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Abstract. When analysing microscopic results, archaeologists use analogies to understand what they think they are 
seeing. When we move from description to explanation, we try to use the same subjective terms. A microscopic 
image is like a cartographic representation of homogenous luminance areas. Measuring how different luminance 
values are located in space, we can understand whether two images are similar or different. In this paper, we use real 
microscopic data from lithic use wear analysis, and charcoal analysis. In both cases, we want to compare different 
pictures, where their texture characteristics have been formed by different process. 
Keywords. Texture, Image Processing, Statistics, Use-wear, Lithic tools, charcoal, wood. 
 

1 Introduction. From Surface to Texture 
What is a surface? Intuitively, it is that part of the object that 

we can see on top of it and all over its side, but more formally 
speaking it is the boundary of separation between two phases. 
A phase is a homogenous mass of substance, solid, liquid or 
gas, possessing a well-defined boundary. When we have two 
phases in mutual contact we have an interfacial boundary. This 
is called an interface. The surface of a solid, kept in 
atmosphere, is in fact an air-solid interface (Rao 1972, Lüth 
1993). 

The surface of solids plays a significant role in several 
interfacial phenomena. This study is usually called “tribology”: 
the science and technology of interacting surfaces in relative 
motion and the practices relate thereto” (Yamada 1993). Solids 
are rigid bodies and resist stress. When a force is applied a 
solid deforms; the deformation determines its shape to a large 
extent. As a result solid surfaces appear usually heterogenous. 
The patterns can be the result of physical surface properties 
such as roughness or oriented strands which often have a tactile 
quality, or they could be the result of reflectance differences 
such as the colour on a surface.  

Surfaces have two main properties: geometry and texture. 
Texture is the definition of surface attributes having either 
visual or actual variety, and defining the appearance of the 
surface. Any surface has variations in its local properties like 
albedo and color variations, uniformity, density, coarseness, 
roughness, regularity, linearity, directionality, direction, 
frequency, phase, hardness, brightness, bumpiness, specularity, 
reflectivity and transparency (Tuceryan and Jain 1993, Fleming 
1999). All these perceived qualities or attributes of surfaces 
play an important role in describing the sources of irregularity 
and surface variation which are responsible of specific textures 

Texture is the name we give to these variations, which seem 
to be usually caused as a result of the process that created that 
surface. If texture is a synonym for “surface variability” or 
“surface discontinuity”, then it can be described in terms of the 
peaks and valleys characterizing the surface micro-topography. 
Peaks-and-valleys patterns can be measured according to 
wavelength variations. In this case, we distinguish (using the 
Surface Metrology Guide, by Precision Devices, Inc. 
http://www.predev.com/smg/index.html): 

Roughness includes the wavelength irregularities of a 
surface. It defines how that surfaces feels, how it looks, how it 
behaves when it comes in contact with another surface. For 
instance, in the case of use-wear, and according to the size of 
those wavelength irregularities, we can speak about the more 
widely spaced (longer wavelength) deviations (waviness), or 
the finest (shortest) wavelength deviations (roughness). The 
main parameter here is spacing, which refers to the distance 
between features on a profile in the x direction, parallel to the 
nominal direction of the trace. The features that determine a 
spacing parameter usually relate to peaks and valleys or to 
average wavelengths, etc  

Lay refers to the predominant direction of the surface 
texture. Ordinarily lay is determined by the particular 
production method and geometry used. Turning, milling, 
drilling, grinding, and other cutting processes usually produce a 
surface that has lay: striations or peaks and valleys in the 
direction that the tool was drawn across the surface. It is 
important to distinguish between the lay (or the lack thereof) of 
the raw material (stone, wood, bone, etc.), and the 
directionality of the wavelength irregularities which define 
roughness. This second source of directionality is related to the 
work movement made with the artefact. For instance, a smooth 
finish will look rough if it has a strong lay. A rougher surface 
will look more uniform if it has no lay (it will have more of a 
matte look). 

The concept of texture is useful in a variety of applications 
and has been the subject of intense study by many researchers. 
One immediate application of archaeological textures is the 
recognition of artefacts. For example, based on textural 
properties, we can identify a variety of materials such as lithic 
tools, stripped bones, wood, leather, pottery, etc. Texture 
patterns may vary according to the physical properties of raw 
material. 

In the case of wood, for instance, all species have specific 
anatomy features which determine different degrees of 
roughness. We can distinguish between different woods, 
because of their specific anatomic patterns. However, in this 
case, environmental conditions also alter surface features: trees 
grow each year, and the growing cycle depends on 
environmental conditions, which in turn determine the specific 
characteristic of growing rings, and hence, the texture of wood. 
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Anatomical plans of wood can be prepared for observation 
through microscope, variations in the surface of these planes 
are related to distribution of anatomical features, according to 
the taxa which they come from (Pique and Pique 1992). 

In the case of tools, given that use and production make 
important alterations in surface features, we can use texture 
information to understand how the object was made and/or 
used (human work). Texture variations due to human work are 
evident, and vary according to the following causal factors: 

• Movement: longitudinal (cut), transversal (scrape),... 
• Surface of Friction: the effects of worked material 

(wood, bone, shell, fur, etc.) 

2 Texture patterns as images 
Light waves are reflected when they encounter a solid 

interface (surface), and this reflection is irregular depending on 
the heterogeneity of the surface, that is, depending not only on 
its geometry, but specifically on its texture. Consequently, 
texture should be seen as a consequence of anisotropic 
reflection, and thus, it can be defined as the modulation of 
diffuse reflectance coefficients.  

Modelling this physical process is very difficult, so texture 
is usually characterized by the bi-dimensional variations in the 
intensities present in an image of the object we want analyse. 
We describe textures in terms of the particular dispersion of 
luminance values in a surface, because we accept the fact that 
light is reflected according to surface attributes. We are not 
seeing low and high areas, but we see dark and bright which 
coincide with high and low energy regions on the surface, that 
is regions which have lost material (low energy), and 
prominent points which produce modifications on another 
contacting surface when friction takes place (high energy).  

Image texture then, may be defined as the local variation of 
brightness from one pixel to the next or within a small region, 
where the brightness of a point is a function of the brightness 
and location of the light source combined with the orientation 
and nature of the surface being viewed (Russ 1995). If the 
brightness is interpreted as elevation in a representation of the 
image as a surface, then the texture is a measure of the surface 
roughness. 

Therefore when we examine surface features by looking 
through (naked-) eye or using any vision enhancement device 
(microscope), what we are seeing are irregularities in 
luminance distribution. In fact, we are not observing texture 
patterns directly. In this case, an image texture is an attribute 
representing the solid texture. An image is an object, and as 
such it has its own texture, defined as a function of the spatial 
variation in pixel intensities (grey values). But image texture is 
not the same as the object texture. The image is an effect of the 
instrument (the microscope, the eye), and consequently it 
shows features of the object being analysed, the context of 
observation and the mechanical characteristics of the 
observation instrument. There are always shadows and 
reflections which are not the result of original irregularities at 
the surface, but generated by the light source, the instrument or 
other objects in the scene. That means that an image texture not 
only contains the object surface irregularity data, but additional 
information which in the best case is just random noise, and in 
many other cases makes difficult to distinguish between the 
data that belongs to the object and information from the 
observation process. 

Consequently, texture features are perceived as a combined 
effect of Light, Shadow, Topography and Edge, and computed 
based on tonal features such as mean, variance, skewness and 
kurtosis of grey levels along with texture features computed 
from grey level co-ocurrence matrices (Tuceryan and Jain 
1993).  

We can use heightmaps as a 3D representation of textures. A 
Heightmap or 3D surface map is a painted map that represents 
a heightfield. It is a set of numbers arranged to form a two-
dimensional grid, like a bitmap, except each number represents 
a surface elevation instead of a color or grey level..  

A heightmap is not a metric representations of a surface 
micro-topography. It is is the most efficient way to describe the 
numerous tiny undulations of a typical texture. But heightfields 
have their limits: they are only a representation of elevation 
differences, and there are many light undesired effects within 
them. Observed image texture depends on factors such as scene 
geometry and illumination conditions. Certain properties of 
surfaces have effects on the appearance of texture. Because 
grey values depend on shadows, and shadows depend on the 
position of light sources, if we do not take care, the same object 
surface may have totally different height maps associated. We 
should control light sources, and the influence of the image 
acquisition device to be able to understand observed patterns. 
Even for relatively flat scenes in which precedence is not a 
problem and the light source is well controlled, the 
combination of effects of surface orientation, color, geometry 
and other variables make it difficult to quantitatively interpret 
these parameters independently (Russ 1995). Most of the stress 
over heightfields comes from confusing them with bitmaps 
(microscopic images, for instance). In fact it is a mistake to 
consider that any photograph of an artefact surface is a model 
of its texture. We use a bitmap to store heightfields, only for 
practical reasons. Not always the brighter pixel in a photograph 
corresponds to the higher energy (most prominent) point of the 
object’s surface. In Figure 3, for instance, there is a fuzzy 
region at the upper part of the photography which looks 
brighter that expected. That means that the heigthmap is only 
valid for a restricted region of the original photography. In our 
experiments, we have solved this problem by selecting only the 
non-fuzzy and well framed areas of the original microscopic 
image, reducing the sampled area, and increasing the number 
of images, what has allowed a relevant decrease in the risk of 
confusing luminance effects with the original textures.  

3 Texture Analysis 
Luminance values vary from one location to another, and 

some times this variation has some appearance of continuity. 
What we are looking for is whether light reflection in one 
location is related with luminance values in neighbouring 
locations. The analysis then proceeds to examine whether 
characteristics in one location have anything to do with 
characteristics in a neighbouring location, through the 
definition of a general model of spatial dependencies. 

Consequently, texture structure is simply analysed using the 
repetitive patterns in which elements or primitives are arranged 
according to a placement rule (Tamura et al. 1978). This 
placement rule can be studied taking into account that any 
texture model should be based on 

• spatial structure (pattern) 
• contrast (amount of texture).  
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The three principal approaches used to describe texture 
models are statistical, structural and spectral. Statistical 
techniques characterise texture by the statistical properties of 
the grey levels of the points comprising a surface. Structural 
techniques characterise texture as being composed of simple 
primitives called "texels" (texture elements), that are regularly 
arranged on a surface according to some rules.  

3.1 Statistical Analysis 
First-order statistics measure the likelihood of observing a 

grey value at a randomly-chosen location in the image. One of 
the simplest (but least versatile) of the texture operators is 
simply the range or difference between maximum and 
minimum brightness values in the neighbourhood. For a flat or 
uniform region, the range is small. Larger values of the range 
correspond to surfaces with a larger roughness. The size of the 
neighbourhood region must be large enough to include dark 
and light pixels, which generally means being larger than any 
small uniform details that may be present. 

First order statistics can be computed from the histogram of 
pixel intensities in the image. These depend only on individual 
pixel values and not on the interaction or co-occurrence of 
neighbouring pixel values. The average intensity in an image is 
an example of the first order statistic (Julesz 1981). A number 
of other texture parameters and functions may also be 
calculated, based on the amplitude density function of pixels 
(Duran et al. 2001): 

• INERTIA:   Image contrast (difference moment), a 
measure of local variation  

• CORRELATION: A measure of linear grey tone 
dependence 

• HOMOGENEITY: A measure of monotonicity  
• ENTROPY:   A measure of the average uncertainty of 

grey tone co-occurrence  
• ENERGY:   Angular second moment, a measure of the 

average certainty of grey tone co-occurrence  
• VARIANCE:  A measure of grey tone variance within 

the window (second-order moment about the mean)  
• SKEWNESS:  Third order moment about the mean; the 

departure from symmetry about the mean grey level  
• KURTOSIS:  Fourth order moment about the mean; a 

measure of the spread of grey tones about the mean 

A first experiment consisted of comparing stone tools made 
of the same type of raw material (flint from the same source) 
and then use them for different activities: cutting and scrapping 
animal fur, fresh wood and shells (Pijoan et al. 2002). 
Preliminary results show that the standard deviation of 
luminance patterns is statistically different (using a student t 
Test) when we analyse lithic tools used for “cutting” and lithic 
tools used for “scrapping”. That means that on the surface of 
lithic tools, human work generated different textures, which 
can be differentiated using first order statistics. In this case 
(Fig. 1), the standard deviation of luminance patterns is 
statistically different (using a student t Test) when we analyse 
lithic tools used for “cutting” and lithic tools used for 
“scrapping”. We can prove that lithic tools used for “cutting” 
(longitudinal textures) have a greater diversity of luminance (in 
our experiment: mean of SD=6.31), than tools used for 
“scrapping” (transversal textures), with less important 
luminance variation (in our experiment: mean of SD=5.42). 
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Fig. 1. Differences on the Standard Deviation of luminance values (Y 
axis) between longitudinal and transversal textures, that is, textures 
generated when “cutting” and textures generated when “scrapping”. 

Coarseness is related to the dispersion of luminance values 
in the image, (SD),  

COARSENESS= 1- 1/(1+SD ). 
Consequently, as a result of cutting, coarser textures are 

generated (coefficient= 0.864) on the cutting edge of the tool, 
than when we scrap (coefficient=0.847). 

In a second experiment (Toselli et al. 2002), we have tried to 
distinguish between different stone textures. In this case we 
have processed three varieties of andesite and one kind of 
obsidian. Luminance values do not seem statistically different 
among the materials, however, the strong difference among 
variances are interesting. In the obsidian case, there is a far 
greater diversity of luminance, than in the case of andesites, 
with a much more recurrent pattern. However, there is not any 
relevant difference between use wear generated by the same 
movement and worked material between different raw 
materials. 
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Fig. 2. Differences on the mean luminance values (Y axis) among 
different stone tools made of different materials (db1, db2, db5: three 
types of andesite; ob: obsidian). 

In another experiment with the same data (Toselli et al. 
2002), the luminance mean value among all pixels in an image 
was used to define differences among tools submitted to 
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different friction surfaces: fur, wood and shell. Again, we find 
differences in the mean luminance value of the different 
textures, indicating that light reflects differently on surfaces 
modified by different use actions. 
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Fig. 3. Differences on the mean of luminance values between results 
generated after scraping wood and fur, and cutting shell.  

A similar approach can be used to distinguish between 
different wood textures. Preliminary results show the relevance 
of statistical differences in luminance values in different 
regions of the image. In this case, the image is segmented using 
specific anatomic features of wood like vessels, rays, vegetal 
fibres, etc. (Piqué and Piqué 1992). 

3.2. Structural Analysis 
Texture patterning in an image should be described as 

associations between image discontinuities, which refers to 
basic texture elements called texels (Pijoan et al. 1999, Barceló 
et al. 2001). Identification of luminance discontinuities that 
correspond to surface texture elements is then a significant 
problem since the scale at which surface detail is captured 
varies continuously with the three-dimensional distance, and 
therefore across the image texture (Sklansky 1978). 

Texels may exhibit a systematic variation in a priori 
unknown properties, e. g., size, density or contrast. For 
instance, the textural character of an image usually depends on 
the spatial size of texels, in such a way that coarse texture can 
be decomposed in large texels, while small texels give fine 
texture surfaces (Singh and Singh, n.d.). Our goal is to segment 
those texture elements, in order to be able to study their 
variability in shape and spatial location. Archaeological 
textures fast always are an irregular pattern of different texels, 
each one with different shape edges and different luminance 
means.  

Structural analysis includes the study of texels directionality 
(anisotropy) or non-directionality, periodicity or irregularity 
and measures of structural complexity: (a) Texel placement 
rules. (b) Shape/size. (c) Intensity distribution. (d) Compound 
(placement rules and shape/orientation) (Chetverikov 1998).  

In our experiments with lithic tools and wood and charcoal 
remains, we have observed that texels have different shapes 
when generated by different processes. In the case of wood, 
distribution of vessels, and other anatomic features explain 
texture variability, and can be determinant to identify the 

pattern. The pattern of vessel distribution can be analysed as 
textures elements. In those cases, texel structural variability is 
related to the taxa, but also to the specific environmental 
conditions, that every year can be different, producing 
variations in this pattern: trees grow each year, and the growing 
cycle depends on environmental conditions, which in turn 
determine the specific characteristic of growing rings, and 
hence, the shape, size and location of texture elements 
(Schweingruber 1996). 

In our experiments on lithic surfaces (Toselli et al. 2002), 
we have selected three luminance intervals on the image (Fig. 
4), in a grey scale of 256 intensities from 0 –white– to 255 –
black–: 

• From 0 to 80 
• From 0 to 120 
• From 160 to 200 

 
Fig. 4. Light intervals, and texel segmentation. 

Through the intervals 0-80 and 0-120, we observe 
luminance discontinuities within the "bright zone" of the grey 
scale (brighter in the first case, include some medium dark 
areas in the second. That is, we select the highest points of the 
texture. Through the interval 160-200, we observe the 
irregularity of the "dark zone" of the grey scale, or the more 
depth areas.  

These three luminance intervals have been selected based on 
our preliminary experiments (Toselli et al. 2002). For instance, 
the dark band of light spectrum (160-200) allows us to 
distinguish fur processing generated textures on stone tools, 
because those items have dark areas which are smaller and 
more frequent than bright ones. In our experiments, this 
phenomenon seems to be characteristic of flint surfaces, but not 
in other cases. Use wear is much more complex than we 
expected. This is the reason why we repeat the segmentation 
process on the three light intervals. Only one of the intervals 
gives us more understandable results. 

In the case of the low zone of the luminance scale –values 
from white to median grey value: 0-120–, which means 
positive bumps or elevations in the texture model, preliminary 
results show that the number of positive bumps is greater (and 
their size smaller) when the lithic surface has been modified as 
a result of fur processing. When we process wood with the 
lithic tool, positive bumps are less frequent, but bigger, 
forming on the surface large plateaux which are usually called 
“micropolished areas”.  
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Fig. 5a. Number of segmented texels in the interval 0-120. 
Differences according to surface of friction. 
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Fig. 5b. Size of texels in the Interval 0-120. Differences according to 
surface of friction 

In the case of lithic use-wear, texels are different depending 
on the movement made with the tool (longitudinal or 
transversal), and according to the surface of friction (wood, 
shell and fur). For instance, surfaces of tools used for 
processing fur have more texels, but smaller than tools used for 
processing wood. The tendency to differentiate textures 
generated by friction over hard and soft worked materials has 
been confirmed through tests applied over the luminance 
interval 160/200. For instance, we have found that shell and 
wood processing generate similar texture, very different to that 
generated when processing dry fur. Specifically, the texels on 
fur-generated textures are more glossy than the texels 
associated with wood processing if we select the interval 0/120. 
In the interval 160/200 fur is less glossy. Generally, alterations 
by use related to fur processing are the darkest in the series. 
Results for shell processing are in the middle.  

We can also study the shape of those texels which 
correspond to bumps or “large plateaux” seen on the lithic 
surface, and not only their frequency and size. For instance, to 
measure the differences between textures features associated to 
the kinematics (movement) of the working action, we should 
take into account other attributes: the angle of the major axis of 
the edge of the tool, and the shape of the texel, specifically its 
elongation, which is a “deformation” feature associated with 
kinematics (Barceló et al. 2001). In our experiments, not all 
texels were good indicators of the working movement, because 
not all texels were oriented to the direction of movement 
(transversal or longitudinal). We observed that the longest 

texels were also the best oriented according to the working 
movement (along the edge of the tool when cutting, across the 
edge of the tool when scrapping). That means that surfaces of 
tools used with a longitudinal movement have texels paralel to 
the x axis in longitudinal working movement (cut) and to the y 
axis for transversal working movement. In the same way, the 
more elongated the texel’s shape, the more paralel to the major 
axis (Toselli et al. 2002). 

In another experiment (Toselli et al. 2002) we have 
computed a Principal Component Analysis integrating first 
order statistics and structural information about texels. 
Variables in the analysis were: luminance mean, luminance 
mode, Area, Angle, shape -a circularity coefficient: 
[(4*π*A)/(P2); A = AREA, P = LENGTH] (see Barceló et al. 
2001, about those variables). 

The first axis explains 33% of the variance, and it 
distinguishes textures characterised by small and dark texels 
with a rectangular shape (low values of the shape-circularity 
coefficient) from big texels with a high tendency towards 
circular shape. The second axis explains 30% of total variance, 
and it oppose big/non circular texels from big/circular ones. 
The third axis explains 15% of the variance, and it 
distinguishes transversal (vertical angles) from longitudinal 
texels (horizontal angles, parallel to the tool’s edge. 

We have tested that the shape of texels is not relevant in this 
case, because when we delete the circularity coefficient from 
the analysis, Principal Component  results  are  much  easier  to 
understand: only two axis explain 75% of total variance, and 
discrimination plans between the sources of texture variation 
are much more evident. 

 
Fig. 6. Principal Components Analysis with a restricted set of 
variables 

The results from the luminance interval 160/200 shown a 
less clear discrimination. We obtained a solution that explain 
the 83% of the variability through the attributes number of 
texels, mean of the mean of luminance, mean of the area size, 
mean of the angle of the major axis and mean of the 
elongation. However, this solution is not able to discriminate 
either working movement nor worked material. 

Finally, we apply a factorial analysis (Fig. 6) for the longest 
texels from the luminance interval 0/80 through the attributes 
mean and mode of the brightness intensity, circularity, area and 
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angle. The 1st axis explains 33% of the variability, liking mean 
and mode of the brightness intensity, opposing it to circularity. 
The 2nd axis explains 30% of the variability, opposing area to 
circularity. The 3rd axis explains 15% of the variability, 
opposing angle to area. 

We have until now statitistical results that give us data about 
several attributes related to four parameters of the texture –size, 
shape, composition and location–. However, related to the 
parameter location, we have developed a statistical process 
about an attribute –angle– and we also want to apply statistical 
test through Cartesian coordinates (X,Y) of the texture 
elements in the canvas of the digital images. 

In the case of wood, we are now doing experimental work to 
decide which luminance intervals are more convenient and 
provide more information about patterns of distribution of 
anatomical features (Pique and Pique 1992). Our working 
hypothesis is that texel differentiation depends on taxa. Shape, 
frequency and size of texels are the result of shape, frequency 
and size of vessels, that is, the plant vascular system. We also 
consider that orientation of texels and the spatial distribution of 
them can provide relevant information to distinguish between 
taxa. Work is now at a preliminary stage. Nevertheless, our 
goal has been to apply this methodology to archaeological 
material, and to be able to solve real archaeological problems. 

Conclusions 
Archaeological textures has usually been described in 

qualitative terms. When analysing microscopic results, 
archaeologists use analogies to understand what they think they 
are seeing. When we move from description to explanation, we 
try to use the same subjective terms. We say that two textures 
are similar, because both are “equally brilliant”, “equally 
glossy”, and the like. 

In this paper we have presented a theory and a methodology 
of texture analysis based on the principle that a microscopic 
image of an object’s surface is like a cartographic 
representation of luminance areas. By studying shape and 
texture variability, and how different values are located in 
space, we can understand if two images are similar or different. 
Once we have described the minimum elements in an image 
(texels) according to their shape and luminance metrics, we can 
explain the results using spatial statistics. Spatial and 
multivariate statistics have been used to understand observable 
properties of archaeological materials. 

Experimental results show that luminance differences 
coincide with differences between texture components, and can 
be used to discriminate between archaeological objects based 
on their surface properties. 
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