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Abstract. The scientific analysis of ceramics can have the aim of identifying groups of similar artefacts. Separate 
groupings could be assumed to indicate, for example, distinct origins of the artefacts. Much published work focuses 
on the analysis of data derived from either geochemical or mineralogical techniques, and the former is far more 
likely to be subjected to quantitative statistical analysis. Our contribution to the EC funded GEOPRO Research 
Network has been an investigation into a “mixed-mode” approach to the quantitative statistical analysis of data 
arising from both kinds of techniques. This paper provides a review of our work in this area to date.  
Keywords. ceramics; petrographic thin-sections; multivariate analysis; cluster analysis; mixed-mode analysis; S-
Plus. 
 

1 Introduction 
At CAA2000 we presented a paper showing how, with the 

aid of powerful statistical software such as S-Plus (Venables 
and Ripley 1999), traditional methods of exploratory 
multivariate analysis can be used alongside, or in combination 
with, a technique designed specifically for grouping ceramic 
artefacts by chemical composition. (See Beardah and Baxter 
2001, and section 2 below.) This was followed at CAA2001 by 
a discussion, summarised in section 3 below, of how S-Plus 
can be used to address issues involved in the clustering of such 
artefacts on the basis of categorical data arising from the 
analysis of petrographic thin-sections (Beardah et al. 2002). 
Now, in the third paper in this series, we present possible 
approaches to the inclusion of both petrographic and 
geochemical data in a statistical analysis of artefact 
compositional data. Two such approaches are demonstrated 
using data arising from the petrographic and chemical analysis 
of 115 specimens of Late Roman Cooking Ware from the 
Balearic Islands and the eastern Iberian peninsula. 

In our first approach, demonstrated in section 4, the 
chemistry and petrography are analysed separately, but 
possibly concurrently, using methods appropriate for each. The 
nature of the S-Plus interface makes it possible to (a) easily 
identify sub-groups within the data and (b), compare the results 
when using different methods independently. Using this 
methodology, we can investigate whether sub-groups identified 
with various methods for analysing petrographic data are also 
identified using exploratory methods for analysing 
geochemical data. 

Finally, in section 5, we consider the direct analysis of a 
combination of both types of information, treated on an equal 
footing. This could be achieved in a variety of ways, some of 
which will be discussed. For example, prior to a statistical 
analysis, both the chemical and petrographic data could be re-
cast in the same format (either continuous or categorical). The 

resulting combined dataset could then be examined using 
appropriate techniques. Alternatively, we discuss methods that 
can deal directly with data of mixed type, for example the 
combination of continuous chemical data and petrographic data 
coded to reflect the presence/absence of categories. 

2 Geochemical Data 
The scientific analysis of the chemical composition of 

ceramics naturally leads to multivariate data, represented 
mathematically as an n by p data matrix, that is often explored 
using techniques such as principal components analysis (PCA) 
and cluster analysis. Beardah and Baxter (2001) discuss how, 
with the aid of the statistical software package S-Plus, 
traditional multivariate methods can easily be used alongside, 
or in combination with, a technique designed specifically for 
grouping ceramics by chemical composition (Beier and 
Mommsen 1994). This latter technique involves grouping 
together artefacts whose chemical compositions are “close” 
with respect to a mathematical measure of dissimilarity. The 
measure used (modified Mahalanobis distance) takes into 
account uncertainty of measurement and the possibility of 
constant shifts in the data due, for example, to dilution of the 
clay or instrumental variation. 

Figure 1 shows output based upon the application of Beier 
and Mommsen’s procedure on chemical compositional data for 
100 ceramic samples from Nichoria in the Peloponnese. These 
data form part of the Perlman-Asaro databank of Mycenaean 
samples. 
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Fig. 1. The result of growing an initial grouping of just two 
cases (74 and 77). The histogram of squared distances (left) 
reveals a pronounced “edge” at a value of less than 1 and the 
labelled PCA plot on the right reveals that the final grouping is 
quite compact. 

A preliminary scan through the data set reveals that cases 74 
and 77 are very close together. Using these two objects as our 
initial grouping, we look for objects that are close to our 
current group. This process is repeated iteratively until the 
group stabilises. A histogram of (squared) distance values (see 
Figure 1) is a useful tool for identifying groups in this way and 
here reveals that our current group is both compact and distant 
from other cases. This group of ten cases is therefore classified 
as a genuine sub-group within these data. 

3 Mineralogical Data 
Beardah et al. (2002) and Cau et al. (2002) explore issues 

involved in clustering artefacts on the basis of thin-section 
data. A typical thin-section is shown in Figure 2. 

 
Fig. 2. A typical thin-section. 

The first challenge we face is how to describe thin-sections 
in a manner that is amenable to statistical analysis. One 
approach is to represent each thin-section in terms of 
qualitative or categorical variables chosen by the analyst (see 
Figure 3). 

After description using such a system (see Cau et al. for an 
example), a collection of n thin-sections can be represented by 
a table with n rows and q columns. Each row contains the 
description of a single thin-section; each column represents a 
variable; and each cell contains a number indicating the 

category. In order to apply statistical methods, one approach is 
to convert the table of categorical data into a binary data matrix 
consisting of 0/1 entries (see Cau et al. for details). 

 
Fig. 3. A typical categorical coding. 

Given such a binary coding, a variety of analytical options 
are open. These involve choosing how to measure similarity 
between cases and how, subsequently, to group these using 
clustering or scaling techniques. Options include multiple 
correspondence analysis (MCA) and metric and non-metric 
scaling methods including Sammon mapping and isotonic 
multidimensional scaling. All of these methods result in 
graphical output similar in nature to that of a PCA. 

 
Fig. 4. The first three component scores of an MCA (Can Sora 
dataset). 

For example, Figure 4 shows output from the application of 
the MCA technique to coded mineralogical data based upon 25 
samples of Late Roman Cooking Ware (LRCW) from Can 
Sora (Eivissa). The output suggests the existence of several 
distinct subgroups, one of which is highlighted (the six cases 
towards the bottom of the MCA plot). Figure 3 shows part of 
the categorical description of these data. 
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4 Combining Mineralogical And Geochemical 
Analyses 

The Can Sora data set discussed above is a subset of a more 
extensive data set consisting of 115 samples of LRCW from 
the Balearic Islands and the eastern Iberian peninsula. For these 
data we have both geochemical and mineralogical information. 
The former consists of 25 concentration values and the latter 
has been coded as a binary matrix. Given both kinds of 
information, we can concurrently apply methods appropriate to 
each. 

As a simple example, plots of the component scores based 
upon PCA and MCA (applied to geochemical and 
mineralogical information respectively) reveal that cases CS-26 
and CS-27 are clear outliers in both analyses (highlighted 
towards the top-right of both plots in Figure 5). Re-calculating 
the PCA and MCA scores with these cases omitted gives 
clearer plots from which further subgroups may be identified. 

A Procrustes statistic developed by Sibson (1978) can be 
used to measure the difference between the n by k component 
scores resulting from separate mineralogical and geochemical 
analyses (for k = 1, 2, …). If X and Y are two n by k matrices 
of scores the statistic is defined as 

1 – [{tr(YTXXTY)1/2}2/{tr(YTY)tr(XTX)}] 
where tr(.) is the trace and T the matrix transpose operator. 

Other Procrustes statistics could be used, however this one has 
the merit of symmetry as it does not depend on which set of 
scores is designated as the Y and which the X matrix. It takes 
values between 0 and 1, with 0 arising for identical 
configurations. If the statistic is close to 0 there may be no 
need for a combined “mixed-mode” analysis of the kind 
discussed later. 

 
Fig. 5. MCA and PCA of the LRCW dataset. 

This judgement may be made as part of an iterative process 
involving the removal of outliers from both data sets. For 
example, comparing PCA and MCA component scores for the 
LRCW data (after omitting three clear chemical and 
mineralogical outliers) gives the values of Sibson’s coefficient 
shown in Table 1. 

Since values near to 0 indicate similarity, here the individual 
analyses seem to be quite different, so we may consider 
combining these data in a “mixed-mode” approach. 

Components, k 1 2 3 
Sibson’s coefficient 0.97 0.82 0.78 

Table 1. Sibson’s coefficient values. 

5 “Mixed-mode” Analysis 
Using separate, but possibly concurrent analyses, we can 

investigate whether subgroups identified on the basis of 
mineralogical information are also identified on the basis of 
geochemical information. Alternatively, some methods can 
deal directly with data of mixed type. To make use of such 
methods, we need to measure dissimilarity between objects of 
mixed type (Kaufman and Rousseeuw 1990). The dissimilarity 
coefficient used (based upon an extension of Gower’s (1971) 
coefficient) is:  
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where dij(f) is the contribution of variable f to d(i,j) and 

δij(f) is the weighting of variable f and depends on the variable 
type. It is assumed that there is no missing data. 

For our purposes, we specialize to the case where variables 
are binary or continuous. For continuous data 
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where rf is the range of variable f, so that the contribution of 

the variable is between 0 (identical) and 1 (most different).  

Binary variables may be treated symmetrically or 
asymmetrically. In either case we can define dij(f) to be 0 if xif 
= xjf and 1 otherwise. The weights δij(f)=1 unless a variable is 
asymmetric binary and xif = xjf = 0, in which case it is equal to 
0. Whether 0-0 matches should contribute to the dissimilarity 
(symmetric binary) or not (asymmetric binary) is not a purely 
statistical issue. 

For most of the mineralogical variables used one category 
was “absent”, and we removed the associated binary variable 
from the analysis, choosing not to regard mutual absence of the 
variable as evidence of similarity. Whether a symmetric or 
asymmetric treatment of other binary data was used did not 
make much difference to our analyses. In general this may not 
be the case, and our current preference is for an asymmetric 
treatment. 

It is possible to both simplify and extend the definition of 
d(i,j) for our combination of binary and continuous data by 
writing it in the form 
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where b is the number of binary variables and W≤b is the 

number of these with non-zero weight; c is the number of 
continuous variables; 
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are the contributions to the numerator of the binary and 

continuous variables. The generalization arises through λ 
which is a weighting factor that has the value 1 in the original 
definition. 

The S-Plus function daisy can be used to calculate a 
dissimilarity matrix based upon the extension of Gower’s 
coefficient, for mixed-mode data, e.g. 

“P + C” = [P | C]. 

Here P is a binary (or asymmetric binary) matrix containing 
coded mineralogical data and C is a matrix containing chemical 
composition data.  

The output from daisy (a dissimilarity matrix) can be used 
as input to various clustering routines, for example Classical 
Metric Multi-Dimensional Scaling (CMD) or Cluster Analysis. 
The former technique again results in an n by k matrix of 
component scores that can be visualised easily for small k. In 
addition, using Sibson’s coefficient, the output could be 
compared to scores arising from appropriate analyses of purely 
chemical or purely mineralogical data. 
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Fig 6. A “mixed-mode” analysis of the LRCW data. 

Figure 6 shows CMD output based upon a “mixed-mode” 
analysis of the full LRCW dataset. The highlighted group of 
points towards the top of the plot corresponds to a subgroup 
also identified, on the basis of a “subjective” analysis of thin-
sections, by Cau et al. Without prior removal of outliers, this 
subgroup is not so readily identified in plots based upon either 
chemistry or mineralogy alone. 

It has been suggested that the binary data may tend to 
dominate analyses of this type. To date we have little evidence 
for this in our work. However, in order to investigate, and 
possibly to overcome this potential problem, we have tried 
giving the chemical data greater weighting by analysing P+C, 
P+2C, … where, for example 

“P + 2C” = [P | C | C ]. 

This is equivalent to using weights λ = 1, 2, … in the 
coefficient d(i,j). Again, the scores arising from these 

“weighted mixed-mode” analyses could be compared to those 
resulting from appropriate analyses of P or C alone using 
Sibson’s coefficient. 
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Fig. 7. A weighted “mixed-mode” analysis of the LRCW data. 

Figure 7 shows CMD output based upon an analysis of 
P+2C for the full LRCW dataset. The highlighted group of 
points corresponds to the same subgroup identified earlier and 
is more readily separated in this weighted mixed-mode analysis 
(compare with Figure 6). Furthermore, the small outlying 
group consisting of cases CS-26 and CS-27 is again easily 
identified (to the left of the highlighted group). In Figure 8 we 
show CMD output after these groups have been removed. Here 
the highlighted group of points (towards the top-right of the 
plot) corresponds to a subgroup consisting of several 
sedimentary fabrics identified on the basis of thin-section 
analysis in Cau et al. 

This close agreement between the “subjective” analysis of 
the thin-sections and the statistical methodology is only 
revealed by weighted mixed-mode analysis, and not by 
statistical analysis of either chemistry or mineralogical 
information alone. 

6 Summary and conclusions 
We have discussed various methods for the analysis of 

geochemical and mineralogical data, and the mixture of the 
two. All these methods have been implemented in the S-Plus 
package by us, or have been made freely available by other 
authors, for example as part of the MASS library (Venables 
and Ripley 1999). Our final collection of routines will be made 
freely available, via the Internet, to the archaeometric 
community. 
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Fig. 8. A weighted “mixed-mode” analysis of the LRCW data 
after removal of the groups identified on the basis of Figure 7. 

In looking at different views of the data generated by these 
methods, many questions can be asked. Are there clear 
mineralogical and chemical groups? If so, are these the same? 
Do any chemical groups that emerge subdivide mineralogical 
groups, or cross-cut them? Does a mixed-mode analysis 
suggest groups not apparent from single-mode analyses? For 
large data sets when clear groups are identified their removal 
from the data set may be justified, so that less obvious structure 
can be investigated. Essentially what is proposed here is a 
highly iterative approach to data exploration, the merits of 
which can only be determined in practice. 

Graphically, one is limited (practically) to looking at two or 
three-dimensional configurations, but Sibson's coefficient (or 
something similar) can be used to effect comparisons in any 
number of dimensions. 
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