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Introduction

In his paper [Mül11], Werner Müller started to investigate a non unitary trace

formula. In this thesis, we would like to give several generalizations of his

results. Firstly, let us summarize the unitary case, which goes back to Selberg

[Sel56] and is known as the Selberg trace formula.

Let G be a first countable, locally compact group and � ⊂ G a uniform lattice,

or in other words, a discrete subgroup � ⊂ G, such that the quotient ��G
carries an invariant Radon-measure µ and ��G is compact. The right regular

representation R of G on L2(��G) is defined as

R(g)'(h) = '(hg),

for ' ∈ L2(��G). By the invariance of the measure µ, the right regular repre-

sentation is unitary:

�R(g)'�2
2

= �
��G �'(hg)�2 dµ(h) = ���G �'(h)�2 dµ(h) = �'�22.

Because of the unitarity and the compactness of the quotient ��G, one can

prove (see for ex. [DE09, Theorem 9.2.2]), that the right regular representation

decomposes as a direct sum of unitary irreducible representations of G, with

finite multiplicity:

L2(��G) ≅ ��
⇡∈ĜN�

(⇡)⇡. (1)

The sum ranges over the unitary dual Ĝ, and the natural number N
�

(⇡) counts
the multiplicity of the representation ⇡ ∈ Ĝ in L2(��G).
For a function f ∈ L1(G) and a unitary representation (⇡, V

⇡

) of G, we can

define a bounded operator on the representation space V
⇡

as the integral

⇡(f) = �
G

f(g)⇡(g)dg. (2)

Let us for example consider the right regular representation R. Then R(f)
applied to a function ' ∈ L2(��G) gives

R(f)'(h) = �
G

f(g)'(hg)dg.

If the function f ∈ C
c

(G) ∗ C
c

(G) is the convolution of two continuous com-
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pactly supported functions on G, the operator R(f) can be shown to be a

trace class operator. Using (1), we compute the trace of the operator R(f) as

trR(f) = �
⇡∈ĜN�

(⇡)tr⇡(f). (3)

On the other hand, we can show, that the operator is an integral operator,

with integral kernel

k
f

(x, y) =�
�∈� f(x−1�y).

The trace of such an operator can be computed by integrating the kernel along

the diagonal

trR(f) = �
G

�
�∈� f(x−1�x)dx. (4)

Instead of summing over the whole group �, we can sum over the conjugacy

classes [�] of the group �, which of course needs to be compensated for, such

that we obtain

�
G

�
�∈� f(x−1�x)dx = �G�[�] ��∈���� f((�x)

−1��x)dx,
where �

�

is the centralizer of � in �.

After some further, rather straightforward transformations, it turns out, that

trR(f) =�[�] vol(��

�G
�

)�
G��G f(x−1�x)dx, (5)

where G
�

,�
�

is the centralizer of � in G and �, respectively. Thus, by equating

(3) and (5) we obtain the celebrated Selberg trace formula

�
⇡∈ĜN�

(⇡)tr⇡(f) =�[�] vol(��

�G
�

)�
G��G f(x−1�x)dx. (6)

We can generalize the situation as follows. Instead of considering the right

regular representation on L2(��G), we additionally twist with a finite dimen-

sional complex representation � ∶ � → V . More precisely, we regard functions

f ∶ G→ V , which are �-equivariant with respect to �:

f(�g) = �(�)f(g), (7)
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for all g ∈ G and every � ∈ �. By introducing an appropriate hermitian form on

this function space, we obtain a Hilbert space L2(��G,�) in the usual manner:

We consider measurable functions with property (7), which have finite norm

and we take the quotient with respect to almost everywhere equality. On

L2(��G,�) we can define the right regular representation as before, which

we will again denote by R. Since the representation � is allowed to be any

complex finite dimensional representation, it is in general not true, that R

is unitary. Hence we have to introduce a di↵erent class of representations,

which is suitable in our context and we will make further assumptions on the

group G. We let G be a semisimple Lie group with finite center and maximal

compact subgroup K. Instead of unitary representations, we will work with

admissible representations. These are Hilbert space representations ⇢, such

that the restriction of ⇢ to the maximal compact subgroup K is unitary, and

each K-isotype is finite dimensional. But even now, R does in general not

decompose directly as in (1).

The main result we will prove in this context, is Theorem 9.20. It assures the

existence of an increasing and exhaustive filtration of subspaces for the right

regular representation R on L2(��G,�),

0 = V
0

⊂ V
1

⊂ ⋅ ⋅ ⋅ ⊂
∞
�
i=0Vi

= L2(��G,�),

and the induced representations on the quotients V
i

�V
i−1 are admissible and

irreducible. Furthermore it is true, that the graduated G-module

∞
�
i=0 Vi+1�Vi

, (8)

is independent of the chosen filtration. Accordingly, we can associate to each

admissible irreducible representation ⇡ of G a natural number N
�,�

(⇡), giving
the multiplicity of ⇡ in the graduated G-module (8), such that we can write

∞
�
i=0 Vi+1�Vi

= �
⇡∈Ĝadm

N
�,�

(⇡)⇡. (9)

As in (2), we can define for admissible ⇡ and f ∈ C
c

(G) the operator ⇡(f),
acting on the representation space of ⇡. The operator R(f) is again a trace

class operator, and according to our above considerations, the trace is given
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by

trR(f) = �
⇡∈Ĝadm

N
�,�

(⇡)tr⇡. (10)

On the other hand, R(f) is an integral operator, with integral kernel

k
f

(x, y) =�
�∈� f(x−1�y)�(�).

As in (4), by integrating along the diagonal, we obtain

trR(f) = �
G

�
�∈� f(x−1�x)tr�(�)dx.

We can reorder the above sum, according to the conjugacy classes [�] of � and

we will obtain

�[�] vol(��

�G
�

)�
G��G f(x−1�x)dx tr�(�). (11)

Since we computed trR(f) via spectral data in (10) and via geometric data

in (11) we get the trace formula

�
⇡∈Ĝadm

N
�,�

(⇡)tr⇡ =�[�] vol(��

�G
�

)�
G��G f(x−1�x)dx tr�(�).

For � = 1 the trivial representation, we again get the Selberg trace formula

from (6).

Although it seems natural, to present the compact case before the non com-

pact case, we decided to push it to the very end. The methods are mainly

representation theoretic and the requirements on the group G are much less

restrictive, than in the non compact case. Because of this higher degree of

abstraction, we felt it is appropriate to present the compact case in the final

chapter. At the very end we will present a trace formula for compact quotients

��G, where now, G is a totally disconnected group.
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The non compact case

Up to now, we only discussed the case, that the quotient ��G is compact. We

can also consider the case of a quotient ��G with finite area, but not necessarily

compact. We do not know how to deal with this situation in full generality.

There are several obstacles, the main problem being the continuous spectrum.

If � is unitary, it is known, that L2(��G,�) decomposes into a discrete part,

and a continuous part:

L2(��G,�) = L2

disc

(��G,�)⊕L2

cont

(��G,�). (12)

The discrete part L2

disc

(��G,�) is a direct sum of unitary irreducible represen-

tations, while the continuous part L2

cont

(��G,�) cannot be described as a direct

sum anymore, but as a direct integral of unitary irreducible representations.

The main tool, to derive such a decomposition is the existence of the Eisen-

stein series. In our situation, where we additionally twist with a non-unitary �

we do not know how to replace these Eisenstein series. Therefore, we restrict

ourselves to G = PSL(2,R) and we take the quotient G�K with respect to the

maximal compact subgroup K = PSO(2,R). In other words, we only consider

the K-invariants L2(��G,�)K in the representation space L2(��G,�). The

upper half plane H = {z ∈ C ∶ Im(z) > 0} is a homogeneous space for G, i.e.

G acts (by Moebius transformations) transitively on H. The fix group of i is

exactly PSO(2,R), and thus we find

G�K ≅ H.

The double quotient ��G�K ≅ ��H is a non compact hyperbolic surface. An

important datum of the surface ��H is the number of cusps. Geometrically,

this gives the number of cylindrical ends of the surface. To each cusp a, we

can associate its fix group �a. The only restriction we have to put on the

representation �, is unitarity at cusps. This means, that �(�) is required to be

unitary for each � ∈ �a. These assumptions allow us, to establish the existence

of the appropriate Eisenstein series. For simplicity, assume that we have a

cusp at infinity. The prototype for a classical Eisenstein series is given by

E(z, s) = �
�∞�� Im(�z)

s, (13)
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where z ∈ H and s ∈ C. This series converges absolutely for Re(s) > 1 and

can be meromorphically continued to the complex plane. For our scenario, it

seems very plausible to mimic the definition in (13) with an additional twist

by �:

E(z, s,�) = �
�∞�� Im(�z)

s�(�)−1. (14)

In the above definition, for the sake of simplicity, we implicitly assumed that

� is trivial on cusps, i.e. �(�) = Id for all � ∈ �a, such that the summand is

invariant under �∞ and the above series (14) is well-defined. Looking at the

definition (13), it is easy to formally compute the �-equivariance of E(z, s,�):

E(�z, s,�) = �(�)E(z, s,�).

Having found a reasonable candidate, it is by no means clear that (14) con-

verges anywhere. This is the main reason, why we restricted ourselves to

PSL(2,R)�PSO(2,R) ≅ H,

because at this point we use very geometric considerations to prove estimates

for the representation � (Proposition 2.10), which enable us to show conver-

gence for (14) for Re(s) large enough. This will help us, to understand the

spectral decomposition of the Hilbert space L2(��H,�) with respect to the

hyperbolic laplacian. It turns out, that again we have a decomposition into a

discrete and a continuous part

L2(��H,�) = L2

disc

(��H,�)⊕L2

cont

(��H,�),

the main di↵erence being, that L2

disc

(��H,�) is spanned by generalized eigen-

functions of the hyperbolic Laplacian� (meaning (�−�)Nf = 0, for some � ∈ C
and some su�ciently large N). In contrast, in the unitary case, L2

disc

(��H,�)
is spanned by proper eigenfuctions of the Laplacian. Having understood the

spectral decomposition of L2(��H,�), we can deduce a trace formula in The-

orem 8.1.
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Applications

Our results can be used to refine the prime geodesic theorem. We would like

to sketch the idea. The prime geodesic theorem for a hyperbolic surface ��H is

analogous to the classical prime number theorem. A prime geodesic is a closed

curve, which is a geodesic and traces out its image exactly once. We let ⇡(x)
be the counting function for prime geodesics of length less, or equal to x. A

hyperbolic conjugacy class [P ] is said to be primitive, if P cannot be written

as Qj for some j > 1. There is a one-to-one correspondence between primitive

hyperbolic conjugacy classes and prime geodesics of ��H. We define the norm

NP as the logarithm of the length of the geodesic, which is associated to the

class [P ]. Introducing the Selberg zeta function as the infinite product,

Z
�

(s) =�[P ]
∞
�
k=0(1 −NP −s−k),

where [P ] runs through all primitive hyperbolic conjugacy classes, one can

show with the help of the Selberg trace formula, that Z
�

(s) converges ab-

solutely for Re(s) > 1 and extends to a meromorphic function on the whole

complex plane. This functions satisfies a weak form of the Riemann hypoth-

esis, in the sense that all its non trivial zeros lie on Re(s) = 1�2, with finitely

many exceptional zeros, which all lie in [0,1]. These zeros are linked to the

unitary representations ⇡, that are subrepresentations of the right regular rep-

resentation R of L2(��G) and have a K-fixed vector. Furthermore, Z
�

(s) has
a simple zero in 1, which is linked to the trivial representation. This allows

one to use a tauberian theorem and one can prove the asymptotic formula

⇡(x) ∼ x� log(x),

in complete analogy to the prime number theorem. Thus the number of prime

geodesics, with length smaller than x is asymptotically equivalent to x� log(x).

If we have a representation � ∶ � → GL(V ), which is unitary at cusps, we can

similarly define a zeta function

Z
�,�

(s) =�[P ]
∞
�
k=0(1 −NP −s−k det�(P )),
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and show with the help of the trace formula, that this defines a meromorphic

function on the complex plane. Now, we would like to explain how this zeta

function can be made useful. It is a classical result of Fricke and Klein [FK65],

that a Fuchsian group � ⊂ PSL(2,R) is generated by elements

A
1

, . . . ,A
g

,B
1

, . . . ,B
g

,E
1

, . . . ,E
l

, P
1

, . . . , P
h

,

satisfying the only relations

[A
1

,B
1

]�[A
g

,B
g

]E
1

�E
l

P
1

�P
h

= 1 (15)

and

E
mj

j

= 1, (16)

where the A
i

,B
i

are hyperbolic, the E
i

elliptic and the P
i

parabolic elements.

Furthermore, [A
i

,B
i

] is the commutator of A
i

and B
i

and g denotes the genus

of the surface ��H and h the number of cusps. We can now easily construct

one dimensional representations: Assigning to the hyperbolic generators A
i

,B
i

arbitrary non zero complex numbers, and 1 to the other generators, is seen to

define a representation, from the relations (15) and (16). Thus it is possible

to put arbitrary weights on the hyperbolic elements A
i

,B
i

, and this will define

a one dimensional � representation, unitary at cusps. Now, we form the ac-

cording zeta function Z
�,�

. Applying a tauberian theorem will give us a prime

geodesic theorem.
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1 Preliminaries

In this chapter we will recall some definitions and important results, which

we will need throughout the rest of this work. In section 1.1 we start by

introducing analysis on the upper half-plane H, which will furnish the objects

we will work with: We let discrete subgroups � ⊂ PSL(2,R) act on H via

Moebius-transformations. Taking the quotient ��H with respect to this action,

yields a hyperbolic surface. A very important notion, while working with a

quotient of the form ��H is that of a fundamental domain, which will be

discussed in the consecutive section 1.2.

The group � will, in this work, also come with a finite-dimensional complex

representation � ∶ � → GL(V ). We will be interested in functions f ∶ H → V ,

which are �-equivariant with respect to the representation �, more precisely

f(�z) = �(�)f(z) for all � ∈ �, z ∈ H.

These functions can also be understood as sections of a complex vector bundle

E over ��H. By introducing a suitable norm on this function space, we can

define a Hilbert-space L2(��H,�), which will be fundamental in our study.

The hyperbolic Laplacian furnishes an unbounded operator on L2(��H,�) and
one of our goals will be to understand its spectral properties. Details will be

explained in section 1.3.

1.1 The upper half plane

We write e(z) = e2⇡iz for the exponential. Let H = {z = x+iy ∈ C ∶ y > 0} be the
upper half-plane. The manifold H is equipped with the Riemannian metric

ds2 = (dx
2 + dy2)
y2

, (17)

which turns H into a Riemannian manifold. The Laplacian corresponding to

this metric is given by

� = y2 � @2

(@x)2 +
@2

(@y)2�
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and is usually called the hyperbolic Laplacian. The Riemannian measure de-

rived from (17) is given by

dµ(z) = y−2 dxdy,
where dxdy is the Lebesgue measure. The distance function on H is given

explicitly by

⇢(z,w) = log �z −w� + �z −w��z −w� − �z −w� . (18)

For z ∈ H, r > 0 we let

B
r

(z) = {w ∈ H ∶ ⇢(w, z) < r}

the hyperbolic ball of radius r with center z. We will write Be

r

(z) for the

euclidian ball of radius r of center z to distinguish it from the hyperbolic ball.

Instead of working with the distance function ⇢ we consider the function

u(z,w) = �z −w�
2

Im z Imw
(19)

which satisfies

cosh⇢(z,w) = 1 + 1

2
u(z,w). (20)

We let

PSL(2,R) = SL(2,R)� ± 1.

By abuse of notation, we will write frequently drop the ± and just write

a b

c d

for elements of �. The group PSL(2,R) acts on the upper half plane H via

fractional linear transformations:

�z = az + b
cz + d, � = ±

�
�
a b

c d

�
�
.

In the same manner PSL(2,R) acts on R∪{∞}. Let � ⊂ PSL(2,R) be a lattice,
i.e. � is a discrete subgroup, such that the quotient ��H has finite measure.
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The action of � on H is properly discontinuous, meaning that for each compact

subset K ⊂ H there exist only finitely many � ∈ � such that

�K ∩K ≠ �.

The measure dµ induces a measure on the quotient space ��H which we denote

for simplicity again by dµ. There are two cases which we will distinguish.

The compact case: The first, and more simple one, is the case that the

quotient space ��H is compact, or equivalently, that � has no parabolic

elements (see [Kat92, Corollary 4.2.7]).

The non compact case: The second case is the quotient ��H being non

compact. A cusp for the group � is an element of R ∪ {∞} which is

stabilized by some non-trivial element of �. The cusps will be denoted

by german letters a,b, . . . . The stabilizer group

�a = {� ∈ � ∶ �a = a}

for the cusp a can be shown to be isomorphic to Z, so we can choose a

generating element �a for �a. For each cusp a there exists an element

�a ∈ PSL(2,R) which is unique up to a translation from the right by

upper triangular matrices with ones on the diagonal in PSL(2,R), with
the property that

�a∞ = a, �−1a �a�a = ��
1 1

0 1

�
�
.

�a is called the scaling matrix for the cusp a.

1.2 Fundamental domains

We say that two points z,w ∈ H ∪ R̂, where R̂ = R ∪ {∞}, are equivalent

if w ∈ �z. We will also write w ≡ z (mod �). A domain F ⊂ H is called

fundamental domain for �, if

1. distinct points in F are not equivalent,
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2. any orbit �z has non-trivial intersection with F , by which we mean the

closure of F in the H-topology,

3. the boundary of F has measure zero: µ(@F ) = 0.

We can use the following construction to obtain a fundamental domain: Take

any z ∈ H fixed only by the trivial element of �. Then the set

D(z) = {w ∈ H ∶ ⇢(z,w) < ⇢(�z,w) for all � ∈ �,� ≠ e} (21)

can be shown to be a fundamental domain for � (see [Bea95, p. 226 ↵.]). It

is called Dirichlet domain and has only finitely many faces. We would like to

consider cuspidal parts and a compact subset of ��H seperately to simplify

work. It is useful to introduce the invariant height:

y
�

(z) =max
a

max
�∈� {Im�−1a �z}.

We say z ∈ H approaches the cusp a if Im(�−1a z) → ∞. Assuming that z ap-

proaches the cusp b we obtain y
�

(�az) = Im(�−1b z), for Im(�−1b z) large enough.
For Y > 0, we introduce the strip

P (Y ) = {z = x + iy ∶ 0 < x < 1, y ≥ Y }.

If a is a cuspidal vertex of the fundamental domain F , then for large enough

Y this vertical strip is mapped via the scaling matrix �a into F with image

Fa(Y ) = �aP (Y ).

For di↵erent cusps these cuspidal zones are pairwise disjoint for Y large enough

and we set

F (Y ) = F � ��
a
Fa(Y )� .

F (Y ) is relatively compact and we have divided the fundamental domain F

into the central part F (Y ) and finitely many cuspidal zones Fa(Y )

F = F (Y ) ∪�
a
Fa(Y ).



1.3 Representations 13

a b

F (Y )

Fa(Y ) Fb(Y )

F∞(Y )

1.3 Representations

Let (V, �⋅, ⋅�) be a finite dimensional unitary vector space. The vector space of

endomorphisms of V , End(V ) will be equipped with the Frobenius norm � ⋅�
F

:

�S�2
F

= tr(SS∗),
where S∗ is the adjoint operator to S. We omit the subscript F and just write

�S�, when it is clear that S ∈ End(V ). It is an exercise to prove, that

1. � ⋅ �
F

is submultiplicative:

�ST � ≤ �S��T � for every S,T ∈ End(V ),

2. for arbitrary S ∈ End(V ) and U unitary

�US� = �SU� = �S�.

By � we will always denote a representation

� ∶ �→ GL(V ).

In the case that � has parabolic elements we make the additional assump-

tion that � is unitary at cusps meaning that for every cusp a the auto-

morphism �(�a) is unitary. When talking about �(�a) we will consider the
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orthogonal projection Pa onto the eigenspace for the eigenvalue 1 of �(�a),
denoted by Eig(�(�a),1). We will say that � is singular at the cusp a if

Eig(�(�a),1) ≠ {0}. In case Eig(�(�a),1) = {0} for every cusp a we will say

that � is non singular .

We would like to define a Hilbert space of square integrable functions. Our

definition will depend on the chosen fundamental domain F . We consider the

set of all measurable functions f ∶ H→ V with the property

f(�z) = �(�)f(z), almost everywhere in z ∈ H for all � ∈ �.

On this set we install an inner product via

(f, g) = �
F

�f(z), g(z)�dµ(z), (22)

and set

L2(F,�) = �f ∶ �f�2 = �
F

�f(z), f(z)�dµ(z) <∞��∼,

where the equivalence relation ∼ is given by f ∼ g if, and only if, f − g = 0

almost everywhere.

Fortunately, this definition depends only mildly on the chosen fundamental

domain F as we will show now.

Definition 1.1. We install an equivalence relation on the set of all fundamen-

tal domains F for the group �. We say that two fundamental domains F
1

, F
2

are equivalent, if F
1

can be covered by finitely many �-translates of F
2

and

vice versa.

Proposition 1.2. The identity map provides a topological isomorphism

L2(F
1

,�)→ L2(F
2

,�),

if F
1

and F
2

are equivalent fundamental domains.

Proof. Let �
1

, . . . ,�
l

be finitely many elements of �, such that

F
2

⊂
l

�
n=1�nF1

.
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Then we get an estimate of the integral over F
2

:

�
F2

�f(z)�dµ(z) ≤
l

�
n=1 ��(�n)��F1

�f(z)�dµ(z).

Bounding the finitely many �(�
n

) by a constant we obtain

�
F2

�f(z)�dµ(z) ≤ c�
F1

�f(z)�dµ(z)

with some constant c independent of f . Hence the identity map L2(F
1

,�) →
L2(F

2

,�) is continuous.

Definition 1.3. A fundamental domain F is called geometrically finite, if F

is a polygon (connected and convex) with a finite number of faces.

Proposition 1.4. Two geometrically finite fundamental domains F
1

, F
2

are

equivalent. In particular, in view of Proposition 1.2 the L2-spaces L2(F
1

,�)
and L2(F

2

,�) are topologically isomorphic.

Proof. We will introduce the Borel-Serre compactification H
�

: As a set we

take

H
�

= H ∪�
a
@H � {a}.

Hence, for each cusp a we add a copy of @H ≅ S1 and delete the cusp a. For

@H � {a} we will also write Ba. For points of Ba we will write ba(x), where
x ∈ @H�{a}, to distinguish the points from the di↵erent copies of R. To install

a topology on H
�

, it is su�cient to give for each point x ∈ H
�

a neighbourhood

basis. We distinguish two cases

1. Let x ∈ H. In this case we choose the common neighbourhood basis of

open hyperbolic balls B
r

(x) ⊂ H.

2. Let x ∈ @H � {a}. We switch to the disc model of hyperbolic space to

give a neighbourhood basis of x. On the disk, d(x, y) shall denote the

euclidian distance of x and y. Then a neighbourhood basis will be given
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by U(x) = {U
I,"

}, where " > 0 and I ⊂ Ba is open:

U
I,"

={y ∈ I ∶ I ⊂ Ba, x ∈ I} ∪ {z ∈ Be

1

(0) ∶ d(z,a) ≤ "
and z is an element of a geodesic with endpoints in I and a}

=∶I ∪U
"

I

U
"

a

"

Now we will explain how � acts on H
�

. For points z ∈ H the operation is

the given one by fractional linear transformations. For a point ba(x) we set

� ⋅ ba(x) = b�a(�x). We can now describe a fundamental domain for the action

of � on H
�

. Let F a geometrically finite fundamental domain for the action

of � on H. It has finitely many inequivalent cusps. For each cusp a of F we

choose aa, ba ∈ Ba ≅ R such that the unique geodesics ↵a,�a which join a to aa

respectively ba contain the two faces of F which meet at a.

I

a

aa

ba

Then F
�

∶= F ∪ �a(aa, ba) can be shown to be a fundamental domain of the
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action of � on H
�

. The closure of F
�

in H
�

is given by

F
�

H� = FH ∪�
a
[aa, ba].

From the definition of the topology on H
�

, it can be seen from the fact that

F has only finitely many sides, that the set F
�

H�
is compact.

Now, take two geometrically finite fundamental domains F,F ′ ⊂ H for the

action of � on H and consider the fundamental domains F
�

, F ′
�

for the action

of � on H
�

. Since both are relatively compact we can cover F
�

by finitely many

translates of F ′
�

and vice versa. But then we can cover F by finitely many

translates of F ′ and vice versa. To conclude the proof, apply Proposition 1.2.

Our canonical choice for a fundamental domain will be a geometrically finite

one. So let’s fix once and for all a geometrically finite fundamental domain

F (for example a Dirichlet domain). We will from now on write L2(��H,�)
instead of L2(F,�) since by choosing another geomtrically finite fundamental

domain, we will obtain topologically the same Hilbert space.

We can yet introduce an L2-space in a di↵erent manner, such that we get again

a topological isomorphism between the L2-space in the former definition. To

this end consider the action of � on H × V via

�(z, v) = (�z,�(�)v).

The quotient space

H ×
�

V ∶= ��(H × V )

yields a vector bundle over ��H with each fibre isomorphic to V . We choose

a smooth Hermitian fibre metric �⋅, ⋅�
s

in such a manner that it coincides near

the cusps with the given inner product on V . This means that for z ∈ H
whose invariant height y

�

(z) is larger than some constant, say y
�

(z) > c, the
inner product on the fibre above z coincides with the inner product on the

given representation space V . It is possible to find such a smooth Hermitian

fibre metric, since the representation � is unitary at cusps. Thus only for a

compact subset of ��H the fibre metric does not come from the representation
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space (V, �⋅, ⋅�), while in cuspidal areas it coincides with the metric induced

by (V, �⋅, ⋅�). Now we define the Hilbert space L2(��H,�)
s

as the set of all

measureable sections

f ∶ ��H→ H ×
�

V

such that

�
��H �f(z), f(z)�s,z dµ(z) <∞,

and the inner product for f, g ∈ L2(��H,�) is given by

�
��H �f(z), g(z)�s,z dµ(z).

A section f ∶ ��H → H ×
�

V can also be considered as a function f ∶ H → V

such that f(�z) = �(�)f(z) for every z ∈ H and every � ∈ �. Thus we can

compare the integral

�
��H �f(z), f(z)�s,z dµ(z) = �F �f(z), f(z)�s,z dµ(z)

with the integral we defined earlier (22)

�
F

�f(z), f(z)� dµ(z).

Proposition 1.5. The identity map yields a bicontinuous map

L2(��H,�)→ L2(��H,�)
s

.

Proof. We pull back the smooth fibre metric �⋅, ⋅�
s

onto the constant bundle

H × V . This pull back metric we denote by �⋅, ⋅�. Since any two norms on a

finite dimensional vector space are equivalent, and since �⋅, ⋅� and �⋅, ⋅� coincide
on cuspidal areas Fa(Y ), for Y large enough, there exist constants m,M > 0,
such that

m�(z, v), (z, v)� ≤ �v, v� =M�(z, v), (z, v)�,

for all (z, v) ∈ H × V , since F(Y) is relatively compact. Hence we get

m�
F

�f(z), f(z)�dµ(z) ≤ �
F

�f(z), f(z)�dµ(z) ≤M �
F

�f(z), f(z)�dµ(z).
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This yields the bicontinuity of the identity map

L2(��H,�)→ L2(��H,�)
s

.

For this given smooth fibre metric there exists a corresponding Laplacian,

which we denote by �
s

to distinguish it from the hyperbolic Laplacian

� = y2 � @
2

@2x
+ @2

@2y
� .

Let (⋅, ⋅)
s

be the inner product in L2(��H,�)
s

. With the help of �
s

we can

introduce the Sobolev spaces H i(��H,�)
s

where i = 1,2:

H1(��H,�)
s

= {f ∈ L2(��H,�)
s

∶ (f, f)
s

+ (�
s

f, f)
s

<∞},
H2(��H,�)

s

= {f ∈ L2(��H,�)
s

∶ (f, f)
s

+ (�
s

f,�
s

f)
s

<∞},

where of course �
s

f is understood in the distributional sense.

Equivalently, H1 respectively H2 can be regarded as the set of functions in

L2(��H,�)
s

with the extra property that their distributional derivates up to

first, respectively second order be again square integrable.

2 Estimating Representations

In order to understand the spectral decomposition of L2(��H,�) it is essential
to find an equivalent for the classical Eisenstein series. Firstly, let us recall

the definition of the classical Eisenstein series E(z, s). When a is a cusp with

corresponding scaling matrix �a, then

Ea(z, s) = �
�∈�a�� Im(�

−1
a �z)s,

for z ∈ H and s ∈ C. This series converges locally uniformly absolutely for

Re(s) > 1. We will later see, that it is most reasonable to define the Eisenstein

series in our situation as

Ea(z, s,�) = �
�∈�a�� Im(�

−1
a �z)s�(�−1)Pa,
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where Pa is the orthogonal projection onto Eig(�(�a),1). Since in this defini-

tion the representation � is involved, we need to study the growth of � to show

convergence of Ea(z, s,�). We will prove, that there exists an ↵ > 0, such that

��(�)� ≤ O (Im(�z)↵), where the norm is the Frobenius norm � ⋅� = � ⋅�
F

. This

will give the convergence of the Eisenstein series, since we can now estimate

them against the classical Eisenstein series.

�
�∈�a�� �Im(�

−1
a �z)s�(�−1)Pa� ≤ �

�∈�a�� Im(�
−1
a �z)s+↵

Thus we get convergence of Ea(z, s,�) for Re(s) > 1 + ↵.

Developing the trace formula we will also encounter the invariant kernel

K(z,w,�) =�
�∈�k(z,�w)�(�)

where k is a function on H×H, which depends only on the hyperbolic distance

of its two arguments. To show convergence and continuity of the invariant

kernel K an estimate for � will also be required.

The idea to show an estimate for � is as follows: Let us assume, that � has

parabolic elements. Since the representation � ∶ � → V is unitary at cusps we

have

��(�a�)� = ��(�)� (23)

for every cusp a. This behaviour is very similar to the imaginary part of an

element z ∈ H. If we take an element of � ∈ SL(2,R), which fixes the cusp at

infinity, and hence when � is of the form

� = ±
�
�
1 t

0 1

�
�

with t ∈ R, we have

Im(�z) = Im(z).

We will show, that a similar result is true for �(�) namely

��(�)� = O(Im(�−1a �z)), (24)
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since we have similarly as in (23) Im(�−1a �a�z) = Im(�−1a �z). Recall that the

fundamental domain F is of the form F = D(z
0

) where z
0

∈ H is not an

elliptic fixed point, see (21). The fundamental domain F has a finite number

of neighbouring fundamental domains of the form �
i

F,�
i

∈ �, i = 1, . . . , l. The

finite number of elements �
1

, . . . ,�
l

generate the group �.

We will start, proving some technical results (Propositions 2.2, 2.3, 2.5), which

will culminate in Theorem 2.6. Basically, this theorem gives an estimate of the

number of generators we will need to express an element � ∈ � as a product of

these. These results go back to Eichler and are part of his work in [Eic65].

Definition 2.1 (Normal representation of elements in �). A representation

� = ⌘
1

⌘
2

�⌘
r

of � ∈ � with ⌘
i

∈ {�
j

}l
j=1 is called normal if the ⌘

i

are chosen in

the following manner: Besides z
0

we fix another point z
1

∈ F di↵erent from

z
0

. We assume ⌘
1

, . . . , ⌘
j−1 to be already found. Now join ⌘

1

�⌘
j−1z0 with �z

1

by the unique geodesic which contains both of these elements. Following this

geodesic from the point ⌘
1

�⌘
j−1z0 in the direction of �z

1

, after leaving the

fundamental domain ⌘
1

�⌘
j−1F the geodesic enters a fundamental domain of

the form ⌘
1

�⌘
j−1�kF, k ∈ {1, . . . , l}.

In the following we will set

⇣
j

∶= ⌘
1

�⌘
j

z
0

.

Let g(⇣
i−1,�z1) be the unique geodesic which joins ⇣

i−1 and �z
1

. Let ⌘ ∈
g(⇣

i−1,�z1) be the unique point inbetween ⇣i−1 and �z1 such that ⌘ ∈ @⌘
1

�⌘
i−1F .

Then by definition of the fundamental domain F we have

⇢(⇣
j−1,�z0) = ⇢(⇣j,�z0),

and hence

⇢(⇣
j

,�z
0

) ≤ ⇢(⇣
j

, ⌘) + ⇢(⌘,�z
0

)
= ⇢(⇣

j−1, ⌘) + ⇢(⌘,�z0)
= ⇢(⇣

j−1,�z0).
Furthermore ⇣

j

is di↵erent from z
0

, ⇣
1

, . . . , ⇣
j−1. Then, because there are only

finitely many translates of z
0

with bounded distance from �z
0

there exists j
0

with ⇣
j0 ∈ �F and the processus terminates at j

0

.
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z
0

z
1

�z
1

F ⌘
1

F

⇣
1

The reason why we have chosen besides z
0

a di↵erent point z
1

is that under

these circumstances the following proposition holds:

Proposition 2.2. There exists a positive constant c
1

independent of � and z
1

,

such that

⇢(⇣
i

,�z
1

) ≤ ⇢(⇣
i−1,�z1) − c1

if ⌘
i

is not parabolic.

Proof. We recall that the fundamental domain F is of the form

F = {z ∈ H ∶ ⇢(z, z
0

) < ⇢(z,�z
0

) for all � ∈ �},

where z
0

is no fix point. Let g(⇣
i−1,�z1) be the unique geodesic which joins

⇣
i−1 and �z

1

. Let ⌘ ∈ g(⇣
i−1,�z1) be the unique point inbetween ⇣

i−1 and �z
1

such that ⌘ ∈ @⌘
1

�⌘
i−1F . Finally choose µ ∈ g(⇣

i

,�z
1

) to be the unique point

≠ ⇣
i−1 such that

⇢(⌘, µ) = ⇢(⇣
i−1, ⌘). (25)

⇣
i−1

�z
1

µ

⇣
j

⌘



23

By the triangle inequality we get

⇢(⇣
i

,�z
1

) < ⇢(⇣
i

, µ) + ⇢(µ,�z
1

). (26)

The fact that ⇣
i

does not belong to the geodesic joining g(⇣
i−1,�z1) excludes

equality in (26). Because of inequality (26) and ⇢(µ,�z
1

) = ⇢(⇣
i−1,�z1) −

⇢(⇣
i−1, µ) we get

⇢(⇣
i

,�z
1

) − ⇢(⇣
i−1,�z1) < ⇢(⇣i, µ) − ⇢(⇣i−1, µ),

or equivalently

⇢(⇣
i−1, µ) − ⇢(⇣i, µ) < ⇢(⇣i−1,�z1) − ⇢(⇣i,�z1). (27)

The left hand side of (27) can be estimated from below by using (25) and the

triangle inequality

0 = ⇢(⇣
i−1, µ) − ⇢(⇣i, ⌘) − ⇢(⌘, µ) ≤ ⇢(⇣i−1, µ) − ⇢(⇣i, µ), (28)

since ⇢(⇣
i

, ⌘) = ⇢(⌘, µ) = 1�2⇢(⇣
i−1, µ). Thus we get by (27) and (28)

⇢(⇣
i−1, µ) − ⇢(⇣i, µ) = 2⇢(⌘, µ) − ⇢(⇣i, µ) ≥ c1, (29)

with some positive constant c
1

> 0 depending on �z
1

. The left hand side

of the equality in (29) can also be regarded as a continuous function of ⌘.

But if ⌘
i

is not parabolic, then ⌘ varies only on the compact boundary where

the two fundamental domains ⌘
1

�⌘
i−1F and ⌘

1

�⌘
i

F meet. Thus we see that

the constant c
1

can be chosen independent of �z
1

. Hence the assertion is

proved.

Now we will go one step further and prove the following proposition:

Proposition 2.3. There exists a positive constant c
2

independent of � and z
1

,

such that

⇢(⇣
i+1,�z1) ≤ ⇢(⇣i−1,�z1) − c2 (30)

as long as ⌘
i

, ⌘
i+1 are not parabolic elements belonging to the same conjugacy

class.
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Proof. In the case that either ⌘
i

or ⌘
i+1 is not parabolic, (30) is handled by

using the previous Proposition 2.2.

Now assume ⌘
i

and ⌘
i+1 are two parabolic elements belonging to distinct

parabolic conjugacy classes. They fix two distinct cusps a,b of F respectively.

a can also be described as the cusp which F and ⌘
i

F have in commen. Similar

for b. If we vary �z
1

then ⌘ varies on the boundary which F and ⌘
i

F share.

Analogously as ⌘ and µ are defined for ⇣
i−1 in the proof of Proposition 2.2, one

defines ⌘′ and µ′ for ⇣
i

.

Now let a positive constant C > 0 be given. First we consider the case that

⇢(⇣
i−1, ⌘) ≤ C or ,⇢(⇣

i

, ⌘′) ≤ C.
This means that either ⌘ or ⌘′ are restricted to a compact subset and the same

argument as in the proof of Proposition 2.2 applies. So only the case

⇢(⇣
i−1, ⌘),⇢(⇣i, ⌘′) ≥ C

remains. We use the inequality

⇢(⇣
i−1, ⌘) < ⇢(⇣i−1,�z1) (31)

which is clear by the definition of ⌘. The same of course holds for ⇣
i

. We

will show that ⇢(⇣
i−1, ⌘) and ⇢(⇣i, ⌘′) can not both at the same time tend to

infinity, which means that either ⌘ or ⌘′ is restricted to a compact subset and

the argument from Proposition 2.2 applies. If ⇢(⇣
i−1, ⌘) → ∞, then by (31)

also ⇢(⇣
i−1,�z1) → ∞. Same for ⇣

i−1 replaced by ⇣
i

. But this means that �z
1

moves into the cuspidal area of a. Assuming that ⇢(⇣
i

, ⌘) →∞ too we get by

the same reasoning that �z
1

moves into the cuspidal area of b. But since a ≠ b,
we get a contradiction. This finishes the proof.

Now we want to give an upper bound for the number of factors l in the normal

representation of �. More precisely we regroup consecutive elements belonging

to the same parabolic class and count them only once. This is made precise

as follows:

Definition 2.4. Let � = ⌘
1

�⌘
r

be given in its normal representation. If ⌘
1

is

not parabolic set ⌫
1

= ⌘
1

. If ⌘
1

is parabolic then set ⌫
1

= ⌘
1

�⌘
r1 where r

1

is
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the biggest number, such that ⌘
1

, ⌘
2

, . . . , ⌘
r1 all belong to the same parabolic

conjugacy class. Continuing in the same way for ⌫
2

, ⌫
3

, . . . we obtain a repre-

sentation

� = ⌫
1

�⌫
k

. (32)

The occuring ⌫
i

are called the tranches of �. We furthermore define for � ∈ �

µ(�) ∶= a2 + b2 + c2 + d2, � =
�
�
a b

c d

�
�
.

µ(�) is intimately connected to the hyperbolic distance ⇢(i,�i) as the following
proposition shows.

Proposition 2.5. We have

1

2
µ(�) ≤ exp(⇢(i,�i)) ≤ µ(�).

By the singular value decomposition, one can find for each � ∈ SL(2,R) two
ortogonal matrices A

1

,A
2

such that A
1

�A
2

is diagonal. Since neither µ(�) nor
⇢(i,�i) change under multiplication of � by an orthogonal matrix from the

left, or the right, we can hence assume � to be diagonal

� =
�
�
a

a−1
�
�
.

Then ⇢(i,�i) = � log a2�. Now

1

2
(a2 + a−2) ≤max(a2, a−2) ≤ a2 + a−2

and the proof is finished.

Theorem 2.6. Let � ∈ � an element and

� = ⌘
1

. . . ⌘
r

(33)

its normal representation. The number of tranches k in the representation (32)

can be estimated by

k ≤ O(log(µ(�)) + 1) (34)
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where the implied constant is independent of �.

Proof. Let � = ⌫
1

�⌫
k

be the representation of � in tranches. Using Proposition

2.3 we obtain

⇢(z
0

,�z
1

) ≥ ⇢(⌫
2

⌫
1

z
0

,�z
1

) + c
2

≥ ⋅ ⋅ ⋅ ≥ c
2

k

2
+ ⇢(�z

0

,�z
1

) = ⇢(z
0

, z
1

).

The triangle inequality yields

⇢(z
0

,�z
1

) ≤ ⇢(z
0

, i) + ⇢(i,�i) + ⇢(�i,�z
1

),

and thus

k ≤ O(⇢(i,�i) + ⇢(i, z
0

) + ⇢(i, z
1

) − ⇢(z
0

, z
1

)).

Using Proposition 2.5 concludes the proof.

2.1 The general case

Now we can formulate a first result concerning the growth of representations

� ∶ � → V . This result is valid in the compact as well as in the non compact

case.

Proposition 2.7. Let � ∶ � → V be a finite dimensional representation (uni-

tary at cusps if � contains parabolic elements). Then there exists an ↵ > 0

such that for z,w ∈ H

��(�)� = O(1 + u(�z,w)↵), (35)

where the implied constant depends on z and w but is independent of �. Fur-

thermore the implied constant can be chosen independently for z and w in a

compact subset of H ×H.

Proof. Take � ∈ � and let � = ⌫
1

�⌫
k

be its representation in tranches. Note

that in the compact case it coincides with its normal representation, since there

are no parabolic elements. Then we estimate

��(�)� ≤
k

�
i=1��(⌫i)�.
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So if we bound the finitely many ��(�
i

)� (where �
1

, . . . ,�
l

is a generating set of

� as introduced in the definition 2.1) by a constant K we obtain ��(�)� ≤Kk.

Now by theorem 2.6 we have k ≤ C(log(µ(�))+1) with some positive constant

C > 0 and we thus obtain the estimate

��(�)� ≤KC logµ(�)+C ≤ µ(�)↵KC � µ(�)↵ (36)

where ↵ = C log(K). We further analyze µ(�). As in Proposition 2.5, we find

that there exists a constant c, which can be chosen independent of w in a

compact subset such that

µ(�) ≤ c exp(⇢(w,�w)). (37)

We continue by using the triangle inequality to compute

exp(⇢(w,�w)) ≤ exp(⇢(w,�z) + ⇢(�z,�w))
≤ exp(⇢(z,w)) exp(⇢(w,�z)).

(38)

Remember that the relation between the hyperbolic distance and u is given by

cosh⇢(z,w) = 1 + 1

2
u(z,w).

Of course we have exp �2 ≤ cosh and hence we get

µ(�) = O(1 + u(�z,w))

where the implied constant can be chosen independently on z and w varying

in a compact subset of H ×H. Combining this with (37) and (38) yields the
result.

2.2 The non compact case

After having shown a growth estimate for the case of general �, we now spe-

cialize to the case of � having parabolic elements. As said before, we wish to

deduce a bound of the form

��(�)� = O(Im(�z)↵) (39)
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for some ↵ > 0, as to be able to show convergence of the Eisenstein series,

which we will introduce in chapter 3.

In (36) we have shown, that we can estimate ��(�)� against the entries of �

namely

��(�)�� µ(�)↵.

Recall that µ(�) = a2 + b2 + c2 + d2. We want to make the estimate (39)

independent of the matrix entries of � in the first row. This will be achieved

by the following proposition.

Proposition 2.8. Let � have a cusp at ∞ of width one. For given

�
�
a b

m n

�
�
∈ �

there exists � ∈ �∞ such that

�
�
�
a b

m n

�
�
=
�
�
a′ b′
m n

�
�

and a′2 + b′2 �m2 + n2, the implied constant depending only on the group �.

Proof. Let ( a b

m n

) ∈ � be given. We can assume n > 0 and m ≠ 0, otherwise the

statement is clear. Then we can find q ∈ Z such that a = mq + l,0 ≤ l < �m�.
Then set � = � 1 −q

0 1

�. Clearly a′2 = l2 ≤m2. Furthermore b′ = b−nq = (ln−1)�m
by the condition an − bm = 1. Now

� ln − 1
m
�
2

≤ (l + 1)
2n2

m2

≤ (m + 1)
2

m2

n2 � n2

since �m� > c > 0 for some constant c depending only on the group �.

Remark 2.9. For a matrix ⌘ = ( a b

c d

) ∈ PSL(2,R) we already defined µ(⌘) =
a2 + b2 + c2 + d2. Now let � have a cusp at ∞ of width one. By the previous

proposition there exists a constant C > 0 such that for any � = ( ∗ ∗
c d

) ∈ � there

exists an element �′ ∈ � such that � and �′ di↵er only by multiplication by an

element in �∞ from the left and µ(�′) ≤ C(c2 + d2). This we will now use to

estimate �(�).
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Proposition 2.10. Let � have a cusp at ∞ of width one. Then there exists a

constant ↵ > 0 such that for � = ( ∗ ∗
c d

) ∈ � we can estimate the operator norm

by ��(�)�� (c2 + d2)↵. The implied constant depends on the representation �

only.

Proof. Since the representation is unitary at cusps we can assume by remark

2.9 that µ(�) ≤ C(c2 + d2) for some fixed constant C independent of �. Let

� = ⌫
1

�⌫
k

be its representation in tranches (see Definition 2.4). Then we

estimate

��(�)� ≤
k

�
i=1��(⌫i)�.

So if we bound the finitely many ��(�
i

)� (where �
1

, . . . ,�
l

is a generating set of

� as introduced in the Definition 2.1) by a constant K we obtain ��(�)� ≤Kk.

Now by Theorem 2.6 we have k ≤ C(log(µ(�))+1) with some positive constant

C > 0 and thus obtain the estimate

��(�)� ≤KC log(µ(�))+C ≤ µ(�)↵KC � (c2 + d2)↵

where ↵ = C log(K). By using Remark 2.9 this proves ��(�)�� (c2+d2)↵.

To make the above estimate useful to show the convergence of Eisenstein series,

we need to bound c2 + d2 by some term involving a power of Im(�z). This is

the content of the next proposition.

Proposition 2.11. For c, d ∈ R and z = x + iy ∈ C we have

� y2

1 + �z�2� (c
2 + d2) ≤ �cz + d�2.

In particular, combining this result with Proposition 2.10 yields

��(�)� ≤ O ��1 + �z�
2

y2
�
↵

�cz + d�2↵� , (40)

where the implied constant depends on the representation � only. Here, as

above, we write

� =
�
�
a b

c d

�
�
.
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Proof. To obtain the estimate, observe that �cz + d�2 ≥ y2c2 and �z�2�cz + d�2 =
�c�z�2 + dz�2 ≥ d2y2, so that �cz + d�2 ≥ y

2(c2+d2)
1+�z�2 .

3 Eisenstein series

3.1 Incomplete Eisenstein series

To obtain smooth functions f ∶ H→ V with f(�z) = �(�)f(z) for all � ∈ � and

all z ∈ H, the most natural procedure is to take a smooth compactly supported

function  on the positive real axis and average it over the group �:

f(z) =�
�∈� (Im(�z))�(�−1).

We formally compute that the above series has the invariance condition, but

nevertheless this näıve approach does not work, since convergence will fail at

the cusps. Hence, instead of summing over � it is more reasonable to sum over

the quotient �a��. But then we need a summand which is invariant under �a.

Thus we modify the summand to be

 (Im(�−1a z))�(�−1)Pa.

Definition 3.1. Let  ∈ C∞
c

(R+) be a smooth, compactly supported function

on the positive real axis. For a cusp a we define the incomplete Eisenstein

series to  as

Ea(z� ) = �
�∈�a�� (Im(�

−1
a �z))�(�−1)Pa.

For v ∈ V consider the function Ea( ⋅ � )v ∶ H → V . Since  has compact

support the function Ea( ⋅ � )v is bounded on the fundamental domain F , hence

an element of L2(��H,�).

We let Ea(��H,�) be the closure of the set of all incomplete Eisenstein series

Ea(z� )v in L2(��H,�), where  varies in C∞
c

(R+) and v ranges over all

elements of V . Then we set

E(��H,�) =�
a
Ea(��H,�).



3.2 Eisenstein series 31

Note that Ea(��H,�) = {0} if Eig(�(�a),1) = 0. More generally the size of

the eigenspaces Eig(�(�a),1) will determine the size of the continuous spec-

trum, as we will see later. Hence, there will be no continuous spectrum when

Eig(�(�a),1) = {0} for all cusps a.

3.2 Eisenstein series

Definition 3.2. We now come to a slightly di↵erent case, than in Definition

3.1. Instead of taking  ∈ C∞
c

(R+), we now choose  (z) = Im(z)s for some

s ∈ C. For the cusp a we then define the Eisenstein series

Ea(z, s,�) = �
�∈�a�� Im(�

−1
a �z)s�(�−1)Pa.

In comparison to the incomplete Eisenstein series, the functions Ea(z, s,�)v
where v ∈ V , will not be elements of L2(��H,�). But at first we shall show

that the series actually converges in some half plane Re(s) > �
0

.

Proposition 3.3. There exists �
0

> 0, such that Ea(z, s,�) converges locally

uniformely absolutely (l.u.a.) in the half plane Re(z) > �
0

for any cusp a. In

particular, Ea(z, s,�) represents a holomorphic function in s on the half plane

Re(s) > �
0

.

Proof. We use the inequality (40) which gives

��(�)� ≤ O �� 1 + ��
−1
a z�2

Im(�−1a z)2�
↵

�c�−1a z + d�2↵� ,

for some ↵ > 0 and the implied constant depends on � only. As always we

write

� =
�
�
a b

c d

�
�
.

Keeping in mind, that

Im(�z) = Imz

�cz + d�2
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we get

�Ea(z, s,�)� ≤ �
�∈�a���(Im(�

−1
a z))s−↵�(�−1)Pa�

� �1 + ��
−1
a z�2

Im(�−1a z) �
↵

�
�∈�a��(Im(�

−1
a z))s−↵.

It is well-known that the series

�
�∈�a�� Im(�

−1
a z)s

converges l.u.a. in the half-plane Re(s) > 1. Hence it follows, that Ea(z, s,�)
converges l.u.a. in the half-plane Re(s) > 1 + ↵. Now ↵ may vary if we choose

a di↵erent cusp b. But since there are only finitely many inequivalent cusps

we will find a uniform bound for ↵. Hence we also find �
0

such that Ea(z, s,�)
converges l.u.a. in Re(s) > �

0

for every cusp a.

3.3 Fourier expansion

To estimate the growth of Ea(z, s,�) when z approaches some cusp b we need

to study its Fourier expansion. We will study the more general case Ea(z� )
and later we will set  (z) = Im(z)s. To fix notation, we set

b(n) =
�
�
1 n

0 1

�
�
,

and we let B be the subgroup in PSL(2,R) generated by b(1). By definition

of the incomplete Eisenstein series we find

Ea(�b(z + 1)� ) = �(�b)Ea(�bz� ).

Thus we expect a Fourier expansion of the incomplete Eisenstein series. But

first we would like to introduce some necessary tools. We start with the K-

Besselfunction.

Definition 3.4. Let � ∈ C and consider the second-order di↵erential equation

F
′′(y) + (�y−2 − 1)F (y) = 0
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on R+. We have two lineary independent solutions F
1

, F
2

which solve this dif-

ferential equation, where F
1

decays exponentially and F
2

grows exponentially

if y →∞. We define the K-Besselfunction to be the function which satisfies

(2⇡−1y)1�2K
s−1�2(y) = F1

(y),

and s ∈ C is chosen such that s(1 − s) = �.

The second tool we need to introduce is the double coset decomposition of

�−1a ��b with respect to the group B. This is given as follows:

Theorem 3.5. Let a,b be cusps for �. We then have a disjoint union

�−1a ��b = �ab⌦∞ ∪�
c>0 �

dmodc

⌦
d�c,

where ⌦∞ = B!∞B, ⌦
d�c = B!d�cB with

!∞ = ( 1 ∗
1

) , !
d�c = ( ∗ ∗

c d

) ∈ �−1a ��b,

respectively.

Proof. For a proof we refer the reader to Theorem 2.7. in [Iwa02].

Now it is possible to deduce the Fourier expansion of the Eisenstein series. Let

⌘(�) ∶= �(�a��−1b ). Then we use the double coset decomposition to write

Ea(�bz� ) = �
�∈�a�� (�

−1
a ��bz)�(�)−1Pa = �

�∈�∞��−1a ��b

 (�z)⌘(�)−1Pa (41)

= �ab (y)Pa +�
c>0 �

d(mod c)�n∈Z (!cd

(z + n))�(�b)−n⌘(!cd

b(n))−1Pa.

(42)

�(�b) is a unitary automorphism, so if e(⌫
1

) = 1, . . . , e(⌫
j(b)) are the eigen-

values where ⌫
k

∈ [0,2⇡) and P
1

= Pb, . . . , P
j(b) the corresponding orthogonal

projections onto the eigenspaces, we have

�(�b) =
j(b)
�
k=1 e(⌫k)Pk

.
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Hence we continue to compute

= �ab (y)Pa +�
c>0 �

d(mod c)
j(b)
�
k=1 Pk

⌘(!
cd

)−1�
n∈Z e(−n⌫k) (!cd

(z + n))Pa.

We keep looking just at the summand for a fixed k

�
n∈Z e(−n⌫k) (!cd

(z + n))Pa,

and apply Poisson summation to obtain

�
n∈Z e(−n⌫k) (!cd

(z + n))Pa =�
n∈Z�

∞
−∞ e(−⌫

k

t) (!
cd

(z + t))e(−nt)Pa dt.

A small computation shows

!
cd

(z + t) = a�c − c−2(t + x + d�c + iy)−1,
such that by performing the change of variables t� t − x − d�c we arrive at

�
n∈Z e((n + ⌫k)(x + d�c))�

∞
−∞  � yc−2

t2 + y2� e(−(⌫k + n)t) dt.

Hence

Ea(�bz� ) = �ab (y)Pa

+
j(b)
�
k=1 Pk

�
n∈Z e((n + ⌫k)x)�c>0Sab(n + ⌫k, c,�)�

∞
−∞  � yc−2

t2 + y2� e(−(⌫k + n)t)dt

(43)

where Sab(r, c,�) is the Kloosterman sum

Sab(r, c,�) = �
d(mod c) e�r

d

c
�⌘(!

cd

)−1Pa.

We now specialize to the Eisenstein series, that is in the above we consider the

case  (y) = ys. Then the integral in (43) can be computed explicitely using
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[Iwa02, p. 205]. This yields

�
∞
−∞ (t2 + y2)−s dt = ⇡1�2�(s − 1�2)

�(s) y1−2s (44)

and

�
∞
−∞ (t2 + y2)−se(−rt)dt = 2⇡s�(s)−1�r�s−1�2y−s+1�2K

s−1�2(2⇡�r�y) (45)

where r ∈ R, r ≠ 0 and K
s

is the K-Besselfunction.

Theorem 3.6. Let a,b be cusps for � and let s be in the domain of absolute

convergence for the Eisenstein series. We have the Fourier expansion

Ea(�bz, s,�) =(�abys +'ab(s)y1−s
+�

n≠0'ab(n, s)Ws

(nz) +
j(b)
�
k=2�n∈Z'ab(n + ⌫k, s)Ws

((n + ⌫
k

)z))Pa

where

'ab(s) = ⇡1�2�(s − 1�2)
�(s) Pa�

c>0 c−2sSab(0, c,�),
'ab(n + ⌫k, s) = ⇡s�(s)−1�n + ⌫

k

�s−1P
k

�
c>0 c−2sSab(n + ⌫k, c,�),

and W
s

(z) is the Whittaker function

W
s

(z) = 2y1�2K
s−1�2(2⇡y)e(x).

The above theorem allows us to give an estimate about the growth of Ea(z, s,�)
when z approaches the cusp b.

Proposition 3.7. For s in the domain of absolute convergence of Ea(�b(z, s,�))
we have

Ea(�bz, s,�) = (�abys +'aby
1−s)Pa +O(e−�y),

as Im(z) → ∞ where 0 < � < min
k

(v
k

) is arbitrary. The implied constant

depends on the group �, � and s ∈ C only.

Proof. Use the asymptotics W
s

(z) ∼ e−2⇡y. Since for y ≥ " > 0 we have

∞
�
n=0(n + ⌫k)s−1e−2⇡y(⌫k+n) = O(e−�y)
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for 0 < � < ⌫
k

, the proposition is proved.

Proposition 3.8. Let s ∈ C be in the domain of absolut convergence of Ea(�bz, s,�)
with Re(s) = �. Then

Ea(�bz, s,�)�
1

y�
+ y�

where the implied constant depends on �, � and � only.

Proof. First we consider the case y ≥ 1. Since

Ea(�bz, s,�) = �abysPa +O(y1−�),
it follows

Ea(�bz, s,�)� y�.

On the other hand for z = x + iy and z̃ = x + i the inequality

Im(z)Im(�z) ≤ Im(�z̃)

holds for y ≤ 1 and arbitrary � ∈ PSL
2

(R). In consequence this yields for y ≤ 1

�Ea(�bz, s,�)y�� ≤ �Ea(�bz̃,�)�� 1.

4 The discrete spectrum

4.1 Cusp forms

We would like to find a subspace of W ⊂ L2(��H,�), such that we obtain a

direct sum decomposition

L2(��H,�) =W ⊕ E(��H,�).

In the classical theory for unitary �, the choice for W is the orthogonal com-

plement to E(��H,�), which is equal to the space of cusp forms. Hence, a

reasonable choice in our case will also be to choose W equal to the space of

cusp forms.
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Definition 4.1. f ∈ L2(��H,�) is said to be a cusp form, if for each cusp a

�
1

0

Paf(�az)dx = 0,

where z = x+ iy. The space of cusp forms will be denoted by C(��H,�). Later
(Proposition 6.1), we will show the direct sum decomposition

L2(��H,�) = C(��H,�)⊕ E(��H,�).

Remark 4.2. The function Paf(�az) is invariant under z � z + 1. Hence, the
above condition is equivalent to saying, that the zero-th Fourier coe�cient is

zero.

Similar as in the classical case, we will show that the space of cusp forms

decomposes discretely. But since the hyperbolic Laplacian

� = y2 � @2

(@x)2 +
@2

(@y)2�

is in general not self-adjoint with respect to the inner product on L2(��H,�),
we can not expect to obtain a decomposition of C(��H,�) into a direct sum of

eigenspaces for �. But fortunately, � is not far from being self-adjoint, since

for � the obstacle of being self-adjoint arises only from a compact subset of

��H. More precisely, the operators � and �
s

coincide outside of a compact

subset of ��H. What we will obtain, is, that the space of cusp forms decom-

poses into a direct sum of root spaces, also known as generalized eigenspaces

(Proposition 4.12). To prove this result we will use the theory of Eisenstein

series, as developed in chapter 3 . The most involved part will be, to show

that all root vectors actually span the space of cusp forms.

4.2 Invariant integral operators

To begin with let k ∈ C∞(R+) be a smooth function on the positive real axis.

For k we require k(u), k′(u)� (u+2)−� where � > �
0

and �
0

is as in Proposition

3.3. For z,w ∈ H we recall the distance function

u(z,w) = �z −w�2
Im(z)Im(w) .



38 4 THE DISCRETE SPECTRUM

By abuse of notation, we then obtain an integral kernel k(z,w) = k(u(z,w)).
As usual we can define an integral operator L = L

k

, by

(Lf)(z) = �
H
k(z,w)f(w)dµw,

for f ∶ H → V . If we restrict ourselves to functions f ∈ L2(��H,�) (so in

particular f(�z) = �(�)f(z)), we obtain

(Lf)(z) = �
��HK(z,w)f(w)dµ(w),

where K(z,w) = K(z,w,�) = ∑
�∈� k(z,�w)�(�). If � is large enough, then

one can show that this sum converges absolutely locally uniformly.

Proposition 4.3. Let the kernel k satisfy

k(z,w)� u(z,w)−s. (46)

Then the invariant kernel K(z,w) represents a continuous function on the

domain {(z,w) ∶ z �≡ w (mod �)} ⊂ H ×H for Re(s) large enough. In the case

that the kernel satisfies the stronger condition

k(z,w)� (u(z,w) + 2)−s, (47)

we even get continuity of the kernel K on the whole of H ×H.

Proof. From (35) we know, that there exists ↵ > 0 such that

��(�)� = O(1 + u(�z,w)↵),

where the implied constant is independent of z,w in a compact subset of H×H.

We estimate as follows, using (35):

�
�∈��k(z,�w)�(�)����∈�u(z,�w)−���(�)�

��
�∈�u(z,�w)↵−�.
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But Lemma 2.11 in [Iwa02] yields absolute convergence of

�
�∈�u(z,�w)−s,

for Re(s) > 1 and z �≡ w (mod �). Now, if we fix z
0

, w
0

such that z
0

≠ �w
0

for

every � ∈ �, we choose " > 0 so small, that this is true for all z ∈ B
"�2(z0) and

w ∈ B
"�2(w0

) and u(�z
0

, w
0

) ≥ 2" for all � ∈ �. Then we get

�
�∈�u(�z,w)−s ≤��∈�(u(�z0, w0

) − ")−s ≤ 2s�
�∈�u(�z0, w0

)−s,
and we see that the sum

�
�∈�k(z,�w)�(�)

converges locally uniformely absolutely in the domain {(z,w) ∶ z �≡ w (mod �)}
of H ×H and hence is a contionuous function on this domain.

If the kernel k satisfies (47), it is by the same procedure clear, that K is

continuous on H ×H. Condition (47) just excludes a singularity at 0 of k.

We also take notice of the following proposition:

Proposition 4.4. The integral operator L maps C(��H,�) into itself.

Proof. Let f ∈ C(��H,�), g = Lf and n(t) =
�
�
1 t

0 1

�
�
. For the constant Fourier

coe�cient ga of g, we compute

ga(y) = �
1

0

Pag(�an(t)z)dt = �
1

0

��
H
k(�an(t)z,w)Paf(w)dµw� dt

=�
H
k(z,w)��

1

0

Paf(�an(t)w)dt� dµw = �
H
k(z,w)fa(Im(w))dµw = 0.

The kernel K(z,w) is not square-integrable on ��H×��H, so we can not prove

easily, that it induces a compact operator. Similar as in the classical case we

have to subtract for each cusp the prinicpal part

Ha(z,w) = �
�∈�a���

∞
−∞ k(z,�an(t)�−1a �w)dtPa�(�).



40 4 THE DISCRETE SPECTRUM

The resulting operator will be shown to have the same e↵ect on cusp forms

(Proposition 4.5), and the kernel will be square-integrable, and thus will induce

a compact operator. This will yield the desired decomposition of C(��H,�).
For f ∈ L2(��H,�) the function w �Ha(z,w)f(w) is easily seen to be invariant

under �. This makes the integral

�
��HHa(z,w)f(w)dµw

meaningful. We claim, that the integral operator induced by Ha(z,w) annihi-
lates cusp forms.

Proposition 4.5. We have ∫
��HHa(z,w)f(w)dµ(w) = 0 for every f ∈ C(��H,�).

Proof. By unfolding the integral we get

�
��HHa(�az,w)f(w)dµw

= �
∞

0

�
1

0

�
∞
−∞ k(�az,�an(t)�−1a �w)dtPa�(�)f(w)dµw

= �
∞

0

��
∞
−∞ k(z, t + iv)dt� (Paf(�a(u + iv))du) v−2 dv = 0.

We add all principal parts over inequivalent cusps

H(z,w) =�
a
Ha(z,w).

The kernel function

K̂(z,w) =K(z,w) −H(z,w) (48)

is called the compact part ofK(z,w). If L is the integral operator with integral

kernel K(z,w), we let L̂ be the integral operator with integral kernel K̂(z,w).
We will show, that L̂ is a Hilbert-Schmidt operator. To show this, it is su�cient

to bound its L2-norm.

Proposition 4.6. Assume that the kernel satisfies the stronger growth condi-

tion (2)

k(u)� (2 + u)−s
with Re(s) > �

0

and �
0

as in proposition 3.3. Then we have K(z,w) =
∑a∑�∈�a

k(z,�w)�(�) +O(1).
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Proof. Fix a cusp a. By ∑
′
�∈� we indicate that � is not equal to a power of �a.

Hence, we can write

K(z,w) =�
a
�
�∈�a

k(z,�w)�(�) + �′
�∈� k(z,�w)�(�).

We define a representation �̃ ∶ �−1a ��a → V by �̃(�) = �(�a��−1a ). Then we

arrive at

�′
�∈� k(�az,��aw)�(�) = �′

�∈B��−1a ��a

�
n∈Zk(z,�w + n)�̃(� + b(n)).

Now,

k(z,�w + n)� (2 + u(z,�w + n))−s
= �2 + (Rez −Re(�w) − n)

2 + (Im z − Im(�w))2
Im z Im(�w) �

−s

� Im(�w)s

�Im z + (Re z−Re(�w)−n)2
Im z

�
s

,

which yields

�
n∈Zk(z,�w + n)� Im(�w)s�

n∈Z�Im z + (Re z −Re(�w) − n)
2

Im z
�
−s

� Im(�w)s
∞
�
n=0�Im z + n2

Im z
�
−s
.

We are assuming, that Im z ≥ A for some positive constant A > 0, which gives

∞
�
n=0�Im z + n2

Im z
�
−s
< Im(z)−s +� ∞

0

�Im z + u2

Im z
�
−s

du� Im(z)−s+1

and thus,

�
n∈Zk(z,�w + n)� Im(z)−s+1Im(�w)s.

Finally, we get an estimate from above, by the Eisenstein series:

�′
�∈� k(�az,��aw)�(�)� Im(z)−s+1 �′

�∈�a�� Im(�
−1
a �w)s��(�)�.
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But, we know from Proposition 3.7 that for each cusp b we have

�′
�∈�a�� Im(�

−1
a ��bw)s��(�)� = O(y1−s) (49)

for y →∞ and hence, the sum (49) is uniformly bounded in F . Thus we find,

that �′
�∈� k(�az,��aw)�(�) is uniformely bounded for z and w in F with

Im(�−1a z) ≥ A.
From the above results we see, that

�
� not parabolic

k(z,�w)�(�)

is uniformely bounded for z and w in F and Im(�−1a z) ≥ A. Since this is true

for all cusps a, we find that this sum is actually uniformely bounded for all z

and w in F .

Proposition 4.7. We have

Ha(z,w) = �
∞
−∞ k(z,�an(t)�−1a w)dtP

↵

+H ′a(z,w)
where H ′a(z,w) has bounded L2-norm.

Proof. This proof is similar to the previous. Speaking loosely

H ′a(z,w) =Ha(z,w) −� k(z,�an(t)�−1a w)dt

is just the “continuous analogue” of ∑
′
�∈� k(z,�a��−1a w)�(�).

Now it remains to show, that

Ja(z,w) = �
�∈�a

k(z,�w)�(�) −�
∞
−∞ k(z,�an(t)�−1a w)dtPa

is bounded on H ×H. We first consider

Ja(z,w)Pa = �
�∈�a

k(z,�w)Pa −�
∞
−∞ k(z,�an(t)�−1a w)dtPa.
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If we set  (t) = t− [t]−1�2, we apply the Euler-MacLaurin formula and obtain

�
n∈Z f(n) = �

∞
−∞ f(t)dt +�

∞
−∞  (t)df(t).

Applying this in our case, yields

Ja(�az,�aw)Pa =�
n∈Zk(z,w + n)Pa −�

∞
−∞ k(z, n(t)w)dtPa

= �
∞
−∞  (t)dk(z,w + t)Pa � �

1

0

�k′(u)�du� 1.

Now we consider the contribution of Ja(z,w) for the orthogonal complement

of the eigenspace for 1, Eig(�(�a),1)⊥. Here, we get

(Id − �(�a)) �
�∈�a

k(�az,��aw)�(�) =�
n∈Z(k(w, z + n) − k(w, z + n − 1))�n(�a)

� �
∞

0

dk(w, z + t)� �
∞

0

�k′(u)�du� 1.

Since the restriction of Id−�(�a) to the orthogonal complement Eig(�(�a),1)⊥
of the eigenspace for the eigenvalue 1 is invertible, we get

�
�∈�a

k(z,w)�(�)Qa � 1,

where Qa is the orthogonal projection on the orthocomplement Eig(�(�a),1)⊥.
Hence, we see that K̂ defines an integral operator with L2-kernel and is thus

Hilbert-Schmidt.

4.3 The resolvent kernel

In this section we want to construct a resolvent for the Laplacian� on C(��H,�)
by an integral kernel. This will give us the means to show that C(��H,�) is
spanned by generalized eigenfunctions of the Laplacian (Proposition 4.12). We

call a function, a generalized eigenfunction of the Laplacian, with generalized

eigenvalue �, if it is annihilated by some power of � − �.
We start by giving a resolvent for � on H. Let G

s

(u) be the integral

G
s

(u) = 1

4⇡ �
1

0

(⇠(1 − ⇠))s−1(⇠ + u)−s d⇠. (50)
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The next proposition resumes the most prominent properties of this integral.

Proposition 4.8. The integral (50) converges absolutely for Re(s) = � > 0.

The function G
s

(u) on R+ satisfies the di↵erential equation

(� + s(1 − s))F = 0, (51)

and the following bounds:

G
s

(u) = − 1

4⇡
log(u) +O(1), u→ 0, (52)

G′
s

(u) = −(4⇡u)−1 +O(1), u→ 0, (53)

G
s

(u)� u−�, u→∞. (54)

Proof. For a proof, see [Iwa02, Lemma 1.7].

Theorem 4.9. Let s ∈ C with Re(s) > 0 and let −R
s

be the integral operator

on H given by

−(R
s

f)(z) = �
H
G

s

(u(z,w))f(w)dµw.

If f ∶ H→ V is smooth and satisfies the growth condition �f(z)�� y� +y−� for

� > 0 then, if Re(s) > � + 1 we get

(� + s(1 − s))R
s

f = f.

In other words, R
s

is the right inverse to � + s(1 − s).

Proof. [Iwa02, Theorem 1.17].

Let us assume we have a function f ∶ H→ V satisfying the invariance property

f(�z) = �(�)f(z) (55)

for all z ∈ H and every � ∈ �. Under the assumption that the integral

�
H
G

s

(u(z,w))f(w)dµw

converges absolutely we get

�
H
G

s

(u(z,w))f(w)dµw = �
F

�
�∈�Gs

(u(z,�w))�(�)f(w)dµw,
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so that we will consider the integral kernel

G
s

(z�w,�) =�
�∈�Gs

(u(z,�w))�(�).

By formal computation, we easily check, that it satisfies the invariance prop-

erties

G
s

(�z�w,�) = �(�)G
s

(�z�w,�),
G

s

(z��w,�) = G
s

(z�w,�)�(�−1),
for arbitrary � ∈ � and z,w ∈ H. Using Proposition 4.3 and (54) we find, that

the sum ∑G
s

(u(z,�w))�(�) represents a continuous function on the domain

{(z,w) ∶ z �≡ w (mod �)} ⊂ H ×H for Re(s) large enough. Furthermore, (52)

yields

G
s

(z�w,�) = − 1

2⇡
log �z − �

0

w��(�
0

) �
�∈�w

�(�) +O(1). (56)

Now take f ∶ H → V as in (55) with the extra property that f is smooth and

its restriction to F has compact support. Because G
s

(z�w,�) is continuous in
F × F outside the diagonal and has a logarithmic singularity on the diagonal

only, the integral

�
F

G
s

(z�w,�)f(w)dµw

exists.

We want to modify this operator to obtain a bounded integral operator, which

will then be compact. Therefore, we define

L = R
s

−R
a

.

If a > s > � and � is su�ciently large, this operator is given by an integral

kernel k, which satisfies the growth estimate

k(u), k′(u)� (u + 2)−�−1.
Now, we can use some general theory, to show that the generalized eigenvectors

of the Laplacian span C(��H,�). Firstly, we use a classical result of Carleman

on the growth of resolvents of Hilbert-Schmidt operators.
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Theorem 4.10. [Car21] Let T be a Hilbert-Schmidt operator on a Hilbert

space H. Let {�
i

} be the sequence of non-zero eigenvalues of T , each repeated

according to its multiplicity and let R
�

(T ) be the resolvent operator. Then we

have the following:

1. The series ∑
i

��
i

�2 converges absolutely.

2. Put

C(�) =�
i

�1 − �i
�
� exp��i

�
+ 1

2
��i
�
�
2

� .

Then C(�) is a well-defined entire function of 1�� vanishing at the points

�
i

. Furthermore we have a growth estimate

�C(�)R
�

(T )� ≤ exp(c���−2),
where c is some constant depending on T only.

This result we use to prove the following:

Theorem 4.11. Same assumptions as before. For " > 0 there exists a sequence

of positive numbers ⇢
i

→ 0, such that R
�

exists everywhere on ��� = ⇢
i

and

�R
�

(T )� ≤ exp(c���−2−") for ��� = ⇢
i

.

Proof. C(1��) is an entire function of order 2. It follows from the minimum

modulus theorem for entire functions (c.f. [Lan77] Chapter X, Theorem 3.3),

that there exists a sequence of positive numbers ⇢
i

→ 0, such that

�C(�)� ≥ exp(−���−2−") for ��� = ⇢
i

.

On the other hand, we know from the previous theorem, that

�R
�

(T )� ≤ �C(�)�−1 exp(c���−2) for ��� = ⇢
i

.

This concludes the proof.

The above Theorem 4.11 we want to apply to the resolvent of the Laplacian.

More precisely, we consider the operator L = R
s

−R
a

, where R
t

is the Resolvent

of� with parameter t(1−t). For a > s > � and � su�ciently large, this operator
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exists. This operator has dense range in L2(��H,�). The modified operator L̂

is bounded on L2(��H,�). The range of L̂ is dense in the subspace C(��H,�).

Proposition 4.12. There exists a sequence ��
i

� → ∞, such that the space

C(��H,�) decomposes as a direct sum of generalized eigenspaces

C(��H,�) =
∞
�
i=1 R(�,�

i

)

where R(�,�
i

) = {f ∈ C(��H,�) ∶ (� − �
i

)nf = 0 for some n ∈ N}. Each

generalized eigenspace is finite dimensional.

Proof. For a > s > � and � su�ciently large, we consider the operator

L = R
s

−R
a

,

where R
s

is the resolvent of � with parameter s(1 − s). We know that this

operator is an integral operator with kernel k, which satisfies the growth esti-

mate

k(u), k′(u)� u�+1.
By the resolvent formula

L = R
s

−R
a

= (s(1 − s) − a(1 − a))R
s

R
a

we see, that L has dense range in L2(��H,�). As in (48) we modify this

operator to an operator L̂, which has the same e↵ect on cusp forms as the

original L according to Proposition 4.7. But, since L̂ has an L2-kernel, the

operator L̂ ∶ C(��H,�)→ C(��H,�) is Hilbert-Schmidt.

An element � ∈ L2

0

is said to be a generalized eigenfuction of L, corresponding

to the eigenvalue µ, if (L − µ)j� = 0 for some j ≥ 1. Since L is compact,

it is well known, that the space of generalized eigenfunctions corresponding

to an eigenvalue µ ≠ 0 is finite dimensional and its dimension is called the

multiplicity of the eigenvalue µ. In general, the linear span of all generalized

eigenfuctions does not span the whole space. But in our case, we will prove

that it does.

The Resolvent R
�

(L) is a meromorphic operator valued function of 1��. Its

poles are exactly the eigenvalues of L. If µ is an eigenvalue of L, then in a
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su�ciently small neigbourhood of µ we have a Laurent series expansion

R
�

(L) =
∞
�

n=−N A
n

(� − µ)n.

Applying L − � we find the relations

(L − µ)A−N = 0, (L − µ)A−N+1 = A−N , . . . (L − µ)A−1 = A−2.
Thus we see, that the operator A−1 maps C(��H,�) into the generalized

eigenspace of the corresponding eigenvalue µ.

We let W be the span of all generalized eigenfunctions in C(��H,�) for the

operator L. To show, that W = C(��H,�), we take f ∈ W ⊥ and show, that

f = 0. Consider the function

F (�) = (f,R
1�� (L) g)

L

2 ,

where g ∈ L2

0

is arbitrary. F (�) is holomorphic outside of those � for which �−1
is in the spectrum of L. But, for �−1

j

∈ �(L) we find as above, that R
1��j (L) g

is an element of the generalized eigenspace for �−1
j

. By the choice of f , we find,

that F is also regular in �−1
j

. Thus F is entire.

Applying Theorem 4.11, it follows, that for every " > 0 there exists a sequence

of positive numbers r
i

→∞, such that

�F (�)� ≤ exp(c���2+") for ��� = r
i

. (57)

The spectrum of � is contained in the convex hull of a parabola of the form

a+biy+cy2 with a, b, c ∈ R. So we obtain a growth estimate �R
�

(�)� = O(��−1�)
as ���→∞ on any ray arg� ≠ 0. Hence,

�F (�)� = O(���) as �→∞ along any ray arg� ≠ 0. (58)

We take finitely many rays arg� = ✓
j

≠ 0, which divide the complex plane into

angles of size < ⇡�2. On the sides of the angles (58) holds and on a sequence

of circles with radii tending to infinity (57) holds. Thus we are in a position to

apply the Phragmen-Lindelöf principle in each angle. This gives the uniform

bound �F (�)� = O(���), as �→∞, in each angle and hence, in the whole plane.
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Since F is entire, it must be a linear function F (z) = c
0

+ c
1

z. On the other

hand, we have in a neighbourhood of the origin the expansion

F (z) = z(f, g)
L

2 + z2(f,Lg)
L

2 + . . . .

This leads to (f,Lg)
L

2 = 0. Since f ∈W ⊥ was arbitrary and the range of L is

dense in C(��H,�) we obtain W ⊥ = {0}. Thus, we obtain a decomposition of

C(��H,�) into the generalized eigenspaces of the operator L

C(��H,�) =
∞
�
i=1 R(L, ⌘i),

where ⌘
i

→ 0. Since the Laplacian � commutes with the operator L, it leaves

the root spaces R(L, ⌘
i

) invariant. To conclude, we have a decomposition

C(��H,�) =
∞
�
i=1 R(�,�

i

)

5 Meromorphic continuation of Eisenstein se-

ries

As the title already points out, we will in this section prove the meromorphic

continuation of the Eisenstein series. Our main tool will be Fredholm theory,

which is classical a way to show meromorphic continuation of Eisenstein series.

We will adapt the theory for our needs below. In Theorem 5.3 we will show a

functional equation, which will connect the values of the Eisenstein series at s

and 1 − s. Theorem 5.3 will later be used, while computing the spectral side

of the trace formula.

5.1 Fredholm theory

Let � ∈ C and F ⊂ H the given fundamental domain. K ∶ F × F → End(V )
shall denote a given kernel function and f ∶ F → V a function. The Fredholm

equation is given by

g(x) − ��
F

K(x, y)g(y) dµ(y) = f(x). (59)
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We are looking for solutions g ∈ L2(��H,�). We assume f ∈ L2(��H,�) and
K ∈ L2(F × F,End(V )). We let

�K�2 =�
F×F �K(x, y)�2 dx dy,

be the norm of the kernel K. By abuse of notation, we also just write K for the

operator on L2(��H,�) induced by the kernel K. We say � is a characteristic

number of the kernel K(x, y) if the homogeneous equation

(I − �K)g = 0, (60)

has a nonzero solution g ∈ L2(��H,�). Of course, this entails � ≠ 0 and then

�−1 is just an eigenvalue of the operator K with eigenfunction g. For small � it

is possible to construct a solution of (60) by succesive approximation. We set

g
0

= f and define inductively g
p

= �Kg
p−1 + f . Written di↵erently this means

g
p

=
p

�
j=0�jKjf.

We introduce the Neumann series

g =
∞
�
j=0�jKjf.

This series converges absolutely in the disc ��� < �K�−1, and yields a solution

for (59), as is clearly seen by integrating term by term. Furthermore this

solution is unique up to a function vanishing almost everywhere. Assuming

that we have two solutions g
1

, g
2

, then (60) implies

�g
1

− g
2

� ≤ ����K��g
1

− g
2

�.

Since ����K� < 1 whe get �g
1

− g
2

� = 0 and hence g
1

= g
2

almost everywhere.

Hence the operator (I − �K)−1 exists in the disk ��� < �K�−1 and we get the

estimate

�(I − �K)−1� ≤ (1 − ����K�)−1.
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We define inductively new operators Kj via the kernels

K
j

(x, y) = �
F

K(x, z)K
j−1(z, y) dµ(z), j = 2,3, . . . ,

and K
1

=K. Supposing that

A(x)2 = �
F

�K(x, y)�2 dµ(y) <∞,

B(x)2 = �
F

�K(x, y)�2 dµ(x) <∞,

and applying the Cauchy-Schwarz inequality, we find by induction that

�K
j

(x, y)� ≤ A(x)B(x)�K�j−2, j = 2,3, . . . .

Hence, we can estimate the series

R
�

(x, y) =
∞
�
j=1�j−1Kj

(x, y)

by

�K(x, y)� + ���A(x)B(y)
∞
�
j=0 ���j�K�j.

Consequently, this series converges locally uniformely absolutely in the disc

��� < �K�−1 and yields a function R
�

(x, y) in L2(F × F,End(V )) which is

holomorphic in �.

Integrating term by term we get

g(x) = f(x) + ��
F

R
�

(x, y)f(y) dµ(y). (61)

If we let R be the integral operator with kernel function R
�

(x, y), then (61)

asserts, that

(I − �K)−1 = I + �R.

R is called the resolvent of K and it can be easily seen to satisfy the equation

R
�

(x, y) =K(x, y) + ��
F

K(x, z)R
�

(z, y) dµ(z). (62)

Since R
�

is holomorphic in the disc ��� < �K�−1, it follows by analytic con-

tinuation, that the solution g is unique for all � to which R
�

has analytic
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continuation and is in L2(F × F ).

5.2 An explicit resolvent kernel

We will give an explicit construction of the resolvent kernel R
�

(x, y) in the case

that K(x, y) is bounded on F × F , say by M , which follows the construction

by Fredholm.

We will show the existence of two entire functions D(�) �≡ 0 and D
�

(x, y) with
values in End(V ) such that

R
�

(x, y) = D
�

(x, y)D(�)−1,
for all � ∈ C where D(�) ∈ Aut(V ).
We put

K � ⇠1,...,⇠m
⌘1,...,⌘m

� = �
�∈Perm sign(�)

m

�
i=1 K(⇠i, ⌘�(i)).

K � ⇠1,...,⇠m
⌘1,...,⌘m

� can be seen as the determinant of a matrix with entries in End(V ),
namely K(⇠

i

, ⌘
j

). By Hadamard’s inequality we have for real numbers a
ij

�det(a
ij

)�2 ≤�
j

��
i

�a
ij

�2� ,

so that

�K � ⇠1,...,⇠m
⌘1,...,⌘m

� � ≤ (
√
mM)m. (63)

We write

C
m

= � �� K � ⇠1,...,⇠m
⌘1,...,⌘m

� d⇠
1

�d⇠
m

,

C
m

(x, y) = � �� K � x,⇠1,...,⇠m
y,⌘1,...,⌘m

� d⇠
1

�d⇠
m

,

so that by (63) and by letting V = vol(F ) we get

�C
m

� ≤ (
√
mMV )m,

�C
m

(x, y)� ≤ (
√
m + 1M)m+1V m.
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Thus, we find that

D(�) = 1 +
∞
�
m=1
(−�)m
m!

C
m

converges absolutely, since

�1 +
∞
�
m=1
(−�)m
m!

C
m

� ≤ 1 +
∞
�
m=1
(√m���KV )m

m!
<∞.

Therefore, D(�) represents an entire function in �. Furthermore, we have

D(0) = Id
V

. By an anologous reasoning we get

�D
�

(x, y)� = �
∞
�
m=0
(−�)m
m!

C
m

(x, y)� ≤ eK
∞
�
m=0
(
√
m + 1���KV )m

m!
<∞.

where C
0

(x, y) = K(x, y). Thus, D
�

(x, y) is also an entire function in �.

Developing the determinant K � x,⇠1,...,⇠m
y,⌘1,...,⌘m

� by the first row yields

C
m

(x, y)

=� �� �K(x, y)K � ⇠1,...,⇠m
⇠1,...,⇠m

�

+
m

�
l=1(−1)lK(x, ⇠l)K �

⇠1,⇠2,.........,⇠m

y,⇠1,...,
ˆ

⇠l,...⇠m
��d⇠

1

. . . d⇠
m

=K(x, y)C
m

−
m

�
l=1� K(x, ⇠

l

)� �� K � ⇠l,⇠1,...⇠l...,⇠m
y,⇠1,...,

ˆ

⇠l,...⇠m
�d⇠

1

. . . d⇠
m

=K(x, y)C
m

−
m

�
l=1� K(x, ⇠

l

)C
m−1(⇠l, y) d⇠l.

Hence we obtain for C
m

(x, y):

C
m

(x, y) =K(x, y)C
m

−m� K(x, z)C
m−1(z, y) dz,

for m = 1,2, . . . . By the definition of D
�

(x, y) as

∞
�
m=0
(−�)m
m!

C
m

(x, y)

we get

D
�

(x, y) =K(x, y)D(�) + �� K(x, z)D
�

(z, y) dz. (64)

Mutliplying (64) from the right by D(�)−1, we find, that D
�

(x, y)D(�)−1 stat-
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isfies the Fredholm equation (62) as does R
�

(x, y). But a solution for (62)
is unique for ��� < �K�−1, as can be seen easily. Consequently, we have the

identity

R
�

(x, y) = D
�

(x, y)D(�)−1
for ��� < �K�−1, and by analytic continuation, for all � where D(�) is invertible.

5.3 Applying Fredholm theory

Now, we can proceed to obtain the meromorphic continuation of the Eisenstein

series Ea(z, s,�). We recall their definition:

Ea(z, s,�) = �
�∈�a�� Im(�z)

s�(�)−1Pa,

and remind the reader of the existence of some �
0

> 0, such that the above

series converges locally uniformally absolutely in Re(s) > �
0

. The starting

point to apply Fredholm theory is the following equation:

−Ea(z, s,�) = (a(1 − a) − s(1 − s))�
F

G
a

(z�w,�)Ea(w, s) dµ(w),

where a > Re(s) > �
0

. This is the homogeneous Fredholm equation, but we can

not yet employ the theory that we have developed above. The first problem

are the singularities of G
a

(z�w,�) on the diagonal z = w. This is only a minor

problem, which can be easily dealt with by taking the di↵erence

G
ab

(z�w,�) = G
a

(z�w,�) −G
b

(z�w,�)

for fixed b with a > b. Then we obtain the homogeneous Fredholm equation

−⌫
ab

(s)Ea(z, s) = �
F

G
ab

(z�w,�)Ea(w, s,�) dµ(w), (65)

with

⌫
ab

(s) = (a(1 − a) − s(1 − s))−1 − (b(1 − b) − s(1 − s))−1.
We let �

ab

(s) = −⌫
ab

(s)−1 and note that �
ab

is a polynomial of degree four in s.

The new kernel G
ab

(z�w,�) is now continuous, since the leading and singular

term of G
s

(z�w,�) does not depend on s.
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In our previous considerations on the explicit construction of the Fredholm re-

solvent, we required that the kernelK(z,w) be bounded on F . For G
ab

(z�w,�)
this is not the case, so further modification is required. First, we look at the w

variable. Here we subtract some particular contributions when w is in the cus-

pidal zones of F . We remind the reader of the partition of F into a relatively

compact part F (Y ), plus cuspidal zones Fa(Y ) depending on Y > 0:

F = F (Y ) ∪�
a
Fa(Y ).

We define the truncated kernel GY

ab

(z�w,�) on F ×H by setting GY

ab

(z�w,�) =
G

ab

(z�w,�) for w ∈ F (Y ) and

GY

ab

(z�w,�) = G
ab

(z�w,�) − (2a − 1)−1(Im�−1b w)1−aEb(z, a,�)
+ (2b − 1)−1(Im�−1b w)1−bEb(z, b,�),

for w ∈ Fb(Y ). The new kernel GY

ab

(z�w,�) is continuous in w, except for

jumps on the horocycles Lb(Y ). When w approaches a cusp, GY

ab

(z�w,�)
decays exponentially, but still in the z variable the kernel is not bounded. The

Eisenstein series grows polynomially in z. More precisely, we have

�GY

ab

(�az��bw,�)�� yae−2⇡max(y′−y,0), if y, y′ > 0.

If we replace in (65) the kernel G
ab

(z�w,�) by the kernel GY

ab

(z�w,�) we have
to compute the integrals of the subtracted terms, namely:

�
Fb(Y )(Im�−1b w)1−aEa(w, s,�) dµw

= �
1

0

�
∞

Y

y−1−a(�abys +'(s)y1−s +�)Pa dx dy

= �ab
Y s−a
a − s +'ab(s)

Y 1−a−s
a + s − 1 ,

and similarly for the second term, when we replace all occurrences of b with a.
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Thus we obtain the inhomogenous Fredholm equation

−⌫
ab

(s)Ea(z, s,�) =�
F

GY

ab

(z�w,�)Ea(w, s,�) dµw

+ Y s−a
(2a − 1)(a − s)Ea(z, a,�)

− Y s−b
(2b − 1)(b − s)Eb(z, b,�)

+ Y 1−a−s
(2a − 1)(a + s − 1)�b

'ab(s)Eb(z, a,�)

− Y 1−b−s
(2b − 1)(b + s − 1)�b

'ab(s)Eb(z, b,�).

(66)

To kill all terms involving the scattering matrix 'ab, whose meromorphic con-

tinuation is not yet established, we add a suitable linear combination of (66)

for the values of Y,2Y and 4Y . We denote the right hand side of (66) by R(Y )
and obtain

(1 − 22s−1)−1(R(Y ) − 2s−1(2a + 2b)R(2Y ) + 22s−2+a+bR(4Y ))
=(22s−1 − 1)−1(2s−1+a − 1)(2s−1+b − 1)⌫

ab

(s)Ea(z, s,�)

= 22s−1+a−b−1
(2b − 1)(b − s)Y

s−bEa(z, b,�) −
22s−1−a+b−1
(2a − 1)(a − s)Y

a−bEa(z, a,�)

+ (1 − 22s−1)−1�
F

(GY

ab

− 2s−1(2a + 2b)G2Y

ab

+ 22s−2+a+bG4Y

ab

)(z�w,�)

×Ea (w, s,�) dµw.

(67)

If we let

h(z) = (22s−1 − 1)−1(2s−1+a − 1)(2s−1+b − 1)⌫
ab

(s)Ea(z, s,�), (68)

f(z) = 22s−1+a−b−1
(2b − 1)(b − s)Y

s−bEa(z, b,�) −
22s−1−a+b−1
(2a − 1)(a − s)Y

a−bEa(z, a,�)Y s−a,
and

H(z,w) =(2s−1+a − 1)−1(2s−1+b − 1)−1
× (GY

ab

− 2s−1(2a + 2b)G2Y

ab

+ 22s−2+a+bG4Y

ab

)(z�w,�)Ea(w, s,�),
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then we can rewrite (67) as

h(z) = f(z) + ��
F

H(z,w)h(w) dµ(w), (69)

where � = �
ab

(s) = −⌫
ab

(s)−1.
We are almost prepared to apply Fredholm theory. The only remaining prob-

lem is the polynomial growth of f(z) and H(z,w) in z. Fredholm theory

requires these functions to be bounded. We have

�f(�az)�� ya

and

H(�az,�bw)� ya, e−2⇡max{y′−y,0}
for y, y′ ≥ 4Y . This obstacle will be removed, after multiplying (69) by ⌘(z) =
e−⌘y(z), where ⌘ is a constant 0 < ⌘ < 2⇡. We obtain

⌘(z)h(z) = ⌘(z)f(z) + ��
F

⌘(z)⌘(w)−1H(z,w)⌘(w)h(w) dµw.
Now we have that ⌘(z)f(z) is bounded in F and ⌘(z)⌘(w)−1H(z,w) is bounded
in F × F .

We can now apply Fredholm theory, which tells us that the kernel ⌘(z)⌘(w)−1H(z,w)
has a resolvent of the form

R
�

(z,w) = D
�

(z,w)D(�)−1,
where D(�) �≡ 0 and D

�

(z,w) are holomorphic in �. For any �, where D(�) is
invertible, we have a unique solution

⌘(z)h(z) = ⌘(z)f(z) + ��
F

R
�

(z,w)⌘(w)f(w) dµw.

Multiplying by ⌘(z)−1, we get

h(z) = f(z) + ��
F

⌘(z)−1⌘(w)D
�

(z,w)D(�)−1f(w) dµw. (70)

From this equation we derive the meromorphic continuation of the Eisenstein
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series: The function D
�

(z,w) has a power series expansion in �, whose coe�-

cients are bounded in F ×F . Hence, the integral in (70) is again a meromorphic

function in � with values in End(V ). Consequently h is a meromorphic func-

tion with values in End(V ) and by (68) we see that E(z, s,�) is meromorphic.

We will collect these results in the next proposition. Firstly, we let

Aa(s) = (22+a−1 − 1)(2s+b−1)D(�),
Aa(z, s) = (22s−1 − 1)�D(�)h(z),

where � = �
ab

(s) and h(z) are as in (67) and (68) respectively.

Proposition 5.1. Let c > �
0

. Denote S = {s ∈ C ∶ 1 − c ≤ Re(s) ≤ c}. There

are functions Aa(s) �≡ 0 on S and Aa(z, s) on H × S with values in End(V ),
such that

1. Aa(s) is holomorphic in s,

2. Aa(z, s) is holomorphic in s,

3. Aa(z, s) is real-analytic in (z, s),
4. Aa(�z, s) = �(�)Aa(z, s), for all � ∈ � and z ∈ H,

5. Aa(z, s) = Aa(s)Ea(z, x,�) if �0 < Re(s) ≤ c.

5.4 The functional equation

To prove a functional equation for the Eisenstein series, we will use the fact,

that for the eigenvalues s(1− s) of the Laplacian � ,considered as an operator

on L2(��H,�), the real part Re(a) is bounded from above by �
0

.

Proposition 5.2. Let f ∶ H → End(V ) be a smooth function with �f = s(1 −
s)f with Re(s) > �

0

. We require, that f satisfies the usual invariance condition

f(�z) = �(�)f(z) for all z ∈ H,� ∈ �. Furthermore, we assume that f does not

grow to fast, more precisely

�f(z)�� e"y(z) (71)

with 0 < " < 2⇡, and that f is periodic at all cusps:

f(�az) = f(z).
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Then f can be written in terms of the Eisenstein series:

f(z) =�
a
↵aEa(z, s,�),

where ↵a ∈ End(V ).

Proof. Since f is periodic at every cusp we obtain a Fourier expansion

f(�az) = ↵aPay
s + �aPay

1−s +O(1),
where ↵a,�a ∈ End(V ). That the error term is bounded is a consequence of

(71). We form a new function

g(z) = f(z) −�
a
↵aEa(z, s,�).

Since we killed the leading terms ↵ays of f the function g is an element of

L2(��H,�) and �g = s(1 − s)g. Hence g ≡ 0.

The functional equation of the Eisenstein series is an easy consequence of the

previous proposition. We let E(z, s,�) = (Ea(z, s,�))a be the coloumn vector

of the Eisenstein series Ea(z, s,�), where a ranges over all inequivalent cusps

a. We let

�(s) = ('ab(s)), (72)

where a,b range through all inequivalent cusps and 'ab is given by the constant

term of the Fourier expansion of the Eisenstein series:

Ea(�bz, s,�) = �abysPa +'ab(s)y1−s +O(1).
We let Va = ImPa and Wa = ImQa. We recall, that Qa is the orthogonal projec-

tion onto the orthocomplement Eig(�(�a),1)⊥. We furthermore put a = dimVa

and  = ∑a a. Then, �(s) yields an endomorphism of �a Va, which is a vector

space of dimension . If we reduce to the case, that � is the trivial represen-

tation we find the well-known scattering matrix from the classical theory.

Theorem 5.3. The vector E(z, s,�) satisfies the functional equation

E(z, s,�) = �(s)E(z,1 − s,�).
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Proof. We take s with Re(s) > �
0

and Aa(1 − s)−1 exists. Then the Eisenstein

series Ea(z,1 − s,�) is defined by meromorphic continuation and satisfies

�Ea(z,1 − s,�) = s(1 − s)Ea(z,1 − s,�).

Using proposition 5.2 we find

Ea(z,1 − s,�) =�
b

'ab(1 − s)Eb(z, s).

By analytic continuation, this is true for all s ∈ C and the theorem is proved.

6 The continuous spectrum

6.1 The orthogonal complement of E(��H,�)

Consider the following pullback diagram:

H × V

✏✏

// H ×
�

V

✏✏

H ⇡ // ��H

.

The pullback of the bundle H×
�

V over ��H along the projection ⇡ ∶ H→ ��H
is just the constant bundle H×V . We can pull back sections �(X,E) along ⇡
and the set ⇡∗(�(X,E)) is exactly the set of maps

f ∶ H→ V,

with the property, that f(�z) = �(�)f(z) for all � ∈ � and z ∈ H.

The pull back of the smooth fibre metric on H ×
�

V yields a metric on H × V
with the property, that

��(�)v,�(�)w�
�z

= �v,w�
z

,

for arbitrary v,w ∈ V , � ∈ � and z ∈ H. Since � is unitary at cusps we can

choose the fibre metric in such a way, that the pull back metric on the constant
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bundle H × V is constant if we move along horocycles. We will explain this in

more detail:

The horocycles for a cusp a are given by

Ha(y) = {�a(x + iy) ∶ x ∈ R},

where y > 0. Since �(�a) is unitary we can choose the metric, such that

�v,w�
�a(iy) = �v,w��a(iy+x)

for arbitrary x ∈ R and v,w ∈ V . Thus, the metric is constant along the

horocycle Ha(y).
Now, choose a cusp form f ∈ C(��H,�) and an incomplete Eisenstein series

 (Im(�−1a �z))�(�−1)v. We compute the inner product as

�
F

�f(z), �
�∈�a�� (Im(�

−1
a �z))�(�−1)v�z dµ(z)

= �
�∈�a����−1a �F

�f(�az), (y)v��az dµ(z)

= �
P

�f(�az), (y)v��az dµ(z)

= �
∞

0

��
1

0

�f(�az), (y)v��az� dx
dy

y2

= �
∞

0

��
1

0

f(�az) dx, (y)v��az

dy

y2
,

where P = {x+iy ∶ x ∈ (0,1), y > 0}. The last step in the computation is justified

by the above argument, that the metric is constant along the horocyclesHa(y).
We find that the above expression is equal to 0, since f ∈ C(��H,�) and hence

�
1

0

f(�az) dx.

Thus, we have:

Proposition 6.1. The Hilbert space L2(��H,�) splits orthogonally into the

space of cusp forms and the space of incomplete Eisenstein series

L2(��H,�) = C(��H)⊕ E(��H,�).
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6.2 The spectral decomposition of E(��H,�)

The spectral decomposition of the space E(��H,�) of incomplete Eisenstein

series is very similar to the case for � unitary, due to the existence of Eisenstein

series in both cases. The Mellin transform, the meromorphic continuation

of the Eisenstein series and a contour integration yield the decomposition of

E(��H,�) into a finite dimensional part, spanned by the residues of Eisenstein

series and an infinite dimensional part, where � has absolutely continuous

spectrum. Since E(��H,�) is spanned by the functions

E(z� )v = �
�∈�a�� (Im(�

−1
a �z))�(�)−1Pav,

for  ∈ C∞
c

(R>0) and v ∈ V , it will be enough to decompose E(z� )v.

According to the Mellin inversion we find

E(z� ) = 1

2⇡i �
�

 ̂(s)Ea(z, s,�) ds

where � > 0 is any real number, right to the axis of convergence Re(s) = �
0

of

the Eisenstein series Ea(z, s,�).

By Phragmen-Lindelöf we can move the integration to the axis Re(s) = 1�2 but
we have to account for the poles of the Eisenstein series Ea(z, s,�) at values
s
j

with 1�2 < Re(s
j

) < � with respective residues ✓aj and obtain

E(z� ) = �
1�2<Re(sj)<�  ̂(sj)✓aj(sj) +

1

2⇡i �(1�2)  ̂(s)Ea(z, s,�) ds

Now, computing the inner product of an incomplete Eisenstein series Ea(⋅� )v
and an Eisenstein series Eb(z, s,�)w, where v,w ∈ V we obtain
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�
F

�Ea(⋅� )v,Eb(z, s,�)w�z dµ(z)

= �
�∈�a����−1a �F

� (Im(z))�(�)−1Pav,�(�)−1Eb(�az, s,�)w���az dµ(z)

= �
∞

0

��
1

0

� (y)Pav,Eb(�az, s,�)w�x+iy� dx
dy

y2

= �
∞

0

� (y)Pav, �
1

0

Eb(�az, s,�)w dx�
iy

dy

y2

= �
∞

0

� (y)(Pav, �aby
s +'ba(s)y1−sPbw)�iy

dy

y2

For each cusp b we choose an orthonormal basis Bb of the subspace PbV of V .

Multiplying the last term by Eb(z, s,�)v and summing over all b and all v ∈ Bb

we get by the functional equation of the Eisenstein series (5.3)

�
b
�
v∈Bb

�Ea(⋅� )w,Eb(⋅, s)v�Eb(z, s,�)v =  ̂(s)Ea(z, s,�)w +  ̂(1 − s)Ea(z,1 − s)w

Integrating this expression in s along the line Re(s) = 1�2 we obtain:

1

2⇡i �(1�2)  ̂(s)Ea(z, s,�)w ds

=�
b
�

w∈Bb

1

4⇡i �(1�2)�Ea(⋅� )v,Eb(⋅, s)w�Eb(z, s,�)v ds.

We sum up the spectral decomposition of E(��H,�) in the following theorem:

Theorem 6.2. The space E(��H,�) of incomplete Eisenstein series has a

direct sum decomposition

E(��H,�) =R(��H,�)⊕a Ea(��H,�).

The space R(��H,�) of residues of Eisenstein series is finite dimensional and

the spectrum of the hyperbolic Laplacian � on R(��H,�) consists of a finite

number of points. The spectrum of the hyperbolic Laplacian � is continuous in

each Ea(��H,�) and covers the segment [1�4,∞) uniformly with multiplicity
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equal to the dimension of PaV . In particular Ea(��H) = �, if � is non-singular

at the cusp a. Every f ∈ E(��H,�) has the expansion

f(z) =�
a
�
v∈Ba

�
j

�f, ✓aj(z)v�✓aj(z)v

+ 1

4⇡
�
a
�
v∈Ba

�
∞
−∞ �f,Ea(⋅,1�2 + ir,�)v�Ea(z,1�2 + ir,�)v dr,

where the above equality is understood in the L2-sense.

7 Spectral expansion of the automorphic ker-

nel

So far we considered the bundle E ∶= H×
�

V with base space X, equipped with

a smooth metric, which induces the Hilbert space L2(��H,�). For the bundle
E we now consider the dual bundle E∗. The fibre of x ∈ ��H in E∗ is the dual
space of the fibre of x in E.

In our case we have a canonical description of E∗. Consider the dual space

V ∗ of the original representation space V . The group � acts on V ∗ via the

contragredient representation. This is given as follows: For ' ∈ V ∗, v ∈ V and

� ∈ � we let �∗(�)'(v) = '(�(�−1)v). The inner product on V gives a canonical

identification V ≅ V ∗ and with respect to this identification the contragredient

representation is given by � � �(�−1)t, where t denotes the transpose with

respect to the inner product. For any k(u) ∈ C∞
0

(R>0) the automorphic kernel

K(z,w) =�
�∈�k(z,�w)�(�)

can be identified with an element of C∞(��H,E�E∗). We can use the spectral

decomposition of L2(��H,�) from Proposition 4.12 and Theorem 6.2 to deduce

a spectral expansion of the kernel K(z,w).
Firstly, we choose an orthonormal basis (u

i

) for the discrete spectrum such

that each u
i

is either an element of a generalized eigenspace R(�,�
i

), or a

residue of an Eisenstein series. We let u∗
i

be the corresponding dual element.
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For a cusp a we have the Eisenstein series

Ea(z, s,�−t) ∈ C∞(��H,E∗).
We introduce the Selberg transform h for k ∈ C∞

0

(R>0) in three steps:

q(v) = �
∞

v

k(u)(u − v)−1�2 du, (73)

g(r) = 2q �(sinh r�2)2� , (74)

h(t) = �
∞
−∞ eirtg(r) dr. (75)

Then, we have by Theorem 1.16 in [Iwa02], that

�K(⋅, w), u
j

� = h(�
j

)u∗
j

(w),
�K(⋅, w),Ea(⋅,1�2 + ir,�)v� = h(r)Ea(w,1�2 + ir,�−t)v.

Thus from the spectral decomposition of L2(��H,�) we obtain the following

theorem:

Theorem 7.1. Let

K(z,w) =�
�∈�k(z,�w)�(�)

be an automorphic kernel with selberg transform h(r). Then it has a spectral

expansion

K(z,w) =�
j

h(t
j

)u
j

(z)⊗ u∗
j

(w)

+�
a
�
v∈Ba

1

4⇡ �
∞
−∞ h(r)Ea(z,1�2 + ir,�)v ⊗Ea(w,1�2 + ir,�−t)v dr

8 Selberg trace formula for hyperbolic surfaces

Having deduced the spectral expansion of the automorphic kernel K(z,w), we
are now ready to deduce the Selberg trace formula.

We start by inserting the spectral decomposition of the integral kernel K(z,w)
to compute the integral and to obtain the spectral side of the trace formula.



66 8 SELBERG TRACE FORMULA FOR HYPERBOLIC SURFACES

The computation will be done asymptotically, by computing it on the relatively

compact set F (Y ) ⊂ F and letting Y tend to ∞. The asymptotic computation

of trYK becomes necessary, since the integral

�
F

trK(z, z)dµ(z)

will not converge, due to the existence of the continuous spectrum. We will

write

trYK = �
F (Y ) trK(z, z) dµ(z), (76)

for the truncated trace. In a second step, we will use the formula

K(z,w) =�
�∈�k(z,�w)�(�) (77)

to compute the integral (76) and obtain the geometric side of the trace formula.

In the above sum (77), we reorder according to the conjugacy classes of �. We

thus write

trK(z, z) =�C ��∈C k(z,�z) tr�(�).
The sum ∑C ranges over all conjugacy classes of �. We distinguish the triv-

ial conjugacy class, hyperbolic, elliptic and parabolic conjugacy classes and

accordingly we will compute for all conjugacy classes C, except the parabolic

ones, the partial trace

�
F

�
�∈C k(z,�z) tr�(�)dµ(z). (78)

Since

⌘�⌘−1 = ⌫�⌫−1
if, and only if ⌘⌫−1 is an element of the centralizer Z(�) of � we may write

(78) also as

�
⌧∈Z(�)���F k(z, ⌧−1�⌧z) tr�(�)dµ(z) = �

Z(�)�H k(z,�z) tr�(�)dµ(z),
where the equality is true, by the unfolding trick. For the parabolic conjugacy
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classes, the integral

�
F

�
�∈C k(z,�z) tr�(�)dµ(z)

does not converge. Instead we will, once again as for the spectral side, compute

a truncated trace

�
F (Y )�

�∈C k(z,�z) tr�(�)dµ(z)
for parabolic classes.

By computing trYK spectrally and geometrically, as sketched above, we can

compare both results. It will turn out, that on both sides a term logY will

appear, which is responsible for the divergence. Cancelling this term, both,

the spectral and the geometric side will converge, as Y tends to infinity and

this will yield the trace formula (Theorem 8.6).

We recall the following definitions: The map Pa is the orthogonal projection

onto Va = Eig(�(�a),1) and Qa the orthogonal projection onto the orthogonal

complement Wa = Eig(�(�a),1)⊥. We furthermore let a = dimEig(�(�a),1)
and  = ∑a a.

8.1 The spectral contribution

By the spectral decomposition of the integral kernel we obtain

trYK =�
j

h(t
j

)�
F (Y ) �uj

(z)�2 dµ(z)

+ 1

4⇡ �
∞
−∞ h(r)�

a
�
v∈Ba

�
F (Y ) �EY

a (z,1�2 + ir,�)v�2 dµ(z) dr.
(79)

Since we integrate over F (Y ) only, we can replace the Eisenstein series by

their truncated equivalents. These are defined as follows:

EY

a (z, s,�) =
���������

Ea(z, s,�) − Im(�−1a z)sPa +'(s)Im(�−1a z)1−s if z ∈ Fa(Y ),
Ea(z, s,�) if z ∈ F (Y ).

Hence, EY

a (z, s,�) is equal to the original Eisenstein series Ea(z, s,�) in the

relatively compact part F (Y ), and in the cuspidal area Fa(Y ) it is the original
Eisenstein series with the constant term in its Fourier expansion eliminated.

The reason to do this, is that exactly the constant term of the Eisenstein series
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is the obstacle to L2-integrability.

Now, we can compute the following integral in the same manner as in [Iwa02,

6.35]:

�
a
�
v∈Ba

�
F

�EY

a (z,1�2 + ir,�)v�2 dµ(z) = tr �EY (⋅,1�2 + ir,�),EY (⋅,1�2 + ir,�)�

= 1

2ir
tr (�(1�2 − ir)Y 2ir −�(1�2 + ir)Y −2ir)

+ 2h logY − tr�′(s)�−1(s).
Here, � is the scattering matrix, as introduced in (72). Recall, that � defines

an endomorphism of �a Va. We need to compute the integral

1

4⇡ �
∞
−∞

h(r)
2ir
(�(1�2 − ir)Y 2ir −�(1�2 + ir)Y −2ir)dr. (80)

By adding 0 = �(1�2) −�(1�2) and using the symmetry h(r) = h(−r) we get

1

4⇡ �
∞
−∞

h(r)
2ir
(�(1�2 − ir)Y 2ir −�(1�2) −�(1�2 + ir)Y −2ir) +�(1�2)dr

= 1

4⇡i �
∞
−∞ r−1h(r)(�(1�2 − ir)Y 2ir −�(1�2))dr.

We regard the above integral as a complex line integral and move the integra-

tion to Im r = ":

1

4⇡i �
Im r=" r−1h(r)(�(1�2 − ir)Y 2ir −�(1�2))dr

= −�(1�2) 1

4⇡i �
Im r=" r−1h(r) +O(Y −2"),

where the equality is true, since � is bounded in a neighborhood of the critical

axis Re s = 1�2. Now, by the residue theorem and the equality

�
Im r=" r−1h(r)dr = �Im r=−" r−1h(r)dr,

since h(r) = h(−r), we have

1

2⇡i �
Im r=" r−1h(r)dr = −

1

2
h(0).
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Thus we find, that (80) is equal to

1

4
�(1�2)h(0) +O(Y −").

Now we come back to the truncated trace. Recall that in its definition (79)

the domain of integration was limited to the relatively compact set F (Y ). We

will let Y tend to infinity, such that F (Y ) exhausts the whole fundamental

domain F . If we replace the domain of integration F (Y ) in (79) by F , we get

by the above

trYK ≤�
j

h(t
j

) + 1

4⇡ �
∞
−∞ tr�′(s)�−1(s)h(r)dr

+ 1

4
h(0)tr�(1�2) + g(0)h logY +O(Y −").

(81)

But the contribution of the integral, if we integrate over the cuspidal area

Fa(Y ) is O(Y −1) as Y → ∞. This contribution gets absorbed by O(Y −") in
(81). Thus the above inequality becomes an equality and we find the spectral

contribution

trYK =�
j

h(t
j

) + 1

4⇡ �
∞
−∞ tr�′(s)�−1(s)h(r)dr

+ 1

4
h(0)tr�(1�2) + g(0)h logY +O(Y −").

8.2 The hyperbolic terms

Following the tradition, we will denote primitive hyperbolic conjugacy classes

by P , to emphasize their resemblance to prime ideals in number fields. Recall,

that every hyperbolic conjugacy class is of the form P l for some primitive

hyperbolic conjugacy class P and some non-zero integer l. Furthermore P l =
P −l. If �

P

∈ P is a primitive hyperbolic element and � = �l
P

some integer power

of �
P

, then the centralizers Z(�
P

) = Z(�) coincide. We will compute the trace

of the restricted kernel K
P

l . By unfolding we get

trK
P

l = �
��H �

�∈P l

k(z,�z) tr�(�) dµ(z) = �
Z(�P )�H k(z,�z) tr�(�) dµ(z).

(82)
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After conjugation, if necessary, we can assume, that �
P

acts on H as z � pz.

We can furthermore assume, that p > 1, otherwise we substitute P by P −1. A
fundamental domain for the centralizer can be chosen as the strip 1 < y < p,
where y is the imaginary part of z ∈ H. Thus, continuing with (82) we obtain

trK
P

l = �
p

1

�
∞
−∞ k(z, plz) tr�(�

P

) dµ(z).

We put 2d = �pl�2 − p−l�2� and continue the computation:

trK
P

l = �
p

1

�
∞
−∞ k �(d�z��y)2� y−2 tr�(�)dxdy

= ��
p

1

y−1 dy�� ∞
−∞ k(d2(x2 + 1))dx tr�(�)

= log p

d �
∞

d

2

k(u)√
u − d2

du tr�(�)

= log p

d
q(d2) tr�(�)

= log p

2d
g(2 log(

√
d2 + 1 + d)) tr�(�)

= log p

2d
g(l log p) tr�(�)

= �pl�2 − p−l�2�−1g(l log p) log p tr�(�
P

)l,

where the functions q and g are as in (73).

8.3 The identity term

We compute the trace for the trivial conjugacy class C = {1}.

trKC = �
F

k(z, z) tr�(1)dµ(z) = k(0)vol(��H)dimV.

Furthermore

k(0) = 1

4⇡ �
∞
−∞ r tanh(⇡r)h(r)dr,

see (1.64’) in [Iwa02].
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8.4 The parabolic terms

There are as many primitive parabolic conjugacy classes, as there are inequiv-

alent cusps. Let Ca be the primitive parabolic conjugacy classes belonging to a

cusp a. Every other parabolic conjugacy class C is of the form C = Cla for some

cusp a and with some non-zero integer l. If �a is the generator of the fix group

�a of a, we let � = �la. Then for the centralizers we have the following equality:

Z(�) = Z(�a) = �a.

To compute the trace of the partial kernel KC, we will split the computation

into two parts. Here again, Pa, the orthogonal projection onto Eig(�(�a),1)
andQa, the orthogonal projection onto the orthogonal complement Eig(�(�a),1)⊥,
and the numbers a = dimEig(�(�a),1) and  = ∑a a, will be involved. Then

we can write

KC =KCPa +KCQa.

We firstly compute the contribution of the first term KCPa.

8.4.1 The singular contribution

The unfolding trick yields

trY KCPa = �
Z(�)�H(Y ) k(z,�z) tr�(�)Pa dµ(z)

= a�
Z(�)�H(Y ) k(z,�z)dµ(z).

The set H(Y ) is the upper half-plane where the cuspidal zones are removed at

height Y . After the change of variables z � �az�−1a , this equals

trY KCPa = a�
B��aH(Y ) k(z, z + l) dµ(z).

To estimate the above integral from below and above, we firstly make the

domain of integration smaller and in a second step we will enlarge the domain of

integration. A fundamental domain for B��aH(Y ) is contained in the rectangle

{z ∈ H ∶ 0 < x ≤ 1, Y ′ < y ≤ Y,Y ′
Y = c−2a }.
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On the other hand this fundamental domain contains the rectangle

{z ∈ H ∶ 0 < x ≤ 1,0 < y ≤ Y }.

Thus, the following chain of inequalities holds true:

a�
1

0

�
Y

Y

′ k(z, z + l)dµ(z) ≤ tr
Y KCPa ≤ a�

1

0

�
Y

0

k(z, z + l)dµ(z). (83)

We continue the computation of the right-hand side of (83)

�
1

0

�
Y

0

k(z, z + l)dµ(z) = �
Y

0

k �� l

2y
�
2

�y−2 dy = �l�−1� ∞
(l�2Y )2 k(u)u−1�2 du,

by the change of variables u = (l�2y)2. Now, summing the above expression

over l and interchanging the summation and integration, we get

2�
∞
(2Y )−2k(u)u−1�2

�
� �
1≤l<2Y√u

l−1�
�
du

= 2�
∞
(2Y )−2 k(u)u−1�2(log 2Y

√
u + � +O(u−1�2Y −1))du

= L(Y ) +O(Y −1 logY ),
where � here denotes the Euler-Mascheroni constant and L(Y ) stands for the
term

L(Y ) = 2�
∞

0

k(u)u−1�2(log 2Y√u + �).

For the left-hand term of (83), we do a similar computation and replace Y by

Y ′ to obtain

�
1

0

�
Y

′

0

k(z, z + l)dµ(z) = 2�
∞
(2Y ′)−2 k(u)u−1�2

�
� �
1≤l<2Y ′√u

l−1�
�
du

= �
∞
(2Y ′)−2 k(u)u−1�2 log(u + 2)du� O(Y ′).
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Hence, we find

L(Y ) +O(Y −1 logY ) =�
l≠0�

1

0

�
Y

Y

′ k(z, z + l)dµ(z)

≤ �C=Cla tr
Y KC

≤�
l≠0�

1

0

�
Y

Y

′ k(z, z + l)dµ(z) = L(Y ) +O(Y
−1 logY ),

and consequently, we also have

�C=Cla tr
Y KCPa = aL(Y ) +O(Y −1 logY ).

To express L(Y ) in terms of g and h, we proceed as follows: We write

L(Y ) = g(0)(log 2Y + �) +�
∞

0

k(u)u−1�2 logudu. (84)

In the above formula we made g(0) appear, via

g(0) = 2q(0) = 2�
∞

0

k(u)u−1�2 du.
The second term can be transformed as

�
∞

0

k(u)u−1�2 logudu =−1
⇡ �

∞
0

�
��

v

0

logu�
u(v − u)

�
�
dq(v)

=−1
⇡ �

∞
0

�
��

1

0

loguv�
u(1 − u)

du
�
�
dq(v)

= 1
⇡
q(0)�

1

0

logu�
u(1 − u)

du

− 1

⇡ �
1

0

du�
u(1 − u) �

∞
0

log v dq(v).

The integrals after the last equality can be evaluated to −2⇡ log 2, ⇡ and

∫
∞
0

log(sinh r�2)dg(r), respectively. If we note that q(0) = 1

2

g(0), we obtain

�
∞

0

k(u)u−1�2 logudu = − log 2 g(0) −� ∞
0

log(sinh r�2)dg(r). (85)
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We want to further modify the integral

�
∞

0

log(sinh r�2)dg(r).

We use the formula

g′(r) = − 1

2⇡i �
Im t=" eirth(t)t dt

and the Laplace transform

�
∞

0

− log(sinh r�2)⌫e−⌫r dr = � + log 2 − 1

2⌫
+ (1 + ⌫),

where

 (s) = �
′

�
(s) = −� −

∞
�
n=0�

1

n + s −
1

n + 1� .

Now we can write

�
∞

0

log(sinh r�2)dg(r) = �
∞

0

log(sinh r�2) −1
2⇡i �

Im t=" eirth(t)t dt dr
= �

Im t=" h(t)
−1
2⇡i �

∞
0

log(sinh r�2)eirtt dr dt

= 1

2⇡ �
Im t=0 �� + log 2 +

1

2it
+ (1 − it)�h(t)dt

= g(0)(� + log 2) − 1�4h(0) + 1

2⇡ �
∞
−∞ h(t) (1 + it)dt,

since
1

2⇡i �
Im t=" h(t)�t dt = −1�2h(0),

and h is even, so

�
Im t=" h(t) (1 − it)dt = �Im t=" h(t) (1 + it)dt.

Collecting the above computations we find

�
∞

0

k(u)u−1�2 logudu = −g(0)(�+log 4)+1
4
h(0)− 1

2⇡ �
∞
−∞ h(t) (1+it)dt. (86)

Thus, if we plug (86) into (84) we find

L(Y ) = g(0) log Y
2
+ 1

4
h(0) − 1

2⇡ �
∞
−∞ h(t) (1 + it)dt.
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In total, we get that the singular contribution of all parabolic classes, with

fixed point the cusp a, is equal to

trY �
l≠0KClaPa = a �g(0) log

Y

2
+ 1

4
h(0) − 1

2⇡ �
∞
−∞ h(t) (1 + it)dt� .

8.4.2 The non-singular contribution

Now we will take care of the contribution of KCQa. Without loss of generality,

we can assume, that dim ImQa = 1 and that �(�a) acts on the image by

multiplying each vector with ei↵, where ↵ ∈ (0,2⇡). By the unfolding trick and

the change of variables z � �az�−1a , we find

tr�
l≠0KCla = �Z(�a)�H�l≠0 k(z,�lz) tr�(�la)dµ(z)

= �
B�H�

l≠0 k(z, z + l)eil↵ dµ(z).
(87)

If we group the terms for l and −l together, we obtain that (87) equals

�
∞

0

∞
�
l=1 cos(l↵)k(l2�y2)

dy

y2
= �

∞
0

∞
�
l=1 cos(l↵)k(l2u2)du.

To be able to interchange summation and integration, we write this as

lim
"→0

�
∞

"

∞
�
l=1 cos(l↵)k(l2u2)du,

and continue

�
∞

"

∞
�
l=1 cos(l↵)k(l2u2)du =

∞
�
l=1 cos(l↵)�

∞
"

k(l2u2)du

=
∞
�
l=1

cos(l↵)
l �

∞
l"

k(u2)du

= �
∞

0

k(u2)
�
� �
1�leql≤u�"

cos(l↵)
l

�
�
du.

Since ↵ ∈ (0,2⇡), we have

�
1≤l≤u�"

cos(l↵)
l

= log 1

�1 − ei↵� +O(
�
"�u).
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Substituting this estimate, we can continue our above computation:

�
∞

"

∞
�
l=1 cos(l↵)k(l2u2)du = log 1

�1 − ei↵� �
∞

0

k(u2)du +O �
√
"�

∞
0

k(u2) du√
u
�

= 1

2
g(0) log 1

�1 − ei↵� +O(
√
").

Now, inserting this into (87), and letting "→ 0 we get, that (87) is equal to

g(0) log 1

�1 − ei↵� = g(0) log
1

�1 − �(�a)�
= −g(0) log �1 − �(�a)�.

In the general case, that dim ImQa > 1, each eigenvalue ei↵ ≠ 1 of �(�a) con-
tributes the above expression with the respective multiplicity. Adding these

up, we obtain the contribution

�
l≠0 trKClaQa = −g(0) log �det(Id − �(�↵))�W↵ �.

Here, (Id − �(�
↵

))�
W↵ is the restriction of the endomorphism Id − �(�

↵

) to

W
↵

= ImQa.

8.5 The elliptic terms

Let R be a primitive elliptic conjugacy class. An elliptic conjugacy class has

only fixed points in H and each elliptic class C with the same fixed points is

a power of R: C = Rl with some 0 < l < m, where m is the order of R. After

conjugation, we can assume, that the matrix

�
R

=
�
�
cos(⇡m−1) sin(⇡m−1)
− sin(⇡m−1) cos(⇡m−1)

�
�

is a representative for R.

The matrix �
R

acts as a rotation of angle 2⇡m−1 at i ∈ H. As a fundamental

domain for that centralizer, a hyperbolic sector S at i of angle 2⇡m−1 may be

chosen. Similar as for the hyperbolic situation, unfolding yields

trK
R

l = �
S

k(z,�l
R

z) tr�(�
R

)l dµ(z) = 1

m �H k(z,�
l

R

z) tr�(�
R

)l dµ(z).
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Applying geodesic polar coordinates

z = ✓(')e−ri,
where

✓(') =
�
�
cos(') sin(')
− sin(') cos(')

�
�

and ' ranges in [0,⇡) and r in [0,∞), we get

trK
R

l = ⇡
m �

∞
0

k(e−ri, ✓('l)e−ri)(2 sinh r) tr�(�
R

)l.

Computing this term gives

trK
R

l = (2m sin(⇡l�m))−1tr�(R)l � ∞
−∞ h(r)cosh⇡(1 − 2l�m)r

cosh⇡r
dr.

8.6 The trace formula

If we equate the above computations for the spectral contribution on the one

side and for the hyperbolic, parabolic, elliptic and the contribution from the

identity on the other side we obtain the following formula:

�
j

h(t
j

) − 1

4⇡ �
∞
−∞ tr�′(s)�−1(s)h(r)dr + 1

4
h(0)tr�(1�2) + g(0)h logY +O(Y −")

=dim(V
�

)vol(F )
4⇡ �

R
rh(r) tanh(⇡r)dr

+�
P

∞
�
l=1(pl�2 − p−l�2)−1g(l log p) log p tr�(P )l

+�
R

�
0<l<m(2m sin(⇡l�m))−1tr�(R)l �

R
h(r)cosh⇡(1 − 2l�m)r

cosh⇡r

− g(0)�
a
log �det(Id − �(�

↵

))�
W↵ �

+ �g(0) log Y
2
+ 1

4
h(0) − 1

2⇡ �
∞
−∞ h(t) (1 + it)dt�

We see, that the logY terms on both sides of the equation cancel each other.

Finally, we let Y tend to infinity, which makes the error term O(Y −") vanish,
and we have proven:
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Theorem 8.1. If  = ∑a a, where a = dimEig(�(�a),1) the trace formula

�
j

h(t
j

) =dim(V
�

)vol(F )
4⇡ �

R
rh(r) tanh(⇡r)dr

+�
P

∞
�
l=1(pl�2 − p−l�2)−1g(l log p) log p tr�(P )l

+�
R

�
0<l<m(2m sin(⇡l�m))−1tr�(R)l �

R
h(r)cosh⇡(1 − 2l�m)r

cosh⇡r

+ �h(0)
4
− log 2g(0) − 1

2⇡ �R h(r) (1 + ir)dr�

− g(0)�
a
log �det(Id − �(�a))�Wa

+ 1

4
( − tr �(1�2))h(0) + 1

4⇡ �R h(r)tr�
′(s)�−1(s)dr,

holds. The sum ∑
P

ranges over all primitive hyperbolic conjugacy classes,

and the sum ∑
R

ranges over all primitive hyperbolic conjugacy classes. The

Hilbert space L2(��H,�) decomposes into a discrete part, which is spanned by

generalized eigenfunctions, and a continuous part, spanned by the Eisenstein

series Ea(z, s,�). The spectrum of the Laplacian � in the continuous part

covers the segment [1�4,∞) uniformly with multiplicity .

In particular, in the non-singular case  = 0, we obtain

�
j

h(t
j

) =dim(V
�

)vol(F )
4⇡ �

R
rh(r) tanh(⇡r)dr

+�
P

∞
�
l=1(pl�2 − p−l�2)−1g(l log p) log p tr�(P )l

+�
R

�
0<l<m(2m sin(⇡l�m))−1tr�(R)l �

R
h(r)cosh⇡(1 − 2l�m)r

cosh⇡r

− g(0)�
a
log �det(Id − �(�a))�Wa

and L2(��H,�) decomposes discretely.
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9 Selberg trace formula for compact quotients

9.1 The Lie group case

In this chapter we will only consider the compact case, so we do not need to

consider the continuous spectrum and the Eisenstein series. This makes the

development of a trace formula considerably easy. We also will not restrict

ourselves to the case of H and a Fuchsian group �. Instead, we will consider

the quotient ��G, with G a Lie-group and � a lattice. The exact assumptions

are as follows:

LetG be a connected, semisimple Lie-group with finite center andK a maximal

compact subgroup of G and we denote a Haar measure by dg. Let � ⊂ G be a

torsion free, uniform lattice. We let X ∶= ��G be the compact quotient space

with G-invariant measure dx, such that for f ∈ C
c

(G) the integral formula

�
G

f(g) dg =�
�∈��X f(�x) dx

holds.

9.1.1 Representation theory

Definition 9.1. For a complex vector space V we let GL(V ) be the group of all

automorphisms of V . A representation (⇡, V ) of G is a group homomorphism

⇡ ∶ G→ GL(V ).
For a complex Hilbert space we let GL(H) be the group of all bijective and

bounded endomorphisms of H. A (continuous) representation (⇡,H) of G is

a group homomorphism ⇡ ∶ G→ GL(H), such that the map

G ×H →H,

(g, v)� ⇡(g)v,

is continuous. A continuous representation ⇡ is said to be admissible, if ⇡

restricted to K is unitary and each ⌧ ∈ K̂ occurs with finite multiplicity only.

When the underlying representation space is a Hilbert space, we will always

mean a continuous representation, without mentioning it anymore.

A (Lie algebra) representation representation!Lie algebra (⇡, V ) of the Lie alge-
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bra g is a complex vector space V , together with a Lie algebra homomorphism

g→ gl(V ),
X � ⇡(X).

A (g,K)-module is a vector space V , which is both a Lie algebra representa-

tion of g and a group representation of K, such that the representations are

compatible in the following way:

1. for any v ∈ V , k ∈K and X ∈ g

k ⋅ (X ⋅ v) = (Ad(k)X) ⋅ (k ⋅ v),

2. for any v ∈ V and Y ∈ k

� d
dt

exp(tY ) ⋅ v��
t=0 = Y ⋅ v.

The third condition gives the K-finiteness:

3. for any v ∈ V the set Kv spans a finite-dimensional subspace of V .

Recall that the K-finite vectors of an admissible representation (⇡, V ) give
rise to a (g,K)-module. Two admissible representations ⇡ and ⌘ are called

equivalent, if the associated (g,K)-modules are isomorphic.

The unitary dual Ĝ of the group G is the set of all irreducible unitary repre-

sentations modulo unitary equivalence.

The admissible dual Ĝ
adm

of G is the set of all irreducible admissible represen-

tations module admissible equivalence.

As always � is a finite dimensional complex representation of �, not necessarily

unitary, with representation space V = V
�

. Let E = E
�

be the associated

vector bundle over ��G. More precisely, we consider the bundle ��(G × V ),
where � acts via � ⋅ (g, v) = (�g,�(�))v on G × V . The image of (g, v) under
the canonical projection G × V → E will be written as �(g, v). Note, that

�(�g, v) = �(g,�(�−1)v). Furthermore the group G acts on E via

g ⋅ �(h, v) = �(hg−1, v).
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There is a canonical identification of the smooth sections �∞(X,E) of the

bundle E with the set of functions

C∞(G,V
�

)� = {f ∈ C∞(G,V
�

) ∶ f(�g) = �(�)f(g) for all � ∈ �, g ∈ G},

and we will freely switch between these two interpretations.

We choose any smooth hermitian metric �⋅, ⋅� on E. If we choose a Haar-

measure dk on K we can form the integral

�
K

��(gk, v),�(gk,w)�
�gk

dk,

where x is the image of g under the canonical projection G→ ��G. This gives

again a smooth hermitian fiber metric on E, which is K-equivariant and by

replacing �⋅, ⋅� with this one, we can assume, that

��(gk, v),�(gk,w)�
�gk

= ��(g, v),�(g,w)�
�g

,

for arbitrary g ∈ G,k ∈K and v,w ∈ V .

Together with this smooth K-equivariant metric we obtain a pre-Hilbert space

structure on the set of smooth sections �∞(X,E), via

(f, g) ∶= �
��G �f(x), g(x)�x dx.

We complete �∞(X,E) with respect to the induced norm and obtain the

Hilbert space of square integrable sections L2(X,E). Because of the compact-

ness of ��G the definition of L2(X,E) is independent of the chosen smooth

fibre metric on E, since by compactness of ��G and the finite-dimensionality

of the fibres, another smooth metric induces an equivalent norm on �∞(X,E).

Definition 9.2. On �∞(X,E) we define the right regular representation R of

G as

R(g)f(x) ∶= g ⋅ f(xg),

where f ∈ �∞(X,E), x ∈X and g ∈ G.

If we use the identification with C∞(G,V
�

)�, the right regular representation
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for elements f ∈ C∞(G,V
�

)� is just given by

R(g)f(x) = f(xg).

In the following paragraph we will show, that the right regular representation

R is continuous. We start out with the following proposition.

Proposition 9.3. There exists a continuous function  on G, such that

��(gh, v),�(gh, v)�
�gh

≤  (h) ��(g, v),�(g, v)�
�g

,

for arbitrary g, h ∈ G,x ∈ X and v ∈ V . In particular, there exists for each

compact set C ⊂ G a constant M depending only on C, such that

��(gh, v),�(gh, v)�
�gh

≤M ��(g, v),�(g, v)�
�g

,

for all h ∈ C and arbitrary g ∈ G,v ∈ V .

Proof. For every h ∈ G, there exists a contionuous sectionA
h

∈ �(X,Hom(E,E)),
such that for v ∈ V we have

��(gh, v),�(gh, v)�
�gh

= ��(g,A
h

(�g)v),�(g,A
h

(�g)v)�
�g

.

As the metric is smooth, the dependence of A
h

on h is smooth, in particular

continuous. We let

�A
g

(x)�2
�g

= sup
v≠0
��(g,A

h

(x)v),�(g,A
h

(x)v)�
�g

��(g, v),�(g, v)�
�g

.

Then we define  (h) =max
�g∈��G �Ah

(�g)�2
�g

, which satisfies the conditions of

the proposition.

We choose once and for all a representative (⌧, V
⌧

) for each class in K̂, the

unitary dual of K. For a unitary representation (⇡, V ) of K we let V (⌧) be
the ⌧ -isotype. Recall the following theorem:

Theorem 9.4. [DE09, Theorem 7.3.2.] For (⇡, V ) a unitary representation of

K, the representation space is the direct Hilbert space sum of all K-isotypes:

V = ��
⌧∈K̂V (⌧).
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Proposition 9.5. The right regular representation R on �∞(X,E) is contin-
uous with respect to the L2-topology. In particular, it extends to a continuous

representation of L2(X,E). The restriction of R to the maximal compact sub-

group K is unitary and hence, we get a K-isotypical decomposition

L2(X,E) = ��
⌧∈K̂L2(X,E)(⌧),

where K̂ is the unitary dual of K.

Proof. Let C ⊂ G be a compact subset and h ∈ C. Let  and M be as in

Proposition 9.3. Then for f ∈ �∞(X,E) we estimate

(R(h)f,R(h)f) = �
X

�h ⋅ f(xh), h ⋅ f(xh)�
x

dx

≤ �
X

 (h−1, x) �f(xh), f(xh)�
xh

dx

= �
X

 (h−1, xh−1) �f(x), f(x)�
x

dx

≤M(f, f),

independent of h ∈ C. Hence, the operator norm of R(h) is uniformally

bounded on each compact subset C ⊂ G. Since for fixed f ∈ �∞(X,E) the
map

G→ L2(X,E)
g � R(g)f

is continous, the continuity of the representation R follows. The unitarity as

a representation of K is clear from the K-equivariance of the fibre metric. If

we let k ∈K, then we get

(R(k)f,R(k)f) = �
X

�k ⋅ f(xk), k ⋅ f(xk)�
x

dx

= �
X

�f(xk), f(xk)�
xk

dx

= �
X

�f(x), f(x)�
x

dx

= (f, f).
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9.1.2 The spectral decomposition of the Casimir operator

Definition 9.6. We let g,gC, U(gC), Z(gC) be the Lie-algebra of G, its com-

plexification, the universal envelopping algebra, as well as its center, respec-

tively. We endow G�K with the G-invariant metric induced by the Killing form

�⋅, ⋅�. The Killing form is non-degenerate, and hence it gives an identification

of g and its dual space g∗. If X
1

, . . . ,X
n

is a basis of g, then we define the

Casimir element as

⌦ = Y
1

X
1

+ . . . Y
n

X
n

∈ U(gC),

where Y
1

, . . . , Y
n

is a dual basis of X
1

, . . . ,X
n

with respect to the Killing form.

The definition of ⌦ is independent of the chosen orthonormal basis and ⌦ ∈
Z(gC) [Kna01, Proposition 8.6.].

If g = k⊕ p is the Cartan decomposition of g and ✓ is the Cartan involution on

g the map

(X,Y )� −�X, ✓(Y )�,

is a positive definite bilinear form. If X
1

, . . . ,X
l

is an orthonormal basis of k

and Y
1

, . . . , Y
k

an orthonormal basis of p we find

⌦ = −X2

1

− ⋅ ⋅ ⋅ −X2

l

+ Y 2

1

+ ⋅ ⋅ ⋅ + Y 2

k

= ⌦
K

+ Y 2

1

+ ⋅ ⋅ ⋅ + Y 2

k

,

where ⌦
K

is the Casimir element of U(kC).

We will need the following results, to deduce a nice spectral decomposition of

the Casimir operator on L2(X,E).

Theorem 9.7. [Shu01, Theorem 8.4.] Let M be a closed manifold and D an

elliptic di↵erential operator on a metric bundle E. If the resolvent set ⇢(D) ≠ �
is not empty, the spectrum �(D) is discrete and for each � ∈ �(D) there exists

a decomposition L2(M,E) = E
�

⊕E′
�

, such that

1. E
�

⊂ �∞(M,E),dimE
�

< ∞, and E
�

is invariant under D and there

exists some n > 0, such that (D − �)nE
�

= 0,

2. E′
�

is a closed subspace of L2(M,E) invariant under D. If we denote by

A
�

the restriction of A to E′
�

, then � �∈ �(A
�

).
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Theorem 9.8. [Shu01, Theorem 8.4.] Let M be a closed manifold and D an

elliptic di↵erential operator on a metric bundle E. For an interval I we define

the cone

⇤
I

= {rei✓ ∶ 0 ≤ r <∞, ✓ ∈ I}.

For " > 0 there exists an R > 0 such �(D) is contained in the set B
R

(0)∪⇤[−","].
Definition 9.9. Let E be a vector bundle over a Riemannian manifold M .

A second order di↵erential operator D is a Laplace type operator if for the

principal symbol

�
2

(D)(x, ⇠) = �⇠�2,

for arbitrary x ∈M and ⇠ ∈ T ∗M . In particular each Laplace type operator is

elliptic.

The reason why we introduce the notion of Laplace type operators, is that a

reasonable spectral theory can be developed for those.

Proposition 9.10. The Casimir element ⌦ induces on each K-isotype L2(X,E)(⌧)
a Laplace type operator, having discrete spectrum. We will denote the induced

operator by ⌦
⌧

. Let

V
⌧,�

∶= {f ∈ L2(X,E)(⌧) ∶ (⌦
⌧

− �)nf = 0 for some n ∈ N},

the generalized eigenspace belonging to � ∈ spec(⌦
⌧

). Then V
⌧,�

⊂ �∞(X,E)(⌧),
dimV

⌧,�

<∞ and V
⌧,∞ is stable under K as well as Z(gC).

Proof. We let E
�,⌧

be the vector bundle G×
�×K V

�

⊗V
⌧

on ��G�K where �×K
acts on G × V

�

⊗ V
⌧

as

(�, k) ⋅ (g, v ×w) = (�gk−1,�(�)v × ⌧(k)w).
Let X ∈ g and f ∈ C∞(G,V

�

× V
⌧

). X induces a di↵erential operator via

Xf(g) = d

dt
f(g exp(tX))�

t=0 ,
and this map from the Lie algebra to the algebra of di↵erential operators

extends to the universal envelopping algebra U(gC). From the definition it
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is easily seen, that the induced di↵erential operator is left invariant, meaning

that

X(L
h

(f))(g) = (Xf)(hg),

where L
h

is the left translation by the element h. On the other hand, we find

for X ∈ g and the right translation R
h

, for an element h ∈ G, that

X(R
h

(f))(g) = d

dt
f(g exp(tX)h)�

t=0
= d

dt
f(gh exp(Ad(h)tX))�

t=0
= (Ad(h)X)(f)(gh).

Thus we get X(R
h

(f))(g) = (Ad(h)X)(f)(gh) for all X ∈ U(gC). Since

⌦ ∈ Z(gC) this yields
⌦(R

h

(f))(g) = (⌦f)(gh),

for arbitrary g, h ∈ G and consequently we have for f ∈ C∞(G,V
�

⊗ V
⌧

)�×K ,
that

(⌦f)(�xk−1) = �(�)⊗ ⌧(k)⌦f(x)
and thus, C∞(G,V

�

⊗ V
⌧

)�×K is stable under ⌦.

Furthermore

�∞(X,E)(⌧) ≅ V
⌧

⊗Hom
K

(V
⌧

,�∞(X,E)),

and

Hom
K

(V
⌧

,�∞(X,E)) ≅ (�∞(X,E)⊗ V
⌧

)K

≅ (C∞(G)⊗ V
�

⊗ V
⌧

)�×K
≅ �∞(��G�K,E

�,⌧

).

Hence Id⊗⌦ induces an operator ⌦
⌧

on L2(E)(⌧).

Next we will show, that it is a Laplace type operator.

Consider the Cartan decomposition g = k⊕p and basisesX
1

, . . .X
l

and Y
1

, . . . Y
k

as before, such that

⌦ = ⌦
K

+ Y 2

1

+ ⋅ ⋅ ⋅ + Y 2

k

.

For �gK ∈ ��G�K there exists a neighbourhood U , such that we can choose
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the map

g exp(y
1

Y
1

+ ⋅ ⋅ ⋅ + y
k

Y
n

)� (y
1

, . . . , y
k

)

as a local coordinate map on U . Inside U , with these coordinates we find

(⌦f)(g) =�
@2

@y2
i

f(g) + Id⊗�(d⌧)(⌦
K

)f(g).

But, since the representation V
⌧

is irreducible and ⌦
K

∈ Z(kC), the operator

(d⌧)(⌦
K

) acts as a scalar, according to the Lemma of Schur. Consequently, ⌦

induces a second order di↵erential operator with principal symbol (⌦
⌧

)(x, ⇠) =
�⇠�2.
From Theorem 9.8 and 9.7 it is now clear, that the spectrum is discrete. By

Theorem 9.7 it follows also that the generalized eigenspace V
⌧,�

is finite dimen-

sional and V
⌧,�

⊂ �∞(X,E)(⌧).
V
⌧,�

is stable under K, since K ⋅L2(X,E)(⌧) ⊂ L2(X,E)(⌧) and Ad(k)⌦ = ⌦.
Since Z(gC) ⋅ �∞(X,E)(⌧) ⊂ �∞(X,E)(⌧) it is also clear, that Z(gC) ⋅ V⌧,�

⊂
V
⌧,�

.

Proposition 9.11. The space L2(X,E)(⌧) is the closure of the algebraic direct
sum of all generalized eigenspaces:

L2(X,E)(⌧) = �
�∈�(⌦⌧ )V⌧,�

.

To prepare the proof of Proposition 9.11 we need:

Definition 9.12. Let H be a Hilbert space and G a linear operator with

non-empty resolvent set ⇢(G) ≠ �. An operator B is said to be compact

relative to G if D(G) ⊂ D(B) and the operator BR
�

(G) is compact, where

R
�

(G) = (G − �)−1 is the resolvent of G.

Theorem 9.13. [Mar88, Theorem 4.3.] Let H be a Hilbert space and G a

self-adjoint operator. The resolvent R
�

(G) is assumed to be a Schatten class

operator and B an operator relatively compact to G. Then the operator C = G+
B has a compact resolvent and H is the closure of the generalized eigenspaces

of C:

H = �
�∈�(C)V�
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Proof of Proposition 9.11. According to Proposition 9.10 we have �(⌦
⌧

)(x, ⇠) =
�⇠�2. Hence we get ⌦

⌧

= � + B, where � is the Bochner-Laplace operator,

which is self-adjoint, and B is a first order di↵erential operator. The resolvent

R
�

(�) is of order −2, hence compact and a Schatten class operator. Simi-

larly BR
�

(�) is of order −1 and also compact. The statement follows now by

applying Theorem 9.13.

Definition 9.14. Let V
fin

⊂ �∞(X,E) be the set of all smooth sections, which

are K- as well as Z(gC)-finite.

Proposition 9.15. Vfin is the algebraic direct sum of all generalized eigenspaces

for the operators ⌦
⌧

:

Vfin =�
⌧∈K̂ �

�∈�(⌦⌧ )V⌧,�

. (88)

In particular, Vfin is dense in L2(X,E) and consequently, because Vfin ⊂ �∞(X,E),
it is dense in �∞(X,E).

Proof. If f is an element in the above direct sum, it is clear that f ∈ V
fin

,

since each generalized eigenspace V
⌧,�

is finite dimensional and K- and Z(gC)-
invariant.

If we now take f ∈ V
fin

we obtain

f ∈�
⌧∈K̂L2(X,E)(⌧),

because of the K-finiteness of f . Hence, we can assume, that f ∈ L2(X,E)(⌧)
for some ⌧ ∈ K̂. Let W ⊂ L2(X,E)(⌧) be the finite-dimensional Z(gC)- and K-

invariant vectorspace, generated by f . W is stable under ⌦
⌧

, since this operator

is induced by ⌦ ∈ Z(gC). Consider the operator ⌦
⌧

�
W

. By the theorem about

the Jordan normal form we have a direct sum decomposition

W = �
�∈�(⌦⌧ )V⌧,�

∩W.

This proves, that f lies in the above direct sum.

We will now cite two propositions we will need to infer a filtration of the

(g,K)-module V
fin

.
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Proposition 9.16. [Wal88, Corollary 3.4.7.] Let V a finitely generated (g,K)-
module, such that dimZ(gC)v <∞ for all v ∈ V . Then V is admissible.

Proposition 9.17. [Kna01, Corollary 10.42.] Each Harish-Chandra-module

V (in other words: a finitely generated, admissible (g,K)-module) has a finite

composition series

V =W
k

⊃W
k−1 ⊃ ⋅ ⋅ ⋅ ⊃W0

= 0

with irreducible quotients W
j

�W
j−1. The multiplicities of the irreducible sub-

quotients are independent of the chosen composition series.

Proposition 9.18. The exists a seperated, exhaustive and increasing filtration

Fil
i

V , where i ranges over all nonnegative integers, of Vfin as a (g,K)-module,

such that each quotient Fil
i

V �Fil
i−1V is admissible and irreducible. The grad-

uated module

GrVfin =
∞
�
i=0 Fili+1V �FiliV

is independent of the chosen filtration.

Proof. We choose a generalized eigenspace V
⌧,�

from the direct sum in (88).

Since it is K- and Z(gC)-stable, we find U(g)V
⌧,�

⊂ V
fin

. According to Proposi-

tion [Wal88] the (g,K)-module U(g)V
⌧,�

is admissible and according to Propo-

sition [Kna01] there exists a finite composition series

U(g)V
⌧,�

= Fil
k

V ⊃ Fil
k−1V ⊃ ⋅ ⋅ ⋅ ⊃ Fil0V = 0

such that �k

i=1FiliV �Fili−1V is independent of the chosen composition series.

Now proceed in the same manner with V
fin

�U(g)V
⌧,�

to obtain the filtration.

Proposition 9.19. Each element f ∈ V
⌧,�

is real-analytic.

Proof. If f ∈ V
⌧,�

, there exists some N ∈ N, such that (⌦
⌧

− �)Nf = 0. Hence,

f is annihilated by the elliptic di↵erential operator (⌦
⌧

− �)N , whence it is

real-analytic.

The filtration of V
fin

furnishes a filtration of the right regular representation,

as we will show now.
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Theorem 9.20. The representation (R,L2(X,E)) admits a seperated, exhaus-

tive and increasing filtration of subrepresentations

0 = V
0

⊂ V
1

⊂ ⋅ ⋅ ⋅ ⊂
∞
�
i=0Vi

= L2(X,E),

induced by the filtration of the (g,K)-module Vfin from Proposition 9.18.

Proof. We let V
i

= Fil
i

V the closure of Fil
i

V in L2(X,E). It is easy to see,

that V
i

is stable under G. To show this, it is enough to prove GFil
i

V ⊂ V
i

,

since the representation is continuous. Let h ∈ V ⊥
i

. For f ∈ Fil
i

V ⊂ V
fin

the

function

g � (R(g)h, f)

is real-analytic according to Proposition 9.1.2. For X ∈ g on a su�cient small

neighbourhood of 0, we have a Taylor development:

�R(expX)h, f� =
∞
�
n=0

1

n!
Xn �R(g)h, f��

g=1
=
∞
�
n=0

1

n!
�Xnh, f� .

Since h ∈ Fil
i

V , hence also Xnh ∈ Fil
i

V we get �R(expX)h, f� = 0. But then

�R(g)h, f� = 0 in a neighbourhood of 1 and because of analycity, on the whole

of G. Since h ∈ Fil
i

V and f ∈ V ⊥
i

were arbitrary, we get G ⋅ Fil
i

V ⊂ V
i

.

For each i ∈ N we obtain the quotient representation on V
i

�V
i−1 which we will

denote by R
i

.

Proposition 9.21. For the K-finite vectors of R
i

we obtain

(V
i

�V
i−1)

Ri,K
≅ Fil

i

V �Fil
i−1V.

Proof. This is is clear, because R
i

is admissible, and so (V
i

�V
i−1)(⌧) is finite

dimensional, but

(Fil
i

V �Fil
i−1V )(⌧) ⊂ (Vi

�V
i−1)(⌧)

is dense, and thus the both must be equal.

Together with the following theorem, it follows that the representations R
i

are

irreducible.
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Theorem 9.22. [Wal88, Theorem 3.4.12.] Let (⇡,H) be an admissible Hilbert-

space representation of G. Then (⇡,H) is irreducible, i↵ the associated (g,K)-
module H

⇡,K

is irreducible.

9.1.3 The trace formula

Definition 9.23. Let (H, �⋅, ⋅�) be a Hilbert-space. A compact operator T is

of trace class, if ∑
i

s
i

(T ) < ∞, where s
i

(T ) denote the singular values of the

operator T . Let (e
i

)
i∈I be an orthonormal basis of H. The trace of a trace

class operator T is defined as

tr(T ) =�
i∈I �Tei, ei�.

One can show that this sum converges absolutely and is independent of the

chosen orthonormal basis (e
i

)
i∈I .

Now let (⇡,H) be an admissible representation of G. The representation is

said to be of trace class, if for each f ∈ C∞
c

(G) the operator

⇡(f) = �
G

f(g)⇡(g) dg

is of trace class.

Theorem 9.24. Let f ∈ C∞
c

(G). The operator R(f) on L2(X,E) is an inte-

gral operator with integral kernel

k
f

(x, y) =�
�∈� f(x−1�y)�(�).

Thus R(f) is of trace class and the following trace formula holds

�[�] vol(��

�G
�

)O
�

(f)tr�(�) = �
⇡∈Ĝadm

N
�,�

(⇡)tr ⇡(f),

where

O
�

(f) = �
G��G f(x−1�x) dx,

and N
�,�

(⇡) is the multiplicity of the representation ⇡ in �̂∞
i=0Vi

�V
i−1.
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Proof. Let h ∈ C
c

(G), such that ∑
�∈� h(�x) = 1. For ' ∈ L2(X,E) we compute

R(f)'(x) = �
G

f(y)'(xy) dy

= �
G

f(x−1y)'(y) dy
= �

G

�
�∈�h(�−1y)f(x−1y)'(y) dy

=�
�∈�� h(y)f(x−1�y)'(�y) dy
= �

G

h(y)�
�∈� f(x−1�y)�(�)'(y) dy

= �
��G �

�

′∈�h(�′y)��∈� f(x−1��′y)�(�)'(�′y) dy
= �

��G�
�∈� f(x−1�y)�(�)'(y) dy.

This computation shows that R(f) is an integral operator with integral kernel

k
f

(x, y) =�
�∈� f(x−1�y)�(�).

Then we can compute the trace of R(f) by integrating the kernel along the

diagonal:

trR(f) = �
X

�
�∈� f(x−1�x)tr�(�) dx.
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Breaking the integration up into the di↵erent conjugacy classes of G, we get

trR(f) = �
��G �

�

′∈� g(�′x)��∈� f(x−1�x)tr�(�) dx
= g(x)�

G

�
�∈� f(x−1�x)tr�(�) dx

=�
�∈��G g(x)f(x−1�x)tr�(�) dx
=�[�] ��∈�����G g(�−1x)f(x−1�x)tr�(�) dx
=�[�]����G �

�∈���� �⌘∈��

g(�−1⌘x)f(x−1�x)tr�(�) dx
=�[�]����G f(x−1�x)tr�(�) dx
=�[�]�G��G����G�

f((�x)−1��x)tr�(�) d� dx

=�[�] vol(��

�G
�

)O
�

(f)tr�(�).

On the other hand, according to Proposition 9.20, we have a filtration of the

representation space L2(X,E)

0 = V
0

⊂ V
1

⊂ ⋅ ⋅ ⋅ ⊂
∞
�
i=0Vi

= L2(X,E).

Thus, when R
i

is the representation induced by R on V
i

�V
i−1 we get

trR(f) =
∞
�
i=0 trRi

(f),

but the right-hand term is obviously equal to

�
⇡∈Ĝadm

N
�,�

(⇡)tr⇡.

9.2 The totally disconnected case

From now on, we let G be a locally compact and totally disconnected topo-

logical group. We can equally say, that G is a topological group, which has

a neighborhood basis (K
i

)
i∈I of 1 consisting of compact open subgroups. We
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additionally assume, that G is first countable, in particular we can find a count-

able neighborhood basis (K
n

)
n∈N of 1, consisting of compact open subgroups.

� ⊂ G again denotes a uniform lattice.

The Hilbert space L2(��G,�) is defined similarly as in section 1.3. The only

di↵erence is the choice of a hermitian metric on the bundle E = ��(G × V ),
which we require to be continuous, whereas in the Lie case we required it to

be smooth.

We define H = C∞
c

(G) as the set of all compactly supported and locally con-

stant functions on G. Recall, that H becomes an algebra under convolution.

Proposition 9.25. If f ∈ C∞
c

(G), then there exists a compact open subgroup

K ⊂ G, such that f is invariant under K from left and right.

Proof. The function f is locally constant and hence, f−1(z) ⊂ G is open for

z ∈ C. Consequently supp(f) = G � f−1(0) is closed and thus compact. The

open sets f−1(z), z ≠ 0 cover supp(f), and because of compactness we see, that

finitely many will su�ce to cover supp(f). In particular, f takes only finitely

many values. Since f−1(z) is compact, we can cover it by finitely many open

sets g
1

U
i1 , . . . , gnUin(z) . Thus we see, that f is a finite linear combination of

characteristic functions
gUi . If we take the intersection of the finitely many

occurring subgroups U
i

, we obtain an open subgroup U ′, such that f is in-

variant under U ′ from the right. Proceeding in the same manner, we get an

open subgroup U ′′, such that f is invariant under U ′′ from the left. Taking the

intersection K = U ′ ∩U ′′ we get the required subgroup of the proposition.

Definition 9.26. Define H
K

as the set of all f ∈ C∞
c

(G), which are invariant

under K from the left and right. According to Proposition 9.25 we have

H =�
K

H
K

= �
n∈NHKn .

The union in the middle ranges over all compact open subgroups K ⊂ G. It

equals the union over the neighborhood basis (K
n

)
n∈N of 1 on the right-hand

side, since for K ⊂K ′ we have H
K

′ ⊂H
K

.

Definition 9.27. LetK ⊂ G be a compact open subgroup. We define F (��G,�)K
to be the set of functions f ∶ G→ V , which satisfy

f(�gk) = �(�)f(g),
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for arbitrary � ∈ �, g ∈ G and k ∈K.

Proposition 9.28. The double quotient ��G�K for a compact open subgroup

K ⊂ G is finite. In particular the complex vector space F (��G,�)K is finite

dimensional.

Proof. Firstly, the quotient ��G is compact and furthermore the sets �gK for

arbitrary g ∈ G are open in ��G. Thus, there are finitely many g
1

, . . . , g
n

∈ G,

such that the �g
i

K cover the quotient ��G. But this means, that the g
i

contain

a full set of representatives for the double quotient ��G�K. Consequently,

F (��G,�)K is a finite dimensional complex vector space.

Proposition 9.29. Let f ∈ C∞
c

(G). The operator R(f) on L2(��G,�) has
finite dimensional image. More precisely, let K be a compact open subgroup,

under which the function f is invariant. The image of R(f) is contained in

F (��G,�)K.

Proof. Considering the integral

R(f)'(y) = �
G

f(x)'(yx)dµ(x),

we easily find, that R(f)'(y) is invariant under an element u ∈ K from the

right:

R(f)'(yu) = �
G

f(x)'(yux)dµ(x)

= �
G

f(u−1x)'(yx)dµ(x)
= �

G

f(x)'(yx)dµ(x) = R(f)'(y).

Thus we see, that R(f) has finite dimensional image, contained in F (��G,�)K .

Definition 9.30. Let (⇡, V ) be a continuous Banach space representation of

G. A vector v ∈ V is smooth, if the stabilizer Stab
G

(v) of v is open in G. We

let V ∞ be the set of all smooth vectors.

Proposition 9.31. The set of smooth vectors V ∞ is dense in V . Furthermore

we have

V ∞ = ⇡(H)V.
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Proof. Let f ∈ H. Then there exists a compact open subgroup K ⊂ G, such

that f ∈ C∞
c

(K�G�K). The stabilizer of ⇡(f)v contains K, as can be seen

from the following computation:

⇡(k)⇡(f)v = �
G

f(g)⇡(kg)v dg = �
G

f(k−1g)⇡(g)v dg = ⇡(f)v.
Thus Stab

G

(v) is open and we get ⇡(H)V ⊂ V ∞. If on the other hand v ∈ V ∞
is given, then by definition Stab

G

(v) is open. Consequently, there exists a

compact open subgroup K ⊂ Stab
G

(v). The function f = K�K� ∈ C∞c (K�G�K)
leaves v invariant:

⇡(f)v = �K �−1�
G

K

(g)⇡(g)v dg = �K �−1�
K

v dg = v.

Hence V ∞ ⊂ ⇡(H)V . To show the density, we take a decreasing family of

compact open subgroups (K
n

)
n∈N, with
�K

n

= {1}

and consider the weighted characteristic functions

f
n

= �K
n

�−1
Kn .

Now let v ∈ V , and compute:

�⇡(f
n

)v − v� = ��
G

f
n

(g)⇡(g)v dg − v�

≤ �K
n

�−1�
Kn

�⇡(g)v − v�dg.

≤ �K
n

�−1�
Kn

�⇡(g) − Id�
op

�v�dg.

The representation ⇡ is continuous and consequently �⇡(g) − Id�
op

< " for all

g ∈K
n

, if n is large enough. This shows

⇡(f
n

)v → v,

and V ∞ is dense in V .
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Theorem 9.32. V ∞ has a filtration

0 = F
0

⊂ F
1

⊂ ⋅ ⋅ ⋅ ⊂
∞
�
j=0Fj

= V ∞,
such that the respective quotients are simple H-modules. In addition, for every

f ∈H there exists a natural number n
0

, such that

R(f)(F
n+1�Fn

) = 0, (89)

for n ≥ n
0

.

Proof. It su�ces to show, that there exists an increasing filtration (F
n

)
n∈N,

such that F
n+1�Fn

has finite length and satisfies (89), since we then can refine

the filtration, such that respective quotients are simple H-modules. Choose a

countable family (K
n

)
n∈N of neighborhoods of the neutral element, consisting

of compact open subgroups with

K
n+1 ⊂Kn

and �
n∈NKn

= {1}.

We let F
n

= R(H)F (��G,�)Kn . Each vector space F (��G,�)Kn is finite

dimensional and hence the quotients F
n+1�Fn

must have finite length. If

f ∈ H, say f ∈ C∞
c

(K�G�K), then we have shown in proposition 9.29, that

R(f)F
n

⊂ F (��G,�)K . If we choose n
0

∈ N, such that K
n0 ⊂ K, we thus have

R(f)F
n

⊂ F
n0 for all n ∈ N

0

. Consequently

R(f)(F
n+1�Fn

) = 0,

for all n ≥ n
0

.

Definition 9.33. Let Ĥ be the set of equivalence classes of simple H-modules.

For M ∈H, we let N
�

(M) ∈ N
0

be the multiplicity of M in �∞
n=1Fn

�F
n−1, such

that ∞
�
n=1Fn

�F
n−1 ≅ �

M∈ĤN�

(M)M.

Theorem 9.34. For M ∈ Ĥ and f ∈H we let tr
M

(f) be the trace of the linear

operator

m� f ⋅m



98 9 SELBERG TRACE FORMULA FOR COMPACT QUOTIENTS

on M . Then the trace formula

�
M∈ĤN�

(M)tr
M

(f) =�[�] vol(��

�G
�

)�
G��G f(x−1�x)dx tr(�(�))

holds.

Proof. We firstly compute the trace of the operator R(f) via the filtration of

Theorem 9.32. By ∞
�
n=1Fn

�F
n−1 ≅ �

M∈ĤN�

(M)M

we get

trR(f) = �
M∈ĤN�

(M) tr
M

(f).

Note, that by (89) this sum is finite. On the other hand, the geometric side can

be computed in exactly the same fashion as in the proof of Theorem 9.24.
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Appendix A - Zusammenfassung in deutscher

Sprache

In dieser Arbeit stellen wir nicht unitäre Spurformeln vor. Sei G eine lokalkom-

pakte topologische Gruppe und � ⊂ G eine diskrete Untergruppe zusammen

mit einer endlichdimensionalen komplexen Darstellung

� ∶ �→ GL(V ).

In der klassischen Selbergschen Spurformel fordert man zusätzlich, dass � eine

unitäre Darstellung ist, worauf wir verzichten. Wir betrachten Funktionen f ∶
G→ V mit der Eigenschaft

f(�g) = �(�)f(g),

für alle g ∈ G und � ∈ �. Nach Einührung eines geeigneten Skalarprodukts auf

dem Raum dieser Funktionen, erhalten wir einen Hilbertraum L2(��G,�). Auf
diesem Raum betrachten wir die Rechstdarstellung R, gegeben durch

R(g)'(x) = '(xg),

wobei ' ∈ L2(��G,�). Ist f ∶ G → C eine Funktion mit hinreichend guten

Eigenschaften, so erhält man einen Operator R(f) auf L2(��G,�), der für

' ∈ L2(��G,�) durch

R(f)'(x) = �
G

f(g)'(xg)dg

gegeben ist. Ist der Quotient ��G kompakt, so ist R(f) ein Spurklasseopera-

tor. Ist ��G nicht kompakt, so definiert man den Unterraum L2

cusp

(��G,�) ⊂
L2(��G,�) der Spitzenformen. Es stellt sich heraus, dass R(f) den Raum der

Spitzenformen stabil lässt und die Einschränkung einen Spurklassoperator lie-

fert. Zur Herleitung der Spurformel zerlegt man einerseits die Darstellung R

und berechnet mit Hilfe dieser Zerlegung die spektrale Seite der Spurformel.

Andererseits zeigt man, dass R(f) ein Integraloperator ist. Die Spur von R(f)
berechnet man dann durch Integration des Integralkerns auf der Diagonalen

und die Zerlegung von G in seine Konjugationsklassen. Dies liefert die geome-
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trische Seite der Spurformel.

Während die geometrische Seite im nicht unitären Fall keine größeren Schwie-

rigkeiten bereitet, ist die Zerlegung der Rechtsdarstellung a priori nicht klar.

In dieser Arbeit stellen wir Lösungen für die folgenden 3 Fälle vor:

1. Als einfachsten Fall betrachten wir die Gruppe G = PSL(2,R).

2. Im Anschluss stellen wir den Fall einer halbeinfachen Lie-Gruppe genauer

dar. Zusätzlich verlangen wir die Kompaktheit des Quotienten ��G.

3. Zuletzt untersuchen wir kompakte Quotienten ��G, wobei G eine total

unzusammenhängende Gruppe ist.
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