 . . .
13 . . . 1 . 1
14 . . . 1 . .
15 . . . . 1 1
16 . . . . 1 .
17 . . . . . 1

(6, 4)5{2} �

(5, 9)5

1 1 1 1 . . .
2 1 . . 1 . .
3 1 . . . 1 .
4 1 . . . . 1
5 1 . . . . .
6 . 1 . 1 . .
7 . 1 . . 1 .
8 . 1 . . . 1
9 . 1 . . . .
10 . . 1 1 . .
11 . . 1 . 1 .
12 . . 1 . . 1
13 . . 1 . . .
14 . . . 1 1 .
15 . . . 1 . 1
16 . . . . 1 .
17 . . . . . 1

(6, 6)5{1} �

(5, 7)5

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 1 . . . . 1
6 . 1 1 . . .
7 . 1 . 1 . .
8 . 1 . . 1 .
9 . 1 . . . 1
10 . . 1 1 . .
11 . . 1 . 1 .
12 . . 1 . . 1
13 . . . 1 . .
14 . . . 1 . .
15 . . . . 1 .
16 . . . . 1 .
17 . . . . . 1
18 . . . . . 1

(6, 6)5{2} �

(5, 7)5

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 1 . . . . 1
6 . 1 1 . . .
7 . 1 . 1 . .
8 . 1 . . 1 .
9 . 1 . . . 1
10 . . 1 1 . .
11 . . 1 . 1 .
12 . . 1 . . .
13 . . . 1 . 1
14 . . . 1 . .
15 . . . . 1 .
16 . . . . 1 .
17 . . . . . 1
18 . . . . . 1

(6, 6)5{3} �

(5, 7)5

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 1 . . . . 1
6 . 1 1 . . .
7 . 1 . 1 . .
8 . 1 . . 1 .
9 . 1 . . . .
10 . . 1 1 . .
11 . . 1 . 1 .
12 . . 1 . . .
13 . . . 1 . 1
14 . . . 1 . .
15 . . . . 1 1
16 . . . . 1 .
17 . . . . . 1
18 . . . . . 1

(6, 6)5{4} �

(5, 7)5

1 1 1 . . . .
2 1 . 1 . . .
3 1 . . 1 . .
4 1 . . . 1 .
5 1 . . . . .
6 . 1 1 . . .
7 . 1 . 1 . .
8 . 1 . . . 1
9 . 1 . . . .
10 . . 1 . 1 .
11 . . 1 . . 1
12 . . 1 . . .
13 . . . 1 1 .
14 . . . 1 . 1
15 . . . 1 . .
16 . . . . 1 1
17 . . . . 1 .
18 . . . . . 1

(6, 6)5{5} �

(5, 9)5

Abbildung D.4. – Complete list of all (a, b)5 absorbing set candidates of size a ≤ 5 and of all

candidates with a = 6 and b ≤ 6 that may occur in a TD LDPC code of column weight k = 5.

All depicted candidates are 5-colorable. If there are multiple candidates of the same size (a, b)5, we

use a postfix {i} to determine an order. The symbol “�” means that the left-hand candidate is an

extension of the right-hand candidate. The dots represent zero-entries.

140



E
Elimination Process

Let C be an L m
q –TD LDPC code of block size k := m + 2 based on m MOLS of order

q and scale factors α1, . . . , αm. Furthermore, let G = {G1, . . . , Gk} be the groups of the

underlying transversal design L m
q –TD such that G1 and G2 correspond to the common

row and column set of the MOLS, respectively, and Gi+2 corresponds to the symbol set

of the i-th Latin square with scale factor αi for 1 ≤ i ≤ m.

Now, let S be an SSC (or ASC) with point set P and block set B and let ϕ be any

k-coloring of S. Clearly, there exist (k!) possibilities to associate the k colors with the k

groups of the transversal design. Let π be any bijective mapping, called color-to-group

mapping, that maps the i-th color to the group Gi. Then, the following theorem holds.

Theorem 40 There exists a stopping set (or absorbing set) of type Sϕ with color-to-

group mapping π in the factor graph of C if and only if there is an assignment of values

from Fq to the variables p1, . . . , pυ with υ := |P| with the following properties.

(1) The x-th point of P is associated with variable px.

(2) All elements of
{(
px, ϕ(x)

)
: x ∈ P

}
are unique.

(3) For every block {x1, . . . , xk} ∈ B with π(ϕ(x1)) = G1, . . . , π(ϕ(xk)) = Gk, the

linear equation αipx1 + px2 − pxi+2
= 0 is satisfied over Fq for all i = 1, . . . ,m.

The linear equations obtained by Thm. 40 lead to a homogeneous linear system over

Fq with unknown variables p1, . . . , pυ and coefficients depending on the scale factors αi.
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Let E be the coefficient matrix and p = (p1, . . . , pυ)
T be the column vector of the

unknown variables. Every solution of Ep = 0 corresponds to a stopping (or absorbing)

set of type Sϕ if the pairs
{(
px, ϕ(x)

)
: x ∈ P

}
are unique. Conversely, if such a solution

does not exist, there can not be any stopping (or absorbing) set of this type. Hence, the

existence of any stopping (or absorbing) set of type Sϕ with color-to-group mapping π

in the factor graph of C is equivalent to the existence of certain solutions of the linear

equation system Ep = 0 obtained by Thm. 40. We solve this system symbolically by a

modified Gaussian elimination algorithm in dependence of the scale factors αi and the

Galois field Fq.

e(Sϕ, C) = FindEliminationCondition(S, ϕ, C)

Input

∗ S: the set system representing an SSC (or ASC) with constant block size k

∗ ϕ: any k-coloring of the set system S

∗ C: an L k−2
q –TD LDPC code based on MOLS of order q and scale factors α1, . . . , αm

Output

∗ e(Sϕ, C): the output is an elimination condition depending on the scale factors

α1, . . . , αm of C such that all stopping (or absorbing) sets of type Sϕ can be elimi-

nated in C if and only if e(Sϕ, C) = 1 over Fq.

Notations and Invariants

∗ Let π1, . . . , πk! be all possible color-to-group mappings and let π be the current

one, initialized by π := π1. Furthermore, let eπ(Sϕ, C) be the elimination condition

for stopping (or absorbing) sets of type Sϕ in C with color-to-group mapping π.

∗ Let µ be the identifier of the current process. Initially, we have µ = 0.

∗ By a polynomial we mean an expression depending on the variables α1, . . . , αm.

We say that a polynomial is definitely zero, if the polynomial becomes zero after
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evaluating the polynomial over Fq for every possible choice of the scale factors αi

and Fq. By contrast, we say that the polynomial is definitely non-zero if the result

becomes non-zero for every possible choice. For all other polynomials it depends on

the values of αi and q to decide whether the polynomial becomes zero or non-zero.

∗ The set Λ
(0)
µ contains all polynomials that are definitely zero in process µ. For

µ = 0, we initialize Λ
(0)
0 = {0}.

∗ The set Λ
(+)
µ contains all polynomials that are definitely non-zero in process µ.

Initially, we have1

∗ 1,−1 ∈ Λ
(+)
0 ,

∗ αi ∈ Λ
(+)
0 for 1 ≤ i ≤ m,

∗ (αi − αj) ∈ Λ
(+)
0 for 1 ≤ i, j ≤ m and i 6= j,

∗ u ∈ Λ
(+)
0 if u is not a prime power, and

∗ λ1λ2 ∈ Λ
(+)
0 if λ1, λ2 ∈ Λ

(+)
0 .

∗ The set Λ
(∗)
µ contains all polynomials that may be zero or non-zero depending on

the choice of the scale factors αi and Fq. Consequently, it consists of all polynomials

that are not in Λ
(0)
µ ∪ Λ

(+)
µ .

∗ Let T be a rooted tree that consists of case nodes of the form (λ, v)C and elimi-

nation nodes of the form (λ, v)E, where λ ∈ Λ
(∗)
µ , v ∈ {0, 1} and where ‘C’ and

‘E’ stands for case and elimination, respectively. The tree shall be a global entity

independent of any process. We say that a node is satisfied if %(λ, v) = 1, where

%(λ, v) =


1, if (λ 6= 0) and (v = 1)

or (λ = 0) and (v = 0),

0, otherwise.

Note that it depends on the choice of the scale factors αi and the choice of Fq if a

1 Note that the scale factors αi ∈ F∗
q of any MOLS are non-zero and unique by definition such that αi

and any difference αi−αj with i 6= j are definitely non-zero. Furthermore, an entry that is equal to a

prime power pi with i ≥ 1 can be zero if the underlying Galois field has characteristic p. Conversely, an

entry that is not a prime power must be definitely non-zero. As an example, the term 6α2
1α

3
2(α1−α2)2

is definitely non-zero.
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node is satisfied. Initialize the ouput tree T with an empty root node and assume

that this root node is trivially satisfied.

∗ Let Vµ be the latest node of the current process µ, where V0 is the root node of T .

Algorithm

(1) Build up an equation system Ep = 0 with the equations obtained by Thm. 40

for the set system S with k-coloring ϕ and color-to-group mapping π. Let Eη be

the lower right submatrix of the coefficient matrix E including the η-th row and

column. We start with η = 1.

(2) Find a column of Eη with all entries from Λ
(0)
µ ∪ Λ

(+)
µ and with at least one entry

from Λ
(+)
µ . If such a column does not exist, continue with step (3). Otherwise swap

the rows and columns2 of E in such a way that there is an entry of Λ
(+)
µ in the left

top corner of Eη. Then, apply row eliminations to E such that all other entries of

the first column of Eη become zero (except the first) and continue with step (4).

(3) Find the column of Eη with the smallest positive number of entries in Λ
(∗)
µ . If such

a column does not exist, i.e., if all entries are from Λ
(0)
µ , continue with step (6).

Otherwise, choose an entry λ ∈ Λ
(∗)
µ of this column and do a case differentation.

For this, split the current process into two subprocesses with identifier µ1 and µ2.

For the first subprocess µ1,

∗ assume that λ = 0,

∗ append the case node (λ, 0)C to Vµ,

∗ mark this node as the latest node Vµ1 of process µ1,

∗ define Λ
(0)
µ1 := Λ

(0)
µ ∪ {λ}, and

∗ continue recursively with step (5) and the process id µ := µ1.

For the second subprocess,

∗ assume that λ 6= 0,

∗ append the case node (λ, 1)C to Vµ,

∗ mark this node as the latest node Vµ2 of the process µ2,

2 If we swap rows of E, we must also swap the corresponding entries in p.
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∗ define Λ
(+)
µ2 := Λ

(+)
µ ∪ {λ}, and

∗ continue recursively with step (5) and the process id µ := µ2.

(4) After every step search for linear equations of the form λ(px1 − px2) = 0 with

ϕ(x1) = ϕ(x2) and λ ∈ Λ
(∗)
µ . By choosing the scale factors αi and Fq in such a

way that λ 6= 0 over Fq, it follows that (px1 , ϕ(x1)) = (px2 , ϕ(x2)) which violates

the second condition of Thm. 40 for all possible solutions. Hence, all stopping (or

absorbing) sets of type Sϕ with color-to-group mapping π can be eliminated by a

proper choice of the scale factors αi and Fq. Consequently, append the elimination

node (λ, 1)E to the path node Vµ and, for further processing,

∗ assume that λ = 0

∗ remove the row of E that corresponds to the detected equation,

∗ set Λ
(0)
µ := Λ

(0)
µ ∪ {λ}, and

∗ continue with step (5).

(5) Repeat step (2) with η := η+1 until the matrix is in row echelon form. If the matrix

is in row echelon form, we solve the system symbolically by back substitution such

that all unknown variables depend on the scale factors αi and on some free variables

if the system is underdetermined. We obtain symbolic expressions for p1, . . . , pυ.

(6) Compute the symbolic differences px1 − px2 for all x1, x2 ∈ P with ϕ(x1) = ϕ(x2)

and evaluate under which conditions these differences are zero. More precisely,

search for differences of the form px1 − px2 = λ(px3 − px4) = 0 with λ ∈ Λ
(∗)
µ and

x3, x4 ∈ P \ {x1, x2}. If we choose αi and Fq in such a way that λ = 0, the points

(px1 , ϕ(x1)) and (px2 , ϕ(x2)) coincide for all possible solutions and thus cannot lead

to a stopping (or absorbing) set of type Sϕ with color-to-group mapping π. As a

consequence, λ = 0 is an elimination condition such that we can append the node

(λ, 0)E to Vµ.

(7) Let p =
(
root, (λ1, v1)C, (λ2, v2)C, . . . , (λn−1, vn−1)C, (λn, vn)E

)
be a path of T that

ends up in an elimination node. Define %(p) :=
∧n
i=1 %(λi, vi). Then, the stopping

(or absorbing) sets of type Sϕ with color-to-group mapping π can be eliminated

if %(p) = 1. Let p1, . . . , pξ be all paths of T that ends up in an elimination node.
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Define eπ(Sϕ, C) :=
∨ξ
i=1 %(pi). Then, the stopping sets (or absorbing sets) of type

Sϕ with color-to-group mapping π can be eliminated if and only if eπ(Sϕ, C) = 1.

Next, simplify the elimination condition eπ(Sϕ, C) by using the following rules:

∗ %(ελ, v) = %(λ, v),

∗ %(λi, v) = %(λ, v),

∗ if %(λ, v)⇒ %(λ′, v′), then %(λ, v) ∨ %(λ′, v′) = %(λ′, v′),

∗ if %(λ, v)⇒ %(λ′, v′), then %(λ, v) ∧ %(λ′, v′) = %(λ, v),

∗ %(λ, 0) ∨ %(λ′, 0) = %(λλ′, 0)

∗ %(λλ′, 1) ∨ %(λ, 1) = %(λ, 1)

∗ %(λ, 1) ∨ %(λ′, 0) = %(λ, 1) ∨ %(ελ+ ε′λ′, 0),

∗ %(λ, 1) ∨ %(λ′, 1) = %(λ, 1) ∨ %(ελ+ ε′λ′, 1),

∗ %(λ, 0) ∧ %(λ′, 0) = %(λ, 0) ∧ %(ελ+ ε′λ′, 0),

∗ %(λ, 0) ∧ %(λ′, 1) = %(λ, 0) ∧ %(ελ+ ε′λ′, 1),

where λ, λ′ ∈ Λ
(∗)
0 , ε, ε′ ∈ Λ

(+)
0 , and v, v′ ∈ {0, 1}.

(8) Repeat the entire process for each remaining color-to-group mapping π2, . . . , πk!.

The output elimination condition for the stopping (or absorbing) sets of type Sϕ

is then given by e(Sϕ, C) =
∨k!
i=1 eπi(Sϕ, C).
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F
Proofs

F.1. Proof of Proposition 25

We first need the following Lemma:

Lemma 41 Let PG(2, q) = (P ′,L′) be any projective subplane of PG(m, q) = (P ,L)

such that P ′ ⊂ P and L′ ⊂ L. Then, for any line L ∈ L it holds either that L ∈ L′ or

|L ∩ P ′| ≤ 1.

Proof. For |L∩P ′| ≥ 2, let p1, p2 be any two points of L∩P ′. It holds that L = 〈p1, p2〉

since L is a 2-dimensional subspace of Fm+1
q and thus, 〈p1, p2〉 ⊂ P ′ = 〈p1, p2, p3〉 for

any p3 ∈ P ′ \ L. Hence, L must be completely contained in P ′ (which is equivalent to

L ∈ L′) for |L ∩ P ′| ≥ 2. �

Now, let E be the lines of any stopping set in PG(m, q). We construct a projective

subplane PG(2, q) = (P ′,L′) in such a way that |E ∩ L′| ≥ 2. For this, choose any two

lines of E having an intersection point p. Then take p and any other point from each

of the both lines, giving a total of three points. The subspace spanned by these points

gives the point set P ′, and L′ consists of all lines of L that are completely contained in

P ′. Define D := E ∩ L′ and d := |E ∩ L′|. Now, we distinguish between the following

three cases:
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(1) Case d = |E|: Since E ⊆ L′, E is trivially a stopping set in the projective subplane

formed by L′.

(2) Case d < |E| and 2 ≤ d ≤ q: First, we define that the degree of a point with respect

to a given subset of lines is the number of these lines that contain the point. In

particular note that for a stopping set E , each point of PE :=
⋃
E has degree of at

least two with respect to the lines of E . LetM be the subset of points of PD :=
⋃
D

having degree one with respect to the lines of D and define µ := |M|. For every

point pi ∈M, there must be at least one line in E \ D that contains pi, such that

each point of M has degree of at least two with respect to E . Since the lines of

E \ D are not in L′, they contain at most one point of M ⊆ PD (cf. Lemma 41)

and thus |E \ D| ≥ µ. Hence, we have |E| = |D|+ |E \ D| ≥ d+ µ. By considering

the simple argument that any two lines of D have at most one point in common,

the minimum value for µ can be reached if any two lines of D share exactly one

point. This case is possible since there are less than q+1 lines in D. Hence, a lower

bound for µ can be established by

µ ≥ d(q + 1)− 2
d−1∑
j=1

j = d(q − d+ 2).

Subsequently, it follows that

|E| ≥ d+ µ ≥ d(q − d+ 3) := f(d).

It can be shown that f(d) ≥ 2q + 2 for 2 ≤ d ≤ q with minimum f(2) = 2q + 2.

Therefore, we have |E| ≥ 2q + 2.

(3) Case d < |E| and d ≥ q + 1: Choose any line L ∈ E \ D, which must exist, since

d < |E|. L intersects with PD in at most one point (Lemma 41) such that at least

q points from L (with |L| = q+ 1) are in PE \ PD. Hence, there must be at least q

further lines in E \ D such that every point of L occurs in at least two lines of E ,

giving |E \D| ≥ q+1. Consequently, we have |E| = |D|+|E \D| ≥ d+q+1 ≥ 2q+2.
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F.2. Proof of Proposition 34

First, we need the following straightforward Lemma:

Lemma 42 Let AG(2, q) = (P ′,L′) be an affine subplane of AG(m, q) = (P ,L) such

that P ′ ⊂ P and L′ ⊂ L. For any line L ∈ L it holds either that L ∈ L′ or |L∩P ′| ≤ 1.

Proof. For |L∩P ′| ≥ 2, let p1, p2 be any two points of L∩P ′. The line L is a coset of

a 1-dimensional subspace of Fmq and can be described by L = {α(p2− p1) + p1 : α ∈ Fq}.

Clearly, p1 ∈ L (with α = 0) and p2 ∈ L (with α = 1). The point set P ′ is a coset of a

2-dimensional subspace of Fmq and can be described by P ′ = {α(p2−p1)+β(p3−p1)+p1 :

α, β ∈ Fq} for any p3 ∈ P ′ \ (L∪{0, . . . , 0}). It can easily be seen that L ⊂ P ′ by setting

β = 0. �

Now, let E be the lines of any stopping set in AG(m, q). We construct an affine

subplane PG(2, q) = (P ′,L′) such that |E ∩ L′| ≥ 2. For this, choose any two lines of

E having an intersection point p1. Then take p1 and one other point from each of the

both lines, say p2 and p3. Then, the point set of the subplane can be constructed by

P ′ = {α(p2 − p1) + β(p3 − p1) + p1 : α, β ∈ Fq} and L′ consists of all lines of L whose

points are all contained in P ′. Now, we distinguish between the following three cases:

(1) Case d = |E|: Since E ⊆ L′, E is trivially a stopping set in the affine subplane

formed by L′.

(2) Case d < |E| and 2 ≤ d ≤ q: Let M be the subset of points of PD :=
⋃
D that

occur in exactly one line of D, and define µ := |M|. By considering that any two

lines of D can have at most one point in common, it can be established that

µ ≥ dq − 2
d−1∑
j=1

j = d(q − d+ 1).

Since E is a stopping set, every point pi ∈ M must occur in at least two lines of

E and thus there must be at least one line in E \ D that contains pi. Since the
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lines of E \ D are not in L′, each line contains at most one point of M according

to Lemma 42. Hence, |E \ D| ≥ µ. It follows that |E| = |D|+ |E \ D| ≥ d+ µ and

subsequently that

|E| ≥ d+ µ ≥ d(q − d+ 2) := f(d).

It can be shown that f(d) ≥ 2q for 2 ≤ d ≤ q with minimum f(2) = f(q) = 2q.

Hence, we have |E| ≥ 2q.

(3) Case d < |E| and d ≥ q + 1: Choose any line L ∈ E \ D, which must exist, since

d < |E|. L intersects with PD in at most one point (Lemma 42) such that at least

q − 1 points from L (with |L| = q) are in PE \ PD. Hence, there must be at least

q−1 further lines in E \D such that every point of L occurs in at least two lines of

E , giving |E \ D| ≥ q. Consequently, we have |E| = |D|+ |E \ D| ≥ d+ q ≥ 2q + 1.
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Frequently Used Symbols

C linear block code

H parity-check matrix

N code length

M number of parity-check equations

k column weight

r row weight

R code rate

Rd design rate

ρH density of the parity-check matrix H

dmin(C) minimum distance of the code C

smin(H) stopping distance of a code’s parity-check matrix H

H1 first submatrix of an sRA code’s parity-check matrix

H2 second submatrix of an sRA code’s parity-check matrix

a constant row weights of H1

q constant column weights of H1

Π interleaver of an sRA code
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Abbreviations

LDPC low-density parity-check code

RA code repeat-accumulate code

sRA code systematic RA code

wqRA code weight-q RA code

BIBD balanced incomplete block design

CBIBD cyclic BIBD

RBIBD resolvable BIBD

CRCBIBD cyclically resolvable cyclic BIBD

CDF cyclic difference family

RDF radical difference family

MOLS mutually orthogonal Latin squares

TD transversal design

BEC binary erasure channel

BSC binary symmetric channel

AWGN additive white Gaussian noise

SNR signal-to-noise ratio

BER bit error rate

SPA sum-product algorithm

SSC stopping set candidate

ASC absorbing set candidate

FG finite geometry

PG projective geometry

AG affine geometry
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[112] P. Kaski and P. R. J. Österg̊ard, “The Steiner triple systems of order 19,” Mathe-

matics of Computation, vol. 73, no. 248, pp. 2075–2092, 2004.

[113] Y. Fujiwara, “Even-freeness of cyclic 2-designs,” e-print arXiv:1210.7516

[math.CO], 2012, available at: http://arxiv.org/abs/1210.7516.

[114] C. J. Colbourn, E. Mendelsohn, A. Rosa and J. Siran, “Anti-mitre steiner triple

systems,” Graphs and Combinatorics, vol. 10, no. 2-4, pp. 215–224, 1994.

[115] H. Tang, J. Xu, S. Lin and K. A. S. Abdel-Ghaffar, “Codes on finite geometries,”

IEEE Trans. on Information Theory, vol. 51, no. 2, pp. 572–596, 2005.

[116] Z. Liu and D. A. Pados, “Low complexity decoding of finite geometry LDPC

codes,” in IEEE Int. Conf. on Comm. (ICC ’03), vol. 4, May 2003, pp. 2713–

164



2717.

[117] J. Xu and L. Chen and I. Djurdjevic, S. Lin and K. A. S. Abdel-Ghaffar, “Con-

struction of Regular and Irregular LDPC Codes: Geometry Decomposition and

Masking,” IEEE Trans. on Information Theory, vol. 53, no. 1, pp. 121–134, 2007.

[118] D. C. Clark, “Applications of finite geometries to designs and codes,” Ph.D. dis-

sertation, Michigan Technological University, 2011.

[119] Q. Huang and Q. Diao and S. Lin and K. A. S. Abdel-Ghaffar, “Cyclic and quasi-

cyclic ldpc codes on constrained parity-check matrices and their trapping sets,”

IEEE Trans. on Information Theory, vol. 58, no. 5, pp. 2648–2671, 2012.

[120] W. Ryan and S. Lin, “Finite-Geometry LDPC Codes,” in Channel Codes. Cam-

bridge University Press, 2009, pp. 430–483.

[121] S. T. Xia and F. W. Fu, “On the stopping distance of finite geometry LDPC

codes,” IEEE Comm. Letters, vol. 10, no. 5, pp. 381–383, 2006.

[122] Y. Fujiwara, D. Clark, P. Vandendriessche, M. De Boeck and V. D. Tonchev,

“Entanglement-assisted quantum low-density parity-check codes,” Physical Review

A, vol. 82, no. 4, 2010.

[123] N. Hamada, “The rank of the incidence matrix of points and d-flats in finite

geometries,” J. Sci. Hiroshima Univ. Ser. A-I Math., vol. 32, no. 2, pp. 381–396,

1968.

[124] A. Frumkir and A. Yakir, “Rank of inclusion matrices and modular representation

theory,” Israel J. Math., vol. 71, no. 3, pp. 309–320, 1990.

[125] N. Hamada, “On the p-rank of the incidence matrix of a balanced or partially

balanced incomplete block design and its applications to error correcting codes,,”

Hiroshima Math. J., vol. 3, no. 1, pp. 153–226, 1973.

[126] A. Yakir, “Inclusion matrix of k versus l affine subspaces and a permutation module

165



of the general affine group,” J. Combin. Theory Ser. A, vol. 63, no. 2, pp. 301–317,

1993.

[127] P. Sziklai, “Polynomials in finite geometries,” Feb. 2008.

[128] G. Van de Voorde, “On sets without tangents and exterior sets of a

conic,” 2012, e-print arXiv: 1201.0484v1 [math.CO], 2012, available at:

http://arxiv.org/abs/1201.0484.

[129] N. J. Calkin, J. D. Key and M. J. de Resmini, “Minimum Weight and Dimension

Formulas for Some Geometric Codes,” Des. Codes Cryptogr., vol. 17, no. 1–3, pp.

105–120, 1999.

[130] A. Blokhuis, A. Seress, H. A. Wilbrink, “On sets of points in PG(2, q) without

tangents,” Mitt. Math. Sem. Univ. Giessen, pp. 39–44, 1991.

[131] M. Lavrauw, L. Storme, and G. Van de Voorde, “On the code generated by the

incidence matrix of points and hyperplanes in PG(n, q) and its dual,” Des. Codes

Cryptogr., vol. 48, no. 3, pp. 231–245, 2008.
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