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Abstract 

Connections between Statistics and Archaeology have always appeared very fruitful The objective of this paper is to offer an 
outlook of some statistical techniques that are being developed in the most recent years and that can be of interest for 
archaeologists in the short run. 
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1 Introduction 

Scientific research is not outside the world-wide extension 
process that many aspects of the live are experimenting at the 
end of the century. Connections between different areas are 
easier and easier. On the other hand, specialization is almost 
a requirement to be able to contribute significantly in any 
field of the scientific spectrum. So it is frequent to fmd 
researchers coming from very different areas who work on 
the same kind of problems. 

This atmosphere favors that links between Statistics and 
Archaeology become even stronger than they traditionally 
were. This paper attempts to throw some light on the topics 
that statisticians are dealing with, in the hope that 
archaeologists are incorporating them to their usual research 
activities. 

There are many stages in an archaeological research process 
where statistical problems are present. The problem of data 
collection appears first. Sampling techniques and 
experimental design offer good classical solutions and no 
new contributions are being referred here. We just turn to 
remark once agam that an appropriate random selection of 
the data is crucial to validate posterior inference procedures. 

Once data have been collected, the archeologist is concerned 
about see her data. Exploratory Data Analysis is then to her 
service. Here we refer to that matter when we explain some 
nonparametric methods (subsection 2.1) and multivariate 
methods (section 4). 

Statistical inference is broadly present in Archaeology. 
Dating methods, typology (cluster analysis) and discriminant 
analysis are maybe the most popular of these procedures. 
Recent advances are compiled in sections 2, 3, and 6. 
Bootstrap and other resampling methods are the content of 
section 5. They turn out to be useful general tools for 
validating and calibrating inference methods. 

A common problem in many practical studies is the 
simultaneous presence of qualitative and quantitative 
information. Some of the techniques developed here are 
specially adequate to deal with this problem. It is proper to 
emphasize multivariate methods based on distances 
(subsection 4.3) and Bayesian methods (section 6). 

Section 7 quickly reviews some statistical packages. It also 
includes a list of Intemet resources where statistical software 
related with Archaeology is accessible. 

We are not reviewing the field known as Spatial Statistics 
notwithstanding that it is an important connection area 
between Statistics and Archaeology. Only some recent 
references are listed: is dedicated to Spatial Statistics, and 
has a chapter about the Bayesian analysis of spatial data. 

The rest of the paper is organized by statistical topics. It is 
hoped that at the end of the paper the correspondence 
between reviewed statistical methods and archaeological 
problems looks clear. 

2 Nonparametric methods 

We call nonparametric methods to the statistical techniques 
dealing with the estimation of flinctionals of the density or 
regression function. There are no parametric assiunptions 
involved in the estimation (for instance, no normality 
assumptions are made) or we can think that the parameter 
space has infmite dimension (for instance, each possible 
density function could be a parameter; then the parameter 
space would be the set of all possible functions, who has 
infmite dimension). Strictly speaking, nonparametric 
methods are not a novelty neither in Statistics nor in 
Archaeology (a simple histogram is a nonparametric 
estimator of a density function), but in our opinion all their 
potential has not been fully explored. We present here 
density estimation by kernel methods, and regression 
fiinction estimation performed by three different approaches. 

2.1 Kernel density and regression estimation 

The objective is to estimate the density function (i.e. the 
\di\\xtf(x) of the density function of a random variable .Y at a 
point X, given a random sample of X: X,,.....^„) or the 
regression function (i.e., the conditional expected value 
E(Y\X = x) given a random sample of the variable (Y,X): 
(X,.Yi) (X^Y,)). 

Kernel techniques are characterized by the use of a weight 
function (the kernel function) that permits give more mass to 
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observed data X, (or {X„Yh) near the point x when/('xj (or 
E(Y\K = x)) is estimated. 
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Nonparametric    regression    (also    know    as    smoothing 
techniques) is motivated as follows. Assume we have a 

dependent variable Y that can be explained 
by the independent variable X. A way to 
make more flexible linear regression is 
passing from 

E(y\X- •• X)  = ba 

m(x) 
b,x to E(Y\X = x) = 

where m is an unknown function. The 
nonparametric estimation of m(x) is done 
by computing local mean values: 

m(x)= {average of values Yj 
corresponding to values Xj that are 
near the value x) = Average {Yi\xi 
are near x}. 

This is a sample version of E(Y\X = x). A 
general reference is Simonoff (1996). 

Figure 1. Example 1. Romano-British waste glass. 

Kernel density estimation can be considered as a way of 
smoothing the histogram. A specific reference in 
Archaeology is Baxter and Beardah (1997). More generic 
references are Silverman (1986) and Simonoff (1996). 

Example 1 

This example is based on data and ideas from Baxter and 
Beardah (1997). From 105 specimens of Romano-British 
waste glass, 11 variables were obtained measuring its 
chemical composition. Figure 1 represents the estimated 
density of the scores on the first principal component for 
each individual. The estimation is done with Beardah's 
routines KDE (see section 7). Clearly, there are two groups 
of glasses along the fu-st principal component. 

Example 2 

We use again data from Baxter and Beardah (1997). In the 
figure 2 of that paper, we can see the scatter plot of the 
scores on the second principal component versus the scores 
on the first one. As we know, there is no linear relation 
between these two variables, but we can find nonlinear 
relation by using nonparametric regression: the second 
principal component can be nonlinearly explained by the first 
one. Figure 2 shows the result. 

Applications of nonparamefric density and regression 
estimation include exploratory data analysis, cluster analysis 
(Baxter and Beardah 1997) and generalized additive models 
(GAM). 

2.2 Generalized additive models (GAM) 

We   consider   now   the   multiple   linear 
regression model 

E(Y\X) = bo + b,X, + 02X2 + ...+ bpXp. 

A nonparametric extension of it is the 
additive model: 

EOVQ = bo +f,(X,) +f2(X2) + .••+jpmp. 

where ƒ are unknown fiinctions that can be 
estimated by smoothing techniques. A 
complementary extension is the 
Generalized Linear Model (GLM). For a 
known fijnction g (the link function), 

g(E(Y\X)) = bo + b,X, + b2X2 + ... + bpXp, 

For instance, in the logit model 7 is a 0-1 
variable. 

Figure 2. Example 2.1. Nonparametric regression for 
Romano-British waste glass. E(YlX) = Prob(Y = \IX) = 

,^ß 

\ + e x'ß • 
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Example 3 

Original Sample 

X1<C1 

Subsample 1 

Figure 3. CART: first step. 

The logit model is a GLM: if we define the logit 
transformation as l(p) = IogO/(l - p)), for/? e [0,1], then 
l(E{Y/X)) = X'ß. The Generalized Additive Model (GAM) 
extends the original linear model in both directions: 

g(E(Y\X)) = bo +f,(X,) +//Ay + ...+//jg 

Venables and Ripley (1994) has some chapters dedicated to 
GLM and GAM. Comprehensive references are cited there. 

2.3 Classification and regression trees (CART) 

Classification and regression trees (CART) are 
nonparametric techniques for discriminant analysis and 
multiple regression. The key reference on this field is 
Breiman, Friedman, Olshen, and Stone (1984). Let us look at 
the simple case of discriminant analysis for two population. 
We observe 

(Y,;Xu.....Xp^i=\,...,n 

where variable 7/ is 1 or 2, according to what population the 
case / is coming fi-om. The objective is to predict the value of 
Yj, given the information brought by X,i,...,Xp,. CART selects 
one of the p explanatory variables (that one with the biggest 
discrimination power, for instance, Xi) and divide the 
original sample into two parts: cases with Xn > Cl (say. 
Subsample 1) and cases with X,i < Cl (say. Subsample 2), as 
Figure 3 indicates. The choice of Cl is done in a way that 
these two 
new subsamples are as similar as possible to the original 
classes identified by y,. 

Now, the same procedure is done in Subsample 1 and 
Subsample 2. A binary tree is the output of the procedure. 
Each node is divided into two branches according to an 
observed variable. The final nodes have associated one of the 
values of Y: 1 or 2. 

To classify a new observation Ç(,, ...,X„), we let this new case 
running the tree from the first node to a final node (according 
to its values of X-, and to the splitting rules defming the 
successive intermediates nodes of the tree) and it is finally 
classified into the group indicated by the corresponding final 
node. 

Data consisting on measurements of 150 male Egyptian 
skulls fi-om 5 different time periods (-4000, -3300, -1850, - 
200, 150) are considered. Data and original source can be 
found in Manly (1994). The objective is to discriminate 
between time periods based on the measures. Thirty skulls 
are measured from each period. Four measures are taken 
from each skull (see Figure 1.1 at Manly 1994): 

V1       Maximal Breadth of Skull 
V2       Basibregmatic Height of Skull 
V3       Basialveolar Length of Skull 
V4      Nasal Height of Skull 

Figure shows the fmal classification tree as the commercial 
package S-plus (see section 7) produces. Each fmal node 
contains a label indicating to which one of the five periods 
would be classified a skull with measures according to the 
path going from the original node to the fmal one. 

3 Artificial neural networks (ANN). 

Artificial Neural Networks are very popular tools in 
Artificial Intelligence and Engineering. They are based on 
the connection of many very simple mathematical models, 
the artificial neurons, that imitates the work of a real neuron. 
We can think about an artificial neuron as a mechanism that 
transforms numerical input information into mmierical 
output information: 

Inputs > -¥ Output 

Output = g(Input 1,..., Input p). 

The function g is an activation fiinction, that takes values 
near 1 for great inputs and values near 0 for low inputs. 

Inputs for neuron B are the (weighted) outputs of other 
neurons Al,... ^p. 

Outputs = gCw/OutputA I + ... + WpOutput^p), 

Moreover, the output of B (modulated by some weights) is 
one of the inputs of (many) other neurons Cl,... ,Cq. 
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Figure 4. Example 2.3. CART for Egyptian skulls. 

There can be a lot of these B neurons. In fact, neurons Ai and 
a are of the same type as B. When many neurons and many 
interactions are considered, we obtain an Artificial Neural 
Network. 

As an example, we present the one hidden layer feed forward 
propagation ANN with a unique output. There are three 
neuron layers {A, ß and C) and the information goes from the 
fu-st layer to the second layer and then to the third one. 

A B 
Input Hiildcn 

by« layer 

The strucmre of the net is as follows. 

• separate external information is given to each neuron in 
layer A, 

• gA is the identity fimction. 

• gB^gc'^g, 

• there is only a final neuron in layer C, and 

• the information produced by layer C is return outside. 

Let X, be the numerical information given to the z-th neuron 
in layer A and let y be the output obtained from neuron C. 
Then, 

BC BC 
y = Outputc = g('wj    Outputß^ +... + Wp   Outputßi. ) = 

/ ^, 
= g t wf Outputsj = 

V»              ; 
r.       fp             ^ \ 

--g Y.^fg Hwf^ Output ^1 
{j=^     v'='            ; 

=R [twf, ( P            \ 

7=1 
V 

;=1 
V ; / 

This ANN is a parametric family of nonlinear fiinctions from 
RP to Rthat, given inputs (xi,... ,x„) returns the output value 
y. Each set of parameters {r.wf^.wf^} determines a different 
ftmction. 

The fundamental property of the ANN is known as Universal 
approximation property and tells that every function from 
R P to R can be approximated by one of these one hidden 
layer ANNs. 
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This property originates the statistical interest for ANN. 
Given observations (yt, xj, i = 1,..., n, generated by the 
model 

we can estimate <1> by means of a one hidden 
layer ANN. 

Strictly speaking, this is a particular case of a 
nonlinear regression analysis. ANN literature 
has been developed (quite) independently and 
it has provided important contributions. For 
instance, the estimations process (or net 
training process) is implemented in a very 
different way in ANN and in nonlinear 
regression analysis. More connections between 
both topics are needed. 

Statistical applications of the ANN include 
discriminant analysis, regression, cluster 
analysis and nonlinear multivariate analysis. 

4 Nonlinear multivariate analysis (NLMVA) 

We present here some alternative tools to the well known 
Principal Component Analysis and Correspondence 
Analysis. Some of these techniques are quite recent, but 
others have been introduce in the statistical literature in the 
80's. 

4.1 NLMVA for discrete data: The Gift system 

Albert Gif! is the nom deplume for a group of authors related 
with the Department of Data Theory at the University of 
Leiden, The Netherlands. These authors compiled their work 
of more than 10 years in the book of Gifi (1990). 

The book presents the particular idea of MVA that the Gifi 
team has. For instance, they affirm that all we can observe is 
discrete (but not all the discrete are equally rich). Moreover, 
no random variables are needed to be assumed the origin of 
data: data are enough to make Statistics. 

The basic principle of the proposed techniques is the concept 
of homogeneity. The observed data and the observed 
variables are jointly transformed (in a nonlinear way) in 
order to obtain transformed objects as much homogeneous as 
possible. Not all transformation is always allowed: 
it depends on the data richness. 

One special case of the proposed methodology is equivalent 
to Multiple Correspondence Analysis (MCA), but the scope 
of the book is wider than MCA. Continuous data can also be 
analyzed after a preliminary codification. 

Some of the procedures developed in this book are included 
in the commercial package SPSS: 

Principal curve for the scores on the Ppal. Cpnts. 1 and 2 

-1 0 1 
Score PC 1 

Figure 5. Example 4.2. Principal curve for Romano-British 
waste glass. 

4.2 NLMVA for continuous data: Principal curves 

Principal curves are parameterized one dimensional curves 
that passe through the middle of a p-dimensional cloud of 
data. They are nonlinear generalizations of the first principal 
component. They were introduced in the work of Hastie and 
Stuetzle (1989). Some work has been done since then, but 
principal curves have not been very used, mainly because of 
the difficulties in the defmition and implementation for the 
second (and posterior) principal curves, and also because the 
existing associated software has not been widely diffused. 
Other references are LeBlanc and Tibshirani (1994), Kégl, 
Krzyzak, Linder and Zeger (1997), and Delicado (1998). 

There exists a parallel neural network approach: Self- 
Organizing Maps and Generative Topographic Mapping. 
See, for instance, Bishop, Svensén, and Williams (1997). 

Example 4 

Figure 5 shows the first principal curve in the data set of the 
105 glass scores on the two first principal components. 

4.3 Distance based methods 

We have observed/? characteristics of« objects, for instance, 

Characteristic 1   ... Characteristicp 
Object 1 1 ... 22.5 
Object 2 0 ... 29.0 

• HOMALS, similar to multiple correspondence analysis, 
• PRINCALS,     a     nonlinear    version     of    principal 

components also available for ordinal data, 
OVERALS, a nonlinear version of canonical correlation 
analysis. 

Object n 17.3 
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Sometimes it is easier to give a distance between objects 
matrix D = {dtj), 

dij = Distance(Object„ Object/), 

based on the p observed attributes, than proposing a joint 
model for these attributes. 

It is possible to mix qualitative and quantitative 
information (Gower's distance, for instance, but there exist 
alternative methods). 

In the last years many work has been done in order to 
develop usual multivariate statistical analysis (principal 
components, discriminant analysis, regression analysis) from 
a distance matrix. In the Universidad de Barcelona there is an 
active group of researchers in this field (see Cuadras, 
Fortiana, and Oliva 1997). Multidimensional scaling is a 
precedent to this line of work. 

Talking about distances, we have to refer to cluster analysis. 
Alternatives to the usual hierarchical methods are the 
pyramidal clusters, where the resulting clusters are allowed 
to be overlapped. More flexibility is obtained at the prize of 
more difficult interpretation of the results. As a reference, see 
Diday (1986). 

5 Bootstrap and other resampling methods 

Let us assume that we are interested in a particular 
characteristic X of a population and that we observe the value 
of this variable in a sample of similar objects. For instance, X 
can be the volume of some cups. Let X,, ..., X„ be our 
observations. 

We can think that each X^ is the realization of the random 
variable X, which has unknown distribution function Fx- 

Let// = E(X) be the theoretical mean volume. Inference about 
^ is based on the sample mean 

M = x„=-tx^, 
ni=\ 

Confidence intervals for m can be constructed if we assume 
that Fx belongs to a particular parametric family and/or by 
means of asymptotic results. For instance, if Var(X) < oo, we 
know that 

Sy      TT A'„-L96-^,A'„+1.96 
V« V«/ 

is an asymptotic 95% confidence interval for ;/. Let us 
observe that this interval has the form 

where Ly, is the 2.5 percentile of the asymptotic distribution 
of X, and UA is its 97.5 percentile. 

An alternative way to provide a confidence interval for fi 
could be as follows. Assume that we know Fx, so we can 
repeat as many times as we want the sampling process: 

Sample 1 

Sample N 

-n; (V •X ru 

X (N) ..,x (N) 
•X (N) 

We have a size N sample of X„ from which we can build a 
confidence interval for // as follows, 

(LN. UN). 

where L^ is the 2.5 percentile of the sample X^J-* ,...,xl^^ , 
and Ufj is its 97.5 percentile. 

The problem of this approach arises when we realize that we 
do not know Fx- When a statistician does not know a 
population characteristic, usually he or she estimates it from 
the data. So we estimate the theoretical distribution function 
Fx by the empirical distribution function F„ of our initial 
sample Xi,...,X„: 

F„W 

XI 

Efron (1979) introduces the term bootstrap to designate this 
resampling procedure (there exist other resampling methods, 
as the jacknife, also covered by this book). He proposes 
instead of sampling from Fx, taking samples from F„, or 
equivalently, drawing values from the set {X,, ... X} with 
replacement: 

Bootstrap sample 1 

Bootstrap sample N 

x:<'^ x'<'>^xT' 

'*(N) ,...,A„ (N) x *(Nj 

We resample our original sample. It is a valid procedure in 
many cases, but bootstrap does not always gives appropriate 
answers. Two are the direct advantages of bootsfrap: first, in 
many cases bootstrap gives better results that asymptotic 
arguments, and second, sometimes the only possibility to 
make inference is by a resampling procedure. 

The scope of bootstrap methods includes,. among others, 
confidence intervals, hypothesis tests (as an example, see 
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Delicado and del Rio 1994) and times series. Two references 
are advisable: Efron and Tibshirani (1993) is a very well 
written book, recommended also as a very good book in 
Statistics; Davidson and Hinkley (1997) presents an updated 
review of this broad topic. 

6 Bayesian methods 

The Bayesian approach to Statistics is not at all new. 
Nevertheless we have considered appropriate to include it in 
this paper for several reasons. First, in the last years the 
Bayesian contribution to the Statistics research is 
dramatically increasing. Moreover, the use of powerful 
computers permits to give a Bayesian answer to many 
problems that where not accessible to Bayesian statisticians 
few years ago. And finally, the Bayesian methodology is not 
widely used in Archaeology. 

Recently has appeared a book that introduces Bayesian 
methods to archaeological community: Buck, Cavanagh, and 
Litton (1996). We can read in its preface: 

The major advantage of the Bayesian approach is 
that it allows the incorporation of relevant prior 
knowledge or beliefs into the analysis. 

This sentence words an essential point of Bayesian Statistics. 

6.1 An introduction to Bayesian methodology 

We analyze a simple problem. We want to date a red 
pigmented ceramic found in a excavation. There are three 
possible periods for that kind of objects. Period 1, Period 2 
or Period 3, and we know that 

PT0h(red \ Period 1) = 0.2 , 
?rob{red \ Period 2) = 0.5 , 
Prob(rerf i Period 5) = 0.8 . 

The classical (or frequentist) answer is the following: 

I should date my ceramic in the more likely period. 

That is, we take the maximum likelihood estimator, and the 
result is: 

estimated period = 3. 

The Bayesian answer is as follows. A priori, before 
observing the ceramic, we can assume that the three periods 
are equally probable: 

Proh(Period I) = ?Tob(Period 2) = Proh(Period 1) = Ï/3. 

The Bayes' Theorem permits to calculate the probability of 
the event 

Ai = "The ceramic corresponds to Period i" 

conditioned to the observed fact 

P(A^ \ B = 

But also, 

So 

B = "The ceramic is red". 
P(A/ n BJ 

B 
P(AinB) = P(At\B)P\B. 

P(AinB) = P(B\Ai)P(AJ. 

P(Ai I B)(P{B) = P(B I 4-)^(4) => 

PiB I AAP(Af) 
P(A: I B) = '- '-(Bayes'Theorem) 

P(B) 
We can compute ProhiPeriod i\red) and also PToh(red): 

P(red) = P(red\Period l)P(Period 1) + 

+P(red\Period 2JP(Period 2) + P(red\Period 3)P(Period 3) = 0.5 
and 

0.2x- 
1 

P(Period I | red) = 

P(Period 2 \ red) 

P(Period3 \red) = 

.5 

1 
0.5x- 

3 

0.%x- 
3 

2 

15^ 

5 

8 

.5 15 
So our prior beliefs have been modified in the experimental 
stage (the observation of the color of our ceramic) and now 
we have "a posteriori" hsMek. 

PosicrJors belicfn 

Pcruiod 2 PCTOKHJ 3 

Figure 6. 
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A summary of Bayesian methodology could be as follows:. 

1. Prior information is expressed as a probability 
distribution over the parameter space. 

2. Likelihood function is, in fact, the conditional 
distribution of the observations given the parameter 
values. 

3. Bayes' Theorem is used to combine prior 
information with experimental information and 
transform them into posterior information: another 
probability distribution over the parameter space. 

Some of the positive points of Bayesian Statistics are the 
following. Bayesian approach is concepmally appealing (and 
simple). For instance, the probability that a parameter 
belongs to a Bayesian 95% confidence interval is really 0.95. 
Moreover, it is possible to include prior qualitative 
information into the inference process. It is also possible to 
progressively update the beliefs: the "posterior" information 
of today is the "prior" information of tomorrow. 

On the other hand, some difficulties are inherent in Bayesian 
methodology. A prior distribution is always needed, even if 
you do not have such "a priori" information, and some results 
will strongly depend on that prior. Moreover, in medium and 
large size problems, the computation of the posterior 
distribution is extremely difficult. Many times only 
approximate solutions are available, as the produced by the 
Gibbs sampling method (see subsection 6.2). 

We refer to Buck, Cavanagh, and Litton (1996), pp. 208-, to 
follow an application example of Bayesian methods to 
radiocarbon dating. There, it looks clear the superiority of 
these techniques when qualitative information has to be 
included in the analysis. 

6..2 Computer intensive methods 

The Bayes' Theorem version for absolutely continuous 
random variable is: 

fX(x\e)fe(9) 
fg(9\X^X) = 

\ß(x\e)fe(e)d9' 

where (X,ff) are random variables, 6 is the unobserved 
parameter (that can be a vector of parameters), X is observed, 
fx(x\q) is the likelihood function and fg(d) is the prior 
disn-ibution of 6. The result of the experimentation was the 
observation of the value x forX 

In many cases, we need to solve the denominator integral 
(and usually this is not an easy task). In other cases, we do 
not want the posterior distribution of all the parameter vector, 
but only the posterior distribution of some parameters. For 
instance, 6 = (ß,cf) and we want to know the posterior 
distribution of m given the sample, with no attention of s. 
Then, 

f,iM \X = x) = 1/,(//,cr I X = x)da 

Again, we need to integrate. 

The integration operation is usually not feasible. Then, 
Monte Carlo methods can help us to approximate the 
integrals. One of the most used Monte Carlo methods in this 

area is the Gibbs sampling (see again Buck, Cavanagh, and 
Litton (1996)). This technique has an additional advantage: 
only marginal conditional distribution must be specified 

f(fx\a,x)andf((7\/i,x) 

instead of 

7 Recommended Statistical Software 

At our knowledge, no program exists implementing all the 

procedures presented in this paper. Nevertheless we could 
list some packages. 

• S-pIus. Many statistical developments are done in S- 
plus, and object oriented statistical commercial program 
that incorporates many of the most recent statistical 
techniques. A good book for S-plus is Venables and 
Ripley (1994). S-plus is possibly the most updated 
commercial package. It also includes a module on 
Spatial Statistics. Some related web sites are 
http://www.mathsoft.com (the official web page of S- 
plus) and http://www.stats.ox.ac.uk/pub/MASS. 

• OxCal. Bayesian inference (including Gibbs sampling) 
is possible by using this package from the Oxford 
Radiocarbon Laboratory. It is accessible at 
http://units.ox.ac.uk/departments/archaeology. 

• KDE: Kernel Density Estimation MATLAB toolbox, by 
C.C. Beardah. See also . The routines can be 
downloaded at ftp://ftp.maths.ntu.uk.ac/pub/ccb. 

• Some other Internet resources: 
STATLIB     (http://wwrw.stat.cmu.edu/statlib)    for 
Statistics and S-plus. 

- NEURAL CLASSIFICATION AND 
REGRESSION TREES. Ntree is a C library for the 
estimation of neural network smoothed versions of 
CART. (http://www.informatik.uni- 
freiburg.de/pub/neural/). 

- NEURAL NETWORKS IN MATLAB. See the 
web site http://neural-server.aston.ac.uk/GTM/. 
GIFI SYSTEM. Source code for different compilers 
are available at http://www.ucla.edu/gifi/. 

- PRINCIPAL CURVES. The original S-plus 
program from can be download at 
http://www.stat.cmu.edu/S/ principal.curve. Many 
complete information about principal curves and 
software related with is available at 
http://www.cs.concordia.ca/%7Egradykegl/research 
/pcurves. At 
http://www.econ.upf es/%7Edelicado/prcu, you can 
find MATLAB routines implementing the principal 
curves approach described in Delicado (1998). 

8 Conclusions 

The possibilities of interaction between Archaeology and 
Statistics are exfremely appealing. Joint projects of 
archaeologists and statisticians are certainly very promising. 
We borrow some words (here in italics) that Clive Orton 
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(Orton 1997) write in the review of for the Journal of 
Archaeological Science, and we finish the paper with a final 
advice: 

My advice to archaeologists is bear in mind Statistics, and 
then be sure that you know a sympathetic statistician. 
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