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Abstract 
 
This paper presents an attempt to use GWR in the ArcGIS environment to explore representativity of sites (burial grounds) in the 
Mälardalen area in central Sweden. This area has a large number of burial grounds that survive in the landscape and form the base for 
a settlement analysis of the Iron Age landscape. Large-scale rescue excavations from the 1980s onwards have shown that although 
there are a large number of sites that are visible in the landscape, there are also a significant number that for different reasons have 
not been recorded. These are either sites that have been damaged by later agricultural activities, or that simply have been missed in 
the surveys. Building on the results of some of the major archaeological projects recently initiated as part of infrastructure 
developments in the region, the representativity of the known archaeological record is examined. This information is crucial for the 
further analysis of the region using the archaeological record of surveyed sites. The results of this analysis are presented in the paper, 
along with a discussion on the benefits of the GWR technique for raster-based landscape analysis in archaeology. 
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1 INTRODUCTION 
 
Geographically Weighted Regression (GWR) is a 
technique for modeling spatial relations developed by 
Stewart Fotheringham, Chris Brunsdon and Martin 
Charlton.1 The benefit of using GWR is that it can allow 
variables to vary over space, and need not assume that 
the same relationships are valid for the whole area of 
study, as with a global statistical model (see fig. 6 
below). Although GWR has been available for some 
time as a stand alone application, it is also included as a 
tool in version 9.3 of ArcGIS, which makes it more 
readily available for most archaeologists. As spatial 
modeling is at the core of archaeological applications of 
GIS, this technique seems to have great potential for 
archaeology. The purpose of this paper is thus two-fold; 
to predict how many burial grounds might be missing 
from the registry of monuments in the study area—the 
Mälardalen basin in central Sweden—and to test GWR 
on an archaeological material in order to evaluate its 
usefulness with that kind of data.  
 
With a better understanding of how representative the 
record of burial grounds is, it would be possible to use 
this material for studies of the pre-historic landscape 
dynamics. These kinds of landscape studies received 
much attention in the 1960s and 1970s,2 but with the 

                                                           
1Stewart Fotheringham, Chris Brunsdon and Martin Charlton, 
Geographically Weighted Regression, the Analysis of Spatially 
Varying Relationships (Chichester: Wiley, 2002). 
2Björn Ambrosiani, Fornlämningar och bebyggelse: studier i 
Attundalands och Södertörns förhistoria (Uppsala: Almqvist 
& Wiksells, 1964); Åke Hyenstrand, Centralbygd-randbygd. 
Strukturella, ekonomiska och administrativa huvudlinjer i 
mellansvensk yngre järnålder (Stockholm: Almqvist & 
Wiksell, 1974). 

realization that many sites are missing in the record,3 the 
burial grounds were seen as too problematic to use for 
large scale landscape studies. With a better 
understanding of the weaknesses of the data, and an 
estimation of how large a proportion of the information 
is missing, it would be possible to once again pick up 
this line of research in order to utilize the material to the 
best of its potential. GWR would seem as the ideal 
candidate for this task, since it is able to handle the 
spatially varying relations between variables, something 
that often leads to problems when traditional, non-
spatial, statistics are applied to geographic information. 
The technique also holds promise for amending some of 
the problems concerning the modeling of relations 
where there is pronounced spatial autocorrelation, as 
well as the Modifiable Areal Unit Problem, i.e., that 
results are directly dependent on the scale of analysis.4 
These issues are often central to archaeological spatial 
analysis,5 and an easily available tool for handling this 
technique thus holds great potential. To make the best 
use of regression analysis, however, one ideally needs a 
large set of quantitative data, and the burial grounds in 

                                                           
3Agneta Bennet, “Mälarområdets järnåldersgravfält,” in 7000 
år på 20 år. Arkeologiska undersökningar i Mellansverige, ed. 
Tiiu Andræ, Margareta Hasselmo, and Kristina Lamm 
(Stockholm: Riksantikvarieämbetet, 1987) 146. 
4Trevor M. Harris, “Scale as Artifact: GIS, Ecological Fallacy, 
and Archaeological Analysis,” in Confronting Scale in 
Archaeology. Issues of Theory and Practice, ed. Gary Lock 
and Brian Leigh Molyneaux (Boston: Springer, 2006) 48; 
Fotheringham, Brunsdon and Charlton, Geographically 
Weighted Regression, 144. 
5James Conolly and Mark Lake. Geographical Information 
Systems in Archaeology (Cambridge: Cambridge University 
Press, 2006) 157. 
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Mälardalen could thus be a good case study to test 
GWR on an archaeological material.  
 
In order to evaluate the result of the GWR analysis, it 
will be compared to the result of a standard linear 
regression, also available in ArcGIS 9.3; Ordinary Least 
Squares (OLS). Both tools provide a large set of outputs 
that can be used to evaluate and validate the results. One 
main issue that will be especially interesting from an 
archaeological perspective is how well the method 
handles small samples, as archaeologists often have a 
small number of known observations that are used for 
making more general claims about the material. Both 
tools have issues and benefits in regards to this, that we 
need to be aware of. Predictive modeling in archaeology 
is usually not based on regression techniques, and it is 
often very difficult to establish how effective a 
predictive model is.1 One problem might be that 
archaeological data structure seldom matches the 
prerequisites of regression in terms of quantitative data 
at a ratio level. When properly defined, regression is a 
robust, well established method that has reliable 
methods of evaluating model performance that are 
firmly based in statistical research. For this study, a 
method of achieving the right data level required is 
accomplished through the use of sampling values from 
density interpolations (see below). 
 
The Mälardalen area in central Sweden holds a large 
number of burial grounds that survive in the landscape 
(fig. 1). These have been registered by the Swedish 
National Heritage Board and made available for 
downloading for research from its Web site. In my 
current research project, I am looking into ways in 
which this set of data can be used for landscape analysis 
in a GIS environment in order to understand social 
change during the Late Iron Age period.2 With over 1.7 
million archaeological remains registered, this 
represents a rich data of heritage history, with pre-
historic monuments virtually “everywhere” in the 
landscape. Recent large scale excavations in connection 
with infrastructural projects such as highways and 
railroads have uncovered parts of the unseen aspects of 
the landscape. By intensive archaeological surveys and 
excavations in the corridors that are affected by the 
projects it has been made clear that, although we have 
records for a vast number of sites, much is missing too. 

                                                           
1Kenneth Kvamme, “The Fundamental Principles and Practice 
of Predictive Archaeological Modeling,” in Mathematics and 
Information Science in Archaeology: A Flexible Framework, 
ed. Albertus Voorrips (Bonn: Holos-Verlag, 1990); Philip 
Verhagen, “Testing Archaeological Predictive Models: A 
Rough Guide,” in Layers of Perception. Proceedings of the 
35th International Conference on Computer Applications and 
Quantitative Methods in Archaeology (CAA) Berlin, Germany, 
April 2–6, 2007, ed. Axel Posluschny, Karsten Lambers, and 
Irmela Herzog (Bonn: Dr. Rudolf Habelt GmbH, 2008). 
 
2Daniel Löwenborg, “Landscapes of Death: GIS Modeling of 
a Dated Sequence of Prehistoric Cemeteries in Västmanland, 
Sweden,” Antiquity 83 (2009) 1134–1143. 

Many sites have been damaged by later agriculture so 
that they can no longer be observed before excavation. 
And some sites were simply overlooked during the two 
rounds of surveying that was carried out throughout 
Sweden during the twentieth century. It is possible to 
trace “lost” burial grounds through the study of 
historical maps from the seventeenth and eighteenth 
century, something that has been done by geographers. 
Often there are indications of burials on early maps that 
are missing on later maps and have not been recorded 
during the surveys.3 Sometimes it has been possible to 
confirm the existence of archaeological sites at the 
location through excavations. It would, however, be 
difficult to try to quantify how many sites are missing 
using the maps, since there are so many other 
difficulties with the material, in terms of how the maps 
have been created, what was included in the maps and 
what was not, as well as which areas were mapped in 
times before the agricultural revolution, when, 
presumably, sites would start disappearing at higher 
rates. It would thus be connected with great 
uncertainties to make any estimates of the “original” 
number of burial grounds in the landscape as a whole 
using historical maps.4 There have also been a few 
attempts to estimate how much agriculture has affected 
the archaeological record,5 but only at a much 
generalized level and with great uncertainty. Studies 
focused on the intensity of agriculture also have 
problems in accounting for the effect of difficulties in 
surveying, and the fact that different parts of the 
landscape were surveyed with different levels of 
ambition and intensity.  
 
 
2 VARIABLES 

 
In order to achieve a reliable estimate of how many 
burial grounds are missing from the record, the results 
of large infrastructural projects were collected and 
evaluated. Criteria were set up for selecting which 
projects to include. From the 1980s onwards, the 
excavation method of large scale removal of the topsoil 
was adopted in Sweden. This resulted primarily in a 
larger number of settlements being uncovered, but also 
the discovery of previously unknown burial grounds. 
Thus only excavations from after 1980 were included in 

                                                           
3Therese Fast, Ulf Jansson, and Anne Philipson, Landskapet 
kring väg 250 (Stockholm: Kultur-geografiska Institutionen, 
2002) 15. 
 
4Ulf Sporrong, Mälarbygd : agrar bebyggelse och odling ur 
ett historisk-geografiskt perspektiv (Stockholm: Stockholm 
University, 1985). 
 
5Dan Carlsson and Bengt Windelhed, Kvantitativ 
Bortodlingsanalys. Diskussion av jordbrukets inverkan på 
fornlämningsbeståndet, förd på material från Skaraborgs län 
(Stockholm: Riksantikvarieämbetet rapport, 1973); Ola 
Kyhlberg, Uppodling, överodling och bortodling. En 
metodstudie (Stockholm: Stockholm University, 1983). 
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the analysis. A further criterion for the projects selected 
was that only those parts that were new to exploitation 
were used for the analysis. This means that a few 
projects where a road was expanded with a new lane or 
a railroad was expanded from single rail to parallel rails 
were excluded, since the results of these projects 
deviated from the rest. It was assumed that 
archaeological remains had been damaged in the first 
instance of exploitation, and renewed investigations 

would thus not give representative results. A third 
criterion for the projects was that the results must be 
published or reported in a form that made it possible to 
have an overview of all the results, both from survey 
and from excavation. Six projects, or parts of projects, 
met all criteria demanded and were included in the 
analysis. 
 

 

 
 
Figure 1. Burial grounds registered in the study area, parts of the provinces of Västmanland and Uppsala, and the surroundings. 
The location of the study area in Sweden, northern Europe is inlayed. Data from the National Heritage Agency. Background map 
published with permission: © Lantmäteriet Gävle 2009. Medgivande MEDGIV-2009-20920. 
 
 
2.1 The Dependent Variable—Sites Gained 
 
For this study, I use the results of the large excavating 
projects as a sample of a cut through the landscape, and 
as a glimpse of what results a full examination would 
give. The results are summarized in table 1 and figure 2. 
As can be seen from table 1, there are considerable 
differences in the outcome of the archaeological 
investigations for the various projects. This could be a 
reflection of different preconditions in terms of how 
many sites were present from the start, how well they 
have been preserved in the landscape, and to what 
extent the factors that would be damaging to burial 
grounds varied. Ideally, these processes could be 
estimated and accounted for in a GIS analysis. There 
might, however, be times when other factors influence 
the results, such as the development of new methods for 
archaeological fieldwork. One such example could be 
that new categories of burials have been increasingly 
observed during the last years, not least for the 

excavations for the E4 project. What appears to be 
regular graves, but contains no traces of burials, has 
been observed, and sometimes dominates whole burial 
grounds. At the same time, there can be fragments of 
burnt human bones scattered over a large area without 
any kind of external marker.1 Hence, the concept of 
‘grave’ is highly problematic in itself, and something 
that is being discussed and debated.2 These burials 
could not be observed before, and have thus not been 

                                                           
1Tony Engström, “De dolda döda–och deras betydelse för 
gravbegreppet,” in Att nå den andra sidan. Om begravning 
och ritual i Uppland, ed. Michel Notelid (Uppsala: 
Riksantikvarieämbetet, 2007) 77. 
 
2Anders Kaliff, Fire, Water, Heaven and Earth : Ritual 
Practice and Cosmology in Ancient Scandinavia : An Indo-
European Perspective (Stockholm: Riksantikvarie-ämbetet 
2007) 26; Anna Gatti, The Archaeological Discourse on Sex 
and Graves (forthcoming). 
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Project Area, km2 Known sites After proj Gain % New sites / km2 Clay % 

E18 W 2 2.8 4.4 1.6 57.14% 0.80 59.90% 

MB W 0.47 2 2.2 0.2 10.00% 0.43 71.15% 

MB E 0.87 3.8 5.6 1.8 47.37% 2.07 75.57% 

E18 E 3.43 6.4 13.2 6.8 106.25% 1.98 51.50% 

55 0.75 3.6 5 1.4 38.89% 1.87 78.10% 

E4 9.74 4.6 17.2 12.6 273.91% 1.29 44.98% 
 
Table 1. The results of the six projects used in the study. The table shows how large an area was examined for each project, how 
many sites (see below) that were known before investigations in connection to the road projects and how many were known after the 
project. Figures are given both in real number, ratio and number of sites per square kilometer. Finally, a figure is given of how long 
a stretch of each project that ran over clay, since this might be seen as relevant for the survival of burial grounds in the landscape. 
 
 

 
 
Figure 2. The archaeological data used for the analysis. Sites recorded in the registry are displayed both as individual sites, either 
burial grounds or single graves, and as a density interpolation. The extent and name of the projects included in the study are shown, 
along with the new sites observed during fieldwork. Data from the National Heritage Agency. 
 
 
included in the survey; to some extent this has probably 
contributed to the high ratio of new sites for the E4 
project. At the same time, the E4 excavations form the 
most recent project, and much effort was involved in 
avoiding known sites at the planning stage. This could 
also have contributed to the low number of known sites 
that were affected by the project, in relation to the large 
area that was utilized.  
 
Both sites registered as single graves and burial grounds 
were included in the analysis. Since five or more graves 
within close range of each other are defined as a burial 
ground in the registry, burial ground were given a value 
of 1 and the single graves a value of 0.2. It has been 
observed that single graves might often be an indication 

of a burial ground at that location, even though only a 
few graves are visible in the landscape.1 It was thus seen 
as important to include the single graves in the analysis 
in order to account for as much of the record as 
possible. However, the fact that the number of graves at 
a burial ground often increases drastically between 
survey and excavation results was not considered here. 
 
An important aspect of the results of the excavation 
projects is that information about the areas where no 

                                                           
1Katarina Appelgren and Maria Renck, “Vad är en grav?” in 
Att nå den andra sedan. Om begravning och ritual i Uppland, 
ed. Michel Notelid (Uppsala: Riksantikvarieämbetet, 2007) 
43–45. 
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new sites have been found is as important as 
information on where and how many sites have been 
encountered. Since the method assumes a “full” 
investigation, areas with no sites are used as evidence 
for absence of sites at those locations. This is not 
entirely unproblematic since it is possible that even the 
close investigation of modern rescue archaeology 
occasionally misses something, and it would also make 
the results vulnerable to differences in implementation 
between projects. Despite this, it is necessary to account 
for the absence of sites in the analysis, since it is such 
an important part of the available data.  
 
Computationally, information for the areas with no sites 
was included in the following manner: the extent of 
each project was buffered with the width that was 
investigated, generally 50 meters on both sides of the 
center of the new road. Within those areas, random 
points (N=316) were generated with the constraint of 
leaving at least 100 meters between points. Thiessen 
polygons were then created for each point and cut for 
the road buffer, so that each point would be represented 
by an area. The “gain” values were sampled from the 
interpolation of values at each point and then multiplied 
with a factor in order to have the average of the points 
of each project correspond to the average of each 
project (from table 1), in relation to the size of each 
thiessen polygon. This would average out the values 
gained for each project, but still maintain a substantial 
part of the spatial component of the data. The mean gain 
of all the points in the sample thus matches the value of 
“sites gained per square kilometer” (see table 1) for 
each project as a whole (see fig. 3). 
 

 
 
Figure 3. An example of the unit of analysis for the dependent 
variable; generated random points transformed into thiessen 
polygons. 
 
Further, since it would be an open question at what 
scale the analysis would be best, the density 
interpolations were performed with several different 
search radii, at 4000, 6000, 8000, 10000, and 12000 
meters respectively. Since a larger search radius would 
even out the values over a large area, they would miss 

some of the local differences of where in the landscape 
new sites have been observed. However, since there are 
a few instances of long parts of the new roads that have 
been investigated without any new finds of new burials 
(see fig. 2), only the search radius of 12000 meters 
would give values for all samples in the study area. In 
order to test which combination of variables would give 
the best results, all analyses were calculated with 
measures from all different interpolations. 
 
1.2 The Independent Variables—The Landscape 
 
What aspects of the landscape would be relevant for 
predicting where large numbers of sites are missing? 
These independent, or explanatory, variables would 
need to be identified and sampled in order to have a 
model that gave the most reliable results that the 
material could provide. This is a question both on 
testing which aspects of the landscape that would be 
relevant for the analysis, and at what scale they would 
give the best results. In order to test this, the values 
were computed at different scales and tested for 
correlation strength and relevance (p-values). Several 
different variables were tested, and five variables were 
considered to be relevant for the analysis. These were 
calculated at different scales and compared to the 
different versions of the dependent variable. First a 
visual estimation was made of the maps of the variables. 
Then scatter plots and correlations were calculated, as 
summarized in table 2.  
 
All the independent variables were rasters that had been 
modified by different means in order to acknowledge 
the fact that often the value present at the exact location 
of the sample is not as important as the dominating 
value in the vicinity. The problem is to define how 
much to include in the definition of “vicinity”. Each 
variable was thus interpolated as a density (d) with a 
different length of search radius; alternatively, a focal 
statistics function (fs) was run that counts the values 
within a specified distance. 
 
Clay/Soil is the most used variable for modeling 
conditions for pre-historic settlements in the area,1 and 
shows good correspondence with burial grounds on a 
map (see fig. 4). This variable was calculated from the 
soil map using both the value clay by itself and together 
with other types of soil that would indicate good soils 
for agriculture. 
 
The variable Fragmentation represents an attempt to 
account for the problem of determining where sites 
would have better or worse possibilities of surviving 
agriculture. Line elements delimiting cultivated land 
were used to calculate a density raster where high 
density would indicate a “fragmented” interface 
between land types.  Where there  are numerous  islands  
 

                                                           
1Sporrong, Mälarbygd, 38 (above, p. 204n4). 
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  GAIN 4000 GAIN 6000 GAIN 8000 GAIN 10000 GAIN 12000 

Soil—1000 fs -0.096 -0.099 -0.065 -0.118 -0.134 

Soil—2000 fs -0.115 -0.069 -0.034 -0.081 -0.102 

Soil—4000 fs* -0.134 -0.026 0.017 0.004 -0.007 

Clay—1000 fs -0.063 0.021 0.065 0.032 0.026 

Clay—10000 fs -0.034 0.107 0.167 0.198 0.217 

Fragmentation—500 d -0.037 0.027 -0.046 0.001 0.028 

Fragmentation—1000 d 0.021 0.065 -0.003 0.032 0.046 

Fragmentation—1500 d 0.03 0.038 -0.034 -0.008 -0.006 

Fragmentation—3000 d 0.108 0.09 0.037 0.05 0.042 

Fragmentation—5000 d -0.052 0.018 -0.054 -0.005 0.022 

Fragmentation—2000 fs* -0.028 -0.073 -0.109 -0.09 -0.081 

Fragmentation—4000 fs 0.055 0.001 -0.082 -0.078 -0.078 

Built up—1500 fs -0.155 -0.085 -0.06 -0.037 -0.033 

Built up—3000 fs -0.172 -0.089 -0.066 -0.046 -0.039 

Built up—5000 fs -0.183 -0.121 -0.104 -0.086 -0.092 

Built up—7500 fs* -0.185 -0.135 -0.120 -0.110 -0.116 

Survey—1000 d 0.142 0.145 0.137 0.120 0.110 

Survey—1500 d 0.158 0.187 0.186 0.176 0.173 

Survey—2000 d 0.155 0.208 0.217 0.215 0.218 

Survey—3000 d 0.106 0.208 0.237 0.252 0.263 

Survey—5000 d* 0.088 0.242 0.286 0.306 0.316 

Water—distance 0.070 0.071 -0.075 0.077 -0.106 

Water—density 0.082 0.083 -0.087 0.090 -0.103 

Water—distance + density* 0.072 0.216 0.264 0.278 0.287 

Correlation is significant at the 0.05 level. *-the variable used in the final analysis

Correlation is significant at the 0.01 level.   
 
Table 2. The correlation between independent and dependent variables at different scales of analysis. The scale of analysis of each 
variable is given in meters. Most variables give stronger correlations when calculated at a wide scale for both independent and 
dependent variables. For a discussion of the variables used, see the text. 
 
 
in the field, impediments, or an irregular borderline, 
there might be less risk that burial grounds have been 
destroyed by agricultural impact. The density raster was 
combined with a straight line distance raster, calculated 
from open field areas, giving high values to locations far 
from an open field. Otherwise, there would be similar 
low values of the variable for both highly cultivated 
areas and for fully forested areas. The usefulness of 
similar variables in this context has been discussed by 
Sigurd Ramqvist.1 
 

                                                           
1Sigurd Ramqvist, “Om försvinna graver,” in Inventori in 
Honorem. En vänbok till Folke Hallberg, ed. Åke Hyenstrand 
(Stockholm: Riksantikvarieämbetet, 1980) 84. 

Built up is a variable calculated with focal statistics with 
different search radii from built up areas. This variable 
could be seen as reflecting high population density and 
thus a probable higher strain on archaeological remains. 
Where many modern constructions exist, there would be 
greater risk of sites being damaged or removed, perhaps 
permanently. At the same time, the locations in the 
landscape that are used today often date back at least to 
medieval times, and might reflect positive attractors in 
the landscape, such as good communications and fertile 
land, which might have also attracted population in pre-
historic times. The negative correlation of the variable 
might indicate that the latter was less influential in the 
present analysis. 
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Water was calculated both as straight line distance, as a 
density of line elements of rivers and coast line, and as a 
combination of both, weighted in different ways. The 
reason for using density in the analysis is to give the 
coastline (where there usually are several line segments 
together) greater weight than rivers (usually one or two 
lines per river). The combination of density and distance 
rasters gave the best results (see fig. 4). 
 
A density of all the sites registered before excavation is 
given at different scales by the variable Survey. It was 
not clear if this variable should be included, since it is 
so closely related to the variable that is being predicted. 
If it had been possible to give a highly accurate model 
of where in the landscape burial grounds occur, it might 
have been possible to exclude the survey variable, but 
this was not the case here. It would seem likely that 

there are more sites missing in areas that have many 
remaining ones, if this is a reflection of the original 
situation, i.e., there were more sites to lose. This was 
also the variable that gave the strongest correlation, and 
thus seemed important to include (compare fig. 2). 
 
A few variables were tested but not included in the 
analysis, such as two variables from elevation. Raw 
height values were tested in order to account for the 
land rise and shore displacement in the area. Another 
use of topography that is often used in similar studies is 
“relative relief”, or how much difference in elevation 
there is within a specific distance. Neither of these 
variables gave statistically valid results, but it should be 
noted that the study area is generally very flat, with a 
maximum elevation of 216 meters above sea level.  
 

 

 
 
Figure 4. Two of the landscape variables used in the analysis; concentrations of good soils and distance to water. 
 
 
3 METHOD-ANALYSIS 

 
2037 random points were generated within the study 
area, and all the independent variables were sampled for 
each point. In order to calculate a regression of the 
relationship between the gain values and the variables 
from the landscape, the intention was initially to use the 
OLS script, available in the Spatial Statistics Toolset in 
ArcGIS. However, there seems to be a problem with the 
functionality of the regression features that are new in 
ArcGIS version 9.3. It was not possible to include the 
cases where there were unknown values for the 
dependent values, since those cases were disregarded if 
they were given a <Null> value, and would disrupt the 
regression if they were given a value of “0.” Thus, the 
analysis was computed in SPSS 15, and then transferred 
back to ArcGIS. The analysis was tested with a range of 

different combinations of variables, and the results of 
the analysis with best fit (R-squared) are summarized in 
table 3a-b and figure 6.  
 
An alternative method that could be used is GWR, 
where each coefficient is allowed to vary over space, so 
that the method can account for, and benefit from, the 
fact that there might be differences in the strength of 
correlations between variables in different parts of the 
study area. Spatial dependency is often seen as a 
problem in traditional statistical analysis and something 
that needs to be reduced through different sampling 
methods. In spatial statistics, on the other hand, the 
spatial component is seen as meaningful and something 
that should be considered an asset, when it can be 
properly included  in the analysis.  The theory behind  
 



Daniel Löwenborg 

 

210 

 

Table 3a: Coefficients(a) 

Model 

 

 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta   

1 (Constant) 2.862 .684  4.182 .000 

 Fragmentation .000 .000 -.206 -3.454 .001 

 Water 3.051 1.010 .165 3.020 .003 

 Survey .814 .099 .479 8.231 .000 

 Built_up .000 .000 -.203 -3.542 .000 

 Soil -.001 .000 -.281 -4.430 .000 

a Dependent Variable: Gain_12 

 

Table 3b: Model Summary(b) 

Model 
R R Square 

Adjusted R 
Square 

Std. Error of the 
Estimate 

1 .518(a) .268 .256 1.17325980725324 

b Predictors: (Constant), Fragmentation, Water, Survey, Built Up, Soil 

 
Table 3a and 3b. As can be seen from table 3a, all the variables were statistically significant, with a p-value (called 
Sig. in SPSS) of 0.003 or lower. The coefficients are rather low, which to some extent can be explained by high variable 
values, but the model as a whole only explains around 26% of the variance in the material (R Square and Adjusted R 
Square), with a rather high standard error value of 1.17. 
 
 
GWR is discussed by Fotheringham, Brunsdon and 
Charlton.1 The basic principle is that coefficients are 
described graphically as a continuous gradient, and not 
as a single value. The examples provided are generally 
derived from large statistical datasets such as, for 
instance, house prices in the London area, where the 
different variables influence the house prices to a 
different extent for different parts of greater London.2 
Although this would represent a case where there are 
many sources of information available–the prices of 
houses sold previously–GWR includes functions for 
handling irregularities in the samples. The kernel used 
for determining how many of the surrounding samples 
to include in the analysis can be fixed or adaptive. With 
an adaptive kernel, samples are included from a larger 
area where feature distribution is sparse, and from a 
smaller area where feature distribution is dense. The 
extent can be determined through a statistical method 
that finds the bandwidth that gives the optimal results, 
either Akiake Information Criterion (AICc) or Cross 
Validation (CV). AICc testing is a method for 

                                                           
1Fotheringham, Brunsdon, and Charlton, Geographically 
Weighted Regression (above, p. 203n1). 
 
2Ibid., 27. 

comparison between statistical models to find which 
gives the best result,3 and it is also provided as part of 
the output for results of the OLS and GWR analysis. By 
using AICc testing to establish how many samples to 
include in the analysis, GWR has built in functions to 
provide information on the appropriate scale of analysis 
and meet some of the issues in the Modifiable Areal 
Unit Problem.4 
 
The workflow suggested by ESRI in the documentation 
of the tool is to first test which variables that are best for 
the analysis in OLS, and then use those variables in a 
GWR if the results of the OLS analysis suggest that 
there is a significant spatial element to the dataset. 
Figure 5 illustrates how the coefficients of the same 
variables used in table 3a look in a GWR analysis. 
 
Statistically, the GWR gave a somewhat better result, 
with an R Square value of 0.295 and Adjusted R Square 
value of 0.280, thus an improvement of about 0.025 

                                                           
3Kenneth P. Burnham and David R. Anderson, Model 
Selection and Multimodel Inference : A Practical Information-
theoretic Approach (New York: Springer, 2002). 
 
4Fotheringham, Brunsdon, and Charlton, Geographically 
Weighted Regression, 127. 
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points compared to the results of the OLS analysis. To 
facilitate comparing model fit of different regressions 
models, we were provided with an AICc value. For OLS 
this was 1003.7 and for GWR 995.9, thus a slight 
improvement, since low values indicate good overall 
model performance.  
 
Another important indicator of how reliable the results 
are is the distribution of the values of the residuals. 
These should ideally be in a random distribution, with 
over- and underestimates mixed, if there is no bias for 
certain parts of the model. In this case, there seems to be 
a good distribution of values for the larger projects in 
the eastern part of the study area, where there is also 
more information on which to build the analysis. In the 
western part there seem to be some issues that probably 
also reflect the rather low sampling density in this area 
as well as the low outcome of the excavations (compare 
with table 1, where MB W have the lowest gain per 
square kilometer).  
 
 
1 RESULTS 
 
The dependent variable in the analysis is thus an 
estimated value of how many sites would be gained if 
the whole of the landscape was fully excavated, 
expressed as new sites per square kilometer. As can be 
seen from figure 6a and 6b, there are limited differences 
between the results of analysis in OLS and GWR. The 
values of sites gained in figure 6 should be compared to 
the column of “sites gained per square kilometer” in 
table 1. Some parts of the landscape display a higher 
result than any of the projects, since the projects are 
only accounted for as a mean. There are, of course, parts 
of each project that have considerably higher values. 
The negative predicted values in the north and north-
west should probably only be understood as difficulties 
in giving an estimate in those areas, where conditions 
differ too much from those where the samples are 
located. This is also reflected in high standard error 
values (see fig. 8). 
 
In order to facilitate interpretation and enable further 
analysis, the results of the prediction were aggregated as 
a mean for each parish in the study area as polygon 
features (see fig. 7a). This can be compared to how 
many sites are known from survey and are registered in 
the record (see fig. 7b). With this information, it would 
be possible to give a rough estimate of how much 
information is missing from the registry, i.e., how 
representative of the original material the database of 
burial grounds is. It would be difficult to give an 
accurate estimate in the parts of the study area that are 
too different from the central parts, where the majority 
of the archaeological investigations have been carried 
out. This is reflected in a high standard error, and the 
same is true of the parts of the landscape where an 
important variable is missing. In the location of the 
major towns there are few sites registered, and thus too 
low values for the variable “survey”. Since many of the 

towns date back to medieval times, many burial grounds 
are long lost, and the archaeological record is thus not 
accurate, which upsets the analysis for those areas and 
results in high standard errors. We are also missing the 
impact of the eustatic uplift in this analysis, since no 
variable for elevation was included. The parishes that 
have a mean elevation below 11 meters are thus also 
grayed out in figure 9, indicating that results for them 
would be difficult to estimate this way. Caution is 
advised, however, for the interpretation of all locations 
near the coast or the shore of Lake Mälaren. 
 
The high ratio results in the northern part should be seen 
in relation to the low number of sites that are registered 
there (see figs. 1 and 7b), since a small increase in the 
number of predicted sites would alter the situation 
considerably. The result indicates that there is a 
substantial number of burial grounds missing from the 
registry in these parts. This is not surprising, and might 
well reflect reality, since these parts of the landscape are 
peripheral today, with low impact of exploitation and 
few excavations. It is quite possible that surveys have 
been less intensive in those parts and missed a greater 
number of sites. This is indicated by an intensive survey 
of parts of northern Uppland that revealed a 
considerable number of previously unknown sites.1 The 
small number of sites known for the northern part of the 
study area might thus be somewhat misleading. 
However, even in the central parts of the landscape, 
where we have information about a large number of 
sites, the archaeological record is probably far from 
complete. In a much generalized statement, it seems as 
though around half or more of the sites are missing for 
much of the region.  
 
The fact that there is a large number of burial grounds 
that are no longer visible in the landscape but only 
observable though excavation is well established in 
Swedish archaeology, and is confirmed by new large-
scale excavations. How much is missing and how large 
a part of the whole material this represents is so far not 
very well understood. It is difficult to estimate what the 
situation would be outside the excavated areas. The 
present study suggests that a substantial proportion of 
the burial grounds is missing throughout the study area. 
This information is important for further research on the 
social development of the prehistoric society based on 
landscape analysis, including the burial grounds. It is 
also important for cultural resource management to be 
able to have some idea of how representative the 
archaeological record is. Not least, this could be of 
relevance for archaeologists who are planning new 
extensive excavations and need to be able to make 
budgets that would have to include a large entry for 
unknown sites that are likely to exist under the topsoil. 
 

                                                           
1Örjan Hermodsson, 1999–2001 års fornminnes-inventering i 
Uppsala län Tierps, Östhammars och Uppsala kommuner 
(Stockholm: Riksantikvarieämbetet 2002). 
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Figure 5a-f. The coefficients for all the variables in the GWR analysis. Owing to the distribution of the sample data used, the 
coefficients only have a general North-South and East-West tendency.  
 
 
 
 

  

 
Figure 6a and 6b. Interpolations of the results of the GWR and the OLS analysis displayed with a common key for comparison. The 
two models gave very similar results. 
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5 CONCLUSIONS 

 
On a methodological note, it seems that GWR has great 
potential for archaeological modeling of the landscape. 
Since archaeological samples are usually fairly small—
we often do not have much information in relation to 
that which we are trying to say something about—it 
makes much sense to make the best use of the 
information available. One way to do that would be to 
include the spatial component and information on how 
relations might differ throughout space. There might 
also be a danger in this, since GWR primarily seems to 
be tested on materials with large samples, where there 
are known values for many locations. It might be the 
case that a small sample would introduce a spatial bias 
that might not always be positive on the outcome. This 
could potentially be a problem with small samples, 
where poorly representative measurements could be 
amplified if they are on the edge of the sampled area. 
The OLS technique would perhaps be preferable in that 
case, since OLS would use the same coefficients for the 
whole area. In GWR this would be dealt with through 
the possibility of defining bandwidth—the number of 
surrounding samples to be used for the prediction at 
each point–so that results are evened out. The question 
is how well that works with small samples, such as the 
excavated areas in this example, something which is 

common in archaeology, and which underlines the need 
for source criticism.  
 
Another problem might be how to include negative 
results of investigations, where a location was 
investigated but nothing of interest was found. This is 
important information in its own right, and thus needs to 
be considered, even though it might not be obvious how 
to include that kind of data in a regression. For this 
study, the problem with “absence of values” was dealt 
with through the use of a large search radius for creating 
a density raster of the sample, in order to cover the 
whole area that was investigated. The result was 
sampled to random points and transferred to polygons 
so that meaningful values in relation to area could be 
produced. It would perhaps not always be 
straightforward to represent the archaeological 
information at a true ratio scale, which is necessary for 
regression analysis. It would thus often be necessary to 
modify the data in some way, depending on the nature 
of the data and the questions at hand. When there is a 
well defined area of investigation, the method presented 
here might prove useful, but there might also be a 
danger of making the results too level to provide useful 
information. 
 

 
 

 
 
Figure 7a and 7b. The results of the GWR analysis on a parish basis, and the number of sites per km2 by parish, as recorded in the 
registry. 
 
A benefit of using regression methods is the rich 
information of standard error and measurements of 
model fit and performance that comes with the results. 
ESRI also provides extensive documentation and 
guidelines for interpreting the outputs, which is highly 
valuable both for improving the analysis and for making 
the best use of the results. Since both the GWR and the 
OLS functions are new in ArcGIS 9.3, they still seem to 
suffer from some issues.  
 
One problem is that the units that should have the 
dependent variable predicted need to be defined as 
“null,” and can thus not be a normal Shapefile but have 

to be a feature in a Personal Geodatabase. This caused 
me considerable difficulty, since it was not specified in 
the documentation. More problematic was the fact that 
both OLS and GWR seem to have issues in handling 
those “null” values in the regression, and fail to give 
output for the values that should be predicted in the 
regression. This explains the poor results of the 
regressions that were presented at the conference in 
Williamsburg. The calculations presented here have 
been done in SPSS and Excel, using sampled values of 
the GWR coefficients. ESRI has been notified about 
these issues and they will hopefully be amended in a 
future version of ArcGIS. 
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Figure 8. The result of the analysis; gain prediction by parish. Areas with high standard error or low mean elevation are grayed out 
since predictions would be unreliable. Background map published with permission: © Lantmäteriet Gävle 2009. Medgivande 
MEDGIV-2009-20920. 
.
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