
1 Introduction
Histograms are widely used for data presentation in
archaeology, but have many potential limitations. They are
appropriate for variables where the measurement scale is
continuous (e.g., length, height). The scale is divided into
a set of contiguous intervals; the frequency count of
observations in each interval is obtained; and the count is
represented graphically by a bar whose area is proportional
to the frequency. Although not essential, it is usual for
intervals to be defined to be of equal width, in which case
the height of a bar is also proportional to the frequency.
We shall refer to this common interval width as the
bin-width.

The choice of bin-width is essentially an arbitrary one.
A second arbitrary choice is the starting position of the first
interval to contain any data, and we refer to this position as
the origin. It is well known (e.g., Whallon: 1987) that the
appearance of a histogram can depend on both the choice of
origin and bin-width. In particular, the archaeological
interpretation of a histogram depends on the appearance
which can be markedly affected by these two arbitrary
choices. 

A common use of histograms in archaeology is for
comparative purposes; for example, comparing the
distribution of the ratio of length to breadth of flint flakes
from different contexts. Arguably, histograms are usually
inefficient for this kind of purpose, and better methods such
as the use of box-and-whisker plots exist (Cleveland 1993).
Generalisation of the histogram to display the joint
distribution of two variables is sometimes desirable, but is
unwieldy and requires lots of data.

Kernel Density Estimates (KDEs), which at their simplest
can be thought of as smoothed histograms, avoid many of
these problems. They have been little used in archaeology,
notwithstanding Orton’s (1988) implicit reference to their
potential. One reason is undoubtedly that the methodology
has not been readily available in the packages used by
archaeologists. A possible second reason is that archaeo-
logists may find the mathematics underlying the method-
ology forbidding.

In this paper, after describing briefly the methodology,
routines for implementing KDEs in the MATLAB package,

that have been developed by the first author, are described.
We illustrate the utility of these routines using several
archaeological examples.

2 The Mathematics of KDEs
2.1 UNIVARIATE KDES

Unless otherwise stated the sources for the material in this
and the next section are either Wand and Jones (1995) or
Silverman (1986).

Given n points X1, X2, ... , Xn a KDE can be thought of as
being obtained by placing a ‘bump’ at each point and then
summing the height of each bump at each point on the X-
axis. The shape of the bump is defined by a mathematical
function — the kernel, K(x) — that integrates to 1. The
spread of the bump is determined by a window- or band-
width, h, that is analogous to the bin-width of a histogram.
K(x) is usually a symmetric probability density function
(pdf). 

Mathematically, this gives the KDE as 

1 n x-Xif (x) = S K( )
nh i=1 h

Compared to the histogram the shape of f (x) does not
depend upon the choice of origin, but is affected by the
bandwidth h. Large values of h over-smooth, while small
values under-smooth the data. Choice of both h and K(x) is
discussed later. Generalisations to higher dimensions, d, are
relatively direct. For descriptive use only the case d=2 is
likely to be of widespread interest, and is considered in the
next section.

2.2 MULTIVARIATE KDES

The representation of the KDE as a sum of ‘bumps’ is
easily extended to the higher dimensional case. We shall
restrict our attention to the case of bivariate data points of
the form (Xi, Yi). The kernel now becomes a function of two
variables, K(x,y), which again integrates to 1 and is usually
radially symmetric. (For example, the bivariate normal pdf.)
The mathematical representation of the KDE, f (x,y),
depends, in general, on a 2 by 2 symmetric positive definite
matrix, H. In this paper we shall only consider the case
where H is diagonal, i.e.
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With this simplification the representation of the bivariate
KDE, f (x,y), is given by 

1 n x-Xi y-Yif (x,y) = S K ( , )
nh1h2 i=1 h1 h2

where h1 and h2 are the window-widths in the X and Y
directions.

The smoothing parameters h1 and h2 control the amount
of smoothing in the two co-ordinate directions. If h1 = h2

then we can think of the ‘bumps’ of the kernel function
as being spherically symmetric (with circular contours). On
the other hand, if h1 ≠ h2 then the ‘bumps’ have elliptical
contours with the ellipsoidal axes parallel to the two co-
ordinate axes. A further generalisation (not considered
here) introduces an off-diagonal value h3 to the symmetric
matrix H and allows the ellipsoidal axes to have arbitrary
orientation. Whilst taking h1 = h2 clearly makes under-
standing and implementation rather more straightforward,
the fact that this involves the same amount of smoothing
in each co-ordinate direction is regarded as a serious
shortcoming (Wand/Jones 1995: 105). In the routines
described below the user has the option to interactively vary
the smoothing parameters, using one, two or three values of
h as discussed above. The default number of smoothing
parameters is two.

3 MATLAB Implementation
Here we describe, by way of examples, routines for
performing exploratory data analysis using KDEs.
These routines have been implemented in MATLAB, a
scientific computing environment which has developed
a strong user base in Further and Higher Education
institutions, particularly in Departments of Mathematics and
Engineering. Many such departments have copies of the
package available for general use. MATLAB is particularly
useful in applications involving numerical matrices and
graphical presentation. Multivariate data is most naturally
represented as a matrix of values, where columns indicate
different components. This matrix representation of data,
when coupled with MATLAB’s matrix manipulation and
programming capabilities, provides a powerful, accessible
platform for mathematical and statistical programming and
algorithm development.

Powerful graphics facilities are available within the
standard package and the Graphical User Interface (GUI) is
programmable also. This feature means that software can be
designed to be user-friendly, with an assumption of little
knowledge on the user’s part. Windows, menus, sliders,
buttons etc. can be used to create an interface familiar to

anyone who has worked within a Windows environment,
and quickly learned by those who have not. We have taken
advantage of these features to develop a suite of routines
allowing the user to interactively vary the kernel function,
the smoothing parameter(s) and various aspects of the
graphical depiction of the resulting KDEs, including
contouring in the bivariate case. The use of mathematical
packages such as MATLAB to create such Windows based
software is a new and hitherto underexploited option for
users with specific applications in mind. While a significant
amount of effort must be invested in the production of such
routines, we believe that the portable and re-usable nature
of the software justifies this effort.

All of the figures in the remainder of section 3 were
generated either using these routines exclusively, or in
combination with basic MATLAB commands for plotting
multiple images (fig. 1).

3.1 EXAMPLE: THE UNIVARIATE CASE

In practice the choice of kernel function makes little
difference to the appearance of the KDE. Figure 1 shows
four KDEs generated using the same value of h, yet with
different kernel functions. The names of the kernels are
given in the graphs and their mathematical definitions in
Silverman (1986). These data represent the rim diameters of
60 Bronze Age cups from Italy (Source: Baxter 1994: 233-
234), based upon Lukesh and Howe (1978)).

Each of the kernels used in figure 1 has bounded support,
meaning that the kernel function is non-zero only for the
range x ∈ [-1,1]. In practice this makes the ‘bumps’ that
form the KDE spread out rather less than the more
commonly used normal kernel, which has infinite support.
Compare the KDEs of figure 1 with those of figure 2(c),
also obtained using h = 2.5 but using the normal kernel.
It is clear that the KDE obtained using the normal kernel
oversmooths relative to those KDEs produced with finite
support kernel functions (for the same value of h).

In contrast to variation of the kernel function, the degree
of smoothing (controlled by h) is of crucial importance in
density estimation. If h is too large we ‘oversmooth’,
erasing detail. If h is too small we ‘undersmooth’, and fail
to filter out spurious detail. Several methods of automati-
cally choosing an optimal (in some sense) value of h exist,
though a subjective choice is often equally valid.

Some simplistic methods of automatically choosing h
depend upon an assumption of normality in the data. If this
assumption is not valid ‘oversmoothing’ often results. This
explains the oversmoothing apparent in figure 2(c), which
was obtained using the rim diameter data; a near ‘optimal’
value of h and the normal kernel. It is clear from figure 1
that this data is far from normal in structure. For the
reasons outlined above, it is important to have the facility to
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Figure 2. The effect of varying h.

Figure 1. The effect of varying the
kernel function.
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Figure 3. Adaptive Kernel Density Estimation. Figure 4. Bounded and Unbounded KDEs.

interactively vary the smoothing parameter h. Where an
‘optimal’ value is automatically used by a routine, it is
sensible to reduce this value and recompute the KDE.
The boundary between over- and undersmoothing is quite
large in our experience, and a visual inspection of KDEs
obtained using various values of h should quickly lead to a
satisfactory value of h being found. In this respect it is
helpful to be able to overlay several KDEs on the same
axes, or to use subplots as in figures 1 and 2. Each of these
methods is supported.

3.2 ADAPTIVE METHODS

The basic idea of adaptive methods is identical to that
described above, i.e. we construct a KDE by placing kernel
functions at the observed data points. The difference is that
here we allow the smoothing parameter, h, to vary from one
data point to the next. More specifically, we use a larger
value of h for observations in regions of low density, in
particular for observations in the tails of the distribution.
The intention is to reduce the effect of outliers on the KDE.

This procedure requires that we can first identify data
points which lie in regions of low density. This can be
achieved by initially computing a pilot estimate of the
KDE by the standard methods of section 2. An adaptive
KDE can then be constructed based upon this information.
See Silverman (1986: 100-110) for a detailed discussion.
Figure 3 shows both adaptive and non-adaptive KDEs for
the cup diameter data and the normal kernel.

3.3 BOUNDED DATA

If the data represents some measured quantity, for example
the rim diameter data considered above, then it makes little

sense to use a density estimate which is positive for
negative values of x. However, if the data set includes data
points near zero, it is inevitable that the kernel or ‘bump’
associated with such data points will stray into the region
where x is negative. This is especially true of the normal
kernel function, since it has infinite support.

A natural, simplistic way of dealing with this situation is
to reflect the part of the KDE to the left of zero in the line
x = 0. Figure 4 shows three KDEs. The solid curve was
produced using the normal kernel and an ‘optimal’ value of
h as described in section 2 above. This density estimate has
the undesirable property that it overlaps the line x = 0.
In contrast, the KDE represented by the dotted curve in
figure 4 was produced by reflecting the appropriate portion
of the solid curve in the line x = 0. The data in this case
represents the Na2O content of a sample of 361 fragments
of French medieval glass. Clearly this quantity cannot be
negative.

More advanced methods of dealing with so-called
‘bounded’ data exist. In particular, there are classes of
‘boundary’ kernel functions which take into account the
proximity of the boundary and ensure that it is not crossed.
These boundary kernels have the unusual property that
K(x) may be negative for some x. In addition to the simple
reflection method, we have implemented a boundary kernel
method as described in Jones (1993). In figure 4 the broken
line represents such a KDE.

3.4 THE BIVARIATE CASE

Just as in the univariate case the choice of kernel
function makes little difference to the appearance of the
final KDE, though for completeness we have provided a
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Figure 5. A 75% contour for the Bronze Age cup data.

Figure 6. The KDE used to generate the contour of figure 5.

choice of four commonly used bivariate kernel functions.
On the other hand, the choice of smoothing parameters
again does have a significant effect. Our routines
automatically choose values for h1 and h2 based upon the
univariate method of selection for each of the two
components considered separately. However, interactive
subjective choices by the user are also supported.

An important use of bivariate KDEs is in contouring.
Since a KDE is a function, we can apply standard
contouring methods based upon the height of the function.
In addition, we have found some useful applications of a
new contouring method reported in Bowman and Foster
(1993) (see Baxter/Beardah 1995; Baxter et al. 1994 for
more details). This method consists of forming a KDE, then
ranking the data points by descending density as estimated
by the KDE. The contour enclosing p% of the data is then
formed by drawing a contour line corresponding to the
value of the kernel estimate of a data point p% through the
ordered list. Since this technique involves calculation of the
KDE at each of the data points it can be computationally
expensive for large data sets. Figure 5 shows a 75% contour
overlaid upon a scatter plot of data representing the rim
diameter and overall height of 60 Bronze Age cups from
Italy. The contour encloses the ‘most dense’ 75% of the
data set. Figure 6 shows the bivariate KDE (obtained using
the bivariate normal kernel and ‘optimal’ values for h1

and h2) which was used to generate the contour shown in
figure 5.

Our routines allow interactive variation of the smoothing
parameters h1 and h2 as well as the type of kernel function.
In addition, the resulting KDEs and percentage contour
plots can be viewed from any angle by means of sliders.
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