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Abstract: In this paper we shall show how S-Plus can be used to address issues involved in clustering artefacts on the basis of 
pétrographie thin-section data. If such data are coded as a set of categorical variables or as presence/absence data a variety of 
analytical options are open. These involve choosing how to measure similarity between cases and how, subsequently, to group 
these using clustering or scaling techniques. Using S-Plus functions that come with the package, or which are freely available 
in libraries developed by S-Plus users, options include multiple correspondence analysis and metric and non-metric scaling 
methods including Sammon mapping and isotonic multidimensional scaling. Some of these will be illustrated, and it will be 
shown how different methods can produce results that reveal different aspects of a data set. Our interest in pursuing this is that 
we would like to investigate the possibility of including both pétrographie and geochemical data in a statistical analysis of 
artefact compositional data, and on an equal footing. We conclude by indicating how this might be achieved within the 
methodological framework discussed in the paper 

Key words: ceramics; pétrographie thin-sections; multivariate analysis; cluster analysis; S-Plus. 

Introduction 

This paper presents the development of previously published 
work (Baxter et al. in press; Beardah and Baxter 2001 ) by members 
of the EU funded GEOPRO TMR Network. The general aims of 
the project are to integrate geochemical and mineralogical 
techniques in the study of raw materials and archaeological 
ceramic provenance. From a statistical point of view, a specific 
interest is the possibility of incorporating both geochemical 
and mineralogical data into statistical analyses. Using these 
two types of data in combination (so-called mixed-mode data), 
or by independently applying appropriate techniques to each, 
we hope to identify groups within a set of data. Such groups 
could be assumed to indicate, for example, distinct origins of 
the artefacts or raw materials used in their manufacture. Our 
ultimate aim is to produce user-friendly and accessible software, 
developed using the S-Plus package (Mathsoft 1999; Venables 
and Ripley 1999,2000) and allowing "state of the art" analysis 
and presentation of geochemical, mineralogical and mixed-mode 
data. The reasons for choosing S-Plus as the basis for the 
development and distribution of our software are reported in 
Beardah and Baxter (2001 ). 

In the same paper we showed how a clustering methodology 
for grouping chemical compositional data from artefacts, 
developed by Beier and Mommsen ( 1994), could be implemented 
in the S-Plus package. Geochemical data is typically continuous 
in nature. By contrast, as discussed in section 2 below, 
mineralogical data in its raw form can consist of variables of a 

mixture of types, including continuous, categorical and presence/ 
absence. In this paper we concentrate solely on the 
implementation of statistical methods for mineralogical data. 

More background on data arising from the analysis of 
pétrographie thin-sections is given in the next section. Section 
3 of the paper presents a brief discussion on techniques for 
grouping pétrographie data. Such methods include multiple 
correspondence analysis and metric and non-metric scaling 
methods including Sammon mapping and isotonic 
multidimensional scaling. In section 4 we present an 
archaeometric case study. This is followed in section 5 by our 
conclusions. 

Analysis and coding of ceramic thin-sections 

Examples of ceramic thin-sections are shown in Figure 1. Usually 
a single analyst, on the basis of examination and comparison, 
carries out the classification of a collection of thin-sections 
into groups based upon provenance. This time-consuming ap- 
proach is well known to rely upon the experience of the observer 
and the availability of reference groups and collections and 
furthermore it can be "heavily biased by the personal approach 
of the analyst involved" (Whitbread 1991 ) and lack reproduci- 
bility. 

In attempting to develop an alternative, less "subjective" method 
of classification, the first challenge we face is how to describe a 
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collection of thin-sections in a manner that is amenable to 
statistical analysis. In order to do so, one approach is to 
represent each thin-section in terms of qualitative or categorical 
variables. Such variables can then be coded in a manner that 
can be input into a quantitative statistical analysis. Cau et al. (in 
preparation) review some reasons for, and attempts at, 
quantifying thin-section data, and describe the coding system 
used in our examples. 

In order to describe the thin-sections, a system of 19 categorical 
variables covering the most common features normally recorded 
in ceramic petrology has been developed (Cau et al., in prepara- 
tion). Variables 1-5 record aspects of the thin-section that can 
be used to reveal "technological information", for example firing 
temperature or forming techniques. The main rock types, 
organized by general families, and the main rock forming mine- 
rals that are found in Mediterranean ceramics are recorded in 
variables 6-18. Finally, variable 19 records packing, an estimate 
of the general amount of particles in a given sample. 

It is important to note that in the system reported by Cau et al., 
a combination of categories within a specimen will result in the 
formation of a new category. As a result, the number of 
categories for each variable can be as many as 30, or as few as 
two (presence/absence). Furthermore, the system is open, that 
is new variables and categories can be added with relative ease. 

Statistical methodologies 

After description using the system described in section 2, a 
collection of« thin-sections can be represented by a table with 
n rows and 19 columns. Each row contains the description of a 
single thin-section; each column represents a variable; and each 
cell contains a number indicating the category. An important 
point is that any system similar to that of Cau et al., which 
results in an « by p table of categorical data, where p is the 
number of descriptive variables, can be treated using the 
statistical methods described in this section. 

Converting categorical data into 0/1 data 

In order to apply statistical methods, one approach is to convert 
the table of categorical data into a data matrix consisting of 0/1 
entries. There are two ways of doing this, illustrated here by 
means of a simple example. Table 1 shows an example of a 4 by 
1 table of categorical data. Here the single variable is divided 
into four categories, the last of which consists of the presence 
of both category 1 andTi. (Recall that in the system reported by 
Cau et al., a combination of categories within a specimen will 
result in the formation of a new category). For this particular 
data set, category 2 is not represented. 

Coding method 1 

Here we introduce one dummy variable for each category 
appearing within the data set. with a case being coded 1 for the 
variable whose category it belongs to and zero otherwise. Thus 
applying coding method 1 to the categorical data of Table 1 
results in the 4 by 3 data matrix, denoted G, shown in the bot- 
tom-right of Table 2. Here the number of categories present in 

the variable is three (1,3 and 4); no column appears for category 
2 as this does not appear with these data. (Any zero columns 
would need to be omitted prior to the subsequent statistical 
analysis.) 

Also, note that since our example has only one categorical 
variable, this coding method results in a single non-zero entry 
for each row of the matrix G. More generally, for annhyp table 
of categorical data, where variable / has L^ levels present in the 
table, we introduce L^ dummy variables corresponding to the 
levels of variable /. This gives rise to an « by i data matrix, G, 
where 

^=ZA 
/=i 

and the sum of the entries in each row is/?. 

Coding method 2 

Using the descriptive system of Cau et ai. we note that many 
categories are in fact combinations of those previously defined. 
For example, category 4 of our example consists of the 
combination of categories 1 and 3. An alternative method of 
coding the data is to only record the presence or absence of the 
"core categories" (1,2 and 3 for our example). Thus applying 
coding method 2 to the categorical data of Table 1 results in the 
4 by 2 data matrix shown in the bottom-right of Table 3. Here the 
number of core categories present in the variable is two 
(categories 1 and 3). Again, zero columns would need to be 
omitted prior to the subsequent statistical analysis and are 
therefore not included. 

Although coding method 2 is conceptually simpler than method 
1, it results in a more unwieldy data matrix, G. In particular, for 
our example the sum of the entries in each row is no longer 1, as 
was the case for coding method 1. More generally, for an « by p 
table of categorical data coding method 2 leads to an « by L 
data matrix, (7, where the sum of the entries in each row varies 
and in each row is >=p. 

Statistical methodolc^ies 

A variety of statistical methodologies can be used to investigate 
the data resulting, in each case, in a 'map' showing how similar 
cases are to each other. 

Multiple Correspondence Analysis (MCA) can be used 
if the data are coded using method one, and is simply 
correspondence analysis applied to the matrix G. This 
will have the effect of giving greater weight to rare 
categories. 
Principal component analysis (PCA) can be applied 
directly to G and, using coding method one, is equivalent 
to classical multidimensional scaling (MDS) applied to 
a dissimilarity matrix whose elements are the square- 
roots of the elements of the matrix (P - GG^Ip) where P 
is an (n ' n) matrix of 1 s and ^ indicates a matrix 
transpose. 
Non-metric MDS methods, including Sammon's 
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mapping and KruskaPs isotonic MDS (Venables and 
Ripley 1999:333-335) can be applied to the 
dissimilarity matrix described above. 
Correspondence Analysis of the 0/1 matrix G can be 
applied to data derived from coding method two. and 

r      any of the MDS methods can be applied to a suitable 
dissimilarity matrix derived from G. 

All of these methods result in graphical output similar in nature 
to that of a PCA. The number of components used to display 
the results can be varied. 

Case study 

The methodologies introduced in the previous section are now 
illustrated using mineralogical data arising from a collection of 
Late Roman Cooking Ware (LRCW) from the Balearic Islands 
and the eastern Iberian peninsula. In examining these data our 
aims included the determination of origin, in other words, were 
the wares local or imported? The full data-set contains 115 
samples of LRCW from different sites in the region. (For these 
data we have both chemical and pétrographie information.) A 
subset of these data contains 25 samples of LRCW from Can 
Sora (Eivissa). These samples come from a cistern, used as a 
rubbish dump during Late Antiquity. Samples came from two 
different layers (from the 5"' and 6* centuries A.D.) 

Data format and conversion 

Figure 2(a) shows a part of the 25 by 19 table of categorical data 
for these data as it appears in S-Plus. The second column, whose 
entry in row number 1 is ••CS-2 (pi)", contains labels for each 
case. Such labels can be extremely useful when analysing (in S- 
Plus) graphical output of the type generated by the methods of 
section 3. Symbols in brackets denote the result of a preliminary 
classification carried out by one of us (MAC) and based solely 
upon a pétrographie analysis of the kind discussed in section 
2. This analysis led to the identification of five types, labelled 
pU V, m, p and/, and five outliers labelled o (Cau et al., in prepa- 
ration). 

Conversion between categorical representation and 0/1 repre- 
sentation can be achieved via our catdist.mat routine. This 
routine can be called from the GEOPRO menu (figure 3(a)) and 
results in the dialog box shown in figure 3(b). 

This returns a list, cansora.GX, containing the matrices G and 
X (see section 3). To extract G and store it in a separate, 
appropriately named variable we can use the S-Plus command 

cansora.G <-cansora.GX||"G"|l 

Figure 2(b) shows part of the matrix (G) of 0/1 entries so obtained, 
again as it appears in S-Plus. Coding method 1 has been used 
(see section 3.1.1). For illustrafion, note that variable 1 (optical 
activity) has three categories (1. active. 2. inactive and 3. 
intermediate). Only the final case in the data set, labelled CS-27, 
falls into category 2 for this variable. As a result, the matrix G 
has three dummy variables, labelled opt.act.l, opt.act.2 and 
optact J, corresponding to the categorical variable describing 

optical activity. Those cases, for example CS-2 and CS-3, falling 
into category 1 for optical activity thus have a 1 in the column 
of G labelled opt.act.l and zero entries in those columns of C 
labelled opt.act.2 and opt.act.3. 

Of course, the matrix G may have already been coded (using 
method 1 or method 2) and entered directly. This possibility is 
allowed for in our implementation of the various statistical 
methods for the analysis of pétrographie data. In either case we 
must be wary of columns whose sum is zero. Such columns are 
automatically detected and removed upon submission to the 
routines for performing MCA, MDS etc. 

Analysis of pétrographie data 

Using a combination of existing S-Plus library routines (Venables 
and Ripley 1999) and new implementations of existing 
techniques, adapted to make the most of the graphical 
capabilities of the package, we have made the following methods 
available. 

1.        Multiple Correspondence Analysis (MCA). 
1 Classical Multi-Dimensional Scaling (MDS). 
3. Non-metric MDS methods: Sammon"s mapping and 

Kruskal's isotonic MDS. 
4. Correspondence Analysis of the 0/1 matrix G. 

We initially use the Can Sora data set for illustration (recall that 
this is a subset of the full LRCW data set). 

In order to make the most of the interactivity available within S- 
plus, the application of these methods is a two-stage process: 

1.        Application of the method (MC A/M DS Scores menu 
item, figure 4(a)); 

2 Plotting the results graphical ly ( MCA/MDS Plots menu 
item, figure 4(b)). 

The calculation stage results in the creation of a variable named 
according to the method used, for example, if we use Multiple 
Correspondence Analysis, then the variable is called last.MCA. 
It is important to note that the output from MCA must be stored 
in this variable. 

Different methods result in different numbers of component 
scores that can be plotted. Table 4 shows the maximum number 
of these currently available for each method. 

Highlighting subgroups 

Figure 5 shows the graphical output upon application of MCA 
to the Can Sora data set. Graphical output based upon three 
components has been displayed. The window on the left shows 
a display based upon the first three components, while that on 
the right shows all possible plots based upon two of the first 
three components. The subgroup classified petrographically 
and labelled v has been highlighted. This is achieved by clicking 
rows in the last.MCA data window. (The centre of the three 
windows shown in Figure 5; the Ctrl and shift keys can be used 
to highlight individual rows or sets of consecutive rows.) 
Corresponding points in the component plots are automatically 
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highlighted. It is clear from the left window of Figure 5 that this 
subgroup also separates on the basis of a plot of the first three 
components of the MCA. If this were not immediately apparent, 
the three-dimensional plot could be rotated and examined from 
different viewpoints. Furthermore, plots based upon 
components 1 and 2, and 2 and 3 also exhibit clear separation of 
this subgroup. Based upon the plot of components 1 and 3, 
separation is less clear. Despite this, there is overwhelming 
evidence that this subgroup would be identified by this 
statistical technique (MCA) independently of any knowledge 
of the prior pétrographie analysis. 

Of course, we may not have a pétrographie classification 
available. In these circumstances we will be attempting to group 
the data by using purely statistical techniques, possibly 
including methods (such as PCA) for the analysis of 
geochemical data, if available. S-plus can be used to identify 
and highlight subgroups in many different ways. Figure 4(b) 
shows a simple example. Here we have used the "Highlight 
rows" box to identify objects where the second component of 
the MCA output is negative. However, more complicated 
expressions can be used to highlight rows. In fact we can enter 
any valid S-plus expression in the "Highlight rows" box. For 
example, the subgroup shown in figure 5 could be defined by 
noting that these are the cases where the first and second MCA 
components are negative. Hence we could use the S-plus 
expression 

last.lVlCA|,l]<0& lastMCA[ai<0 

in the "Highlight rows" box to get the same effect as that shown 
in figure 5. Furthermore, the expression used could depend upon 
the analysis using a different method entirely. So we might 
choose to highlight (in the MCA output) the rows where the 
second MDS component is positive. This might be useful way 
of comparing the subgroups obtained using different methods, 
especially if the dataset is large. Simple exploratory techniques, 
for example histograms, can be used to look at the distribution 
of individual components in an effort to identify criteria for 
separating groups in this way. A slight twist on the fraditional 
histogram, a labelled histogram, is provided via the GEOPRO 
menu. An example is shown in figure 6. This shows that the Can 
Sora data set separates clearly into two groups on the basis of 
whether the second MCA component is positive or negative. 

More usually, and perhaps especially in analyses involving 
smaller datasets, subgroups may be identified visually, directly 
from the graphical output. By positioning the mouse pointer 
over a plotted point, the row number (or label) of the point and 
its component values are shown (see the left window in figure 
5; here the mouse was positioned over the rightmost point of 
the subgroup, representing the case labelled CS-17). For example, 
as previously discussed, it is likely that the subgroup highlighted 
in figure 5 would have been identified in the absence of a prior 
petrographical classification, by visual observation of the MCA 
output alone. (Since it separates nicely in plots of both the first 
two, and first three, components.) By using the mouse, we can 
easily identify that this subgroup consists of rows 8, 9, 10.13. 
14, and 15 of the dataset (see the cenfre window of figure 5). 

Finally, and perhaps most conveniently, subgroups can be 

highlighted directly in windows displaying graphical output by 
means of the Select Data Points feature of the Graph Tools 
menu within S-Plus. Clicking and dragging the mouse can be 
used to highlight sets of points in the graphics window. (The 
Ctrl key can be used to highlight subgroups consisting of several 
individual clusters.) Selected points are automatically highlighted 
in the data window also (as illustrated in figure 5). 

It would be useful to investigate whether the subgroup 
previously identified separates just as easily when we use other 
methods. Returning to the MCA/MDS Plots dialog we can now 
generate the graphical output resulting from, for example, 
Kruskal's non-metric MDS (IsoMDS). The dialog box is shown 
in figure 7. Note that the entry in the "Highlight rows" box is 
generated automatically, since these rows were previously 
highlighted in a data window. The graphical output so generated 
reveals that the aforementioned subgroup separates just as 
easily with this method. In fact, all five methods discussed here 
identify this subgroup with little difficulty. 

Outlier removal 

It will often be the case that examination of the graphical output 
from one or more methods will reveal the presence of outliers. 
Removal of outliers can help to further separate other genuine 
subgroups within the data set. For example, figure 8 reveals 
that, based upon the output from MCA, it is fairly clear that 
rows 6 and 11 (cases CS-7 and CS-13 ) could be considered to be 
outliers. This observation is supported, to a greater or lesser 
extent, by the other methods. At this point it is worth recalling 
that, for the Can Sora dataset, five cases were identified 
petrographically as outliers. Rows 6 and 11 were two of these. 
The others were rows 7,22 and 23 (cases CS-8, CS-24 and CS- 
25). There is fairly strong evidence, from methods other than 
MCA, that row 23 is an outlier, however the situation is less 
clear, for rows 7 and 22, which seem to associate quite well with 
the subgroup labelled p/ on the basis of petrography. This is an 
example of where the application of statistical techniques 
possibly results in a different conclusion to the application of 
traditional pétrographie analysis. 

Outliers can be removed at the first (calculation) stage of the 
application of our methods. Figure 9 shows the application of 
MCA to the Can Sora dataset minus rows 6,11 and 23. 

Combining pétrographie and geochemical analyses 

For the full LRCW data set ( 115 cases) we have both geochemical 
and pétrographie information. The former consists of 25 con- 
centration values and the latter has already been coded as a 
matrix (G) of 0/1 entries using coding method 1. We can calculate 
and plot PCA scores in much the same way as previously 
discussed. Figure 10 shows the dialog box called from the 
GEOPRO menu entry PCA Scores. 

The initial plots of the component scores are quite cluttered 
and would possibly benefit from the removal of some outliers. 
The most obvious outliers are cases MC-16 and MC-19 (rows 
33 and 34 respectively; these cases were also identified as 
outliers on the basis of the pefrographic analysis). Re-calculating 
the PCA scores with these cases omitted gives a slightly clearer 
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plot. To do this we would use the same dialog as in figure 8, but 
with c(3334) entered in the Omit these cases box. There is 
now evidence of an outlying group consisting of cases U-1 and 
U-10 (rows 60 and 69 of this reduced dataset). Care needs to be 
taken here, as cases U-1 and U-10 correspond to rows 62 and 71 
of the original dataset (with no outliers removed). This shows 
the value of assigning labels to cases! Re-calculating the PCA 
scores with rows 33, 34, 62 and 71 omitted gives a plot that is 
rather more spread out and that could be used to identify more 
subgroups on the basis of chemistry. 

Of course we can also apply our various methods for grouping 
pétrographie data to the LRCW dataset with rows 33,34,62 and 
71 omitted. Analysing the two-dimensional output from MCA 
reveals a potential subgroup of four cases (CS-18, 19, 20 and 
25) in the bottom-centre of the plot of components 2 and 3. 
Interestingly, on the basis of the three-dimensional output, we 
could probably discard CS-25 from this potential subgroup. 
CS-18,19 and 20 has also been identified as a subgroup on the 
basis of petrography. (CS-25 was identified as an outlier on the 
basis of the pétrographie analysis.) However, highlighting these 
cases in the plot of the PCA scores (with rows 33,34,62 and 71 
omitted) reveals that based upon the analysis so far, these cases 
do not separate on the basis of chemistry. 

Mixed-mode data 

In the previous section we have seen that one way of 
incorporating both pétrographie and geochemical information 
in our statistical analysis is to analyse the chemistry and 
petrography separately, but possibly concurrently, using 
methods appropriate for each. Using this approach, we can 
investigate whether subgroups identified with the various 
methods for analyzing pétrographie data are also identified using 
exploratory methods for analyzing geochemical data. Such 
methods available within S-Plus include, for example, PCA, clus- 
ter analysis, and other, less traditional methods such as that 
proposed by Beier and Mommsen (1994) and discussed in 
Beardah and Baxter (2001 ). 

However, within the framework outlined so far, we can 
incorporate both chemical and pétrographie data. This could 
be achieved, for example, by first converting the elemental 
concentrations of the chemical data into categorical data before 
applying the techniques outlined here. Alternatively, some 
methods can deal directly with data of mixed type (e.g. 
continuous chemical data and 0/1 pétrographie data). To do so, 
we need to measure dissimilarity between objects of mixed type 
(Gower and Hand 1996; Kaufman and Rousseeuw 1990). Such 
approaches will be the focus of future work. 

Summary and conclusions 

In this paper we have seen that 
Otherwise complex methodology for the analysis of 
pétrographie data can be implemented in S-Plus with 
relative ease. In addition, many techniques (e.g. the non- 
metric methods) have been implemented in S-Plus and 
made freely available, for example as part of the MASS 
library ( Venables and Ripley 1999). 

The ability to manipulate the user interface makes it 
possible to design user-friendly routines. 
The nature of the S-plus interface makes it possible to 
(a) easily identify sub-groups within the data and (b) 
compare the results when using different methods 
independently, including those appropriate for the 
analysis of geochemical data. 
Some of the methods reported here can be used to 
analyse data of mixed type. 

Our implementation has been illustrated using data arising from 
the pétrographie and chemical analysis of 115 specimens of 
Late Roman Cooking Ware (LRCW) fi-om the Balearic Islands 
and the eastern Iberian peninsula. Whilst not fully illustrated in 
this paper, the general approach to the data analysis is an 
iterative process consisting of identifying obvious groups and 
outliers, "peeling" these away from the data set, and procee- 
ding with an examination of what remains. See Cau et al. (in 
preparation) and Papageorgiou et al. (2001) for more detail on 
this approach. 

Finally, as stated at the outset, our involvement in the GEOPRO 
project has the aim of developing an S-plus library of user- 
fnendly routines for grouping ceramics using chemical and/or 
mineralogical data. In support of the software, materials such 
as documentation and tutorials, both paper and web based, will 
be provided. The final collection of routines will be made freely 
available, via the Internet, to the archaeometric community. 
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2. The Can Sora data-set expressed as (a) a table of categorical data, (b) a matrix (G) of 0/1 entries obtained using 
method I. Symbols in brackets denote the result of a preliminary pétrographie classification 
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Figure 5. Application of MCA to the Can Sora data set 

ICTtT!^ 

Figure 6. A labelled histogram (second component of MCA 
output for Can Sora dataset). 
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Figure 7. Generating the graphical output resulting from 
Kruskal's non-metric MDS. Rows 8, 9, 10. 13, 14 and 15 will 
be highlighted (this was the subgroup identified earlier 
using MCA, see figure 5). 

Figure 8. MCA output revealing that rows 6 and II (cases 
CS-7 and CS-13) of the Can Sora data set are fairly clear 
outliers. 
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Figure 9. Applying MCA to the Can Sora dataset minus 
rows 6, 11 and 23 (cases CS-8, CS-24 and CS-25). 
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Figure 10. Applying PCA to the LRCW dataset. 

Tables 

Object number Category 
1 1 
2 4(=l+3) 
3 3 
4 1 

Table 1. A simple example of a 4 by 1 table of categorical 
data. The single variable is divided into categories 1, 2, 3 
and 4, the last of which consists of the presence of both 
category 1 and 3. Also note that category 2 is missing in this 
particular data set. 

Object number 1 3 4 = 1+3 
1 1 0 0 
2 0 0 1 
3 0 1 0 
4 1 0 0 

Table 2. Coding method 1. 

Object number 1 3 
1 1 0 
2 1 1 
3 0 1 
4 1 0 

Table 3. Coding method 2. 

Method 
Multiple Correspondence Analysis 
Multi-Dimensional Scaling 
Sammon's Non-linear Mapping 
Kruskai's Non-metric MDS 
Correspondence Analysis of G 

Acronym     Variable name     Components (maximum) 
MCA last.MCA 4 
MDS last.MDS 4 
Sammon last. SAM 2 
IsoMDS last.ISO 2 
CAofG last.CAG 4 

Table 4. Summary of available methods. 
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