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10.1 Introduction 
A previous paper (Wilcock 1993) showed that sedation 
could be applied simultaneously to more than two 
dimensions. This paper extends the idea to incorporate 
cluster analysis, and proposes a number of new types of 
diagram for the portrayal of multidimensional data, in 
particular new forms of dendrogram and skyline plot. 

10.2 The portrayal of outputs from 
cluster analysis 

It is beyond the scope of this paper to discuss the 
methodology of cluster analysis. It is, however, relevant to 
discuss the types of diagram which have been used for the 
portrayal of outputs from cluster analysis, as a basis for 
the additional diagrams proposed in the paper. 

The dendrogram is a tree of relationships, first given 
this name by Mayr, Linsley and Usinger (1953). Sneath 
and Sokal (1973) have shown that the 2-dimensional 
dendrogram cannot be used successfully to portray 
multidimensional data, and that early attempts to force 
multidimensional data into hierarchical relationships by 
means of dendrograms have not resulted in satisfactory 
classifications. A natural non-overlapping taxonomie 
hierarchy can be represented in the form of a dendrogram, 
providing that the pair-function is monotonically 
increasing or ultrametric. However, if the relationships 
are not ultrametric they cannot be mapped into a 
dendrogram (Hartigan 1967; Jardine 1969; Farris, 1969), 
and if they are not even metric then serious distortion of 
the taxonomie relationships and reversals frequently occur 
when the results are represented in dendrogram form. 
Essentially, the dendrogram branches do not represent a 
genealogy, but rather affinities between the clustered units. 
A continuous hierarchy is created by gradually combining 
units into larger groups, using an agglomerative strategy. 
Alternatively a dendrogram can be used to portray the 
results of dividing the total sample into progressively 
smaller groups using a divisive strategy. Polythetic groups 
or classes have members which have a large number of 
properties in common, but no one property is essential, 
and these classes are regarded as natural; monothetic 
classes must possess one or more properties, and these 
classes are regarded as artificial (Sokal and Sneath 1963). 

Hodson, Sneath and Doran (1966) used the dendrogram 
to portray clusters from a sample of brooches from the 
Iron Age cemetery at Miinsingen-Rain, and they 
concluded that the average-link clustering method (Sokal 
and Sneath 1963) had produced groups of archaeological 

significance, while the single-link method had not 
(Hodson 1969). It is not proposed to cover the well- 
known controversy of the 1960s of average-link versus 
single-link, but we may note that Jardine, Jardine and 
Sibson (1967) in a series of papers, with answers from 
Hodson et al., pointed out the important theoretical 
difficulty of discontinuity, where a small change in one of 
the similarity coefficients could affect the dendrogram 
adversely, not only in the region of the two objects, but 
right across the assemblage. A good comparison of 
typical dendrograms resulting from single-link, total-link 
and average-link cluster analyses is given by Aldenderfer 
and Blashfield (1984). 

The paper of Jardine et al. (1967) marks a turning 
point away from average-link methods to other methods 
such as 'k-means' (Hodson, 1970; 1971) which were more 
acceptable to the mathematicians, and still had usefulness 
for the archaeologists. The k-means method differs from 
both the average-link and single-link methods in that it 
splits up the initial assemblage into a specified number of 
clusters, k. Objects are allowed to migrate between 
clusters; this migration is not allowed in average-link, 
with the disadvantage that an object may become trapped 
in a cluster which was the best in an early stage of the 
clustering, but is not the best at the end. The end product 
of k-means is a series of divisions of the objects into the 
best two clusters, the best three, etc. up to k clusters. 
Since these clusterings are independent, there is no reason 
why a given pair of objects should always belong to the 
same cluster in the different distributions. Thus a 
dendrogram is not appropriate for portraying the k-means 
output; instead a graph is used which shows the 
'percentage error of fit', the average squared distance of 
the objects from the centre of their own clusters expressed 
as a percentage of their average squared distance from the 
centre of the whole distribution, for the different number 
of clusters. The percentage error of fit has a value of 
100% for one cluster, and decreases as the number of 
clusters is increased. If there is an obvious elbow in this 
curve, it may be an indication of the 'correct' number of 
clusters. 

Another method for representing cluster analysis 
results is the skyline plot. This was developed by several 
workers, notably Ward (1963) and Wirth, Estabrook and 
Rogers (1966). However, this type of diagram suffers 
from the same drawbacks as the dendrogram, in that it can 
portray only two-dimensional data satisfactorily. A 
comparison of diagrams for the portrayal of archaeological 
classifications is given by Wilcock (1975). 

55 



JOHN Wa,cocK 

10.3    The portrayal of multidimensional 
data 

Dendrograms as used in the literature have been confined 
to the portrayal of two-dimensional data, and 
archaeologists have taken the multidimensional scaling 
and principal components analysis routes for the 
discovery of further dimensions. 

Multidimensional scaling starts with an n-coordinate 
positioning of points representing objects in n- 
dimensional space, and then attempts to reduce the 
number of dimensions, preserving as far as possible the 
rank order of dissimilarities between pairs of objects in 
terms of a rank order of distances. This is not possible as 
the number of dimensions is reduced, and the 
awkwardness of the fit is expressed as 'strain'. If the 
strain becomes too big, the reduction stops, but many 
archaeological distributions do reduce to three or even two 
dimensions without too much strain, and if so the 
distribution may be portrayed as a scalogram. 
Multidimensional scaling was first used in psychology. 
Examples of its use in archaeology are given by Hodson, 
Sneath and Doran (1966), Bonsall and Leach (1974) and 
Shennan and Wilcock (1975). 

Principal components analysis (e.g. described in 
Morrison 1967) derives a set of new orthogonal 
components, each being a synthetic property based on 
different loadings of the original properties. The early 
principal components often account for variances 
equivalent to many properties-worth of the original 
properties. The usual output diagram for principal 
components is a pc plot, for example pel versus pc2 (e.g. 
as shown for the Münsingen-Rain data by Hodson (1969, 
94; 1970, 314)). An extension of this would be to plot 
three pcs on a 3D surface diagram, which may identify 
clusters as peaks on the surface. 

Cluster boundaries may be added to either scalograms 
or pc plots, as may minimum spanning trees, and the 
resulting diagrams are referred to as Wroclaw diagrams. 
Although multiple dimensions are being portrayed on 
these diagrams, the dimensions are synthetic, made up 
from different loadings of the original properties, and the 
original dimensions may be difficult to visualise. 

10.3.1   Multidimensional matrices 

The use of multidimensional matrices for seriation has 
been discussed in an earlier paper (Wilcock 1993). The 
main points made by this former paper were: 

• matrices of three or more dimensions have rarely been 
studied 

• all the algorithms described should be applicable to 
any number of dimensions greater than or equal to 
two 

• For a 2-dimensional matrix, rows or columns may be 
treated as sub-matrices 

• For a 3-dimensional matrix, the sub-matrices are 2- 
dimensional planes, and so on 

• For D dimensions, each sub-matrix will have {D - 1) 
dimensions 

• Problems with four or more dimensions may still be 
handled, since the algorithms are completely generic 
in nature. However, the configuration may then no 
longer be represented as a geometrical model, since it 
is in hyperspace. 

In fact, problems with more than two dimensions are 
commonplace in archaeology. A hierarchy of typical 
dimensions applicable in archaeology is: 

1. Time 

2. Culture 

3. Site 

4. Phase 

5. Assemblage 

6. Artefact 

7. Property 

i.e. at least seven dimensions could be considered. For 
example, a problem concerning the distribution of Roman 
coins in Britain has already been implicitiy restricted to 
the Roman culture, to coin artefacts, and geographically to 
Britain, but time, site, phase, assemblage, and properties 
of coins remain as dimensions to be considered, i.e. the 
data has five inherent dimensions. Again, in the study of 
Medieval bells, the Medieval culture and bell artefacts are 
implicit, but the development of bells in time, the places 
where bells are found, the places of manufacture, the 
makers, and the properties of bells remain to be studied, 
again five dimensions. Archaeologists are often not 
sufficientiy plain it stating what assumptions they are 
making about the data, and what dimensions are being 
implicitiy excluded from a study. Sometimes the body of 
data is submitted blindly to multidimensional scaling, 
principal components or factor analysis routines in the 
hope that the variance will emerge as relevant principal 
components or factors. 

10.4    Dimensional Framework for a 
Study 

The dimension under study requires a firamework which 
typically includes the dimension on each side of it in the 
hierarchy, e.g. a culture is meaningless without being 
defined in terms of some time period and some 
geographical location (sites or areas). 

As an illustration, the Münsingen-Rain data (Hodson 
1968) have been employed in this study described in this 
paper. This data set has three dimensions (although 
previously published analyses of the data have confined 
themselves to two dimensions only). The three 
dimensions are Hodson's 'horizons' (phases), the graves 
and the artefacts. The reprocessing of this data in a three- 
dimensional matrix, with a horizon in each plane, gave 
results which were found to be comparable with Hodson's 
original sequence, but which introduce a better conception 
of the true dimensionality of the data. 
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1 1 111 2 122 2113 4 125 5 226 

1 111 2 2 122 4 233 4 135 5 226 

2 122 2 122 4 233 4 233 4 144 6 145 
2 131 4 233 4 233 4 233 6 256 6 256 

4 152 4 253 4 253 4 253 6 256 6 256 

1 111 3 222 3 222 3 313 5 316 5 316 

3 222 3 3 222 4 233 5 334 5316 

3 222 3 222 4 4 233 5 334 6 345 

3 331 4 233 4 233 4 233 6 345 6 345 
4 342 4 342 4 342 6 345 6 345 6 345 

3 222 3 222 3 222 5 425 5 425 5 425 

3 222 3 222 3 222 5 334 5 334 5 425 

3 222 3 222 4 233 5 5 334 6 345 

?3?1 4 233 4 233 5 334 6 6 345 

4 342 4 342 4 342 6 345 6 345 8 456 

3 422 3 422 3 422 5 425 5 425 5 425 

3 331 3 331 5 334 5 334 5 334 7 436 

3 331 3 331 5 334 5 334 7 445 7 445 

3 331 4 342 5 334 7 445 7 7 445 

4 342 4 342 7454 7 445 7445 _8„,. , 

Plane 1 

Plane 2 

Plane 3 

Plane 4 

Figure 10.1: A typical 3-dimensional matrix. The central diagonal is outlined heavily in black. The renniaining cells 
have two numbers, the first giving the central diagonal cell to which that cell is nearest, and the second giving the 
coordinates of the cell to which the cell is connected, in the tree structure described in Wilcock (1993). 

Munsingen-Rain Seriated Data, 3D Area Chart 

S29 
S22 

S15      Seriated Graves 

Seriated Brooches 

Figure 10.2: 3D Area Chart, Graves versus Brooches, for the Munsingen-Rain seriated data 
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10.5 A typical 3-dimensional matrix 
Figure 10.1 shows a typical 3-dimensional matrix with 4 
planes, 5 rows and 6 columns. The four separate planes 
are shown, with the central diagonal cells outlined heavily 
in black: 

10.6 The graphical portrayal of 
multidimensional data 

10.6.1 3D Area Chart, Graves versus Brooches 

It is appropriate to exploit the potential of charting 
packages to display multidimensional data. Figure 10.2 
shows a 3D area chart showing the sedation of graves 
versus brooches for the Münsingen-Rain data. An area 
chart shows how values change in proportion to the total 
(of values for each property) over a period of time. It is 
similar to a series of line graphs, but emphasises the 
magnitude of values with respect to time, rather than the 
flow of time and rate of change of properties. 

10.6.2 3D Surface Chart, Graves versus 
Brooches 

The same seriated data may be shown as a 3D Surface 
Chart with contours for artefact importance (see 
Figure 10.3). 

10.6.3 Stacked Bar Chart, Seriated Brooches 

Figure 10.4 uses the Stacked Bar Chart form of diagram 
to show seriated brooch types on the horizontal axis, the 

height of a bar gives the importance of a brooch type, and 
the different shadings in a bar give the corresponding 
graves and the relative importance of those graves for a 
brooch type. 

10.6.4 Stacked Bar Chart, Seriated Graves 

Conversely, the Stacked Bar Chart in Figure 10.5 shows 
seriated graves on the horizontal axis, the overall height 
of a bar gives the importance of a grave, and the different 
shadings in a bar give the corresponding types of brooches 
and the relative importance of those types in a grave. 

10.6.5 Stacked Bar Chart, Clustered Graves 

Figure 10.6 is similar to Figure 10.5, except that the 
graves have now been clustered. As with the sedation, the 
overall height of a bar gives the importance of a grave, 
and the different shadings in a bar give the corresponding 
types of brooches and the relative importance of those 
types in a grave. 

10.6.6 Skyline Plot, Clustered Graves 

The skyline plot form of display has been mentioned 
above. In Figure 10.7 the skyline plot for the clustered 
graves is shown as a 3D Surface Chart. The clusters can 
be seen, separated by troughs (compare this diagram with 
Figures 10.8 and 10.9). 

IVIunslngen-Rain Seriated Datei, 3D Surface Chart 

Artefact Importance (see 
contours) 

Seriated Graves 

Seriated Brooches 

Figure 10.3: 3D Surface Chart, Graves versus Brooches, for the Münsingen-Rain seriated data 
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Minsingen-Rain Seriated Brooches 

1        3       5       7       3      11      13     15     17     19     21      23     25     27     29     31      33     35     37     39     <1      «     4S 

S«rtat«d Brooch Typ« (dlfftrent thading nftn to different gravel) 
<7     43     51      53     55 

Figure 10.4: Stacked Bar Chart for seriated brooches, Münsingen-Rain data 

Munsingen^Rain Seriated Craves 

S o 

m •Ml 
13       5        7       9 11       13      15      17      19      21       23      25      27      29      31       33      35      37      33      41 

Seriated Graves (differert stiading refers to different brooch types) 

43     45 

Figure 10.5: Stacked Bar Chart for seriated graves, Münsingen-Rain data 

Mmsingen-Rain Qustered Graves 

3        5        7        3       11       13      15      17      19      21      23      25      27      23      31       33      35      37      33      41       43      45      47      43 

Clustered Graves (different shading refera to different brooch types) 

Figure 10.6: Stacked Bar Chart for clustered graves, Münsingen-Rain data 
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Mmsingen-Rain Sk^ine Plot for Clustered Craves 

Figure 10.7: Skyline Plot for clustered graves, Münsingen-Rain data 

Munsingen-Rain Skyine Plot for Clustered Graves 

Figure 10.8: Skyline Plot for clustered graves shown as a surface, Münsingen-Rain data 

10.6.7 Skyline Plot shown as a Surface 

Figure 10.8 shows the same skyline plot for the clustered 
graves as a more 'sculptured' type of surface with shading 
for the different graves. 

10.6.8 3D Skyline Plot showing Phases related 
to Graves 

However, none of the above diagrams have really shown 3 
or more dimensions in a satisfactory manner — the 
representation has chiefly been the display of a selected 
pair of dimensions, albeit selected from the larger number 

of dimensions under study. Figure 10.9 is, however, 
proposed in this paper as a step in the right direction. The 
conventional skyline plot for the clustered graves has at its 
head ONE 'side view' of a 3D matrix (Phases versus 
Graves versus Brooches), in this case showing Phases 
vertically, and Graves horizontally. The vertical lines 
relate each grave to its corresponding phase. Another 
skyline plot exists at the side, at right-angles, which would 
give Phases vertically and Brooches horizontally. Thus 
the third dimension has been introduced into the 
essentially two-dimensional skyline plot. 
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-*•  _ 

U   I * 1   :|j 

  

Side view of 3D moirix 
(Phase, Grave, Brooch) 
showing Phases vertically 
Graves liorizontally 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Figure 10.9: 3D Skyline Plot showing Phases and 
Graves. The block at the head of the conventional 
Skyline Plot is the side view of a 3D matrix Phases 
versus Graves versus Brooches. 

10.7   The Triad (Three Dimensions) 

It is appropriate to discuss the number of dimensions in a 
theoretical manner. Figure 10.11 shows a triad of three 
dimensions. The 3 dimensions A, B and C may be 
combined in three different pairs, [AB], [AC] and [BC]. 
In our case we may allocate Phases to A, Graves to B and 
Brooches to C. 

Thus we could have a dendrogram for Phases v Graves, 
another for Phases v Brooches, and a third for Graves v 
Brooches in our application. The super-dimension 
appears at the head in each case, and the sub-dimension 
forms the dendrogram or skyline plot. The diagram above 
shows a unique allocation of a sub-entity to a super-entity, 
but in principle sub-entities could occur across several 
super-entities, and be indicated by some form of bar (as in 
a battleship plot). A bar could also itself have more than 
one dimension, the 'battleship' sections then becoming 
more like globular Christmas-tree ornaments in shape. 
Such a system could show parallel time-lines for different 
cultures, related to the areas of the world 
inhabited/controlled by the respective cultures. 

10.6.9   3D Dendrogram showing Phases related 
to Graves 

Figure 10.10 repeats the procedure, this time for the 
Dendrogram. The conventional dendrogram for the 
clustered graves has at its head ONE 'side view' of a 3D 
matrix (Phases versus Graves versus Brooches), in this 
case showing Phases vertically, and Graves horizontally. 
Another dendrogram exists at the side, at right-angles, 
which would give Phases vertically and Brooches 
horizontally. Thus the third dimension has been 
introduced into the essentially two-dimensional 
dendrogram. 

(Phase. Gfove, Brocxrh) 

showing Phases verticoly. 

Graves hoiizontolly 

100 

— T^ 
Pi— 90 

80 
  70 

60 
L 

50 

40 \_ 
_           30 

20 

10 

0 

Figure 10.10: 3D Dendrogram showing Phases and 
Graves. The block at the head of the conventional 
Dendrogram is the side view of a 3D matrix Phases versus 
Graves versus Brooches. 

(AB) (AC) 

B (BC) C 

Phases 

(Phases v Graves). (Phases v Brooches) 

Graves Brooches 

(Graves v Brooches) 

Figure 10.11: The Triad 

10.8   The Quad (4 Dimensions) 

Figure 10.12 extends this procedure to 4 dimensions, and 
shows the quad. 

• Thus 1 Quad has 4 Triads, each of which has 3 Pairs. 

• In general for D dimensions, there will be D sub- 
matrices of (D-1) dimensions, each of which has 
(D-1) sub-sub-matrices of (£>-2) dimensions, and 
soon. 

• For 1 Quad there are: 4 unique Triads, each of which 
has 3 Pairs, and there are 6 unique Pairs 
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C      C D'^ •* C        D~ '"^ C 

(AB)(AC)(BC) (ABJ(AD)(BD)        (AC) (AD) (CO) (BO (BD) (CD) 

(AB) (AC) (AD) (BC) (BD) (CD) 

Figure 10.12: The Quad 

10.9    Larger numbers of dimensions 
The prcxedure may be extended to ever larger number of 
dimensions. Figure 10.13 shows the pentad. 

• The Pentad has 5 Quads, each of which has 4 Triads, 
each of which has 3 Pairs. There is a total of 10 
possible unique Pairs. 

• The Hexad has 6 Pentads, each of which has 5 Quads, 
each of which has 4 Triads, each of which has 3 
Pairs. There is a total of 15 possible unique Pairs. 

• The Heptad has 7 Hexads, each of which has 6 
Pentads, each of which has 5 Quads, each of which 
has 4 Triads, each of which has 3 Pairs. There is a 
total of 21 possible unique Pairs. 

• The number of unique Pairs is in general D(D -1) / 2 

for D dimensions, which is the sum of an arithmetic 
progression. This is shown in the half-matrix less 
diagonal shown in Figure 10.13 above, the number of 
Pairs being the sum of the newly introduced Pairs of 
dimensions, plus all the existing Pairs on the rows 
above. 

No. of dim 

2 

ensi 

AB 

ons No. of Pairs 

1 

3 AC BC 3 

4 AD BD CD 6 

5 AE BE CE DE 10 

6 AF BF CF DF EF 15 

7 AS B6 CG DG EG FG 21 

Figui« 10.13: The Pentad, and the half-matrix less 
diagonal which shows all Pairs for dimensions between 2 
and? 

10.10 Conclusion 
It has been proposed that archaeologists should consider 
the true dimensionality of their data, and explore ways of 
portraying results in more than two dimensions. It is 
apparent that as many as seven dimensions are possible in 

archaeological     data,     and     five     dimensions     are 
commonplace in a study. 

• A method of looking at up to 7 archaeological 
dimensions has been proposed, with the incorporation 
of cluster analysis. 

• New diagrams have been proposed for the portrayal of 
the multidimensional data, in particular a 
multidimensional form of the dendrogram and skyline 
plot types of diagram. 
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