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Abstract: Statistical models used in archaeology tend to be either implicit and very simple, or complicated, formal, and associated 
with the use of specialized software. The case is made here for the explicit use of relatively simple models, as a valuable aid to 
archaeological interpretation. The argument is illustrated by reference to the problem of interpreting the quantities of pottery 
discarded at a Romano-British pottery production site. The specific question is "how many firing seasons does this pottery 
represent? " Conventional approaches suggest a range of possible answers that is wider than that given by external evidence 
(from consumption sites), but the use of successively more refined models can narrow the range to a point where it provided useful 
interpretative information. The sensitivity of this approach to the initial assumptions is also discussed. 
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Introduction 'Highgate' problem. 

The uses of statistical models in archaeology tend to fall into 
one of two extreme categories. One the one hand, we have the 
informal, often implicit, role of a model as a basis for the use of 
a particular statistical test or analytical technique. For example, 
if we use a t-test to compare two sets of data, we are making 
implicit assumptions about the Normality of distributions, 
equality of variances, etc., which together constitute a model of 
the behaviour of the variables concerned. If we decide (for 
example) to take logarithms of the data before undertaking an 
analysis, we are modifying our model to try to bring it more 
into line with real life. All this takes place so automatically that 
we scarcely recognize that a model is involved. 

At the other extreme, we have the formal models that are needed 
if we are to employ more specialized statistical techniques. Until 
recently, these were rare in archaeology, but they are now 
becoming increasingly common through the growing use of 
sophisticated analytical packages such as Oxcal {Bxonk Ramsey 
1995) and Bcal (Buck et al 1999). This increase can be linked 
to the use of a Bayesian approach to statistical analysis, which 
requires a more formal model-building stage. Here the 
archaeologist is forced to be very explicit and detailed about 
their model of (for example) the stratigraphie relationships 
between their samples, if they are to benefit from the analytical 
power that such techniques can bring. 

Somewhere between the two lies an area where simple statistical 
models can be used in the interpretation of relatively simple 
datasets. The simple 'back of envelope' calculations that 
archaeologists may use to try to interpret the quantities of ma- 
terial from a site are frequently inconclusive, because the 
margins of error on their figures are so wide that the final answer 
is almost meaningless, or could be arrived at by other means. 
By building a simple but realistic model of the situation, the 
limits may be reined in to a point at which they may actually 
become useful. Just such a situation is presented below - the 

Background 

The site known as Highgate Wood is a small Romano-British 
pottery production site, located about 8 km north-west of the 
Roman city of Londinium (Brown and Sheldon 1969). The main 
phase of production, which is dated to a AD 90 to 140, consists 
mainly of necked jars, bowls, and beakers in a grey sandy fabric, 
known as Highgate Wood C (Brown and Sheldon 1974). 
Excavations in the late 1960s and early 1970s revealed six 
pottery kilns of this phase, together with what felt like an 
enormous quantity of 'waster' pottery fragments. Post- 
excavation work showed them to weigh well over a toime in 
total. 

In recent years discussion has focussed on what these quantities 
might mean in terms of the organization of pottery production 
on the site - how much pottery was produced, how it fitted in to 
the broader picture of Londinium's pottery supply, etc. An ini- 
tial attempt to quantify this problem (Tyers 1997) yielded 
inconclusive results, but provided the parameters for a more 
precise analysis. 

The 'Highgate' problem • 

Evidence from Londinium, in the form of Highgate Wood pots 
found in dated contexts, suggests that this phase of production 
at Highgate Wood lasted for about 50 years (Tyers 1997: 9). 
On reflection, one tonne or so of wasters is not a lot to show for 
50 years' potting, raising questions about the intensity of the 
use of the site, e.g. was it in use every year? To answer them, 
we need to estimate the number of firing seasons represented 
by the waster pottery, and to compare this estimate with the 
overall life-span of the site. 
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We approach this by noting that the total number of waster pots 
must be the product of: 
the number of firing seasons, 
the number of weeks per season, 
the number of firings per week, 
the number of pots per firing, and 
the 'waster rate', i.e. the ratio of pots spoih to pots fired. 
The number of waster pots can be estimated from the site 
catalogue, while estimates for the other factors can be obtained 
from experimental and ethnographic evidence (see below). 

Number of waster pots 

The sums of the raw values from the catalogue are (Tyers 1997: 
2): 
weight 1304 kg, 
eves 1295 eve, 
rim sherds      13,347, 
implying a brokermess statistic of just over 10 rim sherds per 
pot. 

The two extreme interpretations of these figures are: 
1. each rim sherd represents a single pot; about 90% of 

each waster pot has either not been recovered or not 
been recorded. Therefore, about 13,300 pots are 
represented. 

2. each pot represented is substantially complete, but it has 
not been possible to reconstruct them because of their 
abraded condition, their dispersal across several 
contexts and the large quantity of pottery overall. 
Therefore, about 1300 pots are represented. 

Both of these extremes seem unlikely, and the actual number of 
pots represented on the site must lie somewhere between the 
two (Tyers 1997:3). 

An alternative approach is through the weight of the vessels, 
since whatever the problems of measuring the eves of small 
and abraded rim sherds, all the pottery was weighed and this 
should be more reliable (Tyers 1997: 5). A regression analysis 
of the weights and rim diameters of complete or near-complete 
pots at Highgate (Orton, unpublished) suggests that the average 
weight of a waster jar is about 650 g, and of a beaker is about 
600 g. An overall average of 650 g is estimated, to allow for 
other forms (such as bowls) which may be slightly heavier. This 
compares with a figure of about 500 g per eve from sites in 
Londinium (Tyers 1997: 7); it may be that larger pots are more 
prone to failure in firing than smaller ones. If we accept an 
average of 650 g per pot, the 1304 kg translates into about 2000 
pots. This is again a minimum figure, as it assumes that the pots 
at Highgate are virtually complete. 

An additional complication is that there appears to be under- 
recording of the Highgate pottery in 'Layer 2" (i.e. from 
elsewhere than the dumps, kilns and ditches), compared to the 
non-local pottery (Tyers 1997:7-8). Tyers (;6/W.) calculates that 
adjusting for this would increase the total weight of pottery from 
the site to about 2000 kg. This would raise the upper and lower 
limits of the number of pots represented to 3000 and 20,000 
respectively. Arguing on the basis that some cross-joins (i.e. 

sherds from the same pot in different contexts) can be expected, 
Tyers (1997: 8) reduces these limits to 2500 and 4500 pots. 

Number of weeks per season 

Tyers (1997: 9) assumes that the firing season was confined to 
the period from June to September, giving a maximum of 20 
weeks in round figures. He takes a span of four weeks as the 
minimum. 

Number of firings per week 

Experimental firings suggest that the firing itself would take 
the best part of one day and the cooling the best part of another. 
Taking into account the time taken to load and unload the kiln, 
Tyers (1997: 9) assumes that a maximum of two firings per 
week could be achieved. His minimum is one firing per week. 

Number of pots per firing 

The kilns constructed during the kiln experiments (Anon 1972; 
1973) were modelled on those of the Roman potters, and it was 
estimated that a fijll load would comprise c. 180 to 200 pots. 
This may be an under-estimate as a temporary superstructure 
might have allowed a larger load than the permanent dome used 
in the experiments. Tyers ( 1997:9) therefore suggests 250 and 
150 as the upper and lower limits on the firing capacity of the 
kilns. 

Waster rate 

The first Highgate kiln experiments achieved a waster rate of 
78%! The report on the experiment suggests a 20% waster rate, 
based on the comments of an experience modem potter and 
comparison with experiments in firing Roman pottery elsewhere 
(Anon 1973:59). The more experienced Roman potters, familiar 
with their tools and environment, should have achieved a lower 
figure. Tyers ( 1997: 8) therefore suggested a lower limit for the 
waster rate of 5%, and an upper limit of 20%. 

The maximum and minimum values for each of these factors 
are given in Table I. 

Number of firing seasons 

The lower limit for the number of seasons is found by dividing 
the lower limit for the number of pots by the upper limits of all 
the other factors, i.e. 
2500/(20 X 2 X 250 X 0.2) = 1.25 seasons. 
The probable upper limit for the number of seasons is found by 
dividing the probable upper limit for the number of pots by the 
lower limits of all the other factors, i.e. 
4500/(4 X 1 X 150 X 0.05) = 150 seasons, 
and the absolute upper limit would be 
20000/(4 X 1 X 150 X 0.05) = 667 seasons. 
Since these are, strictly speaking, kibi-seasons, any figure greater 
than 50 implies that not only did firing take place every year, 
but more than one kiln was in operation for at least part of the 
time. We are therefore no nearer the answer to the question of 
the frequency of use of the kilns. 
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A statistical approach 

Model 1 

The initial approach provides us with a simple arithmetical 
model, namely 
N = S.W.F.P.R (1) 
where: 
A^ = number of waster pots, 
S — number of firing seasons. 
T = number of weeks per season, 
F = number of firings per week, 
P = number of pots per firing, 
R = waster rate. 

As we have seen above, applying maximal and minimal values 
to each variable leads to a very wide range of possibilities for 
the ' unknown ' variable S. 

To make further progress, we have to model the variability of 
the factors concerned, as well as the relationship between them. 
At its simplest, we could construct a model (model 1 ) from the 
assumptions that: 
1. each variable has a lognormal distribution, 
2. the lower and upper limits given above represent 

confidence intervals at chosen probability levels (the 
absolute upper limit for A' is not used because it is an 
absolute, not a confidence, limit), 

3. each variable is independent of all the others. 

(2) 
Then equation (1) can be rewritten as 
log(5') = log(AO - log(D - log(F) - log(P) - log(Ä) 
with 
var(log(5)) = var(log(A')) + var(log(r)) + var(log(F)) + 
var(log(P)) + \ar{\o%{R)) (3) 

The expected values of each logged variable, and their variances, 
can be calculated by assuming that the logged upper and lower 
limits are the logged means ± k standard deviations, where k is 
chosen to give the required probability level. It is possible to 
choose different probability levels for different variables 
(perhaps reflecting different levels of confidence in the assigned 
limits), but for the time being we choose a common level across 
all variables. 

Three levels were chosen: a 'conventional' one of 95% (k = 
1.96), a -strict' one of 99% (k =2.576) and a "relaxed' one of 
90% (k = 1.645). We also need to specify the confidence limits 
for S-, here a "conventional" 95% confidence interval has been 
chosen. The results are shown in Table 2. 

Model 2 

Model 1 has been criticized on the grounds that F (number of 
firings per week) cannot be lognormal, but must have a 
Bemouilli (either/or) distribution because it can only take the 
values 1 and 2. This raises an interesting question about the 
nature of the variability that we are modelling - is it variability 
in past events (e.g. some weeks there was one firing and some 
weeks two), or uncertainty in our knowledge (e.g. we know 
there was likely to be between one and two firing per week, but 

cannot be more precise), or both? This criticism also draws 
attention to problems of modelling the number of firings in a 
season by multiplying the number of "active' weeks by the 
number of firings per week. For example, if work had taken 
place on an «-day firing cycle (where n "•?), this would create 
correlations between successive values of F, which would 
therefore not be independent. 

To overcome this, a more flexible model is suggested (model 
2), in which J (weeks per season) and F (firings per week) are 
replaced by two new variables L (total length of season in days) 
and M (interval in days between successive firings). The effect 
is to focus all the chronological variability within a season in a 
single variable (M). The model thus becomes 
N = S.(L/M).P.R (4) 
i.e. S = N.M/LPR 
Using the same assumptions as for model 1, we then obtain 
log(S) = log(AO + log(AO - log(Z) - \og{P) - log(/?) (5) 
with 
var(log(5)) = var(log(7V)) + var(log(jW)) + var(log(Z,)) + 
var(log(/')) + var(log(Ä)) (6) 

We next need to consider appropriate limits for L and M. Star- 
ting fi-om Tyers' maximum of 20 firing weeks (140 days) per 
season as the mean calendar length of a season (assuming no 
time is 'lost'), a range of from 90 to 160 days might be 
reasonable as a confidence interval for i. For M, Tyers gives an 
absolute minimum value of 3 days, so a lower bound of 4 days 
for the confidence interval might be reasonable. The maximum 
value is more difficult to assess; assuming a maximum of 7 
consecutive days' 'down-time' would give an upper bound of 
11 days. However, this leads to a mean of about 18 firings per 
season, compared to only about 13 under model 1. To maintain 
the same number of firings per season under model 2 would 
require an upper limit of 22 days (i.e. a maximum 'down-time' 
between firings of 18 days, which seems rather high). Using 
bounds of 4 and 11 days for the confidence interval of M leads 
to table 3; bounds of 4 and 22 days give results very similar to 
table 2. as might be expected. 

Archaeological conclusion 

Under model 1, the number of firing seasons is likely to lie 
between about 4 and 40, depending on the reliance that is placed 
on the limits assigned to the other variables. This is a reduction 
on the span of possible outcomes implied by the original analy- 
sis (about 25% of the original span of 150 years). Under model 
2, with its rather more intensive firing regime, the upper limit 
of S is reduced to about 20/30 seasons and the span of possible 
outcomes to about 30% of the original. In either case, it is 
unlikely that there was a firing every year of the site's existence. 
This is an important conclusion, because it contradicts the com- 
mon assumption that "fixed' kilns are not associated with 
'itinerant' potters. 

Statistical discussion 

Apart fi-om improving our estimate of the "dependent' variable 
(in this case, S), this approach also yields useful diagnostic in- 
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formation about the 'independent' variables. The variances of 
the logged variables show their 'importance', i.e. the relative 
contributions that they make to the variability of the dependent 
variable. The orders of importance (greatest to least) under the 
two models are: 

model 1 model 2 
T R 
R M 
F L) 
N N) 
P P 

These show that, if we want to improve our estimate, we should 
concentrate on reducing the variability of the 'seasonal' factors 
{T and F ox M and L), and the waster rate R, rather than the 
'potting' factors (A' and P). For example, even if we knew the 
value of P exactly, it would make very little reduction in the 
variability of our estimate of 5. 

We also need to consider the possible effects of mis-specifying 
the model. This has two aspects: the shapes of the distributions 
of the variables and the assumption that the variables are 
uncorrelated. 

\ar(A -B-C) = \BiT{A) + var(5) + var(C)- cov(^, B)- cov(A, 
C) + cov(B, C) (Stuart and Ord 1994: 351). 

This means that, under model 1. positive correlations between 
A' and any of the other variables will decrease var(5'). while 
positive correlations between the other variables will increase 
var(5). Since N is an estimate made by archaeologists from a 
fixed body of data, it is not likely to be correlated with other 
variables. There are no obvious correlations between T. F P 
and R, except that certain potting strategies (e.g. a need to 
produce a given number of pots in a season) might suggest a 
negative correlation between Tand F. This would have the eflFect 
of reducing var(log(5')), but as it is only one correlation amongst 
many possible ones, the effect is not likely to be great. 

A similar argument would hold for model 2, when we should 
consider possible correlations between L, M, P and R. The 
possible negative correlation between Tand Fhas disappeared, 
and there seems to be no reason for replacing it by one between 
L and M 

There is thus no reason to suppose that the model is so seriou- 
sly mis-specified as to cast doubt on the likely values of S, and 
the outcome seems to be robust. 

Distribution of the variables 

The calculations of the means and variances from the ranges 
are based on the assumption that all have lognormal 
distributions, which was made purely for computational 
convenience. We therefore need to take a closer look at the 
variables and assess the likely form of the distribution of each. 
It seems reasonable to assume that A' and P have normal 
distributions, but given the sizes of the standard errors (= stan- 
dard deviation/mean) of these variables, the difference between 
normal and lognormal will not be great. R seems more likely to 
be genuinely lognormal, reflecting a potter's wish to minimize 
the waster rate, and the occasional higher values that are likely 
to occur. The distribution of F has already been discussed above. 
Tis more difficult; one might suppose that there was a 'natural' 
firing season, reduced by a random number of inclement weeks, 
which can be expressed by T = 22 - T^, where T^ has a log- 
normal distribution. This approach is not followed up here, 
because of the decision to replace Fand Tby L and A/in moving 
from model 1 to model 2. Since L is the overall length of the 
firing season, a normal distribution seems most appropriate, 
but for the same reason as for A' and P. a lognormal approxima- 
tion does not seem unreasonable. M seems much more suited to 
a lognormal distribution, as skewness is likely to be a notable 
feature of its distribution. 

Thus, although much more work could be done on finding the 
most appropriate distribution for each variable, the use of the 
lognormal seems reasonable as a first step. 

Correlations between variables 

The formulae for var(log(5')) - equations (3) and (6) - carry an 
implicit assumption that the 'independent' variables are not 
correlated with each other. The formula if this assumption is 
not made is of the form 

General discussion 

The use of a simple stochastic model has here made the 
difference between an outcome that tells us nothing that we did 
not already know from other sources of evidence, and an 
outcome which, although still quite vague, makes a significant 
contribution to the interpretation of the site. Such a use could 
be equally valuable in many other interpretative situations. The 
model can be very easily implemented as a spreadsheet, which 
allows rapid 'what if' calculations based on different values of 
the variables. It is a potentially valuable to the archaeologist's 
toolkit. 
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Tables 

Probability level 
90% 95% 99% Original limits 

Lower limit 3.3 4.2 5.6 1.25 
Probable upper 
limit 

56.1 44.7 33.7 150 

Table 2: 95% confidence limits on the value of S (number of 
firing seasons) under various assumptions about the confidence 
levels implied by the limits assigned to other variables, under 
model 1. 

Probability level 
90% 95% 99% Original limits 

Lower limit 3.0 3.6 4.5 1.25 
Probable upper 
limit 

31.0 25.6 20.3 73 

lower limit probable upper limit absolute upper limit 

pots represented 2500 4500 20,000 

weeks per season 4 20 

firings per weeli 1 2 

pots per firing 150 250 

waster rate (%) 5 20 

Table 3: 95% confidence limits on the value of S (number of 
firing seasons) under various assumptions about the confidence 
levels implied by the limits assigned to other variables, under 
model 2. 

Table 1 : maximum and minimum values for each of the factors 
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