
Integrating scientific results in archaeological processes

SOFTWARE ARCHAEOLOGY - AN INTERDISCIPLINARY VIEW

GERHARD CHROUST
KEPLER UNIVERSITY LINZ

SYSTEMS ENGINEERING AND AUTOMATION
GC@SEA.UNI-UNZ.AC.AT

SEE THE CD FOR THE EXTENDED VERSION ABSTRACT

Maintenance is one of the key problems of software engi-
neering, often nicl<named 'software arcliaeology'. This paper
discusses analogies between software maintenance and
archaeology, emphasising similarities and dissimilarities. It
shows some surprising parallels and insights concerning
what one calls legacy systems or legacy artefacts.

THE LEGACY PROBLEM, MAINTENANCE AND KNOWLEDGE

ELICITATION

Maintenance of software products is a key problem today, i.e.
repairing and enhancing so-called 'Legacy systems'. These
systems have outlived their planned useful life, their pro-
grammers, their base technology etc. The general public
recognized this in the course of the transition to the year 2000
and (for Europe) in the change to the Euro.

There are several causes why software becomes less usable or
erroneous during its life time (Lehman 1985, Basili 1990).
These causes should sound familiar also to archaeologists:

- (Lehman's Law) Successful systems have to change in order
to remain acceptable to their users (Lehman 85).

- Stable systems which do not need change are 'dead' systems.
- Most of the changes are not caused by programming errors,

but are due to external changes (changed legislation, diffe-
rent requirements, unforeseen change to the environment,
e.g. changing to the Euro). Industry sources indicate that
approx. 40% of all changes (i.e. 'maintenance') are actually
changes to adapt a system to changing environments (Sneed
1990).

One has also to admit that legacy systems have several
advantages which distinguish them from systems to be newly
written and therefore justify maintenance:

- Existing and operational systems often contain considerable
hidden domain knowledge not documented or know to the
users.

- Old system work, which is not self-evident for newly built
systems.

- etc.

Therefore legacy systems are not only old burdens, but also
old treasures - like in archaeology. They pose, however, some
problems:

- Their developers do not exist any more, one cannot ask
them.

- Documentation (for design and operation) is non-existent, is
lost, is unreadable, written in nowadays unknown language
(Who still knows the programming language IPL-V?).

- Existing documentation is unreliable and often outdated
with respect to the current system in operation.

- The requirements, motives, objectives and the environment
in which the systems were build and operated do not exist
any more or cannot be understood.

- Parts of the system are missing and forgotten.
- These systems contain extra parts which are not useable any

more, even not accessible by normal operation (software
calls this 'dead code'), but make understanding more diffi-
cult.

- Large parts of the system have been changed over and over
again.

- The systems were are build in a technology with is outdated
and often not safe and reliable any more.

- The original (probably clear design) has been modified over
time and was obliterated by various minor modifications.

We recognize that one of the major problems is acquiring
enough knowledge about the legacy system using available
artefacts. One has to elicit knowledge from the available
sources, structure it and preserve it in adequate and hopeflil-
ly better accessible and understandable form. Archaeologists
fight with the same problems (Hunt 2002). Therefore Harry
Sneed, a well known German-Canadian software pioneer,
coined the term 'software archaeology' (Sneed 1994) for
maintenance work in the software industry (Hunt 2002,
Dennet 1986). We will develop this idea further.

A major distinguishing characteristic is the aim of these two
fields:

- Archaeology puts the emphasis on putting the observer into
the historical "original" environment, striving to preserve
the past for analysis and contemplation, while

- software maintenance tries 'to bring the legacy system into
today users' environments', striving to keep old systems in
productive use.

HANDLING LEGACY SYSTEMS

Software engineering provides a range of techniques to hand-
le legacy systems, the so-called 'Re-techniques' because of
their common prefix (in italics you find remarks targeted at
archaeology).

REcognition: Recognizing and identifying useful infonnation
(using data mining and pattern recognition) are important
methods in software maintenance. This turns out to more dif-
ficult in archaeology because most of the data are hidden, but

344

[Enter the Past
software engineers often are also at loss to find a certain cri-
tical software module's source code.

REallocation: Artefacts often are brought into another envi-
ronment, mostly for safeguarding or protection from destruc-
tion, in archaeology often out of pure greed. Especially in
archaeology this is difficult, cumbersome, error-prone and
not always successful: artefacts get lost, broken, stolen and
confused during transfer.

REcombination: Related information is not necessarily in one
place, legacy software has functions distributed over the
code, largely due to maintenance patchwork. Human intui-
tion can be augmented by massive computer support to iden-
tify potentially matching pieces and interfaces dispersed over
the world.

REpair: Artefacts need repair in order to preserve them, a fact
well-known in software engineering, where maintenance is
important but also difficult due to software's idiosyncratic
properties like invisibility and easy changeability (Brooks
1986). When repairing software the original code has only to
be preserved if there are old systems still using it and this can
easily achieved by copying. In archaeology preservation of
original artefacts and the precise distinction between origi-
nal and replacement is a key concern, especially in the case
where a site has many strata.

Restoration: This is one of the major challenges and source
of controversy in archaeology (but not an issue in software):
to which epoch and status should the artefact be restored?
Typically after the fire in the famous Redoutensäle of the
Vienna Hofliurg, the discussion arose whether to restore these
rooms to their last 20th century appearance or to their origi-
nal appearance (1705). Software can easily be duplicated to
allow both versions to exist in parallel. For archaeology only
Virtual Reality (Billinghurst 2002) offers the chance to see
several views.

RE-documentation: Traditionally (not only in archaeology)
documentation of artefacts is rudimentary, often not existing
and unreliable or unreadable. Some documentation is not
even recognized as such: initially even cuneiform inscrip-
tions were misunderstood as decorations without deeper sem-
antics. Fortunately archaeologists are trained in documenta-
tion and see this as one of their major professional tasks - in
contrast to the archaeological adventurers of the 18th centu-
ry and in contrast to most software engineers.

RE-structuring: Due to maintenance the structure of a soft-
ware product is gradually deteriorating.

- It is therefore necessary to re-structure a software product,
compatible with the original concepts and the changes made
since.

- The stmcture and organisation might - sometimes even
unintentionally - be completely transformed into another
structure. This effect is well known to archaeologists, when
different uses of a buildings cause more or less small chan-
ges which in sum, however, often completely change the -
outlay, the appearance and the usage pattern of a building.

REverse Engineering: Key issues when confronted with
some unknown artefact are: What does it accomplish? How
does it function? What was its purpose? Why has it been built
like that? Archaeologists, perhaps more than software engi-
neers, understand that these questions have to be answered
on different semantic levels: If we know what the form of a
house was (of which we may discern only the foundations),
we still do not know what rites or professions were performed
in the various rooms, let alone why a certain activity was per-
formed at all. And we know that more than one interpretation
is possible.

REengineering: Reengineering is the rebuilding of a system
with different means and/or technology carrying over the
information or fiinctionality of the old system but for sustai-
ned/improved usage. Archaeology has the privilege not to
have to cater for current usage of most archaeological arte-
fact. Such use would be contra-productive and destructive for
scientific research of archaeological sites.

Nevertheless in some rare instances even archaeology has to
use reengineered artefacts. Examples are copies of statues
from medieval churches or the duplication of the caves of
Lascaux in Paris.

A true blend between archaeology and computer technology
is Virtual Reality, which allows us - in a true re-engineering
fashion (same 'look and feel' but completely different techno-
logy) to 'virtually re-build' every artefact sometimes even
indiscernible from the original artefact in order to enable
many people to see and to even touch (!) without leaving their
home.

REuse in different context: In software production, as in
every other industry, the reuse of partial products is one of the
keys to productivity and quality. With respect to archaeology
this is a highly undesirable human activity since it usually
meant carrying away archaeological artefacts for some other
unknown, profane use, like using the Pyramids or the
Camuntum site as a cheap source of building material like a
stone quarry.

CROSS-FERTILIZATION

We can observe that the maintenance of software products
and archaeological work have considerable overlap, especial-
ly in the following areas (Hunt 2002):

Preservation Problem: The identification and preservation of
artefacts, etc. is of utmost importance. In archaeology - due
to the uniqueness of artefacts - it has to be done with utmost
precaution, the production of identical copies eases this pro-
blem for software engineering.

Understanding Problem: The imderstanding of the meaning
of the available documentation and its validation is a key
challenge, misinterpretations often are long-living (cf inter-
pretations of Knossos) and counter-productive.

Documentation Problem: Reading and understanding ancient
documentation is a multi-levelled problem, starting fi'om

345

Integrating scientific results in archaeological processes

identifying characters or symbols (Doblhofer 1990) to trying
to read and pronounce the utterances etc. Programming lang-
uages do not pose similar deciphering problems like some of
the ancient languages. In the domain of software lack of pro-
per documentation, lack of visibility of the dynamics of a
program causes problems by forcing maintenance engineers
to deduct bottom-up the functionality of a program.

Matching Problem: In any complex system a key to under-
standing is knowing the relation of artefacts to one another.
Archaeology has the disadvantage that many of the artefacts
have been removed from their original site (often illegally
and secretly), and have gone through many hands (and coun-
tries!). Establishing the original relationships needs modern
technology and algorithmic approaches to pattern matching
and data mining, only possible nowadays.

Presentation Problem: For different reasons both archaeology
and software have a similar problem: How to explain to out-
siders (including those who can provide the necessary spon-
sor money) what actually the underlying structure, concepts,
and plans were. For software this is mainly caused by the
invisibility of software and the difficulty to show dynamic

behaviour For archaeology part of the problem is the lack of
some important parts of an artefacts. Virtual Reality or
Mixed Reality can be very supportive there (Billinghurst
1992, Forte 1997, Tarumi 2000 and Stone 1992).

SUMMARY

Archaeology can be helpful in providing understandable,
obvious examples for the rather abstract, ephemeral observa-
tions and problems of software, while software can bring new
ideas and technology to the long-established field of archae-
ology, introducing new approaches and methods. In this
paper we have shown some similarities between the field of
Software Maintenance {"Software Archaeology") and
Archaeology. Some of the problems where software engi-
neers have difficulties to accept them on an intuitive basis,
are obvious in archaeology (e.g. the destruction of structure
by maintenance, the drifting of architecture by enhance-
ments, the ambiguity of reverse engineering, etc.) On the
other hand archaeology can profit from software's ability to
process masses of data and supplying new representational
means by Virtual and Mixed Realities. Like in many other
fields, interdisciplinarity pays off.

346

Enter the Past

REFERENCES

BASILI, V.R, 1990. Viewing l^aintenance as Re-use oriented
Software Development. IEEE Software January: 19-25.

BILLINGHURST, M. and KATO, H., 2002. How the virtual
inspires the real - Collaborative augnnented reality. CACM
Vol. 45, no. 7:64-70.

BROOKS, F.RJr, 1986. No Silver Bullet - Essence and
Accidents of Software Engineering. In Kugler, H.J. (ed.).
Information Processing 86, IFIP Congress: 1069-1076.

DENNETT, D., 1986. Julian Jaynes' 1986 Software
Archeology. Canadian Psychology April, Vol. 27(2):149-154.

DOBLHOFER, E., 1990. Zeichen und Wunder. Weltbild-Verlag
(ISBN 3-89350-X).

FORTE, M. and SILIOTTI, A., 1997. Die neue Archäologie -
Virtuelle Reisen in die Vergangenheit. Gustav Lübbe (ISBN 3-
7857, 200888-2).

HUNT, A. and THOMAS, D., 2002. Software Archaeology.
IEEE Software Vol. 19, no. 2:20-22.

LEHMAN, M.M. and BELADY, LA., 1985. Program Evolution -
Processes of Software Change. APIC Studies in Data Proc.
no. 27, Academic Press.

SNEED, H.M., 1990. Software Wiederverwendung. ADV
(ed.), EDV in den 90er Jahren, Jahrzehnt der Anwender -
Jahrzehnt der Integration ADV: 199-214.

SNEED, H., 1994. Claimed to have coined the term 'Software
Archyeology. Personal Communication.

STONE, R. Virtual Reality and Telepresence. Robotica no.
10:461-467.

r

TARUMI, H., MORISHITA, K., ITO, Y. and KAMBAYASHI, Y.
Communication through virtual active objects overlaid onto
the real world. Proceedings of the third international con-
ference on Collaborative virtual environments, ACM
Press: 155-164.

347

