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Introduction 

It is easy to find examples of archaeological surveys that 
failed to detect a Teotihuacan (Cowgill 1975: 260, Flannery 
1976: 133-134), that provided biased estimates of site 
density, or that yielded none of the economic or contextual 
information needed to investigate a particular research 
problem. Yet surveys are also uniquely able to provide some 
kinds of important data, and especially ones at the regional 
scale. The key to more usefiil surveys is to tailor surveys' 
designs to their objectives. The following paper will 
introduce a set of tools that can improve the effectiveness 
and reliability of one type of survey in particular, while also 
having more general implications. 

Types and goals of archaeological survey 

I classify surveys broadly into three categories, on the basis 
of their principal goals, although some surveys certainly 
combine aspects of more than one. 

Today, most surveys are of the sampling variety, designed to 
estimate parameters, such as site density, mean edge angles, 
population size, or the proportion of sites that are Saxon 
settlements. These surveys can also be used to test statistical 
hypotheses or to devise predictive models for the location of 
archaeological materials. A common design for such a 
survey is to divide some region of space into regular, 
geometric spatial units, which serve as the sampling 
elements. In that case, sampled artifacts or sites typically 
constitute a cluster sample of the population of sites or 
artifacts in the region. Note that here I use the term "sample" 
in its narrower, statistical sense, and not merely to describe 
some subset of a larger whole. 

Other surveys are meant to detect and understand spatial 
structure, such as Christalleran settlement lattices, rank-size 
distributions, the scale of artifact clustering over continous 
space, or the organization of road or canal networks. Usually 

such goals would be ill-served by a spatial sample because it 
would not provide sufficiently continuous coverage of the 
region for the patterns of interest to be recognizable. Some 
archaeologists, consequently, have argued for so-called "total 
survey" in these situations (e.g., Ebert 1992, Fish and 
Kowalewslei 1990). 

Finally, what I call here "prospection" is survey meant to 
find particular targets or kinds of targets, to test hypotheses 
that predict the specific locations of targets in space, or to 
ensure that the other two types of survey are sufficiently 
thorough to achieve their goals. Effective or successfiil 
prospection, or "purposive survey," as it is sometimes called, 
finds sites, features, or artifacts. In other words, its purpose is 
detection. Here you will note that I use "prospection" quite 
broadly, and not only to refer to geophysical remote sensing. 

Many archaeologists have shutmed purposive survey and 
used sampling as a discovery method, apparently out of fear 
of seeming unscientific. Statistical or sampling surveys are, 
however, a poor way to find rare or specific targets, as 
archaeologists have known for a long time, because sampling 
is meant to find typical or common ones, or to represent 
central tendency in a population (cf Cowgill 1975: 260). 

Prospection, by contrast, takes advantage of information that 
may improve our chances of finding the archaeological 
materials of interest, even when they are rare, but may be a 
poor basis for statistical generalizations. Prospection also 
allows us to balance the costs of survey and risks of missing 
these materials, which for convenience I will call "sites" or 
"targets." although they can be "non-site" evidence or 
individual artifacts (e.g., Dunnell and Dancey 1983, Ebert 
1992. Foley 1981). Among the goals that prospection may 
face are minimizing costs or search time, operating within 
resource constraints, or minimizing the risk of missing 
targets. Where prior information is available, purposive 
survey is more productive than a sample (Cowgill 1975: 260, 
27. Read 1975: 45, Schiffer et al. 1978: 18). 
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Prospection can involve searching for specific, historically 
documented targets or, more generally, can help us find 
examples of some class of sites, especially rare or unusual 
ones, which random sampling and its variations tend to miss 
unless sample size is unusually large. 

Prospection of the former type is perhaps most familiar in 
maritime applications, when we know the date and 
sometimes even the cargo of a shipwreck, but not its exact 
location. For example, historical documents explicitly 
describe the orientation and approximate location of ships of 
the Chesapeake Fleet, which the Americans scuttled in the 
Patuxent River in 1814 to keep the ships from falling into the 
hands of British forces (Shomette and Eshelman 1981). 
Prospection builds such information into a search strategy to 
improve our chances of finding the ships with limited 
resources. Such a strategy helped Tommy Thompson, a non- 
archaeologist, locate the SS Central America in 1986, which 
was known to have sunk in the Atlantic in 1857 (Kinder 
1998). • 

Prospection of this type is also applicable, however, to some 
examples of terrestrial survey, such as cases where historical 
documentation refers to some fort or settlement, the precise 
location of which has been forgotten. For many years 
archaeologists have used historical information to narrow 
such a search, as in the search for Columbus's settlement at 
La Navidad (Deagan 1989), the search for Mission Santa 
Catalina de Guale, or even Schliemann's search for Troy. 
Yet, although recognizing the need for "a systematic 
approach to prospection, reducing the area of search and 
thereby incrementally increasing the probability of success" 
(Garrison et al. 1985: 302), searchers have rarely selected 
near-optimal strategies for this purpose, and sometimes even 
begin with a random sample that does not take advantage of 
prior information. In a more productive vein, Lolley ( 1996) 
used historic maps to predict the locations of Upper Creek 
Muskogee settlements in Alabama. He combined this prior 
information to make a more accurate map on which he 
marked the predicted locations of these sites with circles 
whose areas represented the uncertainty of location, and used 
these to recommend the distribution of survey effort. 

As an example of the second type, searching for some class 
of sites rather than a particular site, some researchers (e.g., 
Storck 1978, 1982, 1984) have long used the tendency of 
previously known Paleoindian sites to occur on particular 
landforms, such as fossil beach ridges, to narrow the search 
for undocumented Paleoindian sites. Today the use of GIS 
predictive modelling (discussed below) has refined this kind 
of approach. 

In spite of such applications, archaeologists have been 
largely unaware of a large body of theory explicitly devoted 
to searches of these kinds, found in Operations Research, that 
could help them improve the effectiveness of their surveys. 
Sometimes they have also reinvented tools that had already 
been available for several decades. 

Operations Research 

Operations Research began with efforts by Koopman (1980) 
and   other   mathematicians   to   optimize   the   US   Navy's 

searches for German U-Boats almost 60 years ago. These 
researchers also worked out near-optimal ways to conduct 
search-and-rescue operations (Richardson and Discenza 
1980), including transect spacing and orientation and 
distribution of search effort, and to track multiple moving 
targets (Stone et al. 1999). The principles were later extended 
to fields such as petroleum exploration and mineral 
exploration (e.g., Cozzolino 1972, Drew 1967, 1979, 
Harbaugh et al. 1977, McCammon 1977, Savinskii 1965. 
Singer 1975, Singer and Drew 1976, Singer and Wickman 
1969), which share many of the same problems that survey 
archaeologists face, and especially the need to detect 
subsurface targets. 

Archaeologists have rarely referred to any of this literature, 
in spite of previous archaeological interest in Optimal 
Foraging Theory, which uses some of the same principles 
and concepts, including encounter rate, patchiness, and cost 
functions (see Winterhaider and Smith 2000 for a recent 
review). 

The one area in which Operations Research has had some 
archaeological impact is in the optimal arrangement of 
augers, cores, and test pits and the evaluation of their 
detection probabilities, including work by Kintigh (1988), 
Krakker et al. (1983), and Zeidler (1995), all of whom cite 
geological applications in this area. Other research of this 
kind (e.g., Nance 1979, 1983, Nance and Ball 1989; Shott 
1985) and work on the edge effects of transects and other 
geometric survey units by Plog et al. (1978) progressed 
independently and apparently without benefit of the earlier 
publications in Operations Research or earth sciences. Even 
archaeologists working for the US Department of Defense 
seem unaware of the US Navy's substantial and long- 
standing contributions to search theory. 

Approaches to optimal search in Operations Research 

Broadly speaking, "classic" optimal survey strategies have 
emphasized one of two approaches. Koopman ( 1980), Stone 
(1989), and others who pioneered Operations Research 
emphasized Bayesian approaches (Dobbie 1968, Washbum 
1981). Corwin (1981), Gal (1980, 1989) and others explored 
the Game Theory approach. Recent advances in search 
theory have brought novel methods, including application of 
genetic algorithms (see Reynoso and Jezierski, this volume) 
to search problems, and some of these may conceivably have 
potential in archaeological searches. 

The Bayesian approach uses prior probabilities based on 
existing information, analysis of expert opinion (Morris 
1977, Savage 1971), or even educated guesses, to try to 
optimize the allocation of search effort over space (Koopman 
1980. Stone 1989, see also Buck et al. 1996). It can also 
adapt to new information as survey progresses to refine the 
survey strategy. Typically it assumes some probability 
distribution for the target's location, such as a bivariate 
normal distribution over a potential shipwreck. In the worst- 
case scenario, it might assume a uniform distribution, with 
all parts of the survey space equally likely to contain the 
target or targets. In such instances we end up with a strategy 
resembling the long-familiar sampling surveys. 

Game Theory uses some methods aheady familiar fi-om 
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Optimal Foraging Theory, such as the Minimax approach, 
and treats the search as a two-person, zero-sum game 
between the searcher (the archaeologist) and the hider (the 
target or site). This is like Optimal Foraging Theory's focus 
on foragers trying to optimize their encounters with prey 
(e.g., Paloheimo 1971). Often the goal is to find the 
trajectory or sequence of search spaces that will probably 
find the target most quickly. Sometimes, alternatively, it is to 
ensure against the risk of not finding the target at all. As in 
Optimal Foraging Theory, it uses a cost fiinction to evaluate 
the risks and benefits of various strategies. Generally it 
assumes that search consists of movement through a 
sequence of spaces or a continuous sweep of space, as in the 
transects that archaeologists typically use for surface survey 
by visual inspection. 

Factors affecting discovery (detectability) 

In both Bayesian and Game-Theory approaches to search, we 
also need to assure ourselves that interception of the target 
will probably lead to its detection. However, as 
archaeologists are well aware, many factors can confound 
detection, even when we are standing right on a site. 
Archaeologists (McMannamon 1984, Plog et al. 1978, 
Schiffer et al. 1978) have identified some of these factors as 
visibility, obtrusiveness, intensity, and so on. Others have 
stressed the distinction between the probability of 
intersecting a site and the probability of detecting it, given 
that one is present (e.g., Krakker et al. 1983, Lightfoot 1986, 
Zeidler 1995). Operations Research addresses these same 
issues, although usually under different names, and provides 
a framework to minimize the risk that we will fail to detect a 
site we intersect, and the converse risk that we will mistake a 
"false target" for a site. 

Among the factors that affect discovery are ones concerning 
the properties of the target. Archaeologists have summarized 
these as "obtrusiveness" (Schiffer et al. 1978: 6). In fact 
obtrusiveness is a fiinction of both the target's properties and 
those of the target's immediate environment. Successfial 
detection depends on a contrast between these. For example, 
during a magnetic survey, an iron cannonball is highly 
obtrusive if it is buried in typical soil or sediment, but it 
would escape detection if it were buried in iron filings 
because there would be no magnetic contrast between it and 
its environment. For artifact scatters detected by visual 
inspection, test-pitting, or augers, obtrusiveness is largely a 
fiinction of artifact density (Krakker et al., 1983, Stone 1981) 
and artifact clustering (Nance and Ball 1986, 1989), although 
other factors come into play. 

Another factor that affects detectability is the type of signal 
that communicates information about these properties from 
the target to a sensor. For example, the signal could be 
seismic, magnetic, or electromagnetic, and includes visible 
light. 

A third factor is the medium of signal propagation, which 
archaeologists have summarized as "visibility" (Schiffer et 
al. 1978: 6). Visibility through a medium such as sediment or 
air may be poor or even zero for some types of signal while 
the same medium is perfectly transparent to some other type 
of signal. 

Another factor is the kind of sensor or method of inspection. 
For example, we might use our unaided eyes to conduct 
survey for surface artifacts, but a magnetometer to detect 
anomalies in the magnetic field due to buried iron objects or 
sediments whose magnetic susceptibilities contrast with that 
of their environment. 

Yet another major factor is our ability to recognize the signal 
and correctly classify or identify it. In practical situations, 
there are often "false targets." These are phenomena that 
send signals we find difficult to distinguish from those of 
targets of interest. For example, some buried natural 
irregularity in the bedrock could produce a magnetic or 
electromagnetic signal that we mistake for that of a buried 
pithouse, or the discovery of a single artifact in a test pit may 
be ambiguous evidence for the presence of a site (or cluster 
of artifacts). The incidence of false targets can cause us to 
waste valuable time digging test trenches to investigate 
ambiguous remote-sensing anomalies or putting additional 
test pits in the area around isolated artifact discoveries to see 
if more evidence for a site is forthcoming (e.g., Lightfoot 
1986). 

Some of the many other factors we need to consider are 
resource constraints, crew training and motivation, 
accessibility, density of survey effort, and even weather and 
time of day. 

Factors in optimization 

Some of the factors that Operations Research considers in 
order to optimize searches include cost (in search time or 
effort), resource constraints, the area or number of spaces to 
be searched, the expected number of targets, the likelihood of 
false targets, and the relationship between point or transect 
spacing (or sweep width), the range of our eye or other 
sensor, and the probability of detection. Archaeologists have 
usually used the term "intensity" to refer to the cost or effort 
involved in searching a space, but the term tends to be 
confusing because it can refer to total effort, to amount of 
effort per unit area (density of effort), or to the spacing 
(resolution) of transects, auger holes, or magnetometer 
measurements. Operations Research treats these separately, 
and cost refers to the total effort devoted to a search space, 
usually measured in either time or person-hours. The range is 
often conceptualized as the lateral (or perpendicular) distance 
between a transect and a target but, in remote-sensing 
applications, can also refer simply to the distance between 
the target and a sensor. 

Unlike U-boats and antelopes, and fortunately for 
archaeologists, archaeological targets are stationary, which 
makes the search problem much easier. However, we still 
need to consider whether it makes more sense to conceive of 
the search space as a set of discrete spaces, such as 
topographic features of the landscape, arbitrary geometric 
spaces, or the pixels of a GIS Digital Terrain Model, or as 
continuous space, such as part of the open sea over a 
shipwreck. Our way of sensing the archaeological remains 
can also be discrete or continuous. Resistivity measurements, 
crew visits, auger holes and test pits involve discrete "peeks" 
at what lies below, while surface survey and Ground- 
Penetrating Radar may involve virtually continuous scans or 
sweeps of the ground. 
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Discrete peeks or glimpses run the risk of missing remains 
that lie between observation points. Some of the literature 
concerns ways to minimize this risk, and several authors 
have published on the optimum spacing and pattern of points 
to detect circular (e.g.. Kintigh 1988) and elliptical targets 
(e.g.. Drew 1979, McCammon 1977, Singer 1969). 

Sweeping the ground, however, does not always assure 
detection either. Sometimes it is convenient to assume that 
detection is assured as long as the target comes within range 
R of a transect, sometimes called the discovery radius. In that 
case, a transect spacing of 2R makes a "clean sweep" of an 
area or region. So-called total survey depends on this 
assumption, which Operations Research describes as the 
"Law of Definite Detection" (fig. 1. Koopman 1980: 82-83). 
Of course, diiferent kinds of sites have different discovery 
radii, and it may only be possible to make a clean sweep of 
the more obtrusive sites. 

In many instances, fiirthermore, we know that the probability 
of detection falls off rapidly with distance. Often, the 
Inverse-Cube Law pertains, with detectability of targets 
inversely proportional to the cube of the range (fig. lb. 
Koopman 1980: 57-67). Consequently, in these cases, we 
could fail to detect sites even when they are quite close to a 
transect. This has led to surface surveys with narrow transect 
intervals, or even crawling on the ground, to minimize the 
maximum distance between observer and target. 

Archaeologists have also sometimes tried to address this 
problem with a variety of search geometries, or by surveying 
each space with two complementary geometries (fig. 2). For 
example, in surface survey, ""wavy" transects are intended to 
decrease the systematic omission of between-transect 
observations (e.g.. Mortensen 1974), but make it more 
difficult to evaluate detectability. In surface survey or 
distributional archaeology (Ebert 1992). a second set of 
transects is often at right angles to the first, the rationale 
being that repeating the survey from a different angle (and 
with different lighting conditions) will reveal some artifacts 
missed in the first pass. Operations Research has also 
investigated this problem and found that, for double sets of 
transects, it is optimal for the second set to be diagonal to the 
first (fig. 2d), rather than at right angles, because it 
maximizes the area of new ground covered . 

In the Bayesian approach, meanwhile, some situations 
(namely when the prior probabilities make a circular normal 
density ftinction) call for a spiral trajectory expanding from 
the point of highest prior probability, as in the case of a 
shipwreck or historic settlement whose approximate 
coordinates can be estimated. For practical reasons, it is 
usual to approximate this with an Expanding Square centered 
on the Point of Fix (mode of the probability distribution; fig. 
3, Koopmans 1980: 214-227), and with a spacing interval (S) 
that depends on the distribution's standard deviation (a) and 
the sweep width (W) or "effective visibility" (E) of the 
detector. E is half the sweep spacing that results in a 
detection probability of 0.5. For definite detection, W = E, 
but for inverse-cube detection. W = 1.076E (Koopman 1980: 
76-77. 217). We can then define the spacing interval as 

Note that, if definite detection applies, posterior probabilities 
fall rapidly to zero as search progresses without finding 
anything, so that the posterior probability distribution can 
quickly become doughnut-shaped (Koopman 1980: 216). 
rather than bivariate-normal. 

Target detection 

Not surprisingly, the conditional probability of detecting a 
target, given that the target is present, increases with the 
amount of time we devote to searching for it. For continuous 
searches with definite detection and accurate transect 
trajectories, this relationship is linear. For discrete searches 
with uncertain detection, however, the quantity, g, is the 
instantaneous probability of detection by one glimpse. Thus 
g summarizes the factors, including visibility and 
obtrusiveness, that contribute to detectability. If each glimpse 
is independent of the others, the probability of each failed 
glimpse is (1 - g) and we multiply this n times to find the 
probability of not detecting the target in n glimpses. The 
converse of this, that is, the probability of detection in n 
glimpses, is then 

Pn=l-(l-g)" 

More generally, the probability of detection in the time 
interval dt is 

p (t) «   1   - ê»^ 

This is one way to express the exponential detection 
fimction. where g and go depend on physical conditions of 
visibility and obtrusiveness. and t is the amount of time 
devoted to search. Although the exponential detection 
fimction it is somewhat unrealistic, in that it assumes that 
glimpses are randomly distributed and independent of one 
another, it actually is a conservative detection function (fig. 4 
and Stone 1983: 218) because it predicts a lower detectability 
than either definite detection or inverse-cube detection. 

The important thing, for our purposes here, is that the 
exponential detection ftinction describes a curve that levels 
off. This means that we can expect the payoff for increasing 
search effort to show diminishing returns (fig. 4). At some 
point, it may be more profitable to search elsewhere, rather 
than continue searching in the same space, under these 
circumstances. As it turns out, a wide variety of 
circumstances can lead to an exponential detection function, 
including inaccurate placement of survey transects and 
exponential falloff in the probability of "seeing" the target as 
range increases. The inverse-cube detection fimction also has 
diminishing returns, but is more optimistic than the 
exponential function (fig. 4). 

Steps in planning prospection 

There is not space here to discuss optimal search plans in 
detail. Once searchers have identified the goal of search. 
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however, the search involves a number of tasks (modifed 
after Stone 1983:208): 
1. Estimating   the   prior   distribution   of the   target 

location, 
2. Characterizing the target or targets and selecting 

appropriate sensing methods, 
3. Estimating the  capabilities of sensors  to detect 

targets, 
4. Estimating the impacts of visibility, 
$, Estimating the impact of false targets, 
6. Determining    a    detection    fiinction,    including 

estimated detectability under various circumstances, 
7. Developing a search plan and estimating its cost and 

probability of success, 
8. Updating   the   plan   as   the   search   yields   new 

information, and 
9. Evaluating the search's effectiveness. 

Note that many of these steps would apply equally to surveys 
of the sampling variety. In fact, one could well question 
whether we can justify extrapolating from a sample to a 
population without estimating some of the impacts included 
in this list. 

Examples of prospection problems 

This section will briefly present some examples of search 
problems that could benefit from the approaches of 
Operations Research. In the interest of brevity, I will 
concentrate on allocation of effort, as this is a problem 
integral to all kinds of surveys. 

As an example of discrete search, but in cells that are small 
enough to approximate continuous search, we could use 
Bayesian methods to find the optimal allocation of effort 
among the pixels in a GIS predictive model, such as 
Miimesota's Archaeological Predictive Model.' The pixels, 
each 30 m X 30 m in size, have been classified to eight levels 
of prior probability. Commonly, archaeologists make little 
use of this information except to warn planners of probable 
CRM impacts, yet more specific models of this type can also 
guide survey for rare targets or what Altschul (1990) calls 
"red flags": surprising results rather than the typical and 
highly predictable ones that sampling surveys normally 
report. 

Another example that could benefit from optimal allocation 
of effort is Florida State University's survey for Paleoindian 
sites on Florida's continental shelf, flooded by rising 
Holocene sea levels (Faught and Donoghue 1997). The FSU 
survey has focussed on geological outcrops along drowned 
river valleys that are likely to contain chert sources, which in 
turn have relatively high prior probabilities of having 
prehistoric sites in their vicinities. This is an intuitive 
application of the principles of optimal search, yet does not 
take advantage of the theory available to optimize search 
effort explicitly (cf Mangel 1983). 

In both these cases, and ones like them, where we can reduce 
space to a set of discrete, smaller spaces, each with different 
areas and probabilities of containing targets, the optimum 
densities of search effort are equal to the logarithms of 
quantities proportional to the probability densities of the 

spaces (Koopman 1980: 149). When we are looking for a 
single target, and it can only be in one of the spaces, all the 
probabilities sum to 1.0. In cases where we are only looking 
for a class of targets, and do not even know how many 
targets there are, the probabilities are independent. The total 
density of search effort (fö) in the i-th space of n spaces in a 
region of area A, is: 

S 
(fl = logp, - ^(Ai logpi + A2 logp2 + ... +  Ji.^logp^ + — 

Here p. is the probability density of space i (the prior 
probability that space i contains the target divided by the area 
of space i), n is the number of spaces in the search area, A is 

the area of space i, <() = total search effort, expressed as area 
covered (for transects 4) = WL), and (^. is the "coverage" or 
"sampling fraction" of area i: 

-^ 

where W and L are respectively the width and total length of 
transects. (|)/A, then, is what archaeologist's have usually 
called "coverage." This can be expressed just as easily with 
the total area of test pits, augers or cores. 

It turns out that, when the total amount of search effort is 
very small relative to the region surveyed, it is optimal to 
devote the entire search effort to the space or spaces with the 
highest probability density. This is much like what happens 
in typical use of predictive models in Cultural Resource 
Management today. With middling amounts of search effort 
available, we distribute it among the spaces according to the 
expression above. We can test each space to see whether it 
meets the threshold for allocation of space. If, for any two 
spaces, 

Pl < 92^'^** 

then no search effort is allocated to space 1 (Koopman 1980: 
149). When search effort is very large, however, the amounts 
of effort per unit area for all spaces become equal; this 
amounts to a simple, proportionally stratified sample, a type 
of survey strategy with which archaeologists are very 
familiar. Unfortunately, we usually do not have the luxury of 
nearly unlimited survey effort. 

Simplified examples of optimal allocation 

To provide a more concrete example, let us assume a simple 
case with a survey region stratified into three spaces with 
areas of 3 ha, 2 ha and 1 ha, respectively. Let us furthermore 
assume that we are searching for a historic fort, but have no 
prior information about it other than that it should occur 
somewhere in the region we are surveying. A common 
archaeological plan is to divide search effort in proportion to 
the three areas, which amounts to assigning the three spaces 
prior probabilities of 0.50, 0.3333, and 0.1667. In that case 
the value of Pj for every space will be the same: 0.1667, and 
most of the terms in the equation cancel out (Table lA). 
Thus, the result is simply a proportionally stratified sample 
with equal coverage of each stratum. Let us assume, 
furthermore, that poor surface visibility and low expected 
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artifact density leads us to survey with test pits, each 1 m^ in 
size, and the amount of survey effort available ((()) is 3000 m^ 
(3000 test pits, or roughly 1500 person-days of effort 
[Zeidler 1995:5.5]). Dividing this admittedly huge resource 
by the total survey area A, then gives us (j)/A of 0.05 (5% 
"coverage"), so that a total of 3000 test pits would be 
allocated as 1500, 1000, and 500 test pits, respectively. 

An alternative, if there is no reason to think it more likely 
that the fort would occur in any one of these spaces is to 
assign them all equal prior probabilities. This may seem 
strange, but the practice in the last paragraph actually makes 
the untested assumption that large spaces are more likely to 
contain the fort even though we know that strategic locations 
for forts, such as hilltops or fords, often occupy very small 
proportions of space. Since the fort can only be in one place, 
the probabilities have to sum to 1.0, so the priors are all 
0.3333. In that case, however, the probability density of the 
smallest space is so great relative to the others that we would 
allocate all search effort to it (Table IB). Neither space 1 nor 
space 2 meets the threshold given in (6). Needless to say, 
assuming equal probabilities in cases where we know 
nothing except that the spaces vary considerably in size 
would usually be risky, so it makes sense to try to estimate 
probabilities more carefully. 

Sometimes we have statistics from previous surveys and 
background research that gives us a basis for estimating the 
fort's probability of being in various kinds of location. For 
example, a sample of a dozen similar forts in the broader 
region or information from historic maps might allow us to 
estimate prior probabilities of 0.45. 0.35. and 0.20, 
respectively (Table ID). In that case, dividing by their 
surface areas, the probability densities (p.), are 0.15, 0.175 
and 0.2 respectively. Note that the probability densities are 
ordered quite differently than the ordinary probabilities on 
which they are based. This results in a 0, of 0.007 (206 test 

pits spread over 3 ha), (|), of 0.074 (1476 test pits over 2 ha), 

and (|)3 of 0.132 (1318 test pits). A more generous, if 
unrealistic, total effort allocates a much greater number of 
test pits to areas 1 and 2 (Table IC). Note, however, that if 
our resources only allow us to dig 1200 test pits (ca. 600 
person-days), then the "coverage" becomes 2% and space 1 
no longer meets the threshold of probability density. 
Consequently, no effort is allocated to space 1 in this 
scenario because its probability density of 0.15 is simply too 
low. We now include only spaces 2 and 3 in the calculation, 
so that <t), becomes 0.021 (413 test pits), and 4)3 becomes 
0.0.079 (787 test pits)(Table IE). Note how the proportions 
of effort change when the resources decrease, and how the 
greatest amount of effort, somewhat counter-intuitively, is 
concentrated in space 3, even though it had the lowest prior 
probability (but highest probability density). 

It is important to keep in mind that adopting a strategy like 
this does not mean that the target is most likely to occur in 
space 3 - after all, we have estimated that there is a 45% 
chance that it is in space 1 - but only that looking in space 1 
is more likely to be productive, given our resource 
constraints. Allocating a small amount of effort to such a 
large area as space 1, by contrast, is quite unlikely to find the 
fort even if it is there. We must remember that in this case 

the goal is to find the fort as quickly as possible, wlien 
resources are limited. Had the goal been to characterize the 
three spaces, obviously the allocation would have been very 
different. 

More realistic allocations are made incrementally, using 
information from a previous, unsuccessful search with effort 
(() to plan the next increment with effort (])' (Koopman 
1980:150). Stone (1975:108-109) has shown that incremental 
plans that always put the next search in the space with the 
highest ratio of detection probability to search cost will be 
optimal in this situation. 

Conclusions 

It is important for the designs of surveys to be suited to their 
goals. Where the goal is to fmd particular targets or kinds of 
targets, rather than to make parameter estimates, build 
predictive models, or detect spatial structure, we should use 
prospection, by which we try to optimize the recovery or 
detection of those targets. 

There is little question that purposive selection 
is preferable to sampling whenever selection is 
feasible, sufficient for one's research 
objectives, and not wasteful. One of the 
reasons why improved techniques of data 
detection ... are so important is that they offer 
new possibilities for feasible and effective data 
selection. (Cowgill 1975: 260). 

Here 1 have tried to provide a taste of the tools that 
Operations Research, and particularly optimal search 
methods, can offer to help archaeologists accomplish this. 
With its emphasis on measuring and evaluating detectability. 
this kind of research also has implications for the other kinds 
of survey. Sampling surveys, for example, will provide 
biased estimates of population parameters if their 
practitioners employ unrealistic assumptions about the 
detectability of targets that are supposed to be included in the 
sample. 

Operations Research is underexploited as a source of well- 
developed tools for survey archaeologists and can help us 
with all three kinds of surveys, including more efficient 
"total survey" and "non-site survey." 

To conclude, we should take prospection, or "purposive 
survey," seriously where it is warranted, and not treat it as a 
haphazard "poor cousin" to sampling space. Prospection 
provides some kinds of information sampling cannot, such as 
documenting the presence of rare sites. It allows us to test 
hypotheses that make specific predictions about the locations 
of archaeological materials much more efficiently than a 
sampling survey (Cowgill 1975: 260-261). Its tools also help 
ensure that sampling surveys do not omit parts of the 
intended sample, creating bias, or at least allow us to 
evaluate the seriousness of such bias. 

Prospection succeeds through the combination of basic 
mathematical principles and archaeologists' experience and 
prior knowledge.  Background research should not be "a 
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mechanical task, a token interlude between the signing of a 
contract and the beginning of fieldwork..." (Wobst 1983: 
58). We can focus background research on the goals of a 
survey by using it to model the expected distribution of 
archaeological materials (Wobst 1983: 62) or to estimate the 
prior probabilities that particular kinds of targets will occur 
in particular locations. Operations Research provides the 
framework with which to make a fruitful partnership of 
background research and survey design. 
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Tables 

Space A (ha) Pi Pi CD/A O (ha) fi No. Test Pits Total 

A 
1 3 0.500 0.167 0.05 0.3 0.05 1500 

2 2 0.333 0.167 0.05 0.3 0.05 1000 

3 1 0.167 0.167 0.05 0.3 0.05 500 3000 

B 
1 3 0.33 0.111 0.05 0.3 0 0 
2 2 0.33 0.167 0.05 0.3 0 0 
3 1 0.33 0.333 0.05 0.3 1.0 3000 3000 

C 
1 3 0.45 0.15 0.10 0.6 0.057 1706 

2 2 0.35 0.175 0.10 0.6 0.124 2476 

3 1 0.20 0.20 0.10 0.6 0.182 1818 6000 

D 
1 3 0.45 0.15 0.05 0.3 0.007 206 
2 2 0.35 0.175 0.05 0.3 0.074 1476 

3 1 0.20 0.20 0.05 0.3 0.132 1318 3000 

E 
2 2 0.35 0.175 0.02 0.12 0.021 413 
3 1 0.20 0.20 0.02 0.12 0.079 787 1200 

Table 1. Examples of allocations to three spaces with unequal areas, proportional (A), equal (B) and unequal probabilities (C- 
E), and different amounts of total survey effort (F). Note that scenario A is equivalent to a proportionally stratified sample, 
and that in scenario B spaces 1 and 2 do not qualify for any swvey at all. 
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Figure 1. Cross-sectional plots of the effect of range away 
from a transect on detection probability: (a) definite 
detection, (b) inverse-cube detection, and (c) exponential 
detection. 
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Figure 2, A selection of transect geometries (a- 
c) and two passes by transects oriented 45'' (d). 
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Figure 3. "Expanding square " search over a target 
with a circular normal prior probability distribution. 
Note that a repeat search (dashed lines) is optimally 
oriented 45" to the first (after Koopman 1980:214- 
221). 

Figure 4. Detection functions for parallel transects with a 
regular spacing ofS, assuming definite detection, inverse- 
cube detection, and exponential detection (after Koopman 
1980:78). 
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