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Abstract 
Computational (or “artificial”) intelligence is not just about robots. It is about understanding the nature of intelligent thought and 
action using computers as experimental devices. It also deals with the nature of inferential mechanisms and how computer programs 
allow us to discover how we produce inferences. In this paper I introduce some of the key points in Computational Intelligence in 
Archaeology, exploring the implications in our discipline, both theoretically and methodologically, of Machine Learning tools and 
techniques. Theoretical and practical aspects of computer programs able to reproduce the same tasks archaeologists do are reviewed 
in this paper. The question of whether it is possible to automate the archaeological knowledge production is of both great theoretical 
interest and increasing practical importance, because knowledge and information are being generated much faster than they can be 
effectively analyzed. Computable archaeology—if you do not like the expression “automatic archaeology”—is the proper way of 
exploring new ways of answering the questions we have not yet answered. 
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1. INTRODUCTION 
 
Is it possible to build a machine to do archaeology? 
Will this machine be capable of “interpreting” and 
“explaining” cultural heritage? So-called “intelligent” 
machines inspire instinctive fear and anger by 
resembling an ancestral threat—as a rival for our social 
position as more or less respected specialists. But 
robots are here, around us. I have never heard of a 
claim against washing machines “intelligently” 
selecting the best way to wash a specific fabric, or a 
camera with an “intelligent” device to measure 
luminance deciding by itself the parameters in which 
to take the picture. So, why be afraid of a machine 
classifying a prehistoric tool and deciding 
“intelligently” its origin, function, and/or chronology? 
Critics seem to think that computer programs are guilty 
of excessive simplification, of forcing knowledge or 
distorting it, and of failing to exploit fully the 
knowledge of the expert, but it seems to me that it is 
archaeology that is “narrow minded”, not computer 
programs. The saddest thing is that archaeologists do 
not know how they know archaeological matters. 
 
My personal approach is based on a reality that 
archaeologists and cultural heritage scholars could not 
evaluate 15 years ago: computer programs do work in 
real science, not only in archaeology. Perhaps they are 
more successful in other “harder” sciences,1 but we 
cannot deduce from this fact that archaeology is a 
different kind of science.  
 
                                                            
1S. H. Liao, “Knowledge Management Technologies and 
Applications—Literature Review from 1995 to 2002,” Expert 
Systems With Applications 25 (2003): 155–164; S. H. Liao, 
“Expert System Methodologies and Applications—A Decade 
Review from 1995–2004,” Expert Systems With Applications 
28 (2005): 93–103. 

In other scientific domains, the performance of humans 
at a particular task has been used to design a robot that 
can do the same task in the same manner (and as well) 
as a human. In many different domains it has been 
shown how ‘robot scientists’ can interpret experiments 
without any human help. Such computer programs 
generate a set of hypotheses from what is known about a 
scientific domain, and then design experiments to test 
them. Don’t panic! I am not arguing that an artificial 
archaeologist will replace human archaeologists because 
it works better and cheaper than us.2 We all know that 
Artificial Intelligence will eventually produce computer 
programs whose activity may seem dazzling, but it will 
not produce robotic persons. Computational intelligence 
in archaeology will do a lot, but it won’t be a lot. 
Computational mechanisms cannot by themselves carry 
the weight of a scientific explanation. No machine is 
ever likely to provide an adequate explanatory analogy 
for the human brain or mind. Machines will not produce 
for free the categories we need for explaining past social 
action. “Real” machines are too simple and limited in 
their functions. Nevertheless, computer-based models 
mimic human behavior, and therefore they are good 
models of what archaeologists do rather than abstract 
models of brains or minds. The purpose is to understand 
how intelligent behavior in archaeology is possible. I 

                                                            
2J. A. Barceló, “A Science Fiction Tale? A Robot Called 
Archaeologist,” in The World Is In Your Eyes. Proceedings of 
the XXXIII Computer Applications and Quantitative Methods 
in Archeology Conference, ed. A. Figueiredo and G. Velho 
(Tomar, Portugal, 2005) 221–230; J. A. Barceló, “Towards a 
True Automatic Archaeology. Integrating Technique and 
Theory,” in Layers Of Perception. Advanced Technological 
Means to Illuminate Our Past. Proceedings of the XXXV 
Computer Applications and Quantitative Methods in 
Archaeology Conference, ed. A. Poluschny et al. (Bonn: Dr. 
Rudolf Habelt GmbH, 2007) 413–417. 
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suggest the use of computer programs in such a way that 
the shortcomings of natural archaeology may be 
avoided. 
 
 
2. THE MECHANICAL BASIS OF ARCHAEO-

LOGICAL KNOWLEDGE PRODUCTION 
 

Archaeological artifacts have specific physical 
properties because they were produced so that they 
would have those characteristics and not some other. 
They were produced in that way, at least partially, 
because those things were intended for some given uses 
and not some other; they were tools, or consumed waste 
material, or buildings, or containers, or fuel, etc. If 
objects appear in some locations and not in any others, 
it is because social actions were performed in those 
places and at those moments. Therefore, archaeological 
items have different shapes, sizes, and compositions. 
They also have different textures, and appear at 
different places and in different moments. That is to say, 
the changes and modifications in the form, size, texture, 
composition, and location that nature experiences as the 
result of human action (work) are determined somehow 
by these actions (production, use, distribution) having 
provoked its existence. 
In that sense, I am considering archaeology as a 
problem solving task: 
 

• Why is the present observation the way it is? 
• What action or process caused what is seen 

now? 
 

In other words, why do the observed material entities 
have specific values of size, shape, texture, and 
composition; and why do they appear at some specific 
spatial and temporal location? 
 
The main assumption is that some percept 
(archaeological description) is related to a causal 
affirmation about the causal event (social event, work 
activity) having produced the perceived evidence 
(archaeological explanation). In our case, it means to 
predict the cause or formation process of some 
archaeological entity, given some perceived evidence of 
the effect of this causal process. In its most basic sense, 
then, the task may be reduced to the problem of 
detecting localized key perceptual stimuli or features, 
which are unambiguous cues to appropriate causal 
events. For instance, a distinctive use/wear texture on 
the surface of a lithic tool, and not on others, predicts 
that these tools have been used to process fresh wood. 
We infer that at some moment a group of people was 
cutting trees or gathering firewood. Alternatively, we 
can consider that the shape of some pottery vases 
predicts their past use as containers for wine, and then 
we have evidence of wine production and trade; 
likewise, the composition of some graves predicts the 
social personality of the individual buried there and 
hence the existence of social classes. Here the output is 
not the object (trees or firewood, wine, social elite), but 

a causal affirmation: cutting trees or gathering firewood, 
wine production and trade, social power and coercion.  
 
Can we implement this framework on a computer? 
Ideally, to solve such an archaeological problem we 
would need to know the solution beforehand. The reader 
may be surprised at this characterization of 
archaeological problem solving. Archaeological 
problems can be defined as “some material effect of 
social action in the past we wish to explain and we do 
not know how.” Now we see that the past is knowable, 
only if it is already known. It seems a tricky way to 
solve problems! There is, however, nothing wrong in 
this approach. By making use of some previously stored 
knowledge, an automated archaeologist would infer 
from empirical data what it is that gave rise to those 
data. Explanation occurs when a perceptual input 
matches a perceptual memory containing a description 
of each causal event the system is expected to recognize 
or identify (fig. 1). 
 

 
Figure 1. A model for an archaeological recognition system.  
 
The model database contains all the models known to 
the system. The information in the model database 
depends on the approach used for recognition; it can 
vary from a qualitative or functional description to 
precise parametric equations. The feature detector 
applies operators to the input and identifies locations of 
features that help in forming causal event hypotheses. 
Using the detected features in the input, the 
hypothesizer assigns likelihoods to those events that 
may have produced the observed evidence. The 
knowledge base is organized using some type of 
indexing scheme to facilitate elimination of unlikely 
causal event candidates from possible consideration. 
The verifier then uses causal theories to verify the 
hypotheses and refines the likelihood of explanations. 
The system then selects the causal event with the 
highest likelihood, based on all the evidence, as the 
correct event. 
 
Although there can be many criticisms to this approach, 
its advantage is that it is a practical and efficient way to 
solve archaeological problems and to explain 
archaeological evidence noted at the archaeological site.  
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3. ARCHAEOLOGICAL APPLICATIONS IN THE DO-
MAIN OF EXPERT SYSTEMS 

 
 

Therefore, “knowledge representation” is the key 
aspect, not laws, which are inviolate but explicit 
mappings that can be changed, and indeed are always 
changing, in a reflexive relationship that allows the 
archaeologist to accommodate new information. Given 
some empirical data (observations) about a particular 
archaeological case, and some bit of associative 
knowledge (‘if…then’ hypotheses and interpretations 
considered valid in social, anthropological, or historical 
theory), the archaeological problem can be explained in 
terms of the knowledge stored in the knowledge base. In 
other words, given some visual input and a candidate 
explanatory causal model, a correspondence can be 
established between them. This means that a small 
number of features are identified as matching features in 
the input and the model. Based on the corresponding 
features, a decision rule linking visual features with 
their causal process (social activity) is uniquely 
determined. The recovered decision rule is then applied 
to the model. Based on the degree of the match, the 
candidate causal event is selected or rejected. To be 
accepted, the match must be sufficiently close, and 
better than that of competing solutions. 
An expert system is: 
 

 a computer system that is programmed to mimic the 
procedures and decisions that “experts” make;  

 a domain specific knowledge base combined with an 
inference engine that processes knowledge encoded 
in the knowledge base to respond to a user’s request 
for advice.  
 

The primary goal of expert systems research is to make 
expertise available to decision makers and technicians 
who need answers quickly. Today’s expert systems deal 
with domains of narrow specialization. For expert 
systems to perform competently over a broad range of 
tasks, they will have to be given very much more 
knowledge. That makes these kinds of computer 
systems nothing more than a discrete plan for 
expressing scientific research, because they contain 
descriptions of intended courses of explanation. In that 
case, a specific explanation is created by searching 
through a range of possible explanations until the 
knowledge necessary to generate that explanation is 
found somewhere in memory. The procedure may be as 
follows: (1) during sensing, information from various 
sensors is collected and integrated into a central 
representation of the environment; (2) a number of 
possible explanations is generated and one explanation 
is chosen and finally applied. 
 
This is not just a theoretical assumption. It implies 
programming some computer systems that act like 
archaeologists explaining their data. The technology 
really works, as it has been shown in many practical 

applications.1 Automated typologies are the preferred 
domain of application but there are many other domains 
where expert systems technology has been applied. 
There are computer systems to mechanize the process of 
microscopic sample classification for ancient wood 
taxonomy determination, or to help archaeologists to 
interpret the results of archaeometric analyses, within 
the framework of provenance studies. Such programs 
produce one (or several) “diagnoses” according to the 
geographic origin of raw material, from a database of 
analyzed samples of known origin provided by the user. 
Other classificatory programs have been proposed in 
zooarchaeology and osteology. Even an expert system 
from the field of paleontology for the determination of a 
dinosaur species has been published. It helps the 
paleontologist to identify creatures from field data. 
Other systems help scientists to decode decorative 
patterns in pottery or rock-art, or to interpret the 
iconography of Greek ceramics. Given an input formed 
by the iconographic features of the personages who 
appear represented in one particular vase, the system 
answers with a reference to the mythological role 
present in that scene. Automated classification and 
diagnosis is also possible in epigraphy. In the domain of 
conservation analysis of archaeological materials, some 
prototype expert systems have also been proposed.  
 
Of direct interest to archaeologists and humanists are 
the important applications of expert systems technology 
to solve geographical and geoscientific problems. The 
idea seems to be to build a full Geo-Expert System to 
answer questions in a seemingly intelligent way based 
on facts contained in a GIS and on the procedures and 
data available in a Digital Remote Sensing System. In 
earth resources applications, computer programs have 
demonstrated the possibility of incorporating spatial 
knowledge for land use prediction. Knowledge-based 
systems for aerial photo interpretation have been 
developed. For Remote Sensing, expert systems that 
help to detect relevant features in a landscape have been 
published. There are also some interesting applications 
in geomorphology, which can be useful to archae-
ologists. Applications to social analysis, that is to say 
the use of expert systems to explain social action, has 
not yet been fully explored.  
 
Interest in expert systems has vanished in recent years, 
both in computer science and in archaeology. What 
seemed to be an interesting tool in the early 80s, never 
found the place it really merited in archaeology, 
compared with the situation in other similar domains. 
The real cause seems to lie in the poorly developed 
formal aspects of our discipline, even today. The post-
modern criticism of the early 90s and its reification of 
subjectivism was an insurmountable obstacle to any 
effort that tried to analyze “objectively” the way we 

                                                            
1J. A. Barceló, Computational Intelligence in Archaeology 
(Hershey, VA: The IGI-Global Publishing Group, 2008) 38–
60. 
 



Juan A. Barceló 

 

14 

 

think. Within the last two decades, the view of problem 
solving based on pre-fixed plans and searching in 
restricted knowledge bases using well-defined operators 
for activating already existing sequences of explanations 
has come under scrutiny from both philosophers and 
computer scientists. The reliance on declarative 
expressions (expert systems rules) seems to be 
misplaced. The fundamentally unrepeatable nature of 
everyday life and human existence gives reality a 
significance that cannot be understood in terms of pre-
defined, well-structured declarative expressions. This 
position argues that a cultural heritage scholar’s 
understanding of archaeological, historical, or social 
data is rooted in the practical activity of coping with the 
everyday world. An explanation cannot be properly 
understood if considered independently of the context in 
which it occurs. 
 
The relative success of expert systems is due to their 
working within a world in which the range of meanings 
for terms is circumscribed within a carefully selected 
micro-world. When the closed world is violated, the 
intelligent machine will not be able to function 
correctly. Explanatory knowledge cannot be defined by 
necessary and sufficient conditions. Archaeologists, 
historians, anthropologists, and sociologists do not have 
exact or complete definitions readily available. Rather, 
they are creating the boundaries of their concepts when 
there is a demand for it. These “blurred” concepts 
cannot easily be made operational. Many concepts seem 
to have a rather “generic” definition, which shapes up 
by instantiating the concepts with concrete objects. That 
is, our concepts do not have sharp boundaries initially, 
and the boundaries are drawn incrementally during use 
of the concept and probably also during use of other 
more or less related concepts. In fact, concepts are not 
fixed entities; rather, they are constructed on each usage 
by combining attribute values that are appropriate to the 
context. That raises the question of what mechanism 
constructs these unstable concepts. Obviously, it is not 
an expert system with its pre-fixed rules and facts! 
 
Formally speaking, only one expert system was 
presented at CAA 2009 (although the paper was not 
submitted for publication: L. J. Dibble, “An Application 
of Rule-based Eco-cultural Niche Modeling to 
Archaeological Modeling”). This “intelligent” 
technology was used to predict the location of 
archaeological sites by using climate and fossil data. 
The papers published in this volume of the proceedings 
by Zhou et al. (“Towards Indexing and Data Mining All 
the World’s Rock Art”); Keogh et al. (“Automatic 
Construction of Typologies for Massive Collections of 
Projectile Points and Other Cultural Artifacts”); and 
Mom and Drenth (“Continuity and Change: A Study of 
Shape of Late Neolithic and Early Bronze Age Vessels” 
[on the website]) fit this subject perfectly well.  
 
 

4. ARCHAEOLOGICAL APPLICATIONS IN 

THE DOMAIN OF AUTOMATED DISCOV-
ERY 

 
Expert systems are useful, very useful indeed, because 
many archaeological problems can be structured in 
terms of a single template-matching mechanism. 
However, a template-matching scheme could only work 
provided that we had precompiled rules for all events to 
be explained. To explain social action produced in the 
past, an expert system would need a universal 
knowledge base covering the entire domain of 
interaction. Unfortunately, this is almost impossible to 
achieve, because it implies the existence of an infinite 
number of rules that would have the ability to recognize 
every unique archaeological evidence for what it is, and 
then to select an appropriate explanation for each 
possible historical state.  
 
Archaeologists generally do not know why 
archaeological observables have the shape, size, texture, 
composition and spatiotemporal location they have. 
Instead, we have sparse and noisy observations or 
measurements of perceptual properties, and an 
incomplete knowledge of relational contexts and 
possible causal processes. This is a kind of inverse 
problem, where the consequence is known (observed), 
and the cause must be inferred. 
 
Programming computers to be able to solve an inverse 
problem is a cross between statistics and computer 
science. We can formalize this inferential task in terms 
of a kind of “automated learning:” 
 
Given: 

• an initial description of a theoretical entity; 
• an instance of this entity; 
• an explanation of the association between the 

concept and its instance; and 
• some operating criteria 

 
Determine: 
 a generalization of the instance that substitutes initial 

description and is related to the explanation and 
operating constraints.  

 
In other words, the idea is to program a system that is 
able to look for common features between positive 
examples of the causal relationship to be predicted and 
common differences between its negative examples. 
This task is exactly like an example of a truth-function 
learning problem: 
 
1 1 0 1 1  1 
1 0 0 0 0  0 
0 1 1 1 0  1 
1 1 0 0 1  0 
0 0 0 0 0  ? 
 
Concept learning problems have the same form, except 
that target outputs are either “yes” or “no” (or “true”=1 
and “false”=0). Inputs that map onto “yes” are treated as 
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positive examples of a particular concept. Inputs that 
map onto “no” are treated as negative examples (i.e. 
counterexamples). The process of finding a solution to 
such a problem is naturally viewed as the process of 
calculating the communalities among positive examples. 
As such, it is a variation of the philosophical theories 
seeing induction as a process involving the exploitation 
of similarity.  
 
This implies that an automated archaeologist will learn 
explanatory concepts such as “15th century”, “cutting”, 
“killing”, “social elite”, or any other concept, provided 
it has enough known instances for the underlying event, 
and a general background knowledge about how, in this 
situation, a human action has generated the observed 
modification of visual appearances that it is using as 
perceptual information. When subsequently asked to 
determine whether novel instances belong to the same 
causal event, those instances that are similar to instances 
that are characteristic of a single event or of a single 
class of events will tend to be accepted. For instance, a 
machine will understand what a house, a castle, a burial, 
or a tool is when it learns how a prototypical house, a 
prototypical castle, a prototypical burial, or a proto-
typical tool was made, and under which social and 
economic conditions such objects existed.  
 
This approach is a surrogate for experiment design. 
Experimental analysis is the process whereby the 
antecedents of a phenomenon are manipulated or 
controlled and their effects are measured. An obvious 
archaeological example is modern use wear analysis. By 
replicating lithic tools and using them for a determined 
period of time performing some activity—e.g., cutting 
fresh wood—we will be able to test the relationship 
between kinematics, worked material, and observed use 
wear on the surface of the tool. When laboratory 
replication is not possible, archaeologists are limited to 
mere observation. Ethnoarchaeological data can be also 
used to generalize observations and to learn explanatory 
general principles. 
 
Computer scientists are intensively exploring this 
subject and there are many new mechanisms and 
technologies for knowledge expansion through iterative 
and recursive revision. Artificial Intelligence offers us 
powerful methods and techniques to bring about this 
new task. Fuzzy logic, rough sets, genetic algorithms, 
neural networks, and Bayesian networks are among the 
avenues we have to explore. Although statistical 
reasoning is still giving its support to all these methods, 
it is not classical statistical inference. Artificial 
Intelligence paradigms differ from usual classification 
and clustering methods in that they are (in comparison 
at least) robust in the presence of noise, flexible as to 
the statistical types that can be combined, and able to 
work with feature (attribute) spaces of very high 
dimensionality. In addition, they can be based on non-
linear and non-monotonic assumptions, they require less 
training data, and they make fewer prior assumptions 
about data distributions and model parameters. The 

huge number of learning algorithms and data mining 
tools makes it impossible to review the entire field in a 
single paper.1 Free computer programs like Weka2 or 
Tanagra3 can be explored to discover how to extract 
meaning and knowledge from archaeological data. 
 
The most basic inductive algorithms are designed to 
find a conjunctive description for a single concept C 
that covers positive instances of C and that fails to cover 
negative instances. In this way, we can represent the 
solution to an inverse problem as a logical conjunction 
of Boolean features, values of nominal attributes, limits 
on the values of numeric attributes, or some 
combination of them. It is usual to refer to each 
component of such conjunction as a condition or a test. 
Alternatively, concept hierarchies provide a framework 
for memory organization, and a considerable amount of 
machine learning research has taken this approach. Such 
hierarchies can be represented as a decision trees 
consisting of nodes and branches. Each node represents 
a separate concept, typically with its own associated 
intentional definitions. The links connecting a node to 
its children specify an “is-a” or subset relation, 
indicating that the parent’s extension is a superset of 
each child’s extension. Typically, a node covers all of 
the instances covered by the union of its descendents. In 
fact, such a decision tree can be seen as a collection of 
rules, with each terminal node corresponding to a 
specific decision rule.  
 
Inductive decision trees are increasingly applied in 
archaeology. Modern applications range from sex 
determination of buried human bodies to the 
discrimination of geo-archaeological soil data. In any 
case, it is in archaeometry where these methods have 
found their greatest popularity in recent years. Decision 
trees also seem relevant to paleoecological research. In 
CAA 2009 at Williamsburg some papers presented 
automated approaches to learning and discovery. Keogh 
et al. (“Automatic Construction of Typologies for 
Massive Collections of Projectile Points and Other 
Cultural Artifacts”) use decision trees for discriminating 
among a series of projectile points. Zhou et al. 
(“Towards Indexing and Data Mining All the World’s 
Rock Art”) give an application of Support Vector 
machines and neural networks. Maaten et al. 
(“Visualization and Automatic Typology Construction 
of Pottery Profiles”) apply affinity propagation 
methods, which can be seen as an interesting alternative 
to the most usual techniques for automated discovery. 
Märker et al. (“The Application of a Georelational 
Database and Data Mining Technologies for Predictive 

                                                            
1For a complete overview of recent developments in 
automated learning algorithm design and archaeological 
applications, see J. A. Barceló, Computational Intelligence in 
Archaeology. (Hershey, VA: The IGI-Global Publishing 
Group, 2008) 73–130. 
 
2http://www.cs.waikato.ac.nz/ml/weka/. 
 
3http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html. 
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Site Modeling for the Paleolithic of the Iranian 
Plateau”) consider regression trees for predictive site 
modeling using topographic and paleoecological data as 
input. Of related interest is Märker, Hockschield and 
Kanaeva (“A Multidisciplinary Integrative Geo-
relational Database for Spatio-temporal Analysis of 
Expansion Dynamics of Early Humans”).  
 
Alternatively, we can use neural networks as a non-
linear fitting mechanism to find regularities in a set of 
data. An Artificial Neural Network (ANN) is an 
information processing paradigm that is inspired by the 
way biological nervous systems, such as the brain, 
process information. It is composed of a large number 
of highly interconnected processing elements (neurons) 
working in unison accepting numeric inputs and sending 
numeric outputs. Neurons are organized in such a way 
that incoming vectors (descriptions) are sequentially 
transformed into output vectors (archaeological 
explanations) (fig. 2). 
 

 
 
Figure 2. A three-layer Neural Network topology, with a 
hidden layer. 
 
 
ANNs, like people, learn by example. An ANN is 
configured for a specific application, such as pattern 
recognition or data classification, through a learning 
process. Learning in biological systems involves 
adjustments to the synaptic connections that exist 
between the neurons. This is true of ANNs as well. In 
general, upon repeated presentation of various real 
examples and under the steady pressure of a learning 
rule or algorithm that makes small adjustments in the 
connections among artificial neurons, the network 
slowly but spontaneously generates a set of internal 
representations, one for each of the several features it is 
required to detect. The overall result is that after 
learning, the network contains a number of processors 
chained together in such a way as to produce the 
appropriate outputs, given a set of inputs. During 

learning, a network will typically develop a way of 
organizing its representations so that different inputs 
come to be represented as belonging to partitioned 
classes or groups (which may themselves be 
hierarchically ordered into various subgroups).  
 
Given the particular vector representation of input data, 
images can be easily transferred into a neural network. 
The procedure is similar to that of expert systems, but 
here archaeological observables and archaeological 
explanations are no longer represented in terms of 
sentences, but as numbers. This fact allows the 
intelligent processing of archaeological image data. 
 
We can cite the use of this technology in rock-art 
research, lithic arrow-point shape classification, the 
functional classification of lithic tools according to use 
wear descriptors, the interpretation of ancient sites 
according to their spatial features, the reconstruction of 
whole pottery vessels, the historical classification of 
ancient Mesopotamian seals, and the recognition of 
written characters in ancient documents, coins, and 
epigraphic inscriptions. Human and animal bone 
materials found in archaeological sites have also been 
investigated using neural networks.1 
 
 
5 ARCHAEOLOGICAL APPLICATIONS IN THE 

DOMAIN OF INTELLIGENT IMAGE PRO-
CESSING 

 
Archaeology is a quintessentially visual discipline. 
Among all archaeological features, the most important 
factor in the recognition and/or explanation of an item is 
visual. Tasks such as identifying a pottery type, 
identifying decorative patterns or use wear in 
archaeological materials, recognizing archaeological 
structures in a satellite or aerial image, identifying 
layers or buildings at the site, and interpreting burials or 
settlement patterns can be considered to be within the 
purview of visual analysis. Visual perception makes us 
aware of such fundamental properties of objects as their 
size, orientation, shape, color, texture, spatial position, 
and distance, all at once. Visual cues often tell us about 
more than just optical qualities. In particular, the 
mechanical properties of a thing of any kind are often 
expressed in its image.  
 
Human beings have the ability to recognize and classify 
images, identifying interesting patterns and single 
objects in them. Computers and robots can do this as 
well. Computer vision has been defined as a process of 
recognizing elements of interest in an image; it can be 
described as the automatic logical deduction of 
structures or properties of the three-dimensional objects 
from either a single image or multiple images and the 

                                                            
1For a complete overview of recent developments in neural 
network techniques and archaeological applications, see J. A. 
Barceló, Computational Intelligence in Archaeology (Hershey, 
VA: The IGI-Global Publishing Group, 2008) 73–130. 
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recognition of objects with the help of these properties.1 
Visual explanation occurs when a perceptual input 
matches a perceptual memory that contains a 
description of each causal event the system is expected 
to recognize or identify. Here, visual recognition means 
the reasoning process during which the social action’s 
observable effects are used to specify the conceptual 
identity of the causal action. At this level, we should 
make this distinction: 
 

 Event recognition can be defined as the process 
of finding and “labeling events [in the real 
world] based on known causal models,” that is, 
event recognition is the process of deciding 
what category of causal processes an observed 
effect belongs to.  

 Event identification can be defined as the 
process of deciding which individual event it is, 
rather than deciding what category of causal 
processes it belongs to.  
 

This is exactly the inference mechanism we reviewed 
when dealing with Expert Systems: categorization in the 
guise of associationism. That is, the meaning of an 
object is accessed when its visual appearance activates a 
category representation linked to known interpretations 
via associations in memory. This is the basis of what 
has been called pattern matching. Pattern matching is 
actually a very broad concept, and it is useful to 
distinguish among types of matching. Pattern 
completion has been defined as the mapping of an 
incomplete pattern onto a completed version of the same 
pattern. Pattern transformation is the mapping of one 
pattern onto a different, related pattern. Pattern 
association is the arbitrary mapping of one pattern onto 
another, unrelated pattern. Finally, pattern recognition 
has been defined as the mapping of a specific pattern 
onto a more general pattern (that is, the identification of 
an individual as an exemplar of a class). In statistical 
terms, one first extracts a sufficient set of characteristic 
features from the primary input patterns, and then 
applies statistical decision theory for the identification 
and the classification of the latter. 
 
Comparing an internal model with an external input is 
then the basis for perception understanding. The 
recognition of one input constitutes an internal cue, 
which facilitates explanation together with the external 
cues available from outside the brain. The outcomes of 
preliminary classifications should be combined to obtain 
patterns that are more global. They will in turn serve as 
input patterns to higher-level recognition devices. Thus, 
a problem will be solved by explaining something, and 
with the help of that result, explaining further.  
To automatically solve a visual problem, we need a set 
of mappings that can be classified into three categories: 
a) the visual competences that map different visual 
features to each other; b) the problem solving routines 

                                                            
1A. D. Kulkarni, Computer Vision And Fuzzy Neural Systems 
(Upper Saddle River, NJ: Prentice Hall, 2001). 
 

that map visual features to explanatory concepts or 
representations of various kinds residing in memory; 
and c) the learning programs that are responsible for the 
development of any map. In other words, an automated 
archaeologist should determine whether visual data “it 
currently sees” corresponds to a causal event “it already 
knows.” Recognition requires knowledge about how 
social action happens, and about the specific changes 
generated by all related social and natural processes. To 
design or analyze such a vision system amounts to 
understanding the mappings involved. 
 
A system like this resembles an associative memory. 
During the recall stage, a cue pattern is presented to the 
system by activating visual input units. This causes 
signals to be sent and to activate the output processors. 
If the associative mechanism runs properly, then the 
pattern of activation in the output will be the pattern that 
was originally associated with the cue pattern. Visual 
input is acquired in the form of a vector of intensities 
(feature detectors), and used as a cue pattern to retrieve 
its associated explanation, which is represented as a 
vector of activity in the memory’s output. The 
advantages are obvious: 
 
 When a previously stored (that is, “familiar”) pattern is 

“seen” by the system, it is amplified, and the system 
responds with a stronger version of the input pattern. 

 When an unfamiliar pattern is “seen” by the system, it is 
dampened, and the response of the machine is shut down. 
This is a kind of unfamiliar response. 

 When part of a familiar pattern is “seen”, the system 
responds by “filling in” the missing parts. This is a kind 
of recall paradigm in which the part constitutes the 
retrieval cue, and the filling in is a kind of memory-
reconstruction process. 

 When a pattern similar to a stored pattern is “seen”, the 
system responds by distorting the input pattern toward 
the stored pattern. This is a kind of assimilation response, 
in which similar inputs are assimilated to similar stored 
events. 

 Finally, if a number of similar patterns have been stored, 
the system will respond strongly to the central tendency 
of the stored patterns, even though the central tendency 
itself was never stored. 

 
Such an associative memory, however, is not limited to 
the association of only those specific individual objects 
that the robot has seen before. If such were the case, the 
mechanisms underlying archaeological automatic 
explanation would be of limited use. As archaeologists, 
we must identify a range of novel visual data as 
corresponding to a given type of object. Generalization 
is part of our ability to identify objects and events; we 
typically can identify social actions that have been 
performed in the past even when the visual appearance 
of their material consequences in the present does not 
exactly match what we know of previously memorized 
cause/effect associations. The capability for 
archaeological recognition implies, then, the existence 
of some previous form of learning, in which the abstract 
potentially explanatory categories have been created and 
defined. The goal of recognition is to perform these 
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identifications correctly, in the sense that identification 
reflects a meaningful property of the world that is 
independent of the particular data that is being 
interpreted. 
 
There are different ways to implement such mappings 
using computational intelligence technologies. The task 
is to extract the statistical central tendency of a series of 
visual exemplars (the learning set) in such a way that 
the computer program encodes information not just 
about the specific exemplars, but about the stereotypical 
feature-set displayed in the training data. That is, it will 
discover which sets of features are most commonly 
present in the exemplars, or in commonly occurring 
groupings of features. In this way, semantic features 
statistically frequent in a set of learning exemplars come 
to be both highly marked and mutually associated. 
“Highly marked” means that the connection weights 
about such common features tend to be quite strong. 
“Mutually associated” means that co-occurring features 
are encoded in such a way that the activation of one of 
them will promote the activation of the other.  
 
The easiest way to create an associative memory for 
archaeological image data is by assuming that there is a 
roughly fixed set or vocabulary of “supposed” 
descriptive regularities shared by a single population of 
objects, which are also distinctive enough. Partial 
identification of individualized parts of the input is 
carried out by specialized shape detectors, processed, 
and eventually decoded. At the highest level, a decision 
mechanism selects the concept corresponding to that 
represented by the cognitive detector activated by the 
highest quantity of partial identifications.  
 
Traditionally, however, archaeological visual input has 
been translated into a set of universal picture stereotypes 
used as subjective bits of information, e.g., “round,” 
“ovoid,” or (even worse) by user-defined stereotypes 
such as “hat-shaped,” “cigar-shaped,” or “kidney-
shaped.” This kind of identification-based analysis is a 
misleading way of solving the archaeological visual 
problem. In fact, it is not a visual analysis, because the 
original visual input is being “described” in non-visual 
terms (words). Low-level recognitions are assumed to 
be known, but no criteria are given about their 
reliability. It is the human user who feeds the computer 
system with an interpreted input, in which each feature 
contains the result of a previous inference. In this way, 
the receptive field properties of low-level visual feature 
detectors do not encode the salient features of the input 
image, but rather the previous knowledge the user has 
about the features characterizing the archaeological 
evidence.  
 
For a long time computer scientists and archaeologists 
have realized that the only way of reasoning with 
images is feeding an intelligent computer system with 
images and not with “words.” Images are no longer 
“described” but acquired and automatically encoded as 
vector arrays. They contain all the useful information to 

derive geometry and texture for any explicative purpose. 
However, the reconstruction of detailed, accurate, and 
photo-realistic 3D models from external images is a 
difficult task, in particular for large and complex 
archaeological evidence sets.  
 
In many cases, a vector that encodes the two-
dimensional coordinates of the edge defining the 
boundaries of the object seems enough for intelligent 
image analysis. At the CAA Conference in 
Williamsburg, many papers advocated the use of laser 
scanners and similar equipment for doing this task. The 
idea is to rely on geometry and coordinate measuring 
rather than on linguistic descriptions. More specifically 
related to the intelligent analysis of archaeological 
images, Zhou et al. (“Towards Indexing and Data 
Mining All the World’s Rock Art”) use generalized 
Hough transforms for the geometric hashing of original 
images of rock art. This is a kind of harmonic analysis, 
shape-unrolling methods that convert observed 
boundaries or edges to a function of the coordinates of 
points (or pixels) delimiting the contour. Keogh et al. 
(“Automatic Construction of Typologies for Massive 
Collections of Projectile Points and Other Cultural 
Artifacts”) transform the original artifact’s contour into 
a one-dimensional “time series” representation. But 
instead of using the complete one-dimensional vector, 
they select a small subsection. They call such 
subsections shapelets, which invokes the idea of a small 
“sub-shape”. Martínez-Carrillo et al. (“A Proposal of 
Ceramic Typology Based on the Image Comparison of 
the Profile”) describe pottery profiles using anchor 
points and Euclidean coordinates of morphometric 
landmarks. Koutsoudis and Chamzas (“3D Pottery 
Shape Similarity Matching Based on Digital 
Signatures”) analyze 3D polygonal meshes of complete 
ceramic vases. Zhou, Geng, Wu, and Shui (“A System 
of Pottery Recovery and Repair”) also consider the 
necessity of geometrical modeling of image data as 
input to a pattern matching mechanism. The same 
subject is considered in Kleber and Sablatnig 
(“Scientific Puzzle Solving: Current Techniques and 
Applications”). Because in many cases laser scanning 
data acquisition and polygon meshes can be too 
complex for posterior clustering, Maaten et al. 
(“Visualization and Automatic Typology Construction 
of Pottery Profiles”) prefer an approach based on 
nonlinear dimensionality reduction using “shape 
contexts.” The key idea behind shape contexts is to 
sample a set of points from the shape contour and to 
describe these points with local descriptors—the shape 
contexts—that measure the relative angle and distance 
to the other points that were sampled from the shape 
contour. 
 
Another very important domain of computational 
intelligence approaches for image understanding is 
remote sensing and satellite imaging. There are two 
different domains of application within this field: 
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 When remote sensing data are intensity measurements to 
be reconstructed as an image. This is the case of laser 
scanning (3D-scanners) or the different modalities of 
geoelectric/georadar/geomagnetic surveying. 

 When remote sensing data are images or part of an 
image (satellite imaging or aerial photos). 

 
In the first case, computational intelligence techniques 
like artificial neural networks have been successfully 
applied to a number of geophysical modeling problems, 
including parameter prediction and estimation, 
classification, filtering, and optimization. In 
archaeological geophysical surveying, neural networks 
can be used to interpolate the possible nonlinear spatial 
trend among magnetic differential measurements 
obtained in an archaeological geophysical survey and 
derive estimates of feature burial depths, allowing a 
three-dimensional reconstruction of buried subsurface 
remains to be made. The neural network approach 
potentially offers several advantages in terms of 
efficiency and flexibility over more conventional data 
interpolation techniques. 
 
In the second category of remote sensing data, the input 
is not an array of sensor measurements, but an aerial or 
a satellite image. Remotely sensed images are digital 
pictures composed of pixels showing grey-level values. 
In many satellite or remote sensing cases, such values 
are the intensities of specific spectra of electro-magnetic 
radiation of either form of reflection or emission. 
Because different types of objects have different 
physical natures in terms of reflection, absorption, and 
emission, these values of two or more layers are used to 
categorize the pixels into several groups. The idea is 
then to distinguish between the various categories of 
spatial features of interest to archaeologists. It can be a 
difficult task, because archaeological features comprise 
a complex spatial assemblage of disparate land-cover 
types—including built and/or linear structures, 
numerous vegetation types, bare soil, and bodies of 
water—each of which has different reflectance 
characteristics. Conventional image classification 
techniques assume that all the pixels within the image 
are pure, that is, that they represent an area of 
homogenous cover of a single land-cover class. This 
assumption is usually untenable with pixels of mixed 
land-cover composition.  
 
In employing machine-learning approaches, the idea is 
to use image data (brightness, greenness, wetness, and 
ratio indexes) and geographical information (forest, 
grass, water, archaeological elements, etc.) to train an 
input-output nonlinear relationship model. The resulting 
network can be exported and used for new satellite 
images, where map data have not been interpreted, and 
these geographical values may be predicted. The input 
data typically comprises a set of multi-spectral data, 
although it may also include measures of image texture 
or ancillary data. Supplemental information, such as 
soils or elevation attributes, and even non-numerical 
data, e.g. ground cover classes or soil types that might 
assist in the classification, can be easily integrated. In 

the output layer, there is one unit for each class in the 
classification. 
 
 
6 COMPUTATIONAL INTELLIGENCE IN THE DOMAIN 

OF ANTHROPOLOGICAL AND HISTORICAL MODELING 
 
Solving archaeological problems implies answering a 
double causality question: 
 
 Given the perception of visual inputs, the automated 

archaeologist should explain what social activity 
produced in the past the evidence perceived in the 
present.  

 Once it knows what social activity was performed, where, 
and when, the automated archaeologist should explain 
why such activities were performed there and then, and 
in what way.  

 
So far we have only presented examples of the first 
kind. It is time to present some possible applications of 
the second kind of archaeological knowledge 
production. 
 
Let us begin with standard social explanation. It is usual 
in the social sciences to classify people according to 
social attributes. Computational intelligence tools can 
help in such a classification. In the social sciences, a 
neural network can classify a population into 
homogenous groups, using factors such as age, sex, and 
other socio-economic variables to infer social status or 
position. The obvious archaeological example of this 
kind of analysis is the explication of ancient burial 
practices. 
 
Spatiotemporal modeling is another approach to 
historical explanation. Neural networks have been 
applied in this domain, in ecology, geography, and 
historical dynamics.1 In such examples, a neural 
network is trained on sets of dependent variables 
(outputs) measured at known spatial or temporal 
locations (inputs) to generalize how such ecological or 
social aspects are spatially or temporally related. 
Ecological applications show that neurocomputation is a 
viable technique and has advantages over linear models. 
Examples are very diverse, from the classification of 
soil structure based on soil sample data to the prediction 
of changes in the dominant species of grassland 
communities based on climatic input variables.  
 
The most promising area of research is that of social 
simulation using computational intelligence algorithms. 
The idea is to represent human societies using 
computational units that simulate the acting of different 
social agents. An Artificial Prehistoric Society is then a 
complex set of computational reactive units simulating 
how a group of people behaved in the past. There is an 

                                                            
1 Relevant examples are quoted in detail in J. A. Barceló, 
Computational Intelligence in Archaeology (Hershey, VA: 
The IGI-Global Publishing Group, 2008) 297–323. 
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increasing number of examples in the specialized 
literature, including very interesting studies of hunter-
gatherer societies and the beginnings of social life. 
Artificial societies are also being programmed for 
studying the origins of agriculture and the dynamics of 
prehistoric and ancient societies. At CAA 2009, two 
relevant papers were presented at the conference but not 
submitted for publication (M. Hinz, “Where Do You 
Want To Go Today? Pathfinding, Algorithms and 
Agent-based Modeling,” and M. D. Harris, “Applying a 
Neutral Agent-based Model of Lithic Material 
Procurement to the Middle Atlantic Region”). 
Somewhat related to this discussion is the paper by 
Whiteley, Moore and Goel (“Beyond the Marsh: 
Settlement Choice, Perception, and Spatial Decision-
making on the Georgia Coastal Plain”) describing the 
use of a cell-based simulation for modeling ancient 
spatial decision-making. 
 
 
7 CONCLUSIONS 
 
Two different views on archaeological knowledge 
production have been presented here: 
 
1) Archaeological knowledge is viewed as something that 

can be stored, coded, matched, and displayed. That 
means that information is derived from external objects 
and flows into the system via the senses. It is denotational 
because it is an encoding. An intelligent computer 
memory is just a storehouse of denotational encodings. 

2) Archaeological knowledge is not given but created as 
transformations of stimuli. Information does not exist in 
the world waiting to be extracted by a rational agent, but 
rather, the agent is situated in meaningful contexts, in 
which information should be defined as a function of the 
local needs and concerns of the agent. Perceiving a 
world implies distinguishing “possibilities for action” 
and not naming or identifying per se. That is to say, it 
can be understood as recognizing the circumstances to 
act with or upon. This means that the contents of 
perception (and hence, the structure of the phenomenal 
world) is largely determined by the self-organized 
dynamics of the cognitive system and pre-rational 

dispositions that are embodied in the cognitive agent. 
Being a perceiver, the automated archaeologist should 
literally create a phenomenal world, because the process 
of perception first defines relevant distinctions in the 
sensory environment.  

 
Consequently, two different and indeed opposite 
approaches to the use of computational intelligence for 
research efforts appear:  
 

1) we can build an “automated archaeologist” 
simply by telling it what it needs to know; 

2) we can build it as a learning machine.  
 
Both approaches have their advantages. They are often 
presented as competing paradigms, but since they attack 
cognitive problems in different ways, we should see 
them rather as complementary methodologies. 
 
Bringing artificial intelligence into archaeology 
introduces new conceptual resources for dealing with 
the structure and growth of scientific knowledge. The 
discussion is between what is considered an artificial 
way of reasoning (computer programs) and a natural 
way of reasoning (verbal narrative). Critics of 
computationalism insist that we should not confound 
scientific statements with predicate logic operations, 
since discursive practices or argumentations observed in 
a scientific text are not “formal.” By that reasoning, 
they are tributary, to a certain extent, from natural 
language and the narrative (literary) structure from 
which scientific texts derive. I take the opposite 
approach: scientific problem solving stems from the 
acquisition of knowledge from a specific environment, 
the manipulation of such knowledge, and the 
intervention in the real world with the manipulated 
knowledge. The more exhaustive and better structured 
the knowledge base is, the more it emulates a scientific 
theory and the easier the solution to the scientific 
problem will be, and the more adequate the 
interpretations we will get. 
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