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4.1 Introduction 

Seriation methods are probably one of the most pubUshed topics in the literature on 
computer applications in archaeology. At the time of writing, the authors have collected 
117 references to the subject (included in the handbook distributed with the Bonn 
Seriation and Clustering Package), and there are probably a lot more. Only a very 
few workers have attempted to simulate the processes which lead to seriatable data, 
and to test these simulations having known sequences and properties with existing 
methods (Graham et al 1976; Wilkinson 1974; Doran & Hodson 1975, p. 267-284). 
Some archaeologists have tested one or another method on real data whose dating 
is externally determined, e.g. through the physical geometry of the site or known 
chronological order rather than through find associations (Hodson 1968, Eggert et al. 
1980). But a simulation technique which is founded on reasonable statistical premises 
about populations and type production can give greater insight into the limitations of a 
given method. In addition, simulated data is excellent for testing programs with regard 
to execution time and storage, since it is much easier to simulate a large quantity of 
data than to enter real information. 

Simulation has also been used in other fields to model real processes. If the fit of the 
simulated model to real data is very good, it is then assumed that the parameters of the 
simulation also apply to the real data. As archaeological recovery can not be modeled 
by simple random sampling (there are systematic effects as well), it seems dangerous to 
use seriation simulation in this way, but there is nothing to prevent the user from doing 
so at his own risks and perils. In this paper, we describe some of the statistical and 
mathematical bases for the program SERSIM which will be distributed with Version 
3.2 of the Bonn Seriation and Clustering Package (I. & I. 1987) with seriation algorithm 
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following Ihm, (Ihm 1982). Results of tests made with data produced by SERSIM will 
be described in the near future. 

The following mathematical outline of the simulation of a feature complex is based 
partly on the simulation concept of (Graham et al 1976). The new design offers greater 
variability in the choices of the type lifetime distribution function and of the population 
function. It has a more realistic concept of the type production function^ and it replaces 
the confusing 'richness' parameter of that paper by the mean number of incidences per 
feature. 

With the new program presence/absence as well as abundance data can be simulated. 
Also, the user may choose to simulate two feature groups which have only a certain 
number of types in common. Each feature complex simulation has three phases: First 
the types then the features and finally the incidences are generated. 

4.2   Creating the types 

Each type is produced only during its lifetime interval. It is assumed that the centres of 
these lifetime intervals are equally distributed in the period during which the feature 
complex was in use, plus a small margin. The type production function is a curve 
which has values zero at both lifetime interval border points. It is assumed that the 
curve increases rapidly to a maximum and then gently decreases to zero, the famous 
'battleship' curve of the seriation Hterature. 

Given the lifetime interval [a, b] and the location of the maximum (c, d) with c less 
than [a - 6)/2, how can we construct a curve which fulfills the properties mentioned 
above? Mathematically the properties are: 

• the curve is monotone increasing in the interval [a, c] from (a, 0) to (c, d) 

• the curve is monotone decreasing in the interval [c, 6] from (c, d) to (6,0) 

• the curve is continuous differentiable 

• the only point within the interval with vanishing first derivative is c 

It may not be evident that the type production curve should be continuously dif- 
ferentiable if the type is a pot for example, since only a certain number of pots are 
produced every day and a decrease in production is reflected by a lower number of 
total pots per day But during the long time periods we are modelling, these differences 
level out and the trend remains of a slowly changing demand bringing the pot of our 
example in and out of fashion. 

Our initial idea for modelling the type production function was to construct a cubic 
polynomial which is uniquely defined by the three points (a,0), {c,d), (6,0) and the 
condition that the first derivative in c should vanish. But if c is chosen close to a, the 
third zero of the cubic polynomial lies within the interval [a, c] and so the function 
would violate at least two of the properties desired for the type production function. If 
a polynomial of degree four is constructed with the same conditions and the additional 
property that the first derivative of the curve vanishes in 6, the same problem occurs. 
We also tried a cubic spline, but this led in some cases to an undesired maximum 
greater than d in the interval [a, c]. 
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Figure 4.1: A type production curve with a lifetime of thirty years with the maximum 
after ten years of type production. The curve is scaled in such a way that the maximum 

production is at 0.9. 

Finally we decided to use a curve which is partly a second degree and partly a third 
degree polynomial. It fulfills the above mentioned properties and its first derivative 
vanishes in b. This curve is given by the following formulas: 

/(^) = { {x - a)[sx^i) 
{x-hf{ax^T) 

iSx<aorx>b 
ii a < X < c 
ii c < X < b 

with 
r^ 

a = r^ 
—  -7 3c-b 

TU . •       j-   ^„otifao-pc in this method: It is not possible to construct a There are two minor disadvantages m mis nieuiuv.* r 
symmetric curve; and the second derivative in c is not continuous. In our experiments 
with this type production form, the resulting curves always appeared smooth as shown 

'''The'JLTÎ,b:c:d are random variables for each type. The random variables a and 
b are calculated from two other random variables, the mean type date and the type 
lifetime. As mentioned above, the mean type dates are equally distributed m the time 

interval of feature complex use plus a small margin. ^- , u ,•        c 
x;r 1       1    •.   u       „,^ inhiiHvp ideas about type lifetime distributions. So we Most archaeologists have no intuitive laeat, auuui lyy .     .^, ^, 

cc ,   n     ui   ^^r,. ûr-,f allnwine the archaeologist to experiment with three offeranextremely flexible concept, allowing uieai Lia       5 ^ ..u .. ^u   j 
•      i.u   1;(:^^;,^-o rliQiribution function. It IS assumed that the density parameters governing the lifetime distriDurion IUIIL.I U , f   _ n I-   ^ ^   \ 

of this functLn is piecewise linear, increasing in the time interval from 0 to t„ constant 
from t, to t„ and decreasing from t, to ^3- It is permissible to se date i, equal to t. 

The expectation of a random variable with this distribution function is given by (with 

A = maximum of density function): 

A^_tl + q + tl + t2t3)       with       A=  _t,+t2+t3 
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Figure 4.2: Five overlapping type production curves with different lifetimes and max- 
imum heights distributed over a period of three hundred years. The lifetimes vary 
between 65 and 90 years, the mean is 76 years. The maxima are scaled so that they are 
in the range 0.4 ... 0.9. 
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The parameter c will be calculated from a random variable C which is chosen to be 
equally distributed in the interval [0.1, 0.5] in the foUowmg way: 

c = a + {h-a)-C 

The type production function will be scaled in such a way that its value at a point of 
time will give the probabiUty that a feature which is created at this pomt of t me will 
contain thi type. Therefore it has to be made sure that the parameter ^ does not ^^^^ 

1. The param'lter d is taken as a random variable which is ^^^'^^'^^'^f^^ffj''''^^ 
interval% - 0 1, D + 0.1]. D is the expectation of parameter d and is calculated from 
the Tverige number of incidences per feature (the average number of incidences is a 
parameter chosen by the user of the simulation program). .   ^ . 
y   ciiieiei Liiusen ^y difficult. First we note that the expectation 

A strict calculation of the value D is ratner airncuu. A„,^M.^r, ,7=,i,,oc r.f =.11 ,.    ., .      :„„„ ^ a f f^r i<; poual to the sum of function values or all 
of the number of incidences at a given date l is equai lu i ^„^HO^ f„r,^H^^c 

b;rre.^r^.irr."Zp^x"^^a rpeS we io.^.y... ..^^^^^^ 
y lilt: leiigui u   i       ....    ^^^ ^^^ fpahire   The full integral of a type production the average number of incidences per teature.   ine lun i i g jf   r 

function with parameters a, b, c, d is given by: 

ld{c-a) + \d{b-c)^d{ic-la + \b) 

^, , ,- ^,,^H/^r. cfarK before the period of feature complex use There are also types whose production starts Derore uie pe .   ,   c ^ 
and others whose production continues after the feature complex period   So we need 
the integrals over the beginning or ending segment of the type production function 

too. We get: 
if ci < c: 

The olher segment intégrais can be easily calculated by subtracting the above segment 
integrals .om?hetu,lintfgr..Theimpcrtan^^ 

Z^^:^^ ?C »rS tt^t:: . to »ne ana evaluate all the integrals 
over the feature complex period and sum them up to a value we nr,ay call Intsum. By 
divid ng Intsum by the length of the feature complex P-°^ "f ^e. *e ave     e •^^^^^ 

r •    • j ( ^H,r-o if A is to be one. But we want to calculate the expectation ü 
of incidences per feature, ifji "^J"^^?^^    ^^ requested by the user of the simulation 
of d from the average number of incidences as reque^i       y 
program. This is done by solving the followmg equation for D. 

Intsum      £) _ AverageNumberOflncidences 
Fea tureComplexPeriod Length 

Now it has to be made sure that D is neither greater than 0.9 nor less than 0.1 
(because pTthe expectation of a uniformly distributed random variable m the range 
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[D - 0.1, D + 0.1] and this random variable may never be greater than 1 or less than 
0). If D as calculated from the above formula is greater than 0.9, the program will take 
D = 0.9 and issue a warning to the user. In the same way D becoming less than 0.1 is 
avoided. 

4.3   Creating graves or features 

In general, grave or feature dates are not equally distributed within the time interval 
of feature complex use. We note that each grave has a well-defined date but this may 
not be so for features like pits or buildings which have been used for a certain period 
of time or contain eariier material. This difference is ignored in the following. In a 
stricter setup we should create a feature lifetime distribution function and develop a 
model as to how the number of objects which are thrown into the pit varies with time. 

The density of a feature date distribution is in most cases proportional to the corre- 
sponding population function (the number of people living at a site at a given moment). 
Therefore the user of the simulation program will be asked to model the population 
function. There are some exceptions to the rule, for example in cases of epidemics 
and wars. In these cases it is useful to remember that the name population function 
has only chosen for convenience and that the proper name should be something like 
'function reflecting the number of deaths depending on time' in the case of graves, for 
example. 

Three ways are offered by the program to model the population function: 

1. population remains constant 

2. population increases or decreases lineariy: User enters the population number at 
beginning date and end date of the feature complex. 

3. population has at least one (local) minimum or maximum: User enters the 
population number at beginning date and end date of the feature complex and 
all minima and maxima in this time interval. 

The third option is the only non-trivial one. In this case we have to find a curve which 
has the extreme values given by the user (and only these) which is smooth and as 
simple as possible. Our solution is to make up the population function with third and 
second degree polynomials so that the first derivative of the function is continuous. 

This means in detail: Let h be the beginning date of the feature complex T the 
ending date, and T2,...T„_i the locations of the extrema. Let P. be the population 
number at date T., i = l..n. Then the population curve is constructed for each interval 
[^n^t+l]: 

1. If one of T„ T^+i is a boundary point and not an extremum, the local population 
curve is a second degree polynomial. There is either an extremum in T, or in 
T,+i. If the extremum is in T, we get for the population function: 

with a = j^±^    b=-2aT,        c = Pi + aT^ 

58 



I. HERZOG AND I. SCOLLAR 

[D - 0.1, D + 0.1] and this random variable may never be greater than 1 or less than 
0). If D as calculated from the above formula is greater than 0.9, the program will take 
D = 0.9 and issue a warning to the user, hi the same way D becoming less than 0.1 is 
avoided. 

4.3   Creating graves or features 

In general, grave or feature dates are not equally distributed within the time interval 
of feature complex use. We note that each grave has a well-defined date but this may 
not be so for features like pits or buildings which have been used for a certain period 
of time or contain earlier material. This difference is ignored in the following. In a 
stricter setup we should create a feature lifetime distribution function and develop a 
model as to how the number of objects which are thrown into the pit varies with time. 

The density of a feature date distribution is in most cases proportional to the corre- 
sponding population function (the number of people living at a site at a given moment). 
Therefore the user of the simulation program will be asked to model the population 
function. There are some exceptions to the rule, for example in cases of epidemics 
and wars. In these cases it is useful to remember that the name population function 
has only chosen for convenience and that the proper name should be something like 
'function reflecting the number of deaths depending on time' in the case of graves, for 
example. 

Three ways are offered by the program to model the population function: 

1. population remains constant 

2. population increases or decreases linearly: User enters the population number at 
beginning date and end date of the feature complex. 

3. population has at least one (local) minimum or maximum: User enters the 
population number at beginning date and end date of the feature complex and 
all minima and maxima in this time interval. 

The third option is the only non-trivial one. In this case we have to find a curve which 
has the extreme values given by the user (and only these) which is smooth and as 
simple as possible. Our solution is to make up the population function with third and 
second degree polynomials so that the first derivative of the function is continuous. 

This means in detail: Let t^ be the beginning date of the feature complex, T„ the 
ending date, and T2,...T„_i the locations of the extrema. Let F, be the population 
nimiber at date T^, i = l..n. Then the population curve is constructed for each interval 
[T.,T,+i]: 

1. If one of Ti, Ti^i is a boundary point and not an extremum, the local population 
curve is a second degree polynomial. There is either an extremum in T, or in 
T,+i. If the extremum is in Ti we get for the population function: 

ƒ (a;) = ax'^ + bx + c x £ [T,-, T,+i] 
with a = (TI^^IT-Y^    b = -2aTi        c = Pi + aTf 
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Figure 4.3: A population function showing a period of 500 years. At first the population 
number is 500, after 150 years a maximum of 600 people is reached and 230 years 
later the population number decreased to a minimum of 300 people and finally the 
population increases again to 450 people. 

If the extremum is in T,^.i we get the symmetric result: 

ƒ (x) = ax'^ + bx + c X e [Tu T.+i] 
with a = ('rpr-^^yi    ^ == -2aTi+i    c = P.+j + aTi+i+2 

2. If both dates T, and T,+i are extrema, the local population curve is a third degree 
polynomial: 

f{x) = ax^ + bx'^ + ex + d 
with a 

X e [Ti,Ti^-^] 

This construction ensures that the first derivative vanishes at the extrema and that the 
curve is monotonie between two extrema. An example is given in Fig. 4.3. 

The population function has to be normalised so that it may become the density 
function of the feature date distribution function. So we have to calculate the integral 
of the population function and to divide the PiS by this value. We also need the 
integrals at different points in time for generating random variables with the help of 
the distribution function (see section: Implementing the simulation concepts). 

The integrals are given by: 

1. second degree polynomial: if an extremum is in T,: 

IT. fi^)dx = 3i^|;:gj.(T - Tif + F,(T - 1\) 

/^•+' f{x)dx = H^i+i + 2F.)(î^.+i - Ti) 

if an extremum is in T,+i: 

IT, f{^)dx = ^'''-^^^'^ imf^ - 0 + ^'(^ - ^•) 
/^•+> f{x)dx = ^{P, + 2P,+i)(T.+i - T,) 
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2. cubic polynomial (extrema both in T^ and T^+i) 

/J'+^ f{x)dx = i(F,+i + F,)(T,+j - T.) 

A feature is fully described by its date, so nothing else has to be done for the generation 
of features. 

4.4   Creating the incidences (witti frequencies) 

The incidences are generated grave/featurewise. For each grave/feature and each type 
production function the height h of the type production function at the grave/feature 
date is evaluated. 

If a cemetery with presence/absence data is created, the height h of the type produc- 
tion function at the grave date gives the probability that the type is in the grave. It is 
easy to generate a random variable which is 1 with probability h and 0 with probability 
1 - /i, if a decent random number generator is available. 

If a feature complex with abundance data is created, things are slightly more difficult: 
The user has entered the mean number of objects of one type in one feature (M). This 
number is now multiplied by the height h and divided by the mean height of all type 
production functions {H). The resulting value becomes the expectation for the number 
of objects of this type in the current feature. The distribution of the number of objects 
of a type in a feature is discrete with positive probabilities at non-negative integers. 

We create such a distribution by mixing the Zero-one distribution or Alternative 
distribution, (Rektorys 1969) with the binomial distribution in such a way that the 
resulting distribution is approximately symmetric around its expectation (in the range 
1... n). We get: 

P{X = 0) = 1 - /i 
P{X = j + l) = h (a) p^{l - p)"-^ j = 0..n 
with E(X) = h{np+l) = h-^ 

and n = 2 • (^ - l) 

Note that the parameters p and n are constant for the whole feature complex. 

4.5   Modification for two grave or feature groups 

The concept described above can be modified for two grave or feature groups, for 
example if female and male graves are present which have only a certain percentage 
of types in common. The wording of this example will be kept in the following note 
about two feature groups. 

We have three sorts of types: 'female' types, 'male' types and common types. The 
number of male and female graves, the number of male, female and common types 
will be determined by the user. Nothing will change in the generation of graves and 
types. Only the first types generated will be male, the next types will be female and 
the last type group will contain the common types; and also the first graves generated 
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will be female and then the male graves will be created (or vice-versa). Female graves 
may contain only female types and common types; in the same way male graves will 
contain only male and common objects. Therefore a slightly different approach has to 
be made to calculate the expectation D of the type production function parameter d. 

Actually we have three expectations Dj, Dm, Dc (for male, female and common 
type production function heights). Dc will be chosen as the mean between Dj and 
Dm The user enters the expected number of incidences for the male and female graves 
separately. Let A^^ be the expected number of incidences for male graves and Nj for 
female graves (both numbers may be identical). Again we first set the factor d to 
one and then we evaluate all the type production function integrals over the cemetery 
period and sum them up type group wise so that Aj (sum of female type production 
function integrals), A^, (sum for male types) and Ac (sum for common types) result. 
Now we have to solve the following linear equation system with the three unknowns 
Df, Dm and D^: 

DfAj + DcAc = Nf L 
DmAm + DcAc = Nm- L 
Dc = HDm + Df) 

with L=length of cemetery period. 
The solution of this equation system is given by: 

Dj=^ {{Am + ^Ac)Nj -   ^^AcNm) 
Dm^ét {-h^cNf + (Af + ^A,)Nm) 
with det = AfAm + ^Ac{Af + Am) > 0 

The incidences are generated in the same way as for one feature group, except that 
female features may contain only female and common types and that male features 
have male and common types only. 

4.6   Implementing the simulation concept 

It is difficult to create random variables with a computer when their density func- 
tion is as complex as the normalized population function with several extrema. The 
general concept for generating random variables with density is to create a uniformly 
distributed random variable and then the inverse of the distribution function at this 
value (Knuth 1969, p. 102-103). 

This concept can be applied to the type lifetime distribution function. The distribu- 
tion function is derived from the density function by integration: 

'  ^t^ if 0 < t < ti 
F{t)= I   A\t-^h) ifh<t<t2 

The inverse of the type lifetime distribution function is easily calculated and has the 
following form: 

+^/^ if 0 < a; < 4«i 

F-\x) = I   jfX + ^h      ititi<x<At2-ih 
ts - \Jji{h-t2){l-x)     if At2 - 4^1 < X < 1 

61 



I. HERZOG AND I. SCOLLAR 

So with a decent random number generator the type Ufetimes can be easily generated. 
The population distribution function is partly a third and partly a fourth degree 

polynomial and it is not easy to invert these polynomials in a numerically stable 
way. So we decided to evaluate the distribution function at a large set of points and 
to approximate it by piecewise linear functions which can be easily inverted. For 
construction of a grave or feature date, a uniformly distributed random variable is 
created; via table lookup the corresponding date interval is identified, the distribution 
function is approximated by a linear function in this interval and then this linear 
function is inverted at the value of the uniformly distributed random variable. 
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